Science.gov

Sample records for corrosion test summary

  1. Potentiodynamic Corrosion Testing.

    PubMed

    Munir, Selin; Pelletier, Matthew H; Walsh, William R

    2016-01-01

    Different metallic materials have different polarization characteristics as dictated by the open circuit potential, breakdown potential, and passivation potential of the material. The detection of these electrochemical parameters identifies the corrosion factors of a material. A reliable and well-functioning corrosion system is required to achieve this. Corrosion of the samples was achieved via a potentiodynamic polarization technique employing a three-electrode configuration, consisting of reference, counter, and working electrodes. Prior to commencement a baseline potential is obtained. Following the stabilization of the corrosion potential (Ecorr), the applied potential is ramped at a slow rate in the positive direction relative to the reference electrode. The working electrode was a stainless steel screw. The reference electrode was a standard Ag/AgCl. The counter electrode used was a platinum mesh. Having a reliable and well-functioning in vitro corrosion system to test biomaterials provides an in-expensive technique that allows for the systematic characterization of the material by determining the breakdown potential, to further understand the material's response to corrosion. The goal of the protocol is to set up and run an in vitro potentiodynamic corrosion system to analyze pitting corrosion for small metallic medical devices. PMID:27683978

  2. Potentiodynamic Corrosion Testing.

    PubMed

    Munir, Selin; Pelletier, Matthew H; Walsh, William R

    2016-09-04

    Different metallic materials have different polarization characteristics as dictated by the open circuit potential, breakdown potential, and passivation potential of the material. The detection of these electrochemical parameters identifies the corrosion factors of a material. A reliable and well-functioning corrosion system is required to achieve this. Corrosion of the samples was achieved via a potentiodynamic polarization technique employing a three-electrode configuration, consisting of reference, counter, and working electrodes. Prior to commencement a baseline potential is obtained. Following the stabilization of the corrosion potential (Ecorr), the applied potential is ramped at a slow rate in the positive direction relative to the reference electrode. The working electrode was a stainless steel screw. The reference electrode was a standard Ag/AgCl. The counter electrode used was a platinum mesh. Having a reliable and well-functioning in vitro corrosion system to test biomaterials provides an in-expensive technique that allows for the systematic characterization of the material by determining the breakdown potential, to further understand the material's response to corrosion. The goal of the protocol is to set up and run an in vitro potentiodynamic corrosion system to analyze pitting corrosion for small metallic medical devices.

  3. Corrosion testing using isotopes

    DOEpatents

    Hohorst, Frederick A.

    1995-12-05

    A method for determining the corrosion behavior of a material with respect to a medium in contact with the material by: implanting a substantially chemically inert gas in a matrix so that corrosion experienced by the material causes the inert gas to enter the medium; placing the medium in contact with the material; and measuring the amount of inert gas which enters the medium. A test sample of a material whose resistance to corrosion by a medium is to be tested, composed of: a body of the material, which body has a surface to be contacted by the medium; and a substantially chemically inert gas implanted into the body to a depth below the surface. A test sample of a material whose resistance to corrosion by a medium is to be tested, composed of: a substrate of material which is easily corroded by the medium, the substrate having a surface; a substantially chemically inert gas implanted into the substrate; and a sheet of the material whose resistance to corrosion is to be tested, the sheet being disposed against the surface of the substrate and having a defined thickness.

  4. Corrosion testing using isotopes

    DOEpatents

    Hohorst, F.A.

    1995-12-05

    A method is described for determining the corrosion behavior of a material with respect to a medium in contact with the material by: implanting a substantially chemically inert gas in a matrix so that corrosion experienced by the material causes the inert gas to enter the medium; placing the medium in contact with the material; and measuring the amount of inert gas which enters the medium. A test sample of a material whose resistance to corrosion by a medium is to be tested is described composed of: a body of the material, which body has a surface to be contacted by the medium; and a substantially chemically inert gas implanted into the body to a depth below the surface. A test sample of a material whose resistance to corrosion by a medium is to be tested is described composed of: a substrate of material which is easily corroded by the medium, the substrate having a surface; a substantially chemically inert gas implanted into the substrate; and a sheet of the material whose resistance to corrosion is to be tested, the sheet being disposed against the surface of the substrate and having a defined thickness. 3 figs.

  5. Stress Corrosion Testing

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Advanced testing of structural materials was developed by Lewis Research Center and Langley Research Center working with the American Society for Testing and Materials (ASTM). Under contract, Aluminum Company of America (Alcoa) conducted a study for evaluating stress corrosion cracking, and recommended the "breaking load" method which determines fracture strengths as well as measuring environmental degradation. Alcoa and Langley plan to submit the procedure to ASTM as a new testing method.

  6. Compilation of corrosion data on CAN-DECON. Volume 2. Influence of CAN-DECON on stress corrosion cracking - summary of testing, 1975-1983. Final report

    SciTech Connect

    Michalko, J.P.; Smee, J.L.

    1985-10-01

    An evaluation of the corrosive effect of the CAN-DECON chemical decontamination process on a wide range of BWR materials revealed no significant general, galvanic, crevice, or pitting attack. Before utilities can use the process for routine BWR decontaminations, however, they must determine its effects on stress corrosion cracking.

  7. Mobile evaporator corrosion test results

    SciTech Connect

    Rozeveld, A.; Chamberlain, D.B.

    1997-05-01

    Laboratory corrosion tests were conducted on eight candidates to select a durable and cost-effective alloy for use in mobile evaporators to process radioactive waste solutions. Based on an extensive literature survey of corrosion data, three stainless steel alloys (304L, 316L, AL-6XN), four nickel-based alloys (825, 625, 690, G-30), and titanium were selected for testing. The corrosion tests included vapor phase, liquid junction (interface), liquid immersion, and crevice corrosion tests on plain and welded samples of candidate materials. Tests were conducted at 80{degrees}C for 45 days in two different test solutions: a nitric acid solution. to simulate evaporator conditions during the processing of the cesium ion-exchange eluant and a highly alkaline sodium hydroxide solution to simulate the composition of Tank 241-AW-101 during evaporation. All of the alloys exhibited excellent corrosion resistance in the alkaline test solution. Corrosion rates were very low and localized corrosion was not observed. Results from the nitric acid tests showed that only 316L stainless steel did not meet our performance criteria. The 316L welded interface and crevice specimens had rates of 22.2 mpy and 21.8 mpy, respectively, which exceeds the maximum corrosion rate of 20 mpy. The other welded samples had about the same corrosion resistance as the plain samples. None of the welded samples showed preferential weld or heat-affected zone (HAZ) attack. Vapor corrosion was negligible for all alloys. All of the alloys except 316L exhibited either {open_quotes}satisfactory{close_quotes} (2-20 mpy) or {open_quotes}excellent{close_quotes} (<2 mpy) corrosion resistance as defined by National Association of Corrosion Engineers. However, many of the alloys experienced intergranular corrosion in the nitric acid test solution, which could indicate a susceptibility to stress corrosion cracking (SCC) in this environment.

  8. Atlas 5013 tank corrosion test

    NASA Technical Reports Server (NTRS)

    Sutherland, W. M.; Girton, L. D.; Treadway, D. G.

    1978-01-01

    The type and cause of corrosion in spot welded joints were determined by X-ray and chemical analysis. Fatigue and static tests showed the degree of degradation of mechanical properties. The corrosion inhibiting effectiveness of WD-40 compound and required renewal period by exposing typical joint specimens were examined.

  9. SUMMARY AND RECOMMENDATIONS OF THE EXPERT PANEL OVERSIGHT COMMITTEE MEETING ON DOUBLE-SHELL TANK CORROSION MONITORING AND TESTING HELD AUGUST 4-5 2008

    SciTech Connect

    BOOMER KD

    2009-01-08

    The Expert Panel Oversight Committee (EPOC) on Double-Shell Tank Corrosion Monitoring and Testing has been overseeing the Fiscal Year FY 2008 experimental program being performed at CC Technologies (CCT) to optimize the chemistry control for corrosion limits in Double-Shell Tanks (DSTs). The EPOC met at the M & D Professional Services Conference Facility on August 4 and 5, 2008 to discuss various aspects of that responsibility including FY 2009 planning. Formal presentations were made to update the EPOC on the these subjects.

  10. Corrosion probe. Innovative technology summary report

    SciTech Connect

    1999-05-01

    Over 253 million liters of high-level waste (HLW) generated from plutonium production is stored in mild steel tanks at the Department of Energy (DOE) Hanford Site. Corrosion monitoring of double-shell storage tanks (DSTs) is currently performed at Hanford using a combination of process knowledge and tank waste sampling and analysis. Available technologies for corrosion monitoring have progressed to a point where it is feasible to monitor and control corrosion by on-line monitoring of the corrosion process and direct addition of corrosion inhibitors. The electrochemical noise (EN) technique deploys EN-based corrosion monitoring probes into storage tanks. This system is specifically designed to measure corrosion rates and detect changes in waste chemistry that trigger the onset of pitting and cracking. These on-line probes can determine whether additional corrosion inhibitor is required and, if so, provide information on an effective end point to the corrosion inhibitor addition procedure. This report describes the technology, its performance, its application, costs, regulatory and policy issues, and lessons learned.

  11. Corrosion Preventive Compounds Lifetime Testing

    NASA Technical Reports Server (NTRS)

    Hale, Stephanie M.; Kammerer, Catherine C.

    2007-01-01

    Lifetime Testing of Corrosion Preventive Compounds (CPCs) was performed to quantify performance in the various environments to which the Space Shuttle Orbiter is exposed during a flight cycle. Three CPCs are approved for use on the Orbiter: HD Calcium Grease, Dinitrol AV-30, and Braycote 601 EF. These CPCs have been rigorously tested to prove that they mitigate corrosion in typical environments, but little information is available on how they perform in the unique combination of the coastal environment at the launch pad, the vacuum of low-earth orbit, and the extreme heat of reentry. Currently, there is no lifetime or reapplication schedule established for these compounds that is based on this combination of environmental conditions. Aluminum 2024 coupons were coated with the three CPCs and exposed to conditions that simulate the environments to which the Orbiter is exposed. Uncoated Aluminum 2024 coupons were exposed to the environmental conditions as a control. Visual inspection and Electro- Impedance Spectroscopy (EIS) were performed on the samples in order to determine the effectiveness of the CPCs. The samples were processed through five mission life cycles or until the visual inspection revealed the initiation of corrosion and EIS indicated severe degradation of the coating.

  12. Corrosion Preventive Compounds Lifetime Testing

    NASA Technical Reports Server (NTRS)

    Hale, Stephanie M.; Kammerer, Catherine C.; Copp, Tracy L.

    2007-01-01

    Lifetime Testing of Corrosion Preventive Compounds (CPCs) was performed to quantify performance in the various environments to which the Space Shuttle Orbiter is exposed during a flight cycle. Three CPCs are approved for use on the Orbiter: RD Calcium Grease, Dinitrol AV-30, and Braycote 601 EF. These CPCs have been rigorously tested to prove that they mitigate corrosion in typical environments, but little information is available on how they perform in the unique combination of the coastal environment at the launch pad, the vacuum of low-earth orbit, and the extreme heat of reentry. Currently, there is no lifetime or reapplication schedule established for these compounds that is based on this combination of environmental conditions. Aluminum 2024 coupons were coated with the three CPCs and exposed to conditions that simulate the environments to which the Orbiter is exposed. Uncoated Aluminum 2024 coupons were exposed to the environmental conditions as a control. Visual inspection and Electro- Impedance Spectroscopy (EIS) were performed on the samples in order to determine the effectiveness of the CPCs. The samples were processed through five mission life cycles or until the visual inspection revealed the initiation of corrosion and EIS indicated severe degradation of the coating.

  13. Corrosion testing in natural waters: Second volume

    SciTech Connect

    Kain, R.M.; Young, W.T.

    1997-12-31

    This is the second STP of the same title. The first volume, STP 1086, was published in 1990 and contained papers on seawater corrosivity, crevice corrosion resistance of stainless steels, corrosion fatigue testing, and corrosion in potable water. Since then, final results have become available from the worldwide study on corrosion behavior of metals in seawater, and additional studies have been performed that should be brought to the attention of the corrosion engineering community. The second volume contains these studies. Papers have been processed separately for inclusion on the data base.

  14. Failure Prevention by Short Time Corrosion Tests

    SciTech Connect

    MICKALONIS, JOHN

    2005-05-01

    Short time corrosion testing of perforated sheets and wire meshes fabricated from Type 304L stainless steel, Alloy 600 and C276 showed that 304L stainless steel perforated sheet should perform well as the material of construction for dissolver baskets. The baskets will be exposed to hot nitric acid solutions and are limited life components. The corrosion rates of the other alloys and of wire meshes were too high for useful extended service. Test results also indicated that corrosion of the dissolver should drop quickly during the dissolutions due to the inhibiting effects of the corrosion products produced by the dissolution processes.

  15. Electrochemical corrosion testing of metal waste forms

    SciTech Connect

    Abraham, D. P.; Peterson, J. J.; Katyal, H. K.; Keiser, D. D.; Hilton, B. A.

    1999-12-14

    Electrochemical corrosion tests have been conducted on simulated stainless steel-zirconium (SS-Zr) metal waste form (MWF) samples. The uniform aqueous corrosion behavior of the samples in various test solutions was measured by the polarization resistance technique. The data show that the MWF corrosion rates are very low in groundwaters representative of the proposed Yucca Mountain repository. Galvanic corrosion measurements were also conducted on MWF samples that were coupled to an alloy that has been proposed for the inner lining of the high-level nuclear waste container. The experiments show that the steady-state galvanic corrosion currents are small. Galvanic corrosion will, hence, not be an important mechanism of radionuclide release from the MWF alloys.

  16. GIRAFFE test results summary

    SciTech Connect

    Yokobori, S.; Arai, K.; Oikawa, H.

    1996-03-01

    A passive system can provide engineered safety features enhancing safety system reliability and plant simplicity. Toshiba has conducted the test Program to demonstrate the feasibility of the SBWR passive safety system using a full-height, integral system test facility GIRAFFE. The test facility GIRAFFE models the SBWR in full height to correctly present the gravity driving head forces with a 1/400 volume scale. The GIRAFFE test Program includes the certification tests of the passive containment cooling system (PCCS) to remove the post-accident decay heat and the gravity driven cooling system (GDCS) to replenish the reactor coolant inventory during a LOCA. The test results have confirmed the PCCS and GDCS design and in addition, have demonstrated the operation of the pCCS with the presence of a lighter-than-steam noncondensable as well as with the presence of a heavier-than-steam, noncondensable. The GIRAFFE test Program has also provided the database to qualify a best estimate thermal-hydraulic computer code TRAC. The post test analysis results have shown that TRAC can accurately predict the PCCS heat removal Performance and the containment pressure response to a LOCA. This paper summarizes the GIRAFFE test results to investigate post-LOCA PCCS heat removal performance and post-test analysis using TRAC.

  17. The Test Validation Summary

    ERIC Educational Resources Information Center

    Frederick, Richard I.; Bowden, Stephen C.

    2009-01-01

    Common rates employed in classificatory testing are the true positive rate (TPR), false positive rate (FPR), positive predictive power (PPP), and negative predictive power (NPP). FPR and TPR are estimated from research samples representing populations to be distinguished by classificatory testing. PPP and NPP are used by clinicians to classify…

  18. Nuclear testing: Executive summary

    SciTech Connect

    Drell, S.; Cornwall, J.; Dyson, F.

    1995-08-01

    The authors have examined the experimental and analytic bases for understanding the performance of each of the weapon types that are currently planned to remain in the US enduring nuclear stockpile. They have also examined whether continued underground tests at various nuclear yield thresholds would add significantly to the confidence in this stockpile in the years ahead. The starting point for this examination was a detailed review of past experience in developing and testing modern nuclear weapons, their certification and recertification processes, their performance margins, and evidence of aging or other trends over time for each weapon type in the enduring stockpile. The findings, as summarized in Conclusions 1 through 6, are consistent with US agreement to enter into a Comprehensive Test Ban Treaty (CTBT) of unending duration, that includes a standard ``supreme national interest`` clause. Recognizing that the challenge of maintaining an effective nuclear stockpile for an indefinite period without benefit of underground tests is an important and also a new one, the US should affirm its readiness to invoke the supreme national interest clause should the need arise as a result of unanticipated technical problems in the enduring stockpile.

  19. Electrochemical corrosion testing: An effective tool for corrosion inhibitor evaluation

    SciTech Connect

    Bartley, L.S.; Van de Ven, P.; Mowlem, J.K.

    1996-10-01

    Corrosivity of an Antifreeze/Coolant can lead to localized attacks which are a major cause for metal failure. To prevent this phenomenon, specific corrosion inhibitors are used to protect the different metals in service. This paper will discuss the electrochemical principles behind corrosion, Realized corrosion and corrosion inhibition. It will also discuss electrochemical techniques which allow for the evaluation of these inhibitors.

  20. Corrosion tests in Hawaiian geothermal fluids

    SciTech Connect

    Larsen-Basse, J.; Lam, Kam-Fai

    1984-01-01

    Exposure tests were conductd in binary geothermal brine on the island of Hawaii. The steam which flashes from the high pressure, high temperature water as it is brought to ambient pressure contains substantial amounts of H{sub 2}S. In the absence of oxygen this steam is only moderately aggressive but in the aerated state it is highly aggressive to carbon steels and copper alloys. The liquid after flasing is intermediately aggressive. The Hawaiian fluid is unique in chemistry and corrosion behavior; its corrosiveness is relatively mild for a geothermal fluid falling close to the Iceland-type resources. 24 refs., 7 figs., 5 tabs.

  1. Study made of procedures for externally loading and corrosion testing stress corrosion specimens

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.

    1967-01-01

    Study was initiated to determine methods or test specimens for evaluating stress corrosion cracking characteristics of common structural materials. It was found that the methods of externally loading and corrosion testing were reliable in yielding reproducible results for stress corrosion evaluation.

  2. Coal Ash Corrosion Resistant Materials Testing

    SciTech Connect

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2003-08-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a reasonably high alkali content, thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was well within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that the aggressive alkali-iron-trisulfate constituent was present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. This report provides the results of the evaluation of Test Section C, including the samples that remained in the Test Section for the full exposure period as well as those that were removed early. The analysis of Test Section C followed much the same protocol that was employed in the assessment of Test Section A. Again, the focus was on determining and documenting the relative corrosion rates of the candidate materials. The detailed results of the investigation are included in this report as a series of twelve appendices. Each appendix is devoted to the performance of one of the candidate alloys. The table below summarizes metal loss rate for the worst case sample of each of the candidate materials for both Test Sections A and C

  3. Long-term corrosion testing pan.

    SciTech Connect

    Wall, Frederick Douglas; Brown, Neil R.

    2008-08-01

    This document describes the testing and facility requirements to support the Yucca Mountain Project long-term corrosion testing needs. The purpose of this document is to describe a corrosion testing program that will (a) reduce model uncertainty and variability, (b) reduce the reliance upon overly conservative assumptions, and (c) improve model defensibility. Test matrices were developed for 17 topical areas (tasks): each matrix corresponds to a specific test activity that is a subset of the total work performed in a task. A future document will identify which of these activities are considered to be performance confirmation activities. Detailed matrices are provided for FY08, FY09 and FY10 and rough order estimates are provided for FY11-17. Criteria for the selection of appropriate test facilities were developed through a meeting of Lead Lab and DOE personnel on October 16-17, 2007. These criteria were applied to the testing activities and recommendations were made for the facility types appropriate to carry out each activity. The facility requirements for each activity were assessed and activities were identified that can not be performed with currently available facilities. Based on this assessment, a total of approximately 10,000 square feet of facility space is recommended to meet all future testing needs, given that all testing is consolidated to a single location. This report is a revision to SAND2007-7027 to address DOE comments and add a series of tests to address NWTRB recommendations.

  4. 49 CFR 192.469 - External corrosion control: Test stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic...

  5. 49 CFR 192.469 - External corrosion control: Test stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic...

  6. 49 CFR 192.469 - External corrosion control: Test stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic...

  7. 49 CFR 192.469 - External corrosion control: Test stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic...

  8. Long-term corrosion testing plan.

    SciTech Connect

    Wall, Frederick Douglas; Brown, Neil R.

    2009-02-01

    This document describes the testing and facility requirements to support the Yucca Mountain Project long-term corrosion testing program. The purpose of this document is to describe a corrosion testing program that will (a) reduce model uncertainty and variability, (b) reduce the reliance upon overly conservative assumptions, and (c) improve model defensibility. Test matrices were developed for 17 topical areas (tasks): each matrix corresponds to a specific test activity that is a subset of the total work performed in a task. A future document will identify which of these activities are considered to be performance confirmation activities. Detailed matrices are provided for FY08, FY09 and FY10 and rough order estimates are provided for FY11-17. Criteria for the selection of appropriate test facilities were developed through a meeting of Lead Lab and DOE personnel on October 16-17, 2007. These criteria were applied to the testing activities and recommendations were made for the facility types appropriate to carry out each activity. The facility requirements for each activity were assessed and activities were identified that can not be performed with currently available facilities. Based on this assessment, a total of approximately 10,000 square feet of facility space is recommended to accommodate all future testing, given that all testing is consolidated to a single location. This report is a revision to SAND2008-4922 to address DOE comments.

  9. CORROSION TESTING IN SIMULATED TANK SOLUTIONS

    SciTech Connect

    Hoffman, E.

    2010-12-09

    Three simulated waste solutions representing wastes from tanks SY-102 (high nitrate, modified to exceed guidance limits), AN-107, and AY-102 were supplied by PNNL. Out of the three solutions tested, both optical and electrochemical results show that carbon steel samples corroded much faster in SY-102 (high nitrate) than in the other two solutions with lower ratios of nitrate to nitrite. The effect of the surface preparation was not as strong as the effect of solution chemistry. In areas with pristine mill-scale surface, no corrosion occurred even in the SY-102 (high nitrate) solution, however, corrosion occurred in the areas where the mill-scale was damaged or flaked off due to machining. Localized corrosion in the form of pitting in the vapor space of tank walls is an ongoing challenge to overcome in maintaining the structural integrity of the liquid waste tanks at the Savannah River and Hanford Sites. It has been shown that the liquid waste condensate chemistry influences the amount of corrosion that occurs along the walls of the storage tanks. To minimize pitting corrosion, an effort is underway to gain an understanding of the pitting response in various simulated waste solutions. Electrochemical testing has been used as an accelerated tool in the investigation of pitting corrosion. While significant effort has been undertaken to evaluate the pitting susceptibility of carbon steel in various simulated waste solutions, additional effort is needed to evaluate the effect of liquid waste supernates from six Hanford Site tanks (AY-101, AY-102, AN-102, AN-107, SY-102 (high Cl{sup -}), and SY-102 (high nitrate)) on carbon steel. Solutions were formulated at PNNL to replicate tank conditions, and in the case of SY-102, exceed Cl{sup -} and NO{sub 3}{sup -} conditions, respectively, to provide a contrast between in and out of specification limits. The majority of previous testing has been performed on pristine polished samples. To evaluate the actual tank carbon steel

  10. Accelerated Test Method for Corrosion Protective Coatings Project

    NASA Technical Reports Server (NTRS)

    Falker, John; Zeitlin, Nancy; Calle, Luz

    2015-01-01

    This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as accurately and reliably as current long-term atmospheric exposure tests. This new accelerated test method will shorten the time needed to evaluate the corrosion protection performance of coatings for NASA's critical ground support structures. Lifetime prediction for spaceport structure coatings has a 5-year qualification cycle using atmospheric exposure. Current accelerated corrosion tests often provide false positives and negatives for coating performance, do not correlate to atmospheric corrosion exposure results, and do not correlate with atmospheric exposure timescales for lifetime prediction.

  11. Corrosion test cell for bipolar plates

    DOEpatents

    Weisbrod, Kirk R.

    2002-01-01

    A corrosion test cell for evaluating corrosion resistance in fuel cell bipolar plates is described. The cell has a transparent or translucent cell body having a pair of identical cell body members that seal against opposite sides of a bipolar plate. The cell includes an anode chamber and an cathode chamber, each on opposite sides of the plate. Each chamber contains a pair of mesh platinum current collectors and a catalyst layer pressed between current collectors and the plate. Each chamber is filled with an electrolyte solution that is replenished with fluid from a much larger electrolyte reservoir. The cell includes gas inlets to each chamber for hydrogen gas and air. As the gases flow into a chamber, they pass along the platinum mesh, through the catalyst layer, and to the bipolar plate. The gas exits the chamber through passageways that provide fluid communication between the anode and cathode chambers and the reservoir, and exits the test cell through an exit port in the reservoir. The flow of gas into the cell produces a constant flow of fresh electrolyte into each chamber. Openings in each cell body is member allow electrodes to enter the cell body and contact the electrolyte in the reservoir therein. During operation, while hydrogen gas is passed into one chamber and air into the other chamber, the cell resistance is measured, which is used to evaluate the corrosion properties of the bipolar plate.

  12. Electrochemical Corrosion Testing of Neutron Absorber Materials

    SciTech Connect

    Tedd Lister; Ron Mizia; Arnold Erickson; Tammy Trowbridge

    2007-05-01

    This report summarizes the results of crevice-corrosion tests for six alloys in solutions representative of ionic compositions inside the Yucca Mountain waste package should a breech occur. The alloys in these tests are Neutronit A978a (ingot metallurgy, hot rolled), Neutrosorb Plus 304B4 Grade Ab (powder metallurgy, hot rolled), Neutrosorb Plus 304B5 Grade Ab (powder metallurgy, hot rolled), Neutrosorb Plus 304B6 Grade Ab (powder metallurgy, hot rolled), Ni-Cr-Mo-Gd alloy2 (ingot metallurgy, hot rolled), and Alloy 22 (ingot metallurgy, hot rolled).

  13. Alternative Neutron Detection Testing Summary

    SciTech Connect

    Kouzes, Richard T.; Ely, James H.; Erikson, Luke E.; Kernan, Warnick J.; Lintereur, Azaree T.; Siciliano, Edward R.; Stromswold, David C.; Woodring, Mitchell L.

    2010-04-08

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. Most currently deployed radiation portal monitors (RPMs) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large area neutron detector. This type of neutron detector is used in the TSA and other RPMs installed in international locations and in the Ludlum and Science Applications International Corporation RPMs deployed primarily for domestic applications. There is a declining supply of 3He in the world and, thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. These technologies are: 1) Boron trifluoride-filled proportional counters, 2) Boron-lined proportional counters, 3) Lithium-loaded glass fibers, and 4) Coated wavelength-shifting plastic fibers. Reported here is a summary of the testing carried out at Pacific Northwest National Laboratory on these technologies to date, as well as measurements on 3He tubes at various pressures. Details on these measurements are available in the referenced reports. Sponsors of these tests include the Department of Energy (DOE), Department of Homeland Security (DHS), and the Department of Defense (DoD), as well as internal Pacific Northwest National Laboratory funds.

  14. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing

    NASA Technical Reports Server (NTRS)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerone C.; Kolody, Mark R.

    2011-01-01

    Evaluation of metal-based structures has long relied on atmospheric exposure test sites to determine corrosion resistance in marine environments. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions of the corrosive environment. Their success for correlation to atmospheric exposure is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated laboratory testing, which often focuses on the electrochemical reactions that occur during corrosion conditions, has yet to be universally accepted as a useful tool in predicting the long term service life of a metal despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard and their use is imperative, a method that correlates timescales from atmospheric exposure to accelerated testing would be very valuable. This work uses surface chemistry to interpret the chemical changes occurring on low carbon steel during atmospheric and accelerated corrosion conditions with the objective of finding a correlation between its accelerated and long-term corrosion performance. The current results of correlating data from marine atmospheric exposure conditions at the Kennedy Space Center beachside corrosion test site, alternating seawater spray, and immersion in typical electrochemical laboratory conditions, will be presented. Key words: atmospheric exposure, accelerated corrosion testing, alternating seawater spray, marine, correlation, seawater, carbon steel, long-term corrosion performance prediction, X-ray photoelectron spectroscopy.

  15. Summary of Glue Tests 1993

    SciTech Connect

    Bell, D.; /Fermilab

    1993-01-07

    I have reported most of the results of my adhesive testing to members of the VLPC design team at one time or another, usually verbally, but I am wnnng this summary as an easy reference to the results I obtained. The adhesives I tested were for two primary purposes. The first was adhering optical fibers to Torlon 7130; the other was for securing an aluminum nitride substrate to the same material. I have not had access to a scanning electron microscope and someone with the knowledge to determine actual failure mechanisms, so the deductions I have made about why some adhesives have worked well at low temperatures for some purposes and not for other applications while a different material never worked and another always worked are partially speculation. They should be taken merely at face value with no particular results 'carved in stone' so to speak. The first aspect of my testing was adhesion of optical fiber to torlon. Knowing that this is a very important joint, I tested a variety of glues of two primary types: acrylic and W cure. W cure adhesives are known to possess reasonably good properties at low temperatures and are quite convenient to use as long as a W source is available. The W cure adhesives I tested were: Loctite Utak 376 and also 7EN484(?), Master Bond 1 Component W 15-7, and Norland optical adhesive 61. I found them quite easy to use, and they were packaged in a way in which they were not likely to cause a mess. Lab 6 e Perimenters generally used the Loctite 376 optical cure adhesive in their research into connecting scintillating fibers to the standard type. The acrylics I tested were Loctite Speed Bonder 324 and Permabond Quick Bond 610. These worked reasonably well, but they require a considerably longer set time than the W cure adhesives and are more complicated to use. (5 minutes set time or so for the acrylics versus about 30 seconds for the W. The Loctite must have the activator applied about 5 minutes prior to the adhesive application and the

  16. Coal Ash Corrosion Resistant Materials Testing

    SciTech Connect

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2007-12-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a moderate alkali content (0.2% sodium equivalents), thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that aggressive alkali sulfate constituents were present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. Test Section A was removed in November 2001 after about 24 months of service at the desired steam temperature set point, with about 15.5 months of exposure at full temperature. A progress report, issued in October 2002, was written to document the performance of the candidate alloys in that test section. The evaluation described the condition of each tube sample after exposure. It involved a determination of the rate of wall thickness loss for these samples. In cases where there was more than one sample of a candidate material in the test section, an assessment was made of the performance of the alloy as a function of temperature. Test Sections B and C were examined during the November 2001 outage, and it was decided that

  17. Long Term Corrosion/Degradation Test Six Year Results

    SciTech Connect

    M. K. Adler Flitton; C. W. Bishop; M. E. Delwiche; T. S. Yoder

    2004-09-01

    The Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC) located at the Idaho National Engineering and Environmental Laboratory (INEEL) contains neutron-activated metals from non-fuel, nuclear reactor core components. The Long-Term Corrosion/Degradation (LTCD) Test is designed to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements to the environment. The test is using two proven, industry-standard methods—direct corrosion testing using metal coupons, and monitored corrosion testing using electrical/resistance probes—to determine corrosion rates for various metal alloys generally representing the metals of interest buried at the SDA, including Type 304L stainless steel, Type 316L stainless steel, Inconel 718, Beryllium S200F, Aluminum 6061, Zircaloy-4, low-carbon steel, and Ferralium 255. In the direct testing, metal coupons are retrieved for corrosion evaluation after having been buried in SDA backfill soil and exposed to natural SDA environmental conditions for times ranging from one year to as many as 32 years, depending on research needs and funding availability. In the monitored testing, electrical/resistance probes buried in SDA backfill soil will provide corrosion data for the duration of the test or until the probes fail. This report provides an update describing the current status of the test and documents results to date. Data from the one-year and three-year results are also included, for comparison and evaluation of trends. In the six-year results, most metals being tested showed extremely low measurable rates of general corrosion. For Type 304L stainless steel, Type 316L stainless steel, Inconel 718, and Ferralium 255, corrosion rates fell in the range of “no reportable” to 0.0002 mils per year (MPY). Corrosion rates for Zircaloy-4 ranged from no measurable corrosion to 0.0001 MPY. These rates are two orders of magnitude lower than those specified in

  18. 49 CFR 192.471 - External corrosion control: Test leads.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Test leads. 192.471... Control § 192.471 External corrosion control: Test leads. (a) Each test lead wire must be connected to the pipeline so as to remain mechanically secure and electrically conductive. (b) Each test lead wire must...

  19. 49 CFR 192.471 - External corrosion control: Test leads.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Test leads. 192.471... Control § 192.471 External corrosion control: Test leads. (a) Each test lead wire must be connected to the pipeline so as to remain mechanically secure and electrically conductive. (b) Each test lead wire must...

  20. 49 CFR 192.471 - External corrosion control: Test leads.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Test leads. 192.471... Control § 192.471 External corrosion control: Test leads. (a) Each test lead wire must be connected to the pipeline so as to remain mechanically secure and electrically conductive. (b) Each test lead wire must...

  1. 49 CFR 192.471 - External corrosion control: Test leads.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Test leads. 192.471... Control § 192.471 External corrosion control: Test leads. (a) Each test lead wire must be connected to the pipeline so as to remain mechanically secure and electrically conductive. (b) Each test lead wire must...

  2. Corrosion of spent Advanced Test Reactor fuel

    SciTech Connect

    Lundberg, L.B.; Croson, M.L.

    1994-11-01

    The results of a study of the condition of spent nuclear fuel elements from the Advanced Test Reactor (ATR) currently being stored underwater at the Idaho National Engineering Laboratory (INEL) are presented. This study was motivated by a need to estimate the corrosion behavior of dried, spent ATR fuel elements during dry storage for periods up to 50 years. The study indicated that the condition of spent ATR fuel elements currently stored underwater at the INEL is not very well known. Based on the limited data and observed corrosion behavior in the reactor and in underwater storage, it was concluded that many of the fuel elements currently stored under water in the facility called ICPP-603 FSF are in a degraded condition, and it is probable that many have breached cladding. The anticipated dehydration behavior of corroded spent ATR fuel elements was also studied, and a list of issues to be addressed by fuel element characterization before and after forced drying of the fuel elements and during dry storage is presented.

  3. An improved stress corrosion test medium for aluminum alloys

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Coston, J. E.

    1981-01-01

    A laboratory test method that is only mildly corrosive to aluminum and discriminating for use in classifying the stress corrosion cracking resistance of aluminum alloys is presented along with the method used in evaluating the media selected for testing. The proposed medium is easier to prepare and less expensive than substitute ocean water.

  4. Selectable-Tip Corrosion-Testing Electrochemical Cell

    NASA Technical Reports Server (NTRS)

    Lomness, Janice; Hintze, Paul

    2008-01-01

    The figure depicts aspects of an electrochemical cell for pitting- corrosion tests of material specimens. The cell is designed to generate a region of corrosion having a pit diameter determined by the diameter of a selectable tip. The average depth of corrosion is controlled by controlling the total electric charge passing through the cell in a test. The cell is also designed to produce minimal artifacts associated with crevice corrosion. There are three selectable tips, having diameters of 0.1 in. (0.254 cm), 0.3 in. (0.762 cm), and 0.6 in. (1.524 cm), respectively.

  5. Corrosion Embrittlement of Duralumin II Accelerated Corrosion Tests and the Behavior of High-Strength Aluminum Alloys of Different Compositions

    NASA Technical Reports Server (NTRS)

    Rawdon, Henry S

    1928-01-01

    The permanence, with respect to corrosion, of light aluminum alloy sheets of the duralumin type, that is, heat-treatable alloys containing Cu, Mg, Mn, and Si is discussed. Alloys of this type are subject to surface corrosion and corrosion of the interior by intercrystalline paths. Results are given of accelerated corrosion tests, tensile tests, the effect on corrosion of various alloying elements and heat treatments, electrical resistance measurements, and X-ray examinations.

  6. Corrosion testing of urea-formaldehyde foam insulating material

    SciTech Connect

    Weil, R.; Graviano, A.; Sheppard, K.

    1980-09-01

    Two tests of the corrosiveness of urea-formaldehyde (UF) foam insulating materials were compared. One test, the Timm test, had test coupons foamed in place. In the second, the Canadian test, blocks of foam already set were placed in contact with test coupons. The Timm test uses 10 gage thick coupons, while the Canadian test specifies 3 mil thick ones. Two samples of UF foam were tested by the Timm and the Canadian tests. The electrical-resistance probes showed that the corrosion rate against steel was initially quite high, of the order of 12 to 20 mpy (mils per year). After about 20 days, the rate was almost zero. In the Timm test, the corrosion rates of steel coupons were of the order to 0.5 to 2 mpy when averaged over the 28 or 56 day test period. The greater corrosion rate of the thick coupons in the Canadian test as well as poor reproducibility of the corrosion rates was attributed primarily to variations in the contact areas between the sample and the UF foam. The corrosion rates of galvanized steel coupons in the Canadian test in several cases exceeded the failure value. In the Timm test, the corrosion rates averaged over the whole test period were quite low. The corrosion rates of copper and aluminum in both tests were quite low. On the basis of the results of this study the following recommendations for a corrosion-test procedure for UF foam were made: two corrosion tests should be conducted, one for foam while curing and one after it has stabilized; the Timm test for corrosiveness while curing should be used, but for only 1 to 2 days; the test for corrosiveness after stabilizing should be of the accelerated type such as the Canadian one. To insure a constant-contact area, thicker coupons should be used; and the coupons for both tests should have a controlled part of the area not in contact with the foam to simulate field conditions.

  7. Fabrication of Test Tubes for Coal Ash Corrosion Testing

    SciTech Connect

    Johnson, R.; Judkins, R.R.; Sikka, V.K.; Swindeman, R.W.; Wright, I.G.

    1999-05-11

    This paper deals with the fabrication of tube sections of four alloys for incorporating into test sections to be assembled by Babcock & Wilcox (B&W) for installation at Ohio Edison Power, Niles Plant. The primary purpose of the installation was to determine the corrosion behavior of ten different alloys for flue gas corrosion. Ohio Edison Power, Niles Plant is burning an Ohio coal containing approximately 3.4% S (dry basis) and approximately 0.4% alkali which causes chronic coal ash corrosion of the unit�s superheater tubing. The 2.5-in.-OD x 0.4in.-wall x 6-in-long sections of four alloys {type 304H coated with Fe3Al alloy FAS [developed at the Oak Ridge National Laboratory (ORNL)], 310 + Ta, modified 800H, and Thermie alloy} were fabricated at ORNL. Each alloy tubing was characterized in terms of chemical analysis and microstructure. The machined tubes of each of the alloys were inspected and shipped on time for incorporation into the test loop fabricated at B&W. Among the alloys fabricated, Thermie was the hardest to extrude and machine.

  8. NASA's Beachside Corrosion Test Site and Current Environmentally Friendly Corrosion Control Initiatives

    NASA Technical Reports Server (NTRS)

    Russell, Richard W.; Calle, Luz Marina; Johnston, Frederick; Montgomery, Eliza L.; Curran, Jerome P.; Kolody, Mark R.

    2013-01-01

    NASA began corrosion studies at the Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term corrosion protective coatings for carbon steel. KSC's Beachside Corrosion Test Site (BCTS), which has been documented by the American Society of Materials (ASM) as one of the most corrosive, naturally occurring, environments in the world, was established at that time. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acid ic exhaust from the solid rocket boosters. In the years that followed, numerous studies have identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosive environment at the launch pad. This paper presents a historical overview of over 45 years of corrosion and coating evaluation studies and a description of the BCTS's current capabilities. Additionally, current research and testing programs involving chromium free coatings, environmentally friendly corrosion preventative compounds, and alternates to nitric acid passivation will be discussed.

  9. Double shell slurry low-temperature corrosion tests

    SciTech Connect

    Divine, J.R.; Bowen, W.M.; McPartland, S.A.; Elmore, R.P.; Engel, D.W.

    1983-09-01

    A series of year-long tests have been completed on potential double shell slurry (DSS) compositions at temperatures up to 100/sup 0/C. These tests have sought data on uniform corrosion, pitting, and stress-corrosion cracking. No indication of the latter two types of corrosion were observed within the test matrix. Corrosion rates after four months were generally below the 1 mpy (25 ..mu..m/y) design limit. By the end of twelve months all results were below this limit and, except for very concentrated mixtures, all were below 0.5 mpy. Prediction equations were generated from a model fitted to the data. The equations provide a rapid means of estimating the corrosion rate for proposed DSS compositions.

  10. In-situ corrosion sensor for coating, testing and screening

    SciTech Connect

    Davis, G.D.; Dacres, C.M.; Krebs, L.A.

    2000-02-01

    An in-situ corrosion censor facilitates coating development and screening by detecting the early stages of corrosion well before degradation is visible. Based on electrochemical impedance spectroscopy (EIS), the sensor extends the use of this established laboratory technique from immersion only to different accelerated test conditions (such as salt fog or humidity) and ambient service environments. By enabling a direct quantitative comparison of the early stages of coating deterioration and substrate corrosion that occur in laboratory accelerated tests and service or field conditions, the laboratory tests can be validated and coatings screened more quickly.

  11. Corrosion testing of carbon steel in aereated geothermal brine

    SciTech Connect

    Suciu, D.F.; Wikoff, P.M.

    1981-02-01

    Two major problems are associated with the use of cooled geothermal water as coolant for the 5 MW(e) Pilot Power Plant at Raft River. They are: (1) a scaling potential owing to the chemical species present in solution, and (2) the corrosive nature of the geothermal water on carbon steel. A water treatment test program was established to reduce or eliminate these problems. Data show that scale can be prevented by a combination of dispersants and controlling the concentration of scaling species in the circulating water. Corrosion cannot be controlled without a pretreatment of tubing material. With the pretreatment, a protective gamma iron oxide film is laid down on the tube surface, that with proper corrosion inhibitor additives, significantly reduces both general and pitting corrosion. However, longer term testing is required to determine protection of pitting corrosion.

  12. Evaluation of corrosion testing techniques for selection of corrosion resistant alloys for sour gas service

    SciTech Connect

    Bhavsar, R.B.; Hibner, E.L.

    1996-08-01

    Slow strain rate (SSR) and C-ring stress corrosion cracking (SCC) tests have historically been used to screen alloys for sour gas environments. The relevance of these testing techniques in predicting actual field corrosion behavior was evaluated for age-hardenable nickel base alloy 925 (UNS N09925) and alloy 718 (UNS N07718). While SSR testing provides an acceptable accelerated screening tool for ranking alloys in sour oil field environments, C-ring SCC testing ranks alloys higher in sour environments than SSR testing.

  13. Evaluation of annual corrosion tests for aggressive water

    NASA Astrophysics Data System (ADS)

    Dubová, V.; Ilavský, J.; Barloková, D.

    2011-12-01

    Internal corrosion has a significant effect on the useful life of pipes, the hydraulic conditions of a distribution system and the quality of the water transported. All water is corrosive under some conditions, and the level of this corrosion depends on the physical and chemical properties of the water and properties of the pipe material. Galvanic treatment is an innovation for protecting against corrosion, and this method is also suitable for removal of water stone too. This method consists of the electrogalvanic principle, which is generated by the flowing of water between a zinc anode and the cupro-alloy cover of a column. This article presents experimental corrosion tests at water resource Pernek (This water resource-well marked as HL-1 is close to the Pernek of village), where the device is operating based on this principle.

  14. [Stress-corrosion test of TIG welded CP-Ti].

    PubMed

    Li, H; Wang, Y; Zhou, Z; Meng, X; Liang, Q; Zhang, X; Zhao, Y

    2000-12-01

    In this study TIG (Tungsten Inert Gas) welded CP-Ti were subjected to stress-corrosion test under 261 MPa in artificial saliva of 37 degrees C for 3 months. No significant difference was noted on mechanical test (P > 0.05). No color-changed and no micro-crack on the sample's surface yet. These results indicate that TIG welded CP-Ti offers excellent resistance to stress corrosion. PMID:11211846

  15. Z-1 Prototype Space Suit Testing Summary

    NASA Technical Reports Server (NTRS)

    Ross, Amy J.

    2012-01-01

    The Advanced Space Suit team of the NASA-Johnson Space Center performed a series of test with the Z-1 prototype space suit in 2012. This paper discusses, at a summary level, the tests performed and results from those tests. The purpose of the tests were two -fold: 1) characterize the suit performance so that the data could be used in the downselection of components for the Z -2 Space Suit and 2) develop interfaces with the suitport and exploration vehicles through pressurized suit evaluations. Tests performed included isolated and functional range of motion data capture, Z-1 waist and hip testing, joint torque testing, CO2 washout testing, fit checks and subject familiarizations, an exploration vehicle aft deck and suitport controls interface evaluation, delta pressure suitport tests including pressurized suit don and doff, and gross mobility and suitport ingress and egress demonstrations in reduced gravity. Lessons learned specific to the Z -1 prototype and to suit testing techniques will be presented.

  16. Nevada Test Site Environmental Summary Report 2006

    SciTech Connect

    Cathy Wills

    2007-10-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) directs the management and operation of the Nevada Test Site (NTS). The NTS is the nation's historical testing site for nuclear weapons from 1951 through 1992 and is currently the nation's unique site for ongoing national-security related missions and high-risk operations. NNSA/NSO strives to provide to the public an understanding of the current activities on the NTS, including environmental monitoring and compliance activities aimed at protecting the public and the environment from radiation hazards and from nonradiological impacts. This document is a summary of the Nevada Test Site Environmental Report (NTSER) for calendar year 2006 (see attached compact disc on inside back cover). The NTSER is a comprehensive report of environmental activities performed at the NTS and its satellite facilities over the previous calendar year. It is prepared annually to meet the requirements and guidelines of the U.S. Department of Energy (DOE) and the information needs of NNSA/NSO stakeholders. To provide an abbreviated and more readable version of the NTSER, this summary report is produced. This summary does not include detailed data tables, monitoring methods or design, a description of the NTS environment, or a discussion of all environmental program activities performed throughout the year. The reader may obtain a hard copy of the full NTSER as directed on the inside front cover of this summary report.

  17. Nevada Test Site Summary 2006 (Volume 2)

    SciTech Connect

    Cathy Wills

    2007-10-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) directs the management and operation of the Nevada Test Site (NTS). The NTS is the nation's historical testing site for nuclear weapons from 1951 through 1992 and is currently the nation's unique site for ongoing national-security-related missions and high-risk operations. NNSA/NSO strives to provide to the public an understanding of the current activities on the NTS, including environmental monitoring and compliance activities aimed at protecting the public and the environment from radiation hazards and from nonradiological impacts. This document is a summary of the Nevada Test Site Environmental Report (NTSER) for calendar year 2006 (see attached compact disc on inside back cover). The NTSER is a comprehensive report of environmental activities performed at the NTS and its satellite facilities over the previous calendar year. It is prepared annually to meet the requirements and guidelines of the U.S. Department of Energy (DOE) and the information needs of NNSA/NSO stakeholders. To provide an abbreviated and more readable version of the NTSER, this summary report is produced. This summary does not include detailed data tables, monitoring methods or design, a description of the NTS environment, or a discussion of all environmental program activities performed throughout the year. The reader may obtain a hard copy of the full NTSER as directed on the inside front cover of this summary report.

  18. Nevada Test Site Environmental Report 2007 Summary

    SciTech Connect

    Cathy Wills

    2008-09-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) directs the management and operation of the Nevada Test Site (NTS). The NTS is the nation's historical testing site for nuclear weapons from 1951 through 1992 and is currently the nation's unique site for ongoing national-security related missions and high-risk operations. NNSA/NSO strives to provide to the public an understanding of the current activities on the NTS, including environmental monitoring and compliance activities aimed at protecting the public and the environment from radiation hazards and from nonradiological impacts. This document is a summary of the Nevada Test Site Environmental Report (NTSER) for calendar year 2007 (see attached compact disc on inside back cover). The NTSER is a comprehensive report of environmental activities performed at the NTS and offsite facilities over the previous calendar year. It is prepared annually to meet the requirements and guidelines of the U.S. Department of Energy (DOE) and the information needs of NNSA/NSO stakeholders. To provide an abbreviated and more readable version of the NTSER, this summary report is produced. This summary does not include detailed data tables, monitoring methods or design, a description of the NTS environment, or a discussion of all environmental program activities performed throughout the year. The reader may obtain a hard copy of the full NTSER as directed on the inside front cover of this summary report.

  19. Accelerating Corrosion in Solar-Cell Tests

    NASA Technical Reports Server (NTRS)

    Shalaby, H. M.

    1986-01-01

    In simple electrochemical cell, two silicon solar cells serve as anode and cathode, respectively. Electrolytic medium and voltage between them accelerate corrosion and migration interactions between cell metal contacts and plastic encapsulant. Degradation of metal contacts becomes evident in few hours. Although developed specifically for cells with Ti/Pd/Ag contacts, technique readily adapted to other metal combinations.

  20. Amine corrosion inhibitor successful in tests at Mobil's Paulsboro refinery

    SciTech Connect

    Not Available

    1986-11-03

    Mobil Oil Corp. has successfully completed a test of an amine unit corrosion inhibition system at its 100,000-b/d refinery in Paulsboro, NJ. The system, the Amine Guard ST system is used to inhibit corrosion of diethanolamine (DEA) sweetening units that treat process streams from the fluid catalytic cracker (FCC), a hydrodesulfurization unit (HDU), and lube oil dewaxing (LDW) units at the refinery. Use of the corrosion-inhibition system has allowed an increase in the DEA concentration to 55 wt %, a reduction of the DEA circulation rate by 40%, and a reduction in regeneration steam of 35%.

  1. Electrochemical Corrosion Testing of Borated Stainless Steel Alloys

    SciTech Connect

    lister, tedd e; Mizia, Ronald E

    2007-09-01

    The Department of Energy Office of Civilian Radioactive Waste Management has specified borated stainless steel manufactured to the requirements of ASTM A 887-89, Grade A, UNS S30464, to be the material used for the fabrication of the fuel basket internals of the preliminary transportation, aging, and disposal canister system preliminary design. The long-term corrosion resistance performance of this class of borated materials must be verified when exposed to expected YMP repository conditions after a waste package breach. Electrochemical corrosion tests were performed on crevice corrosion coupons of Type 304 B4 and Type 304 B5 borated stainless steels exposed to single postulated in-package chemistry at 60°C. The results show low corrosion rates for the test period

  2. Electrochemical Corrosion Testing of Borated Stainless Steel Alloys

    SciTech Connect

    lister, tedd e; Mizia, Ronald E

    2007-05-01

    The Department of Energy Office of Civilian Radioactive Waste Management has specified borated stainless steel manufactured to the requirements of ASTM A 887-89, Grade A, UNS S30464, to be the material used for the fabrication of the fuel basket internals of the preliminary transportation, aging, and disposal canister system preliminary design. The long-term corrosion resistance performance of this class of borated materials must be verified when exposed to expected YMP repository conditions after a waste package breach. Electrochemical corrosion tests were performed on crevice corrosion coupons of Type 304 B4 and Type 304 B5 borated stainless steels exposed to single postulated in-package chemistry at 60°C. The results show low corrosion rates for the test period

  3. Corrosion testing of candidates for the alkaline fuel cell cathode

    NASA Technical Reports Server (NTRS)

    Singer, Joseph; Fielder, William L.

    1990-01-01

    Current/voltage data have been obtained for specially made corrosion electrodes of some oxides and of gold materials for the purpose of developing a screening test of catalysts and supports for use at the cathode of the alkaline fuel cell. The data consist of measurements of current at fixed potentials and cyclic voltammograms. These data will have to be correlated with longtime performance data in order to evaluate fully this approach to corrosion screening.

  4. Corrosion

    ERIC Educational Resources Information Center

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  5. Corrosion testing of stainless steel-zirconium metal waste forms

    SciTech Connect

    Abraham, D.P.; Simpson, L.J.; Devries, M.J.; McDeavitt, S.M.

    1999-07-01

    Stainless steel-zirconium (SS-Zr) alloys have been developed as waste forms for the disposal of metallic waste generated during the electrometallurgical treatment of spent nuclear fuel. The waste forms incorporate irradiated cladding hulls, components of the alloy fuel, noble metal fission products, and actinide elements. The baseline waste form is a stainless steel-15 wt% zirconium (SS-15Zr) alloy. This article presents microstructures and some of the corrosion studies being conducted on the waste form alloys. Electrochemical corrosion, immersion corrosion, and vapor hydration tests have been performed on various alloy compositions to evaluate corrosion behavior and resistance to selective leaching of simulated fission products. The SS-Zr waste forms immobilize and retain fission products very effectively and show potential for acceptance as high-level nuclear waste forms.

  6. High temperature aqueous stress corrosion testing device

    DOEpatents

    Bornstein, A.N.; Indig, M.E.

    1975-12-01

    A description is given of a device for stressing tensile samples contained within a high temperature, high pressure aqueous environment, thereby permitting determination of stress corrosion susceptibility of materials in a simple way. The stressing device couples an external piston to an internal tensile sample via a pull rod, with stresses being applied to the sample by pressurizing the piston. The device contains a fitting/seal arrangement including Teflon and weld seals which allow sealing of the internal system pressure and the external piston pressure. The fitting/seal arrangement allows free movement of the pull rod and the piston.

  7. EXPERT PANEL OVERSIGHT COMMITTEE ASSESSMENT OF FY2008 CORROSION AND STRESS CORROSION CRACKING SIMULANT TESTING PROGRAM

    SciTech Connect

    BOOMER KD

    2009-01-08

    The Expert Panel Oversight Committee (EPOC) has been overseeing the implementation of selected parts of Recommendation III of the final report, Expert Panel workshop for Hanford Site Double-Shell Tank Waste Chemistry Optimization, RPP-RPT-22126. Recommendation III provided four specific requirements necessary for Panel approval of a proposal to revise the chemistry control limits for the Double-Shell Tanks (DSTs). One of the more significant requirements was successful performance of an accelerated stress corrosion cracking (SCC) experimental program. This testing program has evaluated the optimization of the chemistry controls to prevent corrosion in the interstitial liquid and supernatant regions of the DSTs.

  8. Z-1 Prototype Space Suit Testing Summary

    NASA Technical Reports Server (NTRS)

    Ross, Amy

    2013-01-01

    The Advanced Space Suit team of the NASA-Johnson Space Center performed a series of test with the Z-1 prototype space suit in 2012. This paper discusses, at a summary level, the tests performed and results from those tests. The purpose of the tests were two-fold: 1) characterize the suit performance so that the data could be used in the downselection of components for the Z-2 Space Suit and 2) develop interfaces with the suitport and exploration vehicles through pressurized suit evaluations. Tests performed included isolated and functional range of motion data capture, Z-1 waist and hip testing, joint torque testing, CO2 washout testing, fit checks and subject familiarizations, an exploration vehicle aft deck and suitport controls interface evaluation, delta pressure suitport tests including pressurized suit don and doff, and gross mobility and suitport ingress and egress demonstrations in reduced gravity. Lessons learned specific to the Z-1 prototype and to suit testing techniques will be presented.

  9. Localized Corrosion of Alloy 22 -Fabrication Effects-FY05 Summary Report

    SciTech Connect

    Rebak, R B

    2005-10-06

    This report deals with the impact of fabrication processes on the localized corrosion behavior of Alloy 22 (N06022). The four fabrication processes that were analyzed are: (1) Surface stress mitigation of final closure weld, (2) Manufacturing of the mockup container, (3) Black annealing of the container and (4) Use of different heats of Alloy 22 for container fabrication. Immersion and Electrochemical tests performed in the laboratory are generally aggressive and do not represent actual repository environments in Yucca Mountain. For example, to determine the intergranular attack in the heat affected zone of a weldment, tests are conducted in boiling acidic and oxidizing solutions according to ASTM standards. These solutions are used to compare the behavior of differently treated metallic coupons. Similarly for electrochemical tests many times pure sodium chloride or calcium chloride solutions are used. Pure chloride solutions are not representative of the repository environment. (1) Surface Stress Mitigation--When metallic plates are welded, for example using the Gas Tungsten Arc Welding (GTAW) method, residual tensile stresses may develop in the vicinity of the weld seam. Processes such as Low Plasticity Burnishing (LPB) and Laser Shock Peening (LSP) could be applied locally to eliminate the residual stresses produced by welding. In this study, Alloy 22 plates were welded and then the above-mentioned surface treatments were applied to eliminate the residual tensile stresses. The aim of the current study was to comparatively test the corrosion behavior of as-welded (ASW) plates with the corrosion behavior of plates with stress mitigated surfaces. Immersion and electrochemical tests were performed. Results from both immersion and electrochemical corrosion tests show that the corrosion resistance of the mitigated plates was not affected by the surface treatments applied. (2) Behavior of Specimens from a Mockup container--Alloy 22 has been extensively tested for

  10. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-08-01

    The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  11. Nevada Test Site Environmental Report Summary 2009

    SciTech Connect

    Cathy Wills, ed.

    2010-09-13

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) directs the management and operation of the Nevada Test Site (NTS). NNSA/NSO prepares the Nevada Test Site Environmental Report (NTSER) to provide the public an understanding of the environmental monitoring and compliance activities that are conducted on the NTS to protect the public and the environment from radiation hazards and from nonradiological impacts. The NTSER is a comprehensive report of environmental activities performed at the NTS and offsite facilities over the previous calendar year. It is prepared annually to meet the requirements and guidelines of the U.S. Department of Energy (DOE) and the information needs of NNSA/NSO stakeholders. This summary provides an abbreviated and more readable version of the NTSER. It does not contain detailed descriptions or presentations of monitoring designs, data collection methods, data tables, the NTS environment, or all environmental program activities performed throughout the year. The reader may obtain a hard copy of the full NTSER as directed on the inside front cover of this summary report.

  12. In-place filter testing summary

    SciTech Connect

    Ortiz, J.P.; Garcia, E.D.; Ortega, J.M.

    1988-03-01

    The most common method of identifying particle penetration through a filter or adsorber system is through the performance of a periodic penetration test, i.e., in-place test or leak test using an aerosol or gas vapor to challenge the filter or adsorber system. The aerosol is usually formed by vaporization of a liquid, di-2(ethelhexyl sebacate) (DEHS), and allowed to condense to form liquid particles of a certain size and distribution. The gas vapor is formed by vaporization of Freon 11 liquid. The periodic penetration test, although conducted annually, can and has been demonstrated to show the beginning degradation of a filter or adsorber system. Other evidence of penetration can include detection of radiation downstream of the filter system or the existence of an unusually low pressure drop across the filter, i.e., torn filter, etc. However, these kinds of occurrences show up instantaneously and could release radioactive material to the atmosphere before the systems could be shut down. When a filter system fails the in--place test or is showing evidence of.filter or component degradation, corrective measures are put into place in order to return,the system back to its best operating condition. This report presents a summary of all filter tests.

  13. 49 CFR 192.469 - External corrosion control: Test stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Test stations. 192.469 Section 192.469 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS...

  14. 49 CFR 192.471 - External corrosion control: Test leads.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Test leads. 192.471 Section 192.471 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY...

  15. Assessing corrosion problems in photovoltaic cells via electrochemical stress testing

    NASA Technical Reports Server (NTRS)

    Shalaby, H.

    1985-01-01

    A series of accelerated electrochemical experiments to study the degradation properties of polyvinylbutyral-encapsulated silicon solar cells has been carried out. The cells' electrical performance with silk screen-silver and nickel-solder contacts was evaluated. The degradation mechanism was shown to be electrochemical corrosion of the cell contacts; metallization elements migrate into the encapsulating material, which acts as an ionic conducting medium. The corrosion products form a conductive path which results in a gradual loss of the insulation characteristics of the encapsulant. The precipitation of corrosion products in the encapsulant also contributes to its discoloration which in turn leads to a reduction in its transparency and the consequent optical loss. Delamination of the encapsulating layers could be attributed to electrochemical gas evolution reactions. The usefulness of the testing technique in qualitatively establishing a reliability difference between metallizations and antireflection coating types is demonstrated.

  16. Fiscal Year 2004 Summary Report: General Corrosion and Passive Film Stability

    SciTech Connect

    Orme, C A; Gray, J; Hayes, J; Wong, L; Rebak, R; Carroll, S; Harper, J; Gdowski, G

    2004-12-09

    This report summarizes both general corrosion Alloy 22 from 60 to 220 C and the stability of the passive film from 60 to 90 C over a range of solution compositions that are relevant to the in in-drift chemical environment at the waste package surface. The general corrosion rates were determined by weightloss measurements in a range of complex solutions representing the evaporation of seepage water and more concentrated brines representing brines formed by the deliquescence of dust deposited on the canisters. These data represent the first weightloss measurements performed by the program at temperatures above 90 C. The low corrosion rates of Alloy 22 are attributed to the protective oxide film that forms at the metal surface. In this report, changes in the oxide composition are correlated with weightloss at the higher temperatures (140 related 140-220 C) where film characterization had not been previously performed. The stability of the oxide film was further analyzed by conducted a series of electrochemical tests in progressively more aggressive acid solutions to measure the general corrosion rates in solutions that mimic crevice or pit environments.

  17. Comparative Stress Corrosion Cracking and General Corrosion Resistance of Annealed and Hardened 440 C Stainless Steel - New Techniques in Stress Corrosion Testing

    NASA Technical Reports Server (NTRS)

    Mendreck, M. J.; Hurless, B. E.; Torres, P. D.; Danford, M. D.

    1998-01-01

    The corrosion and stress corrosion cracking (SCC) characteristics of annealed and hardened 440C stainless steel were evaluated in high humidity and 3.5-percent NaCl solution. Corrosion testing consisted of an evaluation of flat plates, with and without grease, in high humidity, as well as electrochemical testing in 3.5-percent NaCl. Stress corrosion testing consisted of conventional, constant strain, smooth bar testing in high humidity in addition to two relatively new techniques under evaluation at MSFC. These techniques involve either incremental or constant rate increases in the load applied to a precracked SE(B) specimen, monitoring the crack-opening-displacement response for indications of crack growth. The electrochemical corrosion testing demonstrated an order of magnitude greater general corrosion rate in the annealed 440C. All techniques for stress corrosion testing showed substantially better SCC resistance in the annealed material. The efficacy of the new techniques for stress corrosion testing was demonstrated both by the savings in time and the ability to better quantify SCC data.

  18. Galvanic corrosion testing using electrochemical and immersion techniques

    SciTech Connect

    Roy, Ajit

    1996-07-09

    This activity plan is prepared in accordance with Lawrence Livermore National Laboratory (LLNL) Yucca Mountain Project procedure 033.YMP-QP 3.0, "Scientific Investigation Control." This plan is written for activity E-20-46, entitled "Galvanic Corrosion Testing," which is a part of the Scientific Investigation Plan (SIP) "Metal Barrier Selection and Testing" (SIP-CM-01, Rev 2, CN SIP-CM-01-2-l).

  19. Durability tests of a fiber optic corrosion sensor.

    PubMed

    Wan, Kai Tai; Leung, Christopher K Y

    2012-01-01

    Steel corrosion is a major cause of degradation in reinforced concrete structures, and there is a need to develop cost-effective methods to detect the initiation of corrosion in such structures. This paper presents a low cost, easy to use fiber optic corrosion sensor for practical application. Thin iron film is deposited on the end surface of a cleaved optical fiber by sputtering. When light is sent into the fiber, most of it is reflected by the coating. If the surrounding environment is corrosive, the film is corroded and the intensity of the reflected signal drops significantly. In previous work, the sensing principle was verified by various experiments in laboratory and a packaging method was introduced. In this paper, the method of multiplexing several sensors by optical time domain reflectometer (OTDR) and optical splitter is introduced, together with the interpretation of OTDR results. The practical applicability of the proposed sensors is demonstrated in a three-year field trial with the sensors installed in an aggressive marine environment. The durability of the sensor against chemical degradation and physical degradation is also verified by accelerated life test and freeze-thaw cycling test, respectively. PMID:22737030

  20. Durability Tests of a Fiber Optic Corrosion Sensor

    PubMed Central

    Wan, Kai Tai; Leung, Christopher K.Y.

    2012-01-01

    Steel corrosion is a major cause of degradation in reinforced concrete structures, and there is a need to develop cost-effective methods to detect the initiation of corrosion in such structures. This paper presents a low cost, easy to use fiber optic corrosion sensor for practical application. Thin iron film is deposited on the end surface of a cleaved optical fiber by sputtering. When light is sent into the fiber, most of it is reflected by the coating. If the surrounding environment is corrosive, the film is corroded and the intensity of the reflected signal drops significantly. In previous work, the sensing principle was verified by various experiments in laboratory and a packaging method was introduced. In this paper, the method of multiplexing several sensors by optical time domain reflectometer (OTDR) and optical splitter is introduced, together with the interpretation of OTDR results. The practical applicability of the proposed sensors is demonstrated in a three-year field trial with the sensors installed in an aggressive marine environment. The durability of the sensor against chemical degradation and physical degradation is also verified by accelerated life test and freeze-thaw cycling test, respectively. PMID:22737030

  1. Testing and analysis of photovoltaic modules for electrochemical corrosion

    NASA Technical Reports Server (NTRS)

    Neff, Michael; Mon, Gordon R.; Whitla, Guy; Ross, Russ, Jr.

    1986-01-01

    This paper describes the testing and evaluation used to characterize the mechanisms of electrochemical corrosion of photovoltaic modules - encapsulated solar cells. Accelerated exposure testing was performed on a sample matrix of cell/encapsulant combinations, and microanalytical failure analysis was performed on selected samples to confirm the correlation between the accelerated test data and the life prediction model. A quantitative correlation between field exposure time and exposure time in the accelerated multistress tests was obtained based upon the observation that equal quantities of interelectrode charge transfer resulted in equivalent degrees of electrochemical charge.

  2. Corrosion testing of candidates for the alkaline fuel cell cathode

    NASA Technical Reports Server (NTRS)

    Singer, Joseph; Fielder, William L.

    1989-01-01

    Current/voltage data was obtained for specially made corrosion electrodes of some oxides and of gold materials for the purpose of developing a screening test of catalysts and supports for use at the cathode of the alkaline fuel cell. The data consists of measurements of current at fixed potentials and cyclic voltammograms. These data will have to be correlated with longtime performance data in order to fully evaluate this approach to corrosion screening. Corrosion test screening of candidates for the oxygen reduction electrode of the alkaline fuel cell was applied to two substances, the pyrochlore Pb2Ru2O6.5 and the spinel NiCo2O4. The substrate gold screen and a sample of the IFC Orbiter Pt-Au performance electrode were included as blanks. The pyrochlore data indicate relative stability, although nothing yet can be said about long term stability. The spinel was plainly unstable. For this type of testing to be validated, comparisons will have to be made with long term performance tests.

  3. Corrosion testing of candidates for the alkaline fuel cell cathode

    NASA Technical Reports Server (NTRS)

    Singer, Joseph; Fielder, William L.

    1989-01-01

    It is desirable to employ a corrosion screening test for catalyst or support candidates for the fuel cell cathode before entering upon optimization of the candidate or of the catalytic electrode. To this end, corrosion test electrodes, intended for complete immersion and maximum wetting, have been made with 30 to 40 vol. pct Teflon; with perovskites this is about 10 to 15 pct. The candidates were synthesized by methods intended for single-phase product without special emphasis on high surface area, although the substances tested were no coarser than 2 m squared/g. A typical loading was 25 mg/cm sq of the pure substance, usually on gold screen, a few mm squared of which were left bare for contacting. Contact to the gold lead wire was made by welding with a micro-torch or a spot-welder. Corrosion testing consisted of obtaining current-voltage data under flowing inert gas in the potential region for reduction of O2. The electrode was immersed in 30 pct KOH. Observations were made at 20 C and 80 C, and the results compared with data from gold standards. Results with some perovskites, pyrochlores, spinels, and interstitial compounds will be discussed.

  4. Reproduction of natural corrosion by accelerated laboratory testing methods

    SciTech Connect

    Luo, J.S.; Wronkiewicz, D.J.; Mazer, J.J.; Bates, J.K.

    1996-05-01

    Various laboratory corrosion tests have been developed to study the behavior of glass waste forms under conditions similar to those expected in an engineered repository. The data generated by laboratory experiments are useful for understanding corrosion mechanisms and for developing chemical models to predict the long-term behavior of glass. However, it is challenging to demonstrate that these test methods produce results that can be directly related to projecting the behavior of glass waste forms over time periods of thousands of years. One method to build confidence in the applicability of the test methods is to study the natural processes that have been taking place over very long periods in environments similar to those of the repository. In this paper, we discuss whether accelerated testing methods alter the fundamental mechanisms of glass corrosion by comparing the alteration patterns that occur in naturally altered glasses with those that occur in accelerated laboratory environments. This comparison is done by (1) describing the alteration of glasses reacted in nature over long periods of time and in accelerated laboratory environments and (2) establishing the reaction kinetics of naturally altered glass and laboratory reacted glass waste forms.

  5. Corrosion erosion test of SS316 in flowing Pb Bi

    NASA Astrophysics Data System (ADS)

    Kikuchi, K.; Kurata, Y.; Saito, S.; Futakawa, M.; Sasa, T.; Oigawa, H.; Wakai, E.; Miura, K.

    2003-05-01

    Corrosion tests of austenitic stainless tube were done under flowing Pb-Bi conditions for 3000 h at 450 °C. Specimens were 316SS produced as a tubing form with 13.8 mm outer diameter, 2 mm thickness and 40 cm length. During operation, maximum temperature, temperature difference and flow velocity of Pb-Bi at the specimen were kept at 450, 50 °C, and 1 m/s, respectively. After the test, specimen and components of the loop were cut and examined by optical microscope, SEM, EDX, WDX and X-ray diffraction. Pb-Bi adhered on the surface of the specimen even after Pb-Bi was drained out to the storage tank from the circulating loop. Results differed from a stagnant corrosion test in that the specimen surface became rough and the corrosion rate was maximally 0.1 mm/3000 h. Mass transfer from the high temperature to the lower temperature area was observed: crystals of Fe-Cr were found on the tube surface in the low-temperature region. The sizes of crystals varied from 0.1 to 0.2 mm. The depositing crystals were ferrite grains and the chemical composition ratio (mass%) of Fe to Cr was 9:1.

  6. Corrosion Tests of LWR Fuels - Nuclide Release

    SciTech Connect

    P.A. Finn; Y. Tsai; J.C. Cunnane

    2001-12-14

    Two BWR fuels [64 and 71 (MWd)/kgU], one of which contained 2% Gd, and two PWR fuels [30 and 45 (MWd)/kgU], are tested by dripping groundwater on the fuels under oxidizing and hydrologically unsaturated conditions for times ranging from 2.4 to 8.2 yr at 90 C. The {sup 99}Tc, {sup 129}I, {sup 137}Cs, {sup 97}Mo, and {sup 90}Sr releases are presented to show the effects of long reaction times and of gadolinium on nuclide release. This investigation showed that the five nuclides at long reaction times have similar fractional release rates and that the presence of 2% Gd reduced the {sup 99}Tc cumulative release fraction by about an order of magnitude over that of a fuel with a similar burnup.

  7. Comparison of HEPA filter test methods in corrosive environments

    SciTech Connect

    Murphy, L.P.; Fernandez, S.J.; Motes, B.G.

    1980-07-01

    An evaluation of the three HEPA filter test methods in corrosive environments was conducted: the dioctyl phthalate (DOP) method (US Standard Method ANSI N-101.1-1972), the sodium chloride method (British Standard 3928:1969), and the soda-fluorescein or uranine method (French Standard AFNOR STD NFX 44-011). The effects of humidity, temperature and oxides of nitrogen (NO/sub x/) on each method was examined. The experimental design used in the evaluation measured and separated both the effect of each variable and any interaction between variables on the test method. Recommendations for changes in the standard methods to reduce erratic online results are presented.

  8. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing - Part 2

    NASA Technical Reports Server (NTRS)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerome C.; Kolody, Mark R.

    2012-01-01

    Evaluation of metals to predict service life of metal-based structures in corrosive environments has long relied on atmospheric exposure test sites. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions similar to those of the corrosive environment. Their reliability to correlate to atmospheric exposure test results is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated corrosion testing has yet to be universally accepted as a useful tool in predicting the long-term service life of a metal, despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard, and their use is crucial, a method that correlates timescales from accelerated testing to atmospheric exposure would be very valuable. This paper presents work that began with the characterization of the atmospheric environment at the Kennedy Space Center (KSC) Beachside Corrosion Test Site. The chemical changes that occur on low carbon steel, during atmospheric and accelerated corrosion conditions, were investigated using surface chemistry analytical methods. The corrosion rates and behaviors of panels subjected to long-term and accelerated corrosion conditions, involving neutral salt fog and alternating seawater spray, were compared to identify possible timescale correlations between accelerated and long-term corrosion performance. The results, as well as preliminary findings on the correlation investigation, are presented.

  9. LIQUID AIR INTERFACE CORROSION TESTING FOR FY2010

    SciTech Connect

    Zapp, P.

    2010-12-16

    An experimental study was undertaken to investigate the corrosivity to carbon steel of the liquid-air interface of dilute simulated radioactive waste solutions. Open-circuit potentials were measured on ASTM A537 carbon steel specimens located slightly above, at, and below the liquid-air interface of simulated waste solutions. The 0.12-inch-diameter specimens used in the study were sized to respond to the assumed distinctive chemical environment of the liquid-air interface, where localized corrosion in poorly inhibited solutions may frequently be observed. The practical inhibition of such localized corrosion in liquid radioactive waste storage tanks is based on empirical testing and a model of a liquid-air interface environment that is made more corrosive than the underlying bulk liquid due to chemical changes brought about by absorbed atmospheric carbon dioxide. The chemical changes were assumed to create a more corrosive open-circuit potential in carbon in contact with the liquid-air interface. Arrays of 4 small specimens spaced about 0.3 in. apart were partially immersed so that one specimen contacted the top of the meniscus of the test solution. Two specimens contacted the bulk liquid below the meniscus and one specimen was positioned in the vapor space above the meniscus. Measurements were carried out for up to 16 hours to ensure steady-state had been obtained. The results showed that there was no significant difference in open-circuit potentials between the meniscus-contact specimens and the bulk-liquid-contact specimens. With the measurement technique employed, no difference was detected between the electrochemical conditions of the meniscus versus the bulk liquid. Stable open-circuit potentials were measured on the specimen located in the vapor space above the meniscus, showing that there existed an electrochemical connection through a thin film of solution extending up from the meniscus. This observation supports the Hobbs-Wallace model of the development

  10. Electrode holder useful in a corrosion testing device

    DOEpatents

    Murphy, R.J. Jr.; Jamison, D.E.

    1986-08-19

    The present invention is directed to an apparatus and method for holding one or more test electrodes of precisely known exposed surface area. The present invention is particularly useful in a device for determining the corrosion properties of the materials from which the test electrodes have been formed. The present invention relates to a device and method for holding the described electrodes wherein the exposed surface area of the electrodes is only infinitesimally decreased. Further, in the present invention the exposed, electrically conductive surface area of the contact devices is small relative to the test electrode surface area. The holder of the present invention conveniently comprises a device for contacting and engaging each test electrode at two point contacts infinitesimally small in relation to the exposed surface area of the electrodes. 4 figs.

  11. Electrode holder useful in a corrosion testing device

    DOEpatents

    Murphy, Jr., Robert J.; Jamison, Dale E.

    1986-01-01

    The present invention is directed to an apparatus and method for holding one or more test electrodes of precisely known exposed surface area. The present invention is particularly useful in a device for determining the corrosion properties of the materials from which the test electrodes have been formed. The present invention relates to a device and method for holding the described electrodes wherein the exposed surface area of the electrodes is only infinitesimally decreased. Further, in the present invention the exposed, electrically conductive surface area of the contact devices is small relative to the test electrode surface area. The holder of the present invention conveniently comprises a device for contacting and engaging each test electrode at two point contacts infinitesimally small in relation to the exposed surface area of the electrodes.

  12. A rapid stress-corrosion test for aluminum alloys

    NASA Technical Reports Server (NTRS)

    Helfrich, W. J.

    1968-01-01

    Stressed alloy specimens are immersed in a salt-dichromate solution at 60 degrees C. Because of the minimal general corrosion of these alloys in this solution, stress corrosion failures are detected by low-power microscopic examination.

  13. Development of an Accelerated Test Method for the Determination of Susceptibility to Atmospheric Corrosion

    NASA Technical Reports Server (NTRS)

    Ambrose, John R.

    1991-01-01

    The theoretical rationale is presented for use of a repetitive cyclic current reversal voltammetric technique for characterization of localized corrosion processes, including atmospheric corrosion. Applicability of this proposed experimental protocol is applied to characterization of susceptibility to crevice and pitting corrosion, atmospheric corrosion and stress corrosion cracking. Criteria upon which relative susceptibility is based were determined and tested using two iron based alloys commonly in use at NASA-Kennedy; A36 (a low carbon steel) and 4130 (a low alloy steel). Practicality of the procedure was demonstrated by measuring changes in anodic polarization behavior during high frequency current reversal cycles of 25 cycles per second with 1 mA/sq cm current density amplitude in solutions containing Cl anions. The results demonstrated that, due to excessive polarization which affects conductivity of barrier corrosion product layers, A36 was less resistant to atmospheric corrosion than its 4130 counterpart; behavior which was also demonstrated during exposure tests.

  14. Testing and prediction of erosion-corrosion for corrosion resistant alloys used in the oil and gas production industry

    NASA Astrophysics Data System (ADS)

    Rincon, Hernan E.

    The corrosion behavior of CRAs has been thoroughly investigated and documented in the public literature by many researchers; however, little work has been done to investigate erosion-corrosion of such alloys. When sand particles are entrained in the flow, the degradation mechanism is different from that observed for sand-free corrosive environment. There is a need in the oil and gas industry to define safe service limits for utilization of such materials. The effects of flow conditions, sand rate, pH and temperature on the erosion-corrosion of CRAs were widely studied. An extensive experimental work was conducted using scratch tests and flow loop tests using several experimental techniques. At high erosivity conditions, a synergistic effect between erosion and corrosion was observed. Under the high sand rate conditions tested, erosivity is severe enough to damage the passive layer protecting the CRA thereby enhancing the corrosion rate. In most cases there is likely a competition between the rates of protective film removal due to mechanical erosion and protective film healing. Synergism occurs for each of the three alloys examined (13Cr and Super13Cr and 22Cr); however, the degree of synergism is quite different for the three alloys and may not be significant for 22Cr for field conditions where erosivities are typically much lower that those occurring in the small bore loop used in this research. Predictions of the corrosion component of erosion-corrosion based on scratch test data compared reasonably well to test results from flow loops for the three CRAs at high erosivity conditions. Second order behavior appears to be an appropriate and useful model for representing the repassivation process of CRAs. A framework for a procedure to predict penetration rates for erosion-corrosion conditions was developed based on the second order model behavior observed for the re-healing process of the passive film of CRAs and on computational fluid dynamics (CFD) simulations

  15. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings -- Phase 2 field testing

    SciTech Connect

    Blough, J.L.

    1996-08-01

    In Phase 1 of this project, a variety of developmental and commercial tubing alloys and claddings was exposed to laboratory fireside corrosion testing simulating a superheater or reheater in a coal-fired boiler. Phase 2 (in situ testing) has exposed samples of 347, RA85H, HR3C, 253MA, Fe{sub 3}Al + 5Cr, 310 modified, NF 709, 690 clad, and 671 clad for over 10,000 hours to the actual operating conditions of a 250-MW coal-fired boiler. The samples were installed on air-cooled, retractable corrosion probes, installed in the reheater cavity, controlled to the operating metal temperatures of an existing and advanced-cycle, coal-fired boiler. Samples of each alloy are being exposed for 4,000, 12,000, and 16,000 hours of operation. The present results are for the metallurgical examination of the corrosion probe samples after approximately 4,400 hours of exposure.

  16. Relationships between stress corrosion cracking tests and utility operating experience

    SciTech Connect

    Baum, Allen

    1999-10-22

    Several utility steam generator and stress corrosion cracking databases are synthesized with the view of identifying the crevice chemistry that is most consistent with the plant cracking data. Superheated steam and neutral solution environments are found to be inconsistent with the large variations in the observed SCC between different plants, different support plates within a plant, and different crevice locations. While the eddy current response of laboratory tests performed with caustic chemistries approximates the response of the most extensively affected steam generator tubes, the crack propagation kinetics in these tests differ horn plant experience. The observations suggest that there is a gradual conversion of the environment responsible for most steam generator ODSCC from a concentrated, alkaline-forming solution to a progressively more steam-enriched environment.

  17. Impact of corrosion test container material in molten fluorides

    SciTech Connect

    Olson, Luke C.; Fuentes, Roderick E.; Martinez-Rodriguez, Michael J.; Ambrosek, James W.; Sridharan, Kumar; Anderson, Mark H.; Garcia-Diaz, Brenda L.; Gray, Joshua; Allen, Todd R.

    2015-10-15

    The effects of crucible material choice on alloy corrosion rates in immersion tests in molten LiF–NaF–KF (46.5–11.5-42 mol. %) salt held at 850 °C for 500 hrs are described. Four crucible materials were studied. Molten salt exposures of Incoloy-800H in graphite, Ni, Incoloy-800H, and pyrolytic boron nitride (PyBN) crucibles all led to weight-loss in the Incoloy-800H coupons. Alloy weight loss was ~30 times higher in the graphite and Ni crucibles in comparison to the Incoloy-800H and PyBN crucibles. It is hypothesized galvanic coupling between the alloy coupons and crucible materials contributed to the higher corrosion rates. Alloy salt immersion in graphite and Ni crucibles had similar weight-loss hypothesized to occur due to the rate limiting out diffusion of Cr in the alloys to the surface where it reacts with and dissolves into the molten salt, followed by the reduction of Cr from solution at the molten salt and graphite/Ni interfaces. As a result, both the graphite and the Ni crucibles provided sinks for the Cr, in the formation of a Ni–Cr alloy in the case of the Ni crucible, and Cr carbide in the case of the graphite crucible.

  18. Impact of corrosion test container material in molten fluorides

    DOE PAGES

    Olson, Luke C.; Fuentes, Roderick E.; Martinez-Rodriguez, Michael J.; Ambrosek, James W.; Sridharan, Kumar; Anderson, Mark H.; Garcia-Diaz, Brenda L.; Gray, Joshua; Allen, Todd R.

    2015-10-15

    The effects of crucible material choice on alloy corrosion rates in immersion tests in molten LiF–NaF–KF (46.5–11.5-42 mol. %) salt held at 850 °C for 500 hrs are described. Four crucible materials were studied. Molten salt exposures of Incoloy-800H in graphite, Ni, Incoloy-800H, and pyrolytic boron nitride (PyBN) crucibles all led to weight-loss in the Incoloy-800H coupons. Alloy weight loss was ~30 times higher in the graphite and Ni crucibles in comparison to the Incoloy-800H and PyBN crucibles. It is hypothesized galvanic coupling between the alloy coupons and crucible materials contributed to the higher corrosion rates. Alloy salt immersion inmore » graphite and Ni crucibles had similar weight-loss hypothesized to occur due to the rate limiting out diffusion of Cr in the alloys to the surface where it reacts with and dissolves into the molten salt, followed by the reduction of Cr from solution at the molten salt and graphite/Ni interfaces. As a result, both the graphite and the Ni crucibles provided sinks for the Cr, in the formation of a Ni–Cr alloy in the case of the Ni crucible, and Cr carbide in the case of the graphite crucible.« less

  19. Summary of CPAS EDU Testing Analysis Results

    NASA Technical Reports Server (NTRS)

    Romero, Leah M.; Bledsoe, Kristin J.; Davidson, John.; Engert, Meagan E.; Fraire, Usbaldo, Jr.; Galaviz, Fernando S.; Galvin, Patrick J.; Ray, Eric S.; Varela, Jose

    2015-01-01

    The Orion program's Capsule Parachute Assembly System (CPAS) project is currently conducting its third generation of testing, the Engineering Development Unit (EDU) series. This series utilizes two test articles, a dart-shaped Parachute Compartment Drop Test Vehicle (PCDTV) and capsule-shaped Parachute Test Vehicle (PTV), both of which include a full size, flight-like parachute system and require a pallet delivery system for aircraft extraction. To date, 15 tests have been completed, including six with PCDTVs and nine with PTVs. Two of the PTV tests included the Forward Bay Cover (FBC) provided by Lockheed Martin. Advancements in modeling techniques applicable to parachute fly-out, vehicle rate of descent, torque, and load train, also occurred during the EDU testing series. An upgrade from a composite to an independent parachute simulation allowed parachute modeling at a higher level of fidelity than during previous generations. The complexity of separating the test vehicles from their pallet delivery systems necessitated the use the Automatic Dynamic Analysis of Mechanical Systems (ADAMS) simulator for modeling mated vehicle aircraft extraction and separation. This paper gives an overview of each EDU test and summarizes the development of CPAS analysis tools and techniques during EDU testing.

  20. External corrosion of line pipe -- A summary of research activities performed since 1983

    SciTech Connect

    Jack, T.R.; Wilmott, M.J.; Sutherby, R.L.; Worthington, R.G.

    1995-11-01

    External corrosion is a major threat to the integrity of gas transmission systems. This paper reviews corrosion and environmental cracking problems and their control based on more than twelve years of field and laboratory research work performed by a major Canadian gas transmission company. To protect against corrosion the company uses a dual system consisting of protective coatings and cathodic protection. Either of these systems operating properly can provide the protection necessary to prevent leaks and ruptures in line pipe. In some situations however coatings can fail in such a way as to shield a corrosion cell on the pipe surface under degraded coating from cathodic protection. Where the protective systems are thwarted, a variety of corrosion and cracking scenarios can lead to leaks and ruptures. These scenarios will be identified and assessed in terms of where they occur as well as their frequency and seriousness.

  1. Letter report on PCT/Monolith glass ceramic corrosion tests

    SciTech Connect

    Crawford, Charles L.

    2015-09-24

    The Savannah River National Laboratory (SRNL) is collaborating with personnel from Pacific Northwest National Laboratory (PNNL) to study advanced waste form glass ceramics for immobilization of waste from Used Nuclear Fuel (UNF) separations processes. The glass ceramic waste forms take advantage of both crystalline and glassy phases where ‘troublesome’ elements (e.g., low solubility in glass or very long-lived) partition to highly durable ceramic phases with the remainder of elements residing in the glassy phase. The ceramic phases are tailored to create certain minerals or unique crystalline structures that can host the radionuclides by binding them in their specific crystalline network while not adversely impacting the residual glass network (Crum et al., 2011). Glass ceramics have been demonstrated using a scaled melter test performed in a pilot scale (1/4 scale) cold crucible induction melter (CCIM) (Crum et al., 2014; Maio et al., 2015). This report summarizes recent results from both Phase I and Phase II bench scale tests involving crucible fabrication and corrosion testing of glass ceramics using the Product Consistency Test (PCT). Preliminary results from both Phase I and Phase II bench scale tests involving statistically designed matrices have previously been reported (Crawford, 2013; Crawford, 2014).

  2. Comparison of HEPA filter test methods in corrosive environments

    SciTech Connect

    Murphy, L.P.; Fernandez, S.J.; Motes, B.G.

    1980-01-01

    The in-plant testing of process off-gas high efficiency particular air (HEPA) filters is an important quality control activity of the ALARA (As Low As Reasonably Achievable) policy at nuclear facilities. Imprecise and irreproducible data were recorded during DOP testing at the Atmospheric Protection System (APS) of the Idaho Chemical Processing Plant (ICPP). The tests at the APS are performed in an environment that has high humidity, high temperatures and has NO/sub x/ present. An evaluation of three HEPA filter test methods in corrosive environments was conducted: the dioctyl phthalate (DOP) method (US Standard Method ANSI N-101.1-1979) the sodium chloride method (British Standard 3928:1969), and the soda-fluorescein or uranine method (French Standard AFNOR STD NFX 44-011). The effects of high humidity, temperature, and oxides of nitrogen (NO/sub x/) on each method was examined. The effects of each variable and any interaction between variables on the test methods were examined. Recommendations for changes in the standard methods to reduce erratic on-line results are presented.

  3. Inspection of corrosion in carbody and under frame for rolling stocks using pulsed eddy current testing

    NASA Astrophysics Data System (ADS)

    Lee, C. W.; Chung, J. D.

    2011-04-01

    Under frame side sill and carbody of rolling stock structures are designed for preventing corrosion in order to meet mechanical requirements. However during long operation time more than 30 years, there are corrosion in the under frame side sill caused by environmental effect, vibration and etc. So, detection and evaluation of the corrosion in the under frame nondestructive is one of important and extending their life time. So, in this study, we have investigated performance of pulsed eddy current testing method by measuring thickness variation of fabricate of carbody and under frame for rolling stocks. And then, the process of evaluating remaining life according to testing of corrosion amount is introduced.

  4. H1501 test summary and certification report

    SciTech Connect

    Kibalo, E.F.

    1993-10-01

    The H1501 Transportation Accident Resistant Container (TARC) was developed using the previously completed design and hardware from the Helicopter Accident Resistant Container (HARC) program. This report documents the test program used to certify the capability of the H1501 for shipping W48 and W79 war reserve projectiles. The program includes new containers built by Associated Machine Technology (AMT) and older HARC containers that had wheels and tie-down points added and were recertified after years of storage as H1501 containers. The 1973--1976 HARC development program was extremely successful with a demonstration of impact and fire capability that significantly exceeded the design requirements of 100 fps impact velocity and 90 minutes of fire protection. In 1990--1991 two TARC test units were subjected to accelerated drop tests followed by fuel fire burn tests with the objective of increasing the original limits. These tests were successful in confirming the design margin of the HI 501 to exceed 163 fps impact followed by 2 hours of fuel fire. H1501 containers were also subjected to vibration and shock tests for normal transportation environments for the W48 and W79. The results of these tests confirmed that the requirements were met for both systems.

  5. Nuclear containment steel liner corrosion workshop : final summary and recommendation report.

    SciTech Connect

    Erler, Bryan A.; Weyers, Richard E.; Sagues, Alberto; Petti, Jason P.; Berke, Neal Steven; Naus, Dan J.

    2011-07-01

    This report documents the proceedings of an expert panel workshop conducted to evaluate the mechanisms of corrosion for the steel liner in nuclear containment buildings. The U.S. Nuclear Regulatory Commission (NRC) sponsored this work which was conducted by Sandia National Laboratories. A workshop was conducted at the NRC Headquarters in Rockville, Maryland on September 2 and 3, 2010. Due to the safety function performed by the liner, the expert panel was assembled in order to address the full range of issues that may contribute to liner corrosion. This report is focused on corrosion that initiates from the outer surface of the liner, the surface that is in contact with the concrete containment building wall. Liner corrosion initiating on the outer diameter (OD) surface has been identified at several nuclear power plants, always associated with foreign material left embedded in the concrete. The potential contributing factors to liner corrosion were broken into five areas for discussion during the workshop. Those include nuclear power plant design and operation, corrosion of steel in contact with concrete, concrete aging and degradation, concrete/steel non-destructive examination (NDE), and concrete repair and corrosion mitigation. This report also includes the expert panel member's recommendations for future research.

  6. Satellite baseband processor test performance summary

    NASA Technical Reports Server (NTRS)

    Shaneyfelt, J. T.; Attwood, S. W.; Carroll, D. R.

    1983-01-01

    A satellite baseband processor (BBP) has been developed for the NASA Lewis 30/20 GHz Satellite Communications Program. The BBP design, reported elsewhere, has been implemented in a proof-of-concept (POC) model. The results of the laboratory system tests of the POC are summarized. Bit error rate test results are presented for the FDM/TDMA communication system operating at 27.5, 110, and 550 Mbps over a variety of operating conditions. The results clearly demonstrate the applicability of baseband processing to future high capacity satellite communication system concepts. A brief description of the system concept, its function, and the role of the baseband processor are presented. The test conditions and means of simulation are also described. The methods of test evaluation and their significance in a system context are given.

  7. Summary of nondestructive testing theory and practice

    NASA Technical Reports Server (NTRS)

    Meister, R. P.; Randall, M. D.; Mitchell, D. K.; Williams, L. P.; Pattee, H. E.

    1972-01-01

    The ability to fabricate design critical and man-rated aerospace structures using materials near the limits of their capabilities requires a comprehensive and dependable assurance program. The quality assurance program must rely heavily on nondestructive testing methods for thorough inspection to assess properties and quality of hardware items. A survey of nondestructive testing methods is presented to provide space program managers, supervisors and engineers who are unfamiliar with this technical area with appropriate insight into the commonly accepted nondestructive testing methods available, their interrelationships, used, advantages and limitations. Primary emphasis is placed on the most common methods: liquid penetrant, magnetic particle, radiography, ultrasonics and eddy current. A number of the newer test techniques including thermal, acoustic emission, holography, microwaves, eddy-sonic and exo-electron emission, which are beginning to be used in applications of interest to NASA, are also discussed briefly.

  8. Corrosion tests in brine and steam from the Salton Sea KGRA

    SciTech Connect

    Carter, J.P.; McCawley, F.X.

    1982-03-01

    The Bureau of Mines tested 13 alloys for resistance to general corrosion, pitting corrosion, and stress corrosion cracking in the brine and steam environments produced from geothermal well Magmamax 1 in the Salton Sea Known Geothermal Resources Area in California. The tests provided seven process environments. The alloys most resistant to corrosion in all environments were Inconel 625, Hastelloy C-276, and stainless steel alloy 29-4. Hastelloys G and S were highly resistant to all types of corrosion decreases with time. The stainless steel alloys 430, E-Brite 26-1, and 6X had good resistance to general corrosion but were susceptible to pitting. Unstressed type 316 L stainless steel exhibited severe cracking. The 1020 carbon and 4130 alloy steels were the least resistant.

  9. LABORATORY TESTING TO SIMULATE VAPOR SPACE CORROSION IN RADIOACTIVE WASTE STORAGE TANKS

    SciTech Connect

    Wiersma, B.; Garcia-Diaz, B.; Gray, J.

    2013-08-30

    Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 70 years at the Hanford nuclear facility. Vapor space corrosion of the tank walls has emerged as an ongoing challenge to overcome in maintaining the structural integrity of these tanks. The interaction between corrosive and inhibitor species in condensates/supernates on the tank wall above the liquid level, and their interaction with vapor phase constituents as the liquid evaporates from the tank wall influences the formation of corrosion products and the corrosion of the carbon steel. An effort is underway to gain an understanding of the mechanism of vapor space corrosion. Localized corrosion, in the form of pitting, is of particular interest in the vapor space. CPP testing was utilized to determine the susceptibility of the steel in a simulated vapor space environment. The tests also investigated the impact of ammonia gas in the vapor space area on the corrosion of the steel. Vapor space coupon tests were also performed to investigate the evolution of the corrosion products during longer term exposures. These tests were also conducted at vapor space ammonia levels of 50 and 550 ppm NH{sub 3} (0.005, and 0.055 vol.%) in air. Ammonia was shown to mitigate vapor space corrosion.

  10. DETERMINATION OF CORROSION INHIBITOR CRITERIA FOR TYPE III/IIIA TANKS DURING SALT DISSOLUTION OPERATIONS SUMMARY DOCUMENT

    SciTech Connect

    Mickalonis, J.; Wiersma, B.; Garcia-Diaz, B.

    2009-10-01

    Dissolution of salt from Type III/IIIA waste tanks at the Savannah River Site may create solutions with inhibitor concentrations below those currently required (0.6M OH{sup -} and 1.1M OH{sup -} + NO{sub 2}{sup -}) per the Corrosion Control Program for high nitrate salt solutions (5.5 to 8.5M NO{sub 3}{sup -}). An experimental program was conducted to evaluate the corrosion susceptibility of grade A537 carbon steel for waste simulants containing 4.5-8.5M NaNO{sub 3} with maximum inhibitor concentrations of 0.6M NaOH and 0.2M NaNO{sub 2}. These maximum inhibitor concentrations used in this program are at a reduced level from those currently required. Current requirements were initially established for the Types I, II and IV tanks made of A285 carbon steel. The experimental program involved corrosion testing to evaluate the pitting and stress corrosion stress corrosion cracking (SCC) susceptibility of the Type III/IIIA waste tank materials. The program was conducted in two phases; the results of the first phase were reported previously (WSRC-STI-2006-00029). In this second phase, the corrosion specimens were modified to represent the 'as-fabricated' condition of the tank wall, and included specimens with mill scale, ground welds and stress-relief heat treatments. The complete description of the corrosion testing and the results are reported herein. The collective corrosion test results for A537 carbon steel in high nitrate waste simulants (4.5 - 8.5M) with the maximum inhibitor concentrations of 0.6M NaOH and 0.2M NaNO{sub 2} were as follows: (1) In long-term non-polarized U-bend testing, heat treatment, similar to the waste tank stress relief regime, reduced the incidence of cracking over the 18-month test period. Vapor space SCC was found to initiate on non-heat treated U-bend coupons. (2) In polarized U-bend testing, cracking occurred on U-bend coupons that had welds prepared similar to those in the waste tanks, i.e. ground and heat treated. (3) In electrochemical

  11. Lead Paint Test Kits Workshop: Summary Report

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Office of Research and Development (ORD) designed and conducted the Lead Paint Test Kits Workshop on October 19 and 20, 2006, at the Environmental Protection Agency's Research Triangle Park, NC campus. The workshop was conducted as...

  12. 16 CFR 1610.3 - Summary of test method.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... FOR THE FLAMMABILITY OF CLOTHING TEXTILES The Standard § 1610.3 Summary of test method. The Standard provides methods of testing the flammability of textiles from or intended to be used for apparel; establishes three classes of flammability; sets forth the requirements for classifying textiles; and...

  13. Corrosion Embrittlement of Duralumin V : Results of Weather-Exposure Tests

    NASA Technical Reports Server (NTRS)

    Rawdon, Henry S

    1929-01-01

    In a series of weather exposure tests of sheet duralumin, upon which accelerated corrosion tests in the laboratory by the wet-and-dry corrosion method in a sodium chloride solution has already been carried out, a close parallelism between the results of the two kinds of tests was found to exist. The exposure tests showed that the lack of permanence of sheet duralumin is largely, if not entirely, due to corrosion. A corrosion attack of an intercrystalline nature is very largely responsible for the degree of embrittlement produced. The rate of embrittlement was greatly accelerated by a marine atmosphere and by the tropical climate. Variations in corrosion and embrittlement are noted in relation to heat treatment, cold working, and types of protective coatings.

  14. Tonopah Test Range 2030 Meeting Summary Report

    SciTech Connect

    NSTec Environmental Restoration

    2009-04-01

    Corrective Action Sites (CASs) and Corrective Action Units (CAUs) at the Tonopah Test Range (TTR) may be placed into three categories: Closed, Closed in Place, or Closure in Progress. CASs and CAUs where contaminants were either not detected or were cleaned up to within regulatory action levels are summarized. CASs and CAUs where contaminants and/or waste have been closed in place are summarized. There is also a table that summarizes the contaminant that has been closed at each site, if land-use restrictions are present, and if post-closure inspections are required.

  15. Nevada Test Site Environmental Report 2008 Summary

    SciTech Connect

    Cathy A. Wills

    2009-09-01

    The Nevada Test Site Environmental Report (NTSER) 2008 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years’ NTSERs are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx.

  16. DEPOSITION TANK CORROSION TESTING FOR ENHANCED CHEMICAL CLEANING POST OXALIC ACID DESTRUCTION

    SciTech Connect

    Mickalonis, J.

    2011-08-29

    An Enhanced Chemical Cleaning (ECC) process is being developed to aid in the high level waste tank closure at the Savannah River Site. The ECC process uses an advanced oxidation process (AOP) to destroy the oxalic acid that is used to remove residual sludge from a waste tank prior to closure. The AOP process treats the dissolved sludge with ozone to decompose the oxalic acid through reactions with hydroxyl radicals. The effluent from this oxalic acid decomposition is to be sent to a Type III waste tank and may be corrosive to these tanks. As part of the hazardous simulant testing that was conducted at the ECC vendor location, corrosion testing was conducted to determine the general corrosion rate for the deposition tank and to assess the susceptibility to localized corrosion, especially pitting. Both of these factors impact the calculation of hydrogen gas generation and the structural integrity of the tanks, which are considered safety class functions. The testing consisted of immersion and electrochemical testing of A537 carbon steel, the material of construction of Type III tanks, and 304L stainless steel, the material of construction for transfer piping. Tests were conducted in solutions removed from the destruction loop of the prototype ECC set up. Hazardous simulants, which were manufactured at SRNL, were used as representative sludges for F-area and H-area waste tanks. Oxalic acid concentrations of 1 and 2.5% were used to dissolve the sludge as a feed to the ECC process. Test solutions included the uninhibited effluent, as well as the effluent treated for corrosion control. The corrosion control options included mixing with an inhibited supernate and the addition of hydroxide. Evaporation of the uninhibited effluent was also tested since it may have a positive impact on reducing corrosion. All corrosion testing was conducted at 50 C. The uninhibited effluent was found to increase the corrosion rate by an order of magnitude from less than 1 mil per year (mpy

  17. Nevada Test Site Resource Management Plan: Annual summary, January 2000

    SciTech Connect

    2000-01-01

    The Nevada Test Site Resource Management Plan published in December of 1998 (DOE/NV--518) describes the Nevada Test Site stewardship mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. As part of the Nevada Test Site Resource Management Plan, DOE Nevada Operations Office has committed to perform and publish an annual summary review of DOE Nevada Operations' stewardship of the Nevada Test Site. This annual summary includes a description of progress made toward the goals of the Nevada Test Site Resource Management Plan, pertinent monitoring data, actions that were taken to adapt to changing conditions, and any other changes to the Nevada Test Site Resource Management Plan.

  18. Corrosion behavior of Alloy 22 in heated surface test conditions in simulated Yucca Mountain Nuclear Repository environment

    NASA Astrophysics Data System (ADS)

    Badwe, Sunil

    h and 800°C/100 h showed almost identical corrosion behaviors in the SAW environment. The specimen aged at 650°C/100 h showed lower corrosion resistance in the SAW environment indicating the effect of Mo-depletion profile near the grain boundaries. The specimen aged at 800°C for 100 h showed lower corrosion resistance in the SCW environment because of possible dissolution of the Mo-rich precipitates. Compared to the mill annealed condition, the aged specimens showed approximately an order of magnitude higher corrosion current in the SAW environment and almost similar corrosion currents in the SCW environment. Results also indicate that the passivity of Alloy 22, both in mill annealed and in aged conditions was not hampered during dry-out/rewet cycles. Presence of nitrate and other oxyanions in the SAW environment reduced the charge required to form a stable passive film of alloy 22 aged samples as compared to the charge passed in the pure chloride pH 3 environments. The passive film of the aged Alloy 22 specimens exposed to pure chloride solutions showed predominantly n-type semiconducting behavior and the on-set of p-type semiconductivity at higher potentials. The charge carrier density of the passive film of Alloy 22 varied in the range 1.5-9.0 x 10 21/cm3. The predominant charge carriers could be oxygen vacancies. Increase in the charge carrier density was observed in the specimen aged at 800°C/100 h when exposed to pH 3 solution as compared to exposure in pH 8 solution. In Summary, Alloy 22 sustained the heated surface corrosion test without any appreciable surface attack in the simulated repository environments as well as the more corrosive chloride environments.

  19. Thermal barrier coatings: Burner rig hot corrosion test results

    NASA Technical Reports Server (NTRS)

    Hodge, P. E.; Stecura, S.; Gedwill, M. A.; Zaplatynsky, I.; Levine, S. R.

    1978-01-01

    A Mach 0.3 burner rig test program was conducted to examine the sensitivity of thermal barrier coatings to Na and V contaminated combustion gases simulating potential utility gas turbine environments. Coating life of the standard ZrO2-12Y2O3/Ni-16.2Cr-5.6Al-0.6Y NASA thermal barrier coating system which was developed for aircraft gas turbines was significantly reduced in such environments. Two thermal barrier coating systems, Ca2SiO4/Ni-16.2Cr-5.6Al-0.6Y and ZrO2-8Y2O3/Ni-16.4Cr-5.1Al-0.15Y and a less insulative cermet coating system, 50 volume percent MgO-50 volume percent Ni-19.6Cr-17.1Al-0.97Y/Ni-16.2Cr-5.6Al-0.6Y, were identified as having much improved corrosion resistance compared to the standard coating.

  20. Stress corrosion evaluation of powder metallurgy aluminum alloy 7091 with the breaking load test method

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.

    1987-01-01

    The stress corrosion behavior of the P/M aluminum alloy 7091 is evaluated in two overaged heat treatment conditions, T7E69 and T7E70, using an accelerated test technique known as the breaking load test method. The breaking load data obtained in this study indicate that P/M 7091 alloy is highly resistant to stress corrosion in both longitudinal and transverse orientations at stress levels up to 90 percent of the material yield strength. The reduction in mean breaking stress as a result of corrosive attack is smallest for the more overaged T7E70 condition. Details of the test procedure are included.

  1. Exploratory corrosion tests on alloys in molten salts at 900/sup 0/C

    SciTech Connect

    Coyle, R.T.; Thomas, T.M.; Lai, G.Y.

    1984-10-01

    Exploratory corrosion tests were conducted on 16 commercial alloys in carbonate, chloride, and hydroxide molten salts at 900/sup 0/C for up to three weeks. Corrosion information, including weight change, observations of the coupons, metallographic examination, and evaluation of the corrosion product by SEM, was obtained on the coupons exposed to these salts. These tests indicated that a number of the alloys showed significant resistance to metal loss in the carbonate molten salt with corrosion rates on the order of several millimeters per year. The corrosion product is an interpenetrating structure of metal from the more noble alloy ingredients and of an oxide made up of the reaction between melt components and oxidizable metals from the alloy.

  2. Multi-Function Waste Tank Facility Corrosion Test Report (Phase 1)

    SciTech Connect

    Carlos, W. C.; Fritz, R. L.

    1993-12-27

    This report documents the results of the corrosion tests that were performed to aid in the selection of the construction materials for multi-function waste tanks to be built in the U.S. Department of Energy Hanford Site. Two alloys were tested: 304L and Alloy 20 austenitic stainless steel. The test media were aqueous solutions formulated to represent the extreme of the chemical compositions of waste to be stored in the tanks. The results summerized by alloy are as follows: For 304L the tests showed no stress-corrosion cracking in any of the nine test solutions. The tests showed pitting in on of the solutions. There were no indications of any weld heat-tint corrosion, nor any sign of preferential corrosion in the welded areas. For Alloy 20 the tests showed no general, pitting, or stress-corrosion cracking. One crevice corrosion coupon cracked at the web between a hole and the edge of the coupon in one of the solutions. Mechanical tests showed some possible crack extension in the same solution. Because of the failure of both alloys to meet test acceptance criteria, the tank waste chemistry will have to be restricted or an alternative alloy tested.

  3. Field testing results for the strategic petroleum reserve pipeline corrosion control program

    SciTech Connect

    Buchheit, R.G.; Maestas, L.M.; Hinkebein, T.E.

    1998-02-01

    Results of two studies conducted as part of the Strategic Petroleum Reserve (SPR) Pipeline Corrosion Control Program are reported. These studies focused on evaluation of rotary-applied concrete materials for internal pipeline protection against the erosive and corrosive effects of flowing brine. The study also included evaluation of liners applied by hand on pipe pieces that cannot be lined by rotary methods. Such pipe pieces include tees, elbows and flanged pipe sections. Results are reported from a corrosion survey of 17 different liner formulations tested at the-Big-Rill SPR Site. Testing consisted of electrochemical corrosion rate measurements made on lined pipe sections exposed, in a test manifold, to flowing SPR generated fluids. Testing also involved cumulative immersion exposure where samples were exposed to static site-generated brine for increasing periods of time. Samples were returned to the laboratory for various diagnostic analyses. Results of this study showed that standard calcium silicate concrete (API RP10E) and a rotary calcium aluminate concrete formulation were excellent performers. Hand-lined pipe pieces did not provide as much corrosion protection. The focus of the second part of the study was on further evaluation of the calcium silicate, calcium aluminate and hand-applied liners in actual SPR equipment and service. It was a further objective to assess the practicality of electrochemical impedance spectroscopy (EIS) for field corrosion monitoring of concrete lined pipe compared to the more well-known linear polarization technique. This study showed that concrete linings reduced the corrosion rate for bare steel from 10 to 15 mils per year to 1 mil per year or less. Again, the hand-applied liners did not provide as much corrosion protection as the rotary-applied liners. The EIS technique was found to be robust for field corrosion measurements. Mechanistic and kinetic corrosion rate data were reliably obtained.

  4. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings -- Phase 2 field testing

    SciTech Connect

    Blough, J.L.; Seitz, W.W.; Girshik, A.

    1998-06-01

    In Phase 1 of this project, laboratory experiments were performed on a variety of developmental and commercial tubing alloys and claddings by exposing them to fireside corrosion tests which simulated a superheater or reheater in a coal-fired boiler. Phase 2 (in situ testing) has exposed samples of 347, RA85H, HR3C, RA253MA, Fe{sub 3}Al + 5Cr, Ta-modified 310, NF 709, 690 clad, 671 clad, and 800HT for up to approximately 16,000 hours to the actual operating conditions of a 250-MW, coal-fired boiler. The samples were installed on air-cooled, retractable corrosion probes, installed in the reheater cavity, and controlled to the operating metal temperatures of an existing and advanced-cycle, coal-fired boiler. Samples of each alloy were exposed for 4,483, 11,348, and 15,883 hours of operation. The present results are for the metallurgical examination of the corrosion probe samples after the full 15,883 hours of exposure. A previous topical report has been issued for the 4,483 hours of exposure.

  5. Corrosion coupon testing in natural waters: A case history dealing with reverse osmosis desalination of seawater

    SciTech Connect

    Kain, R.M.; Adamson, W.L.; Weber, B.

    1997-12-31

    This paper describes a series of corrosion tests performed to determine the general and localized corrosion behavior of two stainless alloys (UNS S31603 and UNS N08367) and 70/30 CuNi (UNS C71500) in three aqueous environments associated with advanced reverse osmosis (TO) desalination of natural seawater. In addition to seawater (the RO feed stock), the other environments included a 2nd-pass RO brine with lower chloride content and total dissolved solids than raw seawater, and an ultrapure 3rd-pass permeate. Two ASTM standards were reviewed for guidance in the design of the experiment. Since testing could be conducted in an operating prototype RO system, the test program followed the general procedures for an in-plant corrosion tests described by ASTM G4-95: Standard Guide for Conducting Corrosion Coupon Tests in Field Applications. This standard, along with G78-95: Standard Guide for Crevice Corrosion Testing of Iron-Base and Nickel-Base Alloys in Seawater and Other Chloride-Containing Environments, provided guidance in the selection of test specimens and mounting fixtures as well as crevice formers utilized. The G78-95 standard guide also provided considerations associated with the interpretation of the crevice corrosion test results.

  6. KSC lubricant testing program. [lubrication characteristics and corrosion resistance

    NASA Technical Reports Server (NTRS)

    Lockhart, B. J.; Bryan, C. J.

    1973-01-01

    A program was conducted to evaluate the performance of various lubricants in use and considered for use at Kennedy Space Center (KSC). The overall objectives of the program were to: (1) determine the lubrication characteristics and relative corrosion resistance of lubricants in use and proposed for use at KSC; (2) identify materials which may be equivalent to or better than KELF-90 and Krytox 240 AC greases; and (3) identify or develop an improved lubricating oil suitable for use in liquid oxygen (LOX) pumps at KSC. It was concluded that: (1) earth gel thickened greases are very poor corrosion preventive materials in the KSC environment; (2) Halocarbon 25-5S and Braycote 656 were suitable substiutes for KELF-90 and Krytox 240 AC respectively; and (3) none of the oils evaluated possessed the necessary inertness, lubricity, and corrosion prevention characteristics for the KSC LOX pumping systems in their present configuration.

  7. ELECTROCHEMICAL CORROSION TEST RESULTS FOR TANK 241-SY-102 SUPERNATE GRAB SAMPLES

    SciTech Connect

    DUNCAN JB

    2007-04-09

    This report describes the electrochemical corrosion scans and conditions for testing of SY-102 supernatant samples taken December 2004. The testing was performed because the tank was under a Justification for Continued Operation allowing the supernatant composition to be outside the chemistry limits of Administrative Control 5.16, 'Corrosion Mitigation program'. A new electrochemical working electrode of A516 Grade 60 carbon steel was used for each scan; all scans were measured against a saturated calomel electrode, with carbon counter electrodes, and all scans were carried out at 50 C. The samples were scanned twice, once as received and once sparged with argon to deoxygenate the sample. For those scans conducted after argon purging, the corrosion rates ranged from 0.012 to 0.019 mpy. A test for stress corrosion cracking was carried out on one sample (2SY-04-07) with negative results.

  8. Synthetic sea water - An improved stress corrosion test medium for aluminum alloys

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1973-01-01

    A major problem in evaluating the stress corrosion cracking resistance of aluminum alloys by alternate immersion in 3.5 percent salt (NaCl) water is excessive pitting corrosion. Several methods were examined to eliminate this problem and to find an improved accelerated test medium. These included the addition of chromate inhibitors, surface treatment of specimens, and immersion in synthetic sea water. The results indicate that alternate immersion in synthetic sea water is a very promising stress corrosion test medium. Neither chromate inhibitors nor surface treatment (anodize and alodine) of the aluminum specimens improved the performance of alternate immersion in 3.5 percent salt water sufficiently to be classified as an effective stress corrosion test method.

  9. Summary of Granulation Matrix Testing for the Plutonium Immobilization Program

    SciTech Connect

    Herman, C.C.

    2001-10-19

    In FY00, a matrix for process development testing was created to identify those items related to the ceramic process that had not been fully developed or tested and to help identify variables that needed to be tested. This matrix, NMTP/IP-99-003, was jointly created between LLNL and SRTC and was issued to all affected individuals. The matrix was also used to gauge the progress of the development activities. As part of this matrix, several series of tests were identified for the granulation process. This summary provides the data and results from the granulation testing. The results of the granulation matrix testing were used to identify the baseline process for testing in the PuCTF with cold surrogates in B241 at LLNL.

  10. Preparation and Testing of Corrosion and Spallation-Resistant Coatings

    SciTech Connect

    Hurley, John

    2015-11-01

    with the Rene 80. One-inch-diameter buttons were machined from each of the bonded blocks and sent to Siemens for standard oxidation, spallation, and corrosion testing, which should be complete in the spring of 2016.

  11. Conditions for testing the corrosion rates of ceramics in coal gasification systems

    SciTech Connect

    Hurley, J.P.; Nowok, J.W.

    1996-08-01

    Coal gasifier operating conditions and gas and ash compositions affect the corrosion rates of ceramics used for construction in three ways: (1) through direct corrosion of the materials, (2) by affecting the concentration and chemical form of the primary corrodents, and (3) by affecting the mass transport rate of the primary corrodents. To perform an accurate corrosion test on a system material, the researcher must include all relevant corrodents and simulate conditions in the gasifier as closely as possible. In this paper, the authors present suggestions for conditions to be used in such corrosion tests. Two main types of corrosion conditions are discussed: those existing in hot-gas cleanup systems where vapor and dry ash may contribute to corrosion and those experienced by high-temperature heat exchangers and refractories where the main corrodent will be coal ash slag. Only the fluidized-bed gasification systems such as the Sierra Pacific Power Company Pinon Pine Power Project system are proposing the use of ceramic filters for particulate cleanup. The gasifier is an air-blown 102-MWe unit employing a Westinghouse{trademark} ceramic particle filter system operating at as high as 1100{degrees}F at 300 psia. Expected gas compositions in the filter will be approximately 25% CO, 15% H{sub 2}, 5% CO{sub 2}, 5% H{sub 2}O, and 50% N{sub 2}. Vapor-phase sodium chloride concentrations are expected to be 10 to 100 times the levels in combustion systems at similar temperatures, but in general the concentrations of the minor primary and secondary corrodents are not well understood. Slag corrosiveness will depend on its composition as well as viscosity. For a laboratory test, the slag must be in a thermodynamically stable form before the beginning of the corrosion test to assure that no inappropriate reactions are allowed to occur. Ideally, the slag would be flowing, and the appropriate atmosphere must be used to assure realistic slag viscosity.

  12. ELECTROCHEMICAL CORROSION TESTING OF TANKS 241-AN-102 & 241-AP-107 & 241-AP-108 IN SUPPORT OF ULTRASONIC TESTING

    SciTech Connect

    WYRWAS RB; DUNCAN JB

    2008-11-20

    This report presents the results of the corrosion rates that were measured using electrochemical methods for tanks 241-AN-102 (AN-102), 241-AP-107 (AP 107), and 241-AP-108 (AP-108) performed under test plant RPP-PLAN-38215. The steel used as materials of construction for AN and AP tank farms was A537 Class 1. Test coupons of A537 Class 1 carbon steel were used for corrosion testing in the AN-107, AP-107, and AP-108 tank waste. Supernate will be tested from AN-102, AP-107, and Ap-108. Saltcake testing was performed on AP-108 only.

  13. LWRS Fuels Pathway: Engineering Design and Fuels Pathway Initial Testing of the Hot Water Corrosion System

    SciTech Connect

    Dr. John Garnier; Dr. Kevin McHugh

    2012-09-01

    The Advanced LWR Nuclear Fuel Development R&D pathway performs strategic research focused on cladding designs leading to improved reactor core economics and safety margins. The research performed is to demonstrate the nuclear fuel technology advancements while satisfying safety and regulatory limits. These goals are met through rigorous testing and analysis. The nuclear fuel technology developed will assist in moving existing nuclear fuel technology to an improved level that would not be practical by industry acting independently. Strategic mission goals are to improve the scientific knowledge basis for understanding and predicting fundamental nuclear fuel and cladding performance in nuclear power plants, and to apply this information in the development of high-performance, high burn-up fuels. These will result in improved safety, cladding, integrity, and nuclear fuel cycle economics. To achieve these goals various methods for non-irradiated characterization testing of advanced cladding systems are needed. One such new test system is the Hot Water Corrosion System (HWCS) designed to develop new data for cladding performance assessment and material behavior under simulated off-normal reactor conditions. The HWCS is capable of exposing prototype rodlets to heated, high velocity water at elevated pressure for long periods of time (days, weeks, months). Water chemistry (dissolved oxygen, conductivity and pH) is continuously monitored. In addition, internal rodlet heaters inserted into cladding tubes are used to evaluate repeated thermal stressing and heat transfer characteristics of the prototype rodlets. In summary, the HWCS provides rapid ex-reactor evaluation of cladding designs in normal (flowing hot water) and off-normal (induced cladding stress), enabling engineering and manufacturing improvements to cladding designs before initiation of the more expensive and time consuming in-reactor irradiation testing.

  14. Viking '75 spacecraft design and test summary. Volume 3: Engineering test summary

    NASA Technical Reports Server (NTRS)

    Holmberg, N. A.; Faust, R. P.; Holt, H. M.

    1980-01-01

    The engineering test program for the lander and the orbiter are presented. The engineering program was developed to achieve confidence that the design was adequate to survive the expected mission environments and to accomplish the mission objective.

  15. Hot-wall corrosion testing of simulated high level nuclear waste

    SciTech Connect

    Chandler, G.T.; Zapp, P.E.; Mickalonis, J.I.

    1995-01-01

    Three materials of construction for steam tubes used in the evaporation of high level radioactive waste were tested under heat flux conditions, referred to as hot-wall tests. The materials were type 304L stainless steel alloy C276, and alloy G3. Non-radioactive acidic and alkaline salt solutions containing halides and mercury simulated different high level waste solutions stored or processed at the United States Department of Energy`s Savannah River Site. Alloy C276 was also tested for corrosion susceptibility under steady-state conditions. The nickel-based alloys C276 and G3 exhibited excellent corrosion resistance under the conditions studied. Alloy C276 was not susceptible to localized corrosion and had a corrosion rate of 0.01 mpy (0.25 {mu}m/y) when exposed to acidic waste sludge and precipitate slurry at a hot-wall temperature of 150{degrees}C. Type 304L was susceptible to localized corrosion under the same conditions. Alloy G3 had a corrosion rate of 0.1 mpy (2.5 {mu}m/y) when exposed to caustic high level waste evaporator solution at a hot-wall temperature of 220{degrees}C compared to 1.1 mpy (28.0 {mu}/y) for type 304L. Under extreme caustic conditions (45 weight percent sodium hydroxide) G3 had a corrosion rate of 0.1 mpy (2.5 {mu}m/y) at a hot-wall temperature of 180{degrees}C while type 304L had a high corrosion rate of 69.4 mpy (1.8 mm/y).

  16. Integrated Disposal Facility FY 2012 Glass Testing Summary Report

    SciTech Connect

    Pierce, Eric M.; Kerisit, Sebastien N.; Krogstad, Eirik J.; Burton, Sarah D.; Bjornstad, Bruce N.; Freedman, Vicky L.; Cantrell, Kirk J.; Snyder, Michelle MV; Crum, Jarrod V.; Westsik, Joseph H.

    2013-03-29

    PNNL is conducting work to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility for Hanford immobilized low-activity waste (ILAW). Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program, PNNL is implementing a strategy, consisting of experimentation and modeling, to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. Key activities in FY12 include upgrading the STOMP/eSTOMP codes to do near-field modeling, geochemical modeling of PCT tests to determine the reaction network to be used in the STOMP codes, conducting PUF tests on selected glasses to simulate and accelerate glass weathering, developing a Monte Carlo simulation tool to predict the characteristics of the weathered glass reaction layer as a function of glass composition, and characterizing glasses and soil samples exhumed from an 8-year lysimeter test. The purpose of this report is to summarize the progress made in fiscal year (FY) 2012 and the first quarter of FY 2013 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of LAW glasses.

  17. Corrosion Testing of Carbon Steel in Oxalic Acid that Contains Dissolved Iron

    SciTech Connect

    Wiersma, Bruce J.; Mickalonis, John I.; Subramanian, Karthik H.

    2012-10-11

    Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 60 years at the Savannah River Site. The site is currently in the process of removing the waste from these tanks in order to place it into vitrified, stable state for longer term storage. The last stage in the removal sequence is a chemical cleaning step that breaks up and dissolves metal oxide solids that cannot be easily pumped out of the tank. Oxalic acid (OA) will be used to chemically clean the tanks after waste retrieval is completed. The waste tanks at SRS were constructed from carbon steel materials and thus are vulnerable to corrosion in acidic media. In addition to structural impacts, the impact of corrosion on the hydrogen generated during the process must be assessed. Electrochemical and coupon immersion tests were used to investigate the corrosion mechanism at anticipated process conditions. The testing showed that the corrosion rates were dependent upon the reduction of the iron species that had dissolved in solution. Initial corrosion rates were elevated due to the reduction of the ferric species to ferrous species. At later times, as the ferric species depleted, the corrosion rate decreased. On the other hand, the hydrogen evolution reaction became more dominant.

  18. Liquid-Air Interface Corrosion Testing Simulating The Environment Of Hanford Double Shell Tanks

    SciTech Connect

    Wiersma, B.; Gray, J. R.; Garcia-Diaz, B. L.; Murphy, T. H.; Hicks, K. R.

    2014-01-30

    Coupon tests on A537 carbon steel materials were conducted to evaluate the Liquid-Air Interface (LAI) corrosion susceptibility in a series of solutions designed to simulate conditions in the radioactive waste tanks located at the Hanford Nuclear Facility. The new stress corrosion cracking requirements and the impact of ammonia on LAI corrosion were the primary focus. The minimum R value (i.e., molar ratio of nitrite to nitrate) of 0.15 specified by the new stress corrosion cracking requirements was found to be insufficient to prevent pitting corrosion at the LAI. The pH of the test solutions was 10, which was actually less than the required pH 11 defined by the new requirements. These tests examined the effect of the variation of the pH due to hydroxide depletion at the liquid air interface. The pits from the current testing ranged from 0.001 to 0.008 inch in solutions with nitrate concentrations of 0.4 M and 2.0 M. The pitting and general attack that occurred progressed over the four-months. No significant pitting was observed, however, for a solution with a nitrate concentration of 4.5 M. The pitting depths observed in these partial immersion tests in unevaporated condensates ranged from 0.001 to 0.005 inch after 4 months. The deeper pits were in simulants with low R values. Simulants with R values of approximately 0.6 to 0.8 appeared to significantly reduce the degree of attack. Although, the ammonia did not completely eliminate attack at the LAI, the amount of corrosion in an extremely corrosive solution was significantly reduced. Only light general attack (< 1 mil) occurred on the coupon in the vicinity of the LAI. The concentration of ammonia (i.e., 50 ppm or 500 ppm) did not have a strong effect.

  19. Test Plan: Sludge Treatment Project Corrosion Process Chemistry Follow-on Testing

    SciTech Connect

    Delegard, Calvin H.; Schmidt, Andrew J.; Poloski, Adam P.

    2007-08-17

    This test plan was prepared by the Pacific Northwest National Laboratory (PNNL) under contract with Fluor Hanford (FH). The test plan describes the scope and conditions to be used to perform laboratory-scale testing of the Sludge Treatment Project (STP) hydrothermal treatment of K Basin sludge. The STP, managed for the U. S. Department of Energy (DOE) by FH, was created to design and operate a process to eliminate uranium metal from the sludge prior to packaging for Waste Isolation Pilot Plant (WIPP) by using high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. The proposed testing builds on the approach and laboratory test findings for both K Basin sludge and simulated sludge garnered during prior testing from September 2006 to March 2007. The outlined testing in this plan is designed to yield further understanding of the nature of the chemical reactions, the effects of compositional and process variations and the effectiveness of various strategies to mitigate the observed high shear strength phenomenon observed during the prior testing. These tests are designed to provide process validation and refinement vs. process development and design input. The expected outcome is to establish a level of understanding of the chemistry such that successful operating strategies and parameters can be implemented within the confines of the existing STP corrosion vessel design. In July 2007, the DOE provided direction to FH regarding significant changes to the scope of the overall STP. As a result of the changes, FH directed PNNL to stop work on most of the planned activities covered in this test plan. Therefore, it is unlikely the testing described here will be performed. However, to preserve the test strategy and details developed to date, the test plan has been published.

  20. High Temperature Steam Electrolysis Materials Degradation: Preliminary Results of Corrosion Tests on Ceramatec Electrolysis Cell Components

    SciTech Connect

    Paul Demkowicz; Prateek Sachdev; Kevin DeWall; Pavel Medvedev

    2007-06-01

    Corrosion tests were performed on stainless steel and nickel alloy coupons in H2O/H2 mixtures and dry air to simulate conditions experienced in high temperature steam electrolysis systems. The stainless steel coupons were tested bare and with one of three different proprietary coatings applied. Specimens were corroded at 850°C for 500 h with weight gain data recorded at periodic intervals. Post-test characterization of the samples included surface and cross-section scanning electron microscopy, grazing incidence x-ray diffraction, and area-specific resistance measurements. The uncoated nickel alloy outperformed the ferritic stainless steel under all test conditions based on weight gain data. Parabolic rate constants for corrosion of these two uncoated alloys were consistent with values presented in the literature under similar conditions. The steel coatings reduced corrosion rates in H2O/H2 mixtures by as much as 50% compared to the untreated steel, but in most cases showed negligible corrosion improvement in air. The use of a rare-earth-based coating on stainless steel did not result in a significantly different area specific resistance values after corrosion compared to the untreated alloy. Characterization of the samples is still in progress and the findings will be revised when the complete data set is available.

  1. Crevice corrosion testing of austenitic, superaustenitic, superferritic, and superduplex stainless type alloys in seawater

    SciTech Connect

    Zeuthen, A.W.; Kain, R.M.

    1997-12-31

    In industry, many problems from corrosion occurring in crevices have been experienced and reported. These include the refining industry, offshore drilling platforms, fossil and nuclear power plants, chemical plants and the public utilities. The services are highly variable. Corrosion mechanisms and the results experienced are influenced by severe environments which cannot always be avoided. Corrosion testing is considered useful not only in comparing materials, but also in selecting materials from the design standpoint. The ultimate goal is to use materials which are superior to those currently in use. This will result in fewer outages, reduce repairs and significantly lower costs. This paper provides the results from four seawater test programs addressing crevice corrosion resistance of a number of superferritic, superaustenitic, and superduplex alloys, along with conventional 300 Series stainless steel. These programs included exposure to natural fouling organisms which can produce crevices, and testing which comprised several different manmade crevice configurations. Alloys found to be resistant under some test conditions were prone to attack under others. All of the super stainless steels were found to be more resistant to crevice corrosion than conventional austenitic grades, but some were susceptible to some degree.

  2. The Long-Term Corrosion Test Facility at the Lawrence Livermore National Laboratory

    SciTech Connect

    Fix, D V; Rebak, R B

    2007-03-21

    The long-term corrosion test facility (LTCTF) at the Lawrence Livermore National Laboratory (LLNL) consisted of 22 vessels that housed more than 7,000 corrosion test specimens from carbon steels to highly corrosion resistant materials such Alloy 22 and Ti Grade 7. The specimens from LTCTF range from standard weight-loss coupons to U-bend specimens for testing susceptibility to environmentally assisted cracking. Each vessel contained approximately 1000 liters of concentrated brines at 60 C or 90 C. The LTCTF started its operations in late 1996. The thousands of specimens from the LTCTF were removed in August-September 2006. The specimens are being catalogued and stored for future characterization. Previously removed specimens (e.g. 1 and 5 years) are also archived for further studies.

  3. Field Testing of Rapid Electrokinetic Nanoparticle Treatment for Corrosion Control of Steel in Concrete

    NASA Technical Reports Server (NTRS)

    Cardenas, Henry E.; Alexander, Joshua B.; Kupwade-Patil,Kunal; Calle, Luz Marina

    2009-01-01

    This work field tested the use of electrokinetics for delivery of concrete sealing nanoparticles concurrent with the extraction of chlorides. Several cylinders of concrete were batched and placed in immersion at the Kennedy Space Center Beach Corrosion Test Site. The specimens were batched with steel reinforcement and a 4.5 wt.% (weight percent) content of sodium chloride. Upon arrival at Kennedy Space Center, the specimens were placed in the saltwater immersion pool at the Beach Corrosion Test Site. Following 30 days of saltwater exposure, the specimens were subjected to rapid chloride extraction concurrent with electrokinetic nanoparticle treatment. The treatments were operated at up to eight times the typical current density in order to complete the treatment in 7 days. The findings indicated that the short-term corrosion resistance of the concrete specimens was significantly enhanced as was the strength of the concrete.

  4. Vapor Space Corrosion Testing Simulating The Environment Of Hanford Double Shell Tanks

    SciTech Connect

    Wiersma, B.; Gray, J. R.; Garcia-Diaz, B. L.; Murphy, T. H.; Hicks, K. R.

    2014-01-30

    As part of an integrated program to better understand corrosion in the high level waste tanks, Hanford has been investigating corrosion at the liquid/air interface (LAI) and at higher areas in the tank vapor space. This current research evaluated localized corrosion in the vapor space over Hanford double shell tank simulants to assess the impact of ammonia and new minimum nitrite concentration limits, which are part of the broader corrosion chemistry limits. The findings from this study showed that the presence of ammonia gas (550 ppm) in the vapor space is sufficient to reduce corrosion over the short-term (i.e. four months) for a Hanford waste chemistry (SY102 High Nitrate). These findings are in agreement with previous studies at both Hanford and SRS which showed ammonia gas in the vapor space to be inhibitive. The presence of ammonia in electrochemical test solution, however, was insufficient to inhibit against pitting corrosion. The effect of the ammonia appears to be a function of the waste chemistry and may have more significant effects in waste with low nitrite concentrations. Since high levels of ammonia were found beneficial in previous studies, additional testing is recommended to assess the necessary minimum concentration for protection of carbon steel. The new minimum R value of 0.15 was found to be insufficient to prevent pitting corrosion in the vapor space. The pitting that occurred, however, did not progress over the four-month test. Pits appeared to stop growing, which would indicate that pitting might not progress through wall.

  5. Results and conclusions test capabilities task group summary report

    SciTech Connect

    Bomber, T.; Pierce, K.; Easterling, R.; Rogers, J.

    1996-12-01

    This annotated briefing documents an economic analysis of Sandia`s system-level test facilities maintained and operated by the Design, Evaluation, and Test Technology Center 9700. The study was divided into four primary sub-tasks: (1) Estimation of the future system-level test workload, (2) Development of a consistent economic model to estimate the cost of maintaining and operating the test facilities, (3) Determination of the availability of viable alternative test sites, and (4) Assessment of the potential savings through reduction of excess capacity under various facility-closure scenarios. The analysis indicated that potential savings from closing all facilities could approach $6 million per year. However, large uncertainties in these savings remove any sound economic arguments for such closure: it is possible that testing at alternative sites could cost more than maintaining the current set of system-level test facilities. Finally, a number of programmatic risks incurred by facility closure were identified. Consideration of facility closure requires a careful weighing of any projected economic benefit against these programmatic risks. This summary report covers the briefing given to upper management. A more detailed discussion of the data and analyses is given in the full report, available for internal use from the technical library.

  6. Characterizing Corrosion Effects of Weak Organic Acids Using a Modified Bono Test

    NASA Astrophysics Data System (ADS)

    Zhou, Yuqin; Turbini, Laura J.; Ramjattan, Deepchand; Christian, Bev; Pritzker, Mark

    2013-12-01

    To meet environmental requirements and achieve benefits of cost-effective manufacturing, no-clean fluxes (NCFs) or low-solids fluxes have become popular in present electronic manufacturing processes. Weak organic acids (WOAs) as the activation ingredients in NCFs play an important role, especially in the current lead-free and halogen-free soldering technology era. However, no standard or uniform method exists to characterize the corrosion effects of WOAs on actual metallic circuits of printed wiring boards (PWBs). Hence, the development of an effective quantitative test method for evaluating the corrosion effects of WOAs on the PWB's metallic circuits is imperative. In this paper, the modified Bono test, which was developed to quantitatively examine the corrosion properties of flux residues, is used to characterize the corrosion effects of five WOAs (i.e., abietic acid, succinic acid, glutaric acid, adipic acid, and malic acid) on PWB metallic circuits. Experiments were performed under three temperature/humidity conditions (85°C/85% RH, 60°C/93% RH, and 40°C/93% RH) using two WOA solution concentrations. The different corrosion effects among the various WOAs were best reflected in the testing results at 40°C and 60°C. Optical microscopy was used to observe the morphology of the corroded copper tracks, and scanning electron microscopy (SEM) energy-dispersive x-ray (EDX) characterization was performed to determine the dendrite composition.

  7. Skin corrosion and irritation test of sunscreen nanoparticles using reconstructed 3D human skin model

    PubMed Central

    Choi, Jonghye; Kim, Hyejin; Choi, Jinhee; Oh, Seung Min; Park, Jeonggue; Park, Kwangsik

    2014-01-01

    Objectives Effects of nanoparticles including zinc oxide nanoparticles, titanium oxide nanoparticles, and their mixtures on skin corrosion and irritation were investigated by using in vitro 3D human skin models (KeraSkinTM) and the results were compared to those of an in vivo animal test. Methods Skin models were incubated with nanoparticles for a definite time period and cell viability was measured by the 3-(4, 5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide method. Skin corrosion and irritation were identified by the decreased viability based on the pre-determined threshold. Results Cell viability after exposure to nanomaterial was not decreased to the pre-determined threshold level, which was 15% after 60 minutes exposure in corrosion test and 50% after 45 minutes exposure in the irritation test. IL-1α release and histopathological findings support the results of cell viability test. In vivo test using rabbits also showed non-corrosive and non-irritant results. Conclusions The findings provide the evidence that zinc oxide nanoparticles, titanium oxide nanoparticles and their mixture are ‘non corrosive’ and ‘non-irritant’ to the human skin by a globally harmonized classification system. In vivo test using animals can be replaced by an alternative in vitro test. PMID:25116366

  8. A new test procedure for biogenic sulfuric acid corrosion of concrete

    PubMed

    Vincke; Verstichel; Monteny; Verstraete

    1999-01-01

    A new test method is described for biogenic sulfuric acid corrosion of concrete, more specifically in sewer conditions. The aim of the new test method is the development of an accelerated and reproducible procedure for monitoring the resistance of different types of concrete with regard to biogenic sulfuric acid corrosion. This experimental procedure reflects worst case conditions by providing besides H2S, also an enrichment of thiobacilli and biologically produced sulfur. By simulating the cyclic processes occurring in sewer pipes, significant differences between concrete mixtures could be detected after 51 days. Concrete modified by a styrene-acrylic ester polymer demonstrated a higher resistance against biogenic sulfuric acid attack. PMID:11068828

  9. A new test procedure for biogenic sulfuric acid corrosion of concrete

    PubMed

    Vincke; Verstichel; Monteny; Verstraete

    1999-01-01

    A new test method is described for biogenic sulfuric acid corrosion of concrete, more specifically in sewer conditions. The aim of the new test method is the development of an accelerated and reproducible procedure for monitoring the resistance of different types of concrete with regard to biogenic sulfuric acid corrosion. This experimental procedure reflects worst case conditions by providing besides H2S, also an enrichment of thiobacilli and biologically produced sulfur. By simulating the cyclic processes occurring in sewer pipes, significant differences between concrete mixtures could be detected after 51 days. Concrete modified by a styrene-acrylic ester polymer demonstrated a higher resistance against biogenic sulfuric acid attack.

  10. Corrosion resistance and electrochemical potentiokinetic reactivation testing of some iron-base hardfacing alloys

    SciTech Connect

    Cockeram, B.V.

    1999-11-01

    Hardfacing alloys are weld deposited on a base material to provide a wear resistant surface. Commercially available iron-base hardfacing alloys are being evaluated for replacement of cobalt-base alloys to reduce nuclear plant activation levels. Corrosion testing was used to evaluate the corrosion resistance of several iron-base hardfacing alloys in highly oxygenated environments. The corrosion test results indicate that iron-base hardfacing alloys in the as-deposited condition have acceptable corrosion resistance when the chromium to carbon ratio is greater than 4. Tristelle 5183, with a high niobium (stabilizer) content, did not follow this trend due to precipitation of niobium-rich carbides instead of chromium-rich carbides. This result indicates that iron-base hardfacing alloys containing high stabilizer contents may possess good corrosion resistance with Cr:C < 4. NOREM 02, NOREM 01, and NoCo-M2 hardfacing alloys had acceptable corrosion resistance in the as-deposited and 885 C/4 hour heat treated condition, but rusting from sensitization was observed in the 621 C/6 hour heat treated condition. The feasibility of using an Electrochemical Potentiokinetic Reactivation (EPR) test method, such as used for stainless steel, to detect sensitization in iron-base hardfacing alloys was evaluated. A single loop-EPR method was found to provide a more consistent measurement of sensitization than a double loop-EPR method. The high carbon content that is needed for a wear resistant hardfacing alloy produces a high volume fraction of chromium-rich carbides that are attacked during EPR testing. This results in inherently lower sensitivity for detection of a sensitized iron-base hardfacing alloy than stainless steel using conventional EPR test methods.

  11. Field stress corrosion tests in brine environments of the Salton Sea known geothermal resource area

    SciTech Connect

    Carter, J.P.; Cramer, S.D.

    1980-01-01

    Corrosion research is being conducted to determine suitable construction materials for geothermal resource recovery plants. As part of this research, a 30-day stress corrosion test was conducted at the Salton Sea Known Geothermal Resource Area on seven iron- and nickel-base alloys in four brine and steam process streams using wellhead brine from geothermal well Magmamax 1. The tests showed transgranular cracking of AISI 316L stainless steel and intergranular and transgranular cracking of AISI 430 stainless steel in all four process streams. E-Brite 26-1 exhibited intergranular and transgranular cracking in three of the four process streams. Carbon steel, Inconel 625 and Hastelloys G and C-276 show no evidence of stress corrosion cracking.

  12. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings - phase II

    SciTech Connect

    Blough, J.L.; Stanko, G.J.

    1996-08-01

    In Phase I a variety of developmental and commercial tubing alloys and claddings were exposed to laboratory fireside corrosion testing simulating a superheater or reheater in a coal-fired boiler. Phase II (in situ testing) has exposed samples of 347, RA-8511, HR3C, 253MA, Fe{sub 3}Al + 5Cr, 310 modified, 800HT, NF 709, 690 clad, and 671 clad for over 10,000 hours to the actual operating conditions of a 250-MW coal-fired boiler. The samples were installed on an air-cooled, retractable corrosion probe, installed in the reheater cavity, and controlled to the operating metal temperatures of an existing and advanced-cycle coal-fired boiler. Samples of each alloy will be exposed for 4000, 12,000, and 16,000 hours of operation. The results will be presented for the metallurgical examination of the corrosion probe samples after 4000 hours of exposure.

  13. Integrated Corrosion Facility for long-term testing of candidate materials for high-level radioactive waste containment

    SciTech Connect

    Estill, J.C.; Dalder, E.N.C.; Gdowski, G.E.; McCright, R.D.

    1994-10-01

    A long-term-testing facility, the Integrated Corrosion Facility (I.C.F.), is being developed to investigate the corrosion behavior of candidate construction materials for high-level-radioactive waste packages for the potential repository at Yucca Mountain, Nevada. Corrosion phenomena will be characterized in environments considered possible under various scenarios of water contact with the waste packages. The testing of the materials will be conducted both in the liquid and high humidity vapor phases at 60 and 90{degrees}C. Three classes of materials with different degrees of corrosion resistance will be investigated in order to encompass the various design configurations of waste packages. The facility is expected to be in operation for a minimum of five years, and operation could be extended to longer times if warranted. A sufficient number of specimens will be emplaced in the test environments so that some can be removed and characterized periodically. The corrosion phenomena to be characterized are general, localized, galvanic, and stress corrosion cracking. The long-term data obtained from this study will be used in corrosion mechanism modeling, performance assessment, and waste package design. Three classes of materials are under consideration. The corrosion resistant materials are high-nickel alloys and titanium alloys; the corrosion allowance materials are low-alloy and carbon steels; and the intermediate corrosion resistant materials are copper-nickel alloys.

  14. Corrosion Testing of Ni Alloy HVOF Coatings in High Temperature Environments for Biomass Applications

    NASA Astrophysics Data System (ADS)

    Paul, S.; Harvey, M. D. F.

    2013-03-01

    This paper reports the corrosion behavior of Ni alloy coatings deposited by high velocity oxyfuel spraying, and representative boiler substrate alloys in simulated high temperature biomass combustion conditions. Four commercially available oxidation resistant Ni alloy coating materials were selected: NiCrBSiFe, alloy 718, alloy 625, and alloy C-276. These were sprayed onto P91 substrates using a JP5000 spray system. The corrosion performance of the coatings varied when tested at ~525, 625, and 725 °C in K2SO4-KCl mixture and gaseous HCl-H2O-O2 containing environments. Alloy 625, NiCrBSiFe, and alloy 718 coatings performed better than alloy C-276 coating at 725 °C, which had very little corrosion resistance resulting in degradation similar to uncoated P91. Alloy 625 coatings provided good protection from corrosion at 725 °C, with the performance being comparable to wrought alloy 625, with significantly less attack of the substrate than uncoated P91. Alloy 625 performs best of these coating materials, with an overall ranking at 725 °C as follows: alloy 625 > NiCrBSiFe > alloy 718 ≫ alloy C-276. Although alloy C-276 coatings performed poorly in the corrosion test environment at 725 °C, at lower temperatures (i.e., below the eutectic temperature of the salt mixture) it outperformed the other coating types studied.

  15. Integrated Disposal Facility FY2011 Glass Testing Summary Report

    SciTech Connect

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Westsik, Joseph H.

    2011-09-29

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10{sup 5} m{sup 3} of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10{sup 14} Bq total activity) of long-lived radionuclides, principally {sup 99}Tc (t{sub 1/2} = 2.1 x 10{sup 5}), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.

  16. Accelerated corrosion testing, evaluation and durability design of bonded post-tensioned concrete tendons

    NASA Astrophysics Data System (ADS)

    Salas Pereira, Ruben Mario

    2003-06-01

    In the last few years, the effectiveness of cement grout in galvanized or polyethylene ducts, the most widely used corrosion protection system for multistrand bonded post-tensioned concrete tendons, has been under debate, due to significant tendon corrosion damage, several reported failures of individual tendons as well as a few collapses of non-typical structures. While experience in the USA has been generally good, some foreign experience has been less than satisfactory. This dissertation is part of a comprehensive research program started in 1993, which has the objectives to examine the use of post-tensioning in bridge substructures, identify durability concerns and existing technology, develop and carry out an experimental testing program, and conclude with durability design guidelines. Three experimental programs were developed: A long term macrocell corrosion test series, to investigate corrosion protection for internal tendons in precast segmental construction; a long term beam corrosion test series, to examine the effects of post-tensioning on corrosion protection as affected by crack width; and, a long term column corrosion test series, to examine corrosion protection in vertical elements. Preliminary design guidelines were developed previously in the overall study by the initial researchers, after an extensive literature review. This dissertation scope includes continuation of exposure testing of the macrocell, beam and column specimens, performing comprehensive autopsies of selected specimens and updating the durability design guidelines based on the exposure testing and autopsy results. After autopsies were performed, overall findings indicate negative durability effects due to the use of mixed reinforcement, small concrete covers, galvanized steel ducts, and industry standard or heat-shrink galvanized duct splices. The width of cracks was shown to have a direct negative effect on specimen performance. Grout voids were found to be detrimental to the

  17. Seawater corrosivity around the world: Results from five years of testing

    SciTech Connect

    Phull, B.S.; Pikul, S.J.; Kain, R.M.

    1997-12-31

    A world-wide test program was undertaken by ASTM Task Group G1.09.02.03 to assess the relative corrosivity of seawater at 14 test sites. Aluminum alloy 5086 (UNS A95086), 90/10 copper-nickel (UNS C70600), and copper-bearing carbon steel (UNS K01501) test specimens were prepared at one location, shipped to the various sites, and returned to the original location for final evaluations. Results obtained through five years of testing indicate that corrosion behavior was generally within the limits of previously published results. The results show that while seawater is a ubiquitous environment, and quite similar in terms of chloride content and pH, the corrosivity is site-specific, and likely to be influenced by a myriad of other factors such as temperature, dissolved oxygen concentration, flow, degree of fouling, bacterial activity, pollution, etc. All of these factors are themselves often interrelated. The cooperation of all program participants has contributed much toward accomplishment of the objectives. More frequent monitoring of seawater variables at an exposure site is always helpful in better interpretation of the results of corrosion tests performed there. All of the 0.5 through 5-year exposure data are presented here; any typographical errors in the 0.5 through 3-year exposure data published previously have been corrected.

  18. The usefulness of the validated SkinEthic™ RHE test method to identify skin corrosive UN GHS subcategories.

    PubMed

    Alépée, Nathalie; Robert, Clément; Tornier, Carine; Cotovio, José

    2014-06-01

    The SkinEthic™ Reconstructed Human Epidermis (RHE) test method has been adopted within the context of OECD TG 431 for distinguishing corrosive and non-corrosive chemicals. The EU CLP classification system requires subcategorising of corrosive chemicals into the three UN GHS subcategories 1A, 1B and 1C. Since the SkinEthic™ RHE method was originally validated to discriminate corrosives from non-corrosives, the present study was undertaken to investigate its usefulness to discriminate skin corrosive UN GHS subcategories. In total 84 substances were tested in three independent runs and two prediction models (PM) were assessed, representing a pre-defined validated prediction model (PM-A) and an alternative one defined post-hoc (PM-B). The results obtained with both PM were reproducible, as shown by the ⩾92.9% concordance of classification between runs for discriminating corrosives versus non-corrosives, and the ⩾85% concordance for discriminating the GHS subcategories versus non-corrosives. Moreover results confirmed a high sensitivity of the SkinEthic™ RHE method to predict corrosives (94.9%) and good specificity (⩾73.7%) independent of the PM applied. Regarding the identification of UN GHS corrosive subcategories, PM-A resulted in 86.1% correct classifications of the GHS subcategory 1A. When using the PM-B, the identification of GHS subcategory 1B-and-1C substances improved, with 63.4% correct sub-categorisation. If considering the 30 reference chemicals as recommended in the recently revised OECD TG 431 (2013), PM-A and PM-B achieved 78.9% and 83.3% accuracy respectively for the identification of GHS subcategories and non-corrosives. They correctly predicted 90% of GHS subcategory 1A and 80% of GHS non-corrosive substances independent of the PM used. In conclusion, the SkinEthic™ RHE test method is highly reproducible and sensitive for discriminating corrosive from non-corrosive substances. Furthermore it allows reliable identification of skin

  19. Sub-categorisation of skin corrosive chemicals by the EpiSkin™ reconstructed human epidermis skin corrosion test method according to UN GHS: revision of OECD Test Guideline 431.

    PubMed

    Alépée, N; Grandidier, M H; Cotovio, J

    2014-03-01

    The EpiSkin™ skin corrosion test method was formally validated and adopted within the context of OECD TG 431 for identifying corrosive and non-corrosive chemicals. The EU Classification, Labelling and Packaging Regulation (EU CLP) system requires the sub-categorisation of corrosive chemicals into the three UN GHS optional subcategories 1A, 1B and 1C. The present study was undertaken to investigate the usefulness of the validated EpiSkin™ test method to identify skin corrosive UN GHS Categories 1A, 1B and 1C using the original and validated prediction model and adapted controls for direct MTT reduction. In total, 85 chemicals selected by the OECD expert group on skin corrosion were tested in three independent runs. The results obtained were highly reproducible both within (>80%) and between (>78%) laboratories when compared with historical data. Moreover the results obtained showed that the EpiSkin™ test method is highly sensitive (99%) and specific (80%) in discriminating corrosive from non-corrosive chemicals and allows reliable and relevant identification of the different skin corrosive UN GHS subcategories, with high accuracies being obtained for both UN GHS Categories 1A (83%) and 1B/1C (76%) chemicals. The overall accuracy of the test method to subcategorise corrosive chemicals into three or two UN GHS subcategories ranged from 75% to 79%. Considering those results, the revised OECD Test Guideline 431 permit the use of EpiSkin™ for subcategorising corrosive chemicals into at least two classes (Category 1A and Category 1B/1C).

  20. Coupon holder for corrosion test downhole in a borehole

    SciTech Connect

    Ford, M.B.

    1992-03-17

    This patent describes a wellbore having a downhole pump at the lower end of a production tubing string, a sucker rod string positioned within a production tubing and connected to reciprocate the downhole pump, the combination with the sucker rod string of an apparatus for measuring the rate of corrosion downhole in the borehole. It comprises a main body having opposed ends, means for forming a connection at the opposed ends by which the main body is series connected within the rod string to thereby suspend the apparatus downhole in the borehole, and further comprising; an axial chamber formed by an interior wall surface in the main body; radial ports extending through a sidewall of the main body and communicating the axial chamber with the exterior of the main body; wherein, the radial ports are oblated and include a lower curved end which is sloped downwardly and outwardly with respect to the longitudinal axis whereby reciprocation of the apparatus forces well fluid to flow through the chamber into contact with the coupon; the main body being comprised of an upper member and a lower member; means threadedly attaching the upper and lower members together in a removable manner; the chamber being a bore formed in the lower member; the insulating means being mounted to an end wall of the upper member; the end wall also defining the upper end of the chamber, the coupon extending downwardly into the bore formed in the lower member.

  1. Examination of the "specimen-size-effect" in stress-corrosion-cracking (SCC) tests

    NASA Astrophysics Data System (ADS)

    Semerad, E.; Dunn, B. D.

    2003-09-01

    The effect of the specimen's size on the determination of susceptibility to SCC is investigated by a series of SCC-tests. Parameter variations considered were in particular two types of material grades, two stress levels (75% and 50% of the 0.2% proof stress) and, most important, two specimens sizes, i.e. standard turned stress-corrosion test specimens (according to ECSS) and miniature size test specimens (according to ASTM).

  2. Appropriate Mechanochemical Conditions for Corrosion-Fatigue Testing of Magnesium Alloys for Temporary Bioimplant Applications

    NASA Astrophysics Data System (ADS)

    Harandi, Shervin Eslami; Singh Raman, R. K.

    2015-05-01

    Magnesium (Mg) alloys possess great potential as bioimplants. A temporary implant employed as support for the repair of a fractured bone must possess sufficient strength to maintain their mechanical integrity for the required duration of healing. However, Mg alloys are susceptible to sudden cracking or fracture under the simultaneous action of cyclic loading and the corrosive physiological environment, i.e., corrosion fatigue (CF). Investigations of such fracture should be performed under appropriate mechanochemical conditions that appropriately simulate the actual human body conditions. This article reviews the existing knowledge on CF of Mg alloys in simulated body fluid and describes a relatively more accurate testing procedure developed in the authors' laboratory.

  3. CORROSION TESTING OF CARBON STEEL IN OXALIC ACID CHEMICAL CLEANING SOLUTIONS

    SciTech Connect

    Wiersma, B.; Mickalonis, J.; Subramanian, K.; Ketusky, E.

    2011-10-14

    Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 60 years at the Savannah River Site. The site is currently in the process of removing the waste from these tanks in order to place it into vitrified, stable state for longer term storage. The last stage in the removal sequence is a chemical cleaning step that breaks up and dissolves metal oxide solids that cannot be easily pumped out of the tank. Oxalic acid has been selected for this purpose because it is an effective chelating agent for the solids and is not as corrosive as other acids. Electrochemical and immersion studies were conducted to investigate the corrosion behavior of carbon steel in simulated chemical cleaning environments. The effects of temperature, agitation, and the presence of sludge solids in the oxalic acid on the corrosion rate and the likelihood of hydrogen evolution were determined. The testing showed that the corrosion rates decreased significantly in the presence of the sludge solids. Corrosion rates increased with agitation, however, the changes were less noticeable.

  4. Superheater/intermediate temperature air heater tube corrosion tests in the MHD coal fired flow facility (Montana Rosebud POC tests)

    SciTech Connect

    White, M.

    1996-01-01

    Nineteen alloys have been exposed for approximately 1000 test hours as candidate superheater and intermediate temperature air heater tubes in a U.S. DOE facility dedicated to demonstrating Proof of Concept for the bottoming or heat and seed recovery portion of coal fired magnetohydrodynamic (MHD) electrical power generating plants. Corrosion data have been obtained from a test series utilizing a western United States sub-bituminous coal, Montana Rosebud. The test alloys included a broad range of compositions ranging from carbon steel to austenitic stainless steels to high chromium nickel-base alloys. The tubes, coated with K{sub 2}SO-containing deposits, developed principally, oxide scales by an oxidation/sulfidation mechanism. In addition to being generally porous, these scales were frequently spalled and/or non-compact due to a dispersed form of outward growth by oxide precipitation in the adjacent deposit. Austenitic alloys generally had internal penetration as trans Tranular and/or intergranular oxides and sulfides. While only two of the alloys had damage visible without magnification as a result of the relatively short exposure, there was some concern about Iona-term corrosion performance owing to the relatively poor quality scales formed. Comparison of data from these tests to those from a prior series of tests with Illinois No. 6, a high sulfur bituminous coal, showed less corrosion in the present test series with the lower sulfur coal. Although K{sub 2}SO{sub 4}was the principal corrosive agent as the supplier of sulfur, which acted to degrade alloy surface scales, tying up sulfur as K{sub 2}SO{sub 4} prevented the occurrence of complex alkali iron trisulfates responsible for severe or catastrophic corrosion in conventional power plants with certain coals and metal temperatures.

  5. Application of the thin electrolyte layer technique to corrosion testing of dental materials

    NASA Astrophysics Data System (ADS)

    Ledvina, Martin

    Proper simulation of the oral environment for the corrosion testing of dental materials is crucial for determining corrosion rates and mechanisms correctly. In this study, the thin electrolyte layer technique (TET) was characterized and employed to investigate the importance of the chemical composition of the testing environment on the outcome of electrochemical tests. The thickness of the electrolyte layer in TET is only 0.5 mm and contains only 20 muL of electrolyte. This arrangement simulates the physical characteristics of the oral environment and facilitates testing in human saliva. Oxygen availability for reduction on the sample surface was determined, using cathodic polarization of Pt in borate buffer, to be lower in TET than in traditional (bulk electrolyte) techniques. Appreciable differences were found during polarization experiments on 316 L SS in saline and artificial saliva. Oxygen content was found to play a significant role in the corrosivity of various species contained in artificial saliva. Potentiodynamic polarization employing human saliva in TET on 316L SS proved to be very different from tests performed in artificial saliva. This was believed to be due to the presence of organic species, specifically proteins, contained in human saliva. This was further confirmed by cyclic polarization and corrosion current measurements of four commercial nickel-chromium (NiCr) alloys with varying amounts of Be. For this phase of the experiment, artificial saliva (AS), AS with 1% albumin, AS with 1% of mucin and parotid human saliva were employed as electrolytes. The results obtained in the various electrolytes depended on the composition, microstructure, stability of passive film, and the presence of casting porosity of the alloys tested. Proteins had insignificant effect on alloys with highly stable passive films, whereas, corrosion rates increased substantially in those alloys with compromised passive film formation. Proteins, especially mucin, lowered the

  6. Corrosion of aluminum and copper thin films under simulated atmospheric conditions in laboratory tests

    SciTech Connect

    Li, W.; Raman, A.; Diwan, R.; Bhattacharya, P.K.

    1998-12-31

    Corrosion characteristics of Al and Cu thin films have been studied in cyclic fog tests using tap water fog and fog created with 0.1% NaCl solution in tap water. Likewise, their corrosion features have been analyzed in continuous immersion testing in the laboratory in distilled water, tap water, in 0.1% NaCl and 3.5% NaCl solutions in distilled water. The corrosion potentials and the corrosion currents of these thin films change and reach steady state values after some time. However, steady state is not realized in 3.5% NaCl solutions. The corrosion current density data have been used to calculate lifetime of 1 {mu}m thick thin films of Al and Cu in the various tests, and assuming that the fog test data would hold under normal exposure conditions, life spans for these thin film sensor elements in actual exterior exposure have also been calculated. According to estimates, an Al-TF of about 1 {mu}m would last about 9 months in exterior exposure in chloride containing atmospheres, such as in the coastal regions, but would survive nearly 2 years in normal atmospheres not having acidic or chloride pollutants. On the contrary, 1 {mu}m thick Cu-TF would last only for about 2.5 months in chloride-laden environments, but would last for about 2 years in normal atmospheres. However, Cu-TF would be corroded off faster in slightly alkaline atmospheric condensate under total immersion situation. Lifetime estimates are presented and discussed.

  7. Performance of laser glazed Zr02 TBCs in cyclic oxidation and corrosion burner test rigs

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1982-01-01

    The performance of laser glazed zirconia thermal barrier coatings (TBCs) was evaluated in cyclic oxidation and cyclic corrosion tests. Plasma sprayed zirconia coatings of two thicknesses were partially melted with a CO2 laser. The power density of the focused laser beam was varied from 35 to 75 W/sq mm, while the scanning speed was about 80 cm per minute. In cyclic oxidation tests, the specimens were heated in a burner rig for 6 minutes and cooled for 3 minutes. It is indicated that the laser treated samples have the same life as the untreated ones. However, in corrosion tests, in which the burner rig flame contained 100 PPM sodium fuel equivalent, the laser treated samples exhibit nearly a fourfold life improvement over that of the reference samples vary. In both tests, the lives of the samples inversely with the thickness of the laser melted layer of zirconia.

  8. Structural analysis and intergranular corrosion tests of AISI 316L steel.

    PubMed

    Stonawská, Z; Svoboda, M; Sozańska, M; Krístková, M; Sojka, J; Dagbert, C; Hyspecká, L

    2006-10-01

    Pure AISI 316L steel is investigated after solution heat treatment (1050 degrees C/H(2)O) and structural sensitization (650 degrees C). Two quite different intergranular corrosion tests are used to determine the degree of structural sensitization due to the precipitation of secondary phases along the grain boundaries (mainly the M(23)C(6) and sigma-phase): the oxalic acid etch test and the electrochemical potentio-kinetic reactivation test. Generally, the dissolution of chromium-rich carbides (M(23)C(6)) is provoked by oxalic acid etch tests, whereas the chromium-depleted zones, in the vicinity of chromium-rich carbides (M(23)C(6)), are attacked by electrochemical potentio-kinetic reactivation tests. Both intergranular corrosion tests are used to determine the maximum degree of structural sensitization. Thus structural analysis by carbon replicas reveals the Laves phase, and both the M(23)C(6) and (Cr,Mo)(x)(Fe,Ni)(y) phases. The results of intergranular corrosion tests are related to the findings of the structural analysis.

  9. Note: Inhibiting bottleneck corrosion in electrical calcium tests for ultra-barrier measurements

    SciTech Connect

    Nehm, F. Müller-Meskamp, L.; Klumbies, H.; Leo, K.

    2015-12-15

    A major failure mechanism is identified in electrical calcium corrosion tests for quality assessment of high-end application moisture barriers. Accelerated calcium corrosion is found at the calcium/electrode junction, leading to an electrical bottleneck. This causes test failure not related to overall calcium loss. The likely cause is a difference in electrochemical potential between the aluminum electrodes and the calcium sensor, resulting in a corrosion element. As a solution, a thin, full-area copper layer is introduced below the calcium, shifting the corrosion element to the calcium/copper junction and inhibiting bottleneck degradation. Using the copper layer improves the level of sensitivity for the water vapor transmission rate (WVTR) by over one order of magnitude. Thin-film encapsulated samples with 20 nm of atomic layer deposited alumina barriers this way exhibit WVTRs of 6 × 10{sup −5} g(H{sub 2}O)/m{sup 2}/d at 38 °C, 90% relative humidity.

  10. Integrated Disposal Facility FY2010 Glass Testing Summary Report

    SciTech Connect

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Serne, R Jeffrey; Mattigod, Shas V.

    2010-09-30

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 × 105 m3 of glass (Puigh 1999). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 0.89 × 1018 Bq total activity) of long-lived radionuclides, principally 99Tc (t1/2 = 2.1 × 105), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessement (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2010 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses. The emphasis in FY2010 was the completing an evaluation of the most sensitive kinetic rate law parameters used to predict glass weathering, documented in Bacon and Pierce (2010), and transitioning from the use of the Subsurface Transport Over Reactive Multi-phases to Subsurface Transport Over Multiple Phases computer code for near-field calculations. The FY2010 activities also consisted of developing a Monte Carlo and Geochemical Modeling framework that links glass composition to alteration phase formation by 1) determining the structure of unreacted and reacted glasses for use as input information into Monte Carlo

  11. Corrosion behavior of tantalum-coated cobalt-chromium modular necks compared to titanium modular necks in a simulator test.

    PubMed

    Dorn, Ulrich; Neumann, Daniel; Frank, Mario

    2014-04-01

    This study compared the corrosion behavior of tantalum-coated cobalt-chromium modular necks with that of titanium alloy modular necks at their junction to titanium-alloy femoral stem. Tests were performed in a dry assembly and two wet assemblies, one contaminated with calf serum and the other contaminated with calf serum and bone particles. Whereas the titanium modular neck tested in the dry assembly showed no signs of corrosion, the titanium modular necks tested in both wet assemblies showed marked depositions and corrosive attacks. By contrast, the tantalum-coated cobalt-chromium modular necks showed no traces of corrosion or chemical attack in any of the three assemblies. This study confirms the protective effect of tantalum coating the taper region of cobalt-chromium modular neck components, suggesting that the use of tantalum may reduce the risk of implant failure due to corrosion.

  12. Single-Crystal NiAl-X Alloys Tested for Hot Corrosion

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.

    1999-01-01

    Single-crystal nickel aluminide (NiAl) has been investigated extensively throughout the last several years as a potential structural material in aero-gas turbine engines. The attractive features of NiAl in comparison to Ni-base superalloys include a higher melting point, lower density, higher thermal conductivity, and excellent oxidation resistance. However, NiAl suffers from a lack of ductility and fracture toughness at low temperatures and a low creep strength at high temperatures. Alloying additions of hafnium (Hf), gallium (Ga), titanium (Ti), and chromium (Cr) have each shown some benefit to the mechanical properties over that of the binary alloy. However, the collective effect of these alloying additions on the environmental resistance of NiAl-X was unclear. Hence, the present study was undertaken to examine the hot corrosion behavior of these alloys. A companion study examined the cyclic oxidation resistance of these alloys. Several single-crystal NiAl-X alloys (where X is Hf, Ti, Cr, or Ga) underwent hot corrosion testing in a Mach 0.3 burner rig at the NASA Lewis Research Center. Samples were tested for up to 300 1-hr cycles at a temperature of 900 C. It was found that increasing the Ti content from 1 to 5 at.% degraded the hot corrosion behavior. This decline in the behavior was reflected in high weight gains and large corrosion mound formation during testing (see the figures). However, the addition of 1 to 2 at.% Cr to alloys containing 4 to 5 at.% Ti appeared to greatly reduce the susceptibility of these alloys to hot corrosion attack and negated the deleterious effect of the increased Ti addition.

  13. Field Testing of High Current Electrokinetic Nanoparticle Treatment for Corrosion Mitigation in Reinforced Concrete

    NASA Technical Reports Server (NTRS)

    Cardenas, Henry; Alexander, Joshua; Kupwade-Patil, Kunal; Calle, Luz marina

    2010-01-01

    Electrokinetic Nanoparticle (EN) treatment was used as a rapid repair measure to mitigate chloride induced corrosion of reinforced concrete in the field. EN treatment uses an electric field to transport positively charged nanoparticles to the reinforcement through the concrete capillary pores. Cylindrical reinforced concrete specimens were batched with 4.5 wt % salt content (based on cement mass). Three distinct electrokinetic treatments were conducted using high current density (up to 5 A/m2) to form a chloride penetration barrier that was established in 5 days, as opposed to the traditional 6-8 weeks, generally required for electrochemical chloride extraction (ECE). These treatments included basic EN treatment, EN with additional calcium treatment, and basic ECE treatment. Field exposures were conducted at the NASA Beachside Corrosion Test Site, Kennedy Space Center, Florida, USA. The specimens were subjected to sea water immersion at the test site as a posttreatment exposure. Following a 30-day post-treatment exposure period, the specimens were subjected to indirect tensile testing to evaluate treatment impact. The EN treated specimens exhibited 60% and 30% increases in tensile strength as compared to the untreated controls and ECE treated specimens respectively. The surfaces of the reinforcement bars of the control specimens were 67% covered by corrosion products. In contrast, the EN treated specimens exhibited corrosion coverage of only 4%. Scanning electron microscopy (SEM) revealed a dense concrete microstructure adjacent to the bars of the treated specimens as compared to the control and ECE specimens. Energy dispersive spectroscopic (EDS) analysis of the polished EN treated specimens showed a reduction in chloride content by a factor of 20 adjacent to the bars. This study demonstrated that EN treatment was successful in forming a chloride penetration barrier rapidly. This work also showed that the chloride barrier was effective when samples were exposed to

  14. Corrosion and degradation of test materials in the BI-GAS coal-gasification pilot plant

    SciTech Connect

    Yurkewycz, R.; Firestone, R.F.

    1982-02-01

    Corrosion monitoring of test materials was conducted in the BI-GAS coal gasification pilot plant from 1976 through 1981. Montana Rosebud subbituminous coal was processed at pressures of 750 psia (5175 kPa). Metals were exposed at low to moderate temperatures (700/sup 0/F (371/sup 0/C)) in the coal preparation area, gasifier slag quench, and the product gas scrubbing system. Refractories and metals were evaluated in the gasifier high temperature (1372/sup 0/F (744/sup 0/C)-1915/sup 0/F (1046/sup 0/C)) test sites at the top of stage II. In the moderate temperature aqueous environments, alloys 26-1, Types 329, 304, 316, 405, and IN-825 were superior in performance to Monel 400, carbon steel A515, and 2-1/4Cr-1Mo. Stress corrosion cracking was not observed in welded U-bend samples (A515, 304, 316, 329, 26-1). First-exposure gasifier corrosion test results generally indicated that uncoated alloys with 23.0 to 26.2 wt % Cr and less than 30 wt % Ni exhibited the best performance. Alloy Types 446 and 310 experienced the least corrosion attack with linear corrosion rates less than 20 mpy (0.51 mm/y); marginal performing alloys were Type 314, 22-13-5, and RA-333. During the second exposure, all uncoated alloys incurred acceptable corrosion losses. Alloys with Co, Cr, and Ni (N155, 556) in approximately equal proportions, at concentrations of approx. 20 wt %, ranked higher in performance than alloys such as Type 310, IN-800, Cru-25, and RA-333. Gasifier exposure of pack-aluminized alloys IN-800(A1) and Type 310(A1)showed that the coating provided corrosion protection. Cracks in the bulk coating were filled with Fe-Al rich oxides. The refractories were changed very little by exposure with two exceptions: tar was removed from a tar-impregnated brick, and a lightweight insulating castable deteriorated greatly.

  15. Stress corrosion cracking tests on high-level-waste container materials in simulated tuff repository environments

    SciTech Connect

    Abraham, T.; Jain, H.; Soo, P.

    1986-06-01

    Types 304L, 316L, and 321 austenitic stainless steel and Incoloy 825 are being considered as candidate container materials for emplacing high-level waste in a tuff repository. The stress corrosion cracking susceptibility of these materials under simulated tuff repository conditions was evaluated by using the notched C-ring method. The tests were conducted in boiling synthetic groundwater as well as in the steam/air phase above the boiling solutions. All specimens were in contact with crushed Topopah Spring tuff. The investigation showed that microcracks are frequently observed after testing as a result of stress corrosion cracking or intergranular attack. Results showing changes in water chemistry during test are also presented.

  16. T-111 Rankine system corrosion test loop, volume 1

    NASA Technical Reports Server (NTRS)

    Harrison, R. W.; Hoffman, E. E.; Smith, J. P.

    1975-01-01

    Results are given of a program whose objective was to determine the performance of refractory metal alloys in a two loop Rankine test system. The test system consisted of a circulating lithium circuit heated to 1230 C maximum transferring heat to a boiling potassium circuit with a 1170 C superheated vapor temperature. The results demonstrate the suitability of the selected refractory alloys to perform from a chemical compatibility standpoint.

  17. On-line corrosion monitoring at the High Sulfur Test Center. Final report

    SciTech Connect

    Mok, W.Y.; Moore, D.C.A.; Cox, W.M.; Farrell, D.M.; Gearey, D.

    1993-06-01

    The corrosion performance of alloys used in flue gas desulfurization (FGD) outlet ducting and stacks was assessed over two years period in a 4MW pilot wet FGD system. Twelve sensor assemblies were installed in the post-absorber duct section, one sensor for each material tested. Candidate materials included austenitic stainless steels, nickel alloys and titanium alloys. In the first of the tests, the sensor assemblies were exposed under the same environmental conditions as the adjacent duct wall. In subsequent tests, other FGD operating conditions were simulated, including changes in degree of reheat and cycling of the gas temperature. Finally, the sensors were exposed when chemical additive tests were in progress in the absorber. Results showed that Alloy C276, Alloy C22, titanium grades 2 and 7 were the most corrosion-resistant alloys tested, though less expensive austenitic stainless steel could provide adequate service in FGD environments subjected to continuous condensation. Scrubber additives, such as thiosulfate, could adversely affect the corrosion rate of certain alloys. Other work has demonstrated that unlined carbon steel can be made to operate satisfactorily provided that the environment within the outlet duct is controlled within target parameters. It was concluded that opportunities exist for cost reductions and improved cost-effectiveness of materials selection in many new and existing FGD installations.

  18. Space shuttle orbiter approach and landing test evaluation report. Captive-active flight test summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Captive-active tests consisted of three mated carrier aircraft/Orbiter flights with an active manned Orbiter. The objectives of this series of flights were to (1) verify the separation profile, (2) verify the integrated structure, aerodynamics, and flight control system, (3) verify Orbiter integrated system operations, and (4) refine and finalize carrier aircraft, Orbiter crew, and ground procedures in preparation for free flight tests. A summary description of the flights is presented with assessments of flight test requirements, and of the performance operations, and of significant flight anomalies is included.

  19. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings - Phase II

    SciTech Connect

    Blough, J.L.; Krawchuk, M.T.; Van Weele, S.F.

    1995-08-01

    A number of developmental and commercial tubing alloys and claddings have previously been exposed in Phase I to laboratory fireside corrosion testing simulating a superheater or reheater in a coal-fired boiler. This program is exposing samples of TP 347, RA-85H, HR-3C, 253MA, Fe{sub 3}Al + 5Cr, 310 modified, NF-709, 690 clad, and 671 clad, which showed good corrosion resistance from Phase 1, to the actual operating conditions of a 250-MW, coal-fired boiler. The samples were installed on air-cooled, retractable corrosion probes, installed in the reheater cavity, and are being controlled to the operating metal temperatures of an existing and advanced-cycle coal-fired boiler. The exposure will continue for 4000, 12,000, and 16,000 hours of operation. After the three exposure times, the samples will be metallurgically examined to determine the wastage rates and mode of attack. The probes were commissioned November 16, 1994. The temperatures are being recorded every 15 minutes, and the weighted average temperature calculated for each sample. Each of the alloys is being exposed to a temperature in each of two temperature bands-1150 to 1260{degrees}F and 1260 to 1325{degrees}F. After 2000 hours of exposure, one of the corrosion probes was cleaned and the wall thicknesses were ultrasonically measured. The alloy performance from the field probes will be discussed.

  20. Simulated Service and Stress Corrosion Cracking Testing for Friction Stir Welded Spun Formed Domes

    NASA Technical Reports Server (NTRS)

    Stewart, Thomas J.; Torres, Pablo D.; Caratus, Andrei A.; Curreri, Peter A.

    2010-01-01

    Simulated service testing (SST) development was required to help qualify a new 2195 aluminum lithium (Al-Li) alloy spin forming dome fabrication process for the National Aeronautics and Space Administration (NASA) Exploration Development Technology Program. The application for the technology is to produce high strength low weight tank components for NASA s next generation launch vehicles. Since plate material is not currently manufactured large enough to fabricate these domes, two plates are joined by means of friction stir welding. The plates are then pre-contour machined to near final thicknesses allowing for a thicker weld land and anticipating the level of stretch induced by the spin forming process. The welded plates are then placed in a spin forming tool and hot stretched using a trace method producing incremental contours. Finally the dome receives a room temperature contour stretch to final dimensions, heat treatment, quenching, and artificial aging to emulate a T-8 condition of temper. Stress corrosion cracking (SCC) tests were also performed by alternate immersion in a sodium chloride (NaCl) solution using the typical double beam assembly and with 4-point loaded specimens and use of bent-beam stress-corrosion test specimens under alternate immersion conditions. In addition, experiments were conducted to determine the threshold stress intensity factor for SCC (K(sub ISCC)) which to our knowledge has not been determined previously for Al-Li 2195 alloy. The successful simulated service and stress corrosion testing helped to provide confidence to continue to Ares 1 scale dome fabrication

  1. Effects of surface chemistry on hot corrosion life

    NASA Technical Reports Server (NTRS)

    Fryxell, R. E.; Leese, G. E.

    1985-01-01

    This program has its primary objective: the development of hot corrosion life prediction methodology based on a combination of laboratory test data and evaluation of field service turbine components which show evidence of hot corrosion. The laboratory program comprises burner rig testing by TRW. A summary of results is given for two series of burner rig tests. The life prediction methodology parameters to be appraised in a final campaign of burner rig tests are outlined.

  2. Hot Corrosion Test Facility at the NASA Lewis Special Projects Laboratory

    NASA Technical Reports Server (NTRS)

    Robinson, Raymond C.; Cuy, Michael D.

    1994-01-01

    The Hot Corrosion Test Facility (HCTF) at the NASA Lewis Special Projects Laboratory (SPL) is a high-velocity, pressurized burner rig currently used to evaluate the environmental durability of advanced ceramic materials such as SiC and Si3N4. The HCTF uses laboratory service air which is preheated, mixed with jet fuel, and ignited to simulate the conditions of a gas turbine engine. Air, fuel, and water systems are computer-controlled to maintain test conditions which include maximum air flows of 250 kg/hr (550 lbm/hr), pressures of 100-600 kPa (1-6 atm), and gas temperatures exceeding 1500 C (2732 F). The HCTF provides a relatively inexpensive, yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials, and the injection of a salt solution provides the added capability of conducting hot corrosion studies.

  3. Corrosion 99: Proceedings

    SciTech Connect

    1999-11-01

    This conference includes the following; Corrosion in Gas Treating; Advances in Scale and Deposit Control; Uses of Computers for Improved Corrosion Control; Erosion-Corrosion in Steam Generating Systems; Electrochemical Noise Measurements for Corrosion Evaluations; Materials Performance in Fossil Fuel Combustion and Conversion Systems; Corrosion in Super Critical Processes; Cathodic Protection of External Surfaces for Underground and Aboveground Storage Tanks; Microbiologically Influenced Corrosion; Advances in Materials for Oilfield Applications; Refining Industry Corrosion; Green Corrosion/Scale Inhibition Technologies; Managing Corrosion With Plastics; Corrosion Measurement Technology; Marine Corrosion; Improved Understanding and Mitigation of CO{sub 2} Corrosion; Thermal Spray Coatings for Corrosion Protection; Volatile Corrosion Inhibitors; Corrosion Testing in Concrete; Stress Corrosion Cracking: Field Laboratory Correlations; Materials Performance in Incineration and Waste Fuel Combustion Environments; Water Reuse in Industry; Corrosion Control and Prevention of Military and Aerospace Equipment; Corrosion in Nuclear Systems; Latest Developments in Aboveground Storage Tanks Corrosion Control, Monitoring and Evaluation Technology; Internal In-line Inspection of Pipelines and Evaluation of Results; New Developments in Cathodic Protection of Reinforcing Steels in Concrete; Cathodic Protection in Natural Waters; Corrosion in the Pulp and Paper Industry; Advanced Materials for High Temperature Service in Chemical Process Industry; Advances in Cooling Water Treatment; Materials, Fabrication, and Inspection Guidelines for Wet H{sub 2}S Service; Environmental Wear of Nonmetallics in Oilfield Service; and Corrosion and Scale Control in Low Pressure Boiler and Steam Systems in Buildings. Separate abstracts were prepared for most of the papers.

  4. Corrosion 99: Proceedings

    SciTech Connect

    Not Available

    1999-01-01

    This conference includes the following; Corrosion in Gas Treating; Advances in Scale and Deposit Control; Uses of Computers for Improved Corrosion Control; Erosion-Corrosion in Steam Generating Systems; Electrochemical Noise Measurements for Corrosion Evaluations; Materials Performance in Fossil Fuel Combustion and Conversion Systems; Corrosion in Super Critical Processes; Cathodic Protection of External Surfaces for Underground and Aboveground Storage Tanks; Microbiologically Influenced Corrosion; Advances in Materials for Oilfield Applications; Refining Industry Corrosion; Green Corrosion/Scale Inhibition Technologies; Managing Corrosion With Plastics; Corrosion Measurement Technology; Marine Corrosion; Improved Understanding and Mitigation of CO[sub 2] Corrosion; Thermal Spray Coatings for Corrosion Protection; Volatile Corrosion Inhibitors; Corrosion Testing in Concrete; Stress Corrosion Cracking: Field Laboratory Correlations; Materials Performance in Incineration and Waste Fuel Combustion Environments; Water Reuse in Industry; Corrosion Control and Prevention of Military and Aerospace Equipment; Corrosion in Nuclear Systems; Latest Developments in Aboveground Storage Tanks Corrosion Control, Monitoring and Evaluation Technology; Internal In-line Inspection of Pipelines and Evaluation of Results; New Developments in Cathodic Protection of Reinforcing Steels in Concrete; Cathodic Protection in Natural Waters; Corrosion in the Pulp and Paper Industry; Advanced Materials for High Temperature Service in Chemical Process Industry; Advances in Cooling Water Treatment; Materials, Fabrication, and Inspection Guidelines for Wet H[sub 2]S Service; Environmental Wear of Nonmetallics in Oilfield Service; and Corrosion and Scale Control in Low Pressure Boiler and Steam Systems in Buildings. Separate abstracts were prepared for most of the papers.

  5. Corrosion-erosion test of SS316L grain boundary engineering material (GBEM) in lead bismuth flowing loop

    NASA Astrophysics Data System (ADS)

    Saito, Shigeru; Kikuchi, Kenji; Hamaguchi, Dai; Tezuka, Masao; Miyagi, Masanori; Kokawa, Hiroyuki; Watanabe, Seiichi

    2012-12-01

    To evaluate the lifetime of structural materials utilized in a spallation neutron source, corrosion tests in lead-bismuth eutectic (LBE) have been done at JAEA. Austenitic steels are preferable as the structural material for ADS. However, previous studies have revealed that austenitic steel SS316 shows severe corrosion-erosion in LBE because of LBE penetration through grain boundaries and separation of grains. So it was considered that GBE (grain-boundary engineered) materials may be effective to improve the corrosion resistance of austenitic steels in LBE. In this study, the results of corrosion tests on austenitic steel SS316L-BM (base metal) and SS316L-GBEM (grain-boundary-engineered material) under flowing LBE conditions will be reported. The corrosion test was performed using the JAEA lead-bismuth material corrosion loop (JLBL-1). The experimental conditions were as follows: The high and low temperature parts of the loop were 450 °C and 350 °C, respectively. The flow velocity at the test specimens was about 0.7 m/s. The oxygen concentration in LBE was not controlled and was estimated to have been very low. After the 3600 h of operation, macroscopic, SEM, and SIM observations and EDX analysis were carried out. The results showed that the corrosion depth and LBE penetration through the grain boundaries of the 316SS-GBEM were smaller than those of the 316SS-BM.

  6. Preparation and testing of corrosion and spallation-resistant coatings

    SciTech Connect

    Hurley, John

    2012-09-30

    This Energy & Environmental Research Center (EERC) project is designed to determine if plating APMT, a specific highly oxidation-resistant oxide dispersion-strengthened FeCrAl alloy made by Kanthal, onto nickel-based superalloy turbine parts is a viable method for substantially improving the lifetimes and maximum use temperatures of the parts. The method for joining the APMT plate to the superalloys is called evaporative metal bonding. It involves placing a thin foil of zinc (Zn) between the plate and the superalloy, clamping them together, and heating in an atmosphere-controlled furnace. Upon heating, the Zn melts and dissolves the oxide skins of the alloys at the bond line, allowing the two alloys to diffuse into each other. The Zn then diffuses through the alloys and evaporates from their surfaces. Laboratory testing has shown that the diffusion rate of Zn through the FeCrAl alloy is much faster than through the nickel superalloys. This means that the FeCrAl will serve as a sink for the Zn bonding alloy during the evaporative metal bonding process. Also, the testing has shown that the Zn diffusion mechanism is bulk diffusion, and not intergranular. This is a surprise. However, it means that quantification of the Zn diffusivities in these samples will be significantly simpler than would have been the case if grain boundary diffusion dominated. In addition to the laboratory testing, gas impinger and particulate samples are being collected from a combustor firing syngas and natural gas to determine what types of microcontaminants may reach a turbine firing syngas. The syngas is created in one of two different pilot-scale pressurized coal gasifiers. The initial analysis of the impinger solutions was for standard U.S. Environmental Protection Agency (EPA) Method 29 determination of hazardous metals and did not include major element analysis. When syngas is fired, the amount of Mn in the combustor gas increases substantially. Halogens (Br2 and Cl2) and hydrogen

  7. Stress-corrosion cracking and surface-pitting tests of NiCrFe alloy bolts (LWBR development program)

    SciTech Connect

    Keller, K.L.

    1983-02-01

    Accelerated corrosion tests confirmed the adequate resistance to stress corrosion cracking (SCC) of the specific heats of NiCrFe X-750 and NiCrFe 600 used as bolts in the LWBR. SCC acceleration was achieved by running autoclave corrosion tests at 680/sup 0/F (well above the LWBR core operating temperatures of approximately 525/sup 0/F to 560/sup 0/F). Component stress levels were representative of maximum service stresses. No specimens from heats of either alloy suffered SCC.

  8. Surface topographic analyses of two-year coupons of alloy 22 from long-term corrosion testing

    SciTech Connect

    Bedrossian, P J

    1999-12-16

    We have applied atomic force microscopy (AFM) to analyze the surface topographies associated with representatives of each of the classes of aqueous-baths from which coupons of Alloy 22 were exposed for two years in Long-Term Corrosion Testing. The data support the conclusion that the AFM offers little, if any qualitative information on the corrosion of coupons which are currently undergoing Long-Term Testing.

  9. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings -- Phase 2

    SciTech Connect

    Blough, J.L.; Seitz, W.W.

    1997-12-01

    In Phase 1 a variety of developmental and commercial tubing alloys and claddings were exposed to laboratory fireside corrosion testing simulating a superheater or reheater in a coal-fired boiler. Phase 2 (in situ testing) has exposed samples of 347 RA-85H, HR3C, 253MA, Fe{sub 3}Al + 5Cr, 310 Ta modified, NF 709, 690 clad, and 671 clad for approximately 4,000, 12,000, and 16,000 hours to the actual operating conditions of a 250-MW coal-fired boiler. The samples were assembled on an air-cooled, retractable corrosion probe, the probe was installed in the reheater activity of the boiler and controlled to the operating metal temperatures of an existing and advanced-cycle coal-fired boiler. The results will be presented for the preliminary metallurgical examination of the corrosion probe samples after 16,000 hours of exposure. Continued metallurgical and interpretive analysis is still on going.

  10. An integrated testing strategy for in vitro skin corrosion and irritation assessment using SkinEthic™ Reconstructed Human Epidermis.

    PubMed

    Alépée, Nathalie; Grandidier, Marie-Hélène; Tornier, Carine; Cotovio, José

    2015-10-01

    The SkinEthic™ Reconstructed Human Epidermis (RHE) method has been formally adopted for the regulatory assessment of skin irritation (OECD TG 439) and corrosion (OECD TG 431). Recently, the OECD adopted an Integrated Approach on Testing and Assessment (IATA) for skin corrosion and skin irritation (OECD GD 203), which provides guidance on the integration of existing and new information in a modular approach for classification and labelling. The present study aimed to evaluate the use of the SkinEthic™ RHE model within the proposed OECD IATA. Data on 86 substances were integrated in a bottom-up and top-down testing strategy to assess their capacity for EU CLP and UN GHS classifications. For EU CLP, strategies showed an accuracy of 84.8% to discriminate non-classified from classified substances, 94.4% to discriminate corrosive from non-corrosive substances, and 68.5% to discriminate the four (sub)-categories. For UN GHS, strategies showed an accuracy of 89.5% to discriminate non-classified from classified substances, 93.4% to discriminate corrosive from non-corrosive substances, and 74.2% to discriminate four GHS (sub)-categories (excluding Category 3). In conclusion, the integration of SkinEthic™ RHE irritation and corrosion data in a bottom-up and top-down testing strategy allows the classification of substances according to EU CLP and UN GHS. PMID:26187475

  11. Material Corrosion and Plate-Out Test of Types 304L and 316L Stainless Steel

    SciTech Connect

    Zapp, P.E.

    2001-02-06

    Corrosion and plate-out tests were performed on 304L and 316L stainless steel in pretreated Envelope B and Envelope C solutions. Flat coupons of the two stainless steels were exposed to 100 degrees C liquid and to 74 degrees C and 88 degrees C vapor above the solutions for 61 days. No significant corrosion was observed either by weight-loss measurements or by microscopic examination. Most coupons had small weight gains due to plate-out of solids, which remained to some extent even after 24-hour immersion in 1 N nitric acid at room temperature. Plate-out was more significant in the Envelope B coupons, with film thickness from less than 0.001 in. to 0.003-inches.

  12. The chloride stress-corrosion cracking behavior of stainless steels under different test methods

    SciTech Connect

    Jin, L.Z. . Dept. of Materials Science and Engineering)

    1994-12-01

    Chloride-induced stress-corrosion cracking (SCC) is one of the failure modes of stainless steels. Highly alloyed austenitic stainless steels S32654, S31254, and N08028, and duplex grades S32750 and S31803 possess much improved resistance to SCC compared with S30400 and S31600 steels. With the development of a database, SSData, experimental data collected from calcium chloride tests, autoclave tests, and drop evaporation tests were evaluated. Stress-corrosion cracking data generated by autoclave tests agreed well with the practical service conditions and can be used to discriminate alloys for SCC resistance in sodium chloride solution. Drop evaporation test data can be used in situations where evaporation may occur and cyclic loading may be involved. The SCC resistance of alloys under each method increased with increasing molybdenum equivalent Mo + 0.25Cr + 0.1Ni. For a given alloy, the testing result depends on the stress state and environment; different test methods can give different ranking orders concerning SCC resistance. The performance of duplex stainless steels in a chloride-containing environment at higher temperatures was not as good as expected when dynamic loading was involved.

  13. Atmospheric corrosion of coated steel; Relationship between laboratory and field testing

    NASA Astrophysics Data System (ADS)

    Cambier, Severine Marie Noelle

    The lifetime prediction for corrosion-protective coatings on metals is a challenge that has been studied for several decades. Accelerated tests are used in the hope to reproduce in few days the damage that would develop during several years of field exposure. Field exposures are also used because accelerated tests are not always reliable. Several approaches have been taken to reduce the duration of field exposures. One of them is the use of sensitive techniques to assess the coating degradation before visual inspection indicates any damage. Cathodic delamination measured by the scanning Kelvin probe (CD-SKP) was introduced here as a sensitive technique to assess the degradation at the coating/metal interface after weathering exposure. This technique was shown to predict the failure of the coating/steel interface. Several climates were tested in the US continent and on the islands of Hawaii. PVB coated steel environmental degradation was characterized in the field and reproduced in the laboratory. A second approach to shorten coated metal field exposure is to accelerate the degradation using intentionally added through-film scribes. In service, most corrosion mechanism for painted metals, such as filiform corrosion and cathodic delamination, initiate from a mechanical defect. The iron oxides formed under PVB and Eponol were identified with Raman spectroscopy to determine the environment factors that participated in their formation. This investigation was complemented by laboratory exposure. An accelerated test for PVB coated steel was designed to reproduce the environmental degradation observed in the field. The CD-SKP technique to assess interface degradation after weathering exposure was also applied to other coating systems. E-coated, sprayed epoxy primers with a conversion coating or grit blasting treatment, and one full coating system were tested.

  14. TESTING VAPOR SPACE AND LIQUID-AIR INTERFACE CORROSION IN SIMULATED ENVIRONMENTS OF HANFORD DOUBLE-SHELLED TANKS

    SciTech Connect

    Hoffman, E.

    2013-05-30

    Electrochemical coupon testing were performed on 6 Hanford tank solution simulants and corresponding condensate simulants to evaluate the susceptibility of vapor space and liquid/air interface corrosion. Additionally, partial-immersion coupon testing were performed on the 6 tank solution simulants to compliment the accelerated electrochemical testing. Overall, the testing suggests that the SY-102 high nitrate solution is the most aggressive of the six solution simulants evaluated. Alternatively, the most passive solution, based on both electrochemical testing and coupon testing, was AY-102 solution. The presence of ammonium nitrate in the simulants at the lowest concentration tested (0.001 M) had no significant effect. At higher concentrations (0.5 M), ammonium nitrate appears to deter localized corrosion, suggesting a beneficial effect of the presence of the ammonium ion. The results of this research suggest that there is a threshold concentration of ammonium ions leading to inhibition of corrosion, thereby suggesting the need for further experimentation to identify the threshold.

  15. Summary of Well Testing and Analysis, Western Pahute Mesa - Oasis Valley FY 2000 Testing Program

    SciTech Connect

    2002-09-30

    This report summarizes the results of the analysis of the Western Pahute Mesa-Oasis Valley (WPM-OV) well development and testing program that was conducted during fiscal year (FY) 2000. This program included the testing of eight wells: ER-EC-1, ER-EC-6, ER-18-2, ER-EC-7, ER-EC-5, ER-EC-8, ER-EC-2a, and ER-EC-4. The locations of these wells are shown in Figure 1-1. The data collection for the program was documented in individual well development and testing reports. Drilling and well construction information has been documented in individual well completion reports. This summary report is based on the individual well analysis reports.

  16. Corrosion and degradation of test materials in the U-GAS coal-gasification pilot plant

    SciTech Connect

    Yurkewycz, R.; Firestone, R.F.

    1982-10-01

    Corrosion monitoring of materials was conducted in the operating environment of the IGT U-GAS coal gasification pilot plant between 1977 and 1982. Metal and refractory specimens were exposed in the fluid bed gasifier in the freeboard section. Metal coupons were also exposed in two test locations in the product gas scrubber and venturi collection tank. Exposure times (coal feed to gasifier) were 264 h, 392 h, and 981 h. The corrosion performance of most alloys in the first exposure compared to the second and third in the U-GAS gasifier freeborad section was quite different. The more aggressive conditions produced during the first-exposure period are attributed to processing of unwashed high-sulfur coals in the steam-air gasification mode. Of the group of alloys evaluated, alloy 6B showed acceptable corrosion performance in all three exposures. Although their performance was poor in the first period, alloys N155 and IN-671 showed marked improvement in corrosion resistance during the second and third exposure periods. The same was true of cobalt-base alloy 188 which was the best performing alloy in the second and third exposures. Pack-aluminized alloys IN-800 and Type 310 showed acceptable performance. Conditions at the coupon location in the product gas scrubber (off-gas) were extremely aggressive to a range of materials exposed except titanium 50A. In the product-gas scrubber sludge tank and venturi collection tank, only carbon steel A515 showed significant attack; in some cases Types 410 and 430 incurred only mild pitting attack. Exposure in the gasifier freeboard had no significant effect on refractory specimens.

  17. Summary

    SciTech Connect

    Itoh, Kimitaka

    2009-02-19

    In this presentation, lectures in the school are revisited and a brief summary is given. An emphasis is made to illustrate how the lectures are interconnected so as to constitute the unified basis of knowledge in realizing thermonuclear fusion in ITER.The first message here is the integration of the knowledge. All of conditions (which is imposed by individual characteristic dynamics) must be simultaneously fulfilled. Plasma conditions (density, pressure, current, shape, etc.) set parameter boundaries. Achievement of Q = 10 is expected to be realized near the ridge of boundary, so that exact knowledge of mutual relations between constraints is inevitable. The other message is that, the constraints of plasma, material and design must be subject to a special care. In this regard, the use of tritium in ITER introduces new issue in research. For instance, the containment of tritium in the device leads to a new demand for the system. This issue influences the choice of the wall material. The difference of the wall material (either light element or heavy metal), on the other hand, can have a large impact on confinement. These new features in integration will be explained.The other issue is the need of integration of knowledge to form a law of understanding. The mission of ITER must be realized as fast as possible, considering the fact the necessity for fusion energy will be more keen as time goes on. The operation of ITER has been predicted by extending the empirical scaling relations. More precise prediction and the resolution of possible problems in advance are required. For this urgency, our knowledge must be distilled as a scientific law in which elementary processes are validated.

  18. The sky is falling: chemical characterization and corrosion evaluation of deposition produced during the static testing of solid rocket motors.

    PubMed

    Doucette, William J; McNeill, Laurie S; Mendenhall, Scout; Hancock, Paul V; Wells, Jason E; Thackeray, Kevin J; Gosen, David P

    2013-03-01

    Static tests of horizontally restrained rocket motors at the ATK facility in Promontory UT, USA result in the deposition of entrained soil and fuel combustion products, referred to as Test Fire Soil (TFS), over areas as large as 30-50 mile (80-130 km) and at distances up to 10-12 miles (16-20 km) from the test site. Chloride is the main combustion product generated from the ammonium perchlorate-aluminum based composite propellant. Deposition sampling/characterization and a 6-month field corrosivity study using mild steel coupons were conducted in conjunction with the February 25th 2010 FSM-17 static test. The TFS deposition rates at the three study sites ranged from 1 to 5 g/min/m. TFS contained significantly more chloride than the surface soil collected from the test site. The TFS collected during two subsequent tests had similarly elevated chloride, suggesting that the results obtained in this study are applicable to other tests assuming that the rocket fuel composition remains similar. The field-deployed coupons exposed to the TFS had higher corrosion rates (3.6-5.0 mpy) than paired non-exposed coupons (1.6-1.8 mpy). Corrosion rates for all coupons decreased over time, but coupons exposed to the TFS always had a higher rate than the non-exposed. Differences in corrosion rates between the three study sites were also observed, with sites receiving more TFS deposition having higher corrosion rates.

  19. Corrosion and degradation of test materials in the General Electric GEGAS 25 ton/day coal gasification process development unit

    SciTech Connect

    Yurkewycz, R.

    1985-01-31

    Alloys were evaluated in the GEGAS 25 ton/day coal gasification pilot plant operating at 300 psig (2.1 MPa gauge). The exposure period lasted for approximately 500 h under gasification conditions. Coupons were exposed in the gasifier (below the bottom grate and in the off-gas) and spray-quench vessel. Ferritic alloy 18Cr-2Mo was the best performing alloy (<20 mpy (0.5 mm/y)) in the air-superheated steam (temperature range: 500/sup 0/ to 1000/sup 0/F (260/sup 0/ to 538/sup 0/C)) environment in the ash pit below the grate assembly. Austenitic alloys Types 304 and 316 underwent stress-corrosion cracking. Irregular corrosion and pitting attack were the modes of corrosion for martenstic alloy Type 410, low-alloy steels 5Cr-0.5Mo and 2.25Cr-1Mo, and carbon steel A515. Their corrosion rates were >100 mpy (2.5 mm/y). In the gasifier off-gas test location, alloys Incoloy 800, Incoloy 825, and 20Cb-3 gave the best corrosion performance in the low-Btu product gas. Alloys 18-18-2, 18Cr-2Mo, and Type 321 experienced corrosion losses due to scaling; intergranular corrosion was experienced by Types 304 and 316. Operating temperatures ranged from 1000/sup 0/ to 1200/sup 0/F (538/sup 0/ to 649/sup 0/C). Process conditions were much milder for alloy coupons in the spray-quench vessel during 500 h exposure. High-alloy steels (18-18-2, 18Cr-2Mo, Types 304 and 316) experienced little corrosion at 350/sup 0/ to 400/sup 0/F (177/sup 0/ to 204/sup 0/C) in the vapor phase. The performances of carbon steel A515 and cast iron A278 were unacceptable since corrosion rates were >30 mpy (0.8 mm/y). 13 refs., 11 figs., 7 tabs.

  20. Assessment of Initial Test Conditions for Experiments to Assess Irradiation Assisted Stress Corrosion Cracking Mechanisms

    SciTech Connect

    Busby, Jeremy T; Gussev, Maxim N

    2011-04-01

    Irradiation-assisted stress corrosion cracking is a key materials degradation issue in today s nuclear power reactor fleet and affects critical structural components within the reactor core. The effects of increased exposure to irradiation, stress, and/or coolant can substantially increase susceptibility to stress-corrosion cracking of austenitic steels in high-temperature water environments. . Despite 30 years of experience, the underlying mechanisms of IASCC are unknown. Extended service conditions will increase the exposure to irradiation, stress, and corrosive environment for all core internal components. The objective of this effort within the Light Water Reactor Sustainability program is to evaluate the response and mechanisms of IASCC in austenitic stainless steels with single variable experiments. A series of high-value irradiated specimens has been acquired from the past international research programs, providing a valuable opportunity to examine the mechanisms of IASCC. This batch of irradiated specimens has been received and inventoried. In addition, visual examination and sample cleaning has been completed. Microhardness testing has been performed on these specimens. All samples show evidence of hardening, as expected, although the degree of hardening has saturated and no trend with dose is observed. Further, the change in hardening can be converted to changes in mechanical properties. The calculated yield stress is consistent with previous data from light water reactor conditions. In addition, some evidence of changes in deformation mode was identified via examination of the microhardness indents. This analysis may provide further insights into the deformation mode under larger scale tests. Finally, swelling analysis was performed using immersion density methods. Most alloys showed some evidence of swelling, consistent with the expected trends for this class of alloy. The Hf-doped alloy showed densification rather than swelling. This observation may be

  1. Oceanic corrosion test of bare and zinc-protected aluminum alloys for seawater heat exchangers

    NASA Technical Reports Server (NTRS)

    Sasscer, D. S.; Morgan, T. O.; Rivera, C.; Ernst, R.; Scott, A. C.; Summerson, T. J.

    1982-01-01

    Bare 3004 tubes, 7072 Alclad 3004 tubes, and bare and zinc diffusion treated 3003 extrusions from a brazed aluminum, plate-fin heat exchanger were exposed to 1.8 m/sec flowing seawater aboard an open ocean test facility moored 3.4 km off the southeast coast of Puerto Rico. After six months exposure, the average corrosion rates for most varieties of aluminum materials converged to a low value of 0.015 mm/yr (0.6 mils/yr). Pitting did not occur in bare 3003 and 3004 samples during the six month test. Pitting did occur to varying degrees in the Alclad and zinc diffusion treated material, but did not penetrate to the base metal. Biofouling countermeasures (intermittent chlorination and brushing) did not affect the corrosion rates to any significant extent. Intermittent chlorination at a level of 0.5 ppm for 28 minutes daily controlled microbiofouling of the samples but did not prevent the development of a macrobiofouling community in areas of the plumbing with low flow.

  2. Corrosion Test Results for Inconel 600 vs Inconel-Stainless UG Bellows

    SciTech Connect

    Osborne, P.E.

    2002-09-11

    The Conversion Project (CP) of the Molten Salt Reactor Experiment at Oak Ridge National Laboratory (ORNL) involves converting slightly less than 40 kg of {sup 233}U to a stable form for safe storage. The operation is performed within a few vessels interconnected by valves and 1/2-in. metal tubing. During this conversion, a particularly toxic and corrosive by-product is formed, namely aqueous hydrofluoric acid (HF). The production of HF is a result of the hydrolysis of UF{sub 6} and subsequent steam treatments of UO{sub 2}F{sub 2}. For each mole of UF{sub 6} converted, 6 mol of HF are produced. The HF that forms during conversion combines with water to produce approximately 1.5 L of 33 wt % HF. As this mixture is transferred within the process system, the tubing and valves are exposed to high concentrations of HF in liquid and vapor form. Of particular concern in the system are the almost 30 valves that have the potential for exposure to HF. For these valves, a vendor-supplied UG valve was installed. UG valves consist of an Alloy 400 (Monel) body and stem tip and Alloy 600 (Inconel) bellows. These valves have been used under experimental conditions that simulate the CP. It has been established that they have a finite life when exposed to a HF and air environment. Most failures were seen around the flange at the bottom of the bellows, and it was suspected that this flange and the weld material were not Inconel. In December 2001, the vendor confirmed that this flange was not Inconel but instead was stainless steel 316. After discussions between the vendor and ORNL staff involved with the CP effort, it was decided that the entire wetted area of the bellows would be fabricated from Alloy 600. In March 2002, four newly fabricated bellows assemblies were received from the vendor for the purposes of corrosion testing in HF. This report presents results from the corrosion tests conducted to determine if the new design of the bellows would enhance their corrosion resistance.

  3. The OECD Fish Testing Framework Project: Summary of Workshop Recommendations

    EPA Science Inventory

    An integrated Fish Testing Framework was initiated in mid-2009 as OECD Project 2.30 with the United States as the lead country. The objectives of the project were to review the regulatory needs and data requirements for fish testing and review the currency of existing OECD Test ...

  4. APA's Guidelines for Test User Qualifications: An Executive Summary.

    ERIC Educational Resources Information Center

    Turner, Samuel M.; DeMers, Stephen T.; Fox, Heather Roberts; Reed, Geoffrey M.

    2001-01-01

    Describes the American Psychological Association's (APA's) development of the Task Force on Test User Qualifications, explaining the APA's purpose in developing guidelines for the use of psychological tests. Highlights the historical background, the scope of the guidelines, generic knowledge and skills considered important for good test use, and…

  5. CALiPER Special Summary Report: Retail Replacement Lamp Testing

    SciTech Connect

    2011-04-01

    CALiPER testing has evaluated many products for commercial lighting markets and found some excellent performers. However, many of these are not available on the retail market. This special testing was undertaken to identify and test solid-state lighting (SSL) replacement lamp products that are available to the general public through retail stores and websites.

  6. Report on Electrochemcial Corrosion Testing of 241-SY-102 Grab Samples from the 2012 Grab Sampling Campaign

    SciTech Connect

    Wyrwas, Richard B.; Lamothe, Margaret E.

    2013-05-30

    This report describes the results of the electrochemical testing performed on tank 241-SY-102 (SY-102) grab samples that were collected in support of corrosion mitigation. The objective of the work presented here was to determine corrosion resistance of tank SY-102 to the grab samples collected using electrochemical methods up to 50°C as well as to satisfy data quality objectives. Grab samples were collected at multiple elevations from Riser 003. The electrochemical corrosion testing was planned to consist of linear polarization resistance testing (LPR) and cyclic potentiodynamic polarization (CPP) testing at 50°C. The temperature would be lowered to 40 °C and the test repeated if the CPP curve indicated pitting corrosion at 50°C. Ifno pitting was indicated by the CPP curve, then a duplicate scan would be repeated at 50°C to confirm the first result. The testing would be complete if the duplicate CPP scan was consistent with the first. This report contains the CPP results of the testing of grab sample 2SY-12-03 and 2SY-12-03DUP composite sample tested under these conditions. There was no indication of pitting at 50°C, and the duplicate scan was in agreement with the first scan. Since no further testing was required, a third scan with a shorter rest time was performed and is present in this report.

  7. Digital techniques in HV tests; Summary of 1989 panel session

    SciTech Connect

    McComb, T.R.; Fenimore, C.; Gockenbach, E.; Kuffel, J.; Malewski, R.; Schon, K.; Van der Sluis, L.; Ward, B.; Zhang, Y.X.

    1992-10-01

    A panel session on digital techniques in HV tests was held at the IEEE PES Summer Meeting in Long Beach, CA. This panel addressed the question of how signal processing can be used to enhance High Voltage Tests and extract more information for them. Part 1 dealt with the evaluation of digitizers and records and Part 2 dealt with the application of digitizers to industrial testing. This paper presents an outline of the Panel Session and lists pertinent reference material.

  8. Gas-side corrosion performance of superheater/ITAH tube alloys in MHD tests with high sulfur coal

    SciTech Connect

    White, M.

    1993-01-01

    Corrosion data have been obtained for tubes exposed for 600, 1500, and 2000 hours in a proof-of-concept magnetohydrodynamics (MHD) power generation test facility (the CFFF) to conditions representative of superheater and intermediate temperature air heater components. The tubes, coated with K[sub 2]SO[sub 4]-rich deposits, developed predominantly oxide surface scales. Stainless steel alloy scales were not sufficiently protective to prevent internal oxidation/sulfidation of the subsurface metal. Corrosion resistance increased with chromium content. Low chromium alloys had thick scaling but no internal penetration. Although no liquid phases were present corrosion rates and scale morphologies were similar to those typical of conventional coal ash corrosion in the presence of molten alkali sulfates. Corrosion rates derived from scale thickness and penetration depth measurements are reported, along with scale morphologies and compositions. The implications of the results on commercial MHD utilization of the alloys are discussed, as well as the indicated need for more corrosion resistant alloys or coatings under the most severe exposure conditions.

  9. Test results on reuse of reclaimed shower water - A summary

    NASA Technical Reports Server (NTRS)

    Verostko, Charles E.; Garcia, Rafael; Sauer, Richard; Reysa, Richard P.; Linton, Arthur T.

    1989-01-01

    Results are presented from tests to evaluate a microgravity whole body shower and waste water recovery system design for possible use on the Space Station. Several water recovery methods were tested, including phase change distillation, a thermoelectric hollow fiber membrane evaporation subsystem, and a reverse osmosis dynamic membrane system. Consideration is given to the test hardware, the types of soaps evaluated, the human response to showering with reclaimed water, chemical treatment for microbial control, the procedures for providing hygienic water, and the quality of water produced by the systems. All three of the waste water recovery systems tested successfully produced reclaimed water for reuse.

  10. Measurements of the corrosion of low-carbon steel drums under environmental conditions at Hanford: One-year test results

    SciTech Connect

    Duncan, D.R.; Bunnell, L.R.

    1995-05-01

    This report describes the methods used to expose low-carbon steel drums to atmospheric and soil corrosion and describes the methods used to examine specimens retrieved from both types of tests. These drums are being tested to meet requirements of radioactive waste storage for both low-level radioactive wastes and transuranic wastes.

  11. Simulated Service and Stress Corrosion Cracking Testing for Friction Stir Welded Spun Form Domes

    NASA Technical Reports Server (NTRS)

    Stewart, Thomas J.; Torres, Pablo D.; Caratus, Andrei A.; Curreri, Peter A.

    2010-01-01

    Damage tolerance testing development was required to help qualify a new spin forming dome fabrication process for the Ares 1 program at Marshall Space Flight Center (MSFC). One challenge of the testing was due to the compound curvature of the dome. The testing was developed on a sub-scale dome with a diameter of approximately 40 inches. The simulated service testing performed was based on the EQTP1102 Rev L 2195 Aluminum Lot Acceptance Simulated Service Test and Analysis Procedure generated by Lockheed Martin for the Space Shuttle External Fuel Tank. This testing is performed on a specimen with an induced flaw of elliptical shape generated by Electrical Discharge Machining (EDM) and subsequent fatigue cycling for crack propagation to a predetermined length and depth. The specimen is then loaded in tension at a constant rate of displacement at room temperature until fracture occurs while recording load and strain. An identical specimen with a similar flaw is then proof tested at room temperature to imminent failure based on the critical offset strain achieved by the previous fracture test. If the specimen survives the proof, it is then subjected to cryogenic cycling with loads that are a percentage of the proof load performed at room temperature. If all cryogenic cycles are successful, the specimen is loaded in tension to failure at the end of the test. This standard was generated for flat plate, so a method of translating this to a specimen of compound curvature was required. This was accomplished by fabricating a fixture that maintained the curvature of the specimen rigidly with the exception of approximately one-half inch in the center of the specimen containing the induced flaw. This in conjunction with placing the center of the specimen in the center of the load train allowed for successful testing with a minimal amount of bending introduced into the system. Stress corrosion cracking (SCC) tests were performed using the typical double beam assembly and with 4

  12. Stability and corrosion testing of a high temperature phase change material for CSP applications

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Bell, Stuart; Tay, Steven; Will, Geoffrey; Saman, Wasim; Bruno, Frank

    2016-05-01

    This paper presents the stability and corrosion testing results of a candidate high temperature phase change material (PCM) for potential use in concentrating solar power applications. The investigated PCM is a eutectic mixture of NaCl and Na2CO3 and both are low cost materials. This PCM has a melting temperature of 635 °C and a relatively high latent heat of fusion of 308.1 J/g. The testing was performed by means of an electric furnace subjected to 150 melt-freeze cycles between 600 °C and 650 °C. The results showed that this PCM candidate has no obvious decomposition up to 650 °C after 150 cycles and stainless steel 316 potentially can be used as the containment material under the minimized oxygen atmosphere.

  13. Stifling of Crevice Corrosion in Alloy 22 During Constant Potential Tests

    SciTech Connect

    Mon, K G; Pasupathi, P; Yilmaz, A; Rebak, R B

    2005-02-05

    Artificially creviced Alloy 22 (N06022) is susceptible to crevice corrosion in presence of high chloride aqueous solution when high temperatures and high anodic potentials are applied. The presence of oxyanions in the electrolyte, especially nitrate, inhibits the nucleation and growth of crevice corrosion. Crevice corrosion may initiate when a constant potential above the crevice repassivation potential is applied. The occurrence of crevice corrosion can be divided into three characteristic domains: (1) nucleation, (2) growth and (3) stifling and arrest. That is, crevice corrosion reaches a critical stage after which growth stops and the specimens start to regain the passive behavior displayed prior to localized attack.

  14. Data summary report for fission product release test VI-5

    SciTech Connect

    Osborne, M.F.; Lorenz, R.A.; Travis, J.R.; Webster, C.S.; Collins, J.L. )

    1991-10-01

    Test VI-5, the fifth in a series of high-temperature fission product release tests in a vertical test apparatus, was conducted in a flowing mixture of hydrogen and helium. The test specimen was a 15.2-cm-long section of a fuel rod from the BR3 reactor in Belgium which had been irradiated to a burnup of {approximately}42 MWd/kg. Using a hot cell-mounted test apparatus, the fuel rod was heated in an induction furnace under simulated LWR accident conditions to two test temperatures, 2000 K for 20 min and then 2700 K for an additional 20 min. The released fission products were collected in three sequentially operated collection trains on components designed to measure fission product transport characteristics and facilitate sampling and analysis. The results from this test were compared with those obtained in previous tests in this series and with the CORSOR-M and ORNL diffusion release models for fission product release. 21 refs., 19 figs., 12 tabs.

  15. Mission Information and Test Systems Summary of Accomplishments, 2011

    NASA Technical Reports Server (NTRS)

    McMorrow, Sean E.; Sherrard, Roberta B.

    2013-01-01

    This annual report covers the activities of the NASA DRFC Mission Information and Test Systems, which includes the Western Aeronautical Test Range, the Simulation Engineering Branch, the Information Services and the Dryden Technical Laboratory (Flight Loads Lab). This report contains highlights, current projects and various awards achieved during in 2011

  16. Summary of Stirling Convertor Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    2006-01-01

    The NASA Glenn Research Center (GRC) has been testing free-piston Stirling convertors for potential use in radioisotope power systems. These convertors tend to be in the 35 to 80 W electric power output range. Tests at GRC have accumulated over 80,000 hr of operation. Test articles have been received from Infinia Corporation of Kennewick, Washington and from Sunpower of Athens, Ohio. Infinia designed and built the developmental Stirling Technology Demonstration Convertors (TDC) in addition to the more advanced Test Bed and Engineering Unit convertors. GRC has eight of the TDC's under test including two that operate in a thermal vacuum environment. Sunpower designed and developed the EE-35 and the Advanced Stirling Convertor (ASC). GRC has six of the EE- 35 s and is preparing for testing multiple ASC s. Free-piston Stirling convertors for radioisotope power systems make use of non-contacting operation that eliminates wear and is suited for long-term operation. Space missions with radioisotope power systems are often considered that extend from three to 14 years. One of the key capabilities of the GRC test facility is the ability to support continuous, unattended operation. Hardware, software, and procedures for preparing the test articles were developed to support these tests. These included the processing of the convertors for minimizing the contaminants in the working fluid, developing a helium charging system for filling and for gas sample analysis, and the development of new control software and a high-speed protection circuit to insure safe, round-the-clock operation. Performance data of Stirling convertors over time is required to demonstrate that a radioisotope power system is capable of providing reliable power for multi-year missions. This paper will discuss the status of Stirling convertor testing at GRC.

  17. Annual report, spring 2015. Alternative chemical cleaning methods for high level waste tanks-corrosion test results

    SciTech Connect

    Wyrwas, R. B.

    2015-07-06

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel when interacted with the chemical cleaning solution composed of 0.18 M nitric acid and 0.5 wt. % oxalic acid. This solution has been proposed as a dissolution solution that would be used to remove the remaining hard heel portion of the sludge in the waste tanks. This solution was combined with the HM and PUREX simulated sludge with dilution ratios that represent the bulk oxalic cleaning process (20:1 ratio, acid solution to simulant) and the cumulative volume associated with multiple acid strikes (50:1 ratio). The testing was conducted over 28 days at 50°C and deployed two methods to invest the corrosion conditions; passive weight loss coupon and an active electrochemical probe were used to collect data on the corrosion rate and material performance. In addition to investigating the chemical cleaning solutions, electrochemical corrosion testing was performed on acidic and basic solutions containing sodium permanganate at room temperature to explore the corrosion impacts if these solutions were to be implemented to retrieve remaining actinides that are currently in the sludge of the tank.

  18. Field Testing of High Current Electrokinetic Nanoparticle Treatment for Corrosion Mitigation in Reinforced Concrete

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Alexander, Joshua B.; Cardenas, Henry E.; Kupwade-Patil, Kunal

    2008-01-01

    This work examines field performance of nanoscale pozzolan treatments delivered el ctrokinetically to suppress chloride induced corrosion of concrete reinforcement. The particles are 20 nm silica spheres coated with 2 nm alumina particles that carry a net positive charge. Earlier work demonstrated that the alumina particles were stripped from the silica carriers and formed a dense phase with an interparticle spacing that is small enough to inhibit the transport of solvated chlorides. A D.C. field was used to inject the particles into the pores of concrete specimens, directly toward the mild steel bars that were embedded within each 3 inch diameter by 6 inch length concrete specimen. The voltage was held constant at 25 v per inch of concrete cover for a period of 7 days. These voltages permitted current densities as high as 3 A/sq m. During the final 3 days, a 1 molar solution of calcium nitrate tetrahydrate was used to provide a source of calcium to facilitate stronger and more densified phase formation within the pores. In a departure from prior work the particle treatments were started concurrent with chloride extraction in order to determine if particle delivery would inhibit chloride transport. Following treatment the specimens were immersed in seawater for 4 weeks. After this posttreatment exposure, the specimens were tested for tensile strength and the steel reinforcement was examined for evidence of corrosion. Scanning electron microscopy was conducted to assess impact on microstructure.

  19. Corrosion testing of type 304L stainless steel in tuff groundwater environments

    SciTech Connect

    Westerman, R.E.; Pitman, S.G.; Haberman, J.H.

    1987-11-01

    The stress-corrosion cracking (SCC) resistance of Type 304L stainless steel (SS) to elevated temperatures in tuff rock and tuff groundwater environments was determined under irradiated and nonirradiated conditions using U-bend specimens and slow-strain-rate tests. The steel was tested both in the solution-annealed condition and after sensitization heat treatments. The material was found to be susceptible to SCC in both the solution-annealed and solution-annealed-and-sensitized conditions when exposed to an irradiated crushed tuff rock environment containing air and water vapor at 90{sup 0}C. A similar exposure at 50{sup 0}C did not result in failure after a 25-month test duration. Specimens of sensitized 304 SS conditioned with a variety of sensitization heat treatments resisted failure during a test of 1-year duration in which a nonirradiated environment of tuff rock and groundwater held at 200{sup 0}C was allowed to boil to dryness on a cyclical basis. All specimens of sensitized 304 SS exposed to this environment failed. Slow-strain-rate studies were performed on 304L, 304, and 316L SS specimens. The 304L SS was tested in J-13 well water at 150{sup 0}C, and the 316L SS at 95{sup 0}C. Neither material showed evidence of SCC in these tests. Sensitized 304 SS did exhibit SCC in J-13 well water in tests conducted at 150{sup 0}C. 12 refs., 27 figs., 13 tabs.

  20. Offset Stream Technology Test-Summary of Results

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.; Bridges, James E.; Henderson, Brenda

    2007-01-01

    Statistical jet noise prediction codes that accurately predict spectral directivity for both cold and hot jets are highly sought both in industry and academia. Their formulation, whether based upon manipulations of the Navier-Stokes equations or upon heuristic arguments, require substantial experimental observation of jet turbulence statistics. Unfortunately, the statistics of most interest involve the space-time correlation of flow quantities, especially velocity. Until the last 10 years, all turbulence statistics were made with single-point probes, such as hotwires or laser Doppler anemometry. Particle image velocimetry (PIV) brought many new insights with its ability to measure velocity fields over large regions of jets simultaneously; however, it could not measure velocity at rates higher than a few fields per second, making it unsuitable for obtaining temporal spectra and correlations. The development of time-resolved PIV, herein called TR-PIV, has removed this limitation, enabling measurement of velocity fields at high resolution in both space and time. In this paper, ground-breaking results from the application of TR-PIV to single-flow hot jets are used to explore the impact of heat on turbulent statistics of interest to jet noise models. First, a brief summary of validation studies is reported, undertaken to show that the new technique produces the same trusted results as hotwire at cold, low-speed jets. Second, velocity spectra from cold and hot jets are compared to see the effect of heat on the spectra. It is seen that heated jets possess 10 percent more turbulence intensity compared to the unheated jets with the same velocity. The spectral shapes, when normalized using Strouhal scaling, are insensitive to temperature if the stream-wise location is normalized relative to the potential core length. Similarly, second order velocity correlations, of interest in modeling of jet noise sources, are also insensitive to temperature as well.

  1. 16 CFR 1610.3 - Summary of test method.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... provides methods of testing the flammability of textiles from or intended to be used for apparel... surface, and held in a special apparatus at an angle of 45°. A standardized flame shall be applied to...

  2. 16 CFR 1610.3 - Summary of test method.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... provides methods of testing the flammability of textiles from or intended to be used for apparel... surface, and held in a special apparatus at an angle of 45°. A standardized flame shall be applied to...

  3. 16 CFR 1610.3 - Summary of test method.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... provides methods of testing the flammability of textiles from or intended to be used for apparel... surface, and held in a special apparatus at an angle of 45°. A standardized flame shall be applied to...

  4. 16 CFR 1610.3 - Summary of test method.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... provides methods of testing the flammability of textiles from or intended to be used for apparel... surface, and held in a special apparatus at an angle of 45°. A standardized flame shall be applied to...

  5. Tonopah Test Range Summary of Corrective Action Units

    SciTech Connect

    Ronald B. Jackson

    2007-05-01

    Corrective Action Sites (CASs) and Corrective Action Units (CAUs) at the Tonopah Test Range (TTR) may be placed into three categories: Clean Closure/No Further Action, Closure in Place, or Closure in Progress.

  6. Examination of the 1970 National Bureau of Standards Underground Corrosion Test Welded Stainless STeel Coupons from Site D

    SciTech Connect

    L. R. Zirker; M. K. Adler Flitton; T. S. Yoder; T. L. Trowbridge

    2008-01-01

    A 1970 study initiated by the National Bureau of Standards (NBS), now known as the National Institute of Standards and Technology (NIST), buried over 6000 corrosion coupons or specimens of stainless steel Types 201, 202, 301, 304, 316, 409, 410, 430, and 434. The coupons were configured as sheet metal plates, coated plates, cross-welded plates, U-bend samples, sandwiched materials, and welded tubes. All coupons were of various heat-treatments and cold worked conditions and were buried at six distinctive soil-type sites throughout the United States. The NBS scientists dug five sets of two trenches at each of the six sites. In each pair of trenches, they buried duplicate sets of stainless steel coupons. The NBS study was designed to retrieve coupons after one year, two years, four years, eight years, and x years in the soil. During the first eight years of the study, four of five planned removals were completed. After the fourth retrieval, the NBS study was abandoned, and the fifth and final set of specimens remained undisturbed for over 33 years. In 2003, an interdisciplinary research team of industrial, university, and national laboratory investigators were funded under the United States Department of Energy’s Environmental Management Science Program (EMSP; Project Number 86803) to extract part of the remaining set of coupons at one of the test sites, characterize the stainless steel underground corrosion rates, and examine the fate and transport of metal ions into the soil. Extraction of one trench at one of the test sites occurred in April 2004. This report details only the characterization of corrosion found on the 14 welded coupons–two cross welded plates, six U-bends, and six welded tubes–that were retrieved from Site D, located near Wildwood, NJ. The welded coupons included Type 301, 304, 316, and 409 stainless steels. After 33 years in the soil, corrosion on the coupons varied according to alloy. This report discusses the stress corrosion cracking and

  7. Summary of second generation alpha CAM testing performed at Hanford

    SciTech Connect

    Johnson, M.L.; Sisk, D.R.; Goles, R.W.; Swinth, K.L.; Tinker, M.R.; Hickey, E.E.

    1994-05-01

    Pacific Northwest Laboratory and Westinghouse Hanford Company tested six models of commercially available alpha continuous air monitors (CAMs): the Canberra Alpha Sentry, Eberline Alpha 6A-1, Merlin Gerin A-CAM, NE America CAM1A, SAIC/RADeCO Model 452, and Victoreen Model 758. The CAMs were tested for calibration and workmanship, performance in various environments, and human factors for field use.

  8. Corrosion of high-temperature materials in AFBC environments. Part 2: 4500-h tests

    SciTech Connect

    Godfrey, T.G.; DeVan, J.H.

    1981-08-01

    Candidate heat exchanger tube materials were tested for times to 4500 h in a small atmospheric-pressure fluidized bed combustor (AFBC) operated by the FluiDyne Engineering Corporation of Minneapolis, Minnesota. The materialso included alloy 800H; types 304, 310, and 316 stainless steel; and aluminized alloy 800H and type 310 stainless steel. These air-cooled tubes were exposed to the AFBC environment with wall temperatures ranging from 820 to 875/sup 0/C, a Ca/S molar ratio of 3.3 to 5.3, 2.5 to 3.5% excess O/sub 2/, and a fluidizing velocity of 0.7 m/s (2.3 fps). A set of low-temperature tubes was also included in the test for the final 3000-h period. These tubes were composites of 2-1/4 Cr-1 Mo steel and type 304 stainless steel and were air-cooled to temperatures in the range 480 to 590/sup 0/C. Tubes were removed at intermediate times for metallographic examination. In general, the materials performed well. With one exception, metal wastage was at the lower limit of detection and intergranular corrosion was not severe. Most of the high-temperature samples, however, contained subsurface specks of metal sulfides, primarily of manganese, extending to depths of about 50 ..mu..m. The exception to the good performance noted above was a type 316 stainless steel high-temperature tube exposed for the final 3000-h portion of the 4500-h test. This tube suffered severe sulfidation-oxidation over most of its surface. The absence of such attack on eight other type 316 stainless steel tubes indicated that the position of the affected tube in the bed may have been a more significant corrosion factor than the steel composition per se.

  9. Application of gamma-ray radiography and gravimetric measurements after accelerated corrosion tests of steel embedded in mortar

    SciTech Connect

    Duffó, Gustavo; Gaillard, Natalia; Mariscotti, Mario; Ruffolo, Marcelo

    2015-08-15

    The accelerated corrosion by the impressed current technique is widely used in studies of concrete durability since it has the advantage that tests can be carried out within reasonable periods of time. In the present work the relationship between the applied current density and the resulting damage on the reinforcing steel, by applying optical microscopy, scanning electron microscopy, gamma-ray radiography and gravimetric measurements, was studied by means of the implementation of accelerated corrosion tests on reinforced mortar. The results show that the efficiency of the applied current is between 1 and 77%, regardless of the applied current density, the water/cement ratio and the mortar cover depth of the specimens. The results show the applicability of the gamma-ray radiography technique to detect localized corrosion of steel rebars in laboratory specimens.

  10. Operational summary of an electric propulsion long term test facility

    NASA Technical Reports Server (NTRS)

    Trump, G. E.; James, E. L.; Bechtel, R. T.

    1982-01-01

    An automated test facility capable of simultaneously operating three 2.5 kW, 30-cm mercury ion thrusters and their power processors is described, along with a test program conducted for the documentation of thruster characteristics as a function of time. Facility controls are analog, with full redundancy, so that in the event of malfunction the facility automaticcally activates a backup mode and notifies an operator. Test data are recorded by a central data collection system and processed as daily averages. The facility has operated continuously for a period of 37 months, over which nine mercury ion thrusters and four power processor units accumulated a total of over 14,500 hours of thruster operating time.

  11. The stress-corrosion behavior of Al-Li-Cu alloys: A comparison of test methods

    NASA Technical Reports Server (NTRS)

    Rizzo, P. P.; Galvin, R. P.; Nelson, H. G.

    1982-01-01

    Two powder metallurgy processed (Al-Li-Cu) alloys with and without Mg addition were studied in aqueous 3.5% NaCl solution during the alternate immersion testing of tuning fork specimens, slow crack growth tests using fracture mechanics specimens, and the slow strain rate testing of straining electrode specimens. Scanning electron microscopy and optical metallography were used to demonstrate the character of the interaction between the Al-Li-Cu alloys and the selected environment. Both alloys are susceptible to SC in an aqueous 3.5% NaCl solution under the right electrochemical and microstructural conditions. Each test method yields important information on the character of the SC behavior. Under all conditions investigated, second phase particles strung out in rows along the extrusion direction in the alloys were rapidly attacked, and played principal role in the SC process. With time, larger pits developed from these rows of smaller pits and under certain electrochemical conditions surface cracks initiated from the larger pits and contributed directly to the fracture process. Evidence to support slow crack growth was observed in both the slow strain rate tests and the sustained immersion tests of precracked fracture mechanics specimens. The possible role of H2 in the stress corrosion cracking process is suggested.

  12. Alternatives to Animal Use in Research, Testing, and Education. Summary.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Office of Technology Assessment.

    With an estimated 17-22 million animals used in laboratories annually in the United States, public interest in animal welfare has sparked an often emotional debate over such uses of animals. Concerns focus on balancing societal needs for continued progress in biomedical and behavioral research, for toxicity testing to safeguard the public, and for…

  13. Summary of Aquifer Test Data for Arkansas - 1940-2006

    USGS Publications Warehouse

    Pugh, Aaron L.

    2008-01-01

    As demands on Arkansas's ground water continue to increase, decision-makers need all available information to ensure the sustainability of this important natural resource. From 1940 through 2006, the U.S. Geological Survey has conducted over 300 aquifer tests in Arkansas. Much of these data never have been published. This report presents the results from 206 of these aquifer tests from 21 different hydrogeologic units spread across 51 Arkansas counties. Ten of the hydrogeologic units are within the Atlantic Plain of Arkansas and consist mostly of unconsolidated and semi-consolidated deposits. The remaining 11 units are within the Interior Highlands consisting mainly of consolidated rock. Descriptive statistics are reported for each hydrologic unit with two or more tests, including the mean, minimum, median, maximum and standard deviation values for specific capacity, transmissivity, hydraulic conductivity, and storage coefficient. Hydraulic conductivity values for the major water-bearing hydrogeologic units are estimated because few conductivity values are recorded in the original records. Nearly all estimated hydraulic conductivity values agree with published hydraulic conductivity values based on the hydrogeologic unit material types. Similarly, because few specific capacity values were available in the original aquifer test records, specific capacity values are estimated for individual wells.

  14. Summary of electric vehicle dc motor-controller tests

    NASA Technical Reports Server (NTRS)

    Mcbrien, E. F.; Tryon, H. B.

    1982-01-01

    The differences in the performance of dc motors are evaluated when operating with chopper type controllers, and when operating on direct current. The interactions between the motor and the controller which cause these differences are investigated. Motor-controlled tests provided some of the data the quantified motor efficiency variations for both ripple free and chopper modes of operation.

  15. Electrochemical, Polarization, and Crevice Corrosion Testing of Nitinol 60, A Supplement to the ECLSS Sustaining Materials Compatibility Study

    NASA Technical Reports Server (NTRS)

    Lee, R. E.

    2016-01-01

    In earlier trials, electrochemical test results were presented for six noble metals evaluated in test solutions representative of waste liquids processed in the Environmental Control and Life Support System (ECLSS) aboard the International Space Station (ISS). Subsequently, a seventh metal, Nitinol 60, was added for evaluation and subjected to the same test routines, data analysis, and theoretical methodologies. The previous six test metals included three titanium grades, (commercially pure, 6Al-4V alloy and 6Al-4V low interstitial alloy), two nickel-chromium alloys (Inconel(RegisteredTrademark) 625 and Hastelloy(RegisteredTrademark) C276), and one high-tier stainless steel (Cronidur(RegisteredTrademark) 30). The three titanium alloys gave the best results of all the metals, indicating superior corrosive nobility and galvanic protection properties. For this current effort, the results have clearly shown that Nitinol 60 is almost as noble as titanium, being very corrosion-resistant and galvanically compatible with the other six metals electrochemically and during long-term exposure. is also quite noble as it is very corrosion resistant and galvanically compatible with the other six metals from both an electrochemical perspective and long-term crevice corrosion scenario. This was clearly demonstrated utilizing the same techniques for linear, Tafel and cyclic polarization, and galvanic coupling of the metal candidate as was done for the previous study. The high nobility and low corrosion susceptibility for Nitinol 60 appear to be intermediate to the nickel/chromium alloys and the titanium metals with indications that are more reflective of the titanium metals in terms of general corrosion and pitting behavior.

  16. Fighting Corrosion

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Reinforced concrete structures such as bridges, parking decks, and balconies are designed to have a service life of over 50 years. All too often, however, many structures fall short of this goal, requiring expensive repairs and protection work earlier than anticipated. The corrosion of reinforced steel within the concrete infrastructure is a major cause for this premature deterioration. Such corrosion is a particularly dangerous problem for the facilities at NASA s Kennedy Space Center. Located near the Atlantic Ocean in Florida, Kennedy is based in one of the most corrosive-prone areas in the world. In order to protect its launch support structures, highways, pipelines, and other steel-reinforced concrete structures, Kennedy engineers developed the Galvanic Liquid Applied Coating System. The system utilizes an inorganic coating material that slows or stops the corrosion of reinforced steel members inside concrete structures. Early tests determined that the coating meets the criteria of the National Association of Corrosion Engineers for complete protection of steel rebar embedded in concrete. Testing is being continued at the Kennedy's Materials Science Beach Corrosion Test Site.

  17. Examining Validity in a Performance Test: The Listening Summary Translation Exam (LSTE)--Spanish Version.

    ERIC Educational Resources Information Center

    Scott, Mary Lee; And Others

    1996-01-01

    Reports on a project to develop and validate a criterion-referenced performance test of listening summary translation ability. This exam is designed to assess ability to comprehend and summarize in written English recorded conversations spoken in Spanish. The Bachman framework is used to present the test and provide evidence for its validity. (12…

  18. Summary of the Solar Two Test and Evaluation Program

    SciTech Connect

    PACHECO,JAMES E.; REILLY,HUGH E.; KOLB,GREGORY J.; TYNER,CRAIG E.

    2000-02-08

    Solar Two was a collaborative, cost-shared project between eleven US industry and utility partners and the U. S. Department of Energy to validate molten-salt power tower technology. The Solar Two plant, located east of Barstow, CA, was comprised of 1926 heliostats, a receiver, a thermal storage system and a steam generation system. Molten nitrate salt was used as the heat transfer fluid and storage media. The steam generator powered a 10 MWe, conventional Rankine cycle turbine. Solar Two operated from June 1996 to April 1999. The major objective of the test and evaluation phase of the project was to validate the technical characteristics of a molten salt power tower. This paper describes the significant results from the test and evaluation activities.

  19. Summary of Test Results for Daya Bay Rock Samples

    SciTech Connect

    Onishi, Celia Tiemi; Dobson, Patrick; Nakagawa, Seiji

    2004-10-12

    A series of analytical tests was conducted on a suite of granitic rock samples from the Daya Bay region of southeast China. The objective of these analyses was to determine key rock properties that would affect the suitability of this location for the siting of a neutrino oscillation experiment. This report contains the results of chemical analyses, rock property measurements, and a calculation of the mean atomic weight.

  20. Intergranular corrosion in a martensitic stainless steel detected by electrochemical tests

    SciTech Connect

    Alonso-Falleiros, N.; Magri, M.; Falleiros, I.G.S.

    1999-08-01

    Quenched and tempered martensitic stainless steel UNS S41000 was tested electrochemically for susceptibility to sensitization in specimens quenched from 975 C (1,248 K) and tempered for 2 h at different temperatures between 300 C (573 K) and 700 C (973 K). Besides an oxalic acid etch test, the following tests were performed using a potentiostat and 1 N sulfuric acid (H{sub 2}SO{sub 4}) solution: potentiokinetic polarization, potentiostatic etch, and electrochemical potentiokinetic reactivation in the double-loop version (DL-EPR). Tested surfaces were observed metallographically. The maximum susceptibility to intergranular corrosion was observed in the condition tempered at 550 C (823 K), and a sensitized structure was detected. For lower tempering temperatures, steel was less sensitized, or not at all, and for higher tempering temperatures, steel was less sensitized. All tests except for the oxalic acid etch were able to evaluate quantitatively different degrees of sensitization as a function of tempering temperature. The DL-EPR method was the best to discriminate degrees of sensitization.

  1. Data summary report for fission product release Test VI-7

    SciTech Connect

    Osborne, M.F.; Lorentz, R.A.; Travis, J.R.; Collins, J.L.; Webster, C.S.

    1995-05-01

    Test VI-7 was the final test in the VI series conducted in the vertical furnace. The fuel specimen was a 15.2-cm-long section of a fuel rod from the Monticello boiling water reactor (BWR). The fuel had experienced a burnup of {approximately}-40 Mwd/kg U. It was heated in an induction furnace for successive 20-min periods at 2000 and 2300 K in a moist air-helium atmosphere. Integral releases were 69% for {sup 85}Kr, 52% for {sup 125}Sb, 71% for both {sup 134}Cs and {sup 137}Cs, and 0.04% for {sup 154}Eu. For the non-gamma-emitting species, release values for 42% for I, 4.1% for Ba, 5.3% for Mo, and 1.2% for Sr were determined. The total mass released from the furnace to the collection system, including fission products, fuel, and structural materials, was 0.89 g, with 37% being collected on the thermal gradient tubes and 63% downstream on filters. Posttest examination of the fuel specimen indicated that most of the cladding was completely oxidized to ZrO{sub 2}, but that oxidation was not quite complete at the upper end. The release behaviors for the most volatile elements, Kr and Cs, were in good agreement with the ORNL-Booth Model.

  2. Compilation of corrosion data on CAN-DECON. Volume 1. General, galvanic, crevice, and pitting corrosion data from CANDU and BWR tests. Final report

    SciTech Connect

    Michalko, J.P.; Bonnici, P.J.; Smee, J.L.

    1985-10-01

    Nuclear power station ALARA radiation exposure criteria require, in many cases, decontamination of specific equipment or systems before maintenance, inspection, or work in an adjacent high radiation area. Chemical decontamination, which can be performed away from the high radiation fields, can often best satisfy these ALARA exposure criteria. CAN-DECON, a dilute chemical decontamination process was developed to meet the needs of the Canadian CANDU reactors. It was found to be effective in dissolving BWR oxide films that contain the entrapped radioactive species contributing to high radiation fields. During the development phase of the process and during subsequent field application, CAN-DECON has undergone extensive testing to determine the extent of oxide film dissolution and the degree of corrosion of materials used in construction of reactor components. This has been accomplished on many of the various materials of construction found in the components of the systems decontaminated. Materials tested include carbon steels with range of carbon content 0.1 to 0.4 wt %, 300 series, 400 series, and specialty stainless steels, low alloy steels, and gasket and seal materials. CAN-DECON caused little or no significant corrosion or deterioration on any of the materials tested when applied under conditions appropriate to that class of material. 2 figs., 63 tabs.

  3. The effect of heat treatment and test parameters on the aqueous stress corrosion cracking of D6AC steel

    NASA Technical Reports Server (NTRS)

    Gilbreath, W. P.; Adamson, M. J.

    1974-01-01

    The crack growth behavior of D6AC steel as a function of stress intensity, stress and corrosion history and test technique, under sustained load in natural seawater, 3.3 percent NaCl solution, distilled water, and high humidity air was investigated. Reported investigations of D6AC were considered with emphasis on thermal treatment, specimen configuration, fracture toughness, crack-growth rates, initiation period, threshold, and the extension of corrosion fatigue data to sustained load conditions. Stress history effects were found to be most important in that they controlled incubation period, initial crack growth rates, and apparent threshold.

  4. Corrosion Assessment of Steel Bars Used in Reinforced Concrete Structures by Means of Eddy Current Testing.

    PubMed

    de Alcantara, Naasson P; da Silva, Felipe M; Guimarães, Mateus T; Pereira, Matheus D

    2015-12-24

    This paper presents a theoretical and experimental study on the use of Eddy Current Testing (ECT) to evaluate corrosion processes in steel bars used in reinforced concrete structures. The paper presents the mathematical basis of the ECT sensor built by the authors; followed by a finite element analysis. The results obtained in the simulations are compared with those obtained in experimental tests performed by the authors. Effective resistances and inductances; voltage drops and phase angles of wound coil are calculated using both; simulated and experimental data; and demonstrate a strong correlation. The production of samples of corroded steel bars; by using an impressed current technique is also presented. The authors performed experimental tests in the laboratory using handmade sensors; and the corroded samples. In the tests four gauges; with five levels of loss-of-mass references for each one were used. The results are analyzed in the light of the loss-of-mass and show a strong linear behavior for the analyzed parameters. The conclusions emphasize the feasibility of the proposed technique and highlight opportunities for future works.

  5. Microbiologically influenced corrosion of stainless steel weld and base metal -- 4 year field test results

    SciTech Connect

    Felder, C.M.; Stein, A.A.

    1994-12-31

    This paper presents the results obtained from a 4-year test program to determine the effects of microbiologically influenced corrosion (MIC) on piping materials under service conditions representative of a fresh water cooling water system. The test was performed in a field installed test loop and was constructed to operate under four typical flow conditions: continuous flow at 4--6 fps (1.2--1.8 m/s), continuous flow at 0.5--1 fps (0.15--0.3 m/s), intermittent flow, and stagnant. Test materials consisted of pipe spools as well as coupons fabricated from Type 304, Type 316, Type 316L, and 6-percent molybdenum stainless steel, and titanium pipe. The pipe spools and coupons contained girth welds; the stainless steel girth welds were made with high and low heat inputs. Two types of bacterial colonization, bulbous nodules and shiny flat deposits, were observed in both weld metal and base metal of the Type 300 series materials, including Type 316L. Three different MIC morphologies were observed: pits with small openings and extensive tunneling, open pits, and shallow surface attack. A correlation was found to exist between the type of bacteria colonization, the MIC morphology, and the metallurgical characteristics of the materials. The MIC was not preferential to sensitized regions but was found to be related to residual cold work in the material.

  6. Corrosion Assessment of Steel Bars Used in Reinforced Concrete Structures by Means of Eddy Current Testing

    PubMed Central

    de Alcantara, Naasson P.; da Silva, Felipe M.; Guimarães, Mateus T.; Pereira, Matheus D.

    2015-01-01

    This paper presents a theoretical and experimental study on the use of Eddy Current Testing (ECT) to evaluate corrosion processes in steel bars used in reinforced concrete structures. The paper presents the mathematical basis of the ECT sensor built by the authors; followed by a finite element analysis. The results obtained in the simulations are compared with those obtained in experimental tests performed by the authors. Effective resistances and inductances; voltage drops and phase angles of wound coil are calculated using both; simulated and experimental data; and demonstrate a strong correlation. The production of samples of corroded steel bars; by using an impressed current technique is also presented. The authors performed experimental tests in the laboratory using handmade sensors; and the corroded samples. In the tests four gauges; with five levels of loss-of-mass references for each one were used. The results are analyzed in the light of the loss-of-mass and show a strong linear behavior for the analyzed parameters. The conclusions emphasize the feasibility of the proposed technique and highlight opportunities for future works. PMID:26712754

  7. TEST PLAN AND PROCEDURE FOR THE EXAMINATION OF TANK 241-AY-101 MULTI-PROBE CORROSION MONITORING SYSTEM

    SciTech Connect

    WYRWAS RB; PAGE JS; COOKE GS

    2012-04-19

    This test plan describes the methods to be used in the forensic examination of the Multi-probe Corrosion Monitoring System (MPCMS) installed in the double-shell tank 241-AY-101 (AY-101). The probe was designed by Applied Research and Engineering Sciences (ARES) Corporation. The probe contains four sections, each of which can be removed from the tank independently (H-14-107634, AY-101 MPCMS Removable Probe Assembly) and one fixed center assembly. Each removable section contains three types of passive corrosion coupons: bar coupons, round coupons, and stressed C-rings (H-14-l07635, AY-101 MPCMS Details). Photographs and weights of each coupon were recorded and reported on drawing H-14-107634 and in RPP-RPT-40629, 241-AY-101 MPCMS C-Ring Coupon Photographs. The coupons will be the subject of the forensic analyses. The purpose of this examination will be to document the nature and extent of corrosion of the 29 coupons. This documentation will consist of photographs and photomicrographs of the C-rings and round coupons, as well as the weights of the bar and round coupons during corrosion removal. The total weight loss of the cleaned coupons will be used in conjunction with the surface area of each to calculate corrosion rates in mils per year. The bar coupons were presumably placed to investigate the liquid-air-interface. An analysis of the waste level heights in the waste tank will be investigated as part of this examination.

  8. Nevada Test Site Experimental Farm: summary report 1963-1981

    SciTech Connect

    Black, S.C.; Smith, D.D.

    1984-08-01

    This report summarizes the findings from experiments conducted at the Experimental Dairy Farm located on the Nevada Test Site. These experiments included the air-forage-cow-milk transport of the radioiodines, and the metabolism and milk transfer of other fission products and several actinides. Major studies are listed in chronological order from 1964 to 1978 and include the purpose, procedures, isotopes used, and findings for each such study. Animal exposures occurred from fallout, from artificial aerosol generation, and from oral or intravenous administration. A complete bibliography and references to published reports of the experiments are included. The findings from the radioisotope studies at the Experimental Dairy Farm and the results obtained from the Animal Investigation Program provide a rationale for making predictions and for planning protective actions that could be useful in emergency response to accidental contaminating events where fresh fission products are involved. 61 references.

  9. Data summary report for fission product release test VI-6

    SciTech Connect

    Osborne, M.F.; Lorenz, R.A.; Travis, J.R.; Webster, C.S.; Collins, J.L.

    1994-03-01

    Test VI-6 was the sixth test in the VI series conducted in the vertical furnace. The fuel specimen was a 15.2-cm-long section of a fuel rod from the BR3 reactor in Belgium. The fuel had experienced a burnup of {approximately}42 MWd/kg, with inert gas release during irradiation of {approximately}2%. The fuel specimen was heated in an induction furnace at 2300 K for 60 min, initially in hydrogen, then in a steam atmosphere. The released fission products were collected in three sequentially operated collection trains designed to facilitate sampling and analysis. The fission product inventories in the fuel were measured directly by gamma-ray spectrometry, where possible, and were calculated by ORIGEN2. Integral releases were 75% for {sup 85}Kr, 67% for {sup 129}I, 64% for {sup 125}Sb, 80% for both {sup 134}Cs and {sup 137}Cs, 14% for {sup 154}Eu, 63% for Te, 32% for Ba, 13% for Mo, and 5.8% for Sr. Of the totals released from the fuel, 43% of the Cs, 32% of the Sb, and 98% of the Eu were deposited in the outlet end of the furnace. During the heatup in hydrogen, the Zircaloy cladding melted, ran down, and reacted with some of the UO{sub 2} and fission products, especially Te and Sb. The total mass released from the furnace to the collection system, including fission products, fuel, and structural materials, was 0.57 g, almost equally divided between thermal gradient tubes and filters. The release behaviors for the most volatile elements, Kr and Cs, were in good agreement with the ORNL Diffusion Model.

  10. Summary of recent Raman Spectroscopy testing of SRS processes

    SciTech Connect

    Fondeur, F. F.; Lascola, R. J.; O'Rourke, P. E.

    2016-01-01

    This report describes several scoping projects conducted at SRNL using Raman spectroscopic methods for monitoring different aspects of nuclear waste and materials processing. One project examined the suitability of a Raman telescope for in situ measurement of solid residues in waste tanks. Characteristics evaluated for this equipment included radiation resistance, ease of use, and sensitivity. A second project monitored the nitrate content in liquid filtrate from the testing of a rotary microfilter using a fiber-based insertion probe. The third project made Raman measurements of various gases, including H2 and NOx, in the headspace of a vessel while dissolving aluminum coupons in nitric acid. Measurements followed the evolution of these species in real time. Although the majority of these projects occurred in the laboratory environment, SRNL has substantial experience with implementing other optical techniques into nuclear materials processing environments. The work described in this report shows the potential of the Raman technology to provide real time measurements of species such as nitrate or hydroxide during sludge washing or evolved gases such as hydrogen or NOx during waste processing.

  11. Waste dislodging and conveyance testing summary and conclusions to date

    SciTech Connect

    Rinker, M.W.; Hatchell, B.K.; Mullen, O.D.

    1994-09-01

    This document summarizes recent work performed by the Waste Dislodging and Conveyance technology development program to provide assistance with the retrieval of wastes from the Hanford single-shell tanks (SSTs). This work is sponsored by the Underground Storage Tank-Integrated Demonstration (UST-ID) Office with the U.S. Department of Energy (DOE) Office of Technology Development. A baseline technology of high-pressure water-jet dislodging and pneumatic conveyance integrated as a scarifier is proposed as a means of retrieval. The tests and studies described were performed to demonstrate that at least one robust technology exists that could be effectively used with low water-addition arm-based systems. These results are preliminary and do not represent an optimized baseline. The Waste Dislodging and Conveyance work thus far has demonstrated that waterjet mobilization and air conveyance can mobilize and convey SST waste simulants at the target rates while operating within the space envelope and the dynamic loading constraints of deployment devices. The recommended technologies are well proven in industrial applications and are quite robust, yet lightweight and relatively benign to the retrieval environment. The baseline approach has versatility to continuously dislodge and convey a broad range of waste forms, from hard wastes to soft sludge wastes. The approach also has the major advantage of being noncontact with the waste surface under normal operation.

  12. Advanced Test Reactor probabilistic risk assessment methodology and results summary

    SciTech Connect

    Eide, S.A.; Atkinson, S.A.; Thatcher, T.A.

    1992-01-01

    The Advanced Test Reactor (ATR) probabilistic risk assessment (PRA) Level 1 report documents a comprehensive and state-of-the-art study to establish and reduce the risk associated with operation of the ATR, expressed as a mean frequency of fuel damage. The ATR Level 1 PRA effort is unique and outstanding because of its consistent and state-of-the-art treatment of all facets of the risk study, its comprehensive and cost-effective risk reduction effort while the risk baseline was being established, and its thorough and comprehensive documentation. The PRA includes many improvements to the state-of-the-art, including the following: establishment of a comprehensive generic data base for component failures, treatment of initiating event frequencies given significant plant improvements in recent years, performance of efficient identification and screening of fire and flood events using code-assisted vital area analysis, identification and treatment of significant seismic-fire-flood-wind interactions, and modeling of large loss-of-coolant accidents (LOCAs) and experiment loop ruptures leading to direct damage of the ATR core. 18 refs.

  13. Fast Flux Test Facility (FFTF) Briefing Book 1 Summary

    SciTech Connect

    WJ Apley

    1997-12-01

    This report documents the results of evaluations preformed during 1997 to determine what, if an, future role the Fast Flux Test Facility (FFTF) might have in support of the Department of Energy’s tritium productions strategy. An evaluation was also conducted to assess the potential for the FFTF to produce medical isotopes. No safety, environmental, or technical issues associated with producing 1.5 kilograms of tritium per year in the FFTF have been identified that would change the previous evaluations by the Department of Energy, the JASON panel, or Putnam, Hayes & Bartlett. The FFTF can be refitted and restated by July 2002 for a total expenditure of $371 million, with an additional $64 million of startup expense necessary to incorporate the production of medical isotopes. Therapeutic and diagnostic applications of reactor-generated medical isotopes will increase dramatically over the next decade. Essential medical isotopes can be produced in the FFTF simultaneously with tritium production, and while a stand-alone medical isotope mission for the facility cannot be economically justified given current marker conditions, conservative estimates based on a report by Frost &Sullivan indicate that 60% of the annual operational costs (reactor and fuel supply) could be offset by revenues from medical isotope production within 10 yeas of restart. The recommendation of the report is for the Department of Energy to continue to maintain the FFTF in standby and proceed with preparation of appropriate Nations Environmental Policy Act documentation in full consultation with the public to consider the FFTF as an interim tritium production option (1.5 kilograms/year) with a secondary mission of producing medical isotopes.

  14. Pitting Corrosion Characterization of Wrought Stellite Alloys in Green Death Solution with Immersion Test and Extreme Value Analysis Model

    NASA Astrophysics Data System (ADS)

    Zhang, X. Z.; Liu, R.; Chen, K. Y.; Yao, M. X.

    2014-05-01

    This article presents a study of the corrosion behavior of two wrought Stellite alloys, Stellite 6B, and Stellite 6K, in Green Death solution, utilizing the extreme value analysis (EVA) model, which is a statistics tool developed based on the Gumbel distribution. Green Death solution a typical oxidized testing solution used in industry for assessing the corrosion resistance of materials. The data of maximum pit depths are obtained from the immersion tests on these alloys for various exposure periods. The top ten maximum pit depths in each specimen surface after the immersion test are measured using a surface texture and contour measuring instrument. These data are the input parameters of the EVA model and the outcomes of the model are the extreme values (minimum thickness) required for the alloys under a given service condition. It is shown that Stellite 6K, which contains higher carbon content but smaller-size carbides, exhibits better corrosion resistance in regard to the extreme value. The results and mechanisms of Stellite 6B and Stellite 6K in Green Death solution corrosion are discussed.

  15. Preirradiation Data summary for the GRIT-II HTGR irradiation test specimens

    SciTech Connect

    Hollenbeck, J.L.

    1995-05-01

    This document comprises a report of preirradiation data on the NPR-5 and NPR-8 fuel types tested in the GRIT-II HTGR Irradiation Test in the Advanced Test Reactor. A summary of fuel characterization, GRIT-II test fabrication data, outlines of fabrication procedures, and a discussion of the GRIT technique for individual fuel bead testing is presented. Objective of the test is to provide individual irradiated HTGR fuel beads for post-irradiation valuation with total target burnups of 25, 50, and 75% fissions of initial metal atoms (FIMA).

  16. Critical assessment of precracked specimen configuration and experimental test variables for stress corrosion testing of 7075-T6 aluminum alloy plate

    NASA Technical Reports Server (NTRS)

    Domack, M. S.

    1985-01-01

    A research program was conducted to critically assess the effects of precracked specimen configuration, stress intensity solutions, compliance relationships and other experimental test variables for stress corrosion testing of 7075-T6 aluminum alloy plate. Modified compact and double beam wedge-loaded specimens were tested and analyzed to determine the threshold stress intensity factor and stress corrosion crack growth rate. Stress intensity solutions and experimentally determined compliance relationships were developed and compared with other solutions available in the literature. Crack growth data suggests that more effective crack length measurement techniques are necessary to better characterize stress corrosion crack growth. Final load determined by specimen reloading and by compliance did not correlate well, and was considered a major source of interlaboratory variability. Test duration must be determined systematically, accounting for crack length measurement resolution, time for crack arrest, and experimental interferences. This work was conducted as part of a round robin program sponsored by ASTM committees G1.06 and E24.04 to develop a standard test method for stress corrosion testing using precracked specimens.

  17. Stress corrosion cracking of alloy 600 using the constant strain rate test

    SciTech Connect

    Bulischeck, T. S.; van Rooyen, D.

    1980-01-01

    The most recent corrosion problems experienced in nuclear steam generators tubed with Inconel alloy 600 is a phenomenon labeled ''denting''. Denting has been found in various degrees of severity in many operating pressurized water reactors. Laboratory investigations have shown that Inconel 600 exhibits intergranular SCC when subjected to high stresses and exposed to deoxygenated water at elevated temperatures. A research project was initiated at Brookhaven National Laboratory in an attempt to improve the qualitative and quantitative understanding of factors influencing SCC in high temperature service-related environments. An effort is also being made to develop an accelerated test method which could be used to predict the service life of tubes which have been deformed or are actively denting. Several heats of commercial Inconel 600 tubing were procured for testing in deaerated pure and primary water at temperatures from 290 to 365/sup 0/C. U-bend type specimens were used to determine crack initiation times which may be expected for tubes where denting has occurred but is arrested and provide baseline data for judging the accelerating effects of the slow strain rate method. Constant extension rate tests were employed to determine the crack velocities experienced in the crack propagation stage and predict failure times of tubes which are actively denting. 8 refs., 17 figs., 5 tabs.

  18. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings

    SciTech Connect

    Van Weele, S. )

    1991-08-01

    Fireside corrosion, caused by liquid alkali-iron trisulfates, has been an obstacle to higher steam temperatures and to efficient utilization of high-sulfur coals. Tests simulating the environment in the superheater bank of a pulverized-coal-fired boiler were conducted on several promising new alloys and claddings. Alloys were exposed to a variety of synthetic ash and simulated flue gas compositions at 650 and 700{degrees}C for times ranging up to 800 hours. Included in the testing program were new high-chromium/high-nickel alloys, modified commercial alloys, lean stainless steels (modified Type 316) clad with high-chromium/high-nickel alloys, and intermetallic aluminides. Thickness loss measurements indicated that resistance to attach improved with increasing chromium level. Silicon and aluminum were also helpful in resisting attack, while molybdenum was detrimental to the resistance of the alloys to attack. Three different attack modes were observed on the alloys tested. Alloys with low resistance to attack exhibited uniform wastage, while pitting was observed in more resistant alloys. In addition to surface fluxing by molten alkali-iron trisulfates, subsurface sulfur penetration and intergranular attack also occurred.

  19. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings. Final report

    SciTech Connect

    Van Weele, S.

    1991-08-01

    Fireside corrosion, caused by liquid alkali-iron trisulfates, has been an obstacle to higher steam temperatures and to efficient utilization of high-sulfur coals. Tests simulating the environment in the superheater bank of a pulverized-coal-fired boiler were conducted on several promising new alloys and claddings. Alloys were exposed to a variety of synthetic ash and simulated flue gas compositions at 650 and 700{degrees}C for times ranging up to 800 hours. Included in the testing program were new high-chromium/high-nickel alloys, modified commercial alloys, lean stainless steels (modified Type 316) clad with high-chromium/high-nickel alloys, and intermetallic aluminides. Thickness loss measurements indicated that resistance to attach improved with increasing chromium level. Silicon and aluminum were also helpful in resisting attack, while molybdenum was detrimental to the resistance of the alloys to attack. Three different attack modes were observed on the alloys tested. Alloys with low resistance to attack exhibited uniform wastage, while pitting was observed in more resistant alloys. In addition to surface fluxing by molten alkali-iron trisulfates, subsurface sulfur penetration and intergranular attack also occurred.

  20. An Adaptive Association Test for Multiple Phenotypes with GWAS Summary Statistics.

    PubMed

    Kim, Junghi; Bai, Yun; Pan, Wei

    2015-12-01

    We study the problem of testing for single marker-multiple phenotype associations based on genome-wide association study (GWAS) summary statistics without access to individual-level genotype and phenotype data. For most published GWASs, because obtaining summary data is substantially easier than accessing individual-level phenotype and genotype data, while often multiple correlated traits have been collected, the problem studied here has become increasingly important. We propose a powerful adaptive test and compare its performance with some existing tests. We illustrate its applications to analyses of a meta-analyzed GWAS dataset with three blood lipid traits and another with sex-stratified anthropometric traits, and further demonstrate its potential power gain over some existing methods through realistic simulation studies. We start from the situation with only one set of (possibly meta-analyzed) genome-wide summary statistics, then extend the method to meta-analysis of multiple sets of genome-wide summary statistics, each from one GWAS. We expect the proposed test to be useful in practice as more powerful than or complementary to existing methods.

  1. The Non-Destructive Test of Steel Corrosion in Reinforced Concrete Bridges Using a Micro-Magnetic Sensor.

    PubMed

    Zhang, Hong; Liao, Leng; Zhao, Ruiqiang; Zhou, Jianting; Yang, Mao; Xia, Runchuan

    2016-09-06

    This paper presents a non-destructive test method for steel corrosion in reinforced concrete bridges by using a 3-dimensional digital micro-magnetic sensor to detect and analyze the self-magnetic field leakage from corroded reinforced concrete. The setup of the magnetic scanning device and the measurement mode of the micro-magnetic sensor are introduced. The numerical analysis model is also built based on the linear magnetic charge theory. Compared to the self-magnetic field leakage data obtained from magnetic sensor-based measurement and numerical calculation, it is shown that the curves of tangential magnetic field at different lift-off height all intersect near the edge of the steel corrosion zone. The result indicates that the intersection of magnetic field curves can be used to detect and evaluate the range of the inner steel corrosion in engineering structures. The findings of this work propose a new and effective non-destructive test method for steel corrosion, and therefore enlarge the application of the micro-magnetic sensor.

  2. The Non-Destructive Test of Steel Corrosion in Reinforced Concrete Bridges Using a Micro-Magnetic Sensor

    PubMed Central

    Zhang, Hong; Liao, Leng; Zhao, Ruiqiang; Zhou, Jianting; Yang, Mao; Xia, Runchuan

    2016-01-01

    This paper presents a non-destructive test method for steel corrosion in reinforced concrete bridges by using a 3-dimensional digital micro-magnetic sensor to detect and analyze the self-magnetic field leakage from corroded reinforced concrete. The setup of the magnetic scanning device and the measurement mode of the micro-magnetic sensor are introduced. The numerical analysis model is also built based on the linear magnetic charge theory. Compared to the self-magnetic field leakage data obtained from magnetic sensor-based measurement and numerical calculation, it is shown that the curves of tangential magnetic field at different lift-off height all intersect near the edge of the steel corrosion zone. The result indicates that the intersection of magnetic field curves can be used to detect and evaluate the range of the inner steel corrosion in engineering structures. The findings of this work propose a new and effective non-destructive test method for steel corrosion, and therefore enlarge the application of the micro-magnetic sensor. PMID:27608029

  3. The Non-Destructive Test of Steel Corrosion in Reinforced Concrete Bridges Using a Micro-Magnetic Sensor.

    PubMed

    Zhang, Hong; Liao, Leng; Zhao, Ruiqiang; Zhou, Jianting; Yang, Mao; Xia, Runchuan

    2016-01-01

    This paper presents a non-destructive test method for steel corrosion in reinforced concrete bridges by using a 3-dimensional digital micro-magnetic sensor to detect and analyze the self-magnetic field leakage from corroded reinforced concrete. The setup of the magnetic scanning device and the measurement mode of the micro-magnetic sensor are introduced. The numerical analysis model is also built based on the linear magnetic charge theory. Compared to the self-magnetic field leakage data obtained from magnetic sensor-based measurement and numerical calculation, it is shown that the curves of tangential magnetic field at different lift-off height all intersect near the edge of the steel corrosion zone. The result indicates that the intersection of magnetic field curves can be used to detect and evaluate the range of the inner steel corrosion in engineering structures. The findings of this work propose a new and effective non-destructive test method for steel corrosion, and therefore enlarge the application of the micro-magnetic sensor. PMID:27608029

  4. Reconstruction of stress corrosion cracks using signals of pulsed eddy current testing

    NASA Astrophysics Data System (ADS)

    Wang, Li; Xie, Shejuan; Chen, Zhenmao; Li, Yong; Wang, Xiaowei; Takagi, Toshiyuki

    2013-06-01

    A scheme to apply signals of pulsed eddy current testing (PECT) to reconstruct a deep stress corrosion crack (SCC) is proposed on the basis of a multi-layer and multi-frequency reconstruction strategy. First, a numerical method is introduced to extract conventional eddy current testing (ECT) signals of different frequencies from the PECT responses at different scanning points, which are necessary for multi-frequency ECT inversion. Second, the conventional fast forward solver for ECT signal simulation is upgraded to calculate the single-frequency pickup signal of a magnetic field by introducing a strategy that employs a tiny search coil. Using the multiple-frequency ECT signals and the upgraded fast signal simulator, we reconstructed the shape profiles and conductivity of an SCC at different depths layer-by-layer with a hybrid inversion scheme of the conjugate gradient and particle swarm optimisation. Several modelled SCCs of rectangular or stepwise shape in an SUS304 plate are reconstructed from simulated PECT signals with artificial noise. The reconstruction results show better precision in crack depth than the conventional ECT inversion method, which demonstrates the validity and efficiency of the proposed PECT inversion scheme.

  5. Summary report for the interlaboratory round robin on the MCC-1 static leach test method

    SciTech Connect

    Johnston, J.W.; Daniel, J.L.

    1982-03-01

    The MCC-1 Static Leach Test Method Round Robbin (RR) was conducted by the Materials Characterization Center (MCC) over a period of 15 months, 1980-82. A total of 25 laboratories provided data in connection with the RR. All together these laboratories tested 769 waste form specimens using the 1980 draft of MCC-1. The specimens tested were approximately one gram wafers cut by the laboratory from samples provided by MCC: NBS borosilicate glass; core dillings of basalt from the Hanford Reservation; and MCC Type 76-68 simulated waste glass. These specimens were tested for 3, 7, 14, 28 days in ovens at 90/sup 0/C using three different leachants. The resulting leachates were analyzed for elemental concentrations, and elemental mass losses were calculated. The specimens were weighed before and after leaching to determine specimen mass loss. This summary report on the round robin has two major parts: Part I provides plots of the data (which are listed in an Appendix) and summary statistics so that the participating laboratories can compare performance with other laboratories. From these plots and summaries, each laboratory also can identify its problem areas. Part II discusses the statistical analysis of the data, and characterizes the precision of the MCC-1 Static Leach Test Method at the time the RR was conducted. The precision characterization indicates that the MCC and waste form community need to institute tighter control of MCC-1 and similar testing practices to reduce the impact of between-laboratory differences on statistical comparisons.

  6. Test Activities in the Langley Transonic Dynamics Tunnel and a Summary of Recent Facility Improvements

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.; Johnson, R. Keith; Piatak, David J.; Florance, Jennifer P.; Rivera, Jose A., Jr.

    2003-01-01

    The Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for over forty years. The facility has a rich history of significant contributions to the design of many United States commercial transports, military aircraft, launch vehicles, and spacecraft. The facility has many features that contribute to its uniqueness for aeroelasticity testing, perhaps the most important feature being the use of a heavy gas test medium to achieve higher test densities compared to testing in air. Higher test medium densities substantially improve model-building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind tunnel models. This paper describes TDT capabilities that make it particularly suited for aeroelasticity testing. The paper also discusses the nature of recent test activities in the TDT, including summaries of several specific tests. Finally, the paper documents recent facility improvement projects and the continuous statistical quality assessment effort for the TDT.

  7. Effect of mechanical cleaning on seawater corrosion of candidate OTEC heat exchanger materials. Part 2. Tests with Amertap sponge rubber balls

    SciTech Connect

    Tipton, D.G.

    1981-06-01

    Corrosion evaluations were conducted on 3003 Alclad, C70600 copper-nickel, and commercially-pure titanium in natural seawater under simulated OTEC heat exchanger conditions to investigate the erosion-corrosion effects of mechanical tube cleaning under aggressive over-cleaning conditions. Test conditions for 3003 Alclad included Amertap soft sponge ball cleaning with and without chlorination. Amertap abrasive sponge ball cleaning with and without chlorination, and no mechanical cleaning as a control. C70600 was exposed to Amertap soft sponge ball cleaning with and without chlorination and with no mechanical cleaning as a control. Titanium was cleaned by abrasive Amertap sponge balls with and without chlorination and compared to no mechanical cleaning as a control. Test exposures of 8, 16, 30, 60, 90 and 180 days were made. The sequence of Amertap sponge ball cleaning utilized in the present tests significantly accelerated corrosion of 3003 Alclad. Chlorination brought about a further acceleration of erosion-corrosion of Alclad. Amertap soft sponge ball cleaning of C70600 caused significant acceleration of corrosion under these over-cleaning conditions. Chlorination somewhat decreased erosion corrosion of C70600. Titanium showed no substantial effect of Amertap abrasive sponge ball cleaning on corrosion, although measurable weight losses were incurred. Chlorination had no measurable effect on erosion-corrosion of titanium.

  8. Utilizing various test methods to study the stress corrosion behavior of Al-Li-Cu alloys

    NASA Technical Reports Server (NTRS)

    Pizzo, P. P.; Galvin, R. P.; Nelson, H. G.

    1984-01-01

    Recently, much attention has been given to aluminum-lithium alloys because of rather substantial specific-strength and specific-stiffness advantages offered over commercial 2000and 7000-series aluminum alloys. An obstacle to Al-Li alloy development has been inherent limited ductility. In order to obtain a more refined microstructure, powder metallurgy (P/M) has been employed in alloy development programs. As stress corrosion (SC) of high-strength aluminum alloys has been a major problem in the aircraft industry, the possibility of an employment of Al-Li alloys has been considered, taking into account a use of Al-Li-Cu alloys. Attention is given to a research program concerned with the evaluation of the relative SC resistance of two P/M processed Al-Li-Cu alloys. The behavior of the alloys, with and without an addition of magnesium, was studied with the aid of three test methods. The susceptibility to SC was found to depend on the microstructure of the alloys.

  9. High gas velocity oxidation and hot corrosion testing of oxide dispersion-strengthened nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.

    1975-01-01

    Several oxide dispersion strengthened (ODS) nickel-base alloys were tested in high velocity gases for cyclic oxidation resistance at temperatures to 1200 C and times to 500 hours and for hot corrosion resistance at 900 C for 200 hours. Nickel-chromium-aluminum ODS alloys were found to have superior resistance to oxidation and hot corrosion when compared to bare and coated nickel-chromium ODS alloys. The best of the alloys tested had compositions of nickel - 15.5 to 16 weight percent chromium with aluminum weight percents between 4.5 and 5.0. All of the nickel-chromium-aluminum ODS materials experienced small weight losses (less than 16 mg/sq cm).

  10. Using the Bootstrap Method for a Statistical Significance Test of Differences between Summary Histograms

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man

    2006-01-01

    A new method is proposed to compare statistical differences between summary histograms, which are the histograms summed over a large ensemble of individual histograms. It consists of choosing a distance statistic for measuring the difference between summary histograms and using a bootstrap procedure to calculate the statistical significance level. Bootstrapping is an approach to statistical inference that makes few assumptions about the underlying probability distribution that describes the data. Three distance statistics are compared in this study. They are the Euclidean distance, the Jeffries-Matusita distance and the Kuiper distance. The data used in testing the bootstrap method are satellite measurements of cloud systems called cloud objects. Each cloud object is defined as a contiguous region/patch composed of individual footprints or fields of view. A histogram of measured values over footprints is generated for each parameter of each cloud object and then summary histograms are accumulated over all individual histograms in a given cloud-object size category. The results of statistical hypothesis tests using all three distances as test statistics are generally similar, indicating the validity of the proposed method. The Euclidean distance is determined to be most suitable after comparing the statistical tests of several parameters with distinct probability distributions among three cloud-object size categories. Impacts on the statistical significance levels resulting from differences in the total lengths of satellite footprint data between two size categories are also discussed.

  11. SUMMARY OF ‘AFIP’ FULL SIZED PLATE IRRADIATIONS IN THE ADVANCED TEST REACTOR

    SciTech Connect

    Robinson, Adam B; Wachs, Daniel M

    2010-03-01

    Recent testing at the Idaho National Laboratory has included four AFIP (ATR Full Size plate In center flux trap Position) experiments. These experiments included both dispersion plates and monolithic plates fabricated by both hot isostatic pressing and friction bonding utilizing both thermally sprayed inter-layers and zirconium barriers. These plates were tested between 100 and 350 w/cm2 at low temperatures and high burn-ups. The post irradiation exams performed have indicated good performance under the conditions tested and a summary of the findings and irradiation history are included herein.

  12. Fixed-bed gasifier and cleanup system engineering summary report through Test Run No. 100

    SciTech Connect

    Pater, K. Jr.; Headley, L.; Kovach, J.; Stopek, D.

    1984-06-01

    The state-of-the-art of high-pressure, fixed-bed gasification has been advanced by the many refinements developed over the last 5 years. A novel full-flow gas cleanup system has been installed and tested to clean coal-derived gases. This report summarizes the results of tests conducted on the gasifier and cleanup system from its inception through 1982. Selected process summary data are presented along with results from complementary programs in the areas of environmental research, process simulation, analytical methods development, and component testing. 20 references, 32 figures, 42 tables.

  13. A Qualitative Comparison of the C-Ring Test and the Jones Test as Standard Practice Test Methods for Studying Stress Corrosion Cracking in Ferritic Steels

    SciTech Connect

    Thomson, Jeffery K; Pawel, Steven J

    2015-01-01

    Creep-strength-enhanced-ferritic (CSEF) steels have been widely implemented as water wall alloy materials in the coal-fired power industry for many years. The stress corrosion cracking (SCC) behavior of this class of materials is currently of significant interest to the industry due to recent failures. To better understand the test methods used to characterize SCC behavior in the laboratory, three representative CSEF alloys (T23, T24, and T92) were subjected to two SCC test protocols: the Jones Test set forth in DIN 50915, and the C-ring SCC test set forth in ASTM G38-01. Samples were tested in either the as-received (normalized + tempered) condition or in the normalized condition (quenched from 1065 C). Samples were exposed to aerated water in one test case and de-aerated water in a second test case for a period of 7 days at 200 C. It was found that for both test protocols, the normalized condition with aerated water led to severe cracking for all three alloys, whereas no evidence of cracking was found for the other conditions.

  14. Chemical processes involved in the initiation of hot corrosion of B-1900 and NASA-TRW VIA. [high temperature tests of superalloys

    NASA Technical Reports Server (NTRS)

    Fryburg, G. C.; Kohl, F. J.; Stearns, C. A.

    1979-01-01

    Sodium surface-induced hot corrosion of B-1900 and NASA-TRW VIA alloys at 900 C has been studied, with special attention to the chemical reactions during and immediately after the induction period. Thermogravimetric tests were run and data were obtained by chemical analysis of water soluble metal salts and of residual sulfate. Surface analyses of hot corroded samples were obtained by spectroscopic techniques (ESCA). A chemical mechanism for elucidating Na2SO4-induced hot corrosion is proposed indicating that hot corrosion is initiated by basic fluxing of the protective Al2O3 scale. The sequential, catastrophic corrosion results from molybdenum content. The self-sustaining feature is a consequence of the cyclic nature of the acidic fluxing. It is believed that the mechanism is applicable not only to laboratory results, but also to the practical problem of hot corrosion encountered in gas turbine engines.

  15. Epidermal-skin-test 1,000 (EST-1,000)--a new reconstructed epidermis for in vitro skin corrosivity testing.

    PubMed

    Hoffmann, J; Heisler, E; Karpinski, S; Losse, J; Thomas, D; Siefken, W; Ahr, H-J; Vohr, H-W; Fuchs, H W

    2005-10-01

    The determination of a possible corrosive or irritative potential of certain products and ingredients is necessary for their classification and labeling requirements. Reconstructed skin as a model system provides fundamental advantages to single cell culture testing and leads to promising results as shown by different validation studies (for review: Fentem, J.H., Botham, P.A., 2002. ECVAM's activities in validating alternative tests for skin corrosion and irritation. ATLA 30(Suppl. 2), 61-67). In this study we introduce our new reconstructed epidermis "Epidermal-Skin-Test" (EST-1,000). This fully grown epidermis consists of proliferating as well as differentiating keratinocytes. EST-1,000 shows a high comparability to normal human skin as shown by histological and immunohistochemical data. Characteristic markers (KI-67, CK 1/10/5/14, transglutaminase, collagen IV, involucrin, beta 1 integrin) can be identified easily. The main focus of this work was to characterize EST-1,000 especially with respect to its barrier function by testing several substances of known corrosive potential. Skin corrosion was detected by the cytotoxic effect of the substances on a reconstructed epidermis after short-term application to the stratum corneum. The effect was determined by standard MTT assay and accompanying histological analysis. Hence EST-1,000 shows a very high predictive potential and closes the gap between animal testing and the established full-thickness model Advanced-Skin-Test 2,000 (AST-2,000) (Noll, M., Merkle, M.-L., Kandsberger, M., Matthes, T., Fuchs, H., Graeve, T., 1999. Reconstructed human skin (AST-2,000) as a tool for pharmaco-toxicology. ATLA 27, 302). PMID:16061350

  16. Skin Corrosion and Irritation Test of Nanoparticles Using Reconstructed Three-Dimensional Human Skin Model, EpiDermTM

    PubMed Central

    Kim, Hyejin; Choi, Jonghye; Lee, Handule; Park, Juyoung; Yoon, Byung-Il; Jin, Seon Mi; Park, Kwangsik

    2016-01-01

    Effects of nanoparticles (NPs) on skin corrosion and irritation using three-dimensional human skin models were investigated based on the test guidelines of Organization for Economic Co-operation and Development (OECD TG431 and TG439). EpiDermTM skin was incubated with NPs including those harboring iron (FeNPs), aluminum oxide (AlNPs), titanium oxide (TNPs), and silver (AgNPs) for a defined time according to the test guidelines. Cell viabilities of EpiDermTM skins were measured by the 3-(4, 5-dimethylthi-azol-2-yl)-2.5-diphenyltetrazolium bromide based method. FeNPs, AlNPs, TNPs, and AgNPs were non-corrosive because the viability was more than 50% after 3 min exposure and more than 15% after 60 min exposure, which are the non-corrosive criteria. All NPs were also non-irritants, based on viability exceeding 50% after 60 min exposure and 42 hr post-incubation. Release of interleukin 1-alpha and histopathological analysis supported the cell viability results. These findings suggest that FeNPs, AlNPs, TNPs, and AgNPs are ‘non-corrosive’ and ‘non-irritant’ to human skin by a globally harmonized classification system.

  17. Standardized Tests: Summary of Results 1997-1998. Focus on Standardized Testing.

    ERIC Educational Resources Information Center

    Deeter, Thomas; Prine, Don

    As part of its academic testing program, the Des Moines Public Schools administer standardized, norm-referenced achievement tests. The Iowa Tests of Basic Skills (ITBS) is a norm-referenced standardized test battery that is administered to students in grades 3, 4, 6, and 7. In the 1997-98 school year, over 415 (approximately 5%) of the students…

  18. Summary of Citywide Results on New York State Competency Tests. Memorandum to the Members of the Board of Education.

    ERIC Educational Resources Information Center

    Macchiarola, Frank J.

    This document provides a brief review of the New York State Basic Competency Tests (BCT), Preliminary Competency Tests (PCT) and Regents Competency Tests (RCT), together with a summary of the results of the tests administered in New York City in Spring, 1979. Test requirements for 1979, 1980, and 1981 are outlined, as well as administrative…

  19. Summary of Results from Space Shuttle Main Engine Off-Nominal Testing

    NASA Technical Reports Server (NTRS)

    Horton, James F.; Megivern, Jeffrey M.; McNutt, Leslie M.

    2011-01-01

    This paper is a summary of Space Shuttle Main Engine (SSME) off-nominal testing that occurred during 2008 and 2009. During the last two years of planned SSME testing at Stennis Space Center, Pratt & Whitney Rocketdyne worked with their NASA MSFC customer to systematically identify, develop, assess, and implement challenging test objectives in order to expand the knowledge of one of the world s most reliable and highly tested large rocket engine. The objectives successfully investigated three main areas of interest expanding engine performance margins, demonstrating system operational capabilities, and establishing ground work for new rocket engine technology. The testing gave the Space Shuttle Program new options to safely fly out the flight manifest and provided Pratt & Whitney Rocketdyne and NASA new insight into the operational capabilities of the SSME, capabilities which can be used in assessing potential future applications of the RS-25 engine.

  20. Two novel prediction models improve predictions of skin corrosive sub-categories by test methods of OECD Test Guideline No. 431.

    PubMed

    Desprez, Bertrand; Barroso, João; Griesinger, Claudius; Kandárová, Helena; Alépée, Nathalie; Fuchs, Horst W

    2015-12-01

    Alternative test methods often use prediction models (PMs) for converting endpoint measurements into predictions. Two PMs are used for the skin corrosion tests (SCTs) of the OECD Test Guideline No. 431 (TG 431). One is specific to EpiSkin™ test method, whereas EpiDerm™, SkinEthic™ RHE and epiCS® share a common PM. These methods are based on reconstructed human epidermis models wherein cell viability values are measured. Their PMs allow translating those values into sub-categories of corrosive chemicals, Category 1A (Cat1A) and a combination of Categories 1B/1C (Cat1BC), and identifying non-corrosive (NC) chemicals. EpiSkin™'s PM already results in sufficiently accurate predictions. The common PM of the three others accurately identifies all corrosive chemicals but, for sub-categorization, an important fraction of Cat1BC chemicals (40-50%) is over-predicted as Cat1A. This paper presents a post-hoc analysis of validation data on a set of n=80 chemicals. It investigates: why this common PM causes these over-predictions and how two novel PMs that we developed (PMvar1 and PMvar2) improve the predictive capacity of these methods. PMvar1 is based on a two-step approach; PMvar2 is based on a single composite indicator of cell viability. Both showed a greater capacity to predict Cat1BC, while Cat1A correct predictions remaining at least at the same level of EpiSkin™. We suggest revising TG 431, to include the novel PMs in view of improving the predictive capacity of its SCTs. PMID:26320836

  1. OTEC-1 Power System Test Program: biolfouling and corrosion monitoring on OTEC-1

    SciTech Connect

    Gavin, A.P.; Kuzay, T.M.

    1981-09-01

    Biofouling and corrosion experiments performed on board The Ocean Energy Converter during the OTEC-1 deployment are summarized. The equipment installed for the experiments, details of the operating history of the experiments, and results obtained are described. Details of equipment and operating experience are included which it is hoped will be of use in planning future experiments of this type.

  2. Ion leaching from dental ceramics during static in vitro corrosion testing.

    PubMed

    Milleding, Percy; Haraldsson, Conny; Karlsson, Stig

    2002-09-15

    Dental ceramics are often called inert materials. It can be hypothesized, however, that differences in the composition, microstructure, and environmental conditions will affect the degree of corrosion degradation in an aqueous environment. The aims of the study were, therefore, to study the ion dissolution from glass-phase ceramics, with or without crystalline inclusions, and from all-crystalline ceramics and to compare the effects of different corrosion media. Ceramic specimens were produced from glass-phase and oxide ceramics and given an equivalent surface smoothness, after which they were subjected to in vitro corrosion (Milli-Q water at 37 +/- 2 degrees C for 18 h and 4% acetic acid solution at 80 +/- 2 degrees C for 18 h, respectively). The temperature of the corrosion solution was slowly increased until it reached 80 +/- 2 degrees C to reduce the risk of microcrack formation at the surface. The analyses of ion leakage were performed with inductively coupled plasma optical emission spectroscopy. A large number of inorganic elements leached out from the various dental ceramics. The major leaching elements were sodium and potassium; in the acid-corrosion experiments, there were also magnesium, silicon, and aluminum and, on a lower scale, yttrium, calcium, and chromium. The various glass-phase ceramics displayed significant differences in ion leakage and significantly higher leakage values than all-crystalline alumina and zirconia ceramics. No significant difference in dissolution was found between high and low-sintering glass-phase ceramics or between glass-phase ceramics with high volume fractions of crystallites in the glass phase in comparison with those with lower crystalline content. It can be concluded, therefore, that none of the dental ceramics studied are chemically inert in an aqueous environment.

  3. Electrochemical Apparatus Simulates Corrosion In Crevices

    NASA Technical Reports Server (NTRS)

    Khoshbin, S. Rachel; Jeanjaquet, S. L.; Lumsden, Jesse B.

    1996-01-01

    Method of testing metal specimens for susceptibility to galvanic corrosion in crevices involves use of relatively simple electrochemical apparatus. By following method, one quantifies rates of corrosion of dissimilar-metal couples exposed to various etchants or other corrosive solutions.

  4. Corrosion testing of a plutonium-loaded lanthanide borosilicate glass made with Frit B.

    SciTech Connect

    Ebert, W. L.; Chemical Engineering

    2006-09-30

    releases of Gd, Hf, and Pu from the glass were also measured. The release of Pu was significantly less than Si at all temperatures and pH values (on a normalized basis). More Gd than Pu or Hf was released from the glass in acidic solutions, but more Pu than Gd or Hf was released in alkaline solutions. Almost all of the released Gd remained in solution in tests conducted in Teflon vessels, whereas about half of the released Pu and Hf became fixed to the Teflon. In tests conducted in Type 304L stainless steel vessels, most of the released Gd, Hf, and Pu became fixed to the steel. The aqueous concentrations of Gd, Hf, and Pu decreased from about 2 x 10{sup -5}, 2 x 10{sup -8}, and 1 x 10{sup -7} M in tests solutions near pH 3.7 to about 1 x 10{sup -9}, 8 x 10{sup -10}, and 1 x 10{sup -8} M in test solutions near pH 10.8, respectively, in the 90 C tests in Teflon vessels (the solutions were not filtered prior to analysis). Vapor hydration tests (VHTs) were conducted at 120 and 200 C with Pu LaBS-B glass and SRL 418 glass, which was made to represent the HLW glass that will be used to macro-encapsulate LaBS glass within the waste form. Some VHTs were conducted with specimens of Pu LaBS-B and SRL 418 glasses that were in contact to study the effect of the solution generated as HLW glass dissolves on the corrosion behavior of Pu LaBS-B glass. Other VHTs were conducted in which the glasses were not in contact. The Pu LaBS-B glass is more durable than the HLW glass under these accelerating test conditions, even when the glasses are in contact. The presence of the SRL 418 glass did not promote the dissolution of the Pu LaBS-B glass significantly. However, Gd, Hf, and Pu were detected in alteration phases formed on the Pu LaBS-B glass surface and in (or on) phases formed by SRL 418 glass degradation, such as analcime. This indicates that Gd, Hf, and Pu were transported from the LaBS glass, through the water film formed on the specimens, and to the SRL 418 glass during the test. The

  5. State Summary Grade 10: Spring 1989 High School Proficiency Test, New Jersey Statewide Testing System.

    ERIC Educational Resources Information Center

    New Jersey State Dept. of Education, Trenton.

    The New Jersey High School Proficiency Test (HSPT) consists of reading, writing, and mathematics sections and must be passed as one of the requirements for a high school diploma. This report includes a series of tables summarizing grade 10 test results statewide for April 11-13, 1989. The results for 6,352 10th graders are given separately for…

  6. Corrosion characteristics of nickel alloys. Citations from the International Aerospace Abstracts data base

    NASA Technical Reports Server (NTRS)

    Zollars, G. F.

    1979-01-01

    This bibliography cites 118 articles from the international literature concerning corrosion characteristics of nickel alloys. Articles dealing with corrosion resistance, corrosion tests, intergranular corrosion, oxidation resistance, and stress corrosion cracking of nickel alloys are included.

  7. 76 FR 37136 - Post-Summary Corrections to Entry Summaries Filed in ACE Pursuant to the ESAR IV Test

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ... to conduct a National Customs Automation Program test concerning new Automated Commercial Environment... requirements, and test development and evaluation methods. DATES: The ESAR IV test will commence July 25, 2011... INFORMATION: Background I. Automated Commercial Environment (ACE) Test Programs Automated...

  8. Spent fuel sabotage aerosol test program :FY 2005-06 testing and aerosol data summary.

    SciTech Connect

    Gregson, Michael Warren; Brockmann, John E.; Nolte, O. (Fraunhofer institut fur toxikologie und experimentelle Medizin, Germany); Loiseau, O. (Institut de radioprotection et de Surete Nucleaire, France); Koch, W. (Fraunhofer institut fur toxikologie und experimentelle Medizin, Germany); Molecke, Martin Alan; Autrusson, Bruno (Institut de radioprotection et de Surete Nucleaire, France); Pretzsch, Gunter Guido (Gesellschaft fur anlagen- und Reaktorsicherheit, Germany); Billone, M. C. (Argonne National Laboratory, USA); Lucero, Daniel A.; Burtseva, T.; Brucher, W (Gesellschaft fur anlagen- und Reaktorsicherheit, Germany); Steyskal, Michele D.

    2006-10-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides source-term data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. This document focuses on an updated description of the test program and test components for all work and plans made, or revised, primarily during FY 2005 and about the first two-thirds of FY 2006. It also serves as a program status report as of the end of May 2006. We provide details on the significant findings on aerosol results and observations from the recently completed Phase 2 surrogate material tests using cerium oxide ceramic pellets in test rodlets plus non-radioactive fission product dopants. Results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; status on determination of the spent fuel ratio, SFR (the ratio of respirable particles from real spent fuel/respirables from surrogate spent fuel, measured under closely matched test conditions, in a contained test chamber); and, measurements of enhanced volatile fission product species sorption onto respirable particles. We discuss progress and results for the first three, recently performed Phase 3 tests using depleted uranium oxide, DUO{sub 2}, test rodlets. We will also review the status of preparations and the final Phase 4 tests in this program, using short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. These data plus testing results and design are tailored to support and guide, follow-on computer modeling of aerosol dispersal hazards and radiological consequence

  9. Development, Processing, and Testing of High-Performance Corrosion-Resistant HVOF Coatings

    SciTech Connect

    Farmer, J; Wong, F; Haslam, J; Estill, J; Branagan, D; Yang, N; Blue, C

    2003-08-26

    New amorphous-metal and ceramic coatings applied by the high-velocity oxy-fuel (HVOF) process may reduce the waste package materials cost of the Yucca Mountain high-level nuclear waste repository by over $4 billion (cost reduction of 27 to 42%). Two critical requirements that have been determined from design analysis are protection in brines that may evolve from the evaporative concentration of pore waters and protection for waste package welds, thereby preventing exposure to environments that might cause stress corrosion cracking (SCC). Our efforts are directed towards producing and evaluating these high-performance coatings for the development of lower cost waste packages, and will leverage a cost-effective collaboration with DARPA for applications involving marine corrosion.

  10. Increased Lifetime for Biomass and Waste to Energy Power Plant Boilers with HVOF Coatings: High Temperature Corrosion Testing Under Chlorine-Containing Molten Salt

    NASA Astrophysics Data System (ADS)

    Oksa, Maria; Tuurna, Satu; Varis, Tommi

    2013-06-01

    Heat exchanger surfaces of waste to energy and biomass power plant boilers experience often severe corrosion due to very aggressive components in the used fuels. High velocity oxy-fuel (HVOF) coatings offer excellent protection for boiler tubes against high temperature corrosion due to their high density and good adherence to the substrate material. Several thermal spray coatings with high chromium content were sprayed with HVOF technique. Their mechanical properties and high temperature corrosion resistance were tested and analyzed. The coating materials included NiCr, IN625, Ni-21Cr-10W-9Mo-4Cu, and iron-based partly amorphous alloy SHS9172 (Fe-25Cr-15W-12Nb-6Mo). High temperature corrosion testing was performed in NaCl-KCl-Na2SO4 salt with controlled H2O atmosphere at 575 and 625 °C. The corrosion test results of the coatings were compared to corrosion resistance of tube materials (X20, Alloy 263 and Sanicro 25).

  11. Mössbauer Characterization of Rust Obtained in an Accelerated Corrosion Test

    NASA Astrophysics Data System (ADS)

    García, K. E.; Morales, A. L.; Arroyave, C. E.; Barrero, C. A.; Cook, D. C.

    2003-06-01

    We have performed drying-humectation cyclical processes (CEBELCOR) on eight A36 low carbon steel coupons in NaCl solutions containing 1×10-2 M and 1×10-1 M concentrations. The main purpose of these experiments is to contribute to the understanding of the conditions for akaganeite formation. Additionally, and with the idea to perform a complete characterization of the rust, this work also considers the formation of other iron oxide phases. The corrosion products were characterized by Mössbauer spectroscopy and X-ray diffraction techniques. Gravimetric analysis demonstrates that the coupons presented high corrosion rates. Magnetite/maghemite was common in the rust stuck to the steel surface, whereas akaganeite was present only in traces. In the rust collected from the solutions, i.e., the rust that goes away from the metal surface easily, a magnetite/maghemite was not present and akaganeite showed up in larger quantities. These results support the idea that high concentrations of Cl- ions are required for the akaganeite formation. We concluded that akaganeite is not easily bonded to the rust layer; this may lead to the formation of a less protective rust layer and to higher corrosion rates.

  12. A summary of the Fire Testing Program at the German HDR Test Facility

    SciTech Connect

    Nowlen, S.P.

    1995-11-01

    This report provides an overview of the fire safety experiments performed under the sponsorship of the German government in the containment building of the decommissioned pilot nuclear power plant known as HDR. This structure is a highly complex, multi-compartment, multi-level building which has been used as the test bed for a wide range of nuclear power plant operation safety experiments. These experiments have included numerous fire tests. Test fire fuel sources have included gas burners, wood cribs, oil pools, nozzle release oil fires, and cable in cable trays. A wide range of ventilation conditions including full natural ventilation, full forced ventilation, and combined natural and forced ventilation have been evaluated. During most of the tests, the fire products mixed freely with the full containment volume. Macro-scale building circulation patterns which were very sensitive to such factors as ventilation configuration were observed and characterized. Testing also included the evaluation of selective area pressurization schemes as a means of smoke control for emergency access and evacuation stairwells.

  13. Study of Caustic Corrosion of Carbon Steel Waste Tanks

    SciTech Connect

    Jenkins, C.F.

    1999-02-24

    Solution chemistry of wastes from US atomic weapons production is controlled to inhibit corrosion of carbon steel tanks used in containment and storage. The pH, nitrate ion and nitrite ion concentrations of fresh solutions are maintained within specified limits for this purpose. In the start up process for a new waste evaporator (RHL WE), non-radioactive solutions of similar chemistry will be circulated through carbon steel piping between a steel tank and the evaporator. The evaporator is fabricated from a corrosion resistant nickel base alloy. The equipment will be exposed continuously to the hot corrosive caustic solutions. Published corrosion rates for steel in pure caustic at the elevated temperatures indicate losses >1.3 mm/y. Because the total test period for start up is relatively short, penetration will not occur. However, concern exists because the rust particles will probably circulate and precipitate throughout the system.A laboratory study was performed in order to determine corrosion to be expected for the specific waste solutions being used in start up testing of the new equipment. In summary, the test results indicate that the corrosion rates for steel are acceptable for the short term simulant tests for the new evaporator. The amount of particulate is probably not a concern, through filtration is recommended as an option. the hydrogen formation is also not a concern because it is in a steam environment, and is continuously swept from the storage vessel.

  14. Results of steel corrosion tests in flowing liquid Pb/Bi at 420-600 °C after 2000 h

    NASA Astrophysics Data System (ADS)

    Müller, G.; Heinzel, A.; Konys, J.; Schumacher, G.; Weisenburger, A.; Zimmermann, F.; Engelko, V.; Rusanov, A.; Markov, V.

    2002-02-01

    Corrosion tests were carried out on austenitic AISI 316L and 1.4970 steels and on MANET steel up to 2000 h of exposure to flowing (up to 2 m/s) Pb/Bi. The concentration of oxygen in the liquid alloy was controlled at 10 -6 wt%. Specimens consisted of tube and rod sections in original state and after alloying of Al into the surface. After 2000 h of exposure at 420 and 550 °C the specimen surfaces were covered with an intact oxide layer which provided a good protection against corrosion attack of the liquid Pb/Bi alloy. After the same time corrosion attack at 600 °C was severe at the original AISI 316L steel specimens. The alloyed specimens containing FeAl on the surface of the alloyed layer still maintained an intact oxide layer with good corrosion protection up to 600 °C.

  15. Structural Damage Prediction and Analysis for Hypervelocity Impact. UDRI Light Gas Gun Test Data Summaries

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The HEX bumper was originally developed for use with the Defensive Shields Demonstration (DSD) Program. The University of Dayton Research Institute was a subcontractor to the Martin Marietta Astronautics Group in Denver Colorado at the time the HEX bumper was designed for use on the DSD Program. The design originated at the University and was essentially made available to interested parties. All HEX bumpers used in the DSD Program were fabricated at the University by rolling sheet stock through a special set of rollers. Two pieces of 3003-H14 aluminum sheet were rolled to produce the bumpers evaluated in Shots 4-1302 and 4-1304. A brief summary of the results of these tests is given in below. Contact prints of the multiple-exposure, orthogonal view radiographs of the debris clouds produced by the tests are attached. A sketch of the HEX bumper design is also attached.

  16. Summary Report on Solid-oxide Electrolysis Cell Testing and Development

    SciTech Connect

    J.E. O'Brien; X. Zhang; R.C. O'Brien; G.L. Hawkes

    2012-01-01

    Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells (SOECs) for large-scale hydrogen production from steam over a temperature range of 800 to 900 C. From 2003 to 2009, this work was sponsored by the United States Department of Energy Nuclear Hydrogen Initiative, under the Office of Nuclear Energy. Starting in 2010, the high-temperature electrolysis (HTE) research program has been sponsored by the INL Next Generation Nuclear Plant Project. This report provides a summaryof program activities performed in Fiscal Year (FY) 2011 and the first quarter of FY-12, with a focus on small-scale testing and cell development activities. HTE research priorities during this period have included the development and testing of SOEC and stack designs that exhibit high-efficiency initial performance and low, long-term degradation rates. This report includes contributions from INL and five industry partners: Materials and Systems Research, Incorporated (MSRI); Versa Power Systems, Incorporated (VPS); Ceramatec, Incorporated; National Aeronautics and Space Administration - Glenn Research Center (NASA - GRC); and the St. Gobain Advanced Materials Division. These industry partners have developed SOEC cells and stacks for in-house testing in the electrolysis mode and independent testing at INL. Additional fundamental research and post-test physical examinations have been performed at two university partners: Massachusetts Institute of Technology (MIT) and the University of Connecticut. Summaries of these activities and test results are also presented in this report.

  17. Summary of Large-and Small-Scale Unreinforced Masonry Test Program

    SciTech Connect

    Fricke, K.E.

    2002-06-28

    A five-year, large- and small-scale, static and dynamic experimental research program, in which more than 700 tests were conducted, has demonstrated that unreinforced masonry infills are more ductile and resist lateral loads more effectively than anticipated by conventional code procedures. The tests were conducted both in the laboratory and on existing structures at the Department of Energy's Y-12 National Security Complex. The experimental data indicate that the combination of a steel frame and infill material efficiently resists lateral loads--the infilling provides significant lateral stiffness while the surrounding frame adds ductility and confinement to the overall system. The results from approximately 25 moderate- and full-scale tests on infills showed that with simulated seismic loads, the frames confined the masonry, and the load-carrying capacity of the infill was considerably above the load that caused initial cracking. This finding was a significant departure from classical code approaches that assumed first cracking to be failure of an unreinforced masonry wall. The experimental program, performed for the US Department of Energy, consisted of the following large-scale tests on infills: in situ airbag pressure testing, shake-table tests, and the application of quasi-static in-plane and out-of-plane drift loads. This paper provides a summary of the overall experimental methodology and results.

  18. Evaluation of precipitates used in strainer head loss testing : Part II. precipitates by in-situ aluminum alloy corrosion.

    SciTech Connect

    Bahn, C.; Kasza, K. E.; Shack, W. J.; Natesan, K.

    2011-05-01

    Vertical loop head loss tests were performed with 6061 and 1100 aluminum (Al) alloy plates immersed in borated solution at pH = 9.3 at room temperature and 60 C. The results suggest that the potential for corrosion of an Al alloy to result in increased head loss across a glass fiber bed may depend on its microstructure, i.e., the size distribution and number density of intermetallic particles that are present in Al matrix and FeSiAl ternary compounds, as well as its Al release rate. Per unit mass of Al removed from solution, the WCAP-16530 aluminum hydroxide (Al(OH){sub 3}) surrogate was more effective in increasing head loss than the Al(OH)3 precipitates formed in situ by corrosion of Al alloy. However, in choosing a representative amount of surrogate for plant specific testing, consideration should be given to the potential for additional head losses due to intermetallic particles and the apparent reduction in the effective solubility of Al(OH){sub 3} when intermetallic particles are present.

  19. Thermal stability and microstructural changes of some Ni-Cr-Mo alloys as detected by corrosion testing

    SciTech Connect

    Koehler, M.; Agarwal, D.C.

    1998-12-31

    Wrought Ni-Cr-Mo alloys of the C-family show a sensitivity to intercrystalline attack especially after exposure in the temperature range of 650 C to 950 C. Nevertheless, microstructural changes due to precipitation of intermetallic phases can occur up to a temperature level of 1050 C and this can affect the localized corrosion resistance. Thermal stability of wrought Alloy C-276 is a lot lower in comparison to Alloy 59. Sensitized at 870 C for only 1 hour, Alloy C-276 fails in the ASTM-G 28 B test due to rapid intercrystalline penetration and pitting whereas Alloy 59 can be aged up to 3 hours without any increase of the corrosion rate or any pitting attack. The same ranking applies during polythermal cooling cycles. Alloy C-276 requires a cooling rate of 150 C/min. between the solution annealing temperature and 600 C to avoid any sensitization whereas for Alloy 59 a relative slow cooling rate of 25 C/min. is acceptable. The critical pitting temperature of Alloy 59 when tested in the Green Death solution had been determined to be > 125 C. The temperature was not lowered during aging up to 3 hours at 1050 C or if a cooling speed of 25 C/min. was applied. However, cooling rates of 50 C/min. or less reduced the critical pitting temperature of Alloy C-276 from 115 C in the solution annealed and water quenched condition to only 105 C.

  20. Preparation and Testing of Corrosion-and Spallation-Resistant Coatings

    SciTech Connect

    Hurley, John

    2013-10-31

    contaminants may occur in cleaned syngas that could lead to corrosion or deposition in turbines firing coal syngas. The EERC has several pilot-scale gasifiers that are continually used in a variety of test configurations as determined by the needs of the projects that are funding the tests. We are sampling both noncombusted and combusted syngas produced during some of the pilot-scale gasifier tests. After modifying our sampling procedures to minimize contamination from the oxidizer, we obtained very good filter samples from both syngas and from the combustion products of the syngas blended with natural gas. Scanning electron microscopy analyses showed that the particles captured on the filter from the syngas were typically 0.2 to 0.5 μm in diameter, whereas those captured from the combusted syngas were slightly larger and more spherical. However, the particles were so small that we could not obtain good spectra from them either at the EERC or JEOL America, the maker of the EERC electron microscope systems. Therefore, the EERC applied for and received time on electron microscopes using different signal analyzers at the Oak Ridge National Laboratory (ORNL) ShaRE User Facility, which is sponsored by the U.S. Department of Energy Scientific User Facilities Division of the Office of Basic Energy Sciences. At ORNL, both x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy were performed on the samples because these are surface analyses that analyze electrons emitted from within a few nanometers of the surfaces of the particles and filters. The XPS data show that the particles do not contain any metals and, in fact, have an atomic composition almost identical to that of the polycarbonate filter. We currently believe that this indicates that the particles are primarily soot-based and not formed from volatilization of metals in the fluid-bed gasifier. The data indicate that the soot-based particles are not well burned in the thermal oxidizer, although they are

  1. Novel corrosion inhibitor technology

    SciTech Connect

    Van de Ven, P.; Fritz, P.; Pellet, R.

    1999-11-01

    A novel, patented corrosion inhibitor technology has been identified for use in heat transfer applications such as automotive and heavy-duty coolant. The new technology is based on a low-toxic, virtually depletion-free carboxylic acid corrosion inhibitor package that performs equally well in mono ethylene glycol and in less toxic propylene glycol coolants. An aqueous inhibitor concentrate is available to provide corrosion protection where freezing protection is not an issue. In the present paper, this inhibitor package is evaluated in the different base fluids: mono ethylene glycol, mono propylene glycol and water. Results are obtained in both standardized and specific corrosion tests as well as in selected field trials. These results indicate that the inhibitor package remains effective and retains the benefits previously identified in automotive engine coolant applications: excellent corrosion protection under localized conditions, general corrosion conditions as well as at high temperature.

  2. Summary of TRUEX Radiolysis Testing Using the INL Radiolysis Test Loop

    SciTech Connect

    Dean R. Peterman; Lonnie G. Olson; Rocklan G. McDowell; Gracy Elias; Jack D. Law

    2012-03-01

    The INL radiolysis and hydrolysis test loop has been used to evaluate the effects of hydrolytic and radiolytic degradation upon the efficacy of the TRUEX flowsheet for the recovery of trivalent actinides and lanthanides from acidic solution. Repeated irradiation and subsequent re-conditioning cycles did result in a significant decrease in the concentration of the TBP and CMPO extractants in the TRUEX solvent and a corresponding decrease in americium and europium extraction distributions. However, the build-up of solvent degradation products upon {gamma}-irradiation, had little impact upon the efficiency of the stripping section of the TRUEX flowsheet. Operation of the TRUEX flowsheet would require careful monitoring to ensure extraction distributions are maintained at acceptable levels.

  3. The stationarity paradigm revisited: Hypothesis testing using diagnostics, summary metrics, and DREAM(ABC)

    NASA Astrophysics Data System (ADS)

    Sadegh, Mojtaba; Vrugt, Jasper A.; Xu, Chonggang; Volpi, Elena

    2015-11-01

    Many watershed models used within the hydrologic research community assume (by default) stationary conditions, that is, the key watershed properties that control water flow are considered to be time invariant. This assumption is rather convenient and pragmatic and opens up the wide arsenal of (multivariate) statistical and nonlinear optimization methods for inference of the (temporally fixed) model parameters. Several contributions to the hydrologic literature have brought into question the continued usefulness of this stationary paradigm for hydrologic modeling. This paper builds on the likelihood-free diagnostics approach of Vrugt and Sadegh and uses a diverse set of hydrologic summary metrics to test the stationary hypothesis and detect changes in the watersheds response to hydroclimatic forcing. Models with fixed parameter values cannot simulate adequately temporal variations in the summary statistics of the observed catchment data, and consequently, the DREAM(ABC) algorithm cannot find solutions that sufficiently honor the observed metrics. We demonstrate that the presented methodology is able to differentiate successfully between watersheds that are classified as stationary and those that have undergone significant changes in land use, urbanization, and/or hydroclimatic conditions, and thus are deemed nonstationary.

  4. Summary and Evaluation of NRC-Sponsored Stellite 6 Aging and Friction Tests

    SciTech Connect

    J. C. Watkins; K. G. DeWall; D. Bramwell

    1999-04-01

    This report describes four sets of tests sponsored by the U.S. Nuclear Regulatory Commission and conducted by the Idaho National Engineering and Environmental Laboratory. The tests support research addressing the need to provide assurance that motor-operated valves are able to perform their intended safety function, usually to open or close against specified (design basis) flow and pressure loads. One of the parameters that affects a gate valve's operability is the friction between the disc seats and the valve body seats. In most gate valves, these surfaces are hardfaced with Stellite 6, a cobalt-based alloy. The tests described in this report investigate the changes that occur in the friction as the Stellite 6 surfaces develop an oxide film as they age. Stellite 6 specimens were aged in a corrosion autoclave, the oxide films were examined and characterized, and the specimens were subjected to friction testing in a friction autoclave. A very thin oxide film formed after only a fe w days of natural aging. Even a very thin oxide film caused an increase in friction. The surface structure of the oxide film was dominated by a hard crystalline structure, such that the friction response was analogous to rubbing two pieces of sandpaper together. In the limited data provided by naturally aged specimens (78 days maximum exposure, very thin oxide films), the friction increased with greater aging time, approaching an as-yet-undetermined plateau. Although the thickness of the oxide film increased with greater aging time, the mechanical properties of the oxide film (larger granules with greater aging time) appeared to play a greater role in the friction response. Friction testing of specimens subjected to simulated in-service testing strokes at intervals during the aging process showed only a slight decrease in friction, compared to other specimens. Results from specimens subjected to accelerated aging were inconclusive, because of differences in the structure and comp osition

  5. Accidental oil spill due to grounding: Summary of model test results. Summary report, Jan-Jun 92

    SciTech Connect

    Karafiath, G.

    1992-06-01

    The International Maritime Organization (IMO) sponsored model tests to help in their evaluation of accidental oil spillage from a Mid-Deck Tanker (MDT) and from a Double Hull Tanker (DHT) Design. These tests were conducted at Tsukuba Institute, Japan, and at the Carderock Division, Naval Surface Warfare Center. The test results are explained herein and their significance is summarized.

  6. The effects of crystallographic texture and hydrogen on sulfide stress corrosion cracking behavior of a steel using slow strain rate test method

    NASA Astrophysics Data System (ADS)

    Baik, Youl; Choi, Yong

    2014-12-01

    The effects of pre-charged hydrogen inside steel and the hydrogen ions on its surface on the sulfide stress corrosion cracking (SSCC) behavior was studied by slow strain rate tests. The specimen had an ASTM grain size number of about 11. Most of precipitates were 30-50 nm in size, and their distribution density was about 106 mm-2. The crystallographic texture consisted of major α-fiber (<110>//RD) components with a maximum peak at {115}<110> relatively close to {001}<110>, and minor γ-fiber (<111>//ND) components with a peak slightly shifted from {111}<112> to {332}<113>. Hydrogen was pre-charged inside the steel by a high-temperature cathodic hydrogen charging (HTCHC) method. SSCC and corrosion tests were carried out in an electrolytic solution (NaCl: CH3COOH: H2O: FeCl2 = 50: 5: 944: 1, pH = 2.7). The corrosion potentials and the corrosion rates of the specimen without hydrogen charging for 24 hours were -490 mVSHE and 1.2 × 10-4 A cm-2, and those with charging were -520 mVSHE and 2.8 × 10-4 A cm-2, respectively. The corrosion resistance in the solution with 1000 ppm iron chloride added was decreased significantly, such that the corrosion potential and corrosion rate were -575 mVSHE and 3.5 × 10-4 A cm-2, respectively. Lower SSCC resistance of the pin-hole pre-notched specimen was observed at the open circuit potential than at the 100 mV cathodically polarized condition. Pre-charged hydrogen inside of the specimen had a greater influence on the SSCC behavior than hydrogen ions on the surface of the specimen during the slow strain rate test.

  7. Simulated alteration tests on non-radioactive SON 68 nuclear glass in the presence of corrosion products and environmental materials

    NASA Astrophysics Data System (ADS)

    Jollivet, Patrick; Minet, Yves; Nicolas, Michèle; Vernaz, Étienne

    2000-10-01

    Alteration tests with non-radioactive French SON 68 (R7T7-type) nuclear glass in the presence of simulated metal canister corrosion products (CP) or environmental materials (EM) were simulated using the LIXIVER2 computer code. The code incorporates hypotheses concerning glass alteration in aqueous media based on the first-order kinetic law for total silicon with variable silicon retention in the gel and silicon diffusion in the gel interstitial water, coupled with silicon adsorption and diffusion in the materials in contact with the glass. The canister CP are considered as a localized medium with a mass adsorption capacity Rad, while the EM are considered as a porous medium with a diffusion coefficient Dp and a distribution coefficient Kd. L IXIVER2 simulates these media in one-dimensional Cartesian geometry. The Kd values determined by simulating alteration tests logically increase with the aggressiveness of the materials with respect to the glass.

  8. U.S. Contribution 1994 Summary Report Task T12: Compatibility and irradiation testing of vanadium alloys

    SciTech Connect

    Smith, D.L.

    1995-03-01

    Vanadium alloys exhibit important advantages as a candidate structural material for fusion first wall/blanket applications. These advantages include fabricability, favorable safety and environmental features, high temperature and high wall load capability, and long lifetime under irradiation. Vanadium alloys with (3-5)% chromium and (3-5)% titanium appear to offer the best combination of properties for first wall/blanket applications. A V-4Cr-4Ti alloy is recommended as the reference composition for the ITER application. This report provides a summary of the R&D conducted during 1994 in support of the ITER Engineering Design Activity. Progress is reported for Vanadium Alloy Production, Welding, Physical Properties, Baseline Mechanical Properties, Corrosion/Compatibility, Neutron Irradiation Effects, Helium Transmutation Effects on Irradiated Alloys, and the Status of Irradiation Experiments. Separate abstracts have been prepared for individual reports from this publication.

  9. 78 FR 69434 - Post-Summary Corrections to Entry Summaries Filed in ACE Pursuant to the ESAR IV Test...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ... (ESAR IV) Test Program In a notice published in the Federal Register (76 FR 37136) on June 24, 2011, U.S.... It is noted that the recordkeeping obligations set forth in 76 FR 37138 remain unchanged (i.e., entry... The ESAR IV test notice, in Subsection II.E of that document (76 FR 37138), listed data elements...

  10. Recent Developments for Ultrasonic-Assisted Friction Stir Welding: Joining, Testing, Corrosion - an Overview

    NASA Astrophysics Data System (ADS)

    Thomä, M.; Wagner, G.; Straß, B.; Conrad, C.; Wolter, B.; Benfer, S.; Fürbeth, W.

    2016-03-01

    Due to the steadily increasing demand on innovative manufacturing processes, modern lightweight construction concepts become more and more important. Especially joints of dissimilar metals offer a variety of advantages due to their high potential for lightweight construction. The focus of the investigations was Al/Mg-joints. Friction Stir Welding (FSW) is an efficient process to realize high strength joints between these materials in ductile condition. Furthermore, for a simultaneous transmission of power ultrasound during the FSW-process (US-FSW) a positive effect on the achievable tensile strength of the Al/Mg-joints was proven. In the present work the industrial used die cast alloys EN AC-48000 (AlSi12CuNiMg) and AZ80 (MgAl8Zn) were joined by a machining center modified especially for Ultrasound Supported Friction Stir Welding. The appearing welding zone and the formation of intermetallic phases under the influence of power ultrasound were examined in particular. In order to identify optimal process parameters extensive preliminary process analyzes have been carried out. Following this, an ultrasound-induced more intensive stirring of the joining zone and as a result of this a considerably modified intermetallic zone was detected. At the same time an increase of the tensile strength of about 25% for US-FSW-joints and for fatigue an up to three times higher number of cycles to failure in comparison to a conventional welding process was observed. Moreover, detailed corrosion analyzes have shown that especially the welding zone was influenced by the corrosive attack. To expand and deepen the knowledge of the US-FSW-process further material combinations such as Ti/Steel and Al/Steel will be considered in future.

  11. Effects of heat treatment on stress corrosion cracking of a discontinuously reinforced aluminum (DRA) 7XXX alloy during slow strain rate testing

    SciTech Connect

    Singh, P.M.; Lewandowski, J.J.

    1995-11-01

    Discontinuously reinforced aluminum (DRA) alloys are being developed as candidate materials for the automotive and aerospace industry. Although the corrosion and stress corrosion cracking (SCC) susceptibility of aluminum alloys have been extensively studied, comparatively little is known about the corrosion and SCC behavior of DRA materials. The intent of the present work was to study the effects of changes in microstructure/heat treatment on the crack nucleation mechanisms in DRAs and their monolithic atrices on the overall slow strain rate SCC performance in a 3.5% NaCl solution (pH = 3.0). For a given heat treatment, MB78 DRA materials show more susceptibility to stress corrosion cracking than the equivalent monolithic material. For the MB78 composite, the UAII material exhibited the maximum susceptibility to SCC. Both the UAI and UAII material were more susceptible to SCC than the OA material. MB78 DRA and monolithic specimens which have been shown to have a continuous ({eta} and {eta}{prime}) layer along the grain boundaries also showed higher susceptibility to stress corrosion cracking. Significantly more crack coalescence to form larger cracks was observed for the DRA specimens tested in the NaCl solution compared to the DRA specimens tested in dry-air. Monolithic specimens (OA as well as UA) did not exhibit visible micro-cracks or significant crack coalescence on the surfaces.

  12. Salt spray testing of sacrificial and barrier type coatings for the purpose of finding a corrosion resistant and environmentally acceptable replacement for cadmium plate

    SciTech Connect

    Schultz, E.J.; Haeberle, T.

    1996-12-31

    Cadmium plate is used to protect various components of offshore oil and gas production equipment from surface marine environments such as salt spray. This research project was performed to find an environmentally acceptable coating which provides equivalent or superior resistance to surface marine corrosion when compared to cadmium plate. In order to find a replacement for cadmium plate, a large number of sacrificial and barrier type coatings were exposed to an accelerated salt spray test in accordance with ASTM B117-94. The only sacrificial coating which resisted 1,000 hours of accelerated salt spray testing without any indication of failure was the 0.0006-in. thick zinc-nickel plate with an olive drab chromate treatment. Based on these test results, zinc-nickel plate is recommended as a corrosion resistant and environmentally acceptable replacement for cadmium plate for use in surface marine environments. Electroless nickel coatings with a minimum applied thickness of 0.002-in. also resisted 1,000 hours of accelerated salt spray testing without indication of failure. Electroless nickel is not recommended for corrosion resistance in salt spray environments for two reasons. Electroless nickel is susceptible to microcracking when heat treated at moderate to high temperatures. Heat treatment improves the hardness and resultant wear resistance of the coating. Microcracking will compromise the integrity of the coating resulting in pitting, cracking or crevice corrosion of the substrate in corrosive environments. Secondly, any significant mechanical damage to the coating or disbonding of the coating substrate interface will also result in corrosive attack of the substrate.

  13. Evaluation of fibrin-based dermal-epidermal organotypic cultures for in vitro skin corrosion and irritation testing of chemicals according to OECD TG 431 and 439.

    PubMed

    Morales, Mariana; Pérez, David; Correa, Luis; Restrepo, Luz

    2016-10-01

    Reconstructed human epidermis (RhE) models have been used for in vitro testing of the potential harmful effects of exposure to chemical compounds on health. In the past, skin irritation and corrosion were evaluated in animal models; however, in recent years, due to the bioethics implications of the method and, to minimize the use of experimental animals, alternative procedures have been proposed. The Organisation for Economic Co-operation and Development (OECD) in its test guidelines (TG) 431 and 439 indicates the requirements for validating new methods for the evaluation of skin corrosion and irritation, respectively. Here, we present an in-house human dermal-epidermal model, useful for the performance of these tests. Using the methods described in this work, it was possible to obtain human fibrin-based dermal-epidermal organotypic skin cultures (ORGs) displaying similar histological characteristics to native skin and expressing specific differentiation epithelial proteins. The end points to classify a substance as irritant or corrosive were cell viability evaluated by MTT assay, and cytokine release measured by BD CBA for human inflammatory cytokines. According to the MTT test, the ORGs correctly classified irritating and corrosive substances. Moreover, the cytokine release assay was difficult to interpret in the context of testing chemical hazard classification. Further experiments are needed to validate this new model for the evaluation of surfactants because the fibrin matrix was affected in the presence of these substances.

  14. Evaluation of fibrin-based dermal-epidermal organotypic cultures for in vitro skin corrosion and irritation testing of chemicals according to OECD TG 431 and 439.

    PubMed

    Morales, Mariana; Pérez, David; Correa, Luis; Restrepo, Luz

    2016-10-01

    Reconstructed human epidermis (RhE) models have been used for in vitro testing of the potential harmful effects of exposure to chemical compounds on health. In the past, skin irritation and corrosion were evaluated in animal models; however, in recent years, due to the bioethics implications of the method and, to minimize the use of experimental animals, alternative procedures have been proposed. The Organisation for Economic Co-operation and Development (OECD) in its test guidelines (TG) 431 and 439 indicates the requirements for validating new methods for the evaluation of skin corrosion and irritation, respectively. Here, we present an in-house human dermal-epidermal model, useful for the performance of these tests. Using the methods described in this work, it was possible to obtain human fibrin-based dermal-epidermal organotypic skin cultures (ORGs) displaying similar histological characteristics to native skin and expressing specific differentiation epithelial proteins. The end points to classify a substance as irritant or corrosive were cell viability evaluated by MTT assay, and cytokine release measured by BD CBA for human inflammatory cytokines. According to the MTT test, the ORGs correctly classified irritating and corrosive substances. Moreover, the cytokine release assay was difficult to interpret in the context of testing chemical hazard classification. Further experiments are needed to validate this new model for the evaluation of surfactants because the fibrin matrix was affected in the presence of these substances. PMID:27448499

  15. Salt Spray Test to Determine Galvanic Corrosion Levels of Electroless Nickel Connectors Mounted on an Aluminum Bracket

    NASA Technical Reports Server (NTRS)

    Rolin, T. D.; Hodge, R. E.; Torres, P. D.; Jones, D. D.; Laird, K. R.

    2014-01-01

    During preliminary vehicle design reviews, requests were made to change flight termination systems from an electroless nickel (EN) connector coating to a zinc-nickel (ZN) plating. The reason for these changes was due to a new NASA-STD-6012 corrosion requirement where connectors must meet the performance requirement of 168 hr of exposure to salt spray. The specification for class F connectors, MIL-DTL-38999, certifies the EN coating will meet a 48-hr salt spray test, whereas the ZN is certified to meet a 168-hr salt spray test. The ZN finish is a concern because Marshall Space Flight Center has no flight experience with ZN-finished connectors, and MSFC-STD-3012 indicates that zinc and zinc alloys should not be used. The purpose of this test was to run a 168-hr salt spray test to verify the electrical and mechanical integrity of the EN connectors and officially document the results. The salt spray test was conducted per ASTM B117 on several MIL-DTL-38999 flight-like connectors mounted to an aluminum 6061-T6 bracket that was alodined. The configuration, mounting techniques, electrical checks, and materials used were typical of flight and ground support equipment.

  16. Summary and evaluation of low-velocity impact tests of solid steel billet onto concrete pads

    SciTech Connect

    Witte, M.C.; Hovingh, W.J.; Mok, G.C.; Murty, S.S.; Chen, T.F.; Fischer, L.E.

    1998-02-01

    Spent fuel storage casks intended for use at independent spent fuel storage installations are evaluated during the application and review process for low-velocity impacts representative of possible handling accidents. In the past, the analyses involved in these evaluations have assumed that the casks dropped or tipped onto an unyielding surface - a conservative and simplifying assumption. Since 10 CFR Part 72, the regulation imposed by the Nuclear Regulatory Commission (NRC), does not require this assumption, applicants are currently seeking a more realistic model for the analyses to predict the effect of a cask dropping onto a reinforced concrete pad, including energy absorbing aspects such as cracking and flexure. To develop data suitable for benchmarking these analyses, the NRC has conducted several series of drop-test studies of a solid steel billet and of a near-full-scale empty cask. This report contains a summary and evaluation of all steel billet testing conducted by Sandia National Laboratories and Lawrence Livermore National Laboratory. A series of finite element analyses of the billet testing is described and benchmarked against the test data. A method to apply the benchmarked finite element model of the soil and concrete pad to an analysis of a full-size storage cask is provided. In addition, an application to a {open_quotes}generic{close_quotes} full-size cask is presented for side and end drops, and tipover events. The primary purpose of this report is to provide applicants for an NRC license under 10 CFR Part 72 with a method for evaluating storage casks for low-velocity impact conditions.

  17. In Situ Decommissioning Sensor Network, Meso-Scale Test Bed - Phase 3 Fluid Injection Test Summary Report

    SciTech Connect

    Serrato, M. G.

    2013-09-27

    located at the Florida International University Applied Research Center, Miami, FL (FIU-ARC). A follow-on fluid injection test was developed to detect fluid and ion migration in a cementitious material/grouted test cube using a limited number of existing embedded sensor systems. This In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) - Phase 3 Fluid Injection Test Summary Report summarizes the test implementation, acquired and processed data, and results from the activated embedded sensor systems used during the fluid injection test. The ISDSN-MSTB Phase 3 Fluid Injection Test was conducted from August 27 through September 6, 2013 at the FIU-ARC ISDSN-MSTB test cube. The fluid injection test activated a portion of the existing embedded sensor systems in the ISDSN-MSTB test cube: Electrical Resistivity Tomography-Thermocouple Sensor Arrays, Advance Tensiometer Sensors, and Fiber Loop Ringdown Optical Sensors. These embedded sensor systems were activated 15 months after initial placement. All sensor systems were remotely operated and data acquisition was completed through the established Sensor Remote Access System (SRAS) hosted on the DOE D&D Knowledge Management Information Tool (D&D DKM-IT) server. The ISDN Phase 3 Fluid Injection Test successfully demonstrated the feasibility of embedding sensor systems to assess moisture-fluid flow and resulting transport potential for contaminate mobility through a cementitious material/grout monolith. The ISDSN embedded sensor systems activated for the fluid injection test highlighted the robustness of the sensor systems and the importance of configuring systems in-depth (i.e., complementary sensors and measurements) to alleviate data acquisition gaps.

  18. REPORT ON ELECTROCHEMICAL CORROSION TESTING FOR TANK 241-AN-106 USING 2009 SAMPLING CAMPAIGN GRAB SAMPLES

    SciTech Connect

    WYRWAS RB

    2010-05-11

    Based on an ENRAF waste surface measurement taken February 1, 2009, double-shell tank (DST) 24l-AN-l06 (AN-106) contained approximately 278.98 inches (793 kgal) of waste. A zip cord measurement from the tank on February 1, 2009, indicated a settled solids layer of 9l.7 inches in height (280 kgal). The supernatant layer in February 2009, by difference, was approximately 187 inches deep (514 kgal). Laboratory results from AN-l06 February 1, 2009 (see Table 2) grab samples indicated the supernatant was below the chemistry limit that applied at the time as identified in HNF-SD-WM-TSR-006, 'Tank Farms Technical Safety Requirements', Administrative Control (AC) 5.16, 'Corrosion Mitigation Controls.' The limits have since been removed from the Technical Safety Requirements (TSR) and are captured in OSD-T-15l-00007, 'Operating Specifications for the Double-Shell Storage Tanks.' Problem evaluation request WRPS-PER-2009-0218 was submitted February 9,2009, to document the finding that the supernatant chemistry for grab samples taken from the middle and upper regions of the supernatant was noncompliant with the chemistry control limits. The lab results for the samples taken from the bottom region of the supernatant met AC 5.16 limits.

  19. Corrosion Inhibitors for Aluminum.

    ERIC Educational Resources Information Center

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  20. Students' Voices in the Evaluation of Their Written Summaries: Empowerment and Democracy for Test Takers?

    ERIC Educational Resources Information Center

    Yu, Guoxing

    2007-01-01

    Two kinds of scoring templates were empirically derived from summaries written by experts and students to evaluate the quality of summaries written by the students. This paper reports students' attitudes towards the use of the two templates and its differential statistical effects on the judgment of students' summarization performance. It was…

  1. Corrosion of austenitic stainless steels and nickel-base alloys in supercritical water and novel control methods

    SciTech Connect

    Tan, Lizhen; Allen, Todd R.; Yang, Ying

    2012-01-01

    This chapter contains sections titled: (1) Introduction; (2) Thermodynamics of Alloy Oxidation; (3) Corrosion of Austenitic Stainless Steels and Ni-Base Alloys in SCW; (4) Novel Corrosion Control Methods; (5) Factors Influencing Corrosion; (6) Summary; and (7) References.

  2. Designing validation studies more efficiently according to the modular approach: retrospective analysis of the EPISKIN test for skin corrosion.

    PubMed

    Hoffmann, Sebastian; Hartung, Thomas

    2006-05-01

    It is claimed that the modular approach to validation, which involves seven independent modules, will make the assessment of test validity more flexible and more efficient. In particular, the aspects of between-laboratory variability and predictive capacity are formally separated. Here, the main advantage of the approach is to offer the opportunity for reduced labour, and thus to allow study designs to be more time efficient and cost effective. The impact of this separation was analysed by taking the ECVAM validation study on in vitro methods for skin corrosivity as an example of a successful validation study - two of its methods triggered new OECD test guidelines. Lean study designs, which reduced the number of tests required by up to 60%, were simulated with the original validation data for the EPISKIN model. By using resampling techniques, we were able to demonstrate the effects of the lean designs on three between-laboratory variability measures and on the predictive capacity in terms of sensitivity and specificity, in comparison with the original study. Overall, the study results, especially the levels of confidence, were only slightly affected by the lean designs that were modelled. It is concluded that the separation of the two modules is a promising way to speed-up prospective validation studies and to substantially reduce costs, without compromising study quality.

  3. Summary of Group Development and Testing for Single Shell Tank Closure at Hanford

    SciTech Connect

    Harbour, John, R.

    2005-04-28

    This report is a summary of the bench-scale and large scale experimental studies performed by Savannah River National Laboratory for CH2M HILL to develop grout design mixes for possible use in producing fill materials as a part of Tank Closure of the Single-Shell Tanks at Hanford. The grout development data provided in this report demonstrates that these design mixes will produce fill materials that are ready for use in Hanford single shell tank closure. The purpose of this report is to assess the ability of the proposed grout specifications to meet the current requirements for successful single shell tank closure which will include the contracting of services for construction and operation of a grout batch plant. The research and field experience gained by SRNL in the closure of Tanks 17F and 20F at the Savannah River Site was leveraged into the grout development efforts for Hanford. It is concluded that the three Hanford grout design mixes provide fill materials that meet the current requirements for successful placement. This conclusion is based on the completion of recommended testing using Hanford area materials by the operators of the grout batch plant. This report summarizes the regulatory drivers and the requirements for grout mixes as tank fill material. It is these requirements for both fresh and cured grout properties that drove the development of the grout formulations for the stabilization, structural and capping layers.

  4. Development and Testing of a Linear Polarization Resistance Corrosion Rate Probe for Ductile Iron Pipe (Web Report 4361)

    EPA Science Inventory

    The North American water and wastewater community has hundreds of millions of feet of ductile iron pipe in service. Only a portion of the inventory has any form of external corrosion control. Ductile iron pipe, in certain environments, is subject to external corrosion.Linear Pola...

  5. ELECTROCHEMICAL CORROSION TESTS FOR TANK 241-AY-101 CORE 325 SEGMENTS 16R1 & 16R2

    SciTech Connect

    DUNCAN JB; WYRWAS RB

    2007-11-14

    The interstitial liquid in the double-shell tank 241-AY-101 settled solids layer is below the hydroxide chemistry control limit required by HNF-SD-WM-TSR-006, Tank Farms Technical Safety Requirements, Administrative Control 5.16, 'Corrosion Mitigation Controls'. Operating tanks outside of the specification may increase the propensity corrosion of the carbon steel wall. This report is concerned with generalized electrochemical corrosion mechanism that may occur at specific loci. All cyclic potentiodynamic polarization scans exhibited a negative hysteresis, scan reversing at lower current density, indicating that there was no pitting propensity. The general electrochemical corrosion rates ranged from 4.4E-02 to 1.5E-03 mpy with the first round of coupons, while the second round yielded corrosion rates of 2.5E-03 to 2.9E-02 mpy.

  6. Microencapsulation Technology for Corrosion Mitigation by Smart Coatings

    NASA Technical Reports Server (NTRS)

    Buhrow, Jerry; Li, Wenyan; Jolley, Scott; Calle, Luz M.

    2011-01-01

    A multifunctional, smart coating for the autonomous control of corrosion is being developed based on micro-encapsulation technology. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection effectiveness. This paper summarizes the development, optimization, and testing of microcapsules specifically designed to be incorporated into a smart coating that will deliver corrosion inhibitors to mitigate corrosion autonomously. Key words: smart coating, corrosion inhibition, microencapsulation, microcapsule, pH sensitive microcapsule, corrosion inhibitor, corrosion protection pain

  7. Irradiation Programs and Test Plans to Assess High-Fluence Irradiation Assisted Stress Corrosion Cracking Susceptibility.

    SciTech Connect

    Teysseyre, Sebastien

    2015-03-01

    . Irradiation assisted stress corrosion cracking (IASCC) is a known issue in current reactors. In a 60 year lifetime, reactor core internals may experience fluence levels up to 15 dpa for boiling water reactors (BWR) and 100+ dpa for pressurized water reactors (PWR). To support a safe operation of our fleet of reactors and maintain their economic viability it is important to be able to predict any evolution of material behaviors as reactors age and therefore fluence accumulated by reactor core component increases. For PWR reactors, the difficulty to predict high fluence behavior comes from the fact that there is not a consensus of the mechanism of IASCC and that little data is available. It is however possible to use the current state of knowledge on the evolution of irradiated microstructure and on the processes that influences IASCC to emit hypotheses. This report identifies several potential changes in microstructure and proposes to identify their potential impact of IASCC. The susceptibility of a component to high fluence IASCC is considered to not only depends on the intrinsic IASCC susceptibility of the component due to radiation effects on the material but to also be related to the evolution of the loading history of the material and interaction with the environment as total fluence increases. Single variation type experiments are proposed to be performed with materials that are representative of PWR condition and with materials irradiated in other conditions. To address the lack of IASCC propagation and initiation data generated with material irradiated in PWR condition, it is proposed to investigate the effect of spectrum and flux rate on the evolution of microstructure. A long term irradiation, aimed to generate a well-controlled irradiation history on a set on selected materials is also proposed for consideration. For BWR, the study of available data permitted to identify an area of concern for long term performance of component. The efficiency of

  8. ECLSS Sustaining Metal Materials Compatibility Final Report, Electrochemical and Crevice Corrosion Test Results

    NASA Technical Reports Server (NTRS)

    Lee, R. E.

    2015-01-01

    Electrochemical test results are presented for six noble metals evaluated in two acidic test solutions which are representative of waste liquids processed in the Environmental Control and Life Support System (ECLSS) aboard the International Space Station (ISS). The two test solutions consisted of fresh waste liquid which had been modified with a proposed or alternate pretreatment formulation and its associated brine concentrate. The six test metals included three titanium grades, (Commercially Pure, 6Al-4V alloy and 6Al-4V Low Interstitial alloy), two nickel-chromium alloys (Inconel® 625 and Hastelloy® C276), and one high tier stainless steel (Cronidur® 30).

  9. Environmental Friendly Coatings and Corrosion Prevention For Flight Hardware Project

    NASA Technical Reports Server (NTRS)

    Calle, Luz

    2014-01-01

    Identify, test and develop qualification criteria for environmentally friendly corrosion protective coatings and corrosion preventative compounds (CPC's) for flight hardware an ground support equipment.

  10. Embeddable sensor for corrosion measurement

    NASA Astrophysics Data System (ADS)

    Kelly, Robert G.; Yuan, J.; Jones, Stephen H.; Wang, W.; Hudson, K.; Sime, A.; Schneider, O.; Clemena, Gerardo G.

    1999-02-01

    The design of a microinstrument for corrosion monitoring in reinforced concrete is presented and the performance of the prototype device discussed. Sensors for the measurement of corrosion rate, corrosion potential, chloride concentration, and concrete conductivity have been developed and tested inside of model concrete slabs. The tests include electrochemical chloride driving as a method for test acceleration and wet/dry cycling. The corrosion rate and conductivity sensors perform very well, as do all aspects of the electronics. Work continues on the chloride sensor and reference electrode.

  11. SRNL report for the tank waste disposition integrated flowsheet: Corrosion testing

    SciTech Connect

    Wyrwas, R. B.

    2015-09-30

    A series of cyclic potentiodynamic polarization (CPP) tests were performed in support of the Tank Waste Disposition Integrated Flowsheet (TWDIF). The focus of the testing was to assess the effectiveness of the SRNL model for predicting the amount of nitrite inhibitor needed to prevent pitting induced by increasing halide concentrations. The testing conditions were selected to simulate the dilute process stream that is proposed to be returned to tank farms from treating the off-gas from the low activity waste melter in the Waste Treatment and Immobilization Plant.

  12. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.

    2011-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.

  13. Computer-Aided Corrosion Program Management

    NASA Technical Reports Server (NTRS)

    MacDowell, Louis

    2010-01-01

    This viewgraph presentation reviews Computer-Aided Corrosion Program Management at John F. Kennedy Space Center. The contents include: 1) Corrosion at the Kennedy Space Center (KSC); 2) Requirements and Objectives; 3) Program Description, Background and History; 4) Approach and Implementation; 5) Challenges; 6) Lessons Learned; 7) Successes and Benefits; and 8) Summary and Conclusions.

  14. Results of 500-hour superheater/intermediate temperature airheater tube corrosion tests in the MHD coal fired flow facility

    SciTech Connect

    White, M.K.; Li, M.

    1991-05-01

    Corrosion data have been obtained for tubes, (austenitic steels, carbon steels, and intermediate chromium steels), exposed to conditions representative of superheater and intermediate temperature air heater components for 500 hours in a proof-of-concept magnetohydrodynamics MHD coal fired flow facility (MHD CFFF). The tubes, coated with K{sub 2}SO{sub 4}-rich deposits, developed oxide surface scales which were not protective against intergranular sulfur penetration of the subsurface metal. Corrosion rates derived from scale thickness and intergranular corrosion depth measurements are reported, along with scale morphologies and compositions. The implications of the results on commercial MHD utilization of the alloys are discussed, as well as the indicated need for more corrosion resistant alloys or coatings under the most severe exposure conditions. 4 refs., 27 figs., 6 tabs.

  15. Biofouling and microbial corrosion problem in the thermo-fluid heat exchanger and cooling water system of a nuclear test reactor.

    PubMed

    Rao, T S; Kora, Aruna Jyothi; Chandramohan, P; Panigrahi, B S; Narasimhan, S V

    2009-10-01

    This article discusses aspects of biofouling and corrosion in the thermo-fluid heat exchanger (TFHX) and in the cooling water system of a nuclear test reactor. During inspection, it was observed that >90% of the TFHX tube bundle was clogged with thick fouling deposits. Both X-ray diffraction and Mossbauer analyses of the fouling deposit demonstrated iron corrosion products. The exterior of the tubercle showed the presence of a calcium and magnesium carbonate mixture along with iron oxides. Raman spectroscopy analysis confirmed the presence of calcium carbonate scale in the calcite phase. The interior of the tubercle contained significant iron sulphide, magnetite and iron-oxy-hydroxide. A microbiological assay showed a considerable population of iron oxidizing bacteria and sulphate reducing bacteria (10(5) to 10(6) cfu g(-1) of deposit). As the temperature of the TFHX is in the range of 45-50 degrees C, the microbiota isolated/assayed from the fouling deposit are designated as thermo-tolerant bacteria. The mean corrosion rate of the CS coupons exposed online was approximately 2.0 mpy and the microbial counts of various corrosion causing bacteria were in the range 10(3) to 10(5) cfu ml(-1) in the cooling water and 10(6) to 10(8) cfu ml(-1) in the biofilm.

  16. Corrosion Properties of Polydopamine Coatings Formed in One-Step Immersion Process on Magnesium.

    PubMed

    Singer, Ferdinand; Schlesak, Magdalena; Mebert, Caroline; Höhn, Sarah; Virtanen, Sannakaisa

    2015-12-01

    Polydopamine layers were polymerized directly from Tris(hydroxymethyl)aminomethane-buffered solution in a one-step immersion process onto magnesium surface. Scanning electron microscopy showed successful formation of a ∼1 μm thick layer. ASTM D3359-09 "Tape test" revealed excellent adhesion of the layer. X-ray induced photoelectron spectroscopy and Fourier transform infrared spectroscopy verified the presence of polydopamine on the surface. Corrosion measurements were performed in 0.1 M NaCl solution investigating the influence of coating parameters: dopamine concentration, immersion time, solution pH, and immersion angle. Tafel analysis revealed strong improvement of corrosion behavior compared to bare magnesium. Polydopamine layers prepared with optimized coating procedure showed promising corrosion properties in Dulbecco's modified Eagle medium. In summary, polydopamine coatings offer a simple treatment for magnesium to improve the corrosion behavior and could further act as intermediate layer for further surface functionalization. PMID:26561489

  17. An investigation of the typical corrosion parameters used to test polymer electrolyte fuel cell bipolar plate coatings, with titanium nitride coated stainless steel as a case study

    NASA Astrophysics Data System (ADS)

    Orsi, A.; Kongstein, O. E.; Hamilton, P. J.; Oedegaard, A.; Svenum, I. H.; Cooke, K.

    2015-07-01

    Stainless steel bipolar plates (BPP) for polymer electrolyte membrane fuel cells (PEMFCs) have good manufacturability, durability and low costs, but inadequate corrosion resistance and elevated interfacial contact resistance (ICR) in the fuel cell environment. Thin film coatings of titanium nitride (TiN) of 1 μm in thickness, were deposited by means of physical vapour deposition (PVD) process on to stainless steel (SS) 316L substrates and were evaluated, in a series of tests, for their level of corrosion protection and ICR. In the ex-situ corrosion tests, variables such as applied potential, experimental duration and pH of the sulphate electrolyte at 80 °C were altered. The ICR values were found to increase after exposure to greater applied potentials and electrolytes of a higher pH. In terms of experimental duration, the ICR increased most rapidly at the beginning of each experiment. It was also found that the oxidation of TiN was accelerated after exposure to electrolytes of a higher pH. When coated BPPs were incorporated into an accelerated fuel cell test, the degradation of the fuel cell cathode resembled the plates that were tested at the highest anodic potential (1.4 VSHE).

  18. Corrosion protection

    DOEpatents

    Brown, Donald W.; Wagh, Arun S.

    2003-05-27

    There has been invented a chemically bonded phosphate corrosion protection material and process for application of the corrosion protection material for corrosion prevention. A slurry of iron oxide and phosphoric acid is used to contact a warm surface of iron, steel or other metal to be treated. In the presence of ferrous ions from the iron, steel or other metal, the slurry reacts to form iron phosphates which form grains chemically bonded onto the surface of the steel.

  19. Characterization of activated titanium solid reference electrodes for corrosion testing of steel in concrete

    SciTech Connect

    Castro, P.; Maldonado, L.; Saguees, A.A.; Moreno, E.I.; Genesca, J.

    1996-08-01

    Small bars of Ti activated with mixed-metal oxide (commercially produced for permanent impressed-current anodes in cathodic protection) were used as embedded reference electrodes (RE) in concrete. Their electrochemical behavior was evaluated through measurements and analyses of potential, electrochemical impedance spectroscopy (EIS), cyclic polarization (CP), and galvanostatic tests in buffer solutions of pH 4, 7, and 10, saturated calcium hydroxide, simulated concrete pore solution (SPS) with pH = 13.5, and various concrete mixes with and without pozzolanic additions as cement replacement. Effects of deaeration and sodium chloride additions were evaluated. The potential of the activated Ti rod (ATR) electrodes resembled the expected dependence for the system Ir{sub 2}O{sub 3} + H{sub 2}O = 2IrO{sub 2} + 2H{sup +} + 2e{sup {minus}} in aqueous solutions. The ATR electrode presented generally good stability with time in concrete for up to 900 days. Anomalous behavior was found in two concrete mixes with the highest pozzolanic content. Results from EIS tests revealed a constant phase element (CPE) behavior, which agreed with results of CP tests that showed a very large apparent interfacial capacitance. The apparent capacitance was on the order of 10{sup {minus}2} F/cm{sup 2}, resulting in very low impedance, which is advantageous when using ATR electrodes to conduct EIS or polarization resistance tests. Galvanostatic application of 0.075 {mu}A/cm{sup 2} caused little variation of potential with time, indicating the presence of a finite polarization resistance. Little short-term susceptibility of the ATR electrode potential to NaCl additions was found. The ATR electrode potential also showed little short-term sensitivity to variations in oxygen partial pressure.

  20. Corrosion testing of steel X 18 CrMoVNb 12 1 (1.4914) in A Pb$z.sbnd;17Li pumped loop

    NASA Astrophysics Data System (ADS)

    Borgstedt, H. U.; Drechsler, G.; Frees, G.; Perić, Z.

    1988-07-01

    The corrosion behaviour of the martensitic steel DIN 1.4914 in flowing liquid Pb17Li has been tested in a test series of 3700 h duration. The specimens have been exposed to the melt of 550°C flowing with a velocity of 0.3 m/ s ( Rc ~ 21 × 10 3). The loss of material can be expressed by the equation r( mm) = -0.0288 + 4.604 × 10 -5t( h). The anual loss of material is R = 0.37 ( mm/ yr). The liquid alloy does not generate internal corrosion effects in this steel, the unequal dissolution layer is small compared to the thickness of the removed layer. The dissolution and precipitation of these amounts of material components causes problems in loop operation. The martensitic steel has, however, a better compatibility with the eutectic Pb17Li than austenitic steels.

  1. Evaluation by the Double Loop Electrochemical Potentiokinetic Reactivation Test of Aged Ferritic Stainless Steel Intergranular Corrosion Susceptibility

    NASA Astrophysics Data System (ADS)

    Sidhom, H.; Amadou, T.; Braham, C.

    2010-12-01

    An experimental design method was used to determine the effect of factors that significantly affect the response of the double loop-electrochemical potentiokinetic reactivation (DL-EPR) test in controlling the susceptibility to intergranular corrosion (IGC) of UNS S43000 (AISI 430) ferritic stainless steel. The test response is expressed in terms of the reactivation/activation current ratio ( I r / I a pct). Test results analysed by the analysis of variance (ANOVA) method show that the molarity of the H2SO4 electrolyte and the potential scanning rate have a more significant effect on the DL-EPR test response than the temperature and the depassivator agent concentration. On the basis of these results, a study was conducted in order to determine the optimal operating conditions of the test as a nondestructive technique for evaluating IGC resistance of ferritic stainless steel components. Three different heat treatments are considered in this study: solution annealing (nonsensitized), aging during 3 hours at 773 K (500 °C) (slightly sensitized), and aging during 2 hours at 873 K (600 °C) (highly sensitized). The aim is to find the operating conditions that simultaneously ensure the selectivity of the attack (intergranular and chromium depleted zone) and are able to detect the effect of low dechromization. It is found that a potential scanning rate of 2.5 mV/s in an electrolyte composed of H2SO4 3 M solution without depassivator, at a temperature around 293 K (20 °C), is the optimal operating condition for the DL-EPR test. Using this condition, it is possible to assess the degree of sensitization (DOS) to the IGC of products manufactured in ferritic stainless steels rapidly, reliably, and quantitatively. A time-temperature-start of sensitization (TTS) diagram for the UNS S43000 (France Inox, Villepinte, France) stainless steel was obtained with acceptable accuracy by this method when the IGC sensitization criterion was set to I r / I a > 1 pct. This diagram is in

  2. SUPERFUND TREATABILITY CLEARINGHOUSE: TRIAL BURN TEST REPORT, PART 1 - DATA SUMMARIES

    EPA Science Inventory

    This treatability study summary reports on the results of a trial burn of pesticide-contaminated soil from the Aberdeen, NC Superfund site. The trial burn using the Vesta mobile rotary kiln incinerator was designed to demonstrate that this system can destroy the pestici...

  3. Biological induced corrosion of materials II: New test methods and experiences from mir station

    NASA Astrophysics Data System (ADS)

    Klintworth, R.; Reher, H. J.; Viktorov, A. N.; Bohle, D.

    1999-09-01

    During previous long-term manned missions, more than 100 species of microorganisms have been identified on surfaces of materials (bacteria and fungi). Among them were potentially pathogenic ones (saprophytes) which are capable of active growth on artificial substrates, as well as technophilic bacteria and fungi causing damages (destruction and degradation) to various materials (metals and polymers), resulting in failures and disruptions in the functioning of equipment and hardware. Aboard a space vehicle some microclimatic parameters are optimal for microorganism growth: the atmospheric fluid condensate with its specific composition, chemical and/or antropogenic contaminants (human metobolic products, etc.) all are stimulating factors for the development of bacteria and mould fungi on materials of the interior and equipment of an orbital station during its operational phase(s). Especially Russian long-term missions (SALJUT, MIR) have demonstrated that uncontrolled interactions of microorganisms with materials will ultimately lead to the appearence of technological and medical risks, significantly influencing safety and reliability characteristics of individual as well as whole systems and/ or subsystems. For a first conclusion, it could be summarized, that countermeasures and anti-strategies focussing on Microbial Contamination Management (MCM) for the International Space Station (ISS, next long-term manned mission) at least require a new materials test approach. Our respective concept includes a combined age-ing/biocorrosion test sequence. It is represented here, as well as current status of MCM program, e.g. continuous monitoring (microbiological analyses), long-term disinfection, frequent cleaning methods, mathematical modeling of ISS, etc.

  4. Corrosion Engineering.

    ERIC Educational Resources Information Center

    White, Charles V.

    A description is provided for a Corrosion and Corrosion Control course offered in the Continuing Engineering Education Program at the General Motors Institute (GMI). GMI is a small cooperative engineering school of approximately 2,000 students who alternate between six-week periods of academic study and six weeks of related work experience in…

  5. Fireside Corrosion

    SciTech Connect

    Holcomb, Gordon

    2011-07-14

    Oxy-fuel fireside research goals are: (1) determine the effect of oxyfuel combustion on fireside corrosion - flue gas recycle choice, staged combustion ramifications; and (2) develop methods to use chromia solubility in ash as an ash corrosivity measurement - synthetic ashes at first, then boiler and burner rig ashes.

  6. Corrosion inhibitor

    SciTech Connect

    Wisotsky, M.J.; Metro, S.J.

    1989-10-31

    A corrosion inhibitor for use in synthetic ester lubricating oils is disclosed. It comprises an effective amount of: at least one aromatic amide; and at least one hydroxy substituted aromatic compound. The corrosion inhibitor thus formed is particularly useful in synthetic ester turbo lubricating oils.

  7. Quiet Clean Short-Haul Experimental Engine (QCSEE) Over-The-Wing (OTW) propulsion system test report. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Sea level, static, ground testing of the over-the-wing engine and boilerplate nacelle components was performed. The equipment tested and the test facility are described. Summaries of the instrumentations, the chronological history of the tests, and the test results are presented.

  8. Microencapsulation of Corrosion Indicators for Smart Coatings

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.; Calle, Luz M.; Hanna,Joshua S.; Rawlins, James W.

    2011-01-01

    A multifunctional smart coating for the autonomous detection, indication, and control of corrosion is been developed based on microencapsulation technology. This paper summarizes the development, optimization, and testing of microcapsules specifically designed for early detection and indication of corrosion when incorporated into a smart coating. Results from experiments designed to test the ability of the microcapsules to detect and indicate corrosion, when blended into several paint systems, show that these experimental coatings generate a color change, indicative of spot specific corrosion events, that can be observed with the naked eye within hours rather than the hundreds of hours or months typical of the standard accelerated corrosion test protocols.. Key words: smart coating, corrosion detection, microencapsulation, microcapsule, pH-sensitive microcapsule, corrosion indicator, corrosion sensing paint

  9. Corrosion sensor

    DOEpatents

    Glass, Robert S.; Clarke, Jr., Willis L.; Ciarlo, Dino R.

    1994-01-01

    A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

  10. Corrosion sensor

    DOEpatents

    Glass, R.S.; Clarke, W.L. Jr.; Ciarlo, D.R.

    1994-04-26

    A corrosion sensor array is described incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis. 7 figures.

  11. CORROSION ISSUES ASSOCIATED WITH AUSTENITIC STAINLESS STEEL COMPONENTS USED IN NUCLEAR MATERIALS EXTRACTION AND SEPARATION PROCESSES

    SciTech Connect

    Mickalonis, J.; Louthan, M.; Sindelar, R.

    2012-12-17

    This paper illustrated the magnitude of the systems, structures and components used at the Savannah River Site for nuclear materials extraction and separation processes. Corrosion issues, including stress corrosion cracking, pitting, crevice corrosion and other corrosion induced degradation processes are discussed and corrosion mitigation strategies such as a chloride exclusion program and corrosion release testing are also discussed.

  12. SRM Internal Flow Test and Computational Fluid Dynamic Analysis. Volume 1; Major Task Summaries

    NASA Technical Reports Server (NTRS)

    Whitesides, R. Harold; Dill, Richard A.; Purinton, David C.

    1995-01-01

    During the four year period of performance for NASA contract, NASB-39095, ERC has performed a wide variety of tasks to support the design and continued development of new and existing solid rocket motors and the resolution of operational problems associated with existing solid rocket motor's at NASA MSFC. This report summarizes the support provided to NASA MSFC during the contractual period of performance. The report is divided into three main sections. The first section presents summaries for the major tasks performed. These tasks are grouped into three major categories: full scale motor analysis, subscale motor analysis and cold flow analysis. The second section includes summaries describing the computational fluid dynamics (CFD) tasks performed. The third section, the appendices of the report, presents detailed descriptions of the analysis efforts as well as published papers, memoranda and final reports associated with specific tasks. These appendices are referenced in the summaries. The subsection numbers for the three sections correspond to the same topics for direct cross referencing.

  13. Corrosion in a temperature gradient

    SciTech Connect

    Covino, Bernard S., Jr.; Holcomb, Gordon R.; Cramer, Stephen D.; Bullard, Sophie J.; Ziomek-Moroz, Margaret; White, M.L.

    2003-01-01

    High temperature corrosion limits the operation of equipment used in the Power Generation Industry. Some of the more destructive corrosive attack occurs on the surfaces of heat exchangers, boilers, and turbines where the alloys are subjected to large temperature gradients that cause a high heat flux through the accumulated ash, the corrosion product, and the alloy. Most current and past corrosion research has, however, been conducted under isothermal conditions. Research on the thermal-gradient-affected corrosion of various metals and alloys is currently being studied at the Albany Research Center’s SECERF (Severe Environment Corrosion and Erosion Research Facility) laboratory. The purpose of this research is to verify theoretical models of heat flux effects on corrosion and to quantify the differences between isothermal and thermal gradient corrosion effects. The effect of a temperature gradient and the resulting heat flux on corrosion of alloys with protective oxide scales is being examined by studying point defect diffusion and corrosion rates. Fick’s first law of diffusion was expanded, using irreversible thermodynamics, to include a heat flux term – a Soret effect. Oxide growth rates are being measured for the high temperature corrosion of cobalt at a metal surface temperature of 900ºC. Corrosion rates are also being determined for the high temperature corrosion of carbon steel boiler tubes in a simulated waste combustion environment consisting of O2, CO2, N2, and water vapor. Tests are being conducted both isothermally and in the presence of a temperature gradient to verify the effects of a heat flux and to compare to isothermal oxidation.

  14. SAT® II: Subject Tests in Foreign Languages--Using the Tests for Admission and Placement. Research Summary RS-07

    ERIC Educational Resources Information Center

    College Entrance Examination Board, 2002

    2002-01-01

    As an admissions test, the SAT II: Subject Tests in foreign languages allow students to demonstrate academic competence in the selected language area. As a placement tool, the SAT II: Subject Tests in foreign languages serve the same function as the SAT II: Subject Tests do in other academic areas such as world history, chemistry, or math. SAT II:…

  15. Corrosion Monitoring System

    SciTech Connect

    Dr. Russ Braunling

    2004-10-31

    The Corrosion Monitoring System (CMS) program developed and demonstrated a continuously on-line system that provides real-time corrosion information. The program focused on detecting pitting corrosion in its early stages. A new invention called the Intelligent Ultrasonic Probe (IUP) was patented on the program. The IUP uses ultrasonic guided waves to detect small defects and a Synthetic Aperture Focusing Technique (SAFT) algorithm to provide an image of the pits. Testing of the CMS demonstrated the capability to detect pits with dimensionality in the sub-millimeter range. The CMS was tested in both the laboratory and in a pulp and paper industrial plant. The system is capable of monitoring the plant from a remote location using the internet.

  16. Naphthenic acid corrosion in the refinery

    SciTech Connect

    Craig, H.L. Jr.

    1995-11-01

    Field tests and laboratory studies of refinery process streams are presented. The effects of temperature, velocity and physical state were studied with respect to alloy selection for corrosion resistant service. The amount of molybdenum in the austenitic stainless steel alloys is the dominant factor in conferring corrosion resistance. The Naphthenic Acid Corrosion Index (NACI) is useful in assessing the severity of corrosion under a variety of circumstances.

  17. DATA SUMMARY REPORT SMALL SCALE MELTER TESTING OF HLW ALGORITHM GLASSES MATRIX1 TESTS VSL-07S1220-1 REV 0 7/25/07

    SciTech Connect

    KRUGER AA; MATLACK KS; PEGG IL

    2011-12-29

    Eight tests using different HLW feeds were conducted on the DM100-BL to determine the effect of variations in glass properties and feed composition on processing rates and melter conditions (off-gas characteristics, glass processing, foaming, cold cap, etc.) at constant bubbling rate. In over seven hundred hours of testing, the property extremes of glass viscosity, electrical conductivity, and T{sub 1%}, as well as minimum and maximum concentrations of several major and minor glass components were evaluated using glass compositions that have been tested previously at the crucible scale. Other parameters evaluated with respect to glass processing properties were +/-15% batching errors in the addition of glass forming chemicals (GFCs) to the feed, and variation in the sources of boron and sodium used in the GFCs. Tests evaluating batching errors and GFC source employed variations on the HLW98-86 formulation (a glass composition formulated for HLW C-106/AY-102 waste and processed in several previous melter tests) in order to best isolate the effect of each test variable. These tests are outlined in a Test Plan that was prepared in response to the Test Specification for this work. The present report provides summary level data for all of the tests in the first test matrix (Matrix 1) in the Test Plan. Summary results from the remaining tests, investigating minimum and maximum concentrations of major and minor glass components employing variations on the HLW98-86 formulation and glasses generated by the HLW glass formulation algorithm, will be reported separately after those tests are completed. The test data summarized herein include glass production rates, the type and amount of feed used, a variety of measured melter parameters including temperatures and electrode power, feed sample analysis, measured glass properties, and gaseous emissions rates. More detailed information and analysis from the melter tests with complete emission chemistry, glass durability, and

  18. Environmentally Friendly Corrosion Preventative Compounds

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Montgomery, Eliza; Kolody, Mark; Curran, Jerry; Back, Teddy; Balles, Angela

    2012-01-01

    The objective of the Ground Systems Development and Operations Program Environmentally Friendly Corrosion Protective Coatings and Corrosion Preventive Compounds (CPCs) project is to identify, test, and develop qualification criteria for the use of environmentally friendly corrosion protective coatings and CPCs for flight hardware and ground support equipment. This document is the Final Report for Phase I evaluations, which included physical property, corrosion resistance, and NASA spaceport environment compatibility testing and analysis of fifteen CPC types. The CPCs consisted of ten different oily film CPCs and five different wax or grease CPC types. Physical property testing encompassed measuring various properties of the bulk CPCs, while corrosion resistance testing directly measured the ability of each CPC material to protect various metals against corrosion. The NASA spaceport environment compatibility testing included common tests required by NASA-STD-6001, "Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments that Support Combustion". At the end of Phase I, CPC materials were down-selected for inclusion in the next test phases. This final report includes all data and analysis of results obtained by following the experimental test plan that was developed as part of the project. Highlights of the results are summarized by test criteria type.

  19. Smart aircraft fastener evaluation (SAFE) system: a condition-based corrosion detection system for aging aircraft

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.; Seifert, Greg; Paul, Clare A.

    1996-05-01

    The smart aircraft fastener evaluation (SAFE) system is an advanced structural health monitoring effort to detect and characterize corrosion in hidden and inaccessible locations of aircraft structures. Hidden corrosion is the number one logistics problem for the U.S. Air Force, with an estimated maintenance cost of $700M per year in 1990 dollars. The SAFE system incorporates a solid-state electrochemical microsensor and smart sensor electronics in the body of a Hi-Lok aircraft fastener to process and autonomously report corrosion status to aircraft maintenance personnel. The long-term payoff for using SAFE technology will be in predictive maintenance for aging aircraft and rotorcraft systems, fugitive emissions applications such as control valves, chemical pipeline vessels, and industrial boilers. Predictive maintenance capability, service, and repair will replace the current practice of scheduled maintenance to substantially reduce operational costs. A summary of the SAFE concept, laboratory test results, and future field test plans is presented.

  20. Summary of results from the testing of three prototype thermal bus systems for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Brady, T. K.

    1990-01-01

    Three Space Station Freedom (SSF) prototype two-phase thermal bus systems, utilizing ammonia as the working fluid, underwent extensive evaluation during 1988 and 1989. All three test articles were exercised in a similar ambient test program to characterize performance under simulated SSF operating conditions. Additionally, thermal buses were integrated with heat pipe radiators and tested in a thermal vacuum (T/V) environment. Testing has shown that two-phase thermal bus performance can be generally bound in an ambient test program; however, integrated T/V testing with heat pipe radiators similar to those that will be used on SSF is required to fully characterize system performance.

  1. Summary report on parametric pressure propagation test T0127-1

    SciTech Connect

    Fauske, H.K.

    1993-06-01

    This report presents the results of two ferrocyanide propagating reaction generated aerosol tests, conducted as a part of a series of tests directed by Westinghouse Hanford Company (WHC). The tests discussed in this document are designated as T0208-1 and T0209-1. The tests were carried out in a 49 L containment volume equipped with an aerosol filter housing. The test setup is described in Section 2.0. Each test used an {approx} 50 gm. sample of InFarm-1 bottom flow sheet material which was vacuum dried, screened through a 140 mesh sieve, and rehydrated to 1 wgt. % water content prior to testing. The test sample and reaction ignition method are described in Section 3.0. A special test protocol was defined and followed for the tests as described in Section 4.0 and Appendix B. Test results are discussed in Section 5.0. Both tests yielded a significant aerosol sample on the filter element. These filter elements and aerosol deposits have been sent to WHC for analysis, and any information as to the content or chemical composition of the trapped particulate material awaits the results of WHC efforts in this regard. The reaction propagation tests were conducted at 60{degrees}C and 120{degrees}C respectively. The average propagation velocities are consistent with other related observations.

  2. A Summary Catalogue of Microbial Drinking Water Tests for Low and Medium Resource Settings

    PubMed Central

    Bain, Robert; Bartram, Jamie; Elliott, Mark; Matthews, Robert; McMahan, Lanakila; Tung, Rosalind; Chuang, Patty; Gundry, Stephen

    2012-01-01

    Microbial drinking-water quality testing plays an essential role in measures to protect public health. However, such testing remains a significant challenge where resources are limited. With a wide variety of tests available, researchers and practitioners have expressed difficulties in selecting the most appropriate test(s) for a particular budget, application and setting. To assist the selection process we identified the characteristics associated with low and medium resource settings and we specified the basic information that is needed for different forms of water quality monitoring. We then searched for available faecal indicator bacteria tests and collated this information. In total 44 tests have been identified, 18 of which yield a presence/absence result and 26 of which provide enumeration of bacterial concentration. The suitability of each test is assessed for use in the three settings. The cost per test was found to vary from $0.60 to $5.00 for a presence/absence test and from $0.50 to $7.50 for a quantitative format, though it is likely to be only a small component of the overall costs of testing. This article presents the first comprehensive catalogue of the characteristics of available and emerging low-cost tests for faecal indicator bacteria. It will be of value to organizations responsible for monitoring national water quality, water service providers, researchers and policy makers in selecting water quality tests appropriate for a given setting and application. PMID:22754460

  3. A summary catalogue of microbial drinking water tests for low and medium resource settings.

    PubMed

    Bain, Robert; Bartram, Jamie; Elliott, Mark; Matthews, Robert; McMahan, Lanakila; Tung, Rosalind; Chuang, Patty; Gundry, Stephen

    2012-05-01

    Microbial drinking-water quality testing plays an essential role in measures to protect public health. However, such testing remains a significant challenge where resources are limited. With a wide variety of tests available, researchers and practitioners have expressed difficulties in selecting the most appropriate test(s) for a particular budget, application and setting. To assist the selection process we identified the characteristics associated with low and medium resource settings and we specified the basic information that is needed for different forms of water quality monitoring. We then searched for available faecal indicator bacteria tests and collated this information. In total 44 tests have been identified, 18 of which yield a presence/absence result and 26 of which provide enumeration of bacterial concentration. The suitability of each test is assessed for use in the three settings. The cost per test was found to vary from $0.60 to $5.00 for a presence/absence test and from $0.50 to $7.50 for a quantitative format, though it is likely to be only a small component of the overall costs of testing. This article presents the first comprehensive catalogue of the characteristics of available and emerging low-cost tests for faecal indicator bacteria. It will be of value to organizations responsible for monitoring national water quality, water service providers, researchers and policy makers in selecting water quality tests appropriate for a given setting and application.

  4. Summary of Technical Meeting To Compare US/French Approaches for Physical Protection Test Beds

    SciTech Connect

    Mack, Thomas Kimball; Martinez, Ruben; Thomas, Gerald; Palut, Jean-Michel

    2016-01-01

    In September 2015, representatives of the US Department of Energy/National Nuclear Security Administration, including test bed professionals from Sandia National Laboratories, and representatives of the French Alternative Energies and Atomic Energy Commission participated in a one-week workshop to share best practices in design, organization, operations, utilization, improvement, and performance testing of physical protection test beds. The intended workshop outcomes were to (1) share methods of improving respective test bed methodologies and programs and (2) prepare recommendations for standards regarding creating and operating testing facilities for nations new to nuclear operations. At the workshop, the French and American subject matter experts compared best practices as developed at their respective test bed sites; discussed access delay test bed considerations; and presented the limitations/ constraints of physical protection test beds.

  5. Summary of NREL's Recent Class 8 Tractor Trailer Platooning Testing (Presentation)

    SciTech Connect

    Lammert, M.; Kelly, K.; Walkowicz, K.

    2014-08-01

    This presentation summarizes NREL's recent class 8 tractor trailer platooning testing, including analysis of SAE J1321 Type II fuel consumption testing, fuel consumption improvement, fuel economy and platooning position accuracy.

  6. Summary Report on FY12 Small-Scale Test Activities High Temperature Electrolysis Program

    SciTech Connect

    James O'Brien

    2012-09-01

    This report provides a description of the apparatus and the single cell testing results performed at Idaho National Laboratory during January–August 2012. It is an addendum to the Small-Scale Test Report issued in January 2012. The primary program objectives during this time period were associated with design, assembly, and operation of two large experiments: a pressurized test, and a 4 kW test. Consequently, the activities described in this report represent a much smaller effort.

  7. Summary of well-testing activities at Lawrence Berkeley Laboratory, 1975-1983

    SciTech Connect

    Bodvarsson, M.G.; Benson, S.M.

    1983-08-01

    Well test data collected from various geothermal fields by the geothermal group at Lawrence Berkeley Laboratory are presented. The type of well tests conducted, the instrumentation used and the data collected are described. Experience gained through interpretation of the data has helped identify problems in test procedures and interpretative methods.

  8. Summary of Stirling Convertor Testing at NASA Glenn Research Center in Support of Stirling Radioisotope Power System Development

    NASA Technical Reports Server (NTRS)

    Schifer, Nicholas A.; Oriti, Salvatore M.

    2013-01-01

    The NASA Glenn Research Center (GRC) has been testing 100 We class, free-piston Stirling convertors for potential use in Stirling Radioisotope Power Systems (RPS) for space science and exploration missions. Free-piston Stirling convertors are capable of achieving a 38% conversion efficiency, making Stirling attractive for meeting future power system needs in light of the shrinking U.S. plutonium fuel supply. Convertors currently on test include four Stirling Technology Demonstration Convertors (TDCs), manufactured by the Stirling Technology Company (STC), and six Advanced Stirling Convertors (ASCs), manufactured by Sunpower, Inc. Total hours of operation is greater than 514,000 hours (59 years). Several tests have been initiated to demonstrate the functionality of Stirling convertors for space applications, including: in-air extended operation, thermal vacuum extended operation. Other tests have also been conducted to characterize Stirling performance in anticipated mission scenarios. Data collected during testing has been used to support life and reliability estimates, drive design changes and improve quality, and plan for expected mission scenarios. This paper will provide a summary of convertors tested at NASA GRC and discuss lessons learned through extended testing.

  9. Corrosion of nickel-base alloys

    SciTech Connect

    Scarberry, R.C.

    1985-01-01

    The volume consists of three tutorial lectures and 18 contributed papers. The three tutorial lectures provide state-of-the-art background on the physical metallurgy of nickel-base alloys as it relates to corrosion. Also featured are the mechanisms and applications of these alloys and an insight into the corrosion testing techniques. The three tutorial lecture papers will help acquaint newcomers to this family of alloys with a thorough overview. The contributed papers are categorized into four major topics: general corrosion, stress corrosion cracking, fatigue and localized corrosion. Each topic is key-noted by one invited lecture followed by several contributed papers. The papers in the general corrosion section are wide ranging and cover the aspects of material selection, development of galvanic series in corrosive environments, corrosion resistance characteristics, hydrogen permeation and hydrogen embrittlement of nickel and some nickel-base alloys.

  10. Corrosion `98: 53. annual conference and exposition, proceedings

    SciTech Connect

    1998-12-31

    This conference was divided into the following sections: Corrosion in Gas Treating; Problems and Solutions in Commercial Building Water Systems; Green Corrosion/Scale Inhibitors; Atmospheric Corrosion; AIRPOL Update/98; Rubber Lining--Answers to Many Problems; Interference Problems; Environmental Assisted Cracking: Fundamental Research and Industrial Applications; Corrosion in Nuclear Systems; New Developments in Scale and Deposit Control; Corrosion and Corrosion Protection in the Transportation Industries; What`s All the Noise About--Electrochemical That Is; Refining Industry Corrosion; Corrosion Problems in Military Hardware: Case Histories, Fixes and Lessons Learned; Cathodic Protection Test Methods and Instrumentation for Underground and On-grade Pipelines and Tanks; Recent Developments in Volatile Corrosion Inhibitors; Corrosion in Supercritical Fluids; Microbiologically Influenced Corrosion; Advances in Understanding and Controlling CO{sub 2} Corrosion; Managing Corrosion with Plastics; Material Developments for Use in Exploration and Production Environments; Corrosion in Cold Regions; The Effect of Downsizing and Outsourcing on Cooling System Monitoring and Control Practices; New Developments in Mechanical and Chemical Industrial Cleaning; Mineral Scale Deposit Control in Oilfield Related Operations; Biocides in Cooling Water; Corrosion and Corrosion Control of Reinforced Concrete Structures; Materials Performance for Fossil Energy Conversion Systems; Marine corrosion; Thermal Spray--Coating and Corrosion Control; Flow Effects on Corrosion in Oil and Gas Production; Corrosion Measurement Technologies; Internal Pipeline Monitoring--Corrosion Monitoring, Intelligent Pigging and Leak Detection; Cathodic Protection in Natural Waters; Corrosion in Radioactive Liquid Waste Systems; On-line Hydrogen Permeation Monitoring Equipment and Techniques, State of the Art; Water Reuse and Recovery; Performance of Materials in High Temperature Environments; Advances in Motor

  11. Designing green corrosion inhibitors using chemical computation methods

    SciTech Connect

    Singhl, W.P.; Lin, G.; Bockris, J.O.M.; Kang, Y.

    1998-12-31

    Green corrosion inhibitors have been designed by understanding the relationships between the structure of organic compounds and toxicity as well as corrosion inhibition efficiency. The estimation of aquatic toxicity as well as corrosion inhibition efficiency are made using QSAR techniques. The predicted structures with reduced toxicity and improved corrosion inhibition efficiency are then tested experimentally for these properties, thus leading to green inhibitors.

  12. Surrogate/spent fuel sabotage aerosol ratio testing:phase 1 summary and results.

    SciTech Connect

    Vigil, Manuel Gilbert; Sorenson, Ken Bryce; Lange, F. , Germany); Nolte, O. (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Koch, W. (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Dickey, Roy R.; Yoshimura, Richard Hiroyuki; Molecke, Martin Alan; Autrusson, Bruno (Institut de Radioprotection et de Surete Nucleaire , France); Young, F. I.; Pretzsch, Gunter Guido (Gesellschaft fur Anlagen- und reaktorsicherheit , Germany)

    2005-10-01

    This multinational test program is quantifying the aerosol particulates produced when a high energy density device (HEDD) impacts surrogate material and actual spent fuel test rodlets. The experimental work, performed in four consecutive test phases, has been in progress for several years. The overall program provides needed data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. This program also provides significant political benefits in international cooperation for nuclear security related evaluations. The spent fuel sabotage--aerosol test program is coordinated with the international Working Group for Sabotage Concerns of Transport and Storage Casks (WGSTSC), and supported by both the U.S. Department of Energy and Nuclear Regulatory Commission. This report summarizes the preliminary, Phase 1 work performed in 2001 and 2002 at Sandia National Laboratories and the Fraunhofer Institute, Germany, and documents the experimental results obtained, observations, and preliminary interpretations. Phase 1 testing included: performance quantifications of the HEDD devices; characterization of the HEDD or conical shaped charge (CSC) jet properties with multiple tests; refinement of the aerosol particle collection apparatus being used; and, CSC jet-aerosol tests using leaded glass plates and glass pellets, serving as representative brittle materials. Phase 1 testing was quite important for the design and performance of the following Phase 2 test program and test apparatus.

  13. Hot corrosion/erosion testing of materials for applications for advanced power conversion systems using coal-derived fuels. Fireside II. Evaluation of turbine materials for use in a coal-fired fluidized bed combustion environment. Task II. Final report

    SciTech Connect

    Not Available

    1980-09-01

    This report summarizes the results of the General Electric Fireside Corrosion Task II Program. This program was designed to evaluate the erosion/corrosion behavior of gas turbine nozzle guide vane and rotor blade materials in both simulated and actual pressurized fluidized bed combustor (PFBC) environments. Simulation testing included exposing disc-shaped specimens in atmospheric pressure small burner rig test stands operated at 1600/sup 0/F (871/sup 0/C) for periods up to 1300 hours. PFBC evaluation testing consisted of exposing airfoil shaped specimens to the efflux from a PFBC in a turbine test section installed in the Exxon PFBC Miniplant facility at Linden, N.J. Candidate gas turbine materials included three cast vane and blade base alloys, FSX-414, IN-738, and U-700, and one protective coating system, platinum-chromium-aluminide (RT-22). Small burner rig testing consistently showed the nickel-base alloys U-700 and IN-738 most susceptible to corrosion/sulfidation, followed by the cobalt-base alloy FSX-414; the RT-22 coating on IN-738 was most resistant to hot corrosion attack. Parts life estimates have been made for the nickel and cobalt-base alloys based on corrosion rates determined from the PFBC testing.

  14. Baseline tests for arc melter vitrification of INEL buried wastes. Volume 1: Facility description and summary data report

    SciTech Connect

    Oden, L.L.; O`Connor, W.K.; Turner, P.C.; Soelberg, N.R.; Anderson, G.L.

    1993-11-19

    This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc melting furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests.

  15. Spent fuel sabotage aerosol ratio program : FY 2004 test and data summary.

    SciTech Connect

    Brucher, Wenzel; Koch, Wolfgang; Pretzsch, Gunter Guido; Loiseau, Olivier; Mo, Tin; Billone, Michael C.; Autrusson, Bruno A.; Young, F. I.; Coats, Richard Lee; Burtseva, Tatiana; Luna, Robert Earl; Dickey, Roy R.; Sorenson, Ken Bryce; Nolte, Oliver; Thompson, Nancy Slater; Hibbs, Russell S.; Gregson, Michael Warren; Lange, Florentin; Molecke, Martin Alan; Tsai, Han-Chung

    2005-07-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. The program also provides significant technical and political benefits in international cooperation. We are quantifying the Spent Fuel Ratio (SFR), the ratio of the aerosol particles released from HEDD-impacted actual spent fuel to the aerosol particles produced from surrogate materials, measured under closely matched test conditions, in a contained test chamber. In addition, we are measuring the amounts, nuclide content, size distribution of the released aerosol materials, and enhanced sorption of volatile fission product nuclides onto specific aerosol particle size fractions. These data are the input for follow-on modeling studies to quantify respirable hazards, associated radiological risk assessments, vulnerability assessments, and potential cask physical protection design modifications. This document includes an updated description of the test program and test components for all work and plans made, or revised, during FY 2004. It also serves as a program status report as of the end of FY 2004. All available test results, observations, and aerosol analyses plus interpretations--primarily for surrogate material Phase 2 tests, series 2/5A through 2/9B, using cerium oxide sintered ceramic pellets are included. Advanced plans and progress are described for upcoming tests with unirradiated, depleted uranium oxide and actual spent fuel test rodlets. This spent fuel sabotage--aerosol test program is coordinated with the international Working Group for Sabotage Concerns of

  16. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

    NASA Astrophysics Data System (ADS)

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.

    2015-11-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys.

  17. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion.

    PubMed

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K

    2015-11-30

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys.

  18. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

    PubMed Central

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.

    2015-01-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys. PMID:26615896

  19. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion.

    PubMed

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K

    2015-01-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys. PMID:26615896

  20. Corrosion-resistant sulfur concretes

    NASA Astrophysics Data System (ADS)

    McBee, W. C.; Sullivan, T. A.; Jong, B. W.

    1983-04-01

    Sulfur concretes have been developed by the Bureau of Mines as construction materials with physical and mechanical properties that suit them for use in acid and salt corrosive environments where conventional concretes fail. Mixture design methods were established for preparing sulfur concretes using different types of aggregates and recently developed mixed-modified sulfur cements. Bench-scale testing of the sulfur concretes has shown their potential value. Corrosion resistance, strength, and durability of sulfur concrete are superior to those of conventional materials. Field in situ evaluation tests of the sulfur concretes as replacement for conventional concrete materials are in progress in corrosive areas of 24 commercial chemical, fertilizer, and metallurgical plants.

  1. Test results on re-use of reclaimed shower water: Summary. [space stations

    NASA Technical Reports Server (NTRS)

    Verostko, C. E.; Garcia, R.; Sauer, R.; Linton, A. T.; Elms, T.; Reysa, R. P.

    1988-01-01

    A microgravity whole body shower (WBS) and waste water recovery systems (WWRS) were evaluated in three separate closed loop tests. Following a protocol similar to that anticipated for the U.S. Space Station, test subjects showered in a prototype whole body shower. The WWRS processes evaluated during the test series were phase change and reverse osmosis (RO). A preprototype Thermoelectric Integrated Hollow Fiber Membrane Evaporation Subsystem phase change process was used for the initial test with chemical pretreatment of the shower water waste input. The second and third tests concentrated on RO technologies. The second test evaluated a dynamic RO membrane consisting of zirconium oxide polyacrylic acid (ZOPA) membranes deposited on the interior diameter of 316L porous stainless steel tubes while the final test employed a thin semipermeable RO membrane deposited on the interior surface of polysulfone hollow fibers. All reclaimed water was post-treated for purity using ion exchange and granular activated carbon beds immediately followed by microbial control treatment using both heat and iodine. The test hardware, controls exercised for whole body showering, types of soaps evaluated, shower subject response to reclaimed water showering, and shower water collection and chemical pretreatment (if required) for microbial control are described. The WWRS recovered water performance and the effectiveness of the reclaimed water post-treatment techniques used for maintaining water purity and microorganism control are compared. Results on chemical and microbial impurity content of the water samples obtained from various locations in the shower water reuse system are summarized.

  2. Internet Protocol Over Telemetry Testing for Earth Science Capability Demo Summary

    NASA Technical Reports Server (NTRS)

    Franz, Russ; Pestana, Mark; Bessent, Shedrick; Hang, Richard; Ng, Howard

    2006-01-01

    The development and flight tests described here focused on utilizing existing pulse code modulation (PCM) telemetry equipment to enable on-vehicle networks of instruments and computers to be a simple extension of the ground station network. This capability is envisioned as a necessary component of a global range that supports test and development of manned and unmanned airborne vehicles.

  3. Mission Information and Test Systems Summary of Accomplishments, 2012-2013

    NASA Technical Reports Server (NTRS)

    McMorrow, Sean; Sherrard, Roberta; Gibbs, Yvonne

    2015-01-01

    This annual report covers the activities of the NASA Dryden Flight Research Center's Mission Information and Test Systems directorate, which include the Western Aeronautical Test Range (Range Engineering and Range Operations), the Simulation Engineering Branch, and Information Services. This report contains highlights, current projects, and various awards achieved throughout 2012 and 2013.

  4. Summary of Altitude Pulse Testing of a 100-lbf L02/LCH4 Reaction Control Engine

    NASA Technical Reports Server (NTRS)

    Marshall, William M.; Kleinhenz, Julie E.

    2011-01-01

    Recently, liquid oxygen-liquid methane (LO2/LCH4) has been considered as a potential "green" propellant alternative for future exploration missions. The Propulsion and Cryogenic Advanced Development (PCAD) project has been tasked by NASA to develop this propulsion combination to enable safe and cost effective exploration missions. To date, limited experience with such combinations exist, and as a result a comprehensive test program is critical to demonstrating the viability of implementing such a system. The NASA Glenn Research Center has conducted a test program of a 100-lbf (445-N) reaction control engine (RCE) at the center s Altitude Combustion Stand (ACS), focusing on altitude testing over a wide variety of operational conditions. The ACS facility includes a unique propellant conditioning feed system (PCFS) which allows precise control of propellant inlet conditions to the engine. Engine performance as a result of these inlet conditions was examined extensively during the test program. This paper is a companion to the previous specific impulse testing paper, and discusses the pulsed mode operation portion of testing, with a focus on minimum impulse bit (I-bit) and repeatable pulse performance. The engine successfully demonstrated target minimum impulse bit performance at all conditions, as well as successful demonstration of repeatable pulse widths. Some anomalous conditions experienced during testing are also discussed, including a double pulse phenomenon which was not noted in previous test programs for this engine.

  5. Summary of Validity Data from the Admissions Testing Program Validity Study Service.

    ERIC Educational Resources Information Center

    Ford, Susan F.; Campos, Sandy

    Validity data (prediction of first-year grade point average) for colleges participating in the Admissions Testing Program Validity Study Service (VSS) and based on students entering college in 1964 through 1974 are summarized for the following predictors: Scholastic Aptitude Test (SAT)--verbal score, SAT--mathematical score, high school record,…

  6. Summary of the Spring 1978 Conference of the National Consortium on Testing; June 5, 1978.

    ERIC Educational Resources Information Center

    Haney, Walt

    Remarks made at several panel discussions are summarized in this narrative report. The discussion topics and speakers include: (1) public education and testing--Tom Tomlinson, Ann Kahn, Herb Mack, and Jean Nazzaro, with remarks by Patricia Albjerg Graham; (2) standards regarding testing--Walt Haney, Barbara Lerner, Ann Cook, Willo White, and Bob…

  7. Program operational summary: Operational 90 day manned test of a regenerative life support system

    NASA Technical Reports Server (NTRS)

    Jackson, J. K.; Wamsley, J. R.; Bonura, M. S.; Seeman, J. S.

    1972-01-01

    An operational 90-day manned test of a regenerative life support system was successfully completed. This test was performed with a crew of four carefully selected and trained men in a space station simulator (SSS) which had a two gas atmosphere maintained at a total pressure of 68.9, 10 psia, and composed of oxygen at a partial pressure of 3.05 psia with nitrogen as the diluent. The test was planned to provide data on regenerative life support subsystems and on integrated system operations in a closed ecology, similar to that of a space station. All crew equipment and expendables were stored onboard at the start of the mission to eliminate the need for pass-in operations. The significant accomplishments of the test, some of the pertinent test results, some of the problem areas, and conclusions are presented.

  8. Corrosion Problems in Absorption Chillers

    ERIC Educational Resources Information Center

    Stetson, Bruce

    1978-01-01

    Absorption chillers use a lithium bromide solution as the medium of absorption and water as the refrigerant. Discussed are corrosion and related problems, tests and remedies, and cleaning procedures. (Author/MLF)

  9. Executive Summary of Propulsion on the Orion Abort Flight-Test Vehicles

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Brooks, Syri J.; Barnes, Marvin W.; McCauley, Rachel J.; Wall, Terry M.; Reed, Brian D.; Duncan, C. Miguel

    2012-01-01

    The National Aeronautics and Space Administration Orion Flight Test Office was tasked with conducting a series of flight tests in several launch abort scenarios to certify that the Orion Launch Abort System is capable of delivering astronauts aboard the Orion Crew Module to a safe environment, away from a failed booster. The first of this series was the Orion Pad Abort 1 Flight-Test Vehicle, which was successfully flown on May 6, 2010 at the White Sands Missile Range in New Mexico. This report provides a brief overview of the three propulsive subsystems used on the Pad Abort 1 Flight-Test Vehicle. An overview of the propulsive systems originally planned for future flight-test vehicles is also provided, which also includes the cold gas Reaction Control System within the Crew Module, and the Peacekeeper first stage rocket motor encased within the Abort Test Booster aeroshell. Although the Constellation program has been cancelled and the operational role of the Orion spacecraft has significantly evolved, lessons learned from Pad Abort 1 and the other flight-test vehicles could certainly contribute to the vehicle architecture of many future human-rated space launch vehicles

  10. Executive Summary of Propulsion on the Orion Abort Flight-Test Vehicles

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Koelfgen, Syri J.; Barnes, Marvin W.; McCauley, Rachel J.; Wall, Terry M.; Reed, Brian D.; Duncan, C. Miguel

    2012-01-01

    The NASA Orion Flight Test Office was tasked with conducting a series of flight tests in several launch abort scenarios to certify that the Orion Launch Abort System is capable of delivering astronauts aboard the Orion Crew Module to a safe environment, away from a failed booster. The first of this series was the Orion Pad Abort 1 Flight-Test Vehicle, which was successfully flown on May 6, 2010 at the White Sands Missile Range in New Mexico. This paper provides a brief overview of the three propulsive subsystems used on the Pad Abort 1 Flight-Test Vehicle. An overview of the propulsive systems originally planned for future flight-test vehicles is also provided, which also includes the cold gas Reaction Control System within the Crew Module, and the Peacekeeper first stage rocket motor encased within the Abort Test Booster aeroshell. Although the Constellation program has been cancelled and the operational role of the Orion spacecraft has significantly evolved, lessons learned from Pad Abort 1 and the other flight-test vehicles could certainly contribute to the vehicle architecture of many future human-rated space launch vehicles.

  11. NASA's Corrosion Technology Laboratory at the Kennedy Space Center: Anticipating, Managing, and Preventing Corrosion

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina

    2015-01-01

    The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in North America. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the highly corrosive hydrochloric acid (HCl) generated by the solid rocket boosters (SRBs). Numerous failures at the launch pads are caused by corrosion. The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. NASA has over fifty years of experience dealing with unexpected failures caused by corrosion and has developed expertise in corrosion control in the launch and other environments. The Corrosion Technology Laboratory at KSC evolved, from what started as an atmospheric exposure test site near NASAs launch pads, into a capability that provides technical innovations and engineering services in all areas of corrosion for NASA, external partners, and customers.This paper provides a chronological overview of NASAs role in anticipating, managing, and preventing corrosion in highly corrosive environments. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.

  12. Materials Characterization Center meeting on impact testing of waste forms. Summary report

    SciTech Connect

    Merz, M.D.; Atteridge, D.; Dudder, G.

    1981-10-01

    A meeting was held on March 25-26, 1981 to discuss impact test methods for waste form materials to be used in nuclear waste repositories. The purpose of the meeting was to obtain guidance for the Materials Characterization Center (MCC) in preparing the MCC-10 Impact Test Method to be approved by the Materials Review Board. The meeting focused on two essential aspects of the test method, namely the mechanical process, or impact, used to effect rapid fracture of a waste form and the analysis technique(s) used to characterize particulates generated by the impact.

  13. Boeing Helicopters Advanced Rotorcraft Transmission (ART) Program summary of component tests

    NASA Astrophysics Data System (ADS)

    Lenski, Joseph W., Jr.; Valco, Mark J.

    1992-07-01

    The principal objectives of the ART program are briefly reviewed, and the results of advanced technology component tests are summarized. The tests discussed include noise reduction by active cancellation, hybrid bidirectional tapered roller bearings, improved bearing life theory and friction tests, transmission lube study with hybrid bearings, and precision near-net-shape forged spur gears. Attention is also given to the study of high profile contact ratio noninvolute tooth form spur gears, parallel axis gear noise study, and surface modified titanium accessory spur gears.

  14. Summary of hydrologic testing of the Floridan aquifer system at Hunter Army Airfield, Chatham County, Georgia

    USGS Publications Warehouse

    Williams, Lester J.

    2010-01-01

    A 1,168-foot deep test well was completed at Hunter Army Airfield in the summer of 2009 to investigate the potential of using the Lower Floridan aquifer as a source of water supply to satisfy increased needs as a result of base expansion and increased troop levels. The U.S. Geological Survey conducted hydrologic testing at the test site including flowmeter surveys, packer-slug tests, and aquifer tests of the Upper and Lower Floridan aquifers. Flowmeter surveys were completed at different stages of well construction to determine the depth and yield of water-bearing zones and to identify confining beds that separate the main producing aquifers. During a survey when the borehole was open to both the upper and lower aquifers, five water-bearing zones in the Upper Floridan aquifer supplied 83.5 percent of the total pumpage, and five water-bearing zones in the Lower Floridan aquifer supplied the remaining 16.5 percent. An upward gradient was indicated from the ambient flowmeter survey: 7.6 gallons per minute of groundwater was detected entering the borehole between 750 and 1,069 feet below land surface, then moved upward, and exited the borehole into lower-head zones between 333 and 527 feet below land surface. During a survey of the completed Lower Floridan well, six distinct water-producing zones were identified; one 17-foot-thick zone at 768-785 feet below land surface yielded 47.9 percent of the total pumpage while the remaining five zones yielded between 2 and 15 percent each. The thickness and hydrologic properties of the confining unit separating the Upper and Lower Floridan aquifers were determined from packer tests and flowmeter surveys. This confining unit, which is composed of rocks of Middle Eocene age, is approximately 160 feet thick with horizontal hydraulic conductivities determined from four slug tests to range from 0.2 to 3 feet per day. Results of two separate slug tests within the middle confining unit were both 2 feet per day. Aquifer testing

  15. Process Knowledge Summary Report for Advanced Test Reactor Complex Contact-Handled Transuranic Waste Drum TRA010029

    SciTech Connect

    B. R. Adams; R. P. Grant; P. R. Smith; J. L. Weisgerber

    2013-09-01

    This Process Knowledge Summary Report summarizes information collected to satisfy the transportation and waste acceptance requirements for the transfer of one drum containing contact-handled transuranic (TRU) actinide standards generated by the Idaho National Laboratory at the Advanced Test Reactor (ATR) Complex to the Advanced Mixed Waste Treatment Project (AMWTP) for storage and subsequent shipment to the Waste Isolation Pilot Plant for final disposal. The drum (i.e., Integrated Waste Tracking System Bar Code Number TRA010029) is currently stored at the Materials and Fuels Complex. The information collected includes documentation that addresses the requirements for AMWTP and applicable sections of their Resource Conservation and Recovery Act permits for receipt and disposal of this TRU waste generated from ATR. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for this TRU waste originating from ATR.

  16. Automated water monitor system field demonstration test report. Volume 2: Technical summary

    NASA Technical Reports Server (NTRS)

    Brooks, R. L.; Jeffers, E. L.; Perreira, J.; Poel, J. D.; Nibley, D.; Nuss, R. H.

    1981-01-01

    The NASA Automatic Water Monitor System was installed in a water reclamation facility to evaluate the technical and cost feasibility of producing high quality reclaimed water. Data gathered during this field demonstration test are reported.

  17. Design certification tests: High Pressure Oxygen Filter (HPOF) program. Summary report

    NASA Technical Reports Server (NTRS)

    Smith, I. D.

    1976-01-01

    Design and acceptance certification test procedures and results are presented for a high pressure oxygen filter developed to protect the sealing surfaces in emergency oxygen systems. Equipment specifications are included.

  18. CALiPER Summary of Results. Round 13 of Product Testing

    SciTech Connect

    none,

    2011-10-01

    The Department of Energy (DOE) Commercially Available Light-Emitting Diode (LED) Product Evaluation and Reporting (CALiPER) Program has been purchasing and testing general illumination solid-state lighting (SSL) products since 2006.

  19. Practice Bulletin No. 162 Summary: Prenatal Diagnostic Testing for Genetic Disorders.

    PubMed

    2016-05-01

    Prenatal genetic diagnostic testing is intended to determine, with as much certainty as possible, whether a specific genetic disorder or condition is present in the fetus. In contrast, prenatal genetic screening is designed to assess whether a patient is at increased risk of having a fetus affected by a genetic disorder. Originally, prenatal genetic testing focused primarily on Down syndrome (trisomy 21), but now it is able to detect a broad range of genetic disorders. Although it is necessary to perform amniocentesis or chorionic villus sampling (CVS) to definitively diagnose most genetic disorders, in some circumstances, fetal imaging with ultrasonography, echocardiography, or magnetic resonance imaging may be diagnostic of a particular structural fetal abnormality that is suggestive of an underlying genetic condition.The objective of prenatal genetic testing is to detect health problems that could affect the woman, fetus, or newborn and provide the patient and her obstetrician-gynecologist or other obstetric care provider with enough information to allow a fully informed decision about pregnancy management. Prenatal genetic testing cannot identify all abnormalities or problems in a fetus, and any testing should be focused on the individual patient's risks, reproductive goals, and preferences. It is important that patients understand the benefits and limitations of all prenatal screening and diagnostic testing, including the conditions for which tests are available and the conditions that will not be detected by testing. It also is important that patients realize that there is a broad range of clinical presentations, or phenotypes, for many genetic disorders and that results of genetic testing cannot predict all outcomes. Prenatal genetic testing has many benefits, including reassuring patients when results are normal, identifying disorders for which prenatal treatment may provide benefit, optimizing neonatal outcomes by ensuring the appropriate location for

  20. DPC materials and corrosion environments.

    SciTech Connect

    Ilgen, Anastasia Gennadyevna; Bryan, Charles R.; Teich-McGoldrick, Stephanie; Hardin, Ernest; Clarity, J.

    2014-10-01

    After an exposition of the materials used in DPCs and the factors controlling material corrosion in disposal environments, a survey is given of the corrosion rates, mechanisms, and products for commonly used stainless steels. Research needs are then identified for predicting stability of DPC materials in disposal environments. Stainless steel corrosion rates may be low enough to sustain DPC basket structural integrity for performance periods of as long as 10,000 years, especially in reducing conditions. Uncertainties include basket component design, disposal environment conditions, and the in-package chemical environment including any localized effects from radiolysis. Prospective disposal overpack materials exist for most disposal environments, including both corrosion allowance and corrosion resistant materials. Whereas the behavior of corrosion allowance materials is understood for a wide range of corrosion environments, demonstrating corrosion resistance could be more technically challenging and require environment-specific testing. A preliminary screening of the existing inventory of DPCs and other types of canisters is described, according to the type of closure, whether they can be readily transported, and what types of materials are used in basket construction.

  1. Photogrammetry and Laser Imagery Tests for Tank Waste Volume Estimates: Summary Report

    SciTech Connect

    Field, Jim G.

    2013-03-27

    Feasibility tests were conducted using photogrammetry and laser technologies to estimate the volume of waste in a tank. These technologies were compared with video Camera/CAD Modeling System (CCMS) estimates; the current method used for post-retrieval waste volume estimates. This report summarizes test results and presents recommendations for further development and deployment of technologies to provide more accurate and faster waste volume estimates in support of tank retrieval and closure.

  2. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    SciTech Connect

    Sterbentz, James William; Bayless, Paul David; Nelson, Lee Orville; Gougar, Hans David; Strydom, Gerhard

    2016-01-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  3. Fire Safety Tests for Cesium-Loaded Spherical Resorcinol Formaldehyde Resin: Data Summary Report

    SciTech Connect

    Kim, Dong-Sang; Schweiger, Michael J.; Peterson, Reid A.

    2012-09-01

    A draft safety evaluation of the scenario for spherical resorcinol formaldehyde (SRF) resin fire inside the ion exchange column was performed by the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Fire Safety organization. The result of this draft evaluation suggested a potential change of the fire safety classification for the Cesium Ion Exchange Process System (CXP) emergency elution vessels, equipment, and piping. To resolve this question, the fire properties of the SRF resin were measured by Southwest Research Institute (SwRI) through a subcontract managed by Pacific Northwest National Laboratory (PNNL). The results of initial fire safety tests on the SRF resin were documented in a previous report (WTP-RPT-218). The present report summarizes the results of additional tests performed by SwRI on the cesium-loaded SRF resin. The efforts by PNNL were limited to summarizing the test results provided by SwRI into one consolidated data report. The as-received SwRI report is attached to this report in the Appendix A. Where applicable, the precision and bias of each test method, as given by each American Society for Testing and Materials (ASTM) standard procedure, are included and compared with the SwRI test results of the cesium-loaded SRF resin.

  4. Design, fabrication and test of graphite/polymide composite joints and attachments: Summary

    NASA Technical Reports Server (NTRS)

    Cushman, J. B.; Mccleskey, S. F.; Ward, S. H.

    1983-01-01

    The design, analysis and testing performed to develop four types of graphite/polyimide (Gr/PI) bonded and bolted composite joints for lightly loaded control surfaces on advanced space transportation systems that operate at temperatures up to 561K (550 F) are summarized. Material properties and 'small specimen' tests were conducted to establish design data and to evaluate specific design details. 'Static discriminator' tests were conducted on preliminary designs to verify structural adequacy. Scaled up specimens of the final joint designs, representative of production size requirements, were subjected to a series of static and fatigue tests to evaluate joint strength. Effects of environmental conditioning were determined by testing aged (125 hours 589K (600 F)) and thermal cycled (116K to 589K (-250 F to 600 F), 125 times) specimens. It is concluded Gr/PI joints can be designed and fabricated to carry the specified loads. Test results also indicate a possible resin loss or degradation of laminates after exposure to 589K (600 F) for 125 hours.

  5. Fire Safety Tests for Spherical Resorcinol Formaldehyde Resin: Data Summary Report

    SciTech Connect

    Kim, Dong-Sang; Peterson, Reid A.; Schweiger, Michael J.

    2012-07-30

    A draft safety evaluation of the scenario for spherical resorcinol-formaldehyde (SRF) resin fire inside the ion exchange column was performed by the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Fire Safety organization. The result of this draft evaluation suggested a potential change of the fire safety classification for the Cesium Ion Exchange Process System (CXP) emergency elution vessels, equipment, and piping, which may be overly bounding based on the fire performance data from the manufacturer of the ion exchange resin selected for use at the WTP. To resolve this question, the fire properties of the SRF resin were measured by Southwest Research Institute (SwRI), following the American Society for Testing and Materials (ASTM) standard procedures, through a subcontract managed by Pacific Northwest National Laboratory (PNNL). For some tests, the ASTM standard procedures were not entirely appropriate or practical for the SRF resin material, so the procedures were modified and deviations from the ASTM standard procedures were noted. This report summarizes the results of fire safety tests performed and reported by SwRI. The efforts by PNNL were limited to summarizing the test results provided by SwRI into one consolidated data report. All as-received SwRI reports are attached to this report in the Appendix. Where applicable, the precision and bias of each test method, as given by each ASTM standard procedure, are included and compared with the SwRI test results of the SRF resin.

  6. METC ceramic corrosion/erosion studies: turbine-material screening tests in high-temperature, low-Btu, coal-derived-gas combustion products

    SciTech Connect

    Nakaishi, C.V.; Waltermire, D.M.; Hawkins, L.W.; Jarrett, T.L.

    1982-05-01

    The Morgantown Energy Technology Center, through its Ceramics Corrosion/Erosion Studies, has participated in the United States Department of Energy's High-Temperature Turbine Technology Program, Ceramic Technology Readiness. The program's overall objective is to advance the turbine firing temperature to a range of 2600/sup 0/ to 3000/sup 0/F (1700 to 1922K) with a reasonable service life using coal or coal-derived fuel. The Ceramics Corrosion/Erosion Studies' major objective was to conduct a screening test for several ceramic materials to assess their probability of survival in turbine applications. The materials were exposed to combustion products from low heating value coal-derived gas and air at several high temperatures and velocities. The combustion product composition and temperatures simulated actual environment that may be found in stationary power generating gas turbines except for the pressure levels. The results of approximately 1000 hours of accumulative exposure time of material at the specific test conditions are presented in this report.

  7. Analyses of containment structures with corrosion damage

    SciTech Connect

    Cherry, J.L.

    1996-12-31

    Corrosion damage to a nuclear power plant containment structure can degrade the pressure capacity of the vessel. For the low-carbon, low- strength steels used in containments, the effect of corrosion on material properties is discussed. Strain-to-failure tests, in uniaxial tension, have been performed on corroded material samples. Results were used to select strain-based failure criteria for corroded steel. Using the ABAQUS finite element analysis code, the capacity of a typical PWR Ice Condenser containment with corrosion damage has been studied. Multiple analyses were performed with the locations of the corrosion the containment, and the amount of corrosion varied in each analysis.

  8. Mixed discrete-continuum models: A summary of experiences in test interpretation and model prediction

    NASA Astrophysics Data System (ADS)

    Carrera, Jesus; Martinez-Landa, Lurdes

    A number of conceptual models have been proposed for simulating groundwater flow and solute transport in fractured systems. They span the range from continuum porous equivalents to discrete channel networks. The objective of this paper is to show the application of an intermediate approach (mixed discrete-continuum models) to three cases. The approach consists of identifying the dominant fractures (i.e., those carrying most of the flow) and modeling them explicitly as two-dimensional features embedded in a three-dimensional continuum representing the remaining fracture network. The method is based on the observation that most of the water flows through a few fractures, so that explicitly modeling them should help in properly accounting for a large portion of the total water flow. The applicability of the concept is tested in three cases. The first one refers to the Chalk River Block (Canada) in which a model calibrated against a long crosshole test successfully predicted the response to other tests performed in different fractures. The second case refers to hydraulic characterization of a large-scale (about 2 km) site at El Cabril (Spain). A model calibrated against long records (five years) of natural head fluctuations could be used to predict a one-month-long hydraulic test and heads variations after construction of a waste disposal site. The last case refers to hydraulic characterization performed at the Grimsel Test Site in the context of the Full-scale Engineered Barrier EXperiment (FEBEX). Extensive borehole and geologic mapping data were used to build a model that was calibrated against five crosshole tests. The resulting large-scale model predicted steady-state heads and inflows into the test tunnel. The conclusion is that, in all cases, the difficulties associated with the mixed discrete-continuum approach could be overcome and that the resulting models displayed some predictive capabilities.

  9. Summary of three dimensional pump testing of a fractured rock aquifer in the western Siberian Basin

    SciTech Connect

    Nichols, R.L.; Looney, B.B.; Eddy-Dilek, C.A.; Drozhko, E.G.; Glalolenko, Y.V.; Mokrov, Y.G.; Ivanov, I.A.; Glagolev, A.V.; Vasil`kova, N.A.

    1996-10-30

    A group of scientists from the Savannah River Technology Center and Russia successfully completed a 17 day field investigation of a fractured rock aquifer at the MAYAK PA nuclear production facility in Russia. The test site is located in the western Siberian Basin near the floodplain of the Mishelyak river. The fractured rock aquifer is composed of orphyrites, tuff, tuffbreccia and lava and is overlain by 0.5--12 meters of elluvial and alluvial sediments. A network of 3 uncased wells (176, 1/96, and 2/96) was used to conduct the tests. Wells 176 and 2/96 were used as observation wells and the centrally located well 1/96 was used as the pumping well. Six packers were installed and inflated in each of the observation wells at a depth of up to 85 meters. The use of 6 packers in each well resulted in isolating 7 zones for monitoring. The packers were inflated to different pressures to accommodate the increasing hydrostatic pressure. A straddle packer assembly was installed in the pumping well to allow testing of each of the individual zones isolated in the observation wells. A constant rate pumping test was run on each of the 7 zones. The results of the pumping tests are included in Appendix A. The test provided new information about the nature of the fractured rock aquifers in the vicinity of the Mishelyak river and will be key information in understanding the behavior of contaminants originating from process wastes discharged to Lake Karachi. Results from the tests will be analyzed to determine the hydraulic properties of different zones within the fractured rock aquifer and to determine the most cost effective clean-up approach for the site.

  10. Application of in vitro neurotoxicity testing for regulatory purposes: Symposium III summary and research needs.

    PubMed

    Bal-Price, Anna K; Suñol, Cristina; Weiss, Dieter G; van Vliet, Erwin; Westerink, Remco H S; Costa, Lucio G

    2008-05-01

    Prediction of neurotoxic effects is a key feature in the toxicological profile of many compounds and therefore is required by regulatory testing schemes. Nowadays neurotoxicity assessment required by the OECD and EC test guidelines is based solely on in vivo testing, evaluating mainly effects on neurobehavior and neuropathology, which is expensive, time consuming and unsuitable for screening large number of chemicals. Additionally, such in vivo tests are not always sensitive enough to predict human neurotoxicity and often do not provide information that facilitates regulatory decision-making processes. Incorporation of alternative tests (in vitro testing, computational modelling, QSARs, grouping, read-across, etc.) in screening strategies would speed up the rate at which compound knowledge and mechanistic data are available and the information obtained could be used in the refinement of future in vivo studies to facilitate predictions of neurotoxicity. On 1st June 2007, the European Commission legislation concerning registration, evaluation and authorisation of chemicals (REACH) has entered into force. REACH addresses one of the key issues for chemicals in Europe, the lack of publicly available safety data sheets. It outlines a plan to test approximately 30,000 existing substances. These chemicals are currently produced in volumes greater than 1ton/year and the essential data on the human health and ecotoxicological effects are lacking. It is estimated that approximately 3.9 million test animals (including 2.6 million vertebrates) (Hartung T, Bremer S, Casati S, Coecke S, Corvi R, Fortnaer S, et al. ECVAM's response to the changing political environment for alternatives: consequences of the European Union chemicals and cosmetics policies. ATLA 2003;31:473-81) would be necessary to fulfill the requirements of REACH if the development and establishment of alternative methods is not accepted by regulatory authorities. In an effort to reduce animal use and testing

  11. Field Testing of Energy-Efficient Flood-Damage-Resistant Residential Envelope Systems Summary Report

    SciTech Connect

    Aglan, H.

    2005-08-04

    The primary purpose of the project was to identify materials and methods that will make the envelope of a house flood damage resistant. Flood damage resistant materials and systems are intended to be used to repair houses subsequent to flooding. This project was also intended to develop methods of restoring the envelopes of houses that have been flooded but are repairable and may be subject to future flooding. Then if the house floods again, damage will not be as extensive as in previous flood events and restoration costs and efforts will be minimized. The purpose of the first pair of field tests was to establish a baseline for typical current residential construction practice. The first test modules used materials and systems that were commonly found in residential envelopes throughout the U.S. The purpose of the second pair of field tests was to begin evaluating potential residential envelope materials and systems that were projected to be more flood-damage resistant and restorable than the conventional materials and systems tested in the first pair of tests. The purpose of testing the third slab-on-grade module was to attempt to dry flood proof the module (no floodwater within the structure). If the module could be sealed well enough to prevent water from entering, then this would be an effective method of making the interior materials and systems flood damage resistant. The third crawl space module was tested in the same manner as the previous modules and provided an opportunity to do flood tests of additional residential materials and systems. Another purpose of the project was to develop the methodology to collect representative, measured, reproducible (i.e. scientific) data on how various residential materials and systems respond to flooding conditions so that future recommendations for repairing flood damaged houses could be based on scientific data. An additional benefit of collecting this data is that it will be used in the development of a standard test

  12. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.

    2010-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where they are needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into the microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy.

  13. Single event upset (SEU) of semiconductor devices - A summary of JPL test data

    NASA Astrophysics Data System (ADS)

    Nichols, D. K.; Price, W. E.; Malone, C. J.

    1983-12-01

    The data summarized describe single event upset (bit-flips) for 60 device types having data storage elements. The data are from 15 acceleration tests with both protons and heavier ions. Tables are included summarizing the upset threshold data and listing the devices tested for heavy ion induced bit-flip and the devices tested with protons. With regard to the proton data, it is noted that the data are often limited to one proton energy, since the tests were usually motivated by the engineering requirement of comparing similar candidate devices for a system. It is noted that many of the devices exhibited no upset for the given test conditions (the maximum fluence and the maximum proton energy Ep are given for these cases). It is believed, however, that some possibility of upset usually exists because there is a slight chance that the recoil atom may receive up to 10 to 20 MeV of recoil energy (with more energy at higher Ep).

  14. TANK 18-F AND 19-F TANK FILL GROUT SCALE UP TEST SUMMARY

    SciTech Connect

    Stefanko, D.; Langton, C.

    2012-01-03

    High-level waste (HLW) tanks 18-F and 19-F have been isolated from FTF facilities. To complete operational closure the tanks will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) entombing waste removal equipment, (4) discouraging future intrusion, and (5) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. This report documents the results of a four cubic yard bulk fill scale up test on the grout formulation recommended for filling Tanks 18-F and 19-F. Details of the scale up test are provided in a Test Plan. The work was authorized under a Technical Task Request (TTR), HLE-TTR-2011-008, and was performed according to Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The bulk fill scale up test described in this report was intended to demonstrate proportioning, mixing, and transportation, of material produced in a full scale ready mix concrete batch plant. In addition, the material produced for the scale up test was characterized with respect to fresh properties, thermal properties, and compressive strength as a function of curing time.

  15. Product consistency test round robin conducted by the Materials Characterization Center - Summary Report

    SciTech Connect

    Piepel, G.F.; Jones, T.E.; Eggett, D.L.; Mellinger, G.B.

    1989-09-01

    The Savannah River Laboratory (SRL) Product Consistency Test (PCT) was developed as a short duration leach test that could be used to evaluate the consistency of Defense Waste Processing Facility (DWPF) glass. The goals were to develop a test that would be sensitive to glass composition and homogeneity, rapid enough to support quality control of the production process, and easily conducted remotely to facilitate working with highly radioactive materials. The long-term SRL goal is to show that the PCT can be used to demonstrate that DWPF glass meets the elemental and radionuclide release requirements of the Waste Acceptance Preliminary Specifications (WAPS). The Materials Characterization Center (MCC) at Pacific Northwest Laboratory (PNL) was requested by SRL to conduct a multi-laboratory round robin to evaluate the effectiveness of the PCT methodology. 12 figs., 10 tabs.

  16. Summary of inspection findings of licensee inservice testing programs at United States commercial nuclear power plants

    SciTech Connect

    Dunlop, A.; Colaccino, J.

    1996-12-01

    Periodic inspections of pump and valve inservice testing (IST) programs in United States commercial nuclear power plants are performed by Nuclear Regulatory Commission (NRC) Regional Inspectors to verify licensee regulatory compliance and licensee commitments. IST inspections are conducted using NRC Inspection Procedure 73756, {open_quotes}Inservice Testing of Pumps and Valves{close_quotes} (IP 73756), which was updated on July 27, 1995. A large number of IST inspections have also been conducted using Temporary Instruction 2515/114, {open_quotes}Inspection Requirements for Generic Letter 89-04, Acceptable Inservice Testing Programs{close_quotes} (TI-2515/114), which was issued January 15, 1992. A majority of U.S. commercial nuclear power plants have had an IST inspection to either IP 73756 or TI 2515/114. This paper is intended to summarize the significant and recurring findings from a number of these inspections since January of 1990.

  17. Summary report of the second wind tunnel test of the Boeing LFC model

    NASA Technical Reports Server (NTRS)

    George-Falvy, D.

    1978-01-01

    An 8-ft span, 20-ft chord, 30 deg swept wing section having provisions for laminar boundary control over the first 30% of the upper surface and the first 15% of the lower surface was tested in a 5-ft by 8-ft wind tunnel to explore the sensitivity of laminar flow to various forms of disturbances such as surface imperfections, contamination, off-design pressure distribution (increased crossflow), and imposed noise. The test equipment used and instrumentation of the model are described. Typical results obtained from configurations with spanwise ridges and spanwise rows of disks are discussed as well as suction flow characteristics at reduced incidence.

  18. Summary of Testing of SuperLig 639 at the TFL Ion Exchange Facility

    SciTech Connect

    Steimke, J.L.

    2000-12-19

    A pilot scale facility was designed and built in the Thermal Fluids Laboratory at the Savannah River Technology Center to test ion exchange resins for removing technetium and cesium from simulated Hanford Low Activity Waste (LAW). The facility supports the design of the Hanford River Protection Project for BNFL, Inc. The pilot scale system mimics the full-length of the columns and the operational scenario of the planned ion exchange system. Purposes of the testing include confirmation of the design, evaluation of methods for process optimization and developing methods for waste volume minimization. This report documents the performance of the technetium removal resin.

  19. Completion summary for borehole USGS 136 near the Advanced Test Reactor Complex, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Twining, Brian V.; Bartholomay, Roy C.; Hodges, Mary K.V.

    2012-01-01

    In 2011, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, cored and completed borehole USGS 136 for stratigraphic framework analyses and long-term groundwater monitoring of the eastern Snake River Plain aquifer at the Idaho National Laboratory. The borehole was initially cored to a depth of 1,048 feet (ft) below land surface (BLS) to collect core, open-borehole water samples, and geophysical data. After these data were collected, borehole USGS 136 was cemented and backfilled between 560 and 1,048 ft BLS. The final construction of borehole USGS 136 required that the borehole be reamed to allow for installation of 6-inch (in.) diameter carbon-steel casing and 5-in. diameter stainless-steel screen; the screened monitoring interval was completed between 500 and 551 ft BLS. A dedicated pump and water-level access line were placed to allow for aquifer testing, for collecting periodic water samples, and for measuring water levels. Geophysical and borehole video logs were collected after coring and after the completion of the monitor well. Geophysical logs were examined in conjunction with the borehole core to describe borehole lithology and to identify primary flow paths for groundwater, which occur in intervals of fractured and vesicular basalt. A single-well aquifer test was used to define hydraulic characteristics for borehole USGS 136 in the eastern Snake River Plain aquifer. Specific-capacity, transmissivity, and hydraulic conductivity from the aquifer test were at least 975 gallons per minute per foot, 1.4 × 105 feet squared per day (ft2/d), and 254 feet per day, respectively. The amount of measureable drawdown during the aquifer test was about 0.02 ft. The transmissivity for borehole USGS 136 was in the range of values determined from previous aquifer tests conducted in other wells near the Advanced Test Reactor Complex: 9.5 × 103 to 1.9 × 105 ft2/d. Water samples were analyzed for cations, anions, metals, nutrients, total organic

  20. Summary of the 1987 soil sampling effort at the Idaho National Engineering Laboratory Test Reactor Area Paint Shop Ditch

    SciTech Connect

    Wood, T.R.; Knight, J.L.; Hertzler, C.L.

    1989-08-01

    Sampling of the Test Reactor Area (TRA) Paint Shop Ditch at the Idaho National Engineering Laboratory was initiated in compliance with the Interim Agreement between the Department of Energy (DOE) and the Environmental Protection Agency (EPA). Sampling of the TRA Paint Shop Ditch was done as part of the Action Plan to achieve and maintain compliance with the Resource Conservation and Recovery Act (RCRA) and applicable regulations. It is the purpose of this document to provide a summary of the July 6, 1987 sampling activities that occurred in ditch west of Building TRA-662, which housed the TRA Paint Shop in 1987. This report will give a narrative description of the field activities, locations of collected samples, discuss the sampling procedures and the chemical analyses. Also included in the scope of this report is to bring together data and reports on the TRA Paint Shop Ditch for archival purposes. 6 refs., 10 figs., 8 tabs.

  1. Summary of outgassing tests performed in support of the AL-SX (H1616) Program

    SciTech Connect

    York, A.R. II; Thornberg, S.M.

    1992-02-01

    The AL-SX/2 and AL-SX/3 are recently certified Type B shipping containers for tritium reservoirs. Both containers consist of an outer stainless steel drum overpack and sealed stainless steel containment vessel. WR reservoirs provide containment of tritium for normal conditions of transport. In accident conditions the containment vessel of the AL-SX must contain the tritium. A variety of reservoirs and materials will be packaged inside the containment vessel. These materials must not produce high pressure gas products that exceed the internal pressure capability of the vessel if the container is in an accident involving fire. This report summarizes outgassing tests performed on various organic materials. Tests of commonly used materials show that increased pressure due to outgassing is not a problem at elevated temperatures that simulate an accident. This report summarizes outgassing tests performed on various materials that may be packaged inside the AL-SX during shipment. These materials (except the getter) are normally a part of the reservoir shipping configuration. The objective of the tests was to determine the temperature that these materials begin to generate high pressure gaseous products.

  2. Evaluation Report: Early Childhood Education Program, 1969-1970 Field Test. Summary Report.

    ERIC Educational Resources Information Center

    Bertram, Charles L.; And Others

    This report is based on data obtained during the second year of a 3-year field test cycle of the Appalachia Educational Laboratory (AEL) Early Childhood Education (ECE) Program. The ECE Program is a home-oriented instructional system designed for 3-, 4-, and 5-year-olds, which is being used on a regional basis for approximately 25,000 children. It…

  3. Milwaukee Longitudinal School Choice Evaluation: Annual School Testing Summary Report. SCDP Milwaukee Evaluation Report #4

    ERIC Educational Resources Information Center

    Gray, Nathan L.; Wolf, Patrick J.; Jensen, Laura I.

    2008-01-01

    With the passage of 2005 Wisconsin Act 125, private schools participating in the Milwaukee Parental Choice Program (MPCP) are now required to administer a nationally normed standardized test annually in reading, mathematics, and science to their MPCP (a.k.a. "Choice") students enrolled in the 4th, 8th, and 10th grades. The law further directs…

  4. Maximizing the Learning Value of Tests in Technology Education Classes: A Summary of Research Findings

    ERIC Educational Resources Information Center

    Haynie, W. J., III

    2008-01-01

    Much of the learning in technology education is hands-on and best assessed via techniques other than traditional tests. Rubrics have become increasingly recognized as the best means of evaluating student efforts and accomplishments in projects, group work, presentations, various types of research papers, videotapes, web pages, and many other…

  5. Spring 2007 MCAS High School Science and Technology/Engineering Tests: Summary of State Results

    ERIC Educational Resources Information Center

    Massachusetts Department of Education, 2007

    2007-01-01

    In spring 2007, four Massachusetts Comprehensive Assessment System (MCAS) Science and Technology/Engineering (STE) operational tests were introduced at the high school level (grades 9 and 10): Biology, Chemistry, Introductory Physics, and Technology/Engineering. Over 100,000 Massachusetts public high school students in grades 9 and 10 participated…

  6. Component Fragility Research Program: Phase 1, Demonstration tests: Volume 1, Summary report

    SciTech Connect

    Holman, G.S.; Chou, C.K.; Shipway, G.D.; Glozman, V.

    1987-08-01

    This report describes tests performed in Phase I of the NRC Component Fragility Research Program. The purpose of these tests was to demonstrate procedures for characterizing the seismic fragility of a selected component, investigating how various parameters affect fragility, and finally using test data to develop practical fragility descriptions suitable for application in probabilistic risk assessments. A three-column motor control center housing motor controllers of various types and sizes as well as relays of different types and manufacturers was subjected to seismic input motions up to 2.5g zero period acceleration. To investigate the effect of base flexibility on the structural behavior of the MCC and on the functional behavior of the electrical devices, multiple tests were performed on each of four mounting configurations: four bolts per column with top bracking, four bolts per column with no top brace, four bolts per column with internal diagonal bracking, and two bolts per column with no top or internal bracking. Device fragility was characterized by contact chatter correlated to local in-cabinet response at the device location. Seismic capacities were developed for each device on the basis of local input motion required to cause chatter; these results were then applied to develop probabilistic fragility curves for each type of device, including estimates of the ''high-confidence low probability of failure'' capacity of each.

  7. Technology Demonstration Summary Technology Evaluation Report, Site Demonstration Test, Hazcon Solidification, Douglassville, Pennsylvania

    EPA Science Inventory

    The major objective of the HAZCON Solidification SITE Program Demonstration Test was to develop reliable performance and cost information. The demonstration occurred at a 50-acre site of a former oil reprocessing plant at Douglassville, PA containing a wide range of organic...

  8. Blended-Wing-Body Transonic Aerodynamics: Summary of Ground Tests and Sample Results

    NASA Technical Reports Server (NTRS)

    Carter, Melissa B.; Vicroy, Dan D.; Patel, Dharmendra

    2009-01-01

    The Blended-Wing-Body (BWB) concept has shown substantial performance benefits over conventional aircraft configuration with part of the benefit being derived from the absence of a conventional empennage arrangement. The configuration instead relies upon a bank of trailing edge devices to provide control authority and augment stability. To determine the aerodynamic characteristics of the aircraft, several wind tunnel tests were conducted with a 2% model of Boeing's BWB-450-1L configuration. The tests were conducted in the NASA Langley Research Center's National Transonic Facility and the Arnold Engineering Development Center s 16-Foot Transonic Tunnel. Characteristics of the configuration and the effectiveness of the elevons, drag rudders and winglet rudders were measured at various angles of attack, yaw angles, and Mach numbers (subsonic to transonic speeds). The data from these tests will be used to develop a high fidelity simulation model for flight dynamics analysis and also serve as a reference for CFD comparisons. This paper provides an overview of the wind tunnel tests and examines the effects of Reynolds number, Mach number, pitch-pause versus continuous sweep data acquisition and compares the data from the two wind tunnels.

  9. Data qualification summary for 1985 L-Area AC Flow Tests

    SciTech Connect

    Edwards, T.B.; Eghbali, D.A.; Liebmann, M.L.; Shine, E.P.

    1992-03-01

    The 1985 L-Area AC Flow Tests were conducted to provide an extended data base for upgrading the reactor system models employed in predicting normal process water flows. This report summarizes the results of the recently completed, formal, technical review of the data from the 1985 L-Area AC Flow Tests as detailed in document SCS-CMAS-910045. The purpose of that review was to provide corroborating technical information as to the quality (fitness for use) of these experimental data. Reference [1] required three volumes to fully document the results of that Data Qualification process. This report has been prepared to provide the important conclusions from that process in a manageable and understandable format. Consult reference [1] if any additional information or detail is needed. This report provides highlights from that study: an overview of the tests and data, a description of the instrumentation used, an explanation of the data qualification methods employed to review the data, and the important conclusions reached from the study. Reference 1: Edwards, T.B., D.A. Eghbali, M.L. Liebmann, and E.P. Shine, [open quotes]Data Qualification for 1985 L-Area AC Flow Tests,[close quotes] SCS-CMAS-910045, December 31, 1991.

  10. Data qualification summary for 1985 L-Area AC Flow Tests

    SciTech Connect

    Edwards, T.B.; Eghbali, D.A.; Liebmann, M.L.; Shine, E.P.

    1992-03-01

    The 1985 L-Area AC Flow Tests were conducted to provide an extended data base for upgrading the reactor system models employed in predicting normal process water flows. This report summarizes the results of the recently completed, formal, technical review of the data from the 1985 L-Area AC Flow Tests as detailed in document SCS-CMAS-910045. The purpose of that review was to provide corroborating technical information as to the quality (fitness for use) of these experimental data. Reference [1] required three volumes to fully document the results of that Data Qualification process. This report has been prepared to provide the important conclusions from that process in a manageable and understandable format. Consult reference [1] if any additional information or detail is needed. This report provides highlights from that study: an overview of the tests and data, a description of the instrumentation used, an explanation of the data qualification methods employed to review the data, and the important conclusions reached from the study. Reference 1: Edwards, T.B., D.A. Eghbali, M.L. Liebmann, and E.P. Shine, {open_quotes}Data Qualification for 1985 L-Area AC Flow Tests,{close_quotes} SCS-CMAS-910045, December 31, 1991.

  11. Chemical Species in the Vapor Phase of Hanford Double-Shell Tanks: Potential Impacts on Waste Tank Corrosion Processes

    SciTech Connect

    Felmy, Andrew R.; Qafoku, Odeta; Arey, Bruce W.; Boomer, Kayle D.

    2010-09-22

    The presence of corrosive and inhibiting chemicals on the tank walls in the vapor space, arising from the waste supernatant, dictate the type and degree of corrosion that occurs there. An understanding of how waste chemicals are transported to the walls and the affect on vapor species from changing supernatant chemistry (e.g., pH, etc.), are basic to the evaluation of risks and impacts of waste changes on vapor space corrosion (VSC). In order to address these issues the expert panel workshop on double-shell tank (DST) vapor space corrosion testing (RPP-RPT-31129) participants made several recommendations on the future data and modeling needs in the area of DST corrosion. In particular, the drying of vapor phase condensates or supernatants can form salt or other deposits at the carbon steel interface resulting in a chemical composition at the near surface substantially different from that observed directly in the condensates or the supernatants. As a result, over the past three years chemical modeling and experimental studies have been performed on DST supernatants and condensates to predict the changes in chemical composition that might occur as condensates or supernatants equilibrate with the vapor space species and dry at the carbon steel surface. The experimental studies included research on both the chemical changes that occurred as the supernatants dried as well as research on how these chemical changes impact the corrosion of tank steels. The chemical modeling and associated experimental studies were performed at the Pacific Northwest National Laboratory (PNNL) and the research on tank steel corrosion at the Savannah River National Laboratory (SRNL). This report presents a summary of the research conducted at PNNL with special emphasis on the most recent studies conducted in FY10. An overall summary of the project results as well as their broader implications for vapor space corrosion of the DST’s is given at the end of this report.

  12. Waste of cleaning emulsion sewage as inhibitors of steel corrosion

    NASA Astrophysics Data System (ADS)

    Fazullin, D. D.; Mavrin, G. V.; Shaikhiev, I. G.

    2016-06-01

    The article describes the corrosion test of steel of the brand 20 in the stratal water. To increase corrosion resistance as a corrosion inhibitor the concentrate waste emulsion of the mark "Incam- 1" was provided. The article presents studies of the corrosion rate with different dosages of corrosion inhibitor in the stratal water. Based on these research results are revealed that the degree of protection of steel is 27% at a dosage of 3.8 g / dm3.

  13. Summary of the 2012 Inductive Pulsed Plasma Thruster Development and Testing Program

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Martin, A. K.; Eskridge, R. H.; Kimberlin, A. C.; Addona, B. M.; Devineni, A. P.; Dugal-Whitehead, N. R.; Hallock, A. K.

    2013-01-01

    Inductive pulsed plasma thrusters are spacecraft propulsion devices in which energy is capacitively stored and then discharged through an inductive coil. While these devices have shown promise for operation at high efficiency on a range of propellants, many technical issues remain before they can be used in flight applications. A conical theta-pinch thruster geometry was fabricated and tested to investigate potential improvements in propellant utilization relative to more common, flat-plate planar coil designs. A capacitor charging system is used to permit repetitive discharging of thrusters at multiple cycles per second, with successful testing accomplished at a repetition-rate of 5 Hz at power levels of 0.9, 1.6, and 2.5 kW. The conical theta-pinch thruster geometry was tested at cone angles of 20deg, 38deg, and 60deg, with single-pulse operation at 500 J/pulse and repetitionrate operation with the 38deg model quantified through direct thrust measurement using a hanging pendulum thrust stand. A long-lifetime valve was designed and fabricated, and initial testing was performed to measure the valve response and quantify the leak rate at beginning-of-life. Subscale design and testing of a capacitor charging system required for operation on a spacecraft is reported, providing insights into the types of components needed in the circuit topology employed. On a spacecraft, this system would accept as input a lower voltage from the spacecraft DC bus and boost the output to the high voltage required to charge the capacitors of the thruster.

  14. IFT&E Industry Report Wind Turbine-Radar Interference Test Summary.

    SciTech Connect

    Karlson, Benjamin; LeBlanc, Bruce Philip.; Minster, David G; Estill, Milford; Miller, Bryan Edward; Busse, Franz; Keck, Chris; Sullivan, Jonathan; Brigada, David; Parker, Lorri; Younger, Richard; Biddle, Jason

    2014-10-01

    Wind turbines have grown in size and capacity with today's average turbine having a power capacity of around 1.9 MW, reaching to heights of over 495 feet from ground to blade tip, and operating with speeds at the tip of the blade up to 200 knots. When these machines are installed within the line-of-sight of a radar system, they can cause significant clutter and interference, detrimentally impacting the primary surveillance radar (PSR) performance. The Massachusetts Institute of Technology's Lincoln Laboratory (MIT LL) and Sandia National Laboratories (SNL) were co-funded to conduct field tests and evaluations over two years in order to: I. Characterize the impact of wind turbines on existing Program-of-Record (POR) air surveillance radars; II. Assess near-term technologies proposed by industry that have the potential to mitigate the interference from wind turbines on radar systems; and III. Collect data and increase technical understanding of interference issues to advance development of long-term mitigation strategies. MIT LL and SNL managed the tests and evaluated resulting data from three flight campaigns to test eight mitigation technologies on terminal (short) and long-range (60 nmi and 250 nmi) radar systems. Combined across the three flight campaigns, more than 460 of hours of flight time were logged. This paper summarizes the Interagency Field Test & Evaluation (IFT&E) program and publicly- available results from the tests. It will also discuss the current wind turbine-radar interference evaluation process within the government and a proposed process to deploy mitigation technologies.

  15. CORROSION INHIBITION

    DOEpatents

    Cartledge, G.H.

    1958-06-01

    The protection of ferrous metsls from the corrosive action of aqueous solutions is accomplished by the incorporation of small amounts of certain additive agents into the aqueous solutions. The method comprises providing a small concentration of technetium, in the form of pertechnetate ion, dissolved in the solution.

  16. Summary of hydrologic testing of the Floridan aquifer system at Fort Stewart, Georgia

    USGS Publications Warehouse

    Gonthier, Gerard J.

    2011-01-01

    Flowmeter surveys at the study site indicate several permeable zones within the Floridan aquifer system. The Upper Floridan aquifer is composed of two water-bearing zones-the upper zone and the lower zone. The upper zone extends from 520 to 650 feet below land surface, contributes 96 percent of the total flow, and is more permeable than the lower zone, which extends from 650 to 705 feet below land surface and contributes the remaining 4 percent of the flow. The Lower Floridan aquifer consists of three zones at depths of 912-947, 1,090-1,139, and 1,211-1,250 feet below land surface that are inter-layered with three less-permeable zones. The Lower Floridan confining unit includes a permeable zone that extends from 793 to 822 feet below land surface. Horizontal hydraulic conductivity values of the Lower Floridan confining unit derived from slug tests within four packer-isolated intervals were from 2 to 20 feet per day, with a high value of 70 feet per day obtained for one of the intervals. Aquifer testing, using analytical techniques and model simulation, indicated the Upper Floridan aquifer had a transmissivity of about 100,000 feet squared per day, and the Lower Floridan aquifer had a transmissivity of 7,000 feet squared per day. Flowmeter surveys, slug tests within packer-isolated intervals, and parameter-estimation results indicate that the hydraulic properties of the Lower Floridan confining unit are similar to those of the Lower Floridan aquifer. Water-level data, for each aquifer test, were filtered for external influences such as barometric pressure, earth-tide effects, and long-term trends to enable detection of small water-level responses to aquifer-test pumping of less than 1 foot. During a 72-hour aquifer test of the Lower Floridan aquifer, a drawdown response of 0.3 to 0.4 foot was observed in two Upper Floridan aquifer wells, one of which was more than 1 mile away from the pumped well.

  17. Material Ignition and Suppression Test (MIST) in Space Exploration Atmospheres, Summary of Research

    NASA Technical Reports Server (NTRS)

    Fernandez-Pello, Carlos

    2013-01-01

    The Material Ignition and Suppression Test (MIST) project has had the objective of evaluating the ease of ignition and the fire suppression of materials used in spacecraft under environmental condition expected in a spacecraft. For this purpose, an experimental and theoretical research program is being conducted on the effect of space exploration atmospheres (SEA) on the piloted ignition of representative combustible materials, and on their fire suppression characteristics. The experimental apparatus and test methodology is derived from the Forced Ignition and Flame Spread Test (FIST), a well-developed bench scale test designed to extract material properties relevant to prediction of material flammability. In the FIST test, materials are exposed to an external radiant flux and the ignition delay and critical mass flux at ignition are determined as a function of the type of material and environmental conditions. In the original MIST design, a small-scale cylindrical flow duct with fuel samples attached to its inside wall was heated by a cylindrical heater located at the central axis of the cylinder. However, as the project evolved it was decided by NASA that it would be better to produce an experimental design that could accommodate other experiments with different experimental concepts. Based on those instructions and input from the requirements of other researchers that may share the hardware in an ISS/CIR experiment, a cylindrical design based on placing the sample at the center of an optically transparent tube with heaters equally spaced along the exterior of the cylinder was developed. Piloted ignition is attained by a hot wire igniter downstream of the fuel sample. Environment variables that can be studied via this experimental apparatus include: external radiant flux, oxidizer oxygen concentration, flow velocity, ambient pressure, and gravity level (if flown in the ISS/CIR). This constitutes the current experimental design, which maintains fairly good

  18. Summary of raman cone penetrometer probe waste tank radiation and chemical environment test

    SciTech Connect

    Reich, F.R.

    1996-09-27

    This report summarizes the results of testing Raman sapphire windows that were braze mounted into a mockup Raman probe head and stainless steel coupons in a simulated tank waste environment. The simulated environment was created by exposing sapphire window components, immersed in a tank simulant, in a gamma pit. This work was completed for the U.S. Department of Energy (DOE) Office of Environmental Management (EM-50) for Technical Task Proposal RL4-6-WT-21.

  19. Apollo-Soyuz test project photographic film processing and sensitometric summary

    NASA Technical Reports Server (NTRS)

    Lockwood, H. E.

    1975-01-01

    The Photographic Technology Division at the NASA Lyndon B. Johnson Space Center processed original photographic films exposed in flight during the Apollo Soyuz Test Project (ASTP). Integrated with processing of the original films were strict sensitometric controls and certification procedures established prior to the flight. Information relative to the processing of the 54 rolls of original ASTP flight film and sensitometric data pertinent to each of these rolls of film is presented.

  20. Pogo summary report main propulsion test static firings 1-7 for shuttle development flight instrumentation

    NASA Technical Reports Server (NTRS)

    Haddick, C. M., Jr.

    1980-01-01

    Problems concerning the shuttle main propulsion system Polar Orbit Geophysical Observatory (POGO) instrumentation and the actions taken to correct them are summarized. Investigations and analyses appear to be providing solutions to correct the majority of questionable measurements. Corrective action in the handling of cables and connectors should increase the POGO measurement quality. Unacceptable levels of very low frequency noise and data level shifts may be related to test stand grounding configuration, but further investigation is required.

  1. Blended-Wing-Body Low-Speed Flight Dynamics: Summary of Ground Tests and Sample Results

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.

    2009-01-01

    A series of low-speed wind tunnel tests of a Blended-Wing-Body tri-jet configuration to evaluate the low-speed static and dynamic stability and control characteristics over the full envelope of angle of attack and sideslip are summarized. These data were collected for use in simulation studies of the edge-of-the-envelope and potential out-of-control flight characteristics. Some selected results with lessons learned are presented.

  2. Summary of TFTR (Tokamak Fusion Test Reactor) diagnostics, including JET (Joint European Torus) and JT-60

    SciTech Connect

    Hill, K.W.; Young, K.M.; Johnson, L.C.

    1990-05-01

    The diagnostic instrumentation on TFTR (Tokamak Fusion Test Reactor) and the specific properties of each diagnostic, i.e., number of channels, time resolution, wavelength range, etc., are summarized in tables, grouped according to the plasma parameter measured. For comparison, the equivalent diagnostic capabilities of JET (Joint European Torus) and the Japanese large tokamak, JT-60, as of late 1987 are also listed in the tables. Extensive references are given to publications on each instrument.

  3. TANK 18 AND 19-F TIER 1A EQUIPMENT FILL MOCK UP TEST SUMMARY

    SciTech Connect

    Stefanko, D.; Langton, C.

    2011-11-04

    The United States Department of Energy (US DOE) has determined that Tanks 18-F and 19-F have met the F-Tank Farm (FTF) General Closure Plan Requirements and are ready to be permanently closed. The high-level waste (HLW) tanks have been isolated from FTF facilities. To complete operational closure they will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) discouraging future intrusion, and (4) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. Bulk waste removal and heel removal equipment remain in Tanks 18-F and 19-F. This equipment includes the Advance Design Mixer Pump (ADMP), transfer pumps, transfer jets, standard slurry mixer pumps, equipment-support masts, sampling masts, dip tube assemblies and robotic crawlers. The present Tank 18 and 19-F closure strategy is to grout the equipment in place and eliminate vertical pathways by filling voids in the equipment to vertical fast pathways and water infiltration. The mock-up tests described in this report were intended to address placement issues identified for grouting the equipment that will be left in Tank 18-F and Tank 19-F. The Tank 18-F and 19-F closure strategy document states that one of the Performance Assessment (PA) requirements for a closed tank is that equipment remaining in the tank be filled to the extent practical and that vertical flow paths 1 inch and larger be grouted. The specific objectives of the Tier 1A equipment grout mock-up testing include: (1) Identifying the most limiting equipment configurations with respect to internal void space filling; (2) Specifying and constructing initial test geometries and forms that represent scaled boundary conditions; (3) Identifying a target grout rheology for evaluation in the scaled mock-up configurations; (4) Scaling-up production of a grout mix with the target rheology

  4. Summary of Tests to Determine Effectiveness of Gelatin Strike on SS{ampersand}C Dissolver Solutions

    SciTech Connect

    Murray, A.M.; Karraker, D.G.

    1998-05-01

    The solutions from the dissolution of sand, slag, and crucible (SS&C) material are sufficiently different from previous solutions processed via the F-Canyon Purex process that the effectiveness of individual process steps needed to be ascertained. In this study, the effectiveness of gelatin strike was tested under a variety of conditions. Specifically, several concentrations of silica, fluoride, nitric acid (HNO{sub 3}), boric acid (H{sub 3}BO{sub 3}), and aluminium nitrate nonahydrate (ANN) were studied. The disengagement times of surrogate and plant SS&C dissolver solutions from plant solvent also were measured. The results of the tests indicate that gelatin strike does not coagulate the silica at the low concentration of silica ({tilde 30} ppm) expected in the SS&C dissolver solutions because the silicon is complexed with fluoride ions (e.g., SiF{sub 6}{sup -2}). The silicon fluoride complex is expected to remain with the aqueous phase during solvent extraction. The disengagement times of the dissolver solutions from the plant solvent were not affected by the presence of low concentrations of silica and no third phase formation was observed in the disengagement phase with the low silica concentrations. Tests of surrogate SS&C dissolver solutions with higher concentration of silica (less than 150 ppm) did show that gelatin strike followed by centrifugation resulted in good phase disengagement of the surrogate SS{ampersand}C dissolver solution from the plant dissolver solution. At the higher silica concentrations, there is not sufficient fluoride to complex with the silica, and the silica must be entrained by the gelatin and removed from the dissolver solution prior to solvent extraction.

  5. Geothermal direct applications hardware systems development and testing. 1979 summary report

    SciTech Connect

    Keller, J.G.

    1980-03-01

    Activities performed during calendar year 1979 for the hardware system development and testing task are presented. The fluidized bed technology was applied to the drying of potato by-products and to the exchange of heat to air in the space heating experiment. Geothermal water was flashed to steam and also used as the prime energy source in the steam distillation of peppermint oil. Geothermal water temperatures as low as 112.8/sup 0/C were utilized to distill alcohol from sugar beet juice, and lower temperature water provided air conditioning through an absorption air conditioning system. These experiments are discussed.

  6. Prototype geothermal power plant summary of operation for automatic-run test phase

    SciTech Connect

    Mines, G.L.

    1981-02-01

    The Prototype Power Plant was built to demonstrate and learn the operation of a binary power cycle, and then serve as a test bed for pilot scale components, systems, and/or concepts that have the potential for enhancing the feasibility of power generation from a moderate temperature geothermal fluid resource. The operation to date of the prototype plant is summarized with primary emphasis on the automatic-run phase, during which the plant was operated over a five-month period with minimal operator surveillance.

  7. Comprehensive summary--Predict-IV: A systems toxicology approach to improve pharmaceutical drug safety testing.

    PubMed

    Mueller, Stefan O; Dekant, Wolfgang; Jennings, Paul; Testai, Emanuela; Bois, Frederic

    2015-12-25

    This special issue of Toxicology in Vitro is dedicated to disseminating the results of the EU-funded collaborative project "Profiling the toxicity of new drugs: a non animal-based approach integrating toxicodynamics and biokinetics" (Predict-IV; Grant 202222). The project's overall aim was to develop strategies to improve the assessment of drug safety in the early stage of development and late discovery phase, by an intelligent combination of non animal-based test systems, cell biology, mechanistic toxicology and in silico modeling, in a rapid and cost effective manner. This overview introduces the scope and overall achievements of Predict-IV. PMID:25450741

  8. Comprehensive summary--Predict-IV: A systems toxicology approach to improve pharmaceutical drug safety testing.

    PubMed

    Mueller, Stefan O; Dekant, Wolfgang; Jennings, Paul; Testai, Emanuela; Bois, Frederic

    2015-12-25

    This special issue of Toxicology in Vitro is dedicated to disseminating the results of the EU-funded collaborative project "Profiling the toxicity of new drugs: a non animal-based approach integrating toxicodynamics and biokinetics" (Predict-IV; Grant 202222). The project's overall aim was to develop strategies to improve the assessment of drug safety in the early stage of development and late discovery phase, by an intelligent combination of non animal-based test systems, cell biology, mechanistic toxicology and in silico modeling, in a rapid and cost effective manner. This overview introduces the scope and overall achievements of Predict-IV.

  9. Evaluation of Stress Corrosion Cracking Susceptibility Using Fracture Mechanics Techniques, Part 1. [environmental tests of aluminum alloys, stainless steels, and titanium alloys

    NASA Technical Reports Server (NTRS)

    Sprowls, D. O.; Shumaker, M. B.; Walsh, J. D.; Coursen, J. W.

    1973-01-01

    Stress corrosion cracking (SSC) tests were performed on 13 aluminum alloys, 13 precipitation hardening stainless steels, and two titanium 6Al-4V alloy forgings to compare fracture mechanics techniques with the conventional smooth specimen procedures. Commercially fabricated plate and rolled or forged bars 2 to 2.5-in. thick were tested. Exposures were conducted outdoors in a seacoast atmosphere and in an inland industrial atmosphere to relate the accelerated tests with service type environments. With the fracture mechanics technique tests were made chiefly on bolt loaded fatigue precracked compact tension specimens of the type used for plane-strain fracture toughness tests. Additional tests of the aluminum alloy were performed on ring loaded compact tension specimens and on bolt loaded double cantilever beams. For the smooth specimen procedure 0.125-in. dia. tensile specimens were loaded axially in constant deformation type frames. For both aluminum and steel alloys comparative SCC growth rates obtained from tests of precracked specimens provide an additional useful characterization of the SCC behavior of an alloy.

  10. Influence of NOM on copper corrosion

    SciTech Connect

    Korshin, G.V.; Ferguson, J.F.; Perry, S.A.L.

    1996-07-01

    Natural organic matter (NOM) profoundly affected the corrosion of copper in a moderately alkaline synthetic water. It decreased the rate of corrosion, increased the rate of copper leaching, and dispersed crystalline inorganic corrosion products. The interaction of NOM with corrosion products was modeled using separate phase of malachite and cuprous oxide. The authors concluded that NOM promotes the formation of pits in a certain narrow range of concentrations (0.1--0.2 mg/L in laboratory tests) and suppresses this type of corrosion at higher dosages. At low DOC concentrations, the main interaction between NOM and the surfaces of corroding metal and corrosion products is adsorption. The influence of NOM on corrosion of metals in real distribution systems must be studied in relation to long periods of surface aging, flow rate, concentration and type of oxidants, pH, and alkalinity.

  11. Corrosion and corrosion prevention in gas turbines

    NASA Technical Reports Server (NTRS)

    Mom, A. J. A.; Kolkman, H. J.

    1985-01-01

    The conditions governing the corrosion behavior in gas turbines are surveyed. Factors such as temperature, relative humidity, the presence of sulfur and nitrogen dioxide, and fuel quality are discussed. Electromechanical corrosion at relatively low temperature in compressors; oxidation; and hot corrosion (sulfidation) at high temperature in turbines are considered. Corrosion prevention by washing and rinsing, fueld additives, and corrosion resistant materials and coatings are reviewed.

  12. Summary of seasonal thermal energy storage field test projects in the United States

    SciTech Connect

    Johnson, B.K.

    1989-07-01

    Seasonal thermal energy storage (STES) involves storage of available heat or chill for distribution at a later time to meet thermal loads. STES can reduce energy consumption, peak energy demand, and emissions of carbon dioxide to the atmosphere over conventional systems. It is estimated that full-scale application of STES would provide 2% to 4% of total energy needs in the United States. One STES technology, aquifer thermal energy storage (ATES), has been determined to be the most cost-effective option in the United States when site conditions enable its use. ATES has been analyzed in the laboratory and investigated in the field in the United States since the program was established at Pacific Northwest Laboratory (PNL) in 1979. Two field test facilities (FTFs), one for heating ATES at the University of Minnesota and the other for cooling ATES at the University of Alabama, have been primary testing grounds for US ATES research. Computer models have been developed to analyze the complex thermal and fluid dynamics. Extensive monitoring of FTFs has provided verification of and refinements to the computer models. The areas of geochemistry and microbiology have been explored as they apply to the aquifer environment. In general, the two FTFs have been successful in demonstrating the steps needed to make an ATES system operational.

  13. Vibroacoustic Response of Residential Housing due to Sonic Boom Exposure: A Summary of two Field Tests

    NASA Technical Reports Server (NTRS)

    Klos, Jacob; Buehrle, Ralph; Sullivan, Brenda; Gavin, Joseph; Salamone, Joseph; Haering, Edward A., jr.; Miller, Denise M.

    2008-01-01

    Two experiments have been performed to measure the vibroacoustic response of houses exposed to sonic booms. In 2006, an old home in the base housing area of Edwards Air Force Base, built around 1960 and demolished in 2007, was instrumented with 288 transducers. During a 2007 follow-on test, a newer home in the base housing area, built in 1997, was instrumented with 112 transducers. For each experiment, accelerometers were placed on walls, windows and ceilings in bedrooms of the house to measure the vibration response of the structure. Microphones were placed outside and inside the house to measure the excitation field and resulting interior sound field. The vibroacoustic response of each house was measured for sonic boom amplitudes spanning from 2.4 to 96 Pa (0.05 to 2 lbf/sq ft). The boom amplitudes were systematically varied using a unique dive maneuver of an F/A-18 airplane. In total, the database for both houses contains vibroacoustic response data for 154 sonic booms. In addition, several tests were performed with mechanical shaker excitation of the structure to characterize the forced response of the houses. The purpose of this paper is to summarize all the data from these experiments that are available to the research community, and to compare and contrast the vibroacoustic behavior of these two dissimilar houses.

  14. Summary Of Cold Crucible Vitrification Tests Results With Savannah River Site High Level Waste Surrogates

    SciTech Connect

    Stefanovsky, Sergey; Marra, James; Lebedev, Vladimir

    2014-01-13

    The cold crucible inductive melting (CCIM) technology successfully applied for vitrification of low- and intermediate-level waste (LILW) at SIA Radon, Russia, was tested to be implemented for vitrification of high-level waste (HLW) stored at Savannah River Site, USA. Mixtures of Sludge Batch 2 (SB2) and 4 (SB4) waste surrogates and borosilicate frits as slurries were vitrified in bench- (236 mm inner diameter) and full-scale (418 mm inner diameter) cold crucibles. Various process conditions were tested and major process variables were determined. Melts were poured into 10L canisters and cooled to room temperature in air or in heat-insulated boxes by a regime similar to Canister Centerline Cooling (CCC) used at DWPF. The products with waste loading from ~40 to ~65 wt.% were investigated in details. The products contained 40 to 55 wt.% waste oxides were predominantly amorphous; at higher waste loadings (WL) spinel structure phases and nepheline were present. Normalized release values for Li, B, Na, and Si determined by PCT procedure remain lower than those from EA glass at waste loadings of up to 60 wt.%.

  15. 2 kWe Solar Dynamic Ground Test Demonstration Project. Volume 1; Executive Summary

    NASA Technical Reports Server (NTRS)

    Alexander, Dennis

    1997-01-01

    The Solar Dynamic Ground Test Demonstration (SDGTD) successfully demonstrated a solar-powered closed Brayton cycle system in a relevant space thermal environment. In addition to meeting technical requirements the project was completed 4 months ahead of schedule and under budget. The following conclusions can be supported: 1. The component technology for solar dynamic closed Brayton cycle technology has clearly been demonstrated. 2. The thermal, optical, control, and electrical integration aspects of systems integration have also been successfully demonstrated. Physical integration aspects were not attempted as these tend to be driven primarily by mission-specific requirements. 3. System efficiency of greater than 15 percent (all losses fully accounted for) was demonstrated using equipment and designs which were not optimized. Some preexisting hardware was used to minimize cost and schedule. 4. Power generation of 2 kWe. 5. A NASA/industry team was developed that successfully worked together to accomplish project goals. The material presented in this report will show that the technology necessary to design and fabricate solar dynamic electrical power systems for space has been successfully developed and demonstrated. The data will further show that achieved results compare well with pretest predictions. The next step in the development of solar dynamic space power will be a flight test.

  16. Summary of LaRC 2-inch Erectable Joint Hardware Heritage Test Data

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Watson, Judith J.

    2016-01-01

    As the National Space Transportation System (STS, also known as the Space Shuttle) went into service during the early 1980's, NASA envisioned many missions of exploration and discovery that could take advantage of the STS capabilities. These missions included: large orbiting space stations, large space science telescopes and large spacecraft for manned missions to the Moon and Mars. The missions required structures that were significantly larger than the payload volume available on the STS. NASA Langley Research Center (LaRC) conducted studies to design and develop the technology needed to assemble the large space structures in orbit. LaRC focused on technology for erectable truss structures, in particular, the joint that connects the truss struts at the truss nodes. When the NASA research in large erectable space structures ended in the early 1990's, a significant amount of structural testing had been performed on the LaRC 2-inch erectable joint that was never published. An extensive set of historical information and data has been reviewed and the joint structural testing results from this historical data are compiled and summarized in this report.

  17. A SUMMARY OF TEST OBSERVATIONS WHEN IBUTTONS ARE SUBJECTED TO RF ENERGY

    SciTech Connect

    Kane, R J; Baluyot, E V

    2011-10-26

    The iButton is a 'one-wire', temperature sensor and data logger in a short metal cylinder package 17 mm in diameter and 6 mm tall. The device is designed to be attached to a surface and acquire temperature samples over time periods as short as 1 second to as long as 300 minutes. Both 8-bit and 16-bit samples are available with 8kB of memory available. Lifetime is limited to an internal battery that cannot be replaced or recharged. The RF test interest originated with the concern that the data logger could inadvertently record electrical emanations from other nearby equipment. The normal operation of the data logger does not support high speed sampling but the control interface will operate at either 15.4 kbps or 125 kbps. There were no observable effects in the operation of the module or in the data that could be attributed to the use of RF energy. They made the assumption that these devices would potentially show RF sensitivity in any of the registers and in the data memory equally, therefore gross changes in the data might show RF susceptibility. No such sensitivity was observed. Because significant power levels were used for these tests they can extrapolate downward in power to state that no RF susceptibility would occur at lower power levels given the same configurations.

  18. SUMMARY PLAN FOR BENCH-SCALE REFORMER AND PRODUCT TESTING TREATABILITY STUDIES USING HANFORD TANK WASTE

    SciTech Connect

    DUNCAN JB

    2010-08-19

    This paper describes the sample selection, sample preparation, environmental, and regulatory considerations for shipment of Hanford radioactive waste samples for treatability studies of the FBSR process at the Savannah River National Laboratory and the Pacific Northwest National Laboratory. The U.S. Department of Energy (DOE) Hanford tank farms contain approximately 57 million gallons of wastes, most of which originated during the reprocessing of spent nuclear fuel to produce plutonium for defense purposes. DOE intends to pre-treat the tank waste to separate the waste into a high level fraction, that will be vitrified and disposed of in a national repository as high-level waste (HLW), and a low-activity waste (LAW) fraction that will be immobilized for on-site disposal at Hanford. The Hanford Waste Treatment and Immobilization Plant (WTP) is the focal point for the treatment of Hanford tank waste. However, the WTP lacks the capacity to process all of the LAW within the regulatory required timeframe. Consequently, a supplemental LAW immobilization process will be required to immobilize the remainder of the LAW. One promising supplemental technology is Fluidized Bed Steam Reforming (FBSR) to produce a sodium-alumino-silicate (NAS) waste form. The NAS waste form is primarily composed of nepheline (NaAlSiO{sub 4}), sodalite (Nas[AlSiO{sub 4}]{sub 6}Cl{sub 2}), and nosean (Na{sub 8}[AlSiO{sub 4}]{sub 6}SO{sub 4}). Semivolatile anions such as pertechnetate (TcO{sub 4}{sup -}) and volatiles such as iodine as iodide (I{sup -}) are expected to be entrapped within the mineral structures, thereby immobilizing them (Janzen 2008). Results from preliminary performance tests using surrogates, suggests that the release of semivolatile radionuclides {sup 99}Tc and volatile {sup 129}I from granular NAS waste form is limited by Nosean solubility. The predicted release of {sup 99}Tc from the NAS waste form at a 100 meters down gradient well from the Integrated Disposal Facility (IDF

  19. Stress Corrosion Crack Growth Rate Testing and Analytical Electron Microscopy of Alloy 600 as a Function of Pourbaix Space and Microstructure

    SciTech Connect

    N. Lewis; S.A. Attanasio; D.S. Morton; G.A. Young

    2000-10-04

    Stress corrosion crack (SCC) growth rate tests and analytical electron microscopy (AEM) studies were performed over a broad range of environments and heat treatments of Alloy 600. This effort was conducted to correlate bulk environmental conditions such as pH and electrochemical potential (EcP) with the morphology of the SCC crack. Development of a library of AEM morphologies formed by SCC in different environments is an important step in identifying the conditions that lead to SCC in components. Additionally, AEM examination of stress corrosion cracks formed in different environments and microstructures lends insight into the mechanism(s) of stress corrosion cracking. Testing was conducted on compact tension specimens in three environments: a mildly acidic oxidizing environment containing sulfate ions, a caustic environment containing 10% NaOH, and hydrogenated near-neutral buffered water. Additionally, stress corrosion cracking testing of a smooth specimen was conducted in hydrogenated steam. The following heat treatments of Alloy 600 were examined: mill annealed at 980 C (near-neutral water), mill annealed at 1010 C (steam), sensitized (acid and caustic), and mill annealed + healed to homogenize the grain boundary Cr concentration (caustic). Crack growth rate (CGR) testing showed that sensitized Alloy 600 tested in the mildly acidic, oxidizing environment containing sulfate ions produced the fastest cracking ({approx} 8.8 {micro}m/hr at 260 C), and AEM examination revealed evidence of sulfur segregation to the crack tip. The caustic environment produced slower cracking ({approx} 0.4 {micro}m/hr at 307 C) in the mill annealed + healed heat treatment but no observed cracking in the sensitized condition. In the caustic environment, fully oxidized carbides were present in the crack wake but not ahead of the crack tip. In near-neutral buffered water at 338 C, the CGR was a function of dissolved hydrogen in the water and exhibited a maximum (0.17 {micro}m/hr) near the

  20. Summary of experimental data for critical arrays of water moderated Fast Test Reactor fuel

    SciTech Connect

    Durst, B.M.; Bierman, S.R.; Clayton, E.D.; Mincey, J.F.; Primm, R.T. III

    1981-05-01

    A research program, funded by the Consolidated Fuel Reprocessing Program (CFRP) of Oak Ridge National Laboratory (ORNL), was initiated at Battelle Pacific Northwest Laboratory (PNL) to acquire experimental data on heterogeneous water moderated arrays of Fast Test Reactor (FTR) fuel pins. The objective of this program is to provide critical experiment data for validating calculational techniques used in criticality assessments of reprocessing equipment containing FTR-type fuels. Consequently, the experiments were designed to permit accurate definition in Monte Carlo computer codes currently used in these assessments. Square and triangular pitched lattices of fuel have been constructed under a variety of conditions covering the range from undermoderated to overmoderated arrays. Experiments were conducted composed of arrays which were water reflected, partially concrete reflected, and arrays with interspersed solid neutron absorbers. The absorbers utilized were Boral, and cadmium plates and gadolinium cylindrical rods. Data from non-CFRP sponsored subcritical experiments (previously performed at Hanford) also are included.

  1. SUMMARY CONCLUSIONS FOR THE PILOT IN-SITU CHROMIUM REDUCTION TEST AT RIVERBANK ARMY AMMUNITIONS PLANT

    SciTech Connect

    Ridley, M

    2007-04-25

    A treatability study was conducted at Riverbank Army Ammunition Plant's (RBAAP) Site 17, to evaluate the effectiveness of a permeable reactive barrier (PRB) for the treatment of hexavalent chromium (Cr{sup 6+}). The chromium contamination at Site 17 is hydrologically isolated and unsuitable for standard extraction and treatment (pump and treat). The majority of the chromium contamination at Site 17 is trapped within the fine grain sediments of a clay/slit zone (45 to 63). The PRB was established above and adjacent to the contaminated zone at Site 17 to reduce the hexavalent chromium as it leaches out of the contaminated clay/silt zone separating the A zone from the A zone. Site 17 and the monitoring network are described in the In-Situ Chromium Reduction Treatability Study Work Plan (CH2MHILL, January 2004). The PRB was created by reducing naturally occurring Fe{sup 3+} to Fe{sup 2+} with the injection of a buffered sodium dithionite solution into subsurface chromium source area. The Cr{sup 6+} leaching out of the contaminated clay/silt zone and migrating through the PRB is reduced by Fe{sup 2+} to Cr{sup 3+} and immobilized (Amonette, et al., 1994). The sodium dithionite will also reduce accessible Cr{sup 6+}, however the long-term reductant is the Fe{sup 2+}. Bench scale tests (Appendix A) were conducted to assess the quantity and availability of the naturally occurring iron at Site 17, the ability of the sodium dithionite to reduce the hexavalent chromium and Fe within the sediments, and the by-products produced during the treatment. Appendix A, provides a detailed description of the laboratory treatability tests, and provides background information on the technologies considered as possible treatment options for Site 17. Following the sodium dithionite treatment, groundwater/treatment solution was extracted to remove treatment by-products (sulfate, manganese, and iron). The following sections briefly discuss the current treatment status, future recommendations

  2. Development of a decision support system for the introduction of alternative methods into local irritancy/corrosivity testing strategies. Creation of fundamental rules for a decision support system.

    PubMed

    Gerner, I; Zinke, S; Graetschel, G; Schlede, E

    2000-01-01

    The notification procedure of the European Union (EU) for new chemicals requires the application of protocols on physicochemical and toxicological tests for the evaluation of physicochemical properties and probable toxic effects of each notified substance. A computerised database was developed from data sets and toxicological test protocols relating to substance properties responsible for skin and eye irritation/corrosion. To develop specific structure-activity relationship (SAR) models and to find rules for a decision support system (DSS) to predict local irritation/corrosion, physical property data, chemical structure data and toxicological data for approximately 1300 chemicals, each having a purity of 95% or more, were evaluated. The evaluation demonstrated that the lipid solubility and aqueous solubility of a chemical are relevant to, or - in some cases - responsible for, the observed local effects of a substance on the skins and eyes of rabbits. The octanol/water partition coefficient and the measured value of the surface tension of a saturated aqueous solution of the substance give additional information that permits the definition of detailed SAR algorithms that use measured solubility values. Data on melting points and vapour pressure can be used to assess the intensity and duration of local contact with a chemical. Considerations relating to the reactivity of a pure chemical can be based on molecular weight and the nature of the heteroatoms present. With respect to local lesions produced following contact with the skin and eyes of rabbits, the data evaluation revealed that no general "local irritation/corrosion potential" of a chemical can be defined. A variety of mechanisms are responsible for the formation of local lesions on the skin or in the eyes: serious lesions are produced by mechanisms different from those that cause moderate irritation in these organs. In order to develop a DSS that uses the information extracted from the database, chemical main

  3. Summary of well construction, testing, and preliminary findings from the Alligator Alley test well, Broward County, Florida

    USGS Publications Warehouse

    Meyer, F.W.

    1988-01-01

    A 2,811-foot deep test well was drilled during 1980 in The Everglades along Alligator Alley as part of the Floridan Regional Aquifer Systems Analysis project. The well was cased 895 feet deep. Hydraulic packers were used to isolate selected zones in the open hole for water samples and measurement of water levels. The well penetrated the surficial and intermediate aquifers into the Floridan aquifer system. The top of the Floridan aquifer system occurs at 770 feet and includes limestone ranging in age from Oligocene to early Eocene. About 67 percent of the total thickness of the Floridan aquifer system was penetrated by the well. The chief water-producing zones in the Floridan aquifer system occur at about 1,030 feet and at about 2,560 feet. The 1,030-foot zone contains brackish artesian groundwater, and the 2,560-foot zone contains salty artesian groundwater similar in composition to seawater. The static water geothermal gradient is indicated, and radiocarbon activities suggest that the saltwater in the lower zone is younger than brackish groundwater in the upper zone. (USGS)

  4. Titanium corrosion in alkaline hydrogen peroxide environments

    NASA Astrophysics Data System (ADS)

    Been, Jantje

    1998-12-01

    The corrosion of Grade 2 titanium in alkaline hydrogen peroxide environments has been studied by weight loss corrosion tests, electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR) measurements and potentiodynamic polarography. Calcium ions and wood pulp were investigated as corrosion inhibitors. In alkaline peroxide, the titanium corrosion rate increased with increasing pH, temperature, and hydrogen peroxide concentration. The corrosion controlling mechanism is thought to be the reaction of the oxide with the perhydroxyl ion. No evidence of thermodynamically stable calcium titanate was found in the surface film of test coupons exposed to calcium-inhibited alkaline peroxide solutions. Calcium inhibition is probably the result of low local alkali and peroxide concentrations at the metal surface produced by reaction of adsorbed calcium with hydrogen peroxide. It has been shown that the inhibiting effect of calcium is temporary, possibly through an effect of calcium on the chemical and/or physical stability of the surface oxide. Pulp is an effective and stable corrosion inhibitor. Raising the pulp concentration decreased the corrosion rate. The inhibiting effect of pulp may be related to the adsorption and interaction of the pulp fibers with H 2O2, thereby decreasing the peroxide concentration and rendering the solution less corrosive. The presence of both pulp and calcium led to higher corrosion rates than obtained by either one inhibitor alone. Replacement of hydrofluoric acid with alkaline peroxide for pickling of titanium was investigated. Titanium corrosion rates in alkaline peroxide exceeded those obtained in the conventional hydrofluoric acid bath. General corrosion was observed with extensive roughening of the surface giving a dull gray appearance. Preferred dissolution of certain crystallographic planes was investigated through the corrosion of a titanium single crystal. Whereas the overall effect on the corrosion rate was small

  5. A New Compendium of Unsteady Aerodynamic Test Cases for CFD: Summary of AVT WG-003 Activities

    NASA Technical Reports Server (NTRS)

    Ruiz-Calavera, Luis P.; Bennett, Robert; Fox, John H.; Galbraith, Robert W.; Geurts, Evert; Henshaw, Micahel J. deC.; Huang, XingZhong; Kaynes, Ian W.; Loeser, Thomas; Naudin, Pierre; Tamayama, Masato

    1999-01-01

    With the continuous progress in hardware and numerical schemes, Computational Unsteady Aerodynamics (CUA), that is, the application of Computational Fluid Dynamics (CFD) to unsteady flowfields, is slowly finding its way as a useful and reliable tool (turbulence and transition modeling permitting) in the aircraft, helicopter, engine and missile design and development process. Before a specific code may be used with confidence it is essential to validate its capability to describe the physics of the flow correctly, or at least to the level of approximation required, for which purpose a comparison with accurate experimental data is needed. Unsteady wind tunnel testing is difficult and expensive; two factors which dramatically limit the number of organizations with the capability and/or resources to perform it. Thus, unsteady experimental data is scarce, often classified and scattered in diverse documents. Additionally, access to the reports does not necessarily assure access to the data itself. The collaborative effort described in this paper was conceived with the aim of collecting into a single easily accessible document as much quality data as possible. The idea is not new. In the early 80's NATO's AGARD (Advisory Group for Aerospace Research & Development) Structures and Material Panel (SMP) produced AGARD Report No. 702 "Compendium of Unsteady Aerodynamic Measurements", which has found and continues to find extensive use within the CUA Community. In 1995 AGARD's Fluid Dynamics Panel (FDP) decided to update and expand the former database with new geometries and physical phenomena, and launched Working Group WG-22 on "Validation Data for Computational Unsteady Aerodynamic Codes". Shortly afterwards AGARD was reorganized as the RTO (Research and Technology Organization) and the WG was renamed as AVT (Applied Vehicle Technolology) WG-003. Contributions were received from AEDC, BAe, DLR, DERA, Glasgow University, IAR, NAL, NASA, NLR, and ONERA. The final publication

  6. Summary of data concerning radiological contamination at well PM-2, Nevada Test Site, Nye County, Nevada

    SciTech Connect

    Russell, G.M.; Locke, G.L.

    1997-02-01

    Analysis of water from well Pahute Mesa No. 2 (PM-2), on Pahute Mesa in the extreme northwestern part of the Nevada Test Site, indicated tritium concentrations above background levels in August 1993. A coordinated investigation of the tritium occurrence in well PM-2 was undertaken by the Hydrologic Resources Management Program of the US Department of Energy. Geologic and hydrologic properties of the hydrogeologic units were characterized using existing information. Soil around the well and water quality in the well were characterized during the investigation. The purpose of this report is to present existing information and results from a coordinated investigation of tritium occurrence. The objectives of the overall investigation include: (1) determination of the type and concentration of contamination; (2) identification of the source and mechanism of contamination; (3) estimation of the extent of radiological contamination; (4) initiation of appropriate monitoring of the contamination; and (5) reporting of investigation results. Compiled and tabulated data of the area are presented. The report also includes characterization of geology, soil, hydrology, and water quality data.

  7. Summary of data concerning radiological contamination at well PM-2, Nevada Test Site, Nye County, Nevada

    USGS Publications Warehouse

    Russell, G.M.; Locke, G.L.

    1997-01-01

    Analysis of water collected during August and September 1993 from well PM-2, on Pahute Mesa at\\x11the Nevada Test Site, indicated tritium concentrations of\\x1121,000 Bq/L at 610 m below land surface. The Schooner event (U-20u) was detonated in 1968 approximately 270 meterssoutheast of well PM-2 at a working depth of 108.2 meters. The crater created by the Schooner event was about 129.8 meters in radius and\\x1163.4 meters in depth. Geologic and hydrologic properties of the stratigraphic units are summarized from historical data. The soil around the well and water in the well were analyzed for radionuclides and water in the well was also analyzed for inorganic constituents and organic (volatile and semivolatile) substances. Close agreement between tritium analyses of water from well PM-2, at different times and at the same depths, confirms the elevated levels of tritium. The highest tritium values in the borehole were at 610 meters below land surface-above the shallowest perforations at 765 meters below land surface. These values were only slightly higher than values found at greater depth in the well.

  8. Test Summary Report INEEL Sodium-Bearing Waste Vitrification Demonstration RSM-01-1

    SciTech Connect

    Goles, Ronald W.; Perez, Joseph M.; Macisaac, Brett D.; Siemer, Darryl D.; Mccray, John A.

    2001-05-21

    The U.S. Department of Energy's Idaho National Engineering and Environmental Laboratory is storing large amounts of radioactive and mixed wastes. Most of the sodium-bearing wastes have been calcined, but about a million gallons remain uncalcined, and this waste does not meet current regulatory requirements for long-term storage and/or disposal. As a part of the Settlement Agreement between DOE and the State of Idaho, the tanks currently containing SBW are to be taken out of service by December 31, 2012, which requires removing and treatment the remaining SBW. Vitrification is the option for waste disposal that received the highest weighted score against the criteria used. Beginning in FY 2000, the INEEL high-level waste program embarked on a program for technology demonstration and development that would lead to conceptual design of a vitrification facility in the event that vitrification is the preferred alternative for SBW disposal. The Pacific Northwest National Laborator's Research-Scale Melter was used to conduct these initial melter-flowsheet evaluations. Efforts are underway to reduce the volume of waste vitrified, and during the current test, an overall SBW waste volume-reduction factor of 7.6 was achieved.

  9. Summary of the geology and physical properties of the Climax Stock, Nevada Test Site

    USGS Publications Warehouse

    Maldonado, Florian

    1977-01-01

    The Climax stock is a composite stock of Cretaceous age, composed of quartz monzonite and granodiorite, which intrudes sedimentary rocks of Paleozoic and Precambrian age. Tertiary rocks consisting of tuff, welded tuff, and breccia overlie the stock and sedimentary rocks. Hydrothermal alteration of the granodiorite and quartz monzonite is found mainly along the joints and is extensive, but the intensity of alteration varies from place to place. The surrounding sedimentary rocks (carbonates) have been metasomatically altered to tactite and marble as much as 1,500 feet (457 m) from contact with stock; the degree of metamorphism decreasing away from the intrusive. The major faults found in the vicinity of the Climax stock are the Tippinip fault, the Boundary fault, and the Yucca fault. In the stock three prominent joint sets and their average attitudes are N. 32? W., 22? NE.; N 64? W., vertical; and N 35? E., vertical. Two major tunnel complexes have been driven into the Climax stock?the Tiny Tot tunnel complex and Pile Driver-Hard Hat tunnel complex. In the Pile Driver-Hard Hat complex two underground nuclear tests have been conducted.

  10. Corrosion-Activated Micro-Containers for Environmentally Friendly Corrosion Protective Coatings

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Buhrow, J. W.; Zhang, X.; Johnsey, M. N.; Pearman, B. P.; Jolley, S. T.; Calle, L. M.

    2016-01-01

    This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry. The NASA Kennedy Space Centers Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion

  11. Summary of tectonic and structural evidence for stress orientation at the Nevada Test Site

    USGS Publications Warehouse

    Carr, Wilfred James

    1974-01-01

    A tectonic synthesis of the NTS (Nevada Test Site) region, when combined with seismic data and a few stress and strain measurements, suggests a tentative model for stress orientation. This model proposes that the NTS is undergoing extension in a N. 50 ? W.-S. 50 ? E. direction coincident with the minimum principal stress direction. The model is supported by (1) a tectonic similarity between a belt of NTS Quaternary faulting and part of the Nevada-California seismic belt, for which northwest-southeast extension has been suggested; (2) historic northeast- trending natural- and explosion-produced fractures in the NTS; (3) the virtual absence in the NTS of northwest-trending Quaternary faults; (4) the character of north-trending faults and basin configuration in the Yucca Flat area, which suggest a component of right-lateral displacement and post-10 m.y. (million year) oblique separation of the sides of the north-trending depression; (5) seismic evidence suggesting a north- to northwest-trending tension axis; (6) strain measurements, which indicate episodes of northwest-southeast extension within a net northeast-southwest compression; (7) a stress estimate based on tectonic cracking that indicates near-surface northwest-southeast-directed tension, and two stress measurements indicating an excess (tectonic) maximum principal compressive stress in a northeast-southwest direction at depths of about 1,000 feet (305 m); and (8) enlargement of some drill holes in Yucca Flat in a northwest-southeast direction. It is inferred that the stress episode resulting in the formation of deep alluvium-filled trenches began somewhere between 10 and possibly less than 4 m.y. ago in the NTS and is currently active. In the Walker Lane of western Nevada, crystallization of plutons associated with Miocene volcanism may have increased the competency and thickness of the crust and its ability to propagate stress, thereby modulating the frequency (spacing) of basin-range faults.

  12. Summary of Glaucoma Diagnostic Testing Accuracy: An Evidence-Based Meta-Analysis

    PubMed Central

    Ahmed, Saad; Khan, Zainab; Si, Francie; Mao, Alex; Pan, Irene; Yazdi, Fatemeh; Tsertsvadze, Alexander; Hutnik, Cindy; Moher, David; Tingey, David; Trope, Graham E.; Damji, Karim F.; Tarride, Jean-Eric; Goeree, Ron; Hodge, William

    2016-01-01

    Background New glaucoma diagnostic technologies are penetrating clinical care and are changing rapidly. Having a systematic review of these technologies will help clinicians and decision makers and help identify gaps that need to be addressed. This systematic review studied five glaucoma technologies compared to the gold standard of white on white perimetry for glaucoma detection. Methods OVID® interface: MEDLINE® (In-Process & Other Non-Indexed Citations), EMBASE®, BIOSIS Previews®, CINAHL®, PubMed, and the Cochrane Library were searched. A gray literature search was also performed. A technical expert panel, information specialists, systematic review method experts and biostatisticians were used. A PRISMA flow diagram was created and a random effect meta-analysis was performed. Results A total of 2,474 articles were screened. The greatest accuracy was found with frequency doubling technology (FDT) (diagnostic odds ratio (DOR): 57.7) followed by blue on yellow perimetry (DOR: 46.7), optical coherence tomography (OCT) (DOR: 41.8), GDx (DOR: 32.4) and Heidelberg retina tomography (HRT) (DOR: 17.8). Of greatest concern is that tests for heterogeneity were all above 50%, indicating that cutoffs used in these newer technologies were all very varied and not uniform across studies. Conclusions Glaucoma content experts need to establish uniform cutoffs for these newer technologies, so that studies that compare these technologies can be interpreted more uniformly. Nevertheless, synthesized data at this time demonstrate that amongst the newest technologies, OCT has the highest glaucoma diagnostic accuracy followed by GDx and then HRT. PMID:27540437

  13. Results of in-situ biofouling control, and corrosion test at Punta Tuna, Puerto Rico and its significance on OTEC heater exchanger design

    SciTech Connect

    Sasscer, D.S.; Morgan, T.O.; Tosteson, T.R.

    1983-06-01

    Because Ocean Thermal Energy Conversion (OTEC) operates at a low thermodynamic efficiency, heat exchangers represent a major portion of the overall cost of an OTEC power plant. For this reason, the commercial viability of OTEC depends on the design of efficient and inexpensive heat exchangers which have an operational life expectancy of 20 to 30 years and which can be maintained at a high level of efficiency by the use of effective biofouling control. Summarized here are the results of experiments conducted by the Center for Energy and Environment Research of the University of Puerto Rico to: determine the nature of the biofilm which develops on heat exchanger surfaces exposed to running seawater, test the effectiveness of brush cleaning and chlorination in controlling biofouling on these surfaces and study the corrosion behavior of zinc protected aluminum alloys under OTEC conditions in an attempt to qualify them for use in low cost OTEC heat exchangers.

  14. Corrosivity of paper mill effluent and corrosion performance of stainless steel.

    PubMed

    Ram, Chhotu; Sharma, Chhaya; Singh, A K

    2015-01-01

    Present study relates to the corrosivity of paper mill effluent and corrosion performance of stainless steel (SS) as a construction material for the effluent treatment plant (ETP). Accordingly, immersion test and electrochemical polarization tests were performed on SS 304 L, 316 L and duplex 2205 in paper mill effluent and synthetic effluent. This paper presents electrochemical polarization measurements, performed for the first time to the best of the authors' information, to see the influence of chlorophenols on the corrosivity of effluents. The corrosivity of the effluent was observed to increase with the decrease in pH and increase in Cl- content while the addition of SO4- tends to inhibit corrosion. Mill effluent was found to be more corrosive as compared to synthetic effluent and has been attributed to the presence of various chlorophenols. Corrosion performance of SS was observed to govern by the presence of Cr, Mo and N contents. PMID:25188842

  15. Corrosivity of paper mill effluent and corrosion performance of stainless steel.

    PubMed

    Ram, Chhotu; Sharma, Chhaya; Singh, A K

    2015-01-01

    Present study relates to the corrosivity of paper mill effluent and corrosion performance of stainless steel (SS) as a construction material for the effluent treatment plant (ETP). Accordingly, immersion test and electrochemical polarization tests were performed on SS 304 L, 316 L and duplex 2205 in paper mill effluent and synthetic effluent. This paper presents electrochemical polarization measurements, performed for the first time to the best of the authors' information, to see the influence of chlorophenols on the corrosivity of effluents. The corrosivity of the effluent was observed to increase with the decrease in pH and increase in Cl- content while the addition of SO4- tends to inhibit corrosion. Mill effluent was found to be more corrosive as compared to synthetic effluent and has been attributed to the presence of various chlorophenols. Corrosion performance of SS was observed to govern by the presence of Cr, Mo and N contents.

  16. Corrosion effects on friction factors

    SciTech Connect

    Magleby, H.L.; Shaffer, S.J.

    1996-03-01

    This paper presents the results of NRC-sponsored material specimen tests that were performed to determine if corrosion increases the friction factors of sliding surfaces of motor-operated gate valves, which could require higher forces to close and open safety-related valves when subjected to their design basis differential pressures. Friction tests were performed with uncorroded specimens and specimens subjected to accelerated corrosion. Preliminary tests at ambient conditions showed that corrosion increased the friction factors, indicating the need for additional tests duplicating valve operating parameters at hot conditions. The additional tests showed friction factors of corroded specimens were 0.1 to 0.2 higher than for uncorroded specimens, and that the friction factors of the corroded specimens were not very dependent on contact stress or corrosion film thickness. The measured values of friction factors for the three corrosion films tested (simulating three operating times) were in the range of 0.3 to 0.4. The friction factor for even the shortest simulated operating time was essentially the same as the others, indicating that the friction factors appear to reach a plateau and that the plateau is reached quickly.

  17. Stress corrosion cracking evaluation of precipitation-hardening stainless steel

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1970-01-01

    Accelerated test program results show which precipitation hardening stainless steels are resistant to stress corrosion cracking. In certain cases stress corrosion susceptibility was found to be associated with the process procedure.

  18. Argentinean map of atmospheric corrosivities

    SciTech Connect

    Rosales, B.M.; Ayllon, E.S.; Leiro, M.C.; Fernandez, A.; Moriena, G.; Varela, F.; Codaro, E.N.; Vilche, J.R.

    1995-10-01

    In the present paper the results obtained by the Argentinean research groups integrated in the MICAT (Iberoamerican Map of Atmospheric Corrosion) Project are given. Outdoor exposure in 6 test situations of different environmental conditions were performed by quadruplicate, on plain carbon steel and pure zinc, copper and aluminium, during yearly periods from 1 to 4 years. Three samples were used for the weight loss determinations while the fourth one was used to characterize the corrosion products formed through electrochemical d.c. and a.c. techniques and SEM-EDAX surface analysis. Good correlations were observed among the corrosion rates, the environmental conditions, both electrochemical techniques and the morphology of the rusts in plant and in polished cross sections. The techniques applied allowed to evidence the different protectiveness of the rusts formed on the metals, according to the solubility, morphology, hygroscopic power and pollutants content of the corrosion products` components.

  19. Scratch Cell Test: A Simple, Cost Effective Screening Tool to Evaluate Self-Healing in Anti-Corrosion Coatings

    NASA Astrophysics Data System (ADS)

    Rani, Amitha; Somaiah, Durga; Megha; Poddar, Mitalee

    2014-09-01

    A quick and simple scratch cell set up to evaluate the self-healing of an hybrid sol-gel (ormosil) coating was fabricated. This methacrylate-based anti-corrosion coating was applied on the aerospace aluminium alloy AA2024-T3, and cured at room temperature. This technique of evaluation requires minimum instrumentation. The inhibitors cerium nitrate, benzotriazole and 8-hydroxy quinoline (8-HQ) were used in the study. The self-healing ability of the inhibitors decreased in the following order: 8-HQ, BTZ and Ce. 8-HQ showed the highest self-healing ability and was comparable to the commercial hexavalent chromium conversion coating—Alodine. Spectroscopic analysis of the electrolyte and EDX of the coatings indicated the movement of the inhibitor from the coating to the site of damage, thereby effecting self-healing. It was observed that an increased inhibitor concentration in the coatings did not accelerate the healing process. Inhibitor release was slower in the coatings doped with inhibitor-loaded nano-containers, when compared to inhibitor-spiked coatings. This property of controlled release is desirable in self-healing coatings. Electro impedance studies further confirmed self-healing efficiency of the coatings. The scratch cell study reported here is the first of its kind with the ormosil under study on AA2024-T3 aluminium alloy. The results are encouraging and warranty a quick and simple qualitative screening of the self-healing potential of the inhibitors with minimum instrumentation.

  20. Corrosion testing of zirconia, beryllia and magnesia ceramics in molten alkali metal carbonates at 900 °C

    NASA Astrophysics Data System (ADS)

    Kaplan, Valery; Bendikov, Tatyana; Feldman, Yishay; Gartsman, Konstantin; Wachtel, Ellen; Lubomirsky, Igor

    2016-01-01

    An electrochemical cell containing molten Li2CO3-Li2O at 900 °C has been proposed for the conversion of the greenhouse gas CO2 to CO for chemical energy storage. In the current work, we have examined the corrosion resistance of zirconia, beryllia and magnesia ceramics at 900 °C in the Li2CO3-Li2O and Li-Na-K carbonate eutectic mixtures to identify suitable electrically insulating materials. Conclusions regarding material stability were based on elemental analysis of the melt, primarily via X-ray photoelectron spectroscopy, a particularly sensitive technique. It was found that magnesia is completely stable for at least 33 h in a Li2CO3-Li2O melt, while a combined lithium titanate/lithium zirconate layer forms on the zirconia ceramic as detected by XRD. Under the same melt conditions, beryllia shows considerable leaching into solution. In a Li-Na-K carbonate eutectic mixture containing 10.2 mol% oxide at 900 °C under standard atmospheric conditions, magnesia showed no signs of degradation. Stabilization of the zirconia content of the eutectic mixture at 0.01-0.02 at% after 2 h is explained by the formation of a lithium zirconate coating on the ceramic. On the basis of these results, we conclude that only magnesia can be satisfactorily used as an insulating material in electrolysis cells containing Li2CO3-Li2O melts.

  1. Fireside corrosion probes for fossil fuel combustion

    SciTech Connect

    Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.; Holcomb, G.R.; Eden, D.A.

    2006-03-01

    Electrochemical corrosion rate probes have been constructed and tested along with mass loss coupons in environments consisting of N2/O2/CO2/SO2 plus water vapor. Temperatures ranged from 450° to 700°C. Results show that electrochemical corrosion rates for ash-covered mild steel are a function of time, temperature, and gaseous environment. Correlation between the electrochemical and mass loss corrosion rates was poor.

  2. Chemical Industry Corrosion Management

    SciTech Connect

    2003-02-01

    Improved Corrosion Management Could Provide Significant Cost and Energy Savings for the Chemical Industry. In the chemical industry, corrosion is often responsible for significant shutdown and maintenance costs.

  3. Policies of Test Centers and Jurisdictions and GED[R] Candidate Test Performance. GED Testing Service[R] Research Study, 2009-6. Executive Summary

    ERIC Educational Resources Information Center

    Medhanie, Amanuel; Patterson, Margaret Becker

    2009-01-01

    The economic and employment outlook for individuals without a high school diploma is bleak. For many of these individuals, passing the General Educational Development (GED) Test is the first step in competing in the increasingly demanding job market. GED test-taking policies vary across test centers and jurisdictions, and have the potential to…

  4. Summary of HTGR (high-temperature gas-cooled reactor) benchmark data from the high temperature lattice test reactor

    SciTech Connect

    Newman, D.F.

    1989-10-01

    The High Temperature Lattice Test Reactor (HTLTR) was a unique critical facility specifically built and operated to measure variations in neutronic characteristics of high temperature gas cooled reactor (HTGR) lattices at temperatures up to 1000{degree}C. The Los Alamos National Laboratory commissioned Pacific Northwest Laboratory (PNL) to prepare this summary reference report on the HTLTR benchmark data and its associated documentation. In the initial stages of the program, the principle of the measurement of k{sub {infinity}} using the unpoisoned technique (developed by R.E. Heineman of PNL) was subjected to extensive peer review within PNL and the General Atomic Company. A number of experiments were conducted at PNL in the Physical Constants Testing Reactor (PCTR) using both the unpoisoned technique and the well-established null reactivity technique that substantiated the equivalence of the measurements by direct comparison. Records of all data from fuel fabrication, the reactor experiments, and the analytical results were compiled and maintained to meet applicable quality assurance standards in place at PNL. Sensitivity of comparisons between measured and calculated k{sub {infinity}}(T) data for various HTGR lattices to changes in neutron cross section data, graphite scattering kernel models, and fuel block loading variations, were analyzed by PNL for the Electric Power Research Institute. As a part of this effort, the fuel rod composition in the dilute {sup 233}UO{sub 2}-ThO{sub 2} HTGR central cell (HTLTR Lattice {number sign}3) was sampled and analyzed by mass spectrometry. Values of k{sub {infinity}} calculated for that lattice were about 5% higher than those measured. Trace quantities of sodium chloride were found in the fuel rod that were equivalent to 22 atom parts-per-million of natural boron.

  5. Module voltage isolation and corrosion research

    NASA Technical Reports Server (NTRS)

    Mon, G. R.

    1985-01-01

    A summary of recent research at JPL on two topics related to achieving long term reliability of photovoltaic modules: voltage isolation and electrochemical corrosion is presented. Special emphasis is given to similarities and differences in performance between crystalline silicon modules and amorphous silicon modules.

  6. Hanford 100-D Area Biostimulation Soluble Substrate Field Test: Interim Data Summary for the Substrate Injection and Process Monitoring Phases of the Field Test

    SciTech Connect

    Truex, Michael J.; Vermeul, Vincent R.; Mackley, Rob D.; Fritz, Brad G.; Mendoza, Donaldo P.; Johnson, Christian D.; Elmore, Rebecca P.; Brockman, Fred J.; Bilskis, Christina L.

    2008-06-01

    Pacific Northwest National Laboratory is conducting a treatability test designed to demonstrate that in situ biostimulation can be applied to help meet cleanup goals in the Hanford Site 100-D Area. The in situ biostimulation technology is intended to provide supplemental treatment upgradient of the In Situ Redox Manipulation (ISRM) barrier by reducing the concentration of the primary oxidizing species in groundwater (i.e., nitrate and dissolved oxygen) and chromate, and thereby increasing the longevity of the ISRM barrier. This report summarizes the initial results from field testing of an in situ biological treatment zone implemented through injection of a soluble substrate. The field test is divided into operational phases that include substrate injection, process monitoring, and performance monitoring. The results summarized herein are for the substrate injection and process monitoring phase encompassing the first approximately three months of field testing. Performance monitoring is ongoing at the time this report was prepared and is planned to extend over approximately 18 months. As such, this report is an interim data summary report for the field test. The treatability testing has multiple objectives focused on evaluating the performance of biostimulation as a reducing barrier for nitrate, oxygen, and chromate. The following conclusions related to these objectives are supported by the data provided in this report. Substrate was successfully distributed to a radius of about 15 m (50 ft) from the injection well. Monitoring data indicate that microbial growth initiated rapidly, and this rapid growth would limit the ability to inject substrate to significantly larger zones from a single injection well. As would be expected, the uniformity of substrate distribution was impacted by subsurface heterogeneity. However, subsequent microbial activity and ability to reduce the targeted species was observed throughout the monitored zone during the process monitoring

  7. Program mid-year summaries research, development, demonstration, testing and evaluation: Office of Technology Development, FY 1993

    SciTech Connect

    Not Available

    1993-10-01

    This mid-year review provides a summary of activities within the Office of Technology Development with individual presentations being made to DOE HQ and field management staff. The presentations are by EM-541, 542, 551, and 552 organizations.

  8. Materials corrosion tests applicable to a cooling system using areated treated geothermal brine or the high saline waters associated with geothermal areas

    SciTech Connect

    Suciu, Dan F.; Wikoff, Penny M.

    1982-10-08

    The results of an investigation conducted to determine the corrosion characteristics of a number of alloys in a high saline environment are discussed. The ferritic stainless steels and several copper/nickel alloys exhibited good corrosion resistance in these high saline geothermal environments.

  9. Research on heat-exchanger corrosion

    NASA Astrophysics Data System (ADS)

    Razgaitis, R.; Payer, J. H.; Stickford, G. H.; White, E. L.; Talbert, S. G.; Cudnick, R. A.; Locklin, D. W.; Farnsworth, C. A.

    1984-09-01

    Research conducted to develop technology for selecting corrosion resistant materials in high efficiency, gas fired, residential space heating equipment is reported. The methodology and results of sampling in over 500 homes to statistically characterize the corrosivity of flue gas condensate are described. The corrosion resistance of over 40 metal alloys was evaluated in accelerated laboratory tests with specimens exposed to an alternate wet/dry environment using chloride spiked condensate. A wide range of corrosion was observed, fron no corrosion to severe attack. Some stainless steels exhibited essentially complete resistance to attack in all corrosion modes evaluated. The results to date provide interim guidance to equipment manufacturers in the selection of materials for condensing equipment.

  10. The corrosion and corrosion mechanical properties evaluation for the LBB concept in VVERs

    SciTech Connect

    Ruscak, M.; Chvatal, P.; Karnik, D.

    1997-04-01

    One of the conditions required for Leak Before Break application is the verification that the influence of corrosion environment on the material of the component can be neglected. Both the general corrosion and/or the initiation and, growth of corrosion-mechanical cracks must not cause the degradation. The primary piping in the VVER nuclear power plant is made from austenitic steels (VVER 440) and low alloy steels protected with the austenitic cladding (VVER 1000). Inspection of the base metal and heterogeneous weldments from the VVER 440 showed that the crack growth rates are below 10 m/s if a low oxygen level is kept in the primary environment. No intergranular cracking was observed in low and high oxygen water after any type of testing, with constant or periodic loading. In the framework of the LBB assessment of the VVER 1000, the corrosion and corrosion mechanical properties were also evaluated. The corrosion and corrosion mechanical testing was oriented predominantly to three types of tests: stress corrosion cracking tests corrosion fatigue tests evaluation of the resistance against corrosion damage. In this paper, the methods used for these tests are described and the materials are compared from the point of view of response on static and periodic mechanical stress on the low alloyed steel 10GN2WA and weld metal exposed in the primary circuit environment. The slow strain rate tests and static loading of both C-rings and CT specimens were performed in order to assess the stress corrosion cracking characteristics. Cyclic loading of CT specimens was done to evaluate the kinetics of the crack growth under periodical loading. Results are shown to illustrate the approaches used. The data obtained were evaluated also from the point of view of comparison of the influence of different structure on the stress corrosion cracking appearance. The results obtained for the base metal and weld metal of the piping are presented here.

  11. Test and Score Data Summary for TOEFL[R] Internet-Based and Paper-Based Tests. January 2008-December 2008 Test Data

    ERIC Educational Resources Information Center

    Educational Testing Service, 2008

    2008-01-01

    The Test of English as a Foreign Language[TM], better known as TOEFL[R], is designed to measure the English-language proficiency of people whose native language is not English. TOEFL scores are accepted by more than 6,000 colleges, universities, and licensing agencies in 130 countries. The test is also used by governments, and scholarship and…

  12. Using biological and physico-chemical test methods to assess the role of concrete mixture design in resistance to microbially induced corrosion

    NASA Astrophysics Data System (ADS)

    House, Mitchell Wayne

    Concrete is the most widely used material for construction of wastewater collection, storage, and treatment infrastructure. The chemical and physical characteristics of hydrated portland cement make it susceptible to degradation under highly acidic conditions. As a result, some concrete wastewater infrastructure may be susceptible to a multi-stage degradation process known as microbially induced corrosion, or MIC. MIC begins with the production of aqueous hydrogen sulfide (H2S(aq)) by anaerobic sulfate reducing bacteria present below the waterline. H2S(aq) partitions to the gas phase where it is oxidized to sulfuric acid by the aerobic sulfur oxidizing bacteria Thiobacillus that resides on concrete surfaces above the waterline. Sulfuric acid then attacks the cement paste portion of the concrete matrix through decalcification of calcium hydroxide and calcium silica hydrate coupled with the formation of expansive corrosion products. The attack proceeds inward resulting in reduced service life and potential failure of the concrete structure. There are several challenges associated with assessing a concrete's susceptibility to MIC. First, no standard laboratory tests exist to assess concrete resistance to MIC. Straightforward reproduction of MIC in the laboratory is complicated by the use of microorganisms and hydrogen sulfide gas. Physico-chemical tests simulating MIC by immersing concrete specimens in sulfuric acid offer a convenient alternative, but do not accurately capture the damage mechanisms associated with biological corrosion. Comparison of results between research studies is difficult due to discrepancies that can arise in experimental methods even if current ASTM standards are followed. This thesis presents two experimental methods to evaluate concrete resistance to MIC: one biological and one physico-chemical. Efforts are made to address the critical aspects of each testing method currently absent in the literature. The first method presented is a new test

  13. Summary of Radionuclide Reactive Transport Experiments in Fractured Tuff and Carbonate Rocks from Yucca Flat, Nevada Test Site

    SciTech Connect

    Zavarin, M; Roberts, S; Reimus, P; Johnson, M

    2006-10-11

    , Mercury, Nevada. Readers are referred to the original reports ''Radionuclide Transport in Tuff and Carbonate Fractures from Yucca Flat, Nevada Test Site'' (Zavarin et al., 2005) and ''Radionuclide Sorption and Transport in Fractured Rocks of Yucca Flat, Nevada Test Site'' (Ware et al., 2005) for specific details not covered in this summary report.

  14. Report on accelerated corrosion studies.

    SciTech Connect

    Mowry, Curtis Dale; Glass, Sarah Jill; Sorensen, Neil Robert

    2011-03-01

    Sandia National Laboratories (SNL) conducted accelerated atmospheric corrosion testing for the U.S. Consumer Product Safety Commission (CPSC) to help further the understanding of the development of corrosion products on conductor materials in household electrical components exposed to environmental conditions representative of homes constructed with problem drywall. The conditions of the accelerated testing were chosen to produce corrosion product growth that would be consistent with long-term exposure to environments containing humidity and parts per billion (ppb) levels of hydrogen sulfide (H{sub 2}S) that are thought to have been the source of corrosion in electrical components from affected homes. This report documents the test set-up, monitoring of electrical performance of powered electrical components during the exposure, and the materials characterization conducted on wires, screws, and contact plates from selected electrical components. No degradation in electrical performance (measured via voltage drop) was measured during the course of the 8-week exposure, which was approximately equivalent to 40 years of exposure in a light industrial environment. Analyses show that corrosion products consisting of various phases of copper sulfide, copper sulfate, and copper oxide are found on exposed surfaces of the conductor materials including wires, screws, and contact plates. The morphology and the thickness of the corrosion products showed a range of character. In some of the copper wires that were observed, corrosion product had flaked or spalled off the surface, exposing fresh metal to the reaction with the contaminant gasses; however, there was no significant change in the wire cross-sectional area.

  15. Aluminum alloy clad fiber optic corrosion sensor

    NASA Astrophysics Data System (ADS)

    Rutherford, Paul S.; Ikegami, Roy; Shrader, John E.; Sherrer, David; Zabaronick, Noel; Zeakes, Jason S.; Murphy, Kent A.; Claus, Richard O.

    1997-06-01

    Life extension programs for military metallic aircraft are becoming increasingly important as defense budgets shrink and world economies realign themselves to an uncertain future. For existing military weapon systems, metallic corrosion damage costs as estimated $DOL8 billion per year. One approach to reducing this cost is to develop a reliable method to detect and monitor corrosion in hidden metallic structure with the use of corrosion sensors which would give an early indication of corrosion without significant disassembly, thereby reducing maintenance costs. This presentation describes the development, analysis, and testing of a fiber optic corrosion sensor developed jointly with the Virginia Polytechnic Fiber and Electro-Optics Research Center and sponsored by Wright Laboratory Materials Directorate. In the sensor which was researched, the normal cladding is removed in the sensor region, and replaced with aluminum alloy and allowed to corrode on coupons representative of C/KC-135 body structure in an ASTM B117 salt spray chamber and a Boeing developed Crevice Corrosion Cell. In this approach, the optical signal output of the sensor was originally designed to increase as corrosion takes place, however interaction with the corrosion byproducts yielded different results than anticipated. These test results to determine a correlation between the sensor output and the structural degradation due to corrosion are discussed.

  16. Novel Corrosion Sensor for Vision 21 Systems

    SciTech Connect

    Heng Ban; Bharat Soni

    2007-03-31

    Advanced sensor technology is identified as a key component for advanced power systems for future energy plants that would have virtually no environmental impact. This project intends to develop a novel high temperature corrosion sensor and subsequent measurement system for advanced power systems. Fireside corrosion is the leading mechanism for boiler tube failures and has emerged to be a significant concern for current and future energy plants due to the introduction of technologies targeting emissions reduction, efficiency improvement, or fuel/oxidant flexibility. Corrosion damage can lead to catastrophic equipment failure, explosions, and forced outages. Proper management of corrosion requires real-time indication of corrosion rate. However, short-term, on-line corrosion monitoring systems for fireside corrosion remain a technical challenge to date due to the extremely harsh combustion environment. The overall goal of this project is to develop a technology for on-line fireside corrosion monitoring. This objective is achieved by the laboratory development of sensors and instrumentation, testing them in a laboratory muffle furnace, and eventually testing the system in a coal-fired furnace. This project successfully developed two types of sensors and measurement systems, and successful tested them in a muffle furnace in the laboratory. The capacitance sensor had a high fabrication cost and might be more appropriate in other applications. The low-cost resistance sensor was tested in a power plant burning eastern bituminous coals. The results show that the fireside corrosion measurement system can be used to determine the corrosion rate at waterwall and superheater locations. Electron microscope analysis of the corroded sensor surface provided detailed picture of the corrosion process.

  17. Everlasting sliding-disc valve. METC SOA test valve No. B-3, State-of-the-art lockhopper valve testing and development project. Summary test report

    SciTech Connect

    Gardner, J.F.; Hall, R.C.; Hornbeck, R.G.; Griffith, R.A.; Yost, T.M.; Harvey, D.M.; Galvin, W.E.; Gayheart, T.R.; Kapur, S.K.

    1980-08-01

    The Everlasting Sliding-Disc Valve (METC SOA Test Valve No. B-3) accumulated 740 valve cycles in the Valve Static Test Unit and over 16,000 valve cycles in the Valve Dynamic Test Unit. Only minor operating problems, primarily erratic motion and some scoring of the seating surface, where encountered with coarse limestone (5/16'' x 1/8'') particles. Operation with fine solids (100-mesh limestone) showed excellent performance. The actuator level arm failed twice but a change in clearances solved the problem. Based on its performance in testing, the Everlastinc Sliding-Disc Valve, with minor modifications, is a very promising choice for feedside lockhopper service in coal conversion and utilization.

  18. Study of stress corrosion in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Brummer, S. B.

    1967-01-01

    Mechanism of the stress corrosion cracking of high-strength aluminum alloys was investigated using electrochemical, mechanical, and electron microscopic techniques. The feasibility of detecting stress corrosion damage in fabricated aluminum alloy parts by nondestructive testing was investigated using ultrasonic surface waves and eddy currents.

  19. Corrosion in supercritical fluids

    SciTech Connect

    Propp, W.A.; Carleson, T.E.; Wai, Chen M.; Taylor, P.R.; Daehling, K.W.; Huang, Shaoping; Abdel-Latif, M.

    1996-05-01

    Integrated studies were carried out in the areas of corrosion, thermodynamic modeling, and electrochemistry under pressure and temperature conditions appropriate for potential applications of supercritical fluid (SCF) extractive metallurgy. Carbon dioxide and water were the primary fluids studied. Modifiers were used in some tests; these consisted of 1 wt% water and 10 wt% methanol for carbon dioxide and of sulfuric acid, sodium sulfate, ammonium sulfate, and ammonium nitrate at concentrations ranging from 0.00517 to 0.010 M for the aqueous fluids. The materials studied were Types 304 and 316 (UNS S30400 and S31600) stainless steel, iron, and AISI-SAE 1080 (UNS G10800) carbon steel. The thermodynamic modeling consisted of development of a personal computer-based program for generating Pourbaix diagrams at supercritical conditions in aqueous systems. As part of the model, a general method for extrapolating entropies and related thermodynamic properties from ambient to SCF conditions was developed. The experimental work was used as a tool to evaluate the predictions of the model for these systems. The model predicted a general loss of passivation in iron-based alloys at SCF conditions that was consistent with experimentally measured corrosion rates and open circuit potentials. For carbon-dioxide-based SCFs, measured corrosion rates were low, indicating that carbon steel would be suitable for use with unmodified carbon dioxide, while Type 304 stainless steel would be suitable for use with water or methanol as modifiers.

  20. Corrosive wear principles

    SciTech Connect

    Schumacher, W.J.

    1993-12-31

    The dual effects of corrosion and wear operate together in such industries as paper and pulp, coal handling, mining, and sugar beet extraction. There is a synergistic effect that causes far greater wastage to carbon steels, alloy steels, and even much more abrasion resistant cast irons. Several laboratory and in situ studies have been conducted to better understand the contributions of corrosion and wear to the wastage process. The environmental conditions are usually set by the process. However, there are a few instances where inhibitors as sodium nitrite, sodium chromate, and sodium metasilicate have been successfully used to reduce metal wastage of carbon steels. Hardness has been found to be an unreliable guide to performance under wet sliding conditions. Heat treated alloy steels and cast irons are inferior to stainless steels. Even distilled water is too severe a corrodent for steels. While the austenitic stainlesses perform the best, cold rolling to increase hardness does not further improve their performance. The surface roughness of stainless steels gets smoother during corrosive wear testing while it gets rougher for the alloy steels. This observation substantiated the reputation of improved slideability for stainless alloys over alloy steels.