Science.gov

Sample records for corrosion localisee des

  1. Corrosion

    ERIC Educational Resources Information Center

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  2. Corrosion influencée par les micro-organismes : influence du biofilm sur la corrosion des aciers, techniques et résultats recents

    NASA Astrophysics Data System (ADS)

    Feugeas, F.; Magnin, J. P.; Cornet, A.; Rameau, J. J.

    1997-03-01

    Microbiologically Influenced Corrosion (M.I.C.) studied since the beginning of this century, is responsible for the degradation of many metallic equipments. This study is a review of results dealing with M.I.C. on several types of steels as: carbon steels, stainless steels, welded steels and covered steels. M.I.C. occurs only in presence of a biofilm. The first part of this study describes chemical and physical factors involved in its development, technical methods for studying biofilms, and its contribution in the corrosion process. The second part is devoted to the study of M.I.C. cases linked with metal nature and different aqueous environments and the last part reviews the mainly mecanisms of biocorrosion. La Corrosion Influencée par les Micro-organismes (C.I.M.) ou biocorrosion, phénomène étudié depuis le début du siècle, est responsable de la dégradation d'un grand nombre d'ouvrages métalliques. Cette étude a pour but de faire le point des connaissances sur la corrosion influencée microbiologiquement de divers types d'aciers au carbone, d'aciers inoxydables, d'assemblages soudés et d'aciers revêtus. La C.I.M. n'apparaît qu'en présence d'un biofilm. La première partie de cette étude décrit les facteurs physico-chimiques impliqués dans la formation du biofilm, ces moyens d'études ainsi que son action dans le processus de biocorrosion. La seconde partie est consacrée à la description des cas de biocorrosion classés en fonction de la nature des métaux et des milieux avec lesquels ils sont en contact. La dernière partie de ce document passe en revue les principaux mécanismes de biocorrosion décrits.

  3. Etude de la degradation des refractaires aluminosiliceux par abrasion, chocs thermiques et corrosion par l'aluminium: Correlation et interaction des mecanismes

    NASA Astrophysics Data System (ADS)

    Ntakaburimvo, Nicodeme

    Aluminosilicate refractories used for melting and holding furnaces on which the present work was focused are submitted to mechanical abuse such as abrasion, mechanical impact and erosion, on one hand; and to chemical degradation by corrosion, as well as to thermal stresses, mostly due to thermal shocks; on the other hand. This thesis is focused on four main objectives. The first one is related to the designing of an experimental set-up allowing abrasion testing of refractories. The second deals with the separate study of the deterioration of aluminosilicate refractories by abrasion, thermal shock and corrosion. The third is the correlation between these three mechanisms while the fourth is related to the interaction between thermal shock and corrosion. One of the contributions of this thesis is the realisation of the above mentioned experimental set-up, which permits to carry out refractories abrasion testing, as well as at room and high temperature, in the absence or in the presence of molten metal. The fact of testing refractory resistance when it is submitted separately and simultaneously to the action of dynamic corrosion, erosion and abrasion leads to the studying of the influence of each of these three mechanisms on the other. One of the characteristics of the designed set-up is the fact that it allows to adjust the seventy testing conditions according to the mechanical resistance of the test material. The other important point is related to the fact the abrasion tests were carried out in such manner to permit degradation quantification, otherwise than by the traditional method of loss of weight measurement; particularly by measuring the wear depth and the residual material properties, such as the rupture force and the strength. A perfect correlation was observed between the wear depth and the loss of weight, both being negatively correlated with the residual rupture force. The abrasion resistance was found to be globally positively correlated with the

  4. Imagerie Resolue dans le Temps des Photons et Neutres Metastables Emis D'une Surface Par Stimulation Electronique

    NASA Astrophysics Data System (ADS)

    Leclerc, Gregoire

    L'appareil que nous presentons ici a ete mis au point pour permettre d'accumuler des images numeriques, resolues dans le temps, de la desorption par stimulation electronique (DSE) d'ions positifs et negatifs, de photons et de neutres metastables, tout en conservant des capacites de base de diffraction d'electrons lents (DEL) et de transmission d'electrons lents (TEL). Le spectrometre comporte un monochromateur d'electrons a secteur cylindrique de 127^ circ dont l'optique de sortie permet la focalisation du faisceau d'electrons sur une large gamme d'energies. Le detecteur consiste en un empilement de galettes de microcanaux et d'une anode resistive a encodage de division de charges. La reponse spatiale du detecteur a ete calibree et plusieurs causes de non-linearite ont ete localisees et corrigees. Des methodes de correction materielle et logicielle des distorsions spatiales sont presentees. La resolution temporelle des evenements est obtenue en pulsant le faisceau d'electrons, et de facon synchrone la detection, laquelle est couplee a un micro-ordinateur. La premiere partie de ce travail est consacree a la caracterisation du spectrometre et la presentation de nombreux parametres operationnels, obtenus soit au moment de la conception, soit experimentalement. Suit la presentation de donnees de DEL et de DSE pour le systeme Ar/Pt(111) en films minces a 15K. Les sequences temporelles d'images de metastables d'Ar desorbes ont revele la presence de plusieurs populations distinctes, ayant des distributions angulaires et distributions d'energie cinetique que nous avons pu separer. Les fonctions d'excitation de l'emission de photons et de la desorption de differentes composantes de metastables, ainsi que la dependance de ces signaux sur l'epaisseur des films d'Ar, sont aussi presentees et analysees. Les techniques que nous avons developpees ont permis de cerner les mecanismes en jeu pour la desorption et la luminescence.

  5. Transport de paires EPR dans des structures mesoscopiques

    NASA Astrophysics Data System (ADS)

    Dupont, Emilie

    Dans cette these, nous nous sommes particulierement interesses a la propagation de paires EPR1 delocalisees et localisees, et a l'influence d'un supraconducteur sur le transport de ces paires. Apres une introduction de cette etude, ainsi que du cadre scientifique qu'est l'informatique quantique dans lequel elle s'inscrit, nous allons dans le chapitre 1 faire un rappel sur le systeme constitue de deux points quantiques normaux entoures de deux fils supraconducteurs. Cela nous permettra d'introduire une methode de calcul qui sera reutilisee par la suite, et de trouver egalement le courant Josephson produit par ce systeme transforme en SQUID-dc par l'ajout d'une jonction auxiliaire. Le SQUID permet de mesurer l'etat de spin (singulet ou triplet), et peut etre forme a partir d'autres systemes que nous etudierons ensuite. Dans le chapitre 2, nous rappellerons l'etude detaillee d'un intricateur d'Andreev faite par un groupe de Bale. La matrice T, permettant d'obtenir le courant dans les cas ou les electrons sont separes spatialement ou non, sera etudiee en detail afin d'en faire usage au chapitre suivant. Le chapitre 3 est consacre a l'etude de l'influence du bruit sur le fonctionnement de l'intricateur d'Andreev. Ce bruit modifie la forme du courant jusqu'a aboutir a d'autres conditions de fonctionnement de l'intricateur. En effet, le bruit present sur les points quantiques peut perturber le transport des paires EPR par l'intermediaire des degres de liberte. Nous montrerons que, du fait de l'"intrication" entre la charge de la paire et le bruit, la paire est detruite pour des temps longs. Cependant, le resultat le plus important sera que le bruit perturbe plus le transport des paires delocalisees, qui implique une resonance de Breit-Wigner a deux particules. Le transport parasite n'implique pour sa part qu'une resonance de Breit-Wigner a une particule. Dans le chapitre 4, nous reviendrons au systeme constitue de deux points quantiques entoures de deux fils

  6. Corrosion protection

    DOEpatents

    Brown, Donald W.; Wagh, Arun S.

    2003-05-27

    There has been invented a chemically bonded phosphate corrosion protection material and process for application of the corrosion protection material for corrosion prevention. A slurry of iron oxide and phosphoric acid is used to contact a warm surface of iron, steel or other metal to be treated. In the presence of ferrous ions from the iron, steel or other metal, the slurry reacts to form iron phosphates which form grains chemically bonded onto the surface of the steel.

  7. Corrosion Engineering.

    ERIC Educational Resources Information Center

    White, Charles V.

    A description is provided for a Corrosion and Corrosion Control course offered in the Continuing Engineering Education Program at the General Motors Institute (GMI). GMI is a small cooperative engineering school of approximately 2,000 students who alternate between six-week periods of academic study and six weeks of related work experience in…

  8. Fireside Corrosion

    SciTech Connect

    Holcomb, Gordon

    2011-07-14

    Oxy-fuel fireside research goals are: (1) determine the effect of oxyfuel combustion on fireside corrosion - flue gas recycle choice, staged combustion ramifications; and (2) develop methods to use chromia solubility in ash as an ash corrosivity measurement - synthetic ashes at first, then boiler and burner rig ashes.

  9. Corrosion inhibitor

    SciTech Connect

    Wisotsky, M.J.; Metro, S.J.

    1989-10-31

    A corrosion inhibitor for use in synthetic ester lubricating oils is disclosed. It comprises an effective amount of: at least one aromatic amide; and at least one hydroxy substituted aromatic compound. The corrosion inhibitor thus formed is particularly useful in synthetic ester turbo lubricating oils.

  10. Corrosion sensor

    DOEpatents

    Glass, Robert S.; Clarke, Jr., Willis L.; Ciarlo, Dino R.

    1994-01-01

    A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

  11. Corrosion sensor

    DOEpatents

    Glass, R.S.; Clarke, W.L. Jr.; Ciarlo, D.R.

    1994-04-26

    A corrosion sensor array is described incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis. 7 figures.

  12. Fighting Corrosion

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Reinforced concrete structures such as bridges, parking decks, and balconies are designed to have a service life of over 50 years. All too often, however, many structures fall short of this goal, requiring expensive repairs and protection work earlier than anticipated. The corrosion of reinforced steel within the concrete infrastructure is a major cause for this premature deterioration. Such corrosion is a particularly dangerous problem for the facilities at NASA s Kennedy Space Center. Located near the Atlantic Ocean in Florida, Kennedy is based in one of the most corrosive-prone areas in the world. In order to protect its launch support structures, highways, pipelines, and other steel-reinforced concrete structures, Kennedy engineers developed the Galvanic Liquid Applied Coating System. The system utilizes an inorganic coating material that slows or stops the corrosion of reinforced steel members inside concrete structures. Early tests determined that the coating meets the criteria of the National Association of Corrosion Engineers for complete protection of steel rebar embedded in concrete. Testing is being continued at the Kennedy's Materials Science Beach Corrosion Test Site.

  13. CORROSION INHIBITION

    DOEpatents

    Cartledge, G.H.

    1958-06-01

    The protection of ferrous metsls from the corrosive action of aqueous solutions is accomplished by the incorporation of small amounts of certain additive agents into the aqueous solutions. The method comprises providing a small concentration of technetium, in the form of pertechnetate ion, dissolved in the solution.

  14. Corrosion 99: Proceedings

    SciTech Connect

    1999-11-01

    This conference includes the following; Corrosion in Gas Treating; Advances in Scale and Deposit Control; Uses of Computers for Improved Corrosion Control; Erosion-Corrosion in Steam Generating Systems; Electrochemical Noise Measurements for Corrosion Evaluations; Materials Performance in Fossil Fuel Combustion and Conversion Systems; Corrosion in Super Critical Processes; Cathodic Protection of External Surfaces for Underground and Aboveground Storage Tanks; Microbiologically Influenced Corrosion; Advances in Materials for Oilfield Applications; Refining Industry Corrosion; Green Corrosion/Scale Inhibition Technologies; Managing Corrosion With Plastics; Corrosion Measurement Technology; Marine Corrosion; Improved Understanding and Mitigation of CO{sub 2} Corrosion; Thermal Spray Coatings for Corrosion Protection; Volatile Corrosion Inhibitors; Corrosion Testing in Concrete; Stress Corrosion Cracking: Field Laboratory Correlations; Materials Performance in Incineration and Waste Fuel Combustion Environments; Water Reuse in Industry; Corrosion Control and Prevention of Military and Aerospace Equipment; Corrosion in Nuclear Systems; Latest Developments in Aboveground Storage Tanks Corrosion Control, Monitoring and Evaluation Technology; Internal In-line Inspection of Pipelines and Evaluation of Results; New Developments in Cathodic Protection of Reinforcing Steels in Concrete; Cathodic Protection in Natural Waters; Corrosion in the Pulp and Paper Industry; Advanced Materials for High Temperature Service in Chemical Process Industry; Advances in Cooling Water Treatment; Materials, Fabrication, and Inspection Guidelines for Wet H{sub 2}S Service; Environmental Wear of Nonmetallics in Oilfield Service; and Corrosion and Scale Control in Low Pressure Boiler and Steam Systems in Buildings. Separate abstracts were prepared for most of the papers.

  15. Corrosion 99: Proceedings

    SciTech Connect

    Not Available

    1999-01-01

    This conference includes the following; Corrosion in Gas Treating; Advances in Scale and Deposit Control; Uses of Computers for Improved Corrosion Control; Erosion-Corrosion in Steam Generating Systems; Electrochemical Noise Measurements for Corrosion Evaluations; Materials Performance in Fossil Fuel Combustion and Conversion Systems; Corrosion in Super Critical Processes; Cathodic Protection of External Surfaces for Underground and Aboveground Storage Tanks; Microbiologically Influenced Corrosion; Advances in Materials for Oilfield Applications; Refining Industry Corrosion; Green Corrosion/Scale Inhibition Technologies; Managing Corrosion With Plastics; Corrosion Measurement Technology; Marine Corrosion; Improved Understanding and Mitigation of CO[sub 2] Corrosion; Thermal Spray Coatings for Corrosion Protection; Volatile Corrosion Inhibitors; Corrosion Testing in Concrete; Stress Corrosion Cracking: Field Laboratory Correlations; Materials Performance in Incineration and Waste Fuel Combustion Environments; Water Reuse in Industry; Corrosion Control and Prevention of Military and Aerospace Equipment; Corrosion in Nuclear Systems; Latest Developments in Aboveground Storage Tanks Corrosion Control, Monitoring and Evaluation Technology; Internal In-line Inspection of Pipelines and Evaluation of Results; New Developments in Cathodic Protection of Reinforcing Steels in Concrete; Cathodic Protection in Natural Waters; Corrosion in the Pulp and Paper Industry; Advanced Materials for High Temperature Service in Chemical Process Industry; Advances in Cooling Water Treatment; Materials, Fabrication, and Inspection Guidelines for Wet H[sub 2]S Service; Environmental Wear of Nonmetallics in Oilfield Service; and Corrosion and Scale Control in Low Pressure Boiler and Steam Systems in Buildings. Separate abstracts were prepared for most of the papers.

  16. Corrosion and corrosion prevention in gas turbines

    NASA Technical Reports Server (NTRS)

    Mom, A. J. A.; Kolkman, H. J.

    1985-01-01

    The conditions governing the corrosion behavior in gas turbines are surveyed. Factors such as temperature, relative humidity, the presence of sulfur and nitrogen dioxide, and fuel quality are discussed. Electromechanical corrosion at relatively low temperature in compressors; oxidation; and hot corrosion (sulfidation) at high temperature in turbines are considered. Corrosion prevention by washing and rinsing, fueld additives, and corrosion resistant materials and coatings are reviewed.

  17. Chemical Industry Corrosion Management

    SciTech Connect

    2003-02-01

    Improved Corrosion Management Could Provide Significant Cost and Energy Savings for the Chemical Industry. In the chemical industry, corrosion is often responsible for significant shutdown and maintenance costs.

  18. Des Moines.

    ERIC Educational Resources Information Center

    Gore, Deborah, Ed.

    1988-01-01

    This document, intended for elementary students, contains articles and activities designed to acquaint young people with the history of Des Moines, Iowa. The articles are short, and new or difficult words are highlighted and defined for young readers. "The Raccoon River Indian Agency" discusses the archeological exploration of the indian…

  19. Corrosion/96 conference papers

    SciTech Connect

    1996-07-01

    Topics covered by this conference include: cathodic protection in natural waters; cleaning and repassivation of building HVAC systems; worldwide opportunities in flue gas desulfurization; advancements in materials technology for use in oil and gas service; fossil fuel combustion and conversion; technology of corrosion inhibitors; computers in corrosion control--modeling and information processing; recent experiences and advances of austenitic alloys; managing corrosion with plastics; corrosion measurement technology; corrosion inhibitors for concrete; refining industry; advances in corrosion control for rail and tank trailer equipment; CO{sub 2} corrosion--mechanisms and control; microbiologically influenced corrosion; corrosion in nuclear systems; role of corrosion in boiler failures; effects of water reuse on monitoring and control technology in cooling water applications; methods and mechanisms of scale and deposit control; corrosion detection in petroleum production lines; underground corrosion control; environmental cracking--relating laboratory results and field behavior; corrosion control in reinforced concrete structures; corrosion and its control in aerospace and military hardware; injection and process addition facilities; progress reports on the results of reinspection of deaerators inspected or repaired per RP0590 criteria; near 100% volume solids coating technology and application methods; materials performance in high temperature environments containing halides; impact of toxicity studies on use of corrosion/scale inhibitors; mineral scale deposit control in oilfield related operations; corrosion in gas treating; marine corrosion; cold climate corrosion; corrosion in the pulp and paper industry; gaseous chlorine alternatives in cooling water systems; practical applications of ozone in recirculating cooling water systems; and water reuse in industry. Over 400 papers from this conference have been processed separately for inclusion on the data base.

  20. Internal Corrosion and Deposition Control

    EPA Science Inventory

    This chapter reviews the current knowledge of the science of corrosion control and control of scaling in drinking water systems. Topics covered include: types of corrosion; physical, microbial and chemical factors influencing corrosion; corrosion of specific materials; direct ...

  1. Corrosion inhibiting organic coatings

    SciTech Connect

    Sasson, E.

    1984-10-16

    A corrosion inhibiting coating comprises a mixture of waxes, petroleum jelly, a hardener and a solvent. In particular, a corrosion inhibiting coating comprises candelilla wax, carnauba wax, microcrystalline waxes, white petrolatum, an oleoresin, lanolin and a solvent.

  2. Duralumin and Its Corrosion

    NASA Technical Reports Server (NTRS)

    Nelson, WM

    1927-01-01

    The types of corrosion and factors of corrosion of duralumin are investigated. Salt water is the most common of the corroding media with which designers have to contend in using duralumin in aircraft and ships.

  3. Caracterisation pratique des systemes quantiques et memoires quantiques auto-correctrices 2D

    NASA Astrophysics Data System (ADS)

    Landon-Cardinal, Olivier

    distincts vers le meme etat excite, sinon l'information aura ete perdue. Notre resultat principal montre qu'aucun systeme topologique 2D n'est auto-correcteur: l'environnement peut changer l'etat fondamental en deplacant aleatoirement de petits paquets d'energie, un mecanisme coherent avec l'intuition que tout systeme topologique admet des excitations localisees ou quasiparticules. L'interet de ce resultat est double. D'une part, il oriente la recherche d'un systeme auto-correcteur en montrant qu'il doit soit (i) etre tridimensionnel, ce qui est difficile a realiser experimentalement, soit (ii) etre base sur des mecanismes de protection nouveaux, allant au-dela des considerations energetiques. D'autre part, ce resultat constitue un premier pas vers la demonstration formelle de l'existence de quasiparticules pour tout systeme topologique.

  4. Electrochemical corrosion testing: An effective tool for corrosion inhibitor evaluation

    SciTech Connect

    Bartley, L.S.; Van de Ven, P.; Mowlem, J.K.

    1996-10-01

    Corrosivity of an Antifreeze/Coolant can lead to localized attacks which are a major cause for metal failure. To prevent this phenomenon, specific corrosion inhibitors are used to protect the different metals in service. This paper will discuss the electrochemical principles behind corrosion, Realized corrosion and corrosion inhibition. It will also discuss electrochemical techniques which allow for the evaluation of these inhibitors.

  5. SRB seawater corrosion project

    NASA Technical Reports Server (NTRS)

    Bozack, M. J.

    1991-01-01

    The corrosion behavior of 2219 aluminum when exposed to seawater was characterized. Controlled corrosion experiments at three different temperatures (30, 60 and 100 C) and two different environments (seawater and 3.5 percent salt solution) were designed to elucidate the initial stages in the corrosion process. It was found that 2219 aluminum is an active catalytic surface for growth of Al2O3, NaCl, and MgO. Formation of Al2O3 is favored at lower temperatures, while MgO is favored at higher temperatures. Visible corrosion products are formed within 30 minutes after seawater exposure. Corrosion characteristics in 3.5 percent salt solution are different than corrosion in seawater. Techniques utilized were: (1) scanning electron microscopy, (2) energy dispersive x-ray spectroscopy, and (3) Auger electron spectroscopy.

  6. Novel corrosion inhibitor technology

    SciTech Connect

    Van de Ven, P.; Fritz, P.; Pellet, R.

    1999-11-01

    A novel, patented corrosion inhibitor technology has been identified for use in heat transfer applications such as automotive and heavy-duty coolant. The new technology is based on a low-toxic, virtually depletion-free carboxylic acid corrosion inhibitor package that performs equally well in mono ethylene glycol and in less toxic propylene glycol coolants. An aqueous inhibitor concentrate is available to provide corrosion protection where freezing protection is not an issue. In the present paper, this inhibitor package is evaluated in the different base fluids: mono ethylene glycol, mono propylene glycol and water. Results are obtained in both standardized and specific corrosion tests as well as in selected field trials. These results indicate that the inhibitor package remains effective and retains the benefits previously identified in automotive engine coolant applications: excellent corrosion protection under localized conditions, general corrosion conditions as well as at high temperature.

  7. Stress corrosion resistant fasteners

    NASA Technical Reports Server (NTRS)

    Roach, T. A.

    1985-01-01

    A family of high performance aerospace fasteners made from corrosion resistant alloys for use in applications where corrosion and stress-corrosion cracking are of major concern are discussed. The materials discussed are mainly A-286, Inconel 718, MP35N and MP159. Most of the fasteners utilize cold worked and aged materials to achieve the desired properties. The fasteners are unique in that they provide a combination of high strength and immunity to stress corrosion cracking not previously attainable. A discussion of fastener stress corrosion failures is presented including a review of the history and a description of the mechanism. Case histories are presented to illustrate the problems which can arise when material selection is made without proper regard for the environmental conditions. Mechanical properties and chemical compositions are included for the fasteners discussed. Several aspects of the application of high performance corrosion resistant fasteners are discussed including galvanic compatibility and torque-tension relationships.

  8. Electrochemical corrosion studies

    NASA Technical Reports Server (NTRS)

    Knockemus, W. W.

    1986-01-01

    The objective was to gain familiarity with the Model 350 Corrosion Measurement Console, to determine if metal protection by grease coatings can be measured by the polarization-resistance method, and to compare corrosion rates of 4130 steel coated with various greases. Results show that grease protection of steel may be determined electrochemically. Studies were also conducted to determine the effectiveness of certain corrosion inhibitors on aluminum and steel.

  9. Effective corrosion monitoring

    SciTech Connect

    Britton, C.F.; Tofield, B.C.

    1988-04-01

    The results of two surveys (conducted in 1981 and 1984) of users of corrosion monitoring equipment are described. The benefits to be obtained from a well-designed corrosion monitoring system, especially if a corrosion control program is used, are outlined together with the difficulties and barriers that can obstruct successful application. Developing methods such as AC impedance, electrochemical noise, and thin layer activation are discussed in view of the comments received from the surveys.

  10. Corrosion Detection Devices

    SciTech Connect

    Howard, B.

    2003-12-01

    Nondestructive Examination Systems' (NDE) specialists at the Department of Energy's Savannah River Site have unique, remotely controllable, corrosion detection capabilities. The corrosion detection devices most frequently used are automated ultrasonic mapping systems, digital radiography imaging devices, infrared imaging, and eddy current mapping systems. These devices have been successfully used in a variety of applications, some of which involve high levels of background radiation. Not only is corrosion located and mapped but other types of anomalies such as cracks have been detected and characterized. Examples of actual corrosion that has been detected will be discussed along with the NDE systems that were used.

  11. Potentiodynamic Corrosion Testing.

    PubMed

    Munir, Selin; Pelletier, Matthew H; Walsh, William R

    2016-01-01

    Different metallic materials have different polarization characteristics as dictated by the open circuit potential, breakdown potential, and passivation potential of the material. The detection of these electrochemical parameters identifies the corrosion factors of a material. A reliable and well-functioning corrosion system is required to achieve this. Corrosion of the samples was achieved via a potentiodynamic polarization technique employing a three-electrode configuration, consisting of reference, counter, and working electrodes. Prior to commencement a baseline potential is obtained. Following the stabilization of the corrosion potential (Ecorr), the applied potential is ramped at a slow rate in the positive direction relative to the reference electrode. The working electrode was a stainless steel screw. The reference electrode was a standard Ag/AgCl. The counter electrode used was a platinum mesh. Having a reliable and well-functioning in vitro corrosion system to test biomaterials provides an in-expensive technique that allows for the systematic characterization of the material by determining the breakdown potential, to further understand the material's response to corrosion. The goal of the protocol is to set up and run an in vitro potentiodynamic corrosion system to analyze pitting corrosion for small metallic medical devices. PMID:27683978

  12. Aluminum Corrosion and Turbidity

    SciTech Connect

    Longtin, F.B.

    2003-03-10

    Aluminum corrosion and turbidity formation in reactors correlate with fuel sheath temperature. To further substantiate this correlation, discharged fuel elements from R-3, P-2 and K-2 cycles were examined for extent of corrosion and evidence of breaking off of the oxide film. This report discusses this study.

  13. Potentiodynamic Corrosion Testing.

    PubMed

    Munir, Selin; Pelletier, Matthew H; Walsh, William R

    2016-09-04

    Different metallic materials have different polarization characteristics as dictated by the open circuit potential, breakdown potential, and passivation potential of the material. The detection of these electrochemical parameters identifies the corrosion factors of a material. A reliable and well-functioning corrosion system is required to achieve this. Corrosion of the samples was achieved via a potentiodynamic polarization technique employing a three-electrode configuration, consisting of reference, counter, and working electrodes. Prior to commencement a baseline potential is obtained. Following the stabilization of the corrosion potential (Ecorr), the applied potential is ramped at a slow rate in the positive direction relative to the reference electrode. The working electrode was a stainless steel screw. The reference electrode was a standard Ag/AgCl. The counter electrode used was a platinum mesh. Having a reliable and well-functioning in vitro corrosion system to test biomaterials provides an in-expensive technique that allows for the systematic characterization of the material by determining the breakdown potential, to further understand the material's response to corrosion. The goal of the protocol is to set up and run an in vitro potentiodynamic corrosion system to analyze pitting corrosion for small metallic medical devices.

  14. Fireside Corrosion USC Steering

    SciTech Connect

    G. R. Holcomb; J. Tylczak

    2011-09-07

    Oxy-Fuel Fireside Research goals are: (1) Determine the effect of oxy-fuel combustion on fireside corrosion - (a) Flue gas recycle choice, Staged combustion ramifications, (c) JCOAL Collaboration; and (2) Develop methods to use chromia solubility in ash as an 'ash corrosivity' measurement - (a) Synthetic ashes at first, then boiler and burner rig ashes, (b) Applicable to SH/RH conditions.

  15. Demystifying Controlling Copper Corrosion

    EPA Science Inventory

    The LCR systematically misses the highest health and corrosion risk sites for copper. Additionally, there are growing concerns for WWTP copper in sludges and discharge levels. There are many corrosion control differences between copper and lead. This talk explains the sometimes c...

  16. Crude unit corrosion and corrosion control

    SciTech Connect

    Bagdasarian, A.; Feather, J.; Hull, B.; Stephenson, R.; Strong, R.

    1996-08-01

    In the petroleum refining process, the Crude Unit is the initial stage of distillation of the crude oil into useable fractions, either as end products or feed to downstream units. The major pieces of equipment found on units will vary depending on factors such as the assay of the design crude, the age of the refinery, and other downstream units. The unit discussed in this paper has all of the major pieces of equipment found on crude units including double desalting, a preflash section, an atmospheric section, a vacuum section, and a stabilization section. This paper reviews fundamental corrosion issues concerning the Crude Unit process. It is, in concise form, a description of the process and major equipment found in the Crude Unit; types of corrosion and where they occur; corrosion monitoring and inspection advice; and a list of related references for further reading. 12 refs., 1 fig.

  17. Corrosion in methylphosphonic difluoride

    SciTech Connect

    Zabielski, C.V.; Levy, M. )

    1994-12-01

    Electrochemical potentiodynamic polarization studies were conducted for a variety of ferrous and nonferrous metals in methylphosphonic difluoride. Studies were also made of the effects of organic inhibitors on the corrosion rates of 1,020 steel, type 316L, and type 304 stainless steel, and magnesium in methylphosphonic difluoride. Chemical weapons in the US include binary munitions in which two components are kept in separate compartments until activation. These munitions must be stockpiled for long periods of time (up to 30 years) and then must operate reliably when the need arises. The principal cause of failure will be corrosion of the storage container by the highly corrosive methylphosphonic difluoride (DF). The objectives of this study were to: investigate the kinetics and mechanisms of corrosion of Al 6061-T6 and candidate metal alloys in DF; establish effective corrosion inhibitors; and ultimately incorporate or immobilize inhibitors into coatings that provide protection above the liquid line.

  18. The Corrosion and Preservation of Iron Antiques.

    ERIC Educational Resources Information Center

    Walker, Robert

    1982-01-01

    Discusses general corrosion reactions (iron to rust), including corrosion of iron, sulfur dioxide, chlorides, immersed corrosion, and underground corrosion. Also discusses corrosion inhibition, including corrosion inhibitors (anodic, cathodic, mixed, organic); safe/dangerous inhibitors; and corrosion/inhibition in concrete/marble, showcases/boxes,…

  19. Corrosion-resistant uranium

    DOEpatents

    Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

    1981-10-21

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  20. Corrosion-resistant uranium

    DOEpatents

    Hovis, Jr., Victor M.; Pullen, William C.; Kollie, Thomas G.; Bell, Richard T.

    1983-01-01

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  1. Liquid-metal corrosion

    SciTech Connect

    Chopra, O.K.; DeVan, J.H.; Smith, D.L.; Sze, D.K.; Tortorelli, P.F.

    1985-09-01

    A review of corrosion and environmental effects on the mechanical properties of candidate structural alloys for use with liquid metals in fusion reactors is presented. The corrosion/mass transfer behavior of austenitic and ferritic steels and vanadium-base alloys is evaluated to determine the preliminary operating temperature limits for circulating and static liquid-lithium and Pb-17Li systems. The influence of liquid-metal environment on the mechanical properties of structural materials is discussed. Corrosion effects of nitrate and fluoride salts are presented. Requirements for additional data are identified.

  2. Current and potential distributions in corrosion systems

    SciTech Connect

    Smyrl, W.H.

    1980-01-01

    Current and potential distribution calculations in corrosion are reviewed. The mathematical methods used, and the specific results for galvanic corrosion, cathodic protection, and localized corrosion are described.

  3. BWR steel containment corrosion

    SciTech Connect

    Tan, C.P.; Bagchi, G.

    1996-04-01

    The report describes regulatory actions taken after corrosion was discovered in the drywell at the Oyster Creek Plant and in the torus at the Nine Mile Point 1 Plant. The report describes the causes of corrosion, requirements for monitoring corrosion, and measures to mitigate the corrosive environment for the two plants. The report describes the issuances of generic letters and information notices either to collect information to determine whether the problem is generic or to alert the licensees of similar plants about the existence of such a problem. Implementation of measures to enhance the containment performance under severe accident conditions is discussed. A study by Brookhaven National Laboratory (BNL) of the performance of a degraded containment under severe accident conditions is summarized. The details of the BNL study are in the appendix to the report.

  4. Corrosion Inhibitors for Aluminum.

    ERIC Educational Resources Information Center

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  5. Corrosivity Of Pyrolysis Oils

    SciTech Connect

    Keiser, James R; Bestor, Michael A; Lewis Sr, Samuel Arthur; Storey, John Morse

    2011-01-01

    Pyrolysis oils from several sources have been analyzed and used in corrosion studies which have consisted of exposing corrosion coupons and stress corrosion cracking U-bend samples. The chemical analyses have identified the carboxylic acid compounds as well as the other organic components which are primarily aromatic hydrocarbons. The corrosion studies have shown that raw pyrolysis oil is very corrosive to carbon steel and other alloys with relatively low chromium content. Stress corrosion cracking samples of carbon steel and several low alloy steels developed through-wall cracks after a few hundred hours of exposure at 50 C. Thermochemical processing of biomass can produce solid, liquid and/or gaseous products depending on the temperature and exposure time used for processing. The liquid product, known as pyrolysis oil or bio-oil, as produced contains a significant amount of oxygen, primarily as components of water, carboxylic acids, phenols, ketones and aldehydes. As a result of these constituents, these oils are generally quite acidic with a Total Acid Number (TAN) that can be around 100. Because of this acidity, bio-oil is reported to be corrosive to many common structural materials. Despite this corrosive nature, these oils have the potential to replace some imported petroleum. If the more acidic components can be removed from this bio-oil, it is expected that the oil could be blended with crude oil and then processed in existing petroleum refineries. The refinery products could be transported using customary routes - pipelines, barges, tanker trucks and rail cars - without a need for modification of existing hardware or construction of new infrastructure components - a feature not shared by ethanol.

  6. Method for inhibiting corrosion

    SciTech Connect

    Wu, Y.; Stapp, P. R.

    1985-12-03

    A composition comprising the reaction adduct or neutralized product resulting from the reaction of a maleic anhydride and an oil containing a polynuclear aromatic compound is provided which, when applied to a metal surface, forms a corrosion-inhibiting film thereon. The composition is particularly useful in the treatment of down-hole metal surfaces in oil and gas wells to inhibit the corrosion of the metal.

  7. Corrosion testing using isotopes

    DOEpatents

    Hohorst, Frederick A.

    1995-12-05

    A method for determining the corrosion behavior of a material with respect to a medium in contact with the material by: implanting a substantially chemically inert gas in a matrix so that corrosion experienced by the material causes the inert gas to enter the medium; placing the medium in contact with the material; and measuring the amount of inert gas which enters the medium. A test sample of a material whose resistance to corrosion by a medium is to be tested, composed of: a body of the material, which body has a surface to be contacted by the medium; and a substantially chemically inert gas implanted into the body to a depth below the surface. A test sample of a material whose resistance to corrosion by a medium is to be tested, composed of: a substrate of material which is easily corroded by the medium, the substrate having a surface; a substantially chemically inert gas implanted into the substrate; and a sheet of the material whose resistance to corrosion is to be tested, the sheet being disposed against the surface of the substrate and having a defined thickness.

  8. Corrosion testing using isotopes

    DOEpatents

    Hohorst, F.A.

    1995-12-05

    A method is described for determining the corrosion behavior of a material with respect to a medium in contact with the material by: implanting a substantially chemically inert gas in a matrix so that corrosion experienced by the material causes the inert gas to enter the medium; placing the medium in contact with the material; and measuring the amount of inert gas which enters the medium. A test sample of a material whose resistance to corrosion by a medium is to be tested is described composed of: a body of the material, which body has a surface to be contacted by the medium; and a substantially chemically inert gas implanted into the body to a depth below the surface. A test sample of a material whose resistance to corrosion by a medium is to be tested is described composed of: a substrate of material which is easily corroded by the medium, the substrate having a surface; a substantially chemically inert gas implanted into the substrate; and a sheet of the material whose resistance to corrosion is to be tested, the sheet being disposed against the surface of the substrate and having a defined thickness. 3 figs.

  9. Practical aspects of corrosion fundamentals

    SciTech Connect

    Isaacs, H.S.

    1994-08-01

    Aspects important in corrosion have been introduced. They are: (a) ``Pourbaix Diagrams`` which consider thermodynamic stability of metals as a function of electrical potential and water pH; (b) the anodic interfacial reaction rates which depend on potential and accumulation of reaction products; (c) the prediction of polarization curves based on the kinetics and thermodynamics; and (d) localized corrosion models, as this form of corrosion is a major cause of corrosion failures.

  10. Corrosion-resistant metal surfaces

    DOEpatents

    Sugama, Toshifumi

    2009-03-24

    The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

  11. Solving A Corrosion Problem

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The corrosion problem, it turned out, stemmed from the process called electrolysis. When two different metals are in contact, an electrical potential is set up between them; when the metals are surrounded by an electrolyte, or a conducting medium, the resulting reaction causes corrosion, often very rapid corrosion. In this case the different metals were the copper grounding system and the ferry's aluminum hull; the dockside salt water in which the hull was resting served as the electrolyte. After identifying the source of the trouble, the Ames engineer provided a solution: a new wire-and-rod grounding system made of aluminum like the ferry's hull so there would no longer be dissimilar metals in contact. Ames research on the matter disclosed that the problem was not unique to the Golden Gate ferries. It is being experienced by many pleasure boat operators who are probably as puzzled about it as was the Golden Gate Transit Authority.

  12. Corrosion Monitoring System

    SciTech Connect

    Dr. Russ Braunling

    2004-10-31

    The Corrosion Monitoring System (CMS) program developed and demonstrated a continuously on-line system that provides real-time corrosion information. The program focused on detecting pitting corrosion in its early stages. A new invention called the Intelligent Ultrasonic Probe (IUP) was patented on the program. The IUP uses ultrasonic guided waves to detect small defects and a Synthetic Aperture Focusing Technique (SAFT) algorithm to provide an image of the pits. Testing of the CMS demonstrated the capability to detect pits with dimensionality in the sub-millimeter range. The CMS was tested in both the laboratory and in a pulp and paper industrial plant. The system is capable of monitoring the plant from a remote location using the internet.

  13. Corrosion resistant PEM fuel cell

    DOEpatents

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K. NY); Cunningham, Kevin M.

    2011-06-07

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  14. Corrosion resistant PEM fuel cell

    DOEpatents

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K.; Cunningham, Kevin M.

    2002-01-01

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  15. Inhibition of corrosion of copper in nitric acid solution by some arylmethylene cyanothioacetamide derivatives

    NASA Astrophysics Data System (ADS)

    Fouda, A. S.; Mohamed, A. K.; Mostafa, H. A.

    1998-01-01

    The inhibition of corrosion of copper in 2M HNO3 solution by some arylmethylene cyanothioacetamide derivatives was tested using polarization measurements. The results showed that these compounds act as mixed type inhibitors and inhibition efficiencies up to 90% can be obtained. The inhibition was assumed to occur via physical adsorption of the inhibitor molecules fitting a Frumkin isotherm. The influence of the substituent group on the inhibition efficiency of the inhibitor was explained in terms of the density of the electron cloud on the cyanothioacetamide moiety and the mode of adsorption. The increase in temperature was found to increase the corrosion in absence and in presence of inhibitors. Some thermodynamic functions were also computed and discussed. L'inhibition de la corrosion du cuivre dans des solutions 2M HNO3 par quelques dérivés d'arylméthylène cyanothioacétamides a été testée par des mesures de polarisation. Les résultats montrent que ces composés se comportent comme des inhibiteurs mixtes. Des efficacités d'inhibition jusqu'à 90 % peuvent être obtenues. L'inhibition est supposée se produire par l'adsorption des molécules d'inhibiteur suivant une isotherme de Frumkin. L'influence de groupe substituant sur l'efficacité de l'inhibiteur a été interprétée en terme de densité du nuage électronique sur la partie cyanothioacétamide et de mode d'adsorption. L'augmentation de la température augmente la corrosion en l'absence et en présence d'inhibiteur. Certaines fonctions thermodynamiques ont également été calculées et discutées.

  16. Des ballons pour demain

    NASA Astrophysics Data System (ADS)

    Régipa, R.

    A partir d'une théorie sur la détermination des formes et des contraintes globales d'un ballon de révolution, ou s'en rapprochant, une nouvelle famille de ballons a été définie. Les ballons actuels, dits de ``forme naturelle'', sont calculés en général pour une tension circonférencielle nulle. Ainsi, pour une mission donnée, la tension longitudinale et la forme de l'enveloppe sont strictement imposées. Les ballons de la nouvelle génération sont globalement cylindriques et leurs pôles sont réunis par un câble axial, chargé de transmettre une partie des efforts depuis le crochet (pôle inférieur), directement au pôle supérieur. De plus, la zone latérale cylindrique est soumise à un faible champ de tensions circonférencielles. Ainsi, deux paramètres permettent de faire évoluer la distribution des tensions et la forme de l'enveloppe: - la tension du câble de liaison entre pôles (ou la longueur de ce câble) - la tension circonférencielle moyenne désirée (ou le rayon du ballon). On peut donc calculer et réaliser: - soit des ballons de forme adaptée, comme les ballons à fond plat pour le bon fonctionnement des montgolfières infrarouge (projet MIR); - soit des ballons optimisés pour une bonne répartition des contraintes et une meilleure utilisation des matériaux d'enveloppe, pour l'ensemble des programmes stratosphériques. Il s'ensuit une économie sensible des coûts de fabrication, une fiabilité accrue du fonctionnement de ces ballons et une rendement opérationnel bien supérieur, permettant entre autres, d'envisager des vols à très haute altitude en matériaux très légers.

  17. Copper corrosion in coastal Oregon

    SciTech Connect

    Ballard, Sophie J.; Cramer, Stephen D.; Covino, Bernard S. Jr.; Holcomb, Gordon R.

    1998-01-01

    The US Department of Energy is studying the atmospheric corrosion performance of copper and other metals along the Oregon coast. Only the copper results will be presented in this paper. Atmospheric corrosion measurements of copper samples were made at seven bridges, eight coastal communities, and three inland reference sites to quantify and understand the effect of high chloride environments on the corrosion performance of copper. The materials were atmospherically exposed for 1, 2, and 3 years to examine the effects of sheltering, orientation, distance from the ocean, and coastal microclimates on the rate of corrosion and the composition of the corrosion film.

  18. Corrosion protection by anaerobiosis.

    PubMed

    Volkland, H P; Harms, H; Wanner; Zehnder, A J

    2001-01-01

    Biofilm-forming bacteria can protect mild (unalloyed) steel from corrosion. Mild steel coupons incubated with Rhodoccocus sp. strain C125 and Pseudomonas putida mt2 in an aerobic phosphate-buffered medium containing benzoate as carbon and energy source, underwent a surface reaction leading to the formation of a corrosion-inhibiting vivianite layer [Fe3(PO4)2]. Electrochemical potential (E) measurements allowed us to follow the buildup of the vivianite cover. The presence of sufficient metabolically active bacteria at the steel surface resulted in an E decrease to -510 mV, the potential of free iron, and a continuous release of ferrous iron. Part of the dissolved iron precipitated as vivianite in a compact layer of two to three microns in thickness. This layer prevented corrosion of mild steel for over two weeks, even in a highly corrosive medium. A concentration of 20 mM phosphate in the medium was found to be a prerequisite for the formation of the vivianite layer.

  19. Mobile evaporator corrosion test results

    SciTech Connect

    Rozeveld, A.; Chamberlain, D.B.

    1997-05-01

    Laboratory corrosion tests were conducted on eight candidates to select a durable and cost-effective alloy for use in mobile evaporators to process radioactive waste solutions. Based on an extensive literature survey of corrosion data, three stainless steel alloys (304L, 316L, AL-6XN), four nickel-based alloys (825, 625, 690, G-30), and titanium were selected for testing. The corrosion tests included vapor phase, liquid junction (interface), liquid immersion, and crevice corrosion tests on plain and welded samples of candidate materials. Tests were conducted at 80{degrees}C for 45 days in two different test solutions: a nitric acid solution. to simulate evaporator conditions during the processing of the cesium ion-exchange eluant and a highly alkaline sodium hydroxide solution to simulate the composition of Tank 241-AW-101 during evaporation. All of the alloys exhibited excellent corrosion resistance in the alkaline test solution. Corrosion rates were very low and localized corrosion was not observed. Results from the nitric acid tests showed that only 316L stainless steel did not meet our performance criteria. The 316L welded interface and crevice specimens had rates of 22.2 mpy and 21.8 mpy, respectively, which exceeds the maximum corrosion rate of 20 mpy. The other welded samples had about the same corrosion resistance as the plain samples. None of the welded samples showed preferential weld or heat-affected zone (HAZ) attack. Vapor corrosion was negligible for all alloys. All of the alloys except 316L exhibited either {open_quotes}satisfactory{close_quotes} (2-20 mpy) or {open_quotes}excellent{close_quotes} (<2 mpy) corrosion resistance as defined by National Association of Corrosion Engineers. However, many of the alloys experienced intergranular corrosion in the nitric acid test solution, which could indicate a susceptibility to stress corrosion cracking (SCC) in this environment.

  20. Corrosion in a temperature gradient

    SciTech Connect

    Covino, Bernard S., Jr.; Holcomb, Gordon R.; Cramer, Stephen D.; Bullard, Sophie J.; Ziomek-Moroz, Margaret; White, M.L.

    2003-01-01

    High temperature corrosion limits the operation of equipment used in the Power Generation Industry. Some of the more destructive corrosive attack occurs on the surfaces of heat exchangers, boilers, and turbines where the alloys are subjected to large temperature gradients that cause a high heat flux through the accumulated ash, the corrosion product, and the alloy. Most current and past corrosion research has, however, been conducted under isothermal conditions. Research on the thermal-gradient-affected corrosion of various metals and alloys is currently being studied at the Albany Research Center’s SECERF (Severe Environment Corrosion and Erosion Research Facility) laboratory. The purpose of this research is to verify theoretical models of heat flux effects on corrosion and to quantify the differences between isothermal and thermal gradient corrosion effects. The effect of a temperature gradient and the resulting heat flux on corrosion of alloys with protective oxide scales is being examined by studying point defect diffusion and corrosion rates. Fick’s first law of diffusion was expanded, using irreversible thermodynamics, to include a heat flux term – a Soret effect. Oxide growth rates are being measured for the high temperature corrosion of cobalt at a metal surface temperature of 900ºC. Corrosion rates are also being determined for the high temperature corrosion of carbon steel boiler tubes in a simulated waste combustion environment consisting of O2, CO2, N2, and water vapor. Tests are being conducted both isothermally and in the presence of a temperature gradient to verify the effects of a heat flux and to compare to isothermal oxidation.

  1. Corrosion Protection of Aluminum

    DOEpatents

    Dalrymple, R. S.; Nelson, W. B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred.

  2. CORROSION PROTECTION OF ALUMINUM

    DOEpatents

    Dalrymple, R.S.; Nelson, W.B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

  3. Corrosion resistant coating

    DOEpatents

    Wrobleski, D.A.; Benicewicz, B.C.; Thompson, K.G.; Bryan, C.J.

    1997-08-19

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  4. Corrosion resistant coating

    DOEpatents

    Wrobleski, Debra A.; Benicewicz, Brian C.; Thompson, Karen G.; Bryan, Coleman J.

    1997-01-01

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  5. Papering Over Corrosion

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Kennedy Space Center's battle against corrosion led to a new coating that was licensed to GeoTech and is commercially sold as Catize. The coating uses ligno sulfonic acid doped polyaniline (Ligno-Pani), also known as synthetic metal. Ligno-Pani can be used to extend the operating lives of steel bridges as one example of its applications. future applications include computers, televisions, cellular phones, conductive inks, and stealth technology.

  6. Stress Corrosion Testing

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Advanced testing of structural materials was developed by Lewis Research Center and Langley Research Center working with the American Society for Testing and Materials (ASTM). Under contract, Aluminum Company of America (Alcoa) conducted a study for evaluating stress corrosion cracking, and recommended the "breaking load" method which determines fracture strengths as well as measuring environmental degradation. Alcoa and Langley plan to submit the procedure to ASTM as a new testing method.

  7. Corrosive resistant heat exchanger

    DOEpatents

    Richlen, Scott L.

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  8. Corrosion in supercritical fluids

    SciTech Connect

    Propp, W.A.; Carleson, T.E.; Wai, Chen M.; Taylor, P.R.; Daehling, K.W.; Huang, Shaoping; Abdel-Latif, M.

    1996-05-01

    Integrated studies were carried out in the areas of corrosion, thermodynamic modeling, and electrochemistry under pressure and temperature conditions appropriate for potential applications of supercritical fluid (SCF) extractive metallurgy. Carbon dioxide and water were the primary fluids studied. Modifiers were used in some tests; these consisted of 1 wt% water and 10 wt% methanol for carbon dioxide and of sulfuric acid, sodium sulfate, ammonium sulfate, and ammonium nitrate at concentrations ranging from 0.00517 to 0.010 M for the aqueous fluids. The materials studied were Types 304 and 316 (UNS S30400 and S31600) stainless steel, iron, and AISI-SAE 1080 (UNS G10800) carbon steel. The thermodynamic modeling consisted of development of a personal computer-based program for generating Pourbaix diagrams at supercritical conditions in aqueous systems. As part of the model, a general method for extrapolating entropies and related thermodynamic properties from ambient to SCF conditions was developed. The experimental work was used as a tool to evaluate the predictions of the model for these systems. The model predicted a general loss of passivation in iron-based alloys at SCF conditions that was consistent with experimentally measured corrosion rates and open circuit potentials. For carbon-dioxide-based SCFs, measured corrosion rates were low, indicating that carbon steel would be suitable for use with unmodified carbon dioxide, while Type 304 stainless steel would be suitable for use with water or methanol as modifiers.

  9. Corrosion detection by induction

    NASA Astrophysics Data System (ADS)

    Roddenberry, Joshua L.

    Bridges in Florida are exposed to high amounts of humidity due to the state's geography. This excess moisture results in a high incidence of corrosion on the bridge's steel support cables. Also, the inclusion of ineffective waterproofing has resulted in additional corrosion. As this corrosion increases, the steel cables, responsible for maintaining bridge integrity, deteriorate and eventually break. If enough of these cables break, the bridge will experience a catastrophic failure resulting in collapse. Repairing and replacing these cables is very expensive and only increases with further damage. As each of the cables is steel, they have strong conductive properties. By inducing a current along each group of cables and measuring its dissipation over distance, a picture of structural integrity can be determined. The purpose of this thesis is to prove the effectiveness of using electromagnetic techniques to determine cable integrity. By comparing known conductive values (determined in a lab setting) to actual bridge values, the tester will be able to determine the location and severity of any damage, if present.

  10. Corrosive wear principles

    SciTech Connect

    Schumacher, W.J.

    1993-12-31

    The dual effects of corrosion and wear operate together in such industries as paper and pulp, coal handling, mining, and sugar beet extraction. There is a synergistic effect that causes far greater wastage to carbon steels, alloy steels, and even much more abrasion resistant cast irons. Several laboratory and in situ studies have been conducted to better understand the contributions of corrosion and wear to the wastage process. The environmental conditions are usually set by the process. However, there are a few instances where inhibitors as sodium nitrite, sodium chromate, and sodium metasilicate have been successfully used to reduce metal wastage of carbon steels. Hardness has been found to be an unreliable guide to performance under wet sliding conditions. Heat treated alloy steels and cast irons are inferior to stainless steels. Even distilled water is too severe a corrodent for steels. While the austenitic stainlesses perform the best, cold rolling to increase hardness does not further improve their performance. The surface roughness of stainless steels gets smoother during corrosive wear testing while it gets rougher for the alloy steels. This observation substantiated the reputation of improved slideability for stainless alloys over alloy steels.

  11. Corrosion inhibitors from expired drugs.

    PubMed

    Vaszilcsin, Nicolae; Ordodi, Valentin; Borza, Alexandra

    2012-07-15

    This paper presents a method of expired or unused drugs valorization as corrosion inhibitors for metals in various media. Cyclic voltammograms were drawn on platinum in order to assess the stability of pharmaceutically active substances from drugs at the metal-corrosive environment interface. Tafel slope method was used to determine corrosion rates of steel in the absence and presence of inhibitors. Expired Carbamazepine and Paracetamol tablets were used to obtain corrosion inhibitors. For the former, the corrosion inhibition of carbon steel in 0.1 mol L(-1) sulfuric acid solution was about 90%, whereas for the latter, the corrosion inhibition efficiency of the same material in the 0.25 mol L(-1) acetic acid-0.25 mol L(-1) sodium acetate buffer solution was about 85%.

  12. Tuning the Internet for corrosion

    SciTech Connect

    Cottis, R.A.; Bogaerts, W.; Diamantidis, Z.

    1999-11-01

    The Internet provides a powerful, content-neutral mechanism for the presentation and delivery of information, but it has limitations for corrosion applications. These include the difficulty of defining corrosion specific information and the inability to accommodate commercial information. The Thematic Network described here is an open group project that aims to establish mechanisms for the indexing and exchange of corrosion information over the Internet.

  13. Embeddable sensor for corrosion measurement

    NASA Astrophysics Data System (ADS)

    Kelly, Robert G.; Yuan, J.; Jones, Stephen H.; Wang, W.; Hudson, K.; Sime, A.; Schneider, O.; Clemena, Gerardo G.

    1999-02-01

    The design of a microinstrument for corrosion monitoring in reinforced concrete is presented and the performance of the prototype device discussed. Sensors for the measurement of corrosion rate, corrosion potential, chloride concentration, and concrete conductivity have been developed and tested inside of model concrete slabs. The tests include electrochemical chloride driving as a method for test acceleration and wet/dry cycling. The corrosion rate and conductivity sensors perform very well, as do all aspects of the electronics. Work continues on the chloride sensor and reference electrode.

  14. Electrochemical Apparatus Simulates Corrosion In Crevices

    NASA Technical Reports Server (NTRS)

    Khoshbin, S. Rachel; Jeanjaquet, S. L.; Lumsden, Jesse B.

    1996-01-01

    Method of testing metal specimens for susceptibility to galvanic corrosion in crevices involves use of relatively simple electrochemical apparatus. By following method, one quantifies rates of corrosion of dissimilar-metal couples exposed to various etchants or other corrosive solutions.

  15. Corrosion control in alkanolamine gas treating: Absorber corrosion

    SciTech Connect

    Helle, H.P.E.

    1995-12-01

    Even in 1980, when corrosion in alkanolamine units was rampant, over 50% of all acid gas purification systems was based on alkanolamine absorbents. Over the years the control of corrosion has gradually become firmer. This paper examines the reasons for corrosion and provides insight in one particular aspect of corrosion in alkanolamine units, absorber corrosion. Three factors are identified, solvent degradation, local stagnancy and exceeding the units capacity. Solvent degradation increases the corrosivity of the solvent proper by the formation of complexing compounds such as diamines. Local stagnancy allows the solvent loading level to approach equilibrium which creates a corrosive environment. Exceeding the unit`s capacity will achieve essentially the same but on a larger scale. The corrosion enhancement by interaction of a total of 12 factors is made visual and clarified. The paper examines step by step the means to prevent a number of the factors arising. Guidelines are given for design of the absorber and absorber internals, the molarity of the solvent, inhibition and the benefits and handicaps of filming inhibitors.

  16. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

    NASA Astrophysics Data System (ADS)

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.

    2015-11-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys.

  17. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion.

    PubMed

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K

    2015-11-30

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys.

  18. Monitoring power plant fireside corrosion using corrosion probes

    SciTech Connect

    Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, M.

    2005-01-01

    The ability to monitor the corrosion degradation of key components in fossil fuel power plants is of utmost importance for Futuregen and ultra-supercritical power plants. Fireside corrosion occurs in the high temperature sections of energy production facilities due to a number of factors: ash deposition, coal composition, thermal gradients, and low NOx conditions, among others. Problems occur when equipment designed for either oxidizing or reducing conditions is exposed to alternating oxidizing and reducing conditions. This can happen especially near the burners. The use of low NOx burners is becoming more commonplace and can produce reducing environments that accelerate corrosion. One method of addressing corrosion of these surfaces is the use of corrosion probes to monitor when process changes cause corrosive conditions. In such a case, corrosion rate could become a process control variable that directs the operation of a coal combustion or coal gasification system. Alternatively, corrosion probes could be used to provide an indication of total metal damage and thus a tool to schedule planned maintenance outages.

  19. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

    PubMed Central

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.

    2015-01-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys. PMID:26615896

  20. Corrosion and stress corrosion problems associated with the Space Shuttle.

    NASA Technical Reports Server (NTRS)

    Williamson, J. G.

    1971-01-01

    The problems encountered and the methods used to prevent corrosion and stress corrosion cracking on current space vehicles and aircraft are discussed. Preventing these problems on the Space Shuttle, in particular, by properly using materials that are highly resistant to this phenomenon, is examined in detail.

  1. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion.

    PubMed

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K

    2015-01-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys. PMID:26615896

  2. General Corrosion and Localized Corrosion of Waste Package Outer Barrier

    SciTech Connect

    K.G. Mon

    2004-10-01

    The waste package design for the License Application is a double-wall waste package underneath a protective drip shield (BSC 2004 [DIRS 168489]; BSC 2004 [DIRS 169480]). The purpose and scope of this model report is to document models for general and localized corrosion of the waste package outer barrier (WPOB) to be used in evaluating waste package performance. The WPOB is constructed of Alloy 22 (UNS N06022), a highly corrosion-resistant nickel-based alloy. The inner vessel of the waste package is constructed of Stainless Steel Type 316 (UNS S31600). Before it fails, the Alloy 22 WPOB protects the Stainless Steel Type 316 inner vessel from exposure to the external environment and any significant degradation. The Stainless Steel Type 316 inner vessel provides structural stability to the thinner Alloy 22 WPOB. Although the waste package inner vessel would also provide some performance for waste containment and potentially decrease the rate of radionuclide transport after WPOB breach before it fails, the potential performance of the inner vessel is far less than that of the more corrosion-resistant Alloy 22 WPOB. For this reason, the corrosion performance of the waste package inner vessel is conservatively ignored in this report and the total system performance assessment for the license application (TSPA-LA). Treatment of seismic and igneous events and their consequences on waste package outer barrier performance are not specifically discussed in this report, although the general and localized corrosion models developed in this report are suitable for use in these scenarios. The localized corrosion processes considered in this report are pitting corrosion and crevice corrosion. Stress corrosion cracking is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]).

  3. Des Vents et des Jets Astrophysiques

    NASA Astrophysics Data System (ADS)

    Sauty, C.

    well expected result from the theory. Although, collimation may be conical, paraboloidal or cylindrical (Part 4), cylindrical collimation is the more likely to occur. The shape of outflows may then be used as a tool to predict physical conditions on the flows or on their source. L'éjection continue de plasma autour d'objets massifs est un phénomène largement répandu en astrophysique, que ce soit sous la forme du vent solaire, de vents stellaires, de jets d'étoiles en formation, de jets stellaires autour d'objets compacts ou de jets extra-galactiques. Cette zoologie diversifiée fait pourtant l'objet d'un commun effort de modélisation. Le but de cette revue est d'abord de présenter qualitativement le développement, depuis leur origine, des diverses théories de vents (Partie 1) et l'inter disciplinarité dans ce domaine. Il s'agit d'une énumération, plus ou moins exhaustive, des idées proposées pour expliquer l'accélération et la morphologie des vents et des jets, accompagnée d'une présentation sommaire des aspects observationnels. Cette partie s'abstient de tout aspect faisant appel au formalisme mathématique. Ces écoulements peuvent être décrits, au moins partiellement, en résolvant les équations magnétohydrodynamiques, axisymétriques et stationnaires. Ce formalisme, à la base de la plupart des théories, est exposé dans la Partie 2. Il permet d'introduire quantitativement les intégrales premières qu'un tel système possède. Ces dernières sont amenées à jouer un rôle important dans la compréhension des phénomènes d'accélération ou de collimation, en particulier le taux de perte de masse, le taux de perte de moment angulaire ou l'énergie du rotateur magnétique. La difficulté de modélisation réside dans l'existence de points critiques, propres aux équations non linéaires, qu'il faut franchir. La nature physique et la localisation de ces points critiques fait l'objet d'un débat important car ils sont la clef de voute de la r

  4. Corrosion of Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Jacobson, Nathan S.

    1999-01-01

    Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.

  5. INHIBITION OF CORROSION

    DOEpatents

    Atherton, J.E. Jr.; Gurinsky, D.H.

    1958-06-24

    A method is described for preventing corrosion of metallic container materials by a high-temperature liquid bismuth flowing therein. The method comprises fabricating the containment means from a steel which contains between 2 and 12% chromium, between 0.5 and 1.5% of either molybdenum and silicon, and a minimum of nickel and manganese, and maintaining zirconium dissolved in the liquid bismuth at a concentration between 50 parts per million and its saturation value at the lowest temperature in the system.

  6. Corrosion beneath disbonded pipeline coatings

    SciTech Connect

    Beavers, J.A.; Thompson, N.G.

    1997-04-01

    The relationship between coatings, cathodic protection (CP), and external corrosion of underground pipelines is described. Historically, this problem has been addressed by focusing on the corrosion and CP processes associated with holidays, e.g., coating disbondment and CP current flow within the disbonded region. These issues and those associated with disbonded areas distant from holidays are also discussed.

  7. DPC materials and corrosion environments.

    SciTech Connect

    Ilgen, Anastasia Gennadyevna; Bryan, Charles R.; Teich-McGoldrick, Stephanie; Hardin, Ernest; Clarity, J.

    2014-10-01

    After an exposition of the materials used in DPCs and the factors controlling material corrosion in disposal environments, a survey is given of the corrosion rates, mechanisms, and products for commonly used stainless steels. Research needs are then identified for predicting stability of DPC materials in disposal environments. Stainless steel corrosion rates may be low enough to sustain DPC basket structural integrity for performance periods of as long as 10,000 years, especially in reducing conditions. Uncertainties include basket component design, disposal environment conditions, and the in-package chemical environment including any localized effects from radiolysis. Prospective disposal overpack materials exist for most disposal environments, including both corrosion allowance and corrosion resistant materials. Whereas the behavior of corrosion allowance materials is understood for a wide range of corrosion environments, demonstrating corrosion resistance could be more technically challenging and require environment-specific testing. A preliminary screening of the existing inventory of DPCs and other types of canisters is described, according to the type of closure, whether they can be readily transported, and what types of materials are used in basket construction.

  8. Atlas 5013 tank corrosion test

    NASA Technical Reports Server (NTRS)

    Sutherland, W. M.; Girton, L. D.; Treadway, D. G.

    1978-01-01

    The type and cause of corrosion in spot welded joints were determined by X-ray and chemical analysis. Fatigue and static tests showed the degree of degradation of mechanical properties. The corrosion inhibiting effectiveness of WD-40 compound and required renewal period by exposing typical joint specimens were examined.

  9. INTERNAL CORROSION AND DEPOSITION CONTROL

    EPA Science Inventory

    Corrosion is one of the most important problems in the drinking water industry. It can affect public health, public acceptance of a water supply, and the cost of providing safe water. Deterioration of materials resulting from corrosion can necessitate huge yearly expenditures o...

  10. Agricultural Polymers as Corrosion Inhibitors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural polymers were composed of extra-cellular polysaccharides secreted by Leuconostoc mesenteroides have been shown to inhibit corrosion on corrosion-sensitive metals. The substantially pure exopolysaccharide has a general structure consisting of alpha(1-6)-linked D-glucose backbone and appr...

  11. Injectabilite des coulis de ciment dans des milieux fissures

    NASA Astrophysics Data System (ADS)

    Mnif, Thameur

    Le travail presente ici est un bilan du travaux de recherche effectues sur l'injectabilite des coulis de ciment dans lu milieux fissures. Un certain nombre de coulis a base de ciment Portland et microfin ont ete selectionnes afin de caracteriser leur capacite a penetrer des milieux fissures. Une partie des essais a ete menee en laboratoire. L'etude rheologique des differents melanges a permis de tester l'influence de l'ajout de superplastifiant et/ou de fumee de silice sur la distribution granulometrique des coulis et par consequent sur leur capacite a injecter des colonnes de sable simulant un milieu fissure donne. La classe granulometrique d'un coulis, sa stabilite et sa fluidite sont apparus comme les trois facteurs principaux pour la reussite d'une injection. Un facteur de finesse a ete defini au cours de cette etude: base sur la classe granulometrique du ciment et sa stabilite, il peut entrer dans la formulation theorique du debit d'injection avant application sur chantier. La deuxieme et derniere partie de l'etude presente les resultats de deux projets de recherche sur l'injection realises sur chantier. L'injection de dalles de beton fissurees a permis le suivi de l'evolution des pressions avec la distance au point d'injection. L'injection de murs de maconnerie a caractere historique a montre l'importance de la definition de criteres de performance des coulis a utiliser pour traiter un milieu donne et pour un objectif donne. Plusieurs melanges peuvent ainsi etre predefinis et mis a disposition sur le chantier. La complementarite des ciments traditionnels et des ciments microfins devient alors un atout important. Le choix d'utilisation de ces melanges est fonction du terrain rencontre. En conclusion, cette recherche etablit une methodologie pour la selection des coulis a base de ciment et des pressions d'injection en fonction de l'ouverture des fissures ou joints de construction.

  12. Electrochemical studies of corrosion inhibitors

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1990-01-01

    The effect of single salts, as well as multicomponent mixtures, on corrosion inhibition was studied for type 1010 steel; for 5052, 1100, and 2219-T87 aluminum alloys; and for copper. Molybdate-containing inhibitors exhibit an immediate, positive effect for steel corrosion, but an incubation period may be required for aluminum before the effect of a given inhibitor can be determined. The absence of oxygen was found to provide a positive effect (smaller corrosion rate) for steel and copper, but a negative effect for aluminum. This is attributed to the two possible mechanisms by which aluminum can oxidize. Corrosion inhibition is generally similar for oxygen-rich and oxygen-free environments. The results show that the electrochemical method is an effective means of screening inhibitors for the corrosion of single metals, with caution to be exercised in the case of aluminum.

  13. Corrosion of Titanium Matrix Composites

    SciTech Connect

    Covino, B.S., Jr.; Alman, D.E.

    2002-09-22

    The corrosion behavior of unalloyed Ti and titanium matrix composites containing up to 20 vol% of TiC or TiB{sub 2} was determined in deaerated 2 wt% HCl at 50, 70, and 90 degrees C. Corrosion rates were calculated from corrosion currents determined by extrapolation of the tafel slopes. All curves exhibited active-passive behavior but no transpassive region. Corrosion rates for Ti + TiC composites were similar to those for unalloyed Ti except at 90 degrees C where the composites were slightly higher. Corrosion rates for Ti + TiB{sub 2} composites were generally higher than those for unalloyed Ti and increased with higher concentrations of TiB{sub 2}. XRD and SEM-EDS analyses showed that the TiC reinforcement did not react with the Ti matrix during fabrication while the TiB{sub 2} reacted to form a TiB phase.

  14. IN DRIFT CORROSION PRODUCTS

    SciTech Connect

    D.M. Jolley

    1999-12-02

    As directed by a written development plan (CRWMS M&O 1999a), a conceptual model for steel and corrosion products in the engineered barrier system (EBS) is to be developed. The purpose of this conceptual model is to assist Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift, thus allowing PAO to provide a more detailed and complete in-drift geochemical model abstraction and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near-Field Environment (NFE) Revision 2 (NRC 1999). This document provides the conceptual framework for the in-drift corrosion products sub-model to be used in subsequent PAO analyses including the EBS physical and chemical model abstraction effort. This model has been developed to serve as a basis for the in-drift geochemical analyses performed by PAO. However, the concepts discussed within this report may also apply to some near and far-field geochemical processes and may have conceptual application within the unsaturated zone (UZ) and saturated zone (SZ) transport modeling efforts.

  15. Naval electrochemical corrosion reducer

    DOEpatents

    Clark, Howard L.

    1991-10-01

    A corrosion reducer for use with ships having a hull, a propeller mounted a propeller shaft and extending through the hull, bearings supporting the shaft, at least one thrust bearing and one seal. The improvement includes a current collector and a current reduction assembly for reducing the voltage between the hull and shaft in order to reduce corrosion due to electrolytic action. The current reduction assembly includes an electrical contact, the current collector, and the hull. The current reduction assembly further includes a device for sensing and measuring the voltage between the hull and the shaft and a device for applying a reverse voltage between the hull and the shaft so that the resulting voltage differential is from 0 to 0.05 volts. The current reduction assembly further includes a differential amplifier having a voltage differential between the hull and the shaft. The current reduction assembly further includes an amplifier and a power output circuit receiving signals from the differential amplifier and being supplied by at least one current supply. The current selector includes a brush assembly in contact with a slip ring over the shaft so that its potential may be applied to the differential amplifier.

  16. Review of corrosion causes and corrosion control in a technical facility

    NASA Technical Reports Server (NTRS)

    Charng, T.; Lansing, F.

    1982-01-01

    Causes of corrosion of metals and their alloys are reviewed. The corrosion mechanism is explained by electrochemical reaction theory. The causes and methods of controlling of both physiochemical corrosion and biological corrosion are presented. Factors which influence the rate of corrosion are also discussed.

  17. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.

    2011-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.

  18. Corrosion-resistant sulfur concretes

    NASA Astrophysics Data System (ADS)

    McBee, W. C.; Sullivan, T. A.; Jong, B. W.

    1983-04-01

    Sulfur concretes have been developed by the Bureau of Mines as construction materials with physical and mechanical properties that suit them for use in acid and salt corrosive environments where conventional concretes fail. Mixture design methods were established for preparing sulfur concretes using different types of aggregates and recently developed mixed-modified sulfur cements. Bench-scale testing of the sulfur concretes has shown their potential value. Corrosion resistance, strength, and durability of sulfur concrete are superior to those of conventional materials. Field in situ evaluation tests of the sulfur concretes as replacement for conventional concrete materials are in progress in corrosive areas of 24 commercial chemical, fertilizer, and metallurgical plants.

  19. Corrosion-resistant coating development

    SciTech Connect

    Stinton, D.P.; Kupp, D.M.; Martin, R.L.

    1997-12-01

    SiC-based heat exchangers have been identified as the prime candidate material for use as heat exchangers in advanced combined cycle power plants. Unfortunately, hot corrosion of the SiC-based materials created by alkali metal salts present in the combustion gases dictates the need for corrosion-resistant coatings. The well-documented corrosion resistance of CS-50 combined with its low (and tailorable) coefficient of thermal expansion and low modulus makes CS-50 an ideal candidate for this application. Coatings produced by gelcasting and traditional particulate processing have been evaluated.

  20. Corrosion and corrosion fatigue of airframe aluminum alloys

    NASA Technical Reports Server (NTRS)

    Chen, G. S.; Gao, M.; Harlow, D. G.; Wei, R. P.

    1994-01-01

    Localized corrosion and corrosion fatigue crack nucleation and growth are recognized as degradation mechanisms that effect the durability and integrity of commercial transport aircraft. Mechanically based understanding is needed to aid the development of effective methodologies for assessing durability and integrity of airframe components. As a part of the methodology development, experiments on pitting corrosion, and on corrosion fatigue crack nucleation and early growth from these pits were conducted. Pitting was found to be associated with constituent particles in the alloys and pit growth often involved coalescence of individual particle-nucleated pits, both laterally and in depth. Fatigue cracks typically nucleated from one of the larger pits that formed by a cluster of particles. The size of pit at which fatigue crack nucleates is a function of stress level and fatigue loading frequency. The experimental results are summarized, and their implications on service performance and life prediction are discussed.

  1. Corrosion manual for internal corrosion of water distribution systems

    SciTech Connect

    Singley, J.E.; Beaudet, B.A.; Markey, P.H.

    1984-04-01

    Corrosion of distribution piping and of home plumbing and fixtures has been estimated to cost the public water supply industry more than $700 million per year. Two toxic metals that occur in tap water, almost entirely because of corrosion, are lead and cadmium. Three other metals, usually present because of corrosion, cause staining of fixtures, or metallic taste, or both. These are copper (blue stains and metallic taste), iron (red-brown stains and metallic taste), and zinc (metallic taste). Since the Safe Drinking Water Act (P.L. 93-523) makes the supplying utility responsible for the water quality at the customer's tap, it is necessary to prevent these metals from getting into the water on the way to the tap. This manual was written to give the operators of potable water treatment plants and distribution systems an understanding of the causes and control of corrosion.

  2. Alloying of metals for corrosion resistance

    SciTech Connect

    McCafferty, E.; Hubler, G.K.; Natishan, P.M.

    1989-09-29

    The corrosion resistance of bulk metals is improved by implanting a corrosion-resistant species into the surface of the bulk metal in a layer beginning at the surface and extending to a depth of at least about 50 angstroms. An amount of corrosion-resistant species is deposited so that the oxide layer that forms on the corrosion-resistant species implanted bulk metal is composed of at least about three percent of the oxide of the corrosion-resistant species.

  3. Corrosion resistant ceramic materials

    DOEpatents

    Kaun, T.D.

    1996-07-23

    Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

  4. Corrosion resistant ceramic materials

    DOEpatents

    Kaun, Thomas D.

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  5. Corrosion resistant ceramic materials

    DOEpatents

    Kaun, Thomas D.

    1995-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  6. Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller

    NASA Astrophysics Data System (ADS)

    Sun, Jiao; Chen, Songying; Qu, Yanpeng; Li, Jianfeng

    2015-03-01

    Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.

  7. Grundlagen des Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Mayer, Jörg; Blum, Janaki; Wintermantel, Erich

    Die Organtransplantation stellt eine verbreitete Therapie dar, um bei krankheitsoder unfallbedingter Schädigung eines Organs die Gesamtheit seiner Funktionen wieder herzustellen, indem es durch ein Spenderorgan ersetzt wird. Organtransplantationen werden für die Leber, die Niere, die Lunge, das Herz oder bei schweren grossflächigen Verbrennungen der Haut vorgenommen. Der grosse apparative, personelle und logistische Aufwand und die Risiken der Transplantationschirurgie (Abstossungsreaktionen) sowie die mangelnde Verfügbarkeit von immunologisch kompatiblen Spenderorganen führen jedoch dazu, dass der Bedarf an Organtransplantaten nur zu einem sehr geringen Teil gedeckt werden kann. Sind Spenderorgane nicht verfügbar, können in einzelnen Fällen lebenswichtige Teilfunktionen, wie beispielsweise die Filtrationsfunktion der Niere durch die Blutreinigung mittels Dialyse ersetzt oder, bei mangelnder Funktion der Bauchspeicheldrüse (Diabetes), durch die Verabreichung von Insulin ein normaler Zustand des Gesamtorganismus auch über Jahre hinweg erhalten werden. Bei der notwendigen lebenslangen Anwendung apparativer oder medikamentöser Therapie können für den Patienten jedoch häufig schwerwiegende, möglicherweise lebensverkürzende Nebenwirkungen entstehen. Daher werden in der Forschung Alternativen gesucht, um die Funktionen des ausgefallenen Organs durch die Implantation von Zellen oder in vitro gezüchteten Geweben möglichst umfassend wieder herzustellen. Dies erfordert biologisch aktive Implantate, welche die für den Stoffwechsel des Organs wichtigen Zellen enthalten und einen organtypischen Stoffwechsel entfalten.

  8. The inhibitive effect of some quaternary ammonium salts towards corrosion of aluminium in hydrochloric acid solution

    NASA Astrophysics Data System (ADS)

    Mohamed, A.-M. K.; Al-Nadjm, A.; Fouda, A.-A. S.

    1998-10-01

    The inhibitive action of some quaternary ammonium salts towards the corrosion of aluminium in hydrochloric acid was tested by thermometric, mass loss and polarization measurements. Parallelism between the different methods was established. It is suggested that the tested compounds act as cathodic inhibitors. The inhibitors appear to function through adsorption, following the Temkin adsorption isotherm. The values of free energy of adsorption have been calculated and discussed. The inhibitor character of the additives depends upon the concentration as well as the composition of the inhibitor. Within the given homolegous series the contribution of the functional group to adsorption increases with the length of the chain. The aim of this article is to throw some light on the mechanism of inhibition of these bulky molecules on the corrosion of aluminium in hydrochloric acid. L'action inhibitrice de certains sels d'ammonium quaternaires vis-à-vis de la corrosion de l'aluminium dans l'acide chlorhydrique en solution a été testée par des mesures thermiques de perte de matière et de polarisation. Il est suggéré que les composés testés agissent comme des inhibiteurs cathodiques, fonctionnant par adsorption suivant l'isotherme de Temkin. Les énergies libres d'adsorption ont été calculées et discutées. Le caractère inhibiteur des additifs dépend aussi bien de leur concentration que de leur composition. Pour une série d'inhibiteurs homologues, la contribution à l'adsorption du groupe fonctionnel augmente avec la longueur de la chaîne. Le but de cet article est de mieux comprendre le mécanisme d'inhibition de ces grosses molécules sur la corrosion de l'aluminium dans l'acide chlorhydrique.

  9. Corrosion Problems in Absorption Chillers

    ERIC Educational Resources Information Center

    Stetson, Bruce

    1978-01-01

    Absorption chillers use a lithium bromide solution as the medium of absorption and water as the refrigerant. Discussed are corrosion and related problems, tests and remedies, and cleaning procedures. (Author/MLF)

  10. Argentinean map of atmospheric corrosivities

    SciTech Connect

    Rosales, B.M.; Ayllon, E.S.; Leiro, M.C.; Fernandez, A.; Moriena, G.; Varela, F.; Codaro, E.N.; Vilche, J.R.

    1995-10-01

    In the present paper the results obtained by the Argentinean research groups integrated in the MICAT (Iberoamerican Map of Atmospheric Corrosion) Project are given. Outdoor exposure in 6 test situations of different environmental conditions were performed by quadruplicate, on plain carbon steel and pure zinc, copper and aluminium, during yearly periods from 1 to 4 years. Three samples were used for the weight loss determinations while the fourth one was used to characterize the corrosion products formed through electrochemical d.c. and a.c. techniques and SEM-EDAX surface analysis. Good correlations were observed among the corrosion rates, the environmental conditions, both electrochemical techniques and the morphology of the rusts in plant and in polished cross sections. The techniques applied allowed to evidence the different protectiveness of the rusts formed on the metals, according to the solubility, morphology, hygroscopic power and pollutants content of the corrosion products` components.

  11. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  12. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan; Farmer, Joseph C.; Lee, Chuck K.; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  13. Reticulation des fibres lignocellulosiques

    NASA Astrophysics Data System (ADS)

    Landrevy, Christel

    Pour faire face à la crise économique la conception de papier à valeur ajoutée est développée par les industries papetières. Le but de se projet est l'amélioration des techniques actuelles de réticulation des fibres lignocellulosiques de la pâte à papier visant à produire un papier plus résistant. En effet, lors des réactions de réticulation traditionnelles, de nombreuses liaisons intra-fibres se forment ce qui affecte négativement l'amélioration anticipée des propriétés physiques du papier ou du matériau produit. Pour éviter la formation de ces liaisons intra-fibres, un greffage sur les fibres de groupements ne pouvant pas réagir entre eux est nécessaire. La réticulation des fibres par une réaction de « click chemistry » appelée cycloaddition de Huisgen entre un azide et un alcyne vrai, catalysée par du cuivre (CuAAC) a été l'une des solutions trouvée pour remédier à ce problème. De plus, une adaptation de cette réaction en milieux aqueux pourrait favoriser son utilisation en milieu industriel. L'étude que nous désirons entreprendre lors de ce projet vise à optimiser la réaction de CuAAC et les réactions intermédiaires (propargylation, tosylation et azidation) sur la pâte kraft, en milieu aqueux. Pour cela, les réactions ont été adaptées en milieu aqueux sur la cellulose microcristalline afin de vérifier sa faisabilité, puis transférée à la pâte kraft et l'influence de différents paramètres comme le temps de réaction ou la quantité de réactifs utilisée a été étudiée. Dans un second temps, une étude des différentes propriétés conférées au papier par les réactions a été réalisée à partir d'une série de tests papetiers optiques et physiques. Mots Clés Click chemistry, Huisgen, CuAAC, propargylation, tosylation, azidation, cellulose, pâte kraft, milieu aqueux, papier.

  14. Environmentally Friendly Corrosion Preventative Compounds

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Montgomery, Eliza; Kolody, Mark; Curran, Jerry; Back, Teddy; Balles, Angela

    2012-01-01

    The objective of the Ground Systems Development and Operations Program Environmentally Friendly Corrosion Protective Coatings and Corrosion Preventive Compounds (CPCs) project is to identify, test, and develop qualification criteria for the use of environmentally friendly corrosion protective coatings and CPCs for flight hardware and ground support equipment. This document is the Final Report for Phase I evaluations, which included physical property, corrosion resistance, and NASA spaceport environment compatibility testing and analysis of fifteen CPC types. The CPCs consisted of ten different oily film CPCs and five different wax or grease CPC types. Physical property testing encompassed measuring various properties of the bulk CPCs, while corrosion resistance testing directly measured the ability of each CPC material to protect various metals against corrosion. The NASA spaceport environment compatibility testing included common tests required by NASA-STD-6001, "Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments that Support Combustion". At the end of Phase I, CPC materials were down-selected for inclusion in the next test phases. This final report includes all data and analysis of results obtained by following the experimental test plan that was developed as part of the project. Highlights of the results are summarized by test criteria type.

  15. Corrosion testing in natural waters: Second volume

    SciTech Connect

    Kain, R.M.; Young, W.T.

    1997-12-31

    This is the second STP of the same title. The first volume, STP 1086, was published in 1990 and contained papers on seawater corrosivity, crevice corrosion resistance of stainless steels, corrosion fatigue testing, and corrosion in potable water. Since then, final results have become available from the worldwide study on corrosion behavior of metals in seawater, and additional studies have been performed that should be brought to the attention of the corrosion engineering community. The second volume contains these studies. Papers have been processed separately for inclusion on the data base.

  16. Chem I Supplement: Corrosion: A Waste of Energy.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1979

    1979-01-01

    This article, intended for secondary school chemistry students, discusses the corrosion of metals. The discussion includes: (1) thermodynamic aspects of corrosion; (2) electrochemical aspects of corrosion; and (3) inhibition of corrosion processes. (HM)

  17. General Corrosion and Localized Corrosion of the Drip Shield

    SciTech Connect

    F. Hua

    2004-09-16

    The repository design includes a drip shield (BSC 2004 [DIRS 168489]) that provides protection for the waste package both as a barrier to seepage water contact and a physical barrier to potential rockfall. The purpose of the process-level models developed in this report is to model dry oxidation, general corrosion, and localized corrosion of the drip shield plate material, which is made of Ti Grade 7. This document is prepared according to ''Technical Work Plan For: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The models developed in this report are used by the waste package degradation analyses for TSPA-LA and serve as a basis to determine the performance of the drip shield. The drip shield may suffer from other forms of failure such as the hydrogen induced cracking (HIC) or stress corrosion cracking (SCC), or both. Stress corrosion cracking of the drip shield material is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]). Hydrogen induced cracking of the drip shield material is discussed in ''Hydrogen Induced Cracking of Drip Shield'' (BSC 2004 [DIRS 169847]).

  18. Report on accelerated corrosion studies.

    SciTech Connect

    Mowry, Curtis Dale; Glass, Sarah Jill; Sorensen, Neil Robert

    2011-03-01

    Sandia National Laboratories (SNL) conducted accelerated atmospheric corrosion testing for the U.S. Consumer Product Safety Commission (CPSC) to help further the understanding of the development of corrosion products on conductor materials in household electrical components exposed to environmental conditions representative of homes constructed with problem drywall. The conditions of the accelerated testing were chosen to produce corrosion product growth that would be consistent with long-term exposure to environments containing humidity and parts per billion (ppb) levels of hydrogen sulfide (H{sub 2}S) that are thought to have been the source of corrosion in electrical components from affected homes. This report documents the test set-up, monitoring of electrical performance of powered electrical components during the exposure, and the materials characterization conducted on wires, screws, and contact plates from selected electrical components. No degradation in electrical performance (measured via voltage drop) was measured during the course of the 8-week exposure, which was approximately equivalent to 40 years of exposure in a light industrial environment. Analyses show that corrosion products consisting of various phases of copper sulfide, copper sulfate, and copper oxide are found on exposed surfaces of the conductor materials including wires, screws, and contact plates. The morphology and the thickness of the corrosion products showed a range of character. In some of the copper wires that were observed, corrosion product had flaked or spalled off the surface, exposing fresh metal to the reaction with the contaminant gasses; however, there was no significant change in the wire cross-sectional area.

  19. Hanford transuranic storage corrosion review

    SciTech Connect

    Nelson, J.L.; Divine, J.R.

    1980-12-01

    The rate of atmospheric corrosion of the transuranic (TRU) waste drums at the US Department of Energy's Hanford Project, near Richland, Washington, was evaluated by Pacific Northwest Laboratory (PNL). The rate of corrosion is principally contingent upon the effects of humidity, airborne pollutants, and temperature. Results of the study indicate that actual penetration of barrels due to atmospheric corrosion will probably not occur within the 20-year specified recovery period. Several other US burial sites were surveyed, and it appears that there is sufficient uncertainty in the available data to prevent a clearcut statement of the corrosion rate at a specific site. Laboratory and site tests are recommended before any definite conclusions can be made. The corrosion potential at the Hanford TRU waste site could be reduced by a combination of changes in drum materials (for example, using galvanized barrels instead of the currently used mild steel barrels), environmental exposure conditions (for example, covering the barrels in one of numerous possible ways), and storage conditions (for example, separating the layers of barrels with slats of wood instead of sheets of plywood).

  20. Corrosion effects on friction factors

    SciTech Connect

    Magleby, H.L.; Shaffer, S.J.

    1996-03-01

    This paper presents the results of NRC-sponsored material specimen tests that were performed to determine if corrosion increases the friction factors of sliding surfaces of motor-operated gate valves, which could require higher forces to close and open safety-related valves when subjected to their design basis differential pressures. Friction tests were performed with uncorroded specimens and specimens subjected to accelerated corrosion. Preliminary tests at ambient conditions showed that corrosion increased the friction factors, indicating the need for additional tests duplicating valve operating parameters at hot conditions. The additional tests showed friction factors of corroded specimens were 0.1 to 0.2 higher than for uncorroded specimens, and that the friction factors of the corroded specimens were not very dependent on contact stress or corrosion film thickness. The measured values of friction factors for the three corrosion films tested (simulating three operating times) were in the range of 0.3 to 0.4. The friction factor for even the shortest simulated operating time was essentially the same as the others, indicating that the friction factors appear to reach a plateau and that the plateau is reached quickly.

  1. Fireside corrosion probes--an update

    SciTech Connect

    Covino, B.S., Jr.; Bullard, S.J.; Holcomb, G.R.; Ziomek-Moroz, M.; Matthes, S.A.

    2007-01-01

    The ability to monitor the corrosion degradation of key metallic components in fossil fuel power plants will become increasingly important for FutureGen and ultra-supercritical power plants. A number of factors (ash deposition, coal composition changes, thermal gradients, and low NOx conditions, among others) which occur in the high temperature sections of energy production facilities, will contribute to fireside corrosion. Several years of research have shown that high temperature corrosion rate probes need to be better understood before corrosion rate can be used as a process variable by power plant operators. Our recent research has shown that electrochemical corrosion probes typically measure lower corrosion rates than those measured by standard mass loss techniques. While still useful for monitoring changes in corrosion rates, absolute probe corrosion rates will need a calibration factor to be useful. Continuing research is targeted to help resolve these issues.

  2. Corrosion and Preservation of Bronze Artifacts.

    ERIC Educational Resources Information Center

    Walker, Robert

    1980-01-01

    Reviews chemical information relating to the corrosion of bronze artifacts. Properties of copper alloys are reviewed, with a thorough discussion of the specialized properties of bronze. Techniques to reduce or eliminate corrosion are listed. (CS)

  3. Microencapsulation of Corrosion Indicators for Smart Coatings

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.; Calle, Luz M.; Hanna,Joshua S.; Rawlins, James W.

    2011-01-01

    A multifunctional smart coating for the autonomous detection, indication, and control of corrosion is been developed based on microencapsulation technology. This paper summarizes the development, optimization, and testing of microcapsules specifically designed for early detection and indication of corrosion when incorporated into a smart coating. Results from experiments designed to test the ability of the microcapsules to detect and indicate corrosion, when blended into several paint systems, show that these experimental coatings generate a color change, indicative of spot specific corrosion events, that can be observed with the naked eye within hours rather than the hundreds of hours or months typical of the standard accelerated corrosion test protocols.. Key words: smart coating, corrosion detection, microencapsulation, microcapsule, pH-sensitive microcapsule, corrosion indicator, corrosion sensing paint

  4. Corrosion of nickel-base alloys

    SciTech Connect

    Scarberry, R.C.

    1985-01-01

    The volume consists of three tutorial lectures and 18 contributed papers. The three tutorial lectures provide state-of-the-art background on the physical metallurgy of nickel-base alloys as it relates to corrosion. Also featured are the mechanisms and applications of these alloys and an insight into the corrosion testing techniques. The three tutorial lecture papers will help acquaint newcomers to this family of alloys with a thorough overview. The contributed papers are categorized into four major topics: general corrosion, stress corrosion cracking, fatigue and localized corrosion. Each topic is key-noted by one invited lecture followed by several contributed papers. The papers in the general corrosion section are wide ranging and cover the aspects of material selection, development of galvanic series in corrosive environments, corrosion resistance characteristics, hydrogen permeation and hydrogen embrittlement of nickel and some nickel-base alloys.

  5. Smart Coatings for Launch Site Corrosion Protection

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.

    2014-01-01

    Smart, environmentally friendly paint system for early corrosion detection, mitigation, and healing that will enable supportability in KSC launch facilities and ground systems through their operational life cycles. KSC's Corrosion Technology Laboratory is developing a smart, self-healing coating that can detect and repair corrosion at an early stage. This coating is being developed using microcapsules specifically designed to deliver the contents of their core when corrosion starts.

  6. Naphthenic acid corrosion in the refinery

    SciTech Connect

    Craig, H.L. Jr.

    1995-11-01

    Field tests and laboratory studies of refinery process streams are presented. The effects of temperature, velocity and physical state were studied with respect to alloy selection for corrosion resistant service. The amount of molybdenum in the austenitic stainless steel alloys is the dominant factor in conferring corrosion resistance. The Naphthenic Acid Corrosion Index (NACI) is useful in assessing the severity of corrosion under a variety of circumstances.

  7. Corrosion of metals by hydrazine

    NASA Technical Reports Server (NTRS)

    Lawton, E. A.; Moran, C. M.; Distefano, S.

    1985-01-01

    The mechanism of corrosion of metals by hydrazine has been studied by means of coupons in sealed ampoules and by electrochemical techniques. The variables considered were temperature, CO2 impurity level, alloy composition and microcrystalline structure. The coupon studies, to date, verify that increasng temperature and the presence of CO2 does increase the corrosion rate as expected. The presence of molybdenum in stainless steels to the 3 percent level is not necessarily deleterious, contrary to published reports. The influence of microcrystalline structure and surface characteristics are more dominant effects. However, with Ti-6Al-4V, two different microcrystalline structures showed no significant differences. Corrosion rates of CRES 304 L in hydrazine have also been measured by several electrochemical techniques such as Tafel plots, polarization resistance and A. C. Impedance. This is the first documented work to show that A. C. Impedance can be used with non-aqueous solvents. Preliminary data correlated satisfactorily with the results of the coupon studies.

  8. Surface modification for corrosion resistance

    SciTech Connect

    Natesan, K.

    1993-06-01

    The raw gas environments that arise from coal gasification have chemical compositions that are low in pO{sub 2} and moderate-to-high in pS{sub 2}. Metallic materials for service in such an environment undergo predominantly sulfidation attack at temperatures of 400 to 700{degree}C. Modification of alloy compositions in bulk can alter the scaling processes and lead to improvements in corrosion resistance, but the benefits can only be attained at temperatures much higher than the service temperatures of the components. Modification of surfaces of structural components by several of the coating techniques examined in this study showed substantial benefit in corrosion resistance when tested in simulated coal gasification environments. The paper presents several examples of surface modification and their corrosion performance.

  9. Médecine des voyages

    PubMed Central

    Aw, Brian; Boraston, Suni; Botten, David; Cherniwchan, Darin; Fazal, Hyder; Kelton, Timothy; Libman, Michael; Saldanha, Colin; Scappatura, Philip; Stowe, Brian

    2014-01-01

    Résumé Objectif Définir la pratique de la médecine des voyages, présenter les éléments fondamentaux d’une consultation complète préalable aux voyages à des voyageurs internationaux et aider à identifier les patients qu’il vaudrait mieux envoyer en consultation auprès de professionnels de la médecine des voyages. Sources des données Les lignes directrices et les recommandations sur la médecine des voyages et les maladies liées aux voyages publiées par les autorités sanitaires nationales et internationales ont fait l’objet d’un examen. Une recension des ouvrages connexes dans MEDLINE et EMBASE a aussi été effectuée. Message principal La médecine des voyages est une spécialité très dynamique qui se concentre sur les soins préventifs avant un voyage. Une évaluation exhaustive du risque pour chaque voyageur est essentielle pour mesurer avec exactitude les risques particuliers au voyageur, à son itinéraire et à sa destination et pour offrir des conseils sur les interventions les plus appropriées en gestion du risque afin de promouvoir la santé et prévenir les problèmes médicaux indésirables durant le voyage. Des vaccins peuvent aussi être nécessaires et doivent être personnalisés en fonction des antécédents d’immunisation du voyageur, de son itinéraire et du temps qu’il reste avant son départ. Conclusion La santé et la sécurité d’un voyageur dépendent du degré d’expertise du médecin qui offre le counseling préalable à son voyage et les vaccins, au besoin. On recommande à ceux qui donnent des conseils aux voyageurs d’être conscients de l’ampleur de cette responsabilité et de demander si possible une consultation auprès de professionnels de la médecine des voyages pour tous les voyageurs à risque élevé.

  10. Electrochemical Measurement of Atmospheric Corrosion

    NASA Technical Reports Server (NTRS)

    DeArmond, Anna H.; Davis, Dennis D.; Beeson, Harold D.

    1999-01-01

    Corrosion of Shuttle thruster components in atmospheres containing high concentrations of nitrogen tetroxide (NTO) and water is an important issue in ground operations of bipropellant systems in humid locations. Measurements of the corrosivities of NTO-containing atmospheres and the responses of different materials to these atmospheres have been accomplished using an electrochemical sensor. The sensor is composed of alternating aluminum/titanium strips separated by thin insulating layers. Under high humidity conditions a thin film of water covers the surface of the sensor. Added NTO vapor reacts with the water film to form a conductive medium and establishes a galvanic cell. The current from this cell can be integrated with respect to time and related to the corrosion activity. The surface layer formed from humid air/NTO reacts in the same way as an aqueous solution of nitric acid. Nitric acid is generally considered an important agent in NTO corrosion situations. The aluminum/titanium sensor is unresponsive to dry air, responds slightly to humid air (> 75% RH), and responds strongly to the combination of humid air and NTO. The sensor response is a power function (n = 2) of the NTO concentration. The sensor does not respond to NTO in dry air. The response of other materials in this type of sensor is related to position of the material in a galvanic series in aqueous nitric acid. The concept and operation of this electrochemical corrosion measurement is being applied to other corrosive atmospheric contaminants such as hydrogen chloride, hydrogen fluoride, sulfur dioxide, and acidic aerosols.

  11. Corrosion performance of structural alloys.

    SciTech Connect

    Natesan, K.

    1999-07-15

    Component reliability and long-term trouble-free performance of structural materials are essential in power-generating and gasification processes that utilize coal as a feedstock. During combustion and conversion of coal, the environments encompass a wide range of oxygen partial pressures, from excess-air conditions in conventional boilers to air-deficient conditions in 10W-NO{sub x} and gasification systems. Apart from the environmental aspects of the effluent from coal combustion and conversion, one concern from the systems standpoint is the aggressiveness of the gaseous/deposit environment toward structural components such as waterwall tubes, steam superheaters, syngas coolers, and hot-gas filters. The corrosion tests in the program described in this paper address the individual and combined effects of oxygen, sulfur, and chlorine on the corrosion response of several ASME-coded and noncoded structural alloys that were exposed to air-deficient and excess-air environments typical of coal-combustion and gasification processes. Data in this paper address the effects of preoxidation on the subsequent corrosion performance of structural materials such as 9Cr-1Mo ferritic steel, Type 347 austenitic stainless steel, Alloys 800, 825, 625, 214, Hastelloy X, and iron aluminide when exposed at 650 C to various mixed-gas environments with and without HCI. Results are presented for scaling kinetics, microstructural characteristics of corrosion products, detailed evaluations of near-surface regions of the exposed specimens, gains in our mechanistic understanding of the roles of S and Cl in the corrosion process, and the effect of preoxidation on subsequent corrosion.

  12. Atmospheric corrosion and epoxy-coated reinforcement

    SciTech Connect

    Wheat, H.G.

    1998-12-31

    Atmospheric corrosion can have a tremendous effect on the ability of epoxy-coated reinforcement to maintain its effectiveness. Corrosive conditions can result in the coating becoming brittle and more susceptible to damage from handling. Atmospheric conditions can also enhance localized corrosion at holidays on the bars. Efforts to minimize these effects will be discussed.

  13. Corrosion beneath disbonded coatings: A review

    SciTech Connect

    Beavers, J.A.; Thompson, N.G.

    1996-12-01

    This paper describes the relationship between coatings, cathodic protection (CP), and external corrosion of underground pipelines. Historically, this problem has been addressed by focusing on the corrosion and CP processes associated with holidays, e.g., coating disbandment and CP current flow within the disbanded region. This paper addresses these issues but also considers corrosion associated with disbanded areas that are distant from holidays.

  14. 7 CFR 3201.44 - Corrosion preventatives.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Corrosion preventatives. 3201.44 Section 3201.44... Designated Items § 3201.44 Corrosion preventatives. (a) Definition. Products designed to prevent the deterioration (corrosion) of metals. (b) Minimum biobased content. The preferred procurement product must have...

  15. 7 CFR 3201.44 - Corrosion preventatives.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Corrosion preventatives. 3201.44 Section 3201.44... Designated Items § 3201.44 Corrosion preventatives. (a) Definition. Products designed to prevent the deterioration (corrosion) of metals. (b) Minimum biobased content. The preferred procurement product must have...

  16. 49 CFR 193.2625 - Corrosion protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Corrosion protection. 193.2625 Section 193.2625...: FEDERAL SAFETY STANDARDS Maintenance § 193.2625 Corrosion protection. (a) Each operator shall determine which metallic components could, unless corrosion is controlled, have their integrity or...

  17. 49 CFR 193.2625 - Corrosion protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Corrosion protection. 193.2625 Section 193.2625...: FEDERAL SAFETY STANDARDS Maintenance § 193.2625 Corrosion protection. (a) Each operator shall determine which metallic components could, unless corrosion is controlled, have their integrity or...

  18. 7 CFR 3201.44 - Corrosion preventatives.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Corrosion preventatives. 3201.44 Section 3201.44... Designated Items § 3201.44 Corrosion preventatives. (a) Definition. Products designed to prevent the deterioration (corrosion) of metals. (b) Minimum biobased content. The preferred procurement product must have...

  19. 49 CFR 193.2625 - Corrosion protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Corrosion protection. 193.2625 Section 193.2625...: FEDERAL SAFETY STANDARDS Maintenance § 193.2625 Corrosion protection. (a) Each operator shall determine which metallic components could, unless corrosion is controlled, have their integrity or...

  20. 7 CFR 2902.44 - Corrosion preventatives.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Corrosion preventatives. 2902.44 Section 2902.44... Items § 2902.44 Corrosion preventatives. (a) Definition. Products designed to prevent the deterioration (corrosion) of metals. (b) Minimum biobased content. The preferred procurement product must have a...

  1. 49 CFR 193.2625 - Corrosion protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Corrosion protection. 193.2625 Section 193.2625...: FEDERAL SAFETY STANDARDS Maintenance § 193.2625 Corrosion protection. (a) Each operator shall determine which metallic components could, unless corrosion is controlled, have their integrity or...

  2. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.

    2010-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where they are needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into the microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy.

  3. CORROSION RESISTANT JACKETED METAL BODY

    DOEpatents

    Brugmann, E.W.

    1958-08-26

    Jacketed metal bodies of the type used as fuel elements for nuclear reactors, which contain an internal elongated body of fissionable material jacketed in a corrosion resistant metal are described. The ends of the internal bodies are provided with screw threads having a tapered outer end. The jacket material overlaps the ends and extends into the tapered section of the screw threaded opening. Screw caps with a mating tapered section are screwed into the ends of the body to compress the jacket material in the tapered sections to provtde an effective seal against corrosive gases and liquids.

  4. Stress corrosion and hydrogen embrittlement

    NASA Technical Reports Server (NTRS)

    Blackburn, M. J.; Smyrl, W. H.

    1973-01-01

    Service experience applications, experimental data generation, and the development of satisfactory quantitative theories relevant to the suppression and control of stress corrosion cracking in titanium are discussed. The impact of stress corrosion cracking (SCC) on the use of titanium alloys is considered, with emphasis on utilization in the aerospace field. Recent data on hot salt SCC, crack growth in hydrogen gas, and crack growth in liquid environments containing halide ions are reviewed. The status of the understanding of crack growth processes in these environments is also examined.

  5. Corrosion resistant thermal barrier coating

    SciTech Connect

    Levine, S.R.; Miller, R.A.; Hodge, P.E.

    1981-03-01

    A thermal barrier coating system for protecting metal surfaces at high temperature in normally corrosive environments is described. The thermal barrier coating system includes a metal alloy bond coating, the alloy containing nickel, cobalt, iron, or a combination of these metals. The system further includes a corrosion resistant thermal barrier oxide coating containing at least one alkaline earth silicate. The preferred oxides are calcium silicate, barium silicate, magnesium silicate, or combinations of these silicates. Official Gazette of the U.S. Patent and Trademark Office

  6. Coatings for improved corrosion resistance

    SciTech Connect

    Natesan, K.

    1992-05-01

    Several coating approaches are being developed to resist attack in coal-fired environments and thereby minimize corrosion of underlying substrate alloys and extend the time for onset of breakaway corrosion. In general, coating systems can be classified as either diffusion or overlay type, which are distinguished principally by the method of deposition and the structure of the resultant coating-substrate bond. The coating techniques examined are pack cementation, electrospark deposition, physical and chemical vapor deposition, plasma spray, and ion implantation. In addition, ceramic coatings are used in some applications.

  7. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, L. M.; Hintze, P. E.; Li, W.; Buhrow, J. W.; Jolley, S. T.

    2011-01-01

    This slide presentation reviews the effects of corrosion on various structures at the Kennedy Space Center, and the work to discover a corrosion control coating that will be autonomous and will indicate corrosion at an early point in the process. Kennedy Space Center has many environmental conditions that are corrosive: ocean salt spray, heat, humidity, sunlight and acidic exhaust from the Solid Rocket Boosters (SRBs). Presented is a chart which shows the corrosion rates of carbon steel at various locations. KSC has the highest corrosion rates with 42.0 mils/yr, leading the next highest Galeta Point Beach, in the Panama Canal Zone with 27 mils/yr corrosion. A chart shows the changes in corrosion rate with the distance from the ocean. The three types of corrosion protective coatings are described: barrier (passive), Barrier plus active corrosion inhibiting components, and smart. A smart coating will detect and respond actively to changes in its environment in a functional and predictable manner and is capable of adapting its properties dynamically. The smart coating uses microcapsules, particles or liquid drops coated in polymers, that can detect and control the corrosion caused by the environment. The mechanism for a pH sensitive microcapsule and the hydrophobic core microcapsule are demonstrated and the chemistry is reviewed. When corrosion begins, the microcapsule will release the contents of the core (indicator, inhibitor, and self healing agent) in close proximity to the corrosion. The response to a pH increase is demonstrated by a series of pictures that show the breakdown of the microcapsule and the contents release. An example of bolt corrosion is used, as an example of corrosion in places that are difficult to ascertain. A comparison of various coating systems is shown.

  8. General Corrosion and Localized Corrosion of Waste Package Outer Barrier

    SciTech Connect

    Farmer, J.C.; McCright, R.D.

    2000-01-28

    Alloy 22 is an extremely Corrosion Resistant Material, with a very stable passive film. Based upon exposures in the LTCTF, the GC rates of Alloy 22 are typically below the level of detection, with four outliers having reported rates up to 0.75 #mu#m per year. In any event, over the 10,000 year life of the repository, GC of the Alloy 22 (assumed to be 2 cm thick) should not be life limiting. Because measured corrosion potentials are far below threshold potentials, localized breakdown of the passive film is unlikely under plausible conditions, even in SSW at 120 deg C. The pH in ambient-temperature crevices formed from Alloy 22 have been determined experimentally, with only modest lowering of the crevice pH observed under plausible conditions. Extreme lowering of the crevice pH was only observed under situations where the applied potential at the crevice mouth was sufficient to result in catastrophic breakdown of the passive film above the threshold potential in non-buffered conditions not characteristic of the Yucca Mountain environment. In cases where naturally ocurring buffers are present in the crevice solution, little or no lowering of the pH was observed, even with significant applied potential. With exposures of twelve months, no evidence of crevice corrosion has been observed in SDW, SCW and SAW at temperatures up to 90 deg C. An abstracted model has been presented, with parameters determined experimentally, that should enable performance assessment to account for the general and localized corrosion of this material. A feature of this model is the use of the materials specification to limit the range of corrosion and threshold potentials, thereby making sure that substandard materials prone to localized attack are avoided. Model validation will be covered in part by a companion SMR on abstraction of this model.

  9. Microclimate Corrosion Effects in Coastal Environments

    SciTech Connect

    Holcomb, G.R.; Covino, B.S. Jr.; Bullard, S.J.; Cramer, S.D.

    1996-03-24

    The Albany Research Center is conducting atmospheric corrosion research in coastal environments to improve the performance of materials in the Nation's infrastructure. The corrosion of bare metals, and of painted, thermal-sprayed, and galvanized steels are presented for one-year exposures at sites located on bridges and utility poles along the Oregon coast. The effects of microclimates (for example distance from the ocean, high wind zones, and salt-fog prone regions) are examined in conjunction with sample orientation and sheltered/unsheltered comparisons. An atmospheric corrosion model examines the growth and dissolution of corrosion product layers to arrive at a steady-state thickness and corrosion rate.

  10. Fiber optic approach for detecting corrosion

    NASA Astrophysics Data System (ADS)

    Kostecki, Roman; Ebendorff-Heidepriem, Heike; Davis, Claire; McAdam, Grant; Wang, Tianyu; Monro, Tanya M.

    2016-04-01

    Corrosion is a multi-billion dollar problem faced by industry. The ability to monitor the hidden metallic structure of an aircraft for corrosion could result in greater availability of existing aircraft fleets. Silica exposed-core microstructured optical fiber sensors are inherently suited towards this application, as they are extremely lightweight, robust, and suitable both for distributed measurements and for embedding in otherwise inaccessible corrosion-prone areas. By functionalizing the fiber with chemosensors sensitive to corrosion by-products, we demonstrate in-situ kinetic measurements of accelerated corrosion in simulated aluminum aircraft joints.

  11. Analyses of containment structures with corrosion damage

    SciTech Connect

    Cherry, J.L.

    1996-12-31

    Corrosion damage to a nuclear power plant containment structure can degrade the pressure capacity of the vessel. For the low-carbon, low- strength steels used in containments, the effect of corrosion on material properties is discussed. Strain-to-failure tests, in uniaxial tension, have been performed on corroded material samples. Results were used to select strain-based failure criteria for corroded steel. Using the ABAQUS finite element analysis code, the capacity of a typical PWR Ice Condenser containment with corrosion damage has been studied. Multiple analyses were performed with the locations of the corrosion the containment, and the amount of corrosion varied in each analysis.

  12. Thermal control system corrosion study

    NASA Technical Reports Server (NTRS)

    Yee, Robert; Folsom, Rolfe A.; Mucha, Phillip E.

    1990-01-01

    During the development of an expert system for autonomous control of the Space Station Thermal Control System (TCS), the thermal performance of the Brassboard TCS began to gradually degrade. This degradation was due to filter clogging by metallic residue. A study was initiated to determine the source of the residue and the basic cause of the corrosion. The investigation focused on the TCS design, materials compatibility, Ames operating and maintenance procedures, and chemical analysis of the residue and of the anhydrous ammonia used as the principal refrigerant. It was concluded that the corrosion mechanisms involved two processes: the reaction of water alone with large, untreated aluminum parts in a high pH environment and the presence of chlorides and chloride salts. These salts will attack the aluminum oxide layer and may enable galvanic corrosion between the aluminum and the more noble stainless steel and other metallic elements present. Recommendations are made for modifications to the system design, the materials used, and the operating and maintenance procedures, which should largely prevent the recurrence of these corrosion mechanisms.

  13. Thermal control system corrosion study

    NASA Astrophysics Data System (ADS)

    Yee, Robert; Folsom, Rolfe A.; Mucha, Phillip E.

    1990-02-01

    During the development of an expert system for autonomous control of the Space Station Thermal Control System (TCS), the thermal performance of the Brassboard TCS began to gradually degrade. This degradation was due to filter clogging by metallic residue. A study was initiated to determine the source of the residue and the basic cause of the corrosion. The investigation focused on the TCS design, materials compatibility, Ames operating and maintenance procedures, and chemical analysis of the residue and of the anhydrous ammonia used as the principal refrigerant. It was concluded that the corrosion mechanisms involved two processes: the reaction of water alone with large, untreated aluminum parts in a high pH environment and the presence of chlorides and chloride salts. These salts will attack the aluminum oxide layer and may enable galvanic corrosion between the aluminum and the more noble stainless steel and other metallic elements present. Recommendations are made for modifications to the system design, the materials used, and the operating and maintenance procedures, which should largely prevent the recurrence of these corrosion mechanisms.

  14. Corrosion inhibition for distillation apparatus

    DOEpatents

    Baumert, Kenneth L.; Sagues, Alberto A.; Davis, Burtron H.; Schweighardt, Frank K.

    1985-01-01

    Tower material corrosion in an atmospheric or sub-atmospheric distillation tower in a coal liquefaction process is reduced or eliminated by subjecting chloride-containing tray contents to an appropriate ion-exchange resin to remove chloride from such tray contents materials.

  15. Corrosion resistant metallic bipolar plate

    DOEpatents

    Brady, Michael P.; Schneibel, Joachim H.; Pint, Bruce A.; Maziasz, Philip J.

    2007-05-01

    A corrosion resistant, electrically conductive component such as a bipolar plate for a PEM fuel cell includes 20 55% Cr, balance base metal such as Ni, Fe, or Co, the component having thereon a substantially external, continuous layer of chromium nitride.

  16. CORROSION RESISTANT JACKETED METAL BODY

    DOEpatents

    Brugmann, E.W.

    1958-08-26

    Reactor faul elements of the elongated cylindrical type which are jacketed in a corrosion resistant material are described. Each feel element is comprised of a plurality of jacketed cylinders of fissionable material in end to end abutting relationship, the jackets being welded together at their adjoining ends to retain the individual segments together and seat the interior of the jackets.

  17. Silicate Glass Corrosion Mechanism revisited

    NASA Astrophysics Data System (ADS)

    Geisler, Thorsten; Lenting, Christoph; Dohmen, Lars

    2015-04-01

    Understanding the mechanism(s) of aqueous corrosion of nuclear waste borosilicate glasses is essential to predict their long-term aqueous durability in a geologic repository. Several observations have been made with compositionally different silicate glasses that cannot be explained by any of the established glass corrosion models. These models are based on diffusion-controlled ion exchange and subsequent structural reorganisation of a leached, hydrated residual glass, leaving behind a so-called gel layer. In fact, the common observation of lamellar to more complex pattern formation observed in experiment and nature, the porous structure of the corrosion layer, an atomically sharp boundary between the corrosion zone and the underlying pristine glass, as well as results of novel isotope tracer and in situ, real time experiments rather support an interface-coupled glass dissolution-silica reprecipitation model. In this model, the congruent dissolution of the glass is coupled in space and time to the precipitation and growth of amorphous silica at an inwardly moving reaction front. We suggest that these coupled processes have to be considered to realistically model the long-term performance of silicate glasses in aqueous environments.

  18. The dual role of microbes in corrosion.

    PubMed

    Kip, Nardy; van Veen, Johannes A

    2015-03-01

    Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion. PMID:25259571

  19. The dual role of microbes in corrosion

    PubMed Central

    Kip, Nardy; van Veen, Johannes A

    2015-01-01

    Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion. PMID:25259571

  20. The dual role of microbes in corrosion.

    PubMed

    Kip, Nardy; van Veen, Johannes A

    2015-03-01

    Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion.

  1. Influence of NOM on copper corrosion

    SciTech Connect

    Korshin, G.V.; Ferguson, J.F.; Perry, S.A.L.

    1996-07-01

    Natural organic matter (NOM) profoundly affected the corrosion of copper in a moderately alkaline synthetic water. It decreased the rate of corrosion, increased the rate of copper leaching, and dispersed crystalline inorganic corrosion products. The interaction of NOM with corrosion products was modeled using separate phase of malachite and cuprous oxide. The authors concluded that NOM promotes the formation of pits in a certain narrow range of concentrations (0.1--0.2 mg/L in laboratory tests) and suppresses this type of corrosion at higher dosages. At low DOC concentrations, the main interaction between NOM and the surfaces of corroding metal and corrosion products is adsorption. The influence of NOM on corrosion of metals in real distribution systems must be studied in relation to long periods of surface aging, flow rate, concentration and type of oxidants, pH, and alkalinity.

  2. Impacts of Transport Properties of Porous Corrosion Product Layer on Effective Corrosion Rate

    NASA Astrophysics Data System (ADS)

    Li, Xiaobai; Cook, David

    2012-11-01

    Condensing exhaust gases containing H2O, SO3 and NOx cause serious corrosion failure in various industry processes. For example, in modern compact heat cells, corrosion products deposit on top of the heat exchanger cooling fins, blocking the flow passages and drastically decreasing system performance. The transport properties of porous corrosion product layers play important role in determining the corrosion tendency and observed corrosion rate. To understand the corrosion mechanism for Aluminum alloy in sulfuric acid environment, impacts of transport properties of corrosion residual layers are investigated with different numerical models for porous layer diffusivity. The effective corrosion rates resulted from these models are compared to corresponding experimental measurements. A multilayer diffusivity model in which diffusivity depends both on porous layer structure and composition shows excellent agreements with experimental data. This model is currently being used in a multi-scale flow simulation framework to predict corrosion phenomena in heat cells.

  3. Supplementary safety system corrosion studies

    SciTech Connect

    Anderson, M.H.; Wiersma, B.J.

    1991-05-21

    This memorandum presents experimental data from electrochemical and immersion tests to support the continued use of two sections of nonconforming steel in the Supplementary Safety System. The Reactor Corrosion Mitigation Committee met on May 16, 1991 to evaluate materials that had been installed in the SSS. The materials lacked complete Corrosion Evaluation (CE) and/or Certified Mill Test Reports and had been installed during recent modifications (Project S-4332). Items that lacked proper documentation included AISI Type 304 stainless steel (304) instrument tubing (0.375'' OD) associated with the pressure transmitters and a two-foot section of 304 pipe located on the far side of the system downstream of the pneumatic valves. Cyclic potentiodynamic polarization scans were performed on sensitized and solution-annealed 304 samples in as-mixed and acidified Gd(NO{sub 3}){sub 3}, or ink'', solutions at room temperature to determine the susceptibility of 304 to localized corrosion in this environment. No localized attack was observed on the solution annealed or sensitized 304 in the Gd(NO{sub 3}){sub 3} solution. These tests revealed no significant differences in the behavior of the sensitized and solution-annealed 304 in gadolinium nitrate solution. Therefore, localized corrosion of the nonconforming components is not anticipated, and the performance of the nonconforming components should not differ from that of corrosion evaluated and certified materials. Previous studies have shown that AISI Type 304L stainless steel (304L) did not pit during a three-month exposure in gadolinium nitrate solutions of pH 2 or 5. These combined results support the continued use of the nonconforming steels until replacement can be made at the next scheduled long shut-down.

  4. Supplementary safety system corrosion studies

    SciTech Connect

    Anderson, M.H.; Wiersma, B.J.

    1991-05-21

    This memorandum presents experimental data from electrochemical and immersion tests to support the continued use of two sections of nonconforming steel in the Supplementary Safety System. The Reactor Corrosion Mitigation Committee met on May 16, 1991 to evaluate materials that had been installed in the SSS. The materials lacked complete Corrosion Evaluation (CE) and/or Certified Mill Test Reports and had been installed during recent modifications (Project S-4332). Items that lacked proper documentation included AISI Type 304 stainless steel (304) instrument tubing (0.375`` OD) associated with the pressure transmitters and a two-foot section of 304 pipe located on the far side of the system downstream of the pneumatic valves. Cyclic potentiodynamic polarization scans were performed on sensitized and solution-annealed 304 samples in as-mixed and acidified Gd(NO{sub 3}){sub 3}, or ``ink``, solutions at room temperature to determine the susceptibility of 304 to localized corrosion in this environment. No localized attack was observed on the solution annealed or sensitized 304 in the Gd(NO{sub 3}){sub 3} solution. These tests revealed no significant differences in the behavior of the sensitized and solution-annealed 304 in gadolinium nitrate solution. Therefore, localized corrosion of the nonconforming components is not anticipated, and the performance of the nonconforming components should not differ from that of corrosion evaluated and certified materials. Previous studies have shown that AISI Type 304L stainless steel (304L) did not pit during a three-month exposure in gadolinium nitrate solutions of pH 2 or 5. These combined results support the continued use of the nonconforming steels until replacement can be made at the next scheduled long shut-down.

  5. NASA's Corrosion Technology Laboratory at the Kennedy Space Center: Anticipating, Managing, and Preventing Corrosion

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina

    2015-01-01

    The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in North America. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the highly corrosive hydrochloric acid (HCl) generated by the solid rocket boosters (SRBs). Numerous failures at the launch pads are caused by corrosion. The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. NASA has over fifty years of experience dealing with unexpected failures caused by corrosion and has developed expertise in corrosion control in the launch and other environments. The Corrosion Technology Laboratory at KSC evolved, from what started as an atmospheric exposure test site near NASAs launch pads, into a capability that provides technical innovations and engineering services in all areas of corrosion for NASA, external partners, and customers.This paper provides a chronological overview of NASAs role in anticipating, managing, and preventing corrosion in highly corrosive environments. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.

  6. Titanium corrosion in alkaline hydrogen peroxide environments

    NASA Astrophysics Data System (ADS)

    Been, Jantje

    1998-12-01

    The corrosion of Grade 2 titanium in alkaline hydrogen peroxide environments has been studied by weight loss corrosion tests, electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR) measurements and potentiodynamic polarography. Calcium ions and wood pulp were investigated as corrosion inhibitors. In alkaline peroxide, the titanium corrosion rate increased with increasing pH, temperature, and hydrogen peroxide concentration. The corrosion controlling mechanism is thought to be the reaction of the oxide with the perhydroxyl ion. No evidence of thermodynamically stable calcium titanate was found in the surface film of test coupons exposed to calcium-inhibited alkaline peroxide solutions. Calcium inhibition is probably the result of low local alkali and peroxide concentrations at the metal surface produced by reaction of adsorbed calcium with hydrogen peroxide. It has been shown that the inhibiting effect of calcium is temporary, possibly through an effect of calcium on the chemical and/or physical stability of the surface oxide. Pulp is an effective and stable corrosion inhibitor. Raising the pulp concentration decreased the corrosion rate. The inhibiting effect of pulp may be related to the adsorption and interaction of the pulp fibers with H 2O2, thereby decreasing the peroxide concentration and rendering the solution less corrosive. The presence of both pulp and calcium led to higher corrosion rates than obtained by either one inhibitor alone. Replacement of hydrofluoric acid with alkaline peroxide for pickling of titanium was investigated. Titanium corrosion rates in alkaline peroxide exceeded those obtained in the conventional hydrofluoric acid bath. General corrosion was observed with extensive roughening of the surface giving a dull gray appearance. Preferred dissolution of certain crystallographic planes was investigated through the corrosion of a titanium single crystal. Whereas the overall effect on the corrosion rate was small

  7. Effect of corrosion and stress-corrosion cracking on pipe integrity and remaining life

    SciTech Connect

    Jaske, C.E.; Beavers, J.A.

    1996-07-01

    Process piping is often exposed to corrosive fluids. During service, such exposure may cause localized corrosion or stress-corrosion cracking that affects structural integrity. This paper presents a model that quantifies the effect of localized corrosion and stress-corrosion cracking on pipe failure stress. The model is an extension of those that have been developed for oil and gas pipelines. It accounts for both axial and hoop stress. Cracks are modeled using inelastic fracture mechanics. Both flow-stress and fracture-toughness dependent failure modes are addressed. Corrosion and crack-growth rates are used to predict remaining service life.

  8. Corrosion Product Film-Induced Stress Facilitates Stress Corrosion Cracking

    PubMed Central

    Wang, Wenwen; Zhang, Zhiliang; Ren, Xuechong; Guan, Yongjun; Su, Yanjing

    2015-01-01

    Finite element analyses were conducted to clarify the role of corrosion product films (CPFs) in stress corrosion cracking (SCC). Flat and U-shaped edge-notched specimens were investigated in terms of the CPF-induced stress in the metallic substrate and the stress in the CPF. For a U-shaped edge-notched specimen, the stress field in front of the notch tip is affected by the Young’s modulus of the CPF and the CPF thickness and notch geometry. The CPF-induced tensile stress in the metallic substrate is superimposed on the applied load to increase the crack tip strain and facilitate localized plasticity deformation. In addition, the stress in the CPF surface contributes to the rupture of the CPFs. The results provide physical insights into the role of CPFs in SCC. PMID:26066367

  9. Microencapsulation Technology for Corrosion Mitigation by Smart Coatings

    NASA Technical Reports Server (NTRS)

    Buhrow, Jerry; Li, Wenyan; Jolley, Scott; Calle, Luz M.

    2011-01-01

    A multifunctional, smart coating for the autonomous control of corrosion is being developed based on micro-encapsulation technology. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection effectiveness. This paper summarizes the development, optimization, and testing of microcapsules specifically designed to be incorporated into a smart coating that will deliver corrosion inhibitors to mitigate corrosion autonomously. Key words: smart coating, corrosion inhibition, microencapsulation, microcapsule, pH sensitive microcapsule, corrosion inhibitor, corrosion protection pain

  10. Peste des petits ruminants.

    PubMed

    Parida, S; Muniraju, M; Mahapatra, M; Muthuchelvan, D; Buczkowski, H; Banyard, A C

    2015-12-14

    Peste des petits ruminants virus causes a highly infectious disease of small ruminants that is endemic across Africa, the Middle East and large regions of Asia. The virus is considered to be a major obstacle to the development of sustainable agriculture across the developing world and has recently been targeted by the World Organisation for Animal Health (OIE) and the Food and Agriculture Organisation (FAO) for eradication with the aim of global elimination of the disease by 2030. Fundamentally, the vaccines required to successfully achieve this goal are currently available, but the availability of novel vaccine preparations to also fulfill the requisite for differentiation between infected and vaccinated animals (DIVA) may reduce the time taken and the financial costs of serological surveillance in the later stages of any eradication campaign. Here, we overview what is currently known about the virus, with reference to its origin, updated global circulation, molecular evolution, diagnostic tools and vaccines currently available to combat the disease. Further, we comment on recent developments in our knowledge of various recombinant vaccines and on the potential for the development of novel multivalent vaccines for small ruminants.

  11. Peste des petits ruminants.

    PubMed

    Parida, S; Muniraju, M; Mahapatra, M; Muthuchelvan, D; Buczkowski, H; Banyard, A C

    2015-12-14

    Peste des petits ruminants virus causes a highly infectious disease of small ruminants that is endemic across Africa, the Middle East and large regions of Asia. The virus is considered to be a major obstacle to the development of sustainable agriculture across the developing world and has recently been targeted by the World Organisation for Animal Health (OIE) and the Food and Agriculture Organisation (FAO) for eradication with the aim of global elimination of the disease by 2030. Fundamentally, the vaccines required to successfully achieve this goal are currently available, but the availability of novel vaccine preparations to also fulfill the requisite for differentiation between infected and vaccinated animals (DIVA) may reduce the time taken and the financial costs of serological surveillance in the later stages of any eradication campaign. Here, we overview what is currently known about the virus, with reference to its origin, updated global circulation, molecular evolution, diagnostic tools and vaccines currently available to combat the disease. Further, we comment on recent developments in our knowledge of various recombinant vaccines and on the potential for the development of novel multivalent vaccines for small ruminants. PMID:26443889

  12. Peste des petits ruminants

    PubMed Central

    Parida, S.; Muniraju, M.; Mahapatra, M.; Muthuchelvan, D.; Buczkowski, H.; Banyard, A.C.

    2015-01-01

    Peste des petits ruminants virus causes a highly infectious disease of small ruminants that is endemic across Africa, the Middle East and large regions of Asia. The virus is considered to be a major obstacle to the development of sustainable agriculture across the developing world and has recently been targeted by the World Organisation for Animal Health (OIE) and the Food and Agriculture Organisation (FAO) for eradication with the aim of global elimination of the disease by 2030. Fundamentally, the vaccines required to successfully achieve this goal are currently available, but the availability of novel vaccine preparations to also fulfill the requisite for differentiation between infected and vaccinated animals (DIVA) may reduce the time taken and the financial costs of serological surveillance in the later stages of any eradication campaign. Here, we overview what is currently known about the virus, with reference to its origin, updated global circulation, molecular evolution, diagnostic tools and vaccines currently available to combat the disease. Further, we comment on recent developments in our knowledge of various recombinant vaccines and on the potential for the development of novel multivalent vaccines for small ruminants. PMID:26443889

  13. 49 CFR 192.491 - Corrosion control records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Corrosion control records. 192.491 Section 192.491... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.491 Corrosion... detail to demonstrate the adequacy of corrosion control measures or that a corrosive condition does...

  14. 49 CFR 192.491 - Corrosion control records.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Corrosion control records. 192.491 Section 192.491... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.491 Corrosion... detail to demonstrate the adequacy of corrosion control measures or that a corrosive condition does...

  15. 49 CFR 192.491 - Corrosion control records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Corrosion control records. 192.491 Section 192.491... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.491 Corrosion... detail to demonstrate the adequacy of corrosion control measures or that a corrosive condition does...

  16. 49 CFR 192.491 - Corrosion control records.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Corrosion control records. 192.491 Section 192.491... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.491 Corrosion... detail to demonstrate the adequacy of corrosion control measures or that a corrosive condition does...

  17. Space Shuttle Corrosion Protection Performance

    NASA Technical Reports Server (NTRS)

    Curtis, Cris E.

    2007-01-01

    The reusable Manned Space Shuttle has been flying into Space and returning to earth for more than 25 years. The launch pad environment can be corrosive to metallic substrates and the Space Shuttles are exposed to this environment when preparing for launch. The Orbiter has been in service well past its design life of 10 years or 100 missions. As part of the aging vehicle assessment one question under evaluation is how the thermal protection system and aging protective coatings are performing to insure structural integrity. The assessment of this cost resources and time. The information is invaluable when minimizing risk to the safety of Astronauts and Vehicle. This paper will outline a strategic sampling plan and some operational improvements made by the Orbiter Structures team and Corrosion Control Review Board.

  18. Magnetic field associated with active electrochemical corrosion

    NASA Astrophysics Data System (ADS)

    Abedi, Afshin

    The purpose of this work is to provide a better understanding of the underlying sources of the magnetic field associated with ongoing electrochemical corrosion, to investigate the spatio-temporal information content of the corrosion magnetic field, and to evaluate its potential utility in non-invasive quantification of hidden corrosion. The importance of this work lies in the fact that conventional electrochemical instruments and techniques are not well suited for non-invasive measurements of the rate and dynamics of corrosion in occluded regions such as in aircraft lap joints. With the increase in the number of aging engineered systems there is an increasing demand for more accurate corrosion predictive models that can improve the probability of detection of corrosion induced flaws in structures, and hence reduce the risk of catastrophic failures. Therefore, such rate information is of great importance to the corrosion community. At the present time, there are no other techniques capable of providing such information. This work is the first successful attempt at quantification of the rate of corrosion through non- invasive measurements of its associated magnetic field. It includes the development of appropriate experimental techniques and associated models. Herein we have reviewed previous experiments, explored various exposure conditions and sample geometries, and discussed appropriate experimental procedures. We have defined quantitative magnetic parameters and, in conjunction with mass loss calibration measurements, have used them to determine non-invasively the rate and dynamics of ongoing hidden corrosion. We conclude that the corrosion magnetic field contains spatial and temporal information that correlate with the distribution, magnitude, and time course of currents associated with electrochemical corrosion. In conjunction with appropriate calibration experiments, sample geometry, and experimental topology, the magnetic activity of a corroding sample can be

  19. Castable hot corrosion resistant alloy

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A. (Inventor); Holt, William H. (Inventor)

    1988-01-01

    Some 10 wt percent nickel is added to an Fe-base alloy which has a ferrite microstructure to improve the high temperature castability and crack resistance while about 0.2 wt percent zirconium is added for improved high temperatur cyclic oxidation and corrosion resistance. The basic material is a high temperature FeCrAl heater alloy, and the addition provides a material suitable for burner rig nozzles.

  20. Corrosion resistant PEM fuel cell

    DOEpatents

    Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen Joel; Doll, Gary Lynn

    2001-07-17

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  1. Corrosion resistant PEM fuel cell

    DOEpatents

    Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen J.; Doll, Gary L.

    1997-01-01

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  2. Corrosion resistant PEM fuel cell

    DOEpatents

    Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen Joel; Doll, Gary Lynn

    2002-01-01

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  3. Corrosion resistant PEM fuel cell

    DOEpatents

    Li, Y.; Meng, W.J.; Swathirajan, S.; Harris, S.J.; Doll, G.L.

    1997-04-29

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell`s operating environment. Stainless steels rich in Cr, Ni, and Mo are particularly effective protective interlayers. 6 figs.

  4. Prevention of corrosion with polyaniline

    NASA Technical Reports Server (NTRS)

    MacDiarmid, Alan G. (Inventor); Ahmad, Naseer (Inventor)

    1997-01-01

    Methods for improving the corrosion inhibition of a metal or metal alloy substrate surface are provided wherein the substrate surface is coated with a polyaniline film. The polyaniline film coating is applied by contacting the substrate surface with a solution of polyaniline. The polyaniline is dissolved in an appropriate organic solvent and the solvent is allowed to evaporate from the substrate surface yielding the polyaniline film coating.

  5. Galvanic corrosion of beryllium welds

    SciTech Connect

    Hill, M.A.; Butt, D.P.; Lillard, R.S.

    1997-12-01

    Beryllium is difficult to weld because it is highly susceptible to cracking. The most commonly used filler metal in beryllium welds is Al-12 wt.% Si. Beryllium has been successfully welded using Al-Si filler metal with more than 30 wt.% Al. This filler creates an aluminum-rich fusion zone with a low melting point that tends to backfill cracks. Drawbacks to adding a filler metal include a reduction in service temperature, a lowering of the tensile strength of the weld, and the possibility for galvanic corrosion to occur at the weld. To evaluate the degree of interaction between Be and Al-Si in an actual weld, sections from a mock beryllium weldment were exposed to 0.1 M Cl{sup {minus}} solution. Results indicate that the galvanic couple between Be and the Al-Si weld material results in the cathodic protection of the weld and of the anodic dissolution of the bulk Be material. While the cathodic protection of Al is generally inefficient, the high anodic dissolution rate of the bulk Be during pitting corrosion combined with the insulating properties of the Be oxide afford some protection of the Al-Si weld material. Although dissolution of the Be precipitate in the weld material does occur, no corrosion of the Al-Si matrix was observed.

  6. Corrosion performance of iron aluminides

    SciTech Connect

    Natesan, K.

    1993-03-01

    Iron aluminides are being developed for use as structural materials and/or cladding alloys in fossil energy systems. Extensive development has been in progress on Fe[sub 3]Al-based alloys to improve the engineering ductility of these alloys. This paper describes results from the ongoing program to evaluate the corrosion performance of these alloys. The experimental program at Argonne National Laboratory involvesthermogravimetric analyses of alloys exposed to environments that simulate coal gasification and fluidized-bed combustion. Experiments were conducted at 650--1000[degrees]C in simulated oxygen/sulfur gas mixtures. In addition, oxidation/sulfidation behavior of several alumina-forming Fe-Al and Fe-Cr-Ni-Al alloys was determined for comparison with the corrosion rates obtained on iron aluminides. Other aspects of the program are corrosion evaluation of the aluminides in the presence of HC1-containing gases and in the presence of slag from a slogging gasifier. Results are used to establish threshold Al levels in the alloys for development of protective alumina scales. Thermal cycling tests are used to examine the spalling resistance of the scales.

  7. Corrosion Preventive Compounds Lifetime Testing

    NASA Technical Reports Server (NTRS)

    Hale, Stephanie M.; Kammerer, Catherine C.

    2007-01-01

    Lifetime Testing of Corrosion Preventive Compounds (CPCs) was performed to quantify performance in the various environments to which the Space Shuttle Orbiter is exposed during a flight cycle. Three CPCs are approved for use on the Orbiter: HD Calcium Grease, Dinitrol AV-30, and Braycote 601 EF. These CPCs have been rigorously tested to prove that they mitigate corrosion in typical environments, but little information is available on how they perform in the unique combination of the coastal environment at the launch pad, the vacuum of low-earth orbit, and the extreme heat of reentry. Currently, there is no lifetime or reapplication schedule established for these compounds that is based on this combination of environmental conditions. Aluminum 2024 coupons were coated with the three CPCs and exposed to conditions that simulate the environments to which the Orbiter is exposed. Uncoated Aluminum 2024 coupons were exposed to the environmental conditions as a control. Visual inspection and Electro- Impedance Spectroscopy (EIS) were performed on the samples in order to determine the effectiveness of the CPCs. The samples were processed through five mission life cycles or until the visual inspection revealed the initiation of corrosion and EIS indicated severe degradation of the coating.

  8. Corrosion Preventive Compounds Lifetime Testing

    NASA Technical Reports Server (NTRS)

    Hale, Stephanie M.; Kammerer, Catherine C.; Copp, Tracy L.

    2007-01-01

    Lifetime Testing of Corrosion Preventive Compounds (CPCs) was performed to quantify performance in the various environments to which the Space Shuttle Orbiter is exposed during a flight cycle. Three CPCs are approved for use on the Orbiter: RD Calcium Grease, Dinitrol AV-30, and Braycote 601 EF. These CPCs have been rigorously tested to prove that they mitigate corrosion in typical environments, but little information is available on how they perform in the unique combination of the coastal environment at the launch pad, the vacuum of low-earth orbit, and the extreme heat of reentry. Currently, there is no lifetime or reapplication schedule established for these compounds that is based on this combination of environmental conditions. Aluminum 2024 coupons were coated with the three CPCs and exposed to conditions that simulate the environments to which the Orbiter is exposed. Uncoated Aluminum 2024 coupons were exposed to the environmental conditions as a control. Visual inspection and Electro- Impedance Spectroscopy (EIS) were performed on the samples in order to determine the effectiveness of the CPCs. The samples were processed through five mission life cycles or until the visual inspection revealed the initiation of corrosion and EIS indicated severe degradation of the coating.

  9. The 43rd annual corrosion survey

    SciTech Connect

    Not Available

    1992-03-01

    Applying the science of corrosion prevention to energy (petroleums, oil, LNG) pipelines in actual field operating conditions is a vital aspect of safely and efficiently operating a pipeline system. Ignoring corrosion prevention will allow this never-sleeping enemy to steal the strength from steel pipelines, turning them into dangerous junk. Various methods, techniques and technologies are available to the corrosion control department of cross-country pipelines and gas distribution utilities around the world. Every year, billions of dollars on corrosion control, including everything from coatings to cathodic protection facilities to pigging, are spent to keep these energy pipeline systems in peak operational efficiency. This paper reports that for more than 4 decades, this corrosion survey has sought out the opinions of corrosion control experts, asking them what are the problems they face daily and innovative solutions they have tried to help solve these problems.

  10. Research on heat-exchanger corrosion

    NASA Astrophysics Data System (ADS)

    Razgaitis, R.; Payer, J. H.; Stickford, G. H.; White, E. L.; Talbert, S. G.; Cudnick, R. A.; Locklin, D. W.; Farnsworth, C. A.

    1984-09-01

    Research conducted to develop technology for selecting corrosion resistant materials in high efficiency, gas fired, residential space heating equipment is reported. The methodology and results of sampling in over 500 homes to statistically characterize the corrosivity of flue gas condensate are described. The corrosion resistance of over 40 metal alloys was evaluated in accelerated laboratory tests with specimens exposed to an alternate wet/dry environment using chloride spiked condensate. A wide range of corrosion was observed, fron no corrosion to severe attack. Some stainless steels exhibited essentially complete resistance to attack in all corrosion modes evaluated. The results to date provide interim guidance to equipment manufacturers in the selection of materials for condensing equipment.

  11. Mechanically Assisted Taper Corrosion in Modular TKA

    PubMed Central

    Arnholt, Christina; MacDonald, Daniel W.; Tohfafarosh, Mariya; Gilbert, Jeremy L.; Rimnac, Clare M.; Kurtz, Steven M.; Klein, Gregg; Mont, Michael A.; Parvizi, Javad; Cates, Harold E.; Lee, Gwo-Chin; Malkani, Arthur; Kraay, Matthew

    2014-01-01

    The purpose of this study was to characterize the prevalence of taper damage in modular TKA components. 198 modular components were revised after 3.9±4.2y (range: 0.0–17.5y). Modular components were evaluated for fretting corrosion using a semi-quantitative 4-point scoring system. Flexural rigidity, stem diameter, alloy coupling, patient weight, age and implantation time were assessed as predictors of fretting corrosion damage. Mild-to-severe fretting corrosion (score≥2) was observed in 94/101 of the tapers on the modular femoral components and 90/97 of the modular tibial components. Mixed alloy pairs (p=0.03), taper design (p<0.001), and component type (p=0.02) were associated with taper corrosion. The results from this study supported the hypothesis that there is taper corrosion in TKA. However the clinical implications of fretting and corrosion in TKA remain unclear. PMID:24996586

  12. Electrochemical corrosion testing of metal waste forms

    SciTech Connect

    Abraham, D. P.; Peterson, J. J.; Katyal, H. K.; Keiser, D. D.; Hilton, B. A.

    1999-12-14

    Electrochemical corrosion tests have been conducted on simulated stainless steel-zirconium (SS-Zr) metal waste form (MWF) samples. The uniform aqueous corrosion behavior of the samples in various test solutions was measured by the polarization resistance technique. The data show that the MWF corrosion rates are very low in groundwaters representative of the proposed Yucca Mountain repository. Galvanic corrosion measurements were also conducted on MWF samples that were coupled to an alloy that has been proposed for the inner lining of the high-level nuclear waste container. The experiments show that the steady-state galvanic corrosion currents are small. Galvanic corrosion will, hence, not be an important mechanism of radionuclide release from the MWF alloys.

  13. Mechanism of hot corrosion of IN-738

    NASA Technical Reports Server (NTRS)

    Meier, G. H.

    1982-01-01

    The Na2SO4 - induced hot corrosion of IN-738 in the temperature range 900 C to 1000 C is characterized by an initiation stage during which the corrosion rate is slow followed by a propagation stage during which the corrosion rate is markedly accelerated. In the second stage, corrosion is accelerated due essentially to a sulfidation/oxidation mechanism; in the third stage, the rate becomes catastrophic due to acid fluxing induced by an accumulation of refractory metal oxides (particularly MoO3) in the Na2SO4. The sequential stages in the corrosion process are described and a mechanism proposed. The influence of alloy microstructure on the corrosion mechanism is also discussed.

  14. CORROSION MONITORING OF PLUTONIUM OXIDE AND SNF

    SciTech Connect

    Douglas, D.G.; Haas, C.M.; Smith, C.M.; Ohl, P.C.

    2003-02-27

    While developing a method to measure pressure in totally sealed stainless steel containers holding spent nuclear fuel at the U.S. DOE Hanford Site, Vista Engineering Technologies, LLC (Vista Engineering) personnel adapted the central concept to corrosion monitoring techniques for the same containers. The ability to monitor corrosion within vessels containing spent nuclear fuel, plutonium and other hazardous materials is imperative for safe storage. Vista Engineering personnel have devised a way to monitor corrosion in a totally sealed stainless steel container using a Magnetically Coupled Corrosion Gauge (MCCG) Patent Pending. The MCCG can be used to detect corrosion as well as measure corrosion rate and does not require any penetration of the containment vessel, which minimizes pressure boundary surface area and sensitive weld materials in the vessels.

  15. Corrosion-Activated Micro-Containers for Environmentally Friendly Corrosion Protective Coatings

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Buhrow, J. W.; Zhang, X.; Johnsey, M. N.; Pearman, B. P.; Jolley, S. T.; Calle, L. M.

    2016-01-01

    This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry. The NASA Kennedy Space Centers Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion

  16. The oxidation and corrosion of ODS alloys

    NASA Technical Reports Server (NTRS)

    Lowell, Carl E.; Barrett, Charles A.

    1990-01-01

    The oxidation and hot corrosion of high temperature oxide dispersion strengthened (ODS) alloys are reviewed. The environmental resistance of such alloys are classified by oxide growth rate, oxide volatility, oxide spalling, and hot corrosion limitations. Also discussed are environmentally resistant coatings for ODS materials. It is concluded that ODS NiCrAl and FeCrAl alloys are highly oxidation and corrosion resistant and can probably be used uncoated.

  17. Natural analogues of nuclear waste glass corrosion.

    SciTech Connect

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

  18. Fireside corrosion probes for fossil fuel combustion

    SciTech Connect

    Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.; Holcomb, G.R.; Eden, D.A.

    2006-03-01

    Electrochemical corrosion rate probes have been constructed and tested along with mass loss coupons in environments consisting of N2/O2/CO2/SO2 plus water vapor. Temperatures ranged from 450° to 700°C. Results show that electrochemical corrosion rates for ash-covered mild steel are a function of time, temperature, and gaseous environment. Correlation between the electrochemical and mass loss corrosion rates was poor.

  19. Corrosion control in water injection systems

    SciTech Connect

    Patton, C.C. )

    1993-08-01

    Corrosion control in water injection systems encompasses a wide range of technologies, including chemicals (corrosion inhibitors, biocides, and oxygen scavengers); corrosion-resistant materials (metallic and nonmetallic); internal coatings and linings; mechanical removal of dissolved oxygen; velocity control; and prevention of oxygen entry and galvanic couples. This article reviews the way that these technologies are used in modern water-injection systems (both seawater and produced water) to provide an acceptable service life and high-quality injection water.

  20. Study made of procedures for externally loading and corrosion testing stress corrosion specimens

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.

    1967-01-01

    Study was initiated to determine methods or test specimens for evaluating stress corrosion cracking characteristics of common structural materials. It was found that the methods of externally loading and corrosion testing were reliable in yielding reproducible results for stress corrosion evaluation.

  1. Etude des Abondances de MG et de fe dans la Composante Stellaire des Disques des Galaxies Spirales

    NASA Astrophysics Data System (ADS)

    Beauchamp, Dominique

    Je presente ici une technique d'observation par imagerie des disques stellaires des galaxies spirales. Je tente, a l'aide d'un modele evolutif multiphase, de determiner les abondances de fer et de magnesium dans les disques. Dans ce but, je mesure les indices Mg2 et Fe5270 du systeme de Lick. Ces elements representent un choix judicieux d'indicateurs car ils sont formes par des supernovae de deux types differents ayant des durees de vie differentes. Le rapport d'abondances de ces deux elements est un indicateur du taux de formation des populations stellaires. Je decris, en premier lieu, les observations, la technique de mesure, ainsi que son application. J'analyse ensuite les indices mesures. A partir du modele multiphase, j'explore differents parametres physiques des spirales comme le taux de formation stellaire, l'evolution des abondances, les effets possibles de la presence de la barre, etc.

  2. High temperature electrochemical corrosion rate probes

    SciTech Connect

    Bullard, Sophie J.; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Ziomek-Moroz, M.

    2005-09-01

    Corrosion occurs in the high temperature sections of energy production plants due to a number of factors: ash deposition, coal composition, thermal gradients, and low NOx conditions, among others. Electrochemical corrosion rate (ECR) probes have been shown to operate in high temperature gaseous environments that are similar to those found in fossil fuel combustors. ECR probes are rarely used in energy production plants at the present time, but if they were more fully understood, corrosion could become a process variable at the control of plant operators. Research is being conducted to understand the nature of these probes. Factors being considered are values selected for the Stern-Geary constant, the effect of internal corrosion, and the presence of conductive corrosion scales and ash deposits. The nature of ECR probes will be explored in a number of different atmospheres and with different electrolytes (ash and corrosion product). Corrosion rates measured using an electrochemical multi-technique capabilities instrument will be compared to those measured using the linear polarization resistance (LPR) technique. In future experiments, electrochemical corrosion rates will be compared to penetration corrosion rates determined using optical profilometry measurements.

  3. NOVEL CORROSION SENSOR FOR VISION 21 SYSTEMS

    SciTech Connect

    Heng Ban

    2004-12-01

    Advanced sensor technology is identified as a key component for advanced power systems for future energy plants that would have virtually no environmental impact. This project intends to develop a novel high temperature corrosion sensor and subsequent measurement system for advanced power systems. Fireside corrosion is the metal loss caused by chemical reactions on surfaces exposed to the combustion environment. Such corrosion is the leading mechanism for boiler tube failures and has emerged to be a significant concern for current and future energy plants due to the introduction of technologies targeting emissions reduction, efficiency improvement, or fuel/oxidant flexibility. Corrosion damage can lead to catastrophic equipment failure, explosions, and forced outages. Proper management of corrosion requires real-time indication of corrosion rate. However, short-term, on-line corrosion monitoring systems for fireside corrosion remain a technical challenge to date due to the extremely harsh combustion environment. The overall objective of this proposed project is to develop a technology for on-line corrosion monitoring based on a new concept. This report describes the initial results from the first-year effort of the three-year study that include laboratory development and experiment, and pilot combustor testing.

  4. Classification of corrosion risk zones using GIS

    NASA Astrophysics Data System (ADS)

    Georgiou, Nikolas; Anastasiou, Constantina; Tantele, Elia A.; Votsis, Renos A.; Danezis, Chris

    2016-08-01

    Corrosion of steel reinforcement is the major deterioration factor of the RC infrastructures. Several factors are contributing towards increasing the corrosion risk like the exposure and environmental conditions which are a function of the geographical location of the infrastructure. Information for these conditions and their affected areas can be proved valuable at design stage and/or during maintenance planning. This study aims to relate corrosion risk of RC infrastructures with their geographical location. The corrosion risk is quantified through data from NDT methods and subsequently correlated with its location. Therefore high risk areas with structures prone to corrosion deterioration are identified. The latter is implemented via GIS tools in order to create maps that describe how corrosion risk is related to the location of each structure. Two GIS methods are suggested, the grid system and the use of classified areas. Corrosion data has been collected from labs about various constructions in Cyprus and used in conjunction with GIS tools to provide useful information on corrosion identification. The outcome is a digitized map of the Limassol area which indicates the risks levels associated with corrosion of the steel reinforcement.

  5. Aluminum alloy clad fiber optic corrosion sensor

    NASA Astrophysics Data System (ADS)

    Rutherford, Paul S.; Ikegami, Roy; Shrader, John E.; Sherrer, David; Zabaronick, Noel; Zeakes, Jason S.; Murphy, Kent A.; Claus, Richard O.

    1997-06-01

    Life extension programs for military metallic aircraft are becoming increasingly important as defense budgets shrink and world economies realign themselves to an uncertain future. For existing military weapon systems, metallic corrosion damage costs as estimated $DOL8 billion per year. One approach to reducing this cost is to develop a reliable method to detect and monitor corrosion in hidden metallic structure with the use of corrosion sensors which would give an early indication of corrosion without significant disassembly, thereby reducing maintenance costs. This presentation describes the development, analysis, and testing of a fiber optic corrosion sensor developed jointly with the Virginia Polytechnic Fiber and Electro-Optics Research Center and sponsored by Wright Laboratory Materials Directorate. In the sensor which was researched, the normal cladding is removed in the sensor region, and replaced with aluminum alloy and allowed to corrode on coupons representative of C/KC-135 body structure in an ASTM B117 salt spray chamber and a Boeing developed Crevice Corrosion Cell. In this approach, the optical signal output of the sensor was originally designed to increase as corrosion takes place, however interaction with the corrosion byproducts yielded different results than anticipated. These test results to determine a correlation between the sensor output and the structural degradation due to corrosion are discussed.

  6. Boric Acid Corrosion of Concrete Rebar

    NASA Astrophysics Data System (ADS)

    Pabalan, R. T.; Yang, L.; Chiang, K.–T.

    2013-07-01

    Borated water leakage through spent fuel pools (SFPs) at pressurized water reactors is a concern because it could cause corrosion of reinforcement steel in the concrete structure and compromise the integrity of the structure. Because corrosion rate of carbon steel in concrete in the presence of boric acid is lacking in published literature and available data are equivocal on the effect of boric acid on rebar corrosion, corrosion rate measurements were conducted in this study using several test methods. Rebar corrosion rates were measured in (i) borated water flowing in a simulated concrete crack, (ii) borated water flowing over a concrete surface, (iii) borated water that has reacted with concrete, and (iv) 2,400 ppm boric acid solutions with pH adjusted to a range of 6.0 to 7.7. The corrosion rates were measured using coupled multielectrode array sensor (CMAS) and linear polarization resistance (LPR) probes, both made using carbon steel. The results indicate that rebar corrosion rates are low (~1 μm/yr or less)when the solution pH is ~7.1 or higher. Below pH ~7.1, the corrosion rate increases with decreasing pH and can reach ~100 μm/yr in solutions with pH less than ~6.7. The threshold pH for carbon steel corrosion in borated solution is between 6.8 and 7.3.

  7. Corrosion probe. Innovative technology summary report

    SciTech Connect

    1999-05-01

    Over 253 million liters of high-level waste (HLW) generated from plutonium production is stored in mild steel tanks at the Department of Energy (DOE) Hanford Site. Corrosion monitoring of double-shell storage tanks (DSTs) is currently performed at Hanford using a combination of process knowledge and tank waste sampling and analysis. Available technologies for corrosion monitoring have progressed to a point where it is feasible to monitor and control corrosion by on-line monitoring of the corrosion process and direct addition of corrosion inhibitors. The electrochemical noise (EN) technique deploys EN-based corrosion monitoring probes into storage tanks. This system is specifically designed to measure corrosion rates and detect changes in waste chemistry that trigger the onset of pitting and cracking. These on-line probes can determine whether additional corrosion inhibitor is required and, if so, provide information on an effective end point to the corrosion inhibitor addition procedure. This report describes the technology, its performance, its application, costs, regulatory and policy issues, and lessons learned.

  8. Failure Prevention by Short Time Corrosion Tests

    SciTech Connect

    MICKALONIS, JOHN

    2005-05-01

    Short time corrosion testing of perforated sheets and wire meshes fabricated from Type 304L stainless steel, Alloy 600 and C276 showed that 304L stainless steel perforated sheet should perform well as the material of construction for dissolver baskets. The baskets will be exposed to hot nitric acid solutions and are limited life components. The corrosion rates of the other alloys and of wire meshes were too high for useful extended service. Test results also indicated that corrosion of the dissolver should drop quickly during the dissolutions due to the inhibiting effects of the corrosion products produced by the dissolution processes.

  9. Real-World Water System Lead and Copper Corrosion Control

    EPA Science Inventory

    This presentation provides specific background on lead and copper corrosion control chemistry and strategies, and integrates it with other important distribution system corrosion control objectives. Topics covered include: driving force for corrosion (oxidants); impacts of oxida...

  10. 49 CFR 192.477 - Internal corrosion control: Monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.477 Internal corrosion control: Monitoring. If corrosive gas is being transported,...

  11. Classification of 20 DES Supernova with OzDES

    NASA Astrophysics Data System (ADS)

    Davis, T. M.; Kim, A. G.; Macualay, E.; Lidman, C.; Sharp, R.; Tucker, B. E.; Yuan, F.; Zhang, B.; Lewis, G. F.; Sommer, N. E.; Martini, P.; Mould, J.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Nichol, R.; Papadopoulos, A.; Childress, M.; D'Andrea, C.; Smith, M.; Sullivan, M.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.

    2015-12-01

    We report new spectroscopic classifications by OzDES of supernovae discovered by the Dark Energy Survey (ATEL #4668). The spectra (370-885nm) were obtained with the AAOmega Spectrograph (Saunders et al. 2004, SPIE, 5492, 389) and the 2dF fibre positioner at the Anglo-Australian Telescope (AAT).

  12. Classification of 8 DES Supernova with OzDES

    NASA Astrophysics Data System (ADS)

    King, A.; Moller, A.; Sommer, N. E.; Tucker, B. E.; Childress, M. J.; Lewis, G. F.; Lidman, C.; OâNeill, C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Nichol, R.; Papadopoulos, A.; D'Andrea, C.; Prajs, S.; Smith, M.; Sullivan, M.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.

    2016-09-01

    We report new spectroscopic classifications by OzDES of supernovae discovered by the Dark Energy Survey (ATEL #4668). The spectra (370-885nm) were obtained with the AAOmega Spectrograph (Saunders et al. 2004, SPIE, 5492, 389) and the 2dF fibre positioner at the Anglo-Australian Telescope (AAT).

  13. Classification of 13 DES supernova with OzDES

    NASA Astrophysics Data System (ADS)

    Sommer, N.; Tucker, B. E.; Moller, A.; Zhang, B.; Macualay, E.; Lidman, C.; Gshwend, J.; Martini, P.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Nichol, R.; Papadopoulos, A.; Childress, M.; D'Andrea, C.; Prajs, S.; Smith, M.; Sullivan, M.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.

    2016-09-01

    We report new spectroscopic classifications by OzDES of supernovae discovered by the Dark Energy Survey (ATEL #4668). The spectra (370-885nm) were obtained with the AAOmega Spectrograph (Saunders et al. 2004, SPIE, 5492, 389) and the 2dF fibre positioner at the Anglo-Australian Telescope (AAT).

  14. Classification of 3 DES Supernovae with OzDES

    NASA Astrophysics Data System (ADS)

    Moller, A.; Tucker, B. E.; Yuan, F.; Lewis, G.; Lidman, C.; Macaulay, E.; Nichol, R.; Papadopoulos, A.; Childress, M.; D'Andrea, C.; Smith, M.; Sullivan, M.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.

    2016-02-01

    We report new spectroscopic classifications by OzDES of supernovae discovered by the Dark Energy Survey (ATEL #4668). The spectra (370-885nm) were obtained with the AAOmega Spectrograph (Saunders et al. 2004, SPIE, 5492, 389) and the 2dF fibre positioner at the Anglo-Australian Telescope (AAT).

  15. Classification of 2 DES supernova with OzDES

    NASA Astrophysics Data System (ADS)

    O'Neill, C. R.; Moller, A.; Sommer, N. E.; Tucker, B. E.; Childress, M. J.; Lewis, G. F.; Lidman, C.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; D'Andrea, C.; Gladney, L.; March, M.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Macaulay, E.; Nichol, R.; Prajs, S.; Smith, M.; Sullivan, M.; Maartens, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Gupta, R.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Papadopoulos, A.; Morganson, E.

    2016-10-01

    We report new spectroscopic classifications by OzDES of supernovae discovered by the Dark Energy Survey (ATEL #4668). The spectra (370-885nm) were obtained with the AAOmega Spectrograph (Saunders et al. 2004, SPIE, 5492, 389) and the 2dF fibre positioner at the Anglo-Australian Telescope (AAT).

  16. Electro-codeposition of Ni-SiO2 nanocomposite coatings from deep eutectic solvent with improved corrosion resistance

    NASA Astrophysics Data System (ADS)

    Li, Ruiqian; Hou, Yuanyuan; Liang, Jun

    2016-03-01

    Electro-codeposition of nano-sized SiO2 particles into the metal matrix in aqueous solution is generally difficult. In this paper, the nano-sized SiO2 particles were successfully codeposited in the Ni matrix from a choline chloride (ChCl)/ethylene glycol (EG) based deep eutectic solvent (DES) by pulse electro-codeposition. The effects of nano-sized SiO2 particles on electrochemical behaviour of Ni(II) were investigated. The microstructure, composition and corrosion resistance of pure Ni and Ni-SiO2 nanocomposite coatings were explored. Results showed that the SiO2 nanoparticles exhibited excellent dispersion stability in ChCl:2EG DES without any stabilizing additives and the presence of SiO2 nanoparticles have significant effects on the nucleation mechanism of Ni. The maximum content of SiO2 nanoparticles in composite coatings can achieve 4.69 wt.%, which closes to the level of co-deposition micro-sized SiO2 particles from aqueous solution. The Ni-SiO2 nanocomposite coatings exhibit much better corrosion resistance than pure Ni coating, and the corrosion resistance performance increases with increasing SiO2 content in the composite coatings.

  17. Corrosion `98: 53. annual conference and exposition, proceedings

    SciTech Connect

    1998-12-31

    This conference was divided into the following sections: Corrosion in Gas Treating; Problems and Solutions in Commercial Building Water Systems; Green Corrosion/Scale Inhibitors; Atmospheric Corrosion; AIRPOL Update/98; Rubber Lining--Answers to Many Problems; Interference Problems; Environmental Assisted Cracking: Fundamental Research and Industrial Applications; Corrosion in Nuclear Systems; New Developments in Scale and Deposit Control; Corrosion and Corrosion Protection in the Transportation Industries; What`s All the Noise About--Electrochemical That Is; Refining Industry Corrosion; Corrosion Problems in Military Hardware: Case Histories, Fixes and Lessons Learned; Cathodic Protection Test Methods and Instrumentation for Underground and On-grade Pipelines and Tanks; Recent Developments in Volatile Corrosion Inhibitors; Corrosion in Supercritical Fluids; Microbiologically Influenced Corrosion; Advances in Understanding and Controlling CO{sub 2} Corrosion; Managing Corrosion with Plastics; Material Developments for Use in Exploration and Production Environments; Corrosion in Cold Regions; The Effect of Downsizing and Outsourcing on Cooling System Monitoring and Control Practices; New Developments in Mechanical and Chemical Industrial Cleaning; Mineral Scale Deposit Control in Oilfield Related Operations; Biocides in Cooling Water; Corrosion and Corrosion Control of Reinforced Concrete Structures; Materials Performance for Fossil Energy Conversion Systems; Marine corrosion; Thermal Spray--Coating and Corrosion Control; Flow Effects on Corrosion in Oil and Gas Production; Corrosion Measurement Technologies; Internal Pipeline Monitoring--Corrosion Monitoring, Intelligent Pigging and Leak Detection; Cathodic Protection in Natural Waters; Corrosion in Radioactive Liquid Waste Systems; On-line Hydrogen Permeation Monitoring Equipment and Techniques, State of the Art; Water Reuse and Recovery; Performance of Materials in High Temperature Environments; Advances in Motor

  18. NASA's Corrosion Technology Laboratory at the Kennedy Space Center: Anticipating, Managing, and Preventing Corrosion

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina

    2014-01-01

    Corrosion is the degradation of a material that results from its interaction with the environment. The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the United States. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the 70 tons of highly corrosive hydrochloric acid that were generated by the solid rocket boosters. Numerous failures at the launch pads are caused by corrosion.The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. As a result of fifty years of experience with launch and ground operations in a natural marine environment that is highly corrosive, NASAs Corrosion Technology Laboratory at KSC is a major source of corrosion control expertise in the launch and other environments. Throughout its history, the Laboratory has evolved from what started as an atmospheric exposure facility near NASAs launch pads into a world-wide recognized capability that provides technical innovations and engineering services in all areas of corrosion for NASA and external customers.This presentation will provide a historical overview of the role of NASAs Corrosion Technology in anticipating, managing, and preventing corrosion. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.

  19. Corrosion characteristics of nickel alloys. Citations from the International Aerospace Abstracts data base

    NASA Technical Reports Server (NTRS)

    Zollars, G. F.

    1979-01-01

    This bibliography cites 118 articles from the international literature concerning corrosion characteristics of nickel alloys. Articles dealing with corrosion resistance, corrosion tests, intergranular corrosion, oxidation resistance, and stress corrosion cracking of nickel alloys are included.

  20. SRNL SHELF LIFE STUDIES - SCC STUDIES AT ROOM TEMPERTURE [stress corrosion cracking

    SciTech Connect

    Mickalonis, J.; Duffey, J.

    2014-11-12

    result in an initial relative humidity of ~55% within the small-scale vessels. Pits were found to be associated with cracks and appeared to act as initiators for the cracking. In a vapor-space only exposure, the weld oxide, which results from the TIG closure weld used to fabricate the teardrop coupon, was also shown to be more susceptible to pitting corrosion than a surface free from weld oxide. This result has important implications for the closure weld of the 3013 inner can since the weld oxide on the can internal surface cannot be removed. The results from the Phase II, Series 2 tests further demonstrated the significance of forming a solution with a critical chloride concentration for corrosion to proceed. 304L teardrop coupons were found to corrode only by pitting with a similar oxide/salt mixture as used in Series 1 testing but with a lower water loading of 0.2 wt%, which resulted in an initial relative humidity of 35-38%. These tests ran twice as long as those for Series 1 testing. The exposure condition was also found to impact the corrosion with salt-exposed surfaces showing lower corrosion resistance. Additional analyses of the Series 2 coupons are recommended especially for determining if cracks emanate from the bottom of pits. Data generated under the 2009 3013 corrosion test plan, as was presented here, increased the understanding of the corrosion process within a sealed 3013 container. Along with the corrosion data from destructive evaluations of 3013 containers, the inner can closure weld region (ICCWR) has been identified as the most vulnerable area of the inner can where corrosion may lead to corrosive species leaking to the interior surface of the outer container, thereby jeopardizing the integrity of the 3013 container. A new corrosion plan has been designed that will characterize the corrosion at the ICCWR of 3013 DEs as well as parameters affecting this corrosion.

  1. Environmental Friendly Coatings and Corrosion Prevention For Flight Hardware Project

    NASA Technical Reports Server (NTRS)

    Calle, Luz

    2014-01-01

    Identify, test and develop qualification criteria for environmentally friendly corrosion protective coatings and corrosion preventative compounds (CPC's) for flight hardware an ground support equipment.

  2. Novel Corrosion Sensor for Vision 21 Systems

    SciTech Connect

    Heng Ban; Bharat Soni

    2007-03-31

    Advanced sensor technology is identified as a key component for advanced power systems for future energy plants that would have virtually no environmental impact. This project intends to develop a novel high temperature corrosion sensor and subsequent measurement system for advanced power systems. Fireside corrosion is the leading mechanism for boiler tube failures and has emerged to be a significant concern for current and future energy plants due to the introduction of technologies targeting emissions reduction, efficiency improvement, or fuel/oxidant flexibility. Corrosion damage can lead to catastrophic equipment failure, explosions, and forced outages. Proper management of corrosion requires real-time indication of corrosion rate. However, short-term, on-line corrosion monitoring systems for fireside corrosion remain a technical challenge to date due to the extremely harsh combustion environment. The overall goal of this project is to develop a technology for on-line fireside corrosion monitoring. This objective is achieved by the laboratory development of sensors and instrumentation, testing them in a laboratory muffle furnace, and eventually testing the system in a coal-fired furnace. This project successfully developed two types of sensors and measurement systems, and successful tested them in a muffle furnace in the laboratory. The capacitance sensor had a high fabrication cost and might be more appropriate in other applications. The low-cost resistance sensor was tested in a power plant burning eastern bituminous coals. The results show that the fireside corrosion measurement system can be used to determine the corrosion rate at waterwall and superheater locations. Electron microscope analysis of the corroded sensor surface provided detailed picture of the corrosion process.

  3. Metal levels in corrosion of spinal implants

    PubMed Central

    Beguiristain, Jose; Duart, Julio

    2007-01-01

    Corrosion affects spinal instrumentations and may cause local and systemic complications. Diagnosis of corrosion is difficult, and nowadays it is performed almost exclusively by the examination of retrieved instrumentations. We conducted this study to determine whether it is possible to detect corrosion by measuring metal levels on patients with posterior instrumented spinal fusion. Eleven asymptomatic patients, with radiological signs of corrosion of their stainless steel spinal instrumentations, were studied by performing determinations of nickel and chromium in serum and urine. Those levels were compared with the levels of 22 patients with the same kind of instrumentation but without evidence of corrosion and to a control group of 22 volunteers without any metallic implants. Statistical analysis of our results revealed that the patients with spinal implants without radiological signs of corrosion have increased levels of chromium in serum and urine (P < 0.001) compared to volunteers without implants. Corrosion significantly raised metal levels, including nickel and chromium in serum and urine when compared to patients with no radiological signs of corrosion and to volunteers without metallic implants (P < 0.001). Metal levels measured in serum have high sensibility and specificity (area under the ROC curve of 0.981). By combining the levels of nickel and chromium in serum we were able to identify all the cases of corrosion in our series of patients. The results of our study confirm that metal levels in serum and urine are useful in the diagnosis of corrosion of spinal implants and may be helpful in defining the role of corrosion in recently described clinical entities such as late operative site pain or late infection of spinal implants. PMID:17256156

  4. Corrosivity of paper mill effluent and corrosion performance of stainless steel.

    PubMed

    Ram, Chhotu; Sharma, Chhaya; Singh, A K

    2015-01-01

    Present study relates to the corrosivity of paper mill effluent and corrosion performance of stainless steel (SS) as a construction material for the effluent treatment plant (ETP). Accordingly, immersion test and electrochemical polarization tests were performed on SS 304 L, 316 L and duplex 2205 in paper mill effluent and synthetic effluent. This paper presents electrochemical polarization measurements, performed for the first time to the best of the authors' information, to see the influence of chlorophenols on the corrosivity of effluents. The corrosivity of the effluent was observed to increase with the decrease in pH and increase in Cl- content while the addition of SO4- tends to inhibit corrosion. Mill effluent was found to be more corrosive as compared to synthetic effluent and has been attributed to the presence of various chlorophenols. Corrosion performance of SS was observed to govern by the presence of Cr, Mo and N contents. PMID:25188842

  5. Corrosivity of paper mill effluent and corrosion performance of stainless steel.

    PubMed

    Ram, Chhotu; Sharma, Chhaya; Singh, A K

    2015-01-01

    Present study relates to the corrosivity of paper mill effluent and corrosion performance of stainless steel (SS) as a construction material for the effluent treatment plant (ETP). Accordingly, immersion test and electrochemical polarization tests were performed on SS 304 L, 316 L and duplex 2205 in paper mill effluent and synthetic effluent. This paper presents electrochemical polarization measurements, performed for the first time to the best of the authors' information, to see the influence of chlorophenols on the corrosivity of effluents. The corrosivity of the effluent was observed to increase with the decrease in pH and increase in Cl- content while the addition of SO4- tends to inhibit corrosion. Mill effluent was found to be more corrosive as compared to synthetic effluent and has been attributed to the presence of various chlorophenols. Corrosion performance of SS was observed to govern by the presence of Cr, Mo and N contents.

  6. L'astronomie des Anciens

    NASA Astrophysics Data System (ADS)

    Nazé, Yaël

    2009-04-01

    Quelle que soit la civilisation à laquelle il appartient, l'être humain cherche dans le ciel des réponses aux questions qu'il se pose sur son origine, son avenir et sa finalité. Le premier mérite de ce livre est de nous rappeler que l'astronomie a commencé ainsi à travers les mythes célestes imaginés par les Anciens pour expliquer l'ordre du monde et la place qu'ils y occupaient. Mais les savoirs astronomiques passés étaient loin d'être négligeables et certainement pas limités aux seuls travaux des Grecs : c'est ce que l'auteur montre à travers une passionnante enquête, de Stonehenge à Gizeh en passant par Pékin et Mexico, fondée sur l'étude des monuments anciens et des sources écrites encore accessibles. Les tablettes mésopotamiennes, les annales chinoises, les chroniques médiévales, etc. sont en outre d'une singulière utilité pour les astronomes modernes : comment sinon remonter aux variations de la durée du jour au cours des siècles, ou percer la nature de l'explosion qui a frappé tant d'observateurs en 1054 ? Ce livre offre un voyage magnifiquement illustré à travers les âges, entre astronomie et archéologie.

  7. General Corrosion and Localized Corrosion of the Drip Shield

    SciTech Connect

    F. Hua; K. Mon

    2003-06-24

    The recommended waste package (WP) design is described in BSC (2001a). The design includes a double-wall WP underneath a protective drip shield (DS) (BSC 2003a). The purpose of the process-level models developed in this report is to model dry oxidation (DOX), general corrosion (GC) and localized corrosion (LC) of the DS plate material, which is made of Ti Grade 7. The DS design also includes structural supports fabricated from Ti Grade 24. Degradation of Ti Grade 24 is not considered in this report. The DS provides protection for the waste package outer barrier (WPOB) both as a barrier to seepage water contact and a physical barrier to potential rockfall. This Model Report (MR) serves as a feed to the Integrated Waste Package Degradation Model (IWPD) analyses, and was developed in accordance with the Technical Work Plan (TWP) (BSC 2002a). The models contained in this report serve as a basis to determine whether or not the performance requirements for the DS can be met.

  8. CORROSION RESISTANT JACKETED METAL BODY

    DOEpatents

    Brugmann, E.W.

    1958-08-26

    S>Metal jacketed metallic bodies of the type used as feel elements fer nuclear reactors are presented. The fuel element is comprised of a plurality of jacketed cylindrical bodies joined in end to end abutting relationship. The abutting ends of the internal fissionable bodies are provided with a mating screw and thread means for joining the two together. The jacket material is of a corrosion resistant metal and overlaps the abutting ends of the internal bodies, thereby effectively sealing these bodies from contact with exteral reactive gases and liquids.

  9. A corrosive resistant heat exchanger

    DOEpatents

    Richlen, S.L.

    1987-08-10

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  10. Electromagnetic Metrology on Concrete and Corrosion.

    PubMed

    Kim, Sung; Surek, Jack; Baker-Jarvis, James

    2011-01-01

    To augment current methods for the evaluation of reinforcing bar (rebar) corrosion within concrete, we are exploring unique features in the dielectric and magnetic spectra of pure iron oxides and corrosion samples. Any signature needs to be both prominent and consistent in order to identify corrosion within concrete bridge deck or other structures. In order to measure the permittivity and propagation loss through concrete as a function of temperature and humidity, we cut and carefully fitted samples from residential concrete into three different waveguides. We also poured and cured a mortar sample within a waveguide that was later measured after curing 30 days. These measurements were performed from 45 MHz to 12 GHz. Our concrete measurements showed that the coarse granite aggregate that occupied about half the sample volume reduced the electromagnetic propagation loss in comparison to mortar. We also packed ground corrosion samples and commercially available iron-oxide powders into a transmission-line waveguide and found that magnetite and corrosion sample spectra are similar, with a feature between 0.5 GHz and 2 GHz that may prove useful for quantifying corrosion. We also performed reflection (S 11) measurements at various corrosion surfaces and in loose powders from 45 MHz to 50 GHz. These results are a first step towards quantifying rebar corrosion in concrete.

  11. Drywell corrosion stopped at Oyster Creek

    SciTech Connect

    Lipford, B.L. ); Flynn, J.C.

    1993-11-01

    This article describes the detection of corrosion on the drywell containment vessel of Oyster Creek Nuclear Plant and the application of a protective coating to repair the drywell. The topics of the article include drywell design features, identification of the problem, initial action, drywell corrosion, failure of cathodic protection, long-term repair, and repair results.

  12. Corrosion problems with aqueous coolants, final report

    SciTech Connect

    Diegle, R B; Beavers, J A; Clifford, J E

    1980-04-11

    The results of a one year program to characterize corrosion of solar collector alloys in aqueous heat-transfer media are summarized. The program involved a literature review and a laboratory investigation of corrosion in uninhibited solutions. It consisted of three separate tasks, as follows: review of the state-of-the-art of solar collector corrosion processes; study of corrosion in multimetallic systems; and determination of interaction between different waters and chemical antifreeze additives. Task 1 involved a comprehensive review of published literature concerning corrosion under solar collector operating conditions. The reivew also incorporated data from related technologies, specifically, from research performed on automotive cooling systems, cooling towers, and heat exchangers. Task 2 consisted of determining the corrosion behavior of candidate alloys of construction for solar collectors in different types of aqueous coolants containing various concentrations of corrosive ionic species. Task 3 involved measuring the degradation rates of glycol-based heat-transfer media, and also evaluating the effects of degradation on the corrosion behavior of metallic collector materials.

  13. Pig performance characteristics in corrosion assessment

    SciTech Connect

    Vieth, P.; Rust, S.W.; Johnson, E.; Cox, M.

    1996-09-01

    Alyeska Pipeline Service Company (APSC) operates the Trans Alaska Pipeline System (TAPS) for transporting crude oil 800 miles from Prudhoe Bay to Valdez. Approximately 420 miles of the pipeline is above ground and 380 miles is below ground. In-line inspection results have indicated external corrosion on portions of the below ground pipe. APSC uses periodic in-line inspections to identify, monitor, and remediate the corrosion. Results of these surveys are used to determine the presence and magnitude of corrosion by sensing a signal (either MFL or UT) produced by the metal loss anomalies. An ideal tool would be able to: detect all corrosion regardless of size, assess the actual corrosion with no measurement errors, and produce no false corrosion indications. Real in-line inspection tools exhibit varying capabilities to detect, measure, and assess corrosion on an operating pipeline. It is essential for the pipeline operator to known how reliable each tool is in order to respond in a manner which prevents a failure from excessive metal loss. Rigorous analysis of three of Alyeska`s more recent inline surveys have provided the essential performance measures to facilitate a satisfactory response plan. These performance measures were evaluated by comparing measurements of the actual corrosion (obtained from 314 excavations) to results provided by three pig runs selected for presentation in this paper.

  14. Computer-Aided Corrosion Program Management

    NASA Technical Reports Server (NTRS)

    MacDowell, Louis

    2010-01-01

    This viewgraph presentation reviews Computer-Aided Corrosion Program Management at John F. Kennedy Space Center. The contents include: 1) Corrosion at the Kennedy Space Center (KSC); 2) Requirements and Objectives; 3) Program Description, Background and History; 4) Approach and Implementation; 5) Challenges; 6) Lessons Learned; 7) Successes and Benefits; and 8) Summary and Conclusions.

  15. Corrosion of stainless steel during acetate production

    SciTech Connect

    Qi, J.S.; Lester, G.C.

    1996-07-01

    Corrosion of types 304, 304L, 316, and 316L stainless steel (SS) during the esterification of acetic acid and alcohol or glycol ether was investigated. The catalyst for this reaction, sulfuric acid or para-toluene sulfonic acid (PTSA), was shown to cause more corrosion on reactor equipment than CH{sub 3}COOH under the process conditions commonly practiced in industry. The corrosive action of the catalyst occurred only in the presence of water. Thus, for the batch processes, corrosion occurred mostly during the initial stage of esterification, where water produced by the reaction created an aqueous environment. After water was distilled off, the corrosion rate declined to a negligible value. The corrosion inhibitor copper sulfate, often used in industrial acetate processes, was found to work well for a low-temperature process (< 95 C) such as in production of butyl acetate, but it accelerated corrosion in the glycol ether acetate processes where temperatures were > 108 C. Process conditions that imparted low corrosion rates were determined.

  16. 7 CFR 2902.44 - Corrosion preventatives.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Corrosion preventatives. 2902.44 Section 2902.44 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 2902.44 Corrosion...

  17. A Course in Electrochemical and Corrosion Engineering.

    ERIC Educational Resources Information Center

    Van Zee, John

    1985-01-01

    Describes a course designed to show similarities between electrochemistry and corrosion engineering and to show graduate students that electrochemical and corrosion engineering can be accomplished by extending their knowledge of chemical engineering models. Includes course outline, textbooks selected, and teaching methods used. (JN)

  18. Study of stress corrosion in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Brummer, S. B.

    1967-01-01

    Mechanism of the stress corrosion cracking of high-strength aluminum alloys was investigated using electrochemical, mechanical, and electron microscopic techniques. The feasibility of detecting stress corrosion damage in fabricated aluminum alloy parts by nondestructive testing was investigated using ultrasonic surface waves and eddy currents.

  19. High-temperature corrosion in halogen environments

    SciTech Connect

    McNallan, M. )

    1994-09-01

    Halogen contaminants, particularly chlorine and fluorine, cause accelerated corrosion in such high-temperature systems as waste incinerators and waste heat recuperators on metallurgical furnaces. The mechanisms by which these phenomena occur are reviewed and discussed with the goal of identifying appropriate corrosion control strategies for materials that operate in these environments.

  20. Scale and corrosion inhibition by thermal polyaspartates

    SciTech Connect

    Bains, D.I.; Fan, G.; Fan, J.; Ross, R.J.

    1999-11-01

    Organic polymers have found wide spread use as inhibitors for the prevention of mineral scales in heat transfer equipment. Recently a biodegradable organic polymer has been developed which provides both scale and corrosion control. The development of the polymeric inhibitor and laboratory evaluations of scale and corrosion inhibition is discussed together with its potential application in open recirculating cooling systems.

  1. Study of corrosion of 1100 aluminum

    NASA Technical Reports Server (NTRS)

    Draley, J. E.; Loess, R. E.; Mori, S.

    1967-01-01

    Corrosion of 1100 aluminum in oxygen-saturated water at 70 degrees C under experimental conditions was studied, emphasizing effects of exposure interruption, the number of specimens, and the refreshment rate. A logarithmic equation was derived to express the corrosion rate.

  2. Corrosion behavior of mesoporous transition metal nitrides

    SciTech Connect

    Yang, Minghui; Allen, Amy J.; Nguyen, Minh T.; Ralston, Walter T.; MacLeod, Michelle J.; DiSalvo, Francis J.

    2013-09-15

    Transition metal nitrides (TMN) have many desirable characteristics such as high hardness and good thermal stability under reducing conditions. This work reports an initial survey of the chemical stability of mesoporous TMNs (TM=Nb, V, Cr and Ti) in water at 80 °C at neutral, acidic and alkaline pH. The mesoporous TMNs had specific surface areas of 25–60 m{sup 2}/g with average pore sizes ranging from 10 to 50 nm. The high surface areas of these materials enhance the rate of corrosion per unit mass over that of a bulk material, making detection of corrosion much easier. The products were characterized by Rietveld refinement of powder X-ray diffraction (PXRD) patterns and by scanning electron microscopy (SEM). Several nitrides have corrosion rates that are, within error, not distinguishable from zero (±1 Å/day). Of the nitrides examined, CrN appears to be the most corrosion resistant under acidic conditions. None of the nitrides studied are corrosion resistant under alkaline conditions. - Graphical abstract: Corrosion behavior of mesoporous transition metal nitrides (TM=Nb, V, Cr and Ti) in acidic and alkaline solutions at 80 °C for 2 weeks. Display Omitted - highlights: • Corrosion rates of mesoporous transition metal nitrides in aqueous solution is reported. • The mesoporous TMNs had surface areas of 25–60 m{sup 2}/g. • CrN is the most corrosion resistant under the conditions studied.

  3. NON-UNIFORM COPPER CORROSION: RESEARCH UPDATE

    EPA Science Inventory

    Pinhole leaks due to copper pitting corrosion are a major cause of home plumbing failure. This study documents cases of copper pitting corrosion found in homes supplied by Butler County Environmental Services in Ohio. SEM. XRD, and optical microscopy were used to document pit s...

  4. Microbial iron respiration: impacts on corrosion processes.

    PubMed

    Lee, A K; Newman, D K

    2003-08-01

    In this review, we focus on how biofilms comprising iron-respiring bacteria influence steel corrosion. Specifically, we discuss how biofilm growth can affect the chemistry of the environment around the steel at different stages of biofilm development, under static or dynamic fluid regimes. We suggest that a mechanistic understanding of the role of biofilm metabolic activity may facilitate corrosion control.

  5. Biobased polymers for corrosion protection of metals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anticorrosive biobased polymers were developed in our lab. We isolated an exopolysaccharide produced by a microbe that, when coated on metal substrates, exhibited unique corrosion inhibition. Corrosion is a worldwide problem and impacts the economy, jeopardizes human health and safety, and impedes t...

  6. Electromagnetic Metrology on Concrete and Corrosion*

    PubMed Central

    Kim, Sung; Surek, Jack; Baker-Jarvis, James

    2011-01-01

    To augment current methods for the evaluation of reinforcing bar (rebar) corrosion within concrete, we are exploring unique features in the dielectric and magnetic spectra of pure iron oxides and corrosion samples. Any signature needs to be both prominent and consistent in order to identify corrosion within concrete bridge deck or other structures. In order to measure the permittivity and propagation loss through concrete as a function of temperature and humidity, we cut and carefully fitted samples from residential concrete into three different waveguides. We also poured and cured a mortar sample within a waveguide that was later measured after curing 30 days. These measurements were performed from 45 MHz to 12 GHz. Our concrete measurements showed that the coarse granite aggregate that occupied about half the sample volume reduced the electromagnetic propagation loss in comparison to mortar. We also packed ground corrosion samples and commercially available iron-oxide powders into a transmission-line waveguide and found that magnetite and corrosion sample spectra are similar, with a feature between 0.5 GHz and 2 GHz that may prove useful for quantifying corrosion. We also performed reflection (S11) measurements at various corrosion surfaces and in loose powders from 45 MHz to 50 GHz. These results are a first step towards quantifying rebar corrosion in concrete. PMID:26989590

  7. Microbiologically influenced corrosion in wastewater treatment plants

    SciTech Connect

    Soebbing, J.B.; Yolo, R.A.

    1996-09-01

    Microbiologically influenced corrosion (MIC) activity in wastewater treatment plans is discussed. Three case histories are presented showing throughwall pitting from MIC in recycle activated sludge process piping systems. Field and laboratory investigation activities are reported. Alternatives are reviewed for corrosion prevention and mitigation.

  8. The Corrosion and Corrosion Fatigue Behavior of Nickel Based Alloy Weld Overlay and Coextruded Claddings

    NASA Astrophysics Data System (ADS)

    Stockdale, Andrew

    The use of low NOx boilers in coal fired power plants has resulted in sulfidizing corrosive conditions within the boilers and a reduction in the service lifetime of the waterwall tubes. As a solution to this problem, Ni-based weld overlays are used to provide the necessary corrosion resistance however; they are susceptible to corrosion fatigue. There are several metallurgical factors which give rise to corrosion fatigue that are associated with the localized melting and solidification of the weld overlay process. Coextruded coatings offer the potential for improved corrosion fatigue resistance since coextrusion is a solid state coating process. The corrosion and corrosion fatigue behavior of alloy 622 weld overlays and coextruded claddings was investigated using a Gleeble thermo-mechanical simulator retrofitted with a retort. The experiments were conducted at a constant temperature of 600°C using a simulated combustion gas of N2-10%CO-5%CO2-0.12%H 2S. An alternating stress profile was used with a minimum tensile stress of 0 MPa and a maximum tensile stress of 300 MPa (ten minute fatigue cycles). The results have demonstrated that the Gleeble can be used to successfully simulate the known corrosion fatigue cracking mechanism of Ni-based weld overlays in service. Multilayer corrosion scales developed on each of the claddings that consisted of inner and outer corrosion layers. The scales formed by the outward diffusion of cations and the inward diffusion of sulfur and oxygen anions. The corrosion fatigue behavior was influenced by the surface finish and the crack interactions. The initiation of a large number of corrosion fatigue cracks was not necessarily detrimental to the corrosion fatigue resistance. Finally, the as-received coextruded cladding exhibited the best corrosion fatigue resistance.

  9. Corrosion behavior of 8090 Al-Li alloy

    SciTech Connect

    Hu, Z.Q.; Zhang, Y.; Liu, Y.L. . Inst. of Metal Research); Zhu, Z.Y. . Inst. of Corrosion and Protection of Metals)

    1993-06-01

    An evaluation was conducted of the corrosion behavior of 8090 aluminum-lithium (Al-Li) alloy (UNS A98090), when aged under various conditions and subjected to corrosion in a solution of 3.5% NaCl + 1% H[sub 2]O[sub 2]. Susceptibility to pitting, intergranular corrosion, and exfoliation corrosion was shown to be influenced by heat treatment, which reduced from natural aging, through overaging to peak aging, Materials with peak aging showed low corrosion resistance. The decreased corrosion resistance corresponded to decreased corrosion potential of the alloy. Insoluble constituents were susceptible to corrosion. The corrosion extended along grain boundaries. Al-Li alloys showed mismatched tensile strength and stress corrosion resistance. The growth rate of stress corrosion cracks was large in the peak-aged state. The growth rate was strengthened by overaging, but tensile strength was reduced. That problem was solved by retrogression and reaging processing.

  10. Launch Pad Coatings for Smart Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Bucherl, Cori N.; Li, Wenyan; Buhrow, Jerry W.; Curran, Jerome P.; Whitten, Mary C.

    2010-01-01

    Corrosion is the degradation of a material as a result of its interaction with the environment. The environment at the KSC launch pads has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the US. The 70 tons of highly corrosive hydrochloric acid that are generated by the solid rocket boosters during a launch exacerbate the corrosiveness of the environment at the pads. Numerous failures at the pads are caused by the pitting of stainless steels, rebar corrosion, and the degradation of concrete. Corrosion control of launch pad structures relies on the use of coatings selected from the qualified products list (QPL) of the NASA Standard 5008A for Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment. This standard was developed to establish uniform engineering practices and methods and to ensure the inclusion of essential criteria in the coating of ground support equipment (GSE) and facilities used by or for NASA. This standard is applicable to GSE and facilities that support space vehicle or payload programs or projects and to critical facilities at all NASA locations worldwide. Environmental regulation changes have dramatically reduced the production, handling, use, and availability of conventional protective coatings for application to KSC launch structures and ground support equipment. Current attrition rate of qualified KSC coatings will drastically limit the number of commercial off the shelf (COTS) products available for the Constellation Program (CxP) ground operations (GO). CxP GO identified corrosion detection and control technologies as a critical, initial capability technology need for ground processing of Ares I and Ares V to meet Constellation Architecture Requirements Document (CARD) CxP 70000 operability requirements for reduced ground processing complexity, streamlined integrated testing, and operations phase affordability

  11. Laser-controllable coatings for corrosion protection.

    PubMed

    Skorb, Ekaterina V; Skirtach, Andre G; Sviridov, Dmitry V; Shchukin, Dmitry G; Möhwald, Helmuth

    2009-07-28

    We introduce a novel and versatile approach to the corrosion protection by use of "smart" laser-controllable coating. The main advantage of the proposed technique is that one could terminate the corrosion process by very intensive healing after an appearance of corrosion centers using local laser irradiation. It is also shown that by applying a polyelectrolyte shell with noble metal particles over the mesoporous titania and silica via layer-by-layer assembly it is possible to fabricate micro- and nanoscaled reservoirs, which, being incorporated into the zirconia-organosilica matrix, are responsible for the ability of laser-driven release of the loaded materials (e.g., corrosion inhibitor). Furthermore, the resultant films are highly adhesive and could be easily deposited onto different metallic substrates. Laser-mediated remote release of incorporated corrosion inhibitor (benzotriazole) from engineered mesoporous containers with silver nanoparticles in the container shell is observed in real time on single and multicontainer levels.

  12. Combustion system processes leading to corrosive deposits

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Rosner, D. E.

    1981-01-01

    Degradation of turbine engine hot gas path components by high temperature corrosion can usually be associated with deposits even though other factors may also play a significant role. The origins of the corrosive deposits are traceable to chemical reactions which take place during the combustion process. In the case of hot corrosion/sulfidation, sodium sulfate was established as the deposited corrosive agent even when none of this salt enters the engine directly. The sodium sulfate is formed during the combustion and deposition processes from compounds of sulfur contained in the fuel as low level impurities and sodium compounds, such as sodium chloride, ingested with intake air. In other turbine and power generation situations, corrosive and/or fouling deposits can result from such metals as potassium, iron, calcium, vanadium, magnesium, and silicon.

  13. Passive Corrosion Behavior of Alloy 22

    SciTech Connect

    Rebak, R B; Payer, J H

    2006-01-10

    Alloy 22 (N06022) was designed to stand the most aggressive industrial applications, including both reducing and oxidizing acids. Even in the most aggressive environments, if the temperature is lower than 150 F (66 C) Alloy 22 would remain in the passive state having particularly low corrosion rates. In multi-ionic solutions that may simulate the behavior of concentrated ground water, even at near boiling temperatures, the corrosion rate of Alloy 22 is only a few nanometers per year because the alloy is in the complete passive state. The corrosion rate of passive Alloy 22 decreases as the time increases. Immersion corrosion testing also show that the newer generation of Ni-Cr-Mo alloys may offer a better corrosion resistance than Alloy 22 only in some highly aggressive conditions such as in hot acids.

  14. Passive Corrosion Behavior of Alloy 22

    SciTech Connect

    R.B. Rebak; J.H. Payer

    2006-01-20

    Alloy 22 (NO6022) was designed to stand the most aggressive industrial applications, including both reducing and oxidizing acids. Even in the most aggressive environments, if the temperature is lower than 150 F (66 C) Alloy 22 would remain in the passive state having particularly low corrosion rates. In multi-ionic solutions that may simulate the behavior of concentrated ground water, even at near boiling temperatures, the corrosion rate of Alloy 22 is only a few nano-meters per year because the alloy is in the complete passive state. The corrosion rate of passive Alloy 22 decreases as the time increases. Immersion corrosion testing also show that the newer generation of Ni-Cr-Mo alloys may offer a better corrosion resistance than Alloy 22 only in some highly aggressive conditions such as in hot acids.

  15. Stifling of Crevice Corrosion in Alloy 22

    SciTech Connect

    Mon, K G; Gordon, G M; Rebak, R B

    2005-06-08

    Artificially creviced Alloy 22 (N06022) specimens may be susceptible to crevice corrosion in presence of hot chloride containing solutions. The presence of oxyanions in the electrolyte, especially nitrate, may inhibit the nucleation and growth of crevice corrosion. Constant potential tests were performed using tightly creviced specimens of Alloy 22. It was found that crevice corrosion may initiate when a constant potential above the crevice repassivation potential is applied. It was found that as the crevice corrosion nucleated, the current initially increased but later decreased. The net measured current can be converted into penetration following a power law fit of the experimental data. The average power law coefficient ''n'' was found to be 0.439, suggesting that even under constant applied potential crevice corrosion penetration is diffusion controlled.

  16. STIFLING OF CREVICE CORROSION IN ALLOY 22

    SciTech Connect

    K.G. Mon; G.M. Gordon; R.B. Rebak

    2005-07-01

    Artificially creviced Alloy 22 (N06022) specimens may be susceptible to crevice corrosion in presence of hot chloride containing solutions. The presence of oxyanions in the electrolyte, especially nitrate, may inhibit the nucleation and growth of crevice corrosion. Constant potential tests were performed using tightly creviced specimens of Alloy 22. It was found that crevice corrosion may initiate when a constant potential above the crevice repassivation potential is applied. It was found that as the crevice corrosion nucleated, the current initially increased but later decreased. The net measured current can be converted into penetration following a power law fit of the experimental data. The average power law coefficient ''n'' was found to be 0.439, suggesting that even under constant applied potential, crevice corrosion penetration is diffusion controlled.

  17. Method for monitoring environmental and corrosion

    DOEpatents

    Glass, R.S.; Clarke, W.L. Jr.; Ciarlo, D.R.

    1995-08-01

    A corrosion sensor array is described incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis. 7 figs.

  18. Method for monitoring environmental and corrosion

    DOEpatents

    Glass, Robert S.; Clarke, Jr., Willis L.; Ciarlo, Dino R.

    1995-01-01

    A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

  19. Microencapsulation Technologies for Corrosion Protective Coating Applications

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Buhrow, Jerry; Jolley, Scott; Calle, Luz; Pearman, Benjamin; Zhang, Xuejun

    2015-01-01

    Microencapsulation technologies for functional smart Coatings for autonomous corrosion control have been a research area of strong emphasis during the last decade. This work concerns the development of pH sensitive micro-containers (microparticles and microcapsules) for autonomous corrosion control. This paper presents an overview of the state-of-the-art in the field of microencapsulation for corrosion control applications, as well as the technical details of the pH sensitive microcontainer approach, such as selection criteria for corrosion indicators and corrosion inhibitors; the development and optimization of encapsulation methods; function evaluation before and after incorporation of the microcontainers into coatings; and further optimization to improve coating compatibility and performance.

  20. Techniques for assessment of soil corrosivity

    SciTech Connect

    Durr, C.L.; Beavers, J.A.

    1998-12-31

    Techniques for the assessment of soil corrosivity were evaluated in conjunction with a program for the National Cooperative Highway Research Program on corrosion of steel pilings. The work consisted of a state-of-the-art survey of the literature, field corrosion monitoring, laboratory testing of soils, and the preparation of a recommended practice. The practice will provide guidance to state DOTS in the assessment of the corrosivity of field sites where underground structures have been, or will be, installed. This paper summarizes results of the state-of-the-art survey, the recommended practice, and application of the practice to several existing field sites. Results of the research indicate that a relatively small number of variables are required to describe the corrosivity of a field site. These variables include soil resistivity, pH, soil particle size and the position of the structure with respect to the water table.

  1. Corrosion in coal-fired boilers

    SciTech Connect

    Vausher, A.L.

    1982-01-01

    The corrosive effect of the flue gas and the fly ash from burning coal on combustion and pollution control equipment has led to extensive research efforts aimed at solving this problem. A wide variety of chemical additives are offered by suppliers to perform corrosion reduction functions when added to the solid or liquid fuel. Protection of equipment by the use of corrosion resistant coatings and improved designs to prevent or reduce slag formation are also well known corrosion reduction techniques. However, the problem facing management is to evaluate the many different alternatives and to define the most effective one for their particular facility. Information gained from previous corrosion reduction attempts, and knowledge of factors which increase the SO/sub 3//SO/sub 2/ ratio in the flue gas have resulted in the investigation of methods of controlling the dew point and therefore, reducing the condensation of sulfuric acid. Various methods of avoiding the formation of acid are being evaluated.

  2. Corrosion in coal-fired boilers

    SciTech Connect

    Vausher, A.L.

    1982-01-01

    The corrosive effect of the flue gas and the fly ash from burning coal on combustion and pollution control equipment has led to extensive research efforts aimed at solving this problem. A wide variety of chemical additives are offered by suppliers to perform corrosion reduction functions when added to the solid or liquid fuel. Protection of equipment by the use of corrosion resistant coatings and improved designs to prevent or reduce slag formation are also well known corrosion reduction techniques. However, the problem facing management is to evaluated the many different alternatives and to define the most effective one for their particular facility. Information gained from previous corrosion reduction attempts, and knowledge of factors which increase the SO/sub 3//SO/sub 2/ ratio in the flue gas have resulted in the investigation of methods of controlling the dew point and therefore, reducing the condensation of sulfuric acid. Various methods of avoiding the formation of acid are being evaluated.

  3. Mechanically assisted taper corrosion in modular TKA.

    PubMed

    Arnholt, Christina M; MacDonald, Daniel W; Tohfafarosh, Mariya; Gilbert, Jeremy L; Rimnac, Clare M; Kurtz, Steven M; Klein, Gregg; Mont, Michael A; Parvizi, Javad; Cates, Harold E; Lee, Gwo-Chin; Malkani, Arthur; Kraay, Mattheuw

    2014-09-01

    The purpose of this study was to characterize the prevalence of taper damage in modular TKA components. One hundred ninety-eight modular components were revised after 3.9±4.2 years of implantation. Modular components were evaluated for fretting corrosion using a semi-quantitative 4-point scoring system. Design features and patient information were assessed as predictors of fretting corrosion damage. Mild-to-severe fretting corrosion (score ≥2) was observed in 94/101 tapers on the modular femoral components and 90/97 tapers on the modular tibial components. Mixed alloy pairs (p=0.03), taper design (p<0.001), and component type (p=0.02) were associated with taper corrosion. The results from this study supported the hypothesis that there is taper corrosion in TKA. However the clinical implications remain unclear.

  4. Modeling of marine corrosion of steel specimens

    SciTech Connect

    Melchers, R.E.

    1997-12-31

    Phenomenological modeling of the long term general corrosion of mild and low alloy steel specimens under marine conditions is considered, using weight loss as a function of time. A conceptual model for immersion corrosion, tidal corrosion and atmospheric corrosion under marine conditions is proposed. The model uses accepted theories for short term surface corrosion and employs modern understanding of the action of bacterial colonization of the surfaces of specimens, including the development of anaerobic conditions. Kinetic, diffusion, nutrient and anaerobic components of the model are identified and mathematical descriptions given. The model is compared to some data available in the literature. Some observations are made about data requirements for further development of models of the type proposed.

  5. Improve corrosion control in refining processes

    SciTech Connect

    Kane, R.D.; Cayard, M.S.

    1995-11-01

    New guidelines show how to control corrosion and environmental cracking of process equipment when processing feedstocks containing sulfur and/or naphthenic acids. To be cost competitive refiners must be able to process crudes of opportunity. These feedstocks when processed under high temperatures and pressures and alkaline conditions can cause brittle cracks and blisters in susceptible steel-fabricated equipment. Even with advances in steel metallurgy, wet H{sub 2}S cracking continues to be a problem. New research data shows that process conditions such as temperature, pH and flowrate are key factors in the corrosion process. Before selecting equipment material, operators must understand the corrosion mechanisms present within process conditions. Several case histories investigate the corrosion reactions found when refining naphthenic crudes and operating amine gas-sweetening systems. These examples show how to use process controls, inhibitors and/or metallurgy to control corrosion and environmental cracking, to improve material selection and to extend equipment service life.

  6. Corrosion protection with eco-friendly inhibitors

    NASA Astrophysics Data System (ADS)

    Shahid, Muhammad

    2011-12-01

    Corrosion occurs as a result of the interaction of a metal with its environment. The extent of corrosion depends on the type of metal, the existing conditions in the environment and the type of aggressive ions present in the medium. For example, CO3‑2 and NO‑3 produce an insoluble deposit on the surface of iron, resulting in the isolation of metal and consequent decrease of corrosion. On the other hand, halide ions are adsorbed selectively on the metal surface and prevent formation of the oxide phase on the metal surface, resulting in continuous corrosion. Iron, aluminum and their alloys are widely used, both domestically and industrially. Linear alkylbenzene and linear alkylbenzene sulfonate are commonly used as detergents. They have also been found together in waste water. It is claimed that these chemicals act as inhibitors for stainless steel and aluminum. Release of toxic gases as a result of corrosion in pipelines may lead in certain cases to air pollution and possible health hazards. Therefore, there are two ways to look at the relationship between corrosion and pollution: (i) corrosion of metals and alloys due to environmental pollution and (ii) environmental pollution as a result of corrosion protection. This paper encompasses the two scenarios and possible remedies for various cases, using 'green' inhibitors obtained either from plant extracts or from pharmaceutical compounds. In the present study, the effect of piperacillin sodium as a corrosion inhibitor for mild steel was investigated using a weight-loss method as well as a three-electrode dc electrochemical technique. It was found that the corrosion rate decreased as the concentration of the inhibitor increased up to 9×10‑4 M 93% efficiency was exhibited at this concentration.

  7. Contribution a l'etude du comportement de dalles de ponts en beton arme de barres en PRF soumises a des charges concentrees simulant les charges de roues

    NASA Astrophysics Data System (ADS)

    Bouguerra, Kheireddine

    Au cours des dernieres annees, la deterioration des structures en beton arme a pris une ampleur sans precedent, et ce, malgre le fait que leur duree de vie en service initialement prevue est loin d'etre atteinte. La corrosion de l'armature d'acier est un des principaux facteurs reduisant la duree de vie des ponts en beton arme d'acier. Par ailleurs, l'armature en materiaux composites de polymeres renforces de fibres (PRF) constitue une solution a l'armature metallique afin de pallier au probleme de la corrosion d'acier et a la deterioration des structures en beton arme. Aussi, les barres d'armature en materiaux composites de PRF possedent une resistance en traction elevee (environ 2 a 6 fois la limite elastique de l'acier d'armature conventionnel), ce qui leur permet de constituer un renforcement structural attrayant pour les structures en beton. Le comportement d'elements structuraux en beton arme de barres en PRF est different de ceux en beton arme de barres d'acier. En effet, les barres en PRF possedent un module d'elasticite relativement plus faible que celui de l'acier et ont des proprietes d'adherence differentes de celles des barres d'acier. L'utilisation des barres d'armature en PRF pour armer les dalles de tabliers de ponts se concretise de plus en plus avec l'avancement des recherches dans ce domaine. La recherche entamee dans le cadre de cette these s'inscrit dans un programme de travaux realises au sein de la Chaire de recherche CRSNG/Industrie sur les Materiaux composites novateurs en PRF pour les infrastructures au departement de genie civil a l'Universite de Sherbrooke. Le comportement de membrures en beton arme de PRF soumis a des sollicitations mecaniques constitue un des principaux axes de recherche. Dans le cadre de cette these, une serie d'essais a ete effectuee sur huit dalles de ponts a confinement interne a grande echelle. Les parametres des essais comprennent: (1) l'epaisseur de la dalle, (2) le type et le taux d'armature transversale de l

  8. Microprobe study of diode corrosion

    SciTech Connect

    Hlava, P.; Braithwaite, J.; Sorensen, R.

    1996-12-31

    A few diodes from a production lot were discovered to have unacceptable current leak rates after about 5 years of storage. Inspection revealed the presence of copper sulfide deposits that bridged the external body of the diode and presumably provided a leakage path. Figure 1 shows the physical configuration of a diode. The function of this device is performed by a silicon-based semiconductor that is bonded between two cylinders of tungsten with copper headpins (Cu wire with a flat {open_quotes}nail-head{close_quotes} formed on one end) brazed to the opposite ends of the cylinders. A tropical ring of glass protects the Si chip. All exposed metal parts are covered by an immersion plating of Ag. Then the entire assembly is coated with black epoxy and a band of green ink is applied to the cathode end. During storage, each diode was placed in a cardboard holder and secured in stacks of about ten with rubber bands. Analytical and environmental exposure studies were performed at Allied Signal and Sandia to determine the cause and potential long-term significance of this corrosion product and help identify the corrosion mechanism.

  9. Anti-Corrosive Powder Particles

    NASA Technical Reports Server (NTRS)

    Parker, Donald; MacDowell, Louis, III

    2005-01-01

    The National Aeronautics and Space Administration (NASA) seeks partners for a new approach in protecting embedded steel surfaces from corrosion. Corrosion of reinforced steel in concrete structures is a significant problem for NASA structures at Kennedy Space Center (KSC) because of the close proximity of the structures to salt spray from the nearby Atlantic Ocean. In an effort to minimize the damage to such structures, coatings were developed that could be applied as liquids to the external surfaces of a substrate in which the metal structures were embedded. The Metallic Pigment Powder Particle technology was developed by NASA at KSC. This technology combines the metallic materials into a uniform particle. The resultant powder can be sprayed simultaneously with a liquid binder onto the surface of concrete structures with a uniform distribution of the metallic pigment for optimum cathodic protection of the underlying steel in the concrete. Metallic Pigment Powder Particle technology improves upon the performance of an earlier NASA technology Liquid Galvanic Coating (U.S. Patent No. 6,627,065).

  10. Migrating corrosion inhibitor blend for reinforced concrete: Part 1 -- Prevention of corrosion

    SciTech Connect

    Elsener, B.; Buechler, M.; Stalder, F.; Boehni, H.

    1999-12-01

    The efficiency of a migrating corrosion inhibitor in preventing corrosion of mild steel was investigated in saturated calcium hydroxide (Ca[OH]{sub 2}) solutions and in mortar. The protective effect of the inhibitor against pitting corrosion caused by chloride attack and against uniform corrosion as a result of carbonation was determined. Results showed that high concentrations ({approx}10%) allowed the inhibition of pitting corrosion tritiation in solution containing 1 M/L sodium chloride (NaCl). However, inhibiting properties can be lost by evaporation of the volatile constituent of the inhibitor or by the precipitation of the nonvolatile fraction of the inhibitor in presence of calcium ions. Addition of the inhibitor blend to mortar yielded a retardation of the corrosion initiation in the case of chloride-induced corrosion, but o significant reduction in corrosion rate. No effect was found in carbonated samples, and no influence on the corrosion rate was detected. Additionally, the estimation of the extent of the retarding effect on corrosion initiation on real structures was difficult, as the inhibitor was found to evaporate from the mortar. This evaporation resulted in a loss of inhibiting properties. Hence, the long-term efficiency of the inhibitor could not be guaranteed.

  11. 49 CFR 192.475 - Internal corrosion control: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.475 Internal corrosion control: General. (a) Corrosive gas may not be transported by pipeline, unless the corrosive effect of the gas on the pipeline has been investigated and steps have...

  12. 49 CFR 192.477 - Internal corrosion control: Monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Internal corrosion control: Monitoring. 192.477... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.477 Internal corrosion control: Monitoring. If corrosive gas is being transported,...

  13. 49 CFR 192.467 - External corrosion control: Electrical isolation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Electrical isolation... for Corrosion Control § 192.467 External corrosion control: Electrical isolation. (a) Each buried or... pipeline is necessary to facilitate the application of corrosion control. (c) Except for unprotected...

  14. 46 CFR 154.412 - Cargo tank corrosion allowance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo tank corrosion allowance. 154.412 Section 154.412... Containment Systems § 154.412 Cargo tank corrosion allowance. A cargo tank must be designed with a corrosion...) carries a cargo that corrodes the tank material. Note: Corrosion allowance for independent tank type C...

  15. 49 CFR 192.467 - External corrosion control: Electrical isolation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Electrical isolation... for Corrosion Control § 192.467 External corrosion control: Electrical isolation. (a) Each buried or... pipeline is necessary to facilitate the application of corrosion control. (c) Except for unprotected...

  16. 49 CFR 192.477 - Internal corrosion control: Monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Internal corrosion control: Monitoring. 192.477... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.477 Internal corrosion control: Monitoring. If corrosive gas is being transported,...

  17. 49 CFR 192.461 - External corrosion control: Protective coating.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Protective coating... for Corrosion Control § 192.461 External corrosion control: Protective coating. (a) Each external protective coating, whether conductive or insulating, applied for the purpose of external corrosion...

  18. 49 CFR 193.2631 - Internal corrosion control.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Internal corrosion control. 193.2631 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2631 Internal corrosion control. Each component that is subject to internal corrosive attack must be protected from internal corrosion by—...

  19. 46 CFR 154.412 - Cargo tank corrosion allowance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo tank corrosion allowance. 154.412 Section 154.412... Containment Systems § 154.412 Cargo tank corrosion allowance. A cargo tank must be designed with a corrosion...) carries a cargo that corrodes the tank material. Note: Corrosion allowance for independent tank type C...

  20. 49 CFR 192.475 - Internal corrosion control: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Internal corrosion control: General. 192.475... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.475 Internal corrosion control: General. (a) Corrosive gas may not be transported...

  1. 49 CFR 193.2627 - Atmospheric corrosion control.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Atmospheric corrosion control. 193.2627 Section... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2627 Atmospheric corrosion... atmospheric corrosion by— (a) Material that has been designed and selected to resist the corrosive...

  2. 46 CFR 154.412 - Cargo tank corrosion allowance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo tank corrosion allowance. 154.412 Section 154.412... Containment Systems § 154.412 Cargo tank corrosion allowance. A cargo tank must be designed with a corrosion...) carries a cargo that corrodes the tank material. Note: Corrosion allowance for independent tank type C...

  3. 49 CFR 193.2631 - Internal corrosion control.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Internal corrosion control. 193.2631 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2631 Internal corrosion control. Each component that is subject to internal corrosive attack must be protected from internal corrosion by—...

  4. 46 CFR 154.412 - Cargo tank corrosion allowance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo tank corrosion allowance. 154.412 Section 154.412... Containment Systems § 154.412 Cargo tank corrosion allowance. A cargo tank must be designed with a corrosion...) carries a cargo that corrodes the tank material. Note: Corrosion allowance for independent tank type C...

  5. 49 CFR 192.475 - Internal corrosion control: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Internal corrosion control: General. 192.475... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.475 Internal corrosion control: General. (a) Corrosive gas may not be transported...

  6. 49 CFR 193.2631 - Internal corrosion control.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Internal corrosion control. 193.2631 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2631 Internal corrosion control. Each component that is subject to internal corrosive attack must be protected from internal corrosion by—...

  7. 49 CFR 193.2627 - Atmospheric corrosion control.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Atmospheric corrosion control. 193.2627 Section... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2627 Atmospheric corrosion... atmospheric corrosion by— (a) Material that has been designed and selected to resist the corrosive...

  8. 49 CFR 193.2631 - Internal corrosion control.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Internal corrosion control. 193.2631 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2631 Internal corrosion control. Each component that is subject to internal corrosive attack must be protected from internal corrosion by—...

  9. 49 CFR 192.461 - External corrosion control: Protective coating.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Protective coating... for Corrosion Control § 192.461 External corrosion control: Protective coating. (a) Each external protective coating, whether conductive or insulating, applied for the purpose of external corrosion...

  10. 49 CFR 192.477 - Internal corrosion control: Monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Internal corrosion control: Monitoring. 192.477... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.477 Internal corrosion control: Monitoring. If corrosive gas is being transported,...

  11. 49 CFR 192.475 - Internal corrosion control: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Internal corrosion control: General. 192.475... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.475 Internal corrosion control: General. (a) Corrosive gas may not be transported...

  12. 49 CFR 192.475 - Internal corrosion control: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Internal corrosion control: General. 192.475... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.475 Internal corrosion control: General. (a) Corrosive gas may not be transported...

  13. 49 CFR 193.2627 - Atmospheric corrosion control.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Atmospheric corrosion control. 193.2627 Section... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2627 Atmospheric corrosion... atmospheric corrosion by— (a) Material that has been designed and selected to resist the corrosive...

  14. 49 CFR 192.477 - Internal corrosion control: Monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Internal corrosion control: Monitoring. 192.477... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.477 Internal corrosion control: Monitoring. If corrosive gas is being transported,...

  15. 49 CFR 192.461 - External corrosion control: Protective coating.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Protective coating... for Corrosion Control § 192.461 External corrosion control: Protective coating. (a) Each external protective coating, whether conductive or insulating, applied for the purpose of external corrosion...

  16. 49 CFR 192.461 - External corrosion control: Protective coating.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Protective coating... for Corrosion Control § 192.461 External corrosion control: Protective coating. (a) Each external protective coating, whether conductive or insulating, applied for the purpose of external corrosion...

  17. 49 CFR 192.467 - External corrosion control: Electrical isolation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Electrical isolation... for Corrosion Control § 192.467 External corrosion control: Electrical isolation. (a) Each buried or... pipeline is necessary to facilitate the application of corrosion control. (c) Except for unprotected...

  18. 49 CFR 193.2627 - Atmospheric corrosion control.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Atmospheric corrosion control. 193.2627 Section... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2627 Atmospheric corrosion... atmospheric corrosion by— (a) Material that has been designed and selected to resist the corrosive...

  19. Designing green corrosion inhibitors using chemical computation methods

    SciTech Connect

    Singhl, W.P.; Lin, G.; Bockris, J.O.M.; Kang, Y.

    1998-12-31

    Green corrosion inhibitors have been designed by understanding the relationships between the structure of organic compounds and toxicity as well as corrosion inhibition efficiency. The estimation of aquatic toxicity as well as corrosion inhibition efficiency are made using QSAR techniques. The predicted structures with reduced toxicity and improved corrosion inhibition efficiency are then tested experimentally for these properties, thus leading to green inhibitors.

  20. Corrosion of aluminides by molten nitrate salt

    SciTech Connect

    Tortorelli, P.F.; Bishop, P.S.

    1990-01-01

    The corrosion of titanium-, iron-, and nickel-based aluminides by a highly aggressive, oxidizing NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} has been studied at 650{degree}C. It was shown that weight changes could be used to effectively evaluate corrosion behavior in the subject nitrate salt environments provided these data were combined with salt analyses and microstructural examinations. The studies indicated that the corrosion of relatively resistant aluminides by these nitrate salts proceeded by oxidation and a slow release from an aluminum-rich product layer into the salt at rates lower than that associated with many other types of metallic materials. The overall corrosion process and resulting rate depended on the particular aluminide being exposed. In order to minimize corrosion of nickel or iron aluminides, it was necessary to have aluminum concentrations in excess of 30 at. %. However, even at a concentration of 50 at. % Al, the corrosion resistance of TiAl was inferior to that of Ni{sub 3}Al and Fe{sub 3}Al. At higher aluminum concentrations, iron, nickel, and iron-nickel aluminides exhibited quite similar weight changes, indicative of the principal role of aluminum in controlling the corrosion process in NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} salts. 20 refs., 5 figs., 3 tabs.

  1. Novel NDE fiber optic corrosion sensor

    NASA Astrophysics Data System (ADS)

    Rutherford, Paul S.; Ikegami, Roy; Shrader, John E.; Sherrer, David; Zabaronick, Noel; Zeakes, Jason S.; Murphy, Kent A.; Claus, Richard O.

    1996-05-01

    Life extension programs for military metallic aircraft are becoming increasingly important as defense budgets shrink and world economies realign themselves to an uncertain future. For existing military weapon systems, metallic corrosion damage costs an estimated $8 billion per year. One approach to reducing this cost is to develop a reliable method to detect and monitor corrosion in hidden metallic structure with the use of corrosion sensors which would give an early indication of corrosion without significant disassembly. This paper describes the current status of the development, analysis, and testing of a fiber optic corrosion sensor developed jointly by Boeing and Virginia Tech Fiber & Electro-Optics Research Center and sponsored by USAF Wright Laboratory, Materials Directorate, contract #F33615-93-C-5368. In the sensor which is being developed under this contract, the normal cladding is removed in the sensor region, and replaced with aluminum alloy and allowed to corrode on coupons representative of C/KC-135 body structure in an ASTM B117 salt spray chamber. In this approach, the optical signal out of the sensor is designed to increase as corrosion takes place. These test results to determine the correlation between sensor output and structural degradation due to corrosion are discussed.

  2. Task E container corrosion studies: Annual report

    SciTech Connect

    Bunnell, L.R.; Doremus, L.A.; Topping, J.B.; Duncan, D.R.

    1994-06-01

    The Pacific Northwest Laboratory is conducting the Solid Waste Technology Support Program (SWTSP) for Westinghouse Hanford Company (WHC). Task E is the Container Corrosion Study Portion of the SWTSP that will perform testing to provide defensible data on the corrosion of low-carbon steel, as used in drums to contain chemical and radioactive wastes at the Hanford Site. A second objective of Task E is to provide and test practical alternative materials that have higher corrosion resistance than low-carbon steel. The scope of work for fiscal year (FY) 1993 included initial testing of mild steel specimens buried in Hanford soils or exposed to atmospheric corrosion in metal storage sheds. During FY 1993, progress was made in three areas of Task E. First, exposure of test materials began at the Soil Corrosion Test Site where low-carbon steel specimens were placed in the soil in five test shafts at depths of 9 m (30 ft). Second, the corrosion measurement of low-carbon steel in the soil of two solid waste trenches continued. The total exposure time is {approx} 500 days. Third, an atmospheric corrosion test of low-carbon steel was put initiated in a metal shed (Building 2401-W) in the 200 West Area. This annual report describes the Task E efforts and provides a current status.

  3. Nickel-base alloys combat corrosion

    SciTech Connect

    Agarwal, D.C.; Herda, W.

    1995-06-01

    The modern chemical process industry must increase production efficiency to remain competitive. Manufacturers typically meet this challenge by utilizing higher temperatures and pressures, and more-corrosive catalysts. At the same time, the industry has to solve the technical and commercial problems resulting from rigid environmental regulations. To overcome these obstacles, new alloys having higher levels of corrosion resistance have been developed. These materials are based on increased understanding of the physical metallurgy of nickel-base alloys, especially the role of alloying elements. Results of many studies have led to innovations in nickel-chromium-molybdenum alloys containing both high and low amounts of nickel. Higher molybdenum and chromium contents, together with nitrogen additions, have opened up an entirely new class of alloys having unique properties. In addition, a new chromium-base, fully wrought super stainless steel shows excellent promise in solving many corrosion problems. These newer alloys have the ability to combat uniform corrosion, localized corrosion, and stress-corrosion cracking in the harsh halogenic environment of the chemical process industry. This article briefly lists some of the major highlights and corrosion data on recent nickel-chromium-molybdenum and nickel-molybdenum alloys, and the development of a chromium-base, wrought super-austenitic alloy known as Nicrofer 3033 (Alloy 33). Some comparisons with existing alloys are presented, along with a few commercial applications.

  4. Atmospheric corrosion of metals in industrial city environment.

    PubMed

    Kusmierek, Elzbieta; Chrzescijanska, Ewa

    2015-06-01

    Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the samples without pretreatment. The corrosion products determined with the SEM/EDS method prove that the most corrosive pollutants present in the industrial city air are SO2, CO2, chlorides and dust.

  5. Atmospheric corrosion of metals in industrial city environment

    PubMed Central

    Kusmierek, Elzbieta; Chrzescijanska, Ewa

    2015-01-01

    Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the samples without pretreatment. The corrosion products determined with the SEM/EDS method prove that the most corrosive pollutants present in the industrial city air are SO2, CO2, chlorides and dust. PMID:26217736

  6. Novel Corrosion Sensor for Vision 21 Systems

    SciTech Connect

    Heng Ban

    2005-12-01

    Advanced sensor technology is identified as a key component for advanced power systems for future energy plants that would have virtually no environmental impact. This project intends to develop a novel high temperature corrosion sensor and subsequent measurement system for advanced power systems. Fireside corrosion is the metal loss caused by chemical reactions on surfaces exposed to the combustion environment. Such corrosion is the leading mechanism for boiler tube failures and has emerged to be a significant concern for current and future energy plants due to the introduction of technologies targeting emissions reduction, efficiency improvement, or fuel/oxidant flexibility. Corrosion damage can lead to catastrophic equipment failure, explosions, and forced outages. Proper management of corrosion requires real-time indication of corrosion rate. However, short-term, on-line corrosion monitoring systems for fireside corrosion remain a technical challenge to date due to the extremely harsh combustion environment. The overall objective of this project is to develop a technology for on-line corrosion monitoring based on a new concept. This objective is to be achieved by a laboratory development of the sensor and instrumentation, testing of the measurement system in a laboratory muffle furnace, and eventually testing the system in a coal-fired furnace. The initial plan for testing at the coal-fired pilot-scale furnace was replaced by testing in a power plant, because the operation condition at the power plant is continuous and more stable. The first two-year effort was completed with the successful development sensor and measurement system, and successful testing in a muffle furnace. Because of the potential high cost in sensor fabrication, a different type of sensor was used and tested in a power plant burning eastern bituminous coals. This report summarize the experiences and results of the first two years of the three-year project, which include laboratory

  7. Atomistic insights into aqueous corrosion of copper.

    SciTech Connect

    Jeon, B.; Sankaranarayanan, S. K. R. S.; van Duin, A. C. T.; Ramanathan, S.

    2011-06-21

    Corrosion is a fundamental problem in electrochemistry and represents a mode of failure of technologically important materials. Understanding the basic mechanism of aqueous corrosion of metals such as Cu in presence of halide ions is hence essential. Using molecular dynamics simulations incorporating reactive force-field (ReaxFF), the interaction of copper substrates and chlorine under aqueous conditions has been investigated. These simulations incorporate effects of proton transfer in the aqueous media and are suitable for modeling the bond formation and bond breakage phenomenon that is associated with complex aqueous corrosion phenomena. Systematic investigation of the corrosion process has been carried out by simulating different chlorine concentration and solution states. The structural and morphological differences associated with metal dissolution in the presence of chloride ions are evaluated using dynamical correlation functions. The simulated atomic trajectories are used to analyze the charged states, molecular structure and ion density distribution which are utilized to understand the atomic scale mechanism of corrosion of copper substrates under aqueous conditions. Increased concentration of chlorine and higher ambient temperature were found to expedite the corrosion of copper. In order to study the effect of solution states on the corrosion resistance of Cu, partial fractions of proton or hydroxide in water were configured, and higher corrosion rate at partial fraction hydroxide environment was observed. When the Cl{sup -} concentration is low, oxygen or hydroxide ion adsorption onto Cu surface has been confirmed in partial fraction hydroxide environment. Our study provides new atomic scale insights into the early stages of aqueous corrosion of metals such as copper.

  8. A STUDY OF CORROSION AND STRESS CORROSION CRACKING OF CARBON STEEL NUCLEAR WASTE STORAGE TANKS

    SciTech Connect

    BOOMER, K.D.

    2007-08-21

    The Hanford reservation Tank Farms in Washington State has 177 underground storage tanks that contain approximately 50 million gallons of liquid legacy radioactive waste from cold war plutonium production. These tanks will continue to store waste until it is treated and disposed. These nuclear wastes were converted to highly alkaline pH wastes to protect the carbon steel storage tanks from corrosion. However, the carbon steel is still susceptible to localized corrosion and stress corrosion cracking. The waste chemistry varies from tank to tank, and contains various combinations of hydroxide, nitrate, nitrite, chloride, carbonate, aluminate and other species. The effect of each of these species and any synergistic effects on localized corrosion and stress corrosion cracking of carbon steel have been investigated with electrochemical polarization, slow strain rate, and crack growth rate testing. The effect of solution chemistry, pH, temperature and applied potential are all considered and their role in the corrosion behavior will be discussed.

  9. Corrosion resistant coatings from conducting polymers

    SciTech Connect

    Wrobleski, D.A.; Benicewicz, B.C.; Thompson, K.G.; Bryan, C.J.

    1993-12-01

    Cr-based corrosion resistant undercoatings will have to be replaced because of environmental and health concerns. A coating system of a conducting polyaniline primer layer topcoated with epoxy or polyurethane, is being evaluated for corrosion resistance on mild steel in 0.1 M HCl or in a marine setting. Results of both laboratory and Beach Site testing indicate that this coating is very effective; even when the coatings are scratched to expose bare metal, the coated samples show very little signs of corrosion in the exposed area. 3 figs, 6 refs.

  10. Corrosion-Indicating Pigment And Probes

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Bugga, Ratnakumar V.; Attia, Alan I.

    1993-01-01

    Proposed hydrogen-sensitive paint for metal structures changes color at onset of corrosion, involving emission of hydrogen as result of electrochemical reactions. Pigment of suitable paint includes rhodium compound RhCl(PPh3)3, known as Wilkinson's catalyst. As coating on critical parts of such structures as bridges and aircraft, paint gives early warning of corrosion, and parts thus repaired or replaced before failing catastrophically. Reveals corrosion before it becomes visible to eye. Inspection for changes in color not ordinarily necessitate removal of structure from service, and costs less than inspection by x-ray or thermal neutron radiography, ultrasonic, eddy-current, or acoustic-emission techniques.

  11. Air- and Oxy-Fired Fireside Corrosion

    SciTech Connect

    Holcomb, G. R.; Tylczak, J.; Carney, C.; Laughlin, D.; Zhu, J.; Wise, A.

    2014-03-04

    The primary goal of this work was to examine the corrosion effects from flue gas composition changes arising from oxy-combustion. At 700°C, increased SO{sub X}, CO{sub 2}, and H{sub 2}O contents in the gas phase arising from various oxy-combustion flue gas recirculation scenarios, while maintaining constant ash deposit chemistry, do not increase corrosion in superheater or reheater tubing. At 400°C, for both oxidative and reducing conditions, the corrosion rates were lower than at 700°C.

  12. Corrosion resistant storage container for radioactive material

    DOEpatents

    Schweitzer, Donald G.; Davis, Mary S.

    1990-01-01

    A corrosion resistant long-term storage container for isolating radioactive waste material in a repository. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between judxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

  13. Corrosion and arc erosion in MHD channels

    SciTech Connect

    Rosa, R.J. . Dept. of Mechanical Engineering); Pollina, R.J. . Dept. of Mechanical Engineering Avco-Everett Research Lab., Everett, MA )

    1991-10-01

    The objective of this task is to study the corrosion and arc erosion of MHD materials in a cooperative effort with, and to support, the MHD topping cycle program. Materials tested in the Avco Research Laboratory/Textron facility, or materials which have significant MHD importance, will be analyzed to document their physical deterioration. Conclusions shall be drawn about their wear mechanisms and lifetime in the MHD environment with respect to the following issues; sulfur corrosion, electrochemical corrosion, and arc erosion. The impact of any materials or slag conditions on the level of power output and on the level of leakage current in the MHD channel will also be noted, where appropriate.

  14. Corrosion resistant storage container for radioactive material

    DOEpatents

    Schweitzer, D.G.; Davis, M.S.

    1984-08-30

    A corrosion resistant long-term storage container for isolating high-level radioactive waste material in a repository is claimed. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between juxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

  15. (Lead-lithium corrosion and chemistry)

    SciTech Connect

    Tortorelli, P.F.

    1990-09-21

    The traveler participated in the 1990 European Workshop on Lead-Lithium Corrosion and Chemistry. Main areas of emphasis in the European liquid metal (exclusively Pb-17 at. % Li) program are now on deposition effects and corrosion-resistant surface product layers that can also serve as barriers to tritium permeation and insulators. Dr. Tortorelli also visited Harwell Laboratory to discuss innovative methods of corrosion analysis. He attended the 16th Symposium on Fusion Technology in London and the initial meeting of the Program Committee for the Second International Symposium on Fusion Nuclear Technology, which will be held in June 1991. He toured the JET facilities as part of the SOFT program.

  16. On the Problem of Stress Corrosion

    NASA Technical Reports Server (NTRS)

    Graf, L.

    1946-01-01

    The object of the present work is first to investigate accurately the processes during stress corrosion, in particular, for light metal alloys and, as the first part of the investigation, to determine its laws; and secondly to explain its causes for various alloys and thereby find means for its partial or complete elimination and thus make possible the production of light metal alloys free from any stress corrosion. In the present paper some of the results of the investigation are given and the fundamental problems of stress corrosion discussed.

  17. Terahertz NDE for Under Paint Corrosion Detection and Evaluation

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.

    2005-01-01

    Corrosion under paint is not visible until it has caused paint to blister, crack, or chip. If corrosion is allowed to continue then structural problems may develop. Identifying corrosion before it becomes visible would minimize repairs and costs and potential structural problems. Terahertz NDE imaging under paint for corrosion is being examined as a method to inspect for corrosion by examining the terahertz response to paint thickness and to surface roughness.

  18. Waste of cleaning emulsion sewage as inhibitors of steel corrosion

    NASA Astrophysics Data System (ADS)

    Fazullin, D. D.; Mavrin, G. V.; Shaikhiev, I. G.

    2016-06-01

    The article describes the corrosion test of steel of the brand 20 in the stratal water. To increase corrosion resistance as a corrosion inhibitor the concentrate waste emulsion of the mark "Incam- 1" was provided. The article presents studies of the corrosion rate with different dosages of corrosion inhibitor in the stratal water. Based on these research results are revealed that the degree of protection of steel is 27% at a dosage of 3.8 g / dm3.

  19. Fracture mechanics and corrosion fatigue.

    NASA Technical Reports Server (NTRS)

    Mcevily, A. J.; Wei, R. P.

    1972-01-01

    Review of the current state-of-the-art in fracture mechanics, particularly in relation to the study of problems in environment-enhanced fatigue crack growth. The usefulness of this approach in developing understanding of the mechanisms for environmental embrittlement and its engineering utility are discussed. After a brief review of the evolution of the fracture mechanics approach and the study of environmental effects on the fatigue behavior of materials, a study is made of the response of materials to fatigue and corrosion fatigue, the modeling of the mechanisms of the fatigue process is considered, and the application of knowledge of fatigue crack growth to the prediction of the high cycle life of unnotched specimens is illustrated.

  20. Macrocyclic compounds as corrosion inhibitors

    SciTech Connect

    Quraishi, M.A.; Rawat, J.; Ajmal, M.

    1998-12-01

    The influence of three macrocyclic compounds on corrosion of mild steel (MS) in hydrochloric acid (HCl) was investigated using weight loss, potentiodynamic polarization, alternating current (AC) impedance, and hydrogen permeation techniques. All the investigated compounds showed significant efficiencies and reduced permeation of hydrogen through MS in HCl. Inhibition efficiency (IE) varied with the nature and concentrations of the inhibitors, temperature, and concentrations of the acid solutions. The addition of iodide ions (I{sup {minus}}) increased IE of all the tested compounds as a result of the synergistic effect. Potentiodynamic polarization results revealed that macrocyclic compounds acted as mixed inhibitors in 1 M HCl to 5 M HCl. Adsorption on the metal surface obeyed Temkin`s adsorption isotherm. Auger electron spectroscopy (AES) of the polished MS surface, exposed with tetraphenyldithia-octaazacyclotetradeca-hexaene (PTAT) proved adsorption of this compound on the surface through nitrogen and sulfur atoms.

  1. The corrosion and corrosion mechanical properties evaluation for the LBB concept in VVERs

    SciTech Connect

    Ruscak, M.; Chvatal, P.; Karnik, D.

    1997-04-01

    One of the conditions required for Leak Before Break application is the verification that the influence of corrosion environment on the material of the component can be neglected. Both the general corrosion and/or the initiation and, growth of corrosion-mechanical cracks must not cause the degradation. The primary piping in the VVER nuclear power plant is made from austenitic steels (VVER 440) and low alloy steels protected with the austenitic cladding (VVER 1000). Inspection of the base metal and heterogeneous weldments from the VVER 440 showed that the crack growth rates are below 10 m/s if a low oxygen level is kept in the primary environment. No intergranular cracking was observed in low and high oxygen water after any type of testing, with constant or periodic loading. In the framework of the LBB assessment of the VVER 1000, the corrosion and corrosion mechanical properties were also evaluated. The corrosion and corrosion mechanical testing was oriented predominantly to three types of tests: stress corrosion cracking tests corrosion fatigue tests evaluation of the resistance against corrosion damage. In this paper, the methods used for these tests are described and the materials are compared from the point of view of response on static and periodic mechanical stress on the low alloyed steel 10GN2WA and weld metal exposed in the primary circuit environment. The slow strain rate tests and static loading of both C-rings and CT specimens were performed in order to assess the stress corrosion cracking characteristics. Cyclic loading of CT specimens was done to evaluate the kinetics of the crack growth under periodical loading. Results are shown to illustrate the approaches used. The data obtained were evaluated also from the point of view of comparison of the influence of different structure on the stress corrosion cracking appearance. The results obtained for the base metal and weld metal of the piping are presented here.

  2. Transport quantique dans des nanostructures

    NASA Astrophysics Data System (ADS)

    Naud, C.

    2002-09-01

    structure des oscillations de conductance en fonction du flux du champ magnétique de période h/e dont l'amplitude est beaucoup plus importante que celle mesurée sur un réseau carré de même dimension. Cette différence constitue une signature d'un effet de localisation induit par le champ magnétique sur la topologie mathcal{T}3. Pour des valeurs spécifiques du champ magnétique, du fait des interférences destructives Aharonov-Bohm, la propagation des fonctions d'ondes est limitée à un ensemble fini de cellule du réseau appelé cage. De la dépendance en température des oscillations de période h/e mesurées sur le réseau mathcal{T}3 nous avons tiré une longueur caractéristique qui peut être rattachée au périmètre des cages. Un phénomène inattendu fut l'observation, pour des champs magnétiques plus importants, d'un doublement de fréquence des oscillations. Ces oscillations de période h/2e pouvant avoir une amplitude supérieure aux oscillations de période h/e, une interprétation en terme d'harmonique n'est pas possible. Enfin, l'influence de la largeur électrique des fils constituant le réseau et donc celle du nombre de canaux par brin a été étudiée en réalisant des grilles électrostatique. Les variations de l'amplitude des signaux en h/e et h/2e en fonction de la tension de grille ont été mesurés.

  3. Impact de la preparation des anodes crues et des conditions de cuisson sur la fissuration dans des anodes denses

    NASA Astrophysics Data System (ADS)

    Amrani, Salah

    La fabrication de l'aluminium est realisee dans une cellule d'electrolyse, et cette operation utilise des anodes en carbone. L'evaluation de la qualite de ces anodes reste indispensable avant leur utilisation. La presence des fissures dans les anodes provoque une perturbation du procede l'electrolyse et une diminution de sa performance. Ce projet a ete entrepris pour determiner l'impact des differents parametres de procedes de fabrication des anodes sur la fissuration des anodes denses. Ces parametres incluent ceux de la fabrication des anodes crues, des proprietes des matieres premieres et de la cuisson. Une recherche bibliographique a ete effectuee sur tous les aspects de la fissuration des anodes en carbone pour compiler les travaux anterieurs. Une methodologie detaillee a ete mise au point pour faciliter le deroulement des travaux et atteindre les objectifs vises. La majorite de ce document est reservee pour la discussion des resultats obtenus au laboratoire de l'UQAC et au niveau industriel. Concernant les etudes realisees a l'UQAC, une partie des travaux experimentaux est reservee a la recherche des differents mecanismes de fissuration dans les anodes denses utilisees dans l'industrie d'aluminium. L'approche etait d'abord basee sur la caracterisation qualitative du mecanisme de la fissuration en surface et en profondeur. Puis, une caracterisation quantitative a ete realisee pour la determination de la distribution de la largeur de la fissure sur toute sa longueur, ainsi que le pourcentage de sa surface par rapport a la surface totale de l'echantillon. Cette etude a ete realisee par le biais de la technique d'analyse d'image utilisee pour caracteriser la fissuration d'un echantillon d'anode cuite. L'analyse surfacique et en profondeur de cet echantillon a permis de voir clairement la formation des fissures sur une grande partie de la surface analysee. L'autre partie des travaux est basee sur la caracterisation des defauts dans des echantillons d'anodes crues

  4. Corrosion Embrittlement of Duralumin II Accelerated Corrosion Tests and the Behavior of High-Strength Aluminum Alloys of Different Compositions

    NASA Technical Reports Server (NTRS)

    Rawdon, Henry S

    1928-01-01

    The permanence, with respect to corrosion, of light aluminum alloy sheets of the duralumin type, that is, heat-treatable alloys containing Cu, Mg, Mn, and Si is discussed. Alloys of this type are subject to surface corrosion and corrosion of the interior by intercrystalline paths. Results are given of accelerated corrosion tests, tensile tests, the effect on corrosion of various alloying elements and heat treatments, electrical resistance measurements, and X-ray examinations.

  5. Case histories of external microbiologically influenced corrosion

    SciTech Connect

    Pikas, J.L.

    1997-05-01

    External microbiologically influenced corrosion (MIC) is a serious dilemma in the pipeline industry. Even today, it has not been recognized as such because it has been primarily mistaken for galvanic corrosion. Due to the type of coating materials used in the past, the cleaning process or lack of it, and application methods used, all coating systems have the propensity to develop defects and pinholes where disbondment and this type of microbial corrosion could occur. In addition, the pipeline may or may not have had cathodic protection initially and/or consistently applied. Given these factors and the interaction of bacteria from the soil, moisture availability, degree of cathodic protection, and temperature of the pipeline, this paper will discuss the role that microbes play in the disbondment process, thus resulting in corrosion of an underground pipeline. Several case histories, laboratory testing results, and field findings will be presented.

  6. Amplified OTDR Systems for Multipoint Corrosion Monitoring

    PubMed Central

    Nascimento, Jehan F.; Silva, Marcionilo J.; Coêlho, Isnaldo J. S.; Cipriano, Eliel; Martins-Filho, Joaquim F.

    2012-01-01

    We present two configurations of an amplified fiber-optic-based corrosion sensor using the optical time domain reflectometry (OTDR) technique as the interrogation method. The sensor system is multipoint, self-referenced, has no moving parts and can measure the corrosion rate several kilometers away from the OTDR equipment. The first OTDR monitoring system employs a remotely pumped in-line EDFA and it is used to evaluate the increase in system reach compared to a non-amplified configuration. The other amplified monitoring system uses an EDFA in booster configuration and we perform corrosion measurements and evaluations of system sensitivity to amplifier gain variations. Our experimental results obtained under controlled laboratory conditions show the advantages of the amplified system in terms of longer system reach with better spatial resolution, and also that the corrosion measurements obtained from our system are not sensitive to 3 dB gain variations. PMID:22737017

  7. Stress-corrosion cracking in metals

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Criteria and recommended practices for preventing stress-corrosion cracking from impairing the structural integrity and flightworthiness of space vehicles are presented. The important variables affecting stress-corrosion cracking are considered to be the environment, including time and temperature; metal composition, and structure; and sustained tensile stress. For designing spacecraft structures that are free of stress-corrosion cracking for the service life of the vehicle the following rules apply: (1) identification and control of the environments to which the structure will be exposed during construction, storage, transportation, and use; (2) selection of alloy compositions and tempers which are resistant to stress-corrosion cracking in the identified environment; (3) control of fabrication and other processes which may introduce residual tensile stresses or damage the material; (4) limitation of the combined residual and applied tensile stresses to below the threshold stress level for the onset of cracking throughout the service life of the vehicle; and (5) establishment of a thorough inspection program.

  8. Electrochemical situation in corrosion-mechanical cracks

    SciTech Connect

    Petrov, L.N.; Kalinkov, A.Yu.

    1995-01-01

    It is shown that the electrochemical situation in corrosion cracks is determined by the electromotive force of local galvanic cells at the crack tip and the polarization resistance of anodic processes.

  9. Fatigue - corrosion of endoprosthesis titanium alloys.

    PubMed

    Cornet, A; Muster, D; Jaeger, J H

    1979-01-01

    Commercial total hip prostheses often show certain metallurgical faults (porosities, coarse grains, growth dendrites, carbide networks). In order to investigate more accurately the role played by these different parameters in prostheses failure we performed a large number of systematic corrosion, fatigue and fatigue - corrosion tests on these materials and on commercial total hip prostheses. Ultimate strengthes seem to be reached for cast cobalt alloys, whereas titanium alloys, such as Ta 6 V, present very high fatigue limit under corrosion. Thus, rotative bending fatigue - corrosion tests in biological environment provide values about 50 DaN/mm2. This value, is nevertheless appreciably higher than those obtained with stellites and stainless steel. Titanium alloys, because of their mechanical performances, their weak Young's modulus (11000 DaN/mm2) and their relative lightness (4.5. g/cm3), which are associated with a good biocompatibility, seem very promising for permanent implants realisation.

  10. Final examination of IDMS corrosion coupons

    SciTech Connect

    Imrich, K.J.; Jenkins, C.F.

    1993-09-16

    The metallurgical examination of corrosion coupons removed from the Integrated DWPF Melter System (IDMS) was performed as part of the IDMS Materials Evaluation Program. The findings and conclusions of the evaluation program are presented in this report.

  11. Minimizing corrosion in coal liquid distillation

    DOEpatents

    Baumert, Kenneth L.; Sagues, Alberto A.; Davis, Burtron H.

    1985-01-01

    In an atmospheric distillation tower of a coal liquefaction process, tower materials corrosion is reduced or eliminated by introduction of boiling point differentiated streams to boiling point differentiated tower regions.

  12. High resolution in situ ultrasonic corrosion monitor

    DOEpatents

    Grossman, Robert J.

    1985-01-01

    An ultrasonic corrosion monitor is provided which produces an in situ measurement of the amount of corrosion of a monitoring zone or zones of an elongate probe placed in the corrosive environment. A monitoring zone is preferably formed between the end of the probe and the junction of the zone with a lead-in portion of the probe. Ultrasonic pulses are applied to the probe and a determination made of the time interval between pulses reflected from the end of the probe and the junction referred to, both when the probe is uncorroded and while it is corroding. Corresponding electrical signals are produced and a value for the normalized transit time delay derived from these time interval measurements is used to calculate the amount of corrosion.

  13. Polarized Neutron Reflectometry of Nickel Corrosion Inhibitors.

    PubMed

    Wood, Mary H; Welbourn, Rebecca J L; Zarbakhsh, Ali; Gutfreund, Philipp; Clarke, Stuart M

    2015-06-30

    Polarized neutron reflectometry has been used to investigate the detailed adsorption behavior and corrosion inhibition mechanism of two surfactants on a nickel surface under acidic conditions. Both the corrosion of the nickel surface and the structure of the adsorbed surfactant layer could be monitored in situ by the use of different solvent contrasts. Layer thicknesses and roughnesses were evaluated over a range of pH values, showing distinctly the superior corrosion inhibition of one negatively charged surfactant (sodium dodecyl sulfate) compared to a positively charged example (dodecyl trimethylammonium bromide) due to its stronger binding interaction with the surface. It was found that adequate corrosion inhibition occurs at significantly less than full surface coverage.

  14. Corrosion control of steel-reinforced concrete

    NASA Astrophysics Data System (ADS)

    Chung, D. D. L.

    2000-10-01

    The methods and materials for corrosion control of steel-reinforced concrete are reviewed. The methods are steel surface treatment, the use of admixtures in concrete, surface coating on concrete, and cathodic protection.

  15. High resolution in situ ultrasonic corrosion monitor

    DOEpatents

    Grossman, R.J.

    1984-01-10

    An ultrasonic corrosion monitor is provided which produces an in situ measurement of the amount of corrosion of a monitoring zone or zones of an elongate probe placed in the corrosive environment. A monitoring zone is preferably formed between the end of the probe and the junction of the zone with a lead-in portion of the probe. Ultrasonic pulses are applied to the probe and a determination made of the time interval between pulses reflected from the end of the probe and the junction referred to, both when the probe is uncorroded and while it is corroding. Corresponding electrical signals are produced and a value for the normalized transit time delay derived from these time interval measurements is used to calculate the amount of corrosion.

  16. Study of fluoride corrosion of nickel alloys

    NASA Technical Reports Server (NTRS)

    Gunther, W. H.; Steindler, M. J.

    1969-01-01

    Report contains the results of an investigation of the corrosion resistance of nickel and nickel alloys exposed to fluorine, uranium hexafluoride, and volatile fission product fluorides at high temperatures. Survey of the unclassified literature on the subject is included.

  17. Ozone inhibits corrosion in cooling towers

    NASA Technical Reports Server (NTRS)

    French, K. R.; Howe, R. D.; Humphrey, M. F.

    1980-01-01

    Commercially available corona discharge ozone generator, fitted onto industrial cooling tower, significantly reduces formation of scales (calcium carbonate) and corrosion. System also controls growth of algae and other microorganisms. Modification lowers cost and improves life of cooling system.

  18. Metalworking corrosion inhibition/drawing lubricant

    SciTech Connect

    Lipinski, H.F.; Wantling, S.J.

    1980-05-06

    A metalworking lubricant composition is disclosed which is effective as both a corrosion inhibitor and drawing lubricant and comprises a mineral oil and an additive combination of barium lanolate soap and barium sulfonate.

  19. Down hole corrosion: Problems & possible solutions

    SciTech Connect

    Morrison, W.K.

    1995-12-31

    Over the past several years the industry has encountered many production problems in the Antrim play. Among these are calcium carbonate scale, NORM and C02 removal. One problem, the corrosion of steel within the production system, has developed due to the chemical nature of the Antrim gas and water. This corrosion has become a major problem for NOMECO and other operators. This paper will discuss the problem, its source and effects and some possible solutions.

  20. Corrosion of two oxide-covered steels

    NASA Astrophysics Data System (ADS)

    Schwarz-Tonhauser, Melissa

    Determining the corrosive response of pipeline steel under laboratory immersion conditions can be difficult when an adequate reproduction of feild conditions is required. The difficulty is multiplied when testing an oxide-covered surface. Corrosion standards do not adequately cover testing oxide-covered steels. Methodology is developed to test the corrosive response of oxide-covered steels, especially pre-immersion surface oxides such as millscale. The methodology focuses on open-circuit potential monitoring, polarization, mass loss and surface examination. Procedures are recommended for specimen preparation, equipment to handle hostile media, test sequencing, specimen cleaning, and preparation for post-immersion examination. Long standing belief's regarding the interaction of millscale in the corrosive response of a steel originating from pre-1950's steel immersed in sea water that have propagated are: the presence of millscale causes pitting and scatter in corrosive testing results or is negligible due to quick removal. Results from A36 and X70 steels in dearated high chloride ion containing environments indicate that an adjustment of historical industry perspectives of millscale is required. Millscale does not cause pitting. Pitting is material/environment dependent. A material/environment that is prone to pitting will, at least initially, experience a concentration of the corrosion at breaks in the millscale. The presence of millscale does not ensure pitting will occur. Scatter in the corrosion parameters determined from mass loss and polarizations are not related to the presence or absence of millscale but due to a combination of testing methodology and material/environment. Removal of millscale is material/environment dependent requiring very acidic conditions to negate the interaction in the materials corrosive response. The presence of millscale can be enhanced by oxide growth during immersion.

  1. Microbiologically influenced corrosion in wastewater treatment plants

    SciTech Connect

    Soebbing, J.B.; Yolo, R.A.

    1995-12-01

    Microbiologically influenced corrosion (MIC) activity in wastewater treatment plants is discussed. Three case histories are presented showing through-wall pitting from MIC in return activated sludge (RAS) process piping systems. Field and laboratory investigation activities are reported. Alternatives are reviewed for initial corrosion prevention and mitigation following identification. A brief discussion of wastewater treatment and specifically, the activated sludge process is also provided. The applicability of common MIC prevention and mitigation practices to wastewater treatment facilities or processes is also reviewed.

  2. Aqueous Corrosion Rates for Waste Package Materials

    SciTech Connect

    S. Arthur

    2004-10-08

    The purpose of this analysis, as directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), is to compile applicable corrosion data from the literature (journal articles, engineering documents, materials handbooks, or standards, and national laboratory reports), evaluate the quality of these data, and use these to perform statistical analyses and distributions for aqueous corrosion rates of waste package materials. The purpose of this report is not to describe the performance of engineered barriers for the TSPA-LA. Instead, the analysis provides simple statistics on aqueous corrosion rates of steels and alloys. These rates are limited by various aqueous parameters such as temperature (up to 100 C), water type (i.e., fresh versus saline), and pH. Corrosion data of materials at pH extremes (below 4 and above 9) are not included in this analysis, as materials commonly display different corrosion behaviors under these conditions. The exception is highly corrosion-resistant materials (Inconel Alloys) for which rate data from corrosion tests at a pH of approximately 3 were included. The waste package materials investigated are those from the long and short 5-DHLW waste packages, 2-MCO/2-DHLW waste package, and the 21-PWR commercial waste package. This analysis also contains rate data for some of the materials present inside the fuel canisters for the following fuel types: U-Mo (Fermi U-10%Mo), MOX (FFTF), Thorium Carbide and Th/U Carbide (Fort Saint Vrain [FSVR]), Th/U Oxide (Shippingport LWBR), U-metal (N Reactor), Intact U-Oxide (Shippingport PWR, Commercial), aluminum-based, and U-Zr-H (TRIGA). Analysis of corrosion rates for Alloy 22, spent nuclear fuel, defense high level waste (DHLW) glass, and Titanium Grade 7 can be found in other analysis or model reports.

  3. Validation of mechanical models for reinforced concrete structures: Presentation of the French project ``Benchmark des Poutres de la Rance''

    NASA Astrophysics Data System (ADS)

    L'Hostis, V.; Brunet, C.; Poupard, O.; Petre-Lazar, I.

    2006-11-01

    Several ageing models are available for the prediction of the mechanical consequences of rebar corrosion. They are used for service life prediction of reinforced concrete structures. Concerning corrosion diagnosis of reinforced concrete, some Non Destructive Testing (NDT) tools have been developed, and have been in use for some years. However, these developments require validation on existing concrete structures. The French project “Benchmark des Poutres de la Rance” contributes to this aspect. It has two main objectives: (i) validation of mechanical models to estimate the influence of rebar corrosion on the load bearing capacity of a structure, (ii) qualification of the use of the NDT results to collect information on steel corrosion within reinforced-concrete structures. Ten French and European institutions from both academic research laboratories and industrial companies contributed during the years 2004 and 2005. This paper presents the project that was divided into several work packages: (i) the reinforced concrete beams were characterized from non-destructive testing tools, (ii) the mechanical behaviour of the beams was experimentally tested, (iii) complementary laboratory analysis were performed and (iv) finally numerical simulations results were compared to the experimental results obtained with the mechanical tests.

  4. Corrosion behavior and microhardness of three amalgams.

    PubMed

    Patsurakos, A; Moberg, L E

    1988-08-01

    The marginal microhardness of three different types of amalgam was tested after 2 months' immersion in an aqueous solution of NaCl (85 mM) and phosphates (Na2HPO4 100 mM and NaH2PO4 100 mM). Amalgams immersed in distilled water were used as controls. The microhardness tests were conducted at a distance of 50 micron from the margins and at the bulk of each specimen. The solutions were analyzed for Sn, Cu, Zn, Ag, and Hg by means of atomic absorption spectrophotometry (AAS). A statistically significant reduction in the marginal microhardness after immersion in the test solution was found for the conventional and the high-Cu single composition amalgam but not for the high-Cu blended amalgam. SEM-examination of cross-sections of the amalgams revealed small areas of subsurface grain boundary corrosion, no deeper than 10 micron for all the amalgams. The SEM-examination of the specimens and AAS analysis of the solutions indicated that the reduction in marginal microhardness was attributed mainly to corrosion of the Cu-rich phases for the high-Cu single composition amalgam and to corrosion of the gamma 2 phase for the conventional amalgam. The phosphates reduced the corrosion of the amalgams in the presence of NaCl. It is concluded that the marginal strength of dental amalgams in a corrosive environment is largely dependent upon their corrosion resistance.

  5. Conducting polymers as corrosion resistant coatings

    SciTech Connect

    Wrobleski, D.A.; Benicewicz, B.C.

    1994-09-01

    Although the majority of top coatings used for corrosion protection are electrically insulating, previous workers have proposed using an electrically active barrier for corrosion control. The most effective corrosion resistant undercoatings in use today are based on chromium compounds. Coatings based on other materials will need to replace these coatings by the turn of the century because of environmental and health concerns. For this reason the authors have begun an investigation of the use of conducting polymers as corrosion resistant coatings as an alternative to metal-based coatings. Conducting polymers have long been considered to be unsuitable for commercial processing, hindering their use for practical applications. Research in the field of electrically conducting polymers has recently produced a number of polymers such as polyaniline and its derivatives which are readily soluble in common organic solvents. The authors coating system, consisting of a conducting polyaniline primer layer, topcoated with epoxy or polyurethane, has been evaluated for corrosion resistance on mild steel substrates. In this paper, the authors report the results of laboratory testing under acidic and saline conditions and the results of testing in the severe launch environment at the Beach Testing Facility at Kennedy Space Center. The launch environment consists of exposure to corrosive HCl exhaust fumes and the salt spray from the Atlantic Ocean.

  6. Environmental factors affecting corrosion of munitions

    SciTech Connect

    Bundy, K.; Bricka, M.; Morales, A.

    1995-12-31

    Spent small arms munitions have accumulated for years at outdoor firing ranges operated by the DoD and other groups. Used bullets are often subjected to moisture sources. There is increasing concern that accumulations of lead-based munitions represent potential sources of water and soil pollution. To understand both the severity of and solutions to this problem, it is necessary to measure how rapidly bullets corrode and to determine the soil variables affecting the process. In this study M16 bullets were buried in samples of soil taken from Louisiana army firing ranges. Four environmental conditions were simulated; rain water, acid rain, sea water, and 50% sea water/50% acid rain. The three electrode technique was used to measure the bullet corrosion. Graphite rods served as counter electrodes. A saturated calomel reference electrode was used along with a specially constructed salt bridge. Electrochemical measurements were conducted using a computer-controlled potentiostat to determine corrosion potential, soil resistance, and corrosion current. The rate of corrosion was found to markedly increase with decreasing soil pH and increasing chloride and moisture contents, with the chloride content being the most influential variable. High soil resistance and noble corrosion potential were found to be associated with low corrosion rates. This is important since both parameters can be readily measured in the field.

  7. Corrosion in hilly-terrain pipelines

    SciTech Connect

    Jepson, W.P.

    1995-12-31

    Effect of inclination on flow regimes and flow characteristics has been examined, and the subsequent effect on corrosion has also been determined. Experiments have been undertaken in a high-pressure, 10-cm diameter, inclinable flow loop using brine, and two oils with different water cuts at pressures up to 1.13MPa and temperatures up to 90 C. They show that as the pipe is inclined upwards, the stratified flow regime virtually disappears. Slug flow now dominates the flow regime map. Between slugs, water layers at the bottom of the pipe were still found. The slug characteristics change with increase in inclination. The slug frequency is higher for the inclined flows. Further, at the lower sections of the pipe, near to the change of inclination, the slug frequency is almost double that found at distances 10--15m along the inclined pipe. The Froude numbers of these slugs are similar to those found in horizontal flows. However, values as high as 17 have been recorded. These are very turbulent slugs with regions of very high shear forces at the slug front As the slug frequency increases, the corrosion rate increases. Above 40 slugs min, the corrosion rate is very similar to that obtained by stationary slug techniques. The corrosion rates have also been found to increase with an increase in the carbon dioxide partial pressure. As the temperature was increased, the corrosion rate increased. No maximum in corrosion rate between 60 C and 80 C was noticed for all flow conditions.

  8. Recent Developments on Autonomous Corrosion Protection Through Encapsulation

    NASA Technical Reports Server (NTRS)

    Li, W.; Buhrow, J. W.; Calle, L. M.; Gillis, M.; Blanton, M.; Hanna, J.; Rawlins, J.

    2015-01-01

    This paper concerns recent progress in the development of a multifunctional smart coating, based on microencapsulation, for the autonomous detection and control of corrosion. Microencapsulation has been validated and optimized to incorporate desired corrosion control functionalities, such as early corrosion detection and inhibition, through corrosion-initiated release of corrosion indicators and inhibitors, as well as self-healing agent release triggered by mechanical damage. While proof-of-concept results have been previously reported, more recent research and development efforts have concentrated on improving coating compatibility and synthesis procedure scalability, with a targeted goal of obtaining easily dispersible pigment-grade type microencapsulated materials. The recent progress has resulted in the development of pH-sensitive microparticles as a corrosion-triggered delivery system for corrosion indicators and inhibitors. The synthesis and early corrosion indication results obtained with coating formulations that incorporate these microparticles are reported. The early corrosion indicating results were obtained with color changing and with fluorescent indicators.

  9. Controlled-Release Microcapsules for Smart Coatings for Corrosion Applications

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Corrosion is a serious problem that has enormous costs and serious safety implications. Localized corrosion, such as pitting, is very dangerous and can cause catastrophic failures. The NASA Corrosion Technology Laboratory at Kennedy Space Center is developing a smart coating based on pH-sensitive microcapsules for corrosion applications. These versatile microcapsules are designed to be incorporated into a smart coating and deliver their core content when corrosion starts. Corrosion indication was the first function incorporated into the microcapsules. Current efforts are focused on incorporating the corrosion inhibition function through the encapsulation of corrosion inhibitors into water core and oil core microcapsules. Scanning electron microscopy (SEM) images of encapsulated corrosion inhibitors are shown.

  10. THE CANADIAN PERSPECTIVE ON CORROSION CONTROL: HEALTH CANADA'S CORROSION CONTROL GUIDELINE

    EPA Science Inventory

    Health Canada has proposed a Corrosion Control Guideline, based on lead, which is undergoing public consultation and expected to be finalized in 2007. In Canada, there are no regulations and little guidance to address corrosion problems and existing sampling methods are inappropr...

  11. NASA's Beachside Corrosion Test Site and Current Environmentally Friendly Corrosion Control Initiatives

    NASA Technical Reports Server (NTRS)

    Russell, Richard W.; Calle, Luz Marina; Johnston, Frederick; Montgomery, Eliza L.; Curran, Jerome P.; Kolody, Mark R.

    2013-01-01

    NASA began corrosion studies at the Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term corrosion protective coatings for carbon steel. KSC's Beachside Corrosion Test Site (BCTS), which has been documented by the American Society of Materials (ASM) as one of the most corrosive, naturally occurring, environments in the world, was established at that time. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acid ic exhaust from the solid rocket boosters. In the years that followed, numerous studies have identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosive environment at the launch pad. This paper presents a historical overview of over 45 years of corrosion and coating evaluation studies and a description of the BCTS's current capabilities. Additionally, current research and testing programs involving chromium free coatings, environmentally friendly corrosion preventative compounds, and alternates to nitric acid passivation will be discussed.

  12. Corrosion initiation and propagation behavior of corrosion resistant concrete reinforcing materials

    NASA Astrophysics Data System (ADS)

    Hurley, Michael F.

    The life of a concrete structure exposed to deicing compounds or seawater is often limited by chloride induced corrosion of the steel reinforcement. In this study, the key material attributes that affect the corrosion initiation and propagation periods were studied. These included material composition, surface condition, ageing time, propagation behavior during active corrosion, morphology of attack, and type of corrosion products generated by each rebar material. The threshold chloride concentrations for solid 316LN stainless steel, 316L stainless steel clad over carbon steel, 2101 LDX, MMFX-2, and carbon steel rebar were investigated using electrochemical techniques in saturated calcium hydroxide solutions. Surface preparation, test method, duration of period exposed to a passivating condition prior to introduction of chloride, and presence of cladding defects all affected the threshold chloride concentration obtained. A model was implemented to predict the extension of time until corrosion initiation would be expected. 8 years was the predicted time to corrosion initiation for carbon steel. However, model results confirmed that use of 316LN may increase the time until onset of corrosion to 100 years or more. To assess the potential benefits afforded by new corrosion resistant rebar alloys from a corrosion resistance standpoint the corrosion propagation behavior and other factors that might affect the risk of corrosion-induced concrete cracking must also be considered. Radial pit growth was found to be ohmically controlled but repassivation occurred more readily at high potentials in the case of 316LN and 2101 stainless steels. The discovery of ohmically controlled propagation enabled transformation of propagation rates from simulated concrete pore solution to less conductive concrete by accounting for resistance changes in the surrounding medium. The corrosion propagation behavior as well as the morphology of attack directly affects the propensity for concrete

  13. Initiation and growth of mesa corrosion attack during CO{sub 2} corrosion of carbon steel

    SciTech Connect

    Nyborg, R.

    1998-12-31

    The initiation and development of mesa corrosion attack during CO{sub 2} corrosion of carbon steel has been studied in flow loop experiments performed at 80 C and pH 5.8. Video recordings of growing mesa attacks have been performed in a test section with a glass window in the corrosion loop. These observations have shown that the mesa attack can grow both laterally and in depth below a lid of original corrosion film before the film is torn away stepwise by the flow. Possible mechanisms for initiation of mesa corrosion attack are discussed based on the observations from the video recordings. Mesa attacks can result from several small local attacks growing together into one large mesa attack.

  14. Corrosion Behavior of Plasma-Passivated Cu

    SciTech Connect

    Barbour, J.C.; Braithwaite, J.W.; Son, K.A.; Sullivan, J.P.; Missert, N,; Sorensen, N.R.

    1999-07-09

    A new approach is being pursued to study corrosion in Cu alloy systems by using combinatorial analysis combined with microscopic experimentation (the Combinatorial Microlab) to determine mechanisms for copper corrosion in air. Corrosion studies are inherently difficult because of complex interactions between materials and environment, forming a multidimensional phase space of corrosion variables. The Combinatorial Microlab was specifically developed to address the mechanism of Cu sulfidation, which is an important reliability issue for electronic components. This approach differs from convention by focusing on microscopic length scales, the relevant scale for corrosion. During accelerated aging, copper is exposed to a variety of corrosive environments containing sulfidizing species that cause corrosion. A matrix experiment was done to determine independent and synergistic effects of initial Cu oxide thickness and point defect density. The CuO{sub x} was controlled by oxidizing Cu in an electron cyclotron resonance (ECR) O{sub 2} plasma, and the point defect density was modified by Cu ion irradiation. The matrix was exposed to 600 ppb H{sub 2}S in 65% relative humidity air atmosphere. This combination revealed the importance of oxide quality in passivating Cu and prevention of the sulfidizing reaction. A native oxide and a defect-laden ECR oxide both react at 20 C to form a thick Cu{sub 2}S layer after exposure to H{sub 2}S, while different thicknesses of as-grown ECR oxide stop the formation of Cu{sub 2}S. The species present in the ECR oxide will be compared to that of an air oxide, and the sulfide layer growth rate will be presented.

  15. Review of critical factors affecting crude corrosivity

    SciTech Connect

    Tebbal, S.; Kane, R.D.

    1996-08-01

    Lower quality opportunity crudes are now processed in most refineries and the source of the crudes may vary daily. These feedstocks, if not properly handled, can result in reduction in service life of equipment as well as costly failure and downtime. Analytical tools are needed to predict their high temperature corrosivity toward distillation units. Threshold in total sulfur and total acid number (TAN) have been used for many years as rules of thumb for predicting crude corrosivity, However, it is now realized that they are not accurate in their predictive ability. Crudes with similar composition and comparable with respect to process considerations have been found to be entirely different in their impact on corrosion. Naphthenic acid content, sulfur content, velocity, temperature, and materials of construction are the main factors affecting the corrosion process, Despite progress made in elucidating the role of the different parameters on the crude corrosivity process, the main problem is in calculating their combined effect, especially when the corroding stream is such a complex mixture. The TAN is usually related directly to naphthenic acid content. However, discrepancies between analytical methods and interference of numerous components of the crude itself lead to unreliable reported content of naphthenic acid. The sulfur compounds, with respect to corrosivity, appear to relate more to their decomposition at elevated temperature to form hydrogen sulfide than to their total content in crude. This paper reviews the present situation regarding crude corrosivity in distillation units, with the aim of indicating the extent of available information, and areas where further research is necessary.

  16. Continuous injection of corrosion-inhibiting liquids

    SciTech Connect

    Spivey, M.F.

    1987-01-13

    A portable system is described for the continuous injection of corrosion-inhibiting chemical into a production well, comprising: a portable skid; a corrosion-inhibiting chemical tank, and a water tank, mounted on the skid; pump means for pumping an desired amounts and proportions of chemical and water from the tanks for injection into a production well. The pump means is mounted on the skid. A conduit means operatively interconnects is the pumps and tanks for delivery of corrosion-inhibiting chemical to a production well, the conduit means including an end conduit for operative interconnection to a production well. A control means is mounted on the skid for controlling the operation of the pump means to provide desired amounts and proportions of a mix of corrosion-inhibiting chemical and water to the end conduit. A method is described for delivering a mix of corrosion-inhibiting chemical and water to a production well utilizing a portable skid having a chemical tank and water tank mounted thereon, comprising: transporting the skid to a single production well site; operatively interconnecting the chemical and water tanks to an injection tube string, or an annulus associated with a side mandrel, of the production well; and controlling delivery of a mix of corrosion-inhibiting chemical and water from the tanks to the production well so that any desired amounts and proportions of a mix of chemical and water are continuously injected into the well to provide corrosion-inhibiting of a production tube string of the well without interruption of production through the production tube string.

  17. Long Term Corrosion Potential and Corrosion Rate of Creviced Alloy 22 in Chloride Plus Nitrate Brines

    SciTech Connect

    Evans, K J; Stuart, M L; Etien, R A; Hust, G A; Estill, J C; Rebak, R B

    2005-11-05

    Alloy 22 is a nickel base alloy highly resistant to all forms of corrosion. In conditions where tight crevices exist in hot chloride containing solutions and at anodic potentials, Alloy 22 may suffer crevice corrosion, a form of localized attack. The occurrence (or not) of crevice corrosion in a given environment (e.g. salt concentration and temperature), is governed by the values of the critical potential (E{sub crit}) for crevice corrosion and the corrosion potential (E{sub corr}) that the alloy may establish in the studied environment. If E{sub corr} is equal or higher than E{sub crit}, crevice corrosion may be expected. In addition, it is generally accepted that as Alloy 22 becomes passive in a certain environment, its E{sub corr} increases and its corrosion rate (CR) decreases. This paper discusses the evolution of E{sub corr} and corrosion rate (CR) of creviced Alloy 22 specimens in six different mixtures of sodium chloride (NaCl) and potassium nitrate (KNO{sub 3}) at 100 C. The effect of immersion time on the value of E{sub crit} was also determined. Two types of specimens were used, polished as-welded (ASW) and as-welded plus solution heat-treated (ASW+SHT). The latter contained the black annealing oxide film on the surface. Results show that, as the immersion time increases, E{sub corr} increased and the CR decreased. Even for highly concentrated brine solutions at 100 C the CR was < 30 nm/year after more than 250 days immersion. Some of the exposed specimens (mainly the SHT specimens) suffered crevice corrosion at the open circuit potential in the naturally aerated brines. Immersion times of over 250 days did not reduce the resistance of Alloy 22 to localized corrosion.

  18. Etude des effets du martelage repetitif sur les contraintes residuelles

    NASA Astrophysics Data System (ADS)

    Hacini, Lyes

    L'assemblage par soudage peut engendrer des contraintes residuelles. Ces contraintes provoquent des fissurations prematurees et un raccourcissement de la duree de vie des composants. Dans ce contexte, le martelage robotise est utilise pour relaxer ces contraintes residuelles. Trois volets sont presentes: le premier est l'evaluation des effets des impacts unitaires repetes sur le champ de contraintes developpe dans des plaques d'acier inoxydable austenitique 304L vierges ou contenant des contraintes residuelles initiales. Dans la deuxieme partie de ce projet, le martelage est applique grace au robot SCOMPI. Les contraintes residuelles induites et relaxees par martelage sont ensuite mesurees par la methode des contours, qui a ete adaptee a cet effet. Dans la troisieme partie, le martelage est modelise par la methode des elements finis. Un modele axisymetrique developpe grace au logiciel ANSYS permet de simuler des impacts repetes d'un marteau elastique sur une plaque ayant un comportement elastoplastique.

  19. AC corrosion -- a new threat to pipeline integrity?

    SciTech Connect

    Gummow, R.A.; Wakelin, R.G.; Segall, S.M.

    1996-12-31

    Corrosion of steel by alternating current was investigated as far back as the early 1900`s. These early studies and others in the 1950--60`s indicated that AC corrosion of steel was only a fraction of an equivalent amount of direct current (i.e., less than 1% of a like amount of DC) and in addition was controlled to negligible levels with cathodic protection applied to industry standards. In 1986 however, an investigation into a corrosion failure on a high pressure gas pipeline in Germany indicated that the sole cause of the failure was AC corrosion. This corrosion failure on an otherwise well protected pipeline resulted in several laboratory and field studies which indicated, that above a certain minimum AC current density, standard levels of cathodic protection will not control AC corrosion and AC mitigation is required to prevent further corrosion. Several other corrosion anomalies were discovered at coating holidays during the follow-up investigations in Germany. The authors have investigated several corrosion occurrences on pipelines in Ontario during the last 2--3 years which appear to be caused by AC corrosion. This presentation traces the literature record on AC electrolysis from the past to the present and discusses the key parameters which determine the likelihood of corrosion attack. Several case histories of suspected AC corrosion will be discussed and guidelines on how to assess whether or not a pipeline is susceptible to AC corrosion will be offered.

  20. Corrosion in Magnesium and a Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Akavipat, Sanay

    Magnesium and a magnesium alloy (AZ91C) have been ion implanted over a range of ions energies (50 to 150 keV) and doses (1 x 10('16) to 2 x 10('17) ions/cm('2)) to modify the corrosion properties of the metals. The corrosion tests were done by anodic polarization in chloride -free and chloride-containing aqueous solutions of a borated -boric acid with a pH of 9.3. Anodic polarization measurements showed that some implantations could greatly reduce the corrosion current densities at all impressed voltages and also increased slightly the pitting potential, which indicated the onset of the chloride attack. These improvements in corrosion resistance were caused by boron implantations into both types of samples. However, iron implantations were found to improve only the magnesium alloy. To study the corrosion in more detail, Scanning Auger Microprobe Spectrometer (SAM), Scanning Electron Microscope (SEM) with an X-ray Energy Spectrometry (XES) attachment, and Transmission Electron Microscope (TEM) measurements were used to analyze samples before, after, and at various corrosion stages. In both the unimplanted pure magnesium and AZ91C samples, anodic polarization results revealed that there were three active corrosion stages (Stages A, C, and E) and two passivating stages (Stages B and D). Examination of Stages A and B in both types of samples showed that only a mild, generalized corrosion had occurred. In Stage C of the TD samples, a pitting breakdown in the initial oxide film was observed. In Stage C of the AZ91C samples, galvanic and intergranular attack around the Mg(,17)Al(,12) intermetallic islands and along the matrix grain boundaries was observed. Stage D of both samples showed the formation of a thick, passivating oxygen containing, probably Mg(OH)(,2) film. In Stage E, this film was broken down by pits, which formed due to the presence of the chloride ions in both types of samples. Stages A through D of the unimplanted samples were not seen in the boron or iron

  1. Corrosion Evaluation of RERTR Uranium Molybdenum Fuel

    SciTech Connect

    A K Wertsching

    2012-09-01

    As part of the National Nuclear Security Agency (NNSA) mandate to replace the use of highly enriched uranium (HEU) fuel for low enriched uranium (LEU) fuel, research into the development of LEU fuel for research reactors has been active since the late 1970’s. Originally referred to as the Reduced Enrichment for Research and Test Reactor (RERTR) program the new effort named Global Threat Reduction Initiative (GTRI) is nearing the goal of replacing the standard aluminum clad dispersion highly enriched uranium aluminide fuel with a new LEU fuel. The five domestic high performance research reactors undergoing this conversion are High Flux Isotope reactor (HFIR), Advanced Test Reactor (ATR), National Institute of Standards and Technology (NIST) Reactor, Missouri University Research Reactor (MURR) and the Massachusetts Institute of Technology Reactor II (MITR-II). The design of these reactors requires a higher neutron flux than other international research reactors, which to this point has posed unique challenges in the design and development of the new mandated LEU fuel. The new design utilizes a monolithic fuel configuration in order to obtain sufficient 235U within the LEU stoichoimetry to maintain the fission reaction within the domestic test reactors. The change from uranium aluminide dispersion fuel type to uranium molybdenum (UMo) monolithic configuration requires examination of possible corrosion issues associated with the new fuel meat. A focused analysis of the UMo fuel under potential corrosion conditions, within the ATR and under aqueous storage indicates a slow and predictable corrosion rate. Additional corrosion testing is recommended for the highest burn-up fuels to confirm observed corrosion rate trends. This corrosion analysis will focus only on the UMo fuel and will address corrosion of ancillary components such as cladding only in terms of how it affects the fuel. The calculations and corrosion scenarios are weighted with a conservative bias to

  2. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-08-01

    The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  3. CORROSION ISSUES ASSOCIATED WITH AUSTENITIC STAINLESS STEEL COMPONENTS USED IN NUCLEAR MATERIALS EXTRACTION AND SEPARATION PROCESSES

    SciTech Connect

    Mickalonis, J.; Louthan, M.; Sindelar, R.

    2012-12-17

    This paper illustrated the magnitude of the systems, structures and components used at the Savannah River Site for nuclear materials extraction and separation processes. Corrosion issues, including stress corrosion cracking, pitting, crevice corrosion and other corrosion induced degradation processes are discussed and corrosion mitigation strategies such as a chloride exclusion program and corrosion release testing are also discussed.

  4. Remote measurement of corrosion using ultrasonic techniques

    SciTech Connect

    Garcia, K.M.; Porter, A.M.

    1995-02-01

    Supercritical water oxidation (SCWO) technology has the potential of meeting the US Department of Energy`s treatment requirements for mixed radioactive waste. A major technical constraint of the SCWO process is corrosion. Safe operation of a pilot plant requires monitoring of the corrosion rate of the materials of construction. A method is needed for measurement of the corrosion rate taking place during operation. One approach is to directly measure the change in wall thickness or growth of oxide layer at critical points in the SCWO process. In FY-93, a brief survey of the industry was performed to evaluate nondestructive evaluation (NDE) methods for remote corrosion monitoring in supercritical vessels. As a result of this survey, it was determined that ultrasonic testing (UT) methods would be the most cost-effective and suitable method of achieving this. Therefore, the objective for FY-94 was to prove the feasibility of using UT to monitor corrosion of supercritical vessels remotely during operation without removal of the insulation.

  5. Analyses of containment structures with corrosion damage

    SciTech Connect

    Cherry, J.L.

    1997-01-01

    Corrosion damage that has been found in a number of nuclear power plant containment structures can degrade the pressure capacity of the vessel. This has prompted concerns regarding the capacity of corroded containments to withstand accident loadings. To address these concerns, finite element analyses have been performed for a typical PWR Ice Condenser containment structure. Using ABAQUS, the pressure capacity was calculated for a typical vessel with no corrosion damage. Multiple analyses were then performed with the location of the corrosion and the amount of corrosion varied in each analysis. Using a strain-based failure criterion, a {open_quotes}lower bound{close_quotes}, {open_quotes}best estimate{close_quotes}, and {open_quotes}upper bound{close_quotes} failure level was predicted for each case. These limits were established by: determining the amount of variability that exists in material properties of typical containments, estimating the amount of uncertainty associated with the level of modeling detail and modeling assumptions, and estimating the effect of corrosion on the material properties.

  6. Constituent Particle Clustering and Pitting Corrosion

    NASA Astrophysics Data System (ADS)

    Harlow, D. Gary

    2012-08-01

    Corrosion is a primary degradation mechanism that affects the durability and integrity of structures made of aluminum alloys, and it is a concern for commercial transport and military aircraft. In aluminum alloys, corrosion results from local galvanic coupling between constituent particles and the metal matrix. Due to variability in particle sizes, spatial location, and chemical composition, to name a few critical variables, corrosion is a complex stochastic process. Severe pitting is caused by particle clusters that are located near the material surface, which, in turn, serve as nucleation sites for subsequent corrosion fatigue crack growth. These evolution processes are highly dependent on the spatial statistics of particles. The localized corrosion growth rate is primarily dependent on the galvanic process perpetuated by particle-to-particle interactions and electrochemical potentials. Frequently, severe pits are millimeters in length, and these pits have a dominant impact on the structural prognosis. To accommodate large sizes, a model for three-dimensional (3-D) constituent particle microstructure is proposed. To describe the constituent particle microstructure in three dimensions, the model employs a fusion of classic stereological techniques, spatial point pattern analyses, and qualitative observations. The methodology can be carried out using standard optical microscopy and image analysis techniques.

  7. Novel systems for corrosion detection in piping

    SciTech Connect

    Raad, J.A. de; Fingerhut, M.P.

    1995-12-31

    Predictive maintenance requires accurate quantitative information. Nondestructive testing (NDT) tools have been able provide the necessary information, economically. Examination of the full surface of components is often required, which is contrary to the more typical spot location measurements. In addition, predictive maintenance inspection often requires the examination of hot and or insulated components. These challenges have been satisfied by recent developments in NDT and are applicable to a broad range of facility types such as tank terminals and pulp and paper plants. For non-insulated and above ground piping systems magnetic flux leakage (MFL) tools have recently been introduced into the marketplace. These tools allow very quick and reliable detection of local and extensive general corrosion, in carbon steel pipes or vessel walls, with nominal wall thicknesses of up to 15 mm. A relatively new method for detection of corrosion under insulated components is the RTD-Incotest, pulse eddy current (PEC) system. This system can also provide the components remaining wall thickness at general corrosion locations. Demand for corrosion detection under insulation on piping has also been satisfied by new dynamic Real-Time-Radiography systems. These systems are relatively fast, but the concept itself and its weight require close human access to the pipe, hence, some method of accessing above ground piping is required. Nevertheless, the systems satisfy a market demand. Time-of-flight-Diffraction (TOFD) for detection and sizing of weld root corrosion as well as coherent color enhanced thickness mapping will also be introduced.

  8. Handbook of corrosion data, 2nd edition

    SciTech Connect

    Craig, B.; Anderson, D.

    1995-12-31

    As in the prior edition, in one convenient volume this book makes it easy to find what effect environment has on the corrosion of metals and alloys. Coverage on all the environments in the first edition has been updated and expanded and some 80 or more environments have been added, including food products (chocolate, milk, cider, beer, etc.), fruit juices (grape, pineapple, lemon, etc.), soil, blood, gasoline, fertilizers, etc. Presentation of the tabular information for all environments has been standardized throughout the book. The environments are listed alphabetically. Each listing includes a general description of the conditions, a comment on the corrosion characteristics of various alloys in such a situation, a bibliography of recent articles specific to the environment, tables consolidating and comparing corrosion rates at various temperatures and concentrations for various alloys, and graphical information. also included are summaries on the general corrosion characteristics of major metals and alloys. This separate section of the book considers each material group, such as aluminum, stainless steel, zinc and so forth. Additional tables are presented here to give the corrosion characteristics of various alloys in hundreds of environments.

  9. Monitoring corrosion in reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.

    2014-06-01

    Many defects can cause deterioration and cracks in concrete; these are results of poor concrete mix, poor workmanship, inadequate design, shrinkage, chemical and environmental attack, physical or mechanical damage, and corrosion of reinforcing steel (RS). We want to develop a suite of sensors and systems that can detect that corrosion is taking place in RS and inform owners how serious the problem is. By understanding the stages of the corrosion process, we can develop special a sensor that detects each transition. First, moisture ingress can be monitored by a fiber optics humidity sensor, then ingress of Chloride, which acts as a catalyst and accelerates the corrosion process by converting iron into ferrous compounds. We need a fiber optics sensor which can quantify Chloride ingress over time. Converting ferric to ferrous causes large volume expansion and cracks. Such pressure build-up can be detected by a fiber optic pressure sensor. Finally, cracks emit acoustic waves, which can be detected by a high frequency sensor made with phase-shifted gratings. This paper will discuss the progress in our development of these special sensors and also our plan for a field test by the end of 2014. We recommend that we deploy these sensors by visually inspecting the affected area and by identifying locations of corrosion; then, work with the designers to identify spots that would compromise the integrity of the structure; finally, drill a small hole in the concrete and insert these sensors. Interrogation can be done at fixed intervals with a portable unit.

  10. Corrosion in Non-Hermetic Microelectronic Devices

    SciTech Connect

    Braithwaite, J.W.; Sorensen, N.R.

    1999-03-16

    Many types of integrated and discrete microelectronic devices exist in the enduring stockpile. In the past, most of these devices have used conventional ceramic hermetic packaging (CHP) technology. Sometime in the future, plastic encapsulated microelectronic (PEM) devices will almost certainly enter the inventory. In the presence of moisture, several of the aluminum-containing metallization features common to both types of packaging become susceptible to atmospheric corrosion (Figure 1). A breach in hermeticity (e.g., due to a crack in the ceramic body or lid seal) could allow moisture and/or contamination to enter the interior of a CHP device. For PEM components, the epoxy encapsulant material is inherently permeable to moisture. A multi-year project is now underway at Sandia to develop the knowledge base and analytical tools needed to quantitatively predict the effect of corrosion on microelectronic performance and reliability. The issue of corrosion-induced failure surfaced twice during the past year because cracks were found in their ceramic bodies of two different CHP devices: the SA371 1/3712 MOSFET and the SA3935 ASIC (acronym for A Simple Integrated Circuit). Because of our inability to perform a model-based prediction at that time, the decision was made to determine the validity of the corrosion concern for these specific situations by characterizing the expected environment and assessing its relative degree of corrosivity. The results of this study are briefly described in this paper along with some of the advancements made with the predictive model development.

  11. Visualization of latent fingerprint corrosion of brass.

    PubMed

    Bond, John W

    2009-09-01

    Visualization of latent fingerprint deposits on metals by enhancing the fingerprint-induced corrosion is now an established technique. However, the corrosion mechanism itself is less well understood. Here, we describe the apparatus constructed to measure the spatial variation (DeltaV) in applied potential (V) over the surface of brass disks corroded by latent fingerprint deposits. Measurement of DeltaV for potential of 1400 V has enabled visualization of fingerprint ridges and characteristics in terms of this potential difference with DeltaV typically of a few volts. This visualization is consistent with the formation of a Schottky barrier at the brass-corrosion product junction. Measurement of the work function of the corroded brass of up to 4.87 +/- 0.03 eV supports previous results that suggested that the corrosion product is composed of p-type copper oxides. A model for the galvanic corrosion of brass by ionic salts present in fingerprint deposits is proposed that is consistent with these experimental results.

  12. Ostéosynthèse des fractures des métacarpiens et des phalanges de la main par mini plaque: à propos de 12 cas

    PubMed Central

    Moncef, Erraji; Abdelhafid, Derfoufi; Abdessamad, Kharraji; Omar, Agoumi; Najib, Abdeljaouad; Abdelkrim, Daoudi; Hicham, Yacoubi

    2016-01-01

    Le traitement des fractures instables des métacarpes et des phalanges reste un objet de controverse. Peu de séries ont été rapportées dans la littérature, rendant leur analyse difficile. Nous rapportons une étude rétrospective comportant 12 patients, opérés par cette technique, ayant eu des fractures déplacées des métacarpes ou des phalanges, sur une période de deux ans. Les résultats globaux ont été bons dans 75% des cas, moyenne dans 16,5% des cas et mauvais dans 8,5% des cas. La stabilité du montage par mini plaques des fractures instables des métacarpiens et des phalanges ont permis une mobilisation précoce des articulations de la main, évitant ainsi la raideur. PMID:27800079

  13. Stress corrosion cracking evaluation of precipitation-hardening stainless steel

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1970-01-01

    Accelerated test program results show which precipitation hardening stainless steels are resistant to stress corrosion cracking. In certain cases stress corrosion susceptibility was found to be associated with the process procedure.

  14. A rapid stress-corrosion test for aluminum alloys

    NASA Technical Reports Server (NTRS)

    Helfrich, W. J.

    1968-01-01

    Stressed alloy specimens are immersed in a salt-dichromate solution at 60 degrees C. Because of the minimal general corrosion of these alloys in this solution, stress corrosion failures are detected by low-power microscopic examination.

  15. Corrosion Performance of Inconel 625 in High Sulphate Content

    NASA Astrophysics Data System (ADS)

    Ismail, Azzura

    2016-05-01

    Inconel 625 (UNS N06625) is a type of nickel-chromium-molybdenum alloy with excellent corrosion resistance in a wide range of corrosive media, being especially resistant to pitting and crevice corrosion. However, in aggressive environment, Inconel 625 will suffer corrosion attack like other metals. This research compared the corrosion performance of Inconel 625 when exposed to higher sulphate content compared to real seawater. The results reveal that Inconel 625 is excellent in resist the corrosion attack in seawater. However, at increasing temperature, the corrosion resistance of this metal decrease. The performance is same in seawater with high sulphate content at increasing temperature. It can be concluded that sulphate promote perforation on Inconel 625 and become aggressive agents that accelerate the corrosion attack.

  16. PH and Electrochemical Responsive Materials for Corrosion Smart Coating Applications

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Calle, Luz M.

    2008-01-01

    Corrosion is a costly issue for military operations and civil industries. While most corrosion initiates from localized corrosion form, such as pitting, failure directly caused by localized corrosion is the most dangerous kind, because it is difficult to anticipate and prevent, occurs very suddenly and can be catastrophic. One way of preventing these failures is with a coating that can detect and heal localized corrosion. pH and other electrochemical changes are often associated with localized corrosion, so it is expected that materials that are pH or otherwise electrochemical responsive can be used to detect and control corrosion. This paper will review various pH and electrochemical responsive materials and their potential applications in corrosion smart coatings. Current research results in this field will also be reported.

  17. Evaluation of Encapsulated Inhibitor for Autonomous Corrosion Protection

    NASA Technical Reports Server (NTRS)

    Johnsey, M. N.; Li, W.; Buhrow, J. W.; Calle, L. M.; Pearman, B. P.; Zhang, X.

    2015-01-01

    This work concerns the development of smart coating technologies based on microencapsulation for the autonomous control of corrosion. Microencapsulation allows the incorporation of corrosion inhibitors into coating which provides protection through corrosion-controlled release of these inhibitors.One critical aspect of a corrosion protective smart coating is the selection of corrosion inhibitor for encapsulation and comparison of the inhibitor function before and after encapsulation. For this purpose, a systematic approach is being used to evaluate free and encapsulated corrosion inhibitors by salt immersion. Visual, optical microscope, and Scanning Electron Microscope (with low-angle backscatter electron detector) are used to evaluate these inhibitors. It has been found that the combination of different characterization tools provide an effective method for evaluation of early stage localized corrosion and the effectiveness of corrosion inhibitors.

  18. pH Responsive Microcapsules for Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Li, Wenyan; Muehlberg, Aaron; Boraas, Samuel; Webster, Dean; JohnstonGelling, Victoria; Croll, Stuart; Taylor, S Ray; Contu, Francesco

    2008-01-01

    The best coatings for corrosion protection provide not only barriers to the environment, but also a controlled release of a corrosion inhibitor, as demanded by the presence of corrosion or mechanical damage. NASA has developed pH sensitive microcapsules (patent pending) that can release their core contents when corrosion starts. The objectives of the research presented here were to encapsulate non-toxic corrosion inhibitors, to incorporate the encapsulated inhibitors into paint formulations, and to test the ability of the paints to control corrosion. Results showed that the encapsulated corrosion inhibitors, specifically Ce(NO3)3 , are effective to control corrosion over long periods of time when incorporated at relatively high pigment volume concentrations into a paint formulation.

  19. A physical corrosion model for bioabsorbable metal stents.

    PubMed

    Grogan, J A; Leen, S B; McHugh, P E

    2014-05-01

    Absorbable metal stents (AMSs) are an emerging technology in the treatment of heart disease. Computational modelling of AMS performance will facilitate the development of this technology. In this study a physical corrosion model is developed for AMSs based on the finite element method and adaptive meshing. The model addresses a gap between currently available phenomenological corrosion models for AMSs and physical corrosion models that have been developed for more simple geometries than those of a stent. The model developed in this study captures the changing surface of a corroding three-dimensional AMS structure for the case of diffusion-controlled corrosion. Comparisons are made between model predictions and those of previously developed phenomenological corrosion models for AMSs in terms of predicted device geometry and mechanical performance during corrosion. Relationships between alloy solubility and diffusivity in the corrosion environment and device performance during corrosion are also investigated.

  20. Corrosion of Carbon Steel and Corrosion-Resistant Rebars in Concrete Structures Under Chloride Ion Attack

    NASA Astrophysics Data System (ADS)

    Mohamed, Nedal; Boulfiza, Mohamed; Evitts, Richard

    2013-03-01

    Corrosion of reinforced concrete is the most challenging durability problem that threatens reinforced concrete structures, especially structures that are subject to severe environmental conditions (i.e., highway bridges, marine structures, etc.). Corrosion of reinforcing steel leads to cracking and spalling of the concrete cover and billions of dollars are spent every year on repairing such damaged structures. New types of reinforcements have been developed to avoid these high-cost repairs. Thus, it is important to study the corrosion behavior of these new types of reinforcements and compare them to the traditional carbon steel reinforcements. This study aimed at characterizing the corrosion behavior of three competing reinforcing steels; conventional carbon steel, micro-composite steel (MMFX-2) and 316LN stainless steel, through experiments in carbonated and non-carbonated concrete exposed to chloride-laden environments. Synthetic pore water solutions have been used to simulate both cases of sound and carbonated concrete under chloride ions attack. A three-electrode corrosion cell is used for determining the corrosion characteristics and rates. Multiple electrochemical techniques were applied using a Gamry PC4™ potentiostat manufactured by Gamry Instruments (Warminster, PA). DC corrosion measurements were applied on samples subjected to fixed chloride concentration in the solution.

  1. Prediction of reinforcement corrosion using corrosion induced cracks width in corroded reinforced concrete beams

    SciTech Connect

    Khan, Inamullah; François, Raoul; Castel, Arnaud

    2014-02-15

    This paper studies the evolution of reinforcement corrosion in comparison to corrosion crack width in a highly corroded reinforced concrete beam. Cracking and corrosion maps of the beam were drawn and steel reinforcement was recovered from the beam to observe the corrosion pattern and to measure the loss of mass of steel reinforcement. Maximum steel cross-section loss of the main reinforcement and average steel cross-section loss between stirrups were plotted against the crack width. The experimental results were compared with existing models proposed by Rodriguez et al., Vidal et al. and Zhang et al. Time prediction models for a given opening threshold are also compared to experimental results. Steel cross-section loss for stirrups was also measured and was plotted against the crack width. It was observed that steel cross-section loss in the stirrups had no relationship with the crack width of longitudinal corrosion cracks. -- Highlights: •Relationship between crack and corrosion of reinforcement was investigated. •Corrosion results of natural process and then corresponds to in-situ conditions. •Comparison with time predicting model is provided. •Prediction of load-bearing capacity from crack pattern was studied.

  2. Hot corrosion of the B2 nickel aluminides

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    1993-01-01

    The hot corrosion behavior of the B2 nickel aluminides was studied to determine the inherent hot corrosion resistance of the beta nickel aluminides and to develop a mechanism for the hot corrosion of the beta nickel aluminides. The effects of the prior processing of the material, small additions of zirconium, stoichiometry of the materials, and preoxidation of the samples were also examined. Additions of 2, 5, and 15 w/o chromium were used to determine the effect of chromium on the hot corrosion of the beta nickel aluminides and the minimum amount of chromium necessary for good hot corrosion resistance. The results indicate that the beta nickel aluminides have inferior inherent hot corrosion resistance despite their excellent oxidation resistance. Prior processing and zirconium additions had no discernible effect on the hot corrosion resistance of the alloys. Preoxidation extended the incubation period of the alloys only a few hours and was not considered to be an effective means of stopping hot corrosion. Stoichiometry was a major factor in determining the hot corrosion resistance of the alloys with the higher aluminum alloys having a definitely superior hot corrosion resistance. The addition of chromium to the alloys stopped the hot corrosion attack in the alloys tested. From a variety of experimental results, a complex hot corrosion mechanism was proposed. During the early stages of the hot corrosion of these alloys the corrosion is dominated by a local sulphidation/oxidation form of attack. During the intermediate stages of the hot corrosion, the aluminum depletion at the surface leads to a change in the oxidation mechanism from a protective external alumina layer to a mixed nickel-aluminum spinel and nickel oxide that can occur both externally and internally. The material undergoes extensive cracking during the later portions of the hot corrosion.

  3. Corrosion probes for fireside monitoring in coal-fired boilers

    SciTech Connect

    Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, M.; Holcomb, Gordon R.

    2005-01-01

    Corrosion probes are being developed and combined with an existing measurement technology to provide a tool for assessing the extent of corrosion of metallic materials on the fireside in coal-fired boilers. The successful development of this technology will provide power plant operators the ability to (1) accurately monitor metal loss in critical regions of the boiler, such as waterwalls, superheaters, and reheaters; and (2) use corrosion rates as process variables. In the former, corrosion data could be used to schedule maintenance periods and in the later, processes can be altered to decrease corrosion rates. The research approach involves laboratory research in simulated environments that will lead to field tests of corrosion probes in coal-fired boilers. Laboratory research has already shown that electrochemically-measured corrosion rates for ash-covered metals are similar to actual mass loss corrosion rates. Electrochemical tests conducted using a potentiostat show the corrosion reaction of ash-covered probes at 500?C to be electrochemical in nature. Corrosion rates measured are similar to those from an automated corrosion monitoring system. Tests of corrosion probes made with mild steel, 304L stainless steel (SS), and 316L SS sensors showed that corrosion of the sensors in a very aggressive incinerator ash was controlled by the ash and not by the alloy content. Corrosion rates in nitrogen atmospheres tended to decrease slowly with time. The addition of oxygen-containing gases, oxygen and carbon dioxide to nitrogen caused a more rapid decrease in corrosion rate, while the addition of water vapor increased the corrosion rate.

  4. Effect of chlorides on solution corrosivity of methyldiethanolamine (MDEA) solutions

    SciTech Connect

    Rooney, P.C.; Bacon, T.R.; DuPart, M.S.; Willbanks, K.D.

    1997-08-01

    Solution corrosivity of MDEA/water solutions containing added HCl or NaCl have been measured by weight loss coupons at 250 F and by linear polarization resistance (LPR) at 208 F using carbon steel, 304SS, 316SS and 410SS. General corrosion as well as pitting or crevice corrosion tendencies were recorded for each species. Based on these results, recommendations are made for chlorides in MDEA that minimizes corrosion in gas treating operations.

  5. TANK 241-AN-107 CORROSION COUPON LABORATORY ANALYSIS

    SciTech Connect

    DUNCAN JB; ANANTATMULA RP

    2001-09-27

    To support the corrosion study for Tank 241-AN-107, corrosion coupons consisting of C-rings and pins were removed from four detectors of the corrosion probe retrieved from the tank. The detectors were located as follows: one in the sludge layer, one in the liquid layer, one in the lower head space and the last in the upper head space. ASTM Method G-190 was used to determine the amount of corrosion product present.

  6. Localized corrosion resistance of corrosion-resistant Ni based alloys in hot concentrated seawater

    SciTech Connect

    Sugahara, Katsuo; Takizawa, Yoshio

    1998-12-31

    Localized corrosion resistance of stainless steel (Type 316L), a titanium-based alloy (Ti-0.15Pd) and corrosion-resistant nickel-based alloys (a new alloy MAT-21 (Alloy T) and Alloy C-276) was evaluated in four simulated seawater solutions containing 1.8 to 22.0 wt% of chloride ions concentrated by evaporation. Stress corrosion cracking was observed on the 316L stainless steel but not on Alloy T and Alloy C-276 in the solutions. Pitting attack occurred on the surface of the 316L stainless steel base metal in all the solutions. Alloy C-276 suffered pitting attack on the surface including the welded section only in the solutions containing 18.9 and 22.0 wt% of chloride ions, respectively. No pitting attack occurred over any part of the surface including the welded section of Alloy T in any of the solutions. No crevice corrosion was observed in an immersion test of Alloy T and the Ti-0.15 5Pd alloy using test pieces with crevices although crevice corrosion was seen the creviced test pieces of Alloy C-276 and the 316L stainless steel. It was found that both Alloy T and the Ti-0.15Pd alloy, which exhibit high repassivation potentials for crevice corrosion (E{sub r,CREV})corresponding to crevice corrosion potentials, have excellent crevice corrosion resistance, while these alloys which exhibit corrosion potentials greater than E{sub r,CREV}in a solution with a high chloride ion concentration and a high dissolved oxygen concentration in open air may be corroding in the crevices.

  7. Seacoast stress corrosion cracking of aluminum alloys

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1981-01-01

    The stress corrosion cracking resistance of high strength, wrought aluminum alloys in a seacoast atmosphere was investigated and the results were compared with those obtained in laboratory tests. Round tensile specimens taken from the short transverse grain direction of aluminum plate and stressed up to 100 percent of their yield strengths were exposed to the seacoast and to alternate immersion in salt water and synthetic seawater. Maximum exposure periods of one year at the seacoast, 0.3 or 0.7 of a month for alternate immersion in salt water, and three months for synthetic seawater were indicated for aluminum alloys to avoid false indications of stress corrosion cracking failure resulting from pitting. Correlation of the results was very good among the three test media using the selected exposure periods. It is concluded that either of the laboratory test media is suitable for evaluating the stress corrosion cracking performance of aluminum alloys in seacoast atmosphere.

  8. Corrosion of Metal Modular Cup Liners.

    PubMed

    Hothi, Harry S; Ilo, Kevin; Whittaker, Robert K; Eskelinen, Antti; Skinner, John A; Hart, Alister J

    2015-09-01

    Numerous studies have reported on corrosion at the modular head taper, however less is known about the interface between the metal shell and liner of modular cups. This study examined the backside of a series of metal modular cup liners of two designs (DePuy Pinnacle and Smith & Nephew R3), retrieved from 67 patients. Visual inspection found evidence of corrosion in virtually all liners, with the engaging rim surface significantly more corroded than the polar regions (P<0.001). EDX confirmed that black surface deposits were chromium rich corrosion debris, while SEM analysis revealed considerable pitting in the vicinity of the black debris. The R3 liners were significantly more corroded that the Pinnacles (P<0.001); this may help to explain the higher revision rates of this design. PMID:25890504

  9. Erosion/corrosion of HVOF sprayed coatings

    SciTech Connect

    Simard, S.; Arsenault, B.; Legoux, J.G.; Hawthorne, H.M.

    1999-11-01

    Cermet based materials are known to have an excellent performance under several different wear conditions. High velocity oxy-fuel (HVOF) thermal spraying technology allows the deposition of such hard materials in the form of protective coatings onto different surfaces. Under slurry erosion, the performance of the coating is influenced by the occurrence of corrosion reactions with the metallic matrix. Slurry erosion tests were conducted with a jet impingement rig with a 9.1wt% alumina particle/water slurry. Indeed, wet conditions promote the dissolution of metallic binder resulting in a potential synergy between the corrosion and wear mechanisms. Coatings based on tungsten carbide embedded in four different metallic binders were evaluated with regard to wear and corrosion. Depending on the composition of the metallic binder, different degradation rates were observed.

  10. Microbiologically influenced corrosion of orthodontic metallic appliances.

    PubMed

    Kameda, Takashi; Oda, Hirotake; Ohkuma, Kazuo; Sano, Natsuki; Batbayar, Nomintsetseg; Terashima, Yukari; Sato, Soh; Terada, Kazuto

    2014-01-01

    Biocorrosion (microbiologically influenced corrosion; MIC) occur in aquatic habitats varying in nutrient content, temperature, stress and pH. The oral environment of organisms, including humans, should be one of the most hospitable for MIC. Corrosion of metallic appliances in the oral region is one cause of metal allergy in patients. In this study, an inductively coupled plasma-optical emission spectrometer revealed elution of Fe, Cr and Ni from stainless steel (SUS) appliances incubated with oral bacteria. Three-dimensional laser confocal microscopy also revealed that oral bacterial culture promoted increased surface roughness and corrosion pits in SUS appliances. The pH of the supernatant was lowered after co-culture of appliances and oral bacteria in any combinations, but not reached at the level of depassivation pH of their metallic materials. This study showed that Streptococcus mutans and Streptococcus sanguinis which easily created biofilm on the surfaces of teeth and appliances, did corrode orthodontic SUS appliances.

  11. Corrosion of Metal Modular Cup Liners.

    PubMed

    Hothi, Harry S; Ilo, Kevin; Whittaker, Robert K; Eskelinen, Antti; Skinner, John A; Hart, Alister J

    2015-09-01

    Numerous studies have reported on corrosion at the modular head taper, however less is known about the interface between the metal shell and liner of modular cups. This study examined the backside of a series of metal modular cup liners of two designs (DePuy Pinnacle and Smith & Nephew R3), retrieved from 67 patients. Visual inspection found evidence of corrosion in virtually all liners, with the engaging rim surface significantly more corroded than the polar regions (P<0.001). EDX confirmed that black surface deposits were chromium rich corrosion debris, while SEM analysis revealed considerable pitting in the vicinity of the black debris. The R3 liners were significantly more corroded that the Pinnacles (P<0.001); this may help to explain the higher revision rates of this design.

  12. Structural Composites Corrosive Management by Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon

    2006-01-01

    A simulation of corrosive management on polymer composites durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured Ph factor and is represented by voids, temperature, and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure, and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply managed degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.

  13. Polymer Composites Corrosive Degradation: A Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon

    2007-01-01

    A computational simulation of polymer composites corrosive durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured pH factor and is represented by voids, temperature and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.

  14. Corrosion Minimization for Research Reactor Fuel

    SciTech Connect

    Eric Shaber; Gerard Hofman

    2005-06-01

    Existing university research reactors are being converted to use low-enriched uranium fue to eliminate the use of highly-enriched uranium. These conversions require increases in fuel loading that will result in the use of elements with more fuel plates, resulting in a net decrease in the water annulus between fuel plates. The proposed decrease in the water annulus raises questions about the requirements and stability of the surface hydroxide on the aluminum fuel cladding and the potential for runaway corrosion resulting in fuel over-temperature incidents. The Nuclear Regulatory Commission (NRC), as regulator for these university reactors, must ensure that proposed fuel modifications will not result in any increased risk or hazard to the reactor operators or the public. This document reviews the characteristics and behavior of aluminum hydroxides, analyzes the drivers for fuel plate corrosion, reviews relevant historical incidents, and provides recommendations on fuel design, surface treatment, and reactor operational practices to avoid corrosion issues.

  15. Superheater Corrosion Produced By Biomass Fuels

    SciTech Connect

    Sharp, William; Singbeil, Douglas; Keiser, James R

    2012-01-01

    About 90% of the world's bioenergy is produced by burning renewable biomass fuels. Low-cost biomass fuels such as agricultural wastes typically contain more alkali metals and chlorine than conventional fuels. Although the efficiency of a boiler's steam cycle can be increased by raising its maximum steam temperature, alkali metals and chlorine released in biofuel boilers cause accelerated corrosion and fouling at high superheater steam temperatures. Most alloys that resist high temperature corrosion protect themselves with a surface layer of Cr{sub 2}O{sub 3}. However, this Cr{sub 2}O{sub 3} can be fluxed away by reactions that form alkali chromates or volatilized as chromic acid. This paper reviews recent research on superheater corrosion mechanisms and superheater alloy performance in biomass boilers firing black liquor, biomass fuels, blends of biomass with fossil fuels and municipal waste.

  16. Strain rate effects in stress corrosion cracking

    SciTech Connect

    Parkins, R.N. . Dept. of Metallurgy and Engineering Materials)

    1990-03-01

    Slow strain rate testing (SSRT) was initially developed as a rapid, ad hoc laboratory method for assessing the propensity for metals an environments to promote stress corrosion cracking. It is now clear, however, that there are good theoretical reasons why strain rate, as opposed to stress per se, will often be the controlling parameter in determining whether or not cracks are nucleated and, if so, are propagated. The synergistic effects of the time dependence of corrosion-related reactions and microplastic strain provide the basis for mechanistic understanding of stress corrosion cracking in high-pressure pipelines and other structures. However, while this may be readily comprehended in the context of laboratory slow strain tests, its extension to service situations may be less apparent. Laboratory work involving realistic stressing conditions, including low-frequency cyclic loading, shows that strain or creep rates give good correlation with thresholds for cracking and with crack growth kinetics.

  17. Corrosion failures of austenitic stainless steel piping

    SciTech Connect

    Louthan, M.R. Jr.

    1993-10-01

    The safe and efficient operation of many chemical/industrial systems requires the continued integrity of the process piping; this is achieved through a complex series of interactions influenced by design, fabrication, construction, operation, inspection and lay-up requirements. Potential material-enviroment interactions are frequently, if evaluated at all, relegated to secondary considerations. This tendency virtually assures corrosion induced degradation of the process piping systems. Pitting, crevice attack, stress cracking, microbiologically influenced corrosion, intergranular attack and corrosion fatigue have caused leaks, cracks, failures and shutdown of numerous process systems. This paper uses the lessons learned from failure analysis to emphasize the importance of an integrated material program to system success. The necessity of continuing evaluation if also emphasized through examples of failures which were associated with materials-environment interactions caused by slight alterations of processes and/or systems.

  18. Inhibitor prevents corrosion, scale in Chinese waterflood

    SciTech Connect

    Yong, W.; Jianhua, W. )

    1994-03-14

    An imidazoline derivative-based series inhibitor has prevented both corrosion and scale formation in produced-water treatment and water-injection equipment in China National Petroleum Co.'s (CNPC) Shengli oil field. Development of the inhibitor started in 1986, and after successful field trials the chemical is now being extensively applied. To increase oil recovery, water injection is widely used in China's onshore oil fields. Oil production in the Shengli oil field, for example, requires injection of about 4 bbl of water/1 bbl of oil produced. The large volumes of produced formation water contain many substances that can cause serious corrosion and scale. Also, the makeup water from other sources, subsurface or surface, complicates water handling. The paper discusses the following: corrosion and scale, oxygen, carbon dioxide, H[sub 2]S and sulfur reducing bacteria, temperature, inhibition, field tests, applications, and economics.

  19. Bacterial corrosion of reformer heater tubes

    SciTech Connect

    Ghassem, H.; Adibi, N.

    1995-03-01

    Soon after going on stream, two tubes in a heater convection bank, which had been reassembled using reclaimed tubes, started to leak and caused a fire. The tubes were made of AISI 304H stainless steel 4.5 in. diam by 0.25 in. thick. Preliminary visual inspection of the failed tubes revealed a few barely detectable pinholes on the external surfaces. Cutting the tubes at various sections near the pinholes revealed more specific features of corrosion. Each of the detected surface pinholes led to a subsurface cavity or gap, which when sectioned, resembled a bottle-shaped cavity. Corrosion had formed a number of tunnels and cavities within the tube wall, all interconnected through minute pathways, and had progressed along the tube length. On the internal surface of the failed tubes, a fairly large hole had opened to one of the corrosion cavities. Microstructural examination showed that the tube material had been sensitized and that the corrosion had progressed foremost along chromium-depleted zones next to grain boundaries. Scanning electron microscopy (SEM) on a bent-open minute corrosion crack revealed numerous scattered bright spots with definite shape and size on the exposed surfaces, which were very similar to sulfate-reducing bacteria (SRB). Although the heater had run for some time before its failure, the remains of bacteria on the exposed crack surfaces was quite obvious. Furthermore, analytical studies by means of SEM-energy dispersive x-ray analysis, clearly revealed sulfur inside the smaller cavities or gaps where corrosion products had remained intact.

  20. TRU drum corrosion task team report

    SciTech Connect

    Kooda, K.E.; Lavery, C.A.; Zeek, D.P.

    1996-05-01

    During routine inspections in March 1996, transuranic (TRU) waste drums stored at the Radioactive Waste Management Complex (RWMC) were found with pinholes and leaking fluid. These drums were overpacked, and further inspection discovered over 200 drums with similar corrosion. A task team was assigned to investigate the problem with four specific objectives: to identify any other drums in RWMC TRU storage with pinhole corrosion; to evaluate the adequacy of the RWMC inspection process; to determine the precise mechanism(s) generating the pinhole drum corrosion; and to assess the implications of this event for WIPP certifiability of waste drums. The task team investigations analyzed the source of the pinholes to be Hcl-induced localized pitting corrosion. Hcl formation is directly related to the polychlorinated hydrocarbon volatile organic compounds (VOCs) in the waste. Most of the drums showing pinhole corrosion are from Content Code-003 (CC-003) because they contain the highest amounts of polychlorinated VOCs as determined by headspace gas analysis. CC-001 drums represent the only other content code with a significant number of pinhole corrosion drums because their headspace gas VOC content, although significantly less than CC-003, is far greater than that of the other content codes. The exact mechanisms of Hcl formation could not be determined, but radiolytic and reductive dechlorination and direct reduction of halocarbons were analyzed as the likely operable reactions. The team considered the entire range of feasible options, ranked and prioritized the alternatives, and recommended the optimal solution that maximizes protection of worker and public safety while minimizing impacts on RWMC and TRU program operations.

  1. Peste des Petits Ruminants Virus.

    PubMed

    Baron, M D; Diallo, A; Lancelot, R; Libeau, G

    2016-01-01

    Peste des petits ruminants virus (PPRV) causes a severe contagious disease of sheep and goats and has spread extensively through the developing world. Because of its disproportionately large impact on the livelihoods of low-income livestock keepers, and the availability of effective vaccines and good diagnostics, the virus is being targeted for global control and eventual eradication. In this review we examine the origin of the virus and its current distribution, and the factors that have led international organizations to conclude that it is eradicable. We also review recent progress in the molecular and cellular biology of the virus and consider areas where further research is required to support the efforts being made by national, regional, and international bodies to tackle this growing threat. PMID:27112279

  2. Predicting concrete corrosion of sewers using artificial neural network.

    PubMed

    Jiang, Guangming; Keller, Jurg; Bond, Philip L; Yuan, Zhiguo

    2016-04-01

    Corrosion is often a major failure mechanism for concrete sewers and under such circumstances the sewer service life is largely determined by the progression of microbially induced concrete corrosion. The modelling of sewer processes has become possible due to the improved understanding of in-sewer transformation. Recent systematic studies about the correlation between the corrosion processes and sewer environment factors should be utilized to improve the prediction capability of service life by sewer models. This paper presents an artificial neural network (ANN)-based approach for modelling the concrete corrosion processes in sewers. The approach included predicting the time for the corrosion to initiate and then predicting the corrosion rate after the initiation period. The ANN model was trained and validated with long-term (4.5 years) corrosion data obtained in laboratory corrosion chambers, and further verified with field measurements in real sewers across Australia. The trained model estimated the corrosion initiation time and corrosion rates very close to those measured in Australian sewers. The ANN model performed better than a multiple regression model also developed on the same dataset. Additionally, the ANN model can serve as a prediction framework for sewer service life, which can be progressively improved and expanded by including corrosion rates measured in different sewer conditions. Furthermore, the proposed methodology holds promise to facilitate the construction of analytical models associated with corrosion processes of concrete sewers. PMID:26841228

  3. Corrosion Studies of Wrought and Cast NASA-23 Alloy

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1997-01-01

    Corrosion studies were carried out for wrought and cast NASA-23 alloy using electrochemical methods. The scanning reference electrode technique (SRET), the polarization resistance technique (PR), and the electrochemical impedance spectroscopy (EIS) were employed. These studies corroborate the findings of stress corrosion studies performed earlier, in that the material is highly resistant to corrosion.

  4. 49 CFR 193.2635 - Monitoring corrosion control.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Monitoring corrosion control. 193.2635 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2635 Monitoring corrosion control. Corrosion protection provided as required by this subpart must be periodically monitored to give...

  5. 49 CFR 192.479 - Atmospheric corrosion control: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Atmospheric corrosion control: General. 192.479... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.479 Atmospheric corrosion control: General. (a) Each operator must clean and coat...

  6. 49 CFR 193.2304 - Corrosion control overview.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Corrosion control overview. 193.2304 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Construction § 193.2304 Corrosion control overview. (a... materials specifications from a corrosion control viewpoint and determines that the materials involved...

  7. 49 CFR 193.2304 - Corrosion control overview.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Corrosion control overview. 193.2304 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Construction § 193.2304 Corrosion control overview. (a... materials specifications from a corrosion control viewpoint and determines that the materials involved...

  8. 46 CFR 54.25-5 - Corrosion allowance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-5 Corrosion allowance. The corrosion allowance must be as required in 46 CFR 54.01-35. ... 46 Shipping 2 2012-10-01 2012-10-01 false Corrosion allowance. 54.25-5 Section 54.25-5...

  9. 49 CFR 192.463 - External corrosion control: Cathodic protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Cathodic protection. 192.463 Section 192.463 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.463 External corrosion control: Cathodic protection. (a) Each...

  10. 49 CFR 192.463 - External corrosion control: Cathodic protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Cathodic protection. 192.463 Section 192.463 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.463 External corrosion control: Cathodic protection. (a) Each...

  11. 49 CFR 192.473 - External corrosion control: Interference currents.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Interference currents. 192.473 Section 192.473 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.473 External corrosion control: Interference currents. (a) Each...

  12. 49 CFR 192.481 - Atmospheric corrosion control: Monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Atmospheric corrosion control: Monitoring. 192.481... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.481 Atmospheric corrosion control: Monitoring. (a) Each operator must inspect each...

  13. 49 CFR 192.465 - External corrosion control: Monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Monitoring. 192.465... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.465 External corrosion control: Monitoring. (a) Each pipeline that is under...

  14. 49 CFR 192.481 - Atmospheric corrosion control: Monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Atmospheric corrosion control: Monitoring. 192.481... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.481 Atmospheric corrosion control: Monitoring. (a) Each operator must inspect each...

  15. 49 CFR 193.2635 - Monitoring corrosion control.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Monitoring corrosion control. 193.2635 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2635 Monitoring corrosion control. Corrosion protection provided as required by this subpart must be periodically monitored to give...

  16. 49 CFR 193.2635 - Monitoring corrosion control.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Monitoring corrosion control. 193.2635 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2635 Monitoring corrosion control. Corrosion protection provided as required by this subpart must be periodically monitored to give...

  17. 49 CFR 192.473 - External corrosion control: Interference currents.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Interference currents. 192.473 Section 192.473 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.473 External corrosion control: Interference currents. (a) Each...

  18. 49 CFR 192.479 - Atmospheric corrosion control: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Atmospheric corrosion control: General. 192.479... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.479 Atmospheric corrosion control: General. (a) Each operator must clean and coat...

  19. 49 CFR 192.463 - External corrosion control: Cathodic protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Cathodic protection. 192.463 Section 192.463 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.463 External corrosion control: Cathodic protection. (a) Each...

  20. 49 CFR 192.473 - External corrosion control: Interference currents.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Interference currents. 192.473 Section 192.473 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.473 External corrosion control: Interference currents. (a) Each...

  1. 46 CFR 54.25-5 - Corrosion allowance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-5 Corrosion allowance. The corrosion allowance must be as required in 46 CFR 54.01-35. ... 46 Shipping 2 2013-10-01 2013-10-01 false Corrosion allowance. 54.25-5 Section 54.25-5...

  2. 49 CFR 192.465 - External corrosion control: Monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Monitoring. 192.465... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.465 External corrosion control: Monitoring. (a) Each pipeline that is under...

  3. 49 CFR 192.479 - Atmospheric corrosion control: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Atmospheric corrosion control: General. 192.479... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.479 Atmospheric corrosion control: General. (a) Each operator must clean and coat...

  4. 49 CFR 192.465 - External corrosion control: Monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Monitoring. 192.465... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.465 External corrosion control: Monitoring. (a) Each pipeline that is under...

  5. 49 CFR 192.469 - External corrosion control: Test stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic...

  6. 49 CFR 192.469 - External corrosion control: Test stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic...

  7. 49 CFR 192.469 - External corrosion control: Test stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic...

  8. 49 CFR 193.2304 - Corrosion control overview.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Corrosion control overview. 193.2304 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Construction § 193.2304 Corrosion control overview. (a... materials specifications from a corrosion control viewpoint and determines that the materials involved...

  9. 46 CFR 54.25-5 - Corrosion allowance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-5 Corrosion allowance. The corrosion allowance must be as required in 46 CFR 54.01-35. ... 46 Shipping 2 2011-10-01 2011-10-01 false Corrosion allowance. 54.25-5 Section 54.25-5...

  10. 49 CFR 192.465 - External corrosion control: Monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Monitoring. 192.465... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.465 External corrosion control: Monitoring. (a) Each pipeline that is under...

  11. 49 CFR 192.481 - Atmospheric corrosion control: Monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Atmospheric corrosion control: Monitoring. 192.481... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.481 Atmospheric corrosion control: Monitoring. (a) Each operator must inspect each...

  12. 49 CFR 192.463 - External corrosion control: Cathodic protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Cathodic protection. 192.463 Section 192.463 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.463 External corrosion control: Cathodic protection. (a) Each...

  13. 49 CFR 192.469 - External corrosion control: Test stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic...

  14. 7 CFR 3201.104 - Metal cleaners and corrosion removers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Metal cleaners and corrosion removers. 3201.104... FOR FEDERAL PROCUREMENT Designated Items § 3201.104 Metal cleaners and corrosion removers. (a... from metal surfaces. (2) Metal cleaners and corrosion removers for which Federal preferred...

  15. 49 CFR 193.2635 - Monitoring corrosion control.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Monitoring corrosion control. 193.2635 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2635 Monitoring corrosion control. Corrosion protection provided as required by this subpart must be periodically monitored to give...

  16. 49 CFR 192.473 - External corrosion control: Interference currents.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Interference currents. 192.473 Section 192.473 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.473 External corrosion control: Interference currents. (a) Each...

  17. 49 CFR 192.481 - Atmospheric corrosion control: Monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Atmospheric corrosion control: Monitoring. 192.481... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.481 Atmospheric corrosion control: Monitoring. (a) Each operator must inspect each...

  18. 49 CFR 192.479 - Atmospheric corrosion control: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Atmospheric corrosion control: General. 192.479... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.479 Atmospheric corrosion control: General. (a) Each operator must clean and coat...

  19. 46 CFR 54.25-5 - Corrosion allowance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-5 Corrosion allowance. The corrosion allowance must be as required in 46 CFR 54.01-35. ... 46 Shipping 2 2014-10-01 2014-10-01 false Corrosion allowance. 54.25-5 Section 54.25-5...

  20. 49 CFR 193.2304 - Corrosion control overview.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Corrosion control overview. 193.2304 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Construction § 193.2304 Corrosion control overview. (a... materials specifications from a corrosion control viewpoint and determines that the materials involved...

  1. A Multifunctional Smart Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Buhrow, Jerry W.; Jolley, Scott T.

    2012-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on micro-encapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy. This

  2. EFFECT OF CREVICE FORMER ON CORROSION DAMAGE PROPAGATION

    SciTech Connect

    J.H. Payer; U. Landau; X. Shan; A.S. Agarwal

    2006-03-01

    The objectives of this report are: (1) To determine the effect of the crevice former on the localized corrosion damage propagation; (2) FOCUS on post initiation stage, crevice propagation and arrest processes; (3) Determine the evolution of damage--severity, shape, location/distribution, damage profile; and (4) Model of crevice corrosion propagation, i.e. the evolution of the crevice corrosion damage profile.

  3. Corrosion of graphite composites in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Christner, L. G.; Dhar, H. P.; Farooque, M.; Kush, A. K.

    1986-01-01

    Polymers, polymer-graphite composites and different carbon materials are being considered for many of the fuel cell stack components. Exposure to concentrated phosphoric acid in the fuel cell environment and to high anodic potential results in corrosion. Relative corrosion rates of these materials, failure modes, plausible mechanisms of corrosion and methods for improvement of these materials are investigated.

  4. Predicting concrete corrosion of sewers using artificial neural network.

    PubMed

    Jiang, Guangming; Keller, Jurg; Bond, Philip L; Yuan, Zhiguo

    2016-04-01

    Corrosion is often a major failure mechanism for concrete sewers and under such circumstances the sewer service life is largely determined by the progression of microbially induced concrete corrosion. The modelling of sewer processes has become possible due to the improved understanding of in-sewer transformation. Recent systematic studies about the correlation between the corrosion processes and sewer environment factors should be utilized to improve the prediction capability of service life by sewer models. This paper presents an artificial neural network (ANN)-based approach for modelling the concrete corrosion processes in sewers. The approach included predicting the time for the corrosion to initiate and then predicting the corrosion rate after the initiation period. The ANN model was trained and validated with long-term (4.5 years) corrosion data obtained in laboratory corrosion chambers, and further verified with field measurements in real sewers across Australia. The trained model estimated the corrosion initiation time and corrosion rates very close to those measured in Australian sewers. The ANN model performed better than a multiple regression model also developed on the same dataset. Additionally, the ANN model can serve as a prediction framework for sewer service life, which can be progressively improved and expanded by including corrosion rates measured in different sewer conditions. Furthermore, the proposed methodology holds promise to facilitate the construction of analytical models associated with corrosion processes of concrete sewers.

  5. Study of crevice-galvanic corrosion of aluminum

    NASA Technical Reports Server (NTRS)

    Draley, J. E.; Loess, R. E.; Mori, S.

    1967-01-01

    Corrosion effects of aluminum-copper and aluminum-nickel couples in oxygenated distilled water, and aluminum alloys in oxygenated copper sulfate solution were studied. One of each of the couples had a water tight seal, and showed no substantial corrosion, and of the unsealed couples, only the aluminum-copper developed corrosion.

  6. 46 CFR 54.25-5 - Corrosion allowance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-5 Corrosion allowance. The corrosion allowance must be as required in 46 CFR 54.01-35. ... 46 Shipping 2 2010-10-01 2010-10-01 false Corrosion allowance. 54.25-5 Section 54.25-5...

  7. Bacterial Exopolysaccharides For Corrosion Inhibition on Metal Substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofilms, composed of extra-cellular polymers secreted by bacteria, have been observed to both increase as well as decrease the rate of metal corrosion. Exopolysaccharides derived from Leuconostoc mesenteroides cultures have been shown to inhibit corrosion on corrosion-sensitive metals. The substa...

  8. 40 CFR 261.22 - Characteristic of corrosivity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Characteristic of corrosivity. 261.22... (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Characteristics of Hazardous Waste § 261.22 Characteristic of corrosivity. (a) A solid waste exhibits the characteristic of corrosivity if a...

  9. 40 CFR 261.22 - Characteristic of corrosivity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Characteristic of corrosivity. 261.22... (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Characteristics of Hazardous Waste § 261.22 Characteristic of corrosivity. (a) A solid waste exhibits the characteristic of corrosivity if a...

  10. 40 CFR 261.22 - Characteristic of corrosivity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Characteristic of corrosivity. 261.22... (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Characteristics of Hazardous Waste § 261.22 Characteristic of corrosivity. (a) A solid waste exhibits the characteristic of corrosivity if a...

  11. PD/MG BIMETALLIC CORROSION CELLS FOR DECHLORINATING PCBS

    EPA Science Inventory

    Two dissimilar metals immersed in a conducting solution develop different corrosion potentials forming a bimetallic corrosion cell. Enhanced corrosion of an active metal like Mg combined with catalytic hydrogenation properties of a noble metal like Pd in such bimetallic cells can...

  12. 46 CFR 188.10-23 - Corrosive liquids.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Corrosive liquids. 188.10-23 Section 188.10-23 Shipping... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-23 Corrosive liquids. (a) This term includes those acids, alkaline caustic liquids, and other corrosive liquids which, when in contact with...

  13. 46 CFR 188.10-23 - Corrosive liquids.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Corrosive liquids. 188.10-23 Section 188.10-23 Shipping... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-23 Corrosive liquids. (a) This term includes those acids, alkaline caustic liquids, and other corrosive liquids which, when in contact with...

  14. 46 CFR 188.10-23 - Corrosive liquids.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Corrosive liquids. 188.10-23 Section 188.10-23 Shipping... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-23 Corrosive liquids. (a) This term includes those acids, alkaline caustic liquids, and other corrosive liquids which, when in contact with...

  15. 46 CFR 188.10-23 - Corrosive liquids.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Corrosive liquids. 188.10-23 Section 188.10-23 Shipping... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-23 Corrosive liquids. (a) This term includes those acids, alkaline caustic liquids, and other corrosive liquids which, when in contact with...

  16. 46 CFR 188.10-23 - Corrosive liquids.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Corrosive liquids. 188.10-23 Section 188.10-23 Shipping... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-23 Corrosive liquids. (a) This term includes those acids, alkaline caustic liquids, and other corrosive liquids which, when in contact with...

  17. Reusable crucible for containing corrosive liquids

    DOEpatents

    Pruneda, J.A.H. de.

    1995-01-24

    A reusable, non-wetting, corrosion-resistant material suitable for containment of corrosive liquids is formed of a tantalum or tantalum alloy substrate that is permeated with carbon atoms. The substrate is carburized to form surface layers of TaC and Ta[sub 2]C, and then is heated at high temperature under vacuum until the carbon atoms in the carbide layers diffuse throughout the substrate to form a solid solution of carbon atoms randomly interspersed in the tantalum or tantalum alloy lattice. 10 figures.

  18. Protection of offshore structures against corrosion

    SciTech Connect

    Bird, M.F.; Smith, H.M.; Bowley, C.V. Ltd., Denso House, Chapel Road, London SE27 OTR )

    1989-09-01

    Maintaining protection of metal structures against corrosion in marine environments presents problems of surface preparation, accessibility and the limitations of various coating systems. Cathodic protection may be utilized underwater but its effectiveness is severely limited in the splash zone. Hence, reliable coatings are required. Petrolatum tapes have special virtues under these conditions. Following years of experience of the use of petrolatum tapes in difficult environments a comprehensive corrosion protection system was developed for piles, offshore platforms, risers etc. The paper covers both laboratory and field experience leading to commercially viable coatings.

  19. A review of topical corrosive black salve.

    PubMed

    Eastman, Kristin L; McFarland, Lynne V; Raugi, Gregory J

    2014-04-01

    Black salve is a compound derived from various inert ingredients, but it can be transformed into a corrosive ointment by the addition of bloodroot (Sanguinaria canadensis) or zinc chloride. Black salve products have been advertised as a natural remedy for many ailments, ranging from bee stings to skin cancer. This article reviews the current literature surrounding this compound, which in its corrosive form can be dangerous for use without medical supervision. Patients should be educated about the lack of objective evidence supporting the clinical efficacy of black salve as a skin cancer treatment, as well as the possible cosmetic defects resulting from tissue necrosis secondary to the effects of bloodroot and zinc chloride.

  20. Stress corrosion of high strength aluminum alloys.

    NASA Technical Reports Server (NTRS)

    Cocks, F. H.; Brummer, S. B.

    1972-01-01

    An investigation has been carried out to examine the relationship of the observed chemical and mechanical properties of Al-Cu and Al-Zn-Mg alloys to the stress corrosion mechanisms which dominate in each case. Two high purity alloys and analogous commercial alloys were selected. Fundamental differences between the behavior of Al-Cu and of Al-Zn-Mg alloys were observed. These differences in the corrosion behavior of the two types of alloys are augmented by substantial differences in their mechanical behavior. The relative cleavage energy of the grain boundaries is of particular importance.

  1. Reusable crucible for containing corrosive liquids

    DOEpatents

    de Pruneda, Jean A. H.

    1995-01-01

    A reusable, non-wetting, corrosion-resistant material suitable for containment of corrosive liquids is formed of a tantalum or tantalum alloy substrate that is permeated with carbon atoms. The substrate is carburized to form surface layers of TaC and Ta.sub.2 C, and then is heated at high temperature under vacuum until the carbon atoms in the carbide layers diffuse throughout the substrate to form a solid solution of carbon atoms randomly interspersed in the tantalum or tantalum alloy lattice.

  2. Corrosion tests in Hawaiian geothermal fluids

    SciTech Connect

    Larsen-Basse, J.; Lam, Kam-Fai

    1984-01-01

    Exposure tests were conductd in binary geothermal brine on the island of Hawaii. The steam which flashes from the high pressure, high temperature water as it is brought to ambient pressure contains substantial amounts of H{sub 2}S. In the absence of oxygen this steam is only moderately aggressive but in the aerated state it is highly aggressive to carbon steels and copper alloys. The liquid after flasing is intermediately aggressive. The Hawaiian fluid is unique in chemistry and corrosion behavior; its corrosiveness is relatively mild for a geothermal fluid falling close to the Iceland-type resources. 24 refs., 7 figs., 5 tabs.

  3. Cancer risk in DES daughters

    PubMed Central

    Verloop, Janneke; van Leeuwen, Flora E.; Helmerhorst, Theo J. M.; van Boven, Hester H.

    2010-01-01

    Objective We examined long-term risk of cancer in women exposed to diethylstilbestrol (DES) in utero. Methods A total of 12,091 DES-exposed women in the Netherlands were followed prospectively from December 1992 till June 2008. Cancer incidence was assessed through linkage with the Dutch pathology database (PALGA) and the Netherlands Cancer Registry and compared with the Dutch female population. Results A total of 348 medically verified cancers occurred; median age at end of follow-up was 44.0 years. No overall increased risk of cancer was found (standardized incidence ratio [SIR] = 1.01; 95% confidence interval [CI] = 0.91, 1.13). The risk of clear cell adenocarcinoma of the vagina and cervix (CCA) was statistically significantly increased (SIR = 24.23; 95% CI = 8.89, 52.74); the elevated risk persisted above 40 years of age. The risk of melanoma diagnosed before age 40 was increased (SIR = 1.59; 95% CI = 1.08, 2.26). No excess risks were found for other sites, including breast cancer. Conclusions Except for an elevated risk of CCA, persisting at older ages, and an increased risk of melanoma at young ages, we found no increased risk of cancer. Longer follow-up is warranted to examine cancer risk at ages when cancer occurs more frequently. Electronic supplementary material The online version of this article (doi:10.1007/s10552-010-9526-5) contains supplementary material, which is available to authorized users. PMID:20204493

  4. The enhancement of existing DES Maplet interface

    NASA Astrophysics Data System (ADS)

    Abdullah, Nur Lina; Mutalip, Rasidah Abdull; Abdullah, Kamilah

    2014-07-01

    This study pertains to the process of Data Encryption Standard, DES. DES consists of encryption and decryption processes linked with mathematical elements such as algebra and number theory. Preliminary, studies revealed that most of mathematics students face a problem in understanding the complicated process of DES. In modern learning methods, learning environment becomes more interesting with the use of computer and a variety of mathematical software packages. Several mathematical softwares such as Maple, Mathematica, Mathlab and Sage were developed in order to fulfill the specific calculation requirements. Correspondingly, motivated from that, this study incorporated with Maple to enhance the existing DES Maplet interface to be more interactive and user-friendly compared to the original version.

  5. Glass corrosion in natural environments

    NASA Technical Reports Server (NTRS)

    Thorpe, Arthur N.; Barkatt, Aaron

    1992-01-01

    Experiments carried out during the progress period are summarized. Experiments carried out involving glass samples exposed to solutions of Tris have shown the appearance of 'spikes' upon monitoring glass dissolution as a function of time. The periodic 'spikes' observed in Tris-based media were interpreted in terms of cracking due to excessive stress in the surface region of the glass. Studies of the interactions of silicate glasses with metal ions in buffered media were extended to systems containing Al. Caps buffer was used to establish the pH. The procedures used are described and the results are given. Preliminary studies were initiated as to the feasibility of adding a slowly dissolving solid compound of the additive to the glass-water system to maintain a supply of dissolved additive. It appears that several magnesium compounds have a suitable combination of solubility and affinity towards silicate glass surfaces to have a pronounced retarding effect on the extraction of uranium from the glass. These preliminary findings raise the possibility that introducing a magnesium source into geologic repositories for nuclear waste glass in the form of a sparingly soluble Mg-based backfill material may cause a substantial reduction in the extent of long-term glass corrosion. The studies described also provide mechanistic understanding of the roles of various metal solutes in the leachant. Such understanding forms the basis for developing long-term predictions of nuclear waste glass durability under repository conditions. From what is known about natural highly reduced glasses such as tektites, it is clear that iron is dissolved as ferrous iron with little or no ferric iron. The reducing conditions were high enough to cause metallic iron to exsolve out of the glass in the form of submicroscopic spherules. As the nuclear waste glass is much less reduced, a study was initiated on other natural glasses in addition to the nuclear waste glass. Extensive measurements were

  6. Localized Corrosion of Alloy 22 -Fabrication Effects-

    SciTech Connect

    Rebak, R B

    2005-11-05

    This report deals with the impact of fabrication processes on the localized corrosion behavior of Alloy 22 (N06022). The four fabrication processes that were analyzed are: (1) Surface stress mitigation of final closure weld, (2) Manufacturing of the mockup container, (3) Black annealing of the container and (4) Use of different heats of Alloy 22 for container fabrication. Immersion and Electrochemical tests performed in the laboratory are generally aggressive and do not represent actual repository environments in Yucca Mountain. For example, to determine the intergranular attack in the heat affected zone of a weldment, tests are conducted in boiling acidic and oxidizing solutions according to ASTM standards. These solutions are used to compare the behavior of differently treated metallic coupons. Similarly for electrochemical tests many times pure sodium chloride or calcium chloride solutions are used. Pure chloride solutions are not representative of the repository environment. (1) Surface Stress Mitigation: When metallic plates are welded, for example using the Gas Tungsten Arc Welding (GTAW) method, residual tensile stresses may develop in the vicinity of the weld seam. Processes such as Low Plasticity Burnishing (LPB) and Laser Shock Peening (LSP) could be applied locally to eliminate the residual stresses produced by welding. In this study, Alloy 22 plates were welded and then the above-mentioned surface treatments were applied to eliminate the residual tensile stresses. The aim of the current study was to comparatively test the corrosion behavior of as-welded (ASW) plates with the corrosion behavior of plates with stress mitigated surfaces. Immersion and electrochemical tests were performed. Results from both immersion and electrochemical corrosion tests show that the corrosion resistance of the mitigated plates was not affected by the surface treatments applied. (2) Behavior of Specimens from a Mockup container: Alloy 22 has been extensively tested for

  7. Engineering Task Plan for Fourth Generation Hanford Corrosion Monitoring System

    SciTech Connect

    NORMAN, E.C.

    2000-06-20

    This Engineering Task Plan (ETP) describes the activities associated with the installation of cabinets containing corrosion monitoring equipment on tanks 241-AN-102 and 241-AN-107. The new cabinets (one per tank) will be installed adjacent to existing corrosion probes already installed in riser WST-RISER-016 on both tanks. The corrosion monitoring equipment to be installed utilizes the technique of electrochemical noise (EN) for monitoring waste tank corrosion. Typically, EN consists of low frequency (4 Hz) and small amplitude signals that are spontaneously generated by electrochemical reactions occurring at corroding or other surfaces. EN analysis is well suited for monitoring and identifying the onset of localized corrosion, and for measuring uniform corrosion rates. A typical EN based corrosion-monitoring system measures instantaneous fluctuations in corrosion current and potential between three nominally identical electrodes of the material of interest immersed in the environment of interest. Time-dependent fluctuations in corrosion current are described by electrochemical current noise, and time-dependent fluctuations of corrosion potential are described by electrochemical noise. The corrosion monitoring systems are designed to detect the onset of localized corrosion phenomena if tank conditions should change to allow these phenomena to occur. In addition to the EN technique, the systems also facilitate the use of the Linear Polarization Resistance (LPR) technique to collect uniform corrosion rate information. LPR measures the linearity at the origin of the polarization curve for overvoltages up to a few millivolts away from the rest potential or natural corrosion potential. The slope of the current vs. voltage plot gives information on uniform corrosion rates.

  8. Microstructure Instability of Candidate Fuel Cladding Alloys: Corrosion and Stress Corrosion Cracking Implications

    NASA Astrophysics Data System (ADS)

    Jiao, Yinan; Zheng, Wenyue; Guzonas, David; Kish, Joseph

    2016-02-01

    This paper addresses some of the overarching aspects of microstructure instability expected from both high temperature and radiation exposure that could affect the corrosion and stress corrosion cracking (SCC) resistance of the candidate austenitic Fe-Cr-Ni alloys being considered for the fuel cladding of the Canadian supercritical water-cooled reactor (SCWR) concept. An overview of the microstructure instability expected by both exposures is presented prior to turning the focus onto the implications of such instability on the corrosion and SCC resistance. Results from testing conducted using pre-treated (thermally-aged) Type 310S stainless steel to shed some light on this important issue are included to help identify the outstanding corrosion resistance assessment needs.

  9. The effects of radiolysis on the corrosion and stress corrosion behavior of 316 stainless steels

    SciTech Connect

    Duquette, D.J.; Steiner, D.

    1993-09-01

    This program is focused on the corrosion, stress corrosion and corrosion fatigue behavior of Type 316 stainless steel (316SS) at 50, 90, and 130 C in high-purity water. Irradiated solution tests are performed using high-energy photon radiation. Purpose of this work is to determine the effects of radiolysis products on the environmental stability of 316SS in support of the ITER first wall/shield/blanket design. Preliminary results suggest that irradiation of pure water at 50 C results in a shift in the electrochemical potential for 316SS of approximately 100mV in the active direction and nearly an order of magnitude increase in the passive current density as compared to non-irradiated conditions. This proposal outlines a three-year program to develop corrosion design criteria for the use of 316SS in an ITER environment.

  10. Hot corrosion and high temperature corrosion behavior of a new gas turbine material -- alloy 603GT

    SciTech Connect

    Agarwal, D.C.; Brill, U.; Klower, J.

    1998-12-31

    Salt deposits encountered in a variety of high temperature processes have caused premature failures in heat exchangers and superheater tubes in pulp and paper recovery boilers, waste incinerators and coal gasifiers. Molten salt corrosion studies in both land based and air craft turbines have been the subject of intense study by many researchers. This phenomenon referred to as ``hot corrosion`` has primarily been attributed to corrosion by alkali sulfates, and there is somewhat general agreement in the literature that this is caused by either basic or acidic dissolution (fluxing) of the protective metal oxide layers by complex salt deposits containing both sulfates and chlorides. This paper describes experimental studies conducted on the hot corrosion behavior of a new Ni-Cr-Al alloy 603GT (UNS N06603) in comparison to some commercially established alloys used in gas turbine components.

  11. Metallic plate corrosion and uptake of corrosion products by nafion in polymer electrolyte membrane fuel cells.

    PubMed

    Bozzini, Benedetto; Gianoncelli, Alessandra; Kaulich, Burkhard; Kiskinova, Maya; Prasciolu, Mauro; Sgura, Ivonne

    2010-07-19

    Nafion contamination by ferrous-alloy corrosion products, resulting in dramatic drops of the Ohmic potential, is a suspected major failure mode of polymer electrolyte membrane fuel cells that make use of metallic bipolar plates. This study demonstrates the potential of scanning transmission X-ray microscopy combined with X-ray absorption and fluorescence microspectroscopy for exploring corrosion processes of Ni and Fe electrodes in contact with a hydrated Nafion film in a thin-layer cell. The imaged morphology changes of the Ni and Fe electrodes and surrounding Nafion film that result from relevant electrochemical processes are correlated to the spatial distribution, local concentration, and chemical state of Fe and Ni species. The X-ray fluorescence maps and absorption spectra, sampled at different locations, show diffusion of corrosion products within the Nafion film only in the case of the Fe electrodes, whereas the Ni electrodes appear corrosion resistant. PMID:20564283

  12. The Proposed Yucca Mountain Repository From A Corrosion Perspective

    SciTech Connect

    J.H. Payer

    2005-03-10

    Corrosion is a primary determinant of waste package performance at the proposed Yucca Mountain Repository and will control the delay time for radionuclide transport from the waste package. Corrosion is the most probable and most likely degradation process that will determine when packages will be penetrated and the shape size and distribution of those penetrations. The general issues in corrosion science, materials science and electrochemistry are well defined, and the knowledge base is substantial for understanding corrosion processes. In this paper, the Yucca Mountain Repository is viewed from a corrosion perspective.

  13. Increasing corrosion resistance of carbon steels by surface laser cladding

    NASA Astrophysics Data System (ADS)

    Polsky, V. I.; Yakushin, V. L.; Dzhumaev, P. S.; Petrovsky, V. N.; Safonov, D. V.

    2016-04-01

    This paper presents results of investigation of the microstructure, elemental composition and corrosion resistance of the samples of low-alloy steel widely used in the engineering, after the application of laser cladding. The level of corrosion damage and the corrosion mechanism of cladded steel samples were established. The corrosion rate and installed discharge observed at the total destruction of cladding were obtained. The regularities of structure formation in the application of different powder compositions were obtained. The optimal powder composition that prevents corrosion of samples of low-carbon low-alloy steel was established.

  14. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    PubMed Central

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion. PMID:24558346

  15. Apollo experience report: The problem of stress-corrosion cracking

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.

    1973-01-01

    Stress-corrosion cracking has been the most common cause of structural-material failures in the Apollo Program. The frequency of stress-corrosion cracking has been high and the magnitude of the problem, in terms of hardware lost and time and money expended, has been significant. In this report, the significant Apollo Program experiences with stress-corrosion cracking are discussed. The causes of stress-corrosion cracking and the corrective actions are discussed, in terminology familiar to design engineers and management personnel, to show how stress-corrosion cracking can be prevented.

  16. Recent Developments on Microencapsulation for Autonomous Corrosion Protection

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Fitzpatrick, Lilliana; Jolley, Scott T.; Surma, Jan M.; Pearman, Benjamin P.; Zhang, Xuejun

    2014-01-01

    This work concerns recent progress in the development of a multifunctional smart coating based on microencapsulation for the autonomous control of corrosion. Microencapsulation allows the incorporation of desired corrosion control functionalities, such as early corrosion detection and inhibition through corrosion controlled release of corrosion indicators and inhibitors, as well as self-healing agent release when mechanical damage occurs.While proof-of-concept results have been reported previously, more recent efforts have been concentrated in technical developments to improve coating compatibility, synthesis procedure scalability, as well as fine tuning the release property of encapsulated active agents.

  17. Accelerated Test Method for Corrosion Protective Coatings Project

    NASA Technical Reports Server (NTRS)

    Falker, John; Zeitlin, Nancy; Calle, Luz

    2015-01-01

    This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as accurately and reliably as current long-term atmospheric exposure tests. This new accelerated test method will shorten the time needed to evaluate the corrosion protection performance of coatings for NASA's critical ground support structures. Lifetime prediction for spaceport structure coatings has a 5-year qualification cycle using atmospheric exposure. Current accelerated corrosion tests often provide false positives and negatives for coating performance, do not correlate to atmospheric corrosion exposure results, and do not correlate with atmospheric exposure timescales for lifetime prediction.

  18. Long Term Corrosion/Degradation Test Six Year Results

    SciTech Connect

    M. K. Adler Flitton; C. W. Bishop; M. E. Delwiche; T. S. Yoder

    2004-09-01

    The Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC) located at the Idaho National Engineering and Environmental Laboratory (INEEL) contains neutron-activated metals from non-fuel, nuclear reactor core components. The Long-Term Corrosion/Degradation (LTCD) Test is designed to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements to the environment. The test is using two proven, industry-standard methods—direct corrosion testing using metal coupons, and monitored corrosion testing using electrical/resistance probes—to determine corrosion rates for various metal alloys generally representing the metals of interest buried at the SDA, including Type 304L stainless steel, Type 316L stainless steel, Inconel 718, Beryllium S200F, Aluminum 6061, Zircaloy-4, low-carbon steel, and Ferralium 255. In the direct testing, metal coupons are retrieved for corrosion evaluation after having been buried in SDA backfill soil and exposed to natural SDA environmental conditions for times ranging from one year to as many as 32 years, depending on research needs and funding availability. In the monitored testing, electrical/resistance probes buried in SDA backfill soil will provide corrosion data for the duration of the test or until the probes fail. This report provides an update describing the current status of the test and documents results to date. Data from the one-year and three-year results are also included, for comparison and evaluation of trends. In the six-year results, most metals being tested showed extremely low measurable rates of general corrosion. For Type 304L stainless steel, Type 316L stainless steel, Inconel 718, and Ferralium 255, corrosion rates fell in the range of “no reportable” to 0.0002 mils per year (MPY). Corrosion rates for Zircaloy-4 ranged from no measurable corrosion to 0.0001 MPY. These rates are two orders of magnitude lower than those specified in

  19. COPPER PITTING CORROSION: A CASE STUDY

    EPA Science Inventory

    Localized or pitting corrosion of copper pipes used in household drinking-water plumbing is a problem for many water utilities and their customers. Extreme attack can lead to pinhole water leaks that may result in water damage, mold growth, and costly repairs. Water quality has b...

  20. Corrosion behavior of aluminum-lithium alloys

    SciTech Connect

    Garrard, W.N. )

    1994-03-01

    Corrosion behavior of three aluminum-lithium (Al-Li) alloys was investigated in aerated 0.5 M sodium sulfate (Na[sub 2]SO[sub 4]), deaerated 3.5% sodium chloride (NaCl), and aerated 3.5% NaCl. Corrosion behavior of the Aluminum Association (AA) alloys 2090-T8E41 (UNS A92090, sheet), AA 8090-T851 (UNS A98090, sheet), and AA 8090-T82551 (UNS A98090, bar) was compared to behavior of the conventional AA 7075-T6 (UNS A97075, sheet). Uniform corrosion was the predominant form of attack in aerated Na[sub 2]SO[sub 4] and deaerated NaCl, although some localized attack resulted from corrosion of intermetallics on specimen surfaces. Pitting was the main form of attack in aerated NaCl. In all three media, the sheet materials corroded at a similar rate, but the bar form of AA 8090 corroded at a lower rate. Pretreatment of the alloys by immersion in a cerium (Ce) solution inhibited pitting in aerated NaCl but only for a short period.

  1. NON-CORROSIVE REACTOR FUEL SYSTEM

    DOEpatents

    Herrick, C.C.

    1962-08-14

    A non-corrosive nuclear reactor fuel system was developed utilizing a molten plutonium-- iron alloy fuel having about 2 at.% carbon and contained in a tantalum vessel. This carbon reacts with the interior surface of the tantalum vessel to form a plutonium resistant self-healing tantalum carbide film. (AEC)

  2. Uncommon corrosion phenomena of archaeological bronze alloys

    NASA Astrophysics Data System (ADS)

    Ingo, G. M.; de Caro, T.; Riccucci, C.; Khosroff, S.

    2006-06-01

    In the framework of the EFESTUS project (funded by the European Commission, contract No. ICA3-CT-2002-10030) the corrosion products of a large number of archaeological bronze artefacts are investigated by means of the combined use of scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD) and optical microscopy (OM) and tentative correlation of their nature with the chemical composition of the artefacts and the burial context is proposed. The results provide good insight into the corrosion layers and evidence in some bronze Roman coins and artefacts; the occurrence of uncommon corrosion phenomena that give rise to the formation of a yellowish-green complex chlorine-phosphate of lead (pyromorphite, (PbCl)Pb4(PO4)3) and of a gold-like thick layer of an iron and copper sulphide (chalcopyrite, CuFeS2). The micro-chemical and micro-structural results show that the coins were buried in a soil enriched in phosphorus for the accidental presence of a large amount of decomposing fragments of bones or in an anaerobic and humus rich soil where the chalcopyrite layer has been produced via the interaction between the iron of the soil, the copper of the coin and the sulphur produced by the decomposition of organic matter in an almost oxygen free environment. Finally, some unusual periodic corrosion phenomena occurring in high tin bronze mirrors found at Zama (Tunisia) are described.

  3. Microbial influenced corrosion by thermophilic bacteria

    NASA Astrophysics Data System (ADS)

    Lata, Suman; Sharma, Chhaya; Singh, Ajay

    2012-03-01

    The present study was undertaken to investigate microbial influenced corrosion (MIC) on stainless steels due to thermophilic bacteria Desulfotomaculum nigrificans. The objective of the study was to measure the extent of corrosion and correlate it with the growth of the biofilm by monitoring the composition of its extracellular polymeric substances (EPS). The toxic effect of heavy metals on MIC was also observed. For this purpose, stainless steels 304L, 316L and 2205 were subjected to electrochemical polarization and immersion tests in the modified Baar's media, control and inoculated, in anaerobic conditions at room temperature. Scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS) were used to identify the chemicals present in/outside the pit. The results show maximum corrosive conditions when bacterial activity is highest, which in turn minimizes the amount of carbohydrate and protein along with the increase in the fraction of uronic acid in carbohydrate in EPS of the biofilm. However, although bacterial activity and corrosion rate decreases, the amount of biofilm components continue to increase. It is also observed that the toxicity of metals ions affect the bacterial activity and EPS production. It was observed that Desulfotomaculum sp. has the ability to biodegrade its own EPS.

  4. Nanocontainer-based corrosion sensing coating.

    PubMed

    Maia, F; Tedim, J; Bastos, A C; Ferreira, M G S; Zheludkevich, M L

    2013-10-18

    The present paper reports on the development of new sensing active coating on the basis of nanocontainers containing pH-indicating agent. The coating is able to detect active corrosion processes on different metallic substrates. The corrosion detection functionality based on the local colour change in active cathodic zones results from the interaction of hydroxide ions with phenolphthalein encapsulated in mesoporous nanocontainers which function as sensing nanoreactors. The mesoporous silica nanocontainers are synthesized and loaded with pH indicator phenolphthalein in a one-stage process. The resulting system is mesoporous, which together with bulkiness of the indicator molecules limits their leaching. At the same time, penetration of water molecules and ions inside the container is still possible, allowing encapsulated phenolphthalein to be sensitive to the pH in the surrounding environment and outperforming systems when an indicator is directly dispersed in the coating layer.The performed tests demonstrate the pH sensitivity of the developed nanocontainers being dispersed in aqueous solutions. The corrosion sensing functionality of the protective coatings with nanocontainers are proven for aluminium- and magnesium-based metallic substrates. As a result, the developed nanocontainers show high potential to be used in a new generation of active protective coatings with corrosion-sensing coatings.

  5. Corrosion of barrier materials in seawater environments

    SciTech Connect

    Heiser, J.H.; Soo, P.

    1995-07-01

    A brief review has been carried out on the performance of barrier materials for low-level radioactive wastes in seawater environments. The environments include those for shallower coastal waters as well as the deep ocean (down to 3800 m). The review is mainly focused on metallic materials since they are the most common for seawater service and they have the largest data base. Information from the literature is usually pertinent to shallower coastal locations, but there is a valuable source of corrosion data obtained from several studies of metallic specimens exposed to ocean-bed conditions. In addition, the corrosion of carbon steel barriers has been evaluated for actual waste containers that were retrieved from previously-used disposal sites in the Atlantic and Pacific Oceans. Of the metallic materials studied, carbon steel showed the least corrosion resistance. Failure by non-uniform attack in a typical waste container could occur in as little as 25 y in some ocean environments ` Penetration by local attack, such as pitting and crevice corrosion resistance was also observed for more expensive materials such as low-alloy steels, stainless steels, titanium alloys, zirconium alloys, copper alloys, nickel alloys, aluminum alloys, and lead alloys.

  6. Non corrosive micro coolers with matched CTE

    NASA Astrophysics Data System (ADS)

    Ebert, Thomas; Meiners, Wilhelm; Pajunk, Markus

    2006-02-01

    At Photonics West 2005 a new technology was described for building a new, non corrosive micro cooling heat sink for diode lasers made of stainless steel with the procedure of three dimensional laser melting. Due to the thermal conductivity, which is 20 times worse than the conductivity of copper, first test leads to the result, that it is not possible to compensate the worst thermal conductivity by an optimized inner structure, regarding wall thicknesses and flow rate. So the solution was searching a different material, with a better thermal conductivity to achieve a thermal over all resistance that is usable for the cooling of high power laser diodes. Searching that material leads to a special nickel alloy in the field of nuclear industry. The new generation of micro coolers are named TEX series. All TEX Series coolers were made out of a special nickel alloy, specially developed as a corrosion protection material. Therefore, the TEX coolers have excellent corrosion resistance. In addition, due to the manner and way of using three dimensional laser melting, the surface of the inner structure was hardened. The hardening HV1 is 380, so that there is no danger regarding erosion or a combination of erosion and corrosion. Metallization and soldering the semi conductor also had been tested. The commonly used structure with Nickel and Gold is possible as well as the metallization only with gold. With both variations the semi conductor can be soldered and the connection to the cooler surface is very strong.

  7. General Corrosion and Passive Film Stability

    SciTech Connect

    Orme, C; Gray, J; Hayes, J; Wong, L; Rebak, R; Carroll, S; Harper, J; Gdowski, G

    2005-07-19

    This report summarizes both general corrosion of Alloy 22 from 60 to 220 C and the stability of the passive (oxide) film from 60 to 90 C over a range of solution compositions that are relevant to the in-drift chemical environment at the waste package surface. The general corrosion rates were determined by weight-loss measurements in a range of complex solution compositions representing the products of both the evaporation of seepage water and also the deliquescence of dust previously deposited on the waste canisters. These data represent the first weight-loss measurements performed by the program at temperatures above 90 C. The low corrosion rates of Alloy 22 are attributed to the protective oxide film that forms at the metal surface. In this report, changes in the oxide film composition are correlated with weight loss at the higher temperatures (140-220 C) where film characterization had not been previously performed. The stability of the oxide film was further analyzed by conducting a series of electrochemical tests in progressively more acidic solutions to measure the general corrosion rates in solutions that mimic crevice or pit environments.

  8. High-temperature corrosion of iron aluminides

    SciTech Connect

    Natesan, K.; Cho, W.D.

    1994-04-01

    Iron aluminides are being developed for use as structural materials and/or cladding alloys in fossil energy systems. Extensive development has been in progress on Fe{sub 3}Al-based alloys to improve their engineering ductility. This paper describes results from an ongoing program to evaluate the corrosion performance of these alloys. The experimental program at Argonne involves thermogravimetric analyses of alloys exposed to environments that simulate coal gasification and coal combustion. Corrosion experiments were conducted to determine the effect of gas flow rate and different levels of HCl at a gas temperature of 650 C on three heats of aluminide material, namely, FA 61, FA 129, and FAX. In addition, specimens of Type 316 stainless steel with an overlay alloying of iron aluminide were prepared by electrospark deposition and tested for their corrosion resistance. Detailed microstructural evaluations of tested specimens were performed. Results are used to assess the corrosion resistance of various iron aluminides for service in fossil energy systems that utilize coal as a feedstock.

  9. Oxidation corrosion resistant superalloys and coatings

    NASA Technical Reports Server (NTRS)

    Jackson, Melvin R. (Inventor); Rairden, III, John R. (Inventor)

    1980-01-01

    An article of manufacture having improved high temperature oxidation and corrosion resistance comprising: (a) a superalloy substrate containing a carbide reinforcing phase, and (b) a coating consisting of chromium, aluminum, carbon, at least one element selected from iron, cobalt or nickel, and optionally an element selected from yttrium or the rare earth elements.

  10. Oxidation corrosion resistant superalloys and coatings

    NASA Technical Reports Server (NTRS)

    Jackson, Melvin R. (Inventor); Rairden, III, John R. (Inventor)

    1978-01-01

    An article of manufacture having improved high temperature oxidation and corrosion resistance comprising: (a) a superalloy substrate containing a carbide reinforcing phase, and (b) a coating consisting of chromium, aluminum, carbon, at least one element selected from iron, cobalt or nickel, and optionally an element selected from yttrium or the rare earth elements.

  11. NETL- Severe Environment Corrosion Erosion Facility

    SciTech Connect

    2013-09-12

    NETL's Severe Environment Corrosion Erosion Facility in Albany studies how new and old materials will stand up to new operating conditions. Work done in the lab supports NETL's oxy-fuel combustion oxidation work, refractory materials stability work, and the fuels program, in particular the hydrogen membrane materials stability work, to determine how best to upgrade existing power plants.

  12. Module voltage isolation and corrosion research

    NASA Technical Reports Server (NTRS)

    Mon, G. R.

    1985-01-01

    A summary of recent research at JPL on two topics related to achieving long term reliability of photovoltaic modules: voltage isolation and electrochemical corrosion is presented. Special emphasis is given to similarities and differences in performance between crystalline silicon modules and amorphous silicon modules.

  13. NETL- Severe Environment Corrosion Erosion Facility

    ScienceCinema

    None

    2016-07-12

    NETL's Severe Environment Corrosion Erosion Facility in Albany studies how new and old materials will stand up to new operating conditions. Work done in the lab supports NETL's oxy-fuel combustion oxidation work, refractory materials stability work, and the fuels program, in particular the hydrogen membrane materials stability work, to determine how best to upgrade existing power plants.

  14. Corrosion free phosphoric acid fuel cell

    DOEpatents

    Wright, Maynard K.

    1990-01-01

    A phosphoric acid fuel cell with an electrolyte fuel system which supplies electrolyte via a wick disposed adjacent a cathode to an absorbent matrix which transports the electrolyte to portions of the cathode and an anode which overlaps the cathode on all sides to prevent corrosion within the cell.

  15. Corrosion protective coating for metallic materials

    DOEpatents

    Buchheit, Rudolph G.; Martinez, Michael A.

    1998-01-01

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds.

  16. Corrosion protective coating for metallic materials

    DOEpatents

    Buchheit, R.G.; Martinez, M.A.

    1998-05-26

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides is disclosed. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds. 1 fig.

  17. 49 CFR 193.2625 - Corrosion protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Corrosion protection. 193.2625 Section 193.2625 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY...

  18. Detecting Corrosion Under Paint and Insulation

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.

    2011-01-01

    Corrosion is a major concern at the Kennedy Space Center in Florida due to the proximity of the center to the Atlantic Ocean and to salt water lagoons. High humidity, salt fogs, and ocean breezes, provide an ideal environment in which painted steel structures become corroded. Maintenance of painted steel structures is a never-ending process.

  19. Corrosion assessment of dry fuel storage containers

    SciTech Connect

    Graves, C.E.

    1994-09-01

    The structural stability as a function of expected corrosion degradation of 75 dry fuel storage containers located in the 200 Area Low-Level Waste Burial Grounds was evaluated. These containers include 22 concrete burial containers, 13 55-gal (208-l) drums, and 40 Experimental Breeder Reactor II (EBR-II) transport/storage casks. All containers are buried beneath at least 48 in. of soil and a heavy plastic tarp with the exception of 35 of the EBR-II casks which are exposed to atmosphere. A literature review revealed that little general corrosion is expected and pitting corrosion of the carbon steel used as the exterior shell for all containers (with the exception of the concrete containers) will occur at a maximum rate of 3.5 mil/yr. Penetration from pitting of the exterior shell of the 208-l drums and EBR-II casks is calculated to occur after 18 and 71 years of burial, respectively. The internal construction beneath the shell would be expected to preclude containment breach, however, for the drums and casks. The estimates for structural failure of the external shells, large-scale shell deterioration due to corrosion, are considerably longer, 39 and 150 years respectively for the drums and casks. The concrete burial containers are expected to withstand a service life of 50 years.

  20. Automated corrosion system in a moist environment

    SciTech Connect

    Hallman, R.L. Jr.; Calhoun, C.L.

    1999-03-19

    In an effort to assist researchers investigating the moisture-generated corrosion of metals and ceramics, a unique exposure system was developed. The initial goal of this system was to monitor corrosion ranging from a few monolayers at the outset of the corrosion process to high mass gains in more extensively corroded material. The new system uses a small robot arm for sample manipulation; gravimetric and Fourier transform infrared (FTIR) spectroscopy for corrosion-product determination; and a gas blending system to control the moisture content of the glove box in which the system is housed. The system's computer control can be configured to coordinate the examination of as many as 20 samples by periodic weighing and FTIR scanning. The computer also performs such functions as data logging of the temperature and pressure of the system and of the flow rate and moisture content of the purge gas. One main benefit of the computer-controlled robotic system is its ability to monitor samples 2 4 hours a day with precision control; this reduces problems stemming from human error or inconsistency of human technique.