Sample records for corrosive bacterial consortia

  1. Glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass.

    PubMed

    Gladden, John M; Allgaier, Martin; Miller, Christopher S; Hazen, Terry C; VanderGheynst, Jean S; Hugenholtz, Philip; Simmons, Blake A; Singer, Steven W

    2011-08-15

    Industrial-scale biofuel production requires robust enzymatic cocktails to produce fermentable sugars from lignocellulosic biomass. Thermophilic bacterial consortia are a potential source of cellulases and hemicellulases adapted to harsher reaction conditions than commercial fungal enzymes. Compost-derived microbial consortia were adapted to switchgrass at 60°C to develop thermophilic biomass-degrading consortia for detailed studies. Microbial community analysis using small-subunit rRNA gene amplicon pyrosequencing and short-read metagenomic sequencing demonstrated that thermophilic adaptation to switchgrass resulted in low-diversity bacterial consortia with a high abundance of bacteria related to thermophilic paenibacilli, Rhodothermus marinus, and Thermus thermophilus. At lower abundance, thermophilic Chloroflexi and an uncultivated lineage of the Gemmatimonadetes phylum were observed. Supernatants isolated from these consortia had high levels of xylanase and endoglucanase activities. Compared to commercial enzyme preparations, the endoglucanase enzymes had a higher thermotolerance and were more stable in the presence of 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), an ionic liquid used for biomass pretreatment. The supernatants were used to saccharify [C2mim][OAc]-pretreated switchgrass at elevated temperatures (up to 80°C), demonstrating that these consortia are an excellent source of enzymes for the development of enzymatic cocktails tailored to more extreme reaction conditions.

  2. Novel bacterial consortia isolated from plastic garbage processing areas demonstrated enhanced degradation for low density polyethylene.

    PubMed

    Skariyachan, Sinosh; Manjunatha, Vishal; Sultana, Subiya; Jois, Chandana; Bai, Vidya; Vasist, Kiran S

    2016-09-01

    This study aimed to formulate novel microbial consortia isolated from plastic garbage processing areas and thereby devise an eco-friendly approach for enhanced degradation of low-density polyethylene (LDPE). The LDPE degrading bacteria were screened and microbiologically characterized. The best isolates were formulated as bacterial consortia, and degradation efficiency was compared with the consortia formulated using known isolates obtained from the Microbial Culture Collection Centre (MTCC). The degradation products were analyzed by FTIR, GC-FID, tensile strength, and SEM. The bacterial consortia were characterized by 16S ribosomal DNA (rDNA) sequencing. The formulated bacterial consortia demonstrated 81 ± 4 and 38 ± 3 % of weight reduction for LDPE strips and LDPE pellets, respectively, over a period of 120 days. However, the consortia formulated by MTCC strains demonstrated 49 ± 4 and 20 ± 2 % of weight reduction for LDPE strips and pellets, respectively, for the same period. Furthermore, the three isolates in its individual application exhibited 70 ± 4, 68 ± 4, and 64 ± 4 % weight reduction for LDPE strips and 21 ± 2, 28 ± 2, 24 ± 2 % weight reduction for LDPE pellets over a period of 120 days (p < 0.05). The end product analysis showed structural changes and formation of bacterial film on degraded LDPE strips. The 16S rDNA characterization of bacterial consortia revealed that these organisms were novel strains and designated as Enterobacter sp. bengaluru-btdsce01, Enterobacter sp. bengaluru-btdsce02, and Pantoea sp. bengaluru-btdsce03. The current study thus suggests that industrial scale-up of these microbial consortia probably provides better insights for waste management of LDPE and similar types of plastic garbage.

  3. Hexavalent chromium reduction by bacterial consortia and pure strains from an alkaline industrial effluent.

    PubMed

    Piñón-Castillo, H A; Brito, E M S; Goñi-Urriza, M; Guyoneaud, R; Duran, R; Nevarez-Moorillon, G V; Gutiérrez-Corona, J F; Caretta, C A; Reyna-López, G E

    2010-12-01

    To characterize the bacterial consortia and isolates selected for their role in hexavalent chromium removal by adsorption and reduction. Bacterial consortia from industrial wastes revealed significant Cr(VI) removal after 15 days when incubated in medium M9 at pH 6·5 and 8·0. The results suggested chromium reduction. The bacterial consortia diversity (T-RFLP based on 16S rRNA gene) indicated a highest number of operational taxonomic units in an alkaline carbonate medium mimicking in situ conditions. However, incubations under such conditions revealed low Cr(VI) removal. Genomic libraries were obtained for the consortia exhibiting optimal Cr(VI) removal (M9 medium at pH 6·5 and 8·0). They revealed the dominance of 16S rRNA gene sequences related to the genera Pseudomonas/Stenotrophomonas or Enterobacter/Halomonas, respectively. Isolates related to Pseudomonas fluorescens and Enterobacter aerogenes were efficient in Cr(VI) reduction and adsorption to the biomass. Cr(VI) reduction was better at neutral pH rather than under in situ conditions (alkaline pH with carbonate). Isolated strains exhibited significant capacity for Cr(VI) reduction and adsorption. Bacterial communities from chromium-contaminated industrial wastes as well as isolates were able to remove Cr(VI). The results suggest a good potential for bioremediation of industrial wastes when optimal conditions are applied. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology. No claim to Mexican Government works.

  4. Cd and proton adsorption onto bacterial consortia grown from industrial wastes and contaminated geologic settings.

    PubMed

    Borrok, David M; Fein, Jeremy B; Kulpa, Charles F

    2004-11-01

    To model the effects of bacterial metal adsorption in contaminated environments, results from metal adsorption experiments involving individual pure stains of bacteria must be extrapolated to systems in which potentially dozens of bacterial species are present. This extrapolation may be made easier because bacterial consortia from natural environments appear to exhibit similar metal binding properties. However, bacteria that thrive in highly perturbed contaminated environments may exhibit significantly different adsorptive behavior. Here we measure proton and Cd adsorption onto a range of bacterial consortia grown from heavily contaminated industrial wastes, groundwater, and soils. We model the results using a discrete site surface complexation approach to determine binding constants and site densities for each consortium. The results demonstrate that bacterial consortia from different contaminated environments exhibit a range of total site densities (approximately a 3-fold difference) and Cd-binding constants (approximately a 10-fold difference). These ranges for Cd binding constants may be small enough to suggest that bacteria-metal adsorption in contaminated environments can be described using relatively few "averaged" bacteria-metal binding constants (in conjunction with the necessary binding constants for competing surfaces and ligands). However, if additional precision is necessary, modeling parameters must be developed separately for each contaminated environment of interest.

  5. Bioremediation of PCB-contaminated shallow river sediments: The efficacy of biodegradation using individual bacterial strains and their consortia.

    PubMed

    Horváthová, Hana; Lászlová, Katarína; Dercová, Katarína

    2018-02-01

    Elimination of dangerous toxic and hydrophobic chlorinated aromatic compounds, mainly PCBs from the environment, is one of the most important aims of the environmental biotechnologies. In this work, biodegradation of an industrial mixture of PCBs (Delor 103, equivalent to Aroclor 1242) was performed using bacterial consortia composed of four bacterial strains isolated from the historically PCB-contaminated sediments and characterized as Achromobacter xylosoxidans, Stenotrophomonas maltophilia, Ochrobactrum anthropi and Rhodococcus ruber. The objective of this research was to determine the biodegradation ability of the individual strains and artificially prepared consortia composed of two or three bacterial strains mentioned above. Based on the growth parameters, six consortia were constructed and inoculated into the historically contaminated sediment samples collected in the efflux canal of Chemko Strážske plant - the former producer of the industrial mixtures of PCBs. The efficacy of the biotreatment, namely bioaugmentation, was evaluated by determination of ecotoxicity of treated and non-treated sediments. The most effective consortia were those containing the strain R. ruber. In the combination with A. xylosoxidans, the biodegradation of the sum of the indicator congeners was 85% and in the combination with S. maltophilia nearly 80%, with inocula applied in the ratio 1:1 in both cases. Consortium containing the strain R. ruber and S. maltophilia showed pronounced degradation of the highly chlorinated PCB congeners. Among the consortia composed of three bacterial strains, only that consisting of O. anthropi, R. ruber and A. xylosoxidans showed higher biodegradation (73%). All created consortia significally reduced the toxicity of the contaminated sediment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Dissolution and degradation of crude oil droplets by different bacterial species and consortia by microcosm microfluidics

    NASA Astrophysics Data System (ADS)

    Jalali, Maryam; Sheng, Jian

    2017-11-01

    Bacteria are involved in cleanup and degradation of crude oil in polluted marine and soil environments. A number of bacterial species have been identified for consuming petroleum hydrocarbons with diverse metabolic capabilities. We conducted laboratory experiments to investigate bacterial consumption by monitoring the volume change to oil droplets as well as effects of oil droplet size on this process. To conduct our study, we developed a micro-bioassay containing an enclosed chamber with bottom substrate printed with stationary oil microdroplets and a digital holographic interferometer (DHI). The morphology of microdroplets was monitored in real time over 100 hours and instantaneous flow field was also measured by digital holographic microscope. The substrates with printed oil droplets were further evaluated with atomic force microscopy (AFM) at the end of each experiment. Three different bacteria species, Pseudomonas sp, Alcanivorax borkumensis, and Marinobacter hydrocarbonoclasticus, as well as six bacterial consortia were used in this study. The results show that droplets smaller than 20µm in diameter are not subject to bacterial degradation and the volume of droplet did not change beyond dissolution. Substantial species-specific behaviors have been observed in isolates. The experiments of consortia and various flow shears on biodegradation and dissolution are ongoing and will be reported.

  7. Bioremediation of organophosphorus pesticide phorate in soil by microbial consortia.

    PubMed

    Jariyal, Monu; Jindal, Vikas; Mandal, Kousik; Gupta, Virash Kamal; Singh, Balwinder

    2018-09-15

    Microbial consortia isolated from aged phorate contaminated soil were used to degrade phorate. The consortia of three microorganisms (Brevibacterium frigoritolerans, Bacillus aerophilus and Pseudomonas fulva) could degrade phorate, and the highest phorate removal (between 97.65 and 98.31%) was found in soils inoculated with mixed cultures of all the three bacterial species. However, the mixed activity of any of two of these bacteria was lower than mixed consortia of all the three bacterial species. The highest degradation by individual mixed consortia of (B. frigoritolerans+B.aerophilus, B. aerophilus+P. fulva and B. frigoritolerans+P. fulva) appeared in soil between (92.28-94.09%, 95.45-97.15% and 94.08-97.42%, respectively). Therefore, inoculation of highly potential microbial consortia isolated from in situ contaminated soil could result in most effective bioremediation consortia for significantly relieving soils from phorate residues. This much high phorate remediation from phorate contaminated soils have never been reported earlier by mixed culture of native soil bacterial isolates. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Biodegradation of sodium lauryl ether sulfate (SLES) by two different bacterial consortia.

    PubMed

    Khleifat, Khaled M

    2006-11-01

    Two bacterial consortia capable of degrading SLES were isolated from a wastewater treatment plant. The two consortia consisted of three members, Acinetobacter calcoacetiacus and Klebsiella oxytoca in one co-culture (A-K) and Serratia odorifera in the second co-culture (S-A), which contains Acinetobacter calcoacetiacus as well. In all experiments, cells were grown on SLES (1000-7000 ppm) containing the M9 minimal medium as sole carbon source. The co-culture A-K demonstrated a higher growth rate (0.26 h(-1)) and significant greater viability than that of the co-culture S-A (0.21 h(-1)). Glucose, sucrose, maltose, mannitol, and succinic acid as carbon sources produced the same degradation rate (approximately 100 ppm/h) and enhanced the SLES degradation rate by 3-fold upon the control (without an added carbon source). In the case of the co-culture S-A, the situation was different; all the carbon sources being tested except maltose caused a repression in the degradation ability in a range between 25-100%. Maltose causes an enhancement by almost fivefold, compared with the positive control.

  9. Improving nitrogen utilization efficiency of aquaponics by introducing algal-bacterial consortia.

    PubMed

    Fang, Yingke; Hu, Zhen; Zou, Yina; Zhang, Jian; Zhu, Zhuoran; Zhang, Jianda; Nie, Lichao

    2017-12-01

    Aquaponics is a promising technology combining aquaculture with hydroponics. In this study, algal-bacterial consortia were introduced into aquaponics, i.e., algal-bacterial based aquaponics (AA), to improve the nitrogen utilization efficiency (NUE) of aquaponics. The results showed that the NUE of AA was 13.79% higher than that of media-based aquaponics (MA). In addition, higher NO 3 - removal by microalgae assimilation led to better water quality in AA, which made up for the deficiencies of poor aquaponic management of nitrate. As a result of lower NO 3 - concentrations and dramatically higher dissolved oxygen (DO) concentrations caused by microalgae photosynthesis in the photobioreactor, the N 2 O emission of AA was 89.89% lower than that of MA, although nosZ gene abundance in MA's hydroponic bed was approximately 30 times over that in AA. Considering the factors mentioned above, AA would improve the sustainability of aquaponics and have a good application foreground. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. PRELIMINARY CHARACTERIZATION OF FOUR 2-CHLOROBENZOATE-DEGRADING ANAEROBIC BACTERIAL CONSORTIA

    EPA Science Inventory

    Dechlorination was the initial step of 2CB biodegradation in four 2-chlorobenzoate-degrading methanogenic consortia. Selected characteristics of orthoreductive dehalogenation were examined in consortia developed from the highest actively dechlorinating dilutions of the original 2...

  11. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass

    PubMed Central

    Minty, Jeremy J.; Singer, Marc E.; Scholz, Scott A.; Bae, Chang-Hoon; Ahn, Jung-Ho; Foster, Clifton E.; Liao, James C.; Lin, Xiaoxia Nina

    2013-01-01

    Synergistic microbial communities are ubiquitous in nature and exhibit appealing features, such as sophisticated metabolic capabilities and robustness. This has inspired fast-growing interest in engineering synthetic microbial consortia for biotechnology development. However, there are relatively few reports of their use in real-world applications, and achieving population stability and regulation has proven to be challenging. In this work, we bridge ecology theory with engineering principles to develop robust synthetic fungal-bacterial consortia for efficient biosynthesis of valuable products from lignocellulosic feedstocks. The required biological functions are divided between two specialists: the fungus Trichoderma reesei, which secretes cellulase enzymes to hydrolyze lignocellulosic biomass into soluble saccharides, and the bacterium Escherichia coli, which metabolizes soluble saccharides into desired products. We developed and experimentally validated a comprehensive mathematical model for T. reesei/E. coli consortia, providing insights on key determinants of the system’s performance. To illustrate the bioprocessing potential of this consortium, we demonstrate direct conversion of microcrystalline cellulose and pretreated corn stover to isobutanol. Without costly nutrient supplementation, we achieved titers up to 1.88 g/L and yields up to 62% of theoretical maximum. In addition, we show that cooperator–cheater dynamics within T. reesei/E. coli consortia lead to stable population equilibria and provide a mechanism for tuning composition. Although we offer isobutanol production as a proof-of-concept application, our modular system could be readily adapted for production of many other valuable biochemicals. PMID:23959872

  12. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass.

    PubMed

    Minty, Jeremy J; Singer, Marc E; Scholz, Scott A; Bae, Chang-Hoon; Ahn, Jung-Ho; Foster, Clifton E; Liao, James C; Lin, Xiaoxia Nina

    2013-09-03

    Synergistic microbial communities are ubiquitous in nature and exhibit appealing features, such as sophisticated metabolic capabilities and robustness. This has inspired fast-growing interest in engineering synthetic microbial consortia for biotechnology development. However, there are relatively few reports of their use in real-world applications, and achieving population stability and regulation has proven to be challenging. In this work, we bridge ecology theory with engineering principles to develop robust synthetic fungal-bacterial consortia for efficient biosynthesis of valuable products from lignocellulosic feedstocks. The required biological functions are divided between two specialists: the fungus Trichoderma reesei, which secretes cellulase enzymes to hydrolyze lignocellulosic biomass into soluble saccharides, and the bacterium Escherichia coli, which metabolizes soluble saccharides into desired products. We developed and experimentally validated a comprehensive mathematical model for T. reesei/E. coli consortia, providing insights on key determinants of the system's performance. To illustrate the bioprocessing potential of this consortium, we demonstrate direct conversion of microcrystalline cellulose and pretreated corn stover to isobutanol. Without costly nutrient supplementation, we achieved titers up to 1.88 g/L and yields up to 62% of theoretical maximum. In addition, we show that cooperator-cheater dynamics within T. reesei/E. coli consortia lead to stable population equilibria and provide a mechanism for tuning composition. Although we offer isobutanol production as a proof-of-concept application, our modular system could be readily adapted for production of many other valuable biochemicals.

  13. Characterization of the corrosion resistance of several alloys to dilute biologically active solutions

    NASA Technical Reports Server (NTRS)

    Walsh, Daniel W.

    1990-01-01

    Sulfate reducing bacteria and acid producing bacteria/fungi detected in hygiene waters increased the corrosion rate in aluminum alloy. Biologically active media enhanced the formation of pits on metal coupons. Direct observation of gas evolved at the corrosion sample, coupled with scanning electron microscopy (SEM) and energy dispersive x-ray analysis of the corrosion products indicates that the corrosion rate is increased because the presence of bacteria favor the reduction of hydrogen as the cathodic reaction through the reaction of oxygen and water. SEM verifies the presence of microbes in a biofilm on the surface of corroding samples. The bacterial consortia are associated with anodic sites on the metal surface, aggressive pitting occurs adjacent to biofilms. Many pits are associated with triple points and inclusions in the aluminum alloy microstructure. Similar bacterial colonization was found on the stainless steel samples. Fourier transform Infrared Spectroscopy confirmed the presence of carbonyl groups in pitted areas of samples exposed to biologically active waters.

  14. Substrate-Specific Development of Thermophilic Bacterial Consortia by Using Chemically Pretreated Switchgrass.

    PubMed

    Eichorst, Stephanie A; Joshua, Chijioke; Sathitsuksanoh, Noppadon; Singh, Seema; Simmons, Blake A; Singer, Steven W

    2014-12-01

    Microbial communities that deconstruct plant biomass have broad relevance in biofuel production and global carbon cycling. Biomass pretreatments reduce plant biomass recalcitrance for increased efficiency of enzymatic hydrolysis. We exploited these chemical pretreatments to study how thermophilic bacterial consortia adapt to deconstruct switchgrass (SG) biomass of various compositions. Microbial communities were adapted to untreated, ammonium fiber expansion (AFEX)-pretreated, and ionic-liquid (IL)-pretreated SG under aerobic, thermophilic conditions using green waste compost as the inoculum to study biomass deconstruction by microbial consortia. After microbial cultivation, gravimetric analysis of the residual biomass demonstrated that both AFEX and IL pretreatment enhanced the deconstruction of the SG biomass approximately 2-fold. Two-dimensional nuclear magnetic resonance (2D-NMR) experiments and acetyl bromide-reactive-lignin analysis indicated that polysaccharide hydrolysis was the dominant process occurring during microbial biomass deconstruction, and lignin remaining in the residual biomass was largely unmodified. Small-subunit (SSU) rRNA gene amplicon libraries revealed that although the dominant taxa across these chemical pretreatments were consistently represented by members of the Firmicutes, the Bacteroidetes, and Deinococcus-Thermus, the abundance of selected operational taxonomic units (OTUs) varied, suggesting adaptations to the different substrates. Combining the observations of differences in the community structure and the chemical and physical structure of the biomass, we hypothesize specific roles for individual community members in biomass deconstruction. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  15. Nanobarium Titanate As Supplement To Accelerate Plastic Waste Biodegradation By Indigenous Bacterial Consortia

    NASA Astrophysics Data System (ADS)

    Kapri, Anil; Zaidi, M. G. H.; Goel, Reeta

    2009-06-01

    Plastic waste biodegradation studies have seen several developmental phases from the discovery of potential microbial cultures, inclusion of photo-oxidizable additives into the polymer chain, to the creation of starch-embedded biodegradable plastics. The present study deals with the supplementation of nanobarium titanate (NBT) in the minimal broth in order to alter the growth-profiles of the Low-density polyethylene (LDPE) degrading consortia. The pro-bacterial influence of the nanoparticles could be seen by substantial changes such as shortening of the lag phase and elongation of the exponential as well as stationary growth phases, respectively, which eventually increase the biodegradation efficiency. In-vitro biodegradation studies revealed better dissolution of LDPE in the presence of NBT as compared to control. Significant shifting in λ-max values was observed in the treated samples through UV-Vis spectroscopy, while Fourier transform infrared spectroscopy (FTIR) and simultaneous thermogravimetric-differential thermogravimetry-differential thermal analysis (TG-DTG-DTA) further confirmed the breakage and formation of bonds in the polymer backbone. Therefore, this study suggests the implementation of NBT as nutritional additive for plastic waste management through bacterial growth acceleration.

  16. Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium.

    PubMed

    Teixeira, Catarina; Almeida, C Marisa R; Nunes da Silva, Marta; Bordalo, Adriano A; Mucha, Ana P

    2014-09-15

    Microbial assisted phytoremediation is a promising, though yet poorly explored, new remediation technique. The aim of this study was to develop autochthonous microbial consortia resistant to cadmium that could enhance phytoremediation of salt-marsh sediments contaminated with this metal. The microbial consortia were selectively enriched from rhizosediments colonized by Juncus maritimus and Phragmites australis. The obtained consortia presented similar microbial abundance but a fairly different community structure, showing that the microbial community was a function of the sediment from which the consortia were enriched. The effect of the bioaugmentation with the developed consortia on cadmium uptake, and the microbial community structure associated to the different sediments were assessed using a microcosm experiment. Our results showed that the addition of the cadmium resistant microbial consortia increased J. maritimus metal phytostabilization capacity. On the other hand, in P. australis, microbial consortia amendment promoted metal phytoextraction. The addition of the consortia did not alter the bacterial structure present in the sediments at the end of the experiments. This study provides new evidences that the development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium might be a simple, efficient, and environmental friendly remediation procedure. Development of autochthonous microbial consortia resistant to cadmium that enhanced phytoremediation by salt-marsh plants, without a long term effect on sediment bacterial diversity. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Crude oil degradation by bacterial consortia under four different redox and temperature conditions.

    PubMed

    Xiong, Shunzi; Li, Xia; Chen, Jianfa; Zhao, Liping; Zhang, Hui; Zhang, Xiaojun

    2015-02-01

    There is emerging interest in the anaerobic degradation of crude oil. However, there is limited knowledge about the geochemical effects and microbiological activities for it. A mixture of anaerobic sludge and the production water from an oil well was used as an inoculum to construct four consortia, which were incubated under sulfate-reducing or methanogenic conditions at either mesophilic or thermophilic temperatures. Significant degradation of saturated and aromatic hydrocarbons and the changing quantities of some marker compounds, such as pristane, phytane, hopane and norhopane, and their relative quantities, suggested the activity of microorganisms in the consortia. Notably, the redox conditions and temperature strongly affected the diversity and structure of the enriched microbial communities and the oil degradation. Although some specific biomarker showed larger change under methanogenic condition, the degradation efficiencies for total aromatic and saturated hydrocarbon were higher under sulfate-reducing condition. After the 540-day incubation, bacteria of unknown classifications were dominant in the thermophilic methanogenic consortia, whereas Clostridium dominated the mesophilic methanogenic consortia. With the exception of the dominant phylotypes that were shared with the methanogenic consortia, the sulfate-reducing consortia were predominantly composed of Thermotogae, Deltaproteobacteria, Spirochaeta, and Synergistetes phyla. In conclusion, results in this study demonstrated that the different groups of degraders were responsible for degradation in the four constructed crude oil degrading consortia and consequently led to the existence of different amount of marker compounds under these distinct conditions. There might be distinct metabolic mechanism for degrading crude oil under sulfate-reducing and methanogenic conditions.

  18. Egypt's Red Sea coast: phylogenetic analysis of cultured microbial consortia in industrialized sites.

    PubMed

    Mustafa, Ghada A; Abd-Elgawad, Amr; Abdel-Haleem, Alyaa M; Siam, Rania

    2014-01-01

    The Red Sea possesses a unique geography, and its shores are rich in mangrove, macro-algal and coral reef ecosystems. Various sources of pollution affect Red Sea biota, including microbial life. We assessed the effects of industrialization on microbes along the Egyptian Red Sea coast at eight coastal sites and two lakes. The bacterial communities of sediment samples were analyzed using bacterial 16S rDNA pyrosequencing of V6-V4 hypervariable regions. The taxonomic assignment of 131,402 significant reads to major bacterial taxa revealed five main bacterial phyla dominating the sampled sites: Proteobacteria (68%), Firmicutes (13%), Fusobacteria (12%), Bacteriodetes (6%), and Spirochetes (0.03%). Further analysis revealed distinct bacterial consortia that primarily included (1) marine Vibrio spp.-suggesting a "marine Vibrio phenomenon"; (2) potential human pathogens; and (3) oil-degrading bacteria. We discuss two divergent microbial consortia that were sampled from Solar Lake West near Taba/Eilat and Saline Lake in Ras Muhammad; these consortia contained the highest abundance of human pathogens and no pathogens, respectively. Our results draw attention to the effects of industrialization on the Red Sea and suggest the need for further analysis to overcome the hazardous effects observed at the impacted sites.

  19. Characteristics and performance of aerobic algae-bacteria granular consortia in a photo-sequencing batch reactor.

    PubMed

    Liu, Lin; Zeng, Zhichao; Bee, Mingyang; Gibson, Valerie; Wei, Lili; Huang, Xu; Liu, Chaoxiang

    2018-05-05

    The characteristics and performance of algae-bacteria granular consortia which cultivated with aerobic granules and targeted algae (Chlorella and Scenedesmus), and the essential difference between granular consortia and aerobic granules were investigated in this experiment. The result indicated that algae-bacteria granular consortia could be successfully developed, and the algae present in the granular consortia were mainly Chlorella and Scenedesmus. Although the change of chlorophyll composition revealed the occurrence of light limitation for algal growth, the granular consortia could maintain stable granular structure, and even showed better settling property than aerobic granules. Total nitrogen and phosphate in the algal-bacterial granular system showed better removal efficiencies (50.2% and 35.7%) than those in the aerobic granular system (32.8% and 25.6%) within one cycle (6 h). The biodiesel yield of aerobic granules could be significantly improved by algal coupled process, yet methyl linolenate and methyl palmitoleate were the dominant composition of biodiesel obtained from granular consortia and aerobic granules, respectively. Meanwhile, the difference of dominant bacterial communities in the both granules was found at the order level and family level, and alpha diversity indexes revealed the granular consortia had a higher microbial diversity. Copyright © 2018. Published by Elsevier B.V.

  20. Evolution of bacterial consortia in spontaneously started rye sourdoughs during two months of daily propagation.

    PubMed

    Bessmeltseva, Marianna; Viiard, Ene; Simm, Jaak; Paalme, Toomas; Sarand, Inga

    2014-01-01

    The evolution of bacterial consortia was studied in six semi-solid rye sourdoughs during long-term backslopping at different temperatures. Each rye sourdough was started spontaneously in a laboratory (dough yield 200), propagated at either 20°C or 30°C, and renewed daily at an inoculation rate of 1∶10 for 56 days. The changes in bacterial diversity over time were followed by both DGGE coupled with partial 16S rRNA gene sequencing and pyrosequencing of bar-coded 16S rRNA gene amplicons. Four species from the genus Lactobacillus (brevis, crustorum, plantarum, and paralimentarius) were detected in different combinations in all sourdoughs after 56 propagation cycles. Facultative heterofermentative lactic acid bacteria dominated in sourdoughs fermented at 30°C, while both obligate and facultative heterofermentative LAB were found to dominate in sourdoughs fermented at 20°C. After 56 propagation cycles, Kazachstania unispora (formerly Saccharomyces unisporus) was identified as the only yeast species that dominated in sourdoughs fermented at 20°C, while different combinations of strains from four yeast species (Kazachstania unispora, Saccharomyces cerevisiae, Candida krusei and Candida glabrata) were detected in sourdoughs propagated at 30°C. The evolution of bacterial communities in sourdoughs fermented at the same temperature did not follow the same time course and changes in the composition of dominant and subdominant bacterial communities occurred even after six weeks of backslopping.

  1. Egypt's Red Sea coast: phylogenetic analysis of cultured microbial consortia in industrialized sites

    PubMed Central

    Mustafa, Ghada A.; Abd-Elgawad, Amr; Abdel-Haleem, Alyaa M.; Siam, Rania

    2014-01-01

    The Red Sea possesses a unique geography, and its shores are rich in mangrove, macro-algal and coral reef ecosystems. Various sources of pollution affect Red Sea biota, including microbial life. We assessed the effects of industrialization on microbes along the Egyptian Red Sea coast at eight coastal sites and two lakes. The bacterial communities of sediment samples were analyzed using bacterial 16S rDNA pyrosequencing of V6-V4 hypervariable regions. The taxonomic assignment of 131,402 significant reads to major bacterial taxa revealed five main bacterial phyla dominating the sampled sites: Proteobacteria (68%), Firmicutes (13%), Fusobacteria (12%), Bacteriodetes (6%), and Spirochetes (0.03%). Further analysis revealed distinct bacterial consortia that primarily included (1) marine Vibrio spp.—suggesting a “marine Vibrio phenomenon”; (2) potential human pathogens; and (3) oil-degrading bacteria. We discuss two divergent microbial consortia that were sampled from Solar Lake West near Taba/Eilat and Saline Lake in Ras Muhammad; these consortia contained the highest abundance of human pathogens and no pathogens, respectively. Our results draw attention to the effects of industrialization on the Red Sea and suggest the need for further analysis to overcome the hazardous effects observed at the impacted sites. PMID:25157243

  2. Modulation of microbial consortia enriched from different polluted environments during petroleum biodegradation.

    PubMed

    Omrani, Rahma; Spini, Giulia; Puglisi, Edoardo; Saidane, Dalila

    2018-04-01

    Environmental microbial communities are key players in the bioremediation of hydrocarbon pollutants. Here we assessed changes in bacterial abundance and diversity during the degradation of Tunisian Zarzatine oil by four indigenous bacterial consortia enriched from a petroleum station soil, a refinery reservoir soil, a harbor sediment and seawater. The four consortia were found to efficiently degrade up to 92.0% of total petroleum hydrocarbons after 2 months of incubation. Illumina 16S rRNA gene sequencing revealed that the consortia enriched from soil and sediments were dominated by species belonging to Pseudomonas and Acinetobacter genera, while in the seawater-derived consortia Dietzia, Fusobacterium and Mycoplana emerged as dominant genera. We identified a number of species whose relative abundances bloomed from small to high percentages: Dietzia daqingensis in the seawater microcosms, and three OTUs classified as Acinetobacter venetianus in all two soils and sediment derived microcosms. Functional analyses on degrading genes were conducted by comparing PCR results of the degrading genes alkB, ndoB, cat23, xylA and nidA1 with inferences obtained by PICRUSt analysis of 16S amplicon data: the two data sets were partly in agreement and suggest a relationship between the catabolic genes detected and the rate of biodegradation obtained. The work provides detailed insights about the modulation of bacterial communities involved in petroleum biodegradation and can provide useful information for in situ bioremediation of oil-related pollution.

  3. Evolution of Bacterial Consortia in Spontaneously Started Rye Sourdoughs during Two Months of Daily Propagation

    PubMed Central

    Simm, Jaak; Paalme, Toomas; Sarand, Inga

    2014-01-01

    The evolution of bacterial consortia was studied in six semi-solid rye sourdoughs during long-term backslopping at different temperatures. Each rye sourdough was started spontaneously in a laboratory (dough yield 200), propagated at either 20°C or 30°C, and renewed daily at an inoculation rate of 1∶10 for 56 days. The changes in bacterial diversity over time were followed by both DGGE coupled with partial 16S rRNA gene sequencing and pyrosequencing of bar-coded 16S rRNA gene amplicons. Four species from the genus Lactobacillus (brevis, crustorum, plantarum, and paralimentarius) were detected in different combinations in all sourdoughs after 56 propagation cycles. Facultative heterofermentative lactic acid bacteria dominated in sourdoughs fermented at 30°C, while both obligate and facultative heterofermentative LAB were found to dominate in sourdoughs fermented at 20°C. After 56 propagation cycles, Kazachstania unispora (formerly Saccharomyces unisporus) was identified as the only yeast species that dominated in sourdoughs fermented at 20°C, while different combinations of strains from four yeast species (Kazachstania unispora, Saccharomyces cerevisiae, Candida krusei and Candida glabrata) were detected in sourdoughs propagated at 30°C. The evolution of bacterial communities in sourdoughs fermented at the same temperature did not follow the same time course and changes in the composition of dominant and subdominant bacterial communities occurred even after six weeks of backslopping. PMID:24748058

  4. Metataxonomic profiling and prediction of functional behaviour of wheat straw degrading microbial consortia

    PubMed Central

    2014-01-01

    Background Mixed microbial cultures, in which bacteria and fungi interact, have been proposed as an efficient way to deconstruct plant waste. The characterization of specific microbial consortia could be the starting point for novel biotechnological applications related to the efficient conversion of lignocellulose to cello-oligosaccharides, plastics and/or biofuels. Here, the diversity, composition and predicted functional profiles of novel bacterial-fungal consortia are reported, on the basis of replicated aerobic wheat straw enrichment cultures. Results In order to set up biodegradative microcosms, microbial communities were retrieved from a forest soil and introduced into a mineral salt medium containing 1% of (un)treated wheat straw. Following each incubation step, sequential transfers were carried out using 1 to 1,000 dilutions. The microbial source next to three sequential batch cultures (transfers 1, 3 and 10) were analyzed by bacterial 16S rRNA gene and fungal ITS1 pyrosequencing. Faith’s phylogenetic diversity values became progressively smaller from the inoculum to the sequential batch cultures. Moreover, increases in the relative abundances of Enterobacteriales, Pseudomonadales, Flavobacteriales and Sphingobacteriales were noted along the enrichment process. Operational taxonomic units affiliated with Acinetobacter johnsonii, Pseudomonas putida and Sphingobacterium faecium were abundant and the underlying strains were successfully isolated. Interestingly, Klebsiella variicola (OTU1062) was found to dominate in both consortia, whereas K. variicola-affiliated strains retrieved from untreated wheat straw consortia showed endoglucanase/xylanase activities. Among the fungal players with high biotechnological relevance, we recovered members of the genera Penicillium, Acremonium, Coniochaeta and Trichosporon. Remarkably, the presence of peroxidases, alpha-L-fucosidases, beta-xylosidases, beta-mannases and beta-glucosidases, involved in lignocellulose

  5. A Formalized Design Process for Bacterial Consortia That Perform Logic Computing

    PubMed Central

    Sun, Rui; Xi, Jingyi; Wen, Dingqiao; Feng, Jingchen; Chen, Yiwei; Qin, Xiao; Ma, Yanrong; Luo, Wenhan; Deng, Linna; Lin, Hanchi; Yu, Ruofan; Ouyang, Qi

    2013-01-01

    The concept of microbial consortia is of great attractiveness in synthetic biology. Despite of all its benefits, however, there are still problems remaining for large-scaled multicellular gene circuits, for example, how to reliably design and distribute the circuits in microbial consortia with limited number of well-behaved genetic modules and wiring quorum-sensing molecules. To manage such problem, here we propose a formalized design process: (i) determine the basic logic units (AND, OR and NOT gates) based on mathematical and biological considerations; (ii) establish rules to search and distribute simplest logic design; (iii) assemble assigned basic logic units in each logic operating cell; and (iv) fine-tune the circuiting interface between logic operators. We in silico analyzed gene circuits with inputs ranging from two to four, comparing our method with the pre-existing ones. Results showed that this formalized design process is more feasible concerning numbers of cells required. Furthermore, as a proof of principle, an Escherichia coli consortium that performs XOR function, a typical complex computing operation, was designed. The construction and characterization of logic operators is independent of “wiring” and provides predictive information for fine-tuning. This formalized design process provides guidance for the design of microbial consortia that perform distributed biological computation. PMID:23468999

  6. Ecological Inferences from a deep screening of the Complex Bacterial Consortia associated with the coral, Porites astreoides.

    PubMed

    Rodriguez-Lanetty, Mauricio; Granados-Cifuentes, Camila; Barberan, Albert; Bellantuono, Anthony J; Bastidas, Carolina

    2013-08-01

    The functional role of the bacterial organisms in the reef ecosystem and their contribution to the coral well-being remain largely unclear. The first step in addressing this gap of knowledge relies on in-depth characterization of the coral microbial community and its changes in diversity across coral species, space and time. In this study, we focused on the exploration of microbial community assemblages associated with an ecologically important Caribbean scleractinian coral, Porites astreoides, using Illumina high-throughput sequencing of the V5 fragment of 16S rRNA gene. We collected data from a large set of biological replicates, allowing us to detect patterns of geographical structure and resolve co-occurrence patterns using network analyses. The taxonomic analysis of the resolved diversity showed consistent and dominant presence of two OTUs affiliated with the order Oceanospirillales, which corroborates a specific pattern of bacterial association emerging for this coral species and for many other corals within the genus Porites. We argue that this specific association might indicate a symbiotic association with the adult coral partner. Furthermore, we identified a highly diverse rare bacterial 'biosphere' (725 OTUs) also living along with the dominant bacterial symbionts, but the assemblage of this biosphere is significantly structured along the geographical scale. We further discuss that some of these rare bacterial members show significant association with other members of the community reflecting the complexity of the networked consortia within the coral holobiont. © 2013 John Wiley & Sons Ltd.

  7. An investigation of anaerobic methane oxidation by consortia of methanotrophic archaea and bacterial partners using nanoSIMS and process-based modeling

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Kempes, C.; Chadwick, G.; McGlynn, S.; He, X.; Orphan, V. J.; Meile, C. D.

    2016-02-01

    The anaerobic oxidation of methane in marine sediments plays an important role in the global methane cycle. Mediated by a microbial consortium consisting of archaea and bacteria, it is estimated that almost 80% of all the methane that arises from marine sediments is oxidized anaerobically by this process (Reeburgh 2007, Chemical Reviews 107, 486-513). We used reactive transport modeling to compare and contrast potential mechanisms of methane oxidation. This included acetate, hydrogen, formate, and disulfide acting as intermediates that are exchanged between archaea and bacteria. Moreover, we investigated electron transport through nanowires, facilitating the electron exchange between the microbial partners. It was shown that reaction kinetics, transport intensities, and energetic considerations all could decisively impact the overall rate of methane consumption. Informed by observed microbial cell distribution, we applied the model to a range of spatial distribution patterns of archaea and bacteria. We found that a consortium with evenly distributed archaeal and bacterial cells has the potential to more efficiently oxidize methane, because the vicinity of bacteria and archaea counteracts the build up of products and therefore prevents the thermodynamic shutdown of microbial metabolism. Single cell stable isotope enrichment in archaeal-bacterial consortia observed by nanoSIMS revealed rather uniform levels of anabolic activity within consortia with different spatial distribution patterns. Comparison to model simulation illustrates that efficient exchange is necessary to reproduce such observations and prevent conditions that are energetically unfavorable for methane oxidation to take place. Model simulations indicate that a recently described mechanism of direct interspecies electron transport between the methanotrophic archaea and its bacterial partner through a conductive matrix (McGlynn et al. 2015, Nature, 10.1038/nature15512) is consistent with observations.

  8. Enhanced biodegradation of low and high-density polyethylene by novel bacterial consortia formulated from plastic-contaminated cow dung under thermophilic conditions.

    PubMed

    Skariyachan, Sinosh; Setlur, Anagha Shamsundar; Naik, Sujay Yashwant; Naik, Ashwini Amaresh; Usharani, Makam; Vasist, Kiran S

    2017-03-01

    The current study aimed to devise eco-friendly, safe, and cost-effective strategies for enhanced degradation of low- and high-density polyethylene (LDPE and HDPE) using newly formulated thermophilic microbial consortia from cow dung and to assess the biodegradation end products. The plastic-degrading bacteria from cow dung samples gathered from highly plastic-acclimated environments were enriched by standard protocols. The degradation ability was comprehended by zone of clearance method, and the percentage of degradation was monitored by weight reduction process. The best isolates were characterized by standard microbiological and molecular biology protocols. The best isolates were employed to form several combinations of microbial consortia, and the degradation end products were analyzed. The stability of 16S ribosomal DNA (rDNA) was predicted by bioinformatics approach. This study identified 75 ± 2, 55 ± 2, 60 ± 3, and 43 ± 3% degradation for LDPE strips, pellets, HDPE strips, and pellets, respectively, for a period of 120 days (p < 0.05) at 55 °C by the formulated consortia of IS1-IS4, and the degradation efficiency was found to be better in comparison with other formulations. The end product analysis by Fourier transform infrared, scanning electron microscopy, energy-dispersive spectroscopy, and nuclear magnetic resonance showed major structural changes and formation of bacterial biofilm on plastic surfaces. These novel isolates were designated as Bacillus vallismortis bt-dsce01, Psuedomonas protegens bt-dsce02, Stenotrophomonas sp. bt-dsce03, and Paenibacillus sp.bt-dsce04 by 16S rDNA sequencing and suggested good gene stability with minimum Gibb's free energy. Therefore, this study imparts substantial information regarding the utilization of these thermophilic microbial consortia from cow dung for rapid polyethylene removal.

  9. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal−bacterial consortia

    PubMed Central

    Hatzenpichler, Roland; Connon, Stephanie A.; Goudeau, Danielle; Malmstrom, Rex R.; Woyke, Tanja; Orphan, Victoria J.

    2016-01-01

    To understand the biogeochemical roles of microorganisms in the environment, it is important to determine when and under which conditions they are metabolically active. Bioorthogonal noncanonical amino acid tagging (BONCAT) can reveal active cells by tracking the incorporation of synthetic amino acids into newly synthesized proteins. The phylogenetic identity of translationally active cells can be determined by combining BONCAT with rRNA-targeted fluorescence in situ hybridization (BONCAT-FISH). In theory, BONCAT-labeled cells could be isolated with fluorescence-activated cell sorting (BONCAT-FACS) for subsequent genetic analyses. Here, in the first application, to our knowledge, of BONCAT-FISH and BONCAT-FACS within an environmental context, we probe the translational activity of microbial consortia catalyzing the anaerobic oxidation of methane (AOM), a dominant sink of methane in the ocean. These consortia, which typically are composed of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria, have been difficult to study due to their slow in situ growth rates, and fundamental questions remain about their ecology and diversity of interactions occurring between ANME and associated partners. Our activity-correlated analyses of >16,400 microbial aggregates provide the first evidence, to our knowledge, that AOM consortia affiliated with all five major ANME clades are concurrently active under controlled conditions. Surprisingly, sorting of individual BONCAT-labeled consortia followed by whole-genome amplification and 16S rRNA gene sequencing revealed previously unrecognized interactions of ANME with members of the poorly understood phylum Verrucomicrobia. This finding, together with our observation that ANME-associated Verrucomicrobia are found in a variety of geographically distinct methane seep environments, suggests a broader range of symbiotic relationships within AOM consortia than previously thought. PMID:27357680

  10. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal-bacterial consortia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatzenpichler, Roland; Connon, Stephanie A.; Goudeau, Danielle

    To understand the biogeochemical roles of microorganisms in the environment, it is important to determine when and under which conditions they are metabolically active. Bioorthogonal noncanonical amino acid tagging (BONCAT) can reveal active cells by tracking the incorporation of synthetic amino acids into newly synthesized proteins. The phylogenetic identity of translationally active cells can be determined by combining BONCAT with rRNA-targeted fluorescence in situ hybridization (BONCAT-FISH). In theory, BONCAT-labeled cells could be isolated with fluorescence-activated cell sorting (BONCAT-FACS) for subsequent genetic analyses. Here, in the first application, to our knowledge, of BONCAT-FISH and BONCAT-FACS within an environmental context, we probemore » the translational activity of microbial consortia catalyzing the anaerobic oxidation of methane (AOM), a dominant sink of methane in the ocean. These consortia, which typically are composed of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria, have been difficult to study due to their slow in situ growth rates, and fundamental questions remain about their ecology and diversity of interactions occurring between ANME and associated partners. Our activity-correlated analyses of > 16,400 microbial aggregates provide the first evidence, to our knowledge, that AOM consortia affiliated with all five major ANME clades are concurrently active under controlled conditions. Surprisingly, sorting of individual BONCAT-labeled consortia followed by whole-genome amplification and 16S rRNA gene sequencing revealed previously unrecognized interactions of ANME with members of the poorly understood phylum Verrucomicrobia. This finding, together with our observation that ANME-associated Verrucomicrobia are found in a variety of geographically distinct methane seep environments, suggests a broader range of symbiotic relationships within AOM consortia than previously thought.« less

  11. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal-bacterial consortia

    DOE PAGES

    Hatzenpichler, Roland; Connon, Stephanie A.; Goudeau, Danielle; ...

    2016-06-28

    To understand the biogeochemical roles of microorganisms in the environment, it is important to determine when and under which conditions they are metabolically active. Bioorthogonal noncanonical amino acid tagging (BONCAT) can reveal active cells by tracking the incorporation of synthetic amino acids into newly synthesized proteins. The phylogenetic identity of translationally active cells can be determined by combining BONCAT with rRNA-targeted fluorescence in situ hybridization (BONCAT-FISH). In theory, BONCAT-labeled cells could be isolated with fluorescence-activated cell sorting (BONCAT-FACS) for subsequent genetic analyses. Here, in the first application, to our knowledge, of BONCAT-FISH and BONCAT-FACS within an environmental context, we probemore » the translational activity of microbial consortia catalyzing the anaerobic oxidation of methane (AOM), a dominant sink of methane in the ocean. These consortia, which typically are composed of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria, have been difficult to study due to their slow in situ growth rates, and fundamental questions remain about their ecology and diversity of interactions occurring between ANME and associated partners. Our activity-correlated analyses of > 16,400 microbial aggregates provide the first evidence, to our knowledge, that AOM consortia affiliated with all five major ANME clades are concurrently active under controlled conditions. Surprisingly, sorting of individual BONCAT-labeled consortia followed by whole-genome amplification and 16S rRNA gene sequencing revealed previously unrecognized interactions of ANME with members of the poorly understood phylum Verrucomicrobia. This finding, together with our observation that ANME-associated Verrucomicrobia are found in a variety of geographically distinct methane seep environments, suggests a broader range of symbiotic relationships within AOM consortia than previously thought.« less

  12. Characterization of microfouling and corrosive bacterial community of a firewater distribution system.

    PubMed

    Palaniappan, Balamurugan; Toleti, Subba Rao

    2016-04-01

    This investigation provides generic information on the culturable corrosive and the microfouling bacterial community in a firewater distribution system that uses freshwater. Conventional microbiological methods were used for the selective isolation of the major microfouling bacteria. The isolates were characterized by 16S rRNA gene sequencing and the biofilm as well as the corrosion characteristics of the isolates were evaluated. Pseudomonas aeruginosa and Bacillus cereus were predominantly observed in all the samples analysed. Denaturing gradient gel electrophoresis (DGGE) was carried out for the various samples of firewater system (FWS) and the high intensity bands were sequenced to identify the predominant bacteria. Bacterial groups such as Cyanobacteria, Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes were identified. Biofilm thickness was recorded using confocal scanning laser microscopy (CSLM). This was the first study to report Lysinibacillus fusiformis in a firewater system and its role in iron corrosion. Sulphidogenic bacteria Tissierella sp. and Clostridium bifermentans generated sulphides in the range of 400-900 ppm. Significant corrosion rates of carbon steel (CS) coupons were observed up to 4.3 mpy. C. bifermentans induced more localized corrosion in CS with a pit diameter of 50 μm. Overall, the data on the characterization of the fouling bacteria, their biofilm forming potential and subsequent metal deterioration studies supported in designing an effective water treatment program. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Biotreatment of industrial olive washing water by synergetic association of microalgal-bacterial consortia in a photobioreactor.

    PubMed

    Maza-Márquez, P; González-Martínez, A; Martínez-Toledo, M V; Fenice, M; Lasserrot, A; González-López, J

    2017-01-01

    This study presents an effective technology for the olive processing industry to remediate olive washing water. A 14.5-L enclosed tubular photobioreactor was inoculated with a stable microalgal-bacterial consortium obtained by screening strains well adapted to olive washing water. The capacity of an enclosed tubular photobioreactor to remove toxic compounds was evaluated under photosynthesis conditions and without any external supply of oxygen. The results showed that the dominant green microalgae Scenedesmus obliquus, Chlorella vulgaris and the cyanobacteria Anabaena sp. and bacteria present in olive washing water (i.e. Pantoea agglomerans and Raoultella terrigena) formed a synergistic association that was resistant to toxic pollutants present in the effluent and during the initial biodegradation process, which resulted in the breakdown of the pollutant. Total phenolic compounds, COD, BOD 5 , turbidity and colour removals of 90.3 ± 11.4, 80.7 ± 9.7, 97.8 ± 12.7, 82.9 ± 8.4 and 83.3 ± 10.4 %, respectively, were recorded in the photobioreactor at 3 days of hydraulic retention time. Graphical abstract Biotreatment of industrial olive washing water by synergetic association of microalgal-bacterial consortia in a photobioreactor.

  14. Single cell activity reveals direct electron transfer in methanotrophic consortia

    NASA Astrophysics Data System (ADS)

    McGlynn, Shawn E.; Chadwick, Grayson L.; Kempes, Christopher P.; Orphan, Victoria J.

    2015-10-01

    Multicellular assemblages of microorganisms are ubiquitous in nature, and the proximity afforded by aggregation is thought to permit intercellular metabolic coupling that can accommodate otherwise unfavourable reactions. Consortia of methane-oxidizing archaea and sulphate-reducing bacteria are a well-known environmental example of microbial co-aggregation; however, the coupling mechanisms between these paired organisms is not well understood, despite the attention given them because of the global significance of anaerobic methane oxidation. Here we examined the influence of interspecies spatial positioning as it relates to biosynthetic activity within structurally diverse uncultured methane-oxidizing consortia by measuring stable isotope incorporation for individual archaeal and bacterial cells to constrain their potential metabolic interactions. In contrast to conventional models of syntrophy based on the passage of molecular intermediates, cellular activities were found to be independent of both species intermixing and distance between syntrophic partners within consortia. A generalized model of electric conductivity between co-associated archaea and bacteria best fit the empirical data. Combined with the detection of large multi-haem cytochromes in the genomes of methanotrophic archaea and the demonstration of redox-dependent staining of the matrix between cells in consortia, these results provide evidence for syntrophic coupling through direct electron transfer.

  15. Characterization of bacterial consortia capable of degrading 4-chlorobenzoate and 4-bromobenzoate under denitrifying conditions.

    PubMed

    Song, Bongkeun; Kerkhof, Lee J; Häggblom, Max M

    2002-08-06

    4-Chlorobenzoate and 4-bromobenzoate were readily degraded in denitrifying enrichment cultures established with river sediment, estuarine sediment or agricultural soil as inoculum. Stable denitrifying consortia were obtained and maintained by serial dilution and repeated feeding of substrates. Microbial community analyses were performed to characterize the 4-chlorobenzoate and 4-bromobenzoate degrading consortia with terminal restriction fragment length polymorphism (T-RFLP) and cloning of 16S rRNA genes from the cultures. Interestingly, two major terminal restriction fragments (T-RFs) in the 4-chlorobenzoate degrading consortia and one T-RF in the 4-bromobenzoate utilizing consortium were observed from T-RFLP analysis regardless of their geographical and ecological origins. The two T-RFs (clones 4CB1 and 4CB2) in 4-chlorobenzoate degrading consortia were identified as members of the beta-subunit of the Proteobacteria on the basis of 16S rRNA sequencing analysis. Phylogenetic analysis of 16S rRNA genes showed that clone 4CB1 was closely related to Thauera aromatica while clone 4CB2 was distantly related to the genera Limnobacter and Ralstonia. The 4-bromobenzoate utilizing consortium mainly consisted of one T-RF, which was identical to clone 4CB2 in spite of different enrichment substrate. This suggests that degradation of 4-chlorobenzoate and 4-bromobenzoate under denitrifying conditions was mediated by bacteria belonging to the beta-subunit of the Proteobacteria.

  16. Biodegradation Of Thiocyanate Using Microbial Consortia Cultured From Gold Mine Tailings

    NASA Astrophysics Data System (ADS)

    Moreau, J. W.; Watts, M. P.; Spurr, L. P.; Vu, H. P.

    2015-12-01

    Some bacteria possess the capability to degrade SCN-; therefore, harnessing this metabolic trait offers a biotechnological remediation strategy for SCN- produced in gold ore processing. A tailings storage facility (TSF) at a gold mine in Victoria, Australia holds large quantities of thiocyanate (SCN-) contaminated mine waste. The surface water in the TSF typically contains SCN- concentrations of >800 mg L-1, and seepage from the facility has contaminated the groundwater at the site. This study aimed to culture SCN-degrading microbes from the TSF, characterize the microbial consortia and test its operational parameters for use in a thiocyanate-degrading bioreactor. Surface samples were obtained from several locations around the TSF facility and used to inoculate medium reflective of the moderately saline and alkaline tailings water at the TSF, in the absence of organic carbon but subject to additions of phosphate and trace metals. Four microbial consortia capable of rapid SCN- degradation were successfully cultured. Sequencing of 16S rRNA genes found that the consortia were dominated by Thiobacillus species, a genus of known SCN- degraders. Lower abundances of other SCN- degraders; Sphingopyxis and Rhodobacter, were also identified. The impact of a number of geochemical conditions, including pH, temperature and SCN- concentration, upon the growth and SCN- degrading capacity of these consortia was determined. These results informed the optimization of a lab-scale thiocyanate degrading bioreactor. In summary, the cultured bacterial consortia proved effective towards SCN- degradation at the prevailing geochemical conditions of the TSF, requiring minimal nutrient additions. These consortia were dominated by genera of known autotrophic SCN- degraders. The comprehensive characterisation of these SCN- degrading consortia will provide the fundamental operational parameters required for deployment of this technique at the field scale.

  17. Control of corrosive bacterial community by bronopol in industrial water system.

    PubMed

    Narenkumar, Jayaraman; Ramesh, Nachimuthu; Rajasekar, Aruliah

    2018-01-01

    Ten aerobic corrosive bacterial strains were isolated from a cooling tower water system (CWS) which were identified based on the biochemical characterization and 16S rRNA gene sequencing. Out of them, dominant corrosion-causing bacteria, namely, Bacillus thuringiensis EN2, Terribacillus aidingensis EN3, and Bacillus oleronius EN9, were selected for biocorrosion studies on mild steel 1010 (MS) in a CWS. The biocorrosion behaviour of EN2, EN3, and EN9 strains was studied using immersion test (weight loss method), electrochemical analysis, and surface analysis. To address the corrosion problems, an anti-corrosive study using a biocide, bronopol was also demonstrated. Scanning electron microscopy and Fourier-transform infrared spectroscopy analyses of the MS coupons with biofilm developed after exposure to CWS confirmed the accumulation of extracellular polymeric substances and revealed that biofilms was formed as microcolonies, which subsequently cause pitting corrosion. In contrast, the biocide system, no pitting type of corrosion, was observed and weight loss was reduced about 32 ± 2 mg over biotic system (286 ± 2 mg). FTIR results confirmed the adsorption of bronopol on the MS metal surface as protective layer (co-ordination of NH 2 -Fe 3+ ) to prevent the biofilm formation and inhibit the corrosive chemical compounds and thus led to reduction of corrosion rate (10 ± 1 mm/year). Overall, the results from WL, EIS, SEM, XRD, and FTIR concluded that bronopol was identified as effective biocide and corrosion inhibitor which controls the both chemical and biocorrosion of MS in CWS.

  18. Enhanced methane production via repeated batch bioaugmentation pattern of enriched microbial consortia.

    PubMed

    Yang, Zhiman; Guo, Rongbo; Xu, Xiaohui; Wang, Lin; Dai, Meng

    2016-09-01

    Using batch and repeated batch cultivations, this study investigated the effects of bioaugmentation with enriched microbial consortia (named as EMC) on methane production from effluents of hydrogen-producing stage of potato slurry, as well as on the indigenous bacterial community. The results demonstrated that the improved methane production and shift of the indigenous bacterial community structure were dependent on the EMC/sludge ratio and bioaugmentation patterns. The methane yield and production rate in repeated batch bioaugmentation pattern of EMC were, respectively, average 15% and 10% higher than in one-time bioaugmentation pattern of EMC. DNA-sequencing approach showed that the enhanced methane production in the repeated batch bioaugmentation pattern of EMC mainly resulted from the enriched iron-reducing bacteria and the persistence of the introduced Syntrophomonas, which led to a rapid degradation of individual VFAs to methane. The findings contributed to understanding the correlation between the bioaugmentation of microbial consortia, community shift, and methane production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Developmental plasticity of bacterial colonies and consortia in germ-free and gnotobiotic settings

    PubMed Central

    2012-01-01

    Background Bacteria grown on semi-solid media can build two types of multicellular structures, depending on the circumstances. Bodies (colonies) arise when a single clone is grown axenically (germ-free), whereas multispecies chimeric consortia contain monoclonal microcolonies of participants. Growth of an axenic colony, mutual interactions of colonies, and negotiation of the morphospace in consortial ecosystems are results of intricate regulatory and metabolic networks. Multicellular structures developed by Serratia sp. are characteristically shaped and colored, forming patterns that reflect their growth conditions (in particular medium composition and the presence of other bacteria). Results Building on our previous work, we developed a model system for studying ontogeny of multicellular bacterial structures formed by five Serratia sp. morphotypes of two species grown in either "germ-free" or "gnotobiotic" settings (i.e. in the presence of bacteria of other conspecific morphotype, other Serratia species, or E. coli). Monoclonal bodies show regular and reproducible macroscopic appearance of the colony, as well as microscopic pattern of its growing margin. Standard development can be modified in a characteristic and reproducible manner in close vicinity of other bacterial structures (or in the presence of their products). Encounters of colonies with neighbors of a different morphotype or species reveal relationships of dominance, cooperation, or submission; multiple interactions can be summarized in "rock – paper – scissors" network of interrelationships. Chimerical (mixed) plantings consisting of two morphotypes usually produced a “consortium” whose structure is consistent with the model derived from interaction patterns observed in colonies. Conclusions Our results suggest that development of a bacterial colony can be considered analogous to embryogenesis in animals, plants, or fungi: to proceed, early stages require thorough insulation from the rest of

  20. Microbial network of the carbonate precipitation process induced by microbial consortia and the potential application to crack healing in concrete.

    PubMed

    Zhang, Jiaguang; Zhou, Aijuan; Liu, Yuanzhen; Zhao, Bowei; Luan, Yunbo; Wang, Sufang; Yue, Xiuping; Li, Zhu

    2017-11-06

    Current studies have employed various pure-cultures for improving concrete durability based on microbially induced carbonate precipitation (MICP). However, there have been very few reports concerned with microbial consortia, which could perform more complex tasks and be more robust in their resistance to environmental fluctuations. In this study, we constructed three microbial consortia that are capable of MICP under aerobic (AE), anaerobic (AN) and facultative anaerobic (FA) conditions. The results showed that AE consortia showed more positive effects on inorganic carbon conversion than AN and FA consortia. Pyrosequencing analysis showed that clear distinctions appeared in the community structure between different microbial consortia systems. Further investigation on microbial community networks revealed that the species in the three microbial consortia built thorough energetic and metabolic interaction networks regarding MICP, nitrate-reduction, bacterial endospores and fermentation communities. Crack-healing experiments showed that the selected cracks of the three consortia-based concrete specimens were almost completely healed in 28 days, which was consistent with the studies using pure cultures. Although the economic advantage might not be clear yet, this study highlights the potential implementation of microbial consortia on crack healing in concrete.

  1. Bacteria of an anaerobic 1,2-dichloropropane-dechlorinating mixed culture are phylogenetically related to those of other anaerobic dechlorinating consortia.

    PubMed

    Schlötelburg, C; von Wintzingerode, F; Hauck, R; Hegemann, W; Göbel, U B

    2000-07-01

    A 16S-rDNA-based molecular study was performed to determine the bacterial diversity of an anaerobic, 1,2-dichloropropane-dechlorinating bioreactor consortium derived from sediment of the River Saale, Germany. Total community DNA was extracted and bacterial 16S rRNA genes were subsequently amplified using conserved primers. A clone library was constructed and analysed by sequencing the 16S rDNA inserts of randomly chosen clones followed by dot blot hybridization with labelled polynucleotide probes. The phylogenetic analysis revealed significant sequence similarities of several as yet uncultured bacterial species in the bioreactor to those found in other reductively dechlorinating freshwater consortia. In contrast, no close relationship was obtained with as yet uncultured bacteria found in reductively dechlorinating consortia derived from marine habitats. One rDNA clone showed >97% sequence similarity to Dehalobacter species, known for reductive dechlorination of tri- and tetrachloroethene. These results suggest that reductive dechlorination in microbial freshwater habitats depends upon a specific bacterial community structure.

  2. Effect of sulfate on the transformation of corrosion scale composition and bacterial community in cast iron water distribution pipes.

    PubMed

    Yang, Fan; Shi, Baoyou; Bai, Yaohui; Sun, Huifang; Lytle, Darren A; Wang, Dongsheng

    2014-08-01

    The chemical stability of iron corrosion scales and the microbial community of biofilm in drinking water distribution system (DWDS) can have great impact on the iron corrosion and corrosion product release, which may result in "red water" issues, particularly under the situation of source water switch. In this work, experimental pipe loops were set up to investigate the effect of sulfate on the dynamical transformation characteristics of iron corrosion products and bacterial community in old cast iron distribution pipes. All the test pipes were excavated from existing DWDS with different source water supply histories, and the test water sulfate concentration was in the range of 50-350 mg/L. Pyrosequencing of 16S rRNA was used for bacterial community analysis. The results showed that iron release increased markedly and even "red water" occurred for pipes with groundwater supply history when feed water sulfate elevated abruptly. However, the iron release of pipes with only surface water supply history changed slightly without noticeable color even the feed water sulfate increased multiply. The thick-layered corrosion scales (or densely distributed tubercles) on pipes with surface water supply history possessed much higher stability due to the larger proportion of stable constituents (mainly Fe3O4) in their top shell layer; instead, the rather thin and uniform non-layered corrosion scales on pipes with groundwater supply history contained relatively higher proportion of less stable iron oxides (e.g. β-FeOOH, FeCO3 and green rust). The less stable corrosion scales tended to be more stable with sulfate increase, which was evidenced by the gradually decreased iron release and the increased stable iron oxides. Bacterial community analysis indicated that when switching to high sulfate water, iron reducing bacteria (IRB) maintained dominant for pipes with stable corrosion scales, while significant increase of sulfur oxidizing bacteria (SOB), sulfate reducing bacteria (SRB

  3. Effect of Hydrogenase and Mixed Sulfate-Reducing Bacterial Populations on the Corrosion of Steel

    PubMed Central

    Bryant, Richard D.; Jansen, Wayne; Boivin, Joe; Laishley, Edward J.; Costerton, J. William

    1991-01-01

    The importance of hydrogenase activity to corrosion of steel was assessed by using mixed populations of sulfate-reducing bacteria isolated from corroded and noncorroded oil pipelines. Biofilms which developed on the steel studs contained detectable numbers of sulfate-reducing bacteria (104 increasing to 107/0.5 cm2). However, the biofilm with active hydrogenase activity (i.e., corrosion pipeline organisms), as measured by a semiquantitative commercial kit, was associated with a significantly higher corrosion rate (7.79 mm/year) relative to noncorrosive biofilm (0.48 mm/year) with 105 sulfate-reducing bacteria per 0.5 cm2 but no measurable hydrogenase activity. The importance of hydrogenase and the microbial sulfate-reducing bacterial population making up the biofilm are discussed relative to biocorrosion. Images PMID:16348560

  4. Population dynamics of two antilisterial cheese surface consortia revealed by temporal temperature gradient gel electrophoresis

    PubMed Central

    2010-01-01

    Background Surface contamination of smear cheese by Listeria spp. is of major concern for the industry. Complex smear ecosystems have been shown to harbor antilisterial potential but the microorganisms and mechanisms involved in the inhibition mostly remain unclear, and are likely related to complex interactions than to production of single antimicrobial compounds. Bacterial biodiversity and population dynamics of complex smear ecosystems exhibiting antilisterial properties in situ were investigated by Temporal temperature gradient gel electrophoresis (TTGE), a culture independent technique, for two microbial consortia isolated from commercial Raclette type cheeses inoculated with defined commercial ripening cultures (F) or produced with an old-young smearing process (M). Results TTGE revealed nine bacterial species common to both F and M consortia, but consortium F exhibited a higher diversity than consortium M, with thirteen and ten species, respectively. Population dynamics were studied after application of the consortia on fresh-produced Raclette cheeses. TTGE analyses revealed a similar sequential development of the nine species common to both consortia. Beside common cheese surface bacteria (Staphylococcus equorum, Corynebacterium spp., Brevibacterium linens, Microbacterium gubbeenense, Agrococcus casei), the two consortia contained marine lactic acid bacteria (Alkalibacterium kapii, Marinilactibacillus psychrotolerans) that developed early in ripening (day 14 to 20), shortly after the growth of staphylococci (day 7). A decrease of Listeria counts was observed on cheese surface inoculated at day 7 with 0.1-1 × 102 CFU cm-2, when cheeses were smeared with consortium F or M. Listeria counts went below the detection limit of the method between day 14 and 28 and no subsequent regrowth was detected over 60 to 80 ripening days. In contrast, Listeria grew to high counts (105 CFU cm-2) on cheeses smeared with a defined surface culture. Conclusions This work reports

  5. Construction of PAH-degrading mixed microbial consortia by induced selection in soil.

    PubMed

    Zafra, German; Absalón, Ángel E; Anducho-Reyes, Miguel Ángel; Fernandez, Francisco J; Cortés-Espinosa, Diana V

    2017-04-01

    Bioremediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soils through the biostimulation and bioaugmentation processes can be a strategy for the clean-up of oil spills and environmental accidents. In this work, an induced microbial selection method using PAH-polluted soils was successfully used to construct two microbial consortia exhibiting high degradation levels of low and high molecular weight PAHs. Six fungal and seven bacterial native strains were used to construct mixed consortia with the ability to tolerate high amounts of phenanthrene (Phe), pyrene (Pyr) and benzo(a)pyrene (BaP) and utilize these compounds as a sole carbon source. In addition, we used two engineered PAH-degrading fungal strains producing heterologous ligninolytic enzymes. After a previous selection using microbial antagonism tests, the selection was performed in microcosm systems and monitored using PCR-DGGE, CO 2 evolution and PAH quantitation. The resulting consortia (i.e., C1 and C2) were able to degrade up to 92% of Phe, 64% of Pyr and 65% of BaP out of 1000 mg kg -1 of a mixture of Phe, Pyr and BaP (1:1:1) after a two-week incubation. The results indicate that constructed microbial consortia have high potential for soil bioremediation by bioaugmentation and biostimulation and may be effective for the treatment of sites polluted with PAHs due to their elevated tolerance to aromatic compounds, their capacity to utilize them as energy source. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Characterization of bacterial community and iron corrosion in drinking water distribution systems with O3-biological activated carbon treatment.

    PubMed

    Xing, Xueci; Wang, Haibo; Hu, Chun; Liu, Lizhong

    2018-07-01

    Bacterial community structure and iron corrosion were investigated for simulated drinking water distribution systems (DWDSs) composed of annular reactors incorporating three different treatments: ozone, biologically activated carbon and chlorination (O 3 -BAC-Cl 2 ); ozone and chlorination (O 3 -Cl 2 ); or chlorination alone (Cl 2 ). The lowest corrosion rate and iron release, along with more Fe 3 O 4 formation, occurred in DWDSs with O 3 -BAC-Cl 2 compared to those without a BAC filter. It was verified that O 3 -BAC influenced the bacterial community greatly to promote the relative advantage of nitrate-reducing bacteria (NRB) in DWDSs. Moreover, the advantaged NRB induced active Fe(III) reduction coupled to Fe(II) oxidation, enhancing Fe 3 O 4 formation and inhibiting corrosion. In addition, O 3 -BAC pretreatment could reduce high-molecular-weight fractions of dissolved organic carbon effectively to promote iron particle aggregation and inhibit further iron release. Our findings indicated that the O 3 -BAC treatment, besides removing organic pollutants in water, was also a good approach for controlling cast iron corrosion and iron release in DWDSs. Copyright © 2017. Published by Elsevier B.V.

  7. Engineering microbial consortia for controllable outputs

    PubMed Central

    Lindemann, Stephen R; Bernstein, Hans C; Song, Hyun-Seob; Fredrickson, Jim K; Fields, Matthew W; Shou, Wenying; Johnson, David R; Beliaev, Alexander S

    2016-01-01

    Much research has been invested into engineering microorganisms to perform desired biotransformations; nonetheless, these efforts frequently fall short of expected results due to the unforeseen effects of biofeedback regulation and functional incompatibility. In nature, metabolic function is compartmentalized into diverse organisms assembled into robust consortia, in which the division of labor is thought to lead to increased community efficiency and productivity. Here we consider whether and how consortia can be designed to perform bioprocesses of interest beyond the metabolic flexibility limitations of a single organism. Advances in post-genomic analysis of microbial consortia and application of high-resolution global measurements now offer the promise of systems-level understanding of how microbial consortia adapt to changes in environmental variables and inputs of carbon and energy. We argue that, when combined with appropriate modeling frameworks, systems-level knowledge can markedly improve our ability to predict the fate and functioning of consortia. Here we articulate our collective perspective on the current and future state of microbial community engineering and control while placing specific emphasis on ecological principles that promote control over community function and emergent properties. PMID:26967105

  8. Engineering microbial consortia for controllable outputs

    DOE PAGES

    Lindemann, Stephen R.; Bernstein, Hans C.; Song, Hyun -Seob; ...

    2016-03-11

    In this study, much research has been invested into engineering microorganisms to perform desired biotransformations; nonetheless, these efforts frequently fall short of expected results due to the unforeseen effects of biofeedback regulation and functional incompatibility. In nature, metabolic function is compartmentalized into diverse organisms assembled into robust consortia, in which the division of labor is thought to lead to increased community efficiency and productivity. Here we consider whether and how consortia can be designed to perform bioprocesses of interest beyond the metabolic flexibility limitations of a single organism. Advances in post-genomic analysis of microbial consortia and application of high-resolution globalmore » measurements now offer the promise of systems-level understanding of how microbial consortia adapt to changes in environmental variables and inputs of carbon and energy. We argue that, when combined with appropriate modeling frameworks, systems-level knowledge can markedly improve our ability to predict the fate and functioning of consortia. Here we articulate our collective perspective on the current and future state of microbial community engineering and control while placing specific emphasis on ecological principles that promote control over community function and emergent properties.« less

  9. Enhanced Biocide Mitigation of Field Biofilm Consortia by a Mixture of D-Amino Acids

    PubMed Central

    Li, Yingchao; Jia, Ru; Al-Mahamedh, Hussain H.; Xu, Dake; Gu, Tingyue

    2016-01-01

    Microbiologically influenced corrosion (MIC) is a major problem in the oil and gas industry as well as in many other industries. Current treatment methods rely mostly on pigging and biocide dosing. Biocide resistance is a growing concern. Thus, it is desirable to use biocide enhancers to improve the efficacy of existing biocides. D-Amino acids are naturally occurring. Our previous work demonstrated that some D-amino acids are biocide enhancers. Under a biocide stress of 50 ppm (w/w) hydroxymethyl phosphonium sulfate (THPS) biocide, 1 ppm D-tyrosine and 100 ppm D-methionine used separately successfully mitigated the Desulfovibrio vulgaris biofilm on carbon steel coupons. The data reported in this work revealed that 50 ppm of an equimolar mixture of D-methionine, D-tyrosine, D-leucine, and D-tryptophan greatly enhanced 50 ppm THPS biocide treatment of two recalcitrant biofilm consortia containing sulfate reducing bacteria (SRB), nitrate reducing bacteria (NRB), and fermentative bacteria, etc., from oil-field operations. The data also indicated that individual D-amino acids were inadequate for the biofilm consortia. PMID:27379039

  10. Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite

    PubMed Central

    Romo, E.; Weinacker, D.F.; Zepeda, A.B.; Figueroa, C.A.; Chavez-Crooker, P.; Farias, J.G.

    2013-01-01

    The mining industry is looking forward for bacterial consortia for economic extraction of copper from low-grade ores. The main objective was to determine an optimal bacterial consortium from several bacterial strains to obtain copper from the leach of chalcopyrite. The major native bacterial species involved in the bioleaching of sulphide ore (Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillum ferrooxidans and Leptospirillum ferriphilum) were isolated and the assays were performed with individual bacteria and in combination with At. thiooxidans. In conclusion, it was found that the consortium integrated by At. ferrooxidans and At. thiooxidans removed 70% of copper in 35 days from the selected ore, showing significant differences with the other consortia, which removed only 35% of copper in 35 days. To validate the assays was done an escalation in columns, where the bacterial consortium achieved a higher percentage of copper extraction regarding to control. PMID:24294251

  11. Assessing the role of spatial structure on cell-specific activity and interactions within uncultured methane-oxidizing syntrophic consortia (Invited)

    NASA Astrophysics Data System (ADS)

    Orphan, V. J.; McGlynn, S.; Chadwick, G.; Dekas, A.; Green-Saxena, A.

    2013-12-01

    Sulfate-coupled anaerobic oxidation of methane is catalysed through symbiotic associations between archaea and sulphate-reducing bacteria and represents the dominant sink for methane in the oceans. These methane-oxidizing symbiotic consortia form well-structured multi-celled aggregations in marine methane seeps, where close spatial proximity is believed to be essential for efficient exchange of substrates between syntrophic partners. The nature of this interspecies metabolic relationship is still unknown however there are a number of hypotheses regarding the electron carrying intermediate and ecophysiology of the partners, each of which should be affected by, and influence, the spatial arrangement of archaeal and bacterial cells within aggregates. To advance our understanding of the role of spatial structure within naturally occurring environmental consortia, we are using spatial statistical methods combined with fluorescence in situ hybridization and high-resolution nanoscale secondary ion mass spectrometry (FISH-nanoSIMS) to quantify the effect of spatial organization and intra- and inter-species interactions on cell-specific microbial activity within these diverse archaeal-bacterial partnerships.

  12. Axenic aerobic biofilms inhibit corrosion of copper and aluminum.

    PubMed

    Jayaraman, A; Ornek, D; Duarte, D A; Lee, C C; Mansfeld, F B; Wood, T K

    1999-11-01

    The corrosion behavior of unalloyed copper and aluminum alloy 2024 in modified Baar's medium has been studied with continuous reactors using electrochemical impedance spectroscopy. An axenic aerobic biofilm of either Pseudomonas fragi K or Bacillus brevis 18 was able to lessen corrosion as evidenced by a consistent 20-fold increase in the low-frequency impedance value of copper as well as by a consistent four- to seven-fold increase in the polarization resistance of aluminum 2024 after six days exposure compared to sterile controls. This is the first report of axenic aerobic biofilms inhibiting generalized corrosion of copper and aluminum. Addition of the representative sulfate-reducing bacterium (SRB) Desulfovibrio vulgaris (to simulate consortia corrosion behavior) to either the P. fragi K or B. brevis 18 protective biofilm on copper increased the corrosion to that of the sterile control unless antibiotic (ampicillin) was added to inhibit the growth of SRB in the biofilm.

  13. Big and disparate data: considerations for pediatric consortia.

    PubMed

    Stingone, Jeanette A; Mervish, Nancy; Kovatch, Patricia; McGuinness, Deborah L; Gennings, Chris; Teitelbaum, Susan L

    2017-04-01

    Increasingly, there is a need for examining exposure disease associations in large, diverse datasets to understand the complex determinants of pediatric disease and disability. Recognizing that children's health research consortia will be important sources of big data, it is crucial for the pediatric research community to be knowledgeable about the challenges and opportunities that they will face. The present review will provide examples of existing children's health consortia, highlight recent pooled analyses conducted by children's health research consortia, address common challenges of pooled analyses, and provide recommendations to advance collective research efforts in pediatric research. Formal consortia and other collective-science initiatives are increasingly being created to share individual data from a set of relevant epidemiological studies to address a common research topic under the concept that the joint effort of many individual groups can accomplish far more than working alone. There are practical challenges to the participation of investigators within consortia that need to be addressed in order for them to work. Researchers who access consortia with data centers will be able to go far beyond their initial hypotheses and potentially accomplish research that was previously thought infeasible or too costly.

  14. Best Practices in Establishing and Sustaining Consortia in Pharmacy Education

    PubMed Central

    Hincapie, Ana; Baugh, Gina; Rice, Luke; Sy, Erin; Penm, Jonathan; Albano, Christian

    2017-01-01

    Objective. To describe best practices, necessary resources, and success or lessons learned from established consortia in pharmacy education. Methods. Using semi-structured interviews and qualitative analysis, interviews with members of established consortia in pharmacy education were conducted until saturation was reached. Themes were analyzed and meaningful descriptions of consortia characteristics were developed using systematic text condensation. Results. Thirteen interviews were conducted. The primary purpose for forming a consortium was identified as threefold: share ideas/best practices; facilitate collaboration; and perform shared problem-solving. For experiential education consortia, two additional purposes were found: share capacity for practice sites, and promote standardization across programs. When investigating best practices for established consortia, three main themes were identified. These included strategies for: (1) relationship building within consortia, (2) successful outcomes of consortia, and (3) sustainability. Successful outcomes included scholarship and, sometimes, program standardization. Sustainability was linked to structure/support and momentum. Respect was considered the foundation for collaborative relationships to flourish in these consortia. Conclusions. Pharmacy education consortia form through a process that involves relationship building to produce outcomes that promote sustainability, which benefits both pharmacy schools and individual faculty members. Consortium formation is a viable, productive, and often necessary institutional goal for pharmacy schools. PMID:28381887

  15. Microbial consortia of gorgonian corals from the Aleutian islands

    USGS Publications Warehouse

    Gray, Michael A.; Stone, R.P.; McLaughlin, M.R.; Kellogg, C.A.

    2011-01-01

    Gorgonians make up the majority of corals in the Aleutian archipelago and provide critical fish habitat in areas of economically important fisheries. The microbial ecology of the deep-sea gorgonian corals Paragorgea arborea, Plumarella superba, and Cryogorgia koolsae was examined with culture-based and 16S rRNA gene-based techniques. Six coral colonies (two per species) were collected. Samples from all corals were cultured, and clone libraries were constructed from P. superba and C. koolsae. Cultured bacteria were dominated by the Gammaproteobacteria, especially Vibrionaceae, with other phyla comprising <6% of the isolates. The clone libraries showed dramatically different bacterial communities between corals of the same species collected at different sites, with no clear pattern of conserved bacterial consortia. Two of the clone libraries (one from each coral species) were dominated by Tenericutes, with Alphaproteobacteria dominating the remaining sequences. The other libraries were more diverse and had a more even distribution of bacterial phyla, showing more similarity between genera than within coral species. Here we report the first microbiological characterization of P. arborea, P. superba, and C. koolsae. FEMS Microbiology Ecology ?? 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original US government works.

  16. Membrane lipid patterns typify distinct anaerobic methanotrophic consortia

    PubMed Central

    Blumenberg, Martin; Seifert, Richard; Reitner, Joachim; Pape, Thomas; Michaelis, Walter

    2004-01-01

    The anaerobic oxidation of methane (AOM) is one of the major sinks of this substantial greenhouse gas in marine environments. Recent investigations have shown that diverse communities of anaerobic archaea and sulfate-reducing bacteria are involved in AOM. Most of the relevant archaea are assigned to two distinct phylogenetic clusters, ANME-1 and ANME-2. A suite of specific 13C-depleted lipids demonstrating the presence of consortia mediating AOM in fossil and recent environments has been established. Here we report on substantial differences in the lipid composition of microbial consortia sampled from distinct compartments of AOM-driven carbonate reefs growing in the northwestern Black Sea. Communities in which the dominant archaea are from the ANME-1 cluster yield internally cyclized tetraether lipids typical of thermophiles. Those in which ANME-2 archaea are dominant yield sn-2-hydroxyarchaeol accompanied by crocetane and crocetenes. The bacterial lipids from these communities are also distinct even though the sulfate-reducing bacteria all belong to the Desulfosarcina/Desulfococcus group. Nonisoprenoidal glycerol diethers are predominantly associated with ANME-1-dominated communities. Communities with ANME-2 yield mainly conventional, ester-linked diglycerides. ANME-1 archaea and associated sulfate-reducing bacteria seem to be enabled to use low concentrations of methane and to grow within a broad range of temperatures. Our results offer a tool for the study of recent and especially of fossil methane environments. PMID:15258285

  17. In vitro assessments on bacterial adhesion and corrosion performance of TiN coating on Ti6Al4V titanium alloy synthesized by multi-arc ion plating

    NASA Astrophysics Data System (ADS)

    Lin, Naiming; Huang, Xiaobo; Zhang, Xiangyu; Fan, Ailan; Qin, Lin; Tang, Bin

    2012-07-01

    TiN coating was synthesized on Ti6Al4V titanium alloy surface by multi-arc ion plating (MIP) technique. Surface morphology, cross sectional microstructure, elemental distributions and phase compositions of the obtained coating were analyzed by means of scanning electron microscope (SEM), optical microscope (OM), glow discharge optical emission spectroscope (GDOES) and X-ray diffraction (XRD). Bacterial adhesion and corrosion performance of Ti6Al4V and the TiN coating were assessed via in vitro bacterial adhesion tests and corrosion experiments, respectively. The results indicated that continuous and compact coating which was built up by pure TiN with a typical columnar crystal structure has reached a thickness of 1.5 μm. This TiN coating could significantly reduce the bacterial adhesion and enhance the corrosion resistance of Ti6Al4V substrate.

  18. Subsurface associations of Acaryochloris-related picocyanobacteria with oil-utilizing bacteria in the Arabian Gulf water body: promising consortia in oil sediment bioremediation.

    PubMed

    Al-Bader, Dhia; Eliyas, Mohamed; Rayan, Rihab; Radwan, Samir

    2013-04-01

    Two picocyanobacterial strains related to Acaryochloris were isolated from the Arabian Gulf, 3 m below the water surface, one from the north shore and the other from the south shore of Kuwait. Both strains were morphologically, ultrastructurally, and albeit to a less extend, phylogenetically similar to Acaryochloris. However, both isolates lacked chlorophyll d and produced instead chlorophyll a, as the major photosynthetic pigment. Both picocyanobacterial isolates were associated with oil-utilizing bacteria in the magnitude of 10(5) cells g(-1). According to their 16S rRNA gene sequences, bacteria associated with the isolate from the north were affiliated to Paenibacillus sp., Bacillus pumilus, and Marinobacter aquaeolei, but those associated with the isolate from the south were affiliated to Bacillus asahii and Alcanivorax jadensis. These bacterial differences were probably due to environmental variations. In batch cultures, the bacterial consortia in the nonaxenic biomass as well as the pure bacterial isolates effectively consumed crude oil and pure aliphatic and aromatic hydrocarbons, including very high-molecular-weight compounds. Water and diethylether extracts from the phototrophic biomass enhanced growth of individual bacterial isolates and their hydrocarbon-consumption potential in batch cultures. It was concluded that these consortia could be promising in bioremediation of hydrocarbon pollutants, especially heavy sediments in the marine ecosystem.

  19. 47 CFR 54.604 - Consortia, telecommunications services, and existing contracts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false Consortia, telecommunications services, and existing contracts. 54.604 Section 54.604 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... Telecommunications Program § 54.604 Consortia, telecommunications services, and existing contracts. (a) Consortia. (1...

  20. 47 CFR 54.604 - Consortia, telecommunications services, and existing contracts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 3 2013-10-01 2013-10-01 false Consortia, telecommunications services, and existing contracts. 54.604 Section 54.604 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... Telecommunications Program § 54.604 Consortia, telecommunications services, and existing contracts. (a) Consortia. (1...

  1. Characterization of three plant biomass-degrading microbial consortia by metagenomics- and metasecretomics-based approaches.

    PubMed

    Jiménez, Diego Javier; de Lima Brossi, Maria Julia; Schückel, Julia; Kračun, Stjepan Krešimir; Willats, William George Tycho; van Elsas, Jan Dirk

    2016-12-01

    The selection of microbes by enrichment on plant biomass has been proposed as an efficient way to develop new strategies for lignocellulose saccharification. Here, we report an in-depth analysis of soil-derived microbial consortia that were trained to degrade once-used wheat straw (WS1-M), switchgrass (SG-M) and corn stover (CS-M) under aerobic and mesophilic conditions. Molecular fingerprintings, bacterial 16S ribosomal RNA (rRNA) gene amplicon sequencing and metagenomic analyses showed that the three microbial consortia were taxonomically distinct. Based on the taxonomic affiliation of protein-encoding sequences, members of the Bacteroidetes (e.g. Chryseobacterium, Weeksella, Flavobacterium and Sphingobacterium) were preferentially selected on WS1-M, whereas SG-M and CS-M favoured members of the Proteobacteria (e.g. Caulobacter, Brevundimonas, Stenotrophomonas and Xanthomonas). The highest degradation rates of lignin (~59 %) were observed with SG-M, whereas CS-M showed a high consumption of cellulose and hemicellulose. Analyses of the carbohydrate-active enzymes in the three microbial consortia showed the dominance of glycosyl hydrolases (e.g. of families GH3, GH43, GH13, GH10, GH29, GH28, GH16, GH4 and GH92). In addition, proteins of families AA6, AA10 and AA2 were detected. Analysis of secreted protein fractions (metasecretome) for each selected microbial consortium mainly showed the presence of enzymes able to degrade arabinan, arabinoxylan, xylan, β-glucan, galactomannan and rhamnogalacturonan. Notably, these metasecretomes contain enzymes that enable us to produce oligosaccharides directly from wheat straw, sugarcane bagasse and willow. Thus, the underlying microbial consortia constitute valuable resources for the production of enzyme cocktails for the efficient saccharification of plant biomass.

  2. Bacterial Exopolysaccharides For Corrosion Inhibition on Metal Substrates

    USDA-ARS?s Scientific Manuscript database

    Biofilms, composed of extra-cellular polymers secreted by bacteria, have been observed to both increase as well as decrease the rate of metal corrosion. Exopolysaccharides derived from Leuconostoc mesenteroides cultures have been shown to inhibit corrosion on corrosion-sensitive metals. The substa...

  3. Educational Cooperation: An Examination of Fourteen Consortia.

    ERIC Educational Resources Information Center

    Lepchenske, George L.

    The development of consortia and cooperative educational services in higher education in response to financial pressures and social and governmental influences is examined. Consortia or cooperatives may be multi-channeled efforts, with each member struggling to advance its own self-interest at the cost of united goals and efforts, or thriving…

  4. Microbial consortia of gorgonian corals from the Aleutian islands.

    PubMed

    Gray, Michael A; Stone, Robert P; McLaughlin, Molly R; Kellogg, Christina A

    2011-04-01

    Gorgonians make up the majority of corals in the Aleutian archipelago and provide critical fish habitat in areas of economically important fisheries. The microbial ecology of the deep-sea gorgonian corals Paragorgea arborea, Plumarella superba, and Cryogorgia koolsae was examined with culture-based and 16S rRNA gene-based techniques. Six coral colonies (two per species) were collected. Samples from all corals were cultured, and clone libraries were constructed from P. superba and C. koolsae. Cultured bacteria were dominated by the Gammaproteobacteria, especially Vibrionaceae, with other phyla comprising <6% of the isolates. The clone libraries showed dramatically different bacterial communities between corals of the same species collected at different sites, with no clear pattern of conserved bacterial consortia. Two of the clone libraries (one from each coral species) were dominated by Tenericutes, with Alphaproteobacteria dominating the remaining sequences. The other libraries were more diverse and had a more even distribution of bacterial phyla, showing more similarity between genera than within coral species. Here we report the first microbiological characterization of P. arborea, P. superba, and C. koolsae. FEMS Microbiology Ecology © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original US government works.

  5. Effect of sulfate on the transformation of corrosion scale composition and bacterial community in cast iron water distribution pipes

    EPA Science Inventory

    The stability of iron corrosion products and the bacterial composition of biofilm in drinking water distribution systems (DWDS) could have great impact on the water safety at the consumer ends. In this work, pipe loops were setup to investigate the transformation characteristics ...

  6. Developing methanogenic microbial consortia from diverse coal sources and environments

    DOE PAGES

    Fuertez, John; Boakye, Richard; McLennan, John; ...

    2017-08-18

    Biogenic gas production is a promising alternative or supplement to conventional methane extraction from coalbeds. Adsorbed and free gas, generated over geologic time, can be supplemented with biogenic gas during short-term engineering operations. There are two generic protocols for doing this. The first is to contact the coal with nutrients to support native bacterial development. The second approach is to inject appropriately cultured ex-situ consortia into subsurface coal accumulations. Research has mainly focused on the former: in-situ stimulation of native microbial communities with added nutrients. Relatively few studies have been conducted on the strategies for enriching ex-situ microbial populations undermore » initial atmospheric exposure for subsequent injection into coal seams to stimulate biodegradation, and methanogenesis. In order to evaluate the feasibility of ex-situ cultivation, natural microbial populations were collected from various hydrocarbon-rich environments and locations characterized by natural methanogenesis. Different rank coals (i.e., lignite, sub-bituminous, bituminous), complex hydrocarbon sources (i.e., oil shale, waxy crude), hydrocarbon seeps, and natural biogenic environments were incorporated in the sampling. Three levels of screening (down-selection to high grade the most productive consortia) allowed selection of microbial populations, favorable nutrient amendments, sources of the microbial community, and quantification of methane produced from various coal types. Incubation periods of up to twenty-four weeks were evaluated at 23 °C. Headspace concentrations of CH 4 and CO 2 were analyzed by gas chromatography. After a two-week incubation period of the most promising microbes, generated headspace gas concentrations reached 873,400 ppm (154 sft 3/ton or 4.8 scm 3/g) for methane and 176,370 ppm (31 sft 3/ton or 0.9 scm 3/g) for carbon dioxide. Rudimentary statistical assessments – variance analysis (ANOVA) of a single factor

  7. Developing methanogenic microbial consortia from diverse coal sources and environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuertez, John; Boakye, Richard; McLennan, John

    Biogenic gas production is a promising alternative or supplement to conventional methane extraction from coalbeds. Adsorbed and free gas, generated over geologic time, can be supplemented with biogenic gas during short-term engineering operations. There are two generic protocols for doing this. The first is to contact the coal with nutrients to support native bacterial development. The second approach is to inject appropriately cultured ex-situ consortia into subsurface coal accumulations. Research has mainly focused on the former: in-situ stimulation of native microbial communities with added nutrients. Relatively few studies have been conducted on the strategies for enriching ex-situ microbial populations undermore » initial atmospheric exposure for subsequent injection into coal seams to stimulate biodegradation, and methanogenesis. In order to evaluate the feasibility of ex-situ cultivation, natural microbial populations were collected from various hydrocarbon-rich environments and locations characterized by natural methanogenesis. Different rank coals (i.e., lignite, sub-bituminous, bituminous), complex hydrocarbon sources (i.e., oil shale, waxy crude), hydrocarbon seeps, and natural biogenic environments were incorporated in the sampling. Three levels of screening (down-selection to high grade the most productive consortia) allowed selection of microbial populations, favorable nutrient amendments, sources of the microbial community, and quantification of methane produced from various coal types. Incubation periods of up to twenty-four weeks were evaluated at 23 °C. Headspace concentrations of CH 4 and CO 2 were analyzed by gas chromatography. After a two-week incubation period of the most promising microbes, generated headspace gas concentrations reached 873,400 ppm (154 sft 3/ton or 4.8 scm 3/g) for methane and 176,370 ppm (31 sft 3/ton or 0.9 scm 3/g) for carbon dioxide. Rudimentary statistical assessments – variance analysis (ANOVA) of a single factor

  8. Isolation of a sulfide-producing bacterial consortium from cooling-tower water: Evaluation of corrosive effects on galvanized steel.

    PubMed

    Ilhan-Sungur, Esra; Ozuolmez, Derya; Çotuk, Ayşın; Cansever, Nurhan; Muyzer, Gerard

    2017-02-01

    Sulfidogenic Clostridia and sulfate reducing bacteria (SRB) often cohabit in nature. The presence of these microorganisms can cause microbially influenced corrosion (MIC) of materials in different ways. To investigate this aspect, bacteria were isolated from cooling tower water and used in corrosion tests of galvanized steel. The identity of the isolates was determined by comparative sequence analysis of PCR-amplified 16S rDNA gene fragments, separated by denaturing gradient gel electrophoresis (DGGE). This analysis showed that, in spite of the isolation process, colonies were not pure and consisted of a mixture of bacteria affiliated with Desulfosporosinus meridiei and Clostridium sp. To evaluate the corrosive effect, galvanized steel coupons were incubated with a mixed culture for 4, 8, 24, 72, 96, 168, 360 and 744 h, along with a control set in sterile culture medium only. The corrosion rate was determined by weight loss, and biofilm formation and corroded surfaces were observed by scanning electron microscopy (SEM). Although the sulfide-producing bacterial consortium led to a slight increase in the corrosion of galvanized steel coupons, when compared to the previous studies it can be said that Clostridium sp. can reduce the corrosive effect of the Desulfosporosinus sp. strain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Deep-Sea Archaea Fix and Share Nitrogen in Methane-Consuming Microbial Consortia

    NASA Astrophysics Data System (ADS)

    Dekas, Anne E.; Poretsky, Rachel S.; Orphan, Victoria J.

    2009-10-01

    Nitrogen-fixing (diazotrophic) microorganisms regulate productivity in diverse ecosystems; however, the identities of diazotrophs are unknown in many oceanic environments. Using single-cell-resolution nanometer secondary ion mass spectrometry images of 15N incorporation, we showed that deep-sea anaerobic methane-oxidizing archaea fix N2, as well as structurally similar CN-, and share the products with sulfate-reducing bacterial symbionts. These archaeal/bacterial consortia are already recognized as the major sink of methane in benthic ecosystems, and we now identify them as a source of bioavailable nitrogen as well. The archaea maintain their methane oxidation rates while fixing N2 but reduce their growth, probably in compensation for the energetic burden of diazotrophy. This finding extends the demonstrated lower limits of respiratory energy capable of fueling N2 fixation and reveals a link between the global carbon, nitrogen, and sulfur cycles.

  10. Fungal hyphae stimulate bacterial degradation of 2,6-dichlorobenzamide (BAM).

    PubMed

    Knudsen, Berith Elkær; Ellegaard-Jensen, Lea; Albers, Christian Nyrop; Rosendahl, Søren; Aamand, Jens

    2013-10-01

    Introduction of specific degrading microorganisms into polluted soil or aquifers is a promising remediation technology provided that the organisms survive and spread in the environment. We suggest that consortia, rather than single strains, may be better suited to overcome these challenges. Here we introduced a fungal-bacterial consortium consisting of Mortierella sp. LEJ702 and the 2,6-dichlorobenzamide (BAM)-degrading Aminobacter sp. MSH1 into small sand columns. A more rapid mineralisation of BAM was obtained by the consortium compared to MSH1 alone especially at lower moisture contents. Results from quantitative real-time polymerase chain reaction (qPCR) demonstrated better spreading of Aminobacter when Mortierella was present suggesting that fungal hyphae may stimulate bacterial dispersal. Extraction and analysis of BAM indicated that translocation of the compound was also affected by the fungal hyphae in the sand. This suggests that fungal-bacterial consortia are promising for successful bioremediation of pesticide contamination. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. What Role for Law, Human Rights, and Bioethics in an Age of Big Data, Consortia Science, and Consortia Ethics? The Importance of Trustworthiness.

    PubMed

    Dove, Edward S; Özdemir, Vural

    2015-09-01

    The global bioeconomy is generating new paradigm-shifting practices of knowledge co-production, such as collective innovation; large-scale, data-driven global consortia science (Big Science); and consortia ethics (Big Ethics). These bioeconomic and sociotechnical practices can be forces for progressive social change, but they can also raise predicaments at the interface of law, human rights, and bioethics. In this article, we examine one such double-edged practice: the growing, multivariate exploitation of Big Data in the health sector, particularly by the private sector. Commercial exploitation of health data for knowledge-based products is a key aspect of the bioeconomy and is also a topic of concern among publics around the world. It is exacerbated in the current age of globally interconnected consortia science and consortia ethics, which is characterized by accumulating epistemic proximity, diminished academic independence, "extreme centrism", and conflicted/competing interests among innovation actors. Extreme centrism is of particular importance as a new ideology emerging from consortia science and consortia ethics; this relates to invariably taking a middle-of-the-road populist stance, even in the event of human rights breaches, so as to sustain the populist support needed for consortia building and collective innovation. What role do law, human rights, and bioethics-separate and together-have to play in addressing these predicaments and opportunities in early 21st century science and society? One answer we propose is an intertwined ethico-legal normative construct, namely trustworthiness . By considering trustworthiness as a central pillar at the intersection of law, human rights, and bioethics, we enable others to trust us, which in turns allows different actors (both nonprofit and for-profit) to operate more justly in consortia science and ethics, as well as to access and responsibly use health data for public benefit.

  12. What Role for Law, Human Rights, and Bioethics in an Age of Big Data, Consortia Science, and Consortia Ethics? The Importance of Trustworthiness

    PubMed Central

    Dove, Edward S.; Özdemir, Vural

    2015-01-01

    The global bioeconomy is generating new paradigm-shifting practices of knowledge co-production, such as collective innovation; large-scale, data-driven global consortia science (Big Science); and consortia ethics (Big Ethics). These bioeconomic and sociotechnical practices can be forces for progressive social change, but they can also raise predicaments at the interface of law, human rights, and bioethics. In this article, we examine one such double-edged practice: the growing, multivariate exploitation of Big Data in the health sector, particularly by the private sector. Commercial exploitation of health data for knowledge-based products is a key aspect of the bioeconomy and is also a topic of concern among publics around the world. It is exacerbated in the current age of globally interconnected consortia science and consortia ethics, which is characterized by accumulating epistemic proximity, diminished academic independence, “extreme centrism”, and conflicted/competing interests among innovation actors. Extreme centrism is of particular importance as a new ideology emerging from consortia science and consortia ethics; this relates to invariably taking a middle-of-the-road populist stance, even in the event of human rights breaches, so as to sustain the populist support needed for consortia building and collective innovation. What role do law, human rights, and bioethics—separate and together—have to play in addressing these predicaments and opportunities in early 21st century science and society? One answer we propose is an intertwined ethico-legal normative construct, namely trustworthiness. By considering trustworthiness as a central pillar at the intersection of law, human rights, and bioethics, we enable others to trust us, which in turns allows different actors (both nonprofit and for-profit) to operate more justly in consortia science and ethics, as well as to access and responsibly use health data for public benefit. PMID:26345196

  13. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source

    PubMed Central

    Antoniou, Eleftheria; Fodelianakis, Stilianos; Korkakaki, Emmanouela; Kalogerakis, Nicolas

    2015-01-01

    Biosurfactants (BSs) are “green” amphiphilic molecules produced by microorganisms during biodegradation, increasing the bioavailability of organic pollutants. In this work, the BS production yield of marine hydrocarbon degraders isolated from Elefsina bay in Eastern Mediterranean Sea has been investigated. The drop collapse test was used as a preliminary screening test to confirm BS producing strains or mixed consortia. The community structure of the best consortia based on the drop collapse test was determined by 16S-rDNA pyrotag screening. Subsequently, the effect of incubation time, temperature, substrate and supplementation with inorganic nutrients, on BS production, was examined. Two types of BS – lipid mixtures were extracted from the culture broth; the low molecular weight BS Rhamnolipids and Sophorolipids. Crude extracts were purified by silica gel column chromatography and then identified by thin layer chromatography and Fourier transform infrared spectroscopy. Results indicate that BS production yield remains constant and low while it is independent of the total culture biomass, carbon source, and temperature. A constant BS concentration in a culture broth with continuous degradation of crude oil (CO) implies that the BS producing microbes generate no more than the required amount of BSs that enables biodegradation of the CO. Isolated pure strains were found to have higher specific production yields than the complex microbial marine community-consortia. The heavy oil fraction of CO has emerged as a promising substrate for BS production (by marine BS producers) with fewer impurities in the final product. Furthermore, a particular strain isolated from sediments, Paracoccus marcusii, may be an optimal choice for bioremediation purposes as its biomass remains trapped in the hydrocarbon phase, not suffering from potential dilution effects by sea currents. PMID:25904907

  14. Thermodynamic and Kinetic Requirements in Anaerobic Methane Oxidizing Consortia Exclude Hydrogen, Acetate, and Methanol as Possible Electron Shuttles.

    PubMed

    Sørensen, K.B.; Finster, K.; Ramsing, N.B.

    2001-07-01

    Anaerobic methane oxidation (AMO) has long remained an enigma in microbial ecology. In the process the net reaction appears to be an oxidation of methane with sulfate as electron acceptor. In order to explain experimental data such as effects of inhibitors and isotopic signals in biomarkers it has been suggested that the process is carried out by a consortium of bacteria using an unknown compound to shuttle electrons between the participants. The overall change in free energy during AMO with sulfate is very small (?22 kJ mol-1) at in situ concentrations of methane and sulfate. In order to share the available free energy between the members of the consortium, the concentration of the intermediate electron shuttle compound becomes crucial. Diffusive flux of a substrate (i.e, the electron shuttle) between bacteria requires a stable concentration gradient where the concentration is higher in the producing organism than in the consuming organism. Since changes in concentrations cause changes in reaction free energies, the diffusive flux of a catabolic product/substrate between bacteria is associated with a net loss of available energy. This restricts maximal inter-bacterial distances in consortia composed of stationary bacteria. A simple theoretical model was used to describe the relationship between inter-bacterial distances and the energy lost due to concentration differences in consortia. Key parameters turned out to be the permissible concentration range of the electron shuttle in the consortium (i.e., the concentration range that allows both participants to gain sufficient energy) and the stoichiometry of the partial reactions. The model was applied to two known consortia degrading ethanol and butyrate and to four hypothetical methane-oxidizing consortia (MOC) based on interspecies transfer of hydrogen, methanol, acetate, or formate, respectively. In the first three MOCs the permissible distances between producers and consumers of the transferred compounds were

  15. Training Consortia: How They Work, How They Don't.

    ERIC Educational Resources Information Center

    Filipczak, Bob

    1994-01-01

    Looks at the pros and cons of training consortia. Suggests that they can be a cost-effective training strategy, especially for small companies. Describes three categories of consortia: private for-profit, private nonprofit, and public sector. (JOW)

  16. Bacterial communities in full-scale wastewater treatment systems.

    PubMed

    Cydzik-Kwiatkowska, Agnieszka; Zielińska, Magdalena

    2016-04-01

    Bacterial metabolism determines the effectiveness of biological treatment of wastewater. Therefore, it is important to define the relations between the species structure and the performance of full-scale installations. Although there is much laboratory data on microbial consortia, our understanding of dependencies between the microbial structure and operational parameters of full-scale wastewater treatment plants (WWTP) is limited. This mini-review presents the types of microbial consortia in WWTP. Information is given on extracellular polymeric substances production as factor that is key for formation of spatial structures of microorganisms. Additionally, we discuss data on microbial groups including nitrifiers, denitrifiers, Anammox bacteria, and phosphate- and glycogen-accumulating bacteria in full-scale aerobic systems that was obtained with the use of molecular techniques, including high-throughput sequencing, to shed light on dependencies between the microbial ecology of biomass and the overall efficiency and functional stability of wastewater treatment systems. Sludge bulking in WWTPs is addressed, as well as the microbial composition of consortia involved in antibiotic and micropollutant removal.

  17. Mechanism of uranium (VI) removal by two anaerobic bacterial communities.

    PubMed

    Martins, Mónica; Faleiro, Maria Leonor; da Costa, Ana M Rosa; Chaves, Sandra; Tenreiro, Rogério; Matos, António Pedro; Costa, Maria Clara

    2010-12-15

    The mechanism of uranium (VI) removal by two anaerobic bacterial consortia, recovered from an uncontaminated site (consortium A) and other from an uranium mine (consortium U), was investigated. The highest efficiency of U (VI) removal by both consortia (97%) occurred at room temperature and at pH 7.2. Furthermore, it was found that U (VI) removal by consortium A occurred by enzymatic reduction and bioaccumulation, while the enzymatic process was the only mechanism involved in metal removal by consortium U. FTIR analysis suggested that after U (VI) reduction, U (IV) could be bound to carboxyl, phosphate and amide groups of bacterial cells. Phylogenetic analysis of 16S rRNA showed that community A was mainly composed by bacteria closely related to Sporotalea genus and Rhodocyclaceae family, while community U was mainly composed by bacteria related to Clostridium genus and Rhodocyclaceae family. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Partner Power: A Study of Two Distance Education Consortia

    ERIC Educational Resources Information Center

    Pidduck, Anne Banks; Carey, Tom

    2006-01-01

    This research reports findings from a study which explored the process and criteria of partner selection--how and why partners are chosen--for two distance education consortia. The researchers reviewed recent literature on partnerships and partner selection. Two Canada-wide distance education consortia were identified as large-scale case studies…

  19. The Vocational-Technical Resource Consortia Serving Business and Industry in Ohio. Digest of Study: Operational Procedures for Successful Vocational-Technical Resource Consortia in Serving Business and Industry in Ohio.

    ERIC Educational Resources Information Center

    Frasier, James E.; Stanton, William

    This publication reports the development of the vocational-technical resource consortia in Ohio and identifies the operational procedures associated with successful programs. Five exemplary consortia were studied in some depth; however, data were obtained from all of the 23 consortia in the state. The research indicates that the consortium is an…

  20. Academic Library Consortia in Transition.

    ERIC Educational Resources Information Center

    Alberico, Ralph

    2002-01-01

    Using the example of the Virtual Library of Virginia, describes how library consortia are in a state of transformation as technology enables the development of virtual libraries while expanding opportunities for sharing printed works. (EV)

  1. Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hays, Stephanie G.; Yan, Leo L. W.; Silver, Pamela A.

    In this study, microbial consortia composed of autotrophic and heterotrophic species abound in nature, yet examples of synthetic communities with mixed metabolism are limited in the laboratory. We previously engineered a model cyanobacterium, Synechococcus elongatus PCC 7942, to secrete the bulk of the carbon it fixes as sucrose, a carbohydrate that can be utilized by many other microbes. Here, we tested the capability of sucrose-secreting cyanobacteria to act as a flexible platform for the construction of synthetic, light-driven consortia by pairing them with three disparate heterotrophs: Bacillus subtilis, Escherichia coli, or Saccharomyces cerevisiae. The comparison of these different co-culture dyadsmore » reveals general design principles for the construction of robust autotroph/heterotroph consortia. As a result, we observed heterotrophic growth dependent upon cyanobacterial photosynthate in each co-culture pair. Furthermore, these synthetic consortia could be stabilized over the long-term (weeks to months) and both species could persist when challenged with specific perturbations. Stability and productivity of autotroph/heterotroph co-cultures was dependent on heterotroph sucrose utilization, as well as other species-independent interactions that we observed across all dyads. One destabilizing interaction we observed was that non-sucrose byproducts of oxygenic photosynthesis negatively impacted heterotroph growth. Conversely, inoculation of each heterotrophic species enhanced cyanobacterial growth in comparison to axenic cultures. Finally, these consortia can be flexibly programmed for photoproduction of target compounds and proteins; by changing the heterotroph in co-culture to specialized strains of B. subtilis or E. coli we demonstrate production of alpha-amylase and polyhydroxybutyrate, respectively. In conclusion, enabled by the unprecedented flexibility of this consortia design, we uncover species-independent design principles that influence

  2. Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction

    DOE PAGES

    Hays, Stephanie G.; Yan, Leo L. W.; Silver, Pamela A.; ...

    2017-01-23

    In this study, microbial consortia composed of autotrophic and heterotrophic species abound in nature, yet examples of synthetic communities with mixed metabolism are limited in the laboratory. We previously engineered a model cyanobacterium, Synechococcus elongatus PCC 7942, to secrete the bulk of the carbon it fixes as sucrose, a carbohydrate that can be utilized by many other microbes. Here, we tested the capability of sucrose-secreting cyanobacteria to act as a flexible platform for the construction of synthetic, light-driven consortia by pairing them with three disparate heterotrophs: Bacillus subtilis, Escherichia coli, or Saccharomyces cerevisiae. The comparison of these different co-culture dyadsmore » reveals general design principles for the construction of robust autotroph/heterotroph consortia. As a result, we observed heterotrophic growth dependent upon cyanobacterial photosynthate in each co-culture pair. Furthermore, these synthetic consortia could be stabilized over the long-term (weeks to months) and both species could persist when challenged with specific perturbations. Stability and productivity of autotroph/heterotroph co-cultures was dependent on heterotroph sucrose utilization, as well as other species-independent interactions that we observed across all dyads. One destabilizing interaction we observed was that non-sucrose byproducts of oxygenic photosynthesis negatively impacted heterotroph growth. Conversely, inoculation of each heterotrophic species enhanced cyanobacterial growth in comparison to axenic cultures. Finally, these consortia can be flexibly programmed for photoproduction of target compounds and proteins; by changing the heterotroph in co-culture to specialized strains of B. subtilis or E. coli we demonstrate production of alpha-amylase and polyhydroxybutyrate, respectively. In conclusion, enabled by the unprecedented flexibility of this consortia design, we uncover species-independent design principles that influence

  3. Higher Educational Consortia Organization: Functional Structures of Administration and Management.

    ERIC Educational Resources Information Center

    Lepchenske, George L.

    The administrative and functional organization of higher education consortia are discussed. The need for cooperation between individual institutions has been established; one lone institution cannot encompass all knowledge generated. The rapid growth of consortia has generated extensive services, funding sources, developmental activities,…

  4. Governance of Transnational Global Health Research Consortia and Health Equity.

    PubMed

    Pratt, Bridget; Hyder, Adnan A

    2016-10-01

    Global health research partnerships are increasingly taking the form of consortia of institutions from high-income countries and low- and middle-income countries that undertake programs of research. These partnerships differ from collaborations that carry out single projects in the multiplicity of their goals, scope of their activities, and nature of their management. Although such consortia typically aim to reduce health disparities between and within countries, what is required for them to do so has not been clearly defined. This article takes a conceptual approach to explore how the governance of transnational global health research consortia should be structured to advance health equity. To do so, it applies an account called shared health governance to derive procedural and substantive guidance. A checklist based on this guidance is proposed to assist research consortia determine where their governance practices strongly promote equity and where they may fall short.

  5. Halotolerant microbial consortia able to degrade highly recalcitrant plant biomass substrate.

    PubMed

    Cortes-Tolalpa, Larisa; Norder, Justin; van Elsas, Jan Dirk; Falcao Salles, Joana

    2018-03-01

    The microbial degradation of plant-derived compounds under salinity stress remains largely underexplored. The pretreatment of lignocellulose material, which is often needed to improve the production of lignocellulose monomers, leads to high salt levels, generating a saline environment that raises technical considerations that influence subsequent downstream processes. Here, we constructed halotolerant lignocellulose degrading microbial consortia by enriching a salt marsh soil microbiome on a recalcitrant carbon and energy source, i.e., wheat straw. The consortia were obtained after six cycles of growth on fresh substrate (adaptation phase), which was followed by four cycles on pre-digested (highly-recalcitrant) substrate (stabilization phase). The data indicated that typical salt-tolerant bacteria made up a large part of the selected consortia. These were "trained" to progressively perform better on fresh substrate, but a shift was observed when highly recalcitrant substrate was used. The most dominant bacteria in the consortia were Joostella marina, Flavobacterium beibuense, Algoriphagus ratkowskyi, Pseudomonas putida, and Halomonas meridiana. Interestingly, fungi were sparsely present and negatively affected by the change in the substrate composition. Sarocladium strictum was the single fungal strain recovered at the end of the adaptation phase, whereas it was deselected by the presence of recalcitrant substrate. Consortia selected in the latter substrate presented higher cellulose and lignin degradation than consortia selected on fresh substrate, indicating a specialization in transforming the recalcitrant regions of the substrate. Moreover, our results indicate that bacteria have a prime role in the degradation of recalcitrant lignocellulose under saline conditions, as compared to fungi. The final consortia constitute an interesting source of lignocellulolytic haloenzymes that can be used to increase the efficiency of the degradation process, while decreasing

  6. Microbiologically Influenced Corrosion: Causative Organisms and Mechanisms

    DTIC Science & Technology

    2012-01-31

    corrosion is both predictable and complex. In aquatic environments and under some atmospheric conditions . microorganisms settle on surfaces and alter the...some atmospheric conditions , microorganisms settle on sin laces and alter the surface chemistry controlling the rates of corrosion or shifting the...pitting corrosion of some allO) S continues under deposits of iron-oxidizing bacteria independent of bacterial activity. Similarly, microbiologicall

  7. Effect of exogenous inoculants on enhancing oil recovery and indigenous bacterial community dynamics in long-term field pilot of low permeability reservoir.

    PubMed

    Li, Jing; Xue, Shuwen; He, Chunqiu; Qi, Huixia; Chen, Fulin; Ma, Yanling

    2018-03-20

    Pseudomonas aeruginosa DN1 strain and Bacillus subtilis QHQ110 strain were chosen as rhamnolipid and lipopeptide producer respectively, to evaluate the efficiency of exogenous inoculants on enhancing oil recovery (EOR) and to explore the relationship between injected bacteria and indigenous bacterial community dynamics in long-term filed pilot of Hujianshan low permeability water-flooded reservoir for 26 months. Core-flooding tests showed that the oil displacement efficiency increased by 18.46% with addition of exogenous consortia. Bacterial community dynamics using quantitative PCR and high-throughput sequencing revealed that the exogenous inoculants survived and could live together with indigenous bacterial populations. They gradually became the dominant community after the initial activation, while their comparative advantage weakened continually after 3 months of the first injection. The bacterial populations did not exert an observable change in the process of the second injection of exogenous inoculants. On account of facilitating oil emulsification and accelerating bacterial growth with oil as the carbon source by the injection of exogenous consortia, γ-proteobacteria was finally the prominent bacterial community at class level varying from 25.55 to 32.67%, and the dominant bacterial populations were increased by 2-3 orders of magnitude during the whole processes. The content of organic acids and rhamnolipids in reservoir were promoted with the change of bacterial community diversity, respectively. Cumulative oil increments reached 26,190 barrels for 13 months after the first injection, and 55,947 barrels of oil had been accumulated in all of A20 wells block through two rounds of bacterial consortia injection. The performance of EOR has a cumulative improvement by the injection of exogenous inoculants without observable inhibitory effect on the indigenous bacterial populations, demonstrating the application potential in low permeability water

  8. Exopolysaccharides from lactic acid bacteria as corrosion inhibitors

    NASA Astrophysics Data System (ADS)

    Ignatova-Ivanova, Tsveteslava; Ivanov, Radoslav

    2016-03-01

    Bacterial EPSs (exopolysaccharides) are believed to play an important role in the environment by promoting survival strategies such as bacterial attachment to surfaces and nutrient trapping, which facilitate processes of biofilm formation and development. These microbial biofilms have been implicated in corrosion of metals, bacterial attachment to prosthetic devices, fouling of heat exchange surfaces, toxicant immobilization, and fouling of ship hulls. In this paper, data on EPS production and the effect of EPS on corrosion of steel produced by Lactobacillus sp. are presented and discussed. Lactobacillus delbrueckii K27, Lactobacillus delbrueckii B8, Lactobacillus delbrueckii KO43, Lactobacillus delbrueckii K3, Lactobacillus delbrueckii K15 and Lactobacillus delbrueckii K17 was obtained from Collection of Department of General and Applied Microbiology, Sofia University. It was tested for its ability to produce exopolysaccharides when cultivated in a media containing 10% sucrose, 10% lacose and 10% maltose. The study of the corrosive stability of steel samples was conducted on the gravimetrique method. The rate of corrosion, the degree of protection, and coefficient of protection have been calculated. The structure of layer over steel plates was analysed by SEM (scanning electron microscopy) JSM 5510. It could be underlined that 10% sucrose, 10% lactose and 10% maltose in the media stimulated the process of protection of corrosion.

  9. 25 CFR 1000.438 - May Tribes/Consortia appeal Department decisions to a Federal court?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 2 2013-04-01 2013-04-01 false May Tribes/Consortia appeal Department decisions to a... INDIAN SELF-DETERMINATION AND EDUCATION ACT Appeals § 1000.438 May Tribes/Consortia appeal Department decisions to a Federal court? Yes, Tribes/Consortia may appeal decisions of Department officials relating to...

  10. Conserving archaeological sites as biological and historical resources in the Gulf of Mexico: the effects of crude oil and dispersant on the biodiversity and corrosion potential of shipwreck bacterial biofilms

    NASA Astrophysics Data System (ADS)

    Salerno, J. L.; Little, B.; Lee, J.; Ray, R.; Hamdan, L. J.

    2016-02-01

    There are more than 2,000 documented shipwrecks in the Gulf of Mexico. Historic shipwrecks are invaluable cultural resources, but also serve as artificial reefs, enhancing biodiversity in the deep sea. Oil and gas-related activities have the potential to impact shipwreck sites. An estimated 30% of the oil from the Deepwater Horizon spill was deposited in the deep-sea, in areas that contain shipwrecks. We conducted field and laboratory experiments to determine if crude oil, dispersed oil, and/or dispersant affect the community composition, metabolic function, and/or corrosion potential of microorganisms inhabiting shipwrecks. Platforms containing carbon steel coupons (CSC) (n = 34 per platform) were placed at impacted and non-impacted shipwrecks or into four experimental microcosm tanks. After a 2-week acclimation period, tanks were treated with crude oil and/or dispersant or received no treatment. CSC and seawater (SW) samples for bacterial genetic analysis were collected bi-weekly (at 16 wks for field samples). Proteobacteria dominated field and lab CSC bacterial communities (77-97% of sequences). Field CSC bacterial communities differed at each wreck site (P = 0.001), with oil-impacted sites differing from control sites. Lab CSC bacterial communities differed between all treatment groups (P = 0.005) and changed over the course of the experiment (P = 0.001). CSC bacterial species richness, diversity, and dominance increased with time across all treatments indicating the recruitment and establishment of microbial biofilms on CSCs. SW bacterial communities differed between treatment groups (P = 0.001), with the dispersant treatment being most dissimilar from all other treatments (P < 0.01), and changed over time (P = 0.001). Oil- and oil/dispersant-treated CSCs exhibited higher corrosion compared to dispersant and control treatments. These findings indicate that exposure to oil and/or dispersant may alter bacterial community composition and corrosion potential.

  11. Sustainability for the Americas: Building the American Network of Sustainability Consortia

    ERIC Educational Resources Information Center

    Motloch, John; Pacheco, Pedro; Vann, John

    2007-01-01

    Purpose: To build awareness of an emergent global network of sustainability consortia, the network's Sustainability for the Americas (SFTA) regional cluster, its pilot US-Brazil Sustainability Consortium (USBSC), its subsequent North American Sustainability, Housing and Community Consortium (NASHCC), the process through which these consortia are…

  12. Governance of global health research consortia: Sharing sovereignty and resources within Future Health Systems.

    PubMed

    Pratt, Bridget; Hyder, Adnan A

    2017-02-01

    Global health research partnerships are increasingly taking the form of consortia that conduct programs of research in low and middle-income countries (LMICs). An ethical framework has been developed that describes how the governance of consortia comprised of institutions from high-income countries and LMICs should be structured to promote health equity. It encompasses initial guidance for sharing sovereignty in consortia decision-making and sharing consortia resources. This paper describes a first effort to examine whether and how consortia can uphold that guidance. Case study research was undertaken with the Future Health Systems consortium, performs research to improve health service delivery for the poor in Bangladesh, China, India, and Uganda. Data were thematically analysed and revealed that proposed ethical requirements for sharing sovereignty and sharing resources are largely upheld by Future Health Systems. Facilitating factors included having a decentralised governance model, LMIC partners with good research capacity, and firm budgets. Higher labour costs in the US and UK and the funder's policy of allocating funds to consortia on a reimbursement basis prevented full alignment with guidance on sharing resources. The lessons described in this paper can assist other consortia to more systematically link their governance policy and practice to the promotion of health equity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Integrated musculoskeletal service design by GP consortia

    PubMed Central

    2011-01-01

    Background Musculoskeletal conditions are common in primary care and are associated with significant co-morbidity and impairment of quality of life. Traditional care pathways combined community-based physiotherapy with GP referral to hospital for a consultant opinion. Locally, this model led to only 30% of hospital consultant orthopaedic referrals being listed for surgery, with the majority being referred for physiotherapy. The NHS musculoskeletal framework proposed the use of interface services to provide expertise in diagnosis, triage and management of musculoskeletal problems not requiring surgery. The White Paper Equity and Excellence: Liberating the NHS has replaced PCT commissioning with GP consortia, who will lead future service development. Setting Primary and community care, integrated with secondary care, in the NHS in England. Question How can GP consortia lead the development of integrated musculoskeletal services? Review: The Ealing experience We explore here how Ealing implemented a ‘See and Treat’ interface clinic model to improve surgical conversion rates, reduce unnecessary hospital referrals and provide community treatment more efficiently than a triage model. A high-profile GP education programme enabled GPs to triage in their practices and manage patients without referral. Conclusion In Ealing, we demonstrated that most patients with musculoskeletal conditions can be managed in primary care and community settings. The integrated musculoskeletal service provides clear and fast routes to secondary care. This is both clinically effective and cost-effective, reserving hospital referral for patients most likely to need surgery. GP consortia, in conjunction with strong clinical leadership, inbuilt organisational and professional learning, and a GP champion, are well placed to deliver service redesign by co-ordinating primary care development, local commissioning of community services and the acute commissioning vehicles responsible for secondary

  14. A Study of the Inter-Organizational Behavior in Consortia. Final Report.

    ERIC Educational Resources Information Center

    Silverman, Robert J.

    In an attempt to formulate hypotheses and administrative guidelines for voluntary consortia in higher education, a heuristic framework was devised through which behavioral patterns of consortia member organizations and their representatives could be ascertained. The rationale, the framework, and the methodology of the study are first discussed.…

  15. Ammonium removal using algae-bacteria consortia: the effect of ammonium concentration, algae biomass, and light.

    PubMed

    Jia, Huijun; Yuan, Qiuyan

    2018-04-01

    In this study, the effects of ammonium nitrogen concentration, algae biomass concentration, and light conditions (wavelength and intensity) on the ammonium removal efficiency of algae-bacteria consortia from wastewater were investigated. The results indicated that ammonium concentration and light intensity had a significant impact on nitrification. It was found that the highest ammonia concentration (430 mg N/L) in the influent resulted in the highest ammonia removal rate of 108 ± 3.6 mg N/L/days, which was two times higher than the influent with low ammonia concentration (40 mg N/L). At the lowest light intensity of 1000 Lux, algae biomass concentration, light wavelength, and light cycle did not show a significant effect on the performance of algal-bacterial consortium. Furthermore, the ammonia removal rate was approximately 83 ± 1.0 mg N/L/days, which was up to 40% faster than at the light intensity of 2500 Lux. It was concluded that the algae-bacteria consortia can effectively remove nitrogen from wastewater and the removal performance can be stabilized and enhanced using the low light intensity of 1000 Lux that is also a cost-effective strategy.

  16. Consortia--A Viable Model and Medium for Distance Education in Developing Countries?

    ERIC Educational Resources Information Center

    Beaudoin, Michael F.

    2009-01-01

    Consortia are increasingly popular mechanisms by which educational institutions may achieve organisational goals that might be especially challenging to accomplish individually. Such collaborations are intended to offer courses and services through combined resources and expertise. Consortia designed to develop and deliver distance education…

  17. Hanging Together To Avoid Hanging Separately: Opportunities for Academic Libraries and Consortia.

    ERIC Educational Resources Information Center

    Allen, Barbara McFadden; Hirshon, Arnold

    1998-01-01

    Discusses academic library consortia, examines types of consortia, and presents three case histories (OhioLINK, PALCI and CIC). Highlights include economic competition; changes in information access and delivery; growth of information technology; quality improvement; and future strategies, including pricing models for electronic information,…

  18. Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides

    USDA-ARS?s Scientific Manuscript database

    Corrosion is one of the most serious and challenging problems faced worldwide by industry. This research investigates the inhibition of corrosive behavior of SAE1010 steel by bacterial exopolysaccharides. Electrochemical Impedance Spectroscopy was used to evaluate the corrosion inhibition of diffe...

  19. Fermentation Enhancement of Methanogenic Archaea Consortia from an Illinois Basin Coalbed via DOL Emulsion Nutrition

    PubMed Central

    Xiao, Dong; Peng, Su-Ping; Wang, En-Yuan

    2015-01-01

    Microbially enhanced coalbed methane technology must be used to increase the methane content in mining and generate secondary biogenic gas. In this technology, the metabolic processes of methanogenic consortia are the basis for the production of biomethane from some of the organic compounds in coal. Thus, culture nutrition plays an important role in remediating the nutritional deficiency of a coal seam. To enhance the methane production rates for microorganism consortia, different types of nutrition solutions were examined in this study. Emulsion nutrition solutions containing a novel nutritional supplement, called dystrophy optional modification latex, increased the methane yield for methanogenic consortia. This new nutritional supplement can help methanogenic consortia form an enhanced anaerobic environment, optimize the microbial balance in the consortia, and improve the methane biosynthesis rate. PMID:25884952

  20. Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition.

    PubMed

    Wang, Cheng; Dong, Da; Wang, Haoshu; Müller, Karin; Qin, Yong; Wang, Hailong; Wu, Weixiang

    2016-01-01

    Compost habitats sustain a vast ensemble of microbes specializing in the degradation of lignocellulosic plant materials and are thus important both for their roles in the global carbon cycle and as potential sources of biochemical catalysts for advanced biofuels production. Studies have revealed substantial diversity in compost microbiomes, yet how this diversity relates to functions and even to the genes encoding lignocellulolytic enzymes remains obscure. Here, we used a metagenomic analysis of the rice straw-adapted (RSA) microbial consortia enriched from compost ecosystems to decipher the systematic and functional contexts within such a distinctive microbiome. Analyses of the 16S pyrotag library and 5 Gbp of metagenomic sequence showed that the phylum Actinobacteria was the predominant group among the Bacteria in the RSA consortia, followed by Proteobacteria, Firmicutes, Chloroflexi, and Bacteroidetes. The CAZymes profile revealed that CAZyme genes in the RSA consortia were also widely distributed within these bacterial phyla. Strikingly, about 46.1 % of CAZyme genes were from actinomycetal communities, which harbored a substantially expanded catalog of the cellobiohydrolase, β-glucosidase, acetyl xylan esterase, arabinofuranosidase, pectin lyase, and ligninase genes. Among these communities, a variety of previously unrecognized species was found, which reveals a greater ecological functional diversity of thermophilic Actinobacteria than previously assumed. These data underline the pivotal role of thermophilic Actinobacteria in lignocellulose biodegradation processes in the compost habitat. Besides revealing a new benchmark for microbial enzymatic deconstruction of lignocelluloses, the results suggest that actinomycetes found in compost ecosystems are potential candidates for mining efficient lignocellulosic enzymes in the biofuel industry.

  1. Magnetite production and transformation in the methanogenic consortia from coastal riverine sediments.

    PubMed

    Zheng, Shiling; Wang, Bingchen; Liu, Fanghua; Wang, Oumei

    2017-11-01

    Minerals that contain ferric iron, such as amorphous Fe(III) oxides (A), can inhibit methanogenesis by competitively accepting electrons. In contrast, ferric iron reduced products, such as magnetite (M), can function as electrical conductors to stimulate methanogenesis, however, the processes and effects of magnetite production and transformation in the methanogenic consortia are not yet known. Here we compare the effects on methanogenesis of amorphous Fe (III) oxides (A) and magnetite (M) with ethanol as the electron donor. RNA-based terminal restriction fragment length polymorphism with a clone library was used to analyse both bacterial and archaeal communities. Iron (III)-reducing bacteria including Geobacteraceae and methanogens such as Methanosarcina were enriched in iron oxide-supplemented enrichment cultures for two generations with ethanol as the electron donor. The enrichment cultures with A and non-Fe (N) dominated by the active bacteria belong to Veillonellaceae, and archaea belong to Methanoregulaceae and Methanobacteriaceae, Methanosarcinaceae (Methanosarcina mazei), respectively. While the enrichment cultures with M, dominated by the archaea belong to Methanosarcinaceae (Methanosarcina barkeri). The results also showed that methanogenesis was accelerated in the transferred cultures with ethanol as the electron donor during magnetite production from A reduction. Powder X-ray diffraction analysis indicated that magnetite was generated from microbial reduction of A and M was transformed into siderite and vivianite with ethanol as the electron donor. Our data showed the processes and effects of magnetite production and transformation in the methanogenic consortia, suggesting that significantly different effects of iron minerals on microbial methanogenesis in the iron-rich coastal riverine environment were present.

  2. An evaluation of microbial growth and corrosion of 316L SS in glycol/seawater mixtures

    NASA Technical Reports Server (NTRS)

    Lee, Jason S.; Ray, Richard I.; Lowe, Kristine L.; Jones-Meehan, Joanne; Little, Brenda J.

    2003-01-01

    Glycol/seawater mixtures containing > 50% glycol inhibit corrosion of 316L stainless steel and do not support bacterial growth. The results indicate bacteria are able to use low concentrations of glycol (10%) as a growth medium, but bacterial growth decreased with increasing glycol concentration. Pitting potential, determined by anodic polarization, was used to evaluate susceptibility of 316L SS to corrosion in seawater-contaminated glycol. Mixture containing a minimum concentration of 50% propylene glycol-based coolant inhibited pitting corrosion. A slightly higher minimum concentration (55%) was needed for corrosion protection in ethylene glycol mixtures.

  3. Pricing Structures for Automated Library Consortia.

    ERIC Educational Resources Information Center

    Machovec, George S.

    1993-01-01

    Discusses the development of successful pricing algorithms for cooperative library automation projects. Highlights include desirable characteristics of pricing measures, including simplicity and the ability to allow for system growth; problems with transaction-based systems; and a review of the pricing strategies of seven library consortia.…

  4. Microbial Consortia Engineering for Cellular Factories: in vitro to in silico systems

    PubMed Central

    Bernstein, Hans C; Carlson, Ross P

    2012-01-01

    This mini-review discusses the current state of experimental and computational microbial consortia engineering with a focus on cellular factories. A discussion of promising ecological theories central to community resource usage is presented to facilitate interpretation of consortial designs. Recent case studies exemplifying different resource usage motifs and consortial assembly templates are presented. The review also highlights in silico approaches to design and to analyze consortia with an emphasis on stoichiometric modeling methods. The discipline of microbial consortia engineering possesses a widely accepted potential to generate highly novel and effective bio-catalysts for applications from biofuels to specialty chemicals to enhanced mineral recovery. PMID:24688677

  5. Microbial consortia in Oman oil fields: a possible use in enhanced oil recovery.

    PubMed

    Al-Bahry, Saif N; Elshafie, Abdulkader E; Al-Wahaibi, Yahya M; Al-Bemani, Ali S; Joshi, Sanket J; Al-Maaini, Ratiba A; Al-Alawi, Wafa J; Sugai, Yuichi; Al-Mandhari, Mussalam

    2013-01-01

    Microbial enhanced oil recovery (MEOR) is one of the most economical and efficient methods for extending the life of production wells in a declining reservoir. Microbial consortia from Wafra oil wells and Suwaihat production water, Al-Wusta region, Oman were screened. Microbial consortia in brine samples were identified using denaturing gradient gel electrophoresis and 16S rRNA gene sequences. The detected microbial consortia of Wafra oil wells were completely different from microbial consortia of Suwaihat formation water. A total of 33 genera and 58 species were identified in Wafra oil wells and Suwaihat production water. All of the identified microbial genera were first reported in Oman, with Caminicella sporogenes for the first time reported from oil fields. Most of the identified microorganisms were found to be anaerobic, thermophilic, and halophilic, and produced biogases, biosolvants, and biosurfactants as by-products, which may be good candidates for MEOR.

  6. The AHEC library program and consortia development in California.

    PubMed

    Jensen, M A; Maddalena, B

    1986-07-01

    A brief history of the first Area Health Education Center (AHEC) Library Program in California is presented, with a description of methodology and results. The goals of this program were to develop and improve hospital library resources and services, to train hospital library personnel, and to promote resource sharing in a medically underserved area. The health sciences library consortium that evolved became a model for the ten other library consortia in the state. Based on AHEC's twelve years' experience with consortia, from 1973 to 1985, recommendations are made as to size, composition, leadership, outside funding, group participation, publicity, and linkages.

  7. Municipal consortia for medicine procurement: impact on the stock-out and budget.

    PubMed

    Amaral, Silvâni Maria Sehnem de; Blatt, Carine Raquel

    2011-08-01

    The study evaluated the impact of the consortia on the budget and shortage of medicines for the basic pharmaceutical assistance component in Indaial municipality, Southern Brazil. The number of items with a stock out for at least one day decreased by 12% from 2008 to 2007 and 48% from 2009 to 2007; total costs decreased by 33%, when comparing procurement by consortia (2009) to municipal procurement (2007), and by 18% when compared to the average values of the 2009 Health Prices Database from the Ministry of Health. The procurement of medicines by the consortia decreased stock outs and represented an economy of scale, allowing for the procurement of a greater quantity of products with the same budget.

  8. Clonality of bacterial consortia in root canals and subjacent gingival crevices.

    PubMed

    Parahitiyawa, Nipuna B; Chu, Frederick C S; Leung, Wai K; Yam, Wing C; Jin, Li Jian; Samaranayake, Lakshman P

    2015-02-01

    No oral niche can be considered to be segregated from the subjacent milieu because of the complex community behavior and nature of the oral biofilms. The aim of this study was to address the paucity of information on how these species are clonally related to the subjacent gingival crevice bacteria. We utilized a metagenomic approach of amplifying 16S rDNA from genomic DNA, cloning, sequencing and analysis using LIBSHUFF software to assess the genetic homogeneity of the bacterial species from two infected root canals and subjacent gingival crevices. The four niches studied yielded 186 clones representing 54 phylotypes. Clone library comparisons using LIBSHUFF software indicated that each niche was inhabited by a unique flora. Further, 42% of the clones were of hitherto unknown phylotypes indicating the extent of bacterial diversity, especially in infected root canals and subjacent gingival crevices. We believe data generated through this novel analytical tool shed new light on understanding oral microbial ecosystems. © 2014 Wiley Publishing Asia Pty Ltd.

  9. Design of synthetic bacterial communities for predictable plant phenotypes

    PubMed Central

    Herrera Paredes, Sur; Gao, Tianxiang; Law, Theresa F.; Finkel, Omri M.; Mucyn, Tatiana; Teixeira, Paulo José Pereira Lima; Salas González, Isaí; Feltcher, Meghan E.; Powers, Matthew J.; Shank, Elizabeth A.; Jones, Corbin D.; Jojic, Vladimir; Dangl, Jeffery L.; Castrillo, Gabriel

    2018-01-01

    Specific members of complex microbiota can influence host phenotypes, depending on both the abiotic environment and the presence of other microorganisms. Therefore, it is challenging to define bacterial combinations that have predictable host phenotypic outputs. We demonstrate that plant–bacterium binary-association assays inform the design of small synthetic communities with predictable phenotypes in the host. Specifically, we constructed synthetic communities that modified phosphate accumulation in the shoot and induced phosphate starvation–responsive genes in a predictable fashion. We found that bacterial colonization of the plant is not a predictor of the plant phenotypes we analyzed. Finally, we demonstrated that characterizing a subset of all possible bacterial synthetic communities is sufficient to predict the outcome of untested bacterial consortia. Our results demonstrate that it is possible to infer causal relationships between microbiota membership and host phenotypes and to use these inferences to rationally design novel communities. PMID:29462153

  10. Biomass and Neutral Lipid Production in Geothermal Microalgal Consortia

    PubMed Central

    Bywaters, Kathryn F.; Fritsen, Christian H.

    2015-01-01

    Recently, technologies have been developed that offer the possibility of using algal biomass as feedstocks to energy producing systems – in addition to oil-derived fuels (Bird et al., 2011, 2012). Growing native mixed microalgal consortia for biomass in association with geothermal resources has the potential to mitigate negative impacts of seasonally low temperatures on biomass production systems as well as mitigate some of the challenges associated with growing unialgal strains. We assessed community composition, growth rates, biomass, and neutral lipid production of microalgal consortia obtained from geothermal hot springs in the Great Basin/Nevada area that were cultured under different thermal and light conditions. Biomass production rates ranged from 39.0 to 344.1 mg C L−1 day−1. The neutral lipid production in these consortia with and without shifts to lower temperatures and additions of bicarbonate (both environmental parameters that have been shown to enhance neutral lipid production) ranged from 0 to 38.74 mg free fatty acids (FFA) and triacylglycerols (TAG) L−1 day−1; the upper value was approximately 6% of the biomass produced. The higher lipid values were most likely due to the presence of Achnanthidium sp. Palmitic and stearic acids were the dominant free fatty acids. The S/U ratio (the saturated to unsaturated FA ratio) decreased for cultures shifted from their original temperature to 15°C. Biomass production was within the upper limits of those reported for individual strains, and production of neutral lipids was increased with secondary treatment. All results demonstrate a potential of culturing and manipulating resultant microalgal consortia for biomass-based energy production and perhaps even for biofuels. PMID:25763368

  11. Distinct antimicrobial peptide expression determines host species-specific bacterial associations

    PubMed Central

    Franzenburg, Sören; Walter, Jonas; Künzel, Sven; Wang, Jun; Baines, John F.; Bosch, Thomas C. G.; Fraune, Sebastian

    2013-01-01

    Animals are colonized by coevolved bacterial communities, which contribute to the host’s health. This commensal microbiota is often highly specific to its host-species, inferring strong selective pressures on the associated microbes. Several factors, including diet, mucus composition, and the immune system have been proposed as putative determinants of host-associated bacterial communities. Here we report that species-specific antimicrobial peptides account for different bacterial communities associated with closely related species of the cnidarian Hydra. Gene family extensions for potent antimicrobial peptides, the arminins, were detected in four Hydra species, with each species possessing a unique composition and expression profile of arminins. For functional analysis, we inoculated arminin-deficient and control polyps with bacterial consortia characteristic for different Hydra species and compared their selective preferences by 454 pyrosequencing of the bacterial microbiota. In contrast to control polyps, arminin-deficient polyps displayed decreased potential to select for bacterial communities resembling their native microbiota. This finding indicates that species-specific antimicrobial peptides shape species-specific bacterial associations. PMID:24003149

  12. Research Guidelines in the Era of Large-scale Collaborations: An Analysis of Genome-wide Association Study Consortia

    PubMed Central

    Austin, Melissa A.; Hair, Marilyn S.; Fullerton, Stephanie M.

    2012-01-01

    Scientific research has shifted from studies conducted by single investigators to the creation of large consortia. Genetic epidemiologists, for example, now collaborate extensively for genome-wide association studies (GWAS). The effect has been a stream of confirmed disease-gene associations. However, effects on human subjects oversight, data-sharing, publication and authorship practices, research organization and productivity, and intellectual property remain to be examined. The aim of this analysis was to identify all research consortia that had published the results of a GWAS analysis since 2005, characterize them, determine which have publicly accessible guidelines for research practices, and summarize the policies in these guidelines. A review of the National Human Genome Research Institute’s Catalog of Published Genome-Wide Association Studies identified 55 GWAS consortia as of April 1, 2011. These consortia were comprised of individual investigators, research centers, studies, or other consortia and studied 48 different diseases or traits. Only 14 (25%) were found to have publicly accessible research guidelines on consortia websites. The available guidelines provide information on organization, governance, and research protocols; half address institutional review board approval. Details of publication, authorship, data-sharing, and intellectual property vary considerably. Wider access to consortia guidelines is needed to establish appropriate research standards with broad applicability to emerging forms of large-scale collaboration. PMID:22491085

  13. Synthetic Microbial Ecology: Engineering Habitats for Modular Consortia.

    PubMed

    Ben Said, Sami; Or, Dani

    2017-01-01

    The metabolic diversity present in microbial communities enables cooperation toward accomplishing more complex tasks than possible by a single organism. Members of a consortium communicate by exchanging metabolites or signals that allow them to coordinate their activity through division of labor. In contrast with monocultures, evidence suggests that microbial consortia self-organize to form spatial patterns, such as observed in biofilms or in soil aggregates, that enable them to respond to gradient, to improve resource interception and to exchange metabolites more effectively. Current biotechnological applications of microorganisms remain rudimentary, often relying on genetically engineered monocultures (e.g., pharmaceuticals) or mixed-cultures of partially known composition (e.g., wastewater treatment), yet the vast potential of "microbial ecological power" observed in most natural environments, remains largely underused. In line with the Unified Microbiome Initiative (UMI) which aims to "discover and advance tools to understand and harness the capabilities of Earth's microbial ecosystems," we propose in this concept paper to capitalize on ecological insights into the spatial and modular design of interlinked microbial consortia that would overcome limitations of natural systems and attempt to optimize the functionality of the members and the performance of the engineered consortium. The topology of the spatial connections linking the various members and the regulated fluxes of media between those modules, while representing a major engineering challenge, would allow the microbial species to interact. The modularity of such spatially linked microbial consortia (SLMC) could facilitate the design of scalable bioprocesses that can be incorporated as parts of a larger biochemical network. By reducing the need for a compatible growth environment for all species simultaneously, SLMC will dramatically expand the range of possible combinations of microorganisms and their

  14. Engineering microbial consortia to enhance biomining and bioremediation.

    PubMed

    Brune, Karl D; Bayer, Travis S

    2012-01-01

    In natural environments microorganisms commonly exist as communities of multiple species that are capable of performing more varied and complicated tasks than clonal populations. Synthetic biologists have engineered clonal populations with characteristics such as differentiation, memory, and pattern formation, which are usually associated with more complex multicellular organisms. The prospect of designing microbial communities has alluring possibilities for environmental, biomedical, and energy applications, and is likely to reveal insight into how natural microbial consortia function. Cell signaling and communication pathways between different species are likely to be key processes for designing novel functions in synthetic and natural consortia. Recent efforts to engineer synthetic microbial interactions will be reviewed here, with particular emphasis given to research with significance for industrial applications in the field of biomining and bioremediation of acid mine drainage.

  15. Engineering microbial consortia to enhance biomining and bioremediation

    PubMed Central

    Brune, Karl D.; Bayer, Travis S.

    2012-01-01

    In natural environments microorganisms commonly exist as communities of multiple species that are capable of performing more varied and complicated tasks than clonal populations. Synthetic biologists have engineered clonal populations with characteristics such as differentiation, memory, and pattern formation, which are usually associated with more complex multicellular organisms. The prospect of designing microbial communities has alluring possibilities for environmental, biomedical, and energy applications, and is likely to reveal insight into how natural microbial consortia function. Cell signaling and communication pathways between different species are likely to be key processes for designing novel functions in synthetic and natural consortia. Recent efforts to engineer synthetic microbial interactions will be reviewed here, with particular emphasis given to research with significance for industrial applications in the field of biomining and bioremediation of acid mine drainage. PMID:22679443

  16. [The bacterial biofilm and the possibilities of chemical plaque control. Literature review].

    PubMed

    Gera, István

    2008-06-01

    Most microorganisms in the oral cavity attach to surfaces and form matrix-embedded biofilms. Biofilms are structured and spatially organized, composed of consortia of interacting microorganisms. The properties of the mass of biofilm are different from that of the simple sum of the component species. The older the plaque (biofilm) is the more structurally organized and become more resistant to environmental attacks. The bacterial community favors the growth of obligatory anaerobic microorganisms. The most effective means of the elimination of matured biofilm is the mechanical disruption of the interbacterial protective matrix and removal of bacterial colonies. The antiseptic agents are primarily effective in the prevention of biofilm formation and anticipation of the maturation of the bacterial plaque. Bacteria in matured biofilms are less susceptible to antimicrobial agents because several physical and biological factors protect the bacterial consortia. To kill bacteria in a matured, well organized biofilm, significantly higher concentration and longer exposition are required. Antiseptic mouthrinses in a conventional dose and time can only reach the superficial bacteria while the bacteria in the depth of the biofilm remains intact. Therefore, the efficacy of any antiseptic mouthwash depends not just on its microbicidal properties demonstrated in vitro, but also on its ability to penetrate the organized biofilm on the teeth. Recent studies have demonstrated that both bisbiguanid compounds and essential oils are capable of penetrating the biofilm, and reduce established plaque and gingivitis. The essential oils showed high penetrability and were more effective on organized biofilm than stannous fluorides or triclosan copolymer antiplaque agents.

  17. Degradation of organic pollutants by methane grown microbial consortia.

    PubMed

    Hesselsoe, Martin; Boysen, Susanne; Iversen, Niels; Jørgensen, Lars; Murrell, J Colin; McDonald, Ian; Radajewski, Stefan; Thestrup, Helle; Roslev, Peter

    2005-10-01

    Microbial consortia were enriched from various environmental samples with methane as the sole carbon and energy source. Selected consortia that showed a capacity for co-oxidation of naphthalene were screened for their ability to degrade methyl-tert-butyl-ether (MTBE), phthalic acid esters (PAE), benzene, xylene and toluene (BTX). MTBE was not removed within 24 h by any of the consortia examined. One consortium enriched from activated sludge ("AAE-A2"), degraded PAE, including (butyl-benzyl)phthalate (BBP), and di-(butyl)phthalate (DBP). PAE have not previously been described as substrates for methanotrophic consortia. The apparent Km and Vmax for DBP degradation by AAE-A2 at 20 degrees C was 3.1 +/- 1.2 mg l(-1) and 8.7 +/- 1.1 mg DBP (g protein x h)(-1), respectively. AAE-A2 also showed fast degradation of BTX (230 +/- 30 nmol benzene (mg protein x h)(-1) at 20 degrees C). Additionally, AAE-A2 degraded benzene continuously for 2 weeks. In contrast, a pure culture of the methanotroph Methylosinus trichosporium OB3b ceased benzene degradation after only 2 days. Experiments with methane mono-oxygenase inhibitors or competitive substrates suggested that BTX degradation was carried out by methane-oxidizing bacteria in the consortium, whereas the degradation of PAE was carried out by non-methanotrophic bacteria co-existing with methanotrophs. The composition of the consortium (AAE-A2) based on polar lipid fatty acid (PLFA) profiles showed dominance of type II methanotrophs (83-92% of biomass). Phylogeny based on a 16S-rRNA gene clone library revealed that the dominating methanotrophs belonged to Methylosinus/Methylocystis spp. and that members of at least 4 different non-methanotrophic genera were present (Pseudomonas, Flavobacterium, Janthinobacterium and Rubivivax).

  18. Leveraging Higher Education Consortia for Institutional Advancement

    ERIC Educational Resources Information Center

    Burley, Diana; Gnam, Cathy; Newman, Robin; Straker, Howard; Babies, Tanika

    2012-01-01

    Purpose: The purpose of this paper is to explore conceptually the role of higher education consortia in facilitating the operational advancement of member institutions, and in enabling their development as learning organizations in a changing and competitive higher education environment. Design/methodology/approach: This article synthesizes the…

  19. Computer-guided design of optimal microbial consortia for immune system modulation

    PubMed Central

    Szabady, Rose L; Bhattarai, Shakti K; Olle, Bernat; Norman, Jason M; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Gerber, Georg K; Sander, Chris; Honda, Kenya

    2018-01-01

    Manipulation of the gut microbiota holds great promise for the treatment of diseases. However, a major challenge is the identification of therapeutically potent microbial consortia that colonize the host effectively while maximizing immunologic outcome. Here, we propose a novel workflow to select optimal immune-inducing consortia from microbiome compositicon and immune effectors measurements. Using published and newly generated microbial and regulatory T-cell (Treg) data from germ-free mice, we estimate the contributions of twelve Clostridia strains with known immune-modulating effect to Treg induction. Combining this with a longitudinal data-constrained ecological model, we predict the ability of every attainable and ecologically stable subconsortium in promoting Treg activation and rank them by the Treg Induction Score (TrIS). Experimental validation of selected consortia indicates a strong and statistically significant correlation between predicted TrIS and measured Treg. We argue that computational indexes, such as the TrIS, are valuable tools for the systematic selection of immune-modulating bacteriotherapeutics. PMID:29664397

  20. Ionic liquid biodegradability depends on specific wastewater microbial consortia.

    PubMed

    Docherty, Kathryn M; Aiello, Steven W; Buehler, Barbara K; Jones, Stuart E; Szymczyna, Blair R; Walker, Katherine A

    2015-10-01

    Complete biodegradation of a newly-synthesized chemical in a wastewater treatment plant (WWTP) eliminates the potential for novel environmental pollutants. However, differences within- and between-WWTP microbial communities may alter expectations for biodegradation. WWTP communities can also serve as a source of unique consortia that, when enriched, can metabolize chemicals that tend to resist degradation, but are otherwise promising green alternatives. We tested the biodegradability of three ionic liquids (ILs): 1-octyl-3-methylpyridinium bromide (OMP), 1-butyl-3-methylpyridinium bromide (BMP) and 1-butyl-3-methylimidazolium chloride (BMIM). We performed tests using communities from two WWTPs at three time points. Site-specific and temporal variation both influenced community composition, which impacted the success of OMP biodegradability. Neither BMP nor BMIM degraded in any test, suggesting that these ILs are unlikely to be removed by traditional treatment. Following standard biodegradation assays, we enriched for three consortia that were capable of quickly degrading OMP, BMP and BMIM. Our results indicate WWTPs are not functionally redundant with regard to biodegradation of specific ionic liquids. However, consortia can be enriched to degrade chemicals that fail biodegradability assays. This information can be used to prepare pre-treatment procedures and prevent environmental release of novel pollutants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Identification, visualization, and sorting of translationally active microbial consortia from deep-sea methane seeps

    NASA Astrophysics Data System (ADS)

    Hatzenpichler, R.; Connon, S. A.; Goudeau, D.; Malmstrom, R.; Woyke, T.; Orphan, V. J.

    2015-12-01

    Within the past few years, great progress has been made in tapping the genomes of individual cells separated from environmental samples. Unfortunately, however, most often these efforts have been target blind, as they did not pre-select for taxa of interest or focus on metabolically active cells that could be considered key species of the system at the time. This problem is particularly pronounced in low-turnover systems such as deep sea sediments. In an effort to tap the genetic potential hidden within functionally active cells, we have recently developed an approach for the in situ fluorescent tracking of protein synthesis in uncultured cells via bioorthogonal non-canonical amino acid-tagging (BONCAT). This technique depends on the incorporation of synthetic amino acids that carry chemically modifiable tags into newly made proteins, which later can be visualized via click chemistry-mediated fluorescence-labeling. BONCAT is thus able to specifically target proteins that have been expressed in reaction to an experimental condition. We are particularly interested in using BONCAT to understand the functional potential of slow-growing syntrophic consortia of anaerobic methanotrophic archaea and sulfate-reducing bacteria which together catalyze the anaerobic oxidation of methane (AOM) in marine methane seeps. In order to specifically target consortia that are active under varying environmental regimes, we are studying different subpopulations of these inter-domain consortia via a combination of BONCAT with rRNA-targeted FISH. We then couple the BONCAT-enabled staining of active consortia with their separation from inactive members of the community via fluorescence-activated cell-sorting (FACS) and metagenomic sequencing of individual consortia. Using this approach, we were able to identify previously unrecognized AOM-partnerships. By comparing the mini-metagenomes obtained from individual consortia with each other we are starting to gain a more hollistic understanding

  2. 14 CFR 1274.205 - Consortia as recipients.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... better share the projects financial costs (e.g., the 50 percent recipient's cost share or other costs of... issues; (8) Internal and external reporting requirements; (9) Management structure of the consortium; (10... the consortia members (12) Agreements, if any, to share existing technology and data; (13) The firm...

  3. 14 CFR 1274.205 - Consortia as recipients.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... better share the projects financial costs (e.g., the 50 percent recipient's cost share or other costs of... issues; (8) Internal and external reporting requirements; (9) Management structure of the consortium; (10... the consortia members (12) Agreements, if any, to share existing technology and data; (13) The firm...

  4. Education and training consortia: leading the way for the new British NHS.

    PubMed

    Burke, L M

    2000-04-01

    In November 1997 The New NHS - Modern, Dependable was published, describing the British Labour government's plans to introduce major changes to the NHS (National Health Service). Education and Training Consortia (ETCs) were only briefly referred to and no direct changes were proposed to them. It can be argued that this was because they had not fitted well within the Conservative government's competitive culture of the NHS internal market. Education Consortia members share information, make plans collectively and work collaboratively, activities much more appropriate for the 'New NHS' which is underpinned by the concepts of partnership, openness and local ownership. In this paper it is argued that there are many valuable lessons that the key individuals involved in implementing the policies of the New NHS can learn from Education and Training Consortia. Data have been drawn from a qualitative study in which the aim was to explore the development, implementation and management of consortia and contracting for non-medical education and training (NMET) from a stakeholder's perspective. One of the unexpected themes that emerged from the analysis of the data, was that the development of ETCs could be utilized as a model for many of the innovations in the New NHS, particularly in relation to the formation of primary care groups.

  5. 25 CFR 1001.9 - Selection criteria for tribes/consortia seeking advance planning grant funding.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 2 2013-04-01 2013-04-01 false Selection criteria for tribes/consortia seeking advance..., DEPARTMENT OF THE INTERIOR SELF-GOVERNANCE PROGRAM § 1001.9 Selection criteria for tribes/consortia seeking... before a tribe/consortium is admitted into the applicant pool? Any tribe/consortium that is not a self...

  6. Airborne bacteria associated with corrosion of mild steel 1010 and aluminum alloy 1100.

    PubMed

    Rajasekar, Aruliah; Xiao, Wang; Sethuraman, Manivannan; Parthipan, Punniyakotti; Elumalai, Punniyakotti

    2017-03-01

    A novel approach to measure the contribution of airborne bacteria on corrosion effects of mild steel (MS) and aluminum alloy (AA) as a function of their exposure period, and the atmospheric chemical composition was investigated at an urban industrial coastal site, Singapore. The 16S rRNA and phylogenetic analyses showed that Firmicutes are the predominant bacteria detected in AA and MS samples. The dominant bacterial groups identified were Bacillaceae, Staphylococcaceae, and Paenibacillaceae. The growth and proliferation of these bacteria could be due to the presence of humidity and chemical pollutants in the atmosphere, leading to corrosion. Weight loss showed stronger corrosion resistance of AA (1.37 mg/cm 2 ) than MS (26.13 mg/cm 2 ) over the exposure period of 150 days. The higher corrosion rate could be a result of simultaneous action of pollutants and bacterial exopolysaccharides on the metal surfaces. This study demonstrates the significant involvement of airborne bacteria on atmospheric corrosion of engineering materials.

  7. Bacterial Degraders of Coexisting Dichloromethane, Benzene, and Toluene, Identified by Stable-Isotope Probing.

    PubMed

    Yoshikawa, Miho; Zhang, Ming; Kurisu, Futoshi; Toyota, Koki

    2017-01-01

    Most bioremediation studies on volatile organic compounds (VOCs) have focused on a single contaminant or its derived compounds and degraders have been identified under single contaminant conditions. Bioremediation of multiple contaminants remains a challenging issue. To identify a bacterial consortium that degrades multiple VOCs (dichloromethane (DCM), benzene, and toluene), we applied DNA-stable isotope probing. For individual tests, we combined a 13 C-labeled VOC with other two unlabeled VOCs, and prepared three unlabeled VOCs as a reference. Over 11 days, DNA was periodically extracted from the consortia, and the bacterial community was evaluated by next-generation sequencing of bacterial 16S rRNA gene amplicons. Density gradient fractions of the DNA extracts were amplified by universal bacterial primers for the 16S rRNA gene sequences, and the amplicons were analyzed by terminal restriction fragment length polymorphism (T-RFLP) using restriction enzymes: Hha I and Msp I. The T-RFLP fragments were identified by 16S rRNA gene cloning and sequencing. Under all test conditions, the consortia were dominated by Rhodanobacter , Bradyrhizobium / Afipia , Rhizobium , and Hyphomicrobium . DNA derived from Hyphomicrobium and Propioniferax shifted toward heavier fractions under the condition added with 13 C-DCM and 13 C-benzene, respectively, compared with the reference, but no shifts were induced by 13 C-toluene addition. This implies that Hyphomicrobium and Propioniferax were the main DCM and benzene degraders, respectively, under the coexisting condition. The known benzene degrader Pseudomonas sp. was present but not actively involved in the degradation.

  8. Components for consideration by emerging consortia.

    PubMed Central

    Moulton, B

    1975-01-01

    The Consortium for Information Resources of the West Suburban Hospital Association in Boston is presented as one model for library cooperation. It is described in generalized terms that may be of interest to other consortia planners, rather than as a model for exact replication. Four components are discussed in detail: (1) composite resources, (2) multi-institutional environment, (3) leadership, and (4) activities. PMID:1109615

  9. Organizing International Programs: The Experience of Two Consortia.

    ERIC Educational Resources Information Center

    Neff, Charles B.; Fuller, Jon W.

    1983-01-01

    Two academic consortia have achieved success in sponsoring international programs, which any one of their member institutions would be unlikely to undertake alone. The Associated Colleges of the Midwest (ACM) and the Great Lakes Colleges Association (GLCA) programs are described. (MLW)

  10. Synthetic Microbial Ecology: Engineering Habitats for Modular Consortia

    PubMed Central

    Ben Said, Sami; Or, Dani

    2017-01-01

    The metabolic diversity present in microbial communities enables cooperation toward accomplishing more complex tasks than possible by a single organism. Members of a consortium communicate by exchanging metabolites or signals that allow them to coordinate their activity through division of labor. In contrast with monocultures, evidence suggests that microbial consortia self-organize to form spatial patterns, such as observed in biofilms or in soil aggregates, that enable them to respond to gradient, to improve resource interception and to exchange metabolites more effectively. Current biotechnological applications of microorganisms remain rudimentary, often relying on genetically engineered monocultures (e.g., pharmaceuticals) or mixed-cultures of partially known composition (e.g., wastewater treatment), yet the vast potential of “microbial ecological power” observed in most natural environments, remains largely underused. In line with the Unified Microbiome Initiative (UMI) which aims to “discover and advance tools to understand and harness the capabilities of Earth's microbial ecosystems,” we propose in this concept paper to capitalize on ecological insights into the spatial and modular design of interlinked microbial consortia that would overcome limitations of natural systems and attempt to optimize the functionality of the members and the performance of the engineered consortium. The topology of the spatial connections linking the various members and the regulated fluxes of media between those modules, while representing a major engineering challenge, would allow the microbial species to interact. The modularity of such spatially linked microbial consortia (SLMC) could facilitate the design of scalable bioprocesses that can be incorporated as parts of a larger biochemical network. By reducing the need for a compatible growth environment for all species simultaneously, SLMC will dramatically expand the range of possible combinations of microorganisms

  11. Polishing of municipal secondary effluent using native microalgae consortia.

    PubMed

    Beltrán-Rocha, Julio César; Barceló-Quintal, Icela Dagmar; García-Martínez, Magdalena; Osornio-Berthet, Luis; Saavedra-Villarreal, Nidia; Villarreal-Chiu, Juan; López-Chuken, Ulrico Javier

    2017-04-01

    This work evaluates the use of native microalgae consortia for a dual role: polishing treatment of municipal wastewater effluents and microalgae biomass feedstock potential for biodiesel or biofertilizer production. An initial screening was undertaken to test N and P removal from secondary effluents and biomass production by 12 consortia. A subsequent treatment was performed by selected consortia (01 and 12) under three operational conditions: stirring (S), S + 12 h of daily aeration (S + A) and S + A enriched with CO 2 (S + AC). All treatments resulted in compliance with environmental regulations (e.g. Directive 91/271/EEC) and high removal efficiency of nutrients: 64-79% and 80-94% of total N and PO 4 3- -P respectively. During the experiments it was shown that pH alkalinization due to microalgae growth benefits the chemical removal of ammonia and phosphorus. Moreover, advantages of pH increase could be accomplished by intermittent CO 2 addition which in this research (treatment S + AC) promoted higher yield and lipid concentration. The resulting dry biomass analysis showed a low lipid content (0.5-4.3%) not ideal for biodiesel production. Moreover, the high rate of ash (29.3-53.0%) suggests that biomass could be readily recycled as a biofertilizer due to mineral supply and organic constituents formed by C, N and P (e.g. carbohydrate, protein, and lipids).

  12. The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia.

    PubMed

    Rawlings, Douglas E; Johnson, D Barrie

    2007-02-01

    Biomining, the use of micro-organisms to recover precious and base metals from mineral ores and concentrates, has developed into a successful and expanding area of biotechnology. While careful considerations are made in the design and engineering of biomining operations, microbiological aspects have been subjected to far less scrutiny and control. Biomining processes employ microbial consortia that are dominated by acidophilic, autotrophic iron- or sulfur-oxidizing prokaryotes. Mineral biooxidation takes place in highly aerated, continuous-flow, stirred-tank reactors or in irrigated dump or heap reactors, both of which provide an open, non-sterile environment. Continuous-flow, stirred tanks are characterized by homogeneous and constant growth conditions where the selection is for rapid growth, and consequently tank consortia tend to be dominated by two or three species of micro-organisms. In contrast, heap reactors provide highly heterogeneous growth environments that change with the age of the heap, and these tend to be colonized by a much greater variety of micro-organisms. Heap micro-organisms grow as biofilms that are not subject to washout and the major challenge is to provide sufficient biodiversity for optimum performance throughout the life of a heap. This review discusses theoretical and pragmatic aspects of assembling microbial consortia to process different mineral ores and concentrates, and the challenges for using constructed consortia in non-sterile industrial-scale operations.

  13. Computer-guided design of optimal microbial consortia for immune system modulation.

    PubMed

    Stein, Richard R; Tanoue, Takeshi; Szabady, Rose L; Bhattarai, Shakti K; Olle, Bernat; Norman, Jason M; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Gerber, Georg K; Sander, Chris; Honda, Kenya; Bucci, Vanni

    2018-04-17

    Manipulation of the gut microbiota holds great promise for the treatment of diseases. However, a major challenge is the identification of therapeutically potent microbial consortia that colonize the host effectively while maximizing immunologic outcome. Here, we propose a novel workflow to select optimal immune-inducing consortia from microbiome compositicon and immune effectors measurements. Using published and newly generated microbial and regulatory T-cell (T reg ) data from germ-free mice, we estimate the contributions of twelve Clostridia strains with known immune-modulating effect to T reg induction. Combining this with a longitudinal data-constrained ecological model, we predict the ability of every attainable and ecologically stable subconsortium in promoting T reg activation and rank them by the T reg Induction Score (TrIS). Experimental validation of selected consortia indicates a strong and statistically significant correlation between predicted TrIS and measured T reg . We argue that computational indexes, such as the TrIS, are valuable tools for the systematic selection of immune-modulating bacteriotherapeutics. © 2018, Stein et al.

  14. 78 FR 20665 - Pediatric Device Consortia Grant Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ... population (neonates, infants, children, and adolescents) includes patients who are 21 years of age or... of the Office of Orphan Products Development (OOPD) Pediatric Device Consortia (PDC) Grant Program. The goal of the PDC Grant Program is to facilitate the development, production, and distribution of...

  15. Regional Consortia for E-Resources: A Case Study of Deals in the South China Region

    ERIC Educational Resources Information Center

    Chunrong, Luo; Jingfen, Wang; Zhinong, Zhou

    2010-01-01

    Purpose: The purpose of this paper is to analyse the current situation and the social and economic benefits from the consortia acquisitions of electronic resources by the China Academic Library and Information System (CALIS) South China Regional Centre and to recommend improvements for consortia acquisitions. Design/methodology/approach: Analyses…

  16. Trophic interactions induce spatial self-organization of microbial consortia on rough surfaces.

    PubMed

    Wang, Gang; Or, Dani

    2014-10-24

    The spatial context of microbial interactions common in natural systems is largely absent in traditional pure culture-based microbiology. The understanding of how interdependent microbial communities assemble and coexist in limited spatial domains remains sketchy. A mechanistic model of cell-level interactions among multispecies microbial populations grown on hydrated rough surfaces facilitated systematic evaluation of how trophic dependencies shape spatial self-organization of microbial consortia in complex diffusion fields. The emerging patterns were persistent irrespective of initial conditions and resilient to spatial and temporal perturbations. Surprisingly, the hydration conditions conducive for self-assembly are extremely narrow and last only while microbial cells remain motile within thin aqueous films. The resulting self-organized microbial consortia patterns could represent optimal ecological templates for the architecture that underlie sessile microbial colonies on natural surfaces. Understanding microbial spatial self-organization offers new insights into mechanisms that sustain small-scale soil microbial diversity; and may guide the engineering of functional artificial microbial consortia.

  17. Bacterial diversity in water injection systems of Brazilian offshore oil platforms.

    PubMed

    Korenblum, Elisa; Valoni, Erika; Penna, Mônica; Seldin, Lucy

    2010-01-01

    Biogenic souring and microbial-influenced corrosion is a common scenario in water-flooded petroleum reservoirs. Water injection systems are continuously treated to control bacterial contamination, but some bacteria that cause souring and corrosion can persist even after different treatments have been applied. Our aim was to increase our knowledge of the bacterial communities that persist in the water injection systems of three offshore oil platforms in Brazil. To achieve this goal, we used a culture-independent molecular approach (16S ribosomal RNA gene clone libraries) to analyze seawater samples that had been subjected to different treatments. Phylogenetic analyses revealed that the bacterial communities from the different platforms were taxonomically different. A predominance of bacterial clones affiliated with Gammaproteobacteria, mostly belonging to the genus Marinobacter (60.7%), were observed in the platform A samples. Clones from platform B were mainly related to the genera Colwellia (37.9%) and Achromobacter (24.6%), whereas clones obtained from platform C were all related to unclassified bacteria. Canonical correspondence analyses showed that different treatments such as chlorination, deoxygenation, and biocide addition did not significantly influence the bacterial diversity in the platforms studied. Our results demonstrated that the injection water used in secondary oil recovery procedures contained potentially hazardous bacteria, which may ultimately cause souring and corrosion.

  18. A universal surface complexation framework for modeling proton binding onto bacterial surfaces in geologic settings

    USGS Publications Warehouse

    Borrok, D.; Turner, B.F.; Fein, J.B.

    2005-01-01

    Adsorption onto bacterial cell walls can significantly affect the speciation and mobility of aqueous metal cations in many geologic settings. However, a unified thermodynamic framework for describing bacterial adsorption reactions does not exist. This problem originates from the numerous approaches that have been chosen for modeling bacterial surface protonation reactions. In this study, we compile all currently available potentiometric titration datasets for individual bacterial species, bacterial consortia, and bacterial cell wall components. Using a consistent, four discrete site, non-electrostatic surface complexation model, we determine total functional group site densities for all suitable datasets, and present an averaged set of 'universal' thermodynamic proton binding and site density parameters for modeling bacterial adsorption reactions in geologic systems. Modeling results demonstrate that the total concentrations of proton-active functional group sites for the 36 bacterial species and consortia tested are remarkably similar, averaging 3.2 ?? 1.0 (1??) ?? 10-4 moles/wet gram. Examination of the uncertainties involved in the development of proton-binding modeling parameters suggests that ignoring factors such as bacterial species, ionic strength, temperature, and growth conditions introduces relatively small error compared to the unavoidable uncertainty associated with the determination of cell abundances in realistic geologic systems. Hence, we propose that reasonable estimates of the extent of bacterial cell wall deprotonation can be made using averaged thermodynamic modeling parameters from all of the experiments that are considered in this study, regardless of bacterial species used, ionic strength, temperature, or growth condition of the experiment. The average site densities for the four discrete sites are 1.1 ?? 0.7 ?? 10-4, 9.1 ?? 3.8 ?? 10-5, 5.3 ?? 2.1 ?? 10-5, and 6.6 ?? 3.0 ?? 10-5 moles/wet gram bacteria for the sites with pKa values of 3

  19. Evaluation of support matrices for immobilization of anaerobic consortia for efficient carbon cycling in waste regeneration.

    PubMed

    Chauhan, Ashvini; Ogram, Andrew

    2005-02-18

    Efficient metabolism of fatty acids during anaerobic waste digestion requires development of consortia that include "fatty acid consuming H(2) producing bacteria" and methanogenic bacteria. The objective of this research was to optimize methanogenesis from fatty acids by evaluating a variety of support matrices for use in maintaining efficient syntrophic-methanogenic consortia. Tested matrices included clays (montmorillonite and bentonite), glass beads (106 and 425-600mum), microcarriers (cytopore, cytodex, cytoline, and cultispher; conventionally employed for cultivation of mammalian cell lines), BioSep beads (powdered activated carbon), and membranes (hydrophilic; nylon, polysulfone, and hydrophobic; teflon, polypropylene). Data obtained from headspace methane (CH(4)) analyses as an indicator of anaerobic carbon cycling efficiency indicated that material surface properties were important in maintenance and functioning of the anaerobic consortia. Cytoline yielded significantly higher CH(4) than other matrices as early as in the first week of incubation. 16S rRNA gene sequence analysis from crushed cytoline matrix showed the presence of Syntrophomonas spp. (butyrate oxidizing syntrophs) and Syntrophobacter spp. (propionate oxidizing syntrophs), with Methanosaeta spp. (acetate utilizing methanogen), and Methanospirillum spp. (hydrogen utilizing methanogen) cells. It is likely that the more hydrophobic surfaces provided a suitable surface for adherence of cells of syntrophic-methanogenic consortia. Cytoline also appeared to protect entrapped consortia from air, resulting in rapid methanogenesis after aerial exposure. Our study suggests that support matrices can be used in anaerobic digestors, pre-seeded with immobilized or entrapped consortia on support matrices, and may be of value as inoculant-adsorbents to rapidly initiate or recover proper system functioning following perturbation.

  20. Metagenome enrichment approach used for selection of oil-degrading bacteria consortia for drill cutting residue bioremediation.

    PubMed

    Guerra, Alaine B; Oliveira, Jorge S; Silva-Portela, Rita C B; Araújo, Wydemberg; Carlos, Aline C; Vasconcelos, Ana Tereza R; Freitas, Ana Teresa; Domingos, Yldeney Silva; de Farias, Mirna Ferreira; Fernandes, Glauber José Turolla; Agnez-Lima, Lucymara F

    2018-04-01

    Drill cuttings leave behind thousands of tons of residues without adequate treatment, generating a large environmental liability. Therefore knowledge about the microbial community of drilling residue may be useful for developing bioremediation strategies. In this work, samples of drilling residue were enriched in different culture media in the presence of petroleum, aiming to select potentially oil-degrading bacteria and biosurfactant producers. Total DNA was extracted directly from the drill cutting samples and from two enriched consortia and sequenced using the Ion Torrent platform. Taxonomic analysis revealed the predominance of Proteobacteria in the metagenome from the drill cuttings, while Firmicutes was enriched in consortia samples. Functional analysis using the Biosurfactants and Biodegradation Database (BioSurfDB) revealed a similar pattern among the three samples regarding hydrocarbon degradation and biosurfactants production pathways. However, some statistical differences were observed between samples. Namely, the pathways related to the degradation of fatty acids, chloroalkanes, and chloroalkanes were enriched in consortia samples. The degradation colorimetric assay using dichlorophenolindophenol as an indicator was positive for several hydrocarbon substrates. The consortia were also able to produce biosurfactants, with biosynthesis of iturin, lichnysin, and surfactin among the more abundant pathways. A microcosms assay followed by gas chromatography analysis showed the efficacy of the consortia in degrading alkanes, as we observed a reduction of around 66% and 30% for each consortium in total alkanes. These data suggest the potential use of these consortia in the bioremediation of drilling residue based on autochthonous bioaugmentation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. 14 CFR § 1274.205 - Consortia as recipients.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... better share the projects financial costs (e.g., the 50 percent recipient's cost share or other costs of... issues; (8) Internal and external reporting requirements; (9) Management structure of the consortium; (10... the consortia members (12) Agreements, if any, to share existing technology and data; (13) The firm...

  2. Speech and Theatre Programs in Two Midwest Consortia.

    ERIC Educational Resources Information Center

    Buzza, Bonnie Wilson

    The official college catalogues of the 25 institutions comprising the Associated Colleges of the Midwest (ACM) and the Great Lakes Colleges Association (GLCA) consortia were studied to provide descriptive information on the special needs and interests of smaller speech and theatre programs. Information on speech departments indicated three general…

  3. General practitioner commissioning consortia and budgetary risk: evidence from the modelling of 'fair share' practice budgets for mental health.

    PubMed

    Asthana, Sheena; Gibson, Alex; Hewson, Paul; Bailey, Trevor; Dibben, Chris

    2011-04-01

    To contribute to current policy debates regarding the devolution of commissioning responsibilities to locally-based consortia of general practices in England by assessing the potential magnitude and significance of budgetary risk for commissioning units of different sizes. Predictive distributions of practice-level mental health care resource needs (used by the Department of Health to set 'fair-share' practice budgets) are aggregated to a range of hypothetical, but spatially-contiguous, consortia serving populations of up to 400,000 patients. The resulting joint distributions describe the extent to which the legitimate mental health needs of consortia populations are likely to vary. Budgetary risk is calculated as the likelihood that a consortia's resource needs will, in any given year, exceed its allocation (taken as the mean of its predictive distribution) by more than 1%, 3%, 5% or 10%. The relationship between population size and budgetary risk is then explored. If between 500 and 600 consortia are created in England (serving 87,000 to 104,000 patients) then, in order to meet the legitimate mental health needs of their patients, each year around 15 to 26 consortia will overspend by at least 5%, and one or two by at least 10%. The budgetary risk faced by consortia serving smaller/larger populations can be read off the graphs provided. Unless steps are taken to mitigate budgetary risk, the devolution of decision-making and introduction of fixed budgets is likely to result in significant financial instability. It will be difficult to reconcile the policy objectives of devolved commissioning, best met through relatively small and fully accountable consortia, with the need for financial stability, which is best met by pooling risk across larger populations.

  4. Characterization and In Situ Carbon Metabolism of Phototrophic Consortia

    PubMed Central

    Glaeser, Jens; Overmann, Jörg

    2003-01-01

    A dense population of the phototrophic consortium “Pelochromatium roseum” was investigated in the chemocline of a temperate holomictic lake (Lake Dagow, Brandenburg, Germany). Fluorescence in situ hybridization revealed that the brown epibionts of “P. roseum” constituted up to 37% of the total bacterial cell number and up to 88% of all green sulfur bacteria present in the chemocline. Specific amplification of 16S rRNA gene fragments of green sulfur bacteria and denaturing gradient gel electrophoresis fingerprinting yielded a maximum of four different DNA bands depending on the year of study, indicating that the diversity of green sulfur bacteria was low. The 465-bp 16S rRNA gene sequence of the epibiont of “P. roseum” was obtained after sorting of individual consortia by micromanipulation, followed by a highly sensitive PCR. The sequence obtained represents a new phylotype within the radiation of green sulfur bacteria. Maximum light-dependent H14CO3− fixation in the chemocline in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea suggested that there was anaerobic autotrophic growth of the green sulfur bacteria. The metabolism of the epibionts was further studied by determining stable carbon isotope ratios (δ13C) of their specific biomarkers. Analysis of photosynthetic pigments by high-performance liquid chromatography revealed the presence of high concentrations of bacteriochlorophyll (BChl) e and smaller amounts of BChl a and d and chlorophyll a in the chemocline. Unexpectedly, isorenieratene and β-isorenieratene, carotenoids typical of other brown members of the green sulfur bacteria, were absent. Instead, four different esterifying alcohols of BChl e were isolated as biomarkers of green sulfur bacterial epibionts, and their δ13C values were determined. Farnesol, tetradecanol, hexadecanol, and hexadecenol all were significantly enriched in 13C compared to bulk dissolved and particulate organic carbon and compared to the biomarkers of purple

  5. Bacterial exopolysaccharides for corrosion resistance on low carbon steel

    USDA-ARS?s Scientific Manuscript database

    Corrosion is a global issue that affects safety and economics. There is an increasing demand for bio-based polymers for industrial applications and production of polymers by micro-organisms is especially attractive. This work reports on the electrochemical and physical properties of exopolysaccharid...

  6. 25 CFR 1000.15 - How many additional Tribes/Consortia may participate in self-governance per year?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false How many additional Tribes/Consortia may participate in self-governance per year? 1000.15 Section 1000.15 Indians OFFICE OF THE ASSISTANT SECRETARY, INDIAN... Participation in Tribal Self-Governance Eligibility § 1000.15 How many additional Tribes/Consortia may...

  7. Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan.

    PubMed

    Bacosa, Hernando Pactao; Inoue, Chihiro

    2015-01-01

    The Great East Japan Earthquake caused tsunamis and resulted in widespread damage to human life and infrastructure. The disaster also resulted in contamination of the environment by chemicals such as polycyclic aromatic hydrocarbons (PAHs). This study was conducted to investigate the degradation potential and describe the PAH-degrading microbial communities from tsunami sediments in Miyagi, Japan. PAH-degrading bacteria were cultured by enrichment using PAH mixture or pyrene alone as carbon and energy sources. Among the ten consortia tested for PAH mixture, seven completely degraded fluorene and more than 95% of phenanthrene in 10 days, while only four consortia partially degraded pyrene. Six consortia partially degraded pyrene as a single substrate. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) revealed that each sample was dominated by unique microbial populations, regardless of sampling location. The consortia were dominated by known PAHs degraders including Sphingomonas, Pseudomonas, and Sphingobium; and previously unknown degraders such as Dokdonella and Luteimonas. A potentially novel and PAH-degrading Dokdonella was detected for the first time. PAH-ring hydroxylating dioxygenase (PAH-RHDα) gene was shown to be more effective than nidA in estimating pyrene-degrading bacteria in the enriched consortia. The consortia obtained in this study are potential candidates for remediation of PAHs contaminated soils. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Biotechnological potential of microbial consortia and future perspectives.

    PubMed

    Bhatia, Shashi Kant; Bhatia, Ravi Kant; Choi, Yong-Keun; Kan, Eunsung; Kim, Yun-Gon; Yang, Yung-Hun

    2018-05-15

    Design of a microbial consortium is a newly emerging field that enables researchers to extend the frontiers of biotechnology from a pure culture to mixed cultures. A microbial consortium enables microbes to use a broad range of carbon sources. It provides microbes with robustness in response to environmental stress factors. Microbes in a consortium can perform complex functions that are impossible for a single organism. With advancement of technology, it is now possible to understand microbial interaction mechanism and construct consortia. Microbial consortia can be classified in terms of their construction, modes of interaction, and functions. Here we discuss different trends in the study of microbial functions and interactions, including single-cell genomics (SCG), microfluidics, fluorescent imaging, and membrane separation. Community profile studies using polymerase chain-reaction denaturing gradient gel electrophoresis (PCR-DGGE), amplified ribosomal DNA restriction analysis (ARDRA), and terminal restriction fragment-length polymorphism (T-RFLP) are also reviewed. We also provide a few examples of their possible applications in areas of biopolymers, bioenergy, biochemicals, and bioremediation.

  9. Consortia Building: A Handshake and a Smile, Island Style.

    ERIC Educational Resources Information Center

    Cutright, Patricia J.

    2000-01-01

    Discussion of library consortia focuses on the collaborative efforts in the Federated States of Micronesia that will enhance library services through staff training and educating while utilizing innovative technology. Highlights include background and socioeconomic overview; a project that addresses automation and Internet connectivity issues; and…

  10. Next-generation sequencing showing potential leachate influence on bacterial communities around a landfill in China.

    PubMed

    Rajasekar, Adharsh; Sekar, Raju; Medina-Roldán, Eduardo; Bridge, Jonathan; Moy, Charles K S; Wilkinson, Stephen

    2018-04-10

    The impact of contaminated leachate on groundwater from landfills is well known, but the specific effects on bacterial consortia are less well-studied. Bacterial communities in a landfill and an urban site located in Suzhou, China, were studied using Illumina high-throughput sequencing. A total of 153 944 good-quality reads were produced and sequences assigned to 6388 operational taxonomic units. Bacterial consortia consisted of up to 16 phyla, including Proteobacteria (31.9%-94.9% at landfill, 25.1%-43.3% at urban sites), Actinobacteria (0%-28.7% at landfill, 9.9%-34.3% at urban sites), Bacteroidetes (1.4%-25.6% at landfill, 5.6%-7.8% at urban sites), Chloroflexi (0.4%-26.5% at urban sites only), and unclassified bacteria. Pseudomonas was the dominant (67%-93%) genus in landfill leachate. Arsenic concentrations in landfill raw leachate (RL) (1.11 × 10 3 μg/L) and fresh leachate (FL2) (1.78 × 10 3 μg/L) and mercury concentrations in RL (10.9 μg/L) and FL2 (7.37 μg/L) exceeded Chinese State Environmental Protection Administration standards for leachate in landfills. The Shannon diversity index and Chao1 richness estimate showed RL and FL2 lacked richness and diversity when compared with other samples. This is consistent with stresses imposed by elevated arsenic and mercury and has implications for ecological site remediation by bioremediation or natural attenuation.

  11. Composition and dynamics of biostimulated indigenous oil-degrading microbial consortia from the Irish, North and Mediterranean Seas: a mesocosm study.

    PubMed

    Gertler, Christoph; Näther, Daniela J; Cappello, Simone; Gerdts, Gunnar; Quilliam, Richard S; Yakimov, Michail M; Golyshin, Peter N

    2012-09-01

    Diversity of indigenous microbial consortia and natural occurrence of obligate hydrocarbon-degrading bacteria (OHCB) are of central importance for efficient bioremediation techniques. To investigate the microbial population dynamics and composition of oil-degrading consortia, we have established a series of identical oil-degrading mesocosms at three different locations, Bangor (Menai Straits, Irish Sea), Helgoland (North Sea) and Messina (Messina Straits, Mediterranean Sea). Changes in microbial community composition in response to oil spiking, nutrient amendment and filtration were assessed by ARISA and DGGE fingerprinting and 16Sr RNA gene library analysis. Bacterial and protozoan cell numbers were quantified by fluorescence microscopy. Very similar microbial population sizes and dynamics, together with key oil-degrading microorganisms, for example, Alcanivorax borkumensis, were observed at all three sites; however, the composition of microbial communities was largely site specific and included variability in relative abundance of OHCB. Reduction in protozoan grazing had little effect on prokaryotic cell numbers but did lead to a decrease in the percentage of A. borkumensis 16S rRNA genes detected in clone libraries. These results underline the complexity of marine oil-degrading microbial communities and cast further doubt on the feasibility of bioaugmentation practices for use in a broad range of geographical locations. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. EVELOPMENT OF AN ENVIRONMENTALLY BENIGN MICROBIAL INHIBITOR TO CONTROL INTERNAL PIPELINE CORROSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bill W. Bogan; Wendy R. Sullivan; Kristine M. H. Cruz

    2004-04-30

    The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. Previous testing of pepper extracts resulted in preliminary data indicating that some pepper extracts inhibit the growth of some corrosion-associated microorganisms. This quarter additional tests were performed to more specifically investigate the ability of threemore » pepper extracts to inhibit the growth, and to influence the metal corrosion caused by two microbial species: Desulfovibrio vulgaris, and Comomonas denitrificans. All three pepper extracts rapidly killed Desulfovibrio vulgaris, but did not appear to inhibit Comomonas denitrificans. While corrosion rates were at control levels in experiments with Desulfovibrio vulgaris that received pepper extract, corrosion rates were increased in the presence of Comomonas denitrificans plus pepper extract. Further testing with a wider range of pure bacterial cultures, and more importantly, with mixed bacterial cultures should be performed to determine the potential effectiveness of pepper extracts to inhibit MIC.« less

  13. Effect of copper and lead on two consortia of phototrophic microorganisms and their capacity to sequester metals.

    PubMed

    Burgos, A; Maldonado, J; De Los Rios, A; Solé, A; Esteve, I

    2013-09-15

    The roles of consortia of phototrophic microorganisms have been investigated in this paper to determine their potential role to tolerate or resist metals and to capture them from polluted cultures. With this purpose, two consortia of microorganisms: on one hand, Geitlerinema sp. DE2011 (Ge) and Scenedesmus sp. DE2009 (Sc) (both identified in this paper by molecular biology methods) isolated from Ebro Delta microbial mats, and on the other, Spirulina sp. PCC 6313 (Sp) and Chroococcus sp. PCC 9106 (Ch), from Pasteur culture collection were polluted with copper and lead. In order to analyze the ability of these consortia to tolerate and capture metals, copper and lead were selected, because both have been detected in Ebro Delta microbial mats. The tolerance-resistance to copper and lead for both consortia was determined in vivo and at cellular level by Confocal Laser Scanning Microscopy (CLSM-λscan function). The results obtained demonstrate that both consortia are highly tolerant-resistant to lead and that the limits between the copper concentration having cytotoxic effect and that having an essential effect are very close in these microorganisms. The capacity of both consortia to capture extra- and intracellular copper and lead was determined by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) respectively, coupled to an Energy Dispersive X-ray detector (EDX). The results showed that all the microorganisms assayed were able to capture copper extracellularly in the extrapolymeric substances, and lead extra- and intracellularly in polyphosphate inclusions. Moreover, the studied micro-organisms did not exert any inhibitory effect on each other's metal binding capacity. From the results obtained in this paper, it can be concluded that consortia of phototrophic microorganisms could play a very important role in biorepairing sediments polluted by metals, as a result of their ability to tolerate or resist high concentrations of metals and to

  14. The effect of the source of microorganisms on adaptation of hydrolytic consortia dedicated to anaerobic digestion of maize silage.

    PubMed

    Poszytek, Krzysztof; Pyzik, Adam; Sobczak, Adam; Lipinski, Leszek; Sklodowska, Aleksandra; Drewniak, Lukasz

    2017-08-01

    The main aim of this study was to evaluate the effect of the source of microorganisms on the selection of hydrolytic consortia dedicated to anaerobic digestion of maize silage. The selection process was investigated based on the analysis of changes in the hydrolytic activity and the diversity of microbial communities derived from (i) a hydrolyzer of a commercial agricultural biogas plant, (ii) cattle slurry and (iii) raw sewage sludge, during a series of 10 passages. Following the selection process, the adapted consortia were thoroughly analyzed for their ability to utilize maize silage and augmentation of anaerobic digestion communities. The results of selection of the consortia showed that every subsequent passage of each consortium leads to their adaptation to degradation of maize silage, which was manifested by the increased hydrolytic activity of the adapted consortia. Biodiversity analysis (based on the 16S rDNA amplicon sequencing) confirmed the changes microbial community of each consortium, and showed that after the last (10th) passage all microbial communities were dominated by the representatives of Lactobacillaceae, Prevotellaceae, Veillonellaceae. The results of the functional analyses showed that the adapted consortia improved the efficiency of maize silage degradation, as indicated by the increase in the concentration of glucose and volatile fatty acids (VFAs), as well as the soluble chemical oxygen demand (sCOD). Moreover, bioaugmentation of anaerobic digestion communities by the adapted hydrolytic consortia increased biogas yield by 10-29%, depending on the origin of the community. The obtained results also indicate that substrate input (not community origin) was the driving force responsible for the changes in the community structure of hydrolytic consortia dedicated to anaerobic digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Simultaneous Interferometric Measurement of Corrosive or Demineralizing Bacteria and Their Mineral Interfaces

    DTIC Science & Technology

    2009-03-01

    surface profile measurements of several bacterial species involved in micro- bially influenced corrosion and their solid-surface interfaces by using... influenced corrosion, involving the release of chemicals or the deposition of electrochemically active miner- als that accelerate surface...single cell, consistent with VSI height measurement variability (data not shown). To expand the range of VSI data acquisition to conditions that were

  16. Effect of Pseudomonas fluorescens on Buried Steel Pipeline Corrosion.

    PubMed

    Spark, Amy J; Law, David W; Ward, Liam P; Cole, Ivan S; Best, Adam S

    2017-08-01

    Buried steel infrastructure can be a source of iron ions for bacterial species, leading to microbiologically influenced corrosion (MIC). Localized corrosion of pipelines due to MIC is one of the key failure mechanisms of buried steel pipelines. In order to better understand the mechanisms of localized corrosion in soil, semisolid agar has been developed as an analogue for soil. Here, Pseudomonas fluorescens has been introduced to the system to understand how bacteria interact with steel. Through electrochemical testing including open circuit potentials, potentiodynamic scans, anodic potential holds, and electrochemical impedance spectroscopy it has been shown that P. fluorescens increases the rate of corrosion. Time for oxide and biofilms to develop was shown to not impact on the rate of corrosion but did alter the consistency of biofilm present and the viability of P. fluorescens following electrochemical testing. The proposed mechanism for increased corrosion rates of carbon steel involves the interactions of pyoverdine with the steel, preventing the formation of a cohesive passive layer, after initial cell attachment, followed by the formation of a metal concentration gradient on the steel surface.

  17. Identification and Resolution of Microdiversity through Metagenomic Sequencing of Parallel Consortia

    PubMed Central

    Maezato, Yukari; Wu, Yu-Wei; Romine, Margaret F.; Lindemann, Stephen R.

    2015-01-01

    To gain a predictive understanding of the interspecies interactions within microbial communities that govern community function, the genomic complement of every member population must be determined. Although metagenomic sequencing has enabled the de novo reconstruction of some microbial genomes from environmental communities, microdiversity confounds current genome reconstruction techniques. To overcome this issue, we performed short-read metagenomic sequencing on parallel consortia, defined as consortia cultivated under the same conditions from the same natural community with overlapping species composition. The differences in species abundance between the two consortia allowed reconstruction of near-complete (at an estimated >85% of gene complement) genome sequences for 17 of the 20 detected member species. Two Halomonas spp. indistinguishable by amplicon analysis were found to be present within the community. In addition, comparison of metagenomic reads against the consensus scaffolds revealed within-species variation for one of the Halomonas populations, one of the Rhodobacteraceae populations, and the Rhizobiales population. Genomic comparison of these representative instances of inter- and intraspecies microdiversity suggests differences in functional potential that may result in the expression of distinct roles in the community. In addition, isolation and complete genome sequence determination of six member species allowed an investigation into the sensitivity and specificity of genome reconstruction processes, demonstrating robustness across a wide range of sequence coverage (9× to 2,700×) within the metagenomic data set. PMID:26497460

  18. Identification and Resolution of Microdiversity through Metagenomic Sequencing of Parallel Consortia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, William C.; Maezato, Yukari; Wu, Yu-Wei

    2015-10-23

    To gain a predictive understanding of the interspecies interactions within microbial communities that govern community function, the genomic complement of every member population must be determined. Although metagenomic sequencing has enabled thede novoreconstruction of some microbial genomes from environmental communities, microdiversity confounds current genome reconstruction techniques. To overcome this issue, we performed short-read metagenomic sequencing on parallel consortia, defined as consortia cultivated under the same conditions from the same natural community with overlapping species composition. The differences in species abundance between the two consortia allowed reconstruction of near-complete (at an estimated >85% of gene complement) genome sequences for 17 ofmore » the 20 detected member species. TwoHalomonasspp. indistinguishable by amplicon analysis were found to be present within the community. In addition, comparison of metagenomic reads against the consensus scaffolds revealed within-species variation for one of theHalomonaspopulations, one of theRhodobacteraceaepopulations, and theRhizobialespopulation. Genomic comparison of these representative instances of inter- and intraspecies microdiversity suggests differences in functional potential that may result in the expression of distinct roles in the community. In addition, isolation and complete genome sequence determination of six member species allowed an investigation into the sensitivity and specificity of genome reconstruction processes, demonstrating robustness across a wide range of sequence coverage (9× to 2,700×) within the metagenomic data set.« less

  19. [Characterization and microbial community shifts of rice strawdegrading microbial consortia].

    PubMed

    Wang, Chunfang; Ma, Shichun; Huang, Yan; Liu, Laiyan; Fan, Hui; Deng, Yu

    2016-12-04

    To study the relationship between microbial community and degradation rate of rice straw, we compared and analyzed cellulose-decomposing ability, microbial community structures and shifts of microbial consortia F1 and F2. We determined exoglucanase activity by 3, 5-dinitrosalicylic acid colorimetry. We determined content of cellulose, hemicellulose and lignin in rice straw by Van Soest method, and calculated degradation rates of rice straw by the weight changes before and after a 10-day incubation. We analyzed and compared the microbial communities and functional microbiology shifts by clone libraries, Miseq analysis and real time-PCR based on the 16S rRNA gene and cel48 genes. Total degradation rate, cellulose, and hemicellulose degradation rate of microbial consortia F1 were significantly higher than that of F2. The variation trend of exoglucanase activity in both microbial consortia F1 and F2 was consistent with that of cel48 gene copies. Microbial diversity of F1 was complex with aerobic bacteria as dominant species, whereas that of F2 was simple with a high proportion of anaerobic cellulose decomposing bacteria in the later stage of incubation. In the first 4 days, unclassified Bacillales and Bacillus were dominant in both F1 and F2. The dominant species and abundance became different after 4-day incubation, Bacteroidetes and Firmicutes were dominant phyla of F1 and F2, respectively. Although Petrimonas and Pusillimonas were common dominant species in F1 and F2, abundance of Petrimonas in F2 (38.30%) was significantly higher than that in F1 (9.47%), and the abundance of Clostridiales OPB54 in F2 increased to 14.85% after 8-day incubation. The abundance of cel48 gene related with cellulose degradation rate and exoglucanase activity, and cel48 gene has the potential as a molecular marker to monitor the process of cellulose degradation. Microbial community structure has a remarkable impact on the degradation efficiency of straw cellulose, and Petrimonas

  20. Vitamin and Amino Acid Auxotrophy in Anaerobic Consortia Operating under Methanogenic Conditions

    PubMed Central

    Hubalek, Valerie; Buck, Moritz; Tan, BoonFei; Foght, Julia; Wendeberg, Annelie; Berry, David; Bertilsson, Stefan

    2017-01-01

    ABSTRACT Syntrophy among Archaea and Bacteria facilitates the anaerobic degradation of organic compounds to CH4 and CO2. Particularly during aliphatic and aromatic hydrocarbon mineralization, as in the case of crude oil reservoirs and petroleum-contaminated sediments, metabolic interactions between obligate mutualistic microbial partners are of central importance. Using micromanipulation combined with shotgun metagenomic approaches, we describe the genomes of complex consortia within short-chain alkane-degrading cultures operating under methanogenic conditions. Metabolic reconstruction revealed that only a small fraction of genes in the metagenome-assembled genomes encode the capacity for fermentation of alkanes facilitated by energy conservation linked to H2 metabolism. Instead, the presence of inferred lifestyles based on scavenging anabolic products and intermediate fermentation products derived from detrital biomass was a common feature. Additionally, inferred auxotrophy for vitamins and amino acids suggests that the hydrocarbon-degrading microbial assemblages are structured and maintained by multiple interactions beyond the canonical H2-producing and syntrophic alkane degrader-methanogen partnership. Compared to previous work, our report points to a higher order of complexity in microbial consortia engaged in anaerobic hydrocarbon transformation. IMPORTANCE Microbial interactions between Archaea and Bacteria mediate many important chemical transformations in the biosphere from degrading abundant polymers to synthesis of toxic compounds. Two of the most pressing issues in microbial interactions are how consortia are established and how we can modulate these microbial communities to express desirable functions. Here, we propose that public goods (i.e., metabolites of high energy demand in biosynthesis) facilitate energy conservation for life under energy-limited conditions and determine the assembly and function of the consortia. Our report suggests that an

  1. The Future of Consortia among Indian Libraries --- FORSA Consortium as Forerunner?

    NASA Astrophysics Data System (ADS)

    Birdie, Christina; Alladi, Vagiswari

    The phenomenon of consortia or group of libraries buying e-information together has become very important in the last few years. This new scenario, along with new forms of purchasing and selling e-information, has led to new pricing models that have not yet been fixed. Publishers and vendors find it convenient to communicate to a group collectively rather than transacting with individual libraries. In this paper we discuss the various offers from different publishers for access to electronic journals. We also attempt to analyze the suitability of these offers for the future of consortia arrangement in libraries in India based on the requirement and usage of digital information. Some of the challenges could be sorted out with the help of governments' participation in bridging the Digital Divide within the country more economically.

  2. 25 CFR 1000.103 - Do Tribes/Consortia need Secretarial approval to reallocate funds between programs that the Tribe...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 2 2013-04-01 2013-04-01 false Do Tribes/Consortia need Secretarial approval to reallocate funds between programs that the Tribe/Consortium administers under the AFA? 1000.103 Section 1000....103 Do Tribes/Consortia need Secretarial approval to reallocate funds between programs that the Tribe...

  3. DEVELOPMENT OF AN ENVIRONMENTALLY BENIGN MICROBIAL INHIBITOR TO CONTROL INTERNAL PIPELINE CORROSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristine L. Lowe; Bill W. Bogan; Wendy R. Sullivan

    2004-07-30

    The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. Previous testing indicated that the growth, and the metal corrosion caused by pure cultures of sulfate reducing bacteria were inhibited by hexane extracts of some pepper plants. This quarter tests were performed with mixed bacterialmore » cultures obtained from natural gas pipelines. Treatment with the pepper extracts affected the growth and metabolic activity of the microbial consortia. Specifically, the growth and metabolism of sulfate reducing bacteria was inhibited. The demonstration that pepper extracts can inhibit the growth and metabolism of sulfate reducing bacteria in mixed cultures is a significant observation validating a key hypothesis of the project. Future tests to determine the effects of pepper extracts on mature/established biofilms will be performed next.« less

  4. Different cultivation methods to acclimatise ammonia-tolerant methanogenic consortia.

    PubMed

    Tian, Hailin; Fotidis, Ioannis A; Mancini, Enrico; Angelidaki, Irini

    2017-05-01

    Bioaugmentation with ammonia tolerant-methanogenic consortia was proposed as a solution to overcome ammonia inhibition during anaerobic digestion process recently. However, appropriate technology to generate ammonia tolerant methanogenic consortia is still lacking. In this study, three basic reactors (i.e. batch, fed-batch and continuous stirred-tank reactors (CSTR)) operated at mesophilic (37°C) and thermophilic (55°C) conditions were assessed, based on methane production efficiency, incubation time, TAN/FAN (total ammonium nitrogen/free ammonia nitrogen) levels and maximum methanogenic activity. Overall, fed-batch cultivation was clearly the most efficient method compared to batch and CSTR. Specifically, by saving incubation time up to 150%, fed-batch reactors were acclimatised to nearly 2-fold higher FAN levels with a 37%-153% methanogenic activity improvement, compared to batch method. Meanwhile, CSTR reactors were inhibited at lower ammonia levels. Finally, specific methanogenic activity test showed that hydrogenotrophic methanogens were more active than aceticlastic methanogens in all FAN levels above 540mgNH 3 -NL -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Higher Education in Further Education Colleges: Indirectly Funded Partnerships: Codes of Practice for Franchise and Consortia Arrangements. Report.

    ERIC Educational Resources Information Center

    Higher Education Funding Council for England, Bristol.

    This report provides codes of practice for two types of indirectly funded partnerships entered into by higher education institutions and further education sector colleges: franchises and consortia. The codes of practice set out guidance on the principles that should be reflected in the franchise and consortia agreements that underpin indirectly…

  6. Development of an Efficient Bacterial Consortium for the Potential Remediation of Hydrocarbons from Contaminated Sites

    PubMed Central

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C.; Deka, Suresh

    2016-01-01

    The intrinsic biodegradability of hydrocarbons and the distribution of proficient degrading microorganisms in the environment are very crucial for the implementation of bioremediation practices. Among others, one of the most favorable methods that can enhance the effectiveness of bioremediation of hydrocarbon-contaminated environment is the application of biosurfactant producing microbes. In the present study, the biodegradation capacities of native bacterial consortia toward total petroleum hydrocarbons (TPH) with special emphasis to poly aromatic hydrocarbons were determined. The purpose of the study was to isolate TPH degrading bacterial strains from various petroleum contaminated soil of Assam, India and develop a robust bacterial consortium for bioremediation of crude oil of this native land. From a total of 23 bacterial isolates obtained from three different hydrocarbons contaminated samples five isolates, namely KS2, PG1, PG5, R1, and R2 were selected as efficient crude oil degraders with respect to their growth on crude oil enriched samples. Isolates KS2, PG1, and R2 are biosurfactant producers and PG5, R1 are non-producers. Fourteen different consortia were designed involving both biosurfactant producing and non-producing isolates. Consortium 10, which comprises two Bacillus strains namely, Bacillus pumilus KS2 and B. cereus R2 (identified by 16s rRNA sequencing) has shown the best result in the desired degradation of crude oil. The consortium showed degradation up to 84.15% of TPH after 5 weeks of incubation, as revealed from gravimetric analysis. FTIR (Fourier transform infrared) and GCMS (Gas chromatography-mass spectrometer) analyses were correlated with gravimetric data which reveals that the consortium has removed a wide range of petroleum hydrocarbons in comparison with abiotic control including different aliphatic and aromatic hydrocarbons. PMID:27471499

  7. Toward a "Common Definition of English Learner": Guidance for States and State Assessment Consortia in Defining and Addressing Policy and Technical Issues and Options

    ERIC Educational Resources Information Center

    Linquanti, Robert; Cook, H. Gary

    2013-01-01

    States participating in the four federally-funded assessment consortia are required to establish a "common definition of English Learner." This includes the two Race to the Top academic assessment consortia and the two Enhanced Assessment Grant English language proficiency (ELP) assessment consortia. This paper provides guidance that…

  8. Distinctive colonization of Bacillus sp. bacteria and the influence of the bacterial biofilm on electrochemical behaviors of aluminum coatings.

    PubMed

    Abdoli, Leila; Suo, Xinkun; Li, Hua

    2016-09-01

    Formation of biofilm is usually essential for the development of biofouling and crucially impacts the corrosion of marine structures. Here we report the attachment behaviors of Bacillus sp. bacteria and subsequent formation of bacterial biofilm on stainless steel and thermal sprayed aluminum coatings in artificial seawater. The colonized bacteria accelerate the corrosion of the steel plates, and markedly enhance the anti-corrosion performances of the Al coatings in early growth stage of the bacterial biofilm. After 7days incubation, the biofilm formed on the steel is heterogeneous while exhibits homogeneous feature on the Al coating. Atomic force microscopy examination discloses inception of formation of local pitting on steel plates associated with significantly roughened surface. Electrochemical testing suggests that the impact of the bacterial biofilm on the corrosion behaviors of marine structures is not decided by the biofilm alone, it is instead attributed to synergistic influence by both the biofilm and physicochemical characteristics of the substratum materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Health Sciences Librarians and Education: Clinical Librarianship, Consortia, Extraterrestial Telemedicine

    ERIC Educational Resources Information Center

    Cummings, Polly; And Others

    1978-01-01

    Three speeches presented by a panel of health science librarians discuss: (1) clinical medical librarianship, with a definition and descriptions of programs in several medical school libraries; (2) consortia, including a definition and reasons for their development; and (3) use of telecommunications for sharing medical information. (MBR)

  10. Corexit 9500 Enhances Oil Biodegradation and Changes Active Bacterial Community Structure of Oil-Enriched Microcosms.

    PubMed

    Techtmann, Stephen M; Zhuang, Mobing; Campo, Pablo; Holder, Edith; Elk, Michael; Hazen, Terry C; Conmy, Robyn; Santo Domingo, Jorge W

    2017-05-15

    To better understand the impacts of Corexit 9500 on the structure and activity levels of hydrocarbon-degrading microbial communities, we analyzed next-generation 16S rRNA gene sequencing libraries of hydrocarbon enrichments grown at 5 and 25°C using both DNA and RNA extracts as the sequencing templates. Oil biodegradation patterns in both 5 and 25°C enrichments were consistent with those reported in the literature (i.e., aliphatics were degraded faster than aromatics). Slight increases in biodegradation were observed in the presence of Corexit at both temperatures. Differences in community structure were observed between treatment conditions in the DNA-based libraries. The 25°C consortia were dominated by Vibrio , Idiomarina , Marinobacter , Alcanivorax , and Thalassospira species, while the 5°C consortia were dominated by several species of the genera Flavobacterium , Alcanivorax , and Oleispira Most of these genera have been linked to hydrocarbon degradation and have been observed after oil spills. Colwellia and Cycloclasticus , known aromatic degraders, were also found in these enrichments. The addition of Corexit did not have an effect on the active bacterial community structure of the 5°C consortia, while at 25°C, a decrease in the relative abundance of Marinobacter was observed. At 25°C, Thalassospira , Marinobacter , and Idiomarina were present at higher relative abundances in the RNA than DNA libraries, suggesting that they were active in degradation. Similarly, Oleispira was greatly stimulated by the addition of oil at 5°C. IMPORTANCE While dispersants such as Corexit 9500 can be used to treat oil spills, there is still debate on the effectiveness on enhancing oil biodegradation and its potential toxic effect on oil-degrading microbial communities. The results of this study provide some insights on the microbial dynamics of hydrocarbon-degrading bacterial populations in the presence of Corexit 9500. Operational taxonomic unit (OTU) analyses

  11. Corexit 9500 Enhances Oil Biodegradation and Changes Active Bacterial Community Structure of Oil-Enriched Microcosms

    PubMed Central

    Zhuang, Mobing; Campo, Pablo; Holder, Edith; Elk, Michael; Conmy, Robyn

    2017-01-01

    ABSTRACT To better understand the impacts of Corexit 9500 on the structure and activity levels of hydrocarbon-degrading microbial communities, we analyzed next-generation 16S rRNA gene sequencing libraries of hydrocarbon enrichments grown at 5 and 25°C using both DNA and RNA extracts as the sequencing templates. Oil biodegradation patterns in both 5 and 25°C enrichments were consistent with those reported in the literature (i.e., aliphatics were degraded faster than aromatics). Slight increases in biodegradation were observed in the presence of Corexit at both temperatures. Differences in community structure were observed between treatment conditions in the DNA-based libraries. The 25°C consortia were dominated by Vibrio, Idiomarina, Marinobacter, Alcanivorax, and Thalassospira species, while the 5°C consortia were dominated by several species of the genera Flavobacterium, Alcanivorax, and Oleispira. Most of these genera have been linked to hydrocarbon degradation and have been observed after oil spills. Colwellia and Cycloclasticus, known aromatic degraders, were also found in these enrichments. The addition of Corexit did not have an effect on the active bacterial community structure of the 5°C consortia, while at 25°C, a decrease in the relative abundance of Marinobacter was observed. At 25°C, Thalassospira, Marinobacter, and Idiomarina were present at higher relative abundances in the RNA than DNA libraries, suggesting that they were active in degradation. Similarly, Oleispira was greatly stimulated by the addition of oil at 5°C. IMPORTANCE While dispersants such as Corexit 9500 can be used to treat oil spills, there is still debate on the effectiveness on enhancing oil biodegradation and its potential toxic effect on oil-degrading microbial communities. The results of this study provide some insights on the microbial dynamics of hydrocarbon-degrading bacterial populations in the presence of Corexit 9500. Operational taxonomic unit (OTU) analyses

  12. 25 CFR 1000.88 - Do Tribes/Consortia need Secretarial approval to redesign BIA programs that the Tribe/Consortium...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 2 2013-04-01 2013-04-01 false Do Tribes/Consortia need Secretarial approval to redesign BIA programs that the Tribe/Consortium administers under an AFA? 1000.88 Section 1000.88 Indians... in An Afa § 1000.88 Do Tribes/Consortia need Secretarial approval to redesign BIA programs that the...

  13. Consortia of low-abundance bacteria drive sulfate reduction-dependent degradation of fermentation products in peat soil microcosms

    DOE PAGES

    Hausmann, Bela; Knorr, Klaus-Holger; Schreck, Katharina; ...

    2016-03-25

    A cryptic sulfur cycle and effectively competes with methanogenic degradation pathways sustains dissimilatory sulfate reduction in peatlands. In a series of peat soil microcosms incubated over 50 days, we identified bacterial consortia that responded to small, periodic additions of individual fermentation products (formate, acetate, propionate, lactate or butyrate) in the presence or absence of sulfate. Under sulfate supplementation, net sulfate turnover (ST) steadily increased to 16–174 nmol cm –3 per day and almost completely blocked methanogenesis. 16S rRNA gene and cDNA amplicon sequencing identified microorganisms whose increases in ribosome numbers strongly correlated to ST. Natively abundant (greater than or equalmore » to0.1% estimated genome abundance) species-level operational taxonomic units (OTUs) showed no significant response to sulfate. In contrast, low-abundance OTUs responded significantly to sulfate in incubations with propionate, lactate and butyrate. These OTUs included members of recognized sulfate-reducing taxa (Desulfosporosinus, Desulfopila, Desulfomonile, Desulfovibrio) and also members of taxa that are either yet unknown sulfate reducers or metabolic interaction partners thereof. The most responsive OTUs markedly increased their ribosome content but only weakly increased in abundance. Responsive Desulfosporosinus OTUs even maintained a constantly low population size throughout 50 days, which suggests a novel strategy of rare biosphere members to display activity. Interestingly, two OTUs of the non-sulfate-reducing genus Telmatospirillum (Alphaproteobacteria) showed strongly contrasting preferences towards sulfate in butyrate-amended microcosms, corroborating that closely related microorganisms are not necessarily ecologically coherent. We show that diverse consortia of low-abundance microorganisms can perform peat soil sulfate reduction, a process that exerts control on methane production in these climate-relevant ecosystems.« less

  14. Comparison of the Rhizosphere Bacterial Communities of Zigongdongdou Soybean and a High-Methionine Transgenic Line of This Cultivar

    PubMed Central

    Ji, Jun; Wu, Haiying; Meng, Fang; Zhang, Mingrong; Zheng, Xiaobo; Wu, Cunxiang; Zhang, Zhengguang

    2014-01-01

    Previous studies have shown that methionine from root exudates affects the rhizosphere bacterial population involved in soil nitrogen fixation. A transgenic line of Zigongdongdou soybean cultivar (ZD91) that expresses Arabidopsis cystathionine γ-synthase resulting in an increased methionine production was examined for its influence to the rhizosphere bacterial population. Using 16S rRNA gene-based pyrosequencing analysis of the V4 region and DNA extracted from bacterial consortia collected from the rhizosphere of soybean plants grown in an agricultural field at the pod-setting stage, we characterized the populational structure of the bacterial community involved. In total, 87,267 sequences (approximately 10,908 per sample) were analyzed. We found that Acidobacteria, Proteobacteria, Bacteroidetes, Actinobacteria, Chloroflexi, Planctomycetes, Gemmatimonadetes, Firmicutes, and Verrucomicrobia constitute the dominant taxonomic groups in either the ZD91 transgenic line or parental cultivar ZD, and that there was no statistically significant difference in the rhizosphere bacterial community structure between the two cultivars. PMID:25079947

  15. HIPPARCOS - Activities of the data reduction consortia

    NASA Astrophysics Data System (ADS)

    Lindegren, L.; Kovalevsky, J.

    The complete reduction of data from the ESA astrometry satellite Hipparcos, from some 1012bits of photon counts and ancillary data to a catalogue of astrometric parameters and magnitudes for the 100,000 programme stars, will be independently undertaken by two scientific consortia, NDAC and FAST. This approach is motivated by the size and complexity of the reductions and to ensure the validity of the results. The end product will be a single, agreed-upon catalogue. This paper describes briefly the principles of reduction and the organisation and status within each consortium.

  16. Functional Stability Of A Mixed Microbial Consortia Producing PHA From Waste Carbon Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David N. Thompson; Erik R. Coats; William A. Smith

    2006-04-01

    Polyhydroxyalkanoates (PHAs), naturally-occurring biological polyesters that are microbially synthesized from a myriad of carbon sources, can be utilized as biodegradable substitutes for petroleum-derived thermoplastics. However, current PHA commercialization schemes are limited by high feedstock costs, the requirement for aseptic reactors, and high separation and purification costs. Bacteria indigenous to municipal waste streams can accumulate large quantities of PHA under environmentally controlled conditions; hence, a potentially more environmentally-effective method of production would utilize these consortia to produce PHAs from inexpensive waste carbon sources. In this study, PHA production was accomplished in sequencing batch bioreactors utilizing mixed microbial consortia from municipal activatedmore » sludge as inoculum, in cultures grown on real wastewaters. PHA production averaged 85%, 53%, and 10% of the cell dry weight from methanol-enriched pulp-and-paper mill foul condensate, fermented municipal primary solids, and biodiesel wastewater, respectively. The PHA-producing microbial consortia were examined to explore the microbial community changes that occurred during reactor operations, employing denaturing gradient gel electrophoresis (DGGE) of 16S-rDNA from PCR-amplified DNA extracts. Distinctly different communities were observed both between and within wastewaters following enrichment. More importantly, stable functions were maintained despite the differing and contrasting microbial populations.« less

  17. Microbiologically influenced corrosion of orthodontic metallic appliances.

    PubMed

    Kameda, Takashi; Oda, Hirotake; Ohkuma, Kazuo; Sano, Natsuki; Batbayar, Nomintsetseg; Terashima, Yukari; Sato, Soh; Terada, Kazuto

    2014-01-01

    Biocorrosion (microbiologically influenced corrosion; MIC) occur in aquatic habitats varying in nutrient content, temperature, stress and pH. The oral environment of organisms, including humans, should be one of the most hospitable for MIC. Corrosion of metallic appliances in the oral region is one cause of metal allergy in patients. In this study, an inductively coupled plasma-optical emission spectrometer revealed elution of Fe, Cr and Ni from stainless steel (SUS) appliances incubated with oral bacteria. Three-dimensional laser confocal microscopy also revealed that oral bacterial culture promoted increased surface roughness and corrosion pits in SUS appliances. The pH of the supernatant was lowered after co-culture of appliances and oral bacteria in any combinations, but not reached at the level of depassivation pH of their metallic materials. This study showed that Streptococcus mutans and Streptococcus sanguinis which easily created biofilm on the surfaces of teeth and appliances, did corrode orthodontic SUS appliances.

  18. Biodegradation of different petroleum hydrocarbons by free and immobilized microbial consortia.

    PubMed

    Shen, Tiantian; Pi, Yongrui; Bao, Mutai; Xu, Nana; Li, Yiming; Lu, Jinren

    2015-12-01

    The efficiencies of free and immobilized microbial consortia in the degradation of different types of petroleum hydrocarbons were investigated. In this study, the biodegradation rates of naphthalene, phenanthrene, pyrene and crude oil reached about 80%, 30%, 56% and 48% under the optimum environmental conditions of free microbial consortia after 7 d. We evaluated five unique co-metabolic substances with petroleum hydrocarbons, α-lactose was the best co-metabolic substance among glucose, α-lactose, soluble starch, yeast powder and urea. The orthogonal biodegradation analysis results showed that semi-coke was the best immobilized carrier followed by walnut shell and activated carbon. Meanwhile, the significance of various factors that contribute to the biodegradation of semi-coke immobilized microbial consortia followed the order of: α-lactose > semi-coke > sodium alginate > CaCl2. Moreover, the degradation rate of the immobilized microbial consortium (47%) was higher than that of a free microbial consortium (26%) under environmental conditions such as the crude oil concentration of 3 g L(-1), NaCl concentration of 20 g L(-1), pH at 7.2-7.4 and temperature of 25 °C after 5 d. SEM and FTIR analyses revealed that the structure of semi-coke became more porous and easily adhered to the microbial consortium; the functional groups (e.g., hydroxy and phosphate) were identified in the microbial consortium and were changed by immobilization. This study demonstrated that the ability of microbial adaptation to the environment can be improved by immobilization which expands the application fields of microbial remediation.

  19. Competitive resource allocation to metabolic pathways contributes to overflow metabolisms and emergent properties in cross-feeding microbial consortia.

    PubMed

    Carlson, Ross P; Beck, Ashley E; Phalak, Poonam; Fields, Matthew W; Gedeon, Tomas; Hanley, Luke; Harcombe, William R; Henson, Michael A; Heys, Jeffrey J

    2018-04-17

    Resource scarcity is a common stress in nature and has a major impact on microbial physiology. This review highlights microbial acclimations to resource scarcity, focusing on resource investment strategies for chemoheterotrophs from the molecular level to the pathway level. Competitive resource allocation strategies often lead to a phenotype known as overflow metabolism; the resulting overflow byproducts can stabilize cooperative interactions in microbial communities and can lead to cross-feeding consortia. These consortia can exhibit emergent properties such as enhanced resource usage and biomass productivity. The literature distilled here draws parallels between in silico and laboratory studies and ties them together with ecological theories to better understand microbial stress responses and mutualistic consortia functioning. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  20. Influence of carbon steel grade on the initial attachment of bacteria and microbiologically influenced corrosion.

    PubMed

    Javed, M A; Neil, W C; Stoddart, P R; Wade, S A

    2016-01-01

    The influence of the composition and microstructure of different carbon steel grades on the initial attachment (≤ 60 min) of Escherichia coli and subsequent longer term (28 days) corrosion was investigated. The initial bacterial attachment increased with time on all grades of carbon steel. However, the rate and magnitude of bacterial attachment varied on the different steel grades and was significantly less on the steels with a higher pearlite phase content. The observed variations in the number of bacterial cells attached across different steel grades were significantly reduced by applying a fixed potential to the steel samples. Longer term immersion studies showed similar levels of biofilm formation on the surface of the different grades of carbon steel. The measured corrosion rates were significantly higher in biotic conditions compared to abiotic conditions and were found to be positively correlated with the pearlite phase content of the different grades of carbon steel coupons.

  1. Wiring Together Synthetic Bacterial Consortia to Create a Biological Integrated Circuit.

    PubMed

    Perry, Nicolas; Nelson, Edward M; Timp, Gregory

    2016-12-16

    The promise of adapting biology to information processing will not be realized until engineered gene circuits, operating in different cell populations, can be wired together to express a predictable function. Here, elementary biological integrated circuits (BICs), consisting of two sets of transmitter and receiver gene circuit modules with embedded memory placed in separate cell populations, were meticulously assembled using live cell lithography and wired together by the mass transport of quorum-sensing (QS) signal molecules to form two isolated communication links (comlinks). The comlink dynamics were tested by broadcasting "clock" pulses of inducers into the networks and measuring the responses of functionally linked fluorescent reporters, and then modeled through simulations that realistically captured the protein production and molecular transport. These results show that the comlinks were isolated and each mimicked aspects of the synchronous, sequential networks used in digital computing. The observations about the flow conditions, derived from numerical simulations, and the biofilm architectures that foster or silence cell-to-cell communications have implications for everything from decontamination of drinking water to bacterial virulence.

  2. Applicability of cryoconite consortia of microorganisms and glacier-dwelling animals in astrobiological studies

    NASA Astrophysics Data System (ADS)

    Zawierucha, Krzysztof; Ostrowska, Marta; Kolicka, Małgorzata

    2017-06-01

    For several years it has been of interest to astrobiologists to focus on Earth's glaciers as a habitat that can be similar to glaciers on other moons and planets. Microorganisms on glaciers form consortia - cryoconite granules (cryoconites). They are granular/spherical mineral particles connected with archaea, cyanobacteria, heterotrophic bacteria, algae, fungi, and micro animals (mainly Tardigrada and Rotifera). Cryophilic organisms inhabiting glaciers have been studied in different aspects: from taxonomy, ecology and biogeography, to searching of biotechnological potentials and physiological strategies to survive in extreme glacial habitats. However, they have never been used in astrobiological experiments. The main aim of this paper is brief review of literature and supporting assumptions that cryoconite granules and microinvertebrates on glaciers, are promising models in astrobiology for looking for analogies and survival strategies in terms of icy planets and moons. So far, astrobiological research have been conducted on single strains of prokaryotes or microinvertebrates but never on a consortium of them. Due to the hypothetical similarity of glaciers on the Earth to those on other planets these cryoconites consortia of microorganisms and glacier microinvertebrates may be applied in astrobiological experiments instead of the limno-terrestrial ones used currently. Those consortia and animals have qualities to use them in such studies and they may be the key to understanding how organisms are able to survive, reproduce and remain active at low temperatures.

  3. NLM's Medical Library Resource Improvement Grant for Consortia Development: a proposed outline to simplify the application process.

    PubMed

    Kabler, A W

    1980-01-01

    The National Library of Medicine's Resource Improvement Grant for Consortia is available to assist with developing hospital library consortia, and to support the development of basic healthy information collections. In an effort to simplify the grant application process, this paper presents suggestions for writing the narrative section of the first budget-period application, using the outline in NLM's Application Instructions for Consortium Applicants. Suggestions for writing the narratives of the second budget-period application and the collection development application are also included.

  4. From source to filter: changes in bacterial community composition during potable water treatment.

    PubMed

    Zanacic, Enisa; McMartin, Dena W; Stavrinides, John

    2017-06-01

    Rural communities rely on surface water reservoirs for potable water. Effective removal of chemical contaminants and bacterial pathogens from these reservoirs requires an understanding of the bacterial community diversity that is present. In this study, we carried out a 16S rRNA-based profiling approach to describe the bacterial consortia in the raw surface water entering the water treatment plants of 2 rural communities. Our results show that source water is dominated by the Proteobacteria, Bacteroidetes, and Cyanobacteria, with some evidence of seasonal effects altering the predominant groups at each location. A subsequent community analysis of transects of a biological carbon filter in the water treatment plant revealed a significant increase in the proportion of Proteobacteria, Acidobacteria, Planctomycetes, and Nitrospirae relative to raw water. Also, very few enteric coliforms were identified in either the source water or within the filter, although Mycobacterium was of high abundance and was found throughout the filter along with Aeromonas, Legionella, and Pseudomonas. This study provides valuable insight into bacterial community composition within drinking water treatment facilities, and the importance of implementing appropriate disinfection practices to ensure safe potable water for rural communities.

  5. Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade.

    PubMed

    Schreiber, Lars; Holler, Thomas; Knittel, Katrin; Meyerdierks, Anke; Amann, Rudolf

    2010-08-01

    The anaerobic oxidation of methane (AOM) with sulfate as terminal electron acceptor is mediated by consortia of methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Whereas three clades of ANME have been repeatedly studied with respect to phylogeny, key genes and genomic capabilities, little is known about their sulfate-reducing partner. In order to identify the partner of anaerobic methanotrophs of the ANME-2 clade, bacterial 16S rRNA gene libraries were constructed from cultures highly enriched for ANME-2a and ANME-2c in consortia with Deltaproteobacteria of the Desulfosarcina/Desulfococcus group (DSS). Phylogenetic analysis of those and publicly available sequences from AOM sites supported the hypothesis by Knittel and colleagues that the DSS partner belongs to the diverse SEEP-SRB1 cluster. Six subclusters of SEEP-SRB1, SEEP-SRB1a to SEEP-SRB1f, were proposed and specific oligonucleotide probes were designed. Using fluorescence in situ hybridization on samples from six different AOM sites, SEEP-SRB1a was identified as sulfate-reducing partner in up to 95% of total ANME-2 consortia. SEEP-SRB1a cells exhibited a rod-shaped, vibrioid, or coccoid morphology and were found to be associated with subgroups ANME-2a and ANME-2c. Moreover, SEEP-SRB1a was also detected in 8% to 23% of ANME-3 consortia in Haakon Mosby Mud Volcano sediments, previously described to be predominantly associated with SRB of the Desulfobulbus group. SEEP-SRB1a contributed to only 0.3% to 0.7% of all single cells in almost all samples indicating that these bacteria are highly adapted to a symbiotic relationship with ANME-2. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  6. A novel and simple treatment for control of sulfide induced sewer concrete corrosion using free nitrous acid.

    PubMed

    Sun, Xiaoyan; Jiang, Guangming; Bond, Philip L; Keller, Jurg; Yuan, Zhiguo

    2015-03-01

    Improved technologies are currently required for mitigating microbially induced concrete corrosion caused by the oxidation of sulfide to sulfuric acid in sewer systems. This study presents a novel strategy for reducing H2S oxidation on concrete surfaces that accommodate an active corrosion biofilm. The strategy aims to reduce biological oxidation of sulfide through treating the corrosion biofilm with free nitrous acid (FNA, i.e. HNO2). Two concrete coupons with active corrosion activity and surface pH of 3.8 ± 0.3 and 2.7 ± 0.2 were sprayed with nitrite. For both coupons, the H2S uptake rates were reduced by 84%-92% 15 days after the nitrite spray. No obvious recovery of the H2S uptake rate was observed during the entire experimental period (up to 12 months after the spray), indicating the long-term effectiveness of the FNA treatment in controlling the activity of the corrosion-causing biofilms. Live/Dead staining tests on the microorganisms on the concrete coupon surfaces demonstrated that viable bacterial cells decreased by > 80% 39 h after the nitrite spray, suggesting that biofilm cells were killed by the treatment. Examination of a corrosion layer within a suspended solution, containing the corrosion-causing biofilms, indicated that biological activity (ATP level and ratio of viable bacterial cells) was severely decreased by the treatment, confirming the bactericidal effect of FNA on the microorganisms in the biofilms. While field trials are still required to verify its effectiveness, it has been demonstrated here that the FNA spray is potentially a very cheap and effective strategy to reduce sewer corrosion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Genomic Reconstruction of Carbohydrate Utilization Capacities in Microbial-Mat Derived Consortia

    PubMed Central

    Leyn, Semen A.; Maezato, Yukari; Romine, Margaret F.; Rodionov, Dmitry A.

    2017-01-01

    Two nearly identical unicyanobacterial consortia (UCC) were previously isolated from benthic microbial mats that occur in a heliothermal saline lake in northern Washington State. Carbohydrates are a primary source of carbon and energy for most heterotrophic bacteria. Since CO2 is the only carbon source provided, the cyanobacterium must provide a source of carbon to the heterotrophs. Available genomic sequences for all members of the UCC provide opportunity to investigate the metabolic routes of carbon transfer between autotroph and heterotrophs. Here, we applied a subsystem-based comparative genomics approach to reconstruct carbohydrate utilization pathways and identify glycohydrolytic enzymes, carbohydrate transporters and pathway-specific transcriptional regulators in 17 heterotrophic members of the UCC. The reconstructed metabolic pathways include 800 genes, near a one-fourth of which encode enzymes, transporters and regulators with newly assigned metabolic functions resulting in discovery of novel functional variants of carbohydrate utilization pathways. The in silico analysis revealed the utilization capabilities for 40 carbohydrates and their derivatives. Two Halomonas species demonstrated the largest number of sugar catabolic pathways. Trehalose, sucrose, maltose, glucose, and beta-glucosides are the most commonly utilized saccharides in this community. Reconstructed regulons for global regulators HexR and CceR include central carbohydrate metabolism genes in the members of Gammaproteobacteria and Alphaproteobacteria, respectively. Genomics analyses were supplemented by experimental characterization of metabolic phenotypes in four isolates derived from the consortia. Measurements of isolate growth on the defined medium supplied with individual carbohydrates confirmed most of the predicted catabolic phenotypes. Not all consortia members use carbohydrates and only a few use complex polysaccharides suggesting a hierarchical carbon flow from cyanobacteria to

  8. Evaluation of NASA space grant consortia programs

    NASA Technical Reports Server (NTRS)

    Eisenberg, Martin A.

    1990-01-01

    The meaningful evaluation of the NASA Space Grant Consortium and Fellowship Programs must overcome unusual difficulties: (1) the program, in its infancy, is undergoing dynamic change; (2) the several state consortia and universities have widely divergent parochial goals that defy a uniform evaluative process; and (3) the pilot-sized consortium programs require that the evaluative process be economical in human costs less the process of evaluation comprise the effectiveness of the programs they are meant to assess. This paper represents an attempt to assess the context in which evaluation is to be conducted, the goals and limitations inherent to the evaluation, and to recommend appropriate guidelines for evaluation.

  9. MULTIPLE IMAGING TECHNIQUES DEMONSTRATE THE MANIPULATION OF SURFACES TO REDUCE BACTERIAL CONTAMINATION

    EPA Science Inventory

    Surface imaging techniques were combined to determine appropriate manipulation of technologically important surfaces for commercial applications. Stainless steel surfaces were engineered to reduce bacterial contamination, biofilm formation, and corrosion during product processing...

  10. Phylogenetic analysis of TCE-dechlorinating consortia enriched on a variety of electron donors.

    PubMed

    Freeborn, Ryan A; West, Kimberlee A; Bhupathiraju, Vishvesh K; Chauhan, Sadhana; Rahm, Brian G; Richardson, Ruth E; Alvarez-Cohen, Lisa

    2005-11-01

    Two rapidly fermented electron donors, lactate and methanol, and two slowly fermented electron donors, propionate and butyrate, were selected for enrichment studies to evaluate the characteristics of anaerobic microbial consortia that reductively dechlorinate TCE to ethene. Each electron donor enrichment subculture demonstrated the ability to dechlorinate TCE to ethene through several serial transfers. Microbial community analyses based upon 16S rDNA, including terminal restriction fragment length polymorphism (T-RFLP) and clone library/sequencing, were performed to assess major changes in microbial community structure associated with electron donors capable of stimulating reductive dechlorination. Results demonstrated that five phylogenic subgroups or genera of bacteria were present in all consortia, including Dehalococcoides sp., low G+C Gram-positives (mostly Clostridium and Eubacterium sp.), Bacteroides sp., Citrobacter sp., and delta Proteobacteria (mostly Desulfovibrio sp.). Phylogenetic association indicates that only minor shifts in the microbial community structure occurred between the four alternate electron donor enrichments and the parent consortium. Inconsistent detection of Dehalococcoides spp. in clone libraries and T-RFLP of enrichment subcultures was resolved using quantitative polymerase chain reaction (Q-PCR). Q-PCR with primers specific to Dehalococcoides 16S rDNA resulted in positive detection of this species in all enrichments. Our results suggest that TCE-dechlorinating consortia can be stably maintained on a variety of electron donors and that quantities of Dehalococcoides cells detected with Dehalococcoides specific 16S rDNA primer/probe sets do not necessarily correlate well with solvent degradation rates.

  11. 34 CFR 614.5 - What are the matching requirements for the consortia?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What are the matching requirements for the consortia? 614.5 Section 614.5 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION PREPARING TOMORROW'S TEACHERS TO USE...

  12. [Microbiological corrosion of aluminum alloys].

    PubMed

    Smirnov, V F; Belov, D V; Sokolova, T N; Kuzina, O V; Kartashov, V R

    2008-01-01

    Biological corrosion of ADO quality aluminum and aluminum-based construction materials (alloys V65, D16, and D16T) was studied. Thirteen microscopic fungus species and six bacterial species proved to be able to attack aluminum and its alloys. It was found that biocorrosion of metals by microscopic fungi and bacteria was mediated by certain exometabolites. Experiments on biocorrosion of the materials by the microscopic fungus Alternaria alternata, the most active biodegrader, demonstrated that the micromycete attack started with the appearance of exudate with pH 8-9 on end faces of the samples.

  13. Molecular analysis of microbial diversity in corrosion samples from energy transmission towers.

    PubMed

    Oliveira, Valéria M; Lopes-Oliveira, Patrícia F; Passarini, Michel R Z; Menezes, Claudia B A; Oliveira, Walter R C; Rocha, Adriano J; Sette, Lara D

    2011-04-01

    Microbial diversity in corrosion samples from energy transmission towers was investigated using molecular methods. Ribosomal DNA fragments were used to assemble gene libraries. Sequence analysis indicated 10 bacterial genera within the phyla Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. In the two libraries generated from corroded screw-derived samples, the genus Acinetobacter was the most abundant. Acinetobacter and Clostridium spp. dominated, with similar percentages, in the libraries derived from corrosion scrapings. Fungal clones were affiliated with 14 genera belonging to the phyla Ascomycota and Basidiomycota; of these, Capnobotryella and Fellomyces were the most abundant fungi observed. Several of the microorganisms had not previously been associated with biofilms and corrosion, reinforcing the need to use molecular techniques to achieve a more comprehensive assessment of microbial diversity in environmental samples.

  14. Unveiling the metabolic potential of two soil-derived microbial consortia selected on wheat straw

    PubMed Central

    Jiménez, Diego Javier; Chaves-Moreno, Diego; van Elsas, Jan Dirk

    2015-01-01

    Based on the premise that plant biomass can be efficiently degraded by mixed microbial cultures and/or enzymes, we here applied a targeted metagenomics-based approach to explore the metabolic potential of two forest soil-derived lignocellulolytic microbial consortia, denoted RWS and TWS (bred on wheat straw). Using the metagenomes of three selected batches of two experimental systems, about 1.2 Gb of sequence was generated. Comparative analyses revealed an overrepresentation of predicted carbohydrate transporters (ABC, TonB and phosphotransferases), two-component sensing systems and β-glucosidases/galactosidases in the two consortia as compared to the forest soil inoculum. Additionally, “profiling” of carbohydrate-active enzymes showed significant enrichments of several genes encoding glycosyl hydrolases of families GH2, GH43, GH92 and GH95. Sequence analyses revealed these to be most strongly affiliated to genes present on the genomes of Sphingobacterium, Bacteroides, Flavobacterium and Pedobacter spp. Assembly of the RWS and TWS metagenomes generated 16,536 and 15,902 contigs of ≥10 Kb, respectively. Thirteen contigs, containing 39 glycosyl hydrolase genes, constitute novel (hemi)cellulose utilization loci with affiliation to sequences primarily found in the Bacteroidetes. Overall, this study provides deep insight in the plant polysaccharide degrading capabilities of microbial consortia bred from forest soil, highlighting their biotechnological potential. PMID:26343383

  15. Analysis of Bacterial Community Composition of Corroded Steel Immersed in Sanya and Xiamen Seawaters in China via Method of Illumina MiSeq Sequencing

    PubMed Central

    Li, Xiaohong; Duan, Jizhou; Xiao, Hui; Li, Yongqian; Liu, Haixia; Guan, Fang; Zhai, Xiaofan

    2017-01-01

    Metal corrosion is of worldwide concern because it is the cause of major economic losses, and because it creates significant safety issues. The mechanism of the corrosion process, as influenced by bacteria, has been studied extensively. However, the bacterial communities that create the biofilms that form on metals are complicated, and have not been well studied. This is why we sought to analyze the composition of bacterial communities living on steel structures, together with the influence of ecological factors on these communities. The corrosion samples were collected from rust layers on steel plates that were immersed in seawater for two different periods at Sanya and Xiamen, China. We analyzed the bacterial communities on the samples by targeted 16S rRNA gene (V3–V4 region) sequencing using the Illumina MiSeq. Phylogenetic analysis revealed that the bacteria fell into 13 phylotypes (similarity level = 97%). Proteobacteria, Firmicutes and Bacteroidetes were the dominant phyla, accounting for 88.84% of the total. Deltaproteobacteria, Clostridia and Gammaproteobacteria were the dominant classes, and accounted for 70.90% of the total. Desulfovibrio spp., Desulfobacter spp. and Desulfotomaculum spp. were the dominant genera and accounted for 45.87% of the total. These genera are sulfate-reducing bacteria that are known to corrode steel. Bacterial diversity on the 6 months immersion samples was much higher than that of the samples that had been immersed for 8 years (P < 0.001, Student’s t-test). The average complexity of the biofilms from the 8-years immersion samples from Sanya was greater than those from Xiamen, but not significantly so (P > 0.05, Student’s t-test). Overall, the data showed that the rust layers on the steel plates carried many bacterial species. The bacterial community composition was influenced by the immersion time. The results of our study will be of benefit to the further studies of bacterial corrosion mechanisms and corrosion resistance

  16. Corrosion behaviour and biocorrosion of galvanized steel water distribution systems.

    PubMed

    Delaunois, F; Tosar, F; Vitry, V

    2014-06-01

    Galvanized steel tubes are a popular mean for water distribution systems but suffer from corrosion despite their zinc or zinc alloy coatings. First, the quality of hot-dip galvanized (HDG) coatings was studied. Their microstructure, defects, and common types of corrosion were observed. It was shown that many manufactured tubes do not reach European standard (NBN EN 10240), which is the cause of several corrosion problems. The average thickness of zinc layer was found at 41μm against 55μm prescribed by the European standard. However, lack of quality, together with the usual corrosion types known for HDG steel tubes was not sufficient to explain the high corrosion rate (reaching 20μm per year versus 10μm/y for common corrosion types). Electrochemical tests were also performed to understand the corrosion behaviours occurring in galvanized steel tubes. Results have shown that the limiting step was oxygen diffusion, favouring the growth of anaerobic bacteria in steel tubes. EDS analysis was carried out on corroded coatings and has shown the presence of sulphur inside deposits, suggesting the likely bacterial activity. Therefore biocorrosion effects have been investigated. Actually sulphate reducing bacteria (SRB) can reduce sulphate contained in water to hydrogen sulphide (H2S), causing the formation of metal sulphides. Although microbial corrosion is well-known in sea water, it is less investigated in supply water. Thus, an experimental water main was kept in operation for 6months. SRB were detected by BART tests in the test water main. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems.

    PubMed

    Gomaa, Ahmed A; Klumpe, Heidi E; Luo, Michelle L; Selle, Kurt; Barrangou, Rodolphe; Beisel, Chase L

    2014-01-28

    CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems in bacteria and archaea employ CRISPR RNAs to specifically recognize the complementary DNA of foreign invaders, leading to sequence-specific cleavage or degradation of the target DNA. Recent work has shown that the accidental or intentional targeting of the bacterial genome is cytotoxic and can lead to cell death. Here, we have demonstrated that genome targeting with CRISPR-Cas systems can be employed for the sequence-specific and titratable removal of individual bacterial strains and species. Using the type I-E CRISPR-Cas system in Escherichia coli as a model, we found that this effect could be elicited using native or imported systems and was similarly potent regardless of the genomic location, strand, or transcriptional activity of the target sequence. Furthermore, the specificity of targeting with CRISPR RNAs could readily distinguish between even highly similar strains in pure or mixed cultures. Finally, varying the collection of delivered CRISPR RNAs could quantitatively control the relative number of individual strains within a mixed culture. Critically, the observed selectivity and programmability of bacterial removal would be virtually impossible with traditional antibiotics, bacteriophages, selectable markers, or tailored growth conditions. Once delivery challenges are addressed, we envision that this approach could offer a novel means to quantitatively control the composition of environmental and industrial microbial consortia and may open new avenues for the development of "smart" antibiotics that circumvent multidrug resistance and differentiate between pathogenic and beneficial microorganisms. Controlling the composition of microbial populations is a critical aspect in medicine, biotechnology, and environmental cycles. While different antimicrobial strategies, such as antibiotics, antimicrobial peptides, and lytic bacteriophages, offer partial solutions

  18. Effect of rhizobacterial consortia from undisturbed arid- and agro-ecosystems on wheat growth under different conditions.

    PubMed

    Inostroza, N G; Barra, P J; Wick, L Y; Mora, M L; Jorquera, M A

    2017-02-01

    Plant growth-promoting rhizobacteria (PGPR) are studied as complements/alternatives to chemical fertilizers used in agriculture. However, poor information exists on the potential of PGPR from undisturbed ecosystems. Here, we have evaluated the plant growth-promoting (PGP) effect of rhizobacterial consortia from undisturbed Chilean arid ecosystems (Consortium C1) and agro-ecosystems (Consortium C2) on plant biomass production. The PGP effects of C1 and C2 were assayed in wheat seedlings (Triticum aestivum L.) grown in pots under growth chamber conditions and in pots placed in an open greenhouse under natural conditions, using two different Chilean Andisols (Piedras Negras and Freire series) kept either at 30 or 60% of their maximum water holding capacity (MWHC). PGP effects depended on the soil type, MWHC and the growth conditions tested. Although both consortia showed PGB effects in artificial soils relative to controls in growth chambers, only C1 provoked a PGP effect at 60% MWHC in phosphorus-poor soil of the 'Piedras Negras' series. At natural conditions, however, only C1 exhibited statistically significant PGP effects at 30% MWHC in 'Piedras Negras', yet and most importantly allowed to maintain similar plant biomass as at 60% MWHC. Our results support possible applications of rhizobacterial consortia from arid ecosystems to improve wheat growth in Chilean Andisols under water shortage conditions. Wheat seedling inoculated with rhizobacterial consortia obtained from an undisturbed Chilean arid ecosystem showed improved growth in phosphorus-poor and partly dry soil. Arid ecosystems should be considered in further studies as an alternative source of microbial inoculants for agro-ecosystems subjected to stressful conditions by low nutrients and/or adverse climate events. © 2016 The Society for Applied Microbiology.

  19. Electrochemical evaluation for corrosion resistance of bacterial exopolysaccharides on low carbon steel

    USDA-ARS?s Scientific Manuscript database

    Corrosion is a global issue that affects safety and economics. There is an increasing demand for bio-based polymers for industrial applications and production of polymers by microorganisms is especially attractive. This work reports on the electrochemical and physical properties of 29 strains or fr...

  20. Metagenomic analysis of planktonic microbial consortia from a non-tidal urban-impacted segment of James River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Bonnie L.; LePrell, Rebecca V.; Franklin, Rima B.

    Knowledge of the diversity and ecological function of the microbial consortia of James River in Virginia, USA, is essential to developing a more complete understanding of the ecology of this model river system. Metagenomic analysis of James River's planktonic microbial community was performed for the first time using an unamplified genomic library and a 16S rDNA amplicon library prepared and sequenced by Ion PGM and MiSeq, respectively. From the 0.46-Gb WGS library (GenBank:SRR1146621; MG-RAST:4532156.3), 4 x 10 6 reads revealed >3 x 10 6 genes, 240 families of prokaryotes, and 155 families of eukaryotes. From the 0.68-Gb 16S library (GenBank:SRR2124995;more » MG-RAST:4631271.3; EMB:2184), 4 x 10 6 reads revealed 259 families of eubacteria. Results of the WGS and 16S analyses were highly consistent and indicated that more than half of the bacterial sequences were Proteobacteria, predominantly Comamonadaceae. The most numerous genera in this group were Acidovorax (including iron oxidizers, nitrotolulene degraders, and plant pathogens), which accounted for 10 % of assigned bacterial reads. Polaromonas were another 6 % of all bacterial reads, with many assignments to groups capable of degrading polycyclic aromatic hydrocarbons. Albidiferax (iron reducers) and Variovorax (biodegraders of a variety of natural biogenic compounds as well as anthropogenic contaminants such as polycyclic aromatic hydrocarbons and endocrine disruptors) each accounted for an additional 3% of bacterial reads. Comparison of these data to other publically-available aquatic metagenomes revealed that this stretch of James River is highly similar to the upper Mississippi River, and that these river systems are more similar to aquaculture and sludge ecosystems than they are to lakes or to a pristine section of the upper Amazon River. Altogether, these analyses exposed previously unknown aspects of microbial biodiversity, documented the ecological responses of microbes to urban effects, and

  1. Metagenomic analysis of planktonic microbial consortia from a non-tidal urban-impacted segment of James River

    DOE PAGES

    Brown, Bonnie L.; LePrell, Rebecca V.; Franklin, Rima B.; ...

    2015-09-19

    Knowledge of the diversity and ecological function of the microbial consortia of James River in Virginia, USA, is essential to developing a more complete understanding of the ecology of this model river system. Metagenomic analysis of James River's planktonic microbial community was performed for the first time using an unamplified genomic library and a 16S rDNA amplicon library prepared and sequenced by Ion PGM and MiSeq, respectively. From the 0.46-Gb WGS library (GenBank:SRR1146621; MG-RAST:4532156.3), 4 x 10 6 reads revealed >3 x 10 6 genes, 240 families of prokaryotes, and 155 families of eukaryotes. From the 0.68-Gb 16S library (GenBank:SRR2124995;more » MG-RAST:4631271.3; EMB:2184), 4 x 10 6 reads revealed 259 families of eubacteria. Results of the WGS and 16S analyses were highly consistent and indicated that more than half of the bacterial sequences were Proteobacteria, predominantly Comamonadaceae. The most numerous genera in this group were Acidovorax (including iron oxidizers, nitrotolulene degraders, and plant pathogens), which accounted for 10 % of assigned bacterial reads. Polaromonas were another 6 % of all bacterial reads, with many assignments to groups capable of degrading polycyclic aromatic hydrocarbons. Albidiferax (iron reducers) and Variovorax (biodegraders of a variety of natural biogenic compounds as well as anthropogenic contaminants such as polycyclic aromatic hydrocarbons and endocrine disruptors) each accounted for an additional 3% of bacterial reads. Comparison of these data to other publically-available aquatic metagenomes revealed that this stretch of James River is highly similar to the upper Mississippi River, and that these river systems are more similar to aquaculture and sludge ecosystems than they are to lakes or to a pristine section of the upper Amazon River. Altogether, these analyses exposed previously unknown aspects of microbial biodiversity, documented the ecological responses of microbes to urban effects, and

  2. Metagenomic analysis of planktonic microbial consortia from a non-tidal urban-impacted segment of James River.

    PubMed

    Brown, Bonnie L; LePrell, Rebecca V; Franklin, Rima B; Rivera, Maria C; Cabral, Francine M; Eaves, Hugh L; Gardiakos, Vicki; Keegan, Kevin P; King, Timothy L

    2015-01-01

    Knowledge of the diversity and ecological function of the microbial consortia of James River in Virginia, USA, is essential to developing a more complete understanding of the ecology of this model river system. Metagenomic analysis of James River's planktonic microbial community was performed for the first time using an unamplified genomic library and a 16S rDNA amplicon library prepared and sequenced by Ion PGM and MiSeq, respectively. From the 0.46-Gb WGS library (GenBank:SRR1146621; MG-RAST:4532156.3), 4 × 10(6) reads revealed >3 × 10(6) genes, 240 families of prokaryotes, and 155 families of eukaryotes. From the 0.68-Gb 16S library (GenBank:SRR2124995; MG-RAST:4631271.3; EMB:2184), 4 × 10(6) reads revealed 259 families of eubacteria. Results of the WGS and 16S analyses were highly consistent and indicated that more than half of the bacterial sequences were Proteobacteria, predominantly Comamonadaceae. The most numerous genera in this group were Acidovorax (including iron oxidizers, nitrotolulene degraders, and plant pathogens), which accounted for 10 % of assigned bacterial reads. Polaromonas were another 6 % of all bacterial reads, with many assignments to groups capable of degrading polycyclic aromatic hydrocarbons. Albidiferax (iron reducers) and Variovorax (biodegraders of a variety of natural biogenic compounds as well as anthropogenic contaminants such as polycyclic aromatic hydrocarbons and endocrine disruptors) each accounted for an additional 3 % of bacterial reads. Comparison of these data to other publically-available aquatic metagenomes revealed that this stretch of James River is highly similar to the upper Mississippi River, and that these river systems are more similar to aquaculture and sludge ecosystems than they are to lakes or to a pristine section of the upper Amazon River. Taken together, these analyses exposed previously unknown aspects of microbial biodiversity, documented the ecological responses of microbes to urban

  3. Microbial consortia at steady supply

    PubMed Central

    Taillefumier, Thibaud; Posfai, Anna; Meir, Yigal; Wingreen, Ned S

    2017-01-01

    Metagenomics has revealed hundreds of species in almost all microbiota. In a few well-studied cases, microbial communities have been observed to coordinate their metabolic fluxes. In principle, microbes can divide tasks to reap the benefits of specialization, as in human economies. However, the benefits and stability of an economy of microbial specialists are far from obvious. Here, we physically model the population dynamics of microbes that compete for steadily supplied resources. Importantly, we explicitly model the metabolic fluxes yielding cellular biomass production under the constraint of a limited enzyme budget. We find that population dynamics generally leads to the coexistence of different metabolic types. We establish that these microbial consortia act as cartels, whereby population dynamics pins down resource concentrations at values for which no other strategy can invade. Finally, we propose that at steady supply, cartels of competing strategies automatically yield maximum biomass, thereby achieving a collective optimum. DOI: http://dx.doi.org/10.7554/eLife.22644.001 PMID:28473032

  4. Fostering Innovation in the Manufacturing Sector through R&D Consortia

    NASA Astrophysics Data System (ADS)

    McKittrick, M.

    2017-12-01

    In the U.S. Department of Energy, the Advanced Manufacturing Office (AMO) has the mission to catalyze research, development and adoption of energy-related advanced manufacturing technologies and practices to drive U.S. economic competitiveness and energy productivity. Within strategic areas of manufacturing, AMO brings together manufacturers, suppliers, institutes of higher education, national laboratories, and state and local governments in public-private R&D consortia to accelerate technology innovation. One such R&D Consortia is the Critical Materials Institute (CMI), established in 2013 and led by Ames Laboratory. CMI is a sustained, multidisciplinary effort to develop solutions across the materials lifecycle of materials essential to clean energy technologies and manufacturing, as well as reduce the impact of supply chain disruptions associated with these valuable resources. By bringing together scientists and engineers from diverse disciplines, CMI is addressing challenges in critical materials, including mineral processing, manufacture, substitution, efficient use, and end-of-life recycling; integrating scientific research, engineering innovation, manufacturing and process improvements; and developing a holistic solution to the materials challenges facing the nation. It includes expertise from four national laboratories, seven universities, and ten industry partners to minimize materials criticality as an impediment to the commercialization of clean energy technologies.

  5. Microbiological corrosion of ASTM SA105 carbon steel pipe for industrial fire water usage

    NASA Astrophysics Data System (ADS)

    Chidambaram, S.; Ashok, K.; Karthik, V.; Venkatakrishnan, P. G.

    2018-02-01

    The large number of metallic systems developed for last few decades against both general uniform corrosion and localized corrosion. Among all microbiological induced corrosion (MIC) is attractive, multidisciplinary and complex in nature. Many chemical processing industries utilizes fresh water for fire service to nullify major/minor fire. One such fire water service line pipe attacked by micro-organisms leads to leakage which is industrially important from safety point of view. Also large numbers of leakage reported in similar fire water service of nearby food processing plant, paper & pulp plant, steel plant, electricity board etc…In present investigation one such industrial fire water service line failure analysis of carbon steel line pipe was analyzed to determine the cause of failure. The water sample subjected to various chemical and bacterial analyses. Turbidity, pH, calcium hardness, free chlorine, oxidation reduction potential, fungi, yeasts, sulphide reducing bacteria (SRB) and total bacteria (TB) were measured on water sample analysis. The corrosion rate was measured on steel samples and corrosion coupon measurements were installed in fire water for validating non flow assisted localized corrosion. The sulphide reducing bacteria (SRB) presents in fire water causes a localized micro biological corrosion attack of line pipe.

  6. ENVIRONMENTAL BENIGN MITIGATION OF MICROBIOLOGICALLY INFLUENCED CORROSION (MIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.R. Paterek; G. Husmillo; V. Trbovic

    The overall program objective is to develop and evaluate environmental benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is one or more environmental benign, a.k.a. ''green'' products that can be applied to maintain the structure and dependability of the natural gas infrastructure. The technical approach for this quarter were isolation and cultivation of MIC-causing microorganisms from corroded pipeline samples, optimizing parameters in the laboratory-scale corrosion test loop system and testing the effective concentrations of Capsicum sp. extracts to verifymore » the extent of corrosion on metal coupons by batch culture method. A total of 22 strains from the group of heterotrophic, acid producing, denitrifying and sulfate reducing bacteria were isolated from the gas pipeline samples obtained from Northern Indiana Public Service Company in Trenton, Indiana. They were purified and will be sent out for identification. Bacterial strains of interest were used in antimicrobial screenings and test loop experiments. Parameters for the laboratory-scale test loop system such as gas and culture medium flow rate; temperature; inoculation period; and length of incubation were established. Batch culture corrosion study against Desulfovibrio vulgaris showed that one (S{sub 1}M) out of the four Capsicum sp. extracts tested was effective in controlling the corrosion rate in metal coupons by 33.33% when compared to the untreated group.« less

  7. Monitoring structural transformation of hydroxy-sulphate green rust in the presence of sulphate reducing bacteria

    NASA Astrophysics Data System (ADS)

    Abdelmoula, M.; Zegeye, A.; Jorand, F.; Carteret, C.

    2006-01-01

    The activities of bacterial consortia enable organisms to maximize their metabolic capabilities. This article assesses the synergetic relationship between iron reducing bacteria (IRB), Shewanella putrefaciens and sulphate reducing bacteria (SRB) Desulfovibrio alaskensis. Thus, the aim of this study was first to form a biogenic hydroxy-sulpahte green rust GR2( {text{SO}}_{{text{4}}} ^{{2 - }} ) through the bioreduction of lepidocrocite by S. putrefaciens and secondly to investigate if sulfate anions intercalated in the biogenic GR2( {text{SO}}_{{text{4}}} ^{{2 - }} ) could serve as final electron acceptor for a sulfate reducing bacterium, D. alaskensis. The results indicate that the IRB lead to the formation of GR2( {text{SO}}_{{text{4}}} ^{{2 - }} ) and this mineral serve as an electron acceptor for SRB. GR2( {text{SO}}_{{text{4}}} ^{{2 - }} ) precipitation and its transformation was demonstrated by using X-ray diffraction (DRX), Mössbauer spectroscopy (TMS) and transmission electron spectroscopy (TEM). These observations point out the possible acceleration of steel corrosion in marine environment in presence of IRB/SRB consortia.

  8. Metagenomic Analyses Reveal the Involvement of Syntrophic Consortia in Methanol/Electricity Conversion in Microbial Fuel Cells

    PubMed Central

    Yamamuro, Ayaka; Kouzuma, Atsushi; Abe, Takashi; Watanabe, Kazuya

    2014-01-01

    Methanol is widely used in industrial processes, and as such, is discharged in large quantities in wastewater. Microbial fuel cells (MFCs) have the potential to recover electric energy from organic pollutants in wastewater; however, the use of MFCs to generate electricity from methanol has not been reported. In the present study, we developed single-chamber MFCs that generated electricity from methanol at the maximum power density of 220 mW m−2 (based on the projected area of the anode). In order to reveal how microbes generate electricity from methanol, pyrosequencing of 16S rRNA-gene amplicons and Illumina shotgun sequencing of metagenome were conducted. The pyrosequencing detected in abundance Dysgonomonas, Sporomusa, and Desulfovibrio in the electrolyte and anode and cathode biofilms, while Geobacter was detected only in the anode biofilm. Based on known physiological properties of these bacteria, it is considered that Sporomusa converts methanol into acetate, which is then utilized by Geobacter to generate electricity. This speculation is supported by results of shotgun metagenomics of the anode-biofilm microbes, which reconstructed relevant catabolic pathways in these bacteria. These results suggest that methanol is anaerobically catabolized by syntrophic bacterial consortia with electrodes as electron acceptors. PMID:24852573

  9. Metagenomic analyses reveal the involvement of syntrophic consortia in methanol/electricity conversion in microbial fuel cells.

    PubMed

    Yamamuro, Ayaka; Kouzuma, Atsushi; Abe, Takashi; Watanabe, Kazuya

    2014-01-01

    Methanol is widely used in industrial processes, and as such, is discharged in large quantities in wastewater. Microbial fuel cells (MFCs) have the potential to recover electric energy from organic pollutants in wastewater; however, the use of MFCs to generate electricity from methanol has not been reported. In the present study, we developed single-chamber MFCs that generated electricity from methanol at the maximum power density of 220 mW m(-2) (based on the projected area of the anode). In order to reveal how microbes generate electricity from methanol, pyrosequencing of 16S rRNA-gene amplicons and Illumina shotgun sequencing of metagenome were conducted. The pyrosequencing detected in abundance Dysgonomonas, Sporomusa, and Desulfovibrio in the electrolyte and anode and cathode biofilms, while Geobacter was detected only in the anode biofilm. Based on known physiological properties of these bacteria, it is considered that Sporomusa converts methanol into acetate, which is then utilized by Geobacter to generate electricity. This speculation is supported by results of shotgun metagenomics of the anode-biofilm microbes, which reconstructed relevant catabolic pathways in these bacteria. These results suggest that methanol is anaerobically catabolized by syntrophic bacterial consortia with electrodes as electron acceptors.

  10. Microscale sulfur cycling in the phototrophic pink berry consortia of the Sippewissett Salt Marsh

    PubMed Central

    Wilbanks, Elizabeth G; Jaekel, Ulrike; Salman, Verena; Humphrey, Parris T; Eisen, Jonathan A; Facciotti, Marc T; Buckley, Daniel H; Zinder, Stephen H; Druschel, Gregory K; Fike, David A; Orphan, Victoria J

    2014-01-01

    Microbial metabolism is the engine that drives global biogeochemical cycles, yet many key transformations are carried out by microbial consortia over short spatiotemporal scales that elude detection by traditional analytical approaches. We investigate syntrophic sulfur cycling in the ‘pink berry’ consortia of the Sippewissett Salt Marsh through an integrative study at the microbial scale. The pink berries are macroscopic, photosynthetic microbial aggregates composed primarily of two closely associated species: sulfide-oxidizing purple sulfur bacteria (PB-PSB1) and sulfate-reducing bacteria (PB-SRB1). Using metagenomic sequencing and 34S-enriched sulfate stable isotope probing coupled with nanoSIMS, we demonstrate interspecies transfer of reduced sulfur metabolites from PB-SRB1 to PB-PSB1. The pink berries catalyse net sulfide oxidation and maintain internal sulfide concentrations of 0–500 μm. Sulfide within the berries, captured on silver wires and analysed using secondary ion mass spectrometer, increased in abundance towards the berry interior, while δ34S-sulfide decreased from 6‰ to −31‰ from the exterior to interior of the berry. These values correspond to sulfate–sulfide isotopic fractionations (15–53‰) consistent with either sulfate reduction or a mixture of reductive and oxidative metabolisms. Together this combined metagenomic and high-resolution isotopic analysis demonstrates active sulfur cycling at the microscale within well-structured macroscopic consortia consisting of sulfide-oxidizing anoxygenic phototrophs and sulfate-reducing bacteria. PMID:24428801

  11. Corrosion and corrosion prevention in gas turbines

    NASA Technical Reports Server (NTRS)

    Mom, A. J. A.; Kolkman, H. J.

    1985-01-01

    The conditions governing the corrosion behavior in gas turbines are surveyed. Factors such as temperature, relative humidity, the presence of sulfur and nitrogen dioxide, and fuel quality are discussed. Electromechanical corrosion at relatively low temperature in compressors; oxidation; and hot corrosion (sulfidation) at high temperature in turbines are considered. Corrosion prevention by washing and rinsing, fueld additives, and corrosion resistant materials and coatings are reviewed.

  12. Selected Outcomes Related to Tech Prep Implementation by Illinois Consortia, 2001-2005

    ERIC Educational Resources Information Center

    Bragg, Debra D.; Kirby, Catherine; Zhu, Rongchun

    2006-01-01

    This report is the summary of key aspects of Tech Prep in Illinois over the five year period of 2001-2005 during which all Tech Prep consortia provided annual data based on federal legislative requirements and state-determined essential elements of successful programs. These annual Tech Prep reports enable local educators to monitor student…

  13. Characterization of two diesel fuel degrading microbial consortia enriched from a non acclimated, complex source of microorganisms

    PubMed Central

    2010-01-01

    Background The bioremediation of soils impacted by diesel fuels is very often limited by the lack of indigenous microflora with the required broad substrate specificity. In such cases, the soil inoculation with cultures with the desired catabolic capabilities (bioaugmentation) is an essential option. The use of consortia of microorganisms obtained from rich sources of microbes (e.g., sludges, composts, manure) via enrichment (i.e., serial growth transfers) on the polluting hydrocarbons would provide bioremediation enhancements more robust and reproducible than those achieved with specialized pure cultures or tailored combinations (co-cultures) of them, together with none or minor risks of soil loading with unrelated or pathogenic allocthonous microorganisms. Results In this work, two microbial consortia, i.e., ENZ-G1 and ENZ-G2, were enriched from ENZYVEBA (a complex commercial source of microorganisms) on Diesel (G1) and HiQ Diesel (G2), respectively, and characterized in terms of microbial composition and hydrocarbon biodegradation capability and specificity. ENZ-G1 and ENZ-G2 exhibited a comparable and remarkable biodegradation capability and specificity towards n-C10 to n-C24 linear paraffins by removing about 90% of 1 g l-1 of diesel fuel applied after 10 days of aerobic shaken flask batch culture incubation at 30°C. Cultivation dependent and independent approaches evidenced that both consortia consist of bacteria belonging to the genera Chryseobacterium, Acinetobacter, Psudomonas, Stenotrophomonas, Alcaligenes and Gordonia along with the fungus Trametes gibbosa. However, only the fungus was found to grow and remarkably biodegrade G1 and G2 hydrocarbons under the same conditions. The biodegradation activity and specificity and the microbial composition of ENZ-G1 and ENZ-G2 did not significantly change after cryopreservation and storage at -20°C for several months. Conclusions ENZ-G1 and ENZ-G2 are very similar highly enriched consortia of bacteria and a

  14. Characterization of two diesel fuel degrading microbial consortia enriched from a non acclimated, complex source of microorganisms.

    PubMed

    Zanaroli, Giulio; Di Toro, Sara; Todaro, Daniela; Varese, Giovanna C; Bertolotto, Antonio; Fava, Fabio

    2010-02-16

    The bioremediation of soils impacted by diesel fuels is very often limited by the lack of indigenous microflora with the required broad substrate specificity. In such cases, the soil inoculation with cultures with the desired catabolic capabilities (bioaugmentation) is an essential option. The use of consortia of microorganisms obtained from rich sources of microbes (e.g., sludges, composts, manure) via enrichment (i.e., serial growth transfers) on the polluting hydrocarbons would provide bioremediation enhancements more robust and reproducible than those achieved with specialized pure cultures or tailored combinations (co-cultures) of them, together with none or minor risks of soil loading with unrelated or pathogenic allocthonous microorganisms. In this work, two microbial consortia, i.e., ENZ-G1 and ENZ-G2, were enriched from ENZYVEBA (a complex commercial source of microorganisms) on Diesel (G1) and HiQ Diesel (G2), respectively, and characterized in terms of microbial composition and hydrocarbon biodegradation capability and specificity. ENZ-G1 and ENZ-G2 exhibited a comparable and remarkable biodegradation capability and specificity towards n-C10 to n-C24 linear paraffins by removing about 90% of 1 g l-1 of diesel fuel applied after 10 days of aerobic shaken flask batch culture incubation at 30 degrees C. Cultivation dependent and independent approaches evidenced that both consortia consist of bacteria belonging to the genera Chryseobacterium, Acinetobacter, Psudomonas, Stenotrophomonas, Alcaligenes and Gordonia along with the fungus Trametes gibbosa. However, only the fungus was found to grow and remarkably biodegrade G1 and G2 hydrocarbons under the same conditions. The biodegradation activity and specificity and the microbial composition of ENZ-G1 and ENZ-G2 did not significantly change after cryopreservation and storage at -20 degrees C for several months. ENZ-G1 and ENZ-G2 are very similar highly enriched consortia of bacteria and a fungus capable of

  15. Formation and Release Behavior of Iron Corrosion Products under the Influence of Bacterial Communities in a Simulated Water Distribution System

    EPA Science Inventory

    Understanding the effects of biofilm on the iron corrosion, iron release and associated corrosion by-products is critical for maintaining the water quality and the integrity of drinking water distribution system (DWDS). In this work, iron corrosion experiments under sterilized a...

  16. Formulation of bacterial consortium as whole cell biocatalyst for degradation of oil compounds

    NASA Astrophysics Data System (ADS)

    Yetti, Elvi; A'la, Amalia; Luthfiyah, Nailul; Wijaya, Hans; Thontowi, Ahmad; Yopi

    2017-11-01

    In this research, weaim to investigateformulation of bacterial consortium as whole cell biocatalyst for degradation of oil compounds. We constructed microbial consortium from 4 (four) selected marine oil bacteria to become 15 (twelve) combination culture. Those bacteria were from collection of Laboratory of Biocatalyst and Fermentation, Research Center for Biotechnology, Indonesian Institutes of Sciences and designated as Labrenzia sp. MBTDCMFRIMab26, Labrenzia aggregata strasin HQB397, Novosphingobium pentaromativorans strain PQ-3 16S, and Novosphingobium pentaromativorans strain US6-1. The mixture or bacteria consortia, denoted as F1, F2, …F15 consisted of 1, 2, 3 and 4 bacterial strains, respectively. The strains were selected based on the criteria that they were able to display good growth in crude oil containing media. Five bacterialformulationsshowed good potentialas candidates for microbial consortium. We will optimize these consortium with carrier matrix choosed from biomass materials and also carry out oil content analysis.

  17. Microbiological and abiotic processes in modelling longer-term marine corrosion of steel.

    PubMed

    Melchers, Robert E

    2014-06-01

    Longer term exposure of mild steel in natural (biotic) waters progresses as a bimodal function of time, both for corrosion mass loss and for pit depth. Recent test results, however, found this also for immersion in clean fresh, almost pure and triply distilled waters. This shows chlorides or microbiological activity is not essential for the electrochemical processes producing bimodal behaviour. It is proposed that the first mode is aerobic corrosion that eventually produces a non-homogeneous corroded surface and rust coverage sufficient to allow formation of anoxic niches. Within these, aggressive autocatalytic reduction then occurs under anoxic abiotic conditions, caused by sulfide species originating from the MnS inclusions typical in steels. This is consistent with Wranglen's model for abiotic anoxic crevice and pitting corrosion without external aggressive ions. In biotic conditions, metabolites from anaerobic bacterial activity within and near the anoxic niches provides additional (sulfide) species to contribute to the severity of corrosion. Limited observational evidence that supports this hypothesis is given but further investigation is required to determine all contributor(s) to the cathodic current for the electrochemical reaction. The results are important for estimating the contribution of microbiological corrosion in infrastructure applications. © 2013.

  18. Parallel Mutations Result in a Wide Range of Cooperation and Community Consequences in a Two-Species Bacterial Consortium

    DOE PAGES

    Douglas, Sarah M.; Chubiz, Lon M.; Harcombe, William R.; ...

    2016-09-12

    Multi-species microbial communities play a critical role in human health, industry, and waste remediation. Recently, the evolution of synthetic consortia in the laboratory has enabled adaptation to be addressed in the context of interacting species. Using an engineered bacterial consortium,we repeatedly evolved cooperative genotypes and examined both the predictability of evolution and the phenotypes that determinecommunity dynamics. Eight Salmonella enterica serovar Typhimurium strains evolved methionine excretion sufficient to support growth of an Escherichia coli methionine auxotroph, from whom they required excreted growth substrates. Non-synonymousmutations in metA, encoding homoserine trans-succinylase (HTS), were detected in each evolved S. enterica methionine cooperator andmore » were shown to be necessary for cooperative consortia growth. Molecular modeling was used to predict that most of the non-synonymous mutations slightly increase the binding affinity for HTS homodimer formation. Despite this genetic parallelism and trend of increasing protein binding stability, these metA alleles gave rise to a wide range of phenotypic diversity in termsof individual versus group benefit. The cooperators with the highest methionine excretion permitted nearly two-fold faster consortia growth and supported the highest fraction of E. coli, yet also had the slowest individual growth rates compared to less cooperative strains. Thus, although the genetic basis of adaptation was quite similar across independent origins of cooperative phenotypes, quantitative measurements of metabolite production were required to predict either the individual-level growth consequences or how these propagate to community-level behavior.« less

  19. Parallel Mutations Result in a Wide Range of Cooperation and Community Consequences in a Two-Species Bacterial Consortium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, Sarah M.; Chubiz, Lon M.; Harcombe, William R.

    Multi-species microbial communities play a critical role in human health, industry, and waste remediation. Recently, the evolution of synthetic consortia in the laboratory has enabled adaptation to be addressed in the context of interacting species. Using an engineered bacterial consortium,we repeatedly evolved cooperative genotypes and examined both the predictability of evolution and the phenotypes that determinecommunity dynamics. Eight Salmonella enterica serovar Typhimurium strains evolved methionine excretion sufficient to support growth of an Escherichia coli methionine auxotroph, from whom they required excreted growth substrates. Non-synonymousmutations in metA, encoding homoserine trans-succinylase (HTS), were detected in each evolved S. enterica methionine cooperator andmore » were shown to be necessary for cooperative consortia growth. Molecular modeling was used to predict that most of the non-synonymous mutations slightly increase the binding affinity for HTS homodimer formation. Despite this genetic parallelism and trend of increasing protein binding stability, these metA alleles gave rise to a wide range of phenotypic diversity in termsof individual versus group benefit. The cooperators with the highest methionine excretion permitted nearly two-fold faster consortia growth and supported the highest fraction of E. coli, yet also had the slowest individual growth rates compared to less cooperative strains. Thus, although the genetic basis of adaptation was quite similar across independent origins of cooperative phenotypes, quantitative measurements of metabolite production were required to predict either the individual-level growth consequences or how these propagate to community-level behavior.« less

  20. Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico.

    PubMed

    Neria-González, Isabel; Wang, En Tao; Ramírez, Florina; Romero, Juan M; Hernández-Rodríguez, César

    2006-06-01

    Microbial communities associated to biofilms promote corrosion of oil pipelines. The community structure of bacteria in the biofilm formed in oil pipelines is the basic knowledge to understand the complexity and mechanisms of metal corrosion. To assess bacterial diversity, biofilm samples were obtained from X52 steel coupons corroded after 40 days of exposure to normal operation and flow conditions. The biofilm samples were directly used to extract metagenomic DNA, which was used as template to amplify 16S ribosomal gene by PCR. The PCR products of 16S ribosomal gene were also employed as template for sulfate-reducing bacteria (SRB) specific nested-PCR and both PCR products were utilized for the construction of gene libraries. The V3 region of the 16S rRNA gene was also amplified to analyse the bacterial diversity by analysis of denaturing gradient gel electrophoresis (DGGE). Ribosomal library and DGGE profiles exhibited limited bacterial diversity, basically including Citrobacter spp., Enterobacter spp. and Halanaerobium spp. while Desulfovibrio alaskensis and a novel clade within the genus Desulfonatronovibrio were detected from the nested PCR library. The biofilm samples were also taken for the isolation of SRB. Desulfovibrio alaskensis and Desulfovibrio capillatus, as well as some strains related to Citrobacter were isolated. SRB consists in a very small proportion of the community and Desulfovibrio spp. were the relatively abundant groups among the SRB. This is the first study directly exploring bacterial diversity in corrosive biofilms associated to steel pipelines subjected to normal operation conditions.

  1. Phototrophic Biofilm Assembly in Microbial-Mat-Derived Unicyanobacterial Consortia: Model Systems for the Study of Autotroph-Heterotroph Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Jessica K.; Hutchison, Janine R.; Renslow, Ryan S.

    2014-04-07

    Though microbial autotroph-heterotroph interactions influence biogeochemical cycles on a global scale, the diversity and complexity of natural systems and their intractability to in situ environmental manipulation makes elucidation of the principles governing these interactions challenging. Examination of primary succession during phototrophic biofilm assembly provides a robust means by which to elucidate the dynamics of such interactions and determine their influence upon recruitment and maintenance of phylogenetic and functional diversity in microbial communities. We isolated and characterized two unicyanobacterial consortia from the Hot Lake phototrophic mat, quantifying the structural and community composition of their assembling biofilms. The same heterotrophs were retainedmore » in both consortia and included members of Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes, taxa frequently reported as consorts of microbial photoautotrophs. Cyanobacteria led biofilm assembly, eventually giving way to a late heterotrophic bloom. The consortial biofilms exhibited similar patterns of assembly, with the relative abundances of members of Bacteroidetes and Alphaproteobacteria increasing and members of Gammaproteobacteria decreasing as colonization progressed. Despite similar trends in assembly at higher taxa, the consortia exhibited substantial differences in community structure at the species level. These similar patterns of assembly with divergent community structures suggest that, while similar niches are created by the metabolism of the cyanobacteria, the resultant webs of autotroph-heterotroph and heterotroph-heterotroph interactions driving metabolic exchange are specific to each primary producer. Altogether, our data support these Hot Lake unicyanobacterial consortia as generalizable model systems whose simplicity and tractability permit the deciphering of community assembly principles relevant to natural microbial communities.« less

  2. Phototrophic biofilm assembly in microbial-mat-derived unicyanobacterial consortia: model systems for the study of autotroph-heterotroph interactions

    PubMed Central

    Cole, Jessica K.; Hutchison, Janine R.; Renslow, Ryan S.; Kim, Young-Mo; Chrisler, William B.; Engelmann, Heather E.; Dohnalkova, Alice C.; Hu, Dehong; Metz, Thomas O.; Fredrickson, Jim K.; Lindemann, Stephen R.

    2014-01-01

    Microbial autotroph-heterotroph interactions influence biogeochemical cycles on a global scale, but the diversity and complexity of natural systems and their intractability to in situ manipulation make it challenging to elucidate the principles governing these interactions. The study of assembling phototrophic biofilm communities provides a robust means to identify such interactions and evaluate their contributions to the recruitment and maintenance of phylogenetic and functional diversity over time. To examine primary succession in phototrophic communities, we isolated two unicyanobacterial consortia from the microbial mat in Hot Lake, Washington, characterizing the membership and metabolic function of each consortium. We then analyzed the spatial structures and quantified the community compositions of their assembling biofilms. The consortia retained the same suite of heterotrophic species, identified as abundant members of the mat and assigned to Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes. Autotroph growth rates dominated early in assembly, yielding to increasing heterotroph growth rates late in succession. The two consortia exhibited similar assembly patterns, with increasing relative abundances of members from Bacteroidetes and Alphaproteobacteria concurrent with decreasing relative abundances of those from Gammaproteobacteria. Despite these similarities at higher taxonomic levels, the relative abundances of individual heterotrophic species were substantially different in the developing consortial biofilms. This suggests that, although similar niches are created by the cyanobacterial metabolisms, the resulting webs of autotroph-heterotroph and heterotroph-heterotroph interactions are specific to each primary producer. The relative simplicity and tractability of the Hot Lake unicyanobacterial consortia make them useful model systems for deciphering interspecies interactions and assembly principles relevant to natural microbial communities. PMID

  3. Corrosion and Corrosion Control in Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Gordon, Barry M.

    2013-08-01

    Serious corrosion problems have plagued the light water reactor (LWR) industry for decades. The complex corrosion mechanisms involved and the development of practical engineering solutions for their mitigation will be discussed in this article. After a brief overview of the basic designs of the boiling water reactor (BWR) and pressurized water reactor (PWR), emphasis will be placed on the general corrosion of LWR containments, flow-accelerated corrosion of carbon steel components, intergranular stress corrosion cracking (IGSCC) in BWRs, primary water stress corrosion cracking (PWSCC) in PWRs, and irradiation-assisted stress corrosion cracking (IASCC) in both systems. Finally, the corrosion future of both plants will be discussed as plants extend their period of operation for an additional 20 to 40 years.

  4. Methyl tert-butyl ether biodegradation by microbial consortia obtained from soil samples of gasoline-polluted sites in Mexico.

    PubMed

    Morales, Marcia; Velázquez, Elia; Jan, Janet; Revah, Sergio; González, Uriel; Razo-Flores, Elías

    2004-02-01

    Microbial consortia obtained from soil samples of gasoline-polluted sites were individually enriched with pentane, hexane, isooctane and toluene. Cometabolism with methyl tert-butyl ether, (MTBE), gave maximum degradation rates of 49, 12, 32 and 0 mg g(-1)protein h(-1), respectively. MTBE was fully degraded even when pentane was completely depleted with a cometabolic coefficient of 1 mgMTBE mg(-1)pentane. The analysis of 16S rDNA from isolated microorganisms in the pentane-adapted consortia showed that microorganisms could be assigned to Pseudomonas. This is the first work reporting the cometabolic mineralization of MTBE by consortium of this genus.

  5. Metallic copper corrosion rates, moisture content, and growth medium influence survival of copper-ion resistant bacteria

    PubMed Central

    Elguindi, Jutta; Moffitt, Stuart; Hasman, Henrik; Andrade, Cassandra; Raghavan, Srini; Rensing, Christopher

    2013-01-01

    The rapid killing of various bacteria in contact with metallic copper is thought to be influenced by influx of copper ions into the cells but the exact mechanism is not fully understood. This study showed that the kinetics of contact-killing of copper surfaces depended greatly on the amount of moisture present, copper content of alloys, type of medium used, and type of bacteria. We examined antibiotic- and copper-ion resistant strains of Escherichia coli and Enterococcus faecium isolated from pig farms following the use of copper sulfate as feed supplement. The results showed rapid killing of both copper-ion resistant E. coli and E. faecium strains when samples in rich medium were spread in a thin, moist layer on copper alloys with 85% or greater copper content. E. coli strains were rapidly killed under dry conditions while E. faecium strains were less affected. Electroplated copper surface corrosion rates were determined from electro-chemical polarization tests using the Stern-Geary method and revealed decreased corrosion rates with benzotriazole and thermal oxide coating. Copper-ion resistant E. coli and E. faecium cells suspended in 0.8% NaCl showed prolonged survival rates on electroplated copper surfaces with benzotriazole coating and thermal oxide coating compared to surfaces without anti-corrosion treatment. Control of surface corrosion affected the level of copper ion influx into bacterial cells which contributed directly to bacterial killing. PMID:21085951

  6. Archaeal and bacterial diversity in two hot spring microbial mats from a geothermal region in Romania.

    PubMed

    Coman, Cristian; Drugă, Bogdan; Hegedus, Adriana; Sicora, Cosmin; Dragoş, Nicolae

    2013-05-01

    The diversity of archaea and bacteria was investigated in two slightly alkaline, mesophilic hot springs from the Western Plain of Romania. Phylogenetic analysis showed a low diversity of Archaea, only three Euryarchaeota taxa being detected: Methanomethylovorans thermophila, Methanomassiliicoccus luminyensis and Methanococcus aeolicus. Twelve major bacterial groups were identified, both springs being dominated by Cyanobacteria, Chloroflexi and Proteobacteria. While at the phylum/class-level the microbial mats share a similar biodiversity; at the species level the geothermal springs investigated seem to be colonized by specific consortia. The dominant taxa were filamentous heterocyst-containing Fischerella, at 45 °C and non-heterocyst Leptolyngbya and Geitlerinema, at 55 °C. Other bacterial taxa (Thauera sp., Methyloversatilis universalis, Pannonibacter phragmitetus, Polymorphum gilvum, Metallibacterium sp. and Spartobacteria) were observed for the first time in association with a geothermal habitat. Based on their bacterial diversity the two mats were clustered together with other similar habitats from Europe and part of Asia, most likely the water temperature playing a major role in the formation of specific microbial communities that colonize the investigated thermal springs.

  7. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems.

    PubMed

    Wang, Haibo; Hu, Chun; Zhang, Lili; Li, Xiaoxiao; Zhang, Yu; Yang, Min

    2014-11-15

    Bacterial characteristics in corrosion products and their effect on the formation of dense corrosion scales on cast iron coupons were studied in drinking water, with sterile water acting as a reference. The corrosion process and corrosion scales were characterized by electrochemical and physico-chemical measurements. The results indicated that the corrosion was more rapidly inhibited and iron release was lower due to formation of more dense protective corrosion scales in drinking water than in sterile water. The microbial community and denitrifying functional genes were analyzed by pyrosequencing and quantitative polymerase chain reactions (qPCR), respectively. Principal component analysis (PCA) showed that the bacteria in corrosion products played an important role in the corrosion process in drinking water. Nitrate-reducing bacteria (NRB) Acidovorax and Hydrogenophaga enhanced iron corrosion before 6 days. After 20 days, the dominant bacteria became NRB Dechloromonas (40.08%) with the protective corrosion layer formation. The Dechloromonas exhibited the stronger corrosion inhibition by inducing the redox cycling of iron, to enhance the precipitation of iron oxides and formation of Fe3O4. Subsequently, other minor bacteria appeared in the corrosion scales, including iron-respiring bacteria and Rhizobium which captured iron by the produced siderophores, having a weaker corrosion-inhibition effect. Therefore, the microbially-driven redox cycling of iron with associated microbial capture of iron caused more compact corrosion scales formation and lower iron release. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Corrosion

    ERIC Educational Resources Information Center

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  9. An investigation of microbial diversity in crude oil & seawater injection systems and microbiologically influenced corrosion (MIC) of linepipe steels under different exposure conditions

    NASA Astrophysics Data System (ADS)

    AlAbbas, Faisal Mohammed

    During oil and gas operations, pipeline networks are subjected to different corrosion deterioration mechanisms that result from the interaction between the fluid process and the linepipe steel. Among these mechanisms is microbiologically influenced corrosion (MIC) that results from accelerated deterioration caused by different indigenous microorganisms that naturally reside in the hydrocarbon and associated seawater injection systems. The focus of this research is to obtain comprehensive understanding of MIC. This work has explored the most essential elements (identifications, implications and mitigations) required to fully understand MIC. Advanced molecular-based techniques, including sequencing of 16S rRNA genes via 454 pyrosequencing methodologies, were deployed to provide in-depth understanding of the microbial diversity associated with crude oil and seawater injection systems and their relevant impact on MIC. Key microbes including sulfate reducing bacteria (SRB) and iron reducing bacteria (IRB) were cultivated from sour oil well field samples. The microbes' phylotypes were identified in the laboratory to gain more thorough understanding of how they impact microbial corrosion. Electrochemical and advanced surface analytical techniques were used for corrosion evaluations of linepipe carbon steels (API 5L X52 and X80) under different exposure conditions. On the identification front, 454 pyrosequencing of both 16S rRNA genes indicated that the microbial communities in the corrosion products obtained from the sour oil pipeline, sweet crude pipeline and seawater pipeline were dominated by bacteria, though archaeal sequences (predominately Methanobacteriaceae and Methanomicrobiaceae) were also identified in the sweet and sour crude oil samples, respectively. The dominant bacterial phylotypes in the sour crude sample included members of the Thermoanaerobacterales, Synergistales, and Syntrophobacterales. In the sweet crude sample, the dominant phylotypes included

  10. Between Site Reliability of Startle Prepulse Inhibition Across Two Early Psychosis Consortia

    PubMed Central

    Addington, Jean; Cannon, Tyrone D.; Cornblatt, Barbara A.; de la Fuente-Sandoval, Camilo; Mathalon, Dan H.; Perkins, Diana O.; Seidman, Larry J.; Tsuang, Ming; Walker, Elaine F.; Woods, Scott W.; Bachman, Peter; Belger, Ayse; Carrión, Ricardo E.; Donkers, Franc C.L.; Duncan, Erica; Johannesen, Jason; León-Ortiz, Pablo; Light, Gregory; Mondragón, Alejandra; Niznikiewicz, Margaret; Nunag, Jason; Roach, Brian J.; Solís-Vivanco, Rodolfo

    2014-01-01

    Prepulse inhibition (PPI) and reactivity of the acoustic startle response are widely used biobehavioral markers in psychopathology research. Previous studies have demonstrated that PPI and startle reactivity exhibit substantial within-site stability; between-site stability, however, has not been established. In two separate consortia investigating biomarkers of early psychosis, traveling subjects studies were performed as part of quality assurance procedures in order to assess the fidelity of data across sites. In the North American Prodromal Longitudinal Studies (NAPLS) Consortium, 8 normal subjects traveled to each of the 8 NAPLS sites and were tested twice at each site on the startle PPI paradigm. In preparation for a binational study, 10 healthy subjects were assessed twice in both San Diego and Mexico City. Intraclass correlations between and within sites were significant for PPI and startle response parameters, confirming the reliability of startle measures across sites in both consortia. There were between site differences in startle magnitude in the NAPLS study that did not appear to be related to methods or equipment. In planning multi-site studies, it is essential to institute quality assurance procedures early and establish between site reliability to assure comparable data across sites. PMID:23799460

  11. Tech Prep Implementation and Preliminary Student Outcomes for Eight Local Tech Prep Consortia.

    ERIC Educational Resources Information Center

    Bragg, Debra D.; Dare, Donna E.; Reger, W. M., IV; Ovaice, Ghazala; Zamani, Eboni M.; Layton, James D.; Dornsife, Carolyn J.; Vallee, Manuel; Brown, Carrie H.; Orr, Margaret Terry

    The implementation and student outcomes of Tech Prep were examined in a study of eight consortia that represented a range of Tech Prep models and approaches in urban, suburban, and rural locations across the United States. Data were collected from the following sources: field visits; follow-up survey of Tech Prep participants and nonparticipants;…

  12. Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens

    PubMed Central

    Giaouris, Efstathios; Heir, Even; Desvaux, Mickaël; Hébraud, Michel; Møretrø, Trond; Langsrud, Solveig; Doulgeraki, Agapi; Nychas, George-John; Kačániová, Miroslava; Czaczyk, Katarzyna; Ölmez, Hülya; Simões, Manuel

    2015-01-01

    A community-based sessile life style is the normal mode of growth and survival for many bacterial species. Under such conditions, cell-to-cell interactions are inevitable and ultimately lead to the establishment of dense, complex and highly structured biofilm populations encapsulated in a self-produced extracellular matrix and capable of coordinated and collective behavior. Remarkably, in food processing environments, a variety of different bacteria may attach to surfaces, survive, grow, and form biofilms. Salmonella enterica, Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus are important bacterial pathogens commonly implicated in outbreaks of foodborne diseases, while all are known to be able to create biofilms on both abiotic and biotic surfaces. Particularly challenging is the attempt to understand the complexity of inter-bacterial interactions that can be encountered in such unwanted consortia, such as competitive and cooperative ones, together with their impact on the final outcome of these communities (e.g., maturation, physiology, antimicrobial resistance, virulence, dispersal). In this review, up-to-date data on both the intra- and inter-species interactions encountered in biofilms of these pathogens are presented. A better understanding of these interactions, both at molecular and biophysical levels, could lead to novel intervention strategies for controlling pathogenic biofilm formation in food processing environments and thus improve food safety. PMID:26347727

  13. Cellulosic hydrogen production with a sequencing bacterial hydrolysis and dark fermentation strategy.

    PubMed

    Lo, Yung-Chung; Bai, Ming-Der; Chen, Wen-Ming; Chang, Jo-Shu

    2008-11-01

    In this study, cellulose hydrolysis activity of two mixed bacterial consortia (NS and QS) was investigated. Combination of NS culture and BHM medium exhibited better hydrolytic activity under the optimal condition of 35 degrees C, initial pH 7.0, and 100rpm agitation. The NS culture could hydrolyze carboxymethyl cellulose (CMC), rice husk, bagasse and filter paper, among which CMC gave the best hydrolysis performance. The CMC hydrolysis efficiency increased with increasing CMC concentration from 5 to 50g/l. With a CMC concentration of 10g/l, the total reducing sugar (RS) production and the RS producing rate reached 5531.0mg/l and 92.9mg/l/h, respectively. Furthermore, seven H2-producing bacterial isolates (mainly Clostridium species) were used to convert the cellulose hydrolysate into H2 energy. With an initial RS concentration of 0.8g/l, the H2 production and yield was approximately 23.8ml/l and 1.21mmol H2/g RS (0.097mmol H2/g cellulose), respectively.

  14. Metagenomes from two microbial consortia associated with Santa Barbara seep oil.

    PubMed

    Hawley, Erik R; Malfatti, Stephanie A; Pagani, Ioanna; Huntemann, Marcel; Chen, Amy; Foster, Brian; Copeland, Alexander; del Rio, Tijana Glavina; Pati, Amrita; Jansson, Janet R; Gilbert, Jack A; Tringe, Susannah Green; Lorenson, Thomas D; Hess, Matthias

    2014-12-01

    The metagenomes from two microbial consortia associated with natural oils seeping into the Pacific Ocean offshore the coast of Santa Barbara (California, USA) were determined to complement already existing metagenomes generated from microbial communities associated with hydrocarbons that pollute the marine ecosystem. This genomics resource article is the first of two publications reporting a total of four new metagenomes from oils that seep into the Santa Barbara Channel. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Phase 0/I/II Cancer Prevention Clinical Trials Program (Consortia) | Division of Cancer Prevention

    Cancer.gov

    Five cancer research centers lead multiple collaborative networks to assess potential cancer preventive agents and to conduct early clinical development of promising preventive agents. Also called the Consortia for Early Phase Prevention Trials, the studies require extensive biomarker analysis, investigation of the biologic effects of the cancer preventive agents on their

  16. The Influence of Pseudomonas fluorescens on Corrosion Products of Archaeological Tin-Bronze Analogues

    NASA Astrophysics Data System (ADS)

    Ghiara, G.; Grande, C.; Ferrando, S.; Piccardo, P.

    2018-01-01

    In this study, tin-bronze analogues of archaeological objects were investigated in the presence of an aerobic Pseudomonas fluorescens strain in a solution, containing chlorides, sulfates, carbonates and nitrates according to a previous archaeological characterization. Classical fixation protocols were employed in order to verify the attachment capacity of such bacteria. In addition, classical metallurgical analytical techniques were used to detect the effect of bacteria on the formation of uncommon corrosion products in such an environment. Results indicate quite a good attachment capacity of the bacteria to the metallic surface and the formation of the uncommon corrosion products sulfates and sulfides is probably connected to the bacterial metabolism.

  17. Short communication: culture-independent detection of lactic Acid bacteria bacteriocin genes in two traditional slovenian raw milk cheeses and their microbial consortia.

    PubMed

    Trmcić, A; Obermajer, T; Rogelj, I; Bogovic Matijasić, B

    2008-12-01

    Two Slovenian traditional raw milk cheeses, Tolminc (from cows' milk) and Kraski (from ewes' milk), were examined for the presence of 19 lactic acid bacteria bacteriocin genes by PCR analysis of total DNA extracts from 9 cheeses and from consortia of strains isolated from these cheeses. Eleven bacteriocin genes were detected in at least one cheese or consortium, or from both. Different cheeses or consortia contained 3 to 9 bacteriocin determinants. Plantaricin A gene determinants were found in all cheese and consortia DNA extracts. Genes for enterocins A, B, P, L50A, and L50B, and the bacteriocin cytolysin were commonly detected, as were genes for nisin. These results indicate that bacteriocinogenic strains of Lactobacillus, Enterococcus, and Lactococcus genera with protective potential are common members of indigenous microbiota of raw milk cheeses, which can be a good source of new protective strains.

  18. The effects of group size and group economic factors on collaboration: a study of the financial performance of rural hospitals in consortia.

    PubMed

    Chan, B; Feldman, R; Manning, W G

    1999-04-01

    To determine factors that distinguish effective rural hospital consortia from ineffective ones in terms of their ability to improve members' financial performance. Two questions in particular were addressed: (1) Do large consortia have a greater collective impact on their members? (2) Does a consortium's economic environment determine the degree of collective impact on members? Based on the hospital survey conducted during February 1992 by the Robert Wood Johnson Hospital-Based Rural Health Care project of rural hospital consortia. The survey data were augmented with data from Medicare Cost Reports (1985-1991), AHA Annual Surveys (1985-1991), and other secondary data. Dependent variables were total operating profit, cost per adjusted admission, and revenue per adjusted admission. Control variables included degree of group formalization, degree of inequality of resources among members (group asymmetry), affiliation with other consortium group(s), individual economic environment, common hospital characteristics (bed size, ownership type, system affiliation, case mix, etc.), year (1985-1991), and census region dummies. All dependent variables have a curvilinear association with group size. The optimum group size is somewhere in the neighborhood of 45. This reveals the benefits of collective action (i.e., scale economies and/or synergy effects) and the issue of complexity as group size increases. Across analyses, no strong evidence exists of group economic environment impacts, and the environmental influences come mainly from the local economy rather than from the group economy. There may be some success stories of collaboration among hospitals in consortia, and consortium effects vary across different collaborations. When studying consortia, it makes sense to develop a typology of groups based on some performance indicators. The results of this study imply that government, rural communities, and consortium staff and steering committees should forge the consortium

  19. Corrosion-Activated Micro-Containers for Environmentally Friendly Corrosion Protective Coatings

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Buhrow, J. W.; Zhang, X.; Johnsey, M. N.; Pearman, B. P.; Jolley, S. T.; Calle, L. M.

    2016-01-01

    This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry. The NASA Kennedy Space Centers Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion

  20. Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller

    NASA Astrophysics Data System (ADS)

    Sun, Jiao; Chen, Songying; Qu, Yanpeng; Li, Jianfeng

    2015-03-01

    Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.

  1. Biodegradation and surfactant-mediated biodegradation of diesel fuel by 218 microbial consortia are not correlated to cell surface hydrophobicity.

    PubMed

    Owsianiak, Mikołaj; Szulc, Alicja; Chrzanowski, Łukasz; Cyplik, Paweł; Bogacki, Mariusz; Olejnik-Schmidt, Agnieszka K; Heipieper, Hermann J

    2009-09-01

    In this study, we elucidated the role of cell surface hydrophobicity (microbial adhesion to hydrocarbons method, MATH) and the effect of anionic rhamnolipids and nonionic Triton X-100 surfactants on biodegradation of diesel fuel employing 218 microbial consortia isolated from petroleum-contaminated soils. Applied enrichment procedure with floating diesel fuel as a sole carbon source in liquid cultures resulted in consortia of varying biodegradation potential and diametrically different cell surface properties, suggesting that cell surface hydrophobicity is a conserved parameter. Surprisingly, no correlations between cell surface hydrophobicity and biodegradation of diesel fuel were found. Nevertheless, both surfactants altered cell surface hydrophobicity of the consortia in similar manner: increased for the hydrophilic and decreased for the hydrophobic cultures. In addition to this, the surfactants exhibited similar influence on diesel fuel biodegradation: Increase was observed for initially slow-degrading cultures and the opposite for fast degraders. This indicates that in the surfactant-mediated biodegradation, effectiveness of surfactants depends on the specification of microorganisms and not on the type of surfactant. In contrary to what was previously reported for pure strains, cell surface hydrophobicity, as determined by MATH, is not a good descriptor of biodegrading potential for mixed cultures.

  2. Issues Facing Academic Library Consortia and Perceptions of Members of the Illinois Digital Academic Library.

    ERIC Educational Resources Information Center

    Brooks, Sam; Dorst, Thomas J.

    2002-01-01

    Discusses the role of consortia in academic libraries, specifically the Illinois Digital Academic Library (IDAL), and describes a study conducted by the IDAL that investigated issues surrounding full text database research including stability of content, vendor communication, embargo periods, publisher concerns, quality of content, linking and…

  3. Clavanin A-bioconjugated Fe3O4/Silane core-shell nanoparticles for thermal ablation of bacterial biofilms.

    PubMed

    Ribeiro, Kalline L; Frías, Isaac A M; Franco, Octavio L; Dias, Simoni C; Sousa-Junior, Ailton A; Silva, Osmar N; Bakuzis, Andris F; Oliveira, Maria D L; Andrade, Cesar A S

    2018-04-27

    The use of central venous catheters (CVC) is highly associated with nosocomial blood infections and its use largely requires a systematic assessment of benefits and risks. Bacterial contamination of these tubes is frequent and may result in development of microbial consortia also known as biofilm. The woven nature of biofilm provides a practical defense against antimicrobial agents, facilitating bacterial dissemination through the patient's body and development of antimicrobial resistance. In this work, the authors describe the modification of CVC tubing by immobilizing Fe 3 O 4 -aminosilane core-shell nanoparticles functionalized with antimicrobial peptide clavanin A (clavA) as an antimicrobial prophylactic towards Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae. Its anti-biofilm-attachment characteristic relies in clavA natural activity to disrupt the bacterial lipidic membrane. The aminosilane shell prevents iron leaching, which is an important nutrient for bacterial growth. Fe 3 O 4 -clavA-modified CVCs showed to decrease Gram-negative bacteria attachment up to 90% when compared to control clean CVC. Additionally, when hyperthermal treatment is triggered for 5 min at 80 °C in a tubing that already presents bacterial biofilm (CVC-BF), the viability of attached bacteria reduces up to 88%, providing an efficient solution to avoid changing catheter. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Corrosion science, corrosion engineering, and advanced technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latanision, R.M.

    1995-04-01

    Professor R.M. Latanision was the 1994 recipient of the Willis Rodney Whitney Award sponsored by NACE International. The present work is taken from his award lecture at CORROSION/94 held in March 1994 in Baltimore, MD. Latanision discussed the interplay between corrosion science and corrosion engineering in advancing technology. His lecture focused on supercritical water oxidation and other technologies that have been under study in the H.H. Uhlig Corrosion Laboratory and in which the chemical properties of new materials and traditional materials have proven integral to the development of contemporary or advanced engineering systems.

  5. DEVELOPMENT OF AN ENVIRONMENTALLY BENIGN MICROBIAL INHIBITOR TO CONTROL INTERNAL PIPELINE CORROSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bill W. Bogan; Brigid M. Lamb; Gemma Husmillo

    The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. Various chemicals that inhibit the growth and/or the metabolism of corrosion-associated microbes such as sulfate reducing bacteria, denitrifying bacteria, and methanogenic bacteria were evaluated to determine their ability to inhibit corrosion in experiments utilizing puremore » and mixed bacterial cultures, and planktonic cultures as well as mature biofilms. Planktonic cultures are easier to inhibit than mature biofilms but several compounds were shown to be effective in decreasing the amount of metal corrosion. Of the compounds tested hexane extracts of Capsicum pepper plants and molybdate were the most effective inhibitors of sulfate reducing bacteria, bismuth nitrate was the most effective inhibitor of nitrate reducing bacteria, and 4-((pyridine-2-yl)methylamino)benzoic acid (PMBA) was the most effective inhibitor of methanogenic bacteria. All of these compounds were demonstrated to minimize corrosion due to MIC, at least in some circumstances. The results obtained in this project are consistent with the hypothesis that any compound that disrupts the metabolism of any of the major microbial groups present in corrosion-associated biofilms shows promise in limiting the amount/rate of corrosion. This approach of controlling MIC by controlling the metabolism of biofilms is more environmentally benign than the current approach involving the use of potent biocides, and warrants further investigation.« less

  6. Diel-scale temporal dynamics recorded for bacterial groups in Namib Desert soil

    PubMed Central

    Gunnigle, Eoin; Frossard, Aline; Ramond, Jean-Baptiste; Guerrero, Leandro; Seely, Mary; Cowan, Don A.

    2017-01-01

    Microbes in hot desert soil partake in core ecosystem processes e.g., biogeochemical cycling of carbon. Nevertheless, there is still a fundamental lack of insights regarding short-term (i.e., over a 24-hour [diel] cycle) microbial responses to highly fluctuating microenvironmental parameters like temperature and humidity. To address this, we employed T-RFLP fingerprinting and 454 pyrosequencing of 16S rRNA-derived cDNA to characterize potentially active bacteria in Namib Desert soil over multiple diel cycles. Strikingly, we found that significant shifts in active bacterial groups could occur over a single 24-hour period. For instance, members of the predominant Actinobacteria phyla exhibited a significant reduction in relative activity from morning to night, whereas many Proteobacterial groups displayed an opposite trend. Contrary to our leading hypothesis, environmental parameters could only account for 10.5% of the recorded total variation. Potential biotic associations shown through co-occurrence networks indicated that non-random inter- and intra-phyla associations were ‘time-of-day-dependent’ which may constitute a key feature of this system. Notably, many cyanobacterial groups were positioned outside and/or between highly interconnected bacterial associations (modules); possibly acting as inter-module ‘hubs’ orchestrating interactions between important functional consortia. Overall, these results provide empirical evidence that bacterial communities in hot desert soils exhibit complex and diel-dependent inter-community associations. PMID:28071697

  7. Diel-scale temporal dynamics recorded for bacterial groups in Namib Desert soil

    NASA Astrophysics Data System (ADS)

    Gunnigle, Eoin; Frossard, Aline; Ramond, Jean-Baptiste; Guerrero, Leandro; Seely, Mary; Cowan, Don A.

    2017-01-01

    Microbes in hot desert soil partake in core ecosystem processes e.g., biogeochemical cycling of carbon. Nevertheless, there is still a fundamental lack of insights regarding short-term (i.e., over a 24-hour [diel] cycle) microbial responses to highly fluctuating microenvironmental parameters like temperature and humidity. To address this, we employed T-RFLP fingerprinting and 454 pyrosequencing of 16S rRNA-derived cDNA to characterize potentially active bacteria in Namib Desert soil over multiple diel cycles. Strikingly, we found that significant shifts in active bacterial groups could occur over a single 24-hour period. For instance, members of the predominant Actinobacteria phyla exhibited a significant reduction in relative activity from morning to night, whereas many Proteobacterial groups displayed an opposite trend. Contrary to our leading hypothesis, environmental parameters could only account for 10.5% of the recorded total variation. Potential biotic associations shown through co-occurrence networks indicated that non-random inter- and intra-phyla associations were ‘time-of-day-dependent’ which may constitute a key feature of this system. Notably, many cyanobacterial groups were positioned outside and/or between highly interconnected bacterial associations (modules); possibly acting as inter-module ‘hubs’ orchestrating interactions between important functional consortia. Overall, these results provide empirical evidence that bacterial communities in hot desert soils exhibit complex and diel-dependent inter-community associations.

  8. Do the shuffle: Changes in Symbiodinium consortia throughout juvenile coral development

    PubMed Central

    Reich, Hannah G.; Robertson, Deborah L.; Goodbody-Gringley, Gretchen

    2017-01-01

    Previous studies of symbiotic associations between scleractinians corals and Symbiodinium have demonstrated that the consortium of symbionts can change in response to environmental conditions. However, less is known about symbiont shuffling during early coral development, particularly in brooding species. This study examined whether Symbiodinium consortia (1) varied in Porites astreoides on shallow (10m) and upper mesophotic (30m) reefs, (2) changed during coral development, and (3) influenced growth of juveniles in different environments. Symbiodinium ITS2 sequences were amplified using universal primers and analyzed using phylotype-specific primers designed for phylotypes A, B, and C. Adults from both depths were found to host only phylotype A, phylotypes A and B, or phylotypes A, B, and C and the frequency of the phylotype composition did not vary with depth. However, phylotype A was the dominant symbiont that was vertically transmitted to the planulae. The presence of phylotypes B and C was detected in the majority of juveniles when transplanted onto the shallow and upper mesophotic reefs whereas only phylotype A was detected in the majority of juveniles reared in outdoor aquaria. In addition, growth of juvenile P. astreoides harboring different combinations of Symbiodinium phylotypes did not vary when transplanted to different reef zones. However, juveniles reared in in situ reef environments grew faster than those reared in ex situ outdoor aquaria. These results show that Symbiodinium consortia change during development of P. astreoides and are influenced by environmental conditions. PMID:28182684

  9. Corrosion Fatigue

    DTIC Science & Technology

    1981-10-01

    particularly under conditions of cathodic polarization. Sul- fate ion , while less damaging under free corrosion conditions, is equally aggressive at...Editing and Reproduction Ltd Harford 11ouse, 7-9 Charlotte St, London, WIP 1HD I I - PREFACE Failure by fatigue and degradation by corrosion continue to...of halide ions . In the unstressed state, this degrada- tion may be manifested by localized corrosion such as pitting, crevice corrosion or ex

  10. Phylogenetic analysis of a biofilm bacterial population in a water pipeline in the Gulf of Mexico.

    PubMed

    López, Miguel A; Zavala-Díaz de la Serna, F Javier; Jan-Roblero, Janet; Romero, Juan M; Hernández-Rodríguez, César

    2006-10-01

    The aim of this study was to assess the bacterial diversity associated with a corrosive biofilm in a steel pipeline from the Gulf of Mexico used to inject marine water into the oil reservoir. Several aerobic and heterotrophic bacteria were isolated and identified by 16S rRNA gene sequence analysis. Metagenomic DNA was also extracted to perform a denaturing gradient gel electrophoresis analysis of ribosomal genes and to construct a 16S rRNA gene metagenomic library. Denaturing gradient gel electrophoresis profiles and ribosomal libraries exhibited a limited bacterial diversity. Most of the species detected in the ribosomal library or isolated from the pipeline were assigned to Proteobacteria (Halomonas spp., Idiomarina spp., Marinobacter aquaeolei, Thalassospira sp., Silicibacter sp. and Chromohalobacter sp.) and Bacilli (Bacillus spp. and Exiguobacterium spp.). This is the first report that associates some of these bacteria with a corrosive biofilm. It is relevant that no sulfate-reducing bacteria were isolated or detected by a PCR-based method. The diversity and relative abundance of bacteria from water pipeline biofilms may contribute to an understanding of the complexity and mechanisms of metal corrosion during marine water injection in oil secondary recovery.

  11. Polystyrene films as barrier layers for corrosion protection of copper and copper alloys.

    PubMed

    Románszki, Loránd; Datsenko, Iaryna; May, Zoltán; Telegdi, Judit; Nyikos, Lajos; Sand, Wolfgang

    2014-06-01

    Dip-coated polystyrene layers of sub-micrometre thickness (85-500nm) have been applied on copper and copper alloys (aluminium brass, copper-nickel 70/30), as well as on stainless steel 304, and produced an effective barrier against corrosion and adhesion of corrosion-relevant microorganisms. According to the dynamic wettability measurements, the coatings exhibited high advancing (103°), receding (79°) and equilibrium (87°) contact angles, low contact angle hysteresis (6°) and surface free energy (31mJ/m(2)). The corrosion rate of copper-nickel 70/30 alloy samples in 3.5% NaCl was as low as 3.2μm/a (44% of that of the uncoated samples), and in artificial seawater was only 0.9μm/a (29% of that of the uncoated samples). Cell adhesion was studied by fluorescence microscopy, using monoculture of Desulfovibrio alaskensis. The coatings not only decreased the corrosion rate but also markedly reduced the number of bacterial cells adhered to the coated surfaces. The PS coating on copper gave the best result, 2×10(3)cells/cm(2) (1% of that of the uncoated control). © 2013 Elsevier B.V. All rights reserved.

  12. Corrosion and stress corrosion cracking in supercritical water

    NASA Astrophysics Data System (ADS)

    Was, G. S.; Ampornrat, P.; Gupta, G.; Teysseyre, S.; West, E. A.; Allen, T. R.; Sridharan, K.; Tan, L.; Chen, Y.; Ren, X.; Pister, C.

    2007-09-01

    Supercritical water (SCW) has attracted increasing attention since SCW boiler power plants were implemented to increase the efficiency of fossil-based power plants. The SCW reactor (SCWR) design has been selected as one of the Generation IV reactor concepts because of its higher thermal efficiency and plant simplification as compared to current light water reactors (LWRs). Reactor operating conditions call for a core coolant temperature between 280 °C and 620 °C at a pressure of 25 MPa and maximum expected neutron damage levels to any replaceable or permanent core component of 15 dpa (thermal reactor design) and 100 dpa (fast reactor design). Irradiation-induced changes in microstructure (swelling, radiation-induced segregation (RIS), hardening, phase stability) and mechanical properties (strength, thermal and irradiation-induced creep, fatigue) are also major concerns. Throughout the core, corrosion, stress corrosion cracking, and the effect of irradiation on these degradation modes are critical issues. This paper reviews the current understanding of the response of candidate materials for SCWR systems, focusing on the corrosion and stress corrosion cracking response, and highlights the design trade-offs associated with certain alloy systems. Ferritic-martensitic steels generally have the best resistance to stress corrosion cracking, but suffer from the worst oxidation. Austenitic stainless steels and Ni-base alloys have better oxidation resistance but are more susceptible to stress corrosion cracking. The promise of grain boundary engineering and surface modification in addressing corrosion and stress corrosion cracking performance is discussed.

  13. Response of Aquatic Bacterial Communities to Hydraulic Fracturing in Northwestern Pennsylvania: A Five-Year Study.

    PubMed

    Ulrich, Nikea; Kirchner, Veronica; Drucker, Rebecca; Wright, Justin R; McLimans, Christopher J; Hazen, Terry C; Campa, Maria F; Grant, Christopher J; Lamendella, Regina

    2018-04-09

    Horizontal drilling and hydraulic fracturing extraction procedures have become increasingly present in Pennsylvania where the Marcellus Shale play is largely located. The potential for long-term environmental impacts to nearby headwater stream ecosystems and aquatic bacterial assemblages is still incompletely understood. Here, we perform high-throughput sequencing of the 16 S rRNA gene to characterize the bacterial community structure of water, sediment, and other environmental samples (n = 189) from 31 headwater stream sites exhibiting different histories of fracking activity in northwestern Pennsylvania over five years (2012-2016). Stream pH was identified as a main driver of bacterial changes within the streams and fracking activity acted as an environmental selector for certain members at lower taxonomic levels within stream sediment. Methanotrophic and methanogenic bacteria (i.e. Methylocystaceae, Beijerinckiaceae, and Methanobacterium) were significantly enriched in sites exhibiting Marcellus shale activity (MSA+) compared to MSA- streams. This study highlighted potential sentinel taxa associated with nascent Marcellus shale activity and some of these taxa remained as stable biomarkers across this five-year study. Identifying the presence and functionality of specific microbial consortia within fracking-impacted streams will provide a clearer understanding of the natural microbial community's response to fracking and inform in situ remediation strategies.

  14. Combined use of microbial consortia isolated from different agricultural soils and cyclodextrin as a bioremediation technique for herbicide contaminated soils.

    PubMed

    Villaverde, J; Rubio-Bellido, M; Lara-Moreno, A; Merchan, F; Morillo, E

    2018-02-01

    The phenylurea herbicide diuron is persistent in soil, water and groundwater and is considered to be a highly toxic molecule. The principal product of its biodegradation, 3,4-dichloroaniline, exhibits greater toxicity than diuron and is persistent in the environment. Five diuron degrading microbial consortia (C1C5), isolated from different agricultural soils, were investigated for diuron mineralization activity. The C2 consortium was able to mineralize 81.6% of the diuron in solution, while consortium C3 was only able to mineralize 22.9%. Isolated consortia were also tested in soil slurries and in all cases, except consortium C4, DT 50 (the time required for the diuron concentration to decline to half of its initial value) was drastically reduced, from 700 days (non-inoculated control) to 546, 351, and 171 days for the consortia C5, C2, and C1, respectively. In order to test the effectiveness of the isolated consortium C1 in a more realistic scenario, soil diuron mineralization assays were performed under static conditions (40% of the soil water-holding capacity). A significant enhancement of diuron mineralization was observed after C1 inoculation, with 23.2% of the herbicide being mineralized in comparison to 13.1% for the control experiment. Hydroxypropyl-β-cyclodextrin, a biodegradable organic enhancer of pollutant bioavailability, used in combination with C1 bioaugmentation in static conditions, resulted in a significant decrease in the DT 50 (214 days; 881 days, control experiment). To the best of our knowledge, this is the first report of the use of soil-isolated microbial consortia in combination with cyclodextrins proposed as a bioremediation technique for pesticide contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Complementary Microorganisms in Highly Corrosive Biofilms from an Offshore Oil Production Facility.

    PubMed

    Vigneron, Adrien; Alsop, Eric B; Chambers, Brian; Lomans, Bartholomeus P; Head, Ian M; Tsesmetzis, Nicolas

    2016-04-01

    Offshore oil production facilities are frequently victims of internal piping corrosion, potentially leading to human and environmental risks and significant economic losses. Microbially influenced corrosion (MIC) is believed to be an important factor in this major problem for the petroleum industry. However, knowledge of the microbial communities and metabolic processes leading to corrosion is still limited. Therefore, the microbial communities from three anaerobic biofilms recovered from the inside of a steel pipe exhibiting high corrosion rates, iron oxide deposits, and substantial amounts of sulfur, which are characteristic of MIC, were analyzed in detail. Bacterial and archaeal community structures were investigated by automated ribosomal intergenic spacer analysis, multigenic (16S rRNA and functional genes) high-throughput Illumina MiSeq sequencing, and quantitative PCR analysis. The microbial community analysis indicated that bacteria, particularly Desulfovibrio species, dominated the biofilm microbial communities. However, other bacteria, such as Pelobacter, Pseudomonas, and Geotoga, as well as various methanogenic archaea, previously detected in oil facilities were also detected. The microbial taxa and functional genes identified suggested that the biofilm communities harbored the potential for a number of different but complementary metabolic processes and that MIC in oil facilities likely involves a range of microbial metabolisms such as sulfate, iron, and elemental sulfur reduction. Furthermore, extreme corrosion leading to leakage and exposure of the biofilms to the external environment modify the microbial community structure by promoting the growth of aerobic hydrocarbon-degrading organisms. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Complementary Microorganisms in Highly Corrosive Biofilms from an Offshore Oil Production Facility

    PubMed Central

    Alsop, Eric B.; Chambers, Brian; Lomans, Bartholomeus P.; Head, Ian M.; Tsesmetzis, Nicolas

    2016-01-01

    Offshore oil production facilities are frequently victims of internal piping corrosion, potentially leading to human and environmental risks and significant economic losses. Microbially influenced corrosion (MIC) is believed to be an important factor in this major problem for the petroleum industry. However, knowledge of the microbial communities and metabolic processes leading to corrosion is still limited. Therefore, the microbial communities from three anaerobic biofilms recovered from the inside of a steel pipe exhibiting high corrosion rates, iron oxide deposits, and substantial amounts of sulfur, which are characteristic of MIC, were analyzed in detail. Bacterial and archaeal community structures were investigated by automated ribosomal intergenic spacer analysis, multigenic (16S rRNA and functional genes) high-throughput Illumina MiSeq sequencing, and quantitative PCR analysis. The microbial community analysis indicated that bacteria, particularly Desulfovibrio species, dominated the biofilm microbial communities. However, other bacteria, such as Pelobacter, Pseudomonas, and Geotoga, as well as various methanogenic archaea, previously detected in oil facilities were also detected. The microbial taxa and functional genes identified suggested that the biofilm communities harbored the potential for a number of different but complementary metabolic processes and that MIC in oil facilities likely involves a range of microbial metabolisms such as sulfate, iron, and elemental sulfur reduction. Furthermore, extreme corrosion leading to leakage and exposure of the biofilms to the external environment modify the microbial community structure by promoting the growth of aerobic hydrocarbon-degrading organisms. PMID:26896143

  17. Centralized Drinking Water Treatment Operations Shape Bacterial and Fungal Community Structure.

    PubMed

    Ma, Xiao; Vikram, Amit; Casson, Leonard; Bibby, Kyle

    2017-07-05

    Drinking water microbial communities impact opportunistic pathogen colonization and corrosion of water distribution systems, and centralized drinking water treatment represents a potential control for microbial community structure in finished drinking water. In this article, we examine bacterial and fungal abundance and diversity, as well as the microbial community taxonomic structure following each unit operation in a conventional surface water treatment plant. Treatment operations drove the microbial composition more strongly than sampling time. Both bacterial and fungal abundance and diversity decreased following sedimentation and filtration; however, only bacterial abundance and diversity was significantly impacted by free chlorine disinfection. Similarly, each treatment step was found to shift bacterial and fungal community beta-diversity, with the exception of disinfection on the fungal community structure. We observed the enrichment of bacterial and fungal taxa commonly found in drinking water distribution systems through the treatment process, for example, Sphingomonas following filtration and Leptospirillium and Penicillium following disinfection. Study results suggest that centralized drinking water treatment processes shape the final drinking water microbial community via selection of community members and that the bacterial community is primarily driven by disinfection while the eukaryotic community is primarily controlled by physical treatment processes.

  18. Corrosion sensor

    DOEpatents

    Glass, Robert S.; Clarke, Jr., Willis L.; Ciarlo, Dino R.

    1994-01-01

    A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

  19. Corrosion sensor

    DOEpatents

    Glass, R.S.; Clarke, W.L. Jr.; Ciarlo, D.R.

    1994-04-26

    A corrosion sensor array is described incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis. 7 figures.

  20. [Predominant strains of polycyclic aromatic hydrocarbon-degrading consortia from deep sea of the Middle Atlantic Ridge].

    PubMed

    Cui, Zhisong; Shao, Zongze

    2009-07-01

    In order to identify the predominant strains of polycyclic aromatic hydrocarbon (PAH)-degrading consortia harboring in sea water and surface sediment collected from deep sea of the Middle Atlantic Ridge. We employed enrichment method and spread-plate method to isolate cultivable bacteria and PAHs degraders from deep sea samples. Phylogenetic analysis was conducted by 16S rRNA gene sequencing of the bacteria. Then we analyzed the dominant bacteria in the PAHs-degrading consortia by denaturing gradient gel electrophoresis (DGGE) combined with DNA sequencing. Altogether 16 cultivable bacteria were obtained, including one PAHs degrader Novosphingobium sp. 4D. Phylogenetic analysis showed that strains closely related to Alcanivorax dieselolei NO1A (5/16) and Tistrella mobilis TISTR 1108T (5/16) constituted two biggest groups among the cultivable bacteria. DGGE analysis showed that strain 4L (also 4M and 4N, Alcanivorax dieselolei NO1A, 99.21%), 4D (Novosphingobium pentaromativorans US6-1(T), 97.07%) and 4B (also 4E, 4H and 4K, Tistrella mobilis TISTR 1108T, > 99%) dominated the consortium MC2D. While in consortium MC3CO, the predominant strains were strain 5C (also 5H, Alcanivorax dieselolei NO1A, > 99%), uncultivable strain represented by band 5-8 (Novosphingobium aromaticivorans DSM 12444T, 99.41%), 5J (Tistrella mobilis TISTR 1108T, 99.52%) and 5F (also 5G, Thalassospira lucentensis DSM 14000T, < 97%). We found that strains of genus Alcanivorax, Novosphingobium, Tistrella and Thalassospira were predominant bacteria of PAHs-degrading consortia in sea water and surface sediment of Middle Atlantic Ridge deep sea, with Novosphingobium spp. as their main PAHs degraders.

  1. Lipopolysaccharide inhibits or accelerates biomedical titanium corrosion depending on environmental acidity

    PubMed Central

    Yu, Fei; Addison, Owen; Baker, Stephen J; Davenport, Alison J

    2015-01-01

    Titanium and its alloys are routinely used as biomedical implants and are usually considered to be corrosion resistant under physiological conditions. However, during inflammation, chemical modifications of the peri-implant environment including acidification occur. In addition certain biomolecules including lipopolysaccharide (LPS), a component of Gram-negative bacterial cell walls and driver of inflammation have been shown to interact strongly with Ti and modify its corrosion resistance. Gram-negative microbes are abundant in biofilms which form on dental implants. The objective was to investigate the influence of LPS on the corrosion properties of relevant biomedical Ti substrates as a function of environmental acidity. Inductively coupled plasma mass spectrometry was used to quantify Ti dissolution following immersion testing in physiological saline for three common biomedical grades of Ti (ASTM Grade 2, Grade 4 and Grade 5). Complementary electrochemical tests including anodic and cathodic polarisation experiments and potentiostatic measurements were also conducted. All three Ti alloys were observed to behave similarly and ion release was sensitive to pH of the immersion solution. However, LPS significantly inhibited Ti release under the most acidic conditions (pH 2), which may develop in localized corrosion sites, but promoted dissolution at pH 4–7, which would be more commonly encountered physiologically. The observed pattern of sensitivity to environmental acidity of the effect of LPS on Ti corrosion has not previously been reported. LPS is found extensively on the surfaces of skin and mucosal penetrating Ti implants and the findings are therefore relevant when considering the chemical stability of Ti implant surfaces in vivo. PMID:25634122

  2. 25 CFR 1000.46 - Which Tribes/Consortia may be selected to receive a negotiation grant?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Which Tribes/Consortia may be selected to receive a negotiation grant? 1000.46 Section 1000.46 Indians OFFICE OF THE ASSISTANT SECRETARY, INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ANNUAL FUNDING AGREEMENTS UNDER THE TRIBAL SELF-GOVERNMENT ACT AMENDMENTS TO THE INDIAN SELF-DETERMINATION AND EDUCATION ACT...

  3. Genomic insights into the metabolic potential and interactions between marine methanotrophic ANME archaea and associated bacteria

    NASA Astrophysics Data System (ADS)

    Orphan, V. J.; Skennerton, C.; Chadwick, G.; Haroon, F.; Tyson, G. W.; Leu, A.; Hatzenpichler, R.; Woyke, T.; Malmstrom, R.; Yu, H.; Scheller, S.

    2015-12-01

    Cooperative metabolic interactions between multiple groups of methanotrophic 'ANME' archaea and sulfate-reducing bacteria represent the primary sink for methane within continental margin sediments. These syntrophic associations are frequently observed as structured multi-celled consortia in methane seeps, often comprising a substantial proportion of the microbial biomass within near seafloor seep sediments. Since their discovery nearly 15 years ago, a number of distinct ANME groups and multiple sulfate-reducing bacterial partners have been described from seep environments worldwide. Attempts to reconstruct the genomes of some ANME organisms have been reported, however the ecological physiology and metabolic interactions of distinct ANME lineages and their bacterial partners remains poorly understood. Here, we used a fluorescence azide-alkyne click chemistry technique known as BONCAT combined with FAC sorting to examine patterns in microbial membership and the genomes of single, metabolically active ANME-bacterial consortia recovered from methane seep sediments. This targeted consortia-level sequencing approach revealed significant diversity in the ANME-bacterial associations in situ as well as insights into the potential syntrophic mechanisms underpinning these enigmatic methane-fueled partnerships.

  4. Accelerated Corrosion Testing

    DTIC Science & Technology

    1982-12-01

    Treaty Organization, Brussels, 1971), p. 449. 14. D. 0. Sprowls, T. J. Summerson, G. M. Ugianski, S. G. Epstein, and H. L. Craig , Jr., in Stress...National Association of Corrosion Engineers Houston, TX, 1972). 22. H. L. Craig , Jr. (ed.), Stress Corrosion-New Approaches, ASTM-STP- 610 (American...62. M. Hishida and H. Nakada, Corrosion 33 (11) 403 (1977). b3. D. C. Deegan and B. E. Wilde, Corrosion 34 (6), 19 (1978). 64. S. Orman, Corrosion Sci

  5. Microstructure, corrosion and tribological and antibacterial properties of Ti-Cu coated stainless steel.

    PubMed

    Jin, Xiaomin; Gao, Lizhen; Liu, Erqiang; Yu, Feifei; Shu, Xuefeng; Wang, Hefeng

    2015-10-01

    A Ti-Cu coated layer on 316L stainless steel (SS) was obtained by using the Closed Field Unbalanced Magnetron Sputtering (CFUBMS) system to improve antibacterial activity, corrosion and tribological properties. The microstructure and phase constituents of Ti-Cu coated layer were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and glow discharge optical emission spectrometry (GDOES). The corrosion and tribological properties of a stainless steel substrate, SS316L, when coated with Ti-Cu were investigated in a simulated body fluid (SBF) environment. The viability of bacteria attached to the antibacterial surface was tested using the spread plate method. The results indicate that the Ti-Cu coated SS316L could achieve a higher corrosion polarization resistance and a more stable corrosion potential in an SBF environment than the uncoated SS316L substrate. The desirable corrosion protection performance of Ti-Cu may be attributable to the formation of a Ti-O passive layer on the coating surface, protecting the coating from further corrosion. The Ti-Cu coated SS316L also exhibited excellent wear resistance and chemical stability during the sliding tests against Si3N4 balls in SBF environment. Moreover, the Ti-Cu coatings exhibited excellent antibacterial abilities, where an effective reduction of 99.9% of Escherichia coli (E.coli) within 12h was achieved by contact with the modified surface, which was attributed to the release of copper ions when the Ti-Cu coatings are in contact with bacterial solution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Factors affecting the silver corrosion performance of jet fuel from the Merox process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viljoen, C.L.; Hietkamp, S.; Marais, B.

    1995-05-01

    The Natref refinery at Sasolburg, South Africa, which is 63,6% owned by Sasol and 36,5% by Total, is producing Jet A-1 fuel at a rate of 80 m{sup 3}/h by means of a UOP Merox process. A substantial part of the crude oil slate is made up from crudes which have been stored for considerable times in underground mines. Since the 1970`s, Natref has experienced sporadic non-conformance of its treated jet fuel to the silver corrosion (IP 227) test. Various causes and explanations for the sporadic silver corrosion occurrence have been put forward but a direct causal link has remainedmore » obscure. The paper addresses these possible causes for silver corrosion and some of the process changes which have been made to alleviate the problem. Emphasis is placed on the most recent approaches which were taken to identify the origin of the sporadic silver corrosion. An inventory of all the potential causes was made, such a bacterial action, elemental sulphur formation in storage, etc. and experiments designed to test the validity of these causes, are discussed. A statistical evaluation which was done of the historical process data over a 2 year period, failed to link the use of mine crudes directly to Ag-corrosion occurrence. However, a correlation between elemental sulphur and H{sub 2}S levels in the feed to the Merox reactor and Ag-corrosion was observed. Finally, the outcome of the experiments are discussed, as well as the conclusions which were reached from the observed results.« less

  7. Effects of disinfectant and biofilm on the corrosion of cast iron pipes in a reclaimed water distribution system.

    PubMed

    Wang, Haibo; Hu, Chun; Hu, Xuexiang; Yang, Min; Qu, Jiuhui

    2012-03-15

    The effects of disinfection and biofilm on the corrosion of cast iron pipe in a model reclaimed water distribution system were studied using annular reactors (ARs). The corrosion scales formed under different conditions were characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM), while the bacterial characteristics of biofilm on the surface were determined using several molecular methods. The corrosion scales from the ARs with chlorine included predominantly α-FeOOH and Fe2O3, while CaPO3(OH)·2H2O and α-FeOOH were the predominant phases after chloramines replaced chlorine. Studies of the consumption of chlorine and iron release indicated that the formation of dense oxide layers and biofilm inhibited iron corrosion, causing stable lower chlorine decay. It was verified that iron-oxidizing bacteria (IOB) such as Sediminibacterium sp., and iron-reducing bacteria (IRB) such as Shewanella sp., synergistically interacted with the corrosion product to prevent further corrosion. For the ARs without disinfection, α-FeOOH was the predominant phase at the primary stage, while CaCO3 and α-FeOOH were predominant with increasing time. The mixed corrosion-inducing bacteria, including the IRB Shewanella sp., the IOB Sediminibacterium sp., and the sulfur-oxidizing bacteria (SOB) Limnobacter thioxidans strain, promoted iron corrosion by synergistic interactions in the primary period, while anaerobic IRB became the predominant corrosion bacteria, preventing further corrosion via the formation of protective layers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Corrosion products of carbonation induced corrosion in existing reinforced concrete facades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Köliö, Arto; Honkanen, Mari; Lahdensivu, Jukka

    Active corrosion in reinforced concrete structures is controlled by environmental conditions and material properties. These factors determine the corrosion rate and type of corrosion products which govern the total achieved service life. The type and critical amount of corrosion products were studied by electron microscopy and X-ray diffractometry on concrete and reinforcement samples from existing concrete facades on visually damaged locations. The corrosion products in outdoor environment exposed concrete facades are mostly hydroxides (Feroxyhite, Goethite and Lepidocrocite) with a volume ratio to Fe of approximately 3. The results can be used to calibrate calculation of the critical corrosion penetration ofmore » concrete facade panels.« less

  9. Intermunicipal health care consortia in Brazil: strategic behavior, incentives and sustainability.

    PubMed

    Teixeira, Luciana; Bugarin, Mauricio; Dourado, Maria Cristina

    2006-01-01

    This article studies strategic behavior in municipal health care consortia where neighboring municipalities form a partnership to supply high-complexity health care. Each municipality partially funds the organization. Depending on the partnership contract, a free rider problem may jeopardize the organization. A municipality will default its payments if it can still benefit from the services, especially when political pressures for competing expenditure arise. The main result is that the partnership sustainability depends on punishment mechanisms to a defaulting member, the gains from joint provision of services and the overall economic environment. Possible solutions to the incentive problem are discussed.

  10. Fighting Corrosion

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Reinforced concrete structures such as bridges, parking decks, and balconies are designed to have a service life of over 50 years. All too often, however, many structures fall short of this goal, requiring expensive repairs and protection work earlier than anticipated. The corrosion of reinforced steel within the concrete infrastructure is a major cause for this premature deterioration. Such corrosion is a particularly dangerous problem for the facilities at NASA s Kennedy Space Center. Located near the Atlantic Ocean in Florida, Kennedy is based in one of the most corrosive-prone areas in the world. In order to protect its launch support structures, highways, pipelines, and other steel-reinforced concrete structures, Kennedy engineers developed the Galvanic Liquid Applied Coating System. The system utilizes an inorganic coating material that slows or stops the corrosion of reinforced steel members inside concrete structures. Early tests determined that the coating meets the criteria of the National Association of Corrosion Engineers for complete protection of steel rebar embedded in concrete. Testing is being continued at the Kennedy's Materials Science Beach Corrosion Test Site.

  11. Anti-inflammatory effect of microbial consortia during the utilization of dietary polysaccharides.

    PubMed

    Thomson, Pamela; Medina, Daniel A; Ortúzar, Verónica; Gotteland, Martín; Garrido, Daniel

    2018-07-01

    The gut microbiome has a significant impact on host health, especially at the metabolic level. Dietary compounds arriving at the colon have a large influence on the composition of the gut microbiome. High fiber diets have been associated to health benefits that are mediated in great part by short chain fatty acids (SCFA). Gut microbial interactions are relevant for the utilization of complex carbohydrates in the gut microbiome. In this work we characterized the utilization of two dietary polysaccharides by combinations of representative adult gut microbes, and the impact of their activities on a cellular inflammation model. Paired combinations of Bifidobacterium adolescentis, Bacteroides dorei, Lactobacillus plantarum, Escherichia coli and Clostridium symbiosum were grown in inulin or xylan as carbon source. Their relative abundance, substrate consumption and major SCFAs produced were determined. Higher cell growth was observed during inulin consumption, and B. adolescentis and L. plantarum were dominant in co-cultures. The co-culture of B. dorei and C. symbiosum was dominant in xylan. In several cases the combined bacterial growth was lower in co-cultures than monocultures, with a few exceptions of synergistic growth between microorganisms. Inulin fermentation resulted in larger acetate and lactate concentrations, and several combinations grown in xylan containing C. symbiosum were characterized by high amounts of butyrate. These microbial consortia were scaled to batch bioreactor fermentations reaching high cell densities and similar profiles to co-culture experiments. Interestingly, a microbial combination producing high amounts of butyrate was able to reduce IL-8 expression in HT-29 cells co-incubated with TNFα. In summary, this work shows that microbial interactions during the utilization of dietary polysaccharides are complex and substrate dependent. Moreover, certain combinations deploy potent anti-inflammatory effects, which are independent of individual

  12. Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit

    NASA Astrophysics Data System (ADS)

    Huang, B. S.; Yin, W. F.; Sang, D. H.; Jiang, Z. Y.

    2012-10-01

    The synergy effect of naphthenic acid corrosion and sulfur corrosion at high temperature in crude oil distillation unit was studied using Q235 carbon-manganese steel and 316 stainless steel. The corrosion of Q235 and 316 in corrosion media containing sulfur and/or naphthenic acid at 280 °C was investigated by weight loss, scanning electron microscope (SEM), EDS and X-ray diffractometer (XRD) analysis. The results showed that in corrosion media containing only sulfur, the corrosion rate of Q235 and 316 first increased and then decreased with the increase of sulfur content. In corrosion media containing naphthenic acid and sulfur, with the variations of acid value or sulfur content, the synergy effect of naphthenic acid corrosion and sulfur corrosion has a great influence on the corrosion rate of Q235 and 316. It was indicated that the sulfur accelerated naphthenic acid corrosion below a certain sulfur content but prevented naphthenic acid corrosion above that. The corrosion products on two steels after exposure to corrosion media were investigated. The stable Cr5S8 phases detected in the corrosion products film of 316 were considered as the reason why 316 has greater corrosion resistance to that of Q235.

  13. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

    PubMed Central

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.

    2015-01-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys. PMID:26615896

  14. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion.

    PubMed

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K

    2015-11-30

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys.

  15. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

    NASA Astrophysics Data System (ADS)

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.

    2015-11-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys.

  16. Synergistic Interactions in Microbial Biofilms Facilitate the Establishment of Opportunistic Pathogenic Fungi in Household Dishwashers.

    PubMed

    Zupančič, Jerneja; Raghupathi, Prem K; Houf, Kurt; Burmølle, Mette; Sørensen, Søren J; Gunde-Cimerman, Nina

    2018-01-01

    Biofilms formed on rubber seals in dishwashers harbor diverse microbiota. In this study, we focussed on the microbial composition of bacteria and fungi, isolated from a defined area of one square centimeter of rubber from four domestic dishwashers and assessed their abilities to in vitro multispecies biofilm formation. A total of 80 isolates (64 bacterial and 16 fungal) were analyzed. Multiple combinations of bacterial isolates from each dishwasher were screened for synergistic interactions. 32 out of 140 tested (23%) four-species bacterial combinations displayed consistent synergism leading to an overall increase in biomass, in all experimental trails. Bacterial isolates from two of the four dishwashers generated a high number of synergistically interacting four-species consortia. Network based correlation analyses also showed higher co-occurrence patterns observed between bacterial members in the same two dishwasher samples, indicating cooperative effects. Furthermore, two synergistic four-species bacterial consortia were tested for their abilities to incorporate an opportunistic fungal pathogen, Exophiala dermatitidis and their establishment as biofilms on sterile ethylene propylene diene monomer M-class (EPDM) rubber and polypropylene (PP) surfaces. When the bacterial consortia included E. dermatitidis , the overall cell numbers of both bacteria and fungi increased and a substantial increase in biofilm biomass was observed. These results indicate a novel phenomenon of cross kingdom synergy in biofilm formation and these observations could have potential implications for human health.

  17. Synergistic Interactions in Microbial Biofilms Facilitate the Establishment of Opportunistic Pathogenic Fungi in Household Dishwashers

    PubMed Central

    Zupančič, Jerneja; Raghupathi, Prem K.; Houf, Kurt; Burmølle, Mette; Sørensen, Søren J.; Gunde-Cimerman, Nina

    2018-01-01

    Biofilms formed on rubber seals in dishwashers harbor diverse microbiota. In this study, we focussed on the microbial composition of bacteria and fungi, isolated from a defined area of one square centimeter of rubber from four domestic dishwashers and assessed their abilities to in vitro multispecies biofilm formation. A total of 80 isolates (64 bacterial and 16 fungal) were analyzed. Multiple combinations of bacterial isolates from each dishwasher were screened for synergistic interactions. 32 out of 140 tested (23%) four-species bacterial combinations displayed consistent synergism leading to an overall increase in biomass, in all experimental trails. Bacterial isolates from two of the four dishwashers generated a high number of synergistically interacting four-species consortia. Network based correlation analyses also showed higher co-occurrence patterns observed between bacterial members in the same two dishwasher samples, indicating cooperative effects. Furthermore, two synergistic four-species bacterial consortia were tested for their abilities to incorporate an opportunistic fungal pathogen, Exophiala dermatitidis and their establishment as biofilms on sterile ethylene propylene diene monomer M-class (EPDM) rubber and polypropylene (PP) surfaces. When the bacterial consortia included E. dermatitidis, the overall cell numbers of both bacteria and fungi increased and a substantial increase in biofilm biomass was observed. These results indicate a novel phenomenon of cross kingdom synergy in biofilm formation and these observations could have potential implications for human health. PMID:29441043

  18. Corrosion initiation and propagation behavior of corrosion resistant concrete reinforcing materials

    NASA Astrophysics Data System (ADS)

    Hurley, Michael F.

    The life of a concrete structure exposed to deicing compounds or seawater is often limited by chloride induced corrosion of the steel reinforcement. In this study, the key material attributes that affect the corrosion initiation and propagation periods were studied. These included material composition, surface condition, ageing time, propagation behavior during active corrosion, morphology of attack, and type of corrosion products generated by each rebar material. The threshold chloride concentrations for solid 316LN stainless steel, 316L stainless steel clad over carbon steel, 2101 LDX, MMFX-2, and carbon steel rebar were investigated using electrochemical techniques in saturated calcium hydroxide solutions. Surface preparation, test method, duration of period exposed to a passivating condition prior to introduction of chloride, and presence of cladding defects all affected the threshold chloride concentration obtained. A model was implemented to predict the extension of time until corrosion initiation would be expected. 8 years was the predicted time to corrosion initiation for carbon steel. However, model results confirmed that use of 316LN may increase the time until onset of corrosion to 100 years or more. To assess the potential benefits afforded by new corrosion resistant rebar alloys from a corrosion resistance standpoint the corrosion propagation behavior and other factors that might affect the risk of corrosion-induced concrete cracking must also be considered. Radial pit growth was found to be ohmically controlled but repassivation occurred more readily at high potentials in the case of 316LN and 2101 stainless steels. The discovery of ohmically controlled propagation enabled transformation of propagation rates from simulated concrete pore solution to less conductive concrete by accounting for resistance changes in the surrounding medium. The corrosion propagation behavior as well as the morphology of attack directly affects the propensity for concrete

  19. Potentiodynamic Corrosion Testing.

    PubMed

    Munir, Selin; Pelletier, Matthew H; Walsh, William R

    2016-09-04

    Different metallic materials have different polarization characteristics as dictated by the open circuit potential, breakdown potential, and passivation potential of the material. The detection of these electrochemical parameters identifies the corrosion factors of a material. A reliable and well-functioning corrosion system is required to achieve this. Corrosion of the samples was achieved via a potentiodynamic polarization technique employing a three-electrode configuration, consisting of reference, counter, and working electrodes. Prior to commencement a baseline potential is obtained. Following the stabilization of the corrosion potential (Ecorr), the applied potential is ramped at a slow rate in the positive direction relative to the reference electrode. The working electrode was a stainless steel screw. The reference electrode was a standard Ag/AgCl. The counter electrode used was a platinum mesh. Having a reliable and well-functioning in vitro corrosion system to test biomaterials provides an in-expensive technique that allows for the systematic characterization of the material by determining the breakdown potential, to further understand the material's response to corrosion. The goal of the protocol is to set up and run an in vitro potentiodynamic corrosion system to analyze pitting corrosion for small metallic medical devices.

  20. 25 CFR 1000.63 - Under what circumstances may planning and negotiation grants be awarded to Tribes/Consortia?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... AMENDMENTS TO THE INDIAN SELF-DETERMINATION AND EDUCATION ACT Other Financial Assistance for Planning and... 25 Indians 2 2010-04-01 2010-04-01 false Under what circumstances may planning and negotiation... may planning and negotiation grants be awarded to Tribes/Consortia? At the discretion of the Director...

  1. Corrosion of RoHS-Compliant Surface Finishes in Corrosive Mixed Flowing Gas Environments

    NASA Astrophysics Data System (ADS)

    Hannigan, K.; Reid, M.; Collins, M. N.; Dalton, E.; Xu, C.; Wright, B.; Demirkan, K.; Opila, R. L.; Reents, W. D.; Franey, J. P.; Fleming, D. A.; Punch, J.

    2012-03-01

    Recently, the corrosion resistance of printed wiring board (PWB) finishes has generated considerable interest due to field failures observed in various parts of the world. This study investigates the corrosion issues associated with the different lead-free PWB surface finishes. Corrosion products on various PWB surface finishes generated in mixed flowing gas (MFG) environments were studied, and analysis techniques such as scanning electron microscopy, energy-dispersive x-ray, x-ray diffraction, focused ion beam, and scanning Auger microscopy were used to quantify the corrosion layer thickness and determine the composition of corrosion products. The corrosion on organic solderability preservative samples shows similar corrosion products to bare copper and is mainly due to direct attack of copper traces by corrosive gases. The corrosion on electroless nickel immersion gold occurs primarily through the porosity in the film and is accelerated by the galvanic potential between gold and copper; similar results were observed on immersion silver. Immersion tin shows excellent corrosion resistance due to its inherent corrosion resistance in the MFG environment as well as the opposite galvanic potential between tin and copper compared with gold or silver and copper.

  2. Ennoblement, corrosion, and biofouling in brackish seawater: Comparison between six stainless steel grades.

    PubMed

    Huttunen-Saarivirta, E; Rajala, P; Marja-Aho, M; Maukonen, J; Sohlberg, E; Carpén, L

    2018-04-01

    In this work, six common stainless steel grades were compared with respect to ennoblement characteristics, corrosion performance and tendency to biofouling in brackish sea water in a pilot-scale cooling water circuit. Two tests were performed, each employing three test materials, until differences between the materials were detected. Open circuit potential (OCP) was measured continuously in situ. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements were conducted before and after the tests. Exposed specimens were further subjected to examinations by scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS), and the biofouling was studied using epifluorescence microscopy, quantitative polymerase chain reaction (qPCR) and high-throughput sequencing (HTP sequencing). The results revealed dissimilarities between the stainless steel grades in corrosion behaviour and biofouling tendency. The test material that differed from the most of the other studied alloys was grade EN 1.4162. It experienced fastest and most efficient ennoblement of OCP, its passive area shrank to the greatest extent and the cathodic reaction was accelerated to a significant degree by the development of biofilm. Furthermore, microbiological analyses revealed that bacterial community on EN 1.4162 was dominated by Actinobacteria, whereas on the other five test materials Proteobacteria was the main bacterial phylum. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Direct cloning from enrichment cultures, a reliable strategy for isolation of complete operons and genes from microbial consortia.

    PubMed

    Entcheva, P; Liebl, W; Johann, A; Hartsch, T; Streit, W R

    2001-01-01

    Enrichment cultures of microbial consortia enable the diverse metabolic and catabolic activities of these populations to be studied on a molecular level and to be explored as potential sources for biotechnology processes. We have used a combined approach of enrichment culture and direct cloning to construct cosmid libraries with large (>30-kb) inserts from microbial consortia. Enrichment cultures were inoculated with samples from five environments, and high amounts of avidin were added to the cultures to favor growth of biotin-producing microbes. DNA was extracted from three of these enrichment cultures and used to construct cosmid libraries; each library consisted of between 6,000 and 35,000 clones, with an average insert size of 30 to 40 kb. The inserts contained a diverse population of genomic DNA fragments isolated from the consortia organisms. These three libraries were used to complement the Escherichia coli biotin auxotrophic strain ATCC 33767 Delta(bio-uvrB). Initial screens resulted in the isolation of seven different complementing cosmid clones, carrying biotin biosynthesis operons. Biotin biosynthesis capabilities and growth under defined conditions of four of these clones were studied. Biotin measured in the different culture supernatants ranged from 42 to 3,800 pg/ml/optical density unit. Sequencing the identified biotin synthesis genes revealed high similarities to bio operons from gram-negative bacteria. In addition, random sequencing identified other interesting open reading frames, as well as two operons, the histidine utilization operon (hut), and the cluster of genes involved in biosynthesis of molybdopterin cofactors in bacteria (moaABCDE).

  4. Corrosion of High-Density Sintered Tungsten Alloys. Part 2. Accelerated Corrosion Testing

    DTIC Science & Technology

    1988-12-01

    REPORT MRL-R- 1145 CORROSION OF HIGH-DENSITY SINTERED TUNGSTEN ALLOYS PART 2: ACCELERATED CORROSION TESTING J.J. Batten and B.T. Moore I DTIC . *arit*fl...Commo,,wea°h 91 Avor,++.°_ DECEMBER 1988 012 rI DEPARTMENT OF DEFENCE MATERIALS RESEARCH LABORATORY REPORT MRL-R- 1145 CORROSION OF HIGH-DENSITY SINTERED...TUNGSTEN ALLOYS PART 2: ACCELERATED CORROSION TESTING J.J. Batten and B.T. Moore ABSTRACT As a consequence of corrosion during long-term storage in

  5. Consortia-mediated bioprocessing of cellulose to ethanol with a symbiotic Clostridium phytofermentans/yeast co-culture

    PubMed Central

    2013-01-01

    Background Lignocellulosic ethanol is a viable alternative to petroleum-based fuels with the added benefit of potentially lower greenhouse gas emissions. Consolidated bioprocessing (simultaneous enzyme production, hydrolysis and fermentation; CBP) is thought to be a low-cost processing scheme for lignocellulosic ethanol production. However, no single organism has been developed which is capable of high productivity, yield and titer ethanol production directly from lignocellulose. Consortia of cellulolytic and ethanologenic organisms could be an attractive alternate to the typical single organism approaches but implementation of consortia has a number of challenges (e.g., control, stability, productivity). Results Ethanol is produced from α-cellulose using a consortium of C. phytofermentans and yeast that is maintained by controlled oxygen transport. Both Saccharomyces cerevisiae cdt-1 and Candida molischiana “protect” C. phytofermentans from introduced oxygen in return for soluble sugars released by C. phytofermentans hydrolysis. Only co-cultures were able to degrade filter paper when mono- and co-cultures were incubated at 30°C under semi-aerobic conditions. Using controlled oxygen delivery by diffusion through neoprene tubing at a calculated rate of approximately 8 μmol/L hour, we demonstrate establishment of the symbiotic relationship between C. phytofermentans and S. cerevisiae cdt-1 and maintenance of populations of 105 to 106 CFU/mL for 50 days. Comparable symbiotic population dynamics were observed in scaled up 500 mL bioreactors as those in 50 mL shake cultures. The conversion of α-cellulose to ethanol was shown to improve with additional cellulase indicating a limitation in hydrolysis rate. A co-culture of C. phytofermentans and S. cerevisiae cdt-1 with added endoglucanase produced approximately 22 g/L ethanol from 100 g/L α-cellulose compared to C. phytofermentans and S. cerevisiae cdt-1 mono-cultures which produced approximately 6 and 9 g

  6. Consortia-mediated bioprocessing of cellulose to ethanol with a symbiotic Clostridium phytofermentans/yeast co-culture.

    PubMed

    Zuroff, Trevor R; Xiques, Salvador Barri; Curtis, Wayne R

    2013-04-29

    Lignocellulosic ethanol is a viable alternative to petroleum-based fuels with the added benefit of potentially lower greenhouse gas emissions. Consolidated bioprocessing (simultaneous enzyme production, hydrolysis and fermentation; CBP) is thought to be a low-cost processing scheme for lignocellulosic ethanol production. However, no single organism has been developed which is capable of high productivity, yield and titer ethanol production directly from lignocellulose. Consortia of cellulolytic and ethanologenic organisms could be an attractive alternate to the typical single organism approaches but implementation of consortia has a number of challenges (e.g., control, stability, productivity). Ethanol is produced from α-cellulose using a consortium of C. phytofermentans and yeast that is maintained by controlled oxygen transport. Both Saccharomyces cerevisiae cdt-1 and Candida molischiana "protect" C. phytofermentans from introduced oxygen in return for soluble sugars released by C. phytofermentans hydrolysis. Only co-cultures were able to degrade filter paper when mono- and co-cultures were incubated at 30°C under semi-aerobic conditions. Using controlled oxygen delivery by diffusion through neoprene tubing at a calculated rate of approximately 8 μmol/L hour, we demonstrate establishment of the symbiotic relationship between C. phytofermentans and S. cerevisiae cdt-1 and maintenance of populations of 105 to 106 CFU/mL for 50 days. Comparable symbiotic population dynamics were observed in scaled up 500 mL bioreactors as those in 50 mL shake cultures. The conversion of α-cellulose to ethanol was shown to improve with additional cellulase indicating a limitation in hydrolysis rate. A co-culture of C. phytofermentans and S. cerevisiae cdt-1 with added endoglucanase produced approximately 22 g/L ethanol from 100 g/L α-cellulose compared to C. phytofermentans and S. cerevisiae cdt-1 mono-cultures which produced approximately 6 and 9 g/L, respectively. This work

  7. Corrosion of aluminum alloy 2024 by microorganisms isolated from aircraft fuel tanks.

    PubMed

    McNamara, Christopher J; Perry, Thomas D; Leard, Ryan; Bearce, Ktisten; Dante, James; Mitchell, Ralph

    2005-01-01

    Microorganisms frequently contaminate jet fuel and cause corrosion of fuel tank metals. In the past, jet fuel contaminants included a diverse group of bacteria and fungi. The most common contaminant was the fungus Hormoconis resinae. However, the jet fuel community has been altered by changes in the composition of the fuel and is now dominated by bacterial contaminants. The purpose of this research was to determine the composition of the microbial community found in fuel tanks containing jet propellant-8 (JP-8) and to determine the potential of this community to cause corrosion of aluminum alloy 2024 (AA2024). Isolates cultured from fuel tanks containing JP-8 were closely related to the genus Bacillus and the fungi Aureobasidium and Penicillium. Biocidal activity of the fuel system icing inhibitor diethylene glycol monomethyl ether is the most likely cause of the prevalence of endospore forming bacteria. Electrochemical impedance spectroscopy and metallographic analysis of AA2024 exposed to the fuel tank environment indicated that the isolates caused corrosion of AA2024. Despite the limited taxonomic diversity of microorganisms recovered from jet fuel, the community has the potential to corrode fuel tanks.

  8. Biodegradation of marine crude oil pollution using a salt-tolerant bacterial consortium isolated from Bohai Bay, China.

    PubMed

    Li, Xinfei; Zhao, Lin; Adam, Mohamed

    2016-04-15

    This study aims at constructing an efficient bacterial consortium to biodegrade crude oil spilled in China's Bohai Sea. In this study, TCOB-1 (Ochrobactrum), TCOB-2 (Brevundimonas), TCOB-3 (Brevundimonas), TCOB-4 (Bacillus) and TCOB-5 (Castellaniella) were isolated from Bohai Bay. Through the analysis of hydrocarbon biodegradation, TCOB-4 was found to biodegrade more middle-chain n-alkanes (from C17 to C23) and long-chain n-alkanes (C31-C36). TCOB-5 capable to degrade more n-alkanes including C24-C30 and aromatics. On the basis of complementary advantages, TCOB-4 and TCOB-5 were chosen to construct a consortium which was capable of degrading about 51.87% of crude oil (2% w/v) after 1week of incubation in saline MSM (3% NaCl). It is more efficient compared with single strain. In order to biodegrade crude oil, the construction of bacterial consortia is essential and the principle of complementary advantages could reduce competition between microbes. Copyright © 2016. Published by Elsevier Ltd.

  9. High-Resolution Microbial Community Succession of Microbially Induced Concrete Corrosion in Working Sanitary Manholes

    PubMed Central

    Ling, Alison L.; Robertson, Charles E.; Harris, J. Kirk; Frank, Daniel N.; Kotter, Cassandra V.; Stevens, Mark J.; Pace, Norman R.; Hernandez, Mark T.

    2015-01-01

    Microbially-induced concrete corrosion in headspaces threatens wastewater infrastructure worldwide. Models for predicting corrosion rates in sewer pipe networks rely largely on information from culture-based investigations. In this study, the succession of microbes associated with corroding concrete was characterized over a one-year monitoring campaign using rRNA sequence-based phylogenetic methods. New concrete specimens were exposed in two highly corrosive manholes (high concentrations of hydrogen sulfide and carbon dioxide gas) on the Colorado Front Range for up to a year. Community succession on corroding surfaces was assessed using Illumina MiSeq sequencing of 16S bacterial rRNA amplicons and Sanger sequencing of 16S universal rRNA clones. Microbial communities associated with corrosion fronts presented distinct succession patterns which converged to markedly low α-diversity levels (< 10 taxa) in conjunction with decreasing pH. The microbial community succession pattern observed in this study agreed with culture-based models that implicate acidophilic sulfur-oxidizer Acidithiobacillus spp. in advanced communities, with two notable exceptions. Early communities exposed to alkaline surface pH presented relatively high α-diversity, including heterotrophic, nitrogen-fixing, and sulfur-oxidizing genera, and one community exposed to neutral surface pH presented a diverse transition community comprised of less than 20% sulfur-oxidizers. PMID:25748024

  10. High-resolution microbial community succession of microbially induced concrete corrosion in working sanitary manholes.

    PubMed

    Ling, Alison L; Robertson, Charles E; Harris, J Kirk; Frank, Daniel N; Kotter, Cassandra V; Stevens, Mark J; Pace, Norman R; Hernandez, Mark T

    2015-01-01

    Microbially-induced concrete corrosion in headspaces threatens wastewater infrastructure worldwide. Models for predicting corrosion rates in sewer pipe networks rely largely on information from culture-based investigations. In this study, the succession of microbes associated with corroding concrete was characterized over a one-year monitoring campaign using rRNA sequence-based phylogenetic methods. New concrete specimens were exposed in two highly corrosive manholes (high concentrations of hydrogen sulfide and carbon dioxide gas) on the Colorado Front Range for up to a year. Community succession on corroding surfaces was assessed using Illumina MiSeq sequencing of 16S bacterial rRNA amplicons and Sanger sequencing of 16S universal rRNA clones. Microbial communities associated with corrosion fronts presented distinct succession patterns which converged to markedly low α-diversity levels (< 10 taxa) in conjunction with decreasing pH. The microbial community succession pattern observed in this study agreed with culture-based models that implicate acidophilic sulfur-oxidizer Acidithiobacillus spp. in advanced communities, with two notable exceptions. Early communities exposed to alkaline surface pH presented relatively high α-diversity, including heterotrophic, nitrogen-fixing, and sulfur-oxidizing genera, and one community exposed to neutral surface pH presented a diverse transition community comprised of less than 20% sulfur-oxidizers.

  11. NASA's Beachside Corrosion Test Site and Current Environmentally Friendly Corrosion Control Initiatives

    NASA Technical Reports Server (NTRS)

    Russell, Richard W.; Calle, Luz Marina; Johnston, Frederick; Montgomery, Eliza L.; Curran, Jerome P.; Kolody, Mark R.

    2013-01-01

    NASA began corrosion studies at the Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term corrosion protective coatings for carbon steel. KSC's Beachside Corrosion Test Site (BCTS), which has been documented by the American Society of Materials (ASM) as one of the most corrosive, naturally occurring, environments in the world, was established at that time. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acid ic exhaust from the solid rocket boosters. In the years that followed, numerous studies have identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosive environment at the launch pad. This paper presents a historical overview of over 45 years of corrosion and coating evaluation studies and a description of the BCTS's current capabilities. Additionally, current research and testing programs involving chromium free coatings, environmentally friendly corrosion preventative compounds, and alternates to nitric acid passivation will be discussed.

  12. NASA's Corrosion Technology Laboratory at the Kennedy Space Center: Anticipating, Managing, and Preventing Corrosion

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina

    2015-01-01

    The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in North America. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the highly corrosive hydrochloric acid (HCl) generated by the solid rocket boosters (SRBs). Numerous failures at the launch pads are caused by corrosion. The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. NASA has over fifty years of experience dealing with unexpected failures caused by corrosion and has developed expertise in corrosion control in the launch and other environments. The Corrosion Technology Laboratory at KSC evolved, from what started as an atmospheric exposure test site near NASAs launch pads, into a capability that provides technical innovations and engineering services in all areas of corrosion for NASA, external partners, and customers.This paper provides a chronological overview of NASAs role in anticipating, managing, and preventing corrosion in highly corrosive environments. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.

  13. Improvement of corrosion resistance and antibacterial effect of NiTi orthopedic materials by chitosan and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmed, Rasha A.; Fadl-allah, Sahar A.; El-Bagoury, Nader; El-Rab, Sanaa M. F. Gad

    2014-02-01

    Biocomposite consists of gold nanoparticles (AuNPs) and a natural polymer as Chitosan (CS) was electrodeposited over NiTi alloy to improve biocompatibility, biostability, surface corrosion resistance and antibacterial effect for orthopedic implantation. The forming process and surface morphology of this biocomposite coats over NiTi alloy were studied. The results showed that the nm-scale gold particles were embedded in the composite forming compact, thick and smooth coat. Elemental analysis revealed significant less Ni ion release from the coated NiTi alloy compared with the uncoated one by 20 fold. Furthermore, the electrochemical corrosion measurements indicated that AuNPs/CS composite coat was effective for improving corrosion resistance in different immersion times and at all pH values, which suggests that the coated NiTi alloys have potential for orthopedic applications. Additionally, the efficiencies of the biocomposite coats for inhibiting bacterial growth indicate high antibacterial effect.

  14. Fatigue and fluoride corrosion on Streptococcus mutans adherence to titanium-based implant/component surfaces.

    PubMed

    Correa, Cassia Bellotto; Pires, Juliana Rico; Fernandes-Filho, Romeu Belon; Sartori, Rafael; Vaz, Luis Geraldo

    2009-07-01

    The influence of fatigue and the fluoride ion corrosion process on Streptococcus mutans adherence to commercially pure Titanium (Cp Ti) implant/component set surfaces were studied. Thirty Nobel implants and 30 Neodent implants were used. Each commercial brand was divided into three groups. Group A: control, Group B: sets submitted to fatigue (10(5) cycles, 15 Hz, 150 N), and Group C: sets submitted to fluoride (1500 ppm, pH 5.5) and fatigue, simulating a mean use of 5 years in the oral medium. Afterward, the sets were contaminated with standard strains of S. mutans (NTCC 1023) and analyzed by scanning electronic microscopy (SEM) and colony-forming unit counts (CFU/mL). By SEM, bacterial adherence was verified only in group C in both brands. By CFU/mL counts, S. mutans was statistically higher in both brands in group C than in groups A and B (p < 0.05, ANOVA). The process of corrosion by fluoride ions on Cp Ti implant/component sets allowed greater S. mutans adherence than in the absence of corrosion and with the fatigue process in isolation.

  15. Development of tailored indigenous marine consortia for the degradation of naturally weathered polyethylene films

    PubMed Central

    Syranidou, Evdokia; Karkanorachaki, Katerina; Amorotti, Filippo; Repouskou, Eftychia; Kroll, Kevin; Kolvenbach, Boris; Corvini, Philippe F-X; Fava, Fabio

    2017-01-01

    This study investigated the potential of bacterial-mediated polyethylene (PE) degradation in a two-phase microcosm experiment. During phase I, naturally weathered PE films were incubated for 6 months with the indigenous marine community alone as well as bioaugmented with strains able to grow in minimal medium with linear low-density polyethylene (LLDPE) as the sole carbon source. At the end of phase I the developed biofilm was harvested and re-inoculated with naturally weathered PE films. Bacteria from both treatments were able to establish an active population on the PE surfaces as the biofilm community developed in a time dependent way. Moreover, a convergence in the composition of these communities was observed towards an efficient PE degrading microbial network, comprising of indigenous species. In acclimated communities, genera affiliated with synthetic (PE) and natural (cellulose) polymer degraders as well as hydrocarbon degrading bacteria were enriched. The acclimated consortia (indigenous and bioaugmented) reduced more efficiently the weight of PE films in comparison to non-acclimated bacteria. The SEM images revealed a dense and compact biofilm layer and signs of bio-erosion on the surface of the films. Rheological results suggest that the polymers after microbial treatment had wider molecular mass distribution and a marginally smaller average molar mass suggesting biodegradation as opposed to abiotic degradation. Modifications on the surface chemistry were observed throughout phase II while the FTIR profiles of microbially treated films at month 6 were similar to the profiles of virgin PE. Taking into account the results, we can suggest that the tailored indigenous marine community represents an efficient consortium for degrading weathered PE plastics. PMID:28841722

  16. Corrosion protection

    DOEpatents

    Brown, Donald W.; Wagh, Arun S.

    2003-05-27

    There has been invented a chemically bonded phosphate corrosion protection material and process for application of the corrosion protection material for corrosion prevention. A slurry of iron oxide and phosphoric acid is used to contact a warm surface of iron, steel or other metal to be treated. In the presence of ferrous ions from the iron, steel or other metal, the slurry reacts to form iron phosphates which form grains chemically bonded onto the surface of the steel.

  17. Investigation of bacterial repopulation after sinus surgery and perioperative antibiotics.

    PubMed

    Hauser, Leah J; Ir, Diana; Kingdom, Todd T; Robertson, Charles E; Frank, Daniel N; Ramakrishnan, Vijay R

    2016-01-01

    Endoscopic sinus surgery (ESS) enjoys high success rates, but repopulation with pathogenic bacteria is 1 of the hallmarks of poorer outcomes. There are many hypothesized sources of repopulating bacteria; however, this process remains largely unexplored. This study examined changes in the sinus microbiome after ESS and medical therapies to identify potential sources for postsurgical microbial repopulation. Samples from the anterior nares, ethmoid sinus, and nasopharynx were taken at the time of surgery from 13 subjects undergoing ESS for chronic rhinosinusitis (CRS). Patients were treated postoperatively with 2 weeks of oral antibiotics and saline rinses. The ethmoid sinus was sampled at 2 and 6 weeks postoperatively; microbiota were characterized using quantitative polymerase chain reaction (qPCR) and 16S ribosomal RNA (rRNA) gene sequencing. The Morisita-Horn beta-diversity index (M-H) was used to compare similarity between samples. The bacterial burden of the ethmoid was higher 2 weeks postoperatively than 6 weeks postoperatively (p = 0.01). The 6-week samples most closely represented the anterior nares and ethmoid at surgery (M-H = 0.58 and 0.59, respectively), and were least similar to the nasopharynx (M-H = 0.28). Principal coordinates analysis (PCoA) plots illustrate that the ethmoid microbiota temporarily shifted after surgery and antibiotics but returned toward baseline in many subjects. Bacterial communities colonizing the ethmoid 6 weeks postoperatively were most similar to anterior nasal cavity and pretreatment sinus microbial profiles, indicating a high degree of resilience in the sinonasal microbiome of most subjects. Interestingly, surgery and postoperative antibiotic therapy does not appear to reduce bacterial burden, but rather, shifts the microbial consortia. © 2015 ARS-AAOA, LLC.

  18. Development of a functionalized coating for inhibition of marine corrosion and biofouling

    NASA Astrophysics Data System (ADS)

    Gittens, Jeanette Elizabeth

    experiments were used to study differences in the corrosion of abiotic and biotic coatings in the presence of a corrosion-causing sulphate-reducing bacterium. Scanning electrochemical microscopy was developed as a technique to study electrochemical processes on the coating surface and showed differences in the distribution of copper ions on the surface of abiotic and biotic coatings.The results of the experimental work in this thesis show the potential of encapsulating metabolically active bacterial cells within a sol-gel coating on metals for the control of marine corrosion and biofouling.

  19. NASA's Corrosion Technology Laboratory at the Kennedy Space Center: Anticipating, Managing, and Preventing Corrosion

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina

    2014-01-01

    Corrosion is the degradation of a material that results from its interaction with the environment. The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the United States. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the 70 tons of highly corrosive hydrochloric acid that were generated by the solid rocket boosters. Numerous failures at the launch pads are caused by corrosion.The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. As a result of fifty years of experience with launch and ground operations in a natural marine environment that is highly corrosive, NASAs Corrosion Technology Laboratory at KSC is a major source of corrosion control expertise in the launch and other environments. Throughout its history, the Laboratory has evolved from what started as an atmospheric exposure facility near NASAs launch pads into a world-wide recognized capability that provides technical innovations and engineering services in all areas of corrosion for NASA and external customers.This presentation will provide a historical overview of the role of NASAs Corrosion Technology in anticipating, managing, and preventing corrosion. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.

  20. Corrosion and corrosion fatigue of airframe aluminum alloys

    NASA Technical Reports Server (NTRS)

    Chen, G. S.; Gao, M.; Harlow, D. G.; Wei, R. P.

    1994-01-01

    Localized corrosion and corrosion fatigue crack nucleation and growth are recognized as degradation mechanisms that effect the durability and integrity of commercial transport aircraft. Mechanically based understanding is needed to aid the development of effective methodologies for assessing durability and integrity of airframe components. As a part of the methodology development, experiments on pitting corrosion, and on corrosion fatigue crack nucleation and early growth from these pits were conducted. Pitting was found to be associated with constituent particles in the alloys and pit growth often involved coalescence of individual particle-nucleated pits, both laterally and in depth. Fatigue cracks typically nucleated from one of the larger pits that formed by a cluster of particles. The size of pit at which fatigue crack nucleates is a function of stress level and fatigue loading frequency. The experimental results are summarized, and their implications on service performance and life prediction are discussed.

  1. 25 CFR 1000.61 - Are other funds available to self-governance Tribes/Consortia for planning and negotiating with...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .../Consortia for planning and negotiating with non-BIA bureaus? 1000.61 Section 1000.61 Indians OFFICE OF THE... SELF-GOVERNMENT ACT AMENDMENTS TO THE INDIAN SELF-DETERMINATION AND EDUCATION ACT Other Financial Assistance for Planning and Negotiation Grants for Non-BIA Programs Purpose and Eligibility § 1000.61 Are...

  2. Bacterial Phosphating of Mild (Unalloyed) Steel

    PubMed Central

    Volkland, Hans-Peter; Harms, Hauke; Müller, Beat; Repphun, Gernot; Wanner, Oskar; Zehnder, Alexander J. B.

    2000-01-01

    Mild (unalloyed) steel electrodes were incubated in phosphate-buffered cultures of aerobic, biofilm-forming Rhodococcus sp. strain C125 and Pseudomonas putida mt2. A resulting surface reaction leading to the formation of a corrosion-inhibiting vivianite layer was accompanied by a characteristic electrochemical potential (E) curve. First, E increased slightly due to the interaction of phosphate with the iron oxides covering the steel surface. Subsequently, E decreased rapidly and after 1 day reached −510 mV, the potential of free iron, indicating the removal of the iron oxides. At this point, only scattered patches of bacteria covered the surface. A surface reaction, in which iron was released and vivianite precipitated, started. E remained at −510 mV for about 2 days, during which the vivianite layer grew steadily. Thereafter, E increased markedly to the initial value, and the release of iron stopped. Changes in E and formation of vivianite were results of bacterial activity, with oxygen consumption by the biofilm being the driving force. These findings indicate that biofilms may protect steel surfaces and might be used as an alternative method to combat corrosion. PMID:11010888

  3. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-08-01

    The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  4. Bioengineered silver nanoparticles as potent anti-corrosive inhibitor for mild steel in cooling towers.

    PubMed

    Narenkumar, Jayaraman; Parthipan, Punniyakotti; Madhavan, Jagannathan; Murugan, Kadarkarai; Marpu, Sreekar Babu; Suresh, Anil Kumar; Rajasekar, Aruliah

    2018-02-01

    Silver nanoparticle-aided enhancement in the anti-corrosion potential and stability of plant extract as ecologically benign alternative for microbially induced corrosion treatment is demonstrated. Bioengineered silver nanoparticles (AgNPs) surface functionalized with plant extract material (proteinacious) was generated in vitro in a test tube by treating ionic AgNO 3 with the leaf extract of Azadirachta indica that acted as dual reducing as well as stabilizing agent. Purity and crystallinity of the AgNPs, along with physical and surface characterizations, were evaluated by performing transmission electron microscopy, Fourier transform infrared spectroscopy, energy dispersive x-ray spectra, single-area electron diffractions, zeta potential, and dynamic light scattering measurements. Anti-corrosion studies against mild steel (MS1010) by corrosion-inducive bacterium, Bacillus thuringiensis EN2 isolated from cooling towers, were evaluated by performing electrochemical impedance spectroscopy (EIS), weight loss analysis, and surface analysis by infrared spectroscopy. Our studies revealed that AgNPs profoundly inhibited the biofilm on MS1010 surface and reduced the corrosion rates with the CR of 0.5 mm/y and an inhibition efficiency of 77% when compared to plant extract alone with a CR of 2.2 mm/y and an inhibition efficiency of 52%. Further surface analysis by infrared spectra revealed that AgNPs formed a protective layer of self-assembled film on the surface of MS1010. Additionally, EIS and surface analysis revealed that the AgNPs have inhibited the bacterial biofilm and reduced the pit on MS1010. This is the first report disclosing the application of bioengineered AgNP formulations as potent anti-corrosive inhibitor upon forming a protective layer over mild steel in cooling water towers. Graphical Abstract ᅟ.

  5. Influence of calcareous deposit on corrosion behavior of Q235 carbon steel with sulfate-reducing bacteria

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Li, Xiaolong; Wang, Jiangwei; Xu, Weichen; Duan, Jizhou; Chen, Shougang; Hou, Baorong

    2017-12-01

    Cathodic protection is a very effective method to protect metals, which can form calcareous deposits on metal surface. Research on the interrelationship between fouling organism and calcareous deposits is very important but very limited, especially sulfate-reducing bacteria (SRB). SRB is a kind of very important fouling organism that causes microbial corrosion of metals. A study of the influence of calcareous deposit on corrosion behavior of Q235 carbon steel in SRB-containing culture medium was carried out using electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and surface spectroscopy (EDS). The calcareous deposit was formed with good crystallinity and smooth surface under the gradient current density of -30 μA cm-2 in natural seawater for 72 h. Our results can help elucidate the formation of calcareous deposits and reveal the interrelationship between SRB and calcareous deposits under cathodic protection. The results indicate that the corrosion tendency of carbon steel was obviously affected by Sulfate-reducing Bacteria (SRB) metabolic activity and the calcareous deposit formed on the surface of carbon steel under cathodic protection was favourable to reduce the corrosion rate. Calcareous deposits can promote bacterial adhesion before biofilm formation. The results revealed the interaction between biofouling and calcareous deposits, and the anti-corrosion ability was enhanced by a kind of inorganic and organic composite membranes formed by biofilm and calcareous deposits.

  6. Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oil seeds.

    PubMed

    Balaji, V; Arulazhagan, P; Ebenezer, P

    2014-05-01

    The present study focuses on fungal strains capable of secreting extracellular enzymes by utilizing hydrocarbons present in the contaminated soil. Fungal strains were enriched from petroleum hydrocarbons contaminated soil samples collected from Chennai city, India. The potential fungi were isolated and screened for their enzyme secretion such as lipase, laccase, peroxidase and protease and also evaluated fungal enzyme mediated PAHs degradation. Total, 21 potential PAHs degrading fungi were isolated from PAHs contaminated soil, which belongs to 9 genera such as Aspergillus, Curvularia, Drechslera, Fusarium, Lasiodiplodia, Mucor Penicillium, Rhizopus, Trichoderma, and two oilseed-associated fungal genera such as Colletotrichum and Lasiodiplodia were used to test their efficacy in degradation of PAHs in polluted soil. Maximum lipase production was obtained with P. chrysogenum, M. racemosus and L. theobromae VBE1 under optimized cultural condition, which utilized PAHs in contaminated soil as sole carbon source. Fungal strains, P. chrysogenum, M. racemosus and L. theobromae VBE1, as consortia, used in the present study were capable of degrading branched alkane isoprenoids such as pristine (C17) and pyrene (C18) present in PAHs contaminated soil with high lipase production. The fungal consortia acts as potential candidate for bioremediation of PAHs contaminated environments.

  7. AGARD Corrosion Handbook. Volume 2. Aircraft Corrosion Control Documents: A Descriptive Catalogue

    DTIC Science & Technology

    1987-03-01

    sweelb other than recommending that the use of maraging steel bolts be prohibited. However, it does provide a very good overview of the corrosion problems...as corrosion resistant steels in this manual. The metallurgy and general corrosion behavior of these steels is discussed in AGARD Corrosio.t Handbook...specifically with the selection of corrosion resistapt steels is a recommendation for prohibiting the use of maraging steel bolts in uncontrolled

  8. Quantifying Microbial Utilization of Petroleum Hydrocarbons in Salt Marsh Sediments by Using the 13C Content of Bacterial rRNA▿

    PubMed Central

    Pearson, Ann; Kraunz, Kimberly S.; Sessions, Alex L.; Dekas, Anne E.; Leavitt, William D.; Edwards, Katrina J.

    2008-01-01

    Natural remediation of oil spills is catalyzed by complex microbial consortia. Here we took a whole-community approach to investigate bacterial incorporation of petroleum hydrocarbons from a simulated oil spill. We utilized the natural difference in carbon isotopic abundance between a salt marsh ecosystem supported by the 13C-enriched C4 grass Spartina alterniflora and 13C-depleted petroleum to monitor changes in the 13C content of biomass. Magnetic bead capture methods for selective recovery of bacterial RNA were used to monitor the 13C content of bacterial biomass during a 2-week experiment. The data show that by the end of the experiment, up to 26% of bacterial biomass was derived from consumption of the freshly spilled oil. The results contrast with the inertness of a nearby relict spill, which occurred in 1969 in West Falmouth, MA. Sequences of 16S rRNA genes from our experimental samples also were consistent with previous reports suggesting the importance of Gamma- and Deltaproteobacteria and Firmicutes in the remineralization of hydrocarbons. The magnetic bead capture approach makes it possible to quantify uptake of petroleum hydrocarbons by microbes in situ. Although employed here at the domain level, RNA capture procedures can be highly specific. The same strategy could be used with genus-level specificity, something which is not currently possible using the 13C content of biomarker lipids. PMID:18083852

  9. ENVIRONMENTALLY BENIGN MITIGATION OF MICROBIOLOGICALLY INFLUENCED CORROSION (MIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John J. Kilbane II; William Bogan

    2004-01-31

    The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. The technical approach for this quarter included the fractionation of extracts prepared from several varieties of pepper plants, and using several solvents, by high performance liquid chromatography (HPLC). A preliminary determination of antimicrobial activities ofmore » the new extracts and fractions using a growth inhibition assay, and evaluation of the extracts ability to inhibit biofilm formation was also performed. The analysis of multiple extracts of pepper plants and fractions of extracts of pepper plants obtained by HPLC illustrated that these extracts and fractions are extremely complex mixtures of chemicals. Gas chromatography-mass spectrometry was used to identify the chemical constituents of these extracts and fractions to the greatest degree possible. Analysis of the chemical composition of various extracts of pepper plants has illustrated the complexity of the chemical mixtures present, and while additional work will be performed to further characterize the extracts to identify bioactive compounds the focus of efforts should now shift to an evaluation of the ability of extracts to inhibit corrosion in mixed culture biofilms, and in pure cultures of bacterial types which are known or believed to be important in corrosion.« less

  10. Corrosive effects of fluoride on titanium under artificial biofilm.

    PubMed

    Fukushima, Azusa; Mayanagi, Gen; Sasaki, Keiichi; Takahashi, Nobuhiro

    2018-01-01

    This study aimed to investigate the effect of sodium fluoride (NaF) on titanium corrosion using a biofilm model, taking environmental pH into account. Streptococcus mutans cells were used as the artificial biofilm, and pH at the bacteria-titanium interface was monitored after the addition of 1% glucose with NaF (0, 225 or 900ppmF) at 37°C for 90min. In an immersion test, the titanium samples were immersed in the NaF solution (0, 225 or 900ppm F; pH 4.2 or 6.5) for 30 or 90min. Before and after pH monitoring or immersion test, the electrochemical properties of the titanium surface were measured using a potentiostat. The amount of titanium eluted into the biofilm or the immersion solution was measured using inductively coupled plasma mass spectrometry. The color difference (ΔE*ab) and gloss of the titanium surface were determined using a spectrophotometer. After incubation with biofilm, pH was maintained at around 6.5 in the presence of NaF. There was no significant change in titanium surface and elution, regardless of the concentration of NaF. After immersion in 900ppm NaF solution at pH 4.2, corrosive electrochemical change was induced on the surface, titanium elution and ΔE*ab were increased, and gloss was decreased. NaF induces titanium corrosion in acidic environment in vitro, while NaF does not induce titanium corrosion under the biofilm because fluoride inhibits bacterial acid production. Neutral pH fluoridated agents may still be used to protect the remaining teeth, even when titanium-based prostheses are worn. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  11. On the Road to Assessing Deeper Learning: The Status of Smarter Balanced and PARCC Assessment Consortia. CRESST Report 823

    ERIC Educational Resources Information Center

    Herman, Joan; Linn, Robert

    2013-01-01

    Two consortia, the Smarter Balanced Assessment Consortium (Smarter Balanced) and the Partnership for Assessment of Readiness for College and Careers (PARCC), are currently developing comprehensive, technology-based assessment systems to measure students' attainment of the Common Core State Standards (CCSS). The consequences of the consortia…

  12. Evaluation and control of corrosion and encrustation in tube wells of the Indus Plains, West Pakistan

    USGS Publications Warehouse

    Clarke, Frank Eldridge; Barnes, Ivan

    1969-01-01

    Seepage from rivers and irrigation canals has contributed to waterlogging and soil salinization problems in much of the Indus Plains of West Pakistan. These problems are being overcome in part by tube-well dewatering and deep leaching of salinized soils. The ground waters described here are anaerobic and some are supersaturated with troublesome minerals such as calcium carbonate (calcite) and iron carbonate (siderite). These waters are moderately corrosive to steel. Some wells contain sulfate-reducing bacteria, which catalyze corrosion, and pH-electrode potential relationships favorable to the solution of iron also are rather common. Corrosion is concentrated in the relatively active (anodic) saw slots of water-well filter pipes (screens), where metal loss is least tolerable. Local changes in chemical properties of the water, because of corrosion, apparently cause deposition of calcium carbonate, iron carbonate, and other minerals which clog the filter pipes. In some places well capacities are seriously reduced in very short periods of time. There appears to be no practicable preventive treatment for corrosion and encrustation in these wells. Even chemical sterilization for bacterial control has yielded poor results. Periodic rehabilitation by down-hole blasting or by other effective mechanical or chemical cleaning methods will prolong well life. It may be possible to repair severely damaged well screens by inserting perforated sleeves of plastic or other inert material. The most promising approach to future, well-field development is to use filter pipes of epoxy-resin-bonded fiber glass, stainless steel, or other inert material which minimizes both corrosion and corrosion-catalyzed encrustation. Fiberglass plastic pipe appears to be the most economically practicable construction material at this time and already is being used with promising results.

  13. Efficiency in hydrocarbon degradation and biosurfactant production by Joostella sp. A8 when grown in pure culture and consortia.

    PubMed

    Rizzo, Carmen; Rappazzo, Alessandro Ciro; Michaud, Luigi; De Domenico, Emilio; Rochera, Carlos; Camacho, Antonio; Lo Giudice, Angelina

    2018-05-01

    Joostella strains are emerging candidates for biosurfactant production. Here such ability was analyzed for Joostella strain A8 in comparison with Alcanivorax strain A53 and Pseudomonas strain A6, all previously isolated from hydrocarbon enrichment cultures made of polychaete homogenates. In pure cultures Joostella sp. A8 showed the highest stable emulsion percentage (78.33%), hydrophobicity rate (62.67%), and an optimal surface tension reduction during growth in mineral medium supplemented with diesel oil (reduction of about 12mN/m), thus proving to be highly competitive with Alcanivorax and Pseudomonas strains. During growth in pure culture different level of biodegradation were detected for Alcanivorax strain A53 (52.7%), Pseudomonas strain A6 (38.2%) and Joostella strain A8 (26.8%). When growing in consortia, isolates achieved similar abundance values, with the best efficiency that was observed for the Joostella-Pseudomonas co-culture. Gas-chromatographic analysis revealed an increase in the biodegradation efficiency in co-cultures (about 90%), suggesting that the contemporary action of different bacterial species could improve the process. Results were useful to compare the efficiencies of well-known biosurfactant producers (i.e. Pseudomonas and Alcanivorax representatives) with a still unknown biosurfactant producer, i.e. Joostella, and to confirm them as optimal biosurfactant-producing candidates. Copyright © 2017. Published by Elsevier B.V.

  14. Comparative Stress Corrosion Cracking and General Corrosion Resistance of Annealed and Hardened 440 C Stainless Steel - New Techniques in Stress Corrosion Testing

    NASA Technical Reports Server (NTRS)

    Mendreck, M. J.; Hurless, B. E.; Torres, P. D.; Danford, M. D.

    1998-01-01

    The corrosion and stress corrosion cracking (SCC) characteristics of annealed and hardened 440C stainless steel were evaluated in high humidity and 3.5-percent NaCl solution. Corrosion testing consisted of an evaluation of flat plates, with and without grease, in high humidity, as well as electrochemical testing in 3.5-percent NaCl. Stress corrosion testing consisted of conventional, constant strain, smooth bar testing in high humidity in addition to two relatively new techniques under evaluation at MSFC. These techniques involve either incremental or constant rate increases in the load applied to a precracked SE(B) specimen, monitoring the crack-opening-displacement response for indications of crack growth. The electrochemical corrosion testing demonstrated an order of magnitude greater general corrosion rate in the annealed 440C. All techniques for stress corrosion testing showed substantially better SCC resistance in the annealed material. The efficacy of the new techniques for stress corrosion testing was demonstrated both by the savings in time and the ability to better quantify SCC data.

  15. Corrosion-resistant metal surfaces

    DOEpatents

    Sugama, Toshifumi [Wading River, NY

    2009-03-24

    The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

  16. The corrosion resistance of Wiron(®)88 in the presence of S. mutans and S. sobrinus bacteria.

    PubMed

    Proença, L; Barroso, H; Figueiredo, N; Lino, A R; Capelo, S; Fonseca, I T E

    2015-01-01

    The corrosion resistance of Wiron(®)88, a Ni-Cr-Mo alloy, was evaluated in liquid growth media in the absence and presence of the Streptococcus sobrinus and Streptococcus mutans strains. Open circuit potential measurements, cyclic voltammetry, linear sweep voltammetry, as well as electronic microscopy coupled to electron diffraction spectroscopy (SEM/EDS), were the main techniques used in this study. It was concluded that the presence of S. sobrinus and S. mutans have only a slight effect on the corrosion resistance of the Wiron(®)88 alloy, with the S. mutans being slightly more aggressive. For both strains the corrosion resistance R p is of the same order (kΩ cm(2)). After 24 h immersion the S. sobrinus lead to and R p of 11.02, while the S. mutans lead to of 5.59 kΩ cm(2). SEM/EDS studies on the Wiron(®)88 samples, with 24 days of immersion, at 37 °C, have confirmed bio-corrosion of the alloy occurring through the dissolution of Ni as Ni(2+) and formation of chromium and molybdenum oxides. The bacterial adhesion to the surface is not uniform.

  17. Review of recent developments in the field of magnesium corrosion: Recent developments in Mg corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atrens, Andrej; Song, Guang -Ling; Liu, Ming

    2015-01-07

    This paper provides a review of recent developments in the field of Mg corrosion and puts those into context. This includes considerations of corrosion manifestations, material influences, surface treatment, anodization, coatings, inhibition, biodegradable medical applications, stress corrosion cracking, flammability, corrosion mechanisms for HP Mg, critical evaluation of corrosion mechanisms, and concluding remarks. There has been much research recently, and much research continues in this area. In conclusion, this is expected to produce significantly better, more-corrosion-resistant Mg alloys.

  18. Bacterial community of biofilms developed under different water supply conditions in a distribution system.

    PubMed

    Sun, Huifang; Shi, Baoyou; Bai, Yaohui; Wang, Dongsheng

    2014-02-15

    In order to understand the bacterial community characteristics of biofilms developed under different finished water supply histories in drinking water distribution systems (DWDS), biofilm samples on different type of iron corrosion scales in a real DWDS were collected and systematically investigated using 454 pyrosequencing of 16S rRNA gene. The richness and diversity estimators showed that biofilms formed in DWDS transporting finished groundwater (GW) had the lowest level of bacterial diversity. From phylum to genus level, the dominant bacterial groups found in the biofilms under finished surface water (SW) and GW conditions were distinct. Proteobacteria was the dominant group in all biofilm samples (in the range of 40%-97%), but was relatively higher in biofilms with GW. The relative abundance of Firmicutes in biofilms with SW (28%-35%) was significantly higher (p<0.01) than that in biofilms with GW (0.5%-2.88%). Statistical analysis (Spearman's rank) revealed that alkalinity and chemical oxygen demand (CODMn) positively correlated with the relative abundance of Proteobacteria and Firmicutes, respectively. The abundance of sequences affiliated to iron-reducing bacteria (mainly Bacillus) and iron-oxidizing bacteria (mainly Acidovorax) were relatively higher in biofilms with SW, which might contribute to the formation of much thicker or tubercle-formed corrosion scales under SW supply condition. Several potential opportunistic pathogens, such as Burkholderia fungorum, Mycobacterium neoaurum, Mycobacterium frederiksbergense were detected in the biofilms. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Expanding diversity of potential bacterial partners of the methanotrophic ANME archaea using Magneto-FISH

    NASA Astrophysics Data System (ADS)

    Trembath-Reichert, E.; Green-Saxena, A.; Steele, J. A.; Orphan, V. J.

    2012-12-01

    Sulfate-coupled anaerobic oxidation of methane (AOM) in marine sediments is the major sink for methane in the oceans. This process is believed to be catalyzed by as yet uncultured syntrophic consortia of ANME archaea (affiliated with the Methanosarcinales) and sulfate-reducing bacteria belonging to the Desulfosarcina/Desulfococcus and Desulfobulbaceae. These syntrophic consortia have been described from methane-rich habitats worldwide and appear to be most concentrated in areas of high methane flux, such as cold seeps along continental margins. The extent of the diversity and ecophysiological potential of these microbial associations is still poorly constrained. In an effort to better characterize the diversity of microorganisms forming associations with different clades of methanotrophic ANME archaea (ANME-1, ANME-2a/b/c, ANME-3) and link these organisms to potentially diagnostic metabolic genes (e.g. mcrA, dsrAB, aprA), we employed a unique culture-independent whole cell capture technique which combines Fluorescence In Situ Hybridization with immuno-magnetic cell capture (Magneto-FISH). We used Magneto-FISH for targeted enrichment of specific ANME groups and their associated bacteria directly from formalin- and ethanol-fixed methane seep sediment. The identity and metabolic gene diversity of captured microorganisms were then assessed by clone library construction and sequencing. Diversity recovered from Magneto-FISH experiments using general and clade-specific ANME targeted probes show both the expected selectivity of the FISH probes (i.e. predominately ANME-2c subclade captured with an ANME-2c probe and multiple ANME groups recovered with the general probe targeting most ANME). Follow up FISH experiments were conducted to confirm physical associations between ANME and unique bacterial members (deltaproteobacteria and other non-sulfate reducing groups) that were common to multiple Magneto-FISH capture experiments. Analyses of metabolic gene diversity for archaeal

  20. SRB seawater corrosion project

    NASA Technical Reports Server (NTRS)

    Bozack, M. J.

    1991-01-01

    The corrosion behavior of 2219 aluminum when exposed to seawater was characterized. Controlled corrosion experiments at three different temperatures (30, 60 and 100 C) and two different environments (seawater and 3.5 percent salt solution) were designed to elucidate the initial stages in the corrosion process. It was found that 2219 aluminum is an active catalytic surface for growth of Al2O3, NaCl, and MgO. Formation of Al2O3 is favored at lower temperatures, while MgO is favored at higher temperatures. Visible corrosion products are formed within 30 minutes after seawater exposure. Corrosion characteristics in 3.5 percent salt solution are different than corrosion in seawater. Techniques utilized were: (1) scanning electron microscopy, (2) energy dispersive x-ray spectroscopy, and (3) Auger electron spectroscopy.

  1. Impact of Nitrate on the Structure and Function of Bacterial Biofilm Communities in Pipelines Used for Injection of Seawater into Oil Fields▿ †

    PubMed Central

    Schwermer, Carsten U.; Lavik, Gaute; Abed, Raeid M. M.; Dunsmore, Braden; Ferdelman, Timothy G.; Stoodley, Paul; Gieseke, Armin; de Beer, Dirk

    2008-01-01

    We studied the impact of NO3− on the bacterial community composition, diversity, and function in in situ industrial, anaerobic biofilms by combining microsensor profiling, 15N and 35S labeling, and 16S rRNA gene-based fingerprinting. Biofilms were grown on carbon steel coupons within a system designed to treat seawater for injection into an oil field for pressurized oil recovery. NO3− was added to the seawater in an attempt to prevent bacterial H2S generation and microbially influenced corrosion in the field. Microprofiling of nitrogen compounds and redox potential inside the biofilms showed that the zone of highest metabolic activity was located close to the metal surface, correlating with a high bacterial abundance in this zone. Upon addition, NO3− was mainly reduced to NO2−. In biofilms grown in the absence of NO3−, redox potentials of <−450 mV at the metal surface suggested the release of Fe2+. NO3− addition to previously untreated biofilms induced a decline (65%) in bacterial species richness, with Methylophaga- and Colwellia-related sequences having the highest number of obtained clones in the clone library. In contrast, no changes in community composition and potential NO3− reduction occurred upon subsequent withdrawal of NO3−. Active sulfate reduction was below detection levels in all biofilms, but S isotope fractionation analysis of sulfide deposits suggested that it must have occurred either at low rates or episodically. Scanning electron microscopy revealed that pitting corrosion occurred on all coupons, independent of the treatment. However, uniform corrosion was clearly mitigated by NO3− addition. PMID:18344353

  2. Internal Corrosion and Deposition Control

    EPA Science Inventory

    This chapter reviews the current knowledge of the science of corrosion control and control of scaling in drinking water systems. Topics covered include: types of corrosion; physical, microbial and chemical factors influencing corrosion; corrosion of specific materials; direct ...

  3. Effectiveness of oil-soluble corrosion inhibitors during corrosion-mechanical breakdown in acid and neutral media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kardash, N.V.; Egorov, V.V.; Forman, A.Y.

    1986-11-01

    The purpose of the present study is to ascertain the effectiveness of familiar additives and oil-soluble inhibitors under conditions of acid corrosion in comparison with their rapid action and waterreplacement efficiency, and the capacity to inhibit an electrolyte that forms in the oils, to protect against electrochemical corrosion, especially from pitting, and to reduce the mechanical-corrosion forms of wear. Characteristics of several oil-soluble corrosion inhibitors and the effectiveness of the oil-soluble inhibitors are shown. The additives M, ALOP, and MONIKA are most effective under fretting-corrosion conditions. It is shown that only the combined additives and compositions that provide for metalmore » protection in both acid and neutral media are sufficiently effective in preventing corrosion cracking, fatigue, corrosion fatigue and corrosion fretting.« less

  4. Realizing Student, Faculty, and Institutional Outcomes at Scale: Institutionalizing Undergraduate Research, Scholarship, and Creative Activity within Systems and Consortia

    ERIC Educational Resources Information Center

    Malachowski, Mitchell; Osborn, Jeffrey M.; Karukstis, Kerry K.; Ambos, Elizabeth L.

    2015-01-01

    This chapter reviews the evidence for the effectiveness of undergraduate research as a student, faculty, and institutional success pathway, and provides the context for the Council on Undergraduate Research's support for developing and enhancing undergraduate research in systems and consortia. The chapter also provides brief introductions to each…

  5. 25 CFR 1000.53 - Can Tribes/Consortia that receive advance planning grants also apply for a negotiation grant?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Can Tribes/Consortia that receive advance planning grants also apply for a negotiation grant? 1000.53 Section 1000.53 Indians OFFICE OF THE ASSISTANT SECRETARY, INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ANNUAL FUNDING AGREEMENTS UNDER THE TRIBAL SELF-GOVERNMENT ACT AMENDMENTS TO THE INDIAN...

  6. Rapid establishment of phenol- and quinoline-degrading consortia driven by the scoured cake layer in an anaerobic baffled ceramic membrane bioreactor.

    PubMed

    Wang, Wei; Wang, Shun; Ren, Xuesong; Hu, Zhenhu; Yuan, Shoujun

    2017-11-01

    Although toxic and refractory organics, such as phenol and quinoline, are decomposed by anaerobic bacteria, the establishment of specific degrading consortia is a relatively slow process. An anaerobic membrane bioreactor allows for complete biomass retention that can aid the establishment of phenol- and quinoline-degrading consortia. In this study, the anaerobic digestion of phenol (500 mg L -1 ) and quinoline (50 mg L -1 ) was investigated using an anaerobic baffled ceramic membrane bioreactor (ABCMBR). The results showed that, within 30 days, 99% of phenol, 98% of quinoline and 88% of chemical oxygen demand (COD) were removed. The substrate utilisation rates of the cake layer for phenol and quinoline, and specific methanogenic activity of the cake layer, were 7.58 mg phenol g -1  mixed liquor volatile suspended solids (MLVSS) day -1 , 8.23 mg quinoline g -1  MLVSS day -1 and 0.55 g COD CH4  g -1  MLVSS day -1 , respectively. The contribution of the cake layer to the removals of phenol and quinoline was extremely underestimated because the uncounted scoured cake layer was disregarded. Syntrophus was the key population for phenol and quinoline degradation, and it was more abundant in the cake layer than in the bulk sludge. The highly active scattered cake layer sped up the establishment of phenol- and quinoline-degrading consortia in the ABCMBR.

  7. The Corrosion and Corrosion Fatigue Behavior of Nickel Based Alloy Weld Overlay and Coextruded Claddings

    NASA Astrophysics Data System (ADS)

    Stockdale, Andrew

    The use of low NOx boilers in coal fired power plants has resulted in sulfidizing corrosive conditions within the boilers and a reduction in the service lifetime of the waterwall tubes. As a solution to this problem, Ni-based weld overlays are used to provide the necessary corrosion resistance however; they are susceptible to corrosion fatigue. There are several metallurgical factors which give rise to corrosion fatigue that are associated with the localized melting and solidification of the weld overlay process. Coextruded coatings offer the potential for improved corrosion fatigue resistance since coextrusion is a solid state coating process. The corrosion and corrosion fatigue behavior of alloy 622 weld overlays and coextruded claddings was investigated using a Gleeble thermo-mechanical simulator retrofitted with a retort. The experiments were conducted at a constant temperature of 600°C using a simulated combustion gas of N2-10%CO-5%CO2-0.12%H 2S. An alternating stress profile was used with a minimum tensile stress of 0 MPa and a maximum tensile stress of 300 MPa (ten minute fatigue cycles). The results have demonstrated that the Gleeble can be used to successfully simulate the known corrosion fatigue cracking mechanism of Ni-based weld overlays in service. Multilayer corrosion scales developed on each of the claddings that consisted of inner and outer corrosion layers. The scales formed by the outward diffusion of cations and the inward diffusion of sulfur and oxygen anions. The corrosion fatigue behavior was influenced by the surface finish and the crack interactions. The initiation of a large number of corrosion fatigue cracks was not necessarily detrimental to the corrosion fatigue resistance. Finally, the as-received coextruded cladding exhibited the best corrosion fatigue resistance.

  8. Rapid enrichment of (homo)acetogenic consortia from animal feces using a high mass-transfer gas-lift reactor fed with syngas.

    PubMed

    Park, Shinyoung; Yasin, Muhammad; Kim, Daehee; Park, Hee-Deung; Kang, Chang Min; Kim, Duk Jin; Chang, In Seop

    2013-09-01

    A gas-lift reactor having a high mass transfer coefficient (k(L)a = 80.28 h(-1)) for a relatively insoluble gas (carbon monoxide; CO) was used to enrich (homo)acetogens from animal feces. Samples of fecal matter from cow, rabbit, chicken, and goat were used as sources of inoculum for the enrichment of CO and H(2) utilizing microbial consortia. To confirm the successful enrichment, the Hungate roll tube technique was employed to count and then isolate putative CO utilizers. The results of this work showed that CO and H(2) utilizing consortia were established for each inoculum source after 8 days. The number of colony-forming units in cow, rabbit, chicken, and goat fecal samples were 3.83 × 10(9), 1.03 × 10(9), 8.3 × 10(8), and 3.25 × 10(8) cells/ml, respectively. Forty-two colonies from the animal fecal samples were screened for the ability to utilize CO/H(2). Ten of these 42 colonies were capable of utilizing CO/H(2). Five isolates from cow feces (samples 5, 6, 8, 16, and 22) were highly similar to previously unknown (homo)acetogen, while cow-7 has shown 99 % similarity with Acetobacterium sp. as acetogens. On the other hand, four isolates from chicken feces (samples 3, 8, 10, and 11) have also shown high CO/H(2) utilizing activity. Hence, it is expected that this research could be used as the basis for the rapid enrichment of (homo)acetogenic consortia from various environmental sources.

  9. Corrosion of low carbon steel by microorganisms from the 'pigging' operation debris in water injection pipelines.

    PubMed

    Cote, Claudia; Rosas, Omar; Sztyler, Magdalena; Doma, Jemimah; Beech, Iwona; Basseguy, Régine

    2014-06-01

    Present in all environments, microorganisms develop biofilms adjacent to the metallic structures creating corrosion conditions which may cause production failures that are of great economic impact to the industry. The most common practice in the oil and gas industry to annihilate these biofilms is the mechanical cleaning known as "pigging". In the present work, microorganisms from the "pigging" operation debris are tested biologically and electrochemically to analyse their effect on the corrosion of carbon steel. Results in the presence of bacteria display the formation of black corrosion products allegedly FeS and a sudden increase (more than 400mV) of the corrosion potential of electrode immersed in artificial seawater or in field water (produced water mixed with aquifer seawater). Impedance tests provided information about the mechanisms of the interface carbon steel/bacteria depending on the medium used: mass transfer limitation in artificial seawater was observed whereas that in field water was only charge transfer phenomenon. Denaturing Gradient Gel Electrophoresis (DGGE) results proved that bacterial diversity decreased when cultivating the debris in the media used and suggested that the bacteria involved in the whole set of results are mainly sulphate reducing bacteria (SRB) and some other bacteria that make part of the taxonomic order Clostridiales. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Programmable Removal of Bacterial Strains by Use of Genome-Targeting CRISPR-Cas Systems

    PubMed Central

    Gomaa, Ahmed A.; Klumpe, Heidi E.; Luo, Michelle L.; Selle, Kurt; Barrangou, Rodolphe; Beisel, Chase L.

    2014-01-01

    ABSTRACT CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems in bacteria and archaea employ CRISPR RNAs to specifically recognize the complementary DNA of foreign invaders, leading to sequence-specific cleavage or degradation of the target DNA. Recent work has shown that the accidental or intentional targeting of the bacterial genome is cytotoxic and can lead to cell death. Here, we have demonstrated that genome targeting with CRISPR-Cas systems can be employed for the sequence-specific and titratable removal of individual bacterial strains and species. Using the type I-E CRISPR-Cas system in Escherichia coli as a model, we found that this effect could be elicited using native or imported systems and was similarly potent regardless of the genomic location, strand, or transcriptional activity of the target sequence. Furthermore, the specificity of targeting with CRISPR RNAs could readily distinguish between even highly similar strains in pure or mixed cultures. Finally, varying the collection of delivered CRISPR RNAs could quantitatively control the relative number of individual strains within a mixed culture. Critically, the observed selectivity and programmability of bacterial removal would be virtually impossible with traditional antibiotics, bacteriophages, selectable markers, or tailored growth conditions. Once delivery challenges are addressed, we envision that this approach could offer a novel means to quantitatively control the composition of environmental and industrial microbial consortia and may open new avenues for the development of “smart” antibiotics that circumvent multidrug resistance and differentiate between pathogenic and beneficial microorganisms. PMID:24473129

  11. Electrochemical corrosion studies

    NASA Technical Reports Server (NTRS)

    Knockemus, W. W.

    1986-01-01

    The objective was to gain familiarity with the Model 350 Corrosion Measurement Console, to determine if metal protection by grease coatings can be measured by the polarization-resistance method, and to compare corrosion rates of 4130 steel coated with various greases. Results show that grease protection of steel may be determined electrochemically. Studies were also conducted to determine the effectiveness of certain corrosion inhibitors on aluminum and steel.

  12. Polyhydroxybutyrate synthesis on biodiesel wastewater using mixed microbial consortia.

    PubMed

    Dobroth, Zachary T; Hu, Shengjun; Coats, Erik R; McDonald, Armando G

    2011-02-01

    Crude glycerol (CG), a by-product of biodiesel production, is an organic carbon-rich substrate with potential as feedstock for polyhydroxyalkanoate (PHA) production. PHA is a biodegradable thermoplastic synthesized by microorganisms as an intracellular granule. In this study we investigated PHA production on CG using mixed microbial consortia (MMC) and determined that the enriched MMC produced exclusively polyhydroxybutyrate (PHB) utilizing the methanol fraction. PHB synthesis appeared to be stimulated by a macronutrient deficiency. Intracellular concentrations remained relatively constant over an operational cycle, with microbial growth occurring concurrent with polymer synthesis. PHB average molecular weights ranged from 200-380 kDa, while thermal properties compared well with commercial PHB. The resulting PHB material properties and characteristics would be suitable for many commercial uses. Considering full-scale process application, it was estimated that a 38 million L (10 million gallon) per year biodiesel operation could potentially produce up to 19 metric ton (20.9t on) of PHB per year. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Combining hygrothermal and corrosion models to predict corrosion of metal fasteners embedded in wood

    Treesearch

    Samuel L. Zelinka; Dominique Derome; Samuel V. Glass

    2011-01-01

    A combined heat, moisture, and corrosion model is presented and used to simulate the corrosion of metal fasteners embedded in solid wood exposed to the exterior environment. First, the moisture content and temperature at the wood/fastener interface is determined at each time step. Then, the amount of corrosion is determined spatially using an empirical corrosion rate...

  14. Stress Corrosion-Cracking and Corrosion Fatigue Impact of IZ-C17+ Zinc Nickel on 4340 Steel

    DTIC Science & Technology

    2017-05-17

    REPORT NO: NAWCADPAX/TIM-2016/189 STRESS CORROSION-CRACKING AND CORROSION FATIGUE IMPACT OF IZ-C17+ ZINC-NICKEL ON 4340 STEEL by...CORROSION-CRACKING AND CORROSION FATIGUE IMPACT OF IZ-C17+ ZINC-NICKEL ON 4340 STEEL by Craig Matzdorf Charles Lei Matt Stanley...5a. CONTRACT NUMBER STRESS CORROSION-CRACKING AND CORROSION FATIGUE IMPACT OF IZ-C17+ ZINC-NICKEL ON 4340 STEEL 5b. GRANT NUMBER 5c. PROGRAM

  15. Bacterial communities in an ultrapure water containing storage tank of a power plant.

    PubMed

    Bohus, Veronika; Kéki, Zsuzsa; Márialigeti, Károly; Baranyi, Krisztián; Patek, Gábor; Schunk, János; Tóth, Erika M

    2011-12-01

    Ultrapure waters (UPWs) containing low levels of organic and inorganic compounds provide extreme environment. On contrary to that microbes occur in such waters and form biofilms on surfaces, thus may induce corrosion processes in many industrial applications. In our study, refined saltless water (UPW) produced for the boiler of a Hungarian power plant was examined before and after storage (sampling the inlet [TKE] and outlet [TKU] waters of a storage tank) with cultivation and culture independent methods. Our results showed increased CFU and direct cell counts after the storage. Cultivation results showed the dominance of aerobic, chemoorganotrophic α-Proteobacteria in both samples. In case of TKU sample, a more complex bacterial community structure could be detected. The applied molecular method (T-RFLP) indicated the presence of a complex microbial community structure with changes in the taxon composition: while in the inlet water sample (TKE) α-Proteobacteria (Sphingomonas sp., Novosphingobium hassiacum) dominated, in the outlet water sample (TKU) the bacterial community shifted towards the dominance of α-Proteobacteria (Rhodoferax sp., Polynucleobacter sp., Sterolibacter sp.), CFB (Bacteroidetes, formerly Cytophaga-Flavobacterium-Bacteroides group) and Firmicutes. This shift to the direction of fermentative communities suggests that storage could help the development of communities with an increased tendency toward corrosion.

  16. The Corrosion and Preservation of Iron Antiques.

    ERIC Educational Resources Information Center

    Walker, Robert

    1982-01-01

    Discusses general corrosion reactions (iron to rust), including corrosion of iron, sulfur dioxide, chlorides, immersed corrosion, and underground corrosion. Also discusses corrosion inhibition, including corrosion inhibitors (anodic, cathodic, mixed, organic); safe/dangerous inhibitors; and corrosion/inhibition in concrete/marble, showcases/boxes,…

  17. Stress corrosion resistant fasteners

    NASA Technical Reports Server (NTRS)

    Roach, T. A.

    1985-01-01

    A family of high performance aerospace fasteners made from corrosion resistant alloys for use in applications where corrosion and stress-corrosion cracking are of major concern are discussed. The materials discussed are mainly A-286, Inconel 718, MP35N and MP159. Most of the fasteners utilize cold worked and aged materials to achieve the desired properties. The fasteners are unique in that they provide a combination of high strength and immunity to stress corrosion cracking not previously attainable. A discussion of fastener stress corrosion failures is presented including a review of the history and a description of the mechanism. Case histories are presented to illustrate the problems which can arise when material selection is made without proper regard for the environmental conditions. Mechanical properties and chemical compositions are included for the fasteners discussed. Several aspects of the application of high performance corrosion resistant fasteners are discussed including galvanic compatibility and torque-tension relationships.

  18. Corrosion Engineering.

    ERIC Educational Resources Information Center

    White, Charles V.

    A description is provided for a Corrosion and Corrosion Control course offered in the Continuing Engineering Education Program at the General Motors Institute (GMI). GMI is a small cooperative engineering school of approximately 2,000 students who alternate between six-week periods of academic study and six weeks of related work experience in…

  19. Smart Coatings for Corrosion Protection

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Li, Wendy; Buhrow, Jerry W.; Johnsey, Marissa N.

    2016-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. It is essential to detect corrosion when it occurs, and preferably at its early stage, so that action can be taken to avoid structural damage or loss of function. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it.

  20. Maintainability Improvement Through Corrosion Prediction

    DTIC Science & Technology

    1997-12-01

    Aluminum base alloys - Mechanical properties; Lithium- Alloying elements; Crack propagation- Corrosion effects ; Fatigue life - Corrosion... effects on the corrosion fatigue life of 7075-T6 aluminum alloy . Ma,L CORPORATE SOURCE: University of Utah JOURNAL: Dissertation Abstracts International...Diffusion effects ; Hydrogen- Diffusion SECTION HEADINGS: 64 (Corrosion) 52. 715866 87-640094 The Life Prediction for 2024

  1. Corrosion Program

    DTIC Science & Technology

    2010-02-01

    April 2010 8-10 June 2010 3-5 August 2010 5 Corrosion Assistance Team ( CAT ) Visits Classroom Briefing • General Corrosion Theory • Preventive Maintenance...MD DC CAT Visit 2009 CAT Visit 2008 CAT Visit 2007 CAT Visit 2006 CAT Visit 2005 CAT Visits (calendar year) ME HI Germany ROK Honduras Egypt Japan DE 8

  2. Biodegradation of total organic carbons (TOC) in Jordanian petroleum sludge.

    PubMed

    Mrayyan, Bassam; Battikhi, Mohammed N

    2005-04-11

    Biodegradation is cost-effective, environmentally friendly treatment for oily contaminated sites by the use of microorganisms. In this study, laboratory experiments were conducted to establish the performance of bacterial isolates in degradation of organic compounds contained in oily sludge from the Jordanian Oil Refinery plant. As a result of the laboratory screening, three natural bacterial consortia capable of degrading total organic carbons (TOC) were prepared from isolates enriched from the oil sludge. Experiments were conducted in Erlenmeyer flasks under aerobic conditions, with TOC removal percentage varied from 0.3 to 28% depending on consortia type and concentration. Consortia 7B and 13B exhibited the highest TOC removal percentage of 28 and 22%, respectively, before nutrient addition. TOC removal rate was enhanced after addition of nutrients to incubated flasks. The highest TOC reduction (43%) was estimated after addition of combination of nitrogen, phosphorus and sulphur to consortia 7B. A significant variation (P<0.005) was observed between the effect of consortia type and concentration on TOC% reduction. No significant variation was observed between incubation at 10 and 18 days in TOC% reduction. This is the first report concerning biological treatment of TOC by bacteria isolated from the oil refinery plants, where it lays the ground for full integrated studies recommended for the degradation of organic compounds that assist in solving sludge problems.

  3. Genotoxicity, acute oral and dermal toxicity, eye and dermal irritation and corrosion and skin sensitisation evaluation of silver nanoparticles.

    PubMed

    Kim, Jin Sik; Song, Kyung Seuk; Sung, Jae Hyuck; Ryu, Hyun Ryol; Choi, Byung Gil; Cho, Hyun Sun; Lee, Jin Kyu; Yu, Il Je

    2013-08-01

    To clarify the health risks related to silver nanoparticles (Ag-NPs), we evaluated the genotoxicity, acute oral and dermal toxicity, eye irritation, dermal irritation and corrosion and skin sensitisation of commercially manufactured Ag-NPs according to the OECD test guidelines and GLP. The Ag-NPs were not found to induce genotoxicity in a bacterial reverse mutation test and chromosomal aberration test, although some cytotoxicity was observed. In acute oral and dermal toxicity tests using rats, none of the rats showed any abnormal signs or mortality at a dose level of ∼ 2000 mg/kg. Similarly, acute eye and dermal irritation and corrosion tests using rabbits revealed no significant clinical signs or mortality and no acute irritation or corrosion reaction for the eyes and skin. In a skin sensitisation test using guinea pigs, one animal (1/20) showed discrete or patchy erythema, thus Ag-NPs can be classified as a weak skin sensitiser.

  4. Bacterial community dynamics during bioremediation of diesel oil-contaminated Antarctic soil.

    PubMed

    Vázquez, S; Nogales, B; Ruberto, L; Hernández, E; Christie-Oleza, J; Lo Balbo, A; Bosch, R; Lalucat, J; Mac Cormack, W

    2009-05-01

    The effect of nutrient and inocula amendment in a bioremediation field trial using a nutrient-poor Antarctic soil chronically contaminated with hydrocarbons was tested. The analysis of the effects that the treatments caused in bacterial numbers and hydrocarbon removal was combined with the elucidation of the changes occurring on the bacterial community, by 16S rDNA-based terminal restriction fragment length polymorphism (T-RFLP) typing, and the detection of some of the genes involved in the catabolism of hydrocarbons. All treatments caused a significant increase in the number of bacteria able to grow on hydrocarbons and a significant decrease in the soil hydrocarbon content, as compared to the control. However, there were no significant differences between treatments. Comparison of the soil T-RFLP profiles indicated that there were changes in the structure and composition of bacterial communities during the bioremediation trial, although the communities in treated plots were highly similar irrespective of the treatment applied, and they had a similar temporal dynamics. These results showed that nutrient addition was the main factor contributing to the outcome of the bioremediation experiment. This was supported by the lack of evidence of the establishment of inoculated consortia in soils, since their characteristic electrophoretic peaks were only detectable in soil profiles at the beginning of the experiment. Genetic potential for naphthalene degradation, evidenced by detection of nahAc gene, was observed in all soil plots including the control. In treated plots, an increase in the detection of catechol degradation genes (nahH and catA) and in a key gene of denitrification (nosZ) was observed as well. These results indicate that treatments favored the degradation of aromatic hydrocarbons and probably stimulated denitrification, at least transiently. This mesocosm study shows that recovery of chronically contaminated Antarctic soils can be successfully accelerated

  5. Preparation of Some Eco-friendly Corrosion Inhibitors Having Antibacterial Activity from Sea Food Waste.

    PubMed

    Hussein, Mohamed H M; El-Hady, Mohamed F; Shehata, Hassan A H; Hegazy, Mohammad A; Hefni, Hassan H H

    2013-03-01

    Chitosan is one of the important biopolymers and it is extracted from exoskeletons of crustaceans in sea food waste. It is a suitable eco-friendly carbon steel corrosion inhibitor in acid media; the deacetylation degree of prepared chitosan is more than 85.16 %, and the molecular weight average is 109 kDa. Chitosan was modified to 2-N,N-diethylbenzene ammonium chloride N-oxoethyl chitosan (compound I), and 12-ammonium chloride N-oxododecan chitosan (compound II) as soluble water derivatives. The corrosion inhibition efficiency for carbon steel of compound (I) in 1 M HCl at varying temperature is higher than for chitosan and compound (II). However, the antibacterial activity of chitosan for Enterococcus faecalis, Escherichia coli, Staphylococcus aureus, and Candida albicans is higher than for its derivatives, and the minimum inhibition concentration and minimum bacterial concentration of chitosan and its derivatives were carried out with the same strain.

  6. Selection and screening of microbial consortia for efficient and ecofriendly degradation of plastic garbage collected from urban and rural areas of Bangalore, India.

    PubMed

    Skariyachan, Sinosh; Megha, M; Kini, Meghna Niranjan; Mukund, Kamath Manali; Rizvi, Alya; Vasist, Kiran

    2015-01-01

    Industrialization and urbanization have led to massive accumulation of plastic garbage all over India. The persistence of plastic in soil and aquatic environment has become ecological threat to the metropolitan city such as Bangalore, India. Present study investigates an ecofriendly, efficient and cost-effective approach for plastic waste management by the screening of novel microbial consortia which are capable of degrading plastic polymers. Plastic-contaminated soil and water samples were collected from six hot spots of urban and rural areas of Bangalore. The plastic-degrading bacteria were enriched, and degradation ability was determined by zone of clearance method. The percentage of polymer degradation was initially monitored by weight loss method, and the main isolates were characterized by standard microbiology protocols. These isolates were used to form microbial consortia, and the degradation efficiency of the consortia was compared with individual isolate and known strains obtained from the Microbial Type Culture Collection (MTCC) and Gene Bank, India. One of the main enzymes responsible for polymer degradation was identified, and the biodegradation mechanism was hypothesized by bioinformatics studies. From this study, it is evident that the bacteria utilized the plastic polymer as a sole source of carbon and showed 20-50% weight reduction over a period of 120 days. The two main bacteria responsible for the degradation were microbiologically characterized to be Pseudomonas spp. These bacteria could grow optimally at 37 °C in pH 9.0 and showed 35-40% of plastic weight reduction over 120 days. These isolates were showed better degradation ability than known strains from MTCC. The current study further revealed that the microbial consortia formulated by combining Psuedomonas spp. showed 40 plastic weight reduction over a period of 90 days. Further, extracellular lipase, one of the main enzymes responsible for polymer degradation, was identified. The

  7. Corrosion and fatigue of surgical implants

    NASA Technical Reports Server (NTRS)

    Lisagor, W. B.

    1975-01-01

    Implants for the treatment of femoral fractures, mechanisms leading to the failure or degradation of such structures, and current perspectives on surgical implants are discussed. Under the first heading, general usage, materials and procedures, environmental conditions, and laboratory analyses of implants after service are considered. Corrosion, crevice corrosion, stress corrosion cracking, intergranular corrosion, pitting corrosion, fatigue, and corrosion fatigue are the principal degradation mechanisms described. The need for improvement in the reliability of implants is emphasized.

  8. The Role of Oral Cavity Biofilm on Metallic Biomaterial Surface Destruction-Corrosion and Friction Aspects.

    PubMed

    Mystkowska, Joanna; Niemirowicz-Laskowska, Katarzyna; Łysik, Dawid; Tokajuk, Grażyna; Dąbrowski, Jan R; Bucki, Robert

    2018-03-06

    Metallic biomaterials in the oral cavity are exposed to many factors such as saliva, bacterial microflora, food, temperature fluctuations, and mechanical forces. Extreme conditions present in the oral cavity affect biomaterial exploitation and significantly reduce its biofunctionality, limiting the time of exploitation stability. We mainly refer to friction, corrosion, and biocorrosion processes. Saliva plays an important role and is responsible for lubrication and biofilm formation as a transporter of nutrients for microorganisms. The presence of metallic elements in the oral cavity may lead to the formation of electro-galvanic cells and, as a result, may induce corrosion. Transitional microorganisms such as sulfate-reducing bacteria may also be present among the metabolic microflora in the oral cavity, which can induce biological corrosion. Microorganisms that form a biofilm locally change the conditions on the surface of biomaterials and contribute to the intensification of the biocorrosion processes. These processes may enhance allergy to metals, inflammation, or cancer development. On the other hand, the presence of saliva and biofilm may significantly reduce friction and wear on enamel as well as on biomaterials. This work summarizes data on the influence of saliva and oral biofilms on the destruction of metallic biomaterials.

  9. The Role of Oral Cavity Biofilm on Metallic Biomaterial Surface Destruction–Corrosion and Friction Aspects

    PubMed Central

    Niemirowicz-Laskowska, Katarzyna; Łysik, Dawid; Tokajuk, Grażyna; Dąbrowski, Jan R.; Bucki, Robert

    2018-01-01

    Metallic biomaterials in the oral cavity are exposed to many factors such as saliva, bacterial microflora, food, temperature fluctuations, and mechanical forces. Extreme conditions present in the oral cavity affect biomaterial exploitation and significantly reduce its biofunctionality, limiting the time of exploitation stability. We mainly refer to friction, corrosion, and biocorrosion processes. Saliva plays an important role and is responsible for lubrication and biofilm formation as a transporter of nutrients for microorganisms. The presence of metallic elements in the oral cavity may lead to the formation of electro-galvanic cells and, as a result, may induce corrosion. Transitional microorganisms such as sulfate-reducing bacteria may also be present among the metabolic microflora in the oral cavity, which can induce biological corrosion. Microorganisms that form a biofilm locally change the conditions on the surface of biomaterials and contribute to the intensification of the biocorrosion processes. These processes may enhance allergy to metals, inflammation, or cancer development. On the other hand, the presence of saliva and biofilm may significantly reduce friction and wear on enamel as well as on biomaterials. This work summarizes data on the influence of saliva and oral biofilms on the destruction of metallic biomaterials. PMID:29509686

  10. The impact of industry/university consortia programs on space education

    NASA Technical Reports Server (NTRS)

    Page, John R.; Stone, Barbara A.

    1993-01-01

    The paper describes the industry/university consortia programs established by the United States and Australia and examines these programs from the viewpoint of their impact on space education in their respective countries. Particular attention is given to the aim and the nature of the three programs involved: the Centers for the Commercial Development of Space (CCDSs) (funded by NASA), which are currently involving about 250 companies and 88 universities as participants; the Space Industry Development Centers (SIDCs) (funded by the Australian Space Office): and the Cooperative Research Centers (CRCs) (funded by the Federal Government), which are not limited to the space area but are open to activities ranging from medical research to waste-water treatment. It is emphasized that, while the main aim of the CCDS, SIDC, and CRC programs is to develop space expertise, space education is a very significant byproduct of the activity of these agencies.

  11. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.

    2011-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.

  12. Identification and characterization of an anaerobic ethanol-producing cellulolytic bacterial consortium from Great Basin hot springs with agricultural residues and energy crops.

    PubMed

    Zhao, Chao; Deng, Yunjin; Wang, Xingna; Li, Qiuzhe; Huang, Yifan; Liu, Bin

    2014-09-01

    In order to obtain the cellulolytic bacterial consortia, sediments from Great Basin hot springs (Nevada, USA) were sampled and enriched with cellulosic biomass as the sole carbon source. The bacterial composition of the resulting anaerobic ethanol-producing celluloytic bacterial consortium, named SV79, was analyzed. With methods of the full-length 16S rRNA librarybased analysis and denaturing gradient gel electrophoresis, 21 bacteria belonging to eight genera were detected from this consortium. Clones with closest relation to the genera Acetivibrio, Clostridium, Cellulosilyticum, Ruminococcus, and Sporomusa were predominant. The cellulase activities and ethanol productions of consortium SV79 using different agricultural residues (sugarcane bagasse and spent mushroom substrate) and energy crops (Spartina anglica, Miscanthus floridulus, and Pennisetum sinese Roxb) were studied. During cultivation, consortium SV79 produced the maximum filter paper activity (FPase, 9.41 U/ml), carboxymethylcellulase activity (CMCase, 6.35 U/ml), and xylanase activity (4.28 U/ml) with sugarcane bagasse, spent mushroom substrate, and S. anglica, respectively. The ethanol production using M. floridulus as substrate was up to 2.63 mM ethanol/g using gas chromatography analysis. It has high potential to be a new candidate for producing ethanol with cellulosic biomass under anoxic conditions in natural environments.

  13. Effects of Hydrogen Sulfide on Bacterial Communities on the Surface of Galatheid Crab, Shinkaia crosnieri, and in a Bacterial Mat Cultured in Rearing Tanks

    PubMed Central

    Konishi, Masaaki; Watsuji, Tomo-o; Nakagawa, Satoshi; Hatada, Yuji; Takai, Ken; Toyofuku, Takashi

    2013-01-01

    To investigate the effects of H2S on the bacterial consortia on the galatheid crab, Shinkaia crosnieri, crabs of this species were cultivated in the laboratory under two different conditions, with and without hydrogen sulfide feeding. We developed a novel rearing tank system equipped with a feedback controller using a semiconductor sensor for hydrogen sulfide feeding. H2S aqueous concentration was successfully maintained between 5 to 40 μM for 80 d with the exception of brief periods of mechanical issues. According to real-time PCR analysis, the numbers of copies of partial 16S rRNA gene of an episymbiont of the crabs with H2S feeding was three orders of magnitude larger than that without feeding. By phylogenetic analysis of partial 16S rRNA gene, we detected several clones related to symbionts of deep sea organisms in Alphaproteobacteria, Gammaproteobacteria, Epsilonproteobacteria, and Flavobacteria, from a crab with H2S feeding. The symbiont-related clones were grouped into four different groups: Gammaproteobacteria in marine epibiont group I, Sulfurovum-affiliated Epsilonproteobacteria, Osedax mucofloris endosymbiont-affiliated Epsilonproteobacteria, and Flavobacteria closely related to CFB group bacterial epibiont of Rimicaris exoculata. The other phylotypes were related to Roseobacter, and some Flavobacteria, seemed to be free-living psychrophiles. Furthermore, white biofilm occurred on the surface of the rearing tank with H2S feeding. The biofilms contained various phylotypes of Gammaproteobacteria, Epsilonproteobacteria, and Flavobacteria, as determined by phylogenetic analysis. Interestingly, major clones were related to symbionts of Alviniconcha sp. type 2 and to endosymbionts of Osedax mucofloris, in Epsilonproteobacteria. PMID:23080406

  14. Identification of Uncultured Bacterial Species from Firmicutes, Bacteroidetes and CANDIDATUS Saccharibacteria as Candidate Cellulose Utilizers from the Rumen of Beef Cows

    PubMed Central

    Opdahl, Lee James; Gonda, Michael G.

    2018-01-01

    The ability of ruminants to utilize cellulosic biomass is a result of the metabolic activities of symbiotic microbial communities that reside in the rumen. To gain further insight into this complex microbial ecosystem, a selection-based batch culturing approach was used to identify candidate cellulose-utilizing bacterial consortia. Prior to culturing with cellulose, rumen contents sampled from three beef cows maintained on a forage diet shared 252 Operational Taxonomic Units (OTUs), accounting for 41.6–50.0% of bacterial 16S rRNA gene sequences in their respective samples. Despite this high level of overlap, only one OTU was enriched in cellulose-supplemented cultures from all rumen samples. Otherwise, each set of replicate cellulose supplemented cultures originating from a sampled rumen environment was found to have a distinct bacterial composition. Two of the seven most enriched OTUs were closely matched to well-established rumen cellulose utilizers (Ruminococcus flavefaciens and Fibrobacter succinogenes), while the others did not show high nucleotide sequence identity to currently defined bacterial species. The latter were affiliated to Prevotella (1 OTU), Ruminococcaceae (3 OTUs), and the candidate phylum Saccharibacteria (1 OTU), respectively. While further investigations will be necessary to elucidate the metabolic function(s) of each enriched OTU, these results together further support cellulose utilization as a ruminal metabolic trait shared across vast phylogenetic distances, and that the rumen is an environment conducive to the selection of a broad range of microbial adaptations for the digestion of plant structural polysaccharides. PMID:29495256

  15. Identification of Uncultured Bacterial Species from Firmicutes, Bacteroidetes and CANDIDATUS Saccharibacteria as Candidate Cellulose Utilizers from the Rumen of Beef Cows.

    PubMed

    Opdahl, Lee James; Gonda, Michael G; St-Pierre, Benoit

    2018-02-24

    The ability of ruminants to utilize cellulosic biomass is a result of the metabolic activities of symbiotic microbial communities that reside in the rumen. To gain further insight into this complex microbial ecosystem, a selection-based batch culturing approach was used to identify candidate cellulose-utilizing bacterial consortia. Prior to culturing with cellulose, rumen contents sampled from three beef cows maintained on a forage diet shared 252 Operational Taxonomic Units (OTUs), accounting for 41.6-50.0% of bacterial 16S rRNA gene sequences in their respective samples. Despite this high level of overlap, only one OTU was enriched in cellulose-supplemented cultures from all rumen samples. Otherwise, each set of replicate cellulose supplemented cultures originating from a sampled rumen environment was found to have a distinct bacterial composition. Two of the seven most enriched OTUs were closely matched to well-established rumen cellulose utilizers ( Ruminococcus flavefaciens and Fibrobacter succinogenes ), while the others did not show high nucleotide sequence identity to currently defined bacterial species. The latter were affiliated to Prevotella (1 OTU), Ruminococcaceae (3 OTUs), and the candidate phylum Saccharibacteria (1 OTU), respectively. While further investigations will be necessary to elucidate the metabolic function(s) of each enriched OTU, these results together further support cellulose utilization as a ruminal metabolic trait shared across vast phylogenetic distances, and that the rumen is an environment conducive to the selection of a broad range of microbial adaptations for the digestion of plant structural polysaccharides.

  16. Prediction of reinforcement corrosion using corrosion induced cracks width in corroded reinforced concrete beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Inamullah; François, Raoul; Castel, Arnaud

    2014-02-15

    This paper studies the evolution of reinforcement corrosion in comparison to corrosion crack width in a highly corroded reinforced concrete beam. Cracking and corrosion maps of the beam were drawn and steel reinforcement was recovered from the beam to observe the corrosion pattern and to measure the loss of mass of steel reinforcement. Maximum steel cross-section loss of the main reinforcement and average steel cross-section loss between stirrups were plotted against the crack width. The experimental results were compared with existing models proposed by Rodriguez et al., Vidal et al. and Zhang et al. Time prediction models for a givenmore » opening threshold are also compared to experimental results. Steel cross-section loss for stirrups was also measured and was plotted against the crack width. It was observed that steel cross-section loss in the stirrups had no relationship with the crack width of longitudinal corrosion cracks. -- Highlights: •Relationship between crack and corrosion of reinforcement was investigated. •Corrosion results of natural process and then corresponds to in-situ conditions. •Comparison with time predicting model is provided. •Prediction of load-bearing capacity from crack pattern was studied.« less

  17. Toward a "Common Definition of English Learner": A Brief Defining Policy and Technical Issues and Opportunities for State Assessment Consortia

    ERIC Educational Resources Information Center

    Linquanti, Robert; Cook, H. Gary

    2013-01-01

    The U.S. Department of Education (USED) requires states participating in either of the two Race to the Top assessment consortia (Smarter Balanced Assessment Consortium and Partnership for Assessment of Readiness for College and Careers [PARCC]), as well as those participating in either of the two Enhanced Assessment Grant (EAG) English language…

  18. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.

    2010-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where they are needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into the microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy.

  19. Corrosion probe. Innovative technology summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Over 253 million liters of high-level waste (HLW) generated from plutonium production is stored in mild steel tanks at the Department of Energy (DOE) Hanford Site. Corrosion monitoring of double-shell storage tanks (DSTs) is currently performed at Hanford using a combination of process knowledge and tank waste sampling and analysis. Available technologies for corrosion monitoring have progressed to a point where it is feasible to monitor and control corrosion by on-line monitoring of the corrosion process and direct addition of corrosion inhibitors. The electrochemical noise (EN) technique deploys EN-based corrosion monitoring probes into storage tanks. This system is specifically designedmore » to measure corrosion rates and detect changes in waste chemistry that trigger the onset of pitting and cracking. These on-line probes can determine whether additional corrosion inhibitor is required and, if so, provide information on an effective end point to the corrosion inhibitor addition procedure. This report describes the technology, its performance, its application, costs, regulatory and policy issues, and lessons learned.« less

  20. Microbial consortia: a critical look at microalgae co-cultures for enhanced biomanufacturing.

    PubMed

    Padmaperuma, Gloria; Kapoore, Rahul Vijay; Gilmour, Daniel James; Vaidyanathan, Seetharaman

    2018-08-01

    Monocultures have been the preferred production route in the bio-industry, where contamination has been a major bottleneck. In nature, microorganisms usually exist as part of organized communities and consortia, gaining benefits from co-habitation, keeping invaders at bay. There is increasing interest in the use of co-cultures to tackle contamination issues, and simultaneously increase productivity and product diversity. The feasibility of extending the natural phenomenon of co-habitation to the biomanufacturing industry in the form of co-cultures requires careful and systematic consideration of several aspects. This article will critically examine and review current work on microbial co-cultures, with the intent of examining the concept and proposing a design pipeline that can be developed in a biomanufacturing context.

  1. Using ATTO dyes to probe bacterial interactions with the marine diatom Pseudo-nitzschia.

    NASA Astrophysics Data System (ADS)

    Mehic, S.; Sison-Mangus, M.

    2016-02-01

    Pseudo-nitzschia blooms are known to be highly toxic and detrimental to wildlife. The neurotoxin produced by the algae can ripple through the entire food web creating a direct impact on oceanic life and human-related industries. With coastal blooms increasing in both size and duration in recent years, it is crucial that we uncover more microbial interactions that may affect the toxicity of these blooms. Current harmful algal bloom studies have shown that different bacterial consortia can have a great impact Pseudo-nitzschia physiology. More specifically, research suggests that bacteria affect both growth rates and domoic acid concentrations of laboratory grown cultures. However, these studies do not explore the attachment patterns of these bacteria with the diatom. Bacterial attachment may dictate the different types of interactions between bacteria and the diatoms, a trait that is largely unexplored in the symbiotic interactions between the two organisms. In this study, we seek to identify direct and indirect interactions between four bacteria taxa from different phyla and three different species of Pseudo-nitzschia. Our preliminary scanning electron microscopy and DAPI staining experiments hint at distinct differences in attachment among bacterial taxa. To explore this work further, we aim to employ ATTO dyes and epifluorescent microscopy on both binary and multiple cultures to visualize patterns in attachment. By utilizing ATTO dyes with distinct wavelength emissions, we can perform a series experiment that highlights the interaction between bacteria and diatoms, without inserting a fluorescent reporter gene in the bacteria. Multiple cultures will be used to identify possible cooperative or negative interactive traits between bacteria that can affect diatom host physiology. Implications on both phytoplankton physiology and nutrient cycling will be subsequently discussed.

  2. Evaluating Rebar Corrosion Using Nonlinear Ultrasound

    NASA Astrophysics Data System (ADS)

    Woodward, Clinton; Amin, Md. Nurul

    2008-02-01

    The early detection of rebar corrosion in reinforced concrete is difficult using current methods. This pilot study investigated the viability of using nonlinear ultrasound to detect the effects of rebar corrosion in its early stages. The study utilized three accelerated corrosion specimens and one control specimen. Results showed that when corrosion developed in the area isonified by a Rayleigh wave, nonlinear parameters increased. As corrosion progressed, these nonlinear parameters also increased.

  3. Automated Corrosion Detection Program

    DTIC Science & Technology

    2001-10-01

    More detailed explanations of the methodology development can be found in Hidden Corrosion Detection Technology Assessment, a paper presented at...Detection Program, a paper presented at the Fourth Joint DoD/FAA/NASA Conference on Aging Aircraft, 2000. AS&M PULSE. The PULSE system, developed...selection can be found in The Evaluation of Hidden Corrosion Detection Technologies on the Automated Corrosion Detection Program, a paper presented

  4. Bacterial and archaeal phylogenetic diversity of a cold sulfur-rich spring on the shoreline of Lake Erie, Michigan

    USGS Publications Warehouse

    Chaudhary, A.; Haack, S.K.; Duris, J.W.; Marsh, T.L.

    2009-01-01

    Studies of sulfidic springs have provided new insights into microbial metabolism, groundwater biogeochemistry, and geologic processes. We investigated Great Sulphur Spring on the western shore of Lake Erie and evaluated the phylogenetic affiliations of 189 bacterial and 77 archaeal 16S rRNA gene sequences from three habitats: the spring origin (11-m depth), bacterial-algal mats on the spring pond surface, and whitish filamentous materials from the spring drain. Water from the spring origin water was cold, pH 6.3, and anoxic (H2, 5.4 nM; CH4, 2.70 ??M) with concentrations of S2- (0.03 mM), SO42- (14.8 mM), Ca2+ (15.7 mM), and HCO3- (4.1 mM) similar to those in groundwater from the local aquifer. No archaeal and few bacterial sequences were >95% similar to sequences of cultivated organisms. Bacterial sequences were largely affiliated with sulfur-metabolizing or chemolithotrophic taxa in Beta-, Gamma-, Delta-, and Epsilonproteobacteria. Epsilonproteobacteria sequences similar to those obtained from other sulfidic environments and a new clade of Cyanobacteria sequences were particularly abundant (16% and 40%, respectively) in the spring origin clone library. Crenarchaeota sequences associated with archaeal-bacterial consortia in whitish filaments at a German sulfidic spring were detected only in a similar habitat at Great Sulphur Spring. This study expands the geographic distribution of many uncultured Archaea and Bacteria sequences to the Laurentian Great Lakes, indicates possible roles for epsilonproteobacteria in local aquifer chemistry and karst formation, documents new oscillatorioid Cyanobacteria lineages, and shows that uncultured, cold-adapted Crenarchaeota sequences may comprise a significant part of the microbial community of some sulfidic environments. Copyright ?? 2009, American Society for Microbiology. All Rights Reserved.

  5. Parallel characterization of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridization, and DNA microarray technology

    NASA Technical Reports Server (NTRS)

    Koizumi, Yoshikazu; Kelly, John J.; Nakagawa, Tatsunori; Urakawa, Hidetoshi; El-Fantroussi, Said; Al-Muzaini, Saleh; Fukui, Manabu; Urushigawa, Yoshikuni; Stahl, David A.

    2002-01-01

    A mesophilic toluene-degrading consortium (TDC) and an ethylbenzene-degrading consortium (EDC) were established under sulfate-reducing conditions. These consortia were first characterized by denaturing gradient gel electrophoresis (DGGE) fingerprinting of PCR-amplified 16S rRNA gene fragments, followed by sequencing. The sequences of the major bands (T-1 and E-2) belonging to TDC and EDC, respectively, were affiliated with the family Desulfobacteriaceae. Another major band from EDC (E-1) was related to an uncultured non-sulfate-reducing soil bacterium. Oligonucleotide probes specific for the 16S rRNAs of target organisms corresponding to T-1, E-1, and E-2 were designed, and hybridization conditions were optimized for two analytical formats, membrane and DNA microarray hybridization. Both formats were used to characterize the TDC and EDC, and the results of both were consistent with DGGE analysis. In order to assess the utility of the microarray format for analysis of environmental samples, oil-contaminated sediments from the coast of Kuwait were analyzed. The DNA microarray successfully detected bacterial nucleic acids from these samples, but probes targeting specific groups of sulfate-reducing bacteria did not give positive signals. The results of this study demonstrate the limitations and the potential utility of DNA microarrays for microbial community analysis.

  6. Parallel Characterization of Anaerobic Toluene- and Ethylbenzene-Degrading Microbial Consortia by PCR-Denaturing Gradient Gel Electrophoresis, RNA-DNA Membrane Hybridization, and DNA Microarray Technology

    PubMed Central

    Koizumi, Yoshikazu; Kelly, John J.; Nakagawa, Tatsunori; Urakawa, Hidetoshi; El-Fantroussi, Saïd; Al-Muzaini, Saleh; Fukui, Manabu; Urushigawa, Yoshikuni; Stahl, David A.

    2002-01-01

    A mesophilic toluene-degrading consortium (TDC) and an ethylbenzene-degrading consortium (EDC) were established under sulfate-reducing conditions. These consortia were first characterized by denaturing gradient gel electrophoresis (DGGE) fingerprinting of PCR-amplified 16S rRNA gene fragments, followed by sequencing. The sequences of the major bands (T-1 and E-2) belonging to TDC and EDC, respectively, were affiliated with the family Desulfobacteriaceae. Another major band from EDC (E-1) was related to an uncultured non-sulfate-reducing soil bacterium. Oligonucleotide probes specific for the 16S rRNAs of target organisms corresponding to T-1, E-1, and E-2 were designed, and hybridization conditions were optimized for two analytical formats, membrane and DNA microarray hybridization. Both formats were used to characterize the TDC and EDC, and the results of both were consistent with DGGE analysis. In order to assess the utility of the microarray format for analysis of environmental samples, oil-contaminated sediments from the coast of Kuwait were analyzed. The DNA microarray successfully detected bacterial nucleic acids from these samples, but probes targeting specific groups of sulfate-reducing bacteria did not give positive signals. The results of this study demonstrate the limitations and the potential utility of DNA microarrays for microbial community analysis. PMID:12088997

  7. The effect of long-term nitrate treatment on SRB activity, corrosion rate and bacterial community composition in offshore water injection systems.

    PubMed

    Bødtker, Gunhild; Thorstenson, Tore; Lillebø, Bente-Lise P; Thorbjørnsen, Bente E; Ulvøen, Rikke Helen; Sunde, Egil; Torsvik, Terje

    2008-12-01

    Biogenic production of hydrogen sulphide (H(2)S) is a problem for the oil industry as it leads to corrosion and reservoir souring. Continuous injection of a low nitrate concentration (0.25-0.33 mM) replaced glutaraldehyde as corrosion and souring control at the Veslefrikk and Gullfaks oil field (North Sea) in 1999. The response to nitrate treatment was a rapid reduction in number and activity of sulphate-reducing bacteria (SRB) in the water injection system biofilm at both fields. The present long-term study shows that SRB activity has remained low at < or =0.3 and < or =0.9 microg H(2)S/cm(2)/day at Veslefrikk and Gullfaks respectively, during the 7-8 years with continuous nitrate injection. At Veslefrikk, 16S rRNA gene based community analysis by PCR-DGGE showed that bacteria affiliated to nitrate-reducing sulphide-oxidizing Sulfurimonas (NR-SOB) formed major populations at the injection well head throughout the treatment period. Downstream of deaerator the presence of Sulfurimonas like bacteria was less pronounced, and were no longer observed 40 months into the treatment period. The biofilm community during nitrate treatment was highly diverse and relative stable for long periods of time. At the Gullfaks field, a reduction in corrosion of up to 40% was observed after switch to nitrate treatment. The present study show that nitrate injection may provide a stable long-term inhibition of SRB in sea water injection systems, and that corrosion may be significantly reduced when compared to traditional biocide treatment.

  8. Pyrolysis kinetics of algal consortia grown using swine manure wastewater.

    PubMed

    Sharara, Mahmoud A; Holeman, Nathan; Sadaka, Sammy S; Costello, Thomas A

    2014-10-01

    In this study, pyrolysis kinetics of periphytic microalgae consortia grown using swine manure slurry in two seasonal climatic patterns in northwest Arkansas were investigated. Four heating rates (5, 10, 20 and 40 °C min(-1)) were used to determine the pyrolysis kinetics. Differences in proximate, ultimate, and heating value analyses reflected variability in growing substrate conditions, i.e., flocculant use, manure slurry dilution, and differences in diurnal solar radiation and air temperature regimes. Peak decomposition temperature in algal harvests varied with changing the heating rate. Analyzing pyrolysis kinetics using differential and integral isoconversional methods (Friedman, Flynn-Wall-Ozawa, and Kissinger-Akahira-Sunose) showed strong dependency of apparent activation energy on the degree of conversion suggesting parallel reaction scheme. Consequently, the weight loss data in each thermogravimetric test was modeled using independent parallel reactions (IPR). The quality of fit (QOF) for the model ranged between 2.09% and 3.31% indicating a good agreement with the experimental data. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Corrosion-resistant uranium

    DOEpatents

    Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

    1981-10-21

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  10. Corrosion-resistant uranium

    DOEpatents

    Hovis, Jr., Victor M.; Pullen, William C.; Kollie, Thomas G.; Bell, Richard T.

    1983-01-01

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  11. THE CANADIAN PERSPECTIVE ON CORROSION CONTROL: HEALTH CANADA'S CORROSION CONTROL GUIDELINE

    EPA Science Inventory

    Health Canada has proposed a Corrosion Control Guideline, based on lead, which is undergoing public consultation and expected to be finalized in 2007. In Canada, there are no regulations and little guidance to address corrosion problems and existing sampling methods are inappropr...

  12. Stochastic theory of fatigue corrosion

    NASA Astrophysics Data System (ADS)

    Hu, Haiyun

    1999-10-01

    A stochastic theory of corrosion has been constructed. The stochastic equations are described giving the transportation corrosion rate and fluctuation corrosion coefficient. In addition the pit diameter distribution function, the average pit diameter and the most probable pit diameter including other related empirical formula have been derived. In order to clarify the effect of stress range on the initiation and growth behaviour of pitting corrosion, round smooth specimen were tested under cyclic loading in 3.5% NaCl solution.

  13. National Network of Eisenhower Regional Consortia and Clearinghouse: Supporting the Improvement of Mathematics and Science in America's Schools. Evaluation Summary Report for 1995-2000 with In-Depth Evaluation of Training and Technical Assistance, Dissemination, and Collaboration and Networking Services.

    ERIC Educational Resources Information Center

    National Network of Eisenhower Regional Consortia and National Clearinghouse.

    This report, addressed to sponsors and partners of the Eisenhower consortia and clearinghouse network as well as the staff of those organizations, contains the evaluation summary report of the National Network of Eisenhower Regional Consortia and Clearinghouse. It summarizes network outcomes over the 5-year period between 1995-2000. The report…

  14. Concrete Infrastructure Corrosion

    NASA Astrophysics Data System (ADS)

    Waanders, F. B.; Vorster, S. W.

    2003-06-01

    It is well known that many reinforced concrete structures are at risk of deterioration due to chloride ion contamination of the concrete or atmospheric carbon dioxide dissolving in water to form carbonic acid, which reacts with the concrete and the reinforcing steel. The environment within the concrete will determine the corrosion product layers, which might, inter alia, contain the oxides and/or hydroxides of iron. Tensile forces resulting from volume changes during their formation lead to the cracking and delamination of the concrete. In the present investigation the handrail of an outside staircase suffered rebar corrosion during 30 year's service, leading to severe delamination damage to the concrete structure. The railings had been sealed into the concrete staircase using a polysulphide sealant, Thiokol®. The corrosion products were identified by means of Mössbauer and SEM analyses, which indicated that the corrosion product composition varied from the original steel surface to the outer layers, the former being mainly iron oxides and the latter iron oxyhydroxide.

  15. pH Responsive Microcapsules for Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Li, Wenyan; Muehlberg, Aaron; Boraas, Samuel; Webster, Dean; JohnstonGelling, Victoria; Croll, Stuart; Taylor, S Ray; Contu, Francesco

    2008-01-01

    The best coatings for corrosion protection provide not only barriers to the environment, but also a controlled release of a corrosion inhibitor, as demanded by the presence of corrosion or mechanical damage. NASA has developed pH sensitive microcapsules (patent pending) that can release their core contents when corrosion starts. The objectives of the research presented here were to encapsulate non-toxic corrosion inhibitors, to incorporate the encapsulated inhibitors into paint formulations, and to test the ability of the paints to control corrosion. Results showed that the encapsulated corrosion inhibitors, specifically Ce(NO3)3 , are effective to control corrosion over long periods of time when incorporated at relatively high pigment volume concentrations into a paint formulation.

  16. 49 CFR 192.491 - Corrosion control records.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Corrosion control records. 192.491 Section 192.491... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.491 Corrosion... detail to demonstrate the adequacy of corrosion control measures or that a corrosive condition does not...

  17. 49 CFR 192.491 - Corrosion control records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Corrosion control records. 192.491 Section 192.491... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.491 Corrosion... detail to demonstrate the adequacy of corrosion control measures or that a corrosive condition does not...

  18. 49 CFR 192.491 - Corrosion control records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Corrosion control records. 192.491 Section 192.491... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.491 Corrosion... detail to demonstrate the adequacy of corrosion control measures or that a corrosive condition does not...

  19. 49 CFR 192.491 - Corrosion control records.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Corrosion control records. 192.491 Section 192.491... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.491 Corrosion... detail to demonstrate the adequacy of corrosion control measures or that a corrosive condition does not...

  20. 49 CFR 192.491 - Corrosion control records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Corrosion control records. 192.491 Section 192.491... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.491 Corrosion... detail to demonstrate the adequacy of corrosion control measures or that a corrosive condition does not...

  1. Corrosion on Mars: An Investigation of Corrosion Mechanisms Under Relevant Simulated Martian Environments

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Li, Wenyan; Johansen, Michael R.; Buhrow, Jerry W.; Calle, Carlos I.

    2017-01-01

    This one-year project was selected by NASA's Science Innovation Fund in FY17 to address Corrosion on Mars which is a problem that has not been addressed before. Corrosion resistance is one of the most important properties in selecting materials for landed spacecraft and structures that will support surface operations for the human exploration of Mars. Currently, the selection of materials is done by assuming that the corrosion behavior of a material on Mars will be the same as that on Earth. This is understandable given that there is no data regarding the corrosion resistance of materials in the Mars environment. However, given that corrosion is defined as the degradation of a metal that results from its chemical interaction with the environment, it cannot be assumed that corrosion is going to be the same in both environments since they are significantly different. The goal of this research is to develop a systematic approach to understand corrosion of spacecraft materials on Mars by conducting a literature search of available data, relevant to corrosion in the Mars environment, and by performing preliminary laboratory experiments under relevant simulated Martian conditions. This project was motivated by the newly found evidence for the presence of transient liquid brines on Mars that coincided with the suggestion, by a team of researchers, that some of the structural degradation observed on Curiosity's wheels may be caused by corrosive interactions with the brines, while the most significant damage was attributed to rock scratching. An extensive literature search on data relevant to Mars corrosion confirmed the need for further investigation of the interaction between materials used for spacecraft and structures designed to support long-term surface operations on Mars. Simple preliminary experiments, designed to look at the interaction between an aerospace aluminum alloy (AA7075-T73) and the gases present in the Mars atmosphere, at 20degC and a pressure of 700 Pa

  2. Bacterial colonization on coated and uncoated orthodontic wires: A prospective clinical trial.

    PubMed

    Raji, Seyed Hamid; Shojaei, Hasan; Ghorani, Parinaz Saeidi; Rafiei, Elahe

    2014-11-01

    The advantages of coated orthodontic wires such as esthetic and their effects on reduced friction, corrosion and allergic reaction and the significant consequences of plaque accumulation on oral health encouraged us to assess bacterial colonization on these wires. A total of 18 (9 upper and 9 lower) epoxy resin coated 16 × 22 nickel-titanium wires (Spectra, GAC, USA) and 18 (9 upper and 9 lower) non-coated 16 × 22 nickel-titanium wires (Sentalloy, GAC, USA) with isolated packages were selected and sterilized before application. The samples were divided randomly between upper and lower arches in 18 patients and hence that every patient received one coated and one uncoated wire at the same time. Samples were removed and cut in equal lengths after 3 weeks and placed in phosphate buffered saline buffer. After separation of bacteria in trypsin and ethylenediaminetetraacetic acid solution, the diluted solution was cultured in blood agar and bacterial colony forming units were counted. Finally, the data was analyzed using the paired t-test and the significance was set at 0.05. Mean of bacterial colonization on uncoated wires was more than that of coated wires (P < 0.001). Bacterial plaque accumulation on epoxy resin coated nickel-titanium orthodontic wires is significantly lower than uncoated nickel-titanium wires.

  3. Sulfate-reducing bacteria mediate thionation of diphenylarsinic acid under anaerobic conditions.

    PubMed

    Guan, Ling; Shiiya, Ayaka; Hisatomi, Shihoko; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

    2015-02-01

    Diphenylarsinic acid (DPAA) is often found as a toxic intermediate metabolite of diphenylchloroarsine or diphenylcyanoarsine that were produced as chemical warfare agents and were buried in soil after the World Wars. In our previous study Guan et al. (J Hazard Mater 241-242:355-362, 2012), after application of sulfate and carbon sources, anaerobic transformation of DPAA in soil was enhanced with the production of diphenylthioarsinic acid (DPTAA) as a main metabolite. This study aimed to isolate and characterize anaerobic soil microorganisms responsible for the metabolism of DPAA. First, we obtained four microbial consortia capable of transforming DPAA to DPTAA at a high transformation rate of more than 80% after 4 weeks of incubation. Sequencing for the bacterial 16S rRNA gene clone libraries constructed from the consortia revealed that all the positive consortia contained Desulfotomaculum acetoxidans species. In contrast, the absence of dissimilatory sulfite reductase gene (dsrAB) which is unique to sulfate-reducing bacteria was confirmed in the negative consortia showing no DPAA reduction. Finally, strain DEA14 showing transformation of DPAA to DPTAA was isolated from one of the positive consortia. The isolate was assigned to D. acetoxidans based on the partial 16S rDNA sequence analysis. Thionation of DPAA was also carried out in a pure culture of a known sulfate-reducing bacterial strain, Desulfovibrio aerotolerans JCM 12613(T). These facts indicate that sulfate-reducing bacteria are microorganisms responsible for the transformation of DPAA to DPTAA under anaerobic conditions.

  4. Corrosion Control in the Aerospace Industry

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Li, Wenyan; Buhrow, Jerry W.; Johnsey, Marissa N.

    2016-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. It is essential to detect corrosion when it occurs, and preferably at its early stage, so that action can be taken to avoid structural damage or loss of function. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it..

  5. Experiments and models of general corrosion and flow-assisted corrosion of materials in nuclear reactor environments

    NASA Astrophysics Data System (ADS)

    Cook, William Gordon

    Corrosion and material degradation issues are of concern to all industries. However, the nuclear power industry must conform to more stringent construction, fabrication and operational guidelines due to the perceived additional risk of operating with radioactive components. Thus corrosion and material integrity are of considerable concern for the operators of nuclear power plants and the bodies that govern their operations. In order to keep corrosion low and maintain adequate material integrity, knowledge of the processes that govern the material's breakdown and failure in a given environment are essential. The work presented here details the current understanding of the general corrosion of stainless steel and carbon steel in nuclear reactor primary heat transport systems (PHTS) and examines the mechanisms and possible mitigation techniques for flow-assisted corrosion (FAC) in CANDU outlet feeder pipes. Mechanistic models have been developed based on first principles and a 'solution-pores' mechanism of metal corrosion. The models predict corrosion rates and material transport in the PHTS of a pressurized water reactor (PWR) and the influence of electrochemistry on the corrosion and flow-assisted corrosion of carbon steel in the CANDU outlet feeders. In-situ probes, based on an electrical resistance technique, were developed to measure the real-time corrosion rate of reactor materials in high-temperature water. The probes were used to evaluate the effects of coolant pH and flow on FAC of carbon steel as well as demonstrate of the use of titanium dioxide as a coolant additive to mitigated FAC in CANDU outlet feeder pipes.

  6. Microstructure Instability of Candidate Fuel Cladding Alloys: Corrosion and Stress Corrosion Cracking Implications

    NASA Astrophysics Data System (ADS)

    Jiao, Yinan; Zheng, Wenyue; Guzonas, David; Kish, Joseph

    2016-02-01

    This paper addresses some of the overarching aspects of microstructure instability expected from both high temperature and radiation exposure that could affect the corrosion and stress corrosion cracking (SCC) resistance of the candidate austenitic Fe-Cr-Ni alloys being considered for the fuel cladding of the Canadian supercritical water-cooled reactor (SCWR) concept. An overview of the microstructure instability expected by both exposures is presented prior to turning the focus onto the implications of such instability on the corrosion and SCC resistance. Results from testing conducted using pre-treated (thermally-aged) Type 310S stainless steel to shed some light on this important issue are included to help identify the outstanding corrosion resistance assessment needs.

  7. Corrosion resistant PEM fuel cell

    DOEpatents

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K.; Cunningham, Kevin M.

    2011-06-07

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  8. Corrosion resistant PEM fuel cell

    DOEpatents

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K.; Cunningham, Kevin M.

    2002-01-01

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  9. Microencapsulation Technology for Corrosion Mitigation by Smart Coatings

    NASA Technical Reports Server (NTRS)

    Buhrow, Jerry; Li, Wenyan; Jolley, Scott; Calle, Luz M.

    2011-01-01

    A multifunctional, smart coating for the autonomous control of corrosion is being developed based on micro-encapsulation technology. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection effectiveness. This paper summarizes the development, optimization, and testing of microcapsules specifically designed to be incorporated into a smart coating that will deliver corrosion inhibitors to mitigate corrosion autonomously. Key words: smart coating, corrosion inhibition, microencapsulation, microcapsule, pH sensitive microcapsule, corrosion inhibitor, corrosion protection pain

  10. Microencapsulation of Corrosion Indicators for Smart Coatings

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.; Calle, Luz M.; Hanna,Joshua S.; Rawlins, James W.

    2011-01-01

    A multifunctional smart coating for the autonomous detection, indication, and control of corrosion is been developed based on microencapsulation technology. This paper summarizes the development, optimization, and testing of microcapsules specifically designed for early detection and indication of corrosion when incorporated into a smart coating. Results from experiments designed to test the ability of the microcapsules to detect and indicate corrosion, when blended into several paint systems, show that these experimental coatings generate a color change, indicative of spot specific corrosion events, that can be observed with the naked eye within hours rather than the hundreds of hours or months typical of the standard accelerated corrosion test protocols.. Key words: smart coating, corrosion detection, microencapsulation, microcapsule, pH-sensitive microcapsule, corrosion indicator, corrosion sensing paint

  11. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, L. M.; Hintze, P. E.; Li, W.; Buhrow, J. W.; Jolley, S. T.

    2011-01-01

    This slide presentation reviews the effects of corrosion on various structures at the Kennedy Space Center, and the work to discover a corrosion control coating that will be autonomous and will indicate corrosion at an early point in the process. Kennedy Space Center has many environmental conditions that are corrosive: ocean salt spray, heat, humidity, sunlight and acidic exhaust from the Solid Rocket Boosters (SRBs). Presented is a chart which shows the corrosion rates of carbon steel at various locations. KSC has the highest corrosion rates with 42.0 mils/yr, leading the next highest Galeta Point Beach, in the Panama Canal Zone with 27 mils/yr corrosion. A chart shows the changes in corrosion rate with the distance from the ocean. The three types of corrosion protective coatings are described: barrier (passive), Barrier plus active corrosion inhibiting components, and smart. A smart coating will detect and respond actively to changes in its environment in a functional and predictable manner and is capable of adapting its properties dynamically. The smart coating uses microcapsules, particles or liquid drops coated in polymers, that can detect and control the corrosion caused by the environment. The mechanism for a pH sensitive microcapsule and the hydrophobic core microcapsule are demonstrated and the chemistry is reviewed. When corrosion begins, the microcapsule will release the contents of the core (indicator, inhibitor, and self healing agent) in close proximity to the corrosion. The response to a pH increase is demonstrated by a series of pictures that show the breakdown of the microcapsule and the contents release. An example of bolt corrosion is used, as an example of corrosion in places that are difficult to ascertain. A comparison of various coating systems is shown.

  12. Accelerated Stress-Corrosion Testing

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Test procedures for accelerated stress-corrosion testing of high-strength aluminum alloys faster and provide more quantitative information than traditional pass/fail tests. Method uses data from tests on specimen sets exposed to corrosive environment at several levels of applied static tensile stress for selected exposure times then subsequently tensile tested to failure. Method potentially applicable to other degrading phenomena (such as fatigue, corrosion fatigue, fretting, wear, and creep) that promote development and growth of cracklike flaws within material.

  13. Air-dust-borne associations of phototrophic and hydrocarbon-utilizing microorganisms: promising consortia in volatile hydrocarbon bioremediation.

    PubMed

    Al-Bader, Dhia; Eliyas, Mohamed; Rayan, Rihab; Radwan, Samir

    2012-11-01

    Aquatic and terrestrial associations of phototrophic and heterotrophic microorganisms active in hydrocarbon bioremediation have been described earlier. The question arises: do similar consortia also occur in the atmosphere? Dust samples at the height of 15 m were collected from Kuwait City air, and analyzed microbiologically for phototrophic and heterotrophic hydrocarbon-utilizing microorganisms, which were subsequently characterized according to their 16S rRNA gene sequences. The hydrocarbon utilization potential of the heterotrophs alone, and in association with the phototrophic partners, was measured quantitatively. The chlorophyte Gloeotila sp. and the two cyanobacteria Nostoc commune and Leptolyngbya thermalis were found associated with dust, and (for comparison) the cynobacteria Leptolyngbya sp. and Acaryochloris sp. were isolated from coastal water. All phototrophic cultures harbored oil vapor-utilizing bacteria in the magnitude of 10(5) g(-1). Each phototrophic culture had its unique oil-utilizing bacteria; however, the bacterial composition in Leptolyngbya cultures from air and water was similar. The hydrocarbon-utilizing bacteria were affiliated with Acinetobacter sp., Aeromonas caviae, Alcanivorax jadensis, Bacillus asahii, Bacillus pumilus, Marinobacter aquaeolei, Paenibacillus sp., and Stenotrophomonas maltophilia. The nonaxenic cultures, when used as inocula in batch cultures, attenuated crude oil in light and dark, and in the presence of antibiotics and absence of nitrogenous compounds. Aqueous and diethyl ether extracts from the phototrophic cultures enhanced the growth of the pertinent oil-utilizing bacteria in batch cultures, with oil vapor as a sole carbon source. It was concluded that the airborne microbial associations may be effective in bioremediating atmospheric hydrocarbon pollutants in situ. Like the aquatic and terrestrial habitats, the atmosphere contains dust-borne associations of phototrophic and heterotrophic hydrocarbon

  14. Comparative metagenomic analysis of microcosm structures and lignocellulolytic enzyme systems of symbiotic biomass-degrading consortia.

    PubMed

    Wongwilaiwalin, Sarunyou; Laothanachareon, Thanaporn; Mhuantong, Wuttichai; Tangphatsornruang, Sithichoke; Eurwilaichitr, Lily; Igarashi, Yasuo; Champreda, Verawat

    2013-10-01

    Decomposition of lignocelluloses by cooperative microbial actions is an essential process of carbon cycling in nature and provides a basis for biomass conversion to fuels and chemicals in biorefineries. In this study, structurally stable symbiotic aero-tolerant lignocellulose-degrading microbial consortia were obtained from biodiversified microflora present in industrial sugarcane bagasse pile (BGC-1), cow rumen fluid (CRC-1), and pulp mill activated sludge (ASC-1) by successive subcultivation on rice straw under facultative anoxic conditions. Tagged 16S rRNA gene pyrosequencing revealed that all isolated consortia originated from highly diverse environmental microflora shared similar composite phylum profiles comprising mainly Firmicutes, reflecting convergent adaptation of microcosm structures, however, with substantial differences at refined genus level. BGC-1 comprising cellulolytic Clostridium and Acetanaerobacterium in stable coexistence with ligninolytic Ureibacillus showed the highest capability on degradation of agricultural residues and industrial pulp waste with CMCase, xylanase, and β-glucanase activities in the supernatant. Shotgun pyrosequencing of the BGC-1 metagenome indicated a markedly high relative abundance of genes encoding for glycosyl hydrolases, particularly for lignocellulytic enzymes in 26 families. The enzyme system comprised a unique composition of main-chain degrading and side-chain processing hydrolases, dominated by GH2, 3, 5, 9, 10, and 43, reflecting adaptation of enzyme profiles to the specific substrate. Gene mapping showed metabolic potential of BGC-1 for conversion of biomass sugars to various fermentation products of industrial importance. The symbiotic consortium is a promising simplified model for study of multispecies mechanisms on consolidated bioprocessing and a platform for discovering efficient synergistic enzyme systems for biotechnological application.

  15. The Mineralogy of Microbiologically Influenced Corrosion

    DTIC Science & Technology

    2015-01-01

    cathodically active). The biomineralization rate and the corrosion current control oxide accumulation. Localized corrosion current that exceeds the... phosphate ). Localized corrosion would not readily occur unless Cl- was the predominant anion in the medium. They concluded that the Cl- concentration...transforms into goethite and/or hematite over time. For mild steel corrosion under anodic control , manganese oxides elevate con-osion current, but will

  16. Corrosion-resistant high-entropy alloys: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Yunzhu; Yang, Bin; Liaw, Peter

    Corrosion destroys more than three percent of the world’s gross domestic product. Therefore, the design of highly corrosion-resistant materials is urgently needed. By breaking the classical alloy-design philosophy, high-entropy alloys (HEAs) possess unique microstructures, which are solid solutions with random arrangements of multiple elements. The particular locally-disordered chemical environment is expected to lead to unique corrosion-resistant properties. In this review, the studies of the corrosion-resistant HEAs during the last decade are summarized. The corrosion-resistant properties of HEAs in various aqueous environments and the corrosion behavior of HEA coatings are presented. The effects of environments, alloying elements, and processing methods onmore » the corrosion resistance are analyzed in detail. Finally, the possible directions of future work regarding the corrosion behavior of HEAs are suggested.« less

  17. Corrosion-resistant high-entropy alloys: A review

    DOE PAGES

    Shi, Yunzhu; Yang, Bin; Liaw, Peter

    2017-02-05

    Corrosion destroys more than three percent of the world’s gross domestic product. Therefore, the design of highly corrosion-resistant materials is urgently needed. By breaking the classical alloy-design philosophy, high-entropy alloys (HEAs) possess unique microstructures, which are solid solutions with random arrangements of multiple elements. The particular locally-disordered chemical environment is expected to lead to unique corrosion-resistant properties. In this review, the studies of the corrosion-resistant HEAs during the last decade are summarized. The corrosion-resistant properties of HEAs in various aqueous environments and the corrosion behavior of HEA coatings are presented. The effects of environments, alloying elements, and processing methods onmore » the corrosion resistance are analyzed in detail. Finally, the possible directions of future work regarding the corrosion behavior of HEAs are suggested.« less

  18. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serdar, Marijana; Meral, Cagla; Kunz, Martin

    2015-05-15

    The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide–hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from themore » surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel. - Highlights: • Synchrotron micro-diffraction used to map the distribution of crystalline phases. • Goethite and akaganeite are the main corrosion products during chloride induced corrosion in mortar. • Layers of goethite and akaganeite are negatively correlated. • EDS showed Cr present in corrosion products identified by SEM.« less

  19. The dual role of microbes in corrosion

    PubMed Central

    Kip, Nardy; van Veen, Johannes A

    2015-01-01

    Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion. PMID:25259571

  20. The dual role of microbes in corrosion.

    PubMed

    Kip, Nardy; van Veen, Johannes A

    2015-03-01

    Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion.

  1. Implementation of Complex Biological Logic Circuits Using Spatially Distributed Multicellular Consortia

    PubMed Central

    Urrios, Arturo; de Nadal, Eulàlia; Solé, Ricard; Posas, Francesc

    2016-01-01

    Engineered synthetic biological devices have been designed to perform a variety of functions from sensing molecules and bioremediation to energy production and biomedicine. Notwithstanding, a major limitation of in vivo circuit implementation is the constraint associated to the use of standard methodologies for circuit design. Thus, future success of these devices depends on obtaining circuits with scalable complexity and reusable parts. Here we show how to build complex computational devices using multicellular consortia and space as key computational elements. This spatial modular design grants scalability since its general architecture is independent of the circuit’s complexity, minimizes wiring requirements and allows component reusability with minimal genetic engineering. The potential use of this approach is demonstrated by implementation of complex logical functions with up to six inputs, thus demonstrating the scalability and flexibility of this method. The potential implications of our results are outlined. PMID:26829588

  2. A New Corrosion Sensor to Determine the Start and Development of Embedded Rebar Corrosion Process at Coastal Concrete

    PubMed Central

    Xu, Chen; Li, Zhiyuan; Jin, Weiliang

    2013-01-01

    The corrosion of reinforcements induced by chloride has resulted to be one of the most frequent causes of their premature damage. Most corrosion sensors were designed to monitor corrosion state in concrete, such as Anode-Ladder-System and Corrowatch System, which are widely used to monitor chloride ingress in marine concrete. However, the monitoring principle of these corrosion sensors is based on the macro-cell test method, so erroneous information may be obtained, especially from concrete under drying or saturated conditions due to concrete resistance taking control in macro-cell corrosion. In this paper, a fast weak polarization method to test corrosion state of reinforcements based on electrochemical polarization dynamics was proposed. Furthermore, a new corrosion sensor for monitoring the corrosion state of concrete cover was developed based on the proposed test method. The sensor was tested in cement mortar, with dry-wet cycle tests to accelerate the chloride ingress rate. The results show that the corrosion sensor can effectively monitor chloride penetration into concrete with little influence of the relative humidity in the concrete. With a reasonable corrosion sensor electrode arrangement, it seems the Ohm-drop effect measured by EIS can be ignored, which makes the tested electrochemical parameters more accurate. PMID:24084117

  3. A new corrosion sensor to determine the start and development of embedded rebar corrosion process at coastal concrete.

    PubMed

    Xu, Chen; Li, Zhiyuan; Jin, Weiliang

    2013-09-30

    The corrosion of reinforcements induced by chloride has resulted to be one of the most frequent causes of their premature damage. Most corrosion sensors were designed to monitor corrosion state in concrete, such as Anode-Ladder-System and Corrowatch System, which are widely used to monitor chloride ingress in marine concrete. However, the monitoring principle of these corrosion sensors is based on the macro-cell test method, so erroneous information may be obtained, especially from concrete under drying or saturated conditions due to concrete resistance taking control in macro-cell corrosion. In this paper, a fast weak polarization method to test corrosion state of reinforcements based on electrochemical polarization dynamics was proposed. Furthermore, a new corrosion sensor for monitoring the corrosion state of concrete cover was developed based on the proposed test method. The sensor was tested in cement mortar, with dry-wet cycle tests to accelerate the chloride ingress rate. The results show that the corrosion sensor can effectively monitor chloride penetration into concrete with little influence of the relative humidity in the concrete. With a reasonable corrosion sensor electrode arrangement, it seems the Ohm-drop effect measured by EIS can be ignored, which makes the tested electrochemical parameters more accurate.

  4. Microbial consortia in meat processing environments

    NASA Astrophysics Data System (ADS)

    Alessandria, V.; Rantsiou, K.; Cavallero, M. C.; Riva, S.; Cocolin, L.

    2017-09-01

    Microbial contamination in food processing plants can play a fundamental role in food quality and safety. The description of the microbial consortia in the meat processing environment is important since it is a first step in understanding possible routes of product contamination. Furthermore, it may contribute in the development of sanitation programs for effective pathogen removal. The purpose of this study was to characterize the type of microbiota in the environment of meat processing plants: the microbiota of three different meat plants was studied by both traditional and molecular methods (PCR-DGGE) in two different periods. Different levels of contamination emerged between the three plants as well as between the two sampling periods. Conventional methods of killing free-living bacteria through antimicrobial agents and disinfection are often ineffective against bacteria within a biofilm. The use of gas-discharge plasmas potentially can offer a good alternative to conventional sterilization methods. The purpose of this study was to measure the effectiveness of Atmospheric Pressure Plasma (APP) surface treatments against bacteria in biofilms. Biofilms produced by three different L. monocytogenes strains on stainless steel surface were subjected to three different conditions (power, exposure time) of APP. Our results showed how most of the culturable cells are inactivated after the Plasma exposure but the RNA analysis by qPCR highlighted the entrance of the cells in the viable-but non culturable (VBNC) state, confirming the hypothesis that cells are damaged after plasma treatment, but in a first step, still remain alive. The understanding of the effects of APP on the L. monocytogenes biofilm can improve the development of sanitation programs with the use of APP for effective pathogen removal.

  5. High Voltage Electrochemiluminescence (ECL) as a New Method for Detection of PAH During Screening for PAH-Degrading Microbial Consortia.

    PubMed

    Staninska, Justyna; Szczepaniak, Zuzanna; Staninski, Krzysztof; Czarny, Jakub; Piotrowska-Cyplik, Agnieszka; Nowak, Jacek; Marecik, Roman; Chrzanowski, Łukasz; Cyplik, Paweł

    The search for new bacterial consortia capable of removing PAH from the environment is associated with the need to employ novel, simple, and economically efficient detection methods. A fluorimetric method (FL) as well as high voltage electrochemiluminescence (ECL) on a modified surface of an aluminum electrode were used in order to determine the changes in the concentrations of PAH in the studied aqueous solutions. The ECL signal (the spectrum and emission intensity for a given wavelength) was determined with the use of an apparatus operating in single photon counting mode. The dependency of ECL and FL intensity on the concentration of naphthalene, phenanthrene, and pyrene was linear in the studied concentration range. The biodegradation kinetics of the particular PAH compounds was determined on the basis of the obtained spectroscopic determinations. It has been established that the half-life of naphthalene, phenanthrene, and pyrene at initial concentrations of 50 mg/l (beyond the solubility limit) reached 41, 75, and 130 h, accordingly. Additionally, the possibility of using ECL for rapid determination of the soluble fraction of PAH directly in the aqueous medium has been confirmed. Metagenomic analysis of the gene encoding 16S rRNA was conducted on the basis of V4 hypervariable region of the 16S rRNA gene and allowed to identify 198 species of bacteria that create the S4consortium. The consortium was dominated by Gammaproteobacteria (78.82 %), Flavobacteria (9.25 %), Betaproteobacteria (7.68 %), Sphingobacteria (3.76 %), Alphaproteobacteria (0.42 %), Clostridia (0.04 %), and Bacilli (0.03 %).

  6. Evaluation of corrosion products formed by sulfidation as inhibitors of the naphthenic corrosion of AISI-316 steel

    NASA Astrophysics Data System (ADS)

    Sanabria-Cala, J. A.; Montañez, N. D.; Laverde Cataño, D.; Y Peña Ballesteros, D.; Mejía, C. A.

    2017-12-01

    Naphthenic acids present in oil from most regions worldwide currently stand as the main responsible for the naphthenic corrosion problems, affecting the oil-refining industry. The phenomenon of sulfidation, accompanying corrosion processes brought about by naphthenic acids in high-temperature refining plant applications, takes place when the combination of sulfidic acid (H2S) with Fe forms layers of iron sulphide (FeS) on the material surface, layers with the potential to protect the material from attack by other corrosive species like naphthenic acids. This work assessed corrosion products formed by sulfidation as inhibitors of naphthenic corrosion rate in AISI-316 steel exposed to processing conditions of simulated crude oil in a dynamic autoclave. Calculation of the sulfidation and naphthenic corrosion rates were determined by gravimetry. The surfaces of the AISI-316 gravimetric coupons exposed to acid systems; were characterized morphologically by X-Ray Diffraction (XRD) and X-ray Fluorescence by Energy Dispersive Spectroscopy (EDS) combined with Scanning Electron Microscopy (SEM). One of the results obtained was the determination of an inhibiting effect of corrosion products at 250 and 300°C, where lower corrosion rate levels were detected. For the temperature of 350°C, naphthenic corrosion rates increased due to deposition of naphthenic acids on the areas where corrosion products formed by sulfidation have lower homogeneity and stability on the surface, thus accelerating the destruction of AISI-316 steel. The above provides an initial contribution to oil industry in search of new alternatives to corrosion control by the attack of naphthenic acids, from the formation of FeS layers on exposed materials in the processing of heavy crude oils with high sulphur content.

  7. Mixed microalgae consortia growth under higher concentration of CO2 from unfiltered coal fired flue gas: Fatty acid profiling and biodiesel production.

    PubMed

    Aslam, Ambreen; Thomas-Hall, Skye R; Manzoor, Maleeha; Jabeen, Faiza; Iqbal, Munawar; Uz Zaman, Qamar; Schenk, Peer M; Asif Tahir, M

    2018-02-01

    Biodiesel is produced by transesterification of fatty acid methyl esters (FAME) from oleaginous microalgae feedstock. Biodiesel fuel properties were studied and compared with biodiesel standards. Qualitative analysis of FAME was done while cultivating mixed microalgae consortia under three concentrations of coal fired flue gas (1%, 3.0% and 5.5% CO 2 ). Under 1% CO 2 concentration (flue gas), the FAME content was 280.3 μg/mL, whereas the lipid content was 14.03 μg/mL/D (day). Both FAMEs and lipid contents were low at other CO 2 concentrations (3.0 and 5.5%). However, mixed consortia in the presence of phosphate buffer and flue gas (PB + FG) showed higher saturated fatty acids (SFA) (36.28%) and unsaturated fatty acids (UFA) (63.72%) versus 5.5% CO 2 concentration, which might be responsible for oxidative stability of biodiesel. Subsequently, higher cetane number (52) and low iodine value (136.3 gI 2 /100 g) biodiesel produced from mixed consortia (PB + FG) under 5.5% CO 2 along with 50 mM phosphate buffer were found in accordance with European (EN 14214) standard. Results revealed that phosphate buffer significantly enhanced the biodiesel quality, but reduced the FAME yield. This study intended to develop an integrated approach for significant improvement in biodiesel quality under surplus phosphorus by utilizing waste flue gas (as CO 2 source) using microalgae. The CO 2 sequestration from industrial flue gas not only reduced greenhouse gases, but may also ensure the sustainable and eco-benign production of biodiesel. Copyright © 2018. Published by Elsevier B.V.

  8. Novel methods for aircraft corrosion monitoring

    NASA Astrophysics Data System (ADS)

    Bossi, Richard H.; Criswell, Thomas L.; Ikegami, Roy; Nelson, James; Normand, Eugene; Rutherford, Paul S.; Shrader, John E.

    1995-07-01

    Monitoring aging aircraft for hidden corrosion is a significant problem for both military and civilian aircraft. Under a Wright Laboratory sponsored program, Boeing Defense & Space Group is investigating three novel methods for detecting and monitoring hidden corrosion: (1) atmospheric neutron radiography, (2) 14 MeV neutron activation analysis and (3) fiber optic corrosion sensors. Atmospheric neutron radiography utilizes the presence of neutrons in the upper atmosphere as a source for interrogation of the aircraft structure. Passive track-etch neutron detectors, which have been previously placed on the aircraft, are evaluated during maintenance checks to assess the presence of corrosion. Neutrons generated by an accelerator are used via activation analysis to assess the presence of distinctive elements in corrosion products, particularly oxygen. By using fast (14 MeV) neutrons for the activation, portable, high intensity sources can be employed for field testing of aircraft. The third novel method uses fiber optics as part of a smart structure technology for corrosion detection and monitoring. Fiber optic corrosion sensors are placed in the aircraft at locations known to be susceptible to corrosion. Periodic monitoring of the sensors is used to alert maintenance personnel to the presence and degree of corrosion at specific locations on the aircraft. During the atmospheric neutron experimentation, we identified a fourth method referred to as secondary emission radiography (SER). This paper discusses the development of these methods.

  9. Boric Acid Corrosion of Concrete Rebar

    NASA Astrophysics Data System (ADS)

    Pabalan, R. T.; Yang, L.; Chiang, K.–T.

    2013-07-01

    Borated water leakage through spent fuel pools (SFPs) at pressurized water reactors is a concern because it could cause corrosion of reinforcement steel in the concrete structure and compromise the integrity of the structure. Because corrosion rate of carbon steel in concrete in the presence of boric acid is lacking in published literature and available data are equivocal on the effect of boric acid on rebar corrosion, corrosion rate measurements were conducted in this study using several test methods. Rebar corrosion rates were measured in (i) borated water flowing in a simulated concrete crack, (ii) borated water flowing over a concrete surface, (iii) borated water that has reacted with concrete, and (iv) 2,400 ppm boric acid solutions with pH adjusted to a range of 6.0 to 7.7. The corrosion rates were measured using coupled multielectrode array sensor (CMAS) and linear polarization resistance (LPR) probes, both made using carbon steel. The results indicate that rebar corrosion rates are low (~1 μm/yr or less)when the solution pH is ~7.1 or higher. Below pH ~7.1, the corrosion rate increases with decreasing pH and can reach ~100 μm/yr in solutions with pH less than ~6.7. The threshold pH for carbon steel corrosion in borated solution is between 6.8 and 7.3.

  10. Assessing Corrosion Damage and Corrosion Progression in Multistrand Anchor Systems in Use at Corps Projects

    DTIC Science & Technology

    2013-07-01

    14  4.8  Corrosion fatigue ...particularly vulnerable. ERDC TR-13-3 15 4.8 Corrosion fatigue Fatigue that takes place in a corrosive environment can reduce the number of...cycles generally considered acceptable before fatigue and fatigue -related failure occur. ERDC TR-13-3 16 5 Historical Perspective: Post-Tensioned

  11. Research on corrosion mechanism of suspension insulator steel foot of direct current system and measures for corrosion inhibition

    NASA Astrophysics Data System (ADS)

    Chen, He; Yang, Yueguang; Su, Guolei; Wang, Xiaoqing; Zhang, Hourong; Sun, Xiaoyu; Fan, Youping

    2017-09-01

    There are increasingly serious electrocorrosion phenomena on insulator hardware caused by direct current transmission due to the wide-range popularization of extra high voltage direct current transmission engineering in our country. Steel foot corrosion is the main corrosion for insulators on positive polarity side of transmission lines. On one hand, the corrosion leads to the tapering off of steel foot diameter, having a direct influence on mechanical property of insulators; on the other hand, in condition of corrosion on steel foot wrapped in porcelain ware, the volume of the corrosion product is at least 50% more than that of the original steel foot, leading to bursting of porcelain ware, threatening safe operation of transmission lines. Therefore, it is necessary to conduct research on the phenomenon and propose feasible measures for corrosion inhibition. Starting with the corrosion mechanism, this article proposes two measures for corrosion inhibition, and verifies the inhibition effect in laboratory conditions, providing reference for application in engineering.

  12. Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture.

    PubMed

    Su, Yanyan; Mennerich, Artur; Urban, Brigitte

    2011-05-01

    A wastewater-born and settleable algal-bacterial culture, cultivated in a stirred tank photobioreactor under lab conditions, was used to remove the carbon and nutrients in municipal wastewater and accumulate biomass simultaneously. The algal-bacterial culture showed good settleable property and could totally settle down over 20 min, resulting in a reduction of total suspended solids from an initial 1.84 to 0.016 g/l. The average removal efficiencies of chemical oxygen demand, total kjeldahl nitrogen and phosphate were 98.2 ± 1.3%, 88.3 ± 1.6% and 64.8 ± 1.0% within 8 days, respectively, while the average biomass productivity was 10.9 ± 1.1 g/m(2) · d. Accumulation into biomass, identified as the main nitrogen and phosphorus removal mechanism, accounted for 44.9 ± 0.4% and 61.6 ± 0.5% of total inlet nitrogen and phosphorus, respectively. Microscopic analysis showed the main algae species in the bioreactor were filamentous blue-green algae. Furthermore, denaturing gradient gel electrophoresis and 16S rDNA gene sequencing revealed that the main bacteria present in the photobioreactor were consortia with sequences similar to those of Flavobacteria, Gammaproteobacteria, Bacteroidia and Betaproteobacteria. This study explores a better understanding of an algae-bacteria system and offers new information on further usage of biomass accumulated during treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Ballast Water Treatment Corrosion Scoping Study

    DTIC Science & Technology

    2011-10-01

    measurements can only be indicative and are seldom conclusive. For the maritime industry , corrosion and corrosion protection is a considerable cost element...8  Table 4. Corrosion rates of several alloys in natural and chlorinated seawater...10  Table 5. Corrosion rates of selected marine alloys in untreated seawater and seawater with 0, 0.1, 0.25, and 0.50 mg L-1 residual

  14. Duralumin and Its Corrosion

    NASA Technical Reports Server (NTRS)

    Nelson, WM

    1927-01-01

    The types of corrosion and factors of corrosion of duralumin are investigated. Salt water is the most common of the corroding media with which designers have to contend in using duralumin in aircraft and ships.

  15. Corrosion chemistry closing comments: opportunities in corrosion science facilitated by operando experimental characterization combined with multi-scale computational modelling.

    PubMed

    Scully, John R

    2015-01-01

    Recent advances in characterization tools, computational capabilities, and theories have created opportunities for advancement in understanding of solid-fluid interfaces at the nanoscale in corroding metallic systems. The Faraday Discussion on Corrosion Chemistry in 2015 highlighted some of the current needs, gaps and opportunities in corrosion science. Themes were organized into several hierarchical categories that provide an organizational framework for corrosion. Opportunities to develop fundamental physical and chemical data which will enable further progress in thermodynamic and kinetic modelling of corrosion were discussed. These will enable new and better understanding of unit processes that govern corrosion at the nanoscale. Additional topics discussed included scales, films and oxides, fluid-surface and molecular-surface interactions, selected topics in corrosion science and engineering as well as corrosion control. Corrosion science and engineering topics included complex alloy dissolution, local corrosion, and modelling of specific corrosion processes that are made up of collections of temporally and spatially varying unit processes such as oxidation, ion transport, and competitive adsorption. Corrosion control and mitigation topics covered some new insights on coatings and inhibitors. Further advances in operando or in situ experimental characterization strategies at the nanoscale combined with computational modelling will enhance progress in the field, especially if coupling across length and time scales can be achieved incorporating the various phenomena encountered in corrosion. Readers are encouraged to not only to use this ad hoc organizational scheme to guide their immersion into the current opportunities in corrosion chemistry, but also to find value in the information presented in their own ways.

  16. Fireside corrosion in kraft recovery boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tran, H.N.; Barham, D.; Hupa, M.

    1988-01-01

    Causes and corrective measures are reviewed for several common types of fireside corrosion in kraft recovery boilers. Corrosion differs significantly with location in the boiler due tio the great differences in metal surface temperature and deposit and flue gas chemistry. Sulphidation corrosion associated with sulphur-bearing gases under reducing conditions is dominant in the lower furnace, while sulphidation/oxidation resulting from gas-deposit-metal reactions is important in the upper boiler. In many cases, although corrosion has been controlled by ensuring the absence of a molten phase at the metal surface, the corrosion mechanism is not fully understood.

  17. Bacterial community composition in different sediments from the Eastern Mediterranean Sea: a comparison of four 16S ribosomal DNA clone libraries.

    PubMed

    Polymenakou, Paraskevi N; Bertilsson, Stefan; Tselepides, Anastasios; Stephanou, Euripides G

    2005-10-01

    The regional variability of sediment bacterial community composition and diversity was studied by comparative analysis of four large 16S ribosomal DNA (rDNA) clone libraries from sediments in different regions of the Eastern Mediterranean Sea (Thermaikos Gulf, Cretan Sea, and South lonian Sea). Amplified rDNA restriction analysis of 664 clones from the libraries indicate that the rDNA richness and evenness was high: for example, a near-1:1 relationship among screened clones and number of unique restriction patterns when up to 190 clones were screened for each library. Phylogenetic analysis of 207 bacterial 16S rDNA sequences from the sediment libraries demonstrated that Gamma-, Delta-, and Alphaproteobacteria, Holophaga/Acidobacteria, Planctomycetales, Actinobacteria, Bacteroidetes, and Verrucomicrobia were represented in all four libraries. A few clones also grouped with the Betaproteobacteria, Nitrospirae, Spirochaetales, Chlamydiae, Firmicutes, and candidate division OPl 1. The abundance of sequences affiliated with Gammaproteobacteria was higher in libraries from shallow sediments in the Thermaikos Gulf (30 m) and the Cretan Sea (100 m) compared to the deeper South Ionian station (2790 m). Most sequences in the four sediment libraries clustered with uncultured 16S rDNA phylotypes from marine habitats, and many of the closest matches were clones from hydrocarbon seeps, benzene-mineralizing consortia, sulfate reducers, sulk oxidizers, and ammonia oxidizers. LIBSHUFF statistics of 16S rDNA gene sequences from the four libraries revealed major differences, indicating either a very high richness in the sediment bacterial communities or considerable variability in bacterial community composition among regions, or both.

  18. Conjoint corrosion and wear in titanium alloys.

    PubMed

    Khan, M A; Williams, R L; Williams, D F

    1999-04-01

    When considering titanium alloys for orthopaedic applications it is important to examine the conjoint action of corrosion and wear. In this study we investigate the corrosion and wear behaviour of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in phosphate buffered saline (PBS), bovine albumin solutions in PBS and 10% foetal calf serum solutions in PBS. The tests were performed under four different conditions to evaluate the influence of wear on the corrosion and corrosion on the wear behaviour as follows: corrosion without wear, wear-accelerated corrosion, wear in a non-corrosive environment and wear in a corrosive environment. The corrosion behaviour was investigated using cyclic polarisation studies to measure the ability of the surface to repassivate following breakdown of the passive layer. The properties of the repassivated layer were evaluated by measuring changes in the surface hardness of the alloys. The amount of wear that had occurred was assessed from weight changes and measurement of the depth of the wear scar. It was found that in the presence of wear without corrosion the wear behaviour of Ti-13Nb-13Zr was greater than that of Ti-6Al-7Nb or Ti-6Al-4V and that in the presence of proteins the wear of all three alloys is reduced. In the presence of corrosion without wear Ti-13Nb-13Zr was more corrosion resistant than Ti-6Al-7Nb which was more corrosion resistant than Ti-6Al-4V without proteins whereas in the presence of protein the corrosion resistance of Ti-13Nb-13Zr and Ti-6Al-7Nb was reduced and that of Ti-6Al-4V increased. In the presence of corrosion and wear the corrosion resistance of Ti-13Nb-13Zr is higher than that of Ti-6Al-7Nb or Ti-6Al-4V in PBS but in the presence of proteins the corrosion resistance of Ti-13Nb-13Zr and Ti-6Al-7Nb are very similar but higher than that of Ti-6Al-4V. The wear of Ti-13Nb-13Zr is lower than that of Ti-6Al-7Nb and Ti-6Al-4V with or without the presence of proteins in a corrosive environment. Therefore the overall

  19. A Multifunctional Smart Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Buhrow, Jerry W.; Jolley, Scott T.

    2012-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on micro-encapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy. This

  20. Corrosion Protection: Concrete Bridges

    DOT National Transportation Integrated Search

    1998-09-01

    Premature corrosion of reinforcing steel has caused many concrete bridges in the United States to deteriorate before their design life was attained. Recognizing the burden that reinforcing steel corrosion imposes on natural resources, the Federal Hig...

  1. Electrochemical studies of corrosion inhibitors

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1990-01-01

    The effect of single salts, as well as multicomponent mixtures, on corrosion inhibition was studied for type 1010 steel; for 5052, 1100, and 2219-T87 aluminum alloys; and for copper. Molybdate-containing inhibitors exhibit an immediate, positive effect for steel corrosion, but an incubation period may be required for aluminum before the effect of a given inhibitor can be determined. The absence of oxygen was found to provide a positive effect (smaller corrosion rate) for steel and copper, but a negative effect for aluminum. This is attributed to the two possible mechanisms by which aluminum can oxidize. Corrosion inhibition is generally similar for oxygen-rich and oxygen-free environments. The results show that the electrochemical method is an effective means of screening inhibitors for the corrosion of single metals, with caution to be exercised in the case of aluminum.

  2. Corrosion inhibiting organic coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasson, E.

    1984-10-16

    A corrosion inhibiting coating comprises a mixture of waxes, petroleum jelly, a hardener and a solvent. In particular, a corrosion inhibiting coating comprises candelilla wax, carnauba wax, microcrystalline waxes, white petrolatum, an oleoresin, lanolin and a solvent.

  3. Fouling and the inhibition of salt corrosion. [hot corrosion of superalloys

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.

    1980-01-01

    In an attempt to reduce fouling while retaining the beneficial effects of alkaline earth inhibitors on the hot corrosion of superalloys, the use of both additives and the intermittent application of the inhibitors were evaluated. Additions of alkaline earth compounds to combustion gases containing sodium sulfate were shown to inhibit hot corrosion. However, sulfate deposits can lead to turbine fouling in service. For that reason, dual additives and intermittant inhibitor applications were evaluated to reduce such deposit formation. Silicon in conjunction with varium showed some promise. Total deposition was apparently reduced while the inhibition of hot corrosion by barium was unimpaired. The intermittant application of the inhibitor was found to be more effective and controllable.

  4. Bacterial community structure across environmental gradients in permafrost thaw ponds: methanotroph-rich ecosystems

    PubMed Central

    Crevecoeur, Sophie; Vincent, Warwick F.; Comte, Jérôme; Lovejoy, Connie

    2015-01-01

    Permafrost thawing leads to the formation of thermokarst ponds that potentially emit CO2 and CH4 to the atmosphere. In the Nunavik subarctic region (northern Québec, Canada), these numerous, shallow ponds become well-stratified during summer. This creates a physico-chemical gradient of temperature and oxygen, with an upper oxic layer and a bottom low oxygen or anoxic layer. Our objective was to determine the influence of stratification and related limnological and landscape properties on the community structure of potentially active bacteria in these waters. Samples for RNA analysis were taken from ponds in three contrasting valleys across a gradient of permafrost degradation. A total of 1296 operational taxonomic units were identified by high throughput amplicon sequencing, targeting bacterial 16S rRNA that was reverse transcribed to cDNA. β-proteobacteria were the dominant group in all ponds, with highest representation by the genera Variovorax and Polynucleobacter. Methanotrophs were also among the most abundant sequences at most sites. They accounted for up to 27% of the total sequences (median of 4.9% for all samples), indicating the importance of methane as a bacterial energy source in these waters. Both oxygenic (cyanobacteria) and anoxygenic (Chlorobi) phototrophs were also well-represented, the latter in the low oxygen bottom waters. Ordination analyses showed that the communities clustered according to valley and depth, with significant effects attributed to dissolved oxygen, pH, dissolved organic carbon, and total suspended solids. These results indicate that the bacterial assemblages of permafrost thaw ponds are filtered by environmental gradients, and are complex consortia of functionally diverse taxa that likely affect the composition as well as magnitude of greenhouse gas emissions from these abundant waters. PMID:25926816

  5. Graphene: corrosion-inhibiting coating.

    PubMed

    Prasai, Dhiraj; Tuberquia, Juan Carlos; Harl, Robert R; Jennings, G Kane; Rogers, Bridget R; Bolotin, Kirill I

    2012-02-28

    We report the use of atomically thin layers of graphene as a protective coating that inhibits corrosion of underlying metals. Here, we employ electrochemical methods to study the corrosion inhibition of copper and nickel by either growing graphene on these metals, or by mechanically transferring multilayer graphene onto them. Cyclic voltammetry measurements reveal that the graphene coating effectively suppresses metal oxidation and oxygen reduction. Electrochemical impedance spectroscopy measurements suggest that while graphene itself is not damaged, the metal under it is corroded at cracks in the graphene film. Finally, we use Tafel analysis to quantify the corrosion rates of samples with and without graphene coatings. These results indicate that copper films coated with graphene grown via chemical vapor deposition are corroded 7 times slower in an aerated Na(2)SO(4) solution as compared to the corrosion rate of bare copper. Tafel analysis reveals that nickel with a multilayer graphene film grown on it corrodes 20 times slower while nickel surfaces coated with four layers of mechanically transferred graphene corrode 4 times slower than bare nickel. These findings establish graphene as the thinnest known corrosion-protecting coating.

  6. Corrosion testing using isotopes

    DOEpatents

    Hohorst, F.A.

    1995-12-05

    A method is described for determining the corrosion behavior of a material with respect to a medium in contact with the material by: implanting a substantially chemically inert gas in a matrix so that corrosion experienced by the material causes the inert gas to enter the medium; placing the medium in contact with the material; and measuring the amount of inert gas which enters the medium. A test sample of a material whose resistance to corrosion by a medium is to be tested is described composed of: a body of the material, which body has a surface to be contacted by the medium; and a substantially chemically inert gas implanted into the body to a depth below the surface. A test sample of a material whose resistance to corrosion by a medium is to be tested is described composed of: a substrate of material which is easily corroded by the medium, the substrate having a surface; a substantially chemically inert gas implanted into the substrate; and a sheet of the material whose resistance to corrosion is to be tested, the sheet being disposed against the surface of the substrate and having a defined thickness. 3 figs.

  7. Corrosion testing using isotopes

    DOEpatents

    Hohorst, Frederick A.

    1995-12-05

    A method for determining the corrosion behavior of a material with respect to a medium in contact with the material by: implanting a substantially chemically inert gas in a matrix so that corrosion experienced by the material causes the inert gas to enter the medium; placing the medium in contact with the material; and measuring the amount of inert gas which enters the medium. A test sample of a material whose resistance to corrosion by a medium is to be tested, composed of: a body of the material, which body has a surface to be contacted by the medium; and a substantially chemically inert gas implanted into the body to a depth below the surface. A test sample of a material whose resistance to corrosion by a medium is to be tested, composed of: a substrate of material which is easily corroded by the medium, the substrate having a surface; a substantially chemically inert gas implanted into the substrate; and a sheet of the material whose resistance to corrosion is to be tested, the sheet being disposed against the surface of the substrate and having a defined thickness.

  8. Electromagnetic Metrology on Concrete and Corrosion.

    PubMed

    Kim, Sung; Surek, Jack; Baker-Jarvis, James

    2011-01-01

    To augment current methods for the evaluation of reinforcing bar (rebar) corrosion within concrete, we are exploring unique features in the dielectric and magnetic spectra of pure iron oxides and corrosion samples. Any signature needs to be both prominent and consistent in order to identify corrosion within concrete bridge deck or other structures. In order to measure the permittivity and propagation loss through concrete as a function of temperature and humidity, we cut and carefully fitted samples from residential concrete into three different waveguides. We also poured and cured a mortar sample within a waveguide that was later measured after curing 30 days. These measurements were performed from 45 MHz to 12 GHz. Our concrete measurements showed that the coarse granite aggregate that occupied about half the sample volume reduced the electromagnetic propagation loss in comparison to mortar. We also packed ground corrosion samples and commercially available iron-oxide powders into a transmission-line waveguide and found that magnetite and corrosion sample spectra are similar, with a feature between 0.5 GHz and 2 GHz that may prove useful for quantifying corrosion. We also performed reflection (S 11) measurements at various corrosion surfaces and in loose powders from 45 MHz to 50 GHz. These results are a first step towards quantifying rebar corrosion in concrete.

  9. 49 CFR 193.2627 - Atmospheric corrosion control.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Atmospheric corrosion control. 193.2627 Section... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2627 Atmospheric corrosion... atmospheric corrosion by— (a) Material that has been designed and selected to resist the corrosive atmosphere...

  10. Nitrate treatment effects on bacterial community biofilm formed on carbon steel in produced water stirred tank bioreactor.

    PubMed

    Marques, Joana Montezano; de Almeida, Fernando Pereira; Lins, Ulysses; Seldin, Lucy; Korenblum, Elisa

    2012-06-01

    To better understand the impact of nitrate in Brazilian oil reservoirs under souring processes and corrosion, the goal of this study was to analyse the effect of nitrate on bacterial biofilms formed on carbon steel coupons using reactors containing produced water from a Brazilian oil platform. Three independent experiments were carried out (E1, E2 and E3) using the same experimental conditions and different incubation times (5, 45 and 80 days, respectively). In every experiment, two biofilm-reactors were operated: one was treated with continuous nitrate flow (N reactor), and the other was a control reactor without nitrate (C reactor). A Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis approach using the 16S rRNA gene was performed to compare the bacterial groups involved in biofilm formation in the N and C reactors. DGGE profiles showed remarkable changes in community structure only in experiments E2 and E3. Five bands extracted from the gel that represented the predominant bacterial groups were identified as Bacillus aquimaris, B. licheniformis, Marinobacter sp., Stenotrophomonas maltophilia and Thioclava sp. A reduction in the sulfate-reducing bacteria (SRB) most probable number counts was observed only during the longer nitrate treatment (E3). Carbon steel coupons used for biofilm formation had a slightly higher weight loss in N reactors in all experiments. When the coupon surfaces were analysed by scanning electron microscopy, an increase in corrosion was observed in the N reactors compared with the C reactors. In conclusion, nitrate reduced the viable SRB counts. Nevertheless, the nitrate dosing increased the pitting of coupons.

  11. Titanium Corrosion: Implications For Dental Implants.

    PubMed

    Shah, Rucha; Penmetsa, Deepika Shree Lakshmi; Thomas, Raison; Mehta, Dhoom Singh

    2016-12-01

    Titanium has been considered as one of the most biocompatible metals. Studies testing its corrosion resistance have proposed that the titanium oxide layer formed on the metal surface is lost under certain unavoidable conditions to which it is exposed in the oral environment. This questions its property of corrosion resistance in the oral cavity. Hence, there is a need to understand the mechanisms of corrosion, which can help in the long-term stability and function of implants. Here, we review the possible pathways of corrosion of titanium in the oral cavity, its implications and proposed methods of prevention of corrosion. Copyright© 2016 Dennis Barber Ltd.

  12. Virtual Instrumentation Corrosion Controller for Natural Gas Pipelines

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, J.; Agnihotri, G.; Deshpande, D. M.

    2012-12-01

    Corrosion is an electrochemical process. Corrosion in natural gas (methane) pipelines leads to leakages. Corrosion occurs when anode and cathode are connected through electrolyte. Rate of corrosion in metallic pipeline can be controlled by impressing current to it and thereby making it to act as cathode of corrosion cell. Technologically advanced and energy efficient corrosion controller is required to protect natural gas pipelines. Proposed virtual instrumentation (VI) based corrosion controller precisely controls the external corrosion in underground metallic pipelines, enhances its life and ensures safety. Designing and development of proportional-integral-differential (PID) corrosion controller using VI (LabVIEW) is carried out. When the designed controller is deployed at field, it maintains the pipe to soil potential (PSP) within safe operating limit and not entering into over/under protection zone. Horizontal deployment of this technique can be done to protect all metallic structure, oil pipelines, which need corrosion protection.

  13. 49 CFR 193.2631 - Internal corrosion control.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Internal corrosion control. 193.2631 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2631 Internal corrosion control. Each component that is subject to internal corrosive attack must be protected from internal corrosion by— (a...

  14. Corrosion control for reinforced concrete

    NASA Astrophysics Data System (ADS)

    Torigoe, R. M.

    The National Bureau of Standards has recorded that in 1975 the national cost of corrosion was estimated at $70 billion. Approximately 40% of that total was attributed to the corrosion of steel reinforcements in concrete. Though concrete is generally perceived as a permanent construction material, cracking and spalling can occur when corrosion of steel reinforcements progresses to an advanced stage. This problem frequently occurs in reinforced concrete highway bridge decks, wharves, piers, and other structures in marine and snowbelt environments. Since concrete has a very low tensile strength, steel reinforcements are added to carry the tensile load of the composite member. Corrosion reduces the effective diameter of the reinforcements and, therefore, decreases the load carrying capability of the member. Though the corrosion process may occur in various forms and may be caused by different sources, the ultimate result is still the failure of the reinforced concrete.

  15. Corrosion of Titanium Matrix Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covino, B.S., Jr.; Alman, D.E.

    2002-09-22

    The corrosion behavior of unalloyed Ti and titanium matrix composites containing up to 20 vol% of TiC or TiB{sub 2} was determined in deaerated 2 wt% HCl at 50, 70, and 90 degrees C. Corrosion rates were calculated from corrosion currents determined by extrapolation of the tafel slopes. All curves exhibited active-passive behavior but no transpassive region. Corrosion rates for Ti + TiC composites were similar to those for unalloyed Ti except at 90 degrees C where the composites were slightly higher. Corrosion rates for Ti + TiB{sub 2} composites were generally higher than those for unalloyed Ti and increasedmore » with higher concentrations of TiB{sub 2}. XRD and SEM-EDS analyses showed that the TiC reinforcement did not react with the Ti matrix during fabrication while the TiB{sub 2} reacted to form a TiB phase.« less

  16. Wastewater-Enhanced Microbial Corrosion of Concrete Sewers.

    PubMed

    Jiang, Guangming; Zhou, Mi; Chiu, Tsz Ho; Sun, Xiaoyan; Keller, Jurg; Bond, Philip L

    2016-08-02

    Microbial corrosion of concrete in sewers is known to be caused by hydrogen sulfide, although the role of wastewater in regulating the corrosion processes is poorly understood. Flooding and splashing of wastewater in sewers periodically inoculates the concrete surface in sewer pipes. No study has systematically investigated the impacts of wastewater inoculation on the corrosion of concrete in sewers. This study investigated the development of the microbial community, sulfide uptake activity, and the change of the concrete properties for coupons subjected to periodic wastewater inoculation. The concrete coupons were exposed to different levels of hydrogen sulfide under well-controlled conditions in laboratory-scale corrosion chambers simulating real sewers. It was evident that the periodic inoculation induced higher corrosion losses of the concrete in comparison to noninoculated coupons. Instantaneous measurements such as surface pH did not reflect the cumulative corrosion losses caused by long-term microbial activity. Analysis of the long-term profiles of the sulfide uptake rate using a Gompertz model supported the enhanced corrosion activity and greater corrosion loss. The enhanced corrosion rate was due to the higher sulfide uptake rates induced by wastewater inoculation, although the increasing trend of sulfide uptake rates was slower with wastewater. Increased diversity in the corrosion-layer microbial communities was detected when the corrosion rates were higher. This coincided with the environmental conditions of increased levels of gaseous H2S and the concrete type.

  17. Designed cell consortia as fragrance-programmable analog-to-digital converters.

    PubMed

    Müller, Marius; Ausländer, Simon; Spinnler, Andrea; Ausländer, David; Sikorski, Julian; Folcher, Marc; Fussenegger, Martin

    2017-03-01

    Synthetic biology advances the rational engineering of mammalian cells to achieve cell-based therapy goals. Synthetic gene networks have nearly reached the complexity of digital electronic circuits and enable single cells to perform programmable arithmetic calculations or to provide dynamic remote control of transgenes through electromagnetic waves. We designed a synthetic multilayered gaseous-fragrance-programmable analog-to-digital converter (ADC) allowing for remote control of digital gene expression with 2-bit AND-, OR- and NOR-gate logic in synchronized cell consortia. The ADC consists of multiple sampling-and-quantization modules sensing analog gaseous fragrance inputs; a gas-to-liquid transducer converting fragrance intensity into diffusible cell-to-cell signaling compounds; a digitization unit with a genetic amplifier circuit to improve the signal-to-noise ratio; and recombinase-based digital expression switches enabling 2-bit processing of logic gates. Synthetic ADCs that can remotely control cellular activities with digital precision may enable the development of novel biosensors and may provide bioelectronic interfaces synchronizing analog metabolic pathways with digital electronics.

  18. Corrosion Embrittlement of Duralumin II Accelerated Corrosion Tests and the Behavior of High-Strength Aluminum Alloys of Different Compositions

    NASA Technical Reports Server (NTRS)

    Rawdon, Henry S

    1928-01-01

    The permanence, with respect to corrosion, of light aluminum alloy sheets of the duralumin type, that is, heat-treatable alloys containing Cu, Mg, Mn, and Si is discussed. Alloys of this type are subject to surface corrosion and corrosion of the interior by intercrystalline paths. Results are given of accelerated corrosion tests, tensile tests, the effect on corrosion of various alloying elements and heat treatments, electrical resistance measurements, and X-ray examinations.

  19. Hot corrosion of the B2 nickel aluminides

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    1993-01-01

    The hot corrosion behavior of the B2 nickel aluminides was studied to determine the inherent hot corrosion resistance of the beta nickel aluminides and to develop a mechanism for the hot corrosion of the beta nickel aluminides. The effects of the prior processing of the material, small additions of zirconium, stoichiometry of the materials, and preoxidation of the samples were also examined. Additions of 2, 5, and 15 w/o chromium were used to determine the effect of chromium on the hot corrosion of the beta nickel aluminides and the minimum amount of chromium necessary for good hot corrosion resistance. The results indicate that the beta nickel aluminides have inferior inherent hot corrosion resistance despite their excellent oxidation resistance. Prior processing and zirconium additions had no discernible effect on the hot corrosion resistance of the alloys. Preoxidation extended the incubation period of the alloys only a few hours and was not considered to be an effective means of stopping hot corrosion. Stoichiometry was a major factor in determining the hot corrosion resistance of the alloys with the higher aluminum alloys having a definitely superior hot corrosion resistance. The addition of chromium to the alloys stopped the hot corrosion attack in the alloys tested. From a variety of experimental results, a complex hot corrosion mechanism was proposed. During the early stages of the hot corrosion of these alloys the corrosion is dominated by a local sulphidation/oxidation form of attack. During the intermediate stages of the hot corrosion, the aluminum depletion at the surface leads to a change in the oxidation mechanism from a protective external alumina layer to a mixed nickel-aluminum spinel and nickel oxide that can occur both externally and internally. The material undergoes extensive cracking during the later portions of the hot corrosion.

  20. Alternative methodology for isolation of biosurfactant-producing bacteria.

    PubMed

    Krepsky, N; Da Silva, F S; Fontana, L F; Crapez, M A C

    2007-02-01

    Wide biosurfactant application on biorremediation is limited by its high production cost. The search for cheaper biossurfactant production alternatives has guided our study. The use of selective media containing sucrose (10 g x L(-1)) and Arabian Light oil (2 g x L(-1)) as carbon sources showed to be effective to screen and maintain biosurfactant-producing consortia isolated from mangrove hydrocarbon-contaminated sediment. The biosurfactant production was assayed by kerosene, gasoline and Arabian Light Emulsification activity and the bacterial growth curve was determined by bacterial quantification. The parameters analyzed for biosurfactant production were the growth curve, salinity concentration, flask shape and oxygenation. All bacteria consortia screened were able to emulsify the petroleum derivatives tested. Biosurfactant production increased according to the incubation time; however the type of emulsification (non-aqueous phase or aqueous phase) did not change with time but with the compound tested. The methodology was able to isolate biosurfactant-producing consortia from superficial mangrove sediment contaminated by petroleum hydrocarbons and was recommended for selection of biosurfactant producing bacteria in tropical countries with low financial resources.

  1. Demystifying Controlling Copper Corrosion

    EPA Science Inventory

    The LCR systematically misses the highest health and corrosion risk sites for copper. Additionally, there are growing concerns for WWTP copper in sludges and discharge levels. There are many corrosion control differences between copper and lead. This talk explains the sometimes c...

  2. Corrosion protection with eco-friendly inhibitors

    NASA Astrophysics Data System (ADS)

    Shahid, Muhammad

    2011-12-01

    Corrosion occurs as a result of the interaction of a metal with its environment. The extent of corrosion depends on the type of metal, the existing conditions in the environment and the type of aggressive ions present in the medium. For example, CO3-2 and NO-3 produce an insoluble deposit on the surface of iron, resulting in the isolation of metal and consequent decrease of corrosion. On the other hand, halide ions are adsorbed selectively on the metal surface and prevent formation of the oxide phase on the metal surface, resulting in continuous corrosion. Iron, aluminum and their alloys are widely used, both domestically and industrially. Linear alkylbenzene and linear alkylbenzene sulfonate are commonly used as detergents. They have also been found together in waste water. It is claimed that these chemicals act as inhibitors for stainless steel and aluminum. Release of toxic gases as a result of corrosion in pipelines may lead in certain cases to air pollution and possible health hazards. Therefore, there are two ways to look at the relationship between corrosion and pollution: (i) corrosion of metals and alloys due to environmental pollution and (ii) environmental pollution as a result of corrosion protection. This paper encompasses the two scenarios and possible remedies for various cases, using 'green' inhibitors obtained either from plant extracts or from pharmaceutical compounds. In the present study, the effect of piperacillin sodium as a corrosion inhibitor for mild steel was investigated using a weight-loss method as well as a three-electrode dc electrochemical technique. It was found that the corrosion rate decreased as the concentration of the inhibitor increased up to 9×10-4 M 93% efficiency was exhibited at this concentration.

  3. Prediction of corrosion rates of water distribution pipelines according to aggressive corrosive water in Korea.

    PubMed

    Chung, W S; Yu, M J; Lee, H D

    2004-01-01

    The drinking water network serving Korea has been used for almost 100 years. Therefore, pipelines have suffered various degrees of deterioration due to aggressive environments. The pipe breaks were caused by in-external corrosion, water hammer, surface loading, etc. In this paper, we focused on describing corrosion status in water distribution pipes in Korea and reviewing some methods to predict corrosion rates. Results indicate that corrosive water of lakes was more aggressive than river water and the winter was more aggressive compared to other seasons. The roughness growth rates of Dongbok lake showed 0.23 mm/year. The high variation of corrosion rates is controlled by the aging pipes and smaller diameter. Also the phenolphthalein test on a cementitious core of cement mortar lined ductile cast iron pipe indicated the pipes over 15 years old had lost 50-100% of their lime active cross sectional area.

  4. 49 CFR 193.2625 - Corrosion protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Corrosion protection. 193.2625 Section 193.2625...: FEDERAL SAFETY STANDARDS Maintenance § 193.2625 Corrosion protection. (a) Each operator shall determine which metallic components could, unless corrosion is controlled, have their integrity or reliability...

  5. 49 CFR 193.2625 - Corrosion protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Corrosion protection. 193.2625 Section 193.2625...: FEDERAL SAFETY STANDARDS Maintenance § 193.2625 Corrosion protection. (a) Each operator shall determine which metallic components could, unless corrosion is controlled, have their integrity or reliability...

  6. 49 CFR 193.2625 - Corrosion protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Corrosion protection. 193.2625 Section 193.2625...: FEDERAL SAFETY STANDARDS Maintenance § 193.2625 Corrosion protection. (a) Each operator shall determine which metallic components could, unless corrosion is controlled, have their integrity or reliability...

  7. 49 CFR 193.2625 - Corrosion protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Corrosion protection. 193.2625 Section 193.2625...: FEDERAL SAFETY STANDARDS Maintenance § 193.2625 Corrosion protection. (a) Each operator shall determine which metallic components could, unless corrosion is controlled, have their integrity or reliability...

  8. Electromagnetic Metrology on Concrete and Corrosion*

    PubMed Central

    Kim, Sung; Surek, Jack; Baker-Jarvis, James

    2011-01-01

    To augment current methods for the evaluation of reinforcing bar (rebar) corrosion within concrete, we are exploring unique features in the dielectric and magnetic spectra of pure iron oxides and corrosion samples. Any signature needs to be both prominent and consistent in order to identify corrosion within concrete bridge deck or other structures. In order to measure the permittivity and propagation loss through concrete as a function of temperature and humidity, we cut and carefully fitted samples from residential concrete into three different waveguides. We also poured and cured a mortar sample within a waveguide that was later measured after curing 30 days. These measurements were performed from 45 MHz to 12 GHz. Our concrete measurements showed that the coarse granite aggregate that occupied about half the sample volume reduced the electromagnetic propagation loss in comparison to mortar. We also packed ground corrosion samples and commercially available iron-oxide powders into a transmission-line waveguide and found that magnetite and corrosion sample spectra are similar, with a feature between 0.5 GHz and 2 GHz that may prove useful for quantifying corrosion. We also performed reflection (S11) measurements at various corrosion surfaces and in loose powders from 45 MHz to 50 GHz. These results are a first step towards quantifying rebar corrosion in concrete. PMID:26989590

  9. Corrosion Mitigation Strategies - an Introduction

    DTIC Science & Technology

    2009-02-05

    formed • Stress corrosion cracking Leaders in Corrosion Control Technology • Overpressure • Pressure of a gas over a liquid- solubility of gases in...Power surges • Crack protective films, fretting, fatique Design – Chemistry • Used to eliminate candidate materials • pH acidic (H+) basic (OH...Technology • Laboratory tests • Published data Mechanical Properties • Strength • Ductility • Environmental cracking Methods of Corrosion Control–Materials

  10. Corrosion Monitors for Embedded Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Alex L.; Pfeifer, Kent B.; Casias, Adrian L.

    2017-05-01

    We have developed and characterized novel in-situ corrosion sensors to monitor and quantify the corrosive potential and history of localized environments. Embedded corrosion sensors can provide information to aid health assessments of internal electrical components including connectors, microelectronics, wires, and other susceptible parts. When combined with other data (e.g. temperature and humidity), theory, and computational simulation, the reliability of monitored systems can be predicted with higher fidelity.

  11. Environmentally Friendly Coating Technology for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Johnsey, Marissa N.; Jolley, Scott T.; Pearman, Benjamin P.; Zhang, Xuejun; Fitzpatrick, Lilliana; Gillis, Mathew; Blanton, Michael; hide

    2016-01-01

    This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry.

  12. Corrosion behaviour of high copper dental amalgams.

    PubMed

    Yap, A U J; Ng, B L; Blackwood, D J

    2004-06-01

    This study evaluated the corrosion behaviour of two high copper dental amalgam alloys [Dispersalloy (Dentsply-Caulk) and Tytin (Kerr)] in different electrolytes. Amalgam specimens were prepared, coupled to a copper wire, cemented into glass tubes and polished to a 600-grit finish. A corrosion cell was prepared using a carbon counter-electrode, a standard calomel electrode as the reference and amalgam as the working electrode. The alloys were tested in the following mediums at 37 degrees C: (i) artificial saliva based on Fusayama's solution (FS), (ii) artificial saliva with citric acid adjusted to pH 4.0 (FC) and (iii) 1% sodium chloride solution (SC). Corrosion potentials (E(corr)) and corrosion rates (I(corr)) were determined using potentiostatic and impedance spectroscopy methods. Data was subjected to anova/Scheffe's post hoc test at 0.05 significance level. For both alloys, the corrosion potential in FS was significantly greater than in SC. Corrosion potential of Tytin in FS and SC was also significantly greater than in FC. The corrosion rate of Dispersalloy in FC was significantly greater than in FS and SC. For Tytin, corrosion rate in SC was significantly greater than in FS and FC. Although no significant difference in corrosion potential/rate was observed between the alloys when tested in FS, significant differences were observed when electrochemical testing was carried out in FC and SC. The corrosion behaviour of high copper amalgam alloys are both material and environment dependent. Certain food substances may increase the corrosion of high copper amalgams.

  13. Corrosion-Resistant Ball Bearings

    NASA Technical Reports Server (NTRS)

    Zdankiewicz, E. M.; Linaburg, E. L.; Lytle, L. J.

    1990-01-01

    Self-lubricating bearing system withstands highly corrosive environment of wastewater-recycling unit. New bearings contain cobalt-based-alloy balls and races, graphite/polyimide polymer ball cages, and single integral polytetrafluoroethylene seals on wet sides. Materials and design prevent corrosion by acids and provide lubrication.

  14. The corrosion behaviour of galvanized steel in cooling tower water containing a biocide and a corrosion inhibitor.

    PubMed

    Minnoş, Bihter; Ilhan-Sungur, Esra; Çotuk, Ayşın; Güngör, Nihal Doğruöz; Cansever, Nurhan

    2013-01-01

    The corrosion behaviour of galvanized steel in cooling tower water containing a biocide and a corrosion inhibitor was investigated over a 10-month period in a hotel. Planktonic and sessile numbers of sulphate reducing bacteria (SRB) and heterotrophic bacteria were monitored. The corrosion rate was determined by the weight loss method. The corrosion products were analyzed by energy dispersive X-ray spectroscopy and X-ray diffraction. A mineralized, heterogeneous biofilm was observed on the coupons. Although a biocide and a corrosion inhibitor were regularly added to the cooling water, the results showed that microorganisms, such as SRB in the mixed species biofilm, caused corrosion of galvanized steel. It was observed that Zn layers on the test coupons were completely depleted after 3 months. The Fe concentrations in the biofilm showed significant correlations with the weight loss and carbohydrate concentration (respectively, p < 0.01 and p < 0.01).

  15. Investigations on Microstructure and Corrosion behavior of Superalloy 686 weldments by Electrochemical Corrosion Technique

    NASA Astrophysics Data System (ADS)

    Arulmurugan, B.; Manikandan, M.

    2018-02-01

    In the present study, microstructure and the corrosion behavior of Nickel based superalloy 686 and its weld joints has been investigated by synthetic sea water environment. The weldments were fabricated by Gas Tungsten Arc Welding (GTAW) and Pulsed Current Gas Tungsten Arc Welding (PCGTAW) techniques with autogenous mode and three different filler wires (ERNiCrMo-4, ERNiCrMo-10 and ERNiCrMo-14). Microstructure and Scanning electron microscope examination was carried out to evaluate the structural changes in the fusion zones of different weldments. Energy Dispersive X-ray Spectroscopy (EDS) analysis was carried out to evaluate the microsegregation of alloying elements in the different weld joints. Potentiodynamic polarization study was experimented on the base metal and weld joints in the synthetic sea water environment to evaluate the corrosion rate. Tafel’s interpolation technique was used to obtain the corrosion rate. The microstructure examination revealed that the fine equiaxed dendrites were observed in the pulsed current mode. EDS analysis shows the absence of microsegregation in the current pulsing technique. The corrosion rates of weldments are compared with the base metal. The results show that the fine microstructure with the absence of microsegregation in the PCGTA weldments shows improved corrosion resistance compared to the GTAW. Autogenous PCGTAW shows higher corrosion resistance irrespective of all weldments employed in the present study.

  16. Atmospheric corrosion of metals in industrial city environment.

    PubMed

    Kusmierek, Elzbieta; Chrzescijanska, Ewa

    2015-06-01

    Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the samples without pretreatment. The corrosion products determined with the SEM/EDS method prove that the most corrosive pollutants present in the industrial city air are SO2, CO2, chlorides and dust.

  17. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulphidic marine sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, DR. Jennifer; Yu, DR. Hang; Steele, Joshua

    2013-01-01

    Microbes have obligate requirements for trace metals in metalloenzymes that catalyse important biogeochemical reactions. In anoxic methane- and sulphiderich environments, microbes may have unique adaptations for metal acquisition and utilization because of decreased bioavailability as a result of metal sulphide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulphidic (> 1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5 270 nM), cobalt (0.5 6 nM), molybdenum (10 5600 nM) and tungsten (0.3 8more » nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalysing anaerobic oxidation of methane (AOM) utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulphate-reducing bacteria. Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrophilic microorganisms. Overall, our data suggest that AOM consortia use specialized biochemical strategies to overcome the challenges of metal availability in sulphidic environments.« less

  18. Natural analogues of nuclear waste glass corrosion.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information availablemore » on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.« less

  19. 7 CFR 2902.44 - Corrosion preventatives.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Corrosion preventatives. 2902.44 Section 2902.44... Items § 2902.44 Corrosion preventatives. (a) Definition. Products designed to prevent the deterioration (corrosion) of metals. (b) Minimum biobased content. The preferred procurement product must have a minimum...

  20. 7 CFR 2902.44 - Corrosion preventatives.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Corrosion preventatives. 2902.44 Section 2902.44... Items § 2902.44 Corrosion preventatives. (a) Definition. Products designed to prevent the deterioration (corrosion) of metals. (b) Minimum biobased content. The preferred procurement product must have a minimum...

  1. 7 CFR 3201.44 - Corrosion preventatives.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Corrosion preventatives. 3201.44 Section 3201.44... Designated Items § 3201.44 Corrosion preventatives. (a) Definition. Products designed to prevent the deterioration (corrosion) of metals. (b) Minimum biobased content. The preferred procurement product must have a...

  2. 7 CFR 3201.44 - Corrosion preventatives.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Corrosion preventatives. 3201.44 Section 3201.44... Designated Items § 3201.44 Corrosion preventatives. (a) Definition. Products designed to prevent the deterioration (corrosion) of metals. (b) Minimum biobased content. The preferred procurement product must have a...

  3. 7 CFR 3201.44 - Corrosion preventatives.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Corrosion preventatives. 3201.44 Section 3201.44... Designated Items § 3201.44 Corrosion preventatives. (a) Definition. Products designed to prevent the deterioration (corrosion) of metals. (b) Minimum biobased content. The preferred procurement product must have a...

  4. Environmentally Friendly Corrosion Preventative Compounds

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Montgomery, Eliza; Kolody, Mark; Curran, Jerry; Back, Teddy; Balles, Angela

    2012-01-01

    The objective of the Ground Systems Development and Operations Program Environmentally Friendly Corrosion Protective Coatings and Corrosion Preventive Compounds (CPCs) project is to identify, test, and develop qualification criteria for the use of environmentally friendly corrosion protective coatings and CPCs for flight hardware and ground support equipment. This document is the Final Report for Phase I evaluations, which included physical property, corrosion resistance, and NASA spaceport environment compatibility testing and analysis of fifteen CPC types. The CPCs consisted of ten different oily film CPCs and five different wax or grease CPC types. Physical property testing encompassed measuring various properties of the bulk CPCs, while corrosion resistance testing directly measured the ability of each CPC material to protect various metals against corrosion. The NASA spaceport environment compatibility testing included common tests required by NASA-STD-6001, "Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments that Support Combustion". At the end of Phase I, CPC materials were down-selected for inclusion in the next test phases. This final report includes all data and analysis of results obtained by following the experimental test plan that was developed as part of the project. Highlights of the results are summarized by test criteria type.

  5. Corrosion protection performance of corrosion inhibitors and epoxy-coated reinforcing steel in a simulated concrete pore water solution.

    DOT National Transportation Integrated Search

    1998-06-01

    We used a simulated concrete pore water solution to evaluate the corrosion protection performance of concrete corrosion-inhibiting admixtures and epoxy-coated reinforcing bars (ECR). We evaluated three commercial corrosion inhibitors, ECR from three ...

  6. Method for monitoring environmental and corrosion

    DOEpatents

    Glass, R.S.; Clarke, W.L. Jr.; Ciarlo, D.R.

    1995-08-01

    A corrosion sensor array is described incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis. 7 figs.

  7. Method for monitoring environmental and corrosion

    DOEpatents

    Glass, Robert S.; Clarke, Jr., Willis L.; Ciarlo, Dino R.

    1995-01-01

    A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

  8. Corrosion of iron by iodide-oxidizing bacteria isolated from brine in an iodine production facility.

    PubMed

    Wakai, Satoshi; Ito, Kimio; Iino, Takao; Tomoe, Yasuyoshi; Mori, Koji; Harayama, Shigeaki

    2014-10-01

    Elemental iodine is produced in Japan from underground brine (fossil salt water). Carbon steel pipes in an iodine production facility at Chiba, Japan, for brine conveyance were found to corrode more rapidly than those in other facilities. The corroding activity of iodide-containing brine from the facility was examined by immersing carbon steel coupons in "native" and "filter-sterilized" brine samples. The dissolution of iron from the coupons immersed in native brine was threefold to fourfold higher than that in the filter-sterilized brine. Denaturing gradient gel electrophoresis analyses revealed that iodide-oxidizing bacteria (IOBs) were predominant in the coupon-containing native brine samples. IOBs were also detected in a corrosion deposit on the inner surface of a corroded pipe. These results strongly suggested the involvement of IOBs in the corrosion of the carbon steel pipes. Of the six bacterial strains isolated from a brine sample, four were capable of oxidizing iodide ion (I(-)) into molecular iodine (I(2)), and these strains were further phylogenetically classified into two groups. The iron-corroding activity of each of the isolates from the two groups was examined. Both strains corroded iron in the presence of potassium iodide in a concentration-dependent manner. This is the first report providing direct evidence that IOBs are involved in iron corrosion. Further, possible mechanisms by which IOBs corrode iron are discussed.

  9. Chem I Supplement: Corrosion: A Waste of Energy.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1979

    1979-01-01

    This article, intended for secondary school chemistry students, discusses the corrosion of metals. The discussion includes: (1) thermodynamic aspects of corrosion; (2) electrochemical aspects of corrosion; and (3) inhibition of corrosion processes. (HM)

  10. Report on accelerated corrosion studies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mowry, Curtis Dale; Glass, Sarah Jill; Sorensen, Neil Robert

    2011-03-01

    Sandia National Laboratories (SNL) conducted accelerated atmospheric corrosion testing for the U.S. Consumer Product Safety Commission (CPSC) to help further the understanding of the development of corrosion products on conductor materials in household electrical components exposed to environmental conditions representative of homes constructed with problem drywall. The conditions of the accelerated testing were chosen to produce corrosion product growth that would be consistent with long-term exposure to environments containing humidity and parts per billion (ppb) levels of hydrogen sulfide (H{sub 2}S) that are thought to have been the source of corrosion in electrical components from affected homes. This report documentsmore » the test set-up, monitoring of electrical performance of powered electrical components during the exposure, and the materials characterization conducted on wires, screws, and contact plates from selected electrical components. No degradation in electrical performance (measured via voltage drop) was measured during the course of the 8-week exposure, which was approximately equivalent to 40 years of exposure in a light industrial environment. Analyses show that corrosion products consisting of various phases of copper sulfide, copper sulfate, and copper oxide are found on exposed surfaces of the conductor materials including wires, screws, and contact plates. The morphology and the thickness of the corrosion products showed a range of character. In some of the copper wires that were observed, corrosion product had flaked or spalled off the surface, exposing fresh metal to the reaction with the contaminant gasses; however, there was no significant change in the wire cross-sectional area.« less

  11. Bacillus sp. Acting as Dual Role for Corrosion Induction and Corrosion Inhibition with Carbon Steel (CS)

    PubMed Central

    Karn, Santosh K.; Fang, Guan; Duan, Jizhou

    2017-01-01

    Present work investigated the role of five different bacteria species as a corrosion inducer as well as corrosion inhibitor with carbon steel (CS). We observed the ability of different bacteria species on the metal surface attachment, biofilm formation, and determined Peroxidase, Catalase enzyme activity in the detached biofilm from the CS surface. We found that each strain has diverse conduct for surface attachment like DS1 3.3, DS2 2.5, DS3 4.3, DS4 4.0, and DS5 4.71 log cfu/cm2 and for biofilm 8.3 log cfu/cm2. The enzyme Peroxidase, Catalase was found in huge concentration inside the biofilm Peroxidase was maximum for DS4 36.0 U/ml and least for DS3 19.54 U/ml. Whereas, Catalase was highest for DS4, DS5 70.14 U/ml and least 57.2 U/ml for DS2. Scanning electron microscopy (SEM) was conducted to examine the biofilm and electrochemical impedance spectroscopy (EIS) were utilized to observe corrosion in the presence of bacteria. The electrochemical results confirmed that DS1, DS3, DS4, and DS5 strains have statistically significant MIC-factors (Microbially Influenced Corrosion) of 5.46, 8.51, 2.36, and 1.04, while DS2 protective effect factor of 0.89. Weight reduction results with carbon steel likewise supports that corrosion was initiated by DS1 and DS3, while DS2 and DS5 have no any impact though with DS4 we watched less weight reduction however assumed no role in the corrosion. We established the relation of Peroxidase enzyme activity of the isolates. DS1, DS3 and having Peroxidase in the range 22.18, 19.54 U/ml which induce the corrosion whereas DS2 and DS5 having 28.57 and 27.0 U/ml has no any effect and DS4 36 U/ml has inhibitory effect, increasing concentration inhibiting the corrosion. For Catalase DS1, DS3 have 67.28, 61.57 U/ml which induce corrosion while DS2 and DS5 57.71 and 59.14 U/ml also has no effect whereas DS4 70.14 U/ml can inhibit corrosion. Results clearly express that in a specific range both enzymes can induce the corrosion. Our goals are to

  12. Atmospheric corrosion of metals in industrial city environment

    PubMed Central

    Kusmierek, Elzbieta; Chrzescijanska, Ewa

    2015-01-01

    Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the samples without pretreatment. The corrosion products determined with the SEM/EDS method prove that the most corrosive pollutants present in the industrial city air are SO2, CO2, chlorides and dust. PMID:26217736

  13. Metal levels in corrosion of spinal implants

    PubMed Central

    Beguiristain, Jose; Duart, Julio

    2007-01-01

    Corrosion affects spinal instrumentations and may cause local and systemic complications. Diagnosis of corrosion is difficult, and nowadays it is performed almost exclusively by the examination of retrieved instrumentations. We conducted this study to determine whether it is possible to detect corrosion by measuring metal levels on patients with posterior instrumented spinal fusion. Eleven asymptomatic patients, with radiological signs of corrosion of their stainless steel spinal instrumentations, were studied by performing determinations of nickel and chromium in serum and urine. Those levels were compared with the levels of 22 patients with the same kind of instrumentation but without evidence of corrosion and to a control group of 22 volunteers without any metallic implants. Statistical analysis of our results revealed that the patients with spinal implants without radiological signs of corrosion have increased levels of chromium in serum and urine (P < 0.001) compared to volunteers without implants. Corrosion significantly raised metal levels, including nickel and chromium in serum and urine when compared to patients with no radiological signs of corrosion and to volunteers without metallic implants (P < 0.001). Metal levels measured in serum have high sensibility and specificity (area under the ROC curve of 0.981). By combining the levels of nickel and chromium in serum we were able to identify all the cases of corrosion in our series of patients. The results of our study confirm that metal levels in serum and urine are useful in the diagnosis of corrosion of spinal implants and may be helpful in defining the role of corrosion in recently described clinical entities such as late operative site pain or late infection of spinal implants. PMID:17256156

  14. Novel Corrosion Sensor for Vision 21 Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heng Ban; Bharat Soni

    2007-03-31

    Advanced sensor technology is identified as a key component for advanced power systems for future energy plants that would have virtually no environmental impact. This project intends to develop a novel high temperature corrosion sensor and subsequent measurement system for advanced power systems. Fireside corrosion is the leading mechanism for boiler tube failures and has emerged to be a significant concern for current and future energy plants due to the introduction of technologies targeting emissions reduction, efficiency improvement, or fuel/oxidant flexibility. Corrosion damage can lead to catastrophic equipment failure, explosions, and forced outages. Proper management of corrosion requires real-time indicationmore » of corrosion rate. However, short-term, on-line corrosion monitoring systems for fireside corrosion remain a technical challenge to date due to the extremely harsh combustion environment. The overall goal of this project is to develop a technology for on-line fireside corrosion monitoring. This objective is achieved by the laboratory development of sensors and instrumentation, testing them in a laboratory muffle furnace, and eventually testing the system in a coal-fired furnace. This project successfully developed two types of sensors and measurement systems, and successful tested them in a muffle furnace in the laboratory. The capacitance sensor had a high fabrication cost and might be more appropriate in other applications. The low-cost resistance sensor was tested in a power plant burning eastern bituminous coals. The results show that the fireside corrosion measurement system can be used to determine the corrosion rate at waterwall and superheater locations. Electron microscope analysis of the corroded sensor surface provided detailed picture of the corrosion process.« less

  15. Evaluation of Encapsulated Inhibitor for Autonomous Corrosion Protection

    NASA Technical Reports Server (NTRS)

    Johnsey, M. N.; Li, W.; Buhrow, J. W.; Calle, L. M.; Pearman, B. P.; Zhang, X.

    2015-01-01

    This work concerns the development of smart coating technologies based on microencapsulation for the autonomous control of corrosion. Microencapsulation allows the incorporation of corrosion inhibitors into coating which provides protection through corrosion-controlled release of these inhibitors.One critical aspect of a corrosion protective smart coating is the selection of corrosion inhibitor for encapsulation and comparison of the inhibitor function before and after encapsulation. For this purpose, a systematic approach is being used to evaluate free and encapsulated corrosion inhibitors by salt immersion. Visual, optical microscope, and Scanning Electron Microscope (with low-angle backscatter electron detector) are used to evaluate these inhibitors. It has been found that the combination of different characterization tools provide an effective method for evaluation of early stage localized corrosion and the effectiveness of corrosion inhibitors.

  16. Recent Developments on Autonomous Corrosion Protection Through Encapsulation

    NASA Technical Reports Server (NTRS)

    Li, W.; Buhrow, J. W.; Calle, L. M.; Gillis, M.; Blanton, M.; Hanna, J.; Rawlins, J.

    2015-01-01

    This paper concerns recent progress in the development of a multifunctional smart coating, based on microencapsulation, for the autonomous detection and control of corrosion. Microencapsulation has been validated and optimized to incorporate desired corrosion control functionalities, such as early corrosion detection and inhibition, through corrosion-initiated release of corrosion indicators and inhibitors, as well as self-healing agent release triggered by mechanical damage. While proof-of-concept results have been previously reported, more recent research and development efforts have concentrated on improving coating compatibility and synthesis procedure scalability, with a targeted goal of obtaining easily dispersible pigment-grade type microencapsulated materials. The recent progress has resulted in the development of pH-sensitive microparticles as a corrosion-triggered delivery system for corrosion indicators and inhibitors. The synthesis and early corrosion indication results obtained with coating formulations that incorporate these microparticles are reported. The early corrosion indicating results were obtained with color changing and with fluorescent indicators.

  17. Comparative proteomic analysis in pea treated with microbial consortia of beneficial microbes reveals changes in the protein network to enhance resistance against Sclerotinia sclerotiorum.

    PubMed

    Jain, Akansha; Singh, Akanksha; Singh, Surendra; Singh, Vinay; Singh, Harikesh Bahadur

    2015-06-15

    Microbial consortia may provide protection against pathogenic ingress via enhancing plant defense responses. Pseudomonas aeruginosa PJHU15, Trichoderma harzianum TNHU27 and Bacillus subtilis BHHU100 were used either singly or in consortia in the pea rhizosphere to observe proteome level changes upon Sclerotinia sclerotiorum challenge. Thirty proteins were found to increase or decrease differentially in 2-DE gels of pea leaves, out of which 25 were identified by MALDI-TOF MS or MS/MS. These proteins were classified into several functional categories including photosynthesis, respiration, phenylpropanoid metabolism, protein synthesis, stress regulation, carbohydrate and nitrogen metabolism and disease/defense-related processes. The respective homologue of each protein identified was trapped in Pisum sativum and a phylogenetic tree was constructed to check the ancestry. The proteomic view of the defense response to S. sclerotiorum in pea, in the presence of beneficial microbes, highlights the enhanced protection that can be provided by these microbes in challenged plants. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. Corrosion guidelines : Version 1.0.

    DOT National Transportation Integrated Search

    2003-09-01

    These guidelines outline the corrosion evaluation and recommendation aspects of site investigations for California Department of Transportation (Department) projects. The guidelines list the requirements for field investigations related to corrosion,...

  19. The Impact of Corrosion on Society

    NASA Astrophysics Data System (ADS)

    Hansson, C. M.

    2011-10-01

    Almost all metals and alloys are unstable in the Earth's atmosphere and will always be susceptible to corrosion. The basic principles of corrosion are briefly described in order to explain the observations of corrosion, which render our personal items as well as industrial machinery and public property dysfunctional, aesthetically displeasing, and potentially dangerous. This is followed by a discussion, with case study examples, of three aspects of the impact of corrosion on society: (1) direct effects resulting in injury or death, (2) contamination of the environment, and (3) the financial costs.

  20. Corrosion of aluminium in soft drinks.

    PubMed

    Seruga, M; Hasenay, D

    1996-04-01

    The corrosion of aluminium (Al) in several brands of soft drinks (cola- and citrate-based drinks) has been studied, using an electrochemical method, namely potentiodynamic polarization. The results show that the corrosion of Al in soft drinks is a very slow, time-dependent and complex process, strongly influenced by the passivation, complexation and adsorption processes. The corrosion of Al in these drinks occurs principally due to the presence of acids: citric acid in citrate-based drinks and orthophosphoric acid in cola-based drinks. The corrosion rate of Al rose with an increase in the acidity of soft drinks, i.e. with increase of the content of total acids. The corrosion rates are much higher in the cola-based drinks than those in citrate-based drinks, due to the facts that: (1) orthophosphoric acid is more corrosive to Al than is citric acid, (2) a quite different passive oxide layer (with different properties) is formed on Al, depending on whether the drink is cola or citrate based. The method of potentiodynamic polarization was shown as being very suitable for the study of corrosion of Al in soft drinks, especially if it is combined with some non-electrochemical method, e.g. graphite furnace atomic absorption spectrometry (GFAAS).

  1. Corrosion protection of reusable surgical instruments.

    PubMed

    Shah, Sadiq; Bernardo, Mildred

    2002-01-01

    To understand the corrosion properties of surgical scissors, 416 stainless steel disks and custom electrodes were used as simulated surfaces under various conditions. These simulated surfaces were exposed to tap water and 400-ppm synthetic hard water as Ca2CO3 under different conditions. The samples were evaluated by various techniques for corrosion potential and the impact of environmental conditions on the integrity of the passive film. The electrodes were used to monitor the corrosion behavior by potentiodynamic polarization technique in water both in the presence and absence of a cleaning product. The surface topography of the 416 stainless steel disks was characterized by visual observations and scanning electron microscopy (SEM), and the surface chemistry of the passive film on the surface of the scissors was characterized by x-ray photoelectron spectroscopy (XPS). The results suggest that surgical instruments made from 416 stainless steel are not susceptible to uniform corrosion; however, they do undergo localized corrosion. The use of suitable cleaning products can offer protection against localized corrosion during the cleaning step. More importantly, the use of potentiodynamic polarization techniques allowed for a quick and convenient approach to evaluate the corrosion properties of surgical instruments under a variety of simulated-use environmental conditions.

  2. Corrosion and scaling in solar heating systems

    NASA Astrophysics Data System (ADS)

    Foresti, R. J., Jr.

    1981-12-01

    Corrosion, as experienced in solar heating systems, is described in simplistic terms to familiarize designers and installers with potential problems and their solutions. The role of a heat transfer fluid in a solar system is briefly discussed, and the choice of an aqueous solution is justified. The complexities of the multiple chemical and physical reactions are discussed in order that uncertainties of corrosion behavior can be anticipated. Some basic theories of corrosion are described, aggressive environments for some common metals are identified, and the role of corrosion inhibitors is delineated. The similarities of thermal and material characteristics of a solor system and an automotive cooling system are discussed. Based on the many years of experience with corrosion in automotive systems, it is recommended that similar antifreezes and corrosion inhibitors should be used in solar systems. The importance of good solar system design and fabrication is stressed and specific characteristics that affect corrosion are identified.

  3. Vibrational Spectroscopy in Studies of Atmospheric Corrosion

    PubMed Central

    Hosseinpour, Saman; Johnson, Magnus

    2017-01-01

    Vibrational spectroscopy has been successfully used for decades in studies of the atmospheric corrosion processes, mainly to identify the nature of corrosion products but also to quantify their amounts. In this review article, a summary of the main achievements is presented with focus on how the techniques infrared spectroscopy, Raman spectroscopy, and vibrational sum frequency spectroscopy can be used in the field. Several different studies have been discussed where these instruments have been used to assess both the nature of corrosion products as well as the properties of corrosion inhibitors. Some of these techniques offer the valuable possibility to perform in-situ measurements in real time on ongoing corrosion processes, which allows the kinetics of formation of corrosion products to be studied, and also minimizes the risk of changing the surface properties which may occur during ex-situ experiments. Since corrosion processes often occur heterogeneously over a surface, it is of great importance to obtain a deeper knowledge about atmospheric corrosion phenomena on the nano scale, and this review also discusses novel vibrational microscopy techniques allowing spectra to be acquired with a spatial resolution of 20 nm. PMID:28772781

  4. Factors affecting the corrosivity of pulping liquors

    NASA Astrophysics Data System (ADS)

    Hazlewood, Patrick Evan

    Increased equipment failures and the resultant increase in unplanned downtime as the result of process optimization programs continue to plague pulp mills. The failures are a result of a lack of understanding of corrosion in the different pulping liquors, specifically the parameters responsible for its adjustment such as the role and identification of inorganic and organic species. The current work investigates the role of inorganic species, namely sodium hydroxide and sodium sulfide, on liquor corrosivity at a range of process conditions beyond those currently experienced in literature. The role of sulfur species, in the activation of corrosion and the ability of hydroxide to passivate carbon steel A516-Gr70, is evaluated with gravimetric and electrochemical methods. The impact of wood chip weathering on process corrosion was also evaluated. Results were used to identify black liquor components, depending on the wood species, which play a significant role in the activation and inhibition of corrosion for carbon steel A516-Gr70 process equipment. Further, the effect of black liquor oxidation on liquor corrosivity was evaluated. Corrosion and stress corrosion cracking performance of selected materials provided information on classes of materials that may be reliably used in aggressive pulping environments.

  5. Graduate Medical Education Consortia: Changing the Governance of Graduate Medical Education to Achieve Physician Workforce Objectives. Council on Graduate Medical Education, Ninth Report.

    ERIC Educational Resources Information Center

    Council on Graduate Medical Education.

    Earlier reports and studies have endorsed the consortia concept as a vehicle for reorganizing medical education and restructuring the physician workforce. This report by the Council on Graduate Medical Education, which serves in an advisory capacity to the Secretary of the Department of Health and Human Services and to Congress, concurs in this…

  6. Controlled-Release Microcapsules for Smart Coatings for Corrosion Applications

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Corrosion is a serious problem that has enormous costs and serious safety implications. Localized corrosion, such as pitting, is very dangerous and can cause catastrophic failures. The NASA Corrosion Technology Laboratory at Kennedy Space Center is developing a smart coating based on pH-sensitive microcapsules for corrosion applications. These versatile microcapsules are designed to be incorporated into a smart coating and deliver their core content when corrosion starts. Corrosion indication was the first function incorporated into the microcapsules. Current efforts are focused on incorporating the corrosion inhibition function through the encapsulation of corrosion inhibitors into water core and oil core microcapsules. Scanning electron microscopy (SEM) images of encapsulated corrosion inhibitors are shown.

  7. Corrosion and Corrosion-Fatigue Behavior of 7075 Aluminum Alloys Studied by In Situ X-Ray Tomography

    NASA Astrophysics Data System (ADS)

    Stannard, Tyler

    7XXX Aluminum alloys have high strength to weight ratio and low cost. They are used in many critical structural applications including automotive and aerospace components. These applications frequently subject the alloys to static and cyclic loading in service. Additionally, the alloys are often subjected to aggressive corrosive environments such as saltwater spray. These chemical and mechanical exposures have been known to cause premature failure in critical applications. Hence, the microstructural behavior of the alloys under combined chemical attack and mechanical loading must be characterized further. Most studies to date have analyzed the microstructure of the 7XXX alloys using two dimensional (2D) techniques. While 2D studies yield valuable insights about the properties of the alloys, they do not provide sufficiently accurate results because the microstructure is three dimensional and hence its response to external stimuli is also three dimensional (3D). Relevant features of the alloys include the grains, subgrains, intermetallic inclusion particles, and intermetallic precipitate particles. The effects of microstructural features on corrosion pitting and corrosion fatigue of aluminum alloys has primarily been studied using 2D techniques such as scanning electron microscopy (SEM) surface analysis along with post-mortem SEM fracture surface analysis to estimate the corrosion pit size and fatigue crack initiation site. These studies often limited the corrosion-fatigue testing to samples in air or specialized solutions, because samples tested in NaCl solution typically have fracture surfaces covered in corrosion product. Recent technological advancements allow observation of the microstructure, corrosion and crack behavior of aluminum alloys in solution in three dimensions over time (4D). In situ synchrotron X-Ray microtomography was used to analyze the corrosion and cracking behavior of the alloy in four dimensions to elucidate crack initiation at corrosion pits

  8. Corrosion avoidance with new wood preservatives

    Treesearch

    Samuel L. Zelinka; Douglas R. Rammer

    2007-01-01

    This article focuses on considerations that need to be made when choosing products, other than stainless steel, to minimize corrosion of metals in contact with treated wood. With so many ?corrosion-resistant? alternative products on the market, it is important to know the fundamental principles of corrosion protection to make informed decisions when designing...

  9. Stable isotope fractionation of selenium by natural microbial consortia

    USGS Publications Warehouse

    Ellis, A.S.; Johnson, T.M.; Herbel, M.J.; Bullen, T.D.

    2003-01-01

    The mobility and bioavailability of Se depend on its redox state, and reduction of Se oxyanions to less mobile, reduced species controls transport of this potentially toxic element in the environment. Stable isotope fractionation of Se is currently being developed as an indicator of Se immobilization through reduction. In this study, Se isotope fractionation resulting from reduction of Se(VI) and Se(IV) oxyanions by natural microbial consortia was measured in sediment slurry experiments under nearly natural conditions, with no substrate added. Experiments were conducted with a wide range of initial Se concentrations and with sediment and water from three locations with contrasting environmental settings. The products of Se(VI) and Se(IV) reduction were enriched in the lighter isotopes relative to the reactants. Shifts of -2.60/00 to -3.10/00 and -5.50/00 to -5.70/00, respectively, were observed in the 80Se/76Se ratio. These isotopic fractionations did not depend significantly on initial Se concentrations, which were varied from 22 μg/l to 8 mg/l, or on geochemical differences among the sediments. These results provide estimates of Se isotope fractionation in organic-rich wetland environments but may not be appropriate for substrate-poor aquifers and marine sediments.

  10. Biodegradation of oil tank bottom sludge using microbial consortia.

    PubMed

    Gallego, José Luis R; García-Martínez, María Jesús; Llamas, Juan F; Belloch, Carmen; Peláez, Ana I; Sánchez, Jesús

    2007-06-01

    We present a rationale for the selection of a microbial consortia specifically adapted to degrade toxic components of oil refinery tank bottom sludge (OTBS). Sources such as polluted soils, petrochemical waste, sludge from refinery-wastewater plants, and others were used to obtain a collection of eight microorganisms, which were individually tested and characterized to analyze their degradative capabilities on different hydrocarbon families. After initial experiments using mixtures of these strains, we developed a consortium consisting of four microorganisms (three bacteria and one yeast) selected in the basis of their cometabolic effects, emulsification properties, colonization of oil components, and degradative capabilities. Although the specific contribution each of the former parameters makes is not clearly understood, the activity of the four-member consortium had a strong impact not only on linear alkane degradation (100%), but also on the degradation of cycloalkanes (85%), branched alkanes (44%), and aromatic and sulphur-aromatic compounds (31-55%). The effectiveness of this consortium was significantly superior to that obtained by individual strains, commercial inocula or an undefined mixture of culturable and non-culturable microorganisms obtained from OTBS-polluted soil. However, results were similar when another consortium of four microorganisms, previously isolated in the same OTBS-polluted soil, was assayed.

  11. A Corrosion Sensor for Monitoring the Early-Stage Environmental Corrosion of A36 Carbon Steel

    PubMed Central

    Chen, Dong; Yen, Max; Lin, Paul; Groff, Steve; Lampo, Richard; McInerney, Michael; Ryan, Jeffrey

    2014-01-01

    An innovative prototype sensor containing A36 carbon steel as a capacitor was explored to monitor early-stage corrosion. The sensor detected the changes of the surface- rather than the bulk- property and morphology of A36 during corrosion. Thus it was more sensitive than the conventional electrical resistance corrosion sensors. After being soaked in an aerated 0.2 M NaCl solution, the sensor’s normalized electrical resistance (R/R0) decreased continuously from 1.0 to 0.74 with the extent of corrosion. Meanwhile, the sensor’s normalized capacitance (C/C0) increased continuously from 1.0 to 1.46. X-ray diffraction result indicates that the iron rust on A36 had crystals of lepidocrocite and magnetite. PMID:28788158

  12. Assessing Marine Microbial Induced Corrosion at Santa Catalina Island, California

    PubMed Central

    Ramírez, Gustavo A.; Hoffman, Colleen L.; Lee, Michael D.; Lesniewski, Ryan A.; Barco, Roman A.; Garber, Arkadiy; Toner, Brandy M.; Wheat, Charles G.; Edwards, Katrina J.; Orcutt, Beth N.

    2016-01-01

    marine neutrophilic FeOB and (ii) long-term nutrient stimulation results in substrate corrosion and biofilms with different bacterial community composition and structure relative to stagnant and non-nutritionally enhanced incubations. Similar microbial succession scenarios, involving increases in nutritional input leading to the proliferation of anaerobic iron and sulfur-cycling guilds, may occur at the nearby Port of Los Angeles and cause potential damage to maritime port infrastructure. PMID:27826293

  13. Inhibition of microbial concrete corrosion by Acidithiobacillus thiooxidans with functionalised zeolite-A coating.

    PubMed

    Haile, Tesfaalem; Nakhla, George

    2009-01-01

    The inhibition of the corrosive action of Acidithiobacillus thiooxidans on concrete specimens coated by functionalised zeolite-A containing 14% zinc and 5% silver by weight was studied. Uncoated concrete specimens, epoxy-coated concrete specimens (EP), and functionalised zeolite-A coated concrete specimens with epoxy to zeolite weight ratios of 3:1 (Z1), 2:2 (Z2) and 1:3 (Z3) were studied. Specimens were characterised by x-ray powder diffraction and field emission scanning electron microscopy for the identification of corrosion products and morphological changes. Biomass growth at the conclusion of the 32-day experiments was 4, 179 and 193 mg volatile suspended solids g(-1) sulphur for the uncoated, EP and Z1 specimens, whereas that of Z2 and Z3 were negligible. In the uncoated, EP and Z1 specimens, sulphate production rates were 0.83, 9.1 and 8.8 mM SO(4)(2-) day(-1) and the specific growth rates, mu, were 0.14, 0.57 and 0.47 day(-1), respectively. The corresponding values for Z2 and Z3 were negligible due to their bacterial inhibition characteristics.

  14. Launch Pad Coatings for Smart Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Bucherl, Cori N.; Li, Wenyan; Buhrow, Jerry W.; Curran, Jerome P.; Whitten, Mary C.

    2010-01-01

    Corrosion is the degradation of a material as a result of its interaction with the environment. The environment at the KSC launch pads has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the US. The 70 tons of highly corrosive hydrochloric acid that are generated by the solid rocket boosters during a launch exacerbate the corrosiveness of the environment at the pads. Numerous failures at the pads are caused by the pitting of stainless steels, rebar corrosion, and the degradation of concrete. Corrosion control of launch pad structures relies on the use of coatings selected from the qualified products list (QPL) of the NASA Standard 5008A for Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment. This standard was developed to establish uniform engineering practices and methods and to ensure the inclusion of essential criteria in the coating of ground support equipment (GSE) and facilities used by or for NASA. This standard is applicable to GSE and facilities that support space vehicle or payload programs or projects and to critical facilities at all NASA locations worldwide. Environmental regulation changes have dramatically reduced the production, handling, use, and availability of conventional protective coatings for application to KSC launch structures and ground support equipment. Current attrition rate of qualified KSC coatings will drastically limit the number of commercial off the shelf (COTS) products available for the Constellation Program (CxP) ground operations (GO). CxP GO identified corrosion detection and control technologies as a critical, initial capability technology need for ground processing of Ares I and Ares V to meet Constellation Architecture Requirements Document (CARD) CxP 70000 operability requirements for reduced ground processing complexity, streamlined integrated testing, and operations phase affordability

  15. Chemical Corrosion of Liquid-Phase Sintered SiC in Acidic/Alkaline Solutions Part 1. Corrosion in HNO3 Solution

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Zhang, Ming; He, Xinnong; Tang, Wenming

    2016-03-01

    The corrosion behavior of the liquid-phase sintered SiC (LPS-SiC) was studied by dipping in 3.53 mol/L HNO3 aqueous solution at room temperature and 70 °C, respectively. The weight loss, strength reduction and morphology evolution of the SiC specimens during corroding were revealed and also the chemical corrosion process and mechanism of the SiC specimens in the acidic solution were clarified. The results show that the corrosion of the LPS-SiC specimens in the HNO3 solution is selective. The SiC particles are almost free from corrosion, but the secondary phases of BaAl2Si2O8 (BAS) and Y2Si2O7 are corroded via an acid-alkali neutralization reaction. BAS has a higher corrosion rate than Y2Si2O7, resulting in the formation of the bamboo-leaf-like corrosion pits. As the SiC specimens etched in the HNO3 solution at room temperature for 75 days, about 80 μm thickness corrosion layer forms. The weight loss and bending strength reduction of the etched SiC specimens are 2.6 mg/cm2 and 52%, respectively. The corrosion of the SiC specimens is accelerated in the 70 °C HNO3 solution with a rate about five times bigger than that in the same corrosion medium at room temperature.

  16. Bacterial community composition of chronic periodontitis and novel oral sampling sites for detecting disease indicators

    PubMed Central

    2014-01-01

    Background Periodontitis is an infectious and inflammatory disease of polymicrobial etiology that can lead to the destruction of bones and tissues that support the teeth. The management of chronic periodontitis (CP) relies heavily on elimination or at least control of known pathogenic consortia associated with the disease. Until now, microbial plaque obtained from the subgingival (SubG) sites has been the primary focus for bacterial community analysis using deep sequencing. In addition to the use of SubG plaque, here, we investigated whether plaque obtained from supragingival (SupG) and tongue dorsum sites can serve as alternatives for monitoring CP-associated bacterial biomarkers. Results Using SubG, SupG, and tongue plaque DNA from 11 healthy and 13 diseased subjects, we sequenced V3 regions (approximately 200 bases) of the 16S rRNA gene using Illumina sequencing. After quality filtering, approximately 4.1 million sequences were collapsed into operational taxonomic units (OTUs; sequence identity cutoff of >97%) that were classified to a total of 19 phyla spanning 114 genera. Bacterial community diversity and overall composition was not affected by health or disease, and multiresponse permutation procedure (MRPP) on Bray-Curtis distance measures only supported weakly distinct bacterial communities in SubG and tongue plaque depending on health or disease status (P < 0.05). Nonetheless, in SubG and tongue sites, the relative abundance of Firmicutes was increased significantly from health to disease and members of Synergistetes were found in higher abundance across all sites in disease. Taxa indicative of CP were identified in all three locations (for example, Treponema denticola, Porphyromonas gingivalis, Synergistes oral taxa 362 and 363). Conclusions For the first time, this study demonstrates that SupG and tongue dorsum plaque can serve as alternative sources for detecting and enumerating known and novel bacterial biomarkers of CP. This finding is clinically

  17. Investigation of Internal Corrosion and Corrosion-Control Alternatives in Commercial Tankships.

    DTIC Science & Technology

    1981-07-01

    high sulfur crude, scale on - the sides of the tank may become impregnated with sulfur. The compound formed is pyrophoric iron sulfide .2 7 The...Stiansen - LisLon Mr. M. Touna AMERICAN IRON & STEEL INSTITUTE NATIONAL ACADEMY OF SCIENCES SHIP RESEARCH COMMITTEEMrR.HStne-Lso Mr. A. Dudley Neff...to contribute to corrosion in a tank. In crude oil, the most significant corrosive component is the hydrogen sulfide which it contains. Most oils

  18. Selectable-Tip Corrosion-Testing Electrochemical Cell

    NASA Technical Reports Server (NTRS)

    Lomness, Janice; Hintze, Paul

    2008-01-01

    The figure depicts aspects of an electrochemical cell for pitting- corrosion tests of material specimens. The cell is designed to generate a region of corrosion having a pit diameter determined by the diameter of a selectable tip. The average depth of corrosion is controlled by controlling the total electric charge passing through the cell in a test. The cell is also designed to produce minimal artifacts associated with crevice corrosion. There are three selectable tips, having diameters of 0.1 in. (0.254 cm), 0.3 in. (0.762 cm), and 0.6 in. (1.524 cm), respectively.

  19. Smart Coatings for Launch Site Corrosion Protection

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.

    2014-01-01

    Smart, environmentally friendly paint system for early corrosion detection, mitigation, and healing that will enable supportability in KSC launch facilities and ground systems through their operational life cycles. KSC's Corrosion Technology Laboratory is developing a smart, self-healing coating that can detect and repair corrosion at an early stage. This coating is being developed using microcapsules specifically designed to deliver the contents of their core when corrosion starts.

  20. Functional Genotyping of Sulfurospirillum spp. in Mixed Cultures Allowed the Identification of a New Tetrachloroethene Reductive Dehalogenase

    PubMed Central

    Buttet, Géraldine F.; Holliger, Christof

    2013-01-01

    Reductive dehalogenases are the key enzymes involved in the anaerobic respiration of organohalides such as the widespread groundwater pollutant tetrachloroethene. The increasing number of available bacterial genomes and metagenomes gives access to hundreds of new putative reductive dehalogenase genes that display a high level of sequence diversity and for which substrate prediction remains very challenging. In this study, we present the development of a functional genotyping method targeting the diverse reductive dehalogenases present in Sulfurospirillum spp., which allowed us to unambiguously identify a new reductive dehalogenase from our tetrachloroethene-dechlorinating SL2 bacterial consortia. The new enzyme, named PceATCE, shows 92% sequence identity with the well-characterized PceA enzyme of Sulfurospirillum multivorans, but in contrast to the latter, it is restricted to tetrachloroethene as a substrate. Its apparent higher dechlorinating activity with tetrachloroethene likely allowed its selection and maintenance in the bacterial consortia among other enzymes showing broader substrate ranges. The sequence-substrate relationships within tetrachloroethene reductive dehalogenases are also discussed. PMID:23995945