Science.gov

Sample records for corrosion resistance properties

  1. [Corrosion resistant properties of different anodized microtopographies on titanium surfaces].

    PubMed

    Fangjun, Huo; Li, Xie; Xingye, Tong; Yueting, Wang; Weihua, Guo; Weidong, Tian

    2015-12-01

    To investigate the corrosion resistant properties of titanium samples prepared by anodic oxidation with different surface morphologies. Pure titanium substrates were treated by anodic oxidation to obtain porous titanium films in micron, submicron, and micron-submicron scales. The surface morphologies, coating cross-sectional morphologies, crystalline structures, and surface roughness of these samples were characterized. Electrochemical technique was used to measure the corrosion potential (Ecorr), current density of corrosion (Icorr), and polarization resistance (Rp) of these samples in a simulated body fluid. Pure titanium could be modified to exhibit different surface morphologies by the anodic oxidation technique. The Tafel curve results showed that the technique can improve the corrosion resistance of pure titanium. Furthermore, the corrosion resistance varied with different surface morphologies. The submicron porous surface sample demonstrated the best corrosion resistance, with maximal Ecorr and Rp and minimal Icorr. Anodic oxidation technology can improve the corrosion resistance of pure titanium in a simulated body fluid. The submicron porous surface sample exhibited the best corrosion resistance because of its small surface area and thick barrier layer.

  2. Corrosion resistant iron aluminides exhibiting improved mechanical properties and corrosion resistance

    DOEpatents

    Liu, C.T.; McKamey, C.G.; Tortorelli, P.F.; David, S.A.

    1994-06-14

    The specification discloses a corrosion-resistant intermetallic alloy comprising, in atomic percent, an FeAl iron aluminide containing from about 30 to about 40% aluminum alloyed with from about 0.01 to 0.4% zirconium and from 0.01 to about 0.8% boron. The alloy exhibits considerably improved room temperature ductility for enhanced usefulness in structural applications. The high temperature strength and fabricability is improved by alloying with molybdenum, carbon, chromium and vanadium. 9 figs.

  3. Corrosion resistant iron aluminides exhibiting improved mechanical properties and corrosion resistance

    DOEpatents

    Liu, Chain T.; McKamey, Claudette G.; Tortorelli, Peter F.; David, Stan A.

    1994-01-01

    The specification discloses a corrosion-resistant intermetallic alloy comprising, in atomic percent, an FeAl iron aluminide containing from about 30 to about 40% aluminum alloyed with from about 0.01 to 0.4% zirconium and from 0.01 to about 0.8% boron. The alloy exhibits considerably improved room temperature ductility for enhanced usefulness in structural applications. The high temperature strength and fabricability is improved by alloying with molybdenum, carbon, chromium and vanadium.

  4. Stress corrosion resistant fasteners

    NASA Technical Reports Server (NTRS)

    Roach, T. A.

    1985-01-01

    A family of high performance aerospace fasteners made from corrosion resistant alloys for use in applications where corrosion and stress-corrosion cracking are of major concern are discussed. The materials discussed are mainly A-286, Inconel 718, MP35N and MP159. Most of the fasteners utilize cold worked and aged materials to achieve the desired properties. The fasteners are unique in that they provide a combination of high strength and immunity to stress corrosion cracking not previously attainable. A discussion of fastener stress corrosion failures is presented including a review of the history and a description of the mechanism. Case histories are presented to illustrate the problems which can arise when material selection is made without proper regard for the environmental conditions. Mechanical properties and chemical compositions are included for the fasteners discussed. Several aspects of the application of high performance corrosion resistant fasteners are discussed including galvanic compatibility and torque-tension relationships.

  5. Corrosion resistance properties of organic inorganic hybrid coatings on 2024 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Sun, Dezhi; You, Hong; Chung, Jong Shik

    2005-06-01

    Three kinds of organic-inorganic hybrid coatings modified by tetraethoxysilane (TEOS) were prepared using precursors of vinyltrimethoxysilane (VMS), [3-(methacryloxy)propyl] trimethoxysilane (MPMS) and (3-glycidoxyproyl) trimethoxysilane (GPMS). Properties of corrosion resistance were tested by potentiodynamic polarization curves. Salt spray test and SEM images were also employed to examine the ablitity of coatings to resist long-time corrosion. The results show that hybrid coatings are effective for inhibiting corrosion reaction. Corrosion currents of VMS coating and MPMS coating were 300 times smaller than that of bare sample. The corrosion current of hybrid coatings is smallest when TEOS content reaches 15-20%. It was found that VMS coatings have the strongest ability to resist salt spray corrosion.

  6. Corrosion resistance and mechanical properties of alloy 803 for heat resisting applications

    SciTech Connect

    Ganesan, P.; Tassen, C.S.

    1997-08-01

    Alloy 803 was developed for applications as straight and twisted ID finned tubing in the petrochemical and chemical process industries, such as ethylene pyrolysis, that require enhanced resistance to oxidation and carburization in addition to adequate stress rupture strength. This paper presents the mechanical properties characterized for the alloy produced in other forms, such as plate, sheet and bar products, for applications in the heat treatment, chemical and petrochemical industries. The mechanical properties covered include room and high temperature tensile test results, impact strength, creep and stress rupture data for temperatures up to 2,000 F (1,093 C) at various stress levels. The preliminary results of the room and high temperature tensile and impact properties after long term exposures at intermediate temperatures are also presented. In addition to mechanical properties, the corrosion performance of alloy 803 in oxidation, sulfidation and carburization environments are presented.

  7. Enhanced antibacterial properties, biocompatibility, and corrosion resistance of degradable Mg-Nd-Zn-Zr alloy.

    PubMed

    Qin, Hui; Zhao, Yaochao; An, Zhiquan; Cheng, Mengqi; Wang, Qi; Cheng, Tao; Wang, Qiaojie; Wang, Jiaxing; Jiang, Yao; Zhang, Xianlong; Yuan, Guangyin

    2015-06-01

    Magnesium (Mg), a potential biodegradable material, has recently received increasing attention due to its unique antibacterial property. However, rapid corrosion in the physiological environment and potential toxicity limit clinical applications. In order to improve the corrosion resistance meanwhile not compromise the antibacterial activity, a novel Mg alloy, Mg-Nd-Zn-Zr (Hereafter, denoted as JDBM), is fabricated by alloying with neodymium (Nd), zinc (Zn), zirconium (Zr). pH value, Mg ion concentration, corrosion rate and electrochemical test show that the corrosion resistance of JDBM is enhanced. A systematic investigation of the in vitro and in vivo antibacterial capability of JDBM is performed. The results of microbiological counting, CLSM, SEM in vitro, and microbiological cultures, histopathology in vivo consistently show JDBM enhanced the antibacterial activity. In addition, the significantly improved cytocompatibility is observed from JDBM. The results suggest that JDBM effectively enhances the corrosion resistance, biocompatibility and antimicrobial properties of Mg by alloying with the proper amount of Zn, Zr and Nd. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Superhydrophobic surface fabricated on iron substrate by black chromium electrodeposition and its corrosion resistance property

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Feng, Haitao; Lin, Feng; Wang, Yabin; Wang, Liping; Dong, Yaping; Li, Wu

    2016-08-01

    The fabrication of superhydrophobic surface on iron substrate is carried out through 20 min black chromium electrodeposition, followed by immersing in 0.05 M ethanolic stearic acid solution for 12 h. The resultant superhydrophobic complex film is characterized by scanning electron microscope (SEM), disperse Spectrometer (EDS), atomic force microscope (AFM), water contact angle (CA), sliding angle (SA) and X-ray photoelectron spectroscope (XPS), and its corrosion resistance property is measured with cyclic voltammetry (CV), linear polarization and electrochemical impedance spectroscopy (EIS). The results show that the fabricated superhydrophobic film has excellent water repellency (CA, 158.8°; SA, 2.1°) and significantly high corrosion resistance (1.31 × 106 Ω cm-2) and excellent corrosion protection efficiency (99.94%).

  9. Mechanical properties and oxidation and corrosion resistance of reduced-chromium 304 stainless steel alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Barrett, C. A.; Gyorgak, C. A.

    1979-01-01

    An experimental program was undertaken to identify effective substitutes for part of the Cr in 304 stainless steel as a method of conserving the strategic element Cr. Although special emphasis was placed on tensile properties, oxidation and corrosion resistance were also examined. Results indicate that over the temperature range of -196 C to 540 C the yield stress of experimental austenitic alloys with only 12 percent Cr compare favorably with the 18 percent Cr in 304 stainless steel. Oxidation resistance and in most cases corrosion resistance for the experimental alloys were comparable to the commercial alloy. Effective substitutes for Cr included Al, Mo, Si, Ti, and V, while Ni and Mn contents were increased to maintain an austenitic structure.

  10. Mechanical and corrosion resistance properties of TiO2 nanoparticles reinforced Ni coating by electrodeposition

    NASA Astrophysics Data System (ADS)

    Shao, W.; Nabb, D.; Renevier, N.; Sherrington, I.; Luo, J. K.

    2012-09-01

    Coatings have been widely used in engineering and decoration to protect components and products and enhance their life span. Nickel (Ni) is one of the most important hard coatings. Improvement in its tribological and mechanical properties would greatly enhance its use in industry. Nanocomposite coatings of metals with various reinforced nanoparticles have been developed in last few decades. Titania (TiO2) exhibit excellent mechanical properties. It is believed that TiO2 incorporation in Ni matrix will improve the properties of Ni coatings significantly. The main purpose of the current work is to investigate the mechanical and anti-corrosion properties of the electroplated nickel nanocomposite with a small percentage of TiO2. The surface morphology of nanocomposite coating was characterized by scanning electron microscopy (SEM). The hardness of the nanocoating was carried out using micromaterials nanoplatform. The sliding wear rate of the coating at room temperature in dry condition was assessed by a reciprocating ball-on-disk computer-controlled oscillating tribotester. The results showed the nanocomposite coatings have a smoother and more compact surface than the pure Ni layer and have higher hardness and lower wear rate than the pure Ni coating. The anti-corrosion property of nanocomposite coating was carried out in 3.5% NaCl and high concentrated 35% NaCl solution, respectively. The results also showed that the nanocomposite coating improves the corrosion resistance significantly. This present work reveals that incorporation of TiO2 in nickel nanocomposite coating can achieve improved corrosion resistance and mechanical properties of both hardness and wear resistance performances, and the improvement becomes stronger as the content of TiO2 is increased.

  11. Enhanced antimicrobial properties, cytocompatibility, and corrosion resistance of plasma-modified biodegradable magnesium alloys.

    PubMed

    Zhao, Ying; Jamesh, Mohammed Ibrahim; Li, Wing Kan; Wu, Guosong; Wang, Chenxi; Zheng, Yufeng; Yeung, Kelvin W K; Chu, Paul K

    2014-01-01

    Magnesium alloys are potential biodegradable materials and have received increasing attention due to their outstanding biological performance and mechanical properties. However, rapid degradation in the physiological environment and potential toxicity limit clinical applications. Recently, special magnesium-calcium (Mg-Ca) and magnesium-strontium (Mg-Sr) alloys with biocompatible chemical compositions have been reported, but the rapid degradation still does not meet clinical requirements. In order to improve the corrosion resistance, a rough, hydrophobic and ZrO(2)-containing surface film is fabricated on Mg-Ca and Mg-Sr alloys by dual zirconium and oxygen ion implantation. Weight loss measurements and electrochemical corrosion tests show that the corrosion rate of the Mg-Ca and Mg-Sr alloys is reduced appreciably after surface treatment. A systematic investigation of the in vitro cellular response and antibacterial capability of the modified binary magnesium alloys is performed. The amounts of adherent bacteria on the Zr-O-implanted and Zr-implanted samples diminish remarkably compared to the unimplanted control. In addition, significantly enhanced cell adhesion and proliferation are observed from the Zr-O-implanted sample. The results suggest that dual zirconium and oxygen ion implantation, which effectively enhances the corrosion resistance, in vitro biocompatibility and antimicrobial properties of Mg-Ca and Mg-Sr alloys, provides a simple and practical means to expedite clinical acceptance of biodegradable magnesium alloys.

  12. Influence of Processing and Heat Treatment on Corrosion Resistance and Properties of High Alloyed Steel Coatings

    NASA Astrophysics Data System (ADS)

    Hill, Horst; Weber, Sebastian; Raab, Ulrich; Theisen, Werner; Wagner, Lothar

    2012-09-01

    Corrosion and abrasive wear are two important aspects to be considered in numerous engineering applications. Looking at steels, high-chromium high-carbon tool steels are proper and cost-efficient materials. They can either be put into service as bulk materials or used as comparatively thin coatings to protect lower alloyed construction or heat treatable steels from wear and corrosion. In this study, two different corrosion resistant tool steels were used for the production of coatings and bulk material. They were processed by thermal spraying and super solidus liquid phase sintering as both processes can generally be applied to produce coatings on low alloyed substrates. Thermally sprayed (high velocity oxygen fuel) coatings were investigated in the as-processed state, which is the most commonly used condition for technical applications, and after a quenching and tempering treatment. In comparison, sintered steels were analyzed in the quenched and tempered condition only. Significant influence of alloy chemistry, processing route, and heat treatment on tribological properties was found. Experimental investigations were supported by computational thermodynamics aiming at an improvement of tribological and corrosive resistance.

  13. Thermomechanically treated type 18-10 steels: Structure, properties, and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Fel'dgandler, É. G.; Belen'kii, A. L.

    1997-10-01

    The strength characteristics of stainless steels can be enhanced by a form of alloying (in particular, with nitrogen) that hardens the solid solution, by dispersion hardening, and by the formation of an austenitic-ferritic or martensitic structure. All of such methods, except solid-solution hardening, entail the formation of a heterogeneous structure and will sometimes reduce the corrosion resistance of the steel. On the other hand, austenitic stainless steel can be strengthened without polymorphic transformations by thermomechanical treatment (TMT). As applied to stainless steels, this involves controlled rolling with precisely specified temperature range, strain rate, amount of strain, and cooling rate at the end of deformation. This study was concerned with the influence of various TMT schedules on the mechanical properties, corrosion resistance, structure, and weldability of 08Kh18N10T and 03Kh18N11 steels produced in the laboratory and commercially.

  14. Tribological properties, corrosion resistance and biocompatibility of magnetron sputtered titanium-amorphous carbon coatings

    NASA Astrophysics Data System (ADS)

    Dhandapani, Vishnu Shankar; Subbiah, Ramesh; Thangavel, Elangovan; Arumugam, Madhankumar; Park, Kwideok; Gasem, Zuhair M.; Veeraragavan, Veeravazhuthi; Kim, Dae-Eun

    2016-05-01

    Amorphous carbon incorporated with titanium (a-C:Ti) was coated on 316L stainless steel (SS) by magnetron sputtering technique to attain superior tribological properties, corrosion resistance and biocompatibility. The morphology, topography and functional groups of the nanostructured a-C:Ti coatings in various concentrations were analyzed using atomic force microscopy (AFM), Raman, X-Ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Raman and XPS analyses confirmed the increase in sp2 bonds with increasing titanium content in the a-C matrix. TEM analysis confirmed the composite nature of the coating and the presence of nanostructured TiC for Ti content of 2.33 at.%. This coating showed superior tribological properties compared to the other a-C:Ti coatings. Furthermore, electrochemical corrosion studies were performed against stimulated body fluid medium in which all the a-C:Ti coatings showed improved corrosion resistance than the pure a-C coating. Preosteoblasts proliferation and viability on the specimens were tested and the results showed that a-C:Ti coatings with relatively high Ti (3.77 at.%) content had better biocompatibility. Based on the results of this work, highly durable coatings with good biocompatibility could be achieved by incorporation of optimum amount of Ti in a-C coatings deposited on SS by magnetron sputtering technique.

  15. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V.

    PubMed

    Okazaki, Y; Rao, S; Ito, Y; Tateishi, T

    1998-07-01

    The effects of various metallic ions using various metallic powders on the relative growth ratio of fibroblasts L929 and osteoblasts MC3T3-E1 cells were carried out. Ti, Zr, Sn, Nb and Ta had evidently no effect on the relative growth ratios of cells. Otherwise, Al and V ions exhibit cytotoxicity from a concentration of > or = 0.2 ppm. This Al effect on cells tend to be stronger in medium containing small quantity of V ions (< or = 0.03 ppm). The new Ti-15%Zr-4%Nb-4%Ta-0.2%Pd alloy exhibited a higher corrosion resistance in physiological saline solution. The addition of 0.02%O and 0.05%N to Ti-Zr alloy improved the mechanical properties at room temperature and corrosion fatigue strength. The relative growth ratios for the new Ti alloy plate and the alloy block extraction were unity. Further, the relative growth ratios were almost unity for the new Ti alloy against apatite ceramic pins up to 10(5) wear cycles in Eagle's MEM solution. However, there was a sharp decrease for Ti-6%Al-4%V ELI alloy from 3 x 10(4) wear cycles as V ion was released during wear into the wear test solution since the pH of the Eagle's MEM increases with increasing wear cycles.

  16. Corrosion-resistant sulfur concretes

    NASA Astrophysics Data System (ADS)

    McBee, W. C.; Sullivan, T. A.; Jong, B. W.

    1983-04-01

    Sulfur concretes have been developed by the Bureau of Mines as construction materials with physical and mechanical properties that suit them for use in acid and salt corrosive environments where conventional concretes fail. Mixture design methods were established for preparing sulfur concretes using different types of aggregates and recently developed mixed-modified sulfur cements. Bench-scale testing of the sulfur concretes has shown their potential value. Corrosion resistance, strength, and durability of sulfur concrete are superior to those of conventional materials. Field in situ evaluation tests of the sulfur concretes as replacement for conventional concrete materials are in progress in corrosive areas of 24 commercial chemical, fertilizer, and metallurgical plants.

  17. A robust superhydrophobic PVDF composite coating with wear/corrosion-resistance properties

    NASA Astrophysics Data System (ADS)

    Wang, Huaiyuan; Liu, Zhanjian; Wang, Enqun; Yuan, Ruixia; Gao, Dong; Zhang, Xiguang; Zhu, Yanji

    2015-03-01

    A robust wear/corrosion-resistant superhydrophobic polyvinylidene fluoride (PVDF)/fluorinated ethylene propylene (FEP)/carbon nanofibers (CNFs) composite coating with a water contact angle (WCA) of 164 ± 1.5° and a slide angle of 5 ± 0.2° has been fabricated through the combination of chemical etching and spraying technique. The WCA of the coating still maintains 141 ± 1.2° after 10,000 times rubbing due to the designed internal nano/micro-structure and the slide angle increases from 5 ± 0.2° to 20 ± 0.5°. The prepared coating also demonstrates excellent corrosion-resistance property under strongly acidic or alkaline conditions for 15 days. The wear-resistance of the superhydrophobic coating is approximately 5 times higher than the pure PVDF coating and commercial fluorocarbon coating. These excellent mechanical properties are attributed to the new groups of Cdbnd C and Csbnd C by dehydrofluorination of PVDF and the new β-phase of PVDF by recrystallization of the α-phase. Furthermore, the enhanced adhesive ability of the coating corresponds with Grade 1 according to GB/T9286, mainly because that the interaction force among PVDF macromolecules can be intensified by chemical cross-linking and the hydroxyl groups formed on the surface of the aluminum plate by etching. It is believed that this robust multifunctional superhydrophobic coating may have the potential values in large-scale application.

  18. Microstructures, mechanical properties and corrosion resistances of extruded Mg-Zn-Ca-xCe/La alloys.

    PubMed

    Tong, L B; Zhang, Q X; Jiang, Z H; Zhang, J B; Meng, J; Cheng, L R; Zhang, H J

    2016-09-01

    Magnesium alloys are considered as good candidates for biomedical applications, the influence of Ce/La microalloying on the microstructure, mechanical property and corrosion performance of extruded Mg-5.3Zn-0.6Ca (wt%) alloy has been investigated in the current study. After Ce/La addition, the conventional Ca2Mg6Zn3 phases are gradually replaced by new Mg-Zn-Ce/La-(Ca) phases (T1'), which can effectively divide the Ca2Mg6Zn3 phase. The Ca2Mg6Zn3/T1' structure in Mg-Zn-Ca-0.5Ce/La alloy is favorably broken into small particles during the extrusion, resulting in an obvious refinement of secondary phase. The dynamic recrystallized grain size is dramatically decreased after 0.5Ce/La addition, and the tensile yield strength is improved, while further addition reverses the effect, due to the grain coarsening. However, the corrosion resistance of extruded Mg-Zn-Ca alloy deteriorates after Ce/La addition, because the diameter of secondary phase particle is remarkably decreased, which increases the amount of cathodic sites and accelerates the galvanic corrosion process.

  19. Corrosion-resistant uranium

    DOEpatents

    Hovis, Jr., Victor M.; Pullen, William C.; Kollie, Thomas G.; Bell, Richard T.

    1983-01-01

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  20. Corrosion-resistant uranium

    DOEpatents

    Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

    1981-10-21

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  1. Characteristics of colored passive layers on titanium: morphology, optical properties, and corrosion resistance.

    PubMed

    Holmberg, Rebecca J; Beauchemin, Diane; Jerkiewicz, Gregory

    2014-12-10

    Electrochemically formed colored passive layers on titanium and their optical, surface morphology, and corrosion properties are presented and discussed. With the application of progressively higher AC voltages (VAC) during preparation of these passive layers, they are found to become more protective of the underlying metal, as determined from corrosion resistance measurements employing electrochemical polarization curve and inductively coupled plasma mass spectrometry experiments. The passive layers on titanium were found to be uniform in their surface morphology with no apparent cracks or pits. Surface morphology, and its relation to optical properties, was also investigated using visible light microscopy, profilometry, and near-infrared ultraviolet visible reflectance spectroscopy measurements. A correlation between the light reflected from the entire sample surface and the coloration of surface grains was also observed through these measurements. The reflectance spectra showed a red-shift of wavelength maxima (λmax) values as AC voltages and, therefore, thicknesses were increased. Overall, these passive layers are protective of an already remarkable metal, and with greater knowledge of the properties of colored protective layers, their potential may be employed in a wide range of applications.

  2. The corrosion resistance and neutron-absorbing properties of coatings based on amorphous alloys

    NASA Astrophysics Data System (ADS)

    Sevryukov, O. N.; Polyansky, A. A.

    2016-04-01

    The object of the present study was the corrosion-resistant amorphizing alloys with an increased content of boron for cladding the surface of metals, rapidly quenched alloys without boron for protective coatings on a high-boron cladding layer, as well as steel samples with a protective coating with a high content of boron and without boron. The aim of the work is to investigate the corrosion resistance of a coating in water at the temperature of 40 °C in conditions of an open access of oxygen for 1000 h, as well as the features of the microstructure of clad samples before and after the corrosion tests. New data on the corrosion resistance of Cr18Ni10Ti steel samples with a protective layer from a rapidly quenched alloy Ni-19Cr-10Si (in wt.%) on a high-boron coating have been obtained.

  3. Corrosion-resistant metal surfaces

    DOEpatents

    Sugama, Toshifumi

    2009-03-24

    The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

  4. Ion beam analysis, corrosion resistance and nanomechanical properties of TiAlCN/CNx multilayer grown by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Alemón, B.; Flores, M.; Canto, C.; Andrade, E.; de Lucio, O. G.; Rocha, M. F.; Broitman, E.

    2014-07-01

    A novel TiAlCN/CNx multilayer coating, consisting of nine TiAlCN/CNx periods with a top layer 0.5 μm of CNx, was designed to enhance the corrosion resistance of CoCrMo biomedical alloy. The multilayers were deposited by dc and RF reactive magnetron sputtering from Ti0.5Al0.5 and C targets respectively in a N2/Ar plasma. The corrosion resistance and mechanical properties of the multilayer coatings were analyzed and compared to CoCrMo bulk alloy. Ion beam analysis (IBA) and X-ray diffraction tests were used to measure the element composition profiles and crystalline structure of the films. Corrosion resistance was evaluated by means of potentiodynamic polarization measurements using simulated body fluid (SBF) at typical body temperature and the nanomechanical properties of the multilayer evaluated by nanoindentation tests were analyzed and compared to CoCrMo bulk alloy. It was found that the multilayer hardness and the elastic recovery are higher than the substrate of CoCrMo. Furthermore the coated substrate shows a better general corrosion resistance than that of the CoCrMo alloy alone with no observation of pitting corrosion.

  5. Effects of La2O3 on Mechanical Properties and Corrosion Resistance of H62 Brass

    NASA Astrophysics Data System (ADS)

    Wu, Xiangwei; Luo, Hong; Sheng, Meng; Liu, Huanchao; Xiao, Zhen; Geng, Haoran

    2017-02-01

    In this article, the effects of lanthanum oxide (La2O3) on the microstructure and mechanical properties of H62 brass were investigated by using the universal testing machine, Brinell hardness tester, optical microscope, and scanning electron microscope (SEM). Immersion corrosion and electrochemical measurements were carried out to identify the influence of La2O3 on the corrosion behavior of the H62 brass. The phase constitution, microstructure, and phase composition of the H62 brass were analyzed by x-ray diffraction, SEM, and energy-dispersive spectrometer, respectively. The results show that the microstructure of α phase changes from dendrite grains to equiaxed grains, and the content and distribution of β phase are improved significantly. When the La2O3 content reaches 0.8 wt.%, the H62 brass obtains favorable comprehensive mechanical properties and the strength and hardness decrease but elongation increases, which is conducive to plastic processing. In addition, under the optimum amount of 0.8 wt.% La2O3 content, the corrosion rate of immersion corrosion attains the minimum values: As 12.6 g m-2 h-1, it decreases by 24%; as the corrosion potential changes from -1.1327 V to -0.328 V, it increases by 70.9%; and as the corrosion current density decreases from -2.833 mA mm-2 to -3.28 mA mm-2 corrosion, it decreases by 15.78%, when compared with H62 brass.

  6. Corrosion resistant PEM fuel cell

    DOEpatents

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K.; Cunningham, Kevin M.

    2011-06-07

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  7. Corrosion resistant PEM fuel cell

    DOEpatents

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K.; Cunningham, Kevin M.

    2002-01-01

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  8. Corrosion resistant PEM fuel cell

    DOEpatents

    Fronk, Matthew Howard [Honeoye Falls, NY; Borup, Rodney Lynn [East Rochester, NY; Hulett, Jay S [Rochester, NY; Brady, Brian K. NY; Cunningham, Kevin M [Romeo, MI

    2011-06-07

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  9. Corrosion resistant cemented carbide

    SciTech Connect

    Hong, J.

    1990-10-16

    This paper describes a corrosion resistant cemented carbide composite. It comprises: a granular tungsten carbide phase, a semi-continuous solid solution carbide phase extending closely adjacent at least a portion of the grains of tungsten carbide for enhancing corrosion resistance, and a substantially continuous metal binder phase. The cemented carbide composite consisting essentially of an effective amount of an anti-corrosion additive, from about 4 to about 16 percent by weight metal binder phase, and with the remaining portion being from about 84 to about 96 percent by weight metal carbide wherein the metal carbide consists essentially of from about 4 to about 30 percent by weight of a transition metal carbide or mixtures thereof selected from Group IVB and of the Periodic Table of Elements and from about 70 to about 96 percent tungsten carbide. The metal binder phase consists essentially of nickel and from about 10 to about 25 percent by weight chromium, the effective amount of an anti-corrosion additive being selected from the group consisting essentially of copper, silver, tine and combinations thereof.

  10. Corrosive resistant heat exchanger

    DOEpatents

    Richlen, Scott L.

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  11. Improved Corrosion Resistance of As-Extruded GZ51K Biomagnesium Alloy with High Mechanical Properties by Aging Treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaobo; Wang, Qian; Ba, Zhixin; Wang, Zhangzhong; Xue, Yajun

    2016-03-01

    Effects of aging treatment on microstructure, mechanical properties, and corrosion behavior of the as-extruded Mg-5Gd-1Zn-0.6Zr (GZ51K, wt.%) alloy were investigated. Microstructure was observed by optical microscopy and scanning electron microscopy, mechanical properties were tested on a tensile test machine and a microhardness tester, and corrosion behavior was evaluated by mass loss and polarization tests. It is found that most of equiaxed α-Mg grains have long-period stacking ordered (LPSO) structure, and some of them have no LPSO structure. Long-elongated grains are formed in the as-extruded alloy due to partial recrystallization and disappear after being aged at 200 and 220 °C. The as-extruded alloy exhibits both high-yield strength and high ductility. The mechanical properties of the alloy are not apparently enhanced, but the corrosion resistance is significantly improved after aging treatment. Moreover, the alloy with LPSO structure presents uniform corrosion mode in simulated body fluid. The GZ51K alloy with high mechanical properties and uniform corrosion behavior is worthy to be further investigated for biomedical applications.

  12. Evaluation of Microstructure, Mechanical Properties and Corrosion Resistance of Friction Stir-Welded Aluminum and Magnesium Dissimilar Alloys

    NASA Astrophysics Data System (ADS)

    Verma, Jagesvar; Taiwade, Ravindra V.; Sapate, Sanjay G.; Patil, Awanikumar P.; Dhoble, Ashwinkumar S.

    2017-09-01

    Microstructure, mechanical properties and corrosion resistance of dissimilar friction stir-welded aluminum and magnesium alloys were investigated by applying three different rotational speeds at two different travel speeds. Sound joints were obtained in all the conditions. The microstructure was examined by an optical and scanning electron microscope, whereas localized chemical information was studied by energy-dispersive spectroscopy. Stir zone microstructure showed mixed bands of Al and Mg with coarse and fine equiaxed grains. Grain size of stir zone reduced compared to base metals, indicated by dynamic recrystallization. More Al patches were observed in the stir zone as rotational speed increased. X-ray diffraction showed the presence of intermetallics in the stir zone. Higher tensile strength and hardness were obtained at a high rotational speed corresponding to low travel speed. Tensile fractured surface indicated brittle nature of joints. Dissimilar friction stir weld joints showed different behaviors in different corrosive environments, and better corrosion resistance was observed at a high rotational speed corresponding to low travel speed (FW3) in a sulfuric and chloride environments. Increasing travel speed did not significantly affect on microstructure, mechanical properties and corrosion resistance as much as the rotational speed.

  13. Zirconium for superior corrosion resistance

    SciTech Connect

    Bird, K.W.; Richardson, K.

    1997-03-01

    Zirconium is a transition element located along with sister elements titanium and hafnium in Group IVB of the periodic table. It is grayish white metal, with a density somewhat less than carbon steel. Zirconium is the ninth most common metallic element in the earth`s crust, and is more abundant than zinc, lead, nickel, or even copper. Zirconium is exceptionally resistant to corrosion by many common acids and alkalis. It is resistant to most organic acids, such as formic, acetic, lactic, and oxalic acids. It also has a high resistance to localized forms of corrosion, such as pitting, crevice corrosion, and stress corrosion cracking. Its corrosion resistance is caused by the formation of a dense, tenaciously adherent, chemically inert oxide film on the surface. This oxide film protects the base metal from both chemical and mechanical attack at temperatures up to about 400 C (750 F). This article describes zirconium`s formability, machinability, corrosion resistance, and several typical applications.

  14. Mechanically robust superhydrophobic steel surface with anti-icing, UV-durability, and corrosion resistance properties.

    PubMed

    Wang, Nan; Xiong, Dangsheng; Deng, Yaling; Shi, Yan; Wang, Kun

    2015-03-25

    A superhydrophobic steel surface was prepared through a facile method: combining hydrogen peroxide and an acid (hydrochloric acid or nitric acid) to obtain hierarchical structures on steel, followed by a surface modification treatment. Empirical grid maps based on different volumes of H2O2/acid were presented, revealing a wettability gradient from "hydrophobic" to "rose effect" and finally to "lotus effect". Surface grafting has been demonstrated to be realized only on the oxidized area. As-prepared superhydrophobic surfaces exhibited excellent anti-icing properties according to the water-dripping test under overcooled conditions and the artificial "steam-freezing" (from 50 °C with 90% humidity to the -20 °C condition) test. In addition, the surfaces could withstand peeling with 3M adhesive tape at least 70 times with an applied pressure of 31.2 kPa, abrasion by 400 grid SiC sandpaper for 110 cm under 16 kPa, or water impacting for 3 h without losing superhydrophobicity, suggesting superior mechanical durability. Moreover, outstanding corrosion resistance and UV-durability were obtained on the prepared surface. This successful fabrication of a robust, anti-icing, UV-durable, and anticorrosion superhydrophobic surface could yield a prospective candidate for various practical applications.

  15. Corrosion resistance and electrical properties of carbon/chromium-titanium-nitride multilayer coatings on stainless steel

    NASA Astrophysics Data System (ADS)

    Feng, Kai; Li, Zhuguo; Lu, Fenggui; Huang, Jian; Cai, Xun; Wu, Yixiong

    2014-03-01

    High electrical conductivity and corrosion resistance are central to advances in wider application of metallic bipolar plates in polymer electrolyte membrane fuel cell (PEMFC). In this study, C/Cr-Ti-N multilayer coatings are deposited by physical vapor deposition and the effect of Cr:Ti ratio on the corrosion resistance and interfacial contact resistance (ICR) are systematically investigated. Scanning electron microscopy (SEM) result shows that the carbon layer is compact and uniform. Excellent corrosion resistance of 0.127 μA cm-2 current density at operating voltage in PEMFC cathode environment and low ICR of 2.03 mΩ-cm2 at compaction force of 150 N cm-2 are achieved when Cr:Ti ratio is 2:4 and 3:3, respectively. The significant enhancement in surface conductivity is probably because that the current comes from carbon paper is homogenized by two electrically conductive layers and flows to the passive film with much more contact area. After polarization, ICR increase to 3.07 mΩ-cm2 and 3.02 mΩ-cm2 in the simulated PEMFC cathode and anode environment, respectively. However, the Raman spectroscopy results disclose that the bonding type of top carbon film before and after polarization shows little difference. The results indicate that C/Cr-Ti-N multilayer coating with Cr:Ti ratio of 2:4 achieves the optimal composition.

  16. Effect of copper addition on mechanical properties, corrosion resistance and antibacterial property of 316L stainless steel.

    PubMed

    Xi, Tong; Shahzad, M Babar; Xu, Dake; Sun, Ziqing; Zhao, Jinlong; Yang, Chunguang; Qi, Min; Yang, Ke

    2017-02-01

    The effects of addition of different Cu content (0, 2.5 and 3.5wt%) on mechanical properties, corrosion resistance and antibacterial performance of 316L austenitic stainless steel (SS) after solution and aging treatment were investigated by mechanical test, transmission electron microscope (TEM), X-ray diffraction (XRD), electrochemical corrosion, X-ray photoelectron spectroscopy (XPS) and antibacterial test. The results showed that the Cu addition and heat treatment had no obvious influence on the microstructure with complete austenite features. The yield strength (YS) after solution treatment was almost similar, whereas the aging treatment obviously increased the YS due to formation of tiny Cu-rich precipitates. The pitting and protective potential of the solution treated Cu-bearing 316L SS in 0.9wt% NaCl solution increased with increasing Cu content, while gradually declined after aging, owing to the high density Cu-rich precipitation. The antibacterial test proved that higher Cu content and aging were two compulsory processes to exert good antibacterial performance. The XPS results further indicated that aging enhanced the Cu enrichment in passive film, which could effectively stimulate the Cu ions release from the surface of passive film.

  17. Microstructure, mechanical properties, and corrosion resistance of Ti-20Zr alloy in undoped and NaF doped artificial saliva

    NASA Astrophysics Data System (ADS)

    Calderon Moreno, Jose M.; Popa, Monica; Ivanescu, Steliana; Vasilescu, Cora; Drob, Silviu Iulian; Neacsu, Elena Ionela; Popa, Mihai V.

    2014-01-01

    The corrosion behavior of a new, advanced Ti-20Zr alloy with α+β microstructure (determined by optical microscopy, XRD, and SEM) and very good mechanical properties (obtained from the stress-strain curve) is studied in this paper. The composition of the alloy native passive film was determined from a XPS analysis and the long-term corrosion resistance in undoped and doped states with 0.05M NaF artificial Carter-Brugirard saliva of different pH values, simulating the severe functional conditions of a dental implant, was analyzed by electrochemical methods. This alloy possesses an advantageous balance between good mechanical resistance and plasticity and Young's modulus and exhibits more favorable electrochemical parameters and corrosion resistance than CP Ti due to its more resistant passive layer containing Ti2O3, TiO2, and ZrO2 protective oxides. After 1000 h of immersion in saliva, the protective properties of the alloy were enhanced due to the deposited surface layer that incorporated protective phosphates (shown by SEM and XPS).

  18. The stress corrosion resistance and the cryogenic temperature mechanical properties of annealed Nitronic 60 bar material

    NASA Technical Reports Server (NTRS)

    Montano, J. W. L.

    1977-01-01

    Ambient and cryogenic temperature mechanical properties and the ambient temperature stress corrosion properties of annealed, straightened, and centerless ground Nitronic 60 stainless steel alloy bar material are presented. The mechanical properties of longitudinal specimens were evaluated at test temperatures from ambient to liquid hydrogen. The tensile test data indicated increasing strength with decreasing temperature to -196 C. Below liquid nitrogen temperature the smooth tensile and notched tensile strengths decreased slightly while the elongation and reduction of area decreased drastically. The Charpy V-notched impact energy decreased steadily with decreasing test temperature. Stress corrosion tests were performed on longitudinal tensile specimens and transverse C-ring specimens exposed to: alternate immersion in a 3.5% NaCl bath; humidity cabinet; and a 5% salt spray atmosphere. The longitudinal tensile specimens experienced no corrosive attack. Approximately 3/4 of the transverse C-rings exposed to alternate immersion and to salt spray experienced a pitting attack on the top and bottom ends. Additional stress corrosion tests were performed on transverse tensile specimens. No failures occurred in the 90% stressed specimens exposed for 90 days in the alternate immersion and salt spray environments

  19. The Corrosion Resistance and Paint Adhesion Properties of Chromate Conversion Coatings on Aluminium and Its Alloys

    DTIC Science & Technology

    1976-05-01

    aluminium and its alloys has been evaluated with respect to both corrosion resistance of, and paint adhesion to, the chromate films. The process involves...The findings in this Report will be used as the basis for a Defence Standard for chromate conversion coatings for aluminium and aluminium alloys...3 PROPRIETARY CHROMATE CONVERSION COATINGS FOR ALUMINIUM 17 4 PAINT ADHESION 19 5 DISCUSSION 21 6 CONCLUSIONS 24 Acknowledgments 25 Appendix A

  20. Effect of surface passivation on corrosion resistance and antibacterial properties of Cu-bearing 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Zhao, Jinlong; Xu, Dake; Shahzad, M. Babar; Kang, Qiang; Sun, Ying; Sun, Ziqing; Zhang, Shuyuan; Ren, Ling; Yang, Chunguang; Yang, Ke

    2016-11-01

    The resistance for pitting corrosion, passive film stability and antibacterial performance of 316L-Cu SS passivated by nitric acid solution containing certain concentration of copper sulfate, were studied by electrochemical cyclic polarization, electrochemical impedance spectroscopy (EIS) and co-culture with bacteria. Inductively coupled plasma mass spectrometry (ICP-MS) was used to analyze the Cu2+ ions release from 316L-Cu SS surface. XPS analysis proved that the enrichment of CuO, Cr2O3 and Cr(OH)3 on the surface of specimen could simultaneously guarantee a better corrosion resistance and stable antibacterial properties. The biocompatibility evaluation determined by RTCA assay also indicated that the 316L-Cu SS after antibacterial passivation was completely biocompatible.

  1. Corrosion-resistant high-entropy alloys: A review

    DOE PAGES

    Shi, Yunzhu; Yang, Bin; Liaw, Peter

    2017-02-05

    Corrosion destroys more than three percent of the world’s gross domestic product. Therefore, the design of highly corrosion-resistant materials is urgently needed. By breaking the classical alloy-design philosophy, high-entropy alloys (HEAs) possess unique microstructures, which are solid solutions with random arrangements of multiple elements. The particular locally-disordered chemical environment is expected to lead to unique corrosion-resistant properties. In this review, the studies of the corrosion-resistant HEAs during the last decade are summarized. The corrosion-resistant properties of HEAs in various aqueous environments and the corrosion behavior of HEA coatings are presented. The effects of environments, alloying elements, and processing methods onmore » the corrosion resistance are analyzed in detail. Finally, the possible directions of future work regarding the corrosion behavior of HEAs are suggested.« less

  2. Characterization of the Ti-10Nb-10Zr-5Ta Alloy for Biomedical Applications. Part 1: Microstructure, Mechanical Properties, and Corrosion Resistance

    NASA Astrophysics Data System (ADS)

    Vladescu, A.; Braic, V.; Balaceanu, M.; Braic, M.; Parau, A. C.; Ivanescu, S.; Fanara, C.

    2013-08-01

    Ti-10Nb-10Zr-5Ta alloy was investigated as possible material candidate for replacing Ti6Al4V in medical applications. The alloy was prepared in a levitation melting furnace and characterized in terms of elemental and phase composition, microstructure, mechanical properties, and corrosion resistance in simulated body fluid and Fusayama Meyer artificial saliva solutions. The characteristics of the new alloy were compared to those of the Ti6Al4V alloy. The Ti-10Nb-10Zr-5Ta system was found to posses of a polyhedral structure consisting in α' and β phases. X-ray structural analysis revealed a mixture of hexagonal α' martensite (main phase, with grain size of about 21 nm) and β bcc phase. The Ti-10Nb-10Zr-5Ta alloy exhibited some better mechanical properties (Young modulus, tensile properties) and corrosion resistance (polarization resistance, corrosion current density, and corrosion rate), as compared to Ti6Al4V alloy.

  3. Corrosion Resistance and Color Properties of Anodized Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Karambakhsh, Ali; Afshar, Abdollah; Malekinejad, Pejman

    2012-01-01

    In this research, color anodizing of Ti-6Al-4V alloy was performed in phosphoric acid solution of 0.4 M concentration and within 30 s in different voltages (10-120 V) of a DC power supply. The effect of anodizing voltages on the color and thickness of anodized layers on Ti-6Al-4V alloy surface was surveyed. Thickness and refractive index of layers were measured by spectrophotometery and reflectance curves. According to the results, thickness of layers increased with increasing anodizing voltage and was in the range of 38-167 nm. Also the refractive index of anodic film was approximately constant at about 2 and increased inconsiderably with increasing anodizing voltage. Corrosion resistance of the anodized samples in 20 and 50 V was surveyed in physiological solutions of Ringer's solution, Artificial Saliva solution, and Ringer's + 150 mM H2O2 solution at the temperature of 37 °C by potentiodynamic polarization method. The anodized sample in 50 V indicated lower corrosion rate than the non-anodized sample as well as the sample which was anodized in 20 V in all solutions. The non-anodized sample indicated the highest corrosion rate of about 0.25 μA cm-2.

  4. Indentation property and corrosion resistance of electroless nickel-phosphorus coatings deposited on austenitic high-Mn TWIP steel

    NASA Astrophysics Data System (ADS)

    Hamada, A. S.; Sahu, P.; Porter, D. A.

    2015-11-01

    A multilayer coating using electroless nickel-phosphorus (Ni-P) was applied on a twinning-induced plasticity (TWIP) steel containing nominally 25 wt.% Mn and 3 wt.% Al to improve the indentation hardness and corrosion properties. Microindentation tests with two different indenters, namely, a three-sided pyramidal Berkovich indenter and a ball indenter were performed to study the mechanical response, the indentation hardness and elastic modulus of the coatings in conditions: as-plated, and post treated (PT) at 350 °C and 700 °C for 1 h. The deformation morphology underneath the indenters was examined using a scanning laser microscope. The results showed that Ni-P coatings could significantly enhance the surface hardness of the TWIP steel. Significant improvement in the corrosion resistance could be observed in a sulfuric acid solution for the Ni-P coated steel compared to the uncoated substrate TWIP steel.

  5. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  6. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  7. Influence of the Spray Gun Type on Microstructure and Properties of HVAF Sprayed Fe-Based Corrosion Resistant Coatings

    NASA Astrophysics Data System (ADS)

    Milanti, A.; Koivuluoto, H.; Vuoristo, P.

    2015-10-01

    The aim of this study is to evaluate the microstructural details and corrosion properties of novel Fe-based coatings prepared using two different generations of HVAF spray guns. These two generations of HVAF guns are Activated Combustion HVAF (AC-HVAF, 2nd generation) M2 gun and Supersonic Air Fuel HVAF (SAF, 3rd generation) M3 gun. Structural details were analysed using x-ray diffractometry and field-emission scanning electron microscope. Higher denseness with homogeneous microstructure was achieved for Fe-based coating deposited by the M3 process. Such coatings exhibit higher particle deformation and lower oxide content compared to coatings manufactured with M2 gun. Corrosion properties were studied by open-cell potential measurements and electrochemical impedance spectroscopy. The lower porosity and higher interlamellar cohesion of coating manufactured with M3 gun prevent the electrolyte from penetrating through the coating and arriving to the substrate, enhancing the overall corrosion resistance. This can be explained by the improved microstructures and coating performance.

  8. Corrosion-resistant coating development

    SciTech Connect

    Stinton, D.P.; Kupp, D.M.; Martin, R.L.

    1997-12-01

    SiC-based heat exchangers have been identified as the prime candidate material for use as heat exchangers in advanced combined cycle power plants. Unfortunately, hot corrosion of the SiC-based materials created by alkali metal salts present in the combustion gases dictates the need for corrosion-resistant coatings. The well-documented corrosion resistance of CS-50 combined with its low (and tailorable) coefficient of thermal expansion and low modulus makes CS-50 an ideal candidate for this application. Coatings produced by gelcasting and traditional particulate processing have been evaluated.

  9. Influence of heat treatments on microstructure, mechanical properties, and corrosion resistance of weld alloy 625

    NASA Astrophysics Data System (ADS)

    Cortial, F.; Corrieu, J. M.; Vernot-Loier, C.

    1995-05-01

    The effects of heat treatments of the industrial type (eight-hour hold times at temperatures between 600 °C and 1000 °C) on the structural, mechanical, and corrosion resistance characteristics of weld alloy 625 have been studied. During the heat treatment, the mean concentration ratios of Nb, Mo, Si, Cr, Ni, and Fe elements between the interdendritic spaces and dendrite cores show little evolution up to 850 °C. Beyond that temperature, this ratio approximates 1, and the composition heterogeneity has practically disappeared at 1000 °C. An eight-hour heat treatment at temperatures between 650 °C and 750 °C results in increased mechanical strength values and reduced ductility and impact strength linked to the precipitation of body-centered tetragonal metastable intermetallic γ″ Ni3Nb phase in the interdendritic spaces. An eight-hour treatment in the temperature range between 750 °C and 950 °C has catastrophic effects on all mechanical characteristics in relation with the precipitation, in the interdendritic spaces, of the stable orthorhombic intermetallic δ Ni3(Nb, Mo, Cr, Fe, Ti) phase. At 1000 °C, the ductility and impact strength are restored. However, the higher the heat treatment temperature, the weaker the mechanical strength. Heat treatments have no effect on the pitting resistance of weld alloy 625 in sea water. The comparison of the results of this study on weld alloy 625 with those previously obtained on forged metal 625 shows that heat treatments below 650 °C and above 1000 °C are the sole treatments to avoid embrittlement and impairment of the corrosion resistance characteristics of alloy 625.

  10. Influence of heat treatments on microstructure, mechanical properties, and corrosion resistance of weld alloy 625

    SciTech Connect

    Cortial, F.; Corrieu, J.M.; Vernot-Loier, C.

    1995-05-01

    The effects of heat treatments of the industrial type on the structural, mechanical, and corrosion resistance characteristics of weld alloy 625 have been studied. During the heat treatment, the mean concentration ratios of Nb, Mo, Si, Cr, Ni, and Fe elements between the interdendritic spaces and dendrite cores show little evolution up to 850 C. Beyond that temperature, this ratio approximates 1, and the composition heterogeneity has practically disappeared at 1,000 C. An eight-hour heat treatment at temperatures between 650 C and 750 C results in increased mechanical strength values and reduced ductility and impact strength linked to the precipitation of body-centered tetragonal metastable intermetallic {gamma}{double_prime} Ni{sub 3}Nb phase in the interdendritic spaces. An eight-hour treatment in the temperature range between 750 C and 950 C has catastrophic effects on all mechanical characteristics in relation with the precipitation, in the interdendritic spaces, of the stable orthorhombic intermetallic {delta} Ni{sub 3}(Nb, Mo, Cr, Fe, Ti) phase. At 1,000 C, the ductility and impact strength are restored. However, the higher the beat treatment temperature, the weaker the mechanical strength. Heat treatments have no effect on the pitting resistance of weld alloy 625 in sea water. The comparison of the results of this study on weld alloy 625 with those previously obtained on forged metal 625 shows that heat treatments below 650 C and above 1,000 C are the sole treatments to avoid embrittlement and impairment of the corrosion resistance characteristics of alloy 625.

  11. Strengthening mechanisms and mechanical properties of high interstitial stainless steel for drill collar and its corrosion resistance

    NASA Astrophysics Data System (ADS)

    Lee, Eunkyung

    corrosion resistance properties of HISSs and shows that the alloys developed in the present study effectively resist attack by sour acid gas and salt water by immersion tests using sour-brine environment and salt water. In addition, electrochemical polarization tests show that the corrosion pitting potential of the heat treated HISSs in sodium chloride solution is the highest among the benchmark alloys. This result shows that this alloy resists corrosion well under the high temperature and high pressure conditions in the presence of high-pressure H2S and CO 2 sour gas well environments.

  12. Innovation of Ultrafine Structured Alloy Coatings Having Superior Mechanical Properties and High Temperature Corrosion Resistance

    NASA Astrophysics Data System (ADS)

    Ma, X. Q.; Gandy, D. W.; Frederick, G. J.

    2008-12-01

    High temperature protection requires full coating density, high adhesion, minor oxide inclusions, and preferably fine grains, which is not achievable in most thermal spray processes. High velocity oxygen fuel (HVOF) thermal spray process has been applied extensively for making such coatings with the highest density and adhesion strength, but the existence of not melted or partially melted particles are usually observed in the HVOF coatings because of relatively low flame temperature and short particle resident time in the process. This work has investigated the development of an innovative HVOF process using a liquid state suspension/slurry containing small alloy powders. The advantages of using small particles in a HVOF process include uniform coating, less defective microstructure, higher cohesion and adhesion, full density, lower internal stress, and higher deposition efficiency. Process investigations have proven the benefits of making alloy coatings with full density and high bond strength attributing to increased melting of the small particles and the very high kinetic energy of particles striking on the substrate. High temperature oxidation and hot corrosion tests at 800 °C have demonstrated that the alloy coatings made by novel LS-HVOF process have superior properties to conventional counterpart coatings in terms of oxidation rates and corrosion penetration depths.

  13. Effects of activating fluxes on the weld penetration and corrosion resistant property of laser welded joint of ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Wang, Yonghui; Hu, Shengsun; Shen, Junqi

    2015-10-01

    This study was based on the ferritic stainless steel SUS430. Under the parallel welding conditions, the critical penetration power values (CPPV) of 3mm steel plates with different surface-coating activating fluxes were tested. Results showed that, after coating with activating fluxes, such as ZrO2, CaCO3, CaF2 and CaO, the CPPV could reduce 100~250 W, which indicating the increases of the weld penetrations (WP). Nevertheless, the variation range of WP with or without activating fluxes was less than 16.7%. Compared with single-component ones, a multi-component activating flux composed of 50% ZrO2, 12.09% CaCO3, 10.43% CaO, and 27.49% MgO was testified to be much more efficient, the WP of which was about 2.3-fold of that without any activating fluxes. Furthermore, a FeCl3 spot corrosion experiment was carried out with samples cut from weld zone to test the effects of different activating fluxes on the corrosion resistant (CR) property of the laser welded joints. It was found that all kinds of activating fluxes could improve the CR of the welded joints. And, it was interesting to find that the effect of the mixed activating fluxes was inferior to those single-component ones. Among all the activating fluxes, the single-component of CaCO3 seemed to be the best in resisting corrosion. By means of Energy Dispersive Spectrometer (EDS) testing, it was found that the use of activating fluxes could effectively restrain the loss of Cr element of weld zone in the process of laser welding, thus greatly improving the CR of welded joints.

  14. Superalloys resist hot corrosion and oxidation

    SciTech Connect

    Erickson, G.L.

    1997-03-01

    Demand for lower fuel costs is driving turbine designers on all fronts to look for ways to increase firing temperatures to achieve higher operating efficiencies. Historically, hot corrosion attack has been the dominant environmental issue for industrial gas turbine engines. Now, efforts to raise firing temperatures create the need for materials that can endure exposures where both hot corrosion and oxidation predominate. Two single-crystal superalloys have been developed in response to these market demands. By providing a blend of hot corrosion and oxidation resistance, CMSX-11B and CMSX-11C alloys directly address the need for better components in turbine engines that burn fossil fuels. This article discusses alloy design and manufacture, mechanical properties, and results of hot corrosion and oxidation tests.

  15. Mussel-inspired superhydrophobic surfaces with enhanced corrosion resistance and dual-action antibacterial properties.

    PubMed

    Qian, Hongchang; Li, Minglu; Li, Zhong; Lou, Yuntian; Huang, Luyao; Zhang, Dawei; Xu, Dake; Du, Cuiwei; Lu, Lin; Gao, Jin

    2017-11-01

    In this study, a multilayer antibacterial film was assembled onto 316L stainless steel via mussel-inspired depositions of polydopamine (PDA) and silver (Ag) nanoparticles followed by post-modification with 1H, 1H, 2H, 2H-perfluorodecanethiol. The resulting surface exhibited excellent superhydrophobicity with hierarchical micro/nanostructures that were constructed by both PDA and Ag nanoparticles. The crystal structure and chemical composition of these surfaces were investigated using X-ray photoelectron spectroscopy (XPS) analysis. Potentiodynamic polarization measurements revealed that the corrosion resistance of the as-prepared surfaces were sequentially increased after each step of the fabrication process. Compared with the surface covered with only Ag nanoparticles, the superhydrophobic surfaces exhibited substantially enhanced antibacterial activity against the Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, resulting from the synergistic antibacterial actions of the superhydrophobic surface and Ag nanoparticles. The superhydrophobic surface exhibited lower cytotoxicity, compared to the surface covered with Ag nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Characterization, mechanical properties and corrosion resistance of biocompatible Zn-HA/TiO2 nanocomposite coatings.

    PubMed

    Mirak, Mohammad; Alizadeh, Morteza; Ghaffari, Mohammad; Ashtiani, Mohammad Najafi

    2016-09-01

    Biocompatible Zinc-hydroxyapatite-titania and Zinc-hydroxyapatite nanocomposite coatings have been prepared by electrodeposition on NiTi shape memory alloy. Structures of coatings were characterized using X-ray diffraction (XRD). It was found that addition of TiO2 particles cause to reduction of crystallite size of coating. Scanning Electronic Microscope (SEM) observation showed that the Zn-HA/TiO2 coating consists of plate-like regions which can express that this plate-like structure can facilitate bone growth. X-ray photoelectron microscope (XPS) was performed to investigation of chemical state of composite coating and showed that Zinc matrix was bonded to oxygen. high-resolution transmission electron microscope (HRTEM) result illustrated the crystalline structure of nanocomposite coating. Mechanical behavior of coating was evaluated using microhardness and ball on disk wear test. The TiO2 incorporated composite coatings exhibited the better hardness and anti-wear performance than the Zn-HA coatings. Polarization measurements have been used to evaluate the electrochemical coatings performance. The Zn-HA/TiO2 composite coatings showed the highest corrosion resistance compared with Zn-HA and bare NiTi.

  17. Tantalum Nitride-Decorated Titanium with Enhanced Resistance to Microbiologically Induced Corrosion and Mechanical Property for Dental Application

    PubMed Central

    Li, Yongliang; Wang, Lixin; Bai, Yanjie; Zhao, Qiang; Xiong, Xiaoling; Cheng, Yan; Tang, Zhihui; Deng, Yi; Wei, Shicheng

    2015-01-01

    Microbiologically induced corrosion (MIC) of metallic devices/implants in the oral region is one major cause of implant failure and metal allergy in patients. Therefore, it is crucial to develop practical approaches which can effectively prevent MIC for broad clinical applications of these materials. In the present work, tantalum nitride (TaN)-decorated titanium with promoted bio-corrosion and mechanical property was firstly developed via depositing TaN layer onto pure Ti using magnetron sputtering. The microstructure and chemical constituent of TaN coatings were characterized, and were found to consist of a hard fcc-TaN outer layer. Besides, the addition of TaN coatings greatly increased the hardness and modulus of pristine Ti from 2.54 ± 0.20 to 29.88 ± 2.59 GPa, and from 107.19 ± 6.98 to 295.46 ± 19.36 GPa, respectively. Potentiodynamic polarization and electrochemical impedance spectroscopy studies indicated that TaN coating exhibited higher MIC resistance in comparison to bare Ti and TiN-coated coating in two bacteria-containing artificial saliva solutions. Moreover, the biofilm experiment showed that the TaN-decorated Ti sample possessed good antibacterial performance. The SEM and XPS results after biofilm removal demonstrated that TaN film remained its integrity and stability, while TiN layer detached from Ti surface in the bio-corrosion tests, demonstrating the anti-MIC behavior and the strong binding property of TaN coating to Ti substrate. Considering all these results, TaN-decorated Ti material exhibits the optimal comprehensive performance and holds great potential as implant material for dental applications. PMID:26107177

  18. Surface modification for corrosion resistance

    SciTech Connect

    Natesan, K.

    1993-06-01

    The raw gas environments that arise from coal gasification have chemical compositions that are low in pO{sub 2} and moderate-to-high in pS{sub 2}. Metallic materials for service in such an environment undergo predominantly sulfidation attack at temperatures of 400 to 700{degree}C. Modification of alloy compositions in bulk can alter the scaling processes and lead to improvements in corrosion resistance, but the benefits can only be attained at temperatures much higher than the service temperatures of the components. Modification of surfaces of structural components by several of the coating techniques examined in this study showed substantial benefit in corrosion resistance when tested in simulated coal gasification environments. The paper presents several examples of surface modification and their corrosion performance.

  19. Corrosion resistant coating

    DOEpatents

    Wrobleski, Debra A.; Benicewicz, Brian C.; Thompson, Karen G.; Bryan, Coleman J.

    1997-01-01

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  20. Corrosion resistant coating

    DOEpatents

    Wrobleski, D.A.; Benicewicz, B.C.; Thompson, K.G.; Bryan, C.J.

    1997-08-19

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  1. CORROSION RESISTANT JACKETED METAL BODY

    DOEpatents

    Brugmann, E.W.

    1958-08-26

    Reactor faul elements of the elongated cylindrical type which are jacketed in a corrosion resistant material are described. Each feel element is comprised of a plurality of jacketed cylinders of fissionable material in end to end abutting relationship, the jackets being welded together at their adjoining ends to retain the individual segments together and seat the interior of the jackets.

  2. Corrosion resistant metallic bipolar plate

    DOEpatents

    Brady, Michael P.; Schneibel, Joachim H.; Pint, Bruce A.; Maziasz, Philip J.

    2007-05-01

    A corrosion resistant, electrically conductive component such as a bipolar plate for a PEM fuel cell includes 20 55% Cr, balance base metal such as Ni, Fe, or Co, the component having thereon a substantially external, continuous layer of chromium nitride.

  3. CORROSION RESISTANT JACKETED METAL BODY

    DOEpatents

    Brugmann, E.W.

    1958-08-26

    Jacketed metal bodies of the type used as fuel elements for nuclear reactors, which contain an internal elongated body of fissionable material jacketed in a corrosion resistant metal are described. The ends of the internal bodies are provided with screw threads having a tapered outer end. The jacket material overlaps the ends and extends into the tapered section of the screw threaded opening. Screw caps with a mating tapered section are screwed into the ends of the body to compress the jacket material in the tapered sections to provtde an effective seal against corrosive gases and liquids.

  4. Coatings for improved corrosion resistance

    SciTech Connect

    Natesan, K.

    1992-05-01

    Several coating approaches are being developed to resist attack in coal-fired environments and thereby minimize corrosion of underlying substrate alloys and extend the time for onset of breakaway corrosion. In general, coating systems can be classified as either diffusion or overlay type, which are distinguished principally by the method of deposition and the structure of the resultant coating-substrate bond. The coating techniques examined are pack cementation, electrospark deposition, physical and chemical vapor deposition, plasma spray, and ion implantation. In addition, ceramic coatings are used in some applications.

  5. Coatings for improved corrosion resistance

    SciTech Connect

    Natesan, K.

    1992-05-01

    Several coating approaches are being developed to resist attack in coal-fired environments and thereby minimize corrosion of underlying substrate alloys and extend the time for onset of breakaway corrosion. In general, coating systems can be classified as either diffusion or overlay type, which are distinguished principally by the method of deposition and the structure of the resultant coating-substrate bond. The coating techniques examined are pack cementation, electrospark deposition, physical and chemical vapor deposition, plasma spray, and ion implantation. In addition, ceramic coatings are used in some applications.

  6. Superior Corrosion Resistance Properties of TiN-Based Coatings on Zircaloy Tubes in Supercritical Water

    SciTech Connect

    Fauzia Khatkhatay; Liang Jiao; Jie Jian; Zhijie Jiao; Hongbin Zhang; Jian Gan; Haiyan Wang; Wenrui Zhang; Xinghang Zhang

    2014-08-01

    Thin films of TiN and Ti0.35Al0.65N nanocomposite were deposited on polished Zircaloy-4 tubes. After exposure to supercritical water for 48 h, the coated tubes are remarkably intact, while the bare uncoated tube shows severe oxidation and breakaway corrosion. X-ray diffraction patterns, secondary electron images, backscattered electron images, and energy dispersive X-ray spectroscopy data from the tube surfaces and cross-sections show that a protective oxide, formed on the film surface, effectively prevents further oxidation and corrosion to the Zircaloy-4 tubes. This result demonstrates the effectiveness of thin film ceramics as protective coatings under extreme environments.

  7. Corrosion resistant ceramic materials

    DOEpatents

    Kaun, Thomas D.

    1995-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  8. Corrosion resistant ceramic materials

    DOEpatents

    Kaun, T.D.

    1996-07-23

    Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

  9. Corrosion resistant ceramic materials

    DOEpatents

    Kaun, Thomas D.

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  10. Improved Corrosion Resistance and Mechanical Properties of CrN Hard Coatings with an Atomic Layer Deposited Al2O3 Interlayer.

    PubMed

    Wan, Zhixin; Zhang, Teng Fei; Lee, Han-Bo-Ram; Yang, Ji Hoon; Choi, Woo Chang; Han, Byungchan; Kim, Kwang Ho; Kwon, Se-Hun

    2015-12-09

    A new approach was adopted to improve the corrosion resistance of CrN hard coatings by inserting a Al2O3 layer through atomic layer deposition. The influence of the addition of a Al2O3 interlayer, its thickness, and the position of its insertion on the microstructure, surface roughness, corrosion behavior, and mechanical properties of the coatings was investigated. The results indicated that addition of a dense atomic layer deposited Al2O3 interlayer led to a significant decrease in the average grain size and surface roughness and to greatly improved corrosion resistance and corrosion durability of CrN coatings while maintaining their mechanical properties. Increasing the thickness of the Al2O3 interlayer and altering its insertion position so that it was near the surface of the coating also resulted in superior performance of the coating. The mechanism of this effect can be explained by the dense Al2O3 interlayer acting as a good sealing layer that inhibits charge transfer, diffusion of corrosive substances, and dislocation motion.

  11. Mechanical Property and Corrosion Resistance Evaluations of Ti-6Al-7Nb Alloy Brazed with Bulk Metallic Glasses

    SciTech Connect

    Miura, E.; Kato, H.; Ogata, Toshiaki; Nishiyama, Nobuyuki; Specht, Eliot D; Shiraishi, Takanobu; Inoue, A.; Hisatsune, K.

    2007-01-01

    Exploitation of metallic glass as new brazing filler for Ti-based biomedical alloy was attempted. Ti-6Al-7Nb was used as a brazed material, and candidates of bulk metallic glass brazing filler were Cu60Hf25Ti15, Mg65Cu25Gd10, Zr55Cu30Al10Ni5 and Pd40Cu30P20Ni10. Convergence infrared-ray brazing was conducted for brazing Ti-6Al-7Nb/metallic glass in Ar atmosphere. After brazing, hardness measurement, X-ray tomography, cross-sectional observation, artificial saliva immersion test and tensile test were performed to evaluate brazability, mechanical property and corrosion resistance of the obtained brazing joints. The results of brazing using these metallic glass fillers show that all the metallic glasses were brazable to Ti-6Al-7Nb except for Mg65Cu25Gd10. Mg65Cu25Gd10, Cu60Hf25Ti15 and their joints collapsed rapidly during immersion test. Zr55Cu30Al10Ni5 joint was the best in terms of degradation resistance; however, tensile strength was inferior to the conventional one. Pd40Cu30Ni10P20 filler and Zr55Cu30Al10Ni5 filler and their joints did not show any collapse or tarnish during the immersion test. Pd40Cu30Ni10P20 joint showed the excellent properties in terms of both corrosion resistance and tensile strength, which were superior to a joint brazed using Ti-15Cu-25Ni conventional filler. X-ray tomograph indicates that fracture tends to occur in the vicinity of the brazing interface after tensile test. The brazed metallic glass fillers were fully crystallized, excluding Pd40Cu30Ni10P20 filler. Pd40Cu30Ni10P20 brazed filler contained mapleleaf like primary dendrite, peritectoid and a few microns interfacial reaction layer in glassy matrix. The results indicated that Pd40Cu30Ni10P20 is promising brazing filler for dental or biomaterial devices.

  12. Corrosion resistant pipe with extremely high impact resistance

    SciTech Connect

    Drake, S.

    1999-11-01

    The next generation of fiberglass pipe, which combines outstanding corrosion resistance to an extremely wide range of industrial chemicals with impact resistance more than 100 times better than existing fiberglass pipe, is introduced. This pipe is initially rated for operating pressures of 150 psi (10 Bar) at up to 225 F (107 C), and has corrosion resistance that generally is as good or better than traditional vinyl ester or epoxy resins. Its resistance to halogens such as chlorine and bromine is especially outstanding. These properties are achieved with the use of a new type of DUCTILE thermosetting resin. Included is a discussion of the resin system and data comparing the properties of this new piping system with traditional epoxy and vinyl ester piping.

  13. Poly(aniline) in corrosion resistant coatings

    SciTech Connect

    McAndrew, T.P.; Miller, S.A.; Gilicinski, A.G.; Robeson, L.M.

    1996-10-01

    During the past two decades, one of the most active fields of solid-state science has been electrically conductive polymers. These are polymers which are insulators as prepared, but which can be converted to polymers having many or all the properties of a metal, by virtue of appropriate chemical/electrochemical oxidation or reduction. Typically, applications examined for electrically conductive polymers have been in areas such as rechargeable batteries and charge dissipative coatings. Recently it has been reported that poly(aniline), in its electrically conductive, protonated form, shows excellent performance as a coating for preventing the corrosion of carbon steel. The present research has shown that in fact, the non-conductive, unprotonated form of poly(aniline) shows even better performance in corrosion prevention than the conductive form. Moreover, it has been shown that poly(aniline) can be blended with other polymers to improve their corrosion resistance performance (e.g., polyimides), or used as a hardener for epoxides or diisocyanates, to give very good corrosion resistant coatings. Poly(aniline) performance is explained in terms of its ability to form dense, adherent films, and create a basic surface on carbon steel surfaces.

  14. Corrosion resistant materials in MCFC environment

    NASA Astrophysics Data System (ADS)

    Pigeaud, A.; Yuh, C. Y.; Singh, P.

    A 24-month effort in the development of a corrosion resistant hardware material for molten carbonate fuel cell (MFC) application is described. The objective was to identify an inexpensive alloy for MCFC current collector/bipolar plate application. For this, 310S was selected as the base alloy composition and La, Ce and Si were added to improve corrosion resistance. Eight candidate alloys, including 310S and 316L, were screened in MCFC anode and cathode atmospheres. The techniques used include isothermal corrosion, acoustic emission, thermal cycling corrosion, thermogravimetric analyses, electrical surface resistance, and dual atmosphere corrosion testing. Oxide scales formed were analyzed by standard metallographic techniques. The results indicate that COLT-25+ and Crutemp-25 alloys (both containing 25Cr-25Ni and balance Fe) have the best corrosion resistance in the MCFC environment. Rare earth additives, La and Ce, do not appear to improve isothermal or thermal cycling resistance. Silicon addition appears to improve thermal cycling but not isothermal corrosion resistance. High Mn content (approx. 18%) appears detrimental based on this limited investigation. Currently used 316L has the least corrosion resistance of all the alloys tested. Pressurized tests have shown that high pressure (10 atm) reduces corrosion rate in the anode atmosphere whereas it only slightly affects corrosion rate in the cathode atmosphere.

  15. CORROSION RESISTANT JACKETED METAL BODY

    DOEpatents

    Brugmann, E.W.

    1958-08-26

    S>Metal jacketed metallic bodies of the type used as feel elements fer nuclear reactors are presented. The fuel element is comprised of a plurality of jacketed cylindrical bodies joined in end to end abutting relationship. The abutting ends of the internal fissionable bodies are provided with a mating screw and thread means for joining the two together. The jacket material is of a corrosion resistant metal and overlaps the abutting ends of the internal bodies, thereby effectively sealing these bodies from contact with exteral reactive gases and liquids.

  16. A corrosive resistant heat exchanger

    DOEpatents

    Richlen, S.L.

    1987-08-10

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  17. Preparation of porous super-hydrophobic and super-oleophilic polyvinyl chloride surface with corrosion resistance property

    NASA Astrophysics Data System (ADS)

    Kang, Yingke; Wang, Jinyan; Yang, Guangbin; Xiong, Xiujuan; Chen, Xinhua; Yu, Laigui; Zhang, Pingyu

    2011-11-01

    Porous super-hydrophobic polyvinyl chloride (PVC) surfaces were obtained via a facile solvent/non-solvent coating process without introducing compounds with low surface energy. The microstructure, wetting behavior, and corrosion resistance of resultant super-hydrophobic PVC coatings were investigated in relation to the effects of dosage of glacial acetic acid and the temperature of drying the mixed PVC solution spread over glass slide substrate. As-prepared PVC coatings had porous microstructure, and the one obtained at a glacial acetic acid to tetrahydrofuran volume ratio of 2.5:10.0 and under a drying temperature of 17 °C had a water contact angle of 150 ± 1.5°, showing super-hydrophobicity. In the meantime, it possessed very small contact angles for liquid paraffin and diiodomethane and good corrosion resistance against acid and alkali corrosive mediums, showing promising applications in self-cleaning, waterproof for outer wall of building, seawater resistant coating, and efficient separation of oil and water.

  18. The stress corrosion resistance and the cryogenic temperature mechanical properties of hot rolled Nitronic 32 bar material

    NASA Technical Reports Server (NTRS)

    Montano, J. W. L.

    1977-01-01

    The ambient and cryogenic temperature mechanical properties and the ambient temperature stress corrosion properties of hot rolled and centerless ground Nitronic 32 stainless steel bar material are presented. The mechanical properties of longitudinal specimens were evaluated at test temperatures from ambient to liquid hydrogen. The tensile test data indicated increasing smooth tensile strength with decreasing temperature to liquid hydrogen temperature. However, below -200 F (-129.0 C) the notched tensile strength decreased slightly and below -320 F (-196.0 C) the decrease was significant. The elongation and reduction of area decreased drastically at temperatures below -200 F (-129.0 C). The Charpy V-notched impact energy decreased steadily with decreasing test temperature. Stress corrosion tests were performed on longitudinal tensile specimens stressed to 0, 75, and 90 percent of the 0.2 percent yield strength and on transverse 'C'-ring specimens stressed to 75 and 90 percent of the yield strength and exposed to: alternate immersion in a 3.5 percent NaCl bath, humidity cabinet environment, and a 5 percent salt spray atmosphere. The longitudinal tensile specimens experienced no corrosive attack; however, the 'C'-rings exposed to the alternate immersion and to the salt spray experienced some shallow etching and pitting, respectively. Small cracks appeared in two of the 'C'-rings after one month exposure to the salt spray.

  19. Structure and mechanical properties of the three-layer material based on a vanadium alloy and corrosion-resistant steel

    NASA Astrophysics Data System (ADS)

    Nikulin, S. A.; Rozhnov, A. B.; Nechaikina, T. A.; Rogachev, S. O.; Zavodchikov, S. Yu.; Khatkevich, V. M.

    2014-10-01

    The quality of three-layer pipes has been studied; they are manufactured by hot pressing of a three-layer assembly of tubular billets followed by forging and cold rolling. The operating core is made from a V-4Ti-4Cr alloy. The protective claddings are made from corrosion-resistant steels of two grades, 08Kh17T and 20Kh13. The results of investigation into the structure and microhardness of the junction zone of steel and the vanadium alloy, which includes a contact zone and a transition diffusion layer, are reported. The 08Kh17T steel is shown to be a preferred cladding material.

  20. Effect of heat treatment on the structure and the mechanical and technological properties of corrosion-resistant nitrogen-bearing 0Kh16N4AFD steel for high-strength welding constructions of railway engineering

    NASA Astrophysics Data System (ADS)

    Bannykh, O. A.; Blinov, V. M.; Kostina, M. V.; Lukin, E. I.; Blinov, E. V.; Rigina, L. G.

    2015-07-01

    The problems of applying a new nitrogen-alloyed martensitic corrosion-resistant 0Kh16N4AFD steel as a promising material for manufacturing car bodies are considered. The microstructure and properties of the steel after various heat treatments have been studied. It is shown that the steel is not behind 12Kh18N9T steel in the characteristics of ductility and corrosion resistance and significantly exceeds it in the static and cyclic strengths.

  1. Localized corrosion and stress corrosion cracking resistance of friction stir welded aluminum alloy 5454

    SciTech Connect

    Frankel, G.S.; Xia, Z.

    1999-02-01

    The susceptibility of welded and unwelded samples of Al 5454 (UNS A95454) in the -O and -H34 tempers to pitting corrosion and stress corrosion cracking (SCC) in chloride solutions was studied. Welded samples were fabricated using the relatively new friction stir welding (FSW) process as well as a standard gas-tungsten arc welding process for comparison. Pitting corrosion was assessed through potentiodynamic polarization experiments. U-bend and slow strain rate tests were used to determine SCC resistance. The FSW samples exhibited superior resistance to pitting corrosion compared to the base metal and arc-welded samples. U-bend tests indicated adequate SCC resistance for the FSW samples. However, the FSW samples exhibited discontinuities that probably were associated with remnant boundaries of the original plates. These defects resulted in intermittent increased susceptibility to pitting and, particularly for Al 5454-H34 samples, poor mechanical properties in general.

  2. Corrosion resistant storage container for radioactive material

    DOEpatents

    Schweitzer, Donald G.; Davis, Mary S.

    1990-01-01

    A corrosion resistant long-term storage container for isolating radioactive waste material in a repository. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between judxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

  3. Corrosion resistant storage container for radioactive material

    DOEpatents

    Schweitzer, D.G.; Davis, M.S.

    1984-08-30

    A corrosion resistant long-term storage container for isolating high-level radioactive waste material in a repository is claimed. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between juxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

  4. The Oxidation and Corrosion Resistance of Nitrided Iron Alloys.

    DTIC Science & Technology

    1981-07-27

    and mechanical properties of the nitrided alloys are understood. However, resistance of nitrided alloys to oxidation and corrosion has received...resulted in an order of magnitude decrease in current density compared with the un-nitrided alloy. The mechanism of corrosion was also found to change...suggested as suitable alternatives to AISI 304L and 316L (18Cr-8Ni types with molybdenum). The Armco Steel Corporation Nitronic series of austenitic

  5. Corrosion resistant coatings from conducting polymers

    SciTech Connect

    Wrobleski, D.A.; Benicewicz, B.C.; Thompson, K.G.; Bryan, C.J.

    1993-12-01

    Cr-based corrosion resistant undercoatings will have to be replaced because of environmental and health concerns. A coating system of a conducting polyaniline primer layer topcoated with epoxy or polyurethane, is being evaluated for corrosion resistance on mild steel in 0.1 M HCl or in a marine setting. Results of both laboratory and Beach Site testing indicate that this coating is very effective; even when the coatings are scratched to expose bare metal, the coated samples show very little signs of corrosion in the exposed area. 3 figs, 6 refs.

  6. Corrosion resistant process piping changes in economics

    SciTech Connect

    Lain, E.H. Jr.

    1996-07-01

    In recent years, the process piping industry has seen dramatic changes occur in corrosion resistant materials. Some changes have occurred in the form of new and modified materials becoming available. However, the most dramatic changes have occurred in the pricing of some older and well known materials. These economic changes have been dramatic and quick, so much so that the old established budget pricing ``rules of thumb`` used for many years to estimate piping projects are no longer valid. In many instances, the prices of some premium metals (titanium, for example) are now on a comparatively equal basis even with high alloys when all factors including densities, special fabrication requirements and service life are taken into account. The purpose of this paper is to discuss some commonly encountered corrosion resistant piping materials, a brief summary of their chemical and mechanical properties and usage. However, the focus of the paper presented will be economic. It will detail the current raw material prices for high alloys including duplex stainless steels, nickel and nickel alloys, Hastelloys+, as well as the reactive metals, zirconium and titanium. In addition, a typical fabricated piping spool in various diameters will be estimated for all of the above metals and the results plotted in graphical format for quick comparison. Last, a quick method will be presented to estimate as fabricated piping costs if the base material price for pipe is known.

  7. Mussel-inspired nano-multilayered coating on magnesium alloys for enhanced corrosion resistance and antibacterial property.

    PubMed

    Wang, Bi; Zhao, Liang; Zhu, Weiwei; Fang, Liming; Ren, Fuzeng

    2017-09-01

    Magnesium alloys are promising candidates for load-bearing orthopedic implants due to their biodegradability and mechanical resemblance to natural bone tissue. However, the high degradation rate and the risk of implant-associated infections pose grand challenges for their clinical applications. Herein, we developed a nano-multilayered coating strategy through polydopamine and chitosan assisted layer-by-layer assembly of osteoinductive carbonated apatite and antibacterial sliver nanoparticles on the surface of AZ31 magnesium alloys. The fabricated nano-multilayered coating can not only obviously enhance the corrosion resistance but also significantly increase the antibacterial activity and demonstrate better biocompatility of magnesium alloys. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Corrosion-Resistant Ball Bearings

    NASA Technical Reports Server (NTRS)

    Zdankiewicz, E. M.; Linaburg, E. L.; Lytle, L. J.

    1990-01-01

    Self-lubricating bearing system withstands highly corrosive environment of wastewater-recycling unit. New bearings contain cobalt-based-alloy balls and races, graphite/polyimide polymer ball cages, and single integral polytetrafluoroethylene seals on wet sides. Materials and design prevent corrosion by acids and provide lubrication.

  9. 46 CFR 111.01-11 - Corrosion-resistant parts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Corrosion-resistant parts. 111.01-11 Section 111.01-11...-GENERAL REQUIREMENTS General § 111.01-11 Corrosion-resistant parts. Each enclosure and part of electric equipment that can be damaged by corrosion must be made of corrosion-resistant materials or of...

  10. 46 CFR 111.01-11 - Corrosion-resistant parts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Corrosion-resistant parts. 111.01-11 Section 111.01-11...-GENERAL REQUIREMENTS General § 111.01-11 Corrosion-resistant parts. Each enclosure and part of electric equipment that can be damaged by corrosion must be made of corrosion-resistant materials or of...

  11. 46 CFR 111.01-11 - Corrosion-resistant parts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Corrosion-resistant parts. 111.01-11 Section 111.01-11...-GENERAL REQUIREMENTS General § 111.01-11 Corrosion-resistant parts. Each enclosure and part of electric equipment that can be damaged by corrosion must be made of corrosion-resistant materials or of materials...

  12. 46 CFR 111.01-11 - Corrosion-resistant parts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Corrosion-resistant parts. 111.01-11 Section 111.01-11...-GENERAL REQUIREMENTS General § 111.01-11 Corrosion-resistant parts. Each enclosure and part of electric equipment that can be damaged by corrosion must be made of corrosion-resistant materials or of materials...

  13. Development of New Type Seawater Resistant Steel and the Research of Its Structure and Corrosion Resistance

    NASA Astrophysics Data System (ADS)

    Yin, Baoliang; Yin, Shaojiang; Liu, Zhiyong; Wang, Yunge; Yu, Hao; Li, Haixu; Zhou, Tao

    This paper investigated two kinds of corrosion resistant low alloy steels depending on the environment of the North China see (Steel S) and South China sea (Steel N), respectively. The mechanical and corrosion properties of the two steels were analyzed in this paper. Tin was added into both steels to improve the corrosion resistance. Structure and mechanical properties of the two steels were detected, and the results revealed that the microstructures of both steels were ferrite and little divorced pearlite. The yield strength and impact toughness at -40°C of the steel S are 423MPa and 98 J, respectively. The yield strength and impact toughness at -40°C of the steel N are 437 MPa and 70 J, respectively. The properties mentioned above met or even exceeded the requirement (yield strength 355 MPa, toughness 34 J) in these areas. The corrosion resistant properties of the two steels were also investigated via the means of immersion test and electrochemical experiment. The immersion test indicated that the corrosion rate of steel S and steel N was 0.00938 mg/h·cm2 and 0.00838 mg/h·cm2, respectively, when completely immersed for 168 hours, and the corrosion rate was much lower than that of E36. The Electrochemical experiments showed that the corrosion potential (Ecorr) of both steels was higher in contrast to E36, which indicated a lower corrosion trend.

  14. The effect of vacuum annealing on corrosion resistance of titanium

    SciTech Connect

    Chikanov, V.N.; Peshkov, V.V.; Kireev, L.S.

    1994-09-01

    The effect of annealing on the corrosion resistance of OT4-1 sheet titanium in 25% HCl under various air pressures and self-evacuating conditions has been investigated. From the kinetic corrosion curves it follows that the least corrosion resistance of titanium is observed after vacuum annealing. Even low residual air pressure in a chamber improves corrosion resistance. The corrosion resistance of titanium decreases with vacuum-annealing time.

  15. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials.

    PubMed

    Yeung, K W K; Poon, R W Y; Chu, P K; Chung, C Y; Liu, X Y; Lu, W W; Chan, D; Chan, S C W; Luk, K D K; Cheung, K M C

    2007-08-01

    Stainless steel and titanium alloys are the most common metallic orthopedic materials. Recently, nickel-titanium (NiTi) shape memory alloys have attracted much attention due to their shape memory effect and super-elasticity. However, this alloy consists of equal amounts of nickel and titanium, and nickel is a well known sensitizer to cause allergy or other deleterious effects in living tissues. Nickel ion leaching is correspondingly worse if the surface corrosion resistance deteriorates. We have therefore modified the NiTi surface by nitrogen plasma immersion ion implantation (PIII). The surface chemistry and corrosion resistance of the implanted samples were studied and compared with those of the untreated NiTi alloys, stainless steel, and Ti-6Al-4V alloy serving as controls. Immersion tests were carried out to investigate the extent of nickel leaching under simulated human body conditions and cytocompatibility tests were conducted using enhanced green fluorescent protein mice osteoblasts. The X-ray photoelectron spectroscopy results reveal that a thin titanium nitride (TiN) layer with higher hardness is formed on the surface after nitrogen PIII. The corrosion resistance of the implanted sample is also superior to that of the untreated NiTi and stainless steel and comparable to that of titanium alloy. The release of nickel ions is significantly reduced compared with the untreated NiTi. The sample with surface TiN exhibits the highest amount of cell proliferation whereas stainless steel fares the worst. Compared with coatings, the plasma-implanted structure does not delaminate as easily and nitrogen PIII is a viable way to improve the properties of NiTi orthopedic implants.

  16. High performance corrosion-resistant structural steels

    SciTech Connect

    Fletcher, F.B.; Ferry, B.N.; Beblo, D.G.

    1995-12-31

    A new corrosion-resistant structural steel named Duracorr was developed for low maintenance when compared to conventional structural steels. The new stainless steel is a dual phase composition between the established 12% Cr, ferritic T409 and martensitic T410 grades. Attractive combinations of hardness, strength, toughness, weldability and formability are derived from a microstructure that is a dual phase mixture of ferrite and martensite. The Duracorr composition, UNS S41003, provides for a microstructure of ferrite and austenite to be present throughout the hot rolling process. Cooling to room temperature causes transformation of the austenite to martensite. Subsequent tempering of the steel creates minimum mechanical properties of 275 MPa (40 ksi) yield strength and 455 MPa (66 ksi) tensile strength with room temperature longitudinal Charpy impact values typically greater than 34 J (25 ft-lbs).

  17. Carbon Surface Modification for Enhanced Corrosion Resistance

    DTIC Science & Technology

    2008-01-01

    LTCSS-treated 316L SS, representing a sig- nificant increase in surface hardness over the substrate material (Vickers 300 HV). To give some perspective...behavior of particular interest to the Navy. Comparison of crevice corrosion resistance for untreated 316L SS and LTCSS- treated 316L is presented in...Fig. 2. Crevice corrosion damage on an untreated 316L coupon following one week of crevice exposure is shown in the center of the figure. LTCSS

  18. High temperature, low expansion, corrosion resistant ceramic and gas turbine

    DOEpatents

    Rauch, Sr., Harry W.

    1981-01-01

    The present invention relates to ZrO.sub.2 -MgO-Al.sub.2 O.sub.3 -SiO.sub.2 ceramic materials having improved thermal stability and corrosion resistant properties. The utilization of these ceramic materials as heat exchangers for gas turbine engines is also disclosed.

  19. CORROSION RESISTANCE OF STRUCTURAL AMORPHOUS METAL

    SciTech Connect

    Lian, T; Day, S D; Farmer, J C

    2006-04-10

    Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The potential advantages of amorphous metals have been recognized for some time [Latanison 1985]. Iron-based corrosion-resistant, amorphous-metal coatings under development may prove important for maritime applications [Farmer et al. 2005]. Such materials could also be used to coat the entire outer surface of containers for the transportation and long-term storage of spent nuclear fuel, or to protect welds and heat affected zones, thereby preventing exposure to environments that might cause stress corrosion cracking [Farmer et al. 1991, 2000a, 2000b]. In the future, it may be possible to substitute such high-performance iron-based materials for more-expensive nickel-based alloys, thereby enabling cost savings in a wide variety of industrial applications. It should be noted that thermal-spray ceramic coatings have also been investigated for such applications [Haslam et al. 2005]. This report focuses on the corrosion resistance of a yttrium-containing amorphous metal, SAM1651. SAM1651 has a glass transition temperature of {approx}584 C, a recrystallization temperature of {approx}653 C, and a melting point of {approx}1121 C. The measured critical cooling rate for SAM1651 is {le} 80 K per second, respectively. The yttrium addition to SAM1651 enhances glass formation, as reported by Guo and Poon [2003]. The corrosion behavior of SAM1651 was compared with nickel-based Alloy 22 in electrochemical polarization measurements performed in several highly

  20. The corrosion and corrosion mechanical properties evaluation for the LBB concept in VVERs

    SciTech Connect

    Ruscak, M.; Chvatal, P.; Karnik, D.

    1997-04-01

    One of the conditions required for Leak Before Break application is the verification that the influence of corrosion environment on the material of the component can be neglected. Both the general corrosion and/or the initiation and, growth of corrosion-mechanical cracks must not cause the degradation. The primary piping in the VVER nuclear power plant is made from austenitic steels (VVER 440) and low alloy steels protected with the austenitic cladding (VVER 1000). Inspection of the base metal and heterogeneous weldments from the VVER 440 showed that the crack growth rates are below 10 m/s if a low oxygen level is kept in the primary environment. No intergranular cracking was observed in low and high oxygen water after any type of testing, with constant or periodic loading. In the framework of the LBB assessment of the VVER 1000, the corrosion and corrosion mechanical properties were also evaluated. The corrosion and corrosion mechanical testing was oriented predominantly to three types of tests: stress corrosion cracking tests corrosion fatigue tests evaluation of the resistance against corrosion damage. In this paper, the methods used for these tests are described and the materials are compared from the point of view of response on static and periodic mechanical stress on the low alloyed steel 10GN2WA and weld metal exposed in the primary circuit environment. The slow strain rate tests and static loading of both C-rings and CT specimens were performed in order to assess the stress corrosion cracking characteristics. Cyclic loading of CT specimens was done to evaluate the kinetics of the crack growth under periodical loading. Results are shown to illustrate the approaches used. The data obtained were evaluated also from the point of view of comparison of the influence of different structure on the stress corrosion cracking appearance. The results obtained for the base metal and weld metal of the piping are presented here.

  1. Corrosion Resistance of Cordierite-Modified Light MMCs

    NASA Astrophysics Data System (ADS)

    Szewczyk-Nykiel, A.; Długosz, P.; Darłak, P.; Hebda, M.

    2017-05-01

    Composites are one of the fastest developing materials. Research is particularly intensive in case of light metal alloys due to i.a. economic and environmental aspects. One of the innovative solutions is production of the metal matrix composites (MMC) by adding the cordierite ceramics obtained from fly ashes to magnesium alloys. In addition to obtaining new-generation materials with improved mechanical properties, also the waste is utilized which has a significant environmental and economic importance. In order to select the suitable operating conditions for such alloys, their corrosion resistance must be determined. This paper presents the results of corrosion resistance tests of AM60 magnesium alloy matrix composites reinforced with cordierite ceramics. The following issues were examined: (1) impact of the volume fraction of cordierite ceramics, 2 or 4 wt.%; (2) impact of surface roughness (two variants of surface treatment); and (3) impact of heat treatment on corrosion resistance of obtained composites. The results were compared with data recorded for the base AM60 alloy (which surface treatment was identical as of the composites). Moreover, the XRD and microanalysis of the chemical compositions by EDS method were applied to determine phases occurring in the investigated composites. Furthermore, the XRD was also performed in order to identify the corrosion products on the surface of the material. The test results indicate that the alloy reinforced with 2 wt.% addition of cordierite ceramics had the best corrosion resistance. It was also presented that surface and heat treatment affect the obtained results.

  2. Corrosion-Resistant Alkyd Coatings

    DTIC Science & Technology

    1992-02-18

    molecule. Examples of such acid compounds include the aliphatic saturated dibasic acids such as succinic acid , adipic acid , azelaic acid , sebacic...of a benzoic acid . 15. SUBJECT TERMS corrosion control, single topcoat, one coat 16. SECURITY CLASSIFICATION OF: unclassified a. REPORT...consisting essentially of critical amounts of at least one zinc phos- phate, zinc molybdate and at least one zinc salt of a benzoic acid . 15

  3. Corrosion resistant PEM fuel cell

    DOEpatents

    Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen J.; Doll, Gary L.

    1997-01-01

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  4. Corrosion resistant PEM fuel cell

    DOEpatents

    Li, Y.; Meng, W.J.; Swathirajan, S.; Harris, S.J.; Doll, G.L.

    1997-04-29

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell`s operating environment. Stainless steels rich in Cr, Ni, and Mo are particularly effective protective interlayers. 6 figs.

  5. Corrosion resistant PEM fuel cell

    DOEpatents

    Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen Joel; Doll, Gary Lynn

    2001-07-17

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  6. Corrosion resistant PEM fuel cell

    DOEpatents

    Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen Joel; Doll, Gary Lynn

    2002-01-01

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  7. Corrosion resistance characterization of porous alumina membrane supports

    SciTech Connect

    Dong Yingchao; Lin Bin; Zhou Jianer; Zhang Xiaozhen; Ling Yihan; Liu Xingqin; Meng Guangyao; Hampshire, Stuart

    2011-04-15

    Tubular porous alumina ceramic membrane supports were fabricated by an extrusion-drying-sintering process and then characterized in detail in terms of corrosion resistance in both H{sub 2}SO{sub 4} and NaOH aqueous solutions. Variations in the properties of the alumina supports such as mass loss percent, mechanical strength, open porosity and pore size distribution were studied before and after corrosion under different conditions. In addition, the microstructures were analyzed using scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction before and after corrosion. The fabricated porous alumina supports offer possibilities for some potential applications as micro-filtration or ultra-filtration membrane supports, as well as in the pre-treatment of strongly acidic industrial waste-liquids. - Research highlights: {yields} Porous alumina membrane supports fabricated by extrusion-drying-sintering process. {yields} Corrosion resistance in 20 wt.% H{sub 2}SO{sub 4} and 1, 5, 10 wt.% NaOH aqueous solutions. {yields} Rapid mass loss and loss of flexural strength occurred in hot NaOH solution. {yields} Resistant to strong acid corrosion with low mass loss, low flexural strength loss. {yields} Porous alumina supports have potential for treatment of strong acid waste liquids.

  8. Oxidation corrosion resistant superalloys and coatings

    NASA Technical Reports Server (NTRS)

    Jackson, Melvin R. (Inventor); Rairden, III, John R. (Inventor)

    1978-01-01

    An article of manufacture having improved high temperature oxidation and corrosion resistance comprising: (a) a superalloy substrate containing a carbide reinforcing phase, and (b) a coating consisting of chromium, aluminum, carbon, at least one element selected from iron, cobalt or nickel, and optionally an element selected from yttrium or the rare earth elements.

  9. Oxidation corrosion resistant superalloys and coatings

    NASA Technical Reports Server (NTRS)

    Jackson, Melvin R. (Inventor); Rairden, III, John R. (Inventor)

    1980-01-01

    An article of manufacture having improved high temperature oxidation and corrosion resistance comprising: (a) a superalloy substrate containing a carbide reinforcing phase, and (b) a coating consisting of chromium, aluminum, carbon, at least one element selected from iron, cobalt or nickel, and optionally an element selected from yttrium or the rare earth elements.

  10. PM alloy 625M for high strength corrosion resistant applications

    SciTech Connect

    Rizzo, F.J.; Floreen, S.

    1997-06-01

    In applications where the combination of high strength and good corrosion resistance are required, there have been only a few alloys of choice. A new powder metallurgy alloy has been developed, PM 625M, a niobium modification of Alloy 625, as a material to fill this need. One area of particular interest is the nuclear power industry, where many problems have been encountered with bolts, springs, and guidepins. Mechanical properties and stress corrosion cracking data of PM 625M are presented in this paper.

  11. Centrifugally cast bimetallic pipe for offshore corrosion resistant pipelines

    SciTech Connect

    Yoshitake, A.; Torigoe, T.

    1994-12-31

    Centrifugally cast bimetallic pipes and fittings have been developed for the use of offshore oil and gas production. The metallurgical properties, mechanical properties, and corrosion properties of centrifugal a cast bimetallic pipe with outside metal of API 5L X52 to X65 internally clad with alloy 825 and 625 are discussed. First, molten steel for outer pipe is introduced into a rotating metallic mold. During the solidification of the outer pipe (carbon steel), the temperature of the pipe inside is monitored. After the solidification of the outer pipe, and when a certain temperature is reached, then a corrosion resistant alloy such as Alloy 825 or 625 for inside layer is poured. By controlling the casting conditions and selecting suitable flux, sound metallurgical bonded bimetallic pipe is produced with a minimum mixing layer at the interface also keeping a homogeneous outside wall thickness along the pipe length. The weld joints of the pipe are also evaluated from the view points of weldability, mechanical strength, fracture toughness, and corrosion resistance properties. The welding method applied was basically TIG welding (GTAW). COD tests at {minus}10 C are applied to the welds to investigate fracture toughness of the weld joints. Huey test according to ASTM A262C is carried out on the root of the welds as the corrosion test. As a result, the weld joint using filler wire of alloy625 from root to cover pass has proved a very reliable method from the point of view of mechanical and corrosion resistance properties. These centrifugally cast bimetallic pipes and fittings have been widely used for riser pipes, template process lines, top side and subsea manifolds, and flow bends for christmas trees in the North Sea.

  12. Corrosion resistance of premodeled wires made of stainless steel used for heart electrotherapy leaders

    NASA Astrophysics Data System (ADS)

    Przondziono, J.; Walke, W.; Młynarski, R.; Szatka, W.

    2012-05-01

    The purpose of the study is to evaluate resistance to electrochemical corrosion of wire made of X10CrNi18-8 stainless steel designed for use in cardiology treatment. The influence of strain formed in the premodeling process and methods of wire surface preparation to corrosive resistance in artificial plasma solution were analysed. Wire corrosion tests were carried out in the solution of artificial plasma. Resistance to electrochemical corrosion was evaluated on the ground of recorded curves of anodic polarization by means of potentiodynamic method. Potentiodynamic tests carried out enabled to determine how the resistance to pitting corrosion of wire changes, depending on strain formed in the premodeling process as well as on the method of wire surface preparation. For evaluation of phenomena occurring on the surface of tested steel, electrochemical impedance spectroscopy (EIS) was applied. Deterioration of corrosive properties of wire along with the increase in the formed strain hardening was observed.

  13. Energy Saving Melting and Revert Reduction (E-SMARRT): Optimization of Heat Treatments on Stainless Steel Castings for Improved Corrosion Resistance and Mechanical Properties

    SciTech Connect

    John N. DuPont; Jeffrey D. Farren; Andrew W. Stockdale; Brett M. Leister

    2012-06-30

    It is commonly believed that high alloy steel castings have inferior corrosion resistance to their wrought counterparts as a result of the increased amount of microsegregation remaining in the as-cast structure. Homogenization and dissolution heat treatments are often utilized to reduce or eliminate the residual microsegregation and dissolve the secondary phases. Detailed electron probe microanalysis (EPMA) and light optical microscopy (LOM) were utilized to correlate the amount of homogenization and dissolution present after various thermal treatments with calculated values and with the resultant corrosion resistance of the alloys.The influence of heat treatment time and temperature on the homogenization and dissolution kinetics were investigated using stainless steel alloys CN3MN and CK3MCuN. The influence of heat treatment time and temperature on the impact toughness and corrosion reistance of cast stainless steel alloys CF-3, CF-3M, CF-8, and CF-8M was also investigated.

  14. Influence of polyetheretherketone coatings on the Ti-13Nb-13Zr titanium alloy's bio-tribological properties and corrosion resistance.

    PubMed

    Sak, Anita; Moskalewicz, Tomasz; Zimowski, Sławomir; Cieniek, Łukasz; Dubiel, Beata; Radziszewska, Agnieszka; Kot, Marcin; Łukaszczyk, Alicja

    2016-06-01

    Polyetheretherketone (PEEK) coatings of 70-90μm thick were electrophoretically deposited from a suspension of PEEK powder in ethanol on near-β Ti-13Nb-13Zr titanium alloy. In order to produce good quality coatings, the composition of the suspension (pH) and optimized deposition parameters (applied voltage and time) were experimentally selected. The as-deposited coatings exhibited the uniform distribution of PEEK powders on the substrate. The subsequent annealing at a temperature above the PEEK melting point enabled homogeneous, semi-crystalline coatings with spherulitic morphology to be produced. A micro-scratch test showed that the coatings exhibited very good adhesion to the titanium alloy substrate. Coating delamination was not observed even up to a maximal load of 30N. The PEEK coatings significantly improved the tribological properties of the Ti-13Nb-13Zr alloy. The coefficient of friction was reduced from 0.55 for an uncoated alloy to 0.40 and 0.12 for a coated alloy in a dry sliding and sliding in Ringer's solution, respectively. The PEEK coatings exhibited excellent wear resistance in both contact conditions. Their wear rate was more than 200 times smaller compared with the wear rate of the uncoated Ti-13Nb-13Zr alloy. The obtained results indicate that electrophoretically deposited PEEK coatings on the near-β titanium alloy exhibit very useful properties for their prospective tribological applications in medicine.

  15. High-Performance Corrosion-Resistant Iron-Based Amorphous Metals: The Effects of Composition, Structure and Environment on Corrosion Resistance

    SciTech Connect

    Farmer, J; Choi, J S; Haslam, J; Lian, T; Day, S; Yang, N; Blue, C; Peters, W; Bayles, R; Lewandowski, J; Perepezko, J; Hildal, K; Lavernia, E; Ajdelsztajn, A; Grave, O; Aprigliano, L; Kaufman, L; Boudreau, J; Branagan, D J; Beardsley, B

    2006-04-11

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative thermal phase stability, microstructure, mechanical properties, damage tolerance, and corrosion resistance. Some alloy additions are known to promote glass formation and to lower the critical cooling rate [F. Guo, S. J. Poon, Applied Physics Letters, 83 (13) 2575-2577, 2003]. Other elements are known to enhance the corrosion resistance of conventional stainless steels and nickel-based alloys [A. I. Asphahani, Materials Performance, Vol. 19, No. 12, pp. 33-43, 1980] and have been found to provide similar benefits to iron-based amorphous metals. Many of these materials can be cast as relatively thick ingots, or applied as coatings with advanced thermal spray technology. A wide variety of thermal spray processes have been developed by industry, and can be used to apply these new materials as coatings. Any of these can be used for the deposition of the formulations discussed here, with varying degrees of residual porosity and crystalline structure. Thick protective coatings have now been made that are fully dense and completely amorphous in the as-sprayed condition. An overview of the High-Performance Corrosion Resistant Materials (HPCRM) Project will be given, with particular emphasis on the corrosion resistance of several different types of iron-based amorphous metals in various environments of interest. The salt fog test has been used to compare the performance of various wrought alloys, melt-spun ribbons, arc-melted drop-cast ingots, and thermal-spray coatings for their susceptibility to corrosion in marine environments. Electrochemical tests have also been performed in seawater. Spontaneous breakdown of the passive film and localized corrosion require that the open-circuit corrosion potential exceed the critical potential. The resistance to localized corrosion is seawater has been

  16. DIMENSIONALLY STABLE, CORROSION RESISTANT NUCLEAR FUEL

    DOEpatents

    Kittel, J.H.

    1963-10-31

    A method of making a uranium alloy of improved corrosion resistance and dimensional stability is described. The alloy contains from 0-9 weight per cent of an additive of zirconium and niobium in the proportions by weight of 5 to 1 1/ 2. The alloy is cold rolled, heated to two different temperatures, air-cooled, heated to a third temperature, and quenched in water. (AEC)

  17. High Gloss Corrosion-Resistant Coatings

    DTIC Science & Technology

    1991-08-27

    34) 5,043,373 1 2 binder derived from the reaction of at least one polyes- HIGH GLOSS CORROSION-RESISTANT ter polyol and a diisocyanate in combination with a...comprises a polyurethane, and more particulary an aliphatic polyurethane derived from the reaction of a saturated polyester polyol and a multi...a molar ratio of acid to pentaerythritol of cyanates include the biurets of the formula: about 1:1 to 2.5:1

  18. Pitting corrosion resistant austenite stainless steel

    DOEpatents

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  19. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo; Kim, Dong Rip

    2015-06-01

    Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.

  20. Effect of Welding Heat Input on the Corrosion Resistance of Carbon Steel Weld Metal

    NASA Astrophysics Data System (ADS)

    Lu, Yongxin; Jing, Hongyang; Han, Yongdian; Xu, Lianyong

    2016-02-01

    The corrosion resistance of carbon steel weld metal with three different microstructures has been systematically evaluated using electrochemical techniques with the simulated produced water containing CO2 at 90 °C. Microstructures include acicular ferrite, polygonal ferrite, and a small amount of pearlite. With welding heat input increasing, weld metal microstructure becomes more uniform. Electrochemical techniques including potentiodynamic polarization curve, linear polarization resistance, and electrochemical impedance spectroscopy were utilized to characterize the corrosion properties on weld joint, indicating that the best corrosion resistance corresponded to the weld metal with a polygonal ferrite microstructure, whereas the weld metal with the acicular ferrite + polygonal ferrite microstructure showed the worst corrosion resistance. The samples with high welding heat input possessed better corrosion resistance. Results were discussed in terms of crystal plane orientation, grain size, and grain boundary type found in each weld metal by electron backscatter diffraction test.

  1. Assessment of corrosion resistance of Nd-Fe-B magnets by silanization for orthodontic applications

    NASA Astrophysics Data System (ADS)

    Fabiano, F.; Celegato, F.; Giordano, A.; Borsellino, C.; Bonaccorsi, L.; Calabrese, L.; Tiberto, P.; Cordasco, G.; Matarese, G.; Fabiano, V.; Azzerboni, B.

    2014-02-01

    Nd-Fe-B permanent magnets are characterised by excellent magnetic properties. However, being extremely vulnerable to the attack of both climate and corrosive environments, their applications are limited. This paper describes how, at different thicknesses of N-propyl-trimetoxy-silane, the coating affects the magnetic force of nickel plated magnets. We also investigate if the corrosion resistance of silanized Nd-Fe-B magnets increases in mildly corrosive environments by immersing them in a synthetic saliva solution. It was found that the silanization treatment does not affect the strength of the magnetic force and provide an enhancement of the corrosion resistance of the substrate.

  2. Corrosion resistance of kolsterised austenitic 304 stainless steel

    SciTech Connect

    Abudaia, F. B. Khalil, E. O. Esehiri, A. F. Daw, K. E.

    2015-03-30

    Austenitic stainless suffers from low wear resistance in applications where rubbing against other surfaces is encountered. This drawback can be overcome by surface treatment such as coating by hard materials. Other treatments such as carburization at relatively low temperature become applicable recently to improve hardness and wear resistance. Carburization heat treatment would only be justified if the corrosion resistance is unaffected. In this work samples of 304 stainless steels treated by colossal supersaturation case carburizing (known as Kolsterising) carried out by Bodycote Company was examined for pitting corrosion resistance at room temperature and at 50 °C. Comparison with results obtained for untreated samples in similar testing conditions show that there is no deterioration in the pitting resistance due to the Kolsterising heat treatment. X ray diffraction patterns obtained for Kolsterising sample showed that peaks correspond to the austenite phase has shifted to lower 2θ values compared with those of the untreated sample. The shift is an indication for expansion of austenite unit cells caused by saturation with diffusing carbon atoms. The XRD of Kolsterising samples also revealed additional peaks appeared in the patterns due to formation of carbides in the kolsterised layer. Examination of these additional peaks showed that these peaks are attributed to a type of carbide known as Hagg carbide Fe{sub 2}C{sub 5}. The absence of carbides that contain chromium means that no Cr depletion occurred in the layer and the corrosion properties are maintained. Surface hardness measurements showed large increase after Kolsterising heat treatment.

  3. Corrosion resistance of kolsterised austenitic 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Abudaia, F. B.; Khalil, E. O.; Esehiri, A. F.; Daw, K. E.

    2015-03-01

    Austenitic stainless suffers from low wear resistance in applications where rubbing against other surfaces is encountered. This drawback can be overcome by surface treatment such as coating by hard materials. Other treatments such as carburization at relatively low temperature become applicable recently to improve hardness and wear resistance. Carburization heat treatment would only be justified if the corrosion resistance is unaffected. In this work samples of 304 stainless steels treated by colossal supersaturation case carburizing (known as Kolsterising) carried out by Bodycote Company was examined for pitting corrosion resistance at room temperature and at 50 °C. Comparison with results obtained for untreated samples in similar testing conditions show that there is no deterioration in the pitting resistance due to the Kolsterising heat treatment. X ray diffraction patterns obtained for Kolsterising sample showed that peaks correspond to the austenite phase has shifted to lower 2θ values compared with those of the untreated sample. The shift is an indication for expansion of austenite unit cells caused by saturation with diffusing carbon atoms. The XRD of Kolsterising samples also revealed additional peaks appeared in the patterns due to formation of carbides in the kolsterised layer. Examination of these additional peaks showed that these peaks are attributed to a type of carbide known as Hagg carbide Fe2C5. The absence of carbides that contain chromium means that no Cr depletion occurred in the layer and the corrosion properties are maintained. Surface hardness measurements showed large increase after Kolsterising heat treatment.

  4. Investigation into the Susceptibility of Corrosion Resistant Alloys to Biocorrosion

    DTIC Science & Technology

    1994-06-30

    Fro Bes AvialeC p INVESTIGATION INTO THE SUSCEPTIBILITY OF CORROSION RESISTANT ALLOYS TO BIOCORROSION Dr. Clive R.Clayton Dept.of Materials Science...QUAW jjqMCMD 9 INVESTIGATION INTO THE SUSCEPTIBILTY OF CORROSION RESISTANT ALLOYS TO BIOCORROSION Dr.Clive R.Clayton Dept. of Materials Science & Engg...TITLE (Mmkude Secwty camuf*tigon Investigation into the Susceptibility of CorrosionResistant Alloys to Biocorrosion IL. PERSONAL AUThOR(S) Clive R

  5. Corrosion Resistance of Friction Surfaced AISI 304 Stainless Steel Coatings

    NASA Astrophysics Data System (ADS)

    Khalid Rafi, H.; Phanikumar, G.; Prasad Rao, K.

    2013-02-01

    Corrosion resistance of friction surfaced AISI 304 coating in boiling nitric acid and chloride containing environments was found to be similar to that of its consumable rod counterpart. This was in contrast to the autogenous fusion zone of GTAW weld which showed inferior corrosion resistance with respect to the consumable rod. The superior corrosion resistance of friction surfaced coatings was attributed to the absence of δ-ferrite in it.

  6. 2D Heterostructure coatings of hBN-MoS2 layers for corrosion resistance

    NASA Astrophysics Data System (ADS)

    Vandana, Sajith; Kochat, Vidya; Lee, Jonghoon; Varshney, Vikas; Yazdi, Sadegh; Shen, Jianfeng; Kosolwattana, Suppanat; Vinod, Soumya; Vajtai, Robert; Roy, Ajit K.; Sekhar Tiwary, Chandra; Ajayan, P. M.

    2017-02-01

    Heterostructures of atomically thin 2D materials could have improved physical, mechanical and chemical properties as compared to its individual components. Here we report, the effect of heterostructure coatings of hBN and MoS2 on the corrosion behavior as compared to coatings employing the individual 2D layer compositions. The poor corrosion resistance of MoS2 (widely used as wear resistant coating) can be improved by incorporating hBN sheets. Depending on the atomic stacking of the 2D sheets, we can further engineer the corrosion resistance properties of these coatings. A detailed spectroscopy and microscopy analysis has been used to characterize the different combinations of layered coatings. Detailed DFT based calculation reveals that the effect on the electrical properties due to atomic stacking is one of the major reasons for the improvement seen in corrosion resistance.

  7. Improvement of the magnetic property, thermal stability and corrosion resistance of the sintered Nd-Fe-B magnets with Dy80Al20 addition

    NASA Astrophysics Data System (ADS)

    Zhou, Beibei; Li, Xiangbin; Liang, Xiaolin; Yan, Gaolin; Chen, Kan; Yan, Aru

    2017-05-01

    To improve the coercivity and thermal stability of the Nd-Fe-B sintered magnets simultaneously, the Dy80Al20 (at%) powders with low melting point were introduced into the Nd-Fe-B magnets. Additionally, the magnetic properties, microstructure and thermal stability of the sintered magnets with different amounts of Dy80Al20 were investigated. By adding a small amount of Dy80Al20, the coercivity was significantly increased from 12.72 to 21.75 kOe. As indicated by the microstructure analysis, a well-developed core-shell structure was formed in the magnets with the addition of Dy80Al20. The improvement of magnetic properties could be attributed to the refined and uniform matrix phase, continuous grain boundaries and a (Nd, Dy)2Fe14B hardening shell surrounding the matrix phase grains. With the addition of 0-4 wt% Dy80Al20 powder, the reversible temperature coefficients of remanence (α) and coercivity (β) of the magnets could be improved from -0.117 to -0.108%/°C and -0.74 to -0.66%/°C in the range of 20-100 °C, respectively. Additionally, the irreversible loss of magnetic flux (hirr) decreased sharply as Dy80Al20 powder was added. The results of temperature-dependent magnetic properties suggest that, the thermal stability of the magnets was effectively improved with the intergranular addition of Dy80Al20 alloy. Also, the corrosion resistance was found to be improved through small addition of Dy80Al20 powders This was partly due to the stability enhancement of the (Pr, Nd)-rich intergranular phase by Dy80Al20.

  8. Evaluating the corrosion resistance of multi-element metal coatings

    NASA Astrophysics Data System (ADS)

    Eremin, E. N.; Yurov, V. M.; Platonova, Ye. S.; Syzdykova, A. Sh.; Guchenko, S. A.

    2017-08-01

    The paper presents evaluating the corrosion resistance of ion-plasma coatings obtained using the cathodes: Zr, Al, Cu, Al-Fe, Zn-Al, Zn-Cu-Al and the stainless steel cathode 12X18H10T. The ordered columnar structure arising from the self-organization of plasma coatings is discovered. It is stated that the corrosion resistance of the greater part of the investigated coatings is similar to the most corrosion-resistant steels. To improve the corrosion resistance of metallic coatings it is recommended to increase its surface tension. This requires using the most refractory metals as alloying additives.

  9. Coal Ash Corrosion Resistant Materials Testing

    SciTech Connect

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2003-08-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a reasonably high alkali content, thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was well within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that the aggressive alkali-iron-trisulfate constituent was present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. This report provides the results of the evaluation of Test Section C, including the samples that remained in the Test Section for the full exposure period as well as those that were removed early. The analysis of Test Section C followed much the same protocol that was employed in the assessment of Test Section A. Again, the focus was on determining and documenting the relative corrosion rates of the candidate materials. The detailed results of the investigation are included in this report as a series of twelve appendices. Each appendix is devoted to the performance of one of the candidate alloys. The table below summarizes metal loss rate for the worst case sample of each of the candidate materials for both Test Sections A and C

  10. Corrosion resistance of monolayer hexagonal boron nitride on copper

    PubMed Central

    Mahvash, F.; Eissa, S.; Bordjiba, T.; Tavares, A. C.; Szkopek, T.; Siaj, M.

    2017-01-01

    Hexagonal boron nitride (hBN) is a layered material with high thermal and chemical stability ideal for ultrathin corrosion resistant coatings. Here, we report the corrosion resistance of Cu with hBN grown by chemical vapor deposition (CVD). Cyclic voltammetry measurements reveal that hBN layers inhibit Cu corrosion and oxygen reduction. We find that CVD grown hBN reduces the Cu corrosion rate by one order of magnitude compared to bare Cu, suggesting that this ultrathin layer can be employed as an atomically thin corrosion-inhibition coating. PMID:28191822

  11. Corrosion resistance of monolayer hexagonal boron nitride on copper.

    PubMed

    Mahvash, F; Eissa, S; Bordjiba, T; Tavares, A C; Szkopek, T; Siaj, M

    2017-02-13

    Hexagonal boron nitride (hBN) is a layered material with high thermal and chemical stability ideal for ultrathin corrosion resistant coatings. Here, we report the corrosion resistance of Cu with hBN grown by chemical vapor deposition (CVD). Cyclic voltammetry measurements reveal that hBN layers inhibit Cu corrosion and oxygen reduction. We find that CVD grown hBN reduces the Cu corrosion rate by one order of magnitude compared to bare Cu, suggesting that this ultrathin layer can be employed as an atomically thin corrosion-inhibition coating.

  12. Corrosion resistance of monolayer hexagonal boron nitride on copper

    NASA Astrophysics Data System (ADS)

    Mahvash, F.; Eissa, S.; Bordjiba, T.; Tavares, A. C.; Szkopek, T.; Siaj, M.

    2017-02-01

    Hexagonal boron nitride (hBN) is a layered material with high thermal and chemical stability ideal for ultrathin corrosion resistant coatings. Here, we report the corrosion resistance of Cu with hBN grown by chemical vapor deposition (CVD). Cyclic voltammetry measurements reveal that hBN layers inhibit Cu corrosion and oxygen reduction. We find that CVD grown hBN reduces the Cu corrosion rate by one order of magnitude compared to bare Cu, suggesting that this ultrathin layer can be employed as an atomically thin corrosion-inhibition coating.

  13. Corrosion resistance and antithrombogenic behavior of La and Nd ion implanted stainless steels

    SciTech Connect

    Jing, F. J.; Jin, F. Y.; Liu, Y. W.; Wan, G. J.; Liu, X. M.; Zhao, X. B.; Fu, R. K. Y.; Leng, Y. X.; Huang, N.; Chu, Paul K.

    2006-09-15

    Lanthanide ions such as lanthanum (La) and neodymium (Nd) were implanted into 316 stainless steel samples using metal vapor vacuum arc to improve the surface corrosion resistance and antithrombogenic properties. X-ray photoelectron spectroscopy shows that lanthanum and neodymium exist in the +3 oxidation state in the surface layer. The corrosion properties of the implanted and untreated control samples were investigated utilizing electrochemical tests and our results show that La and Nd implantations enhance the surface corrosion resistance. In vitro activated partial thromboplastin time (APTT) tests were used to evaluate the antithrombogenic properties. The APTT time of the implanted samples was observed to be prolonged compared to that of the unimplanted stainless steel control. La and Nd ion implantations can be used to improve the surface corrosion resistance and biomedical properties of 316 stainless steels.

  14. Improving the corrosion properties of magnesium AZ31 alloy GTA weld metal using microarc oxidation process

    NASA Astrophysics Data System (ADS)

    Siva Prasad, M.; Ashfaq, M.; Kishore Babu, N.; Sreekanth, A.; Sivaprasad, K.; Muthupandi, V.

    2017-05-01

    In this work, the morphology, phase composition, and corrosion properties of microarc oxidized (MAO) gas tungsten arc (GTA) weldments of AZ31 alloy were investigated. Autogenous gas tungsten arc welds were made as full penetration bead-on-plate welding under the alternating-current mode. A uniform oxide layer was developed on the surface of the specimens with MAO treatment in silicate-based alkaline electrolytes for different oxidation times. The corrosion behavior of the samples was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy. The oxide film improved the corrosion resistance substantially compared to the uncoated specimens. The sample coated for 10 min exhibited better corrosion properties. The corrosion resistance of the coatings was concluded to strongly depend on the morphology, whereas the phase composition and thickness were concluded to only slightly affect the corrosion resistance.

  15. Corrosion Resistance of Stainless Steels in Biodiesel

    NASA Astrophysics Data System (ADS)

    Román, Alejandra S.; Méndez, Claudia M.; Ares, Alicia E.

    The aim of this work was to study the corrosion behavior of stainless steels in biodiesel of vegetal origin, at room temperature, evaluating its properties according to the differences in the structures (austenitic, ferritic and austenitic — ferritic) and compositions of the materials. The biodiesel employed was obtained by industrially manufactured based on soybean oil as main raw material. The stainless steels used as samples for the tests were: AISI 304L, Sea Cure and Duplex 2205. For obtaining the desired data potentiodynamic polarization and weight loss trials were carried out. These studies were complemented by observations using an optical microscope. The weight loss study allowed the identification of low corrosion rates to the three stainless steels studied.

  16. A facile approach to fabricate superhydrophobic and corrosion resistant surface

    NASA Astrophysics Data System (ADS)

    Wei, Guijuan; Wang, Zhaojie; Zhao, Xixia; Feng, Juan; Wang, Shutao; Zhang, Jun; An, Changhua

    2015-01-01

    In the present study, we have fabricated superhydrophobic CuO nanostructured surfaces by a simple solution-immersion process and a subsequent chemical modification with various thiol groups. The morphology of the CuO nanostructures on the copper foil could be easily controlled by simply changing the reaction time. The influences of reaction time and the thiol groups on hydrophobic properties have been discussed in detail. It is shown that the chemically modified CuO nanostructured surfaces present remarkable superhydrophobic performance and non-sticking behaviour. Furthermore, a lower corrosion current density (icorr) and a higher corrosion potential (Ecorr) of the prepared superhydrophobic surface was observed in comparison with the bare Cu foil by immersing in a 3.5 wt% NaCl solution, indicating a good corrosion resistance capability. Our work provides a general, facile and low-cost route towards the preparation of superhydrophobic surface, which has potential applications in the fields of self-cleaning, anti-corrosion, and oil-water separation.

  17. The effects of argon ion bombardment on the corrosion resistance of tantalum

    NASA Astrophysics Data System (ADS)

    Ramezani, A. H.; Sari, A. H.; Shokouhy, A.

    2017-02-01

    Application of ion beam has been widely used as a surface modification method to improve surface properties. This paper investigates the effect of argon ion implantation on surface structure as well as resistance against tantalum corrosion. In this experiment, argon ions with energy of 30 keV and in doses of 1 × 1017-10 × 1017 ions/cm2 were used. The surface bombardment with inert gases mainly produces modified topography and morphology of the surface. Atomic Force Microscopy was also used to patterned the roughness variations prior to and after the implantation phase. Additionally, the corrosion investigation apparatus wear was applied to compare resistance against tantalum corrosion both before and after ion implantation. The results show that argon ion implantation has a substantial impact on increasing resistance against tantalum corrosion. After the corrosion test, scanning electron microscopy (SEM) analyzed the samples' surface morphologies. In addition, the elemental composition is characterized by energy-dispersive X-ray (EDX) analysis. The purpose of this paper was to obtain the perfect condition for the formation of tantalum corrosion resistance. In order to evaluate the effect of the ion implantation on the corrosion behavior, potentiodynamic tests were performed. The results show that the corrosion resistance of the samples strongly depends on the implantation doses.

  18. 46 CFR 111.01-11 - Corrosion-resistant parts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Corrosion-resistant parts. 111.01-11 Section 111.01-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-11 Corrosion-resistant parts. Each enclosure and part of electric...

  19. Corrosion properties of second-generation conductive materials

    NASA Technical Reports Server (NTRS)

    Groshart, E.

    1984-01-01

    Since the introduction of silver-filled epoxy adhesives and silver-filled nitrocellulose lacquer as RFI control materials, a number of new materials have been introduced. The resin carriers have been changed in an effort to make the materials more usable or more EPA acceptable and the fillers have been varied in an effort to make the materials less costly. The corrosion-related properties of second-generation materials were assessed, including adhesives, caulks, and greases. Aluminum 2024 was used as the only substrate material. Ten days of salt fog was used as the corrosive environment. If a noble material such as silver, nickel, or carbon is sandwiched with aluminum an increase in dc resistance results given enough time. If this is unsatisfactory electrically it should either not be used or have all corrosive environments excluded.

  20. Increasing corrosion resistance of carbon steels by surface laser cladding

    NASA Astrophysics Data System (ADS)

    Polsky, V. I.; Yakushin, V. L.; Dzhumaev, P. S.; Petrovsky, V. N.; Safonov, D. V.

    2016-04-01

    This paper presents results of investigation of the microstructure, elemental composition and corrosion resistance of the samples of low-alloy steel widely used in the engineering, after the application of laser cladding. The level of corrosion damage and the corrosion mechanism of cladded steel samples were established. The corrosion rate and installed discharge observed at the total destruction of cladding were obtained. The regularities of structure formation in the application of different powder compositions were obtained. The optimal powder composition that prevents corrosion of samples of low-carbon low-alloy steel was established.

  1. Increased corrosion resistance of the AZ80 magnesium alloy by rapid solidification.

    PubMed

    Aghion, E; Jan, L; Meshi, L; Goldman, J

    2015-11-01

    Magnesium (Mg) and Mg-alloys are being considered as implantable biometals. Despite their excellent biocompatibility and good mechanical properties, their rapid corrosion is a major impediment precluding their widespread acceptance as implantable biomaterials. Here, we investigate the potential for rapid solidification to increase the corrosion resistance of Mg alloys. To this end, the effect of rapid solidification on the environmental and stress corrosion behavior of the AZ80 Mg alloy vs. its conventionally cast counterpart was evaluated in simulated physiological electrolytes. The microstructural characteristics were examined by optical microscopy, SEM, TEM, and X-ray diffraction analysis. The corrosion behavior was evaluated by immersion, salt spraying, and potentiodynamic polarization. Stress corrosion resistance was assessed by Slow Strain Rate Testing. The results indicate that the corrosion resistance of rapidly solidified ribbons is significantly improved relative to the conventional cast alloy due to the increased Al content dissolved in the α-Mg matrix and the correspondingly reduced presence of the β-phase (Mg17 Al12 ). Unfortunately, extrusion consolidated solidified ribbons exhibited a substantial reduction in the environmental performance and stress corrosion resistance. This was mainly attributed to the detrimental effect of the extrusion process, which enriched the iron impurities and increased the internal stresses by imposing a higher dislocation density. In terms of immersion tests, the average corrosion rate of the rapidly solidified ribbons was <0.4 mm/year compared with ∼2 mm/year for the conventionally cast alloy and 26 mm/year for the rapidly solidified extruded ribbons.

  2. Corrosion-resistant Foamed Cements for Carbon Steels

    SciTech Connect

    Sugama T.; Gill, S.; Pyatina, T., Muraca, A.; Keese, R.; Khan, A.; Bour, D.

    2012-12-01

    The cementitious material consisting of Secar #80, Class F fly ash, and sodium silicate designed as an alternative thermal-shock resistant cement for the Enhanced Geothermal System (EGS) wells was treated with cocamidopropyl dimethylamine oxide-based compound as foaming agent (FA) to prepare numerous air bubble-dispersed low density cement slurries of and #61603;1.3 g/cm3. Then, the foamed slurry was modified with acrylic emulsion (AE) as corrosion inhibitor. We detailed the positive effects of the acrylic polymer (AP) in this emulsion on the five different properties of the foamed cement: 1) The hydrothermal stability of the AP in 200 and #61616;C-autoclaved cements; 2) the hydrolysis-hydration reactions of the slurry at 85 and #61616;C; 3) the composition of crystalline phases assembled and the microstructure developed in autoclaved cements; 4) the mechanical behaviors of the autoclaved cements; and, 5) the corrosion mitigation of carbon steel (CS) by the polymer. For the first property, the hydrothermal-catalyzed acid-base interactions between the AP and cement resulted in Ca-or Na-complexed carboxylate derivatives, which led to the improvement of thermal stability of the AP. This interaction also stimulated the cement hydration reactions, enhancing the total heat evolved during cement’s curing. Addition of AP did not alter any of the crystalline phase compositions responsible for the strength of the cement. Furthermore, the AP-modified cement developed the porous microstructure with numerous defect-free cavities of disconnected voids. These effects together contributed to the improvement of compressive-strength and –toughness of the cured cement. AP modification of the cement also offered an improved protection of CS against brine-caused corrosion. There were three major factors governing the corrosion protection: 1) Reducing the extents of infiltration and transportation of corrosive electrolytes through the cement layer deposited on the underlying CS

  3. Coal Ash Corrosion Resistant Materials Testing Program

    SciTech Connect

    McDonald, D K

    2003-04-22

    The "Coal Ash Corrosion Resistant Materials Testing Program" is being conducted by The Babcock & Wilcox Company (B&W), the U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) at Reliant Energy's Niles plant in Niles, Ohio to provide full-scale, in-situ testing of recently developed boiler superheater materials. Fireside corrosion is a key issue for improving efficiency of new coal fired power plants and improving service life in existing plants. In November 1998, B&W began development of a system to permit testing of advanced tube materials at metal temperatures typical of advanced supercritical steam temperatures (1100°F and higher) in a boiler exhibiting coal ash corrosive conditions. Several materials producers including Oak Ridge National Laboratory (ORNL) contributed advanced materials to the project. In the spring of 1999 a system consisting of three identical sections, each containing multiple segments of twelve different materials, was installed. The sections are cooled by reheat steam, and are located just above the furnace entrance in Niles' Unit #1, a 110 MWe unit firing high sulfur Ohio coal. In November 2001 the first section was removed for thorough metallurgical evaluation after 33 months of operation. The second and third sections remain in service and the second is expected to be removed in the fall of 2003; the last is tentatively planned for the fall of 2004. This paper describes the program; its importance; the design, fabrication, installation and operation of the test system; materials utilized; experience to date; and results of the evaluation of the first section.

  4. Development of weldable, corrosion-resistant iron-aluminide alloys

    SciTech Connect

    Maziasz, P.J.; Goodwin, G.M.; Wang, X.L.

    1995-05-01

    Corrosion-resistant, weldable FeAl alloys have been developed with improved high-temperature strength industrial applications. Previous processing difficulties with these alloys led to their evaluation as weld-overlay claddings on conventional structural steels to take advantage of their good properties now. Simplified and better processing methods for monolithic FeAl components are also currently being developed so that components for industrial testing can be made. Other avenues for producing FeAl coatings are currently being explored. Neutron scattering experiments residual stress distributions in the FeAl weld-overlay cladding began in FY 1993 and continued this year.

  5. Formation of Surface Corrosion-Resistant Nanocrystalline Structures on Steel.

    PubMed

    Nykyforchyn, Hryhoriy; Kyryliv, Volodymyr; Maksymiv, Olha; Slobodyan, Zvenomyra; Tsyrulnyk, Oleksandr

    2016-12-01

    Engineering materials with nanocrystalline structure could be exploited under simultaneous action of mechanical loading and corrosion environments; therefore, their corrosion resistance is important. Surface nanocrystalline structure was generated on middle carbon steels by severe plastic deformation using the method of mechanical pulse friction treatment. This treatment additionally includes high temperature phase transformation and alloying. Using a complex of the corrosive, electrochemical and physical investigations, it was established that nanocrystalline structures can be characterized by lower or increased corrosion resistance in comparison with the reference material. It is caused by the action of two confronting factors: arising energy level and anticorrosive alloying of the surface layer.

  6. Formation of Surface Corrosion-Resistant Nanocrystalline Structures on Steel

    NASA Astrophysics Data System (ADS)

    Nykyforchyn, Hryhoriy; Kyryliv, Volodymyr; Maksymiv, Olha; Slobodyan, Zvenomyra; Tsyrulnyk, Oleksandr

    2016-02-01

    Engineering materials with nanocrystalline structure could be exploited under simultaneous action of mechanical loading and corrosion environments; therefore, their corrosion resistance is important. Surface nanocrystalline structure was generated on middle carbon steels by severe plastic deformation using the method of mechanical pulse friction treatment. This treatment additionally includes high temperature phase transformation and alloying. Using a complex of the corrosive, electrochemical and physical investigations, it was established that nanocrystalline structures can be characterized by lower or increased corrosion resistance in comparison with the reference material. It is caused by the action of two confronting factors: arising energy level and anticorrosive alloying of the surface layer.

  7. Hot corrosion resistance of nickel-chromium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Barrett, C. A.

    1977-01-01

    The hot corrosion resistance of nickel-chromium-aluminum alloy was examined by cyclically oxidizing sodium sulfate coated specimens in still air at 900, 1000 and 1100 C. The compositions tested were within the ternary region: Ni; Ni-50 at.% Cr; and Ni-50 at.% Al. At each temperature the corrosion data were statistically fitted to a third order regression equation as a function of chromium and aluminum contents. Corrosion isopleths were prepared from these equations. Compositional regions with the best hot corrosion resistance were identified.

  8. Hot corrosion resistance of nickel-chromium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Barret, C. A.

    1977-01-01

    The hot corrosion resistance of nickel-chromium-aluminum alloys was examined by cyclically oxidizing sodium sulfate-coated specimens in still air at 900, 1000, and 1100 C. The compositions tested were within the ternary region: Ni, Ni-50 at.% Cr, and Ni-50 at.% Al. At each temperature the corrosion data were statistically fitted to a third order regression equation as a function of chromium and aluminum contents. From these equations corrosion isopleths were prepared. Compositional regions with the best hot corrosion resistance were identified.

  9. Effect of Shear Strain on the Structure and Properties of Chromium-Nickel Corrosion-Resistant Steels

    NASA Astrophysics Data System (ADS)

    Dobatkin, S. V.; Rybal'chenko, O. V.; Kliauga, A.; Tokar', A. A.

    2015-07-01

    The structure and properties of metastable austenitic steel 08Kh18N10T and stable austenitic steel ASTM F138 under shear deformation implemented by torsion under hydrostatic pressure (THP) at T = 300 and 450°C and by equichannel angular pressing (ECAP) at T = 400°C are studied. The THP yields an ultrafine-grain structure in a fully austenitic matrix with grain size 45 - 70 nm in steel ASTM F138 and 87 - 123 nm in steel 08Kh1810T. The ECAP at 400°C yields a grain-subgrain structure with structural elements 100 - 300 nm in size in steel 08Kh18N10T and 200 - 400 nm in size in steel ASTM F138.

  10. Comparison of the crevice corrosion resistance of alloys 625 and 22

    SciTech Connect

    Palmer, J; Kehler, B; Iloybare, G O; Scully, J R

    1999-09-15

    The Yucca Mountain Site Characterization Project is concerned with the corrosion resistance of candidate engineered waste package materials. A variety of waste package designs have been proposed for US and Canadian High Level Nuclear Waste Repositories. A common feature of each design is the possibility of utilizing a corrosion resistant material such as a nickel-based super alloy or titanium-based alloy. A suitable corrosion resistant material may provide (a) kinetic immunity if the combination of repository environmental conditions and alloy resistance assure both: (i) a passive condition with negligible chance of localized corrosion stabilization, as well as (ii) low enough passive dissolution rates to insure conventional corrosion allowance over geological times, (b) a second form of ''corrosion allowance,'' if it can be scientifically demonstrated that a mechanism for stifling (i.e., death) of localized corrosion propagation occurs well before waste canisters are penetrated, or (c) such a low probability of initiation and continued propagation that a tolerably low degree of penetration occurs. Unfortunately, a large database on the crevice corrosion properties of alloy 22 does not exist in comparison to alloy 625. Alloy screening tests in oxidizing acids containing FeCl3 indicate that alloy 22 is more resistant to crevice corrosion than 625 as indicated by critical pit and crevice temperatures. Differences in alloying element compositions as expressed by pitting resistance equivalency number calculations support these findings. However, these data only provide the relative ranking of these alloys in terms of crevice corrosion and do not answer the critical questions proposed above.

  11. Chromate-free corrosion resistant conversion coatings for aluminum

    SciTech Connect

    Buchheit, R.G. ); Stoner, G.E. . Dept. of Materials Science and Engineering)

    1993-01-01

    We have developed a method for generating chromate-free corrosion resistant coatings on aluminum alloys using a process procedurally similar to standard chromate conversion. These coatings provide good corrosion resistance on 6061-T6 and 1100 A1 under salt spray testing conditions. The resistance of the new coating is comparable to that of chromate conversion coatings in four point probe tests, but higher when a mercury probe technique is used. Initial tests of paint adhesion, and under paint corrosion resistance are promising. Primary advantage of this new process is that no hazardous chemicals are used or produced during the coating operation.

  12. Chromate-free corrosion resistant conversion coatings for aluminum

    SciTech Connect

    Buchheit, R.G.; Stoner, G.E.

    1993-03-01

    We have developed a method for generating chromate-free corrosion resistant coatings on aluminum alloys using a process procedurally similar to standard chromate conversion. These coatings provide good corrosion resistance on 6061-T6 and 1100 A1 under salt spray testing conditions. The resistance of the new coating is comparable to that of chromate conversion coatings in four point probe tests, but higher when a mercury probe technique is used. Initial tests of paint adhesion, and under paint corrosion resistance are promising. Primary advantage of this new process is that no hazardous chemicals are used or produced during the coating operation.

  13. Shop fabricated corrosion-resistant underground storage tanks

    SciTech Connect

    Geyer, W.B.; Stellmach, W.A.

    1995-12-31

    Integral corrosion resistance has long been incorporated into shop fabricated steel underground storage tank design. Since 1969, an industry standard has been the sti-P{sub 3}{reg_sign} (P3) tank. However, the past decade has seen the development of several alternative corrosion resistant and secondary containment technologies. Fiberglass-coated steel composite tanks, and jacketed tanks utilizing various materials as a secondary wall, provide corrosion resistance without the cathodic protection monitoring requirements mandated by the EPA for single-wall P3 tanks. On the other hand, the P3 tank is the only tank technology commonly marketed today with an integral ability to verify its corrosion resistance over the life of the tank. Many existing USTs remain to be replaced or upgraded with corrosion resistance (and other requirements) by the end of 1998. Steel tanks built and installed prior to the advent of pre-engineered, factory-supplied protection against corrosion can be retrofitted with cathodic protection or can be internally lined. Specific installation standards developed by the steel tank industry and the petroleum industry must be followed so as to assure the integrity of the various corrosion resistant technologies developed by the Steel Tank Institute. The technologies describes in this paper will ensure compliance with the corrosion protection requirements of new storage tanks.

  14. Tribological and corrosion properties of plasma nitrided and nitrocarburized 42CrMo4 steel

    NASA Astrophysics Data System (ADS)

    Kusmic, D.; Van Thanh, D.

    2017-02-01

    This article deals with tribological and corrosion resistance comparison of plasma nitrided and nitrocarburized 42CrMo4 steel used for breech mechanism in the armament production. Increasing of materials demands (like wear resistance, surface hardness, running-in properties and corrosion resistance) used for armament production and in other industrial application leads in the field of surface treatment. Experimental steel samples were plasma nitrided under different nitriding gas ratio at 500 °C for 15h and nitrocarburized for 45 min at temperature 590°C and consequently post-oxidized for 10 min at 430°C. Individual 42CrMo4 steel samples were subsequently metallographically evaluated and characterized by hardness and microhardness measuring. The wear test “ball on disc” was realized for measuring of adhesive wear and coefficient of friction during unlubricated sliding. NSS corrosion tests were realized for corrosion resistance evaluation and expressed by corroded area and calculated corrosion rate. The corrosion resistance evaluation is by the surface corrosion-free surfaces evaluation supplemented using the laser confocal microscopy. Due to different surface treatment and plasma nitriding conditions, there are wear resistance and corrosion resistance differences evident between the plasma nitrided steel samples as well.

  15. Deposition of nanostructured fluorine-doped hydroxyapatite-polycaprolactone duplex coating to enhance the mechanical properties and corrosion resistance of Mg alloy for biomedical applications.

    PubMed

    Bakhsheshi-Rad, H R; Hamzah, E; Kasiri-Asgarani, M; Jabbarzare, S; Iqbal, N; Abdul Kadir, M R

    2016-03-01

    The present study addressed the synthesis of a bi-layered nanostructured fluorine-doped hydroxyapatite (nFHA)/polycaprolactone (PCL) coating on Mg-2Zn-3Ce alloy via a combination of electrodeposition (ED) and dip-coating methods. The nFHA/PCL composite coating is composed of a thick (70-80 μm) and porous layer of PCL that uniformly covered the thin nFHA film (8-10 μm) with nanoneedle-like microstructure and crystallite size of around 70-90 nm. Electrochemical measurements showed that the nFHA/PCL composite coating presented a high corrosion resistance (R(p)=2.9×10(3) kΩ cm(2)) and provided sufficient protection for a Mg substrate against galvanic corrosion. The mechanical integrity of the nFHA/PCL composite coatings immersed in SBF for 10 days showed higher compressive strength (34% higher) compared with the uncoated samples, indicating that composite coatings can delay the loss of compressive strength of the Mg alloy. The nFHA/PCL coating indicted better bonding strength (6.9 MPa) compared to PCL coating (2.2 MPa). Immersion tests showed that nFHA/PCL composite-coated alloy experienced much milder corrosion attack and more nucleation sites for apatite compared with the PCL coated and uncoated samples. The bi-layered nFHA/PCL coating can be a good alternative method for the control of corrosion degradation of biodegradable Mg alloy for implant applications.

  16. Corrosion properties of S-phase layers formed on medical grade austenitic stainless steel.

    PubMed

    Buhagiar, Joseph; Dong, Hanshan

    2012-02-01

    The corrosion properties of S-phase surface layers formed in AISI 316LVM (ASTM F138) and High-N (ASTM F1586) medical grade austenitic stainless steels by plasma surface alloying with nitrogen (at 430°C), carbon (at 500°C) and both carbon and nitrogen (at 430°C) has been investigated. The corrosion behaviour of the S-phase layers in Ringer's solutions was evaluated using potentiodynamic and immersion corrosion tests. The corrosion damage was evaluated using microscopy, hardness testing, inductive coupled plasma mass spectroscopy and X-ray diffraction. The experimental results have demonstrated that low-temperature nitriding, carburising and carbonitriding can improve the localised corrosion resistance of both industrial and medical grade austenitic stainless steels as long as the threshold sensitisation temperature is not reached. Carburising at 500°C has proved to be the best hardening treatment with the least effect on the corrosion resistance of the parent alloy.

  17. Corrosion-resistant antifretting coating for the protection of blade locking pieces in GTE compressors and fans

    NASA Astrophysics Data System (ADS)

    Muboyadzhyan, S. A.; Gorlov, D. S.; Egorova, L. P.; Bulavintseva, E. E.

    2014-09-01

    The properties of a corrosion-resistant antifretting coating on EP866Sh steel and VT8M-1 titanium alloy samples are studied. The results of corrosion resistance, heat resistance, fretting resistance, long-term strength, and high-cycle fatigue tests and the results of physical metallurgy and metallographic investigations of the samples with the coating before and after the tests are presented.

  18. Hot Corrosion Resistance and Mechanical Behavior of Atmospheric Plasma Sprayed Conventional and Nanostructured Zirconia Coatings

    NASA Astrophysics Data System (ADS)

    Saremi, Mohsen; Keyvani, Ahmad; Heydarzadeh Sohi, Mahmoud

    Conventional and nanostructured zirconia coatings were deposited on In-738 Ni super alloy by atmospheric plasma spray technique. The hot corrosion resistance of the coatings was measured at 1050°C using an atmospheric electrical furnace and a fused mixture of vanadium pent oxide and sodium sulfate respectively. According to the experimental results nanostructured coatings showed a better hot corrosion resistance than conventional ones. The improved hot corrosion resistance could be explained by the change of structure to a dense and more packed structure in the nanocoating. The evaluation of mechanical properties by nano indentation method showed the hardness (H) and elastic modulus (E) of the YSZ coating increased substantially after hot corrosion.

  19. Coal Ash Corrosion Resistant Materials Testing

    SciTech Connect

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2007-12-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a moderate alkali content (0.2% sodium equivalents), thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that aggressive alkali sulfate constituents were present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. Test Section A was removed in November 2001 after about 24 months of service at the desired steam temperature set point, with about 15.5 months of exposure at full temperature. A progress report, issued in October 2002, was written to document the performance of the candidate alloys in that test section. The evaluation described the condition of each tube sample after exposure. It involved a determination of the rate of wall thickness loss for these samples. In cases where there was more than one sample of a candidate material in the test section, an assessment was made of the performance of the alloy as a function of temperature. Test Sections B and C were examined during the November 2001 outage, and it was decided that

  20. Precipitation reactions and corrosion resistance of thermally aged and welded alloy 825

    SciTech Connect

    Crum, J.R.; Tassen, C.S.; Nagashima, T.

    1997-09-01

    Oil refinery hydrotreating and hydrodesulfurization are high temperature processes which can cause sensitization and/or reduced ductility in some materials of construction, while the presence of sulfur and other impurities in these processes can lead to various corrosion mechanisms. Alloy 825 (UNS N08825) is often used in this demanding application. The effects of long term elevated temperature exposure and welding on the mechanical properties, microstructure and corrosion resistance of this nickel base alloy have been investigated.

  1. Controlled ferrite content improves weldability of corrosion-resistant steel

    NASA Technical Reports Server (NTRS)

    Malin, C. O.

    1967-01-01

    Corrosion-resistant steel that adds restrictions on chemical composition to ensure sufficient ferrite content decreases the tendency of CRES to develop cracks during welding. The equations restricting composition are based on the Schaeffler constitution diagram.

  2. Effect of modification of oxide layer on NiTi stent corrosion resistance.

    PubMed

    Trépanier, C; Tabrizian, M; Yahia, L H; Bilodeau, L; Piron, D L

    1998-01-01

    Because of its good radiopacity, superelasticity, and shape memory properties, nickel-titanium (NiTi) is a potential material for fabrication of stents because these properties can facilitate their implantation and precise positioning. However, in vitro studies of NiTi alloys report the dependence of alloy biocompatibility and corrosion behavior on surface conditions. Surface oxidation seems to be very promising for improving the corrosion resistance and biocompatibility of NiTi. In this work, we studied the effect on corrosion resistance and surface characteristics of electropolishing, heat treatment, and nitric acid passivation of NiTi stents. Characterization techniques such as potentiodynamic polarization tests, scanning electron microscopy, Auger electron spectroscopy, and X-ray photoelectron spectroscopy were used to relate corrosion behavior to surface characteristics and surface treatments. Results show that all of these surface treatments improve the corrosion resistance of the alloy. This improvement is attributed to the plastically deformed native oxide layer removal and replacement by a newly grown, more uniform one. The uniformity of the oxide layer, rather than its thickness and composition, seems to be the predominant factor to explain the corrosion resistance improvement.

  3. Plastic deformation effect of the corrosion resistance in case of austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Haraszti, F.; Kovacs, T.

    2017-02-01

    The corrosion forms are different in case of the austenitic steel than in case of carbon steels. Corrosion is very dangerous process, because that corrosion form is the intergranular corrosion. The austenitic stainless steel shows high corrosion resistance level. It knows that plastic deformation and the heat treating decrease it’s resistance. The corrosion form in case of this steel is very special and the corrosion tests are difficult. We tested the selected steel about its corrosion behaviour after high rate deformation. We wanted to find a relationship between the corrosion resistance decreasing and the rate of the plastic deformation. We wanted to show this behaviour from mechanical and electrical changing.

  4. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys.

    PubMed

    Chen, Mian; Zhang, Erlin; Zhang, Lan

    2016-05-01

    In this research, Ag element was selected as an antibacterial agent to develop an antibacterial Ti-Ag alloy by a powder metallurgy. The microstructure, phase constitution, mechanical properties, corrosion resistance and antibacterial properties of the Ti-Ag sintered alloys have been systematically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), compressive test, electrochemical measurements and antibacterial test. The effects of the Ag powder size and the Ag content on the antibacterial property and mechanical property as well as the anticorrosion property have been investigated. The microstructure results have shown that Ti-Ag phase, residual pure Ag and Ti were the mainly phases in Ti-Ag(S75) sintered alloy while Ti2Ag was synthesized in Ti-Ag(S10) sintered alloy. The mechanical test indicated that Ti-Ag sintered alloy showed a much higher hardness and the compressive yield strength than cp-Ti but the mechanical properties were slightly reduced with the increase of Ag content. Electrochemical results showed that Ag powder size had a significant effect on the corrosion resistance of Ti-Ag sintered alloy. Ag content increased the corrosion resistance in a dose dependent way under a homogeneous microstructure. Antibacterial tests have demonstrated that antibacterial Ti-Ag alloy was successfully prepared. It was also shown that the Ag powder particle size and the Ag content influenced the antibacterial activity seriously. The reduction in the Ag powder size was benefit to the improvement in the antibacterial property and the Ag content has to be at least 3wt.% in order to obtain a strong and stable antibacterial activity against Staphylococcus aureus bacteria. The bacterial mechanism was thought to be related to the Ti2Ag and its distribution.

  5. Nano Structured Plasma Spray Coating for Wear and High Temperature Corrosion Resistance Applications

    NASA Astrophysics Data System (ADS)

    Ghosh, D.; Shukla, A. K.; Roy, H.

    2014-04-01

    The nano structured coating is a major challenge today to improve the different mechanical properties, wear and high temperature corrosion resistance behaviour of different industrial alloys. This paper is a review on synthesis of nano powder, plasma spraying methods, techniques of nano structured coating by plasma spray method, mechanical properties, tribological properties and high temperature corrosion behaviour of nano structured coating. Nano structured coatings of ceramic powders/composites are being developed for wide variety of applications like boiler, turbine and aerospace industries, which requires the resistance against wear, corrosion, erosion etc. The nano sized powders are subjected to agglomeration by spray drying, after which nano structured coating can be successfully applied over the substrate. Nano structured coating shows improved mechanical wear resistance and high temperature corrosion resistance. The significant improvement of wear and corrosion resistance is mainly attributed to formation of semi molten nano zones in case of nano structured coatings. The future scope of application of nano structured coating has also been highlighted in this paper.

  6. Durable Corrosion and Ultraviolet-Resistant Silver Mirror

    DOEpatents

    Jorgensen, G. J.; Gee, R.

    2006-01-24

    A corrosion and ultra violet-resistant silver mirror for use in solar reflectors; the silver layer having a film-forming protective polymer bonded thereto, and a protective shield overlay comprising a transparent multipolymer film that incorporates a UV absorber. The corrosion and ultraviolet resistant silver mirror retains spectral hemispherical reflectance and high optical clarity throughout the UV and visible spectrum when used in solar reflectors.

  7. Corrosive Resistant Diamond Coatings for the Acid Based Thermo-Chemical Hydrogen Cycles

    SciTech Connect

    Mark A. Prelas

    2009-06-25

    This project was designed to test diamond, diamond-like and related materials in environments that are expected in thermochemical cycles. Our goals were to build a High Temperature Corrosion Resistance (HTCR) test stand and begin testing the corrosive properties of barious materials in a high temperature acidic environment in the first year. Overall, we planned to test 54 samples each of diamond and diamond-like films (of 1 cm x 1 cm area). In addition we use a corrosion acceleration method by treating the samples at a temperature much larger than the expected operating temperature. Half of the samples will be treated with boron using the FEDOA process.

  8. Study on possibility for the improvement of corrosion resistance of metals using laser-formed oxide surface structure

    NASA Astrophysics Data System (ADS)

    Ruzankina, J. S.; Vasiliev, O. S.

    2016-08-01

    The laser processes of oxidation are currently known and used extensively, in particular, to improve corrosion resistance of metals possessing certain properties and composition. In this regard, actuality is the methods of laser oxidation of metals and the determination of their modes of treatment in each specific case. Increase of corrosion resistance ST20 can carried out with the formation on the surface oxide films, as well as by reducing surface roughness. Studied various modes of processing of the steel surface. Corrosion resistance investigated for protecting a metal. Defocusing the beam to allow the surface treatment of a wide beam in the low temperature mode of processing. For further study of the irradiated surface on the corrosion resistance was conducted by chemical treatment in acid. Estimated phase composition of films formed under laser treatment simulated in the program astics. The study to increase the corrosion resistance of steel and titanium, have shown that under the chosen methods of processing of materials degradation observed.

  9. Fabrication and corrosion resistance of superhydrophobic magnesium alloy

    NASA Astrophysics Data System (ADS)

    Feng, Libang; Zhu, Yali; Fan, Weibo; Wang, Yanping; Qiang, Xiaohu; Liu, Yanhua

    2015-08-01

    A superhydrophobic magnesium alloy (AZ91) is successfully fabricated by sulfuric acid etching, AgNO3 treatment, and dodecyl mercaptan (DM) modification. The effect of the fabrication procedure, the concentration and treatment time of sulfuric acid, AgNO3, and DM on morphology, phase structure, surface wettability, and surface composition of the AZ91 is investigated in detail. Consequently, the optimal treatment parameters are selected, and the superhydrophobic magnesium alloy with a water contact angle of 154° and a sliding angle of 5° is fabricated. The acid etching endows the AZ91 surface with rough structure while the AgNO3 treatment results in more protrusions and grooves. Meanwhile, the long hydrophobic alkyl chains are self-assembled onto the rough AZ91 surface upon DM modification. As a result, the multilayer of netlike surface with protrusions and grooves together with the coral-like structure is obtained. Additionally, the magnesium alloy with higher water contact angle has better corrosion resistance, while the magnesium alloy with the superhydrophobic property has the best corrosion resistance.

  10. Corrosion resistance of titanium ion implanted AZ91 magnesium alloy

    SciTech Connect

    Liu Chenglong; Xin Yunchang; Tian Xiubo; Zhao, J.; Chu, Paul K.

    2007-03-15

    Degradable metal alloys constitute a new class of materials for load-bearing biomedical implants. Owing to their good mechanical properties and biocompatibility, magnesium alloys are promising in degradable prosthetic implants. The objective of this study is to improve the corrosion behavior of surgical AZ91 magnesium alloy by titanium ion implantation. The surface characteristics of the ion implanted layer in the magnesium alloys are examined. The authors' results disclose that an intermixed layer is produced and the surface oxidized films are mainly composed of titanium oxide with a lesser amount of magnesium oxide. X-ray photoelectron spectroscopy reveals that the oxide has three layers. The outer layer which is 10 nm thick is mainly composed of MgO and TiO{sub 2} with some Mg(OH){sub 2}. The middle layer that is 50 nm thick comprises predominantly TiO{sub 2} and MgO with minor contributions from MgAl{sub 2}O{sub 4} and TiO. The third layer from the surface is rich in metallic Mg, Ti, Al, and Ti{sub 3}Al. The effects of Ti ion implantation on the corrosion resistance and electrochemical behavior of the magnesium alloys are investigated in simulated body fluids at 37{+-}1 deg. C using electrochemical impedance spectroscopy and open circuit potential techniques. Compared to the unimplanted AZ91 alloy, titanium ion implantation significantly shifts the open circuit potential (OCP) to a more positive potential and improves the corrosion resistance at OCP. This phenomenon can be ascribed to the more compact surface oxide film, enhanced reoxidation on the implanted surface, as well as the increased {beta}-Mg{sub 12}Al{sub 17} phase.

  11. Corrosion-resistant steel fiber produced by the melt-extraction method and its use in refractories

    NASA Astrophysics Data System (ADS)

    Van I-Kho; Ven-Nen, Lyu

    1992-09-01

    Corrosion-resistant steel fiber produced by the melt-extraction method has distinct reinforcing properties, a high capacity to bond with a refractory, low net-cost, and economic production. The introduction of corrosion-resistant steel fibers in refractory articles and materials for concrete spraying improves their thermal stability and mechanical strength. The service life of refractory articles is increased as a result of an increase in resistance to failure and impact loads. Use of corrosion-resistant steel fibers contributes to significant material energy savings, and improves the productivity of furnaces and apparatus.

  12. Electrophoretic deposition of colloidal particles on Mg with cytocompatibility, antibacterial performance, and corrosion resistance.

    PubMed

    Sun, Jiadi; Zhu, Ye; Meng, Long; Chen, Peng; Shi, Tiantian; Liu, Xiaoya; Zheng, Yufeng

    2016-11-01

    Magnesium (Mg) has recently received increasing attention due to its unique biological performance, including cytocompatibility, antibacterial and biodegradable properties. However, rapid corrosion in physiological environment and potential toxicity limits its clinical applications. To improve the corrosion resistance meanwhile not compromise other excellent performance, self-assembled colloidal particles were deposited onto magnesium surfaces in ethanol by a simple and effective electrophoretic deposition (EPD) method. The fabricated functional nanostructured coatings were investigated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analyses, and scanning electron microscopy (SEM). The electrochemical test, pH value, and Mg ion concentration data show that the corrosion resistance of Mg samples is enhanced appreciably after surface treatment. In vitro cellular response and antibacterial capability of the modified Mg substrates are performed. Significantly increased cell adhesion and viability are observed from the coated Mg samples, and the amounts of adherent bacteria on the treated Mg surfaces diminish remarkably compared to the bare Mg. Furthermore, the bare and coated Mg samples were implanted in New Zealand white rabbits for 12 weeks to examine the in vivo long-term corrosion performance and in situ inflammation behavior. The experiment results confirmed that compared with bare Mg substrate the corrosion and foreign-body reactions of the coated Mg samples were suppressed. The above results suggested that our coatings, which effectively enhance the biocompatibility, antimicrobial properties, and corrosion resistance of Mg substrate, provide a simple and practical strategy to expedite clinical acceptance of biodegradableMg and its alloys.

  13. Corrosion properties of zirconium-based ceramic coatings for micro-bearing and biomedical applications

    NASA Astrophysics Data System (ADS)

    Walkowicz, J.; Zavaleyev, V.; Dobruchowska, E.; Murzynski, D.; Donkov, N.; Zykova, A.; Safonov, V.; Yakovin, S.

    2016-03-01

    Ceramic oxide ZrO2 and oxynitride ZrON coatings are widely used as protective coatings against diffusion and corrosion. The enhancement of the coatings' mechanical properties, as well as their wear and corrosion resistance, is very important for their tribological performance. In this work, ZrO2 and ZrON coatings were deposited by magnetron sputtering on stainless steel (AISI 316) substrates. The adhesion, hardness and elastic properties were evaluated by standard methods. The surface structure of the deposited coatings was observed by electron scanning microscopy (SEM) and atomic force microscopy (AFM). The composition of the coatings was analyzed by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDS). The corrosion resistance properties were evaluated using the potentiodynamic method. The results show that the corrosion parameters are significantly increased in the cases of both oxynitride and oxide coatings in comparison with the stainless steel (AISI 316) substrates.

  14. Towards Long-Term Corrosion Resistance in FE Service Environments

    SciTech Connect

    G. R. Holcomb and P. Wang

    2010-10-01

    The push for carbon capture and sequestration for fossil fuel energy production has materials performance challenges in terms of high temperature oxidation and corrosion resistance. Such challenges will be illustrated with examples from several current technologies that are close to being realized. These include cases where existing technologies are being modified—for example fireside corrosion resulting from increased corrosivity of flue gas in coal boilers refit for oxy-fuel combustion, or steam corrosion resulting from increased temperatures in advanced ultra supercritical steam boilers. New technology concepts also push the high temperature corrosion and oxidation limits—for example the effects of multiple oxidants during the use of high CO2 and water flue gas used as turbine working fluids.

  15. Study of Corrosion Resistance Improvement by Metallic Coating for Overhead Transmission Line Conductor

    NASA Astrophysics Data System (ADS)

    Isozaki, Masanori; Adachi, Kouichi; Hita, Takanori; Asano, Yuji

    Applying anti-corrosion grease and aluminum clad steel (AC) wires to ACSR has adopted as general methods to prevent overhead transmission line conductors and/or wires from corrosion. However, there are some cases that ineffectiveness of those means are reported on some transmission lines passing through acid atmosphere in the vicinity of a factory exhausting acid smoke. The feature of the corrosion caused by acid atmosphere is to show a higher speed in its progressing as well known. As means against such acid corrosion, application of high purity aluminum, selective removal of inter-metallic compound in aluminum and plastic coating wires has been reported before, and each has both of advantage and disadvantage actually. In the former letter, we reported the new type of anti-corrosion grease that shows an excellent property against acid atmosphere as well as in a salty circumstance. Here presents a new type of anti-corrosion technology of applying high corrosion resistance aluminum alloy or zinc coatings on each component wires of a conductor that we succeed in developing through a serial study of anti-corrosion methods on overhead transmission lines.

  16. Development of Ferrium S53 High-Strength, Corrosion-Resistant Steel

    DTIC Science & Technology

    2009-01-01

    requirements but is more resistant to corrosion and corrosion-related failures such as stress corrosion cracking (SCC) and hydrogen embrittlement . In...21 4.1.10 Hydrogen Embrittlement ........................................................21 4.2...Loss of corrosion protection when the surface is damaged in any way  Accelerated corrosion fatigue and environmental embrittlement  Hydrogen

  17. The Enhancement of Mg Corrosion Resistance by Alloying Mn and Laser-Melting.

    PubMed

    Yang, Youwen; Wu, Ping; Wang, Qiyuan; Wu, Hong; Liu, Yong; Deng, Youwen; Zhou, Yuanzhuo; Shuai, Cijun

    2016-03-23

    Mg has been considered a promising biomaterial for bone implants. However, the poor corrosion resistance has become its main undesirable property. In this study, both alloying Mn and laser-melting were applied to enhance the Mg corrosion resistance. The corrosion resistance, mechanical properties, and microstructure of rapid laser-melted Mg-xMn (x = 0-3 wt %) alloys were investigated. The alloys were composed of dendrite grains, and the grains size decreased with increasing Mn. Moreover, Mn could dissolve and induce the crystal lattice distortion of the Mg matrix during the solidification process. Mn ranging from 0-2 wt % dissolved completely due to rapid laser solidification. As Mn contents further increased up to 3 wt %, a small amount of Mn was left undissolved. The compressive strength of Mg-Mn alloys increased first (up to 2 wt %) and then decreased with increasing Mn, while the hardness increased continuously. The refinement of grains and the increase in corrosion potential both made contributions to the enhancement of Mg corrosion resistance.

  18. The Enhancement of Mg Corrosion Resistance by Alloying Mn and Laser-Melting

    PubMed Central

    Yang, Youwen; Wu, Ping; Wang, Qiyuan; Wu, Hong; Liu, Yong; Deng, Youwen; Zhou, Yuanzhuo; Shuai, Cijun

    2016-01-01

    Mg has been considered a promising biomaterial for bone implants. However, the poor corrosion resistance has become its main undesirable property. In this study, both alloying Mn and laser-melting were applied to enhance the Mg corrosion resistance. The corrosion resistance, mechanical properties, and microstructure of rapid laser-melted Mg-xMn (x = 0–3 wt %) alloys were investigated. The alloys were composed of dendrite grains, and the grains size decreased with increasing Mn. Moreover, Mn could dissolve and induce the crystal lattice distortion of the Mg matrix during the solidification process. Mn ranging from 0–2 wt % dissolved completely due to rapid laser solidification. As Mn contents further increased up to 3 wt %, a small amount of Mn was left undissolved. The compressive strength of Mg-Mn alloys increased first (up to 2 wt %) and then decreased with increasing Mn, while the hardness increased continuously. The refinement of grains and the increase in corrosion potential both made contributions to the enhancement of Mg corrosion resistance. PMID:28773342

  19. Impurity control and corrosion resistance of magnesium-aluminum alloy

    SciTech Connect

    Liu, M.; Song, GuangLing

    2013-01-01

    The corrosion resistance of magnesium alloys is very sensitive to the contents of impurity elements such as iron. In this study, a series of diecast AXJ530 magnesium alloy samples were prepared with additions of Mn and Fe. Through a comprehensive phase diagram calculation and corrosion evaluation, the mechanisms for the tolerance limit of Fe in magnesium alloy are discussed. This adds a new dimension to control the alloying impurity in terms of alloying composition design and casting conditions.

  20. Corrosion Resistance Analysis of Sintered NdFeB Magnets Using Ultrasonic-Aided EDM Method

    NASA Astrophysics Data System (ADS)

    Li, L.; Wei, X. T.; Li, Z. Y.; Cheng, X.

    2015-01-01

    Sintered neodymium-iron-boron (NdFeB) permanent magnets are widely used in many fields because of their excellent magnetic property. However, their poor corrosion resistance has been cited as a potential problem that limits their extensive application. This paper presents an experimental investigation into the improvement of surface corrosion resistance with the ultrasonic-aided electrical discharge machining (U-EDM) method. A scanning electron microscope was used to analyze the surface morphology of recast layers formed through the EDM and U-EDM processes. The chemical structure and elements of these recast layers were characterized using x-ray diffraction and energy dispersive spectroscopy. Corrosion resistance was also studied by means of potentiodynamic polarization, electrochemical impedance spectroscopy, and immersion tests in 0.5 mol/L H2SO4 solution. Experimental results show that an amorphous structure was formed in the recast layer during the EDM and U-EDM processes and that this structure could improve the corrosion resistance of sintered NdFeB magnets. Moreover, the corrosion resistance of U-EDM-treated surface was better than that of the EDM-treated surface.

  1. High-strength economically alloyed corrosion-resistant steels with the structure of nitrogen martensite

    NASA Astrophysics Data System (ADS)

    Bannykh, O.; Blinov, V.; Lukin, E.

    2016-04-01

    The use of nitrogen as the main alloying element allowing one both to increase the corrosion resistance and mechanical properties of steels and to improve their processability is a new trend in physical metallurgy of high-strength corrosion resistant steels. The principles of alloying, which are developed for high-nitrogen steel in IMET RAS, ensure the formation of the structure, which contains predetermined amounts of martensite (70-80%) and austenite (20-30%) and is free from δ-ferrite, σ-phase, and Cr23C6 carbide. These principles were used as the base for the creation of new high-strength corrosion-resistant weldable and deformable 0Kh16AN5B, 06Kh16AN4FD, 08Kh14AN4MDB, 09Kh16AN3MF, 27Kh15AN3MD2, 40Kh13AN3M2, and 19Kh14AMB steels, which are operative at temperatures ranging from - 70 to 400°C. The developed nitrogen-containing steels compared with similar carbon steels are characterized by a higher resistance to pitting and crevice corrosion and are resistant to stress corrosion cracking. The new steels successfully passed trial tests as heavy duty articles.

  2. Optimization of Oxidation Temperature for Commercially Pure Titanium to Achieve Improved Corrosion Resistance

    NASA Astrophysics Data System (ADS)

    Bansal, Rajesh; Singh, J. K.; Singh, Vakil; Singh, D. D. N.; Das, Parimal

    2017-03-01

    Thermal oxidation of commercially pure titanium (cp-Ti) was carried out at different temperatures, ranging from 200 to 900 °C to achieve optimum corrosion resistance of the thermally treated surface in simulated body fluid. Scanning electron microscopy, x-ray diffraction, Raman spectroscopy and electrochemical impedance spectroscopy techniques were used to characterize the oxides and assess their protective properties exposed in the test electrolyte. Maximum resistance toward corrosion was observed for samples oxidized at 500 °C. This was attributed to the formation of a composite layer of oxides at this temperature comprising Ti2O3 (titanium sesquioxide), anatase and rutile phases of TiO2 on the surface of cp-Ti. Formation of an intact and pore-free oxide-substrate interface also improved its corrosion resistance.

  3. Optimization of Oxidation Temperature for Commercially Pure Titanium to Achieve Improved Corrosion Resistance

    NASA Astrophysics Data System (ADS)

    Bansal, Rajesh; Singh, J. K.; Singh, Vakil; Singh, D. D. N.; Das, Parimal

    2017-02-01

    Thermal oxidation of commercially pure titanium (cp-Ti) was carried out at different temperatures, ranging from 200 to 900 °C to achieve optimum corrosion resistance of the thermally treated surface in simulated body fluid. Scanning electron microscopy, x-ray diffraction, Raman spectroscopy and electrochemical impedance spectroscopy techniques were used to characterize the oxides and assess their protective properties exposed in the test electrolyte. Maximum resistance toward corrosion was observed for samples oxidized at 500 °C. This was attributed to the formation of a composite layer of oxides at this temperature comprising Ti2O3 (titanium sesquioxide), anatase and rutile phases of TiO2 on the surface of cp-Ti. Formation of an intact and pore-free oxide-substrate interface also improved its corrosion resistance.

  4. Effect of internal nitriding on the fatigue strength of ferritic corrosion-resistant steel

    NASA Astrophysics Data System (ADS)

    Rogachev, S. O.; Nikulin, S. A.; Terent'ev, V. F.; Khatkevich, V. M.; Prosvirnin, D. V.; Savicheva, R. O.

    2015-04-01

    The effect of internal nitriding and subsequent annealing on the mechanical properties of ferritic corrosion-resistance 08Kh17T steel has been studied during static and cyclic loading. Nitriding was shown to increase the static and cyclic strength of ferritic steel substantially and to decrease its plasticity slightly. These changes are confirmed by results of fractographic studies.

  5. Demonstration of Corrosion-Resistant Coatings for Air-Conditioning Coils and Fins

    DTIC Science & Technology

    2015-06-01

    ER D C/ CE RL T R- 15 -1 2 DoD Corrosion Prevention and Control Program Demonstration of Corrosion -Resistant Coatings for Air...acwc.sdp.sirsi.net/client/default. DoD Corrosion Prevention and Control Program ERDC/CERL TR 15-12 June 2015 Demonstration of Corrosion -Resistant...Evaluation of Corrosion Resistant Coatings for Air Conditioning Coils in Hawaii” ERDC/CERL TR-15-12 ii Abstract Department of Defense military

  6. Enhanced Corrosion Resistance of Iron-Based Amorphous Alloys

    SciTech Connect

    Rebak, R B; Day, S D; Lian, T; Aprigliano, L F; Hailey, P D; Farmer, J C

    2007-02-18

    Iron-based amorphous alloys possess enhanced hardness and are highly resistant to corrosion, which make them desirable for wear applications in corrosive environments. It was of interest to examine the behavior of amorphous alloys during anodic polarization in concentrated salt solutions and in the salt-fog testing. Results from the testing of one amorphous material (SAM2X5) both in ribbon form and as an applied coating are reported here. Cyclic polarization tests were performed on SAM2X5 ribbon as well as on other nuclear engineering materials. SAM2X5 showed the highest resistance to localized corrosion in 5 M CaCl{sub 2} solution at 105 C. Salt fog tests of 316L SS and Alloy 22 coupons coated with amorphous SAM2X5 powder showed resistance to rusting. Partial devitrification may be responsible for isolated pinpoint rust spots in some coatings.

  7. Design and development of hot corrosion-resistant nickel-base single-crystal superalloys by the d-electrons alloy design theory: Part II--Effect of refractory metals Ti, Ta, and Nb on microstructures and properties

    SciTech Connect

    Zhang, J.S. . Inst. of Metal Research Beijing Univ. of Science and Technology, ); Hu, Z.Q. . Inst. of Metal Research); Murata, Y.; Morinaga, M.; Yukawa, N. . Dept. of Production Systems Engineering)

    1993-11-01

    A systematic study of the effects of refractory metals Ti, Ta, and Nb on the microstructures and properties was conducted with a hot corrosion-resistant alloy system Ni-16Cr-9Al-4Co-2W-1Mo-(0 [approximately] 4)Ti-(0 [approximately] 4)Ta-(0 [approximately] 4)Nb (in atomic percent) which was selected based on the d-electrons alloy design theory and some basic considerations in alloying features of single-crystal nickel-base superalloys. The contour lines of solidification reaction temperatures and eutectic ([gamma] + [gamma][prime]) volume fraction in the Ti-Ta-Nb compositional triangle were determined by differential thermal analysis (DTA) and imaging analyzer. Compared with the reference alloy IN738LC, in most of the compositional ranges studied, the designed alloys show very low amounts of eutectic ([gamma] + [gamma][prime]) ([le]0.4 vol pct), narrow solidification ranges ([le]65 C), and wide heat-treatment windows'' (> 100 C). This indicates that the alloys should have the promising microstructural stability, single-crystal castability, and be easier for complete solution treatment. In a wide compositional range, the designed alloys showed good hot corrosion resistance (weight loss less than 20 mg/cm[sup 2] after 24 hours kept in molten salt at 900 C). By summarizing the results, the promising alloy compositional ranges of the alloys with balanced properties were determined for the final step of the alloy design, i.e., to grow single crystal and characterize mechanical properties of the alloys selected from the previously mentioned regions.

  8. Analysis of corrosion resistance behavior of inhibitors in concrete using electrochemical techniques

    NASA Astrophysics Data System (ADS)

    Song, Ha-Won; Saraswathy, Velu

    2006-08-01

    Reinforced concrete is one of the most durable and cost effective construction materials. However, in high chloride environments, it can suffer from corrosion due to chloride induced breakdown of the normal passive layer protecting the reinforcing steel bars inside concrete. One means of protecting embedded steel reinforcement from chloride induced corrosion is the addition of corrosion inhibiting admixtures. In the present investigation, various inhibitors such as sodium nitrite, zinc oxide, mono ethanol amine, diethanolamine, and triethanol amine have been used in concrete in different percentages. Their effectiveness was then studied using various electrochemical techniques such as rapid chloride ion penetration test, open circuit potential measurement, electrochemical impedance measurement, potentiodynamic polarization measurement, and gravimetric weight loss measurement. The results thus obtained indicate that the addition of inhibitors enhances the corrosion resistance properties.

  9. Corrosion resistance of three orthodontic brackets: a comparative study of three fluoride mouthwashes.

    PubMed

    Schiff, Nicolas; Dalard, Francis; Lissac, Michèle; Morgon, Laurent; Grosgogeat, Brigitte

    2005-12-01

    In the present study, three types of orthodontic brackets were investigated: cobalt-chromium (CoCr), iron-chromium-nickel (FeCrNi) and titanium (Ti) based. Their corrosion resistance was compared with that of platinum (Pt), which was chosen as the reference material because of its excellent electrochemical properties. The test solutions were Elmex, Meridol and Acorea fluoride mouthwashes. Fusayama Meyer artificial saliva was used as the reference solution. The corrosion resistance of the different brackets in the three mouthwashes was assessed electrochemically to determine the corrosion potential and corrosion current density, and polarization resistance values were then calculated. A scanning electron microscopic (SEM) study and an analysis of released metal ions confirmed the electrochemical studies. The results showed that the bracket materials could be divided into two groups: Ti and FeCrNi in one, and CoCr, which has properties close to those of Pt, in the other. Similarly, two groups of electrolytes were identified: Elmex and Acorea mouthwashes in one group, and Meridol mouthwash in the second group. The results indicate that because of the risk of corrosion Meridol mouthwash should not be prescribed for patients wearing Ti or FeCrNi-based orthodontic brackets.

  10. Electrochemical study of resistance to localized corrosion of stainless steels for biomaterial applications

    SciTech Connect

    Pan, J.; Karlen, C.; Ulfvin, C.

    2000-03-01

    Sandvik Bioline High-N and 316 LVM are two austenitic stainless steels especially developed for biomaterial applications. Their resistance to localized corrosion was investigated by electrochemical methods including cyclic potentiodynamic polarization and potentiostatic polarization measurements in a phosphate-buffered saline solution and in a simulated crevice solution, i.e., designed for crevice corrosion testing. Sandvik SAF 2507 (a high-performance super duplex stainless steel) was included in the tests as a reference material High-N, higher alloyed than 316 LVM, demonstrated excellent resistance to pitting initiation and a strong tendency to repassivation. High-N proved to have an equivalent or even higher resistance to localized corrosion than SAF 2507. The latter is known for its impressive corrosion properties, particularly in chloride containing environments. While 316 LVM may run the risk of crevice corrosion in implant applications, the risk seems negligible for High-N. In view of the fact that also the mechanical properties are superior to those of 316 LVM, High-N is a very attractive implant material.

  11. Corrosion properties of electroplated CoNiFe films

    SciTech Connect

    Saito, M.; Yamada, K.; Ohashi, K.; Yasue, Y.; Sogawa, Y.; Osaka, T.

    1999-08-01

    Electroplated CoNiFe films with a saturation flux density as high as 2.1 T are potentially useful in high-density magnetic recording heads. The authors found that films electroplated at a high current density (15 mA/cm{sup 2}) from a bath without saccharin have a sufficient anodic pitting-corrosion potential ({minus}65 mV). The authors also found that the pitting-corrosion potential of films electroplated under a low current density (5 mA/cm{sup 2}) from saccharin-free baths have anodic pitting-corrosion potentials of less than {minus}300 mV. However, the corrosion resistance improved after annealing at temperatures above 100 C. The crystal-grain boundaries in the as-plated film that electroplated under a low current density from saccharin-free baths are not clear (i.e., that the phase is amorphous). But the crystal grain boundaries in the annealed film are clear. Films electroplated from baths containing saccharin also have anodic pitting-corrosion potentials of less than {minus}300 mV. Their corrosion resistance did not improve when they were annealed at 250 C. The deterioration of the corrosion resistance is attributed to the defects that increase the face-centered cubic (111) lattice constant. One of the most important characteristics of a highly corrosion-resistant CoNiFe film is fine crystal structure with very few defects.

  12. The effect of heat treatment simulating porcelain firing processes on titanium corrosion resistance.

    PubMed

    Sokołowski, Grzegorz; Rylska, Dorota; Sokołowski, Jerzy

    2016-01-01

    Corrosion resistance of titanium used in metal-ceramic restorations in manufacturing is based on the presence of oxide layer on the metal surface. The procedures used during combining metallic material with porcelain may affect the changes in oxide layers structure, and thus anticorrosive properties of metallic material. The aim of the study was an evaluation of potential changes in the structure and selected corrosion properties of titanium after sandblasting and thermal treatment applicable to the processes of ceramics fusion. Milled titanium elements were subjected to a few variants of the processes typical of ceramics fusion and studied in terms of resistance to electrochemical corrosion. The study included the OCP changes over time, measurements of Icorr, Ecorr and Rp as well as potentiodynamic examinations. Surface microstructure and chemical composition were analyzed using SEM and EDS methods. The results obtained allow us to conclude that the processes corresponding to ceramic oxidation and fusion on titanium in the variants used in the study do not cause deterioration of its anticorrosive properties, and partially enhance the resistance. This depends on the quality of oxide layers structure. Titanium elements treated by porcelain firing processes do not lose their corrosion resistance.

  13. Impact of the nanostructuration on the corrosion resistance and hardness of irradiated 316 austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Hug, E.; Prasath Babu, R.; Monnet, I.; Etienne, A.; Moisy, F.; Pralong, V.; Enikeev, N.; Abramova, M.; Sauvage, X.; Radiguet, B.

    2017-01-01

    The influence of grain size and irradiation defects on the mechanical behavior and the corrosion resistance of a 316 stainless steel have been investigated. Nanostructured samples were obtained by severe plastic deformation using high pressure torsion. Both coarse grain and nanostructured samples were irradiated with 10 MeV 56Fe5+ ions. Microstructures were characterized using transmission electron microscopy and atom probe tomography. Surface mechanical properties were evaluated thanks to hardness measurements and the corrosion resistance was studied in chloride environment. Nanostructuration by high pressure torsion followed by annealing leads to enrichment in chromium at grain boundaries. However, irradiation of nanostructured samples implies a chromium depletion of the same order than depicted in coarse grain specimens but without metallurgical damage like segregated dislocation loops or clusters. Potentiodynamic polarization tests highlight a definitive deterioration of the corrosion resistance of coarse grain steel with irradiation. Downsizing the grain to a few hundred of nanometers enhances the corrosion resistance of irradiated samples, despite the fact that the hardness of nanocrystalline austenitic steel is only weakly affected by irradiation. These new experimental results are discussed in the basis of couplings between mechanical and electrical properties of the passivated layer thanks to impedance spectroscopy measurements, hardness properties of the surfaces and local microstructure evolutions.

  14. Corrosion-resistant iridium-platinum anode material for high polarization application in corrosive acids

    SciTech Connect

    Farmer, J.; Summers, L.; Lewis, P.

    1993-09-08

    The present invention relates to highly corrosion resistant components for use in an electrochemical cell. Specifically, these components are resistant to corrosion under very extreme conditions such as exposure to aqua regia in the presence of a constant current density of 100mA/m{sup 2}. The components are comprised of an iridium-platinum alloy that comprises less than 30% iridium. In a preferred embodiment of the present invention, the iridium-platinum alloy comprises 15-20% iridium. In another preferred embodiment of the present invention, the iridium-platinum alloy is deposited on the surface of an electrochemical cell component by magnetron sputtering. The present invention also relates to a method for conducting an electrochemical reaction in the presence of highly corrosive acids under a high degree of polarization wherein the electrochemical cell comprises a component, preferably the anode, containing an iridium-platinum alloy that comprises less than 30% iridium.

  15. Method For Testing Properties Of Corrosive Lubricants

    DOEpatents

    Ohi, James; De La Cruz, Jose L.; Lacey, Paul I.

    2006-01-03

    A method of testing corrosive lubricating media using a wear testing apparatus without a mechanical seal. The wear testing apparatus and methods are effective for testing volatile corrosive lubricating media under pressure and at high temperatures.

  16. Corrosion resistance of porous NiTi biomedical alloy in simulated body fluids

    NASA Astrophysics Data System (ADS)

    Stergioudi, F.; Vogiatzis, C. A.; Pavlidou, E.; Skolianos, S.; Michailidis, N.

    2016-09-01

    The corrosion performance of two porous NiTi in physiological and Hank’s solutions was investigated by potentiodynamic polarization, cyclic polarization and impedance spectroscopy. Electric models simulating the corrosion mechanism at early stages of immersion were proposed, accounting for both microstructural observations and electrochemical results. Results indicate that both porous samples were susceptible to localized corrosion. The porosity increase (from 7% to 18%) resulted in larger and wider pore openings, thus favoring the corrosion resistance of 18% porous NiTi. Strengthening of corrosion resistance was observed in Hank’s solution. The pore morphology and micro-galvanic corrosion phenomena were determining factors affecting the corrosion resistance.

  17. The intrinsically high pitting corrosion resistance of mechanically polished nitinol in simulated physiological solutions.

    PubMed

    Bai, Zhijun; Rotermund, Harm H

    2011-10-01

    Nitinol wires have been widely used in many biomedical applications, such as cardiovascular stent due to their superelasticity and shape memory effect. However, their corrosion properties and the related biocompatibility are not well understood, and the reported results are controversial. In this study, we evaluate the pitting corrosion property of nitinol, titanium, nickel, and 316L stainless steel (316LSS) wires with different surface roughnesses in a saline solution at 37 °C. The cyclic potentiodynamic polarization results show that mechanically polished nitinol and Ti wires are highly resistant to pitting corrosion, while Ni and 316LSS wires are susceptible to pitting corrosion. Electrochemical impedance spectroscopy is used to study the interface of oxide film/solution and all mechanically polished nitinol wires are covered by 2-3 nm thick films formed under open circuit potential. Furthermore, the electronic structures and semiconducting properties of passive films on nitinol, Ti and Ni wires are studied by Mott-Schottky analysis. Passive films formed on nitinol and Ti exhibit n-type semiconducting characteristics, whereas films on Ni show p-type semiconducting characteristics. Scanning Kelvin Microscopy is used to measure the surface potential difference between common inclusions from the nitinol matrix and the results indicate that the inclusions are more electrochemically noble than the nitinol matrix. Band energy theory is used to model the electrochemical interface between the passive films of nitinol and the solution under different applied potential conditions. A mechanism for the strong pitting corrosion resistance of nitinol in saline solution is proposed.

  18. Plasma Electrolytic Oxidation (PEO) Coatings on an A356 Alloy for Improved Corrosion and Wear Resistance

    NASA Astrophysics Data System (ADS)

    Peng, Zhijing

    Plasma electrolytic oxidizing (PEO) is an advanced technique that has been used to deposit thick and hard ceramic coatings on aluminium (Al) alloys. This work was however to use the PEO process to produce thin ceramic oxide coatings on an A356 Al alloy for improving corrosion and wear resistance of the alloy. Effects of current density and treatment time on surface morphologies and thickness of the PEO coatings were investigated. The improvement of galvanic corrosion properties of the coated A356 alloy vs. steel and carbon fibre were evaluated in E85 fuel or NaCl environments. Tribological properties of the coatings were studied with comparison to the uncoated A356 substrate and other commercially-used engine bore materials. The research results indicated that the PEO coatings could have excellent tribological and corrosion properties for aluminium engine applications.

  19. Thin boron phosphide coating as a corrosion-resistant layer

    DOEpatents

    Not Available

    1982-08-25

    A surface prone to corrosion in corrosive environments is rendered anticorrosive by CVD growing a thin continuous film, e.g., having no detectable pinholes, thereon, of boron phosphide. In one embodiment, the film is semiconductive. In another aspect, the invention is an improved photoanode, and/or photoelectrochemical cell with a photoanode having a thin film of boron phosphide thereon rendering it anticorrosive, and providing it with unexpectedly improved photoresponsive properties.

  20. High-temperature corrosion resistance of ceramics and ceramic coatings

    SciTech Connect

    Tortorelli, P.F.

    1996-06-01

    Ceramics and ceramic composites offer the potential to operate fossil energy systems at the higher temperatures necessary for improved energy efficiency and better environmental control. However, because many fossil fuel-derived processes contain sulfur, chlorine, and carbon, as well as oxygen, degradation from high-temperature corrosion and environmental effects arising from reactions of solids with gases and condensable products is a common life-determining factor in operating systems. Ceramic-based products are not immune to such degradation; adequate corrosion resistance must be assured to exploit the technical and economic potential of such materials. This is normally accomplished by using stable, sound oxides that exist in their bulk form, that naturally grow as surface layers upon exposure to an oxidizing environment, or that are deposited as a coating on a susceptible material. It is therefore important to examine the critical issues with respect to more environmental stability of ceramics that have the potential to be corrosion resistant in particular fossil environments. Key aspects include not only chemical compatibility, but the influence of the environment on the mechanical behavior of the ceramic materials. In addition, for coatings, the mechanical reliability of the ceramic is a key issue in that an otherwise corrosion-resistant surface layer must remain sound and adherent in order to provide protection to the underlying substrate. The purpose of this work is to support the development of advanced ceramics and ceramic composites for applications in fossil environments by examining critical issues related to high-temperature corrosion resistance. More specifically, the overall objective of this task is to examine the chemical compatibility and reliability of potentially corrosion-resistant ceramics being developed as protective overcoats and/or structural materials as parts of other work elements funded by the AR&TD Program.

  1. Fretting corrosion resistance and fretting corrosion product cytocompatibility of ferritic stainless steel.

    PubMed

    Xulin, S; Ito, A; Tateishi, T; Hoshino, A

    1997-01-01

    To avoid nickel ion release from SUS317L as an implant material, a new type of nickel, commercially free, of high purity, and high chromium ferritic stainless steel, was developed. The new stainless steel (FJ) was studied for aspects of fretting corrosion and cytocompatibility compared with SUS317L. A pin-on-plate fretting corrosion test in an artificial physiologic solution, and cell culture in media with the addition of the artificial physiologic solution used for fretting was conducted. Resistance to the fretting induced crevice corrosion of FJ was higher than that of SUS317L because of the favorable electrochemical stability of the FJ alloy. The amount of iron ion or colloidal fine particles released from FJ was about a quarter of that from SUS317L, although the weight loss of a pin of FJ was almost 5/3 that of SUS317L. The artificial physiologic solution used for SUS317L fretting was more harmful to the growth of L929 and MC3T3-E1 cells than that used for FJ fretting. FJ was therefore superior to SUS317L as a biomaterial, judging from the resistance to fretting-induced crevice corrosion, electrochemical stability, and the cytocompatibility of fretting corrosion products.

  2. Corrosion-resistant, electrically-conductive plate for use in a fuel cell stack

    SciTech Connect

    Carter, J David; Mawdsley, Jennifer R; Niyogi, Suhas; Wang, Xiaoping; Cruse, Terry; Santos, Lilia

    2010-04-20

    A corrosion resistant, electrically-conductive, durable plate at least partially coated with an anchor coating and a corrosion resistant coating. The corrosion resistant coating made of at least a polymer and a plurality of corrosion resistant particles each having a surface area between about 1-20 m.sup.2/g and a diameter less than about 10 microns. Preferably, the plate is used as a bipolar plate in a proton exchange membrane (PEMFC) fuel cell stack.

  3. Influence of alloying elements on corrosion resistance of low alloy steels in marine environment

    SciTech Connect

    Wei, F.I.

    1995-09-01

    Most area of the earth is ocean. Therefore, exploitation of marine resources and utilization of marine space rapidly increase in recent years. Most of marine structures, such as wharfs, oil drilling platforms, coastal bridges, airports, etc. are mainly constructed by steel. It is therefore very important to develop marine corrosion resistant steels that do not require protection and are inexpensive. In this study, a series of low alloy steels were prepared by the method of experimental design as well as conventional design to study the effects of alloying elements on the marine corrosion resistance, under consideration of the requirement of mechanical properties. All steels were cyclically dipped to synthetic sea water in the laboratory for 7 weeks or exposed in the Taichung Harbor for more than 4 years. Both test results show similar tendency of the effects of alloying elements, but the effects of fouling on pitting were only observed in the latter. Addition of phosphorus and copper can improve the general corrosion resistance in atmospheric splash zone and titanium has the same effect in sea water. Molybdenum can improve the general corrosion resistance in both splash and tidal zones and pitting resistance in tidal and submerged zones. Due to enrichment of the alloying elements in the rust resulting in development of inner dense rust layer and change of rust composition, the anti-corrosion ability of most designed steels can be enhanced in marine environment. In addition, the corrosion resistance of most tested steels is superior to plain carbon steel (A-36) and weathering steel (Acr-Ten A) in Taichung Harbor.

  4. Influence of surface layer on mechanical and corrosion properties of nickel-titanium orthodontic wires.

    PubMed

    Katić, Višnja; Curković, Helena Otmačić; Semenski, Damir; Baršić, Gorana; Marušić, Katarina; Spalj, Stjepan

    2014-11-01

    To analyze the effect of various coating formulations on the mechanical and corrosion properties of nickel-titanium (NiTi) orthodontic wires. Uncoated, rhodium-coated, and nitrified NiTi wires were observed with a three-point-bend test, surface roughness (Ra) measurement, scanning electron microscopy, energy dispersive spectroscopy, and electrochemical testing (open circuit potential, electrochemical impedance spectroscopy, and cyclic polarization scan). Differences in the properties of tested wire types were analyzed with analysis of variance and Tukey post hoc test. Uncoated and nitrified NiTi wires showed similar mechanical and anticorrosive properties, while rhodium-coated NiTi wires showed the highest Ra and significantly higher modulus of elasticity, yield strength, and delivery of forces during loading but not in unloading. Rhodium-coated NiTi wires also had the highest corrosion current density and corrosion potential, lowest impedance modulus, and two time constants on Bode plot, one related to the Rh/Au coating and the other to underlying NiTi. Working properties of NiTi wires were unaffected by various coatings in unloading. Nitrification improved corrosion resistance. Rhodium coating reduced corrosion resistance and pronounced susceptibility to pitting corrosion in artificial saliva because of galvanic coupling between the noble coating and the base alloy.

  5. 78 FR 15376 - Determinations: Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-11

    ... COMMISSION Determinations: Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea On the basis...)), that revocation of the countervailing duty order on corrosion-resistant carbon steel flat products from Korea and the antidumping duty orders on corrosion-resistant carbon steel flat products from Germany...

  6. 49 CFR 179.201-5 - Postweld heat treatment and corrosion resistance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Postweld heat treatment and corrosion resistance....201-5 Postweld heat treatment and corrosion resistance. (a) Tanks and attachments welded directly... tested to demonstrate that they possess the corrosion resistance specified in § 179.200-7(d), Footnote 2...

  7. Effect of Hydroxyapatite on the Mechanical Properties and Corrosion Behavior of Mg-Zn-Y Alloy

    PubMed Central

    Chiu, Chun; Lu, Chih-Te; Chen, Shih-Hsun; Ou, Keng-Liang

    2017-01-01

    Mg-Zn-Y alloys with a long period stacking ordered (LPSO) phase are potential candidates for biodegradable implants; however, an unfavorable degradation rate has limited their applications. Hydroxyapatite (HA) has been shown to enhance the corrosion resistance of Mg alloys. In this study, Mg97Zn1Y2-0.5 wt% HA composite was synthesized and solution treated at 500 °C for 10 h. The corrosion behavior of the composite was studied by electrochemical and immersion tests, while the mechanical properties were investigated by a tensile test. Addition of HA particles improves the corrosion resistance of Mg97Zn1Y2 alloy without sacrificing tensile strength. The improved corrosion resistance is due to the formation of a compact Ca-P surface layer and a decrease of the volume fraction of the LPSO phase, both resulting from the addition of HA. After solution-treatment, the corrosion resistance of the composite decreases. This is due to the formation of a more extended LPSO phase, which weakens its role as a corrosion barrier in protecting the Mg matrix. PMID:28773216

  8. Effect of cold working and sandblasting on the microhardness, tensile strength and corrosion resistance of AISI 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Suyitno; Arifvianto, Budi; Widodo, Teguh Dwi; Mahardika, Muslim; Dewo, Punto; Salim, Urip Agus

    2012-12-01

    The aim of this work is to investigate the effect of cold working and sandblasting on the microhardness, tensile strength and corrosion rate of AISI 316L stainless steel. The specimens were deformed from 17% to 47% and sandblasted for 20 min using SiC particles with a diameter of 500-700 μm and an air flow with 0.6-0.7 MPa pressure. The microhardness distribution and tensile test were conducted and a measurement on the corrosion current density was done to determine the corrosion rate of the specimens. The result shows that the cold working enhances the bulk microhardness, tensile and yield strength of the specimen by the degree of deformation applied in the treatment. The sandblasting treatment increases the microhardness only at the surface of the specimen without or with a low degree of deformation. In addition, the sandblasting enhances the surface roughness. The corrosion resistance is improved by cold working, especially for the highly deformed specimen. However the follow-up sandblasting treatment reduces the corrosion resistance. In conclusion, the cold working is prominent to be used for improving the mechanical properties and corrosion resistance of AISI 316L stainless steel. Meanwhile, the sandblasting subjected to the cold worked steel is only useful for surface texturing instead of improving the mechanical properties and corrosion resistance.

  9. Iron-Based Amorphous Metals: High-Performance Corrosion-Resistant Material Development

    NASA Astrophysics Data System (ADS)

    Farmer, Joseph; Choi, Jor-Shan; Saw, Cheng; Haslam, Jeffrey; Day, Dan; Hailey, Phillip; Lian, Tiangan; Rebak, Raul; Perepezko, John; Payer, Joe; Branagan, Daniel; Beardsley, Brad; D'Amato, Andy; Aprigliano, Lou

    2009-06-01

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was cosponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the U.S. Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition, materials synthesis, thermal stability, corrosion resistance, environmental cracking, mechanical properties, damage tolerance, radiation effects, and important potential applications. Amorphous alloys identified as SAM2X5 (Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4) and SAM1651 (Fe48Mo14Cr15Y2C15B6) have been produced as meltspun ribbons (MSRs), dropcast ingots, and thermal-spray coatings. Chromium (Cr), molybdenum (Mo), and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of MSRs and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently, thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests; good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while the open-circuit corrosion potentials (OCPs) were simultaneously monitored; reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber and suitable for criticality-control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional stainless steel and Ni-based materials, and are proving to have excellent wear

  10. Iron-Based Amorphous Metals:The High Performance Corrosion Resistant Materials(HPCRM) Program

    SciTech Connect

    Farmer, J

    2007-07-09

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  11. Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Material (HPCRM) Development

    SciTech Connect

    Farmer, J C; Choi, J S; Saw, C; Haslam, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D'Amato, A; Aprigliano, L

    2008-01-09

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  12. Protection of 2024-T3 aluminium alloy by corrosion resistant phytic acid conversion coating

    NASA Astrophysics Data System (ADS)

    Shi, Hongwei; Han, En-Hou; Liu, Fuchun; Kallip, Silvar

    2013-09-01

    The corrosion protection properties of environmentally friendly phytic acid conversion coatings were studied on 2024-T3 aluminium alloy. The films were prepared under acidic conditions with various pH values and characterised by SEM, EDS, ATR-FTIR and electrochemical techniques. The results indicate that the conversion coatings obtained by immersing the alloy in phytic acid solutions at pH from 3 to 5.5 provide excellent corrosion resistance. ATR-FTIR confirms that the film is formed by deposition of reaction products between Al3+ and phosphate groups in phytic acid molecules. The conformation models of the deposition film are proposed.

  13. Corrosion Resistance of Metal Matrix Composites.

    DTIC Science & Technology

    1992-10-01

    fibers was found to reduce the corrosion rate by a factor of twenty in NaC1 solutions. Al4C3 hydrolysis was not observed on the time scale of the...on the anodic polarization behavior of the G/Al MMCs with A14C3 contents measured by gas chromatography. 2.1.1 Al4C3 at the Fiber-Matrix Interface The...and Al4C3 content were not as significant in affecting the passive current density as was the type of graphite fiber used in processing the

  14. Laser surface melting of aluminium alloy 6013 for improving stress corrosion and corrosion fatigue resistance

    NASA Astrophysics Data System (ADS)

    Xu, Wen-Long

    Laser surface treatment of aluminium alloy 6013, a relatively new high strength aluminium alloy, was conducted with the aim of improving the alloy's resistance to stress corrosion cracking and corrosion fatigue. In the first phase of this research, laser surface melting (LSM) of the alloy was conducted using an excimer laser. The microstructural changes induced by the laser treatment were studied in detail and characterised. The results showed that excimer LSM produced a relatively thin, non-dentritic planar re-melted layer which is largely free of coarse constituent particles and precipitates. The planar growth phenomenon was explained using the high velocity and high temperature gradient absolute stability criteria. The structure of the oxide and/or the nitride bearing film at the outmost surface of the re-melted layer was also characterised. The results of the electrochemical tests showed that the pitting corrosion resistance of the alloy could be greatly increased by excimer laser melting, especially when the alloy was treated in nitrogen gas: the corrosion current density of the N2-treated specimen was some two orders of magnitude lower than that of the air-treated specimen which was one order of magnitude lower than that of the untreated specimen. The effect of the outer surface oxide and/or nitride bearing film per se on pitting corrosion resistance was determined. The results of a Mott - Schottky analysis strongly suggest that the outer surface film, which exhibited the nature of an n-type semiconductor was responsible for the significant improvement of the corrosion resistance of the laser-treated material. Furthermore, the corrosion response of the surface film was modelled using equivalent circuits. Based on the results of the slow strain rate tensile (SSRT) and corrosion fatigue tests, the stress corrosion cracking and pitting corrosion fatigue behaviour of the excimer laser treated material was evaluated. The results of the SSRT test showed that, in

  15. Corrosion-Resistant Container for Molten-Material Processing

    NASA Technical Reports Server (NTRS)

    Stern, Theodore G.; McNaul, Eric

    2010-01-01

    In a carbothermal process, gaseous methane is passed over molten regolith, which is heated past its melting point to a temperature in excess of 1,625 C. At this temperature, materials in contact with the molten regolith (or regolith simulant) corrode and lose their structural properties. As a result, fabricating a crucible to hold the molten material and providing a method of contact heating have been problematic. Alternative containment approaches use a large crucible and limit the heat zone of the material being processed, which is inefficient because of volume and mass constraints. Alternative heating approaches use non-contact heating, such as by laser or concentrated solar energy, which can be inefficient in transferring heat and thus require higher power heat sources to accomplish processing. The innovation is a combination of materials, with a substrate material having high structural strength and stiffness and high-temperature capability, and a coating material with a high corrosion resistance and high-temperature capability. The material developed is a molybdenum substrate with an iridium coating. Creating the containment crucible or heater jacket using this material combination requires only that the molybdenum, which is easily processed by conventional methods such as milling, electric discharge machining, or forming and brazing, be fabricated into an appropriate shape, and that the iridium coating be applied to any surfaces that may come in contact with the corrosive molten material. In one engineering application, the molybdenum was fashioned into a container for a heat pipe. Since only the end of the heat pipe is used to heat the regolith, the container has a narrowing end with a nipple in which the heat pipe is snugly fit, and the external area of this nipple, which contacts the regolith to transfer heat into it, is coated with iridium. At the time of this reporting, no single material has been found that can perform the functions of this combination

  16. Demonstration of Corrosion-Resistant Hybrid Composite Bridge Beams for Structural Applications

    DTIC Science & Technology

    2016-09-01

    ER D C/ CE RL T R- 16 -2 2 DoD Corrosion Prevention and Control Program Demonstration of Corrosion-Resistant Hybrid Composite Bridge...TR-16-22 September 2016 Demonstration of Corrosion-Resistant Hybrid Composite Bridge Beams for Structural Applications Final Report on Project...Washington, DC 20301-3090 Under Project F12-AR15, “Corrosion-Resistant Hybrid Composite Bridge Beams for Structural Applications” ERDC/CERL TR-16

  17. Comparison of the Crevice Corrosion Resistance of Alloys 625 and C22

    SciTech Connect

    Kehler, B.A.; Ilevbare, G.O.; Scully, J.R.

    1999-11-11

    The effects of electrolyte composition and oxide film age on the crevice corrosion properties of alloys 625 and C22 were studied at 95 C. Critical potentials were determined using conventional current density thresholds. Crevice stabilization potentials are influenced by the bulk electrolyte composition, oxide properties, and alloy dissolution behavior. Repassivation and deactivation potentials are controlled by the chemistry of the crevice solution, mass transport considerations, and the electrochemical properties of the alloys. Critical potential data also showed the large influence of air formed oxide film age on stabilization. Air aged C22 specimens exhibited the highest resistance to crevice corrosion in terms of critical crevice potentials, while freshly polished C22 exhibited the lowest resistance.

  18. Effect of the layer of anodized 7075-T6 aluminium corrosion properties

    NASA Astrophysics Data System (ADS)

    Montoya Z, R. D.; L, E. Vera; Pineda T, Y.; Cedeño, M. L.

    2017-01-01

    Aluminium alloys are widely used in various sectors of industry. The 7075-T6 alloy corresponding to an Al-Zn T6, is mostly used as structural component in the aviation industry, due to the good relationship between weight and mechanical properties. However, the negative point of this alloys is the resistance to corrosion, which is why they need to be coated with an anodic film. Different surface treatments, such as anodizing, are used to improve corrosion resistance. Anodizing is an electrolytic process by which a protective layer on aluminium known as “alumina” is formed, this is formed by the passage of an electric current in an acidic electrolyte. This investigation presents a study of the effect of the thickness of layers of alumina deposited by anodized method, in the corrosion resistance of 7075-T6 aluminium. This study was performed by using in a solution of tartaric acid - sulfuric acid and an inorganic salt. To evaluate the influence alumina layer thickness on the corrosion properties some tests were carried out by using the electrochemical spectroscopy impedances (EIS) technique and Tafel polarization curves. It was found that the grown of the thickness of film favourably influences in the corrosion resistance.

  19. The evaluation of corrosion resistant rod end rolling element bearings

    SciTech Connect

    Braza, J.F.; Giuntoli, K.; Imundo, J.R.

    1998-12-31

    Recent developments on carburizing grades of stainless steels have provided new materials to produce corrosion resistant airframe control bearings. This paper presents the application of one of these new carburizing grades of stainless steel to rod end ball bearings. The outer ring of the rod end bearing is made out of carburized stainless steel, while the inner ring and balls are made out of through-hardened stainless steel. The stainless steel rod end bearings were evaluated according to various ASTM and Military specifications for performance and corrosion resistance. The stainless steel rod end bearings exceeded the performance requirements of standard rod end bearings (which are comprised of a carburized 8620 steel outer ring and 52100 steel inner ring and balls) in accordance with MIL-B-6039. The rod end bearings were evaluated in the radial fracture load, axial fracture load, and radial dynamic load tests. Also, salt spray and alternate immersion corrosion tests (ASTM B 117-85 and G 44-88, respectively) were conducted on the stainless steel rod end bearings. The stainless steel rod end bearings exhibited superior corrosion resistance to the standard 8620/52100 steel rod end bearings.

  20. Effect of Sn4+ Additives on the Microstructure and Corrosion Resistance of Anodic Coating Formed on AZ31 Magnesium Alloy in Alkaline Solution

    NASA Astrophysics Data System (ADS)

    Salman, S. A.; Kuroda, K.; Saito, N.; Okido, M.

    Magnesium is the lightest structural metal with high specific strength and good mechanical properties. However, poor corrosion resistance limits its widespread use in many applications. Magnesium is usually treated with Chromate conversion coatings. However, due to changing environmental regulations and pollution prevention requirements, a significant push exists to find new, alternative for poisonous Cr6+. Therefore, we aim to improve corrosion resistance of anodic coatings on AZ31 alloys using low cost non-chromate electrolyte. Anodizing was carried out in alkaline solutions with tin additives. The effect of tin additives on the coating film was characterized by SEM and XRD. The corrosion resistance was evaluated using anodic and cathodic polarizations and electrochemical impedance spectroscopy (EIS). Corrosion resistance property was improved with tin additives and the best anti-corrosion property was obtained with addition of 0.03 M Na2SnO3.3H2O to anodizing solution.

  1. Selection of Corrosion Resistant Materials for Nuclear Waste Repositories

    SciTech Connect

    R.B. Rebak

    2006-08-28

    Several countries are considering geological repositories to dispose of nuclear waste. The environment of most of the currently considered repositories will be reducing in nature, except for the repository in the US, which is going to be oxidizing. For the reducing repositories, alloys such as carbon steel, stainless steels and titanium are being evaluated. For the repository in the US, some of the most corrosion resistant commercially available alloys are being investigated. This paper presents a summary of the behavior of the different materials under consideration for the repositories and the current understanding of the degradation modes of the proposed alloys in ground water environments from the point of view of general corrosion, localized corrosion and environmentally assisted cracking.

  2. Selection of Corrosion Resistant Materials for Nuclear Waste Repositories

    SciTech Connect

    Rebak, R B

    2006-06-01

    Several countries are considering geological repositories to dispose of nuclear waste. The environment of most of the currently considered repositories will be reducing in nature, except for the repository in the US, which is going to be oxidizing. For the reducing repositories alloys such as carbon steel, stainless steels and titanium are being evaluated. For the repository in the US, some of the most corrosion resistant commercially available alloys are being investigated. This paper presents a summary of the behavior of the different materials under consideration for the repositories and the current understanding of the degradation modes of the proposed alloys in ground water environments from the point of view of general corrosion, localized corrosion and environmentally assisted cracking.

  3. KSC lubricant testing program. [lubrication characteristics and corrosion resistance

    NASA Technical Reports Server (NTRS)

    Lockhart, B. J.; Bryan, C. J.

    1973-01-01

    A program was conducted to evaluate the performance of various lubricants in use and considered for use at Kennedy Space Center (KSC). The overall objectives of the program were to: (1) determine the lubrication characteristics and relative corrosion resistance of lubricants in use and proposed for use at KSC; (2) identify materials which may be equivalent to or better than KELF-90 and Krytox 240 AC greases; and (3) identify or develop an improved lubricating oil suitable for use in liquid oxygen (LOX) pumps at KSC. It was concluded that: (1) earth gel thickened greases are very poor corrosion preventive materials in the KSC environment; (2) Halocarbon 25-5S and Braycote 656 were suitable substiutes for KELF-90 and Krytox 240 AC respectively; and (3) none of the oils evaluated possessed the necessary inertness, lubricity, and corrosion prevention characteristics for the KSC LOX pumping systems in their present configuration.

  4. Electrochemical Corrosion Properties of Commercial Ultra-Thin Copper Foils

    NASA Astrophysics Data System (ADS)

    Yen, Ming-Hsuan; Liu, Jen-Hsiang; Song, Jenn-Ming; Lin, Shih-Ching

    2017-08-01

    Ultra-thin electrodeposited Cu foils have been developed for substrate thinning for mobile devices. Considering the corrosion by residual etchants from the lithography process for high-density circuit wiring, this study investigates the microstructural features of ultra-thin electrodeposited Cu foils with a thickness of 3 μm and their electrochemical corrosion performance in CuCl2-based etching solution. X-ray diffraction and electron backscatter diffraction analyses verify that ultra-thin Cu foils exhibit a random texture and equi-axed grains. Polarization curves show that ultra-thin foils exhibit a higher corrosion potential and a lower corrosion current density compared with conventional (220)-oriented foils with fan-like distributed fine-elongated columnar grains. Chronoamperometric results also suggest that ultra-thin foils possess superior corrosion resistance. The passive layer, mainly composed of CuCl and Cu2O, forms and dissolves in sequence during polarization.

  5. Method of preparing corrosion resistant composite materials

    DOEpatents

    Kaun, Thomas D.

    1993-01-01

    Method of manufacture of ceramic materials which require stability in severely-corrosive environment having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These surfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  6. Corrosion resistance investigation of vanadium alloys in liquid lithium

    NASA Astrophysics Data System (ADS)

    Borovitskaya, I. V.; Lyublinskiy, I. E.; Bondarenko, G. G.; Paramonova, V. V.; Korshunov, S. N.; Mansurova, A. N.; Lyakhovitskiy, M. M.; Zharkov, M. Yu.

    2016-12-01

    A major concern in using vanadium alloys for first wall/blanket systems in fusion reactors is their activity with regard to nonmetallic impurities in the coolants. This paper presents the results of studying the corrosion resistance in high-purity liquid lithium (with the nitrogen and carbon content of less than 10-3 wt %) of vanadium and vanadium alloys (V-1.86Ga, V-3.4Ga-0.62Si, V-4.81Ti-4.82Cr) both in the initial state and preliminarily irradiated with Ar+ ions with energy of 20 keV to a dose of 1022 m-2 at an irradiation temperature of 400°C. The degree of corrosion was estimated by measuring the changes in the weight and microhardness. Corrosion tests were carried out under static isothermal conditions at a temperature of 600°C for 400 h. The identity of corrosion mechanisms of materials both irradiated with Ar ions and not irradiated, which consisted in an insignificant penetration of nitrogen into the materials and a substantial escape of oxygen from the materials, causing the formation of a zone with a reduced microhardness near the surface, was established. The influence of the corrosive action of lithium on the surface morphology of the materials under study was found, resulting in the manifestation of grain boundaries and slip lines on the sample surface, the latter being most clearly observed in the case of preliminary irradiation with Ar ions.

  7. Mechanical and corrosion properties of biodegradable Mg-1.5Mn-1Ca-xSr alloys

    NASA Astrophysics Data System (ADS)

    Sun, X.; Sun, S. Y.; Ning, Y. H.; Ning, Y. T.

    2017-03-01

    The mechanical properties and corrosion mechanism of both as-cast and solution-naturally age (T4) treated Mg-1.5Mn-1Ca-xSr alloys were investigated. The results showed that Sr is helpful to decrease grain size and increase the strength. The corrosion process of alloys was mainly determined by the quantity and distribution of second phases. Mg17Sr2, α-Mn and Ca-Sr phases acted as cathodes accelerated the corrosion of Mg2Ca anodic phase and α-Mg matrix. However, continuous distributed Mg17Sr2 was beneficial to resist the happening of localized corrosion because of its barrier effect. T4 treatment could significantly improve the mechanical properties and corrosion resistance of Mg alloys because of the dissolution of Mg2Ca phase and the dispersive distribution of Mg17Sr2 and α-Mn phases.

  8. Bacterial exopolysaccharides for corrosion resistance on low carbon steel

    USDA-ARS?s Scientific Manuscript database

    Corrosion is a global issue that affects safety and economics. There is an increasing demand for bio-based polymers for industrial applications and production of polymers by micro-organisms is especially attractive. This work reports on the electrochemical and physical properties of exopolysaccharid...

  9. Towards a Better Corrosion Resistance and Biocompatibility Improvement of Nitinol Medical Devices

    NASA Astrophysics Data System (ADS)

    Rokicki, Ryszard; Hryniewicz, Tadeusz; Pulletikurthi, Chandan; Rokosz, Krzysztof; Munroe, Norman

    2015-04-01

    Haemocompatibility of Nitinol implantable devices and their corrosion resistance as well as resistance to fracture are very important features of advanced medical implants. The authors of the paper present some novel methods capable to improve Nitinol implantable devices to some marked degree beyond currently used electropolishing (EP) processes. Instead, a magnetoelectropolishing process should be advised. The polarization study shows that magnetoelectropolished Nitinol surface is more corrosion resistant than that obtained after a standard EP and has a unique ability to repassivate the surface. Currently used sterilization processes of Nitinol implantable devices can dramatically change physicochemical properties of medical device and by this influence its biocompatibility. The Authors' experimental results clearly show the way to improve biocompatibility of NiTi alloy surface. The final sodium hypochlorite treatment should replace currently used Nitinol implantable devices sterilization methods which rationale was also given in our previous study.

  10. Polyoxometalate ionic liquids as self-repairing acid-resistant corrosion protection.

    PubMed

    Herrmann, Sven; Kostrzewa, Monika; Wierschem, Andreas; Streb, Carsten

    2014-12-01

    Corrosion is a global problem for any metallic structure or material. Herein we show how metals can easily be protected against acid corrosion using hydrophobic polyoxometalate-based ionic liquids (POM-ILs). Copper metal disks were coated with room-temperature POM-ILs composed of transition-metal functionalized Keggin anions [SiW11 O39 TM(H2 O)](n-) (TM=Cu(II) , Fe(III) ) and quaternary alkylammonium cations (Cn H2 n+1 )4 N(+) (n=7-8). The corrosion resistance against acetic acid vapors and simulated "acid rain" was significantly improved compared with commercial ionic liquids or solid polyoxometalate coatings. Mechanical damage to the POM-IL coating is self-repaired in less than one minute with full retention of the acid protection properties. The coating can easily be removed and recovered by rinsing with organic solvents.

  11. Corrosion Resistance of Calcium Aluminate Cement Concrete Exposed to a Chloride Environment

    PubMed Central

    Ann, Ki Yong; Cho, Chang-Geun

    2014-01-01

    The present study concerns a development of calcium aluminate cement (CAC) concrete to enhance the durability against an externally chemically aggressive environment, in particular, chloride-induced corrosion. To evaluate the inhibition effect and concrete properties, CAC was partially mixed with ordinary Portland cement (OPC), ranging from 5% to 15%, as a binder. As a result, it was found that an increase in the CAC in binder resulted in a dramatic decrease in the setting time of fresh concrete. However, the compressive strength was lower, ranging about 20 MPa, while OPC indicated about 30–35 MPa at an equivalent age. When it comes to chloride transport, there was only marginal variation in the diffusivity of chloride ions. The corrosion resistance of CAC mixture was significantly enhanced: its chloride threshold level for corrosion initiation exceeded 3.0% by weight of binder, whilst OPC and CAC concrete indicated about 0.5%–1.0%. PMID:28788491

  12. Influence of casting procedures on the corrosion resistance of clinical dental alloys containing palladium.

    PubMed

    Viennot, Stéphane; Lissac, Michèle; Malquarti, Guillaume; Dalard, Francis; Grosgogeat, Brigitte

    2006-05-01

    The aim of this study was to compare the in vitro corrosion resistance in artificial saliva of two palladium-silver alloys (a Pd-Ag (Pors on 4) and an Ag-Pd (Palliag LTG)), with and without casting defects; 1 nickel-chrome alloy and 1 high-gold alloy, cast under recommended conditions, served as controls. For each of the palladium-based alloys, three specimens corresponding to three different casting conditions were used: under recommended conditions, with the use of a graphite-containing investment and crucible, and by reusing the sprues and sprue button. The electrochemical tests were run in Fusayama-Meyer artificial saliva. The open-circuit potential was recorded in mV/SCE at t=24h. Then, potentiodynamic polarization was performed to measure the polarization resistance (R(p)) in kOmega cm(2) and the corrosion current (i(corr)) in microA cm(-2). Data were evaluated with one-way analysis of variance and multiple comparisons test (alpha=0.05). In addition, each specimen was examined by scanning electron microscopy. Compared to the control alloys, the electrochemical experiments in artificial saliva indicated satisfactory corrosion resistance for the Pd-Ag and Ag-Pd alloys; these results are related to their high noble metal content and stable substructure. The Pd-Ag alloy displayed superior electrochemical properties to those of the Ag-Pd alloy regardless of the casting condition. The use of the graphite-containing crucible and investment during the cast process did not dramatically reduce the corrosion resistance values, but the reuse of sprues and the sprue button did. The optimal corrosion resistance values were obtained for the alloys cast according to the recommended conditions.

  13. Mechanical Properties and Corrosion Characteristics of Thermally Aged Alloy 22

    SciTech Connect

    Rebak, R B; Crook, P

    2002-05-30

    Alloy 22 (UNS N06022) is a candidate material for the external wall of the high level nuclear waste containers for the potential repository site at Yucca Mountain. In the mill-annealed (MA) condition, Alloy 22 is a single face centered cubic phase. When exposed to temperatures on the order of 600 C and above for times higher than 1 h, this alloy may develop secondary phases that reduce its mechanical toughness and corrosion resistance. The objective of this work was to age Alloy 22 at temperatures between 482 C and 760 C for times between 0.25 h and 6,000 h and to study the mechanical and corrosion performance of the resulting material. Aging was carried out using wrought specimens as well as gas tungsten arc welded (GTAW) specimens. Mechanical and corrosion testing was carried out using ASTM standards. Results show-that the higher the aging temperature and the longer the aging time, the lower the impact toughness of the aged material and the lower its corrosion resistance. However, extrapolating both mechanical and corrosion laboratory data predicts that Alloy 22 will remain corrosion resistant and mechanically robust for the projected lifetime of the waste container.

  14. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings.

    PubMed

    Eric Jones, John; Chen, Meng; Yu, Qingsong

    2014-10-01

    To improve their corrosion resistance and thus long-term biocompatibility, 316L stainless steel coronary artery stents were coated with trimethylsilane (TMS) plasma coatings of 20-25 nm in thickness. Both direct current (DC) and radio-frequency (RF) glow discharges were utilized for TMS plasma coatings and additional NH₃/O₂ plasma treatment to tailor the surface properties. X-ray photoelectron spectroscopy (XPS) was used to characterize the coating surface chemistry. It was found that both DC and RF TMS plasma coatings had Si- and C-rich composition, and the O- and N-contents on the surfaces were substantially increased after NH₃/O₂ plasma treatment. Surface contact angle measurements showed that DC TMS plasma nanocoating with NH₃/O₂ plasma treatment generated very hydrophilic surface. The corrosion resistance of TMS plasma coated stents was evaluated through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The potentiodynamic polarization demonstrated that the TMS plasma coated stents imparted higher corrosion potential and pitting potential, as well as lower corrosion current densities as compared with uncoated controls. The surface morphology of stents before and after potentiodynamic polarization testing was analyzed with scanning electron microscopy, which indicated less corrosion on coated stents than uncoated controls. It was also noted that, from EIS data, the hydrophobic TMS plasma nanocoatings showed stable impedance modulus at 0.1 Hz after 21 day immersion in an electrolyte solution. These results suggest improved corrosion resistance of the 316L stainless steel stents by TMS plasma nanocoatings and great promise in reducing and blocking metallic ions releasing into the bloodstream.

  15. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings

    PubMed Central

    Jones, John Eric; Chen, Meng; Yu, Qingsong

    2015-01-01

    To improve their corrosion resistance and thus long-term biocompatibility, 316L stainless steel coronary artery stents were coated with trimethylsilane (TMS) plasma coatings of 20–25 nm in thickness. Both direct current (DC) and radio-frequency (RF) glow discharges were utilized for TMS plasma coatings and additional NH3/O2 plasma treatment to tailor the surface properties. X-ray photoelectron spectroscopy (XPS) was used to characterize the coating surface chemistry. It was found that both DC and RF TMS plasma coatings had Si- and C-rich composition, and the O-and N-contents on the surfaces were substantially increased after NH3/O2 plasma treatment. Surface contact angle measurements showed that DC TMS plasma nanocoating with NH3/O2 plasma treatment generated very hydrophilic surface. The corrosion resistance of TMS plasma coated stents was evaluated through potentiodynamic polarization and electro-chemical impedance spectroscopy (EIS) techniques. The potentiodynamic polarization demonstrated that the TMS plasma coated stents imparted higher corrosion potential and pitting potential, as well as lower corrosion current densities as compared with uncoated controls. The surface morphology of stents before and after potentiodynamic polarization testing was analyzed with scanning electron microscopy, which indicated less corrosion on coated stents than uncoated controls. It was also noted that, from EIS data, the hydrophobic TMS plasma nanocoatings showed stable impedance modulus at 0.1 Hz after 21 day immersion in an electrolyte solution. These results suggest improved corrosion resistance of the 316L stainless steel stents by TMS plasma nanocoatings and great promise in reducing and blocking metallic ions releasing into the bloodstream. PMID:24500866

  16. IMPROVED CORROSION RESISTANCE OF ALUMINA REFRACTORIES

    SciTech Connect

    John P. Hurley; Patty L. Kleven

    2001-09-30

    The initial objective of this project was to do a literature search to define the problems of refractory selection in the metals and glass industries. The problems fall into three categories: Economic--What do the major problems cost the industries financially? Operational--How do the major problems affect production efficiency and impact the environment? and Scientific--What are the chemical and physical mechanisms that cause the problems to occur? This report presents a summary of these problems. It was used to determine the areas in which the EERC can provide the most assistance through bench-scale and laboratory testing. The final objective of this project was to design and build a bench-scale high-temperature controlled atmosphere dynamic corrosion application furnace (CADCAF). The furnace will be used to evaluate refractory test samples in the presence of flowing corrodents for extended periods, to temperatures of 1600 C under controlled atmospheres. Corrodents will include molten slag, steel, and glass. This test should prove useful for the glass and steel industries when faced with the decision of choosing the best refractory for flowing corrodent conditions.

  17. Enhancement of Corrosion Resistance of Zinc Coatings Using Green Additives

    NASA Astrophysics Data System (ADS)

    Punith Kumar, M. K.; Srivastava, Chandan

    2014-10-01

    In the present work, morphology, microstructure, and electrochemical behavior of Zn coatings containing non-toxic additives have been investigated. Zn coatings were electrodeposited over mild steel substrates using Zn sulphate baths containing four different organic additives: sodium gluconate, dextrose, dextrin, and saccharin. All these additives are "green" and can be derived from food contents. Morphological and structural characterization using electron microscopy, x-ray diffraction, and texture co-efficient analysis revealed an appreciable alteration in the morphology and texture of the deposit depending on the type of additive used in the Zn plating bath. All the Zn coatings, however, were nano-crystalline irrespective of the type of additive used. Polarization and electrochemical impedance spectroscopic analysis, used to investigate the effect of the change in microstructure and morphology on corrosion resistance behavior, illustrated an improved corrosion resistance for Zn deposits obtained from plating bath containing additives as compared to the pure Zn coatings.

  18. Electrodeposition and corrosion resistance of Ni-W-B coatings

    SciTech Connect

    Steffani, C.P.; Dini, J.W.; Groza, J.R.; Palazoglu, A.

    1997-08-01

    A ternary nickel-base alloy Ni-W-B has been developed for surface corrosion and wear resistance to replace chromium plating, which uses environmentally hazardous solutions. The deposition conditions used an alkaline bath and insoluble anodes. The as-deposited alloy typically contains 40 wt% W and 1 wt% B and has an amorphous or partially amorphous structure. These deposits compare favorably with hexavalent chromium deposits in throwing power, color uniformity, and reflectivity. The corrosion resistance of Ni-W-B alloy was compared with hexavalent chromium and electroless nickel deposits in a variety of acids, including hydrochloric, sulfuric, fluoroboric, and phosphoric. In all cases, best results were obtained with the Ni-W-B deposits.

  19. DIFFUSION COATINGS FOR CORROSION RESISTANT COMPONENTS IN COAL GASIFICATION SYSTEMS

    SciTech Connect

    Gopala N. Krishnan; Ripudaman Malhotra; Angel Sanjurjo

    2004-05-01

    Heat-exchangers, filters, turbines, and other components in integrated coal gasification combined cycle system must withstand demanding conditions of high temperatures and pressure differentials. Under the highly sulfiding conditions of the high temperature coal gas, the performance of components degrade significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve is resistance to such sulfidation attack and decrease capital and operating costs. A review of the literature indicates that the corrosion reaction is the competition between oxidation and sulfidation reactions. The Fe- and Ni-based high-temperature alloys are susceptible to sulfidation attack unless they are fortified with high levels of Cr, Al, and Si. To impart corrosion resistance, these elements need not be in the bulk of the alloy and need only be present at the surface layers.

  20. Development of Semi-Stochastic Algorithm for Optimizing Alloy Composition of High-Temperature Austenitic Stainless Steels (H-Series) for Desired Mechanical and Corrosion Properties.

    SciTech Connect

    Dulikravich, George S.; Sikka, Vinod K.; Muralidharan, G.

    2006-06-01

    The goal of this project was to adapt and use an advanced semi-stochastic algorithm for constrained multiobjective optimization and combine it with experimental testing and verification to determine optimum concentrations of alloying elements in heat-resistant and corrosion-resistant H-series stainless steel alloys that will simultaneously maximize a number of alloy's mechanical and corrosion properties.

  1. Silicon nitride: A ceramic material with outstanding resistance to thermal shock and corrosion

    NASA Technical Reports Server (NTRS)

    Huebner, K. H.; Saure, F.

    1983-01-01

    The known physical, mechanical and chemical properties of reaction-sintered silicon nitride are summarized. This material deserves interest especially because of its unusually good resistance to thermal shock and corrosion at high temperatures. Two types are distinguished: reaction-sintered (porous) and hot-pressed (dense) Si3N4. Only the reaction-sintered material which is being produced today in large scale as crucibles, pipes, nozzles and tiles is considered.

  2. Effect of Mn on microstructure and corrosion properties of extruded Mg-1%Zn alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Z. M.; Ma, Y.; Xi, Z. Z.; Xu, C. J.; Lv, Z. L.

    2017-03-01

    The microstructure of the extruded Mg-1Zn alloy doped with different content of manganese was analyzed by optical microscopy, scanning electron microscopy with energy dispersive X-ray spectroscopy and X-ray diffractometry. The mass-loss immersion method and electrochemical test were used to evaluate the corrosion properties. The results show that the microstructure of the extruded Mg-1%Zn-x%Mn (mass fraction, x=0.4, 0.8, 1.2) alloys consists of α-Mg and α-Mn, the grain size of α-Mg decreases with increasing Mn content. Electrochemical corrosion behavior of the alloys is similar. Mn has considerable effect on the corrosion rate, the corrosion process is exacerbated by the galvanic corrosion occurred at interface between α-Mg and α-Mn. The corrosion rate increases as the Mn content increases. Mg-1%Zn-0.4% Mn alloy exhibits the best corrosion resistance between the Mg-1%Zn-x%Mn alloys

  3. Electroless Ni-P-PTFE-Al2O3 Dispersion Nanocomposite Coating for Corrosion and Wear Resistance

    NASA Astrophysics Data System (ADS)

    Sharma, Ankita; Singh, A. K.

    2014-01-01

    With the aim to produce a coating having good corrosion and wear resistance alongside hardness but lesser friction coefficient, Ni-P-PTFE-Al2O3 (NiPPA) dispersion coating was developed. This was achieved by introducing nanosized polytetrafluoroethylene (PTFE) and alumina (Al2O3) in the Ni-P matrix deposited on mild steel substrate. The coating was characterized using scanning electron microscopy, energy dispersive analysis of x-ray, and x-ray diffractrometry. Microhardness and wear resistance of the coating was measured using Vicker's hardness tester and Pin-on-Disc method, respectively. The corrosion behavior was measured using electrochemical polarization and immersion tests with and without exposure in 3.5% NaCl solution. It is observed that codeposition of Al2O3 and PTFE particles with Ni-P coating results in comparatively smooth surface with nodular grains. The NiPPA coating was observed to have moderate hardness between electroless Ni-P-PTFE and Ni-P-Al2O3 coating and good wear resistance with lubricating effect. Addition of both PTFE and Al2O3 is observed to enhance corrosion resistance of the Ni-P coating. However, improvement in corrosion resistance is more due to addition of Al2O3 than PTFE. Continuous exposure for 10-20 days in corrosive solution is found to deteriorate corrosion protection properties of the coating.

  4. Corrosion resistant coatings suitable for elevated temperature application

    DOEpatents

    Chan, Kwai S [San Antonio, TX; Cheruvu, Narayana Sastry [San Antonio, TX; Liang, Wuwei [Austin, TX

    2012-07-31

    The present invention relates to corrosion resistance coatings suitable for elevated temperature applications, which employ compositions of iron (Fe), chromium (Cr), nickel (Ni) and/or aluminum (Al). The compositions may be configured to regulate the diffusion of metals between a coating and a substrate, which may then influence coating performance, via the formation of an inter-diffusion barrier layer. The inter-diffusion barrier layer may comprise a face-centered cubic phase.

  5. Wear and corrosion resistance of anti-bacterial Ti-Cu-N coatings on titanium implants

    NASA Astrophysics Data System (ADS)

    Wu, Haibo; Zhang, Xiangyu; He, Xiaojing; Li, Meng; Huang, Xiaobo; Hang, Ruiqiang; Tang, Bin

    2014-10-01

    Anti-bacterial coatings with excellent wear and corrosion resistance play a vital role in ensuring the durability of implant materials in constant use. To this end, a novel anti-bacterial surface modification by combining magnetron sputtering with plasma nitriding was adopted in this paper to fabricate Cu-bearing Ti-based nitrides coatings (Ti-Cu-N) on titanium surface. The anti-bacterial properties of Ti-Cu-N coatings were evaluated. The microstructures and composition of the coatings were investigated by using FESEM, EDS, GDOES, XRD. The wear and corrosion resistance of the coatings were investigated. The results confirmed that an anti-bacterial Ti-Cu-N coating with a thickness of 6 μm and good adhesive strength to substrate was successfully achieved on titanium surface. As implied by XRD, the coatings were consisted of TiN, Ti2N, TiN0.3 phases. The surface micro-hardness and wear resistance of Ti-Cu-N coatings were significantly enhanced after plasma nitriding treatment. The analysis of potentiodynamic polarization curves and Nyquist plots obtained in 0.9 wt.% NaCl solution suggested that the Ti-Cu-N coatings also exhibited an excellent corrosion resistance. As mentioned above, it can be concluded that the duplex-treatment reported here was a versatile approach to develop anti-bacterial Ti-Cu-N coatings with excellent comprehensive properties on titanium implants.

  6. The influence of external factors on the corrosion resistance of high temperature superconductor thin films against moisture

    NASA Astrophysics Data System (ADS)

    Murugesan, M.; Obara, H.; Yamasaki, H.; Kosaka, S.

    2006-12-01

    High temperature superconductor (HTS) thin films have been systematically investigated for their corrosion resistance against moisture by studying the role of external factors such as temperature (T), relative humidity (RH), and the type of substrates in the corrosion. In general, (i) the corrosion is progressed monotonously with increasing T as well as RH, (ii) a threshold level of water vapor is needed to cause degradation, and (iii) between T and RH, the influence of T is more dominant. HTS films on SrTiO3 and CeO2 buffered sapphire (cbs) substrates showed better corrosion stability and a low rate of degradation in the critical current density as compared to that of the film grown on MgO substrate. Between DyBa2Cu3Oz (DBCO) and YBa2Cu3Oz, the former is reproducibly found to have many fold higher corrosion resistance against moisture. This observed enhancement in the corrosion resistance in DBCO could be explained by the improved microstructure in the films and the better lattice matching with the substrate. Thus, the dual advantage of DBCO/cbs films, i.e., the enhanced corrosion stability of DBCO and the appropriate dielectric properties of sapphire, can be readily exploited for the use of DBCO/cbs films in the microwave and power devices.

  7. Surface properties and corrosion behavior of Co-Cr alloy fabricated with selective laser melting technique.

    PubMed

    Xin, Xian-zhen; Chen, Jie; Xiang, Nan; Wei, Bin

    2013-01-01

    We sought to study the corrosion behavior and surface properties of a commercial cobalt-chromium (Co-Cr) alloy which was fabricated with selective laser melting (SLM) technique. For this purpose, specimens were fabricated using different techniques, such as SLM system and casting methods. Surface hardness testing, microstructure observation, surface analysis using X-ray photoelectron spectroscopy (XPS) and electrochemical corrosion test were carried out to evaluate the corrosion properties and surface properties of the specimens. We found that microstructure of SLM specimens was more homogeneous than that of cast specimens. The mean surface hardness values of SLM and cast specimens were 458.3 and 384.8, respectively; SLM specimens showed higher values than cast ones in hardness. Both specimens exhibited no differences in their electrochemical corrosion properties in the artificial saliva through potentiodynamic curves and EIS, and no significant difference via XPS. Therefore, we concluded that within the scope of this study, SLM-fabricated restorations revealed good surface properties, such as proper hardness, homogeneous microstructure, and also showed sufficient corrosion resistance which could meet the needs of dental clinics.

  8. Tensile strength and corrosion resistance of brazed and laser-welded cobalt-chromium alloy joints.

    PubMed

    Zupancic, Rok; Legat, Andraz; Funduk, Nenad

    2006-10-01

    The longevity of prosthodontic restorations is often limited due to the mechanical or corrosive failure occurring at the sites where segments of a metal framework are joined together. The purpose of this study was to determine which joining method offers the best properties to cobalt-chromium alloy frameworks. Brazed and 2 types of laser-welded joints were compared for their mechanical and corrosion characteristics. Sixty-eight cylindrical cobalt-chromium dental alloy specimens, 35 mm long and 2 mm in diameter, were cast. Sixteen specimens were selected for electrochemical measurements in an artificial saliva solution and divided into 4 groups (n=4). In the intact group, the specimens were left as cast. The specimens of the remaining 3 groups were sectioned at the center, perpendicular to the long-axis, and were subsequently rejoined by brazing (brazing group) or laser welding using an X- or I-shaped joint design (X laser and I laser groups, respectively). Another 16 specimens were selected for electrochemical measurements in a more acidic artificial saliva solution. These specimens were also divided into 4 groups (n=4) as described above. Electrochemical impedance spectroscopy and potentiodynamic polarization were used to assess corrosion potentials, breakdown potentials, corrosion current densities, total impedances at lowest frequency, and polarization charge-transfer resistances. The remaining 36 specimens were used for tensile testing. They were divided into 3 groups in which specimen pairs (n=6) were joined by brazing or laser welding to form 70-mm-long cylindrical rods. The tensile strength (MPa) was measured using a universal testing machine. Differences between groups were analyzed using 1-way analysis of variance (alpha=.05). The fracture surfaces and corrosion defects were examined with a scanning electron microscope. The average tensile strength of brazed joints was 792 MPa and was significantly greater (P<.05) than the tensile strength of both types of

  9. Corrosion Resistant Steels for Structural Applications in Aircraft

    DTIC Science & Technology

    2007-11-02

    cracking (environmental embrittlement ) • Corrosion • Hydrogen embrittlement (as a result of repair operations) • Fatigue • Wear • Overload...summarized for each major cause: Stress corrosion cracking Corrosion Hydrogen embrittlement (as a result of plating) Fatigue Wear Use historical...service these years = Corrosion (other than stress corrosion cracking ) Hydrogen embrittlement (following maintenance Stress corrosion cracking

  10. Enhancement of corrosion resistance of polypyrrole using metal oxide nanoparticles: Potentiodynamic and electrochemical impedance spectroscopy study.

    PubMed

    Hosseini, Marzieh; Fotouhi, Lida; Ehsani, Ali; Naseri, Maryam

    2017-11-01

    We introduce a simple and facile strategy for dispersing of nanoparticles within a p-type conducting polymer matrix by in situ electropolymerization using oxalic acid as the supporting electrolyte. Coatings prepared from polypyrrole-nano-metal oxide particles synthesized by in situ polymerization were found to exhibit excellent corrosion resistance much superior to polypyrrole (Ppy) in aggressive environments. The anti-corrosion behavior of polypyrrole films in different states and the presence of TiO2, Mn2O3 and ZnO nanoparticles synthesized by electropolymerization on Al electrodes have been investigated in corrosive solutions using potentiodynamic polarization and electrochemical impedance spectroscopy. The electrochemical response of the coated electrodes in polymer and nanocomposite state was compared with bare electrodes. The use of TiO2 nanoparticles has proved to be a great improvement in the performances of polypyrrole films for corrosion protection of Al samples. The polypyrrole synthesized in the presence of TiO2 nanoparticles coated electrodes offered a noticeable enhancement of protection against corrosion processes. The exceptional improvement of performance of these coatings has been associated with the increase in barrier to diffusion, prevention of charge transport by the nanosize TiO2, redox properties of polypyrrole as well as very large surface area available for the liberation of dopant due to nano-size additive. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Corrosion

    ERIC Educational Resources Information Center

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  12. Corrosion

    ERIC Educational Resources Information Center

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  13. Corrosion resistance investigation of vanadium alloys in liquid lithium

    SciTech Connect

    Borovitskaya, I. V.; Lyublinskiy, I. E.; Bondarenko, G. G.; Paramonova, V. V.; Korshunov, S. N.; Mansurova, A. N.; Lyakhovitskiy, M. M.; Zharkov, M. Yu.

    2016-12-15

    A major concern in using vanadium alloys for first wall/blanket systems in fusion reactors is their activity with regard to nonmetallic impurities in the coolants. This paper presents the results of studying the corrosion resistance in high-purity liquid lithium (with the nitrogen and carbon content of less than 10{sup –3} wt %) of vanadium and vanadium alloys (V–1.86Ga, V–3.4Ga–0.62Si, V–4.81Ti–4.82Cr) both in the initial state and preliminarily irradiated with Ar+ ions with energy of 20 keV to a dose of 10{sup 22} m{sup –2} at an irradiation temperature of ~400°C. The degree of corrosion was estimated by measuring the changes in the weight and microhardness. Corrosion tests were carried out under static isothermal conditions at a temperature of 600°C for 400 h. The identity of corrosion mechanisms of materials both irradiated with Ar ions and not irradiated, which consisted in an insignificant penetration of nitrogen into the materials and a substantial escape of oxygen from the materials, causing the formation of a zone with a reduced microhardness near the surface, was established. The influence of the corrosive action of lithium on the surface morphology of the materials under study was found, resulting in the manifestation of grain boundaries and slip lines on the sample surface, the latter being most clearly observed in the case of preliminary irradiation with Ar ions.

  14. Development of Custom 465® Corrosion-Resisting Steel for Landing Gear Applications

    NASA Astrophysics Data System (ADS)

    Daymond, Benjamin T.; Binot, Nicolas; Schmidt, Michael L.; Preston, Steve; Collins, Richard; Shepherd, Alan

    2016-04-01

    Existing high-strength low-alloy steels have been in place on landing gear for many years owing to their superior strength and cost performance. However, there have been major advances in improving the strength of high-performance corrosion-resisting steels. These materials have superior environmental robustness and remove the need for harmful protective coatings such as chromates and cadmium now on the list for removal under REACH legislation. A UK government-funded collaborative project is underway targeting a refined specification Custom 465® precipitation hardened stainless steel to replace the current material on Airbus A320 family aircraft main landing gear, a main fitting component developed by Messier-Bugatti-Dowty. This is a collaborative project between Airbus, Messier-Bugatti-Dowty, and Carpenter Technology Corporation. An extensive series of coupon tests on four production Heats of the material have been conducted, to obtain a full range of mechanical, fatigue, and corrosion properties. Custom 465® is an excellent replacement to the current material, with comparable tensile strength and fracture toughness, better ductility, and very good general corrosion and stress corrosion cracking resistance. Fatigue performance is the only significant area of deficit with respect to incumbent materials, fatigue initiation being often related to carbo-titanium-nitride particles and cleavage zones.

  15. On texture, corrosion resistance and morphology of hot-dip galvanized zinc coatings

    NASA Astrophysics Data System (ADS)

    Asgari, H.; Toroghinejad, M. R.; Golozar, M. A.

    2007-06-01

    Texture is an important factor which affects the coating properties. Chemical composition of the zinc bath can strongly influence the texture of hot-dip galvanized coatings. In this study, lead content of the zinc bath was changed from 0.01 wt.% to 0.11 wt.%. Specimens were prepared from zinc baths of different lead content and its texture was evaluated using X-ray diffraction. Corrosion behaviour was analyzed by Tafel extrapolation and linear polarization tests. To study the corrosion products of the specimens, salt spray test was employed. Also, the spangle size of the specimens was determined using line intercept method. From the experimental results it was found that (00.2) basal plane texture component would be weakened by increasing the lead content of the zinc and conversely, (20.1) high angle pyramidal texture components strengthened. Besides, coatings with strong (00.2) texture component and weaker (20.1) component have better corrosion resistance than the coatings with weak (00.2) and strong (20.1) texture components. In addition, surface morphology would be changed and presence of basal planes decreases at the coating surface due to the increase of lead in the zinc bath. Furthermore, spangle size would be increased by increasing the lead content of the zinc bath. Investigation on the effects of skin pass rolling showed that in this case, (00.2) basal texture component and corrosion resistance of the skin passed specimens, in comparison with non-skin passed specimens, have been decreased.

  16. Nanotextured stainless steel for improved corrosion resistance and biological response in coronary stenting

    NASA Astrophysics Data System (ADS)

    Mohan, Chandini C.; Prabhath, Anupama; Cherian, Aleena Mary; Vadukumpully, Sajini; Nair, Shantikumar V.; Chennazhi, Krishnaprasad; Menon, Deepthy

    2014-12-01

    Nanosurface engineering of metallic substrates for improved cellular response is a persistent theme in biomaterials research. The need to improve the long term prognosis of commercially available stents has led us to adopt a `polymer-free' approach which is cost effective and industrially scalable. In this study, 316L stainless steel substrates were surface modified by hydrothermal treatment in alkaline pH, with and without the addition of a chromium precursor, to generate a well adherent uniform nanotopography. The modified surfaces showed improved hemocompatibility and augmented endothelialization, while hindering the proliferation of smooth muscle cells. Moreover, they also exhibited superior material properties like corrosion resistance, surface integrity and reduced metal ion leaching. The combination of improved corrosion resistance and selective vascular cell viability provided by nanomodification can be successfully utilized to offer a cell-friendly solution to the inherent limitations pertinent to bare metallic stents.

  17. Nanotextured stainless steel for improved corrosion resistance and biological response in coronary stenting.

    PubMed

    Mohan, Chandini C; Prabhath, Anupama; Cherian, Aleena Mary; Vadukumpully, Sajini; Nair, Shantikumar V; Chennazhi, Krishnaprasad; Menon, Deepthy

    2015-01-14

    Nanosurface engineering of metallic substrates for improved cellular response is a persistent theme in biomaterials research. The need to improve the long term prognosis of commercially available stents has led us to adopt a 'polymer-free' approach which is cost effective and industrially scalable. In this study, 316L stainless steel substrates were surface modified by hydrothermal treatment in alkaline pH, with and without the addition of a chromium precursor, to generate a well adherent uniform nanotopography. The modified surfaces showed improved hemocompatibility and augmented endothelialization, while hindering the proliferation of smooth muscle cells. Moreover, they also exhibited superior material properties like corrosion resistance, surface integrity and reduced metal ion leaching. The combination of improved corrosion resistance and selective vascular cell viability provided by nanomodification can be successfully utilized to offer a cell-friendly solution to the inherent limitations pertinent to bare metallic stents.

  18. Corrosion-resistant catalyst supports for phosphoric acid fuel cells

    SciTech Connect

    Kosek, J.A.; Cropley, C.C.; LaConti, A.B.

    1990-01-01

    High-surface-area carbon blacks such as Vulcan XC-72 (Cabot Corp.) and graphitized carbon blacks such as 2700{degree}C heat-treated Black Pearls 2000 (HTBP) (Cabot Corp.) have found widespread applications as catalyst supports in phosphoric acid fuel cells (PAFCs). However, due to the operating temperatures and pressures being utilized in PAFCs currently under development, the carbon-based cathode catalyst supports suffer from corrosion, which decreases the performance and life span of a PAFC stack. The feasibility of using alternative, low-cost, corrosion-resistant catalyst support (CRCS) materials as replacements for the cathode carbon support materials was investigated. The objectives of the program were to prepare high-surface-area alternative supports and to evaluate the physical characteristics and the electrochemical stability of these materials. The O{sub 2} reduction activity of the platinized CRCS materials was also evaluated. 2 refs., 3 figs.

  19. Coatings for directional eutectics. [for corrosion and oxidation resistance

    NASA Technical Reports Server (NTRS)

    Felten, E. J.; Strangman, T. E.; Ulion, N. E.

    1974-01-01

    Eleven coating systems based on MCrAlY overlay and diffusion aluminide prototypes were evaluated to determine their capability for protecting the gamma/gamma prime-delta directionally solidified eutectic alloy (Ni-20Cb-6Cr-2.5Al) in gas turbine engine applications. Furnace oxidation and hot corrosion, Mach 0.37 burner-rig, tensile ductility, stress-rupture and thermomechanical fatigue tests were used to evaluate the coated gamma/gamma prime-delta alloy. The diffusion aluminide coatings provided adequate oxidation resistance at 1144 K (1600 F) but offered very limited protection in 114 K (1600 F) hot corrosion and 1366 K (2000 F) oxidation tests. A platinum modified NiCrAlY overlay coating exhibited excellent performance in oxidation testing and had no adverse effects upon the eutectic alloy.

  20. Corrosion resistance tests on NiTi shape memory alloy.

    PubMed

    Rondelli, G

    1996-10-01

    The corrosion performances of NiTi shape memory alloys (SMA) in human body simulating fluids were evaluated in comparison with other implant materials. As for the passivity current in potentiostatic conditions, taken as an index of ion release, the values are about three times higher for NiTi than for Ti6Al4V and austenitic stainless steels. Regarding the localized corrosion, while plain potentiodynamic scans indicated for NiTi alloy good resistance to pitting attack similar to Ti6Al4V, tests in which the passive film is abruptly damaged (i.e. potentiostatic scratch test and modified ASTM F746) pointed out that the characteristics of the passive film formed on NiTi alloy (whose strength can be related to the alloy's biocompatibility) are not as good as those on Ti6Al4V but are comparable or inferior to those on austenitic stainless steels.

  1. Chromate-free corrosion resistant conversion coatings for aluminum alloys

    SciTech Connect

    Buchheit, R.G.; Drewien, C.A.; Martinez, M.A.; Stoner, G.E.

    1995-03-01

    Inorganic polycrystalline hydrotalcite, Li{sub 2}[Al{sub 2}(OH){sub 6}]{sub 2}{center_dot}CO{sub 3}{center_dot}3H{sub 2}O, coatings can be formed on aluminum and aluminum alloys by exposure to alkaline lithium carbonate solutions. This process is conducted using methods similar to traditional chromate conversion coating procedures, but does not use or produce toxic chemicals. The coating provides anodic protection and delays the onset of pitting during anodic polarization. Cathodic reactions are also inhibited which may also contribute to corrosion protection. Recent studies have shown that corrosion resistance can be increased by sealing hydrotalcite coated surfaces to transition metal salt solutions including Ce(NO{sub 3}){sub 3}, KMnO{sub 4} and Na{sub 2}MoO{sub 4}. Results from these studies are also reported.

  2. NANOSCALE BOEHMITE FILLER FOR CORROSION AND WEAR RESISTANT POLYPHENYLENESULFIDE COATINGS.

    SciTech Connect

    SUGAMA,T.

    2003-06-26

    The authors evaluated the usefulness of nanoscale boehmite crystals as a filler for anti-wear and anti-corrosion polyphenylenesulfide (PPS) coatings exposed to a very harsh, 300 C corrosive geothermal environment. The boehmite fillers dispersed uniformly into the PPS coating, conferring two advanced properties: First, they reduced markedly the rate of blasting wear; second, they increased the PPS's glass transition temperature and thermal decomposition temperature. The wear rate of PPS surfaces was reduced three times when 5wt% boehmite was incorporated into the PPS. During exposure for 15 days at 300 C, the PPS underwent hydrothermal oxidation, leading to the substitution of sulfide linkages by the sulfite linkages. However, such molecular alteration did not significantly diminish the ability of the coating to protect carbon steel against corrosion. In fact, PPS coating filled with boehmite of {le} 5wt% adequately mitigated its corrosion in brine at 300 C. One concern in using this filler was that it absorbs brine. Thus, adding an excess amount of boehmite was detrimental to achieving the maximum protection afforded by the coatings.

  3. High Velocity Oxidation and Hot Corrosion Resistance of Some ODS Alloys

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Deadmore, D. L.

    1977-01-01

    Several oxide dispersion strengthened (ODS) alloys were tested for cyclic, high velocity, oxidation, and hot corrosion resistance. These results were compared to the resistance of an advanced, NiCrAl coated superalloy. An ODS FeCrAl were identified as having sufficient oxidation and hot corrosion resistance to allow potential use in an aircraft gas turbine without coating.

  4. Chromium-modified a-C films with advanced structural, mechanical and corrosive-resistant characteristics

    NASA Astrophysics Data System (ADS)

    Ming, Miao Yi; Jiang, Xiaohong; Piliptsou, D. G.; Zhuang, Yuzhao; Rogachev, A. V.; Rudenkov, A. S.; Balmakou, A.

    2016-08-01

    To improve structural, mechanical and chemical properties of diamond-like carbon films, we developed amorphous carbon chromium-modified composite films fabricated by means of cathode magnetic filtered arc deposition. The properties were analyzed by Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy for the purpose of the structure characterization, elemental analysis and topology examination. Moreover, we also assessed residual stress, the coefficient of friction, hardness, the elastic modulus and corrosion parameters through X-ray double-crystal surface profilometry, tribo-testing, nanoindenter-testing, as well as contact angle measurements and potentiodynamic polarization analysis. As a result of a comparative analysis, we revealed a substantial improvement in the characteristics of developed composite films in comparison with amorphous carbon films. For example, Cr-modification is resulted, in greater integrated performance, toughness and corrosion resistance; the residual stress was reduced substantially.

  5. Improvement of the linear polarization resistance method for testing steel corrosion inhibitors

    NASA Astrophysics Data System (ADS)

    Faritov, A. T.; Rozhdestvenskii, Yu. G.; Yamshchikova, S. A.; Minnikhanova, E. R.; Tyusenkov, A. S.

    2016-11-01

    The linear polarization resistance method is used to improve the technique of corrosion control in liquid conducting according to GOST 9.514-99 (General Corrosion and Aging Protection System. Corrosion Inhibitors for Metals in Water Systems. Electrochemical Method of Determining the Protective Ability). Corrosion monitoring is shown to be performed by electronic devices with real-time data transfer to industrial controllers and SCADA systems.

  6. Corrosion resistance and durability of siloxane ceramic/polymer films for aluminum alloys in marine environments

    NASA Astrophysics Data System (ADS)

    Kusada, Kentaro

    The objective of this study is to evaluate corrosion resistance and durability of siloxane ceramic/polymer films for aluminum alloys in marine environments. Al5052-H3 and Al6061-T6 were selected as substrates, and HCLCoat11 and HCLCoat13 developed in the Hawaii Corrosion Laboratory were selected for the siloxane ceramic/polymer coatings. The HCLCoat11 is a quasi-ceramic coating that has little to no hydrocarbons in its structure. The HCLCoat13 is formulated to incorporate more hydrocarbons to improve adhesion to substrate surfaces with less active functionalities. In this study, two major corrosion evaluation methods were used, which were the polarization test and the immersion test. The polarization tests provided theoretical corrosion rates (mg/dm 2/day) of bare, HCLCoat11-coated, and HCLCoat13-coated aluminum alloys in aerated 3.15wt% sodium chloride solution. From these results, the HCLCoat13-coated Al5052-H3 was found to have the lowest corrosion rate which was 0.073mdd. The next lowest corrosion rate was 0.166mdd of the HCLCoat11-coated Al5052-H3. Corrosion initiation was found to occur at preexisting breaches (pores) in the films by optical microscopy and SEM analysis. The HCLCoat11 film had many preexisting breaches of 1-2microm in diameter, while the HCLCoat13 film had much fewer preexisting breaches of less than 1microm in diameter. However, the immersion tests showed that the seawater immersion made HCLCoat13 film break away while the HCLCoat11 film did not apparently degrade, indicating that the HCLCoat11 film is more durable against seawater than the HCLCoat13. Raman spectroscopy revealed that there was some degradation of HCLCoat11 and HCLCoat13. For the HCLCoat11 film, the structure relaxation of Si-O-Si linkages was observed. On the other hand, seawater generated C-H-S bonds in the HCLCoat13 film resulting in the degradation of the film. In addition, it was found that the HCLCoat11 coating had anti-fouling properties due to its high water contact

  7. Improved fracture toughness corrosion-resistant bearing material

    NASA Technical Reports Server (NTRS)

    Bamberger, E. N.; Nahm, A. H.

    1986-01-01

    A development program was performed to establish whether a corrosion-resistant bearing material, such as a 14Cr steel, could be modified to allow carburization, thereby providing the excellent fracture toughness characteristics feasible with this process. The alloy selected for investigation was AMS 5749. Several modifications were made including the addition of a small amount of nickel for austenite stabilization. While some promising results were achieved, the primary objective of an acceptable combination of case hardness and microstructure was not attained. Because the high chromium content presents a serious problem in achieving a viable carburizing cycle, a number of experimental steels having lower chromium contents (8 to 12%) were produced in laboratory quantities and evaluated. The results were basically the same as those initially obtained with the modified AMS 5749. Corrosion tests were performed on AMS 5749, AISI M50, and 52100 bearing steels as well as some of the lower chromium steels. These tests showed that a reduced chromium level (10 to 12%) provided essentially the same corrosion protection as the 14Cr steels.

  8. High-Temperature Ceramic Matrix Composite with High Corrosion Resistance

    DTIC Science & Technology

    2010-06-02

    composites of ZrB2- SiC system will be created, their structure and high-temperature mechanical and corrosion properties will be studied up to 1600 C. The...scale defects. As a result of Project fulfillment a new knowledge for structural state and properties of ceramic composites management techniques...Fragment of XRD pattern for molybdenum silicide . Fig. 2.5. XRD pattern for USS-22+ 2 vol.% TaB2 hot-pressed samples. Fig. 2.6. XRD pattern for USS-22

  9. Enhancement of wear and corrosion resistance of beta titanium alloy by laser gas alloying with nitrogen

    NASA Astrophysics Data System (ADS)

    Chan, Chi-Wai; Lee, Seunghwan; Smith, Graham; Sarri, Gianluca; Ng, Chi-Ho; Sharba, Ahmed; Man, Hau-Chung

    2016-03-01

    The relatively high elastic modulus coupled with the presence of toxic vanadium (V) in Ti6Al4V alloy has long been a concern in orthopaedic applications. To solve the problem, a variety of non-toxic and low modulus beta-titanium (beta-Ti) alloys have been developed. Among the beta-Ti alloy family, the quaternary Ti-Nb-Zr-Ta (TNZT) alloys have received the highest attention as a promising replacement for Ti6Al4V due to their lower elastic modulus and outstanding long term stability against corrosion in biological environments. However, the inferior wear resistance of TNZT is still a problem that must be resolved before commercialising in the orthopaedic market. In this work, a newly developed laser surface treatment technique was employed to improve the surface properties of Ti-35.3Nb-7.3Zr-5.7Ta alloy. The surface structure and composition of the laser-treated TNZT surface were examined by grazing incidence X-ray diffraction (GI-XRD) and X-ray photoelectron spectroscopy (XPS). The wear and corrosion resistance were evaluated by pin-on-plate sliding test and anodic polarisation test in Hanks' solution. The experimental results were compared with the untreated (or base) TNZT material. The research findings showed that the laser surface treatment technique reported in this work can effectively improve the wear and corrosion resistance of TNZT.

  10. Weldability characteristics of torr and corrosion-resistant TMT bars using SMAW process

    NASA Astrophysics Data System (ADS)

    Datta, Ramen; Veeraraghavan, R.; Rohira, K. L.

    2002-08-01

    Torr steel rebars, also known as cold twisted deformed (CTD) rebars, are used extensively for the construction of reinforced cement concrete (RCC) structures. These steels, which are characterized by a high carbon content and are subjected to a cold twisting operation to attain the desired strength level and bond strength, suffer from low ductility and poor bendability properties. Furthermore, these rebars are not suitable for coastal, humid, and industrial conditions where corrosion rates are very high. To combat these problems, recent efforts at the Steel Authority of India Limited (SAIL) have led to the successful development of corrosion-resistant thermomechanically treated (TMT) rebars with a minimum yield strength of 500 MPa. These rebars are characterized by a low carbon content, exhibit excellent strength-ductility-corrosion properties, and are rapidly replacing traditional torr rebars in corrosion-prone areas for a wide range of applications, namely, concrete reinforcement structures, bridges, flyovers on dams, etc. A comprehensive evaluation of the weldability properties of corrosion-resistant Cu-TMT rebars was carried out, and they were compared with those made of torr steel in order to assess their suitability for various structural applications. Implant and restraint cracking (RC) tests were carried out to assess the cold-cracking resistance of the weld joint under different welding conditions. The static fatigue limit (SFL) values were found to be similar, namely, 640 MPa (torr steel) and 625 MPa (Cu-TMT steel) under condition of no preheating and no rebaking using a heat input of 7.5 KJ/cm, indicating adequate cold-cracking resistance for both the steels. Restraint cracking tests yielded critical restraint intensities (Kcr) in excess of 16,800 MPa for both of the steels. Based on the weldability tests, the optimized conditions for welding were formulated and extensive tests were carried out on the welded joints. Both of the steels exhibited adequate

  11. Effect of Minor Zn Additions on the Mechanical and Corrosion Properties of Solution-Treated AM60-2%RE Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Liu, Z. L.; Liu, Y.; Liu, X. Q.; Wang, M. M.

    2016-07-01

    The microstructure, mechanical properties, and corrosion behaviors of solution-treated AM60-2%RE magnesium alloy containing 0.2-0.8% wt.% Zn were investigated. With the increase of Zn, the volume fraction of dispersed rod-like Al4RE and granular-like Al11RE3 phases of solution-treated AM60-2%RE + x%Zn increased, which improved the mechanical properties by dispersion strengthening. With increasing Zn content, the corrosion current density decreased, and the corrosion potential and electrochemical impedance of the alloys increased, and the corrosion resistance of solution-treated AM60-2%RE + x%Zn was improved. With the increase of Zn content, the leaf-like corrosion products of the alloy became smaller and more compact, and the content of Zn, Al, Ce, and La in corrosion products increased, which was beneficial to inhibit the corrosion progress.

  12. Evaluation of the corrosion resistance of Fe-Al-Cr alloys in simulated low NOx environments

    SciTech Connect

    Deacon, R.M.; DuPont, J.N.; Kiely, C.J.; Marder, A.R.; Tortorelli, P.F.

    2009-08-15

    Due to their excellent corrosion resistance, iron aluminum alloys are currently being considered for use as weld claddings in fossil fuel fired power plants. The susceptibility to hydrogen cracking of these alloys at higher aluminum concentrations has led researchers to examine the effect of chromium additions on the corrosion resistance of lower aluminum alloys. In this work, three iron aluminum alloys were exposed to simulated coal combustion environments at 500 and 700{sup o}C for short (100 h) and long (5000 h) isothermal durations. Scanning electron microscopy was used to analyze the corrosion products. All alloys exhibited excellent corrosion resistance during short term exposures. For longer test times, increasing the aluminum concentration improved alloy corrosion resistance. The addition of chromium to the binary iron aluminum alloy prevented the formation iron sulfide and resulted in slower corrosion kinetics. A general classification of the scales developed on these alloys is presented.

  13. [The effect of bacteria reaction time on corrosion properties of Ni-Cr alloys pretreated with different proteins].

    PubMed

    Qi, Han-quan; Zhang, Song-mei; Qian, Chao; Yuan-Li, Zheng

    2015-12-01

    To evaluate the corrosion properties of absorbed protein on the surface of NiCr alloys, and provide experimental base for corrosion resistance of dental casting alloys. NiCr alloy specimens were divided into 3 groups: one group was exposed to the artificial saliva(control group), and the other 2 groups were exposed to the artificial saliva with 1% bovine serum albumin(BSA), or 0.22% lysozyme(LSZ). Group of BSA and group of LSZ were the experimental group. Specimens in 3 groups were cultured in solution of Streptococcus mutans for 12 h, 24 h, 36 h and 48h, and investigated with electrochemical impedance spectroscopy measurement(EIS) and potentiodynamic polarization measurement(POT) to determine the corrosion resistance of the alloys. The data was analyzed with SPSS 17.0 software package. The results indicated that the corrosion resistance of both BSA group and LSZ group were higher than that of the control group (P<0.05) and LSZ group was superior to BSA group cultured in the solution of Streptococcus mutans for 12 h. When cultured for 24 h, the corrosion resistance of BSA group and LSZ group had no significant difference (P>0.05), but was still higher than that of the control group. After 36 h culture time, the control group and the BSA group had no statistical difference in corrosion resistance (P>0.05), while the LSZ group had the poorest corrosion resistance. When the culture time extended to 48 h, the control group had a better corrosion resistance compared with the BAS group and the LSZ group(P<0.05), but BSA group had displayed lower corrosion properties than LSZ group. The potentiodynamic polarization curve and electrochemical impedance spectroscopy had similar results. The adhesion of BSA and LSZ on the surface of the NiCr alloys in the early time could effectively inhibit the corrosive effect of Streptococcus mutans. The LSZ had better effect than BSA. With the continuing role of bacteria and the consumption of the absorb protein, the corrosion

  14. Characterization of the corrosion resistance of biologically active solutions: The effects of anodizing and welding

    NASA Technical Reports Server (NTRS)

    Walsh, Daniel W.

    1991-01-01

    An understanding of fabrication processes, metallurgy, electrochemistry, and microbiology is crucial to the resolution of microbiologically influenced corrosion (MIC) problems. The object of this effort was to use AC impedance spectroscopy to characterize the corrosion resistance of Type II anodized aluminum alloy 2219-T87 in sterile and biologically active media and to examine the corrosion resistance of 316L, alloy 2219-T87, and titanium alloy 6-4 in the welded and unwelded conditions. The latter materials were immersed in sterile and biologically active media and corrosion currents were measured using the polarization resistance (DC) technique.

  15. Effects of Pulse Electromagnetic Field on Corrosion Resistance of Al-5 % Cu Alloy

    NASA Astrophysics Data System (ADS)

    Wang, B.; Tang, L. D.; Qi, J. G.; Wang, J. Z.

    2013-03-01

    It was investigated that corrosion resistance of Al-5 % Cu alloy was influenced by pulse electromagnetic field (PEMF). The morphologies were observed by scanning election microscopy (SEM). The corrosion behaviors were investigated by potentiodynamic polarization tests and immersion tests. The results indicated that corrosion resistance of samples could be increased by using pulse electromagnetic field, moreover, the optimum parameter of pulse electromagnetic field in this experiment was showed as follows: 500 V, 3 Hz, 30 s. Decreasing the quantity of eutectic in grain boundaries and refining the grains were main causations for increasing corrosion resistance of Al-5 % Cu alloy with pulse electromagnetic field.

  16. Peculiarities of the influence of hot deformation and heat treatment on the corrosion resistance of aluminum alloys

    SciTech Connect

    Rabinovich, M.Kh.; Trifonov, V.G.

    1998-07-03

    The question about the influence of superplastic deformation (SPD) on mechanical properties of materials and the reliability of articles made out of these materials was studied sufficiently thoroughly. However, the information about the influence of microcrystalline (MC) structure processed by SPD on corrosion properties is rather limited. In respect to aluminum alloys this question was considered in some works. As known, the corrosion resistance plays a significant role in determining such an important aspect of reliability as endurance. The present paper is devoted to this problem.

  17. Microstructure Evolution and Corrosion Property of Medium-Carbon Alloy Steel after High-Temperature Carburization Process

    NASA Astrophysics Data System (ADS)

    Dewei, Deng; Tingting, Niu; Haiying, Liu; Lin, Zhang; Qi, Sun

    2016-04-01

    In the present study, the effects of carburization treatment on the microstructure and corrosion property of medium-carbon steels (40Cr) were investigated by means of X-ray diffraction (XRD), electron microprobe analyzer (EMPA), optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM) and electrochemical corrosion, respectively. It was found that the microstructures beneath the surface were refined and a smooth transition microstructure from the surface to the core was observed in carburized samples. The fine plate-like but not granular carbide precipitation (Cr7C3) was observed in carburized sample by heat-treatment. The carburized specimens exhibited some effectiveness in the improvement of hardness and a smooth transition hardness profile. Corrosion resistance of 40Cr was improved by carburization treatment, resulting in the higher self-corrosion potential and the lower self-corrosion current density.

  18. Cr segregation at the FeCr surface and the origin of corrosion resistance in ferritic steels

    SciTech Connect

    De Caro, M S; Morse, B; Egiebor, N; Farmer, J; Caro, A

    2008-11-22

    Structural materials in Gen-IV nuclear reactors will face severe conditions of high operating temperatures, high neutron flux exposure, and corrosive environment. Radiation effects and corrosion and chemical compatibility issues are factors that will limit the materials lifetime. Low-chromium (9-12 Cr wt.%) ferritic martensitic (F/M) steels are being considered as possible candidates because they offer good swelling resistance and good mechanical properties under extreme conditions of radiation dose and irradiation temperature. The surface chemistry of FeCr alloys, responsible for the corrosion properties, is complex. It exists today a controversy between equilibrium thermodynamic calculations, which suggest Cr depletion at the surface driven by the higher surface energy of Cr, and experimental data which suggest the oxidation process occurs in two stages, first forming a Fe-rich oxide, followed by a duplex oxide layer, and ending with a Cr-rich oxide. Moreover, it has been shown experimentally that corrosion resistance of F/M steels depends significantly on Cr content, increasing with increasing Cr content and with a threshold around 10% Cr, below which, the alloy behaves as pure Fe. In an attempt to rationalize these two contradicting observations and to understand the physical mechanism behind corrosion resistance in these materials we perform atomistic simulations using our FeCr empirical potential and analyze Cr equilibrium distributions at different compositions and temperatures in single and polycrystalline samples. We analyze the controversy in terms of thermodynamic and kinetic considerations.

  19. Surface modification to improve fireside corrosion resistance of Fe-Cr ferritic steels

    DOEpatents

    Park, Jong-Hee; Natesan, Krishnamurti; Rink, David L.

    2010-03-16

    An article of manufacture and a method for providing an Fe--Cr ferritic steel article of manufacture having a surface layer modification for corrosion resistance. Fe--Cr ferritic steels can be modified to enhance their corrosion resistance to liquid coal ash and other chemical environments, which have chlorides or sulfates containing active species. The steel is modified to form an aluminide/silicide passivating layer to reduce such corrosion.

  20. Moessbauer spectroscopy study on the corrosion resistance of plasma nitrided ASTM F138 stainless steel in chloride solution

    SciTech Connect

    Souza, S.D. de; Olzon-Dionysio, M.; Basso, R.L.O.; Souza, S. de

    2010-10-15

    Plasma nitriding of ASTM F138 stainless steel samples has been carried out using dc glow discharge under 80% H{sub 2}-20% N{sub 2} gas mixture, at 673 K, and 2, 4, and 7 h time intervals, in order to investigate the influence of treatment time on the microstructure and the corrosion resistance properties. The samples were characterized by scanning electron microscopy, glancing angle X-ray diffraction and conversion electron Moessbauer spectroscopy, besides electrochemical tests in NaCl aerated solution. A modified layer of about 6 {mu}m was observed for all the nitrided samples, independent of nitriding time. The X-ray diffraction analysis shows broad {gamma}{sub N} phase peaks, signifying a great degree of nitrogen supersaturation. Besides {gamma}{sub N,} the Moessbauer spectroscopy results indicated the occurrence of {gamma}' and {epsilon} phases, as well as some other less important phases. Corrosion measurements demonstrate that the plasma nitriding time affects the corrosion resistance and the best performance is reached at 4 h treatment. It seems that the {epsilon}/{gamma}' fraction ratio plays an important role on the resistance corrosion. Additionally, the Moessbauer spectroscopy was decisive in this study, since it was able to identify and quantify the iron phases that influence the corrosion resistance of plasma nitrided ASTM F138 samples.

  1. Comparative Stress Corrosion Cracking and General Corrosion Resistance of Annealed and Hardened 440 C Stainless Steel - New Techniques in Stress Corrosion Testing

    NASA Technical Reports Server (NTRS)

    Mendreck, M. J.; Hurless, B. E.; Torres, P. D.; Danford, M. D.

    1998-01-01

    The corrosion and stress corrosion cracking (SCC) characteristics of annealed and hardened 440C stainless steel were evaluated in high humidity and 3.5-percent NaCl solution. Corrosion testing consisted of an evaluation of flat plates, with and without grease, in high humidity, as well as electrochemical testing in 3.5-percent NaCl. Stress corrosion testing consisted of conventional, constant strain, smooth bar testing in high humidity in addition to two relatively new techniques under evaluation at MSFC. These techniques involve either incremental or constant rate increases in the load applied to a precracked SE(B) specimen, monitoring the crack-opening-displacement response for indications of crack growth. The electrochemical corrosion testing demonstrated an order of magnitude greater general corrosion rate in the annealed 440C. All techniques for stress corrosion testing showed substantially better SCC resistance in the annealed material. The efficacy of the new techniques for stress corrosion testing was demonstrated both by the savings in time and the ability to better quantify SCC data.

  2. Microstructure, corrosion and tribological and antibacterial properties of Ti-Cu coated stainless steel.

    PubMed

    Jin, Xiaomin; Gao, Lizhen; Liu, Erqiang; Yu, Feifei; Shu, Xuefeng; Wang, Hefeng

    2015-10-01

    A Ti-Cu coated layer on 316L stainless steel (SS) was obtained by using the Closed Field Unbalanced Magnetron Sputtering (CFUBMS) system to improve antibacterial activity, corrosion and tribological properties. The microstructure and phase constituents of Ti-Cu coated layer were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and glow discharge optical emission spectrometry (GDOES). The corrosion and tribological properties of a stainless steel substrate, SS316L, when coated with Ti-Cu were investigated in a simulated body fluid (SBF) environment. The viability of bacteria attached to the antibacterial surface was tested using the spread plate method. The results indicate that the Ti-Cu coated SS316L could achieve a higher corrosion polarization resistance and a more stable corrosion potential in an SBF environment than the uncoated SS316L substrate. The desirable corrosion protection performance of Ti-Cu may be attributable to the formation of a Ti-O passive layer on the coating surface, protecting the coating from further corrosion. The Ti-Cu coated SS316L also exhibited excellent wear resistance and chemical stability during the sliding tests against Si3N4 balls in SBF environment. Moreover, the Ti-Cu coatings exhibited excellent antibacterial abilities, where an effective reduction of 99.9% of Escherichia coli (E.coli) within 12h was achieved by contact with the modified surface, which was attributed to the release of copper ions when the Ti-Cu coatings are in contact with bacterial solution.

  3. Field trials for corrosion inhibitor selection and optimization, using a new generation of electrical resistance probes

    SciTech Connect

    Ridd, B.; Blakset, T.J.; Queen, D.

    1998-12-31

    Even with today`s availability of corrosion resistant alloys, carbon steels protected by corrosion inhibitors still dominate the material selection for pipework in the oil and gas production. Even though laboratory screening tests of corrosion inhibitor performance provides valuable data, the real performance of the chemical can only be studied through field trials which provide the ultimate test to evaluate the effectiveness of an inhibitor under actual operating conditions. A new generation of electrical resistance probe has been developed, allowing highly sensitive and immediate response to changes in corrosion rates on the internal environment of production pipework. Because of the high sensitivity, the probe responds to small changes in the corrosion rate, and it provides the corrosion engineer with a highly effective method of optimizing the use of inhibitor chemicals resulting in confidence in corrosion control and minimizing detrimental environmental effects.

  4. The resistance of high frequency inductive welded pipe to grooving corrosion in salt water

    SciTech Connect

    Duran, C.; Triess, E.; Herbsleb, G.

    1986-09-01

    When exposed to neutral, salt-containing waters, electric resistant welded pipe in carbon and low alloy steels with increased sulfur contents may suffer preferential corrosion attack in the weld area. Because of its appearance, this type of corrosion is called grooving corrosion. The susceptibility to grooving corrosion may be determined and quantitatively described by means of an accelerated potentiostatic exposure test. The importance of type, concentration, and temperature of the electrolytic solution; potential; test duration; and the sulfur content of the steel in the accelerated corrosion test and the susceptibility of steels to grooving corrosion are described. Line pipe in high frequency inductive (HFI) welded carbon and low alloy steels are resistant to grooving corrosion particularly because of their low sulfur content.

  5. Electrochemical and pitting corrosion resistance of AISI 4145 steel subjected to massive laser shock peening treatment with different coverage layers

    NASA Astrophysics Data System (ADS)

    Lu, J. Z.; Han, B.; Cui, C. Y.; Li, C. J.; Luo, K. Y.

    2017-02-01

    The effects of massive laser shock peening (LSP) treatment with different coverage layers on residual stress, pitting morphologies in a standard corrosive solution and electrochemical corrosion resistance of AISI 4145 steel were investigated by pitting corrosion test, potentiodynamic polarisation test, and SEM observations. Results showed massive LSP treatment can effectively cause an obvious improvement of pitting corrosion resistance of AISI 4145 steel, and increased coverage layer can also gradually improve its corrosion resistance. Massive LSP treatment with multiple layers was shown to influence pitting corrosion behaviour in a standard corrosive solution.

  6. Experimental Study on Rebar Corrosion Using the Galvanic Sensor Combined with the Electronic Resistance Technique

    PubMed Central

    Xu, Yunze; Li, Kaiqiang; Liu, Liang; Yang, Lujia; Wang, Xiaona; Huang, Yi

    2016-01-01

    In this paper, a new kind of carbon steel (CS) and stainless steel (SS) galvanic sensor system was developed for the study of rebar corrosion in different pore solution conditions. Through the special design of the CS and SS electronic coupons, the electronic resistance (ER) method and zero resistance ammeter (ZRA) technique were used simultaneously for the measurement of both the galvanic current and the corrosion depth. The corrosion processes in different solution conditions were also studied by linear polarization resistance (LPR) and the measurements of polarization curves. The test result shows that the galvanic current noise can provide detailed information of the corrosion processes. When localized corrosion occurs, the corrosion rate measured by the ER method is lower than the real corrosion rate. However, the value measured by the LPR method is higher than the real corrosion rate. The galvanic current and the corrosion current measured by the LPR method shows linear correlation in chloride-containing saturated Ca(OH)2 solution. The relationship between the corrosion current differences measured by the CS electronic coupons and the galvanic current between the CS and SS electronic coupons can also be used to evaluate the localized corrosion in reinforced concrete. PMID:27618054

  7. Experimental Study on Rebar Corrosion Using the Galvanic Sensor Combined with the Electronic Resistance Technique.

    PubMed

    Xu, Yunze; Li, Kaiqiang; Liu, Liang; Yang, Lujia; Wang, Xiaona; Huang, Yi

    2016-09-08

    In this paper, a new kind of carbon steel (CS) and stainless steel (SS) galvanic sensor system was developed for the study of rebar corrosion in different pore solution conditions. Through the special design of the CS and SS electronic coupons, the electronic resistance (ER) method and zero resistance ammeter (ZRA) technique were used simultaneously for the measurement of both the galvanic current and the corrosion depth. The corrosion processes in different solution conditions were also studied by linear polarization resistance (LPR) and the measurements of polarization curves. The test result shows that the galvanic current noise can provide detailed information of the corrosion processes. When localized corrosion occurs, the corrosion rate measured by the ER method is lower than the real corrosion rate. However, the value measured by the LPR method is higher than the real corrosion rate. The galvanic current and the corrosion current measured by the LPR method shows linear correlation in chloride-containing saturated Ca(OH)₂ solution. The relationship between the corrosion current differences measured by the CS electronic coupons and the galvanic current between the CS and SS electronic coupons can also be used to evaluate the localized corrosion in reinforced concrete.

  8. Structural factors governing steel resistance during operation in corrosive media under cavitation conditions

    SciTech Connect

    Berezovskaya, V.V.

    1988-05-01

    To evaluate the effect of structural factors on the corrosion resistance of steel under cavitation, a study was made of the effect of cavitation on chromium (95Kh18) and chromium-nickel (12Kh18N9T) corrosion-resistant steels and also on maraging steel 03Kh10N5K5M3KTYuS, specially developed for the loading conditions being studied, together with the austenitic steel 03Kh23N28M3D3T. A study of the effect of martensite content on corrosion and cavitation-corrosion resistance was carried out on steels 12Kh18N9T and 95Kh18 after different treatments. Corrosion tests were conducted in solutions of H/sub 2/SO/sub 4/ and H/sub 3/PO/sub 4/ and scanning electron microscopy was used to assess phase and corrosion behavior. Maraging steels treated for maximum hardness and overaging exhibited high cavitation-corrosion resistance in acid solutions owing to high strength and resistance to microcrack initiation and propagation. It was recommended that under cavitation conditions in corrosive media, high alloy austenitic corrosion-resistant steels are substituted by maraging steels.

  9. Non-Magnetic, Tough, Corrosion- and Wear-Resistant Knives From Bulk Metallic Glasses and Composites

    NASA Technical Reports Server (NTRS)

    Hoffman, Douglas C.; Potter, Benjamin

    2013-01-01

    Quality knives are typically fabricated from high-strength steel alloys. Depending on the application, there are different requirements for mechanical and physical properties that cause problems for steel alloys. For example, diver's knives are generally used in salt water, which causes rust in steel knives. Titanium diver's knives are a popular alternative due to their salt water corrosion resistance, but are too soft to maintain a sharp cutting edge. Steel knives are also magnetic, which is undesirable for military applications where the knives are used as a tactical tool for diffusing magnetic mines. Steel is also significantly denser than titanium (8 g/cu cm vs. 4.5 g/cu cm), which results in heavier knives for the same size. Steel is hard and wear-resistant, compared with titanium, and can keep a sharp edge during service. A major drawback of both steel and titanium knives is that they must be ground or machined into the final knife shape from a billet. Since most knives have a mirrored surface and a complex shape, manufacturing them is complex. It would be more desirable if the knife could be cast into a net or near-net shape in a single step. The solution to the deficiencies of titanium, steel, and ceramic knives is to fabricate them using bulk metallic glasses (or composites). These alloys can be cast into net or near-net shaped knives with a combination of properties that exceed both titanium and steel. A commercially viable BMG (bulk metallic glass) or composite knife is one that exhibits one or all of the following properties: It is based on titanium, has a self-sharpening edge, can retain an edge during service, is hard, is non-magnetic, is corrosion-resistant against a variety of corrosive environments, is tough (to allow for prying), can be cast into a net-shape with a mirror finish and a complex shape, has excellent wear resistance, and is low-density. These properties can be achieved in BMG and composites through alloy chemistry and processing. For

  10. 49 CFR 179.201-5 - Postweld heat treatment and corrosion resistance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Postweld heat treatment and corrosion resistance...) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED....201-5 Postweld heat treatment and corrosion resistance. (a) Tanks and attachments welded directly...

  11. 49 CFR 179.201-5 - Postweld heat treatment and corrosion resistance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Postweld heat treatment and corrosion resistance...) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED....201-5 Postweld heat treatment and corrosion resistance. (a) Tanks and attachments welded directly...

  12. 49 CFR 179.201-5 - Postweld heat treatment and corrosion resistance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment and corrosion resistance... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS....201-5 Postweld heat treatment and corrosion resistance. (a) Tanks and attachments welded directly...

  13. 49 CFR 179.201-5 - Postweld heat treatment and corrosion resistance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Postweld heat treatment and corrosion resistance...) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED....201-5 Postweld heat treatment and corrosion resistance. (a) Tanks and attachments welded directly...

  14. Environmental Considerations in the Studies of Corrosion Resistant Alloys for High-Level Radioactive Waste Containment

    SciTech Connect

    Ilevbare, G O; Lian, T; Farmer, J C

    2001-11-26

    The corrosion resistance of Alloy 22 (UNS No.: N06022) was studied in simulated ground water of different pH values and ionic contents at various temperatures. Potentiodynamic polarization techniques were used to study the electrochemical behavior and measure the critical potentials in the various systems. Alloy 22 was found to be resistant to localized corrosion in the simulated ground waters tested.

  15. Synergistic Effect of Superhydrophobicity and Oxidized Layers on Corrosion Resistance of Aluminum Alloy Surface Textured by Nanosecond Laser Treatment.

    PubMed

    Boinovich, Ludmila B; Emelyanenko, Alexandre M; Modestov, Alexander D; Domantovsky, Alexandr G; Emelyanenko, Kirill A

    2015-09-02

    We report a new efficient method for fabricating a superhydrophobic oxidized surface of aluminum alloys with enhanced resistance to pitting corrosion in sodium chloride solutions. The developed coatings are considered very prospective materials for the automotive industry, shipbuilding, aviation, construction, and medicine. The method is based on nanosecond laser treatment of the surface followed by chemisorption of a hydrophobic agent to achieve the superhydrophobic state of the alloy surface. We have shown that the surface texturing used to fabricate multimodal roughness of the surface may be simultaneously used for modifying the physicochemical properties of the thick surface layer of the substrate itself. Electrochemical and wetting experiments demonstrated that the superhydrophobic state of the metal surface inhibits corrosion processes in chloride solutions for a few days. However, during long-term contact of a superhydrophobic coating with a solution, the wetted area of the coating is subjected to corrosion processes due to the formation of defects. In contrast, the combination of an oxide layer with good barrier properties and the superhydrophobic state of the coating provides remarkable corrosion resistance. The mechanisms for enhancing corrosion protective properties are discussed.

  16. Improving intergranular corrosion resistance of sensitized type 316 austenitic stainless steel by laser surface melting

    NASA Astrophysics Data System (ADS)

    Mudali, U. K.; Dayal, R. K.

    1992-06-01

    An attempt was made to modify the surface microstructure of a sensitized austenitic stainless steel, without affecting the bulk properties, using laser surface melting techniques. AISI type 316 stainless steel specimens sensitized at 923 K for 20 hr were laser surface melted using a pulsed ruby laser at 6 J energy. Two successive pulses were given to ensure uniform melting and homogenization. The melted layers were characterized by small angle X- ray diffraction and scanning electron microscopy. Intergranular corrosion tests were carried out on the melted region as per ASTM A262 practice A (etch test) and electrochemical potentiokinetic reactivation test. The results indicated an improvement in the intergranular corrosion resistance after laser surface melting. The results are explained on the basis of homogeneous and nonsensitized microstructure obtained at the surface after laser surface melting. It is concluded that laser surface melting can be used as an in situ method to increase the life of a sensitized component by modifying the surface microstructure.

  17. Mechanical properties and corrosion behavior of Mg-HAP composites.

    PubMed

    Campo, R Del; Savoini, B; Muñoz, A; Monge, M A; Garcés, G

    2014-11-01

    Mg and Mg-HAP composites containing 5, 10 and 15 wt% of hydroxyapatite have been produced following a powder metallurgy route that consists of mixing raw powders and consolidation by extrusion. The microstructure, texture, mechanical behavior and resistance to corrosion under a PBS solution have been studied. Addition of HAP increases the microhardness of the composites, however the yield strength under compression slightly decreases. Texture analyses reveal a fiber texture for pure Mg that is weakened increasing the HAP fraction. This texture promotes twinning and softening of Mg and Mg-5HAP during the initial deformation stages. Mg-10HAP and Mg-15HAP present a strain-hardening dependence showing no softening. The volume fraction of HAP particles weakens the texture and favors the activation of secondary slip systems. Corrosion experiments in PBS solution have shown that Mg-5HAP exhibits the best resistance to corrosion. Texture and porosity appear to be the main material features controlling the corrosion rates of Mg-HAP composites under the present conditions.

  18. A high-specific-strength and corrosion-resistant magnesium alloy.

    PubMed

    Xu, Wanqiang; Birbilis, Nick; Sha, Gang; Wang, Yu; Daniels, John E; Xiao, Yang; Ferry, Michael

    2015-12-01

    Ultra-lightweight alloys with high strength, ductility and corrosion resistance are desirable for applications in the automotive, aerospace, defence, biomedical, sporting and electronic goods sectors. Ductility and corrosion resistance are generally inversely correlated with strength, making it difficult to optimize all three simultaneously. Here we design an ultralow density (1.4 g cm(-3)) Mg-Li-based alloy that is strong, ductile, and more corrosion resistant than Mg-based alloys reported so far. The alloy is Li-rich and a solute nanostructure within a body-centred cubic matrix is achieved by a series of extrusion, heat-treatment and rolling processes. Corrosion resistance from the environment is believed to occur by a uniform lithium carbonate film in which surface coverage is much greater than in traditional hexagonal close-packed Mg-based alloys, explaining the superior corrosion resistance of the alloy.

  19. A high-specific-strength and corrosion-resistant magnesium alloy

    NASA Astrophysics Data System (ADS)

    Xu, Wanqiang; Birbilis, Nick; Sha, Gang; Wang, Yu; Daniels, John E.; Xiao, Yang; Ferry, Michael

    2015-12-01

    Ultra-lightweight alloys with high strength, ductility and corrosion resistance are desirable for applications in the automotive, aerospace, defence, biomedical, sporting and electronic goods sectors. Ductility and corrosion resistance are generally inversely correlated with strength, making it difficult to optimize all three simultaneously. Here we design an ultralow density (1.4 g cm-3) Mg-Li-based alloy that is strong, ductile, and more corrosion resistant than Mg-based alloys reported so far. The alloy is Li-rich and a solute nanostructure within a body-centred cubic matrix is achieved by a series of extrusion, heat-treatment and rolling processes. Corrosion resistance from the environment is believed to occur by a uniform lithium carbonate film in which surface coverage is much greater than in traditional hexagonal close-packed Mg-based alloys, explaining the superior corrosion resistance of the alloy.

  20. Corrosion-resistant coating for GTE compressor parts made of steels with low tempering temperatures

    NASA Astrophysics Data System (ADS)

    Muboyadzhyan, S. A.; Egorova, L. P.; Gorlov, D. S.; Bulavintseva, E. E.

    2017-01-01

    The corrosion resistance of an Ni-Co-Cr-Al-Si-Y + SPh (SPh is silicophosphate impregnation) alloy coating on 30Kh13, 38Kh2MYuA, VKS5, and VKS7 structural steels with low tempering temperatures has been studied. The steel-coating compositions have been tested to determine the accelerated cyclic corrosion resistance, the corrosion resistance under tropic climate chamber conditions and in salt fog, the stress corrosion resistance, and the corrosion resistance in an industrial atmosphere. The heat stability of coated samples is studied, metallographic studies of the samples before and after the tests are performed, and the influence of the coating on the strength characteristics of the structural steels is studied.

  1. Effect of High Temperature Aging on the Corrosion Resistance of Iron Based Amorphous Alloys

    SciTech Connect

    Day, S D; Haslam, J J; Farmer, J C; Rebak, R B

    2007-08-10

    Iron-based amorphous alloys can be more resistant to corrosion than polycrystalline materials of similar compositions. However, when the amorphous alloys are exposed to high temperatures they may recrystallize (or devitrify) thus losing their resistance to corrosion. Four different types of amorphous alloys melt spun ribbon specimens were exposed to several temperatures for short periods of time. The resulting corrosion resistance was evaluated in seawater at 90 C and compared with the as-prepared ribbons. Results show that the amorphous alloys can be exposed to 600 C for 1-hr. without losing the corrosion resistance; however, when the ribbons were exposed at 800 C for 1-hr. their localized corrosion resistance decreased significantly.

  2. Welding duplex stainless steels for maximum corrosion resistance in chemical process industry applications

    SciTech Connect

    Gooch, T.G.; Gunn, R.N.

    1994-12-31

    Fabrication of process plant, pipework etc in ferritic-austenitic steels commonly entails fusion welding. The weld thermal cycle can significantly influence material corrosion behavior and hence service performance. The paper reviews the situation, with emphasis on arc welding as most commonly employed by industry. An outline is given of the major metallurgical changes due to welding which take place in the heat affected zone in base steel and in the fused weld metal. The weld thermal cycle experienced alters the ferrite/austenite structure from that in the parent material, and can induce intermetallic precipitation. Nitrogen may also be lost from the weld metal. These changes affect corrosion resistance, and must be controlled to achieve optimum service properties. The consequences of surface oxidation in the weld area and of local residual stresses are also considered, and it is pointed out that resistance to stress corrosion cracking in chloride or sour, H{sub 2}S media is dependent on ferrite/austenite balance. The main factors in formulating a welding procedure are described. Depending on the material composition and joint heat sink, arc energy should be held between minimum and maximum levels to promote adequate austenite formation in the weld area without inducing intermetallic formation. Nitrogen loss should be minimized, and adequate filler should be added: slight overalloying of the consumable is preferred, provided that intermetallic precipitation is avoided.

  3. Microstructure and Corrosion Resistance of Laser Additively Manufactured 316L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Trelewicz, Jason R.; Halada, Gary P.; Donaldson, Olivia K.; Manogharan, Guha

    2016-03-01

    Additive manufacturing (AM) of metal alloys to produce complex part designs via powder bed fusion methods such as laser melting promises to be a transformative technology for advanced materials processing. However, effective implementation of AM processes requires a clear understanding of the processing-structure-properties-performance relationships in fabricated components. In this study, we report on the formation of micro and nanoscale structures in 316L stainless steel samples printed by laser AM and their implications for general corrosion resistance. A variety of techniques including x-ray diffraction, optical, scanning and transmission electron microscopy, x-ray fluorescence, and energy dispersive x-ray spectroscopy were employed to characterize the microstructure and chemistry of the laser additively manufactured 316L stainless steel, which are compared with wrought 316L coupons via electrochemical polarization. Apparent segregation of Mo has been found to contribute to a loss of passivity and an increased anodic current density. While porosity will also likely impact the environmental performance (e.g., facilitating crevice corrosion) of AM alloys, this work demonstrates the critical influence of microstructure and heterogeneous solute distributions on the corrosion resistance of laser additively manufactured 316L stainless steel.

  4. Cluster formula of Fe-containing Monel alloys with high corrosion-resistance

    SciTech Connect

    Li Baozeng; Gu Junjie; Wang Qing; Ji Chunjun; Wang Yingmin; Qiang Jianbing; Dong Chuang

    2012-06-15

    The cluster-plus-glue-atom model is applied in the composition interpretation of Monel alloys. This model considers ideal atomic nearest neighbor configurations among the constituent elements and has been used in understanding compositions of complex alloys like quasicrystals, amorphous alloys, and cupronickels. According to this model, any structure can be expressed by cluster formula [cluster](glue atom){sub x}, x denoting the number of glue atoms matching one cluster. According to this model, two groups of experimental composition series [Fe{sub 1}Ni{sub 12}]Cu{sub x} and [Fe{sub y}Ni{sub 12}]Cu{sub 5} were designed which fell close to conventional Fe-containing Monel alloys. The designed alloys after solution treatment plus water quenching, are monolithic FCC Ni-based solid solutions. Among them, the [Fe{sub 1}Ni{sub 12}]Cu{sub 5} alloy has the highest corrosion resistance in simulated sea water, and its performance is superior to that of industrial Monel 400 alloy. - Highlights: Black-Right-Pointing-Pointer A stable solid solution model is proposed using our 'cluster-plus-glue-atom model'. Black-Right-Pointing-Pointer This model is used to develop Monel corrosion resistant alloys. Black-Right-Pointing-Pointer Single FCC structure is easily retained. Black-Right-Pointing-Pointer The alloys show good corrosion properties. Black-Right-Pointing-Pointer This work contributes to the general understanding of engineering alloys.

  5. Preparation and corrosion resistance of pulse electrodeposited Zn and Zn-SiC nanocomposite coatings

    NASA Astrophysics Data System (ADS)

    Sajjadnejad, M.; Mozafari, A.; Omidvar, H.; Javanbakht, M.

    2014-05-01

    Pure Zn and Zn matrix composite coatings containing nano-sized SiC particles with an average size of 50 nm were prepared from the zinc sulfate bath. The effects of the pulse frequency, maximum current density and duty cycle on the amount of particles embedded were examined. Electron microscopic studies revealed that the coating morphology was modified by the presence of SiC nanoparticles. In the presence of SiC nanoparticles deposit grows in outgrowth mode resulting in a very rough and porous microstructure. However, at very low and very high duty cycles a smooth and pore free microstructure was obtained. Corrosion resistance properties of the coatings were studied using potentiodynamic polarization technique in 1 M NaCl solution. It was established that presence of well-dispersed nanoparticles significantly improves corrosion resistance of the zinc by filling gaps and defects between zinc flakes and leading to a smoother surface. However, presence of the SiC nanoparticles led to a mixed microstructure with fine and coarse zinc flakes in some coatings, which presented a weak corrosion behavior. Incorporation of SiC nanoparticles enhanced hardness of the Zn coatings by fining deposit structure and through the dispersion hardening effect.

  6. Reasons for superior mechanical and corrosion properties of 2219 aluminum alloy electron beam welds

    SciTech Connect

    Koteswara Rao, S.R. . E-mail: sajjarkr@yahoo.com; Madhusudhan Reddy, G.; Srinivasa Rao, K.; Kamaraj, M.; Prasad Rao, K.

    2005-11-15

    Electron beam welds of aluminum alloy 2219 offer much higher strength compared to gas tungsten arc welds of the same alloy and the reasons for this have not been fully explored. In this study both types of welds were made and mechanical properties were evaluated by tensile testing and pitting corrosion resistance by potentio dynamic polarization tests. It is shown that electron beam welds exhibit superior mechanical and corrosion properties. The weld metals have been characterized by scanning electron microscopy; transmission electron microscopy and electron probe micro analysis. Presence of partially disintegrated precipitates in the weld metal, finer micro porosity and uniform distribution of copper in the matrix were found to be the reasons for superior properties of electron beam welds apart from the fine equiaxed grain structure. Transmission electron micrographs of the heat affected zones revealed the precipitate disintegration and over aging in gas tungsten arc welds.

  7. Microstructure, mechanical and corrosion properties of Mg-Dy-Gd-Zr alloys for medical applications.

    PubMed

    Yang, L; Huang, Y; Feyerabend, F; Willumeit, R; Mendis, C; Kainer, K U; Hort, N

    2013-11-01

    In previous investigations, a Mg-10Dy (wt.%) alloy with a good combination of corrosion resistance and cytocompatibility showed great potential for use as a biodegradable implant material. However, the mechanical properties of Mg-10Dy alloy are not satisfactory. In order to allow the tailoring of mechanical properties required for various medical applications, four Mg-10(Dy+Gd)-0.2Zr (wt.%) alloys were investigated with respect to microstructure, mechanical and corrosion properties. With the increase in Gd content, the number of second-phase particles increased in the as-cast alloys, and the age-hardening response increased at 200°C. The yield strength increased, while the ductility reduced, especially for peak-aged alloys with the addition of Gd. Additionally, with increasing Gd content, the corrosion rate increased in the as-cast condition owing to the galvanic effect, but all the alloys had a similar corrosion rate (~0.5 mm year(-1)) in solution-treated and aged condition.

  8. 78 FR 59652 - Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-27

    ... International Trade Administration Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of... administrative review of the antidumping duty order on certain corrosion-resistant carbon steel flat products... Results. \\2\\ See Certain Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea:...

  9. 78 FR 16247 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea; Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... antidumping duty order on corrosion-resistant carbon steel flat products (CORE) from the Republic of Korea... section entitled ``Final Results of Review.'' \\1\\ See Certain Corrosion-Resistant Carbon Steel...

  10. 76 FR 77775 - Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Extension of Time...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea... countervailing duty order on corrosion-resistant carbon steel flat products from the Republic of Korea covering the period January 1, 2009, through December 31, 2009. See Corrosion-Resistant Carbon Steel...

  11. 77 FR 24221 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Notice of Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ... COMMISSION Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Notice of Commission... countervailing duty order on corrosion-resistant carbon steel flat products from Korea and the antidumping duty orders on corrosion- resistant carbon steel flat products from Germany and Korea would be likely to...

  12. 77 FR 13093 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... administrative review of the countervailing duty (``CVD'') order on corrosion-resistant carbon steel flat... Review'' below. \\1\\ See Corrosion-Resistant Carbon Steel Flat Products from the Republic of...

  13. 78 FR 59651 - Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-27

    ... International Trade Administration Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of... fourteenth administrative review of the antidumping duty order on certain corrosion-resistant carbon steel... aspects of the Final Results. \\2\\ See Certain Corrosion-Resistant Carbon Steel Flat Products from...

  14. 77 FR 31877 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Scheduling of Full Five...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... COMMISSION Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Scheduling of Full Five... duty order on corrosion-resistant carbon steel flat products from Korea and the antidumping duty orders on corrosion- resistant carbon steel flat products from Germany and Korea would be likely to lead...

  15. 78 FR 16832 - Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic of Korea: Revocation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-19

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic... corrosion-resistant carbon steel flat products (``CORE'') from Germany and the Republic of Korea (``Korea...-Year (``Sunset'') Review, 77 FR 85 (January 3, 2012). \\2\\ See Corrosion-Resistant Carbon Steel...

  16. 78 FR 19210 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea...) has completed its administrative review of the countervailing duty (CVD) order on corrosion-resistant...\\ See Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary Results...

  17. 77 FR 54891 - Certain Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... International Trade Administration Certain Corrosion-Resistant Carbon Steel Flat Products from the Republic of... administrative review of the antidumping order on corrosion-resistant carbon steel flat products (CORE) from the... the order on March 12, 2012. See Certain Corrosion- Resistant Carbon Steel Flat Products From the...

  18. 78 FR 55057 - Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea... antidumping duty order on corrosion-resistant carbon steel flat products (CORE) from the Republic of Korea.... See Corrosion-Resistant Carbon Steel Flat Products from Germany and the Republic of Korea: Revocation...

  19. 77 FR 72827 - Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic of Korea: Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-06

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic... on certain corrosion- resistant carbon steel flat products (``CORE'') from Germany and the Republic... Reviews'' section of this notice. \\1\\ Corrosion-Resistant Carbon Steel Flat Products From Germany and the...

  20. 77 FR 14501 - Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-12

    ... International Trade Administration Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of... antidumping duty administrative review for certain corrosion-resistant carbon steel flat products (CORE) from... (POR) is August 1, 2009, through, July 31, 2010. \\1\\ See Certain Corrosion-Resistant Carbon Steel Flat...

  1. 75 FR 55769 - Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-14

    ... International Trade Administration Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of... administrative review of the antidumping order on corrosion-resistant carbon steel flat products (CORE) from the... Antidumping Duty Orders on Certain Cold-Rolled Carbon Steel Flat Products and Certain Corrosion-Resistant...

  2. 76 FR 15291 - Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    ... International Trade Administration Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of... for certain corrosion-resistant carbon steel flat products (CORE) from the Republic of Korea (Korea). See Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of...

  3. Superhydrophobic honeycomb-like cobalt stearate thin films on aluminum with excellent anti-corrosion properties

    NASA Astrophysics Data System (ADS)

    Xiong, Jiawei; Sarkar, D. K.; Chen, X.-Grant

    2017-06-01

    Superhydrophobic cobalt stearate thin films with excellent anti-corrosion properties were successfully fabricated on aluminum substrates via electrodeposition process. The water-repellent properties were attributed to the honeycomb-like micro-nano structure as well as low surface energy of cobalt stearate. The correlation between the surface morphology, composition as well as wetting properties and the molar ratio of inorganic cobalt salt (Co(NO3)2) and organic stearic acid (SA) abbreviated as Co/SA, in the electrolyte were studied carefully. The optimum superhydrophobic surface obtained on the electrodeposited cathodic aluminum substrate, in the mixed ethanolic solution with Co/SA molar ratio of 0.2, was found to have a maximum contact angle of 161°. The polarization resistance of superhydrophobic aluminum substrates was calculated as high as 1591 kΩ cm2, which is determined to be two orders of magnitude larger than that of the as-received aluminum substrate as 27 kΩ cm2. Electrochemical impedance spectroscopy (EIS) was also employed to evaluate the corrosion resistance properties of these samples. Furthermore, electrical equivalent circuits (EEC) have been suggested in order to better understand the corrosion phenomena on these surfaces based on the corresponding EIS data.

  4. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    PubMed

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution.

  5. Fabrication of biomimetic hydrophobic films with corrosion resistance on magnesium alloy by immersion process

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Lu, Guolong; Liu, Jindan; Han, Zhiwu; Liu, Zhenning

    2013-01-01

    Biomimetic hydrophobic films of crystalline CeO2 were prepared on magnesium alloy by an immersion process with cerium nitrate solution and then modified with DTS (CH3(CH2)11Si(OCH3)3). The CeO2 films fabricated with 20-min immersion yield a water contact angle of 137.5 ± 2°, while 20-min DTS treatment on top of CeO2 can further enhance the water contact angle to 146.7 ± 2°. Then corrosion-resistant property of these prepared films against NaCl solution was investigated and elucidated using electrochemical measurements.

  6. Superhydrophobic copper surfaces fabricated by fatty acid soaps in aqueous solution for excellent corrosion resistance

    NASA Astrophysics Data System (ADS)

    Xu, Wenlong; Hu, Yuanyuan; Bao, Wenda; Xie, Xiaoyu; Liu, Yiran; Song, Aixin; Hao, Jingcheng

    2017-03-01

    A simple and safe one-step immersion method was developed to obtain the stable superhydrophobic copper surfaces with excellent corrosion resistance ability using fatty acids in water-medium instead of ethanol. An organic alkali, N,N-dimethylcyclohexylamine (DMCHA), was chosen to solve the poor solubility of fatty acids in water and the high Krafft point of carboxylate salts with inorganic counterions. The superhydrophobic property can be realized in a much quicker process (7.5 min) in aqueous solution than in ethanol (more than 2 d), which is universally feasible for the fabrication of superhydrophobic metal surfaces in industry scale, thereby greatly increasing the safety in industrial manufacture.

  7. An effective and novel pore sealing agent to enhance the corrosion resistance performance of Al coating in artificial ocean water

    NASA Astrophysics Data System (ADS)

    Lee, Han-Seung; Singh, Jitendra Kumar; Ismail, Mohamed A.

    2017-02-01

    A new technique was accepted to fill the porosity of Al coating applied by arc thermal spray process to enhance corrosion resistance performance in artificial ocean water. The porosity is the inherent property of arc thermal spray coating process. In this study, applied coating was treated with different concentrations of ammonium phosphate mono basic (NH4H2PO4: AP) solution thereafter dried at room temperature and kept in humidity chamber for 7d to deposit uniform film. The corrosion resistance of Al coating and treated samples have been evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic techniques with exposure periods in artificial ocean water. Electrochemical techniques, X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and field emission-scanning electron microscopy (FE-SEM) indicated that phosphate ion would have been retarding corrosion of Al coating effectively. The formation of AHP (Ammonium Aluminum Hydrogen Phosphate Hydrate: NH4)3Al5H6(PO4)8.18H2O) on Al coating surface after treatment with AP is nano sized, crystalline and uniformly deposited but after exposure them in artificial ocean water, they form AHPH (Aluminum hydroxide phosphate hydrate Al3(PO4)2(OH)3(H2O)5) that is very protective, adherent, uniform and plate like morphology of corrosion products. The AHPH is sparingly soluble and adherent to surface and imparted improved corrosion resistance.

  8. An effective and novel pore sealing agent to enhance the corrosion resistance performance of Al coating in artificial ocean water

    PubMed Central

    Lee, Han-Seung; Singh, Jitendra Kumar; Ismail, Mohamed A.

    2017-01-01

    A new technique was accepted to fill the porosity of Al coating applied by arc thermal spray process to enhance corrosion resistance performance in artificial ocean water. The porosity is the inherent property of arc thermal spray coating process. In this study, applied coating was treated with different concentrations of ammonium phosphate mono basic (NH4H2PO4: AP) solution thereafter dried at room temperature and kept in humidity chamber for 7d to deposit uniform film. The corrosion resistance of Al coating and treated samples have been evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic techniques with exposure periods in artificial ocean water. Electrochemical techniques, X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and field emission-scanning electron microscopy (FE-SEM) indicated that phosphate ion would have been retarding corrosion of Al coating effectively. The formation of AHP (Ammonium Aluminum Hydrogen Phosphate Hydrate: NH4)3Al5H6(PO4)8.18H2O) on Al coating surface after treatment with AP is nano sized, crystalline and uniformly deposited but after exposure them in artificial ocean water, they form AHPH (Aluminum hydroxide phosphate hydrate Al3(PO4)2(OH)3(H2O)5) that is very protective, adherent, uniform and plate like morphology of corrosion products. The AHPH is sparingly soluble and adherent to surface and imparted improved corrosion resistance. PMID:28157233

  9. An effective and novel pore sealing agent to enhance the corrosion resistance performance of Al coating in artificial ocean water.

    PubMed

    Lee, Han-Seung; Singh, Jitendra Kumar; Ismail, Mohamed A

    2017-02-03

    A new technique was accepted to fill the porosity of Al coating applied by arc thermal spray process to enhance corrosion resistance performance in artificial ocean water. The porosity is the inherent property of arc thermal spray coating process. In this study, applied coating was treated with different concentrations of ammonium phosphate mono basic (NH4H2PO4: AP) solution thereafter dried at room temperature and kept in humidity chamber for 7d to deposit uniform film. The corrosion resistance of Al coating and treated samples have been evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic techniques with exposure periods in artificial ocean water. Electrochemical techniques, X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and field emission-scanning electron microscopy (FE-SEM) indicated that phosphate ion would have been retarding corrosion of Al coating effectively. The formation of AHP (Ammonium Aluminum Hydrogen Phosphate Hydrate: NH4)3Al5H6(PO4)8.18H2O) on Al coating surface after treatment with AP is nano sized, crystalline and uniformly deposited but after exposure them in artificial ocean water, they form AHPH (Aluminum hydroxide phosphate hydrate Al3(PO4)2(OH)3(H2O)5) that is very protective, adherent, uniform and plate like morphology of corrosion products. The AHPH is sparingly soluble and adherent to surface and imparted improved corrosion resistance.

  10. Corrosion resistance of Ti-Ta-Zr coatings in the Boiling Acid Solutions

    NASA Astrophysics Data System (ADS)

    Polyakov, I. A.; Lenivtseva, O. G.; Samoylenko, V. V.; Colkovski, M. G.; Ivanchik, I. S.

    2016-11-01

    In this study corrosion resistance of Ti-Ta-Zr coatings fabricated on VT14 titanium alloy workpieces using a high-energy electron beam injected in the atmosphere was investigated. Estimation of corrosion resistance of surface alloyed layers was carried out by the weight-change method. Boiling solution of 65 % nitric acid in water and 5 % of sulfuric acid in water were used as the corrosive environments. Investigation of samples after corrosion tests was carried out using a Carl Zeiss EVO 50 XVP scanning electron microscope.

  11. Corrosion Resistance of Laser Clads of Inconel 625 and Metco 41C

    NASA Astrophysics Data System (ADS)

    Němeček, Stanislav; Fidler, Lukáš; Fišerová, Pavla

    The present paper explores the impact of laser cladding parameters on the corrosion behaviour of the resulting surface. Powders of Inconel 625 and austenitic Metco 41C steel were deposited on steel substrate. It was confirmed that the level of dilution has profound impact on the corrosion resistance and that dilution has to be minimized. However, the chemical composition of the cladding is altered even in the course of the cladding process, a fact which is related to the increase in the substrate temperature. The cladding process was optimized to achieve maximum corrosion resistance. The results were verified and validated using microscopic observation, chemical analysis and corrosion testing.

  12. Corrosion Resistant Cladding by YAG Laser Welding in Underwater Environment

    SciTech Connect

    Tsutomi Kochi; Toshio Kojima; Suemi Hirata; Ichiro Morita; Katsura Ohwaki

    2002-07-01

    It is known that stress-corrosion cracking (SCC) will occur in nickel-base alloys used in Reactor Pressure Vessel (RPV) and Internals of nuclear power plants. A SCC sensitivity has been evaluated by IHI in each part of RPV and Internals. There are several water level instrumentation nozzles installed in domestic BWR RPV. In water level instrumentation nozzles, 182 type nickel-base alloys were used for the welding joint to RPV. It is estimated the SCC potential is high in this joint because of a higher residual stress than the yield strength (about 400 MPa). This report will describe a preventive maintenance method to these nozzles Heat Affected Zone (HAZ) and welds by a corrosion resistant cladding (CRC) by YAG Laser in underwater environment (without draining a reactor water). There are many kinds of countermeasures for SCC, for example, Induction Heating Stress Improvement (IHSI), Mechanical Stress Improvement Process (MSIP) and so on. A YAG laser CRC is one of them. In this technology a laser beam is used for heat source and irradiated through an optical fiber to a base metal and SCC resistant material is used for welding wires. After cladding the HAZ and welds are coated by the corrosion resistant materials so their surfaces are improved. A CRC by gas tungsten arc welding (GTAW) in an air environment had been developed and already applied to a couple of operating plants (16 Nozzles). This method was of course good but it spent much time to perform because of an installation of some water-proof working boxes to make a TIG-weldability environment. CRC by YAG laser welding in underwater environment has superior features comparing to this conventional TIG method as follows. At the viewpoint of underwater environment, (1) an outage term reduction (no drainage water). (2) a radioactive exposure dose reduction for personnel. At that of YAG laser welding, (1) A narrower HAZ. (2) A smaller distortion. (3) A few cladding layers. A YAG laser CRC test in underwater

  13. Fracture toughness and corrosion resistance of semisolid AlSi5 alloy

    SciTech Connect

    Pola, A.; Montesano, L.; Gelfi, M.; Roberti, R.

    2011-05-04

    The aim of this work was to investigate fracture toughness and corrosion resistance of semisolid AlSi5 castings, compared to samples obtained from conventional casting operations. In order to have a semisolid microstructure, the melt alloy was treated by means of ultrasound during solidification and then poured into permanent moulds. Mechanical properties of semisolid and conventional castings were compared by means of ultimate tensile strength (R{sub m}), yield stress (Rp{sub 02}) and hardness (HV) measurements. Fracture mechanics tests were carried out on Single Edge Notched Bend (SENB) specimens, machined from castings, and pre-cracked by fatigue. These tests were performed to determine the effect of the microstructure on the J-Integral resistance (J-R) behavior and to deeply understand the ductile fracture behaviour of semisolid parts. The J-Integral versus spaced crack extension (J-{Delta}a) curves showed an improved resistance of the semisolid microstructure, due to the higher ductility. Finally, the corrosion behaviour of semisolid samples was compared to that of castings coming from solidification of fully liquid alloy by means of electrochemical potentiodynamic polarization tests. It was observed that the globular microstructure offers better quality, in terms of higher mechanical properties, as a consequence of a more uniform distribution of the solute.

  14. Fracture toughness and corrosion resistance of semisolid AlSi5 alloy

    NASA Astrophysics Data System (ADS)

    Pola, A.; Montesano, L.; Gelfi, M.; Roberti, R.

    2011-05-01

    The aim of this work was to investigate fracture toughness and corrosion resistance of semisolid AlSi5 castings, compared to samples obtained from conventional casting operations. In order to have a semisolid microstructure, the melt alloy was treated by means of ultrasound during solidification and then poured into permanent moulds. Mechanical properties of semisolid and conventional castings were compared by means of ultimate tensile strength (Rm), yield stress (Rp02) and hardness (HV) measurements. Fracture mechanics tests were carried out on Single Edge Notched Bend (SENB) specimens, machined from castings, and pre-cracked by fatigue. These tests were performed to determine the effect of the microstructure on the J-Integral resistance (J-R) behavior and to deeply understand the ductile fracture behaviour of semisolid parts. The J-Integral versus spaced crack extension (J-Δa) curves showed an improved resistance of the semisolid microstructure, due to the higher ductility. Finally, the corrosion behaviour of semisolid samples was compared to that of castings coming from solidification of fully liquid alloy by means of electrochemical potentiodynamic polarization tests. It was observed that the globular microstructure offers better quality, in terms of higher mechanical properties, as a consequence of a more uniform distribution of the solute.

  15. Structural strength of welded shells made of corrosion-resistant maraging steels

    SciTech Connect

    Raimond, E.D.; Lapin, P.G.; Pautkin, U.S.; Shiganov, N.V.; Tashchikov, V.S.

    1986-03-01

    The authors devise special measures to increase the resistance of welded shells made of corrosion-resistant maraging steels. High structural strenght is ensured for shells loaded by internal pressure when ait (impact toughness) greater than or equal to10 J/cm/sup 2/. For welds of corrosion-resistant maraging steels of the O3Kh11N10M2T type, this condition is satisfied when the weld strength does not exceed 1400-1450 MPa. A structural strength of 15001750 MPa in welds of corrosion-resistant maraging steels can be obtained by means of mechanicothermal treatment.

  16. Method for resisting corrosion in geothermal fluid handling systems

    SciTech Connect

    Love, W.W.; Cron, C.J.

    1988-05-24

    A method for resisting corrosion while conducting a flow of hot, corrosive geothermal fluid is described comprising the steps of: (a) forming a fluid conducting element of a beta and alpha titanium-base product produced by heating to form a metastable beta titantium matrix, and thereafter heat treating the matrix to form sufficient alpha phase therein providing an increase in ultimate tensile strength of at least about 10,000 psi over that of the matrix before the heat treating, the beta and alpha titantium-base product so formed having an average valence electron density of between about 4.15 and about 4.35. The composition consisting essentially of: (i) a total of between about 2 and about 10 weight percent of one or more beta eutectoid elements; (ii) between about 4 and about 10 weight percent of vanadium; (iii) between about 3 and about 6 weight percent of molybdenum; (iv) between about 2 and about 5 weight percent of aluminum; and (v) the balance titanium; and (b) following the geothermal fluid through the fluid conducting element.

  17. Corrosion resistance of biodegradable Mg with a composite polymer coating.

    PubMed

    Chen, Peng; Sun, Jiadi; Zhu, Ye; Yu, Xun; Meng, Long; Li, Yang; Liu, Xiaoya

    2016-12-01

    Degrading Mg and its alloys are a category of implant materials for bone surgery, but rapid corrosion in physiological environment limits their clinical applications. To improve the corrosion resistance of Mg-based implants, a biodegradable composite polymer coating is deposited on an Mg rod in this work. The strategy is to decorate Mg surfaces with poly(γ-glutamic acid)-g-7-amino-4-methylcoumarin/hydroxyapatite (γ-PGA-g-AMC/HAp) composite nanoparticles through electrophoretic deposition in ethanol. The morphology and chemical composition of the resulting coating material are determined by scanning electron microscopy and Fourier transform infrared spectroscopy. Sample rods of bare Mg and coated Mg are implanted intramedullary into the femora of New Zealand white rabbits, periodic radiography and post-autopsy histopathology of each sample are analyzed. The obtained in vivo results clearly confirm that the coating material decreases degradation rate of the underlying Mg sample and appears good histocompatibility and osteoinductivity. The main aim of this work is to investigate the degradation process of bare Mg and coated Mg samples in bone environment and their effect on the surrounding bone tissue.

  18. Is cell viability always directly related to corrosion resistance of stainless steels?

    PubMed

    Salahinejad, E; Ghaffari, M; Vashaee, D; Tayebi, L

    2016-05-01

    It has been frequently reported that cell viability on stainless steels is improved by increasing their corrosion resistance. The question that arises is whether human cell viability is always directly related to corrosion resistance in these biostable alloys. In this work, the microstructure and in vitro corrosion behavior of a new class of medical-grade stainless steels were correlated with adult human mesenchymal stem cell viability. The samples were produced by a powder metallurgy route, consisting of mechanical alloying and liquid-phase sintering with a sintering aid of a eutectic Mn-Si alloy at 1050 °C for 30 and 60 min, leading to nanostructures. In accordance with transmission electron microscopic studies, the additive particles for the sintering time of 30 min were not completely melted. Electrochemical impedance spectroscopic experiments suggested the higher corrosion resistance for the sample sintered for 60 min; however, a better cell viability on the surface of the less corrosion-resistant sample was unexpectedly found. This behavior is explained by considering the higher ion release rate of the Mn-Si additive material, as preferred sites to corrosion attack based on scanning electron microscopic observations, which is advantageous to the cells in vitro. In conclusion, cell viability is not always directly related to corrosion resistance in stainless steels. Typically, the introduction of biodegradable and biocompatible phases to biostable alloys, which are conventionally anticipated to be corrosion-resistant, can be advantageous to human cell responses similar to biodegradable metals.

  19. Environmental Cracking of Corrosion Resistant Alloys in the Chemical Process Industry - A Review

    SciTech Connect

    Rebak, R B

    2006-12-04

    A large variety of corrosion resistant alloys are used regularly in the chemical process industry (CPI). The most common family of alloys include the iron (Fe)-based stainless steels, nickel (Ni) alloys and titanium (Ti) alloys. There also other corrosion resistant alloys but their family of alloys is not as large as for the three groups mentioned above. All ranges of corrosive environments can be found in the CPI, from caustic solutions to hot acidic environments, from highly reducing to highly oxidizing. Stainless steels are ubiquitous since numerous types of stainless steels exist, each type tailored for specific applications. In general, stainless steels suffer stress corrosion cracking (SCC) in hot chloride environments while high Ni alloys are practically immune to this type of attack. High nickel alloys are also resistant to caustic cracking. Ti alloys find application in highly oxidizing solutions. Solutions containing fluoride ions, especially acid, seem to be aggressive to almost all corrosion resistant alloys.

  20. Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V.

    PubMed

    Grotberg, John; Hamlekhan, Azhang; Butt, Arman; Patel, Sweetu; Royhman, Dmitry; Shokuhfar, Tolou; Sukotjo, Cortino; Takoudis, Christos; Mathew, Mathew T

    2016-02-01

    The negative impact of in vivo corrosion of metallic biomedical implants remains a complex problem in the medical field. We aimed to determine the effects of electrochemical anodization (60V, 2h) and thermal oxidation (600°C) on the corrosive behavior of Ti-6Al-4V, with serum proteins, at physiological temperature. Anodization produced a mixture of anatase and amorphous TiO2 nanopores and nanotubes, while the annealing process yielded an anatase/rutile mixture of TiO2 nanopores and nanotubes. The surface area was analyzed by the Brunauer-Emmett-Teller method and was estimated to be 3 orders of magnitude higher than that of polished control samples. Corrosion resistance was evaluated on the parameters of open circuit potential, corrosion potential, corrosion current density, passivation current density, polarization resistance and equivalent circuit modeling. Samples both anodized and thermally oxidized exhibited shifts of open circuit potential and corrosion potential in the noble direction, indicating a more stable nanoporous/nanotube layer, as well as lower corrosion current densities and passivation current densities than the smooth control. They also showed increased polarization resistance and diffusion limited charge transfer within the bulk oxide layer. The treatment groups studied can be ordered from greatest corrosion resistance to least as Anodized+Thermally Oxidized > Anodized > Smooth > Thermally Oxidized for the conditions investigated. This study concludes that anodized surface has a potential to prevent long term implant failure due to corrosion in a complex in-vivo environment.

  1. Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Materials (HPCRM) Development Final Report

    SciTech Connect

    Farmer, J C; Choi, J; Saw, C; Haslem, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D'Amato, A; Aprigliano, L

    2009-03-16

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal make this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of these iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  2. Haze, oxidation, and corrosion resistant diesel engine lubricant

    SciTech Connect

    Sung, R.L.; Zoleski, B.H.; O'Rourke, R.L.

    1987-11-10

    This patent describes a haze, oxidation, and corrosion resistant diesel engine lubricant composition, particularly useful in marine and railway diesel engines, contains 0.1-5.0 weight percent of a reaction product additive. The reaction product additive is produced by first reacting substantially equimolar amounts of an anhydride compound which is either a dibasic acid anhydride or isatoic anhydride and a hydrocarbon-substituted mono primary amine or ether amine at a temperature range of 50/sup 0/C-150/sup 0/C to produce an intermediate reaction product. The intermediate reaction product is thereafter further reacted at an elevated temperature with a substantially equimolar amount of a heterocyclic azole or polyalkylene polyamine compound to form the final reaction product.

  3. Microstructure, mechanical properties and bio-corrosion properties of Mg-Si(-Ca, Zn) alloy for biomedical application.

    PubMed

    Zhang, Erlin; Yang, Lei; Xu, Jianwei; Chen, Haiyan

    2010-05-01

    Mg-Si alloy was investigated for biomedical application due to the biological function of Si in the human body. However, Mg-Si alloy showed a low ductility due to the presence of coarse Mg(2)Si. Ca and Zn elements were used to refine and modify the morphology of Mg(2)Si in order to improve the corrosion resistance and the mechanical properties. The cell toxicity of Mg, Zn and Ca metals was assessed by an MTT test. The test results indicated that increasing the concentrations of Mg, Zn and Ca ions did not cause cell toxicity, which showed that the release of these three elements would not lead to cell toxicity. Then, microstructure, mechanical properties and bio-corrosion properties of as-cast Mg-Si(-Ca, Zn) alloys were investigated by optical microscopy, scanning electronic microscopy, mechanical properties testing and electrochemical measurement. Ca element can slightly refine the grain size and the morphology Mg(2)Si phase in Mg-Si alloy. The bio-corrosion resistance of Mg-Si alloys was improved by the addition of Ca due to the reduction and refinement of Mg(2)Si phase; however, no improvement was observed in the strength and elongation. The addition of 1.6% Zn to Mg-0.6Si can modify obviously the morphology of Mg(2)Si phase from course eutectic structure to a small dot or short bar shape. As a result, tensile strength, elongation and bio-corrosion resistance were all improved significantly; especially, the elongation improved by 115.7%. It was concluded that Zn element was one of the best alloying elements of Mg-Si alloy for biomedical application.

  4. Cyclotriphosphazene and TiO2 reinforced nanocomposite coated on mild steel plates for antibacterial and corrosion resistance applications

    NASA Astrophysics Data System (ADS)

    Krishnadevi, Krishnamoorthy; Selvaraj, Vaithilingam

    2016-03-01

    The mild steel surface has been modified to impart anticorrosion and antibacterial properties through a dip coating method followed by thermal curing of a mixture containing amine terminated cyclotriphosphazene and functionalized titanium dioxide nanoparticles reinforced benzoxazine based cyanate ester composite (ATCP/FTiO2/Bz-CE). The corrosion resistance behavior of coating material has been investigated by electrochemical and antibacterial studies by disc diffusion method. The nanocomposites coated mild steels have displayed a good chemical stability over long immersion in a corrosive environment. The protection efficiency has found to be high for ATCP/FTiO2/Bz-CE composites, which can be used in microelectronics and marine applications.

  5. Corrosion behavior and mechanical properties of bioactive sol-gel coatings on titanium implants.

    PubMed

    Catauro, M; Bollino, F; Papale, F; Giovanardi, R; Veronesi, P

    2014-10-01

    Organic-inorganic hybrid coatings based on zirconia and poly (ε-caprolactone) (PCL) were prepared by means of sol-gel dip-coating technique and used to coat titanium grade 4 implants (Ti-4) in order to improve their wear and corrosion resistance. The coating chemical composition has been analysed by ATR-FTIR. The influence of the PCL amount has been investigated on the microstructure, mechanical properties of the coatings and their ability to inhibit the corrosion of titanium. SEM analysis has shown that all coatings have a nanostructured nature and that the films with high PCL content are crack-free. Mechanical properties of the coatings have been studied using scratch and nano-indentation tests. The results have shown that the Young's modulus of the coatings decreases in presence of large amounts of the organic phase, and that PCL content affects also the adhesion of the coatings to the underlying Ti-4 substrate. However, the presence of cracks on the PCL-free coatings affects severely the mechanical response of the samples at high loads. The electrochemical behavior and corrosion resistance of the coated and uncoated substrate has been investigated by polarization tests. The results have shown that both the coatings with or without PCL don't affect significantly the already excellent passivation properties of titanium.

  6. Surface modifications of steels to improve corrosion resistance in sulfidizing-oxidizing environments

    NASA Astrophysics Data System (ADS)

    Behrani, Vikas

    Industrial and power generation processes employ units like boilers and gasifiers to burn sulfur containing fuels to produce steam and syn gas (H 2 and CO), which can generate electricity using turbines and fuel cells. These units often operate under environments containing gases such as H 2S, SO2, O2 etc, which can attack the metallic structure and impose serious problems of corrosion. Corrosion control in high temperature sulfur bearing environments is a challenging problem requiring information on local gaseous species at the surface of alloy and mechanisms of degradation in these environments. Coatings have proved to be a better alternative for improving corrosion resistance without compromising the bulk mechanical properties. Changes in process conditions may result in thermal and/or environment cycling between oxidizing and sulfidizing environments at the alloy surface, which can damage the protective scale formed on the alloy surface, leading to increase in corrosion rates. Objective of this study was to understand the effect of fluctuating environments on corrosion kinetics of carbon steels and develop diffusion based coatings to mitigate the high temperatures corrosion under these conditions. More specifically, the focus was: (1) to characterize the local gaseous environments at the surface of alloys in boilers; (2) optimizing diffusion coatings parameters for carbon steel; (3) understand the underlying failure mechanisms in cyclic environments; (4) to improve aluminide coating behavior by co-deposition of reactive elements such as Yttrium and Hafnium; (5) to formulate a plausible mechanism of coating growth and effects of alloying elements on corrosion; and (6) to understand the spallation behavior of scale by measuring stresses in the scales. The understanding of coating mechanism and effects of fluctuating gaseous environments provides information for designing materials with more reliable performance. The study also investigates the mechanism behind

  7. Effects of strain variations on aging response and corrosion properties of third generation Al-Li alloys

    NASA Astrophysics Data System (ADS)

    Wright, Ellen E.

    Due to their high specific strength (strength/density) and specific stiffness (elastic modulus/density), Al-Li alloys are attractive alloys for structural aircraft applications. To produce contoured aircraft components from Al-Li wrought products, stretch forming prior to aging is a common manufacturing technique. The effects of different amounts of tensile straining (0-9%) on the mechanical, microstructural, and corrosion properties of two third generation Al-Li alloys (2099 and 2196) were investigated. In addition to typical characterization techniques, electron backscatter diffraction (EBSD), 2D micro-digital image correlation (DIC), and scanning Kelvin probe force microscopy (SKPFM) were used to examine site-specific effects of orientation, micro-strain evolution during straining, and surface potential on corrosion, respectively. Tapping mode atomic force microscopy (AFM) was also performed to study galvanic corrosion in artificial seawater (3.5% NaCl) as it occurred in-situ. There was evidence of intergranular corrosion for 0% strain conditions, but the dominant form of corrosion was localized pitting for all specimens except Alloy 2196 strained 0%. Pitting initiated at grain boundaries and triple points. In many cases, pitting extended into particular grains and was elongated in the extrusion direction. Regions of high micro-strain preferentially corroded, and large, recrystallized grains in mostly unrecrystallized microstructures were detrimental to corrosion properties. Recommendations for improved thermomechanical processing and/or alloying to promote corrosion resistance of 2XXX series Al-Li alloys were investigated.

  8. Effects of surface topography and vibrations on wetting: Superhydrophobicity, icephobicity and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Ramachandran, Rahul

    Concrete and metallic materials are widely used in construction and water industry. The interaction of both these materials with water and ice (or snow) produces undesirable results and is therefore of interest. Water that gets absorbed into the pores of dry concrete expands on freezing and can lead to crack formation. Also, the ice accretion on concrete surfaces such as roadways can have disastrous consequence. Metallic components used in the water industry undergo corrosion due to contact with aqueous corrosive solutions. Therefore, it is desirable to make concrete water/ice-repellent, and to make metallic surfaces corrosion-resistant. Recent advances in micro/nanotechnology have made it possible to design functional micro/nanostructured surfaces with micro/nanotopography providing low adhesion. Some examples of such surfaces are superhydrophobic surfaces, which are extremely water repellent, and icephobic surfaces, which have low ice adhesion, repel incoming water droplets before freezing, or delay ice nucleation. This dissertation investigates the effects of surface micro/nanotopography and small amplitude fast vibrations on the wetting and adhesion of concrete with the goal of producing hydrophobic and icephobic concrete, and on the wetting of metallic surfaces to prevent corrosion. The relationship between surface micro/nanotopography and small fast vibrations is established using the method of separation of motions. Both these small scale effects can be substituted by an effective force or energy. The structure-property relationships in materials and surfaces are established. Both vibrations as well as surface micro/nanopatterns can affect wetting properties such as contact angle and surface free energy. Hydrophobic engineered cementitious composite samples are produced by controlling their surface topography and surface free energy. The surface topography is controlled by varying the concrete mixture composition. The surface free energy of concrete is

  9. Wear and Corrosion Properties of 316L-SiC Composite Coating Deposited by Cold Spray on Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Ma, Bing; Liu, Guang; Song, Hui; Wu, Jinming; Cui, Lang; Zheng, Ziyun

    2017-08-01

    In order to improve the wear and corrosion resistance of commonly used magnesium alloys, 316L stainless steel coating and 316L-SiC composite coating have been deposited directly on commercial AZ80 magnesium alloy using cold spraying technology (CS). The microstructure, hardness and bonding strength of as-sprayed coatings were studied. Their tribological properties sliding against Si3N4 and GCr15 steel under unlubricated conditions were evaluated by a ball-on-disk tribometer. Corrosion behaviors of coated samples were also evaluated and compared to that of uncoated magnesium alloy substrate in 3.5 wt.% NaCl solution by electrochemical measurements. Scanning electron microscopy was used to characterize the corresponding wear tracks and corroded surfaces to determine wear and corrosion mechanisms. The results showed that the as-sprayed coatings possessed higher microhardness and more excellent wear resistance than magnesium alloy substrate. Meanwhile, 316L and 316L-SiC coating also reduced the corrosion current density of magnesium alloy and the galvanic corrosion of the substrates was not observed after 200-h neutral salt spray exposure, which demonstrated that corrosion resistance of a magnesium alloy substrate could be greatly improved by cold-sprayed stainless steel-based coatings.

  10. Wear and Corrosion Properties of 316L-SiC Composite Coating Deposited by Cold Spray on Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Ma, Bing; Liu, Guang; Song, Hui; Wu, Jinming; Cui, Lang; Zheng, Ziyun

    2017-06-01

    In order to improve the wear and corrosion resistance of commonly used magnesium alloys, 316L stainless steel coating and 316L-SiC composite coating have been deposited directly on commercial AZ80 magnesium alloy using cold spraying technology (CS). The microstructure, hardness and bonding strength of as-sprayed coatings were studied. Their tribological properties sliding against Si3N4 and GCr15 steel under unlubricated conditions were evaluated by a ball-on-disk tribometer. Corrosion behaviors of coated samples were also evaluated and compared to that of uncoated magnesium alloy substrate in 3.5 wt.% NaCl solution by electrochemical measurements. Scanning electron microscopy was used to characterize the corresponding wear tracks and corroded surfaces to determine wear and corrosion mechanisms. The results showed that the as-sprayed coatings possessed higher microhardness and more excellent wear resistance than magnesium alloy substrate. Meanwhile, 316L and 316L-SiC coating also reduced the corrosion current density of magnesium alloy and the galvanic corrosion of the substrates was not observed after 200-h neutral salt spray exposure, which demonstrated that corrosion resistance of a magnesium alloy substrate could be greatly improved by cold-sprayed stainless steel-based coatings.

  11. Improving by postoxidation of corrosion resistance of plasma nitrocarburized AISI 316 stainless steels

    NASA Astrophysics Data System (ADS)

    Yenilmez, A.; Karakan, M.; Çelik, İ.

    2017-01-01

    Austenitic stainless steels are widely used in several industries such as chemistry, food, health and space due to their perfect corrosion resistance. However, in addition to corrosion resistance, the mechanic and tribological features such as wear resistance and friction are required to be good in the production and engineering of this type of machines, equipment and mechanic parts. In this study, ferritic (FNC) and austenitic (ANC) nitrocarburizing were applied on AISI 316 stainless steel specimens with perfect corrosion resistance in the plasma environment at the definite time (4 h) and constant gas mixture atmosphere. In order to recover corrosion resistance which was deteriorated after nitrocarburizing again, plasma postoxidation process (45 min) was applied. After the duplex treatment, the specimens' structural analyses with XRD and SEM methods, corrosion analysis with polarization method and surface hardness with microhardness method were examined. At the end of the studies, AISI 316 surface hardness of stainless steel increased with nitrocarburizing process, but the corrosion resistance was deteriorated with FNC (570 °C) and ANC (670 °C) nitrocarburizing. With the following of the postoxidation treatment, it was detected that the corrosion resistance became better and it approached its value before the process.

  12. Corrosion resistance of stainless steels during thermal cycling in alkali nitrate molten salts.

    SciTech Connect

    Bradshaw, Robert W.; Goods, Steven Howard

    2001-09-01

    The corrosion behavior of three austenitic stainless steels was evaluated during thermal cycling in molten salt mixtures consisting of NaNO{sub 3} and KNO{sub 3}. Corrosion tests were conducted with Types 316, 316L and 304 stainless steels for more than 4000 hours and 500 thermal cycles at a maximum temperature of 565 C. Corrosion rates were determined by chemically descaling coupons. Metal losses ranged from 5 to 16 microns and thermal cycling resulted in moderately higher corrosion rates compared to isothermal conditions. Type 316 SS was somewhat more corrosion resistant than Type 304 SS in these tests. The effect of carbon content on corrosion resistance was small, as 316L SS corroded only slightly slower than 316 SS. The corrosion rates increased as the dissolved chloride content of the molten salt mixtures increased. Chloride concentrations approximating 1 wt.%, coupled with thermal cycling, resulted in linear weight loss kinetics, rather than parabolic kinetics, which described corrosion rates for all other conditions. Optical microscopy and electron microprobe analysis revealed that the corrosion products consisted of iron-chromium spinel, magnetite, and sodium ferrite, organized as separate layers. Microanalysis of the elemental composition of the corrosion products further demonstrated that the chromium content of the iron-chromium spinel layer was relatively high for conditions in which parabolic kinetics were observed. However, linear kinetics were observed when the spinel layer contained relatively little chromium.

  13. Resistive memory for harsh electronics: immunity to surface effect and high corrosion resistance via surface modification.

    PubMed

    Huang, Teng-Han; Yang, Po-Kang; Lien, Der-Hsien; Kang, Chen-Fang; Tsai, Meng-Lin; Chueh, Yu-Lun; He, Jr-Hau

    2014-03-18

    The tolerance/resistance of the electronic devices to extremely harsh environments is of supreme interest. Surface effects and chemical corrosion adversely affect stability and operation uniformity of metal oxide resistive memories. To achieve the surrounding-independent behavior, the surface modification is introduced into the ZnO memristors via incorporating fluorine to replace the oxygen sites. F-Zn bonds is formed to prevent oxygen chemisorption and ZnO dissolution upon corrosive atmospheric exposure, which effectively improves switching characteristics against harmful surroundings. In addition, the fluorine doping stabilizes the cycling endurance and narrows the distribution of switching parameters. The outcomes provide valuable insights for future nonvolatile memory developments in harsh electronics.

  14. Resistive Memory for Harsh Electronics: Immunity to Surface Effect and High Corrosion Resistance via Surface Modification

    NASA Astrophysics Data System (ADS)

    Huang, Teng-Han; Yang, Po-Kang; Lien, Der-Hsien; Kang, Chen-Fang; Tsai, Meng-Lin; Chueh, Yu-Lun; He-Hau, Jr.

    2014-03-01

    The tolerance/resistance of the electronic devices to extremely harsh environments is of supreme interest. Surface effects and chemical corrosion adversely affect stability and operation uniformity of metal oxide resistive memories. To achieve the surrounding-independent behavior, the surface modification is introduced into the ZnO memristors via incorporating fluorine to replace the oxygen sites. F-Zn bonds is formed to prevent oxygen chemisorption and ZnO dissolution upon corrosive atmospheric exposure, which effectively improves switching characteristics against harmful surroundings. In addition, the fluorine doping stabilizes the cycling endurance and narrows the distribution of switching parameters. The outcomes provide valuable insights for future nonvolatile memory developments in harsh electronics.

  15. Resistive Memory for Harsh Electronics: Immunity to Surface Effect and High Corrosion Resistance via Surface Modification

    PubMed Central

    Huang, Teng-Han; Yang, Po-Kang; Lien, Der-Hsien; Kang, Chen-Fang; Tsai, Meng-Lin; Chueh, Yu-Lun; He, Jr-Hau

    2014-01-01

    The tolerance/resistance of the electronic devices to extremely harsh environments is of supreme interest. Surface effects and chemical corrosion adversely affect stability and operation uniformity of metal oxide resistive memories. To achieve the surrounding-independent behavior, the surface modification is introduced into the ZnO memristors via incorporating fluorine to replace the oxygen sites. F-Zn bonds is formed to prevent oxygen chemisorption and ZnO dissolution upon corrosive atmospheric exposure, which effectively improves switching characteristics against harmful surroundings. In addition, the fluorine doping stabilizes the cycling endurance and narrows the distribution of switching parameters. The outcomes provide valuable insights for future nonvolatile memory developments in harsh electronics. PMID:24638086

  16. Corrosion resistance assessment of Co-Cr alloy frameworks fabricated by CAD/CAM milling, laser sintering, and casting methods.

    PubMed

    Tuna, Süleyman Hakan; Özçiçek Pekmez, Nuran; Kürkçüoğlu, Işin

    2015-11-01

    The effects of fabrication methods on the corrosion resistance of frameworks produced with Co-Cr alloys are not clear. The purpose of this in vitro study was to evaluate the electrochemical corrosion resistance of Co-Cr alloy specimens that were fabricated by conventional casting, milling, and laser sintering. The specimens fabricated with 3 different methods were investigated by potentiodynamic tests and electrochemical impedance spectroscopy in an artificial saliva. Ions released into the artificial saliva were estimated with inductively coupled plasma-mass spectrometry, and the results were statistically analyzed. The specimen surfaces were investigated with scanning electron microscopy before and after the tests. In terms of corrosion current and Rct properties, statistically significant differences were found both among the means of the methods and among the means of the material groups (P<.05). With regard to ions released, a statistically significant difference was found among the material groups (P<.05); however, no difference was found among the methods. Scanning electron microscopic imaging revealed that the specimens produced by conventional casting were affected to a greater extent by etching and electrochemical corrosion than those produced by milling and laser sintering. The corrosion resistance of a Co-Cr alloy specimens fabricated by milling or laser sintering was greater than that of the conventionally cast alloy specimens. The Co-Cr specimens produced by the same method also differed from one another in terms of corrosion resistance. These differences may be related to the variations in the alloy compositions. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. Plasma Arc Melting (PAM) and Corrosion Resistance of Pure NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Tuissi, A.; Rondelli, G.; Bassani, P.

    2015-03-01

    Plasma arc melting (PAM) as a suitable non-contaminating melting route for manufacturing high-quality NiTi alloy was successfully examined. The corrosion resistance of PAM Nitinol was evaluated by both potentiodynamic and potentiostatic tests and compared with lower purity NiTi produced by vacuum induction melting (VIM). For the electro-polished surfaces, excellent corrosion resistance of NiTi comparable with the Ti alloys was found with no pitting up to 800 mV versus saturated calomel electrode in simulated body fluid at 37 °C. Potentiostatic results of PAM Nitinol indicate slightly better corrosion resistance than the lower quality VIM alloy.

  18. Fabrication of intermetallic coatings for electrical insulation and corrosion resistance on high-temperature alloys

    SciTech Connect

    Park, J.-H.; Cho, W.D.

    1996-11-01

    Several intermetallic films were applied to high-temperature alloys (V alloys and 304, 316 stainless steels) to provide electrical insulation and corrosion resistance. Alloy grain growth at 1000 C for the V-5Cr-5Ti alloy was investigated to determine stability of the alloy substrate during coating formation by CVD or metallic vapor processes at 800-850 C. Film layers were examined by optical and scanning electron microscopy and by electron-energy-dispersive and XRD analysis; they were also tested for electrical resistivity and corrosion resistance. Results elucidated the nature of the coatings, which provided both electrical insulation and high-temperature corrosion protection.

  19. Improving the corrosion resistance of power metallurgy austenitic stainless steels through infiltration

    SciTech Connect

    Velasco, F.; Ibars, J.R.; Ruiz-Roman, J.M.; Torralba, J.M.; Ruiz-Prieto, J.M.

    1996-01-01

    Types 316L (UNS S31603) and 304L (UNS S30403) sintered stainless steels (SS) were produced in a laboratory furnace at 1,330 C and infiltrated with copper and bronze in different percentages to determine their effect on the corrosion resistance of the presintered SS. Corrosion resistance was studied by immersion in sulfuric, hydrochloric and nitric acids and by electrochemical potentiokinetic reactivation (EPR) tests. Both copper and bronze improved corrosion resistance highly in HCl and boiling H{sub 2}SO{sub 4}. Results of EPR and boiling H{sub 2}SO{sub 4} immersion tests showed good concordance.

  20. Corrosion inhibition property of polyester-groundnut shell biodegradable composite.

    PubMed

    Sounthari, P; Kiruthika, A; Saranya, J; Parameswari, K; Chitra, S

    2016-12-01

    The use of natural fibers as reinforcing materials in thermoplastics and thermoset matrix composites provide optimistic environmental profits with regard to ultimate disposability and better use of raw materials. The present work is focused on the corrosion inhibition property of a polymer matrix composite produced by the use of groundnut shell (GNS) waste. Polyester (PE) was synthesized by condensation polymerization of symmetrical 1,3,4-oxadiazole and pimelic acid using sodium lauryl sulfate as surfactant. The polyester-groundnut shell composite (PEGNS) was prepared by ultrasonication method. The synthesized polyester-groundnut shell composite was characterized by FT-IR, TGA and XRD analysis. The corrosion inhibitory effect of PEGNS on mild steel in 1M H2SO4 was investigated using gravimetric method, electrochemical impedance spectroscopy, potentiodynamic polarization, atomic absorption spectroscopy and scanning electron microscopy. The results showed that PEGNS inhibited mild steel corrosion in acid solution and indicated that the inhibition efficiency increased with increasing inhibitor concentration and decrease with increasing temperature. The composite inhibited the corrosion of mild steel through adsorption following the Langmuir adsorption isotherm. Changes in the impedance parameters Rt, Cdl, Icorr, Ecorr, ba and bc suggested the adsorption of PEGNS onto the mild steel surface, leading to the formation of protective film.

  1. Substitution for chromium in 304 stainless steel. [effects on oxidation and corrosion resistance

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Barrett, C. A.

    1978-01-01

    An investigation was conducted to determine the effects of substituting less strategic elements for Cr on oxidation and corrosion resistance of AISI 304 stainless steel. Cyclic oxidation resistance was evaluated at 870 C. Corrosion resistance was determined by exposure of specimens to a boiling copper-rich solution of copper sulfate and sulfuric acid. Alloy substitutes for Cr included Al, Mn, Mo, Si, Ti, V, Y, and misch metal. A level of about 12% Cr was the minimum amount of Cr required for adequate oxidation and corrosion resistance in the modified composition 304 stainless steels. This represents a Cr saving of 33 percent. Two alloys containing 12% Cr plus 2% Al plus 2% Mo and 12% Cr plus 2.65% Si were identified which exhibited oxidation and corrosion resistance comparable to AISI 304 stainless steel.

  2. Substitution for chromium in 304 stainless steel. [effects on oxidation and corrosion resistance

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Barrett, C. A.

    1978-01-01

    An investigation was conducted to determine the effects of substituting less strategic elements for Cr on oxidation and corrosion resistance of AISI 304 stainless steel. Cyclic oxidation resistance was evaluated at 870 C. Corrosion resistance was determined by exposure of specimens to a boiling copper-rich solution of copper sulfate and sulfuric acid. Alloy substitutes for Cr included Al, Mn, Mo, Si, Ti, V, Y, and misch metal. A level of about 12% Cr was the minimum amount of Cr required for adequate oxidation and corrosion resistance in the modified composition 304 stainless steels. This represents a Cr saving of 33 percent. Two alloys containing 12% Cr plus 2% Al plus 2% Mo and 12% Cr plus 2.65% Si were identified which exhibited oxidation and corrosion resistance comparable to AISI 304 stainless steel.

  3. Zn-ZrO 2 nanocomposite coatings: Elecrodeposition and evaluation of corrosion resistance

    NASA Astrophysics Data System (ADS)

    Vathsala, Kanagalasara; Venkatesha, Thimmappa Venkatarangaiah

    2011-08-01

    The Zn and Zn-ZrO 2 composite coatings were produced by electrodeposition technique using sulphate bath. ZrO 2 particles were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The ZrO 2 particle size distribution in the plating bath and Zeta potential and the ZrO 2 were measured using dynamic light scattering technique (DLS). The corrosion resistance properties of Zn and Zn-ZrO 2 composite coatings were compared by examining the experimental data acquired through polarization, open circuit potential (OCP) and Tafel measurements. The corrosion environment was 3.5 wt% NaCl solution. The variation of amount of ZrO 2 in the solution on their % wt inclusion in the composite and on composite microhardness was investigated. XRD patterns were recorded for Zn and Zn-ZrO 2 coatings to compare their grain size. The SEM images of coatings before and after corrosion under chemical and electrochemical conditions were presented. The results were analyzed to establish the superiority of Zn-ZrO 2 composite over Zn coating.

  4. Structure Analysis Of Corrosion Resistant Thermal Sprayed Coatings On Low Alloy Steels

    SciTech Connect

    Chaliampalias, D.; Vourlias, G.; Pistofidis, N.; Pavlidou, E.; Stergiou, A.; Stergioudis, G.; Polychroniadis, E. K.

    2007-04-23

    Metallic coatings have been proved to reduce the rate of corrosion of steel in various atmospheres. In this work the structure of Al, Cu-Al and Zn thermal sprayed coatings is examined. The as formed coatings are extremely rough, and they are composed of several phases which increase corrosion resistance as it was determined Salt Spray Chamber tests.

  5. Effect of surface roughness on leakage current and corrosion resistance of oxide layer on AZ91 Mg alloy prepared by plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Yoo, Bongyoung; Shin, Ki Ryoung; Hwang, Duck Young; Lee, Dong Heon; Shin, Dong Hyuk

    2010-09-01

    The influence of the surface roughness of Mg alloys on the electrical properties and corrosion resistance of oxide layers obtained by plasma electrolytic oxidation (PEO) were studied. The leakage current in the insulating oxide layer was enhanced by increasing the surface roughness, which is a favorable characteristic for the material when applied to hand-held electronic devices. The variation of corrosion resistance with surface roughness was also investigated. The corrosion resistance was degraded by the increasing surface roughness, which was confirmed with DC polarization and impedance spectroscopy. Pitting corrosion on the passive oxide layer was also analyzed with a salt spray test, which showed that the number of pits was not affected by the surface roughness when the spray time reached 96 h.

  6. In-vitro long term and electrochemical corrosion resistance of cold deformed nitrogen containing austenitic stainless steels in simulated body fluid.

    PubMed

    Talha, Mohd; Behera, C K; Sinha, O P

    2014-07-01

    This work was focused on the evaluation of the corrosion behavior of deformed (10% and 20% cold work) and annealed (at 1050 °C for 15 min followed by water quenching) Ni-free high nitrogen austenitic stainless steels (HNSs) in simulated body fluid at 37°C using weight loss method (long term), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. Scanning electron microscopy (SEM) was used to understand the surface morphology of the alloys after polarization test. It has been observed that cold working had a significant influence on the corrosion resistant properties of these alloys. The weight loss and corrosion rates were observed to decrease with increasing degree of cold working and nitrogen content in the alloy. The corrosion resistance of the material is directly related to the resistance of the passive oxide film formed on its surface which was enhanced with cold working and nitrogen content. It was also observed that corrosion current densities were decreased and corrosion potentials were shifted to more positive values. By seeing pit morphology under SEM, shallower and smaller pits were associated with HNSs and cold worked samples, indicating that corrosion resistance increases with increasing nitrogen content and degree of cold deformation. X-ray diffraction profiles of annealed as well as deformed alloys were revealed and there is no evidence for formation of martensite or any other secondary phases.

  7. General Corrosion Resistance Comparisons of Medium- and High-Strength Aluminum Alloys for DOD Systems Using Laboratory-Based Accelerated Corrosion Methods

    DTIC Science & Technology

    2009-09-01

    General Corrosion Resistance Comparisons of Medium- and High-Strength Aluminum Alloys for DOD Systems Using Laboratory-Based Accelerated... Aluminum Alloys for DOD Systems Using Laboratory-Based Accelerated Corrosion Methods Brian E. Placzankis Weapons and Materials Research Directorate...March 2006–October 2008 4. TITLE AND SUBTITLE General Corrosion Resistance Comparisons of Medium- and High-Strength Aluminum Alloys for DOD

  8. Crystallization mechanism and corrosion property of electroless nickel phosphorus coating during intermediate temperature oxidation

    NASA Astrophysics Data System (ADS)

    Sribalaji, M.; Arunkumar, P.; Babu, K. Suresh; Keshri, Anup Kumar

    2015-11-01

    Electroless Ni-P coating was deposited on steel substrate and the effect of intermediate temperature oxidation on crystallization mechanism and corrosion properties of the coating was investigated. Ni-P coatings were annealed at three different temperatures, viz. 200 °C, 400 °C and 600 °C for 2 h in air. Formation of nickel oxide (NiO) was observed in the coating upon annealing beyond the crystallization temperature (330 °C). Crystallization mechanism provided insight about the step by step formation of long range ordered Ni,Ni3P and NiO phases.Improvement in the corrosion resistance of Ni-P coating compared to bare steel was found to be ∼21% on annealing at 400 °C in air which gradually increased to ∼31% on annealing the coating at 600 °C in air. Increasedcorrosion resistance at 400 °C annealed coating was attributed to the formation of crystalline Ni and Ni3P phases. Two simultaneously effects have been identified for the increased corrosion resistance of the coating annealed at 600 °C in air. (a) Formation of NiO layer which acts as a passivation layer and protects the underlying P enriched layer and (b) absence of an interdiffusion layer from substrate to coating.

  9. 76 FR 69703 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of Extension of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea...) published a notice of initiation of the administrative review of the antidumping duty order on corrosion... results of this review. See Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic...

  10. 75 FR 77615 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of Extension of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-13

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea...) published a notice of initiation of the administrative review of the antidumping duty order on corrosion... results of this review. See Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic...

  11. Rapid Tempering of Martensitic Stainless Steel AISI420: Microstructure, Mechanical and Corrosion Properties

    NASA Astrophysics Data System (ADS)

    Abbasi-Khazaei, Bijan; Mollaahmadi, Akbar

    2017-03-01

    In this research, the effect of rapid tempering on the microstructure, mechanical properties and corrosion resistance of AISI 420 martensitic stainless steel has been investigated. At first, all test specimens were austenitized at 1050 °C for 1 h and tempered at 200 °C for 1 h. Then, the samples were rapidly reheated by a salt bath furnace in a temperature range from 300 to 1050 °C for 2 min and cooled in air. The tensile tests, impact, hardness and electrochemical corrosion were carried out on the reheated samples. Scanning electron microscopy was used to study the microstructure and fracture surface. To investigate carbides, transmission electron microscopy and also scanning electron microscopy were used. X-ray diffraction was used for determination of the retained austenite. The results showed that the minimum properties such as the tensile strength, impact energy, hardness and corrosion resistance were obtained at reheating temperature of 700 °C. Semi-continuous carbides in the grain boundaries were seen in this temperature. Secondary hardening phenomenon was occurred at reheating temperature of 500 °C.

  12. Rapid Tempering of Martensitic Stainless Steel AISI420: Microstructure, Mechanical and Corrosion Properties

    NASA Astrophysics Data System (ADS)

    Abbasi-Khazaei, Bijan; Mollaahmadi, Akbar

    2017-04-01

    In this research, the effect of rapid tempering on the microstructure, mechanical properties and corrosion resistance of AISI 420 martensitic stainless steel has been investigated. At first, all test specimens were austenitized at 1050 °C for 1 h and tempered at 200 °C for 1 h. Then, the samples were rapidly reheated by a salt bath furnace in a temperature range from 300 to 1050 °C for 2 min and cooled in air. The tensile tests, impact, hardness and electrochemical corrosion were carried out on the reheated samples. Scanning electron microscopy was used to study the microstructure and fracture surface. To investigate carbides, transmission electron microscopy and also scanning electron microscopy were used. X-ray diffraction was used for determination of the retained austenite. The results showed that the minimum properties such as the tensile strength, impact energy, hardness and corrosion resistance were obtained at reheating temperature of 700 °C. Semi-continuous carbides in the grain boundaries were seen in this temperature. Secondary hardening phenomenon was occurred at reheating temperature of 500 °C.

  13. DIFFUSION COATINGS FOR CORROSION RESISTANT COMPONENTS IN COAL GASIFICATION SYSTEMS

    SciTech Connect

    Gopala N. Krishnan; Ripudaman Malhotra; Angel Sanjurjo

    2004-05-01

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve is resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. A review of the literature indicated that the Fe- and Ni-based high-temperature alloys are susceptible to sulfidation attack unless they are fortified with high levels of Cr, Al, and Si. To impart corrosion resistance, these elements need not be in the bulk of the alloy and need only be present at the surface layers. We selected diffusion coatings of Cr and Al, and surface coatings of Si and Ti for the preliminary testing. These coatings will be applied using the fluidized bed chemical vapor deposition technique developed at SRI which is rapid and relatively inexpensive. We have procured coupons of typical alloys used in a gasifier. These coupons will be coated with Cr, Al, Si, and Ti. The samples will be tested in a bench-scale reactor using simulated coal gas compositions. In addition, we will be sending coated samples for insertion in the gas stream of the coal gasifier.

  14. Characterization of corrosion resistant materials in low and high temperature HF environments

    SciTech Connect

    Crum, J.R.; Smith, G.D.; McNallan, M.J.; Hirnyj, S.

    1999-11-01

    A variety of hydrogen fluoride containing gases, hydrofluoric acid condensates and hydrofluoric acid aqueous solutions are encountered in petrochemical and chemical process applications. A special laboratory test system has been designed to develop stress corrosion cracking and general corrosion data for several nickel alloys in hydrogen fluoride and hydrofluoric acid environments at temperatures from 50 C to 450 C. Test results from this system and aqueous corrosion test results show Ni-Cu alloy 400 (UNS N04400) to be one of the best materials for high temperature applications and better than the ten other nickel base alloys examined in this study for resistance to general corrosion in aqueous hydrofluoric acid.

  15. Corrosion-resistant multilayer coatings for the 28-75 nm wavelength region

    SciTech Connect

    Soufli, R; Fernandez-Perea, M; Al, E T

    2011-11-08

    Corrosion has prevented use of SiC/Mg multilayers in applications requiring good lifetime stability. We have developed Al-based barrier layers that dramatically reduce corrosion, while preserving high reflectance and low stress. The aforementioned advances may enable the implementation of corrosion-resistant, high-performance SiC/Mg coatings in the 28-75 nm region in applications such as tabletop EUV/soft x-ray laser sources and solar physics telescopes. Further study and optimization of corrosion barrier structures and coating designs is underway.

  16. 16 CFR 23.10 - Misuse of “corrosion proof,” “noncorrosive,” “corrosion resistant,” “rust proof,” “rust resistant...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INDUSTRIES § 23.10 Misuse of “corrosion proof,” “noncorrosive,” “corrosion resistant,” “rust proof,” “rust resistant,” etc. (a) It is unfair or deceptive to: (1) Use the terms “corrosion proof,” “noncorrosive... the product will be immune from rust and other forms of corrosion during the life expectancy of...

  17. 16 CFR 23.10 - Misuse of “corrosion proof,” “noncorrosive,” “corrosion resistant,” “rust proof,” “rust resistant...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... INDUSTRIES § 23.10 Misuse of “corrosion proof,” “noncorrosive,” “corrosion resistant,” “rust proof,” “rust resistant,” etc. (a) It is unfair or deceptive to: (1) Use the terms “corrosion proof,” “noncorrosive... the product will be immune from rust and other forms of corrosion during the life expectancy of...

  18. 16 CFR 23.10 - Misuse of “corrosion proof,” “noncorrosive,” “corrosion resistant,” “rust proof,” “rust resistant...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... INDUSTRIES § 23.10 Misuse of “corrosion proof,” “noncorrosive,” “corrosion resistant,” “rust proof,” “rust resistant,” etc. (a) It is unfair or deceptive to: (1) Use the terms “corrosion proof,” “noncorrosive... the product will be immune from rust and other forms of corrosion during the life expectancy of the...

  19. 16 CFR 23.10 - Misuse of “corrosion proof,” “noncorrosive,” “corrosion resistant,” “rust proof,” “rust resistant...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... INDUSTRIES § 23.10 Misuse of “corrosion proof,” “noncorrosive,” “corrosion resistant,” “rust proof,” “rust resistant,” etc. (a) It is unfair or deceptive to: (1) Use the terms “corrosion proof,” “noncorrosive... the product will be immune from rust and other forms of corrosion during the life expectancy of the...

  20. 16 CFR 23.10 - Misuse of “corrosion proof,” “noncorrosive,” “corrosion resistant,” “rust proof,” “rust resistant...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... INDUSTRIES § 23.10 Misuse of “corrosion proof,” “noncorrosive,” “corrosion resistant,” “rust proof,” “rust resistant,” etc. (a) It is unfair or deceptive to: (1) Use the terms “corrosion proof,” “noncorrosive... the product will be immune from rust and other forms of corrosion during the life expectancy of the...

  1. One-step spray-coating process for the fabrication of colorful superhydrophobic coatings with excellent corrosion resistance.

    PubMed

    Li, Jian; Wu, Runni; Jing, Zhijiao; Yan, Long; Zha, Fei; Lei, Ziqiang

    2015-10-06

    A simple method was used to generate colorful hydrophobic stearate particles via chemical reactions between inorganic salts and sodium stearate. Colored self-cleaning superhydrophobic coatings were prepared through a facile one-step spray-coating process by spraying the stearate particle suspensions onto stainless steel substrates. Furthermore, the colorful superhydrophobic coating maintains excellent chemical stability under both harsh acidic and alkaline circumstances. After being immersed in a 3.5 wt % NaCl aqueous solution for 1 month, the as-prepared coatings remained superhydrophobic; however, they lost their self-cleaning property with a sliding angle of about 46 ± 3°. The corrosion behavior of the superhydrophobic coatings on the Al substrate was characterized by the polarization curve and electrochemical impedance spectroscopy (EIS). The electrochemical corrosion test results indicated that the superhydrophobic coatings possessed excellent corrosion resistance, which could supply efficient and long-term preservation for the bare Al substrate.

  2. The effect of refractory elements on the hot corrosion resistance of nickel-base superalloys

    SciTech Connect

    Verdonik, D.P.

    1988-01-01

    The superalloy B 1900, an alumina former, is known to possess reasonable oxidation resistance but less adequate resistance to hot corrosion. Superalloys IN 738 and U 710, chromia formers, are know to possess oxidation and corrosion resistance. Experimental alloys based on these existing superalloys are designed by mutually substituting the refractory elements Mo, W, Nb and Ta. The effects of these substitutions were tested for hot corrosion resistance. The experiments were carried out at 800, 900 and 1000{degree}C and activation energies were determined from the rate constants in the different regimes. Consistent with previous results, U 710 is the most hot corrosion-resistant standard alloy, ranked second is IN 738, and lastly is B 1900. Within the entire series of alloys, the U 710 based alloys are the most hot corrosion resistant exhibiting only the initial regime. The B 1900 based alloys with only Ta or Nb (no Mo) are the next best showing only up to accelerated attack. The IN 738 alloys rank third. Within these derivative alloys, the alloys without Nb are the best, exhibiting the smallest accelerated attack and the longest initial regime. The B 1900 based alloys containing Mo are the worst of the entire series. Within these substitutions, the alloys with Ta are the best. The alloys with Mo and Nb, and with just Mo are nearly equivalent, being the least corrosion resistant of all the alloys tested.

  3. Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure and method of processing

    DOEpatents

    Brown, Jr., Jesse J.; Hirschfeld, Deidre A.; Li, Tingkai

    1993-12-07

    Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure are created using sol-gel processes. The processes have particular application in creating calcium magnesium zirconium phosphate, CMZP, coatings and foams.

  4. White primer permits a corrosion-resistant coating of minimum weight

    NASA Technical Reports Server (NTRS)

    Albrecht, R. H.; Jensen, D. P.; Schnake, P.

    1966-01-01

    White primer for coating 2219 aluminum alloy supplies a base for a top coating of enamel. A formulation of pigments and vehicle results in a primer with high corrosion resistance and minimum film thickness.

  5. Effect of Boron and Cerium on Corrosion Resistance of Cu -Fe -P Alloy

    NASA Astrophysics Data System (ADS)

    Zou, Jin; Lu, Lei; Lu, De-ping; Liu, Ke-Ming; Chen, Zhi-bao; Zhai, Qi-jie

    2016-03-01

    The effects of B and Ce on the corrosion resistance of Cu-0.22Fe-0.06P alloy were investigated by salt spray and electrochemical tests. The corrosion morphology was studied by scanning electron microscopy. The corrosion products were characterized by energy-dispersive x-ray spectroscopy and x-ray diffraction analysis. The impurity content was determined by inductively coupled plasma mass spectrometry. The conductivity was measured using an eddy current conductivity meter. The grains of Cu-0.22Fe-0.06P alloy were refined by the addition of B and Ce. The electrochemical corrosion process of alloy is retarded due to purification effect of B and Ce. After the addition of a trace amount of B, the corrosion resistance of the alloy decreased. The corrosion resistance of Cu-0.22Fe-0.06P-0.025B-0.05Ce was better than that of Cu-0.22Fe-0.06P-0.025B due to the fact that the purification effect of Ce is better than that of B. The main corrosion products of the Cu-Fe-P alloys in a NaCl solution are Cu2Cl(OH)3 and Cu2O. The addition of trace amounts of B and Ce did not change the components of the corrosion product.

  6. Corrosion resistance and biological activity of TiO2 implant coatings produced in oxygen-rich environments.

    PubMed

    Zhang, Rui; Wan, Yi; Ai, Xing; Liu, Zhanqiang; Zhang, Dong

    2017-01-01

    The physical and chemical properties of bio-titanium alloy implant surfaces play an important role in their corrosion resistance and biological activity. New turning and turning-rolling processes are presented, employing an oxygen-rich environment in order to obtain titanium dioxide layers that can both protect implants from corrosion and also promote cell adhesion. The surface topographies, surface roughnesses and chemical compositions of the sample surfaces were obtained using scanning electron microscopy, a white light interferometer, and the Auger electron spectroscopy, respectively. The corrosion resistance of the samples in a simulated body fluid was determined using electrochemical testing. Biological activity on the samples was also analyzed, using a vitro cell culture system. The results show that compared with titanium oxide layers formed using a turning process in air, the thickness of the titanium oxide layers formed using turning and turning-rolling processes in an oxygen-rich environment increased by 4.6 and 7.3 times, respectively. Using an oxygen-rich atmosphere in the rolling process greatly improves the corrosion resistance of the resulting samples in a simulated body fluid. On samples produced using the turning-rolling process, cells spread quickly and exhibited the best adhesion characteristics.

  7. Corrosion resistance and paintability of zinc and zinc-alloy coatings for automotive sheet

    SciTech Connect

    Johnson, W.R.; Vrable, J.B.

    1984-01-01

    Electroplated and hot-dip-galvanized coatings have been widely used by the automobile industry for corrosion protection of unexposed surfaces against perforation. There is a growing interest in replacing these essentially pure zinc coatings with thinner, more corrosion resistant zinc-alloy coatings, and also in using the alloy coatings on exposed surfaces to achieve cosmetic-corrosion resistance and improved paint performance. This paper presents the results of various tests conducted to evaluate the performance of several Fe-Zn and Ni-Zn alloy coatings for these services. The coatings were evaluated in over-the-road corrosion tests and indoor ''scab'' corrosion tests, as well as conventional salt-spray tests.

  8. Preparation and corrosion resistance of MAO/Ni-P composite coat on Mg alloy

    NASA Astrophysics Data System (ADS)

    Fan, Xizhi; Wang, Ying; Zou, Binglin; Gu, Lijian; Huang, Wenzhi; Cao, Xueqiang

    2013-07-01

    Microarc oxidation (MAO) coat was designed as an intermediate layer for the electroless plated Ni-P top coat, providing inert surface and necessary hardness for Mg alloy substrate. The composite coat was successfully prepared to improve the corrosion resistance of Mg alloy. The preparation and the characterization of the composite coat were investigated. The results show that the pre-treatment of MAO before electroless plating plays an important role in the deposition of compact composite coat. The activation (by HF solution) makes the MAO coat dense with uniform cracks which supply excellent bonding interface for Ni-P coat. Compared with monolithic MAO or Ni-P coat, the composite coat has excellent corrosion resistance and stable bonding interface. There is main pit corrosion at substrate after the corrosive medium penetrating through the whole coat. With the inert MAO interlayer, the electrochemical corrosion between the Ni-P and substrate is effectively inhibited.

  9. Interfacial valence electron localization and the corrosion resistance of Al-SiC nanocomposite

    PubMed Central

    Mosleh-Shirazi, Sareh; Hua, Guomin; Akhlaghi, Farshad; Yan, Xianguo; Li, Dongyang

    2015-01-01

    Microstructural inhomogeneity generally deteriorates the corrosion resistance of materials due to the galvanic effect and interfacial issues. However, the situation may change for nanostructured materials. This article reports our studies on the corrosion behavior of SiC nanoparticle-reinforced Al6061 matrix composite. It was observed that the corrosion resistance of Al6061 increased when SiC nanoparticles were added. Overall electron work function (EWF) of the Al-SiC nanocomposite increased, along with an increase in the corrosion potential. The electron localization function of the Al-SiC nanocomposite was calculated and the results revealed that valence electrons were localized in the region of SiC-Al interface, resulting in an increase in the overall work function and thus building a higher barrier to hinder electrons in the nano-composite to participate in corrosion reactions. PMID:26667968

  10. Mechanically reliable surface oxides for high-temperature corrosion resistance

    SciTech Connect

    Natesan, K.; Veal, B.W.; Grimsditch, M.; Renusch, D.; Paulikas, A.P.

    1995-05-01

    Corrosion is widely recognized as being important, but an understanding of the underlying phenomena involves factors such as the chemistry and physics of early stages of oxidation, chemistry and bonding at the substrate/oxide interface, role of segregants on the strength of that bond, transport processes through scale, mechanisms of residual stress generation and relief, and fracture behavior at the oxide/substrate interface. Because of this complexity a multilaboratory program has been initiated under the auspices of the DOE Center of Excellence for the Synthesis and Processing of Advanced Materials, with strong interactions and cross-leveraging with DOE Fossil Energy and US industry. Objective is to systematically generate the knowledge required to establish a scientific basis for designing and synthesizing improved protective oxide scales/coatings (slow-growing, adherent, sound) on high-temperature materials without compromising the requisite properties of the bulk materials. The objectives of program work at Argonne are to (1) correlate actual corrosion performance with stresses, voids, segregants, interface roughness, initial stages of oxidation, and microstructures; (2) study such behavior in growing or as-grown films; and (3) define prescriptive design and synthesis routes to mechanically reliable surface oxides. Several techniques, such as Auger electron spectroscopy, X-ray diffraction, X-ray grazing incidence reflectance, grazing-angle X-ray fluorescence, optical fluorescence, and Raman spectroscopy, are used in the studies. Tne project has selected Fe-25 wt.% Cr-20 wt.% Ni and Fe-Cr-Al alloys, which are chromia- and alumina-formers respectively, for the studies. This paper presents some of the results on early stages of oxidation and on surface segregation of elements.

  11. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Huang, Yiqin; Li, Heqin; Zuo, Min; Tao, Lei; Wang, Wei; Zhang, Jing; Tang, Qiong; Bai, Peiwen

    2016-07-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB.

  12. Effect of Chromium Addition to the Low Temperature Hot Corrosion Resistance of Platinum Modified Aluminide Coatings.

    DTIC Science & Technology

    1985-12-01

    Diffusion aluminide coatings were the first coatings developed for hot corrosion resistance. Aluminum is applied to the surface of the superalloy by a...D.H., "Mechanisms of Formation of Diffusion Aluminide Coatings on Nickel-oase Superalloys , Oxidation of Metals, v. 3, pp. 475-477, 1971. 17. Lehnert...Classification) E.FFECT OF CHROMIUJM ADDITION TO THE LOW TEMPERATURE HOT CORROSION RESISTANCE OF PLATINUM MODIFIED ALUMINIDE COATINGS 2 PERSONAL AUTHOR(S) Dust

  13. Corrosion and in vitro biocompatibility properties of cryomilled-spark plasma sintered commercially pure titanium.

    PubMed

    Dheda, Shehreen S; Kim, Yoon Kyung; Melnyk, Christopher; Liu, Wendy; Mohamed, Farghalli A

    2013-05-01

    Ti alloys, such as Ti6Al4V, are currently used in biomedical and dental implant applications. Ti alloys are used because they are stronger than commercially pure (CP) Ti due to the presence of alloying elements. However, toxicity of alloying elements during long-term use of implants is of concern. Another means of increasing the strength of materials is grain size refinement. In this study, ultrafine-grained (UFG, ~250 nm to 1 μm) CP Ti was produced by cryomilling followed by spark plasma sintering (SPS). Electrochemical impedance spectroscopy (EIS) and cell culture experiments were performed to compare the corrosion and biocompatibility properties of coarse grained (CG) Ti and UFG Ti. It was found that UFG Ti exhibited corrosion resistance comparable to CG Ti in Ringers solution. In addition, UFG Ti exhibited a reduced inflammatory response and enhanced cell adhesion compared to CG Ti. Investigation of surface roughness provided an explanation for enhanced cell adhesion.

  14. Microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys.

    PubMed

    Zhao, Chaoyong; Pan, Fusheng; Zhang, Lei; Pan, Hucheng; Song, Kai; Tang, Aitao

    2017-01-01

    In this study, as-extruded Mg-Sr alloys were studied for orthopedic application, and the microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys were investigated by optical microscopy, scanning electron microscopy with an energy dispersive X-ray spectroscopy, X-ray diffraction, tensile and compressive tests, immersion test, electrochemical test and cytotoxicity test. The results showed that as-extruded Mg-Sr alloys were composed of α-Mg and Mg17Sr2 phases, and the content of Mg17Sr2 phases increased with increasing Sr content. As-extruded Mg-Sr alloy with 0.5wt.% Sr was equiaxed grains, while the one with a higher Sr content was long elongated grains and the grain size of the long elongated grains decreased with increasing Sr content. Tensile and compressive tests showed an increase of both tensile and compressive strength and a decrease of elongation with increasing Sr content. Immersion and electrochemical tests showed that as-extruded Mg-0.5Sr alloy exhibited the best anti-corrosion property, and the anti-corrosion property of as-extruded Mg-Sr alloys deteriorated with increasing Sr content, which was greatly associated with galvanic couple effect. The cytotoxicity test revealed that as-extruded Mg-0.5Sr alloy did not induce toxicity to cells. These results indicated that as-extruded Mg-0.5Sr alloy with suitable mechanical properties, corrosion resistance and good cytocompatibility was potential as a biodegradable implant for orthopedic application. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Enhanced Corrosion Resistance of a Transient Liquid Phase Bonded Nickel-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Adebajo, O. J.; Ojo, O. A.

    2017-01-01

    Electrochemical analysis of corrosion performance of a transient liquid phase (TLP) bonded nickel-based superalloy was performed. The TLP bonding process resulted in significant reduction in corrosion resistance due to the formation of non-equilibrium solidification reaction micro-constituents within the joint region. The corrosion resistance degradation is completely eliminated through a new application of composite interlayer that had been previously considered unusable for joining single-crystal superalloys. The effectiveness of the new approach becomes more pronounced as the severity of environment increases.

  16. Detecting Corrosion Resistance of Coated Steel Rebars by Electrochemical Technique (eis)

    NASA Astrophysics Data System (ADS)

    Ryou, J.; Shah, S.

    Electrochemical impedance spectroscopy (EIS) is one of the electrochemical techniques used in materials science. The present measurements are used to evaluate the corrosion resistance of new types of coated steel rebar used in reinforced concrete. In this study, Si-based coating materials are used and evaluated, because adding Si to metals and alloys, including steel, generally increases their corrosion, oxidation, and erosion resistance. The result suggests that electrochemical impedance spectroscopy may be useful for monitoring corrosion activity on coated steel rebars. Based upon impedance changes, it appears that the silicon powder coating bonds well to the steel, and that the coating has a good performance.

  17. Effect of WO3 nanoparticle loading on the microstructural, mechanical and corrosion resistance of Zn matrix/TiO2-WO3 nanocomposite coatings for marine application

    NASA Astrophysics Data System (ADS)

    Popoola, A. P. I.; Daniyan, A. A.; Umoru, L. E.; Fayomi, O. S. I.

    2017-03-01

    In this study, for marine application purposes, we evaluated the effect of process parameter and particle loading on the microstructure, mechanical reinforcement and corrosion resistance properties of a Zn-TiO2-WO3 nanocomposite produced via electrodeposition. We characterized the morphological properties of the composite coatings with a Scanning Electron Microscope (SEM) equipped with an Energy Dispersive Spectrometer (EDS). We carried out mechanical examination using a Dura Scan hardness tester and a CERT UMT-2 multi-functional tribological tester. We evaluated the corrosion properties by linear polarization in 3.5% NaCl. The results show that the coatings exhibited good stability and the quantitative particle loading greatly enhanced the structural and morphological properties, hardness behavior and corrosion resistance of the coatings. We observed the precipitation of this alloy on steel is greatly influenced by the composite characteristics.

  18. Effect of WO3 nanoparticle loading on the microstructural, mechanical and corrosion resistance of Zn matrix/TiO2-WO3 nanocomposite coatings for marine application

    NASA Astrophysics Data System (ADS)

    Popoola, A. P. I.; Daniyan, A. A.; Umoru, L. E.; Fayomi, O. S. I.

    2017-01-01

    In this study, for marine application purposes, we evaluated the effect of process parameter and particle loading on the microstructure, mechanical reinforcement and corrosion resistance properties of a Zn-TiO2-WO3 nanocomposite produced via electrodeposition. We characterized the morphological properties of the composite coatings with a Scanning Electron Microscope (SEM) equipped with an Energy Dispersive Spectrometer (EDS). We carried out mechanical examination using a Dura Scan hardness tester and a CERT UMT-2 multi-functional tribological tester. We evaluated the corrosion properties by linear polarization in 3.5% NaCl. The results show that the coatings exhibited good stability and the quantitative particle loading greatly enhanced the structural and morphological properties, hardness behavior and corrosion resistance of the coatings. We observed the precipitation of this alloy on steel is greatly influenced by the composite characteristics.

  19. Long term corrosion resistance of alumina forming austenitic stainless steels in liquid lead

    NASA Astrophysics Data System (ADS)

    Ejenstam, Jesper; Szakálos, Peter

    2015-06-01

    Alumina forming austenitic steels (AFA) and commercial stainless steels have been exposed in liquid lead with 10-7 wt.% oxygen at 550 °C for up to one year. It is known that chromia forming austenitic stainless steels, such as 316L and 15-15 Ti, have difficulties forming protective oxides in liquid lead at temperatures above 500 °C, which is confirmed in this study. By adding Al to austenitic steels, it is in general terms possible to increase the corrosion resistance. However this study shows that the high Ni containing AFA alloys are attacked by the liquid lead, i.e. dissolution attack occurs. By lowering the Ni content in AFA alloys, it is possible to achieve excellent oxidation properties in liquid lead. Following further optimization of the microstructural properties, low Ni AFA alloys may represent a promising future structural steel for lead cooled reactors.

  20. Preparation, antibacterial effects and corrosion resistant of porous Cu-TiO2 coatings

    NASA Astrophysics Data System (ADS)

    Wu, Haibo; Zhang, Xiangyu; Geng, Zhenhua; Yin, Yan; Hang, Ruiqiang; Huang, Xiaobo; Yao, Xiaohong; Tang, Bin

    2014-07-01

    Antibacterial TiO2 coatings with different concentrations of Cu (Cu-TiO2) were prepared by micro-arc oxidation (MAO) on pre-sputtered CuTi films. The effect of Cu concentrations in CuTi films on the MAO process was investigated. The Cu-TiO2 coatings were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The corrosion resistance of Cu-TiO2 coatings was evaluated via potentiodynamic polarization method. The antibacterial properties were assessed by two methods: spread plate method and fluorescence staining. The experimental results demonstrate that the coatings are porous and consist of anatase phase, rutile phase and unoxidized titanium. The CuTi films are almost completely oxidized and the thickness of all MAO coatings is about 5-10 μm. Cu mainly exists as CuO in the TiO2 coatings. The Cu-TiO2 coatings exhibit excellent antibacterial activities, and the antibacterial rate gradually rise with the increase in Cu concentration in the MAO coatings. The corrosion resistance of MAO coatings is also improved slightly.

  1. Effect of Surface Modification on Corrosion Resistance of Uncoated and DLC Coated Stainless Steel Surface

    NASA Astrophysics Data System (ADS)

    Scendo, Mieczyslaw; Staszewska-Samson, Katarzyna

    2017-08-01

    Corrosion resistance of 4H13 stainless steel (EN-X46Cr13) surface uncoated and coated with an amorphous hydrogenated carbon (a-C:H) film [diamond-like carbon (DLC)] in acidic chloride solution was investigated. The DLC films were deposited on steel surface by a plasma deposition, direct current discharge (PDCD) method. The Fourier transform infrared (FTIR) was used to determine the chemical groups existing on DLC films. The surface of the specimens was observed by a scanning electron microscope (SEM). The tribological properties of the both materials were examined using a ball-on disk tribometer. The microhardness (HV) of diamond-like carbon film increased over five times in relation to the 4H13 stainless steel without of DLC coating. Oxidation kinetic parameters were determined by gravimetric and electrochemical methods. The high value of polarization resistance indicates that the DLC film on substrate was characterized by low electrical conductivity. The corrosion rate of 4H13 stainless steel with of DLC film decreased about eight times in relation to uncoated surface of 4H13 stainless steel.

  2. Corrosion resistance of cast irons and titanium alloys as reference engineered metal barriers for use in basalt geologic storage: a literature assessment

    SciTech Connect

    Charlot, L.A.; Westerman, R.E.

    1981-07-01

    A survey and assessment of the literature on the corrosion resistance of cast irons and low-alloy titanium are presented. Selected engineering properties of cast iron and titanium are briefly described; however, the corrosion resistance of cast iron and titanium in aqueous solutions or in soils and their use in a basalt repository are emphasized. In evaluating the potential use of cast iron and titanium as structural barrier materials for long-lived nuclear waste packages, it is assumed that titanium has the general corrosion resistance to be used in relatively thin cross sections whereas the cost and availability of cast iron allows its use even in very thick cross sections. Based on this assumption, the survey showed that: The uniform corrosion of low-alloy titanium in a basalt environment is expected to be extremely low. A linear extrapolation of general corrosion rates with an added corrosion allowance suggests that a 3.2- to 6.4-mm-thick wall may have a life of 1000 yr. Pitting and crevice corrosion are not likely corrosion modes in basalt ground waters. It is also unlikely that stress corrosion cracking (SCC) will occur in the commercially pure (CP) titanium alloy or in palladiumor molybdenum-alloyed titanium materials. Low-alloy cast irons may be used as barrier metals if the environment surrounding the metal keeps the alloy in the passive range. The solubility of the corrosion product and the semipermeable nature of the oxide film allow significant uniform corrosion over long time periods. A linear extrapolation of high-temperature corrosion rates on carbon steels and corrosion rates of cast irons in soils gives an estimated metal penetration of 51 to 64 mm after 1000 yr. A corrosion allowance of 3 to 5 times that suggests that an acceptable cast iron wall may be from 178 to 305 mm thick. Although they cannot be fully assessed, pitting and crevice corrosion should not affect cast iron due to the ground-water chemistry of basalt.

  3. Corrosion of Carbon Steel and Corrosion-Resistant Rebars in Concrete Structures Under Chloride Ion Attack

    NASA Astrophysics Data System (ADS)

    Mohamed, Nedal; Boulfiza, Mohamed; Evitts, Richard

    2013-03-01

    Corrosion of reinforced concrete is the most challenging durability problem that threatens reinforced concrete structures, especially structures that are subject to severe environmental conditions (i.e., highway bridges, marine structures, etc.). Corrosion of reinforcing steel leads to cracking and spalling of the concrete cover and billions of dollars are spent every year on repairing such damaged structures. New types of reinforcements have been developed to avoid these high-cost repairs. Thus, it is important to study the corrosion behavior of these new types of reinforcements and compare them to the traditional carbon steel reinforcements. This study aimed at characterizing the corrosion behavior of three competing reinforcing steels; conventional carbon steel, micro-composite steel (MMFX-2) and 316LN stainless steel, through experiments in carbonated and non-carbonated concrete exposed to chloride-laden environments. Synthetic pore water solutions have been used to simulate both cases of sound and carbonated concrete under chloride ions attack. A three-electrode corrosion cell is used for determining the corrosion characteristics and rates. Multiple electrochemical techniques were applied using a Gamry PC4™ potentiostat manufactured by Gamry Instruments (Warminster, PA). DC corrosion measurements were applied on samples subjected to fixed chloride concentration in the solution.

  4. Mechanical properties and corrosion behavior of Mg-Gd-Ca-Zr alloys for medical applications.

    PubMed

    Shi, Ling-Ling; Huang, Yuanding; Yang, Lei; Feyerabend, Frank; Mendis, Chamini; Willumeit, Regine; Ulrich Kainer, Karl; Hort, Norbert

    2015-07-01

    Magnesium alloys are promising candidates for biomedical applications. In this work, influences of composition and heat treatment on the microstructure, the mechanical properties and the corrosion behavior of Mg-Gd-Ca-Zr alloys as potential biomedical implant candidates were investigated. Mg5Gd phase was observed at the grain boundaries of Mg-10Gd-xCa-0.5Zr (x=0, 0.3, 1.2wt%) alloys. Increase in the Ca content led to the formation of additional Mg2Ca phase. The Ca additions increased both the compressive and the tensile yield strengths, but reduced the ductility and the corrosion resistance in cell culture medium. After solution heat treatment, the Mg5Gd particles dissolved in the Mg matrix. The compressive strength decreased, while the corrosion resistance improved in the solution treated alloys. After ageing at 200°C, metastable β' phase formed on prismatic planes and a new type of basal precipitates have been observed, which improved the compressive and tensile ultimate strength, but decreased the ductility.

  5. Effect of surface treatment on the corrosion properties of magnesium-based fibre metal laminate

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhang, Y.; Ma, Q. Y.; Dai, Y.; Hu, F. P.; Wei, G. B.; Xu, T. C.; Zeng, Q. W.; Wang, S. Z.; Xie, W. D.

    2017-02-01

    The surface roughness, weight of phosphating film and wettability of magnesium alloy substrates after abrasion and phosphating treatment were investigated in this work. The interfacial bonding and corrosion properties of a magnesium-based fibre metal laminate (MgFML) were analysed. The results showed that the wettability of the magnesium alloy was greatly influenced by the surface roughness, and the rough surface possessed a larger surface energy and better wettability. The surface energy and wettability of the magnesium alloy were significantly improved by the phosphating treatment. After phosphating for 5 min, a phosphating film with a double-layer structure was formed on the magnesium substrate, and the weight of the phosphating film and the surface energy reached their maximum values. The surface energies of the phosphated substrate after abrasion with #120 and #3000 grit abrasive papers were 84.31 mJ/m2 and 83.65 mJ/m2, respectively. The wettability of the phosphated magnesium was significantly better than the abraded magnesium. The phosphated AZ31B sheet had a better corrosion resistance than the abraded AZ31B sheet within short times. The corrosion resistance of the magnesium alloy was greatly increased by being composited with glass fibre/epoxy prepregs.

  6. Microstructure, corrosion properties and bio-compatibility of calcium zinc phosphate coating on pure iron for biomedical application.

    PubMed

    Chen, Haiyan; Zhang, Erlin; Yang, Ke

    2014-01-01

    In order to improve the biocompatibility and the corrosion resistance in the initial stage of implantation, a phosphate (CaZn2(PO4)2·2H2O) coating was obtained on the surface of pure iron by a chemical reaction method. The anti-corrosion property, the blood compatibility and the cell toxicity of the coated pure iron specimens were investigated. The coating was composed of some fine phosphate crystals and the surface of coating was flat and dense enough. The electrochemical data indicated that the corrosion resistance of the coated pure iron was improved with the increase of phosphating time. When the specimen was phosphated for 30min, the corrosion resistance (Rp) increased to 8006 Ω. Compared with that of the naked pure iron, the anti-hemolysis property and cell compatibility of the coated specimen was improved significantly, while the anti-coagulant property became slightly worse due to the existence of element calcium. It was thought that phosphating treatment might be an effective method to improve the biocompatibility of pure iron for biomedical application.

  7. Corrosion resistance of enamel coating modified by calcium silicate and sand particle for steel reinforcement in concrete

    NASA Astrophysics Data System (ADS)

    Tang, Fujian

    Porcelain enamel has stable chemical property in harsh environments such as high temperature, acid and alkaline, and it can also chemically react with substrate reinforcing steel resulting in improved adherence strength. In this study, the corrosion resistances of enamel coating modified by calcium silicate and sand particles, which are designed for improved bond strength with surrounding concrete, were investigated in 3.5 wt% NaCl solution. It consists of two papers that describe the results of the study. The first paper investigates the corrosion behavior of enamel coating modified by calcium silicate applied to reinforcing steel bar in 3.5 wt% NaCl solution by OCP, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The coatings include a pure enamel, a mixed enamel that consists of 50% pure enamel and 50% calcium silicate by weight, and a double enamel that has an inner pure enamel layer and an outer mixed enamel layer. Electrochemical tests demonstrates that both pure and double enamel coatings can significantly improve corrosion resistance, while the mixed enamel coating offers very little protection due to connected channels. The second paper is focused on the electrochemical characteristics of enamel coating modified by sand particle applied to reinforcing steel bar in 3.5 wt% NaCl solution by EIS. Six percentages by weight are considered including 5%, 10%, 20%, 30%, 50%, and 70%. Results reveal that addition of sand particle does not affect its corrosion resistance significantly. Most of the sand particles can wet very well with enamel body, while some have a weak zone which is induced during the cooling stage due to different coefficient of thermal expansion. Therefore, quality control of sand particle is the key factor to improve its corrosion resistance.

  8. Corrosion Resistance of Powder Metallurgy Processed TiC/316L Composites with Mo Additions

    NASA Astrophysics Data System (ADS)

    Lin, Shaojiang; Xiong, Weihao

    2015-06-01

    To find out the effects of Mo addition on corrosion resistance of TiC/316L stainless steel composites, TiC/316L composites with addition of different contents of Mo were prepared by powder metallurgy. The corrosion resistance of these composites was evaluated by the immersion tests and polarization curves experiments. Results indicated that Mo addition decreased the corrosion rates of TiC/316L composites in H2SO4 solution in the case of Mo content below 2% whereas it displayed an opposite effect when Mo content was above that value. It was found that with an increase in the Mo content, the pitting corrosion resistance increased monotonically for TiC/316L composites in NaCl solution.

  9. Electrodeposition of high corrosion resistance Cu/Ni-P coating on AZ91D magnesium alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Shan; Cao, Fahe; Chang, Linrong; Zheng, JunJun; Zhang, Zhao; Zhang, Jianqing; Cao, Chunan

    2011-08-01

    High corrosion resistance Cu/Ni-P coatings were electrodeposited on AZ91D magnesium alloy via suitable pretreatments, such as one-step acid pickling-activation, once zinc immersion and environment-friendly electroplated copper as the protective under-layer, which made Ni-P deposit on AZ91D Mg alloy in acid plating baths successfully. The pH value and current density for Ni-P electrodeposition were optimized to obtain high corrosion resistance. With increasing the phosphorous content of the Ni-P coatings, the deposits were found to gradually transform to amorphous structure and the corrosion resistance increased synchronously. The anticorrosion ability of AZ91D Mg alloy was greatly improved by the amorphous Ni-P deposits, which was investigated by potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The corrosion current density ( Icorr) of the coated Mg alloy substrate is about two orders of magnitude less than that of the uncoated.

  10. Corrosion resistance of pseudo-spin-valve systems: Pd vs. Ta capping layers

    NASA Astrophysics Data System (ADS)

    Matthes, P.; Albrecht, M.

    2016-08-01

    An analysis of both magnetic and magneto-transport properties in dependence of the corrosion resistance is presented for a pseudo-spin-valve (PSV) system with different capping layers. The magnetoresistive part of the sample consists of a [Co/Pd] multilayer with perpendicular magnetic anisotropy and a single Co layer with in-plane easy axis separated by a Cu spacer, forming a PSV system with crossed anisotropies. The samples were annealed under ambient conditions up to temperatures of 200 °C to facilitate the corrosion process. Whereas the magnetic properties are stable up to 100 °C independent of the capping layer, the giant magnetoresistance (GMR) effect is more sensitive on annealing. In case of Pd as capping layer, the GMR of the pseudo-spin-valve considerably degrades already after annealing at 60 °C, whereby even by thickening of the Pd layer up to 10 nm, no pronounced improvement was obtained. On the contrary, for Ta as capping layer the GMR ratio stays constant upon heating up to 100 °C, followed by a comparable moderate decay for even higher annealing temperatures.

  11. A mechanistic study of the effects of nitrogen on the corrosion properties of stainless steels

    SciTech Connect

    Levey, P.R.; Bennekom, A. van

    1995-12-01

    The effects of nitrogen alloying on the corrosion properties of stainless steels (SS) is a matter of debate. A number of apparently contradictory results have been presented by various researchers. The actual mechanism by which nitrogen alloying influences the corrosion properties of SS has been the topic of even more controversy. The effects of nitrogen on the corrosion and mechanical properties of SS were reviewed. Various proposals relating to the mechanistic effect of nitrogen alloying on the corrosion properties of SS were evaluated critically by comparing the various theories.

  12. In vitro corrosion resistance and cytocompatibility of nano-hydroxyapatite reinforced Mg-Zn-Zr composites.

    PubMed

    Ye, Xinyu; Chen, Minfang; Yang, Meng; Wei, Jun; Liu, Debao

    2010-04-01

    Due to good biocompatibility and mechanical properties, magnesium (Mg) and its alloys are considered promising degradable materials for orthopedic applications. In this work, a Mg metal matrix composite (MMC) was fabricated using Mg-2.9Zn-0.7Zr alloy as the matrix and 1 wt% nano-hydroxyapatite (n-HA) particles as reinforcements. In vitro corrosion behavior and cytocompatibility of a Mg-Zn-Zr/n-HA composite and a Mg-Zn-Zr alloy were investigated. In contrast with the Mg-Zn-Zr alloy, the MMC has better properties. The average corrosion rate of MMC is 0.75 mm/yr after immersion in simulated body fluid (SBF) for 20 days, and the surface of MMC is covered with white Ca-P precipitates. The electrochemical test results show that the corrosion potential (E(corr)) of MMC increases to -1.615 V and its polarization resistance (R(p)) is 2.56 KOmega with the addition of n-HA particles. The co-cultivation of MMC with osteoblasts results in the adhesion and proliferation of cells on the surface of the composite. The maximum cell density is calculated to be (1.85+/-0.15) x 10(4)/l after 5 days of co-culture with osteoblasts. The average cell numbers for two groups after culturing for 3 and 5 days (P<0.05) are significantly different. All the results demonstrate that the Mg-Zn-Zr/n-HA composite can be potentially used as biodegradable bone fixation material.

  13. Electrochemical anodizing treatment to enhance localized corrosion resistance of pure titanium.

    PubMed

    Prando, Davide; Brenna, Andrea; Bolzoni, Fabio M; Diamanti, Maria V; Pedeferri, Mariapia; Ormellese, Marco

    2017-01-26

    Titanium has outstanding corrosion resistance due to the thin protective oxide layer that is formed on its surface. Nevertheless, in harsh and severe environments, pure titanium may suffer localized corrosion. In those conditions, costly titanium alloys containing palladium, nickel and molybdenum are used. This purpose investigated how it is possible to control corrosion, at lower cost, by electrochemical surface treatment on pure titanium, increasing the thickness of the natural oxide layer. Anodic oxidation was performed on titanium by immersion in H2SO4 solution and applying voltages ranging from 10 to 80 V. Different anodic current densities were considered. Potentiodynamic tests in chloride- and fluoride-containing solutions were carried out on anodized titanium to determine the pitting potential. All tested anodizing treatments increased corrosion resistance of pure titanium, but never reached the performance of titanium alloys. The best corrosion behavior was obtained on titanium anodized at voltages lower than 40 V at 20 mA/cm2. Titanium samples anodized at low cell voltage were seen to give high corrosion resistance in chloride- and fluoride-containing solutions. Electrolyte bath and anodic current density have little effect on the corrosion behavior.

  14. Mechanical Properties, Corrosion Behavior, and Microstructures of a MIG-Welded 7020 Al Alloy

    NASA Astrophysics Data System (ADS)

    Peng, Xiaoyan; Cao, Xiaowu; Xu, Guofu; Deng, Ying; Tang, Lei; Yin, Zhimin

    2016-03-01

    7020 aluminum alloy plates were welded by metal inert gas welding method, with the ER5183 welding wire containing Zr and ER5356 welding wire without Zr, respectively. The mechanical properties, corrosion behavior, and microstructures of these two welded joints were investigated. The tensile strength and ductilities of the joints are inferior to those of base alloy, and the lowest hardness is obtained in the welded zone, while the heat-affected zones are more sensitive to corrosion than the base metal and welded zones. The base metal shows a deformed subgrains microstructure, and the heat-affected zones still remain in elongated shape, where the soften zones form as a result of η' (MgZn2) coarsening. Two welded zones are mainly characterized by as-cast structure; however, grains are refined and a zone of equiaxed grains forms along the bonding boundary due to the Zr addition into ER5183 Al alloy. Accordingly, the mechanical properties and corrosion resistance in this zone of the joint with ER5183 exhibit better than those of the joint with ER5356.

  15. Fabrication of superhydrophobic textured steel surface for anti-corrosion and tribological properties

    NASA Astrophysics Data System (ADS)

    Zhang, Hongmei; Yang, Jin; Chen, Beibei; Liu, Can; Zhang, Mingsuo; Li, Changsheng

    2015-12-01

    We describe a simple and rapid method to fabricate superhydrophobic textured steel surface with excellent anti-corrosion and tribological properties on S45C steel substrate. The steel substrate was firstly ground using SiC sandpapers, and then polished using diamond paste to remove scratches. The polished steel was subsequently etched in a mixture of HF and H2O2 solution for 30 s at room temperature to obtain the textured steel surface with island-like protrusions, micro-pits, and nano-flakes. Meanwhile, to investigate the formation mechanism of the multiscale structures, the polished steel was immersed in a 3 wt% Nital solution for 5 s to observe the metallographic structures. The multiscale structures, along with low-surface-energy molecules, led to the steel surface that displayed superhydrophobicity with the contact angle of 158 ± 2° and the sliding angle of 3 ± 1°. The chemical stability and potentiodynamic polarization test indicated that the as-prepared superhydrophobic surface had excellent corrosion resistance that can provide effective protection for the steel substrate. The tribological test showed that the friction coefficient of the superhydrophobic surface maintained 0.11 within 6000 s and its superhydrophobicity had no obvious decrease after the abrasion test. The theoretical mechanism for the excellent anti-corrosion and tribological properties on the superhydrophobic surface were also analyzed respectively. The advantages of facile production, anti-corrosion, and tribological properties for the superhydrophobic steel surface make it to be a good candidate in practical applications.

  16. Conducting polymer-coated corrosion resistant metallic bipolar plates for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Joseph, Shine

    2005-11-01

    Concerns over depleting stocks of natural resources and a growing awareness of the environmental damage caused by widespread burning of fossil fuels, and more energy demands brought the idea of alternative energy systems. Proton Exchange Membrane (PEM) fuel cells are one of the fast growing alternative energy technologies. PEM fuel cells generate electricity from an electrochemical reaction between hydrogen and oxygen and produce electricity, a small amount of heat and water and therefore, they are environmentally friendly. Fuel cells are more efficient than internal combustion engines and operate continuously as long as fuel is supplied from an external tank. Fuel cells in stacks are used for most applications because the current output of a PEM fuel cell is around 0.3--0.5 A/cm2. In fuel cell stacks, bipolar plates combine two cells in series with anode and cathode of adjacent cells. The main functions of bipolar plates are electron and gas transport. Bipolar plates are major components in weight and volume of the PEM fuel cell stack and are a significant contributor to the stack cost. The bipolar plate is therefore a key component if power density is to increase and cost to come down. Bipolar plate material should be corrosion resistant, conductive, gas impermeable, light weight (mobile applications) and economical. Graphite plates are used for bipolar plate applications but they are expensive, are brittle to make in thin plates with gas channels on sides, have high manufacturing cost and are gas permeable if too thin. Metals are preferable for bipolar plate application because of better mechanical properties, higher electrical conductivity, lower gas permeability and low cost. In this work Al 6061 and 304 stainless steel alloys are the materials selected for bipolar plates. These metals form non-conductive surface oxides in a PEM fuel cell environment and cause a high contact resistance. This internal resistance lowers the efficiency of PEM fuel cell system. In

  17. Mechanical and Corrosion Properties of Fe-Cr-Mn-C-N Austenitic Stainless Steels for Drill Collars

    NASA Astrophysics Data System (ADS)

    Lee, Eunkyung; Ryu, Jiseung; Jeon, Seol; Mishra, Brajendra; Palmer, Bruce R.

    2016-06-01

    The mechanical and corrosion properties of air/water-quenched CN66 (0.28/0.38 wt pct, C/N) and CN71 (0.27/0.44 wt pct, C/N) steels after heat treatment were investigated. The carbon condensed area of the water-quenched alloys decreased compared with the air-cooled alloys, and lattice expansions occurred, resulting in a strained region. The values of UTS and elongation of water-quenched CN71 were increased as 105 MPa and 25.2 pct compared with the air-cooled CN71, and decreased sour corrosion resistance (1.8 × 10-4 mm/year).

  18. Effect of Nb on the Microstructure, Mechanical Properties, Corrosion Behavior, and Cytotoxicity of Ti-Nb Alloys

    PubMed Central

    Han, Mi-Kyung; Kim, Jai-Youl; Hwang, Moon-Jin; Song, Ho-Jun; Park, Yeong-Joon

    2015-01-01

    In this paper, the effects of Nb addition (5–20 wt %) on the microstructure, mechanical properties, corrosion behavior, and cytotoxicity of Ti-Nb alloys were investigated with the aim of understanding the relationship between phase/microstructure and various properties of Ti-xNb alloys. Phase/microstructure was analyzed using X-ray diffraction (XRD), SEM, and TEM. The results indicated that the Ti-xNb alloys (x = 10, 15, and 20 wt %) were mainly composed of α + β phases with precipitation of the isothermal ω phase. The volume percentage of the ω phase increased with increasing Nb content. We also investigated the effects of the alloying element Nb on the mechanical properties (including Vickers hardness and elastic modulus), oxidation protection ability, and corrosion behavior of Ti-xNb binary alloys. The mechanical properties and corrosion behavior of Ti-xNb alloys were found to be sensitive to Nb content. These experimental results indicated that the addition of Nb contributed to the hardening of cp-Ti and to the improvement of its oxidation resistance. Electrochemical experiments showed that the Ti-xNb alloys exhibited superior corrosion resistance to that of cp-Ti. The cytotoxicities of the Ti-xNb alloys were similar to that of pure titanium. PMID:28793546

  19. Laser-Assisted Cold-Sprayed Corrosion- and Wear-Resistant Coatings: A Review

    NASA Astrophysics Data System (ADS)

    Olakanmi, E. O.; Doyoyo, M.

    2014-06-01

    Laser-assisted cold spray (LACS) process will be increasingly employed for depositing coatings because of its unique advantages: solid-state deposition of dense, homogeneous, and pore-free coatings onto a range of substrates; and high build rate at reduced operating costs without the use of expensive heating and process inert gases. Depositing coatings with excellent performance indicators via LACS demands an accurate knowledge and control of processing and materials' variables. By varying the LACS process parameters and their interactions, the functional properties of coatings can be manipulated. Moreover, thermal effect due to laser irradiation and microstructural evolution complicate the interpretation of LACS mechanical deformation mechanism which is essential for elucidating its physical phenomena. In order to provide a basis for follow-on-research that leads to the development of high-productivity LACS processing of coatings, this review focuses on the latest developments in depositing corrosion- and wear-resistant coatings with the emphasis on the composition, structure, and mechanical and functional properties. Historical developments and fundamentals of LACS are addressed in an attempt to describe the physics behind the process. Typical technological applications of LACS coatings are also identified. The investigations of all process sequences, from laser irradiation of the powder-laden gas stream and the substrate, to the impingement of thermally softened particles on the deposition site, and subsequent further processes, are described. Existing gaps in the literature relating to LACS-dependent microstructural evolution, mechanical deformation mechanisms, correlation between functional properties and process parameters, processing challenges, and industrial applications have been identified in order to provide insights for further investigations and innovation in LACS deposition of wear- and corrosion-resistant coatings.

  20. A peptide-based biological coating for enhanced corrosion resistance of titanium alloy biomaterials in chloride-containing fluids.

    PubMed

    Muruve, Noah; Feng, Yuanchao; Platnich, Jaye; Hassett, Daniel; Irvin, Randall; Muruve, Daniel; Cheng, Frank

    2017-03-01

    Titanium alloys are common materials in the manufacturing of dental and orthopedic implants. Although these materials exhibit excellent biocompatibility, corrosion in response to biological fluids can impact prosthesis performance and longevity. In this work, a PEGylated metal binding peptide (D-K122-4-PEG), derived from bacteria Pseudomonas aeruginosa, was applied on a titanium (Ti) alloy, and the corrosion resistance of the coated alloy specimen was investigated in simulated chloride-containing physiological fluids by electrochemical impedance spectroscopy and micro-electrochemical measurements, surface characterization, and biocompatibility testing. Compared to uncoated specimen, the D-K122-4-PEG-coated Ti alloy demonstrates decreased corrosion current density without affecting the natural passivity. Morphological analysis using atomic force microscopy and scanning electron microscopy confirms a reduction in surface roughness of the coated specimens in the fluids. The D-K122-4-PEG does not affect the binding of HEK-293T cells to the surface of unpolished Ti alloy, nor does it increase the leukocyte activation properties of the metal. D-K122-4-PEG represents a promising coating to enhance the corrosion resistance of Ti alloys in physiological fluids, while maintaining an excellent biocompatibility.

  1. Effect of Native Oxide Film on Commercial Magnesium Alloys Substrates and Carbonate Conversion Coating Growth and Corrosion Resistance

    PubMed Central

    Feliu, Sebastián; Samaniego, Alejandro; Bermudez, Elkin Alejandro; El-Hadad, Amir Abdelsami; Llorente, Irene; Galván, Juan Carlos

    2014-01-01

    Possible relations between the native oxide film formed spontaneously on the AZ31 and AZ61 magnesium alloy substrates with different surface finish, the chemistry of the outer surface of the conversion coatings that grows after their subsequent immersion on saturated aqueous NaHCO3 solution treatment and the enhancement of corrosion resistance have been studied. The significant increase in the amount of aluminum and carbonate compounds on the surface of the conversion coating formed on the AZ61 substrate in polished condition seems to improve the corrosion resistance in low chloride ion concentration solutions. In contrast, the conversion coatings formed on the AZ31 substrates in polished condition has little effect on their protective properties compared to the respective as-received surface. PMID:28788582

  2. Corrosion resistance of nickel-containing alloys in petrochemical environments

    SciTech Connect

    Smith, G.D.

    1997-09-01

    Numerous nickel-containing alloys possess a desirable combination of properties vital to long term dependability within petrochemical and refinery plants. Critical to many operations is the requirement for elevated temperature sulfidation resistance under either reducing or oxidizing environments. This paper surveys the role of materials, environmental factors, alloying elements and the formation of protective scales on the performance of selected nickel-containing alloys.

  3. Functional Multi-Nanolayer Coatings of Amorphous Carbon/Tungsten Carbide with Exceptional Mechanical Durability and Corrosion Resistance.

    PubMed

    Nemati, Narguess; Bozorg, Mansoor; Penkov, Oleksiy V; Shin, Dong-Gap; Sadighzadeh, Asghar; Kim, Dae-Eun

    2017-09-06

    A novel functional multilayer coating with periodically stacked nanolayers of amorphous carbon (a:C)/tungsten carbide (WC) and an adhesion layer of chromium (Cr) was deposited on 304 stainless steel using a dual magnetron sputtering technique. Through process optimization, highly densified coatings with high elasticity and shear modulus, excellent wear resistance, and minimal susceptibility to corrosive and caustic media could be acquired. The structural and mechanical properties of the optimized coatings were studied in detail using a variety of analytical techniques. Furthermore, finite element method simulations indicated that the stress generated due to contact against a steel ball was distributed well within the coating, which allowed the stresses to be lower than the yield threshold of the coating. Thus, an ultralow wear rate of ∼10(-12)mm(3)/N mm could be achieved in dry sliding conditions under relatively high Hertzian contact pressures of ∼0.4-0.9 GPa. The amorphous and pinhole-free structure of the individual layers, sufficient number of pairs, and the relatively dense stacked layers resulted in significant polarization resistance (Z″ = 5.5 × 10(6) Ω cm(2)) and increased the corrosion resistance of the coating by 10-fold compared to that of recently reported corrosion-resistant coatings.

  4. Effect of high repetition laser shock peening on biocompatibility and corrosion resistance of magnesium

    NASA Astrophysics Data System (ADS)

    Caralapatti, Vinodh Krishna; Narayanswamy, Sivakumar

    2017-02-01

    Magnesium, as a biomaterial has the potential to replace conventional implant materials owing to its numerous advantages. However, high corrosion rate is a major obstacle that has to be addressed for its implementation as implants. This study aims to evaluate the feasibility and effects of High Repetition Laser Shock Peening (HRLSP) on biocompatibility and corrosion resistance of Mg samples and as well as to analyze the effect of operational parameters such as peening with overlap on corrosion rate. From the results obtained using hydrogen evolution and mass loss methods, it was found that corrosion rates of both 0% overlap and 66% overlap peened samples reduced by more than 50% compared to that of unpeened sample and sample peened with 66% overlap exhibited least corrosion. The biocompatibility of peened Mg samples was also enhanced as there was neither rapid pH variation nor large hydrogen bubble formation around samples.

  5. Fabrication of biodegradable Zn-Al-Mg alloy: Mechanical properties, corrosion behavior, cytotoxicity and antibacterial activities.

    PubMed

    Bakhsheshi-Rad, H R; Hamzah, E; Low, H T; Kasiri-Asgarani, M; Farahany, S; Akbari, E; Cho, M H

    2017-04-01

    In this work, binary Zn-0.5Al and ternary Zn-0.5Al-xMg alloys with various Mg contents were investigated as biodegradable materials for implant applications. Compared with Zn-0.5Al (single phase), Zn-0.5Al-xMg alloys consisted of the α-Zn and Mg2(Zn, Al)11 with a fine lamellar structure. The results also revealed that ternary Zn-Al-Mg alloys presented higher micro-hardness value, tensile strength and corrosion resistance compared to the binary Zn-Al alloy. In addition, the tensile strength and corrosion resistance increased with increasing the Mg content in ternary alloys. The immersion tests also indicated that the corrosion rates in the following order Zn-0.5Al-0.5Mgproperties, low corrosion rate, good biocompatibility and antibacterial activities was believed to be a good candidate as a biodegradable implant material.

  6. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    PubMed

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  7. Effects of phosphorus on corrosion resistance of electroless nickel in 50% sodium hydroxide

    SciTech Connect

    Zeller, R.L. III ); Salvati, L. )

    1994-06-01

    Nickel (Ni) and electroless nickel (EN) coatings are used extensively in caustic soda (NaOH) service. The corrosion resistance of an EN coating is dependent upon phosphorus (P) content, but not in the trend expected. High-phosphorus EN (HPEN) coatings have poorer corrosion resistance in hot, concentrated sodium hydroxide (NaOH) than low-phosphorus (LPEN) and medium-phosphorus (MPEN) coatings, which have a corrosion resistance comparable to Ni. The purpose of this work was to quantify the effect of P in EN coatings on their corrosion resistance in 50% NaOH at room temperature (RT). Electrochemical techniques were used to investigate the corrosion processes. X-ray photoelectron spectroscopy (XPS) was used to characterize coating surfaces. Very low corrosion rates ([<=] [mu]m/y) were measured for all coatings. It was proposed that the detrimental effect of P in EN coatings exposed to a concentrated NaOH environment was a result of the higher solubility of nickel phosphate (Ni[sub 3][PO[sub 4

  8. Corrosion resistance of aluminum-magnesium alloys in glacial acetic acid

    SciTech Connect

    Zaitseva, L.V.; Romaniv, V.I.

    1984-05-01

    Vessels for the storage and conveyance of glacial acetic acid are produced from ADO and AD1 aluminum, which are distinguished by corrosion resistance, weldability and workability in the hot and cold conditions but have low tensile strength. Aluminum-magnesium alloys are stronger materials close in corrosion resistance to technical purity aluminum. An investigation was made of the basic alloying components on the corrosion resistance of these alloys in glacial acetic acid. Both the base metal and the weld joints were tested. With an increase in temperature the corrosion rate of all of the tested materials increases by tens of times. The metals with higher magnesium content show more pitting damage. The relationship of the corrosion resistance of the alloys to magnesium content is confirmed by the similar intensity of failure of the joint metal of all of the investigated alloys and by electrochemical investigations. The data shows that AMg3 alloy is close to technically pure ADO aluminum. However, the susceptibility of even this material to local corrosion eliminates the possibility of the use of aluminum-magnesium alloys as reliable constructional materials in glacial acetic acid.

  9. Corrosion and wear properties of laser surface modified NiTi with Mo and ZrO 2

    NASA Astrophysics Data System (ADS)

    Ng, K. W.; Man, H. C.; Yue, T. M.

    2008-08-01

    Because of its biocompatibility, superelasticity and shape memory characteristics, NiTi alloys have been gaining immense interest in the medical field. However, there is still concern on the corrosion resistance of this alloy if it is going to be implanted in the human body for a long time. Titanium is not toxic but nickel is carcinogenic and is implicated in various reactions including allergic response and degeneration of muscle tissue. Debris from wear and the subsequent release of Ni + ions due to corrosion in the body system are fatal issues for long-term application of this alloy in the human body. This paper reports the corrosion and wear properties of laser surface modified NiTi using Mo and ZrO 2 as surface alloying elements, respectively. The modified layers which are free from microcracks and porosity, act as both physical barrier to nickel release and enhance the bulk properties, such as hardness, wear resistance, and corrosion resistance. The electrochemical performance of the surface modified alloy was studied in Hanks' solution. Electrochemical impedance spectroscopy was measured.

  10. In Situ Formation of Decavanadate-Intercalated Layered Double Hydroxide Films on AA2024 and their Anti-Corrosive Properties when Combined with Hybrid Sol Gel Films.

    PubMed

    Wu, Junsheng; Peng, Dongdong; He, Yuntao; Du, Xiaoqiong; Zhang, Zhan; Zhang, Bowei; Li, Xiaogang; Huang, Yizhong

    2017-04-18

    A layered double hydroxide (LDH) film was formed in situ on aluminum alloy 2024 through a urea hydrolysis method, and a decavanadate-intercalated LDH (LDH-V) film fabricated through the dip coating method. The microstructural and morphological characteristics were investigated by scanning electron microscopy (SEM). The corrosion-resistant performance was analyzed by electrochemical impedance spectroscopy (EIS), scanning electrochemical microscopy (SECM), and a salt-spray test (SST).The SEM results showed that a complete and defect-free surface was formed on the LDH-VS film. The anticorrosion results revealed that the LDH-VS film had better corrosion-resistant properties than the LDH-S film, especially long-term corrosion resistance. The mechanism of corrosion protection was proposed to consist of the self-healing effect of the decavanadate intercalation and the shielding effect of the sol-gel film.

  11. In Situ Formation of Decavanadate-Intercalated Layered Double Hydroxide Films on AA2024 and their Anti-Corrosive Properties when Combined with Hybrid Sol Gel Films

    PubMed Central

    Wu, Junsheng; Peng, Dongdong; He, Yuntao; Du, Xiaoqiong; Zhang, Zhan; Zhang, Bowei; Li, Xiaogang; Huang, Yizhong

    2017-01-01

    A layered double hydroxide (LDH) film was formed in situ on aluminum alloy 2024 through a urea hydrolysis method, and a decavanadate-intercalated LDH (LDH-V) film fabricated through the dip coating method. The microstructural and morphological characteristics were investigated by scanning electron microscopy (SEM). The corrosion-resistant performance was analyzed by electrochemical impedance spectroscopy (EIS), scanning electrochemical microscopy (SECM), and a salt-spray test (SST).The SEM results showed that a complete and defect-free surface was formed on the LDH-VS film. The anticorrosion results revealed that the LDH-VS film had better corrosion-resistant properties than the LDH-S film, especially long-term corrosion resistance. The mechanism of corrosion protection was proposed to consist of the self-healing effect of the decavanadate intercalation and the shielding effect of the sol-gel film. PMID:28772785

  12. Effect of surface treatments on the surface morphology, corrosion property, and antibacterial property of Ti-10Cu sintered alloy.

    PubMed

    Zhang, Erlin; Liu, Cong

    2015-07-23

    Ti-10Cu sintered alloy has shown strong antibacterial properties against S. aureus and E. coli and good cell biocompatibility in vitro and in vivo, displaying potential application as an implant material. Surface treatments are always applied to implants to improve the surface biocompatibility. In this paper, several typically used surface treatments, including sandblasting (SB), sandblasted and large-grits acid etching (SLA), and alkaline heat treatment (AH) were chosen to modify the Ti-10Cu. A cp-Ti (commercially pure titanium) sample was used as control sample. The effect of surface treatments on the corrosion properties and antibacterial properties of the Ti-10Cu sintered alloy was investigated. After SB and SLA treatments, a rough surface with a TiO2 layer was formed on the surface, which reduced the corrosion resistance and enhanced the Ti and Cu ion release. After AH treatment, a smooth but microporous surface with a TiO2/titanate layer was formed, which improved slightly the corrosion resistance. However, the Cu ion and Ti ion release from the Ti-10Cu sample was promoted by AH treatment due to the fact that more Ti2Cu phases were exposed on the AH-treated Ti-10Cu sample. It was demonstrated that the Ti-10Cu samples after surface treatments still exhibited good antibacterial properties against S. aureus, which indicated that the surface treatment did not reduce the antibacterial activity. The control mechanism was thought to be related to the high Cu ion release even after surface treatments. It was expected that the surface treatments provided Ti-10Cu sintered alloy with good surface bioactivity without reduction in antibacterial activity.

  13. Fracture-tough, corrosion-resistant bearing steels

    NASA Technical Reports Server (NTRS)

    Olson, Gregory B.

    1990-01-01

    The fundamental principles allowing design of stainless bearing steels with enhanced toughness and stress corrosion resistance has involved both investigation of basic phenomena in model alloys and evaluation of a prototype bearing steel based on a conceptual design exercise. Progress in model studies has included a scanning Auger microprobe (SAM) study of the kinetics of interfacial segregation of embrittling impurities which compete with the kinetics of alloy carbide precipitation in secondary hardening steels. These results can define minimum allowable carbide precipitation rates and/or maximum allowable free impurity contents in these ultrahigh strength steels. Characterization of the prototype bearing steel designed to combine precipitated austenite transformation toughening with secondary hardening shows good agreement between predicted and observed solution treatment response including the nature of the high temperature carbides. An approximate equilibrium constraint applied in the preliminary design calculations to maintain a high martensitic temperature proved inadequate, and the solution treated alloy remained fully austenitic down to liquid nitrogen temperature rather than transforming above 200 C. The alloy can be martensitically transformed by cryogenic deformation, and material so processed will be studied further to test predicted carbide and austenite precipitation behavior. A mechanistically-based martensitic kinetic model was developed and parameters are being evaluated from available kinetic data to allow precise control of martensitic temperatures of high alloy steels in future designs. Preliminary calculations incorporating the prototype stability results suggest that the transformation-toughened secondary-hardening martensitic-stainless design concept is still viable, but may require lowering Cr content to 9 wt. pct. and adding 0.5 to 1.0 wt. pct. Al. An alternative design approach based on strain-induced martensitic transformation during

  14. Evaluation of the optoelectronic properties and corrosion behavior of Al2O3-doped ZnO films prepared by dc pulsed magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zubizarreta, C.; Berasategui, E. G.; Bayón, R.; Escobar Galindo, R.; Barros, R.; Gaspar, D.; Nunes, D.; Calmeiro, T.; Martins, R.; Fortunato, E.; Barriga, J.

    2014-12-01

    The main requirements for transparent conducting oxide (TCO) films acting as electrodes are a high transmission rate in the visible spectral region and low resistivity. However, in many cases, tolerance to temperature and humidity exposure is also an important requirement to be fulfilled by the TCOs to assure proper operation and durability. Besides improving current encapsulation methods, the corrosion resistance of the developed TCOs must also be enhanced to warrant the performance of optoelectronic devices. In this paper the performance of aluminum-doped zinc oxide (AZO) films deposited by pulsed dc magnetron sputtering has been studied. Structure, optical transmittance/reflectance, electrical properties (resistivity, carrier concentration and mobility) and corrosion resistance of the developed coatings have been analyzed as a function of the doping of the target and the coating thickness. Films grown from a 2.0 wt% Al2O3 target with a thickness of approximately 1 µm showed a very low resistivity of 6.54  ×  10-4 Ωcm and a high optical transmittance in the visible range of 84%. Corrosion studies of the developed samples have shown very low corrosion currents (nanoamperes), very high corrosion resistances (in the order of 107 Ω) and very high electrochemical stability, indicating no tendency for electrochemical corrosion degradation.

  15. Dual ions implantation of zirconium and nitrogen into magnesium alloys for enhanced corrosion resistance, antimicrobial activity and biocompatibility.

    PubMed

    Cheng, Mengqi; Qiao, Yuqin; Wang, Qi; Qin, Hui; Zhang, Xianlong; Liu, Xuanyong

    2016-12-01

    Biodegradable magnesium-based alloys have shown great potential for medical applications due to their superior biological performances and mechanical properties. However, on one hand, some side effects including inferior biocompatibility, a local high-alkaline environment and gas cavities caused by a rapid corrosion rate, hinder their clinical application. On the other hand, it is also necessary to endow Mg alloys with antibacterial properties, which are crucial for clinic orthopedic applications. In this study, Zr and N ions are simultaneously implanted into AZ91 Mg alloys by plasma immersion ion implantation (PIII). A modified layer with a thickness of approximately 80nm is formed on the surface of AZ91 Mg alloys, and the hydrophobicity and roughness of these AZ91 Mg alloys obviously increase after Zr and N implantation. The in vitro evaluations including corrosion resistance tests, antimicrobial tests and cytocompatibility and alkaline phosphatase (ALP) activity tests, revealed that the dual ions implantation of Zr and N not only enhanced the corrosion resistance of the AZ91 Mg alloy but also provided better antimicrobial properties in vitro. Furthermore, the formation of biocompatible metal nitrides and metal oxides layer in the near surface of the Zr-N-implanted AZ91 Mg alloy provided a favorable implantation surface for cell adhesion and growth, which in return further promoted the bone formation in vivo. These promising results suggest that the Zr-N-implanted AZ91 Mg alloy shows potential for future application in the orthopedic field.

  16. Improvement of the Corrosion Resistance of Turbine Engine Bearings

    DTIC Science & Technology

    1984-02-01

    also explored. A galvanic cell could greatly increase the rate ol corrosion. It consists of two dissimilar metals immersed in a conductive solution. To...are more significant contributors to the water content of the oil than the water washing procedure (Table 3). 4. Galvanic Cell Tests Galvanic...and water contamination of preservatives and oils, all of the elements required for galvanic corrosion are present. In a bearing, a local galvanic

  17. Corrosion resistant coatings for silicon carbide heat exchanger tubes -- Volume 3. Final report

    SciTech Connect

    Boss, D.E.

    1996-06-07

    The development of a silicon carbide (SiC) heat exchanger is a critical step in the development of the Externally-Fired Combined Cycle (EFCC) power system. SiC is the only material that provides the necessary combination of resistance to creep, thermal shock, and oxidation. While the SiC structure materials provide the thermomechanical and thermophysical properties needed for an efficient system, the mechanical properties of the SiC tubes are severely degraded through corrosion by the coal combustion products. To obtain the necessary service life of thousands of hours at temperature, a protective coating is needed that is stable with both the SiC tube and the coal combustion products, resists erosion from the particle laden gas stream, is thermal shock resistant, adheres to SiC during repeated thermal shocks (start-up, process upsets, shut-down), and allows the EFCC system to be cost competitive. This demanding set of technical performance and cost drivers was used in reviewing and selecting candidate protective materials. After a review of open literature, discussion with leading researchers in materials for coal combustion environments, and preliminary thermodynamic studies, a total of ten materials were identified for future study that were grouped into three categories: alumina-based materials, materials stable with SiO{sub 2}, and low expansion materials.

  18. Robust tribo-mechanical and hot corrosion resistance of ultra-refractory Ta-Hf-C ternary alloy films.

    PubMed

    Yate, Luis; Coy, L Emerson; Aperador, Willian

    2017-06-08

    In this work we report the hot corrosion properties of binary and ternary films of the Ta-Hf-C system in V2O5-Na2SO4 (50%wt.-50%wt.) molten salts at 700 °C deposited on AISI D3 steel substrates. Additionally, the mechanical and nanowear properties of the films were studied. The results show that the ternary alloys consist of solid solutions of the TaC and HfC binary carbides. The ternary alloy films have higher hardness and elastic recoveries, reaching 26.2 GPa and 87%, respectively, and lower nanowear when compared to the binary films. The corrosion rates of the ternary alloys have a superior behavior compared to the binary films, with corrosion rates as low as 0.058 μm/year. The combination and tunability of high hardness, elastic recovery, low nanowear and an excellent resistance to high temperature corrosion demonstrates the potential of the ternary Ta-Hf-C alloy films for applications in extreme conditions.

  19. The Tension and Puncture Properties of HDPE Geomembrane under the Corrosion of Leachate.

    PubMed

    Xue, Qiang; Zhang, Qian; Li, Zhen-Ze; Xiao, Kai

    2013-09-17

    To investigate the gradual failure of high-density polyethylene (HDPE) geomembrane as a result of long-term corrosion, four dynamic corrosion tests were conducted at different temperatures and durations. By combining tension and puncture tests, we systematically studied the variation law of tension and puncture properties of the HDPE geomembrane under different corrosion conditions. Results showed that tension and puncture failure of the HDPE geomembrane was progressive, and tensile strength in the longitudinal grain direction was evidently better than that in the transverse direction. Punctures appeared shortly after puncture force reached the puncture strength. The tensile strength of geomembrane was in inversely proportional to the corrosion time, and the impact of corrosion was more obvious in the longitudinal direction than transverse direction. As corrosion time increased, puncture strength decreased and corresponding deformation increased. As with corrosion time, the increase of corrosion temperature induced the decrease of geomembrane tensile strength. Tensile and puncture strength were extremely sensitive to temperature. Overall, residual strength had a negative correlation with corrosion time or temperature. Elongation variation increased initially and then decreased with the increase in temperature. However, it did not show significant law with corrosion time. The reduction in puncture strength and the increase in puncture deformation had positive correlations with corrosion time or temperature. The geomembrane softened under corrosion condition. The conclusion may be applicable to the proper designing of the HDPE geomembrane in landfill barrier system.

  20. The Tension and Puncture Properties of HDPE Geomembrane under the Corrosion of Leachate

    PubMed Central

    Xue, Qiang; Zhang, Qian; Li, Zhen-Ze; Xiao, Kai

    2013-01-01

    To investigate the gradual failure of high-density polyethylene (HDPE) geomembrane as a result of long-term corrosion, four dynamic corrosion tests were conducted at different temperatures and durations. By combining tension and puncture tests, we systematically studied the variation law of tension and puncture properties of the HDPE geomembrane under different corrosion conditions. Results showed that tension and puncture failure of the HDPE geomembrane was progressive, and tensile strength in the longitudinal grain direction was evidently better than that in the transverse direction. Punctures appeared shortly after puncture force reached the puncture strength. The tensile strength of geomembrane was in inversely proportional to the corrosion time, and the impact of corrosion was more obvious in the longitudinal direction than transverse direction. As corrosion time increased, puncture strength decreased and corresponding deformation increased. As with corrosion time, the increase of corrosion temperature induced the decrease of geomembrane tensile strength. Tensile and puncture strength were extremely sensitive to temperature. Overall, residual strength had a negative correlation with corrosion time or temperature. Elongation variation increased initially and then decreased with the increase in temperature. However, it did not show significant law with corrosion time. The reduction in puncture strength and the increase in puncture deformation had positive correlations with corrosion time or temperature. The geomembrane softened under corrosion condition. The conclusion may be applicable to the proper designing of the HDPE geomembrane in landfill barrier system. PMID:28788321

  1. Effect of Waterproofing Admixtures on the Flexural Strength and Corrosion Resistance of Concrete

    NASA Astrophysics Data System (ADS)

    Geetha, A.; Perumal, P.

    2012-02-01

    This paper deals about the flexural strength and corrosion behaviour of concrete using waterproofing admixtures. The effect of waterproofing admixtures on the corrosion behaviour of RCC specimen has been studied by conducting accelerated corrosion test. To identify the effect of corrosion in pull out strength, corrosion process was induced by means of accelerated corrosion procedure. To accelerate the reinforcement corrosion, direct electric current was impressed on the rebar embedded in the specimen using a DC power supply system that has a facility to adjust voltage. The addition of waterproofing admixtures also shows the improvement in the flexural strength of concrete has been studied by conducting flexural strength tests on the concrete prism specimen of size 100 × 100 × 500 mm with and without admixtures for various dosages and various curing periods of 7 and 28 days. The results showed that the presence of waterproofing admixtures always improves the corrosion resistance and thus increases the strength of concrete due to the hydrophobic action of waterproofing admixtures.

  2. Corrosion resistant positive electrode for high-temperature, secondary electrochemical cell

    DOEpatents

    Otto, Neil C.; Warner, Barry T.; Smaga, John A.; Battles, James E.

    1983-01-01

    The corrosion rate of low carbon steel within a positive electrode of a high-temperature, secondary electrochemical cell that includes FeS as active material is substantially reduced by incorporating therein finely divided iron powder in stoichiometric excess to the amount required to form FeS in the fully charged electrode. The cell typically includes an alkali metal or alkaline earth metal as negative electrode active material and a molten metal halide salt as electrolyte. The excess iron permits use of inexpensive carbon steel alloys that are substantially free of the costly corrosion resistant elements chromium, nickel and molybdenum while avoiding shorten cell life resulting from high corrosion rates.

  3. Corrosion resistant positive electrode for high-temperature, secondary electrochemical cell

    DOEpatents

    Otto, N.C.; Warner, B.T.; Smaga, J.A.; Battles, J.E.

    1982-07-07

    The corrosion rate of low carbon steel within a positive electrode of a high-temperature, secondary electrochemical cell that includes FeS as active material is substantially reduced by incorporating therein finely divided iron powder in stoichiometric excess to the amount required to form FeS in the fully charged electrode. The cell typically includes an alkali metal or alkaline earth metal as negative electrode active material and a molten metal halide salt as electrolyte. The excess iron permits use of inexpensive carbon steel alloys that are substantially free of the costly corrosion resistant elements chromium, nickel and molybdenum while avoiding shorten cell life resulting from high corrosion rates.

  4. Corrosion-resistant amorphous metallic films of Mo49Cr33B18 alloy

    NASA Technical Reports Server (NTRS)

    Ramesham, R.; Distefano, S.; Fitzgerald, D.; Thakoor, A. P.; Khanna, S. K.

    1987-01-01

    Corrosion-resistant amorphous metallic alloy films of Mo49Cr33B18 with a crystallization temperature of 590 C were deposited onto glass and quartz substrates by magnetron sputter-quench technique. The amorphous nature of the films was confirmed by their diffuse X-ray diffraction patterns. The deposited films are densely packed (zone T) and exhibit low stress and good adhesion to the substrate. Corrosion current of as-deposited coating of MoCrB amorphous metallic alloy is approximately three orders of magnitude less than the corrosion current of 304 stainless steel in 1N H2SO4 solution.

  5. The corrosion resistance of nickel-containing alloys in coal-fired boiler environments

    SciTech Connect

    Smith, G.D.; Patel, S.J.; Farr, N.C.; Hoffmann, M.

    1999-11-01

    This paper examines the nature of coal ash/flue gas corrosion and factors influencing its degree of aggressiveness. Citing both laboratory and plant experience, the performance of a number of nickel-containing alloys are assessed as to their general performance limits based on corrosion resistance. The role of certain key alloying elements is addressed. Corrosion behavior is examined in terms of chromium content of the alloy, the SO{sub 2}/SO{sub 3} content of the flue gas, the alkali content of the coal ash and the surface temperature of the alloy exposed to the environment.

  6. Corrosion-resistant amorphous metallic films of Mo49Cr33B18 alloy

    NASA Technical Reports Server (NTRS)

    Ramesham, R.; Distefano, S.; Fitzgerald, D.; Thakoor, A. P.; Khanna, S. K.

    1987-01-01

    Corrosion-resistant amorphous metallic alloy films of Mo49Cr33B18 with a crystallization temperature of 590 C were deposited onto glass and quartz substrates by magnetron sputter-quench technique. The amorphous nature of the films was confirmed by their diffuse X-ray diffraction patterns. The deposited films are densely packed (zone T) and exhibit low stress and good adhesion to the substrate. Corrosion current of as-deposited coating of MoCrB amorphous metallic alloy is approximately three orders of magnitude less than the corrosion current of 304 stainless steel in 1N H2SO4 solution.

  7. Effect of different thermal treatments on the corrosion resistance of alloy 690 tubing

    SciTech Connect

    Crum, J.R.; Heck, K.A. ); Angeliu, T.M. )

    1990-03-01

    A comparison of the carbide precipitation characteristics and corrosion resistance of commercially produced alloy 690 steam generator tubing from various sources, with different thermal treatments, was made. Four thermal treatments within the ranges of 700--720{degree}C (1292--1328{degree}F)/5--5.75 hrs and 871--927{degree}C (1600--1700{degree}F)/10 min were compared to one another and to two as-mill annealed tubes. All tubes were characterized with respect to chemical composition, mechanical properties, and microstructure. Overall carbide precipitation was determined by etching with phosphoric acid/nital, bromine-methanol and glyceregia/oxalic etchants. Scanning transmission electron microscope analysis provided detailed chromium depletion profiles across the grain boundary and carbide composition. Nitric acid intergranular attack (IGA) tests were also conducted. C-ring stress corrosion cracking (SCC) tests, with stresses above the yield strength were then conducted in 350{degree}C (662{degree}F) deaerated 1, 10, and 50% NaOH and unstressed IGA tests were conducted in a NaOH-Na{sub 2}SO{sub 4}--Fe{sub 3}O{sub 4}--Fe{sub 2}O{sub 3} environment, also at 350{degree}C (662{degree}F). 2 tabs.

  8. Corrosion resistance of Ti modified by chitosan-gold nanoparticles for orthopedic implantation.

    PubMed

    Farghali, R A; Fekry, A M; Ahmed, Rasha A; Elhakim, H K A

    2015-08-01

    Highly uniform bionanocomposite film composed of chitosan (CS) and gold nanoparticles (AuNPs) was synthesized successfully by electrodeposition method. The influence of AuNPs/CS bionanocomposite film on corrosion resistance of Ti was investigated. Surface morphology and compositional properties of the bionanocomposite were analyzed by scanning electron microscope (SEM), energy dispersive X-ray analysis (EDX), and X-ray photoelectron spectroscopy (XPS). Moreover, cyclic voltammetry (CV), open-circuit potential measurements (OCP), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (Rp) were used to examine the corrosion behavior in Hanks' solution. In comparison with Ti, Nyquist and Bode plots displayed higher impedance values and phase angles for AuNPs/CS biocomposite denoting a more protective passive film on Ti with inhibition efficiency (IE%) of 98%. An electric equivalent circuit with three time constants was modeled for the bionanocomposite. In addition, the antibacterial effect revealed the high efficiencies of the bionanocomposite film for inhibiting bacterial growth. The combination of the high biocompatibility of chitosan and strong adsorption ability of AuNPs make AuNPs/CS bionanocomposite promising candidate for modifying biomaterial surfaces for medical implantation applications.

  9. Iron-based alloys with corrosion resistance to oxygen-sulfur mixed gases

    DOEpatents

    Natesan, K.

    1992-11-17

    An iron-based alloy with improved performance with exposure to oxygen-sulfur mixed gases with the alloy containing about 9--30 wt. % Cr and a small amount of Nb and/or Zr implanted on the surface of the alloy to diffuse a depth into the surface portion, with the alloy exhibiting corrosion resistance to the corrosive gases without bulk addition of Nb and/or Zr and without heat treatment at temperatures of 1000--1100 C. 7 figs.

  10. Iron-based alloys with corrosion resistance to oxygen-sulfur mixed gases

    DOEpatents

    Natesan, Krishnamurti

    1992-01-01

    An iron-based alloy with improved performance with exposure to oxygen-sulfur mixed gases with the alloy containing about 9-30 wt. % Cr and a small amount of Nb and/or Zr implanted on the surface of the alloy to diffuse a depth into the surface portion, with the alloy exhibiting corrosion resistance to the corrosive gases without bulk addition of Nb and/or Zr and without heat treatment at temperatures of 1000.degree.-1100.degree. C.

  11. The corrosion resistance of zinc coatings in the presence of boron-doped detonation nanodiamonds (DND)

    NASA Astrophysics Data System (ADS)

    Burkat, G. K.; Alexandrova, G. S.; Dolmatov, V. Yu; Osmanova, E. D.; Myllymäki, V.; Vehanen, A.

    2017-02-01

    The effect of detonation nanodiamonds, doped with boron (boron-DND) in detonation synthesis on the process of zinc electrochemical deposition from zincate electrolyte is investigated. It is shown that the scattering power (coating uniformity) increases 2-4 times (depending on the concentration of DND-boron electrolyte conductivity does not change, the corrosion resistance of Zn- DND -boron coating increases 2.6 times in 3% NaCl solution (corrosion currents) and 3 times in the climatic chamber.

  12. Advanced Corrosion-Resistant Zr Alloys for High Burnup and Generation IV Applications

    SciTech Connect

    Arthur Motta; Yong Hwan Jeong; R.J. Comstock; G.S. Was; Y.S. Kim

    2006-10-31

    The objective of this collaboration between four institutions in the US and Korea is to demonstrate a technical basis for the improvement of the corrosion resistance of zirconium-based alloys in more extreme operating environments (such as those present in severe fuel duty,cycles (high burnup, boiling, aggressive chemistry) andto investigate the feasibility (from the point of view of corrosion rate) of using advanced zirconium-based alloys in a supercritical water environment.

  13. Corrosion resistant thermal barrier coating. [protecting gas turbines and other engine parts

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Miller, R. A.; Hodge, P. E. (Inventor)

    1981-01-01

    A thermal barrier coating system for protecting metal surfaces at high temperature in normally corrosive environments is described. The thermal barrier coating system includes a metal alloy bond coating, the alloy containing nickel, cobalt, iron, or a combination of these metals. The system further includes a corrosion resistant thermal barrier oxide coating containing at least one alkaline earth silicate. The preferred oxides are calcium silicate, barium silicate, magnesium silicate, or combinations of these silicates.

  14. Evaluation of corrosion testing techniques for selection of corrosion resistant alloys for sour gas service

    SciTech Connect

    Bhavsar, R.B.; Hibner, E.L.

    1996-08-01

    Slow strain rate (SSR) and C-ring stress corrosion cracking (SCC) tests have historically been used to screen alloys for sour gas environments. The relevance of these testing techniques in predicting actual field corrosion behavior was evaluated for age-hardenable nickel base alloy 925 (UNS N09925) and alloy 718 (UNS N07718). While SSR testing provides an acceptable accelerated screening tool for ranking alloys in sour oil field environments, C-ring SCC testing ranks alloys higher in sour environments than SSR testing.

  15. Characteristic corrosion resistance of nanocrystalline TiN films prepared by high density plasma reactive magnetron sputtering.

    PubMed

    Kim, J H; Kang, C G; Kim, Y T; Cheong, W S; Song, P K

    2013-07-01

    Nanocytalline TiN films were deposited on non-alkali glass and Al substrates by reactive DC magnetron sputtering (DCMS) with an electromagnetic field system (EMF). The microstructure and corrosion resistance of the TiN-coated Al substrates were estimated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical methods. All the TiN films shows that they have a (111) preferred orientation at room temperature. TiN films deposited on Al substrate using only DCMS 400 W showed a sheet resistance of 3.22 x 10-1 omega/symbol see texts (resistivity, 3.22 x 10-5 omegacm). On the other hand, a relatively low sheet resistance of 1.91 x 10-1 omega/symbol see text (1.91 x 10-5 omegacm) was obtained for the dense nanocrystalline TiN film deposited on Al substrate using DCMS 375 W+ EMF 25 W, indicating that the introduction of an EMF system enhanced the electrical properties of the TiN film. TiN films deposited on Al substrate at 400 degreesC had a (200) preferred orientation with the lowest sheet resistance of 1.28x10-1 omega/symbol see texts (1.28 x 10-5 omegacm) which was attributed to reduced nano size defects and an improvement of the crystallinity. Potentiostatic and Potentiodynamic tests with a TiN-coated Al showed good corrosion resistance (l/corr, = 2.03 microA/cm2, Ecorr = -348 mV) compared to the uncoated Al substrate (/corr = 4.45 microA/cm2, Ecorr = -650 mV). Furthermore, EMF system showed that corrosion resistance of the TiN film also was enhanced compared to DCMS only. For the TiN film deposited on Al substrate at 400 degreesC, corrosion current and potential was 0.63 micro/cm2 and -1.5 mV, respectively. This improved corrosion resistance of the TiN film could be attributed to the densification of the film caused by enhancement of nitrification with increasing high reactive nitrogen radicals.

  16. [The effect of epigallocatechin gallate (EGCG) on the surface properties of nickel-chromium dental casting alloys after electrochemical corrosion].

    PubMed

    Qiao, Guang-yan; Zhang, Li-xia; Wang, Jue; Shen, Qing-ping; Su, Jian-sheng

    2014-08-01

    To investigate the effect of epigallocatechin gallate (EGCG) on the surface properties of nickel-chromium dental alloys after electrochemical corrosion. The surface morphology and surface structure of nickel-chromium dental alloys were examined by stereomicroscope and scanning electron microscopy before and after electrochemical tests in 0 g/L and 1.0 g/L EGCG artificial saliva. The surface element component and chemical states of nickel-chromium dental alloys were analyzed by X-ray photoelectron spectrograph after electrochemical tests in 0 g/L and 1.0 g/L EGCG artificial saliva. More serious corrosion happened on the surface of nickel-chromium alloy in 1.0 g/L EGCG artificial saliva than in 0 g/L EGCG. The diameters of corrosion pits were smaller, and the dendrite structure of the alloy surface was not affected in 0 g/L EGCG. While the diameters of corrosion pits were larger, the dendritic interval of the alloy surface began to merge, and the dendrite structure was fuzzy in 1.0 g/L EGCG. In addition, the O, Ni, Cr, Be, C and Mo elements were detected on the surface of nickel-chromium alloys after sputtered for 120 s in 0 g/L EGCG and 1.0 g/L EGCG artificial saliva after electrochemical corrosion, and the surface oxides were mainly NiO and Cr(2)O(3). Compared with 0 g/L EGCG artificial saliva, the content of O, NiO and Cr(2)O(3) were lower in 1.0 g/L EGCG. The results of surface morphology and the corrosion products both show that the corrosion resistance of nickel-chromium alloys become worse and the oxide content of corrosion products on the surface reduce in 1.0 g/L EGCG artificial saliva.

  17. Effect of surface area on corrosion properties of magnesium for biomaterials

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Cheol; Han, Kwon-Hoon; Kim, Jung-Gu; Yang, Seok-Jo; Seok, Hyun-Kwang; Han, Hyung-Seop; Kim, Young-Yul

    2013-09-01

    This study examined the effect of the surface area on the corrosion properties of magnesium through in vivo (weight loss test) and in vitro (electrochemical and weight loss tests in Hank's solution) tests. The corrosion rate was reduced as the surface area increased. Surface analysis showed that the precipitation of calcium phosphate increased with increasing surface area. Moreover, the pH level around the specimen increased with increasing surface area. This increase of pH can accelerate the precipitation of calcium phosphate on the surface. However, different mechanism of calcium phosphate precipitation was found for in vivo and vitro test environment. In vitro environment showed an increase of calcium phosphate due to the continuous increase in pH, whereas in vivo environment showed increase of calcium phosphate to maintain homeostasis and reduced the level of pH in physiological system. Consequently, the increase in magnesium surface area leads to increase the precipitation of calcium phosphate as a more stable rust layer which ultimately increases the corrosion resistance of magnesium.

  18. Microstructure, mechanical property, corrosion behavior, and in vitro biocompatibility of Zr-Mo alloys.

    PubMed

    Zhou, F Y; Wang, B L; Qiu, K J; Li, L; Lin, J P; Li, H F; Zheng, Y F

    2013-02-01

    In this study, the microstructure, mechanical properties, corrosion behaviors, and in vitro biocompatibility of Zr-Mo alloys as a function of Mo content after solution treatment were systemically investigated to assess their potential use in biomedical application. The experimental results indicated that Zr-1Mo alloy mainly consisted of an acicular structure of α' phase, while ω phase formed in Zr-3Mo alloy. In Zr-5Mo alloy, retained β phase and a small amount of precipitated α phase were observed. Only the retained β phase was obtained in Zr-10Mo alloy. Zr-1Mo alloy exhibited the greatest hardness, bending strength, and modulus among all experimental Zr-Mo alloys, while β phase Zr-10Mo alloy had a low modulus. The results of electrochemical corrosion indicated that adding Mo into Zr improved its corrosion resistance which resulted in increasing the thermodynamic stability and passivity of zirconium. The cytotoxicity test suggested that the extracts of the studied Zr-Mo alloys produced no significant deleterious effect to fibroblast cells (L-929) and osteoblast cells (MG 63), indicating an excellent in vitro biocompatibility. Based on these facts, certain Zr-Mo alloys potentially suitable for different biomedical applications were proposed. Copyright © 2012 Wiley Periodicals, Inc.

  19. Preparation and testing of corrosion and spallation-resistant coatings

    SciTech Connect

    Hurley, John P.; Cavalli, Matthew N.

    2016-06-30

    The goal of this project was to take a recently developed method of bonding oxide dispersion-strengthened (ODS) FeCrAl plating to nickel superalloys closer to commercial use in syngas-fired turbines. The project was designed to better understand and develop the bonding process and to determine if plating APMT®, a specific highly oxidation-resistant ODS FeCrAl alloy made by Kanthal, onto nickel-based superalloy turbine parts is a viable method for substantially improving the lifetimes and maximum use temperatures of the parts. The superalloys investigated for protection were CM247LC and Rene® 80, both alumina scale-forming alloys. The method for bonding the APMT plate to the superalloys is called evaporative metal bonding, which involves placing a thin foil of zinc between the plate and the superalloy, clamping them together, and heating in an atmosphere-controlled furnace. Upon heating, the zinc melts and dissolves the oxide skins of the alloys at the bond line, allowing the two alloys to diffuse into each other. The zinc then diffuses through the alloys and evaporates from their surfaces, creating a bond between the APMT and the superalloy that is stronger than the APMT itself. Testing showed that the diffusivity of zinc in both APMT and CM247LC is quite similar at 700°C but 15 times higher in the APMT at 1214°C. Coefficients of thermal expansion were determined for each of the alloys as a function of temperature. This information was entered into a finite-element model using ANSYS, which was used to design a clamping jig for pressing the APMT to the superalloys at the bonding temperature. Scanning electron microscopy analyses of representative joints showed that no zinc remained in the alloys after bonding Unfortunately, the analyses also showed some small pieces of broken aluminum oxide scale near the bond lines, indicating that its scale was not sufficiently removed during prebonding cleaning. Samples from each of the bonded blocks were sent to Siemens for

  20. Comparison of the crevice corrosion resistance of Alloys 625 and 22 in concentrated chloride solution from 60 to 95 degrees C

    SciTech Connect

    Kehler, B A; Illevbare, G O; Scully, J R

    1999-12-06

    The effects of electrolyte composition and oxide film age on the crevice corrosion properties of alloys 625 and 22 were studied at temperatures ranging from 60 to 95 C in concentrated chloride electrolytes. Critical potentials were determined using conventional current density thresholds and comparisons were made between 625 and 22 on the basis of these critical potentials. Air aged 22 specimens exhibited the highest resistance to crevice corrosion at 95 C in terms of critical crevice potentials, while freshly polished 22 exhibited the lowest resistance. Studies over the entire, temperature range showed that air aged 22 is more resistant to crevice corrosion than air aged 625 as evidenced by higher critical crevice potentials. As the temperature was lowered from 95 to 8O C, critical crevice potentials for 22 either approached or exceeded experimentally determined Cr (Mo, Ni) transpassive potentials.

  1. Thermal Oxidation of Ti6Al4V Alloy with Enhanced Wear and Corrosion Resistance for Oil and Gas Application: Effect of Temperature

    NASA Astrophysics Data System (ADS)

    Lin, Naiming; Zhou, Peng; Wang, Yating; Zou, Jiaojuan; Ma, Yong; Wang, Zhenxia; Tian, Wei; Yao, Xiaofei; Tang, Bin

    2015-03-01

    Thermal oxidation (TO) treatments were performed at 873 K, 898 K, 923 K, 948 K, 973 K, 998 K and 1023 K for 10 h in air to improve the wear and corrosion resistance of Ti6Al4V alloy. The effect of TO temperature on microstructural characterizations and surface properties of the obtained TO layers were investigated. The results showed that TO layers with various thickness values were formed on Ti6Al4V alloy under different temperatures. The thickness of the TO layers increased with the increasing of TO temperature. TO layer that was obtained at 973 K suggested the highest surface hardness and the best wear resistance. TO layer that was realized at 948 K exhibited superior corrosion resistance to other TO layers. TO treatment could be considered as an effective method for preventing wear and corrosion of Ti6Al4V alloy.

  2. Effect of Carbon Nanotubes on Corrosion and Tribological Properties of Pulse-Electrodeposited Co-W Composite Coatings

    NASA Astrophysics Data System (ADS)

    Edward Anand, E.; Natarajan, S.

    2015-01-01

    Cobalt-Tungsten (Co-W) alloy coatings possessing high hardness and wear/corrosion resistance, due to their ecofriendly processing, have been of interest to the researchers owing to its various industrial applications in automobile, aerospace, and machine parts. This technical paper reports Co-W alloy coatings dispersed with multiwalled carbon nanotubes (MWCNTs) produced by pulse electrodeposition from aqueous bath involving cobalt sulfate, sodium tungstate, and citric acid on stainless steel substrate (SS316). Studies on surface morphology through SEM, microhardness by Vickers method, microwear by pin-on-disk method, and corrosion behavior through potentiodynamic polarization method for the Co-W-CNT coatings were reported. Characterization studies were done by SEM and EDX analysis. The results showed that the corrosion and tribological properties of the pulse-electrodeposited Co-W-CNT alloy coatings were greatly influenced by its morphology, microhardness, %W, and MWCNT content in the coatings.

  3. Corrosion resistance and in vitro response of laser-deposited Ti-Nb-Zr-Ta alloys for orthopedic implant applications.

    PubMed

    Samuel, Sonia; Nag, Soumya; Nasrazadani, Seifollah; Ukirde, Vaishali; El Bouanani, Mohamed; Mohandas, Arunesh; Nguyen, Kytai; Banerjee, Rajarshi

    2010-09-15

    While direct metal deposition of metallic powders, via laser deposition, to form near-net shape orthopedic implants is an upcoming and highly promising technology, the corrosion resistance and biocompatibility of such novel metallic biomaterials is relatively unknown and warrants careful investigation. This article presents the results of some initial studies on the corrosion resistance and in vitro response of laser-deposited Ti-Nb-Zr-Ta alloys. These new generation beta titanium alloys are promising due to their low elastic modulus as well as due the fact that they comprise of completely biocompatible alloying elements. The results indicate that the corrosion resistance of these laser-deposited alloys is comparable and in some cases even better than the currently used commercially-pure (CP) titanium (Grade 2) and Ti-6Al-4V ELI alloys. The in vitro studies indicate that the Ti-Nb-Zr-Ta alloys exhibit comparable cell proliferation but enhanced cell differentiation properties as compared with Ti-6Al-4V ELI.

  4. The fabricability and corrosion resistance of several Al-Cu-Li aerospace alloys

    SciTech Connect

    Walsh, D.W.; Danford, M.; Sanders, J.

    1996-12-31

    Al-Li-Cu alloys are attractive to the aerospace industry. The high specific strength and stiffness of these alloys will improve lift efficiency, fuel economy, performance and increase payload capabilities. The objectives of this study were to measure the fabricability of Al 2195 (Al-4Cu-1Li) and to assess the effect of welding on corrosion behavior. Al 2219 samples were used in parallel tests to provide a baseline for the data generated. In this study samples were exposed to 3.5% NaCl and mild corrosive water solutions in both the as received and as welded conditions. Fabricability was assessed using Gleeble testing, Varestraint testing and differential scanning calorimetry (DSC). Results indicate that Alloy 2195 is much more susceptible to hot cracking than Al 2219, and that cracking sensitivity is a strong function of chemical composition within specification ranges for Al 2195. Furthermore, for base metal samples, corrosion in mild corrosive water was more severe than corrosion in salt water. In addition, welding increases the corrosion rate in Al 2195 and 2219, and causes severe localization in Al 2195. Furthermore, autogenously welded Al 2195 samples were more susceptible to attack than heterogeneously welded Al 2195 samples and autogenously welded Al2219 samples were less susceptible to corrosion than autogenously welded Al 2195 samples. Heterogeneously welded samples in both materials had high corrosion rates, but only the Al 2195 material was subject to localization of attack. The partially melted zones of Al 2195 samples were subject to severe, focused attack. In all cases, interdendritic constituents in welded areas and intergranular constituents in base material were cathodic to the Al rich matrix materials. Fabricability and corrosion resistance were correlated to material microstructure using optical microscopy, scanning electron microscopy, electron probe microanalysis, polarization resistance and environmental scanning electron microscopy.

  5. Corrosion properties of powder bed fusion additively manufactured 17-4 PH stainless steel

    DOE PAGES

    Schaller, Rebecca; Taylor, Jason; Rodelas, Jeffrey; ...

    2017-02-18

    The corrosion susceptibility of a laser powder bed fusion (LPBF) additively manufactured alloy, UNS S17400 (17-4 PH), was explored compared to conventional wrought material. Microstructural characteristics were characterized and related to corrosion behavior in quiescent, aqueous 0.6 M NaCl solutions. Electrochemical measurements demonstrated that the LPBF 17-4 PH alloy exhibited a reduced passivity range and active corrosion compared to its conventional wrought counterpart. Lastly, a micro-electrochemical cell was employed to further understand the effects of the local scale and attributed the reduced corrosion resistance of the LPBF material to pores with diameters ≥ 50 µm.

  6. Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology

    SciTech Connect

    Aghion, E. Perez, Y.

    2014-10-15

    Magnesium alloy foams have the potential to serve as structural material for regular light-weight applications as well as for biodegradable scaffold implants. However, their main disadvantage relates to the high reactivity of magnesium and consequently their natural tendency to corrode in regular service conditions and in physiological environments. The present study aims at evaluating the effect of porosity on the corrosion resistance of MRI 201S magnesium alloy foams in 0.9% NaCl solution and in phosphate buffer saline solution as a simulated physiological electrolyte. The magnesium foams were produced by powder metallurgy technology using space-holding particles to control the porosity content. Machined chips were used as raw material for the production of Mg alloy powder by milling process. The microstructure of the foams was examined using optical and scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analysis. The corrosion behavior was evaluated by immersion test and potentiodynamic polarization analysis. The results obtained clearly demonstrate that the porosity has a significant effect on the corrosion resistance of the tested foams. Foams with 14–19% porosity have a corrosion rate of 4–10 mcd and 7–15 mcd in NaCl and phosphate buffer saline solution, respectively, compared to only 0.10 mcd for the same alloy in as cast conditions. This increased corrosion degradation of the Mg foams by more than one order of magnitude compared to the cast alloy may limit their potential application in regular and physiological environments. - Highlights: • Porosity has a detrimental effect on corrosion resistance of MRI 201S Mg foams. • 14–19% porosity increases the corrosion rate by more than one order of magnitude. • Accelerated corrosion limits the use of foams in regular/physiological environments.

  7. Corrosion-resistant multilayer structures with improved reflectivity

    DOEpatents

    Soufli, Regina; Fernandez-Perea, Monica; Robinson, Jeff C.

    2013-04-09

    In one general embodiment, a thin film structure includes a substrate; a first corrosion barrier layer above the substrate; a reflective layer above the first corrosion barrier layer, wherein the reflective layer comprises at least one repeating set of sub-layers, wherein one of the sub-layers of each set of sub-layers being of a corrodible material; and a second corrosion barrier layer above the reflective layer. In another general embodiment, a system includes an optical element having a thin film structure as recited above; and an image capture or spectrometer device. In a further general embodiment, a laser according to one embodiment includes a light source and the thin film structure as recited above.

  8. Preparation and Testing of Corrosion and Spallation-Resistant Coatings

    SciTech Connect

    Hurley, John

    2015-11-01

    This Energy & Environmental Research Center (EERC) project is designed to determine if plating APMT®, a specific highly oxidation-resistant oxide dispersion-strengthened FeCrAl alloy made by Kanthal, onto nickel-based superalloy turbine parts is a viable method for substantially improving the lifetimes and maximum use temperatures of the parts. The method for joining the APMT plate to the superalloys is called evaporative metal bonding and involves placing a thin foil of zinc between the plate and the superalloy, clamping them together, and heating in an atmosphere-controlled furnace. Upon heating, the zinc melts and dissolves the oxide skins of the alloys at the bond line, allowing the two alloys to diffuse into each other. The zinc then diffuses through the alloys and evaporates from their surfaces. During this annual reporting period, the finite element model was completed and used to design clamping jigs to hold the APMT plate to the larger blocks of superalloys during the bonding process. The clamping system was machined from titanium–zirconium–molybdenum and used to bond the APMT plate to the superalloy blocks. The bond between the APMT plate was weak for one of each of the superalloy blocks. We believe that this occurred because enough oxidation had occurred on the surface of the parts as a result of a 1-month time period between sandblasting to prepare the parts and the actual bonding process. The other blocks were, therefore, bonded within 1 day of preparing the parts for bonding, and their joints appear strong. Scanning electron microscopy analyses of representative joints showed that no zinc remained in the alloys after bonding. Also, phases rich in hafnium and tantalum had precipitated near the bond line in the APMT. Iron from the APMT had diffused into the superalloys during bonding, more extensively in the CM247LC than in the Rene 80. Nickel from the superalloys had diffused into the APMT, again more extensively in the joint with the CM247LC than

  9. Microstructure and corrosion resistance of phytic acid conversion coatings for magnesium alloy

    NASA Astrophysics Data System (ADS)

    Cui, Xiufang; Li, Qingfen; Li, Ying; Wang, Fuhui; Jin, Guo; Ding, Minghui

    2008-12-01

    In this paper, a new innoxious and pollution-free chemical protective coating for magnesium alloys, phytic acid conversion coating, was prepared. The conversion coatings are found to have high cover ratio and no cracks are found by atomic force microscopes (AFM) and scanning electron microscopy (SEM). The main elements of the conversion coatings are Mg, Al, O, P and C by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The chemical state of the elements in the coatings was also investigated by Fourier transform infrared spectroscopy (FTIR). AES depth profile analysis suggests that the thickness of the conversion coating is about 340 nm. The corrosion resistance of the coatings was evaluated by polarization curves. The results indicate that the corrosion resistance for the conversion coated AZ91D magnesium alloys in 3.5% NaCl solution increases markedly. The mechanisms of corrosion resistance and coatings formation are also discussed.

  10. Effect of electrodeposition temperature on grain orientation and corrosion resistance of nanocrystalline pure nickel

    SciTech Connect

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang

    2016-08-15

    The nanocrystalline pure nickels with different grain orientations were fabricated by direct current electrodeposition process. The grain size slightly decreased with the increasing of electrodeposition solution temperature. However, grain orientation was affected significantly. Comparing with samples obtained at 50 °C and 80 °C, sample obtained at 20 °C had the strongest (111) orientation plane which increased electrochemical corrosion resistance of this sample. At the same time, the lowest (111) orientation plane deteriorated electrochemical corrosion resistance of sample obtained at 50 °C. - Graphical abstract: The increased electrodeposition temperature promoted slightly grain refinement. The grain orientation was affected significantly by electrodeposition solution temperature. The (111) orientation plane of sample increased significantly corrosion resistance. Display Omitted.

  11. Corrosion resistance evaluation of Pd-free Ag-Au-Pt-Cu dental alloys.

    PubMed

    Fujita, Takeshi; Shiraishi, Takanobu; Takuma, Yasuko; Hisatsune, Kunihiro

    2011-01-01

    The corrosion resistance of nine experimental Pd-free Ag-Au-Pt-Cu dental alloys in a 0.9% NaCl solution was investigated using cyclic voltammetry (CV), optical microscopy, and scanning electron microscopy (SEM). CV measurements revealed that the breakdown potential (E(bd)) and zero current potential (E(zc)) increased with increasing Au/(Au+Ag) atomic ratio. Thus, the Au/(Au+Ag) atomic ratio, but not the Cu content, influenced the corrosion resistance of Ag-Au-Pt-Cu alloys. After the forward scan of CV, both optical and scanning electron microscope images showed that in all the experimental alloys, the matrix phase was corroded but not the second phase. From corrosion resistance viewpoint, the Ag-Au-Pt-Cu alloys seemed to be suitable for clinical application.

  12. Fabrication of intermetallic coatings for electrical and corrosion resistance on high-temperature alloys

    SciTech Connect

    Park, J.H.; Cho, W.D.

    1994-10-01

    Several intermetallic films were fabricated to high-temperature alloys (V-alloys and 304 and 316 stainless steels) to provide electrical insulation and corrosion resistance. Alloy grain-growth behavior at 1000{degrees}C for the V-5Cr-5Ti was investigated to determine the stability of alloy substrate during coating formation by chemical vapor deposition (CVD) or metallic vapor processes at 800-850{degrees}C. Film layers were examined by optical and scanning electron microscopy and by electron-energy-dispersive and X-ray diffraction analysis and tested for electrical resistivity and corrosion resistance. The results elucidated the nature of the coatings, which provided both electrical insulation and high-temperature corrosion protection.

  13. The effect of conditioning agents on the corrosive properties of molten urea

    SciTech Connect

    Nichols, D E; Nguyen, D T; Norton, M M; Parker, B R; Daniels, L E

    1991-01-01

    From the process case histories of the failure of several heat exchanger tube bundles, it was revealed that molten urea containing lignosulfonate as a granulation conditioning-hardening agent (Urea LS[trademark]) is corrosive to Types 304 and 316 stainless steel. The results of field and laboratory immersion corrosion tests indicated that the corrosivity of molten urea is strongly dependent on the process temperature rather than the conditioner composition. At temperatures below 295F, molten Urea LS[trademark] is not aggressive to these stainless steels. However, at temperatures above 300F, the corrosion of these stainless steels is extremely severe. The corrosion rate of Types 304, 304L, 316, and 316L is as high as hundreds of mils per year. The corrosion mechanism tends to be more general than localized. The results of the laboratory corrosion test also revealed that among alloying elements, copper is detrimental to corrosion resistance of stainless steel exposed to molten Urea LS[trademark], chromium is the most beneficial, and nickel has only a minor effect. Thus, copper-free and chromium stainless steels have superior corrosion resistance to the molten Urea LS[trademark] at a wide range of temperatures up to 345F.

  14. Effect of laser polishing on the surface roughness and corrosion resistance of Nitinol stents.

    PubMed

    Park, Chan-Hee; Tijing, Leonard D; Pant, Hem Raj; Kim, Cheol Sang

    2015-01-01

    In this paper, we investigated the effect of laser polishing at different treatment times on the surface roughness and corrosion resistance of a biliary nickel-titanium (NiTi or Nitinol) stent. A specific area of the stent wire surface was checked for changes in roughness by scanning electron microscopy (SEM) and a noncontact profilometer. The corrosion resistance was assessed by potentiodynamic polarization test and electrochemical impedance spectroscopy. The surface characterization revealed that laser polishing reduced the surface roughness of stent by 34-64% compared to that of the as-received stent surface condition depending on the treatment time (i.e., 700-1600 μm). Measurements using potentiodynamic polarization in simulated body fluid solution showed better anti-corrosion performance of laser-polished stent compared to magnetically-polished stent and has comparable corrosion resistance with the as-received stent condition. In this paper, we have shown a preliminary study on the potential of laser polishing for the improvement of surface roughness of stent without affecting much its corrosion resistance.

  15. Effects of annealing heat treatment on the corrosion resistance of Zn/Mg/Zn multilayer coatings

    NASA Astrophysics Data System (ADS)

    Bae, KiTae; La, JoungHyun; Lee, InGyu; Lee, SangYul; Nam, KyungHoon

    2017-05-01

    Zn coatings alloyed with magnesium offer superior corrosion resistance compared to pure Zn or other Zn-based alloy coatings. In this study, Zn/Mg/Zn multilayer coatings with various Mg layer thicknesses were synthesized using an unbalanced magnetron sputtering process and were annealed to form Zn-Mg intermetallic phases. The effects of the annealing heat treatment on the corrosion resistance of the Zn/Mg/Zn multilayer coatings were evaluated using electrochemical measurements. The extensive diffusion of magnesium species into the upper and lower zinc layer from the magnesium layer in the middle of the coating was observed after the heat treatment. This phenomenon caused (a) the porous microstructure to transition into a dense structure and (b) the formation of a MgZn2 intermetallic phase. The results of the electrochemical measurements demonstrated that the heat treated Zn/Mg/Zn multilayer coatings possessed higher levels of corrosion resistance than the non-heat treated coatings. A Zn/Mg/Zn multilayer coating with MgZn2 and (Zn) phases showed the best corrosion resistance among the heat treated coatings, which could be attributed to the reduced galvanic corrosion effects due to a small potential gradient between the MgZn2 and zinc.

  16. Applications in the Nuclear Industry for Corrosion-Resistant Amorphous-Metal Thermal-Spray Coatings

    SciTech Connect

    Farmer, J; Choi, J

    2007-07-18

    Amorphous metal and ceramic thermal spray coatings have been developed that can be used to enhance the corrosion resistance of containers for the transportation, aging and disposal of spent nuclear fuel and high-level radioactive wastes. Fe-based amorphous metal formulations with chromium, molybdenum and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials, and their stability at high neutron doses, enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for container applications, though the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas atomized powders and applied as near full density, non-porous coatings with the high-velocity oxy-fuel process. This paper summarizes the performance of these coatings as corrosion-resistant barriers, and as neutron absorbers. Relevant corrosion models are also discussed, as well as a cost model to quantify the economic benefits possible with these new materials.

  17. Corrosion resistance of Si–Al-bearing ultrafine-grained weathering steel

    PubMed Central

    Nishimura, Toshiyasu

    2008-01-01

    In the Ultra-steel project at the National Institute for Materials Science (NIMS), which run from 1996 to 2005, high-Si–Al-content ultrafine-grained (UFG) weathering steel was developed by grain refinement and weathering guidance. It was found that this steel has excellent strength, toughness and corrosion resistance. Samples were prepared by multi pass warm rolling at temperatures between 773 and 873 K. The grain size of steel rolled at 873 K was about 1 μ m, and the tensile strength (TS) and elongation (EL) had excellent values of 800 MPa and 20%, respectively. In general, steels with high Si and Al contents exhibit inferior toughness to carbon steel (SM); however, the toughness of the developed sample was markedly improved by grain refinement. Cyclic corrosion tests in the presence of chloride ions confirmed that the developed steel exhibited excellent corrosion resistance, superior to that of SM. Electron probe microanalysis (EPMA) and transmission electron microscopy (TEM) analyses showed that Si and Al mainly exist in the inner rust layer. Si and Al were identified as existing in the Si2 + and Al3 + states in the nanoscale complex oxides constituting the inner rust layer. Electrochemical impedance spectroscopy(EIS) measurement showed that the corrosion reaction resistance (Rt) of the developed steel was much greater than that of SM. In the developed steel, the nanoscale complex oxides were formed in the inner rust layer, which increased Rt, and resulted in the excellent corrosion resistance. PMID:27877923

  18. The influence of electropolishing on the corrosion resistance of 316L stainless steel.

    PubMed

    Sutow, E J

    1980-09-01

    A study was conducted which examined the influence of electropolishing on the corrosion resistance of a cold rolled 316L stainless steel. Test specimens were surface prepared to a final mechanical finish of wetted 600 grit SiC paper, prior to electropolishing. An o-H3PO4/Glycerol/H2O electropolishing solution was employed for times of 15, 20, and 25 min. Control specimens were surface prepared only to the final mechanical finish. Anodic polarization tests were performed in a deaerated Ringer's solution (37 degrees C) which was acidified to pH 1, with HCl. The electropolished specimens demonstrated increased corrosion resistance, when compared to the control specimens. This was evidenced for the former by more anodic corrosion and breakdown potentials, and the absence of a dissolution peak which was observed for the control specimens at the initial polarization potentials. Surface hardness measurements indicated that this increase in corrosion resistance was produced, in part, by the removal of the cold worked surface layer produced by the mechanical finish. In terms of increasing corrosion resistance, no optimum electropolishing time was found within the 15-25 min treatment period.

  19. Corrosion resistance of Si-Al-bearing ultrafine-grained weathering steel.

    PubMed

    Nishimura, Toshiyasu

    2008-01-01

    In the Ultra-steel project at the National Institute for Materials Science (NIMS), which run from 1996 to 2005, high-Si-Al-content ultrafine-grained (UFG) weathering steel was developed by grain refinement and weathering guidance. It was found that this steel has excellent strength, toughness and corrosion resistance. Samples were prepared by multi pass warm rolling at temperatures between 773 and 873 K. The grain size of steel rolled at 873 K was about 1 μ m, and the tensile strength (TS) and elongation (EL) had excellent values of 800 MPa and 20%, respectively. In general, steels with high Si and Al contents exhibit inferior toughness to carbon steel (SM); however, the toughness of the developed sample was markedly improved by grain refinement. Cyclic corrosion tests in the presence of chloride ions confirmed that the developed steel exhibited excellent corrosion resistance, superior to that of SM. Electron probe microanalysis (EPMA) and transmission electron microscopy (TEM) analyses showed that Si and Al mainly exist in the inner rust layer. Si and Al were identified as existing in the Si(2 +) and Al(3 +) states in the nanoscale complex oxides constituting the inner rust layer. Electrochemical impedance spectroscopy(EIS) measurement showed that the corrosion reaction resistance (Rt) of the developed steel was much greater than that of SM. In the developed steel, the nanoscale complex oxides were formed in the inner rust layer, which increased Rt, and resulted in the excellent corrosion resistance.

  20. Enhanced High Temperature Corrosion Resistance in Advanced Fossil Energy Systems by Nano-Passive Layer Formation

    SciTech Connect

    Arnold R. Marder

    2007-06-14

    Due to their excellent corrosion resistance, iron aluminum alloys are currently being considered for use as weld claddings in fossil fuel fired power plants. The susceptibility to hydrogen cracking of these alloys at higher aluminum concentrations has highlighted the need for research into the effect of chromium additions on the corrosion resistance of lower aluminum alloys. In the present work, three iron aluminum alloys were exposed to simulated coal combustion environments at 500 C and 700 C for both short (100 hours) and long (5,000 hours) isothermal durations. Scanning electron microscopy was used to analyze the corrosion products. All alloys exhibited excellent corrosion resistance in the short term tests. For longer exposures, increasing the aluminum concentration was beneficial to the corrosion resistance. The addition of chromium to the binary iron aluminum alloy prevented the formation iron sulfide and resulted in lower corrosion kinetics. A classification of the corrosion products that developed on these alloys is presented. Scanning transmission electron microscopy (STEM) of the as-corroded coupons revealed that chromium was able to form chromium sulfides only on the higher aluminum alloy, thereby preventing the formation of deleterious iron sulfides. When the aluminum concentration was too low to permit selective oxidation of only aluminum (upon initial exposure to the corrosion environment), the formation of chromium oxide alongside the aluminum oxide led to depletion of chromium beneath the oxide layer. Upon penetration of sulfur through the oxide into this depletion layer, iron sulfides (rather than chromium sulfides) were found to form on the low aluminum alloy. Thus, it was found in this work that the role of chromium on alloy corrosion resistance was strongly effected by the aluminum concentration of the alloy. STEM analysis also revealed the encapsulation of external iron sulfide products with a thin layer of aluminum oxide, which may provide a

  1. Effect of Niobium on Phase Transformations, Mechanical Properties and Corrosion of Supermartensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    de Oliveira, Mariana Perez; Calderón-Hernández, José Wilmar; Magnabosco, Rodrigo; Hincapie-Ladino, Duberney; Alonso-Falleiros, Neusa

    2017-03-01

    The influence of niobium addition in a supermartensitic stainless steel with 13Cr-5Ni-2Mo has been studied. The steel with Nb tempered at 600 °C for 2 h showed improved mechanical resistance properties and lower degree of sensitization, without compromising elongation and pitting corrosion resistance, when compared to the reference steel. In order to understand the Nb effect in such steel, mainly regarding phase transformation, different tempering time intervals have been studied. The better performance of the SM2MoNb is attributed to the hindering effect that Nb has in the kinetics of the phase transformations during tempering, delaying the precipitation start and coarsening stages of the present phases.

  2. Influence of hardening and surface modification of endourological wires on corrosion resistance.

    PubMed

    Walke, Witold; Przondziono, Joanna

    2012-01-01

    Guide wires with suitable functional characteristics are of crucial importance for proper urological treatment. This study presents an analysis of the effect of work hardening taking place in the process of wire cold drawing and the effect of surface modification by means of electrochemical polishing and chemical passivation on the resistance of wires made of X10CrNi18-8 steel used in urology. Corrosion resistance was evaluated on the grounds of the registered anodic polarisation curves by means of potentiodynamic method. The tests were made in solution simulating human urine. Anodic polarisation curves were presented for selected wire diameters. Mechanical properties were tested in a static uniaxial tensile test. The course of flow curve as well as mathematical form of flow stress function were determined. Curves presenting the relation of polarisation resistance as a function of strain applied in the drawing process are given. The tests carried out show that surface modification by means of electrochemical polishing and then chemical passivation of wires used in endourological treatment is fundamental.

  3. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating

    NASA Astrophysics Data System (ADS)

    Ye, Qingfeng; Feng, Kai; Li, Zhuguo; Lu, Fenggui; Li, Ruifeng; Huang, Jian; Wu, Yixiong

    2017-02-01

    Equimolar CrMnFeCoNi high entropy alloy (HEA) is one of the most notable single phase multi-component alloys up-to-date with promising mechanical properties at cryogenic temperatures. However, the study on the corrosion behavior of CrMnFeCoNi HEA coating has still been lacking. In this paper, HEA coating with a nominal composition of CrMnFeCoNi is fabricated by laser surface alloying and studied in detail. Microstructure and chemical composition are determined by X-ray diffraction (XRD), optical microscope (OM), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) are used to investigate the corrosion behavior. The coating forms a simple FCC phase with an identical dendritic structure composed of Fe/Co/Ni-rich dendrites and Mn/Ni-rich interdendrites. Both in 3.5 wt.% NaCl solution and 0.5 M sulfuric acid the coating exhibits nobler corrosion resistance than A36 steel substrate and even lower icorr than 304 stainless steel (304SS). EIS plots coupled with fitted parameters reveal that a spontaneous protective film is formed and developed during immersion in 0.5 M sulfuric acid. The fitted Rt value reaches its maximum at 24 h during a 48 h' immersion test, indicating the passive film starts to break down after that. EDS analysis conducted on a corroded surface immersed in 0.5 M H2SO4 reveals that corrosion starts from Cr-depleted interdendrites.

  4. Investigation into the stress corrosion cracking properties of AA2099, an aluminum-lithium-copper alloy

    NASA Astrophysics Data System (ADS)

    Padgett, Barbara Nicole

    Recently developed Al-Li-Cu alloys show great potential for implementation in the aerospace industry because of the attractive mix of good mechanical properties and low density. AA2099 is an Al-Li-Cu alloy with the following composition Al-2.69wt%Cu-1.8wt%Li-0.6wt%Zn-0.3wt%Mg-0.3wt%Mn-0.08wt%Zr. The environmental assisted cracking and localized corrosion behavior of the AA2099 was investigated in this thesis. The consequences of uncontrolled grain boundary precipitation via friction stir welding on the stress corrosion cracking (SCC) behavior of AA2099 was investigated first. Using constant extension rate testing, intergranular corrosion immersion experiments, and potentiodynamic scans, the heat-affected zone on the trailing edge of the weld (HTS) was determined to be most susceptible of the weld zones. The observed SCC behavior for the HTS was linked to the dissolution of an active phase (Al2CuLi, T1) populating the grain boundary. It should be stated that the SCC properties of AA2099 in the as-received condition were determined to be good. Focus was then given to the electrochemical behavior of precipitate phases that may occupy grain and sub-grain boundaries in AA2099. The grain boundary micro-chemistry and micro-electrochemistry have been alluded to within the literature as having significant influence on the SCC behavior of Al-Li-Cu alloys. Major precipitates found in this alloy system are T1 (Al 2CuLi), T2 (Al7.5Cu4Li), T B (Al6CuLi3), and theta (Al2 Cu). These phases were produced in bulk form so that the electrochemical nature of each phase could be characterized. It was determined T1 was most active electrochemically and theta was least. When present on grain boundaries in the alloy, electrochemical behavior of the individual precipitates aligned with the observed corrosion behavior of the alloy (e.g. TB was accompanied by general pitting corrosion and T 1 was accompanied by intergranular corrosion attack). In addition to the electrochemical behavior of

  5. Corrosion resistance of ceramic refractories to simulated waste glasses at high temperature

    SciTech Connect

    Xing, S.B.; Lin, Y.; Mohr, R.K.; Pegg, I.L.

    1996-08-01

    In many vitrification processes, refractory materials are used to contain the waste glass melt. The corrosive nature of the high-temperature melt consumes the waste feed materials but also limits refractory life. As vitrification is applied to more diverse waste streams, and particularly in higher-temperature applications, increasingly severe demands are placed on the refractory materials. A variety of potential refractory materials including Fused-cast AZS, Monofrax K3, Monofrax E, and the Corhart refractories ER1195, ER2161, C1215, C1215Z, Rechrome, and T1186, were subjected to corrosion testing at 1,450 C using the ASTM C-621 procedure. A series of simulated waste glasses was used which included F, Cl, S, Cu, Zn, Pb; these minor components were found to cause significant, and in some cases drastic, increases in corrosion rates. The corrosion tests were conducted over a range of time intervals extending to 144 hrs in order to investigate the kinetics of the corrosion processes. The change of the concentrations of constituents in the glass was monitored by compositional analysis of glass samples and correlated to the observed extent of corrosion; typically, components of the material under test increase with time while key minor components, such as Co and Pb, decrease. The rate of corrosion of high-zirconia refractories was slowed considerably by adding zirconia to the waste glass composition; this has the added benefit of improving the aqueous leach resistance of the waste form that is produced.

  6. Ultrasonic Impact Treatment to Improve Stress Corrosion Cracking Resistance of Welded Joints of Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Yu, J.; Gou, G.; Zhang, L.; Zhang, W.; Chen, H.; Yang, Y. P.

    2016-07-01

    Stress corrosion cracking is one of the major issues for welded joints of 6005A-T6 aluminum alloy in high-speed trains. High residual stress in the welded joints under corrosion results in stress corrosion cracking. Ultrasonic impact treatment was used to control the residual stress of the welded joints of 6005A-T6 aluminum alloy. Experimental tests show that ultrasonic impact treatment can induce compressive longitudinal and transverse residual stress in the welded joint, harden the surface, and increase the tensile strength of welded joints. Salt-fog corrosion tests were conducted for both an as-welded sample and an ultrasonic impact-treated sample. The surface of the treated sample had far fewer corrosion pits than that of the untreated sample. The treated sample has higher strength and lower tensile residual stress than the untreated sample during corrosion. Therefore, ultrasonic impact treatment is an effective technique to improve the stress corrosion cracking resistance of the welded joints of 6005A-T6 aluminum alloy.

  7. Corrosion resistance and electrochemical potentiokinetic reactivation testing of some iron-base hardfacing alloys

    SciTech Connect

    Cockeram, B.V.

    1999-11-01

    Hardfacing alloys are weld deposited on a base material to provide a wear resistant surface. Commercially available iron-base hardfacing alloys are being evaluated for replacement of cobalt-base alloys to reduce nuclear plant activation levels. Corrosion testing was used to evaluate the corrosion resistance of several iron-base hardfacing alloys in highly oxygenated environments. The corrosion test results indicate that iron-base hardfacing alloys in the as-deposited condition have acceptable corrosion resistance when the chromium to carbon ratio is greater than 4. Tristelle 5183, with a high niobium (stabilizer) content, did not follow this trend due to precipitation of niobium-rich carbides instead of chromium-rich carbides. This result indicates that iron-base hardfacing alloys containing high stabilizer contents may possess good corrosion resistance with Cr:C < 4. NOREM 02, NOREM 01, and NoCo-M2 hardfacing alloys had acceptable corrosion resistance in the as-deposited and 885 C/4 hour heat treated condition, but rusting from sensitization was observed in the 621 C/6 hour heat treated condition. The feasibility of using an Electrochemical Potentiokinetic Reactivation (EPR) test method, such as used for stainless steel, to detect sensitization in iron-base hardfacing alloys was evaluated. A single loop-EPR method was found to provide a more consistent measurement of sensitization than a double loop-EPR method. The high carbon content that is needed for a wear resistant hardfacing alloy produces a high volume fraction of chromium-rich carbides that are attacked during EPR testing. This results in inherently lower sensitivity for detection of a sensitized iron-base hardfacing alloy than stainless steel using conventional EPR test methods.

  8. Improvement of the mechanical properties and corrosion resistance of biodegradable β-Ca3(PO4)2/Mg-Zn composites prepared by powder metallurgy: the adding β-Ca3(PO4)2, hot extrusion and aging treatment.

    PubMed

    Yan, Yang; Kang, Yijun; Li, Ding; Yu, Kun; Xiao, Tao; Deng, Youwen; Dai, Han; Dai, Yilong; Xiong, Hanqing; Fang, Hongjie

    2017-05-01

    In this study, 10%β-Ca3(PO4)2/Mg-6%Zn (wt.%) composites with Mg-6%Zn alloy as control were prepared by powder metallurgy. After hot extrusion, the as-extruded composites were aged for 72h at 150°C. The effects of the adding β-Ca3(PO4)2, hot extrusion and aging treatment on their microstructure, mechanical properties and corrosion resistance were investigated. The XRD results identified α-Mg, MgZn phase and β-Ca3(PO4)2 phase in these composites. After hot extrusion, grains were significantly refined, and the larger-sized β-Ca3(PO4)2 particles and coarse MgZn phases were broken into linear-distributed β-Ca3(PO4)2 and MgZn phases along the extrusion direction. After aging treatment, the elements of Zn, Ca, P and O presented a more homogeneous distribution. The compressive strengths of the β-Ca3(PO4)2/Mg-Zn composites were approximately double those of natural bone, and their densities and elastic moduli matched those of natural bone. The immersion tests and electrochemical tests revealed that the adding β-Ca3(PO4)2, hot extrusion and aging treatment could promote the formation of protective corrosion product layer on the sample surface in Ringer's solution, which improved corrosion resistance of the β-Ca3(PO4)2/Mg-Zn composites. The XRD results indicated that the corrosion product layer contained Mg(OH)2, β-Ca3(PO4)2 and hydroxyapatite (HA). The cytotoxicity assessments showed the as-extruded β-Ca3(PO4)2/Mg-Zn composite aged for 72h was harmless to L-929 cells. These results suggested that the β-Ca3(PO4)2/Mg-Zn composites prepared by powder metallurgy were promising to be used for bone tissue engineering.

  9. Resistance of nitrogen-containing stainless alloys to corrosion in chloride media

    SciTech Connect

    Bandy, R.; van Rooyen, D.

    1982-01-01

    The pitting resistance of a series of experimental stainless steels with varying amounts of nickel, chromium, molybdenum, manganese and nitrogen and a number of commercial stainless steels and nickel based alloys has been studied in highly concentrated chloride media. The results show that nitrogen enhances the pitting resistance of stainless steel and exceptional corrosion resistance is achieved with high levels of nitrogen in combination with suitable amounts of molybdenum and chromium.

  10. Resistance of nitrogen-containing stainless alloys to corrosion in chloride media

    SciTech Connect

    Bandy, R.; van Rooyen, D.

    1982-10-08

    The pitting resistance of a series of experimental stainless steels with varying amounts of nickel, chromium, molybdenum, manganese and nitrogen and a number of commercial stainless steels and nickel based alloys has been studied in highly concentrated chloride media. The results show that nitrogen enhancer the pitting resistance of stainless steel and exceptional corrosion resistance is achieved with high levels of nitrogen in combination with suitable amounts of molybdenum and chromium.

  11. Prediction of Corrosion Resistance of Concrete Containing Natural Pozzolan from Compressive Strength

    NASA Astrophysics Data System (ADS)

    al-Swaidani, A. M.; Ismat, R.; Diyab, M. E.; Aliyan, S. D.

    2015-11-01

    A lot of Reinforced Concrete (RC) structures in Syria have suffered from reinforcement corrosion which shortened significantly their service lives. Probably, one of the most effective approaches to make concrete structures more durable and concrete industry on the whole - more sustainable is to substitute pozzolan for a portion of Portland cement (PC). Syria is relatively rich in natural pozzolan. In the study, in order to predict the corrosion resistance from compressive strength, concrete specimens were produced with seven cement types: one plain Portland cement (control) and six natural pozzolan-based cements with replacement levels ranging from 10 to 35%. The development of the compressive strengths of concrete cube specimens with curing time has been investigated. Chloride penetrability has also been evaluated for all concrete mixes after three curing times of 7, 28 and 90 days. The effect on resistance of concrete against damage caused by corrosion of the embedded reinforcing steel has been investigated using an accelerated corrosion test by impressing a constant anodic potential for 7, 28 and 90 days curing. Test results have been statistically analysed and correlation equations relating compressive strength and corrosion performance have been developed. Significant correlations have been noted between the compressive strength and both rapid chloride penetrability and corrosion initiation times. So, this prediction could be reliable in concrete mix design when using natural pozzolan as cement replacement.

  12. Nanohardness, corrosion and protein adsorption properties of CuAlO2 films deposited on 316L stainless steel for biomedical applications

    NASA Astrophysics Data System (ADS)

    Chang, Shih-Hang; Chen, Jian-Zhang; Hsiao, Sou-Hui; Lin, Guan-Wei

    2014-01-01

    This study preliminarily assesses the biomedical applications of CuAlO2 coatings according to nanoindentation, electrochemical, and protein adsorption tests. Nanoindentation results revealed that the surface hardness of 316L stainless steel increased markedly after coating with CuAlO2 films. Electrochemical tests of corrosion potential, breakdown potential, and corrosion current density showed that the corrosion resistance properties of 316L stainless steel are considerably improved by CuAlO2 coatings. Bicinchoninic acid (BCA) protein assay results revealed that the protein adsorption behavior of 316L stainless steel did not exhibit notable differences with or without CuAlO2 coatings. A CuAlO2 coating of 100 nm thickness improved the surface nanohardness and corrosion resistance ability of 316L stainless steel. CuAlO2 is a potential candidate for biomaterial coating applications, particularly for surface modification of fine, delicate implants.

  13. Thermomechanical Manipulation of Crack-Tip Stress Field for Resistance to Stress Corrosion Crack Propagation

    NASA Astrophysics Data System (ADS)

    Singh Raman, R. K.; Ibrahim, R. N.; Wu, F.; Rihan, R.

    2008-12-01

    Corrosion-assisted propagation of an existing crack is profoundly influenced by the stress intensity at the crack tip. This article presents the first results of thermomechanical conditioning (TMC) for local manipulation of material at and ahead of the crack tip, in an attempt to retard/stop crack propagation. Prenotched round tensile specimens of mild steel were subjected to rotating bending to generate a fatigue precrack, and then to apply localized thermomechanical conditioning. The threshold stress intensity factor ( K ISCC ) for stress corrosion cracking (SCC) of precracked specimens with and without TMC was determined in a caustic environment. Results suggest that TMC can increase K ISCC . Finite element analysis of the specimens suggests development of compressive stresses at and around the crack tip, which is expected to improve the resistance to stress corrosion crack propagation (since stress corrosion cracks can propagate only under tensile loading).

  14. Comparative investigation of corrosion resistance of steel reinforcement in alinite and Portland cement mortars

    SciTech Connect

    Kostogloudis, G.C.; Kalogridis, D.; Ftikos, C.; Malami, C.; Georgali, B.; Kaloidas, V.

    1998-07-01

    The corrosion resistance of steel-reinforced mortar specimens made from alinite cement was investigated using ordinary Portland cement (OPC) specimens as reference. The specimens were prepared and exposed in three different environments: continuous exposure in tap water, interrupted exposure in tap water, and interrupted exposure in 3.5% NaCl solution. The steel weight loss and the half cell potential were measured vs. exposure time, up to the age of 12 months. Pore solution extraction and analysis and porosity determination were also performed. In continuous exposure in tap water, alinite cement provided adequate protection against corrosion. In interrupted exposure in tap water, a higher corrosion was observed for alinite cement compared to OPC. In the case of interrupted exposure in 3.5% NaCl solution, the simultaneous action of free chlorides and oxygen resulted in the depassivation of steel reinforcing bars in alinite and Portland cement mortars, and led to severe corrosion effect.

  15. Influence of microstructure on the corrosion resistance of Fe-44Ni thin films

    NASA Astrophysics Data System (ADS)

    Lu, Lin; Liu, Tian-cheng; Li, Xiao-gang

    2016-06-01

    An Fe-44Ni nanocrystalline (NC) alloy thin film was prepared through electrodeposition. The relation between the microstructure and corrosion behavior of the NC film was investigated using electrochemical methods and chemical analysis approaches. The results show that the NC film is composed of a face-centered cubic phase (γ-(Fe,Ni)) and a body-centered cubic phase (α-(Fe,Ni)) when it is annealed at temperatures less than 400°C. The corrosion resistance increases with the increase in grain size, and the corresponding corrosion process is controlled by oxygen reduction. The NC films annealed at 500°C and 600°C do not exhibit the same pattern, although their grain sizes are considerably large. This result is attributed to the existence of an anodic phase, Fe0.947Ni0.054, in these films. Under this condition, the related corrosion process is synthetically controlled by anodic dissolution and depolarization.

  16. Protection of NdFeB magnets by corrosion resistance phytic acid conversion film

    NASA Astrophysics Data System (ADS)

    Nan, Haiyang; Zhu, Liqun; Liu, Huicong; Li, Weiping

    2015-11-01

    Phytic acid conversion film was prepared on NdFeB magnets by dipping the NdFeB into phytic acid solution. The morphology, composition, structure and corrosion resistance of the film were systematically investigated. The results showed that the phytic acid film was effective in improving the corrosion resistance of NdFeB magnets. XRD, TEM and FT-IR analyses revealed that the film was amorphous and had a strong peak of phosphate radical (PO43-). The formation mechanism of the film was also explored by XPS and the potential of zero charge (Epzc) measurement at the solution-metal interface.

  17. Modification of aluminide coating with yttrium for improved resistance to corrosive erosion

    SciTech Connect

    Zhang, T.; Luo, Y.; Li, D.Y.

    1999-12-01

    Aluminide coatings on a mild steel substrate were modified by using an oxygen-active element, yttrium, for improved resistance to corrosive erosion. The performance of the yttrium-containing coating during the following three erosion conditions was evaluated: dry sand erosion at different temperatures, erosion in a dilute NaCl slurry containing 30% silica sand, and erosion in a dilute H{sub 2}SO{sub 4} slurry containing 30% silica sand. Results of the study demonstrated that yttrium significantly improved the resistance of the aluminide coating to both corrosive erosion and dry sand erosion.

  18. Corrosion Resistance of 304L SS Spray Coated with Zirconia Nanoparticles

    NASA Astrophysics Data System (ADS)

    Maheswari, A. Uma; Sivakumar, M.; Indhumathi, N.; Mohan, Sreedevi R.

    2016-09-01

    Influence of substrate temperature on corrosion (in 3.5% NaCl) and wear resistance of nanostructured zirconia thin film coated 304L SS substrates are studied by electrochemical and nano-indentation methods. This analysis shows 304L SS substrate spray coated with nanostructured zirconia at substrate temperature closer to the boiling point of the spray solvent ethanol exhibited good corrosion and wear resistance behaviour. This is because of the compressive stress developed during film fabrication at lower substrate temperature (∼50 °C) and hence constrains the indentation plasticity, which leads to higher indentation load than the bare 304L SS.

  19. Effect of heat treatment on the corrosion resistance of modified aluminum-magnesium alloys in seawater

    NASA Astrophysics Data System (ADS)

    Ahmad, Z.; Aleem, A.

    1993-10-01

    Study of modified Al-2.5Mg alloys containing chromium, silica, iron, and manganese in various tempers (O, H-18, T-4, T-6, T-18, and H-34) has shown that their corrosion resistance is significantly altered by thermomechanical treatment and the beneficial effect of chromium on microstructural changes. Modified binary Al-2.5Mg alloys in the T-6 and T-4 tempers exhibit a higher resistance to corrosion in Arabian Gulf water than H-34 tempers due to the beneficial effect of chromium on microstructural changes.

  20. Pitting Corrosion Behaviour of New Corrosion-Resistant Reinforcement Bars in Chloride-Containing Concrete Pore Solution

    PubMed Central

    Liu, Yao; Chu, Hong-yan; Wang, Danqian; Ma, Han; Sun, Wei

    2017-01-01

    In this study, the pitting behaviour of a new corrosion-resistant alloy steel (CR) is compared to that of low-carbon steel (LC) in a simulated concrete pore solution with a chloride concentration of 5 mol/L. The electrochemical behaviour of the bars was characterised using linear polarisation resistance (LPR) and electrochemical impedance spectroscopy (EIS). The pitting profiles were detected by reflective digital holographic microscopy (DHM), scanning electron microscopy (SEM), and the chemical components produced in the pitting process were analysed by X-ray energy dispersive spectroscopy (EDS). The results show that the CR bars have a higher resistance to pitting corrosion than the LC bars. This is primarily because of the periodic occurrence of metastable pitting during pitting development. Compared to the pitting process in the LC bars, the pitting depth grows slowly in the CR bars, which greatly reduces the risk of pitting. The possible reason for this result is that the capability of the CR bars to heal the passivation film helps to restore the metastable pits to the passivation state. PMID:28777327