Science.gov

Sample records for corrugated plastic

  1. The mechanisms of plastic strain accommodation during the high strain rate collapse of corrugated Ni-Al laminate cylinders

    NASA Astrophysics Data System (ADS)

    Olney, K. L.; Chiu, P. H.; Higgins, A.; Serge, M.; Weihs, T. P.; Fritz, G. M.; Stover, A. K.; Benson, D. J.; Nesterenko, V. F.

    2014-09-01

    The Thick-Walled Cylinder method was used on corrugated Ni-Al reactive laminates to examine how their mesostructures accommodate large strain, high strain rate plastic deformation and to examine the potential for intermetallic reaction initiation due to mechanical stimuli. Three main mesoscale mechanisms of large plastic strain accommodation were observed in addition to the bulk distributed uniform plastic flow: (a) the extrusion of wedge-shaped regions into the interior of the cylinder along planes of easy slip provided by angled layers, (b) the development of trans-layer shear bands in the layers with orientation close to radial and (c) the cooperative buckling of neighbouring layers perpendicular to the radius. These mesoscale mechanisms acted to block the development of periodic patterns of multiple, uniformly distributed, shear bands that have been observed in all previously examined solid homogeneous materials and granular materials. The high-strain plastic flow within the shear bands resulted in the dramatic elongation and fragmentation of Ni and Al layers. The quenched reaction between Al and Ni was observed inside these trans-layer shear bands and in a number of the interfacial extruded wedge-shaped regions. The reaction initiated in these spots did not ignite the bulk of the material, demonstrating that these mesostructured Ni-Al laminates are able to withstand high-strain, high-strain rate deformation without reaction. Numerical simulations of the explosively collapsed samples were performed using the digitized geometry of corrugated laminates and predictions of the final, deformed mesostructures agree with the observed deformation patterns.

  2. Corrugation of roads

    NASA Astrophysics Data System (ADS)

    Both, Joseph A.; Hong, Daniel C.; Kurtze, Douglas A.

    2001-12-01

    We present a one dimensional model for the development of corrugations in roads subjected to compressive forces from a flux of cars. The cars are modeled as damped harmonic oscillators translating with constant horizontal velocity across the surface, and the road surface is subject to diffusive relaxation. We derive dimensionless coupled equations of motion for the positions of the cars and the road surface H( x, t), which contain two phenomenological variables: an effective diffusion constant Δ( H) that characterizes the relaxation of the road surface, and a function a( H) that characterizes the plasticity or erodibility of the road bed. Linear stability analysis shows that corrugations grow if the speed of the cars exceeds a critical value, which decreases if the flux of cars is increased. Modifying the model to enforce the simple fact that the normal force exerted by the road can never be negative seems to lead to restabilized, quasi-steady road shapes, in which the corrugation amplitude and phase velocity remain fixed.

  3. Birefringent corrugated waveguide

    DOEpatents

    Moeller, Charles P.

    1990-01-01

    A corrugated waveguide having a circular bore and noncircularly symmetric corrugations, and preferably elliptical corrugations, provides birefringence for rotation of polarization in the HE.sub.11 mode. The corrugated waveguide may be fabricated by cutting circular grooves on a lathe in a cylindrical tube or rod of aluminum of a diameter suitable for the bore of the waveguide, and then cutting an approximation to ellipses for the corrugations using a cutting radius R.sub.0 from the bore axis that is greater than the bore radius, and then making two circular cuts using a radius R.sub.1 less than R.sub.0 at centers +b and -b from the axis of the waveguide bore. Alternatively, stock for the mandrel may be formed with an elliptical transverse cross section, and then only the circular grooves need be cut on a lathe, leaving elliptical corrugations between the grooves. In either case, the mandrel is first electroplated and then dissolved leaving a corrugated waveguide with noncircularly symmetric corrugations. A transition waveguide is used that gradually varies from circular to elliptical corrugations to couple a circularly corrugated waveguide to an elliptically corrugated waveguide.

  4. Profiles in garbage: Corrugated boxes

    SciTech Connect

    Miller, C.

    1997-12-01

    Corrugated boxes (also known as old corrugated containers, or OCC) are used to ship products to factories, warehouses, retail stores, offices, and homes. The primary market for OCC is the paperboard industry, which uses OCC for corrugated medium, linerboard, recycled paperboard, and other paper products. In addition, 2.6 million tons of OCC were exported in 1996. OCC provided 37% of the scrap paper that was exported in 1996. Some corrugated boxes can be reused before recycling. Corrugated boxes are easily and highly recyclable. Large producers such as grocery store warehouses and factories have recycled their corrugated boxes for some time. If shredded properly, uncoated corrugated boxes are easily compostable.

  5. Corrugated waveguide monopulse feed

    NASA Astrophysics Data System (ADS)

    Elliott, R. D.; Clarricoats, P. J. B.

    1980-04-01

    The excitation coefficients of modes in a circular corrugated waveguide that arise when dominant modes are incident from a cluster of four square waveguides are calculated. Monopulse-like radiation patterns arise when modes in the input guides are appropriately phased. Factors influencing the crosspolar performance of the feed are discussed, and the dependence of the excitation coefficients on waveguide and junction parameters is predicted.

  6. An Improved Method of Manufacturing Corrugated Boxes: Lateral Corrugator

    SciTech Connect

    Frank C. Murray Ph.D.; , Roman Popil Ph.D.; Michael Shaepe

    2008-12-18

    Paper physicists have known that a corrugated box constructed from outer liner sheets having a predominant fiber orientation aligned with the corrugating flute direction would have higher stiffness and crush resistance (per unit of fiber weight) than the conventional box construction. Such increased performance per unit of fiber weight could result in fiber reduction and energy savings for boxes having equivalent performance specifications. The goal of this project was to develop and demonstrate a commercially viable lateral corrugating process. This included designing and building a pilot lateral corrugator, testing and evaluating pilot machine made boxes, and developing a strategy for commercialization.

  7. Linear Corrugating - Final Technical Report

    SciTech Connect

    Lloyd Chapman

    2000-05-23

    Linear Corrugating is a process for the manufacture of corrugated containers in which the flutes of the corrugated medium are oriented in the Machine Direction (MD) of the several layers of paper used. Conversely, in the conventional corrugating process the flutes are oriented at right angles to the MD in the Cross Machine Direction (CD). Paper is stronger in MD than in CD. Therefore, boxes made using the Linear Corrugating process are significantly stronger-in the prime strength criteria, Box Compression Test (BCT) than boxes made conventionally. This means that using Linear Corrugating boxes can be manufactured to BCT equaling conventional boxes but containing 30% less fiber. The corrugated container industry is a large part of the U.S. economy, producing over 40 million tons annually. For such a large industry, the potential savings of Linear Corrugating are enormous. The grant for this project covered three phases in the development of the Linear Corrugating process: (1) Production and evaluation of corrugated boxes on commercial equipment to verify that boxes so manufactured would have enhanced BCT as proposed in the application; (2) Production and evaluation of corrugated boxes made on laboratory equipment using combined board from (1) above but having dual manufactures joints (glue joints). This box manufacturing method (Dual Joint) is proposed to overcome box perimeter limitations of the Linear Corrugating process; (3) Design, Construction, Operation and Evaluation of an engineering prototype machine to form flutes in corrugating medium in the MD of the paper. This operation is the central requirement of the Linear Corrugating process. Items I and II were successfully completed, showing predicted BCT increases from the Linear Corrugated boxes and significant strength improvement in the Dual Joint boxes. The Former was constructed and operated successfully using kraft linerboard as the forming medium. It was found that tensile strength and stretch

  8. Stacked Corrugated Horn Rings

    NASA Technical Reports Server (NTRS)

    Sosnowski, John B.

    2010-01-01

    This Brief describes a method of machining and assembly when the depth of corrugations far exceeds the width and conventional machining is not practical. The horn is divided into easily machined, individual rings with shoulders to control the depth. In this specific instance, each of the corrugations is identical in profile, and only differs in diameter and outer profile. The horn is segmented into rings that are cut with an interference fit (zero clearance with all machining errors biased toward contact). The interference faces can be cut with a reverse taper to increase the holding strength of the joint. The taper is a compromise between the interference fit and the clearance of the two faces during assembly. Each internal ring is dipped in liquid nitrogen, then nested in the previous, larger ring. The ring is rotated in the nest until the temperature of the two parts equalizes and the pieces lock together. The resulting assay is stable, strong, and has an internal finish that cannot be achieved through other methods.

  9. Acoustical studies on corrugated tubes

    NASA Astrophysics Data System (ADS)

    Balaguru, Rajavel

    Corrugated tubes and pipes offer greater global flexibility combined with local rigidity. They are used in numerous engineering applications such as vacuum cleaner hosing, air conditioning systems of aircraft and automobiles, HVAC control systems of heating ducts in buildings, compact heat exchangers, medical equipment and offshore gas and oil transportation flexible riser pipelines. Recently there has been a renewed research interest in analyzing the flow through a corrugated tube to understand the underlying mechanism of so called whistling, although the whistling in such a tube was identified in early twentieth century. The phenomenon of whistling in a corrugated tube is interesting because an airflow through a smooth walled tube of similar dimensions will not generate any whistling tones. Study of whistling in corrugated tubes is important because, it not only causes an undesirable noise problem but also results in flow-acoustic coupling. Such a coupling can cause significant structural vibrations due to flow-acoustic-structure interaction. This interaction would cause flow-induced vibrations that could result in severe damage to mechanical systems having corrugated tubes. In this research work, sound generation (whistling) in corrugated tubes due to airflow is analyzed using experimental as well as Computational Fluid Dynamics-Large Eddy Simulation (CFD-LES) techniques. Sound generation mechanisms resulting in whistling have been investigated. The whistling in terms of frequencies and sound pressure levels for different flow velocities are studied. The analytical and experimental studies are carried out to understand the influence of various parameters of corrugated tubes such as cavity length, cavity width, cavity depth, pitch, Reynolds numbers and number of corrugations. The results indicate that there is a good agreement between theoretically calculated, computationally predicted and experimentally measured whistling frequencies and sound pressure levels

  10. Shape optimization of corrugated airfoils

    NASA Astrophysics Data System (ADS)

    Jain, Sambhav; Bhatt, Varun Dhananjay; Mittal, Sanjay

    2015-12-01

    The effect of corrugations on the aerodynamic performance of a Mueller C4 airfoil, placed at a 5° angle of attack and Re=10{,}000, is investigated. A stabilized finite element method is employed to solve the incompressible flow equations in two dimensions. A novel parameterization scheme is proposed that enables representation of corrugations on the surface of the airfoil, and their spontaneous appearance in the shape optimization loop, if indeed they improve aerodynamic performance. Computations are carried out for different location and number of corrugations, while holding their height fixed. The first corrugation causes an increase in lift and drag. Each of the later corrugations leads to a reduction in drag. Shape optimization of the Mueller C4 airfoil is carried out using various objective functions and optimization strategies, based on controlling airfoil thickness and camber. One of the optimal shapes leads to 50 % increase in lift coefficient and 23 % increase in aerodynamic efficiency compared to the Mueller C4 airfoil.

  11. Modeling of a corrugated dielectric elastomer actuator for artificial muscle applications

    NASA Astrophysics Data System (ADS)

    Kadooka, Kevin; Taya, Minoru; Naito, Keishi; Saito, Makoto

    2015-04-01

    Dielectric elastomer actuators have many advantages, including light weight, simplicity, high energy density, and silent operation. These features make them suitable to replace conventional actuators and transducers, especially in artificial muscle applications where large contractile strains are necessary for lifelike motions. This paper will introduce the concept of a corrugated dielectric elastomer actuator (DEA), which consists of dielectric elastomer (DE) laminated to a thin elastic layer to induce bending motion at each of the corrugations, resulting in large axial deformation. The location of the DE and elastic layers can be configured to provide tensile or compressive axial strain. Such corrugated DE actuators are also highly scalable: linking multiple actuators in series results in greater deformation, whereas multiple actuators in parallel results in larger force output. Analytical closed-form solutions based on linear elasticity were derived for the displacement and force output of curved unimorph and corrugated DEA, both consisting of an arbitrary number of lamina. A total strain energy analysis and Castigiliano's theorem were used to predict the nonlinear force-displacement behavior of the corrugated actuator. Curved unimorph and corrugated DEA were fabricated using VHB F9469PC as the DE material. Displacement of the actuators observed during testing agreed well with the modeling results. Large contractile strain (25.5%) was achieved by the corrugated DEA. Future work includes investigating higher performance DE materials such as plasticized PVDF terpolymers, processed by thin film deposition methods.

  12. Strain variation in corrugated graphene

    NASA Astrophysics Data System (ADS)

    Wang, Xuanye; Tantiwanichapan, Khwanchai; Christopher, Jason; Paiella, Roberto; Swan, Anna

    2015-03-01

    Raman spectroscopy is a powerful non-destructive technique for analyzing strain in graphene. Recently there has been interest in making corrugated graphene devices with varying spatial wavelengths Λ for plasmonic and THz applications. Transferring graphene onto corrugated substrates introduces strain, which if there was perfect clamping (high fraction) would cause a periodic strain variation. However, the strain variation for pattern size smaller than the diffraction limit λ makes it hard to precisely model the strain distribution. Here we present a detailed study on how strain varies in corrugated graphene with sub-diffraction limit periodicity Λ < λ. Mechanically exfoliated graphene was deposited onto sinusoidal shape silicon dioxide gratings with Λ=400 nm period using the pick and place transfer technique. We observed that the graphene is not rigidly clamped, but partially slides to relieve the strain. We model the linewidth variation to extract the local strain variation as well as the sliding in the presence of charge puddling in graphene. The method gives us a better understanding on graphene slippage and strain distribution in graphene on a corrugated substrate with sub-diffraction limit spatial period.

  13. Corrugated Membrane Fuel Cell Structures

    SciTech Connect

    Grot, Stephen

    2013-09-30

    One of the most challenging aspects of traditional PEM fuel cell stacks is the difficulty achieving the platinum catalyst utilization target of 0.2 gPt/kWe set forth by the DOE. Good catalyst utilization can be achieved with state-of-the-art catalyst coated membranes (CCM) when low catalyst loadings (<0.3 mg/cm2) are used at a low current. However, when low platinum loadings are used, the peak power density is lower than conventional loadings, requiring a larger total active area and a larger bipolar plate. This results in a lower overall stack power density not meeting the DOE target. By corrugating the fuel cell membrane electrode structure, Ion Power?s goal is to realize both the Pt utilization targets as well as the power density targets of the DOE. This will be achieved by demonstrating a fuel cell single cell (50 cm2) with a twofold increase in the membrane active area over the geometric area of the cell by corrugating the MEA structure. The corrugating structure must be able to demonstrate the target properties of < 10 mOhm-cm2 electrical resistance at > 20 psi compressive strength over the active area, in combination with offering at least 80% of power density that can be achieved by using the same MEA in a flat plate structure. Corrugated membrane fuel cell structures also have the potential to meet DOE power density targets by essentially packaging more membrane area into the same fuel cell volume as compared to conventional stack constructions.

  14. Numerical and Experimental Investigations on Mechanical Behavior of Composite Corrugated Core

    NASA Astrophysics Data System (ADS)

    Dayyani, Iman; Ziaei-Rad, Saeed; Salehi, Hamid

    2012-06-01

    Tensile and flexural characteristics of corrugated laminate panels were studied using numerical and analytical methods and compared with experimental data. Prepreg laminates of glass fiber plain woven cloth were hand-laid by use of a heat gun to ease the creation of the panel. The corrugated panels were then manufactured by using a trapezoidal machined aluminium mould. First, a series of simple tension tests were performed on standard samples to evaluate the material characteristics. Next, the corrugated panels were subjected to tensile and three-point bending tests. The force-displacement graphs were recorded. Numerical and analytical solutions were proposed to simulate the mechanical behavior of the panels. In order to model the energy dissipation due to delamination phenomenon observed in tensile tests in all members of corrugated core, plastic behavior was assigned to the whole geometry, not only to the corner regions. Contrary to the literature, it is shown that the three-stage mechanical behavior of composite corrugated core is not confined to aramid reinforced corrugated laminates and can be observed in other types such as fiber glass. The results reveal that the mechanical behavior of the core in tension is sensitive to the variation of core height. In addition, for the first time, the behavior of composite corrugated core was studied and verified in bending. Finally, the analytical and numerical results were validated by comparing them with experimental data. A good degree of correlation was observed which showed the suitability of the finite element model for predicting the mechanical behavior of corrugated laminate panels.

  15. A parametric study of cut-off corrugated surface properties

    NASA Technical Reports Server (NTRS)

    Mentzer, C. A.; Peters, L., Jr.

    1973-01-01

    Corrugated horns involve a junction between the corrugated surface and a conducting groundplane. Proper horn design requires an understanding of the electromagnetic properties of the corrugated surface and this junction. Therefore, an integral equation solution has been used to study the influence of corrugation density and shape on the power loss. Surface current, and the scattering from a groundplane-corrugated surface junction. Both square and vee shape corrugations have been considered over the range of corrugation depths where the surface acts as a cut-off corrugated surface.

  16. Biaxially corrugated flexible sheet material

    DOEpatents

    Schmertz, John C.

    1991-04-16

    A flexible biaxially corrugated sheet material is formed from a plurality of identical trapezium segments which are arranged in a plurality of long strips a single segment wide. Adjacent strips are mirror images of each other and connected along adjoining sides with the angles of the four corners of adjacent segments being alternately less than 360.degree. and greater than 360.degree. along the length of a strip such that the sheet material has an undulating configuration, and is inherently curved and cannot lie in a flat plane.

  17. Corrugated Pipe as a Beam Dechirper

    SciTech Connect

    Bane, K.L.F.; Stupakov, G.; /SLAC

    2012-04-20

    We have studied the use of a metallic pipe with small corrugations for the purpose of passively dechirping, through its wakefield, a short, intense electron bunch. The corrugated pipe is attractive for this purpose because its wake: (i) has near maximal possible amplitude for a given aperture and (ii) has a relatively large oscillation wave length, even when the aperture is small. We showed how the corrugated structure can satisfy dechirping requirements encountered in the NGLS project at LBNL. We found that a linear chirp of -40 MeV/mm can be induced by an NGLS-like beam, by having it pass through a corrugated, metallic pipe of radius 3 mm, length 8.2 m, and corrugation parameters full depth 450 {mu}m and period 1000 {mu}m. This structure is about 15 times as effective in the role of dechirper as an S-band accelerator structure used passively.

  18. Mechanical Analysis of Trapezoidal Corrugated Composite Skins

    NASA Astrophysics Data System (ADS)

    Ghabezi, P.; Golzar, M.

    2013-08-01

    Using of the corrugated skins and morphing technology is a good idea to provide the desired performance and improve aerodynamic efficiency. Corrugated structures and skins are flexible in the direction of corrugation and stiff in the transverse direction. In this paper a simple analytical model for the effective stiffness of the trapezoidal corrugated composites is developed in symmetrical and unsymmetrical lay-up. The elongation and effective stiffness in longitudinal and transverse directions of trapezoidal corrugated skins and flat composites are extracted using strain energy and Castiglione's theorem. Various dimensions of trapezoidal element for unidirectional and plain woven fabrics of E-glass/Epoxy are investigated. Trapezoidal corrugated composites were modelled by commercial FEM software ABAQUS and compared to analytical model. Analytical model is validated by experimental results from bending and tensile tests. Finally, load-displacement curves in the tensile and bending tests are studied and their different stages of behavior are identified. Results of FEM, experimental and analytical simulation show that how the corrugated composite skins can afford obviously larger deformation than the flat one and they are good solution to use in the morphing applications.

  19. Corrugated pipe adhesive applicator apparatus

    DOEpatents

    Shirey, R.A.

    1983-06-14

    Apparatus for coating selected portions of the troughs of a corrugated pipe with an adhesive includes a support disposed within the pipe with a reservoir containing the adhesive disposed on the support. A pump, including a spout, is utilized for supplying the adhesive from the reservoir to a trough of the pipe. A rotatable applicator is supported on the support and contacts the trough of the pipe. The applicator itself is sized so as to fit within the trough, and contacts the adhesive in the trough and spreads the adhesive in the trough upon rotation. A trough shield, supported by the support and disposed in the path of rotation of the applicator, is utilized to prevent the applicator from contacting selected portions of the trough. A locator head is also disposed on the support and provides a way for aligning the spout, the applicator, and the trough shield with the trough. 4 figs.

  20. Corrugated pipe adhesive applicator apparatus

    DOEpatents

    Shirey, Ray A.

    1983-06-14

    Apparatus for coating selected portions of the troughs of a corrugated pipe within an adhesive includes a support disposed within the pipe with a reservoir containing the adhesive disposed on the support. A pump, including a spout, is utilized for supplying the adhesive from the reservoir to a trough of the pipe. A rotatable applicator is supported on the support and contacts the trough of the pipe. The applicator itself is sized so as to fit within the trough, and contacts the adhesive in the trough and spreads the adhesive in the trough upon rotation. A trough shield, supported by the support and disposed in the path of rotation of the applicator, is utilized to prevent the applicator from contacting selected portions of the trough. A locator head is also disposed on the support and provides a way for aligning the spout, the applicator, and the trough shield with the trough.

  1. Corrugated cover plate for flat plate collector

    DOEpatents

    Hollands, K. G. Terry; Sibbitt, Bruce

    1978-01-01

    A flat plate radiant energy collector is providing having a transparent cover. The cover has a V-corrugated shape which reduces the amount of energy reflected by the cover away from the flat plate absorber of the collector.

  2. Method and apparatus for corrugating strips

    DOEpatents

    Day, Jack R.; Curtis, Charles H.

    1983-01-01

    The invention relates to a method and a machine for transversely corrugating a continuous strip of metallic foil. The product foil comprises a succession of alternately disposed corrugations, each defining in cross section, a major segment of a circle. The foil to be corrugated is positioned to extend within a vertical passage in the machine. The walls of the passage are heated to promote the desired deformation of the foil. Foil-deforming rollers are alternately passed obliquely across the passage to respectively engage transverse sections of the foil. The rollers and their respective section of deformed foil comprise a stacked assembly which is moved incrementally through the heated passageway. As the assembly emerges from the passageway, the rollers spill from the corrugated foil and are recovered for re-use.

  3. Method and apparatus for corrugating strips

    DOEpatents

    Day, J.R.; Curtis, C.H.

    1981-10-27

    The invention relates to a method and a machine for transversely corrugating a continuous strip of metallic foil. The product foil comprises a succession of alternately disposed corrugations, each defining in a cross section, a major segment of a circle. The foil to be corrugated is positioned to extend within a vertical passage in the machine. The walls of the passage are heated to promote the desired deformation of the foil. Foil-deforming rollers are alternately passed obliquely across the passage to respectively engage transverse sections of the foil. The rollers and their respective section of deformed foil comprise a stacked assembly which is moved incrementally through the heated passageway. As the assembly emerges from the passageway, the rollers spill from the corrugated foil and are recovered for re-use.

  4. Evolutionary design of corrugated horn antennas

    NASA Technical Reports Server (NTRS)

    Hoorfar, F.; Manshadi, V.; Jamnejad, A.

    2002-01-01

    An evolutionary progranirnitzg (EP) algorithm is used to optimize pattern of a corrugated circularhorn subject to various constraints on return loss and antenna beamwidth and pattern circularity and low crosspolarization. The EP algorithm uses a Gaussian mutation operator. Examples on design synthesis of a 45 section corrugated horn, with a total of 90 optimization parameters, are presented. The results show excellent and efficient optimization of the desired horn parameters.

  5. Guided Waves Attenuation in Water Immersed Corrugated Plates

    NASA Astrophysics Data System (ADS)

    Meier, Dominique; Franklin, Hervé; Izbicki, Jean Louis; Predoi, Mihai; Rousseau, Martine

    Influences of surface corrugations on the propagation of guided waves along an immersed elastic plate are investigated. The Finite Elements Method is used to compute the reflected and transmitted pressure fields for oblique incident plane harmonic waves in a selected frequency range. The effects of corrugations can also be accounted by means of a rheological model. The corrugated surface is then modeled by using modified boundary conditions at the liquid - corrugated plate interface. In this condition a parameter is introduced that can be evaluated by a fit procedure between the analytical solutions of modal resonance peaks and the FEM results for the corrugated plate.

  6. Corrugation of Relativistic Magnetized Shock Waves

    NASA Astrophysics Data System (ADS)

    Lemoine, Martin; Ramos, Oscar; Gremillet, Laurent

    2016-08-01

    As a shock front interacts with turbulence it develops corrugation, which induces outgoing wave modes in the downstream plasma. For a fast shock wave, the incoming wave modes can either be fast magnetosonic waves originating downstream, outrunning the shock, or eigenmodes of the upstream plasma drifting through the shock. Using linear perturbation theory in relativistic MHD, this paper provides a general analysis of the corrugation of relativistic magnetized fast shock waves resulting from their interaction with small amplitude disturbances. Transfer functions characterizing the linear response for each of the outgoing modes are calculated as a function of the magnetization of the upstream medium and as a function of the nature of the incoming wave. Interestingly, if the latter is an eigenmode of the upstream plasma, we find that there exists a resonance at which the (linear) response of the shock becomes large or even diverges. This result may have profound consequences on the phenomenology of astrophysical relativistic magnetized shock waves.

  7. Plasmonic corrugated cylinder-cone terahertz probe.

    PubMed

    Yao, Haizi; Zhong, Shuncong

    2014-08-01

    The spoof surface plasmon polariton (SPP) effect on the electromagnetic field distribution near the tip of a periodically corrugated metal cylinder-cone probe working at the terahertz regime was studied. We found that radially polarized terahertz radiation could be coupled effectively through a spoof SPP into a surface wave and propagated along the corrugated surface, resulting in more than 20× electric field enhancement near the tip of probe. Multiple resonances caused by the antenna effect were discussed in detail by finite element computation and theoretical analysis of dispersion relation for spoof SPP modes. Moreover, the key figures of merit such as the resonance frequency of the SPP can be flexibly tuned by modifying the geometry of the probe structure, making it attractive for application in an apertureless background-free terahertz near-field microscope. PMID:25121543

  8. 2. Elkmont, deck view of corrugated arched bridge. Great ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Elkmont, deck view of corrugated arched bridge. - Great Smoky Mountains National Park Roads & Bridges, Elkmont Vehicle Bridge, Spanning Little River at Elkmont Campground, Gatlinburg, Sevier County, TN

  9. 3. Elkmont, underside detail of corrugated arched bridge. Great ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Elkmont, underside detail of corrugated arched bridge. - Great Smoky Mountains National Park Roads & Bridges, Elkmont Vehicle Bridge, Spanning Little River at Elkmont Campground, Gatlinburg, Sevier County, TN

  10. Performance of zigzag corrugated furrows in Bolivia

    NASA Astrophysics Data System (ADS)

    Roldán Cañas, J.; Chipana, R.; Moreno-Pérez, M. F.; Chipana, G.

    2012-04-01

    In Bolivia, irrigation area is estimated in more than 250000 ha, being surface irrigation the most common method. In highland areas (Altiplano) and in interandean valleys, traditional and ancestral irrigation systems such as flood irrigation, contour furrows, zigzag corrugated furrows, suka kollus and irrigation by kanis, are the most important. In the case of very steep terrains and shallow soils, the zigzag corrugated irrigation method is very frequent. This irrigation method has been used for a long time but their low application efficiency and the shortage of water justify this work devoted to their characterization and to study their performance. The experimental study was conducted southeast of the city of La Paz in the community of Cebollino located at 2600 meters above sea level. Furrow characteristics vary in function of crop type and soil slope, so that the larger the slope the greater the separation between furrows. In our case, the crop chosen was the lettuce and the experimental plot had an area of 800 m2 with a slope ranging between 14 and 18%. Blocks of corrugated furrows were identified and experimental measures were made during each irrigation, once per week, in the central blocks to avoid border effects. To determine advance curves 15 stations were used spaced 18 m. At each station, advance and recession time and infiltration depth were measured. Inlet and outlet flow were controlled each 5 min. To calculate the reference evapotranspiration, the Hargraves-Samani equation was used. Due to the very high terrain slopes, the advance curve takes a linear form rather than the typical exponential form. This hinders the proper calculation of the parameters of the Kostiakov-Lewis equation used to determine the infiltrated depth values. The inlet flow range, along irrigation events, between 0.01 and 0.085 L/s due to the uncontrolled use of water in fields located upstream. The large variability of inflow flow difficult irrigation management especially in

  11. Multimode corrugated waveguide feed for monopulse radar

    NASA Astrophysics Data System (ADS)

    Clarricoats, P. J. B.; Elliot, R. D.

    1981-04-01

    The paper describes the behavior of a multimode corrugated feed for use in monopulse radar. Four square input waveguides are used to excite sum- and difference-channel modes. With appropriate choice of parameters it is possible to generate radiation patterns with low crosspolarization thus allowing the polarization characteristics of a target to be obtained. The results of an analysis of the relevant waveguide discontinuity problem are presented and a means to compensate phase differences between modes is also described. Some preliminary experimental results are found to be in accord with theory.

  12. [The corrugator supercilii muscle. A review].

    PubMed

    Bartolin, C; Lalo, J

    2008-12-01

    Corrugator supercilii is a facial, forehead and supra-orbital muscle. The frown glabellar wrinkles are mainly formed by repeated contractions of this muscle. These wrinkles will produce the picture of premature ageing even in a young person. Many treatments reduce or abolish the action of this muscle, enhancing the appearance of the glabellar area. We propose to review the recent material related to the anatomical characteristics of this muscle in order to build the necessary knowledge to optimize the result of these different treatments.

  13. Disappointment and regret enhance corrugator reactivity in a gambling task

    PubMed Central

    Wu, Yin; Clark, Luke

    2015-01-01

    This study investigated how the corrugator and zygomaticus respond to decision outcomes (i.e., gains and losses). We used a gambling task in which participants were presented with obtained followed by non-obtained outcomes. Activity at the corrugator site was sensitive to decision outcomes, such that higher obtained losses (disappointment) and higher non-obtained gains (regret) both heightened corrugator reactivity. Activity at the zygomaticus site was not responsive to obtained or non-obtained outcomes, but did show sensitivity to emotional images in the same participants, in the form of a positive linear relationship with self-reported emotional valence. Corrugator activity was negatively related to emotional valence. The findings indicate the sensitivity of corrugator to objective decision outcomes and also counterfactual comparisons, highlighting the utility of facial electromyography in research on decision making and gambling behavior. PMID:25345723

  14. Scalar Casimir-Polder forces for uniaxial corrugations

    SciTech Connect

    Doebrich, Babette; DeKieviet, Maarten; Gies, Holger

    2008-12-15

    We investigate the Dirichlet-scalar equivalent of Casimir-Polder forces between an atom and a surface with arbitrary uniaxial corrugations. The complexity of the problem can be reduced to a one-dimensional Green's function equation along the corrugation which can be solved numerically. Our technique is fully nonperturbative in the height profile of the corrugation. We present explicit results for experimentally relevant sinusoidal and sawtooth corrugations. Parameterizing the deviations from the planar limit in terms of an anomalous dimension which measures the power-law deviation from the planar case, we observe up to order-one anomalous dimensions at small and intermediate scales and a universal regime at larger distances. This large-distance universality can be understood from the fact that the relevant fluctuations average over corrugation structures smaller than the atom-wall distance.

  15. Corrugated Quantum Well Infrared Photodetectors and Arrays

    NASA Technical Reports Server (NTRS)

    Choi, K. K.; Chen, C. J.; Rohkinson, L. P.; Das, N. C.; Jhabvala, M.

    1999-01-01

    Quantum well infrared photodetectors (QWIPs) have many advantages in infrared detection, mainly due to the mature Ill-V material technology. The employment of the corrugation structure further advances the technology by providing a simple, yet efficient light-coupling scheme. A C-QWIP enjoys the same flexibility as a detector with intrinsic normal incident absorption. In this paper, we will discuss the utilities of C-QWIPs in different applications, including two-color detection and polarization-sensitive detection. Besides practical applications, C-QWIPs are also useful in detector characterization. They can be used for measuring the absorption coefficient of light propagating parallel to the layers under bias and providing information on the energy resolved photoconductive gain. These two quantities have never been measured before. Based on the corrugation design, we have made several modifications that further improve the detector sensitivity without increasing its complexity. Other than the C-QWIP structure, we also continue searching for other sensitive detector architectures. In a quantum grid infrared photodetector, 3-dimensional electron confinement can be achieved, with which the detector is able to absorb light in all directions. At the same time, the photoconductive gain can also be improved. We further improve the design using a blazed structure. All the experimental results are supported by a rigorous electromagnetic modal transmission-line theory developed especially for these types of structures. Preliminary thermal imaging using C-QWIP FPAs validates the advantages of the present approach.

  16. Corrugation Profile for the Quasioptical Polarization Separator

    NASA Astrophysics Data System (ADS)

    Koposova, E. V.; Lubyako, L. V.

    2014-07-01

    We consider and classify the regime of separation of two orthogonally polarized E and H waves by using a reflecting metal diffraction grating, which sends all the energy of an incident wave with one polarization to the specular order of diffraction, and that of an incident wave with the other polarization, to the (-1)st order of diffraction (in this case, the autocollimation regime is used). The conditions of existence of such a regime are studied in the simplest cases (generalization of the approach presented in [1, 2] to the case of a sinusoidal surface), along with the possibility to construct more complex (nonsinusoidal) corrugation profiles, for which the specified regime has certain advantages, e.g., a wider bandwidth. Examples of such profiles are presented. The studies are performed on the basis of numerical solution of the problem of diffraction of a plane electromagnetic wave by a perfectly conducting corrugated surface within the framework of the integral-equation method employing the authors' computer visualization code.

  17. Biased Brownian motion in extremely corrugated tubes

    NASA Astrophysics Data System (ADS)

    Martens, S.; Schmid, G.; Schimansky-Geier, L.; Hänggi, P.

    2011-12-01

    Biased Brownian motion of point-size particles in a three-dimensional tube with varying cross-section is investigated. In the fashion of our recent work, Martens et al. [Phys. Rev. E 83, 051135 (2011)] we employ an asymptotic analysis to the stationary probability density in a geometric parameter of the tube geometry. We demonstrate that the leading order term is equivalent to the Fick-Jacobs approximation. Expression for the higher order corrections to the probability density is derived. Using this expansion orders, we obtain that in the diffusion dominated regime the average particle current equals the zeroth order Fick-Jacobs result corrected by a factor including the corrugation of the tube geometry. In particular, we demonstrate that this estimate is more accurate for extremely corrugated geometries compared with the common applied method using a spatially-dependent diffusion coefficient D(x, f) which substitutes the constant diffusion coefficient in the common Fick-Jacobs equation. The analytic findings are corroborated with the finite element calculation of a sinusoidal-shaped tube.

  18. Composite corrugated structures for morphing wing skin applications

    NASA Astrophysics Data System (ADS)

    Thill, C.; Etches, J. A.; Bond, I. P.; Potter, K. D.; Weaver, P. M.

    2010-12-01

    Composite corrugated structures are known for their anisotropic properties. They exhibit relatively high stiffness parallel (longitudinal) to the corrugation direction and are relatively compliant in the direction perpendicular (transverse) to the corrugation. Thus, they offer a potential solution for morphing skin panels (MSPs) in the trailing edge region of a wing as a morphing control surface. In this paper, an overview of the work carried out by the present authors over the last few years on corrugated structures for morphing skin applications is first given. The second part of the paper presents recent work on the application of corrugated sandwich structures. Panels made from multiple unit cells of corrugated sandwich structures are used as MSPs in the trailing edge region of a scaled morphing aerofoil section. The aerofoil section features an internal actuation mechanism that allows chordwise length and camber change of the trailing edge region (aft 35% chord). Wind tunnel testing was carried out to demonstrate the MSP concept but also to explore its limitations. Suggestions for improvements arising from this study were deduced, one of which includes an investigation of a segmented skin. The overall results of this study show that the MSP concept exploiting corrugated sandwich structures offers a potential solution for local morphing wing skins for low speed and small air vehicles.

  19. Iron line variability of discoseismic corrugation modes

    NASA Astrophysics Data System (ADS)

    Tsang, David; Butsky, Iryna

    2013-10-01

    Using a fast semi-analytic raytracing code, we study the variability of relativistically broadened Fe-Kα lines due to discoseismic oscillations concentrated in the innermost regions of accretion discs around black holes. The corrugation mode, or c-mode, is of particular interest as its natural frequency corresponds well to the ˜0.1-15 Hz range observed for low-frequency quasi-periodic oscillations (LFQPOs) for lower spins. Comparison of the oscillation phase dependent variability and quasi-periodic oscillation-phase stacked Fe-Kα line observations will allow such discoseismic models to be confirmed or ruled out as a source of particular LFQPOs. The spectral range and frequency of the variability of the Fe-Kα line due to c-modes can also potentially be used to constrain the black hole spin if observed with sufficient temporal and spectral resolution.

  20. Fatigue testing of corrugated and Teflon hoses

    NASA Technical Reports Server (NTRS)

    Benner, Steve M.; Swanson, Theodore D.; Costello, Frederick A.

    1990-01-01

    Single and two-phase heat transport systems for the thermal control of large space facilities require fluid lines that traverse joints and either rotate or move in some other manner. Flexible hoses are being considered as one means of traversing these joints. To test the resilience of flexible hoses to bending stress, a test assembly was constructed to determine the number of flexing cycles the hoses could withstand before losing their ability to maintain a constant pressure. Corrugated metal hoses and Teflon hoses were tested at different pressures with nitrogen gas. The metal hoses had lives ranging from 30,000 to 100,000 flexing cycles. But, even after 400,000 cycles, the Teflon hoses remained essentially intact, though some leakage in the convoluted Teflon is noted.

  1. Effective Thermal Conductivity of Corrugated Insulating Materials

    NASA Astrophysics Data System (ADS)

    Yamada, Etsuro; Kato, Masayasu; Tomikawa, Takayuki; Takahashi, Kaneko

    The effective thermal conductivity of corrugated insulating materials which are made by polypropylene or polycarbonate have been measured by employing steady state comparison method for several specimen having various thickness and specific weight. The thermal conductivity of them evaluated are also by using the thermal resistance models, and are compared with above measured values and raw materials' conductivity. The main results obtained in this paper are as follows: (1) In regard to the specimen in this paper, the effective thermal conductivity increases with increasing temperature, but the increasing rate of them is small. (2) There are considerable differences between the measured values and the predicted ones that are estimated by using the thermal resistance model in which heat flow by conduction only. This differences increase with increasing specimens' thickness. This difference become extinct by considering the coexistence heat flow of conduction and radiation in the air phase of specimen. (3) The thermal resistance of specimen increases linearly with increasing specimens' thickness.

  2. Laser-Driven Corrugation Instability of Liquid Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Keilmann, Fritz

    1983-12-01

    During intense CO2-laser irradiation deep corrugations build up on liquid metals such as Hg, In, Sn, Al, and Pb. Spacing, orientation, growth, and decay of the corrugations are studied, by visible light diffraction; support is found for a model of stimulated scattering where the incident light parametrically decays into both the surface corrugation and a surface plasmon. Thermal evaporation supplies the nonlinearity. The instability provides polarization-dependent absorption and can be expected in laser-metalworking and laser-plasma situations.

  3. Propagation and radiation characteristics of a multimode corrugated waveguide feedhorn

    NASA Technical Reports Server (NTRS)

    Hoppe, D.

    1985-01-01

    A prototype of the multimode corrugated feedhorn which will be used in the 400 kW CW Ka-band radar system is described. A rough design is done using coupled mode theory and standard corrugated waveguide modes. A more exact analysis using mode matching techniques is then used which takes into account the effect of a finite number of corrugations per wavelength and determines the modes which are reflected from the device. A prototype feedhorn has been constructed and measured. These experimental results are then compared to the theoretical predictions which agree satisfactorily closely.

  4. Propagation and radiation characteristics of a multimode corrugated waveguide feedhorn

    NASA Astrophysics Data System (ADS)

    Hoppe, D.

    1985-08-01

    A prototype of the multimode corrugated feedhorn which will be used in the 400 kW CW Ka-band radar system is described. A rough design is done using coupled mode theory and standard corrugated waveguide modes. A more exact analysis using mode matching techniques is then used which takes into account the effect of a finite number of corrugations per wavelength and determines the modes which are reflected from the device. A prototype feedhorn has been constructed and measured. These experimental results are then compared to the theoretical predictions which agree satisfactorily closely.

  5. Diverse corrugation pattern in radially shrinking carbon nanotubes

    SciTech Connect

    Shima, Hiroyuki; Sato, Motohiro; Iiboshi, Kohtaroh; Ghosh, Susanta; Arroyo, Marino

    2010-08-15

    Stable cross sections of multiwalled carbon nanotubes subjected to electron-beam irradiation are investigated in the realm of the continuum mechanics approximation. The self-healing nature of sp{sup 2} graphitic sheets implies that selective irradiation of the outermost walls causes their radial shrinkage with the remaining inner walls undamaged. The shrinking walls exert high pressure on the interior part of nanotubes, yielding a wide variety of radial-corrugation patterns (i.e., circumferentially wrinkling structures) in the cross section. All corrugation patterns can be classified into two deformation phases for which the corrugation amplitudes of the innermost wall differ significantly.

  6. A comparative study of corrugated horn design by evolutionary techniques

    NASA Technical Reports Server (NTRS)

    Hoorfar, A.

    2003-01-01

    Here an evolutionary programming algorithm is used to optimize the pattern of a corrugated circular horn subject to various constraints on return loss, antenna beamwidth, pattern circularity, and low cross polarization.

  7. 7. DETAIL VIEW UNDER BRIDGE OF CORRUGATED STEEL, BEAMS, RODS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL VIEW UNDER BRIDGE OF CORRUGATED STEEL, BEAMS, RODS, AND ABUTMENT - Price River Bridge, Spanning Price River, 760 North Street in Carbonville, 1 mile northwest of Price, Carbonville, Carbon County, UT

  8. Hydrodynamics of Gas-Liquid Counterflow Through Corrugated Parallel Plates

    SciTech Connect

    de Almeida, V.F.

    1999-11-05

    Structured packings utilized in today's distillation packed towers consist of stacked units of many vertically oriented parallel corrugated plates. The V-shaped corrugations are oriented at a fixed angle with respect to the vertical direction, and the corrugation angle in adjacent plates are oriented in reverse direction. Points of contact, at the crests of the corrugations, between adjacent plates, form an unconsolidated porous medium with known topology. Modern structured packings have been gaining acceptance in several separation processes, particularly distillation where gas/vapor and liquid flow countercurrently through the packing. In addition, structured packings have been credited with relatively low pressure drop, high efficiency, low holdup, and higher capacity; the packing also can be made corrosion resistive.

  9. 15. Culvert and corrugated pipe with place of a thousand ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Culvert and corrugated pipe with place of a thousand drips in background looking S. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN

  10. 1. Elkmont vehicle bridge at Elkmont Campground, galvanized corrugated arch. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Elkmont vehicle bridge at Elkmont Campground, galvanized corrugated arch. - Great Smoky Mountains National Park Roads & Bridges, Elkmont Vehicle Bridge, Spanning Little River at Elkmont Campground, Gatlinburg, Sevier County, TN

  11. Bandwidth Study of the Microwave Reflectors with Rectangular Corrugations

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; He, Wenlong; Donaldson, Craig R.; Cross, Adrian W.

    2016-09-01

    The mode-selective microwave reflector with periodic rectangular corrugations in the inner surface of a circular metallic waveguide is studied in this paper. The relations between the bandwidth and reflection coefficient for different numbers of corrugation sections were studied through a global optimization method. Two types of reflectors were investigated. One does not consider the phase response and the other does. Both types of broadband reflectors operating at W-band were machined and measured to verify the numerical simulations.

  12. Do Steel Bridges Prevent Rail Corrugations?

    NASA Astrophysics Data System (ADS)

    Meinke, Peter; Stephanides, Johannes

    2010-03-01

    Rail corrugations (germ. "Schlupfwellen") are wear pattern, which emerge during the transits of railway vehicles at narrow railway curves (R ≤ 250 m) and they are a menace to railway operators, especially if their railroad network exists in mountains. Therefore ÖBB started recently a research program "OBO" (Optimierter Bogenoberbau) for better understanding and avoidance of "Schlupfwellen", which is mainly experimentally oriented. As a representative test track was the extended famous narrow curve at the valley of Brixen close to Kitzbühl chosen, and two Measurement sites where there established, one embedded in the ballasted track bed and another one on a steel bridge, situated in this curve. Measuring the passing trains, a rearly astonishing fact was discovered: Whereas in the ballasted track all well known typical features occur (vibration, bending and torsion of the rail,…), which produce the wear created Schlupfwellen and the dedicated grumbling noise, the wheelsets run properly on the steel bridge track and pass "friendly" the associated curve segment! Dicussing the ascertained fact, it was realized that on many European steel bridges such phenomena happens! The paper ends assuming that a broad-band vibration of the rail heads upon the steel bridge reduces the friction coefficient in the wheel/rail contact area ("Flange oilers"). This can be the reason for the smooth travel at the bridge. This may also be the basis for a technical application to overcome the generation of Schlupfwellen?

  13. Silo with a Corrugated Sheet Wall

    NASA Astrophysics Data System (ADS)

    Németh, Csaba; Brodniansky, Ján

    2013-09-01

    Silos and tanks are currently being used to create reserves of stored materials. Their importance is based on balancing the production and consumption of bulk materials to establish an adequate reserve throughout the year. The case study introduced within the framework of this paper focuses on thin-walled silos made of corrugated sheets and on an approach for designing these types of structures. The storage of bulk materials causes compression or tensile stresses in the walls of a silo structure. The effect of a frictional force in the silo walls creates an additional bending moment in a wave, which ultimately affects the resulting bending moments. Several mathematical and physical models were used in order to examine various types of loading and their effects on a structure. Subsequently, the accuracy of the computational models was verified by experimental measurements on a grain silo in Bojničky, Slovakia. A comparison of the experimental and mathematical models shows a reasonable match and confirms the load specifications, while indicating that the mathematical model was correct.

  14. Directional and enhanced spontaneous emission with a corrugated metal probe

    NASA Astrophysics Data System (ADS)

    Shen, Hongming; Lu, Guowei; He, Yingbo; Cheng, Yuqing; Liu, Haitao; Gong, Qihuang

    2014-06-01

    A three-dimensional corrugated metal tapered probe with surface corrugated gratings at the tip apex is proposed and investigated theoretically, which leads to an obvious emission beaming effect of spontaneous emission from a single emitter near the probe. In contrast with conventional apertureless metal probes, where only the enhancement of an optical near-field is concerned, the corrugated probe is able to manipulate local excitation intensity and far-field emission direction simultaneously. The angular emission from a single dipole source, being placed close to the corrugated probe, falls into a cone with a maximum directivity angle of +/-11.6°, which improves the collection efficiency 25-fold. Such a probe simultaneously increases the localized field intensity to about twice as strong as the conventional bare tip. In addition, the radiation pattern is sensitive to the working wavelength and the dipole to tip-apex separation. These findings make a promising route to the development of plasmonic spontaneous emission manipulation based on corrugated tapered antenna--for instance, tip-enhanced spectroscopy, single-molecule sensing, and single-photon source .

  15. Detection of rail corrugation based on fiber laser accelerometers

    NASA Astrophysics Data System (ADS)

    Huang, Wenzhu; Zhang, Wentao; Du, Yanliang; Sun, Baochen; Ma, Huaixiang; Li, Fang

    2013-09-01

    Efficient inspection methods are necessary for detection of rail corrugation to improve the safety and ride quality of railway operations. This paper presents a novel fiber optic technology for detection of rail corrugation based on fiber laser accelerometers (FLAs), tailored to the measurement of surface damage on rail structures. The principle of detection of rail corrugation using double integration of axle-box acceleration is presented. Then we present the theoretical model and test results of FLAs which are installed on the bogie to detect the vertical axle-box acceleration of the train. Characteristics of high sensitivity and large dynamic range are achieved when using fiber optic interferometric demodulation. A flexible inertial algorithm based on double integration and the wavelet denoising method is proposed to accurately estimate the rail corrugation. A field test is carried out on the Datong-Qinhuangdao Railway in north China. The test results are compared with the results of a rail inspection car, which shows that the fiber laser sensing system has a good performance in monitoring rail corrugation.

  16. Corrugated horn of HE/11/ and HE/21/ mode

    NASA Astrophysics Data System (ADS)

    Yang, S.-H.; Ke, S.-R.; Peng, G.-Z.

    A corrugated, monopulse feed conical horn is described which uses HE(11) as the sum mode and HE(21) as the difference mode. It is shown that when the horn aperture radius-to-free space wavelength ratio is large, the balanced hybrid condition can be met for both modes in order to yield rotational symmetry beams and low sidelobe levels. A discussion is given of the mode selection method which uses special points on trace charts, and that which uses a ringloaded, corrugated taper section as the transformation section from the smooth-wall waveguide to the corrugated horn. The input voltage standing wave ratio measured in the sum channel is less than 1.05 in 20% bandwidth.

  17. Corrugated capillary as THz Cherenkov Smith-Purcell radiator

    NASA Astrophysics Data System (ADS)

    Lekomtsev, K. V.; Aryshev, A. S.; Tishchenko, A. A.; Ponomarenko, A. A.; Sukharev, V. M.; Terunuma, N.; Urakawa, J.; Strikhanov, M. N.

    2016-07-01

    In this article we discussed Particle In Cell electromagnetic simulations and mechanical design of dielectric capillaries that produce THz Cherenkov Smith-Purcell radiation (ChSPR), arising when a femtosecond electron multi-bunch beam propagates through corrugated and non-corrugated dielectric capillaries with metallic radiation reflectors. We investigated the influence of the four-bunch beam on the SPR field spectrum and on the ChSPR power spectrum, and the influence of the non-central beam propagation on the ChSPR power spectrum. We also discussed the design and assembly of the capillaries, constructed as sets of cylindrical rings.

  18. A corrugated termination shock in pulsar wind nebulae?

    NASA Astrophysics Data System (ADS)

    Lemoine, Martin

    2016-08-01

    > Successful phenomenological models of pulsar wind nebulae assume efficient dissipation of the Poynting flux of the magnetized electron-positron wind as well as efficient acceleration of the pairs in the vicinity of the termination shock, but how this is realized is not yet well understood. This paper suggests that the corrugation of the termination shock, at the onset of nonlinearity, may lead towards the desired phenomenology. Nonlinear corrugation of the termination shock would convert a fraction of order unity of the incoming ordered magnetic field into downstream turbulence, slowing down the flow to sub-relativistic velocities. The dissipation of turbulence would further preheat the pair population on short length scales, close to equipartition with the magnetic field, thereby reducing the initial high magnetization to values of order unity. Furthermore, it is speculated that the turbulence generated by the corrugation pattern may sustain a relativistic Fermi process, accelerating particles close to the radiation reaction limit, as observed in the Crab nebula. The required corrugation could be induced by the fast magnetosonic modes of downstream nebular turbulence; but it could also be produced by upstream turbulence, either carried by the wind or seeded in the precursor by the accelerated particles themselves.

  19. Bending of five-layer beams with crosswise corrugated main core

    SciTech Connect

    Magnucka-Blandzi, Ewa; Walczak, Zbigniew

    2015-03-10

    The subject of the study is one orthotropic thin-walled sandwich beam with trapezoidal core and two-layer facings. The outer layers of facings are flat, but inner layers are trapezoidal corrugated. The main core of the beam is also trapezoidal corrugated – in perpendicular direction to the corrugation of inner layers of facings. The beam is with lengthwise corrugated layers and crosswise corrugated main core. The mathematical and physical model of this beam is formulated, and also the field of displacements. The system of equilibrium equations is analytically derived using the energy method. The obtained solutions will be verified numerically (FEM)

  20. Condensation of refrigerants flowing inside smooth and corrugated tubes

    SciTech Connect

    Hinton, D.L.; Conklin, J.C.; Vineyard, E.A.

    1995-07-01

    Because heat exchanger thermal performance has a direct fluence on the overall cycle performance of vapor-compression refrigeration machinery,enhanced heat transfer surfaces are of interest to improve the efficiency of heat pumps and air conditioners. We investigated R-22 and a nonazeotropic refrigerant mixture (NARM) of 75% R-143a and 25% R-124 (by mass) to study their thermal performance in a condenser made of conventional smooth tubes and another condenser made of corrugated, or spirally indented, tubes. We investigated the condensing heat transfer and pressure drop characteristics in an experimental test loop model of a domestic beat pump system employing a variable speed compressor. The refrigerant circulates inside the central tube and the water circulates in the annulus. At refrigerant mass fluxes of approximately 275--300 kg/m{sup 2}s, the measured irreversible pressure drop of the corrugated surface was 23% higher than that of the smooth surface for the R-22. At refrigerant mass fluxes of 350-370 kg/m{sup 2}s, the irreversible pressure drop of the corrugated surface was 36% higher than that of the smooth surface for the NARM. The average heat transfer coefficient for the corrugated surface for R-22 was roughly 40% higher than that for the smooth tube surface at refrigerant mass fluxes of 275--295 kg/m{sup 2}s. The average heat transfer coefficient for the corrugated surface for the NARM was typically 70% higher than that for the smooth tube surface at refrigerant mass fluxes of 340--385 kg/m{sup 2}s.

  1. Test of superplastically formed corrugated aluminum compression specimens with beaded webs

    NASA Technical Reports Server (NTRS)

    Davis, Randall C.; Royster, Dick M.; Bales, Thomas T.; James, William F.; Shinn, Joseph M., Jr.

    1991-01-01

    Corrugated wall sections provide a highly efficient structure for carrying compressive loads in aircraft and spacecraft fuselages. The superplastic forming (SPF) process offers a means to produce complex shells and panels with corrugated wall shapes. A study was made to investigate the feasibility of superplastically forming 7475-T6 aluminum sheet into a corrugated wall configuration and to demonstrate the structural integrity of the construction by testing. The corrugated configuration selected has beaded web segments separating curved-cap segments. Eight test specimens were fabricated. Two specimens were simply a single sheet of aluminum superplastically formed to a beaded-web, curved-cap corrugation configuration. Six specimens were single-sheet corrugations modified by adhesive bonding additional sheet material to selectively reinforce the curved-cap portion of the corrugation. The specimens were tested to failure by crippling in end compression at room temperature.

  2. Aerodynamic effects of corrugation and deformation in flapping wings of hovering hoverflies.

    PubMed

    Du, Gang; Sun, Mao

    2012-05-01

    We investigated the aerodynamic effects of wing deformation and corrugation of a three-dimensional model hoverfly wing at a hovering condition by solving the Navier-Stokes equations on a dynamically deforming grid. Various corrugated wing models were tested. Insight into whether or not there existed significant aerodynamic coupling between wing deformation (camber and twist) and wing corrugation was obtained by comparing aerodynamic forces of four cases: a smooth-plate wing in flapping motion without deformation (i.e. a rigid flat-plate wing in flapping motion); a smooth-plate wing in flapping motion with deformation; a corrugated wing in flapping motion without deformation (i.e. a rigid corrugated wing in flapping motion); a corrugated wing in flapping motion with deformation. There was little aerodynamic coupling between wing deformation and corrugation: the aerodynamic effect of wing deformation and corrugation acting together was approximately a superposition of those of deformation and corrugation acting separately. When acting alone, the effect of wing deformation was to increase the lift by 9.7% and decrease the torque (or aerodynamic power) by 5.2%, and that of wing corrugation was to decrease the lift by 6.5% and increase the torque by 2.2%. But when acting together, the wing deformation and corrugation only increased the lift by ~3% and decreased the torque by ~3%. That is, the combined aerodynamic effect of deformation and corrugation is rather small. Thus, wing corrugation is mainly for structural, not aerodynamic, purpose, and in computing or measuring the aerodynamic forces, using a rigid flat-plate wing to model the corrugated deforming wing at hovering condition can be a good approximation. PMID:22266123

  3. Aerodynamic effects of corrugation and deformation in flapping wings of hovering hoverflies.

    PubMed

    Du, Gang; Sun, Mao

    2012-05-01

    We investigated the aerodynamic effects of wing deformation and corrugation of a three-dimensional model hoverfly wing at a hovering condition by solving the Navier-Stokes equations on a dynamically deforming grid. Various corrugated wing models were tested. Insight into whether or not there existed significant aerodynamic coupling between wing deformation (camber and twist) and wing corrugation was obtained by comparing aerodynamic forces of four cases: a smooth-plate wing in flapping motion without deformation (i.e. a rigid flat-plate wing in flapping motion); a smooth-plate wing in flapping motion with deformation; a corrugated wing in flapping motion without deformation (i.e. a rigid corrugated wing in flapping motion); a corrugated wing in flapping motion with deformation. There was little aerodynamic coupling between wing deformation and corrugation: the aerodynamic effect of wing deformation and corrugation acting together was approximately a superposition of those of deformation and corrugation acting separately. When acting alone, the effect of wing deformation was to increase the lift by 9.7% and decrease the torque (or aerodynamic power) by 5.2%, and that of wing corrugation was to decrease the lift by 6.5% and increase the torque by 2.2%. But when acting together, the wing deformation and corrugation only increased the lift by ~3% and decreased the torque by ~3%. That is, the combined aerodynamic effect of deformation and corrugation is rather small. Thus, wing corrugation is mainly for structural, not aerodynamic, purpose, and in computing or measuring the aerodynamic forces, using a rigid flat-plate wing to model the corrugated deforming wing at hovering condition can be a good approximation.

  4. Direct Acceleration of Electrons in a Corrugated Plasma Channel

    SciTech Connect

    Palastro, J. P.; Antonsen, T. M.; Morshed, S.; York, A. G.; Layer, B.; Aubuchon, M.; Milchberg, H. M.; Froula, D. H.

    2009-01-22

    Direct laser acceleration of electrons provides a low power tabletop alternative to laser wakefield accelerators. Until recently, however, direct acceleration has been limited by diffraction, phase matching, and material damage thresholds. The development of the corrugated plasma channel [B. Layer et al., Phys. Rev. Lett. 99, 035001 (2007)] has removed all of these limitations and promises to allow direct acceleration of electrons over many centimeters at high gradients using femtosecond lasers [A. G. York et al., Phys Rev. Lett 100, 195001 (2008), J. P. Palastro et al., Phys. Rev. E 77, 036405 (2008)]. We present a simple analytic model of laser propagation in a corrugated plasma channel and examine the laser-electron beam interaction. Simulations show accelerating gradients of several hundred MeV/cm for laser powers much lower than required by standard laser wakefield schemes. In addition, the laser provides a transverse force that confines the high energy electrons on axis, while expelling low energy electrons.

  5. Progress Toward Corrugated Feed Horn Arrays in Silicon

    SciTech Connect

    Britton, J.; Yoon, K. W.; Beall, J. A.; Becker, D.; Cho, H. M.; Hilton, G. C.; Niemack, M. D.; Irwin, K. D.

    2009-12-16

    We are developing monolithic arrays of corrugated feed horns fabricated in silicon for dual-polarization single-mode operation at 90, 145 and 220 GHz. The arrays consist of hundreds of platelet feed horns assembled from gold-coated stacks of micro-machined silicon wafers. As a first step, Au-coated Si waveguides with a circular, corrugated cross section were fabricated; their attenuation was measured to be less than 0.15 dB/cm from 80 to 110 GHz at room temperature. To ease the manufacture of horn arrays, electrolytic deposition of Au on degenerate Si without a metal seed layer was demonstrated. An apparatus for measuring the radiation pattern, optical efficiency, and spectral band-pass of prototype horns is described. Feed horn arrays made of silicon may find use in measurements of the polarization anisotropy of the cosmic microwave background radiation.

  6. Optimization of the leading edge segment of a corrugated wing

    NASA Astrophysics Data System (ADS)

    Khurana, Manas; Chahl, Javaan

    2014-03-01

    Insect wings consist of flat plates of membranes stiffened by spars. The effect of this structure is that the wings appear as corrugated surfaces when considered on chordwise sections. We know that aerodynamically efficient insects such as a dragonfly engage in fixed wing flight modes for extended periods. The analysis in the literature has shown that the aerodynamic efficiency (cl/cd) of a corrugated aerofoil is sensitive to Reynolds number (Re) and angle-of-attack (AoA), yet the conclusions established are on the basis of flow analysis on a single baseline shape only. The sample size of the aerofoils must be extended further so that the influence and merits of corrugated shape features can be established. In this work, a design-of-experiments (DoE) approach is applied to induce systematic shape perturbations on a select, off-the-shelf baseline shape one feature at a time over a set number of increments. At each shape increment, the aerodynamic forces are established using a high fidelity CFD solver. The design space is modeled at a Re of 20,000 and 34,000 and at flow angle of 4.0° to represent a Micro Air Vehicle (MAV) in glide. The results confirmed the importance of the leading and trailing edge deflections on cl/cd. At Re = 20, 000, cl/cd of a corrugated aerofoil with deflection at the leading edge region only is 16% higher than the baseline shape, and 39% higher than the flat plate. At Re = 34, 000, cl/cd performance is sensitive to the trailing edge deflection. At the optimum deflection setting, cl/cd is 18% higher than the baseline shape and 23% higher than the flat plate. The results confirm that the leading and trailing edge deflections are critical to cl/cd for a MAV in glide.

  7. Dispersion of helically corrugated waveguides: Analytical, numerical, and experimental study

    NASA Astrophysics Data System (ADS)

    Burt, G.; Samsonov, S. V.; Ronald, K.; Denisov, G. G.; Young, A. R.; Bratman, V. L.; Phelps, A. D.; Cross, A. W.; Konoplev, I. V.; He, W.; Thomson, J.; Whyte, C. G.

    2004-10-01

    Helically corrugated waveguides have recently been studied for use in various applications such as interaction regions in gyrotron traveling-wave tubes and gyrotron backward-wave oscillators and as a dispersive medium for passive microwave pulse compression. The paper presents a summary of various methods that can be used for analysis of the wave dispersion of such waveguides. The results obtained from an analytical approach, simulations with the three-dimensional numerical code MAGIC, and cold microwave measurements are analyzed and compared.

  8. Corrugated outer sheath gas-insulated transmission line

    DOEpatents

    Kemeny, George A.; Cookson, Alan H.

    1981-01-01

    A gas-insulated transmission line includes two transmission line sections each of which are formed of a corrugated outer housing enclosing an inner high-voltage conductor disposed therein, with insulating support means supporting the inner conductor within the outer housing and an insulating gas providing electrical insulation therebetween. The outer housings in each section have smooth end sections at the longitudinal ends thereof which are joined together by joining means which provide for a sealing fixed joint.

  9. Flow Pressure Loss through Straight Annular Corrugated Pipes

    NASA Technical Reports Server (NTRS)

    Sargent, Joseph R.; Kirk, Daniel R.; Marsell, Brandon; Roth, Jacob; Schallhorn, Paul A.; Pitchford, Brian; Weber, Chris; Bulk, Timothy

    2016-01-01

    Pressure loss through annular corrugated pipes, using fully developed gaseous nitrogen representing purge pipes in spacecraft fairings, was studied to gain insight into a friction factor coefficient for these pipes. Twelve pipes were tested: four Annuflex, four Masterflex and two Titeflex with ¼”, 3/8”, ½” and ¾” inner diameters. Experimental set-up was validated using smooth-pipe and showed good agreement to the Moody diagram. Nitrogen flow rates between 0-200 standard cubic feet per hour were used, producing approximate Reynolds numbers from 300-23,000. Corrugation depth varied from 0.248 = E/D = 0.349 and relative corrugation pitch of 0.192 = P/D = 0.483. Differential pressure per unit length was measured and calculated using 8-9 equidistant pressure taps. A detailed experimental uncertainty analysis, including correlated bias error terms, is presented. Results show larger differential pressure losses than smooth-pipes with similar inner diameters resulting in larger friction factor coefficients.

  10. Evaporation characteristics of R22 flowing inside a corrugated tube

    SciTech Connect

    Hinton, D.L.; Conklin, J.C.; Vineyard, E.A.

    1992-07-01

    Because heat exchanger thermal performance has a direct influence on the overall cycle performance of vapor-compression refrigeration machinery, enhanced heat transfer surfaces are of interest to improve the efficiency of heat pumps and air conditioners. As part of a larger program investigating nonazeotropic refrigerant mixtures for replacement of chlorofluorocarbon compounds, we investigated the performance of R22 (chlorodifluoromethane) in conventional smooth tubes and enhanced heat transfer tube geometries as a base case. This paper presents the results of this initial investigation for a smooth tube and a tube with a commonly available enhanced heat transfer surface, called corrugated or spirally indented. We investigated the evaporating heat transfer and pressure drop characteristics in an experimental apparatus consisting of a variable-speed compressor and two sets of counterflow concentric-tube heat exchangers having both smooth and corrugated enhanced tubeside surfaces. The refrigerant circulates inside the central tube and water circulates in the annulus. The measured pressure drop and the heat transfer coefficient for the evaporation of the R22 are presented as a function of heat flux, quality, and mass flux for both heat transfer surfaces. Both the heat transfer coefficient and the pressure drop of the corrugated surface are higher than those of the smooth surface at any given refrigerant condition. The heat transfer enhancement is most notable at low mass qualities.

  11. PROCESSING OF NANOSTRUCTURED COPPER BY REPETITIVE CORRUGATION AND STRAIGHTENING (RCS)

    SciTech Connect

    Zhu, Y.T.; Jiang, H.

    2000-10-01

    A new process, Repetitive Corrugation and Straightening (RCS), has been developed to create bulk, nanostructured copper. In this investigation, a high purity (99.99%). copper bar measuring 6 x 6 x 50 mm with an average grain size of 765 {micro}m was used as the starting material. It was repetitively corrugated and straightened for 14 times with 90{degree} rotations along its longitudinal axis between consecutive corrugation-straightening cycles. The copper was cooled to below room temperature before each RCS cycle. The grain size obtained after the RCS process was in the range of twenty to a few hundred nanometers, and microhardness was increased by 100%. Both equilibrium and non-equilibrium grain boundaries are observed. This work demonstrates the capability of the RCS process in refining grain size of metal materials. The RCS process can be easily adapted to large-scale industrial production and has the potential to pave the way to large-scale structural applications of nanostructured materials.

  12. Wall shape optimization for a thermosyphon loop featuring corrugated pipes

    NASA Astrophysics Data System (ADS)

    Rosen Esquivel, Patricio I.; ten Thije Boonkkamp, Jan H. M.; Dam, Jacques A. M.; Mattheij, Robert M. M.

    2012-06-01

    In the present paper we address the problem of optimal wall-shape design of a single phase laminar thermosyphon loop. The model takes the buoyancy forces into account via the Boussinesq approximation. We focus our study on showing the effects of wall shape on the flow and on the temperature inside the thermosyphon. To this extend we determine the dependency of the flow rate and the increase in temperature, on the geometrical characteristics of the loop. The geometry considered is a set of axially symmetric corrugated pipes described by a set of parameters; namely the pipe inner radius, the period of the corrugation, the amplitude of the corrugation, and the ratio of expansion and contraction regions of a period of the pipe. The governing equations are solved using the Finite Element Method, in combination with an adaptive mesh refinement technique in order to capture the effects of wall shape. We characterize the effects of the amplitude and of the ratio of expansion and contraction. In particular we show that for a given fixed amplitude it is possible to find an optimal ratio of expansion and contraction that minimizes the temperature inside the thermosyphon. The results show that by adequately choosing the design parameters, the performance of the thermosyphon loop can be improved.

  13. Experimental Investigation of the Strength of Multiweb Beams with Corrugated Webs

    NASA Technical Reports Server (NTRS)

    Fraser, Allister F

    1956-01-01

    The results of an experimental investigation of the strength of multiweb beams with corrugated webs are reported. Included in the investigation were two types of connection between the web and the skin. A comparison between the structural efficiency of corrugated-web and channel-web multiweb beams is presented, and it is shown that, for a considerable range of the structural index, corrugated-web beams can be built which are structurally more efficient than channel-web beams.

  14. Numerical exploration of the origin of aerodynamic enhancements in [low-Reynolds number] corrugated airfoils

    NASA Astrophysics Data System (ADS)

    Barnes, Caleb J.; Visbal, Miguel R.

    2013-11-01

    This paper explores the flow structure of a corrugated airfoil using a high-fidelity implicit large eddy simulation approach. The first three-dimensional simulations for a corrugated wing section are presented considering a range of Reynolds numbers of Rec = 5 × 103 to 5.8 × 104 bridging the gap left by previous numerical and experimental studies. Several important effects are shown to result from the corrugations in the leading-edge region. First, interaction between the detached shear layer and the first corrugation peak promotes recirculation upstream and enhances transition to turbulence due to flow instabilities. Thus, early transitional flow develops on the corrugated wing which helps to delay stall even at Reynolds numbers as low as Rec = 1 × 104. Transition is shown to occur as early as Rec = 7.5 × 103 and quickly advances toward the leading-edge as Reynolds number is increased. Modification of the first corrugation peak height produces significantly reduced separation and improved aerodynamic forces demonstrating the sensitivity of flow behavior to leading-edge geometry. Second, the unusual orientation of the corrugated surface and strong suction resulting from rapidly turning fluid over the separated region upstream of the first corrugation produces a new effect which serves to reduce drag. This effect was amplified through the enhanced interaction produced by a modified geometry. Corrugations were found to be most advantageous in the leading-edge region and could be optimized to properly take advantage of the flow field under different operating conditions.

  15. Outcoupling efficiency of OLEDs with 2D periodical corrugation at the cathode

    NASA Astrophysics Data System (ADS)

    Belousov, Sergei; Bogdanova, Maria; Teslyuk, Anton

    2016-03-01

    We study theoretically the optical performance of organic light-emitting diodes (OLEDs) with 2D periodical corrugation at the cathode. We show how emergence of radiative surface plasmon resonances at the 2D corrugated cathode leads to the enhancement of the outcoupling efficiency of the OLED, which is primarily due to the outcoupling of emission generated by vertically oriented emitting excitons in the emission layer. We analyze the outcoupling efficiency of the OLED as a function of geometrical parameters of the corrugation and establish design rules for optimal outcoupling enhancement with the 2D corrugation at the cathode.

  16. Plastic Surgery

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Plastic Surgery KidsHealth > For Teens > Plastic Surgery Print A ... her forehead lightened with a laser? What Is Plastic Surgery? Just because the name includes the word " ...

  17. Surface-plasmon cross coupling in molecular fluorescence near a corrugated thin metal film

    NASA Technical Reports Server (NTRS)

    Gruhlke, R. W.; Holland, W. R.; Hall, D. G.

    1968-01-01

    Surface plasmons on opposite sides of a thin metal film can cross couple in the presence of a surface corrugation, or grating. The observation of this cross-coupling phenomenon as a radiative-decay mechanism for molecules near a corrugated thin metal film is reported.

  18. Three-dimensional train track model for study of rail corrugation

    NASA Astrophysics Data System (ADS)

    Jin, X. S.; Wen, Z. F.; Wang, K. Y.; Zhou, Z. R.; Liu, Q. Y.; Li, C. H.

    2006-06-01

    Rail corrugation is a main factor causing the vibration and noise from the structures of railway vehicles and tracks. A calculation model is put forward to analyse the effect of rail corrugation with different depths and wavelengths on the dynamical behaviour of a passenger car and a curved track in detail. Also the evolution of initial corrugation with different wavelengths is investigated. In the numerical analysis, Kalker's non-Hertzian rolling contact theory is modified and used to calculate the frictional work density on the contact area of the wheel and rail in rolling contact. The material loss per unit area is assumed to be proportional to the frictional work density to determine the wear depth of the contact surfaces of the curved rails. The combined influences of the corrugation development and the vertical and lateral coupled dynamics of the passenger car and the curved track are taken into account. The numerical results indicate that: (1) the corrugation with high passing frequencies has a great influence on the dynamical performance of the wheelset and track, but little on the car-body and the bogie frame; (2) the deeper the corrugation depth is, the greater the influence and the rail material wear are; but the longer the corrugation wavelength is, the smaller the influence and the wear are; and (3) the initial corrugation with a fixed wavelength on the rail running surface decreases with increasing number of the passenger car passages.

  19. The biofouling potential of flow on corrugated surfaces

    NASA Astrophysics Data System (ADS)

    Miño, Gastón L.; Rusconi, Roberto; Kantsler, Vasily; Stocker, Roman

    2015-11-01

    Both natural and man-made surfaces are rarely smooth, and are instead often characterized by geometric heterogeneity or roughness over a broad range of scales. Because of the predicted importance of the local interaction between microorganisms and surfaces, roughness at the microbial scale can be an important element in determining the outcome of microbe-surface interactions, which represent the first step in biofilm formation and biofouling. In microbial habitats this interaction often occurs in flowing fluids, which can be important because regions with high hydrodynamic shear can induce a strong reorientation of bacteria towards surfaces, promoting attachment. Here we study the combination of flow and surface topography using video microscopy of Escherichia coli in corrugated microfluidic channels. We report that flow preferentially promotes attachment to specific regions of a corrugated surface, as result of the hydrodynamics of bacteria swimming in flow. We compute from the data a ``Local Biofouling Potential'' (LBP) and compare this successfully with predictions of a mathematical model, yielding one step towards the ability to mechanistically predict and thus ultimately either prevent or induce biofouling.

  20. Imaging Local Electronic Corrugations and Doped Regions in Graphene

    SciTech Connect

    B Schultz; C Patridge; V Lee; C Jaye; P Lysaght; C Smith; J Barnett; D Fischer; D Prendergast; S Banerjee

    2011-12-31

    Electronic structure heterogeneities are ubiquitous in two-dimensional graphene and profoundly impact the transport properties of this material. Here we show the mapping of discrete electronic domains within a single graphene sheet using scanning transmission X-ray microscopy in conjunction with ab initio density functional theory calculations. Scanning transmission X-ray microscopy imaging provides a wealth of detail regarding the extent to which the unoccupied levels of graphene are modified by corrugation, doping and adventitious impurities, as a result of synthesis and processing. Local electronic corrugations, visualized as distortions of the {pi}*cloud, have been imaged alongside inhomogeneously doped regions characterized by distinctive spectral signatures of altered unoccupied density of states. The combination of density functional theory calculations, scanning transmission X-ray microscopy imaging, and in situ near-edge X-ray absorption fine structure spectroscopy experiments also provide resolution of a longstanding debate in the literature regarding the spectral assignments of pre-edge and interlayer states.

  1. Corrugated Waveguide Mode Content Analysis Using Irradiance Moments

    PubMed Central

    Jawla, Sudheer K.; Shapiro, Michael A.; Idei, Hiroshi; Temkin, Richard J.

    2015-01-01

    We present a novel, relatively simple method for determining the mode content of the linearly polarized modes of a corrugated waveguide using the moments of the intensity pattern of the field radiated from the end of the waveguide. This irradiance moment method is based on calculating the low-order irradiance moments, using measured intensity profiles only, of the radiated field from the waveguide aperture. Unlike the phase retrieval method, this method does not use or determine the phase distribution at the waveguide aperture. The new method was benchmarked numerically by comparison with sample mode mixtures. The results predict less than ±0.7% error bar in the retrieval of the mode content. The method was also tested using high-resolution experimental data from beams radiated from 63.5 mm and 19 mm corrugated waveguides at 170 and 250 GHz, respectively. The results showed a very good agreement of the mode content retrieved using the irradiance moment method versus the phase retrieval technique. The irradiance moment method is most suitable for cases where the modal power is primarily in the fundamental HE11 mode, with <8% of the power in high-order modes. PMID:25821260

  2. Plastic Jellyfish.

    ERIC Educational Resources Information Center

    Moseley, Christine

    2000-01-01

    Presents an environmental science activity designed to enhance students' awareness of the hazards of plastic waste for wildlife in aquatic environments. Discusses how students can take steps to reduce the effects of plastic waste. (WRM)

  3. Study on rail corrugation of a metro tangential track with Cologne-egg type fasteners

    NASA Astrophysics Data System (ADS)

    Cui, X. L.; Chen, G. X.; Yang, H. G.; Zhang, Q.; Ouyang, H.; Zhu, M. H.

    2016-03-01

    In Chinese metro lines, rail corrugation on both tangential and tight curved tracks with Cologne-egg type fasteners is very severe. Based on the viewpoint of friction-induced vibration causing rail corrugation, the rail corrugation on a tangential track with Cologne-egg type fasteners is studied in this paper. A vibration model of an elastic multiple-wheelset-track system with Cologne-egg type fasteners is established. Both the complex eigenvalue analysis and the transient dynamic analysis are performed to study the stability and the dynamic performance of the wheelset-track system. The simulation results show that a low rail support stiffness value is responsible for rail corrugation on the tangential track. When the Cologne-egg fasteners characterised by a lower stiffness value are replaced with the DTVI2 fasteners characterised by a higher stiffness value, rail corrugation disappears. However, rail corrugation on tight curved tracks cannot be suppressed using the same replacement. The above conclusions are consistent with the corrugation occurrences in actual metro tracks.

  4. Numerical investigation of the aerodynamic and structural characteristics of a corrugated wing

    NASA Astrophysics Data System (ADS)

    Hord, Kyle

    Previous experimental studies on static, bio-inspired corrugated wings have shown that they produce favorable aerodynamic properties such as delayed stall compared to streamlined wings and flat plates at high Reynolds numbers (Re ≥ 4x104). The majority of studies have been carried out with scaled models of dragonfly forewings from the Aeshna Cyanea in either wind tunnels or water channels. In this thesis, the aerodynamics of a corrugated airfoil was studied using computational fluid dynamics methods at a low Reynolds number of 1000. Structural analysis was also performed using the commercial software SolidWorks 2009. The flow field is described by solving the incompressible Navier-Stokes equations on an overlapping grid using the pressure-Poisson method. The equations are discretized in space with second-order accurate central differences. Time integration is achieved through the second-order Crank-Nicolson implicit method. The complex vortex structures that form in the corrugated airfoil valleys and around the corrugated airfoil are studied in detail. Comparisons are made with experimental measurements from corrugated wings and also with simulations of a flat plate. Contrary to the studies at high Reynolds numbers, our study shows that at low Reynolds numbers the wing corrugation does not provide any aerodynamic benefit compared to a smoothed flat plate. Instead, the corrugated profile generates more pressure drag which is only partially offset by the reduction of friction drag, leading to more total drag than the flat plate. Structural analysis shows that the wing corrugation can increase the resistance to bending moments on the wing structure. A smoothed structure has to be three times thicker to provide the same stiffness. It was concluded the corrugated wing has the structural benefit to provide the same resistance to bending moments with a much reduced weight.

  5. Terahertz Radiation from a Pipe with Small Corrugations

    SciTech Connect

    Bane, K.L.F.; Stupakov, G.; /SLAC

    2012-01-26

    We have studied through analytical and numerical methods the use of a relativistic electron bunch to drive a metallic beam pipe with small corrugations for the purpose of generating terahertz radiation. For the case of a pipe with dimensions that do not change along its length, we have shown that - with reasonable parameters - one can generate a narrow-band radiation pulse with frequency {approx}1 THz, and total energy of a few milli-Joules. The pulse length tends to be on the order of tens of picoseconds. We have also shown that, if the pipe radius is tapered along its length, the generated pulse will end up with a frequency chirp; if the pulse is then made to pass through a compressor, its final length can be reduced to a few picoseconds and its peak power increased to 1 GW. We have also shown that wall losses tend to be significant and need to be included in the structure design.

  6. Geometrical properties of turbulent premixed flames and other corrugated interfaces

    NASA Astrophysics Data System (ADS)

    Thiesset, F.; Maurice, G.; Halter, F.; Mazellier, N.; Chauveau, C.; Gökalp, I.

    2016-01-01

    This study focuses on the geometrical properties of turbulent flame fronts and other interfaces. Toward that end, we use an original tool based on proper orthogonal decomposition (POD), which is applied to the interface spatial coordinates. The focus is mainly on the degree of roughness of the flame front, which is quantified through the scale dependence of its coverage arclength. POD is first validated by comparing with the caliper technique. Fractal characteristics are extracted in an unambiguous fashion using a parametric expression which appears to be impressively well suited for representing Richardson plots. Then it is shown that, for the range of Reynolds numbers investigated here, the scale-by-scale contribution to the arclength does not comply with scale similarity, irrespectively of the type of similarity which is invoked. The finite ratios between large and small scales, referred to as finite Reynolds number effects, are likely to explain this observation. In this context, the Reynolds number that ought to be achieved for a proper inertial range to be discernible, and for scale similarity to be likely to apply, is calculated. Fractal characteristics of flame folding are compared to available predictions. It is confirmed that the inner cutoff satisfactorily correlates with the Kolmogorov scale while the outer cutoff appears to be proportional to the integral length scale. However, the scaling for the fractal dimension is much less obvious. It is argued that much higher Reynolds numbers have to be reached for drawing firm statements about the evolution (or constancy) of the fractal dimension with respect to flame and flow parameters. Finally, a heuristic phenomenology of corrugated interfaces is highlighted. The degree of generality of the latter phenomenology is confirmed by comparing the folding of different interfaces including a turbulent-nonturbulent interface, a liquid jet destabilized by a surrounding air jet, a cavitating flow, and an isoscalar

  7. Geometrical properties of turbulent premixed flames and other corrugated interfaces.

    PubMed

    Thiesset, F; Maurice, G; Halter, F; Mazellier, N; Chauveau, C; Gökalp, I

    2016-01-01

    This study focuses on the geometrical properties of turbulent flame fronts and other interfaces. Toward that end, we use an original tool based on proper orthogonal decomposition (POD), which is applied to the interface spatial coordinates. The focus is mainly on the degree of roughness of the flame front, which is quantified through the scale dependence of its coverage arclength. POD is first validated by comparing with the caliper technique. Fractal characteristics are extracted in an unambiguous fashion using a parametric expression which appears to be impressively well suited for representing Richardson plots. Then it is shown that, for the range of Reynolds numbers investigated here, the scale-by-scale contribution to the arclength does not comply with scale similarity, irrespectively of the type of similarity which is invoked. The finite ratios between large and small scales, referred to as finite Reynolds number effects, are likely to explain this observation. In this context, the Reynolds number that ought to be achieved for a proper inertial range to be discernible, and for scale similarity to be likely to apply, is calculated. Fractal characteristics of flame folding are compared to available predictions. It is confirmed that the inner cutoff satisfactorily correlates with the Kolmogorov scale while the outer cutoff appears to be proportional to the integral length scale. However, the scaling for the fractal dimension is much less obvious. It is argued that much higher Reynolds numbers have to be reached for drawing firm statements about the evolution (or constancy) of the fractal dimension with respect to flame and flow parameters. Finally, a heuristic phenomenology of corrugated interfaces is highlighted. The degree of generality of the latter phenomenology is confirmed by comparing the folding of different interfaces including a turbulent-nonturbulent interface, a liquid jet destabilized by a surrounding air jet, a cavitating flow, and an isoscalar

  8. Bending of five-layer beams with lengthwise corrugated main core

    SciTech Connect

    Magnucka-Blandzi, Ewa; Walczak, Zbigniew

    2015-03-10

    The paper is devoted to one orthotropic thin-walled sandwich beam with trapezoidal core and two-layer facings. The inner layers of the facings are also corrugated. The orientation of the corrugations of the inner layers of the facings is perpendicular to trapezoidal corrugation of the beam core. The mathematical and physical model of this beam is formulated, and also the field of displacements. Basing on the principle of the total potential energy the system of equilibrium equations is derived. The analytical solutions will be verified numerically with the use of the finite element method (MES)

  9. Gyrokinetic simulations of off-axis minimum-q profile corrugations

    SciTech Connect

    Waltz, R.E.; Austin, M.E.; Burrell, K.H.; Candy, J.

    2006-05-15

    Quasiequilibrium radial 'profile corrugations' in the electron temperature gradient are found at lowest-order singular surfaces in global gyrokinetic code simulations of both monotonic-q and off-axis minimum-q discharges. The profile corrugations in the temperature and density gradients are time-averaged components of zonal flows. The m/n=2/1 electron temperature gradient corrugation is measurably large and appears to trigger an internal transport barrier as the off-axis minimum-q=2 surfaces enter the plasma.

  10. Experimental and analytical determination of vibration characteristics of corrugated, flexibly supported, heat-shield panels

    NASA Technical Reports Server (NTRS)

    Carden, H. D.

    1974-01-01

    Experimental and analytical natural frequencies, nodal patterns, and typical modal displacements for a corrugated, flexibly supported, heat-shield panel are discussed. Good correlation was found between the experimental data and NASTRAN analytical results for the corrugated panel over a relatively wide frequency spectrum covered in the investigation. Of the two experimental techniques used for mode shape and displacement measurements (a noncontacting displacement sensor system and a holographic technique using a helium-neon, continuous-wave laser), the holographic technique was found, in the present investigation, to be faster and better suited for determining a large number of complex nodal patterns of the corrugated panel.

  11. Corrugated velocity patterns in the spiral galaxies: NGC 278, NGC 1058, NGC 2500 & UGC 3574 .

    NASA Astrophysics Data System (ADS)

    Sánchez Gil, M. C.; Alfaro, E. J.; Pérez, E.

    In this work we address the study of the detection in Halpha of a radial corrugation in the vertical velocity field in a sample of four nearly face-on, spiral galaxies. The geometry of the problem is a main criterion in the selection of the sample as well as of the azimuthal angle of the slits. These spatial corrugations must be equally associated with wavy vertical motions in the galactic plane with a strong large-scale consistency. Evidence of these kinematic waves were first detected in the analysis of the rotation curves of spiral galaxies (eg Vaucoleurs & de Vaucaleurs 1963, Pismis 1965), but it was not until 2001 that Alfaro et al. analyzed in more detail the velocity corrugations in NGC 5427 and a possible physical mechanism for their origin. The aim of this study is to analyze the corrugated velocity pattern in terms of the star formation processes. We describe the geometry of the problem and establish its fundamental relationships.

  12. Effect of corrugated characteristics on the liquid nitrogen temperature field of HTS cable

    NASA Astrophysics Data System (ADS)

    Li, Z. M.; Li, Y. X.; Zhao, Y. Q.; Gao, C.; Qiu, M.; Chen, G. F.; Gong, M. Q.; Wu, J. F.

    2014-01-01

    In the high temperature superconducting (HTS) cable system, liquid nitrogen is usually chosen to be the coolant because of its low saturation temperature and large latent heat of vaporization. Thus, it is very important for superconducting cables that the liquid nitrogen temperature field keeps stable. However, the cryostat is usually made of flexible corrugated pipes and multi-layer insulation materials. The characteristics (e.g. wave pitch and wave depth) of corrugated pipes may have an effect on the heat exchange between cable and liquid nitrogen, even the whole temperature field of liquid nitrogen. In this paper, a two-dimensional model for 30 m long HTS cable has been modified to analyze the effect of corrugated characteristics on the temperature field of liquid nitrogen. The liquid nitrogen temperature difference between the outlet and the inlet of passage gradually increases as the wave pitch of the corrugated tube decreases and the wave depth increases.

  13. Trapping surface plasmon polaritons on ultrathin corrugated metallic strips in microwave frequencies.

    PubMed

    Yang, Yan; Shen, Xiaopeng; Zhao, Pei; Zhang, Hao Chi; Cui, Tie Jun

    2015-03-23

    It has been demonstrated that an ultrathin uniformly corrugated metallic strip is a good plasmonic waveguide in microwave and terahertz frequencies to propagate spoof surface plasmon polaritons (SPPs) with well confinement and small loss (Shen et al., PNAS 110, 40-45, 2013). Here, we propose a simple method to trap SPP waves on the ultrathin corrugated metallic strips in broad band in the microwave frequencies. By properly designing non-uniform corrugations with gradient-depth grooves, we show that the SPP waves are slowed down gradually and then reflected at pre-designed positions along the ultrathin metallic strip when the frequency varies. We design and fabricate the ultrathin gradient-corrugation metallic strip on a thin dielectric film. Both numerical simulation and measurement results validate the efficient trapping of SPP waves in broadband from 9 to 14 GHz. This proposal is a promising candidate for slow-wave devices in both microwave and terahertz regimes. PMID:25837047

  14. Development of a model for flaming combustion of double-wall corrugated cardboard

    NASA Astrophysics Data System (ADS)

    McKinnon, Mark B.

    Corrugated cardboard is used extensively in a storage capacity in warehouses and frequently acts as the primary fuel for accidental fires that begin in storage facilities. A one-dimensional numerical pyrolysis model for double-wall corrugated cardboard was developed using the Thermakin modeling environment to describe the burning rate of corrugated cardboard. The model parameters corresponding to the thermal properties of the corrugated cardboard layers were determined through analysis of data collected in cone calorimeter tests conducted with incident heat fluxes in the range 20--80 kW/m 2. An apparent pyrolysis reaction mechanism and thermodynamic properties for the material were obtained using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The fully-parameterized bench-scale model predicted burning rate profiles that were in agreement with the experimental data for the entire range of incident heat fluxes, with more consistent predictions at higher heat fluxes.

  15. Surface Impedance Formalism for a Metallic Beam Pipe with Small Corrugations

    SciTech Connect

    Stupakov, G.; Bane, K.L.F.; /SLAC

    2012-08-30

    A metallic pipe with wall corrugations is of special interest in light of recent proposals to use such a pipe for the generation of terahertz radiation and for energy dechirping of electron bunches in free electron lasers. In this paper we calculate the surface impedance of a corrugated metal wall and show that it can be reduced to that of a thin layer with dielectric constant {epsilon} and magnetic permeability {mu}. We develop a technique for the calculation of these constants, given the geometrical parameters of the corrugations. We then calculate, for the specific case of a round metallic pipe with small corrugations, the frequency and strength of the resonant mode excited by a relativistic beam. Our analytical results are compared with numerical simulations, and are shown to agree well.

  16. Leaky-Wave Radiations by Modulating Surface Impedance on Subwavelength Corrugated Metal Structures.

    PubMed

    Cai, Ben Geng; Li, Yun Bo; Ma, Hui Feng; Jiang, Wei Xiang; Cheng, Qiang; Cui, Tie Jun

    2016-01-01

    One-dimensional (1D) subwavelength corrugated metal structures has been described to support spoof surface plasmon polaritons (SPPs). Here we demonstrate that a periodically modulated 1D subwavelength corrugated metal structure can convert spoof SPPs to propagating waves. The structure is fed at the center through a slit with a connected waveguide on the input side. The subwavelength corrugated metal structure on the output surface is regarded as metasurface and modulated periodically to realize the leaky-wave radiation at the broadside. The surface impedance of the corrugated metal structure is modulated by using cosine function and triangle-wave function, respectively, to reach the radiation effect. Full wave simulations and measuremental results are presented to validate the proposed design. PMID:27035269

  17. Leaky-Wave Radiations by Modulating Surface Impedance on Subwavelength Corrugated Metal Structures

    PubMed Central

    Cai, Ben Geng; Li, Yun Bo; Ma, Hui Feng; Jiang, Wei Xiang; Cheng, Qiang; Cui, Tie Jun

    2016-01-01

    One-dimensional (1D) subwavelength corrugated metal structures has been described to support spoof surface plasmon polaritons (SPPs). Here we demonstrate that a periodically modulated 1D subwavelength corrugated metal structure can convert spoof SPPs to propagating waves. The structure is fed at the center through a slit with a connected waveguide on the input side. The subwavelength corrugated metal structure on the output surface is regarded as metasurface and modulated periodically to realize the leaky-wave radiation at the broadside. The surface impedance of the corrugated metal structure is modulated by using cosine function and triangle-wave function, respectively, to reach the radiation effect. Full wave simulations and measuremental results are presented to validate the proposed design. PMID:27035269

  18. 5. Detail, 5panel door and corrugated metal siding, Oil House, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Detail, 5-panel door and corrugated metal siding, Oil House, Southern Pacific Railroad Carlin Shops, southwest facade, view to northeast (210mm lens). - Southern Pacific Railroad, Carlin Shops, Oil House, Foot of Sixth Street, Carlin, Elko County, NV

  19. Bending Tests of Circular Cylinders of Corrugated Aluminum-alloy Sheet

    NASA Technical Reports Server (NTRS)

    Buckwalter, John C; Reed, Warren D; Niles, Alfred S

    1937-01-01

    Bending tests were made of two circular cylinders of corrugated aluminum-alloy sheet. In each test failure occurred by bending of the corrugations in a plane normal to the skin. It was found, after analysis of the effect of short end bays, that the computed stress on the extreme fiber of a corrugated cylinder is in excess of that for a flat panel of the same basic pattern and panel length tested as a pin-ended column. It is concluded that this increased strength was due to the effects of curvature of the pitch line. It is also concluded from the tests that light bulkheads closely spaced strengthen corrugated cylinders very materially.

  20. 14. DETAIL OF SOUTHWEST FRONT OF WAREHOUSE, SHOWING CORRUGATED PLASTER/ASBESTOS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. DETAIL OF SOUTHWEST FRONT OF WAREHOUSE, SHOWING CORRUGATED PLASTER/ASBESTOS WALLS, WINDOWS AND ROOF. VIEW TO NORTHEAST. - Commercial & Industrial Buildings, International Harvester Company Showroom, Office & Warehouse, 10 South Main Street, Dubuque, Dubuque County, IA

  1. Numerical analysis of bio-inspired corrugated airfoil at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Mondal, Partha Protim; Rahman, Md. Masudur; Hasan, A. B. M. Toufique

    2016-07-01

    A numerical study was conducted to investigate the aerodynamic performance of a bio-inspired corrugated airfoil at the chord Reynolds number of Rec=80,000 to explore the potential advantages of such airfoils at low Reynolds numbers. This study represents the transient nature of corrugated airfoils at low Reynolds number where flow is assumed to be laminar, unsteady, incompressible and two dimensional. The simulations include a sharp interface Cartesian grid based meshing employed with laminar viscous model. The flow field surrounding the corrugated airfoil has been analyzed using structured grid Finite Volume Method (FVM) based on Navier-Stokes equation. All parameters used in flow simulation are expressed in non-dimensional quantities for better understanding of flow behavior, regardless of dimensions or the fluid that is used. The simulated results revealed that the corrugated airfoil provides high lift with moderate drag and prevents large scale flow separation at higher angles of attack. This happens due to the negative shear drag produced by the recirculation zones which occurs in the valleys of the corrugated airfoils. The existence of small circulation bubbles sitting in the valleys prevents large scale flow separation thus increasing the aerodynamic performance of the corrugated airfoil.

  2. Geometrical properties of turbulent premixed flames and other corrugated interfaces.

    PubMed

    Thiesset, F; Maurice, G; Halter, F; Mazellier, N; Chauveau, C; Gökalp, I

    2016-01-01

    This study focuses on the geometrical properties of turbulent flame fronts and other interfaces. Toward that end, we use an original tool based on proper orthogonal decomposition (POD), which is applied to the interface spatial coordinates. The focus is mainly on the degree of roughness of the flame front, which is quantified through the scale dependence of its coverage arclength. POD is first validated by comparing with the caliper technique. Fractal characteristics are extracted in an unambiguous fashion using a parametric expression which appears to be impressively well suited for representing Richardson plots. Then it is shown that, for the range of Reynolds numbers investigated here, the scale-by-scale contribution to the arclength does not comply with scale similarity, irrespectively of the type of similarity which is invoked. The finite ratios between large and small scales, referred to as finite Reynolds number effects, are likely to explain this observation. In this context, the Reynolds number that ought to be achieved for a proper inertial range to be discernible, and for scale similarity to be likely to apply, is calculated. Fractal characteristics of flame folding are compared to available predictions. It is confirmed that the inner cutoff satisfactorily correlates with the Kolmogorov scale while the outer cutoff appears to be proportional to the integral length scale. However, the scaling for the fractal dimension is much less obvious. It is argued that much higher Reynolds numbers have to be reached for drawing firm statements about the evolution (or constancy) of the fractal dimension with respect to flame and flow parameters. Finally, a heuristic phenomenology of corrugated interfaces is highlighted. The degree of generality of the latter phenomenology is confirmed by comparing the folding of different interfaces including a turbulent-nonturbulent interface, a liquid jet destabilized by a surrounding air jet, a cavitating flow, and an isoscalar

  3. Plastics Technology.

    ERIC Educational Resources Information Center

    Barker, Tommy G.

    This curriculum guide is designed to assist junior high schools industrial arts teachers in planning new courses and revising existing courses in plastics technology. Addressed in the individual units of the guide are the following topics: introduction to production technology; history and development of plastics; safety; youth leadership,…

  4. Spreading of droplet with insoluble surfactant on corrugated topography

    NASA Astrophysics Data System (ADS)

    Li, Chunxi; Pei, Jianjun; Ye, Xuemin

    2014-09-01

    The flow of microscale fluid on a topography surface is a key to further development of MEMS, nanoscience and technology. In the present paper, a theoretical model of the droplet spreading with insoluble surfactant over corrugated topography is established with the lubrication theory, and the evolution equations of film thickness and surfactant concentration in base state and disturbance state are formulated. The droplet dynamics, the nonlinear stability based on nonmodal stability theory, and the effects of topography structure and Marangoni stress are numerically simulated with PDECOL scheme. Results show that the impact of topographical surface is strengthened apparently while the Marangoni stress driven by surfactant concentration is weakened in the mid-late stages of the spreading. The droplet radius on the topography advances faster and the lowest height of liquid/gas interface near the droplet edge reduces remarkably in the intermediate stage compared with those on the flat wall. The quantity of the wavelet similar to the topography increases gradually, with the characteristics of wavelet crest height with time exhibiting a single-hump feature. The spreading stability is enhanced under the disturbance wavenumber of 4, however, is to deteriorate and even to transform into instability when wavenumber increases further. In addition, the reductive Marangoni number, enhancive capillary number, modest Peclet number, the low height of the topography as well as small wavenumber of topography can make contributions to the evident stability of droplet spreading.

  5. The corrugation instability of a piston-driven shock wave

    NASA Astrophysics Data System (ADS)

    Bates, Jason

    2014-10-01

    We investigate the dynamics of a shock wave that is driven into an inviscid fluid by the steady motion of a two-dimensional planar piston with small corrugations on its surface. This problem was first considered by Freeman [Proc. Royal Soc. A. 228, 341 (1955)], who showed that piston-driven shocks are unconditionally stable when the medium through which they propagate is an ideal gas. Here, we generalize his work to account for a fluid with an arbitrary equation of state. We find that shocks are stable when - 1 < h

  6. Dispersionless Manipulation of Reflected Acoustic Wavefront by Subwavelength Corrugated Surface

    PubMed Central

    Zhu, Yi-Fan; Zou, Xin-Ye; Li, Rui-Qi; Jiang, Xue; Tu, Juan; Liang, Bin; Cheng, Jian-Chun

    2015-01-01

    Free controls of optic/acoustic waves for bending, focusing or steering the energy of wavefronts are highly desirable in many practical scenarios. However, the dispersive nature of the existing metamaterials/metasurfaces for wavefront manipulation necessarily results in limited bandwidth. Here, we propose the concept of dispersionless wavefront manipulation and report a theoretical, numerical and experimental work on the design of a reflective surface capable of controlling the acoustic wavefront arbitrarily without bandwidth limitation. Analytical analysis predicts the possibility to completely eliminate the frequency dependence with a specific gradient surface which can be implemented by designing a subwavelength corrugated surface. Experimental and numerical results, well consistent with the theoretical predictions, have validated the proposed scheme by demonstrating a distinct phenomenon of extraordinary acoustic reflection within an ultra-broad band. For acquiring a deeper insight into the underlying physics, a simple physical model is developed which helps to interpret this extraordinary phenomenon and predict the upper cutoff frequency precisely. Generations of planar focusing and non-diffractive beam have also been exemplified. With the dispersionless wave-steering capability and deep discrete resolution, our designed structure may open new avenue to fully steer classical waves and offer design possibilities for broadband optical/acoustical devices. PMID:26077772

  7. Superradiance of short electron pulses in regular and corrugated waveguides

    SciTech Connect

    Ginzburg, N.S.; Konoplev, I.V.; Sergeev, A.S.

    1995-12-31

    The report is devoted to theoretical and experimental study of superradiance of short electron pulses moving through waveguide systems. It is suggested that electrons oscillate or in undulator field (undulator SR) or in homogeneous magnetic field (cyclotron SR). We studied specific regimes of SR which may occur due to peculiarities of waveguide dispersion. Among them there are regimes of radiation near cut-off frequency as well as regimes of group synchronism. At the last operating regimes an electron bunch longitudinal velocity coincide with group velocity of e.m. wave. It is found the increasing of the SR instability grows rate and energy extraction efficiency in such regimes. It is also possible to observe the same enhancement using external feedback in periodically corrugated waveguide when Bragg resonance condition with forward propagated e.m. wave is fulfill. For experimental observation of cyclotron SR we intend to use compact subnanosecond accelerator RADAN 303B on the base of the high voltage generator with special subnansecond transformer. Accelerator generates short 0.3ns electron pulses with current about 1kA and particles energy 200keV. Design of magnetic confound system provide possibility to install an active locker to impose to electrons cyclotron rotation with pitch-factor about 1-1.5. According to numerical simulation at the mm and submm wavebands it is possible to achieve radiation pick power about 5-10MW with pulse duration less than 1ns.

  8. Corrugator activity confirms immediate negative affect in surprise.

    PubMed

    Topolinski, Sascha; Strack, Fritz

    2015-01-01

    The emotion of surprise entails a complex of immediate responses, such as cognitive interruption, attention allocation to, and more systematic processing of the surprising stimulus. All these processes serve the ultimate function to increase processing depth and thus cognitively master the surprising stimulus. The present account introduces phasic negative affect as the underlying mechanism responsible for this switch in operating mode. Surprising stimuli are schema-discrepant and thus entail cognitive disfluency, which elicits immediate negative affect. This affect in turn works like a phasic cognitive tuning switching the current processing mode from more automatic and heuristic to more systematic and reflective processing. Directly testing the initial elicitation of negative affect by surprising events, the present experiment presented high and low surprising neutral trivia statements to N = 28 participants while assessing their spontaneous facial expressions via facial electromyography. High compared to low surprising trivia elicited higher corrugator activity, indicative of negative affect and mental effort, while leaving zygomaticus (positive affect) and frontalis (cultural surprise expression) activity unaffected. Future research shall investigate the mediating role of negative affect in eliciting surprise-related outcomes.

  9. Corrugator activity confirms immediate negative affect in surprise

    PubMed Central

    Topolinski, Sascha; Strack, Fritz

    2015-01-01

    The emotion of surprise entails a complex of immediate responses, such as cognitive interruption, attention allocation to, and more systematic processing of the surprising stimulus. All these processes serve the ultimate function to increase processing depth and thus cognitively master the surprising stimulus. The present account introduces phasic negative affect as the underlying mechanism responsible for this switch in operating mode. Surprising stimuli are schema-discrepant and thus entail cognitive disfluency, which elicits immediate negative affect. This affect in turn works like a phasic cognitive tuning switching the current processing mode from more automatic and heuristic to more systematic and reflective processing. Directly testing the initial elicitation of negative affect by surprising events, the present experiment presented high and low surprising neutral trivia statements to N = 28 participants while assessing their spontaneous facial expressions via facial electromyography. High compared to low surprising trivia elicited higher corrugator activity, indicative of negative affect and mental effort, while leaving zygomaticus (positive affect) and frontalis (cultural surprise expression) activity unaffected. Future research shall investigate the mediating role of negative affect in eliciting surprise-related outcomes. PMID:25762956

  10. Dispersionless Manipulation of Reflected Acoustic Wavefront by Subwavelength Corrugated Surface.

    PubMed

    Zhu, Yi-Fan; Zou, Xin-Ye; Li, Rui-Qi; Jiang, Xue; Tu, Juan; Liang, Bin; Cheng, Jian-Chun

    2015-01-01

    Free controls of optic/acoustic waves for bending, focusing or steering the energy of wavefronts are highly desirable in many practical scenarios. However, the dispersive nature of the existing metamaterials/metasurfaces for wavefront manipulation necessarily results in limited bandwidth. Here, we propose the concept of dispersionless wavefront manipulation and report a theoretical, numerical and experimental work on the design of a reflective surface capable of controlling the acoustic wavefront arbitrarily without bandwidth limitation. Analytical analysis predicts the possibility to completely eliminate the frequency dependence with a specific gradient surface which can be implemented by designing a subwavelength corrugated surface. Experimental and numerical results, well consistent with the theoretical predictions, have validated the proposed scheme by demonstrating a distinct phenomenon of extraordinary acoustic reflection within an ultra-broad band. For acquiring a deeper insight into the underlying physics, a simple physical model is developed which helps to interpret this extraordinary phenomenon and predict the upper cutoff frequency precisely. Generations of planar focusing and non-diffractive beam have also been exemplified. With the dispersionless wave-steering capability and deep discrete resolution, our designed structure may open new avenue to fully steer classical waves and offer design possibilities for broadband optical/acoustical devices. PMID:26077772

  11. Dispersionless Manipulation of Reflected Acoustic Wavefront by Subwavelength Corrugated Surface

    NASA Astrophysics Data System (ADS)

    Zhu, Yi-Fan; Zou, Xin-Ye; Li, Rui-Qi; Jiang, Xue; Tu, Juan; Liang, Bin; Cheng, Jian-Chun

    2015-06-01

    Free controls of optic/acoustic waves for bending, focusing or steering the energy of wavefronts are highly desirable in many practical scenarios. However, the dispersive nature of the existing metamaterials/metasurfaces for wavefront manipulation necessarily results in limited bandwidth. Here, we propose the concept of dispersionless wavefront manipulation and report a theoretical, numerical and experimental work on the design of a reflective surface capable of controlling the acoustic wavefront arbitrarily without bandwidth limitation. Analytical analysis predicts the possibility to completely eliminate the frequency dependence with a specific gradient surface which can be implemented by designing a subwavelength corrugated surface. Experimental and numerical results, well consistent with the theoretical predictions, have validated the proposed scheme by demonstrating a distinct phenomenon of extraordinary acoustic reflection within an ultra-broad band. For acquiring a deeper insight into the underlying physics, a simple physical model is developed which helps to interpret this extraordinary phenomenon and predict the upper cutoff frequency precisely. Generations of planar focusing and non-diffractive beam have also been exemplified. With the dispersionless wave-steering capability and deep discrete resolution, our designed structure may open new avenue to fully steer classical waves and offer design possibilities for broadband optical/acoustical devices.

  12. Linear analysis of a backward wave oscillator with triangular corrugated slow wave structure

    NASA Astrophysics Data System (ADS)

    Saber, Md. Ghulam; Sagor, Rakibul Hasan; Amin, Md. Ruhul

    2016-05-01

    In this work, a backward wave oscillator (BWO) with triangularly corrugated periodic metallic slow wave structure (TrCSWS) driven by an infinitely thin annular electron beam is studied using linear theory. The electron beam is assumed to be guided by a strong magnetic field. The triangular axial profile of the SWS is approximated by a Fourier series in order to apply the linear Rayleigh-Fourier (R-F) theory that has long been used in the theoretical analysis of BWOs with sinusoidally corrugated SWS (SCSWS). The dispersion equation for various beam parameters has been solved and the temporal growth rate (TGR) of the electromagnetic wave for the fundamental TM_{01} mode is calculated numerically. The TGR values for different beam parameters have been compared with those of the BWO with SCSWS, semi-circularly corrugated SWS (SCCSWS) and trapezoidally corrugated SWS (TCSWS). In order to compare the TGR values, the amplitude of corrugation of the TrCSWS is varied so that its dispersion curve of TM_{01} mode almost coincides with that of the SCSWS and TCSWS. The study reveals that the performance (in terms of TGR) of the proposed BWO with TrCSWS is comparable to that of other BWOs with SCSWS and TCSWS for the same set of beam parameters and it provides significantly better performance than SCCSWS. So, the proposed TrCSWS that can easily be constructed may replace SCSWS, SCCSWS or TCSWS as their viable alternative.

  13. Reduction in Young`s modulus of aluminum foams due to cell wall curvature and corrugation

    SciTech Connect

    Sanders, W.; Gibson, L.J.

    1998-12-31

    Measurements of the Young`s modulus and compressive strength of several closed-cell aluminum foams indicate that they are lower than expected from models for foam behavior. Microstructural characterization has revealed that there are a number of defects in the cell structure which may contribute to the reduction in mechanical properties. These include: cell wall curvature, cell wall corrugations, density variations and non-equiaxed cell shape. Finite element analysis of a closed-cell tetrakaidecahedral unit cell with idealized curved or corrugated cell walls indicates that these two types of defects can reduce the Young`s modulus and compressive strength by up to 70%. In this paper the authors report the results of measurements of the curvature of the cell walls and of the amplitude and frequency of corrugations in the cell walls and use simple bounds to estimate the reduction in modulus that they are responsible for.

  14. A Simple Experiment to Explore Standing Waves in a Flexible Corrugated Sound Tube

    NASA Astrophysics Data System (ADS)

    Amorim, Maria Eva; Sousa, Teresa Delmira; Carvalho, P. Simeão; Sousa, Adriano Sampaioe

    2011-09-01

    Sound tubes, pipes, and singing rods are used as musical instruments and as toys to perform amusing experiments. In particular, corrugated tubes present unique characteristics with respect to the sounds they can produce; that is why they have been studied so intensively, both at theoretical and experimental levels.1-4 Experimental studies usually involve expensive and sophisticated equipment that is out of reach of school laboratory facilities.3-6 In this paper we show how to investigate quantitatively the sounds produced by a flexible sound tube corrugated on the inside by using educational equipment readily available in school laboratories, such as the oscilloscope, the microphone, the anemometer, and the air pump. We show that it is possible for students to study the discontinuous spectrum of sounds produced by a flexible corrugated tube and go even further, computing the speed of sound in air with a simple experimental procedure.

  15. Trapping of surface plasmon wave through gradient corrugated strip with underlayer ground and manipulating its propagation

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjuan; Zhu, Guiqiang; Sun, Liguo; Lin, Fujiang

    2015-01-01

    Corrugated metal surface with underlayer metal as ground is designed as spoof surface plasmons polaritons (SSPPs) structure in microwave frequencies. Efficient conversion from guided wave to SSPP is required for energy feeding into and signal extracting from such plasmonic structure. In this paper, first a high efficient transition design is presented by using gradient corrugated strip with underlayer metal as ground and by using the impedance matching theory. The SSPP wave is highly confined within the teeth part of the corrugated surface. By using this characteristic, then the simple wire-based metamaterial is added below the strip to manipulate the SSPP wave within the propagating band. Two aforementioned devices are designed and fabricated. The simulated and measured results on the scattering coefficients demonstrate the excellent conversion and excellent manipulating of SSPP transmitting. Such results have very important value to develop advanced plasmonic integrated circuits in the microwave frequencies.

  16. Impact-damaged graphite-thermoplastic trapezoidal-corrugation sandwich and semi-sandwich panels

    NASA Technical Reports Server (NTRS)

    Jegley, D.

    1993-01-01

    The results of a study of the effects of impact damage on compression-loaded trapezoidal-corrugation sandwich and semi-sandwich graphite-thermoplastic panels are presented. Sandwich panels with two identical face sheets and a trapezoidal corrugated core between them, and semi-sandwich panels with a corrugation attached to a single skin are considered in this study. Panels were designed, fabricated and tested. The panels were made using the manufacturing process of thermoforming, a less-commonly used technique for fabricating composite parts. Experimental results for unimpacted control panels and panels subjected to impact damage prior to loading are presented. Little work can be found in the literature about these configurations of thermoformed panels.

  17. 77 FR 67400 - RG Steel Wheeling, LLC, a Division of RG Steel, LLC, Doing Business as Wheeling Corrugating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-09

    ... Employment and Training Administration RG Steel Wheeling, LLC, a Division of RG Steel, LLC, Doing Business as Wheeling Corrugating Company, Including Workers Whose Wages Were Reported Through Severstal Wheeling, Beech... Wheeling Corrugating Company, Beech Bottom, West Virginia. The Department's notice of determination...

  18. Corrugated velocity pattern in spiral galaxies: NGC 278, NGC 1058, NGC 2500 and UGC 3574

    NASA Astrophysics Data System (ADS)

    Sánchez Gil, M. C.; Alfaro, E. J.; Pérez, E.

    2011-11-01

    We report the detection in Hα emission of a radial corrugation pattern in the vertical velocity field of a sample of nearby face-on, spiral galaxies. We obtain long-slit spectra with the double arm ISIS spectrograph, attached to the 4.2 m William Herschel Telescope. The existence of corrugations has been already reported, e.g. Alfaro et al. (2001), Matthews & Uson (2008). Corrugations are closely link, as cause/effect, to the large scale star formation processes: density waves, tidal interactions, galactic bores, collisions of high velocity clouds with disk, etc. Which mechanism is the origin of disk corrugations is still an open problem. In this work not only the existence of radial and azimuthal corrugations are clearly observed, we report a first systematic study on the velocity corrugations in a sample of nearly face-on spiral galaxies. NGC 278 and NGC 1058 show a similar behavior to NGC 5427 (Alfaro et al. 2001), with a clear displacement between the velocities and emission line peaks. Where the approaching velocity peaks occur in the convex border of the arms, and the receding maxima are located behind the Hα emission maxima, in the concave side. This kinematical behavior is similar to the one expected in a galactic bore generated by the interaction of a spiral density wave with a thick gaseous disk. NGC 2500 and UGC 3574 do not show so clear this last relation between the velocity and emission line peaks, a possible cause should a fainter and discontinuous Hα emission. Oddly, these two pairs of galaxies also differ between them in their ionization mechanism features obtained from diagnostic diagrams.

  19. Near field of corrugated horns and its influence on dual reflector antenna radiation performance

    NASA Astrophysics Data System (ADS)

    Hombach, V.; Kuehn, E.

    1985-05-01

    The existing procedures for calculating the near field of the corrugated horns of dual reflector antennas are briefly reviewed, and their disadvantages are pointed out. A new approach to calculating the near field of circular corrugated feed horns is then discussed with specific reference to a Ku-band offset Gregorian antenna developed for the German Telecommunication Satellite DFS scheduled for launch in 1987. The approach, which is based on a physical-optics solution, is shown to provide an accurate description of the actual radiation characteristics. The effect of the near field on the gain, side-lobe level, and cross-polar performance of the antenna is discussed.

  20. Graphene-assisted near-field radiative heat transfer between corrugated polar materials

    SciTech Connect

    Liu, X. L.; Zhang, Z. M.

    2014-06-23

    Graphene has attracted great attention in nanoelectronics, optics, and energy harvesting. Here, the near-field radiative heat transfer between graphene-covered corrugated silica is investigated based on the exact scattering theory. It is found that graphene can improve the radiative heat flux between silica gratings by more than one order of magnitude and alleviate the performance sensitivity to lateral shift. The underlying mechanism is mainly attributed to the improved photon tunneling of modes away from phonon resonances. Besides, coating with graphene leads to nonlocal radiative transfer that breaks Derjaguin's proximity approximation and enables corrugated silica to outperform bulk silica in near-field radiation.

  1. Elastic constants for superplastically formed/diffusion-bonded corrugated sandwich core

    NASA Technical Reports Server (NTRS)

    Ko, W. L.

    1980-01-01

    Formulas and associated graphs for evaluating the effective elastic constants for a superplastically formed/diffusion bonded (SPF/DB) corrugated sandwich core, are presented. A comparison of structural stiffnesses of the sandwich core and a honeycomb core under conditions of equal sandwich core density was made. The stiffness in the thickness direction of the optimum SPF/DB corrugated core (that is, triangular truss core) is lower than that of the honeycomb core, and that the former has higher transverse shear stiffness than the latter.

  2. Structural efficiency studies of corrugated compression panels with curved caps and beaded webs

    NASA Technical Reports Server (NTRS)

    Davis, R. C.; Mills, C. T.; Prabhakaran, R.; Jackson, L. R.

    1984-01-01

    Curved cross-sectional elements are employed in structural concepts for minimum-mass compression panels. Corrugated panel concepts with curved caps and beaded webs are optimized by using a nonlinear mathematical programming procedure and a rigorous buckling analysis. These panel geometries are shown to have superior structural efficiencies compared with known concepts published in the literature. Fabrication of these efficient corrugation concepts became possible by advances made in the art of superplastically forming of metals. Results of the mass optimization studies of the concepts are presented as structural efficiency charts for axial compression.

  3. Tests of Large Airfoils in the Propeller Research Tunnel, Including Two with Corrugated Surfaces

    NASA Technical Reports Server (NTRS)

    Wood, Donald H

    1930-01-01

    This report gives the results of the tests of seven 2 by 12 foot airfoils (Clark Y, smooth and corrugated, Gottingen 398, N.A.C.A. M-6, and N.A.C.A. 84). The tests were made in the propeller research tunnel of the National Advisory Committee for Aeronautics at Reynolds numbers up to 2,000,000. The Clark Y airfoil was tested with three degrees of surface smoothness. Corrugating the surface causes a flattening of the lift curve at the burble point and an increase in drag at small flying angles.

  4. Experimental investigation of heat transfer and effectiveness in corrugated plate heat exchangers having different chevron angles

    NASA Astrophysics Data System (ADS)

    Kılıç, Bayram; İpek, Osman

    2016-06-01

    In this study, heat transfer rate and effectiveness of corrugated plate heat exchangers having different chevron angles were investigated experimentally. Chevron angles of plate heat exchangers are β = 30° and β = 60°. For this purpose, experimentally heating system used plate heat exchanger was designed and constructed. Thermodynamic analysis of corrugated plate heat exchangers having different chevron angles were carried out. The heat transfer rate and effectiveness values are calculated. The experimental results are shown that heat transfer rate and effectiveness values for β = 60° is higher than that of the other. Obtained experimental results were graphically presented.

  5. Determination of the geometric corrugation of graphene on SiC(0001) by grazing incidence fast atom diffraction

    SciTech Connect

    Zugarramurdi, A.; Debiossac, M.; Lunca-Popa, P.; Mayne, A. J.; Borisov, A. G.; Mu, Z.; Roncin, P.; Khemliche, H.; Momeni, A.

    2015-03-09

    We present a grazing incidence fast atom diffraction (GIFAD) study of monolayer graphene on 6H-SiC(0001). This system shows a Moiré-like 13 × 13 superlattice above the reconstructed carbon buffer layer. The averaging property of GIFAD results in electronic and geometric corrugations that are well decoupled; the graphene honeycomb corrugation is only observed with the incident beam parallel to the zigzag direction while the geometric corrugation arising from the superlattice is revealed along the armchair direction. Full-quantum calculations of the diffraction patterns show the very high GIFAD sensitivity to the amplitude of the surface corrugation. The best agreement between the calculated and measured diffraction intensities yields a corrugation height of 0.27 ± 0.03 Å.

  6. Plastic condoms.

    PubMed

    1968-01-01

    Only simple equipment, simple technology and low initial capital investment are needed in their manufacture. The condoms can be made by people who were previously unskilled or only semi-skilled workers. Plastic condoms differ from those made of latex rubber in that the nature of the plastic film allows unlimited shelf-life. Also, the plastic has a higher degree of lubricity than latex rubber; if there is a demand for extra lubrication in a particular market, this can be provided. Because the plastic is inert, these condoms need not be packaged in hermetically sealed containers. All these attributes make it possible to put these condoms on the distributors' shelves in developing countries competitively with rubber condoms. The shape of the plastic condom is based on that of the lamb caecum, which has long been used as luxury-type condom. The plastic condom is made from plastic film (ethylene ethyl acrilate) of 0.001 inch (0.0254 mm.) thickness. In addition, a rubber ring is provided and sealed into the base of the condom for retention during coitus. The advantage of the plastic condom design and the equipment on which it is made is that production can be carried out either in labour-intensive economy or with varying degrees of mechanization and automation. The uniform, finished condom if made using previously untrained workers. Training of workers can be done in a matter of hours on the two machines which are needed to produce and test the condoms. The plastic film is provided on a double wound roll, and condom blanks are prepared by means of a heat-sealing die on the stamping machine. The rubber rings are united to the condom blanks on an assembly machine, which consists of a mandrel and heat-sealing equipment to seal the rubber ring to the base of the condom. Built into the assembly machine is a simple air-testing apparatus that can detect the smallest pinhole flaw in a condom. The manufacturing process is completed by unravelling the condom from the assembly

  7. Cosmetic Plastic Surgery Statistics

    MedlinePlus

    2014 Cosmetic Plastic Surgery Statistics Cosmetic Procedure Trends 2014 Plastic Surgery Statistics Report Please credit the AMERICAN SOCIETY OF PLASTIC SURGEONS when citing statistical data or using ...

  8. Plastics Technician.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document contains 16 units to consider for use in a tech prep competency profile for the occupation of plastics technician. All the units listed will not necessarily apply to every situation or tech prep consortium, nor will all the competencies within each unit be appropriate. Several units appear within each specific occupation and would…

  9. Conductor load bearing roller for a gas-insulated transmission line having a corrugated outer conductor

    DOEpatents

    Fischer, William H.; Yoon, Kue H.

    1984-04-10

    A gas-insulated transmission line includes a corrugated outer conductor, an inner conductor disposed within and insulated from the outer conductor by means of support insulators and an insulating gas, and a transport device for supporting and permitting movement of the inner conductor/insulating support assembly axially along the corrugated outer conductor without radial displacement. The transport device includes two movable contacts, such as skids or rollers, supported on a common pivot lever, the pivot lever being rotatably disposed about a pivot lever axis, which pivot lever axis is in turn disposed on the periphery of a support insulator or particle trap if one is used. The movable contacts are separated axially a distance equal to the axial distance between the peaks and valleys of the corrugations of the outer conductor and separated radially a distance equal to the radial distance between the peaks and valleys of the corrugations of the outer conductor. The transport device has the pivot lever axis disposed perpendicular to the direction of travel of the inner conductor/insulating support assembly.

  10. Corrugated velocity patterns in the spiral galaxies NGC 278, NGC 1058, NGC 2500 & UGC 3574

    NASA Astrophysics Data System (ADS)

    Sánchez Gil, M. C.; Alfaro, E. J.; Pérez, E.

    2013-05-01

    In this work we address the study of the detection in Ha of a radial corrugation in the vertical velocity field in a sample of four nearly face-on, spiral galaxies. The geometry of the problem is a main criterion in the selection of the sample as well as of the azimuthal angle of the slits. These spatial corrugations must be equally associated with wavy vertical motions in the galactic plane with a strong large-scale consistency. Evidence of these kinematic waves were first detected in the analysis of the rotation curves of spiral galaxies (e.g. te{1963ApJ...137..363D,1965BOTT....4....8P}), but it was not until 2001 that te{2001ApJ...550..253A} analyzed in more detail the velocity corrugations in NGC 5427 and a possible physical mechanism for their origin. The aim of this study is to analyze the corrugated velocity pattern in terms of the star formation processes. We describe the geometry of the problem and establish its fundamental relationships.

  11. Method for producing ultrafine-grained materials using repetitive corrugation and straightening

    DOEpatents

    Zhu, Yuntian T.; Lowe, Terry C.; Jiang, Honggang; Huang, Jianyu

    2001-01-01

    A method of refining the grain structure and improving the hardness and strength properties of a metal or metal alloy workpiece is disclosed. The workpiece is subjected to forces that corrugate and then straighten the workpiece. These steps are repeated until an ultrafine-grained product having improved hardness and strength is produced.

  12. Wakefield computations for a corrugated pipe as a beam dechirper for FEL applications

    SciTech Connect

    Ng, C. K.; Bane, K. L.F.

    2015-06-09

    A beam “dechirper” based on a corrugated, metallic vacuum chamber has been proposed recently to cancel residual energy chirp in a beam before it enters the undulator in a linac-based X-ray FEL. Rather than the round geometry that was originally proposed, we consider a pipe composed of two parallel plates with corrugations. The advantage is that the strength of the wake effect can be tuned by adjusting the separation of the plates. The separation of the plates is on the order of millimeters, and the corrugations are fractions of a millimeter in size. The dechirper needs to be meters long in order to provide sufficient longitudinal wakefield to cancel the beam chirp. Considerable computation resources are required to determine accurately the wakefield for such a long structure with small corrugation gaps. Combining the moving window technique and parallel computing using multiple processors, the time domain module in the parallel finite-element electromagnetic suite ACE3P allows efficient determination of the wakefield through convergence studies. In this paper, we will calculate the longitudinal, dipole and quadrupole wakefields for the dechirper and compare the results with those of analytical and field matching approaches.

  13. A Simple Experiment to Explore Standing Waves in a Flexible Corrugated Sound Tube

    ERIC Educational Resources Information Center

    Amorim, Maria Eva; Sousa, Teresa Delmira; Carvalho, P. Simeao; Sousa, Adriano Sampaioe

    2011-01-01

    Sound tubes, pipes, and singing rods are used as musical instruments and as toys to perform amusing experiments. In particular, corrugated tubes present unique characteristics with respect to the sounds they can produce; that is why they have been studied so intensively, both at theoretical and experimental levels. Experimental studies usually…

  14. Effects of corrugation shape on frequency band-gaps for longitudinal wave motion in a periodic elastic layer.

    PubMed

    Sorokin, Vladislav S

    2016-04-01

    The paper concerns determining frequency band-gaps for longitudinal wave motion in a periodic waveguide. The waveguide may be considered either as an elastic layer with variable thickness or as a rod with variable cross section. As a result, widths and locations of all frequency band-gaps are determined by means of the method of varying amplitudes. For the general symmetric corrugation shape, the width of each odd band-gap is controlled only by one harmonic in the corrugation series with its number being equal to the number of the band-gap. Widths of even band-gaps, however, are influenced by all the harmonics involved in the corrugation series, so that the lower frequency band-gaps can emerge. These are band-gaps located below the frequency corresponding to the lowest harmonic in the corrugation series. For the general non-symmetric corrugation shape, the mth band-gap is controlled only by one, the mth, harmonic in the corrugation series. The revealed insights into the mechanism of band-gap formation can be used to predict locations and widths of all frequency band-gaps featured by any corrugation shape. These insights are general and can be valid also for other types of wave motion in periodic structures, e.g., transverse or torsional vibration.

  15. Effects of corrugation shape on frequency band-gaps for longitudinal wave motion in a periodic elastic layer.

    PubMed

    Sorokin, Vladislav S

    2016-04-01

    The paper concerns determining frequency band-gaps for longitudinal wave motion in a periodic waveguide. The waveguide may be considered either as an elastic layer with variable thickness or as a rod with variable cross section. As a result, widths and locations of all frequency band-gaps are determined by means of the method of varying amplitudes. For the general symmetric corrugation shape, the width of each odd band-gap is controlled only by one harmonic in the corrugation series with its number being equal to the number of the band-gap. Widths of even band-gaps, however, are influenced by all the harmonics involved in the corrugation series, so that the lower frequency band-gaps can emerge. These are band-gaps located below the frequency corresponding to the lowest harmonic in the corrugation series. For the general non-symmetric corrugation shape, the mth band-gap is controlled only by one, the mth, harmonic in the corrugation series. The revealed insights into the mechanism of band-gap formation can be used to predict locations and widths of all frequency band-gaps featured by any corrugation shape. These insights are general and can be valid also for other types of wave motion in periodic structures, e.g., transverse or torsional vibration. PMID:27106336

  16. Time-frequency characterization of rail corrugation under a combined auto-regressive and matched filter scheme

    NASA Astrophysics Data System (ADS)

    Hory, C.; Bouillaut, L.; Aknin, P.

    2012-05-01

    Rail corrugation is an oscillatory mechanical wear of rail surface raising from the long-term interaction between rail and wheel. Signal processing approaches to corrugation monitoring, as recommended by the European standards for instance, are designed either in the mileage domain or in the wavelength domain. However a joint mileage and wavelength domain analysis of the monitoring data can provide crucial information about the simultaneous amplitude and wavelength modulations of the corrugation modes. It is proposed in this paper to perform such a mileage-wavelength domain analysis of rail corrugation using the class of Auto-Regressive-MAtched Filterbank (AR-MAFI) methods. We show that these methods assume a statistical model that fits the corrugation data. We discuss also the optimal parameter settings for the analysis of corrugation data. Experimental studies performed on data collected from the French RATP metro network show that the AR-MAFI methods outperform (in terms of readability and accuracy) the standard distance domain or wavelength domain methods in localizing and characterizing corrugation.

  17. Experimental and numerical investigation of the effect of rail corrugation on the behaviour of rail fastenings

    NASA Astrophysics Data System (ADS)

    Ling, Liang; Li, Wei; Shang, Hongxia; Xiao, Xinbiao; Wen, Zefeng; Jin, Xuesong

    2014-09-01

    This paper presents the results of a detailed investigation of the effects of rail corrugation on the dynamic behaviour of metro rail fastenings, obtained from extensive experiments conducted on site and from simulations of train-track dynamics. The results of tests conducted with a metro train operating on corrugated tracks are presented and discussed first. A three-dimensional (3D) model of the metro train and a slab track was developed using multi-body dynamics modelling and the finite element method to simulate the effect of rail corrugation on the dynamic behaviour of rail fastenings. In the model, the metro train is modelled as a multi-rigid body system, and the slab track is modelled as a discrete elastic support system consisting of two Timoshenko beams for the rails, a 3D solid finite element (FE) model for the slabs, periodic discrete viscoelastic elements for the rail fastenings that connect the rails to the slabs, and uniformly viscoelastic elements for the subgrade beneath the slabs. The proposed train-track model was used to investigate the effects of rail corrugation on the dynamic behaviour of the metro track system and fastenings. An FE model for the rail fastenings was also developed and was used to calculate the stresses in the clips, some of which rupture under the excitation of rail corrugation. The results of the field experiments and dynamics simulations provide an insight into the root causes of the fracture of the clips, and several remedies are suggested for mitigating strong vibrations and failure of metro rail fastening systems.

  18. Plastic bronchitis.

    PubMed

    Singhi, Anil Kumar; Vinoth, Bharathi; Kuruvilla, Sarah; Sivakumar, Kothandam

    2015-01-01

    Plastic bronchitis, a rare but serious clinical condition, commonly seen after Fontan surgeries in children, may be a manifestation of suboptimal adaptation to the cavopulmonary circulation with unfavorable hemodynamics. They are ominous with poor prognosis. Sometimes, infection or airway reactivity may provoke cast bronchitis as a two-step insult on a vulnerable vascular bed. In such instances, aggressive management leads to longer survival. This report of cast bronchitis discusses its current understanding. PMID:26556975

  19. Research on a 170 GHz, 2 MW coaxial cavity gyrotron with inner-outer corrugation

    SciTech Connect

    Hou, Shenyong; Yu, Sheng; Li, Hongfu

    2015-03-15

    In this paper, a coaxial cavity gyrotron with inner-outer corrugation is researched. The electron kineto-equations and the first order transmission line equations of the gyrotron are derived from Lorentz force equation and the transmission line theory, respectively. And then, a 2 MW, 170 GHz coaxial cavity gyrotron with inner-outer corrugation is designed. By means of numerical calculation, the beam-wave interaction of the coaxial cavity gyrotron with inner-outer corrugation is investigated. Results show that the efficient and the outpower of the gyrotron are 42.3% and 2.38 MW, respectively.

  20. Analysis of a disk-on-rod surface wave element inside a corrugated horn using the mode-matching technique

    NASA Technical Reports Server (NTRS)

    Chen, J. C.

    1995-01-01

    A disk-on-rod inside a corrugated horn is one of the horn configurations for dual-frequency or wide-band operation. A mode-matching analysis method is described. A disk-on-rod inside a corrugated horn is represented as a series of coaxial waveguide sections and circular waveguide sections connected to each other. Three kinds of junctions need to be considered: coaxial-to-coaxial, coaxial-to-circular, and circular-to-circular. A computer program was developed to calculate the scattering matrix and the radiation pattern of a disk-on-rod inside a corrugated horn. The software as verified by experiment, and good agreement between calculation and measurement was obtained. The disk-on-rod inside a corrugated horn design gives an option to the Deep Space Network dual-frequency operation system, which currently is a two-horn/one-dichroic plate system.

  1. Particle trap to sheath contact for a gas-insulated transmission line having a corrugated outer conductor

    DOEpatents

    Fischer, William H.; Cookson, Alan H.; Yoon, Kue H.

    1984-04-10

    A particle trap to outer elongated conductor or sheath contact for gas-insulated transmission lines. The particle trap to outer sheath contact of the invention is applicable to gas-insulated transmission lines having either corrugated or non-corrugated outer sheaths. The contact of the invention includes an electrical contact disposed on a lever arm which in turn is rotatably disposed on the particle trap and biased in a direction to maintain contact between the electrical contact and the outer sheath.

  2. A performance-enhanced energy harvester for low frequency vibration utilizing a corrugated cantilevered beam

    NASA Astrophysics Data System (ADS)

    Kim, In-Ho; Jin, SeungSeop; Jang, Seon-Jun; Jung, Hyung-Jo

    2014-03-01

    This note proposes a performance-enhanced piezoelectric energy harvester by replacing a conventional flat cantilevered beam with a corrugated beam. It consists of a proof mass and a sinusoidally or trapezoidally corrugated cantilevered beam covered by a polyvinylidene fluoride (PVDF) film. Compared to the conventional energy harvester of the same size, it has a more flexible bending stiffness and a larger bonding area of the PVDF layer, so higher output voltage from the device can be expected. In order to investigate the characteristics of the proposed energy harvester, analytical developments and numerical simulations on its natural frequency and tip displacement are carried out. Shaking table tests are also conducted to verify the performance of the proposed device. It is clearly shown from the tests that the proposed energy harvester not only has a lower natural frequency than an equivalent sized standard energy harvester, but also generates much higher output voltage than the standard one.

  3. Simulation and analysis on ultrasonic testing for the cement grouting defects of the corrugated pipe

    SciTech Connect

    Qingbang, Han; Ling, Chen; Changping, Zhu

    2014-02-18

    The defects exist in the cement grouting process of prestressed corrugated pipe may directly impair the bridge safety. In this paper, sound fields propagation in concrete structures with corrugated pipes and the influence of various different defects are simulated and analyzed using finite element method. The simulation results demonstrate a much complex propagation characteristic due to multiple reflection, refraction and scattering, where the scattering signals caused by metal are very strong, while the signals scattered by an air bubble are weaker. The influence of defect both in time and frequency domain are found through deconvolution treatment. In the time domain, the deconvolution signals correspond to larger defect display a larger head wave amplitude and shorter arrive time than those of smaller defects; in the frequency domain, larger defect also shows a stronger amplitude, lower center frequency and lower cutoff frequency.

  4. Enhanced response and sensitivity of self-corrugated graphene sensors with anisotropic charge distribution

    PubMed Central

    Yol Jeong, Seung; Jeong, Sooyeon; Won Lee, Sang; Tae Kim, Sung; Kim, Daeho; Jin Jeong, Hee; Tark Han, Joong; Baeg, Kang-Jun; Yang, Sunhye; Seok Jeong, Mun; Lee, Geon-Woong

    2015-01-01

    We introduce a high-performance molecular sensor using self-corrugated chemically modified graphene as a three dimensional (3D) structure that indicates anisotropic charge distribution. This is capable of room-temperature operation, and, in particular, exhibiting high sensitivity and reversible fast response with equilibrium region. The morphology consists of periodic, “cratered” arrays that can be formed by condensation and evaporation of graphene oxide (GO) solution on interdigitated electrodes. Subsequent hydrazine reduction, the corrugated edge area of the graphene layers have a high electric potential compared with flat graphene films. This local accumulation of electrons interacts with a large number of gas molecules. The sensitivity of 3D-graphene sensors significantly increases in the atmosphere of NO2 gas. The intriguing structures have several advantages for straightforward fabrication on patterned substrates, high-performance graphene sensors without post-annealing process. PMID:26053892

  5. Enhanced response and sensitivity of self-corrugated graphene sensors with anisotropic charge distribution

    NASA Astrophysics Data System (ADS)

    Yol Jeong, Seung; Jeong, Sooyeon; Won Lee, Sang; Tae Kim, Sung; Kim, Daeho; Jin Jeong, Hee; Tark Han, Joong; Baeg, Kang-Jun; Yang, Sunhye; Seok Jeong, Mun; Lee, Geon-Woong

    2015-06-01

    We introduce a high-performance molecular sensor using self-corrugated chemically modified graphene as a three dimensional (3D) structure that indicates anisotropic charge distribution. This is capable of room-temperature operation, and, in particular, exhibiting high sensitivity and reversible fast response with equilibrium region. The morphology consists of periodic, “cratered” arrays that can be formed by condensation and evaporation of graphene oxide (GO) solution on interdigitated electrodes. Subsequent hydrazine reduction, the corrugated edge area of the graphene layers have a high electric potential compared with flat graphene films. This local accumulation of electrons interacts with a large number of gas molecules. The sensitivity of 3D-graphene sensors significantly increases in the atmosphere of NO2 gas. The intriguing structures have several advantages for straightforward fabrication on patterned substrates, high-performance graphene sensors without post-annealing process.

  6. Enhanced response and sensitivity of self-corrugated graphene sensors with anisotropic charge distribution.

    PubMed

    Jeong, Seung Yol; Jeong, Sooyeon; Lee, Sang Won; Kim, Sung Tae; Kim, Daeho; Jeong, Hee Jin; Han, Joong Tark; Baeg, Kang-Jun; Yang, Sunhye; Jeong, Mun Seok; Lee, Geon-Woong

    2015-01-01

    We introduce a high-performance molecular sensor using self-corrugated chemically modified graphene as a three dimensional (3D) structure that indicates anisotropic charge distribution. This is capable of room-temperature operation, and, in particular, exhibiting high sensitivity and reversible fast response with equilibrium region. The morphology consists of periodic, "cratered" arrays that can be formed by condensation and evaporation of graphene oxide (GO) solution on interdigitated electrodes. Subsequent hydrazine reduction, the corrugated edge area of the graphene layers have a high electric potential compared with flat graphene films. This local accumulation of electrons interacts with a large number of gas molecules. The sensitivity of 3D-graphene sensors significantly increases in the atmosphere of NO2 gas. The intriguing structures have several advantages for straightforward fabrication on patterned substrates, high-performance graphene sensors without post-annealing process. PMID:26053892

  7. Structural testing of corrugated asbestos-cement roof panels at the Hanford Facilities, Richland, Washington

    SciTech Connect

    Moustafa, S.E.; Rodehaver, S.M.; Frier, W.A.

    1993-10-01

    This report describes a roof testing program that was carried out at the 105KE/KW Spent Fuel Storage Basins and their surrounding facilities at the Hanford Site in Richland, Washington. The roof panels were constructed in the mid 1950`s of corrugated asbestos-cement (A/C), which showed common signs of aging. Based on the construction specifications, the panels capacity to meet current design standards was questioned. Both laboratory and in-situ load testing of the corrugated A/C panels was conducted. The objective of the complete test program was to determine the structural integrity of the existing A/C roof panels installed in the 105KE and 105KW facilities. The data from these tests indicated that the roofs are capable of resisting the design loads and are considered safe. A second phase test to address the roof resistance to personnel and roof removal/roofing system installation equipment was recommended and is underway.

  8. Corrugated structure insertion for extending the SASE bandwidth up to 3% at the European XFEL

    NASA Astrophysics Data System (ADS)

    Zagorodnov, I.; Feng, G.; Limberg, T.

    2016-11-01

    The usage of x-ray free electron laser (XFEL) in femtosecond nanocrystallography involves sequential illumination of many small crystals of arbitrary orientation. Hence a wide radiation bandwidth will be useful in order to obtain and to index a larger number of Bragg peaks used for determination of the crystal orientation. Considering the baseline configuration of the European XFEL in Hamburg, and based on beam dynamics simulations, we demonstrate here that the usage of corrugated structures allows for a considerable increase in radiation bandwidth. Data collection with a 3% bandwidth, a few microjoule radiation pulse energy, a few femtosecond pulse duration, and a photon energy of 5.4 keV is possible. For this study we have developed an analytical modal representation of the short-range wake function of the flat corrugated structures for arbitrary offsets of the source and the witness particles.

  9. Low-Frequency Quasi-Periodic Oscillations and Iron Line Variability of Discoseismic Corrugation Modes

    NASA Astrophysics Data System (ADS)

    Butsky, Iryna; Tsang, D.

    2013-01-01

    Using a fast semi-analytic raytracing code, we study the variability of iron lines due to discoseismic oscillations concentrated in the inner-most regions of accretion discs around black holes. The dependence of the relativistically broadened line profile on the oscillation-phase is studied for discoseismic corrugation modes. The corrugation mode, or c-mode, is of particular interest as their natural frequency corresponds well to the 0.1-10 Hz range observed for low-frequency quasi-periodic oscillations (LFQPOs) in X-ray binaries. Comparison of the oscillation phase dependent variability and QPO-phase stacked Fe-Kalpha line observations will allow such discoseismic models to be confirmed or ruled out as a source of LFQPOs.

  10. Long-range spoof surface plasmons on the doubly corrugated metal surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Yong-Qiang; Kong, Ling-Bao; Liu, Pu-Kun

    2016-07-01

    In this paper, symmetric spoof surface plasmon (SSP) mode on the doubly corrugated metal surfaces is indentified as long-range spoof surface plasmon (LRSSP) because of its extreme low propagation loss and symmetric dominant field profile so as short-range SSP (SRSSP) for anti-symmetric mode. Based on theoretical calculation and numerical simulation of finite integration method, symmetric and anti-symmetric SSP modes with various gap sizes between these two identical corrugated metal surfaces are investigated in terahertz (THz) regime and good agreement is realized. Besides, the low loss superiority of LRSSP diminishes along with the increased gap size. This work opens up new avenues to utilize this long-range surface mode in far-infrared, THz or lower frequency band and can find many potential applications such as low-loss waveguide, filters and novel electronic sources.

  11. Wavelength filtering and demultiplexing devices based on ultrathin corrugated MIM waveguides

    NASA Astrophysics Data System (ADS)

    Yang, Bao Jia; Zhou, Yong Jin

    2016-05-01

    We have numerically investigated the transmission properties of spoof surface plasmon polaritons on the ultrathin corrugated metal-insulator-metal (MIM) waveguides with different grooves. A band-pass plasmonic filter with T-shaped grooves and a compact 4-way wavelength division demultiplexing (WDM) incorporating the filter have been proposed. The whole 4-way WDM is more compact by the use of corrugated MIM waveguides with meander grooves. The near electric field distributions show that electromagnetic waves at different frequencies are guided and propagate along different branches with good isolation between branches. The experimental and numerical results have shown good agreements and validated the functions of the 4-way wavelength splitter. We also numerically investigate the 4-way WDM at terahertz frequencies by scaling down the whole structure. It is believed that the spoof plasmonic devices can find more applications in the plasmonic integration platform, such as optical communications, signal processing and spectral engineering.

  12. Quasiclassical trajectory studies of rigid rotor--rigid surface scattering. II. Corrugated surface

    SciTech Connect

    Park, S.C.; Bowman, J.M.

    1984-03-01

    The quasiclassical trajectory method, previously applied to rigid rotor--rigid flat surface scattering (J. M. Bowman and S. C. Park, J. Chem. Phys. 77, 5441 (1982)) is applied to a rigid rotor--rigid corrugated surface, i.e., a N/sub 2/--LiF(001), system. The mechanisms for rotational excitation at low and high collision energies are studied as well as their dependence on initial beam orientation and corrugation strength. A significant correlation between long-lived trajectories and high rotational excitation is found for low energy collisions and rotational rainbows are clearly observed in the high energy regime, although these features are broadened relative to the flat surface reported previously.

  13. Tailoring the surface of ZnO nanorods into corrugated nanorods via a selective chemical etch method

    NASA Astrophysics Data System (ADS)

    Duan, Xiangyang; Chen, Guangde; Li, Chu; Yin, Yuan; Jin, Wentao; Guo, Lu'an; Ye, Honggang; Zhu, Youzhang; Wu, Yelong

    2016-07-01

    Using the chemical vapour deposition method, we successfully converted smooth ZnO nanorods (NRs) into corrugated NRs by simply increasing the reaction time. The surface morphology and crystallographic structure of the corrugated NRs were investigated. The corrugated NRs were decorated by alternant (11\\bar{2}1) and (11\\bar{2}\\bar{1}) planes at the exposed side surfaces while the conventional \\{10\\bar{1}0\\} planes disappeared. No twinning boundaries were found in the periodically corrugated structures, indicating that they were type II corrugated NRs. Further investigation told us that they were selectively etched. We introduced a hydrothermal method to synthesize the smooth ZnO NRs and then etched them in a tube furnace at 950 °C with a flow of carbon monoxide. By separating the growth stage and the selective etching stage, we explicitly demonstrated a successfully selective etching effect on ZnO NRs with a carbon monoxide reducing atmosphere for the first time. An etching mechanism based on the selective reaction between carbon monoxide and the different exposed surfaces was proposed. Our results will improve the understanding of the growth mechanism on coarse or corrugated NRs and provide a new strategy for the application of surface controlled nanostructured materials.

  14. Tailoring the surface of ZnO nanorods into corrugated nanorods via a selective chemical etch method.

    PubMed

    Duan, Xiangyang; Chen, Guangde; Li, Chu; Yin, Yuan; Jin, Wentao; Guo, Lu'an; Ye, Honggang; Zhu, Youzhang; Wu, Yelong

    2016-07-22

    Using the chemical vapour deposition method, we successfully converted smooth ZnO nanorods (NRs) into corrugated NRs by simply increasing the reaction time. The surface morphology and crystallographic structure of the corrugated NRs were investigated. The corrugated NRs were decorated by alternant [Formula: see text] and [Formula: see text] planes at the exposed side surfaces while the conventional [Formula: see text] planes disappeared. No twinning boundaries were found in the periodically corrugated structures, indicating that they were type II corrugated NRs. Further investigation told us that they were selectively etched. We introduced a hydrothermal method to synthesize the smooth ZnO NRs and then etched them in a tube furnace at 950 °C with a flow of carbon monoxide. By separating the growth stage and the selective etching stage, we explicitly demonstrated a successfully selective etching effect on ZnO NRs with a carbon monoxide reducing atmosphere for the first time. An etching mechanism based on the selective reaction between carbon monoxide and the different exposed surfaces was proposed. Our results will improve the understanding of the growth mechanism on coarse or corrugated NRs and provide a new strategy for the application of surface controlled nanostructured materials. PMID:27276661

  15. Corrugation-pitch-modulated DFB semiconductor lasers realized by common holographic exposure

    NASA Astrophysics Data System (ADS)

    Li, Simin; Li, Lianyan; Shi, Yuechun; Cao, Baoli; Guo, Renjia; Zheng, Junshou; Chen, Xiangfei

    2014-07-01

    Experimental results of corrugation-pitch-modulated (CPM) DFB lasers with distributed phase shift (DPS) based on reconstruction-equivalent-chirp (REC) technique are demonstrated. The DPS can flatten the light intensity distribution along the laser cavity and reduce the spatial hole burning (SHB). The lasers have good single longitudinal mode (SLM) property even under high injection current. Thanks to the sampling technique, the grating can be easily fabricated by holographic exposure and conventional lithograph.

  16. Improved manufacturability and characterization of a corrugated Parylene diaphragm pressure transducer

    NASA Astrophysics Data System (ADS)

    Luharuka, Rajesh; Noh, Hongseok Moses; Kim, Sang Kyung; Mao, Hua; Wong, Lid; Hesketh, Peter J.

    2006-08-01

    Corrugated Parylene diaphragm based pressure transducers have been used in a wide range of MEMS devices. This paper presents a reusable silicon micromold based process to fabricate optically reflective, corrugated Parylene diaphragms for fiber-optic-linked pressure sensing in an ultralow pressure range (±98 Pa). The silicon micromolding process is combined with a novel chip-level tube bonding method to mount the diaphragms to the end of a tube before releasing them from the mold. This fabrication approach vastly improves the manufacturability of these pressure sensors over the previously used photoresist mold-based process. It provides greater flexibility in design and is shown to produce Parylene diaphragms with an accurate corrugation profile. Such a biomedical ultralow pressure sensor can be attached to a catheter tip and used in confined space for intra-cavity pressure measurements. Fabrication and testing results related to six different corrugated diaphragm designs have been presented here. These diaphragms are characterized in the operating pressure range (±98 Pa) with a 5 Pa resolution using an optical profilometer and U-tube manometer setup. The sensor characterization results show that all three designs of 1.0 mm diameter diaphragms have good agreement with the predicted values that were obtained from finite element analysis. Deflections of up to 6 µm were measured in these diaphragms. Larger displacements of up to 19 µm were obtained in 1.5 mm diameter diaphragms. However, the characteristic curve obtained in these sensors differed significantly from the simulated results. Higher initial deflection due to stress release, localized buckling and lower stiffness of the SU-8 support ring are believed to be the reason behind such deviation from the design values.

  17. Effects of Antimicrobial Peptide Revealed by Simulations: Translocation, Pore Formation, Membrane Corrugation and Euler Buckling

    PubMed Central

    Chen, Licui; Jia, Nana; Gao, Lianghui; Fang, Weihai; Golubovic, Leonardo

    2013-01-01

    We explore the effects of the peripheral and transmembrane antimicrobial peptides on the lipid bilayer membrane by using the coarse grained Dissipative Particle Dynamics simulations. We study peptide/lipid membrane complexes by considering peptides with various structure, hydrophobicity and peptide/lipid interaction strength. The role of lipid/water interaction is also discussed. We discuss a rich variety of membrane morphological changes induced by peptides, such as pore formation, membrane corrugation and Euler buckling. PMID:23579956

  18. MTR BUILDING, TRA603. EAST SIDE. CAMERA FACING WEST. CORRUGATED IRON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR BUILDING, TRA-603. EAST SIDE. CAMERA FACING WEST. CORRUGATED IRON BUILDING MARKED WITH "X" IS TRA-651. TRA-626, TO ITS RIGHT, HOUSED COMPRESSOR EQUIPMENT FOR THE AIRCRAFT NUCLEAR PROPULSION PROGRAM. LATER, IT WAS USED FOR STORAGE. INL NEGATIVE NO. HD46-42-4. Mike Crane, Photographer, April 2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  19. Effects of antimicrobial peptide revealed by simulations: translocation, pore formation, membrane corrugation and euler buckling.

    PubMed

    Chen, Licui; Jia, Nana; Gao, Lianghui; Fang, Weihai; Golubovic, Leonardo

    2013-04-11

    We explore the effects of the peripheral and transmembrane antimicrobial peptides on the lipid bilayer membrane by using the coarse grained Dissipative Particle Dynamics simulations. We study peptide/lipid membrane complexes by considering peptides with various structure, hydrophobicity and peptide/lipid interaction strength. The role of lipid/water interaction is also discussed. We discuss a rich variety of membrane morphological changes induced by peptides, such as pore formation, membrane corrugation and Euler buckling.

  20. Experimental investigation on the dynamic response of clamped corrugated sandwich plates subjected to underwater impulsive loadings

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Zhang, Wei; Li, Dacheng; Hypervelocity Impact Research Center Team

    2015-06-01

    Corrugated sandwich plates are widely used in marine industry because such plates have high strength-to-weight ratios and blast resistance. The laboratory-scaled fluid-structure interaction experiments are performed to demonstrate the shock resistance of solid monolithic plates and corrugated sandwich plates by quantifying the permanent transverse deflection at mid-span of the plates as a function of impulsive loadings per areal mass. Sandwich structures with 6mm-thick and 10mm-thick 3003 aluminum corrugated core and 5A06 face sheets are compared with the 5A06 solid monolithic plates in this paper. The dynamic deformation of plates are captured with the the 3D digital speckle correlation method (DIC). The results affirm that sandwich structures show a 30% reduction in the maximum plate deflection compare with a monolithic plate of identical mass per unit area, and the peak value of deflection effectively reduced by increasing the thickness core. The failure modes of sandwich plates consists of core crushing, imprinting, stretch tearing of face sheets, bending and permanent deformation of entire structure with the increasing impulsive loads, and the failure mechanisms are analyzed with the postmortem panels and dynamic deflection history captured by cameras. National Natural Science Foundation of China (NO.: 11372088).

  1. Gap opening in graphene by 1D and 2D periodic corrugations

    NASA Astrophysics Data System (ADS)

    Naumov, Ivan; Bratkovsky, Alexander

    2012-02-01

    Using first-principles methods and symmetry arguments, we show that a graphene monolayer, which is periodically corrugated in one or two direction(s), can be either semimetal or semiconductor, depending on how strong corrugation is or how the initial symmetry is broken. In the case of 1D periodic ripples, a gap at the Dirac points opens up only due to (i) breaking of the inversion symmetry or equivalence between A and B sublattices and/or (ii) merging of two inequivalent Dirac points, D and -D. Since breaking the inversion symmetry has only relatively modest effect, a tangible gap can be mainly induced by mutual annihilation of the Dirac points, which requires large corrugations, close to mechanical breaking point. In contrast to 1D, the 2D ripples can additionally induce a semiconducting gap via mixing of electronic states belonging to two different K, K' valleys. In this case, a gap on the order of 0.5 eV can be opened up at strains safely lower than the graphene failure strain [1]. [4pt] [1] I.I. Naumov, A.M. Bratkovsky, arXiv:1104.0314v1.

  2. Evaporation characteristics of R22 flowing inside a corrugated tube. [Tubes with indented spiral turbulence promoter

    SciTech Connect

    Hinton, D.L. ); Conklin, J.C.; Vineyard, E.A. )

    1992-01-01

    Because heat exchanger thermal performance has a direct influence on the overall cycle performance of vapor-compression refrigeration machinery, enhanced heat transfer surfaces are of interest to improve the efficiency of heat pumps and air conditioners. As part of a larger program investigating nonazeotropic refrigerant mixtures for replacement of chlorofluorocarbon compounds, we investigated the performance of R22 (chlorodifluoromethane) in conventional smooth tubes and enhanced heat transfer tube geometries as a base case. This paper presents the results of this initial investigation for a smooth tube and a tube with a commonly available enhanced heat transfer surface, called corrugated or spirally indented. We investigated the evaporating heat transfer and pressure drop characteristics in an experimental apparatus consisting of a variable-speed compressor and two sets of counterflow concentric-tube heat exchangers having both smooth and corrugated enhanced tubeside surfaces. The refrigerant circulates inside the central tube and water circulates in the annulus. The measured pressure drop and the heat transfer coefficient for the evaporation of the R22 are presented as a function of heat flux, quality, and mass flux for both heat transfer surfaces. Both the heat transfer coefficient and the pressure drop of the corrugated surface are higher than those of the smooth surface at any given refrigerant condition. The heat transfer enhancement is most notable at low mass qualities.

  3. Impact of Atomic Corrugation on Sliding Friction as Probed by QCM

    NASA Astrophysics Data System (ADS)

    Coffey, Tonya; Lee, Sang; Krim, Jacqueline

    2004-03-01

    At the atomic scale, friction is believed to originate primarily via sliding induced excitation of phonons. [1] Theoretical predictions of the magnitude of phononic dissipation have been related to the atomic corrugation of the adsorbate/substrate potential. [2] Braun and colleagues [3] measured a corrugation of 1.9 meV for xenon on a copper(111) surface using helium atom scattering. Using the Quartz Crystal Microbalance (QCM), we have measured the sliding friction of Xe/Cu(111) adsorbed at 77 K. The QCM probe of sliding friction is the sliptime, which measures the slippage of the adsorbate atop the oscillating surface of the QCM. For monolayer coverages, we observed a sliptime of 10 ns for Xe/Cu(111). We also discuss theoretical predictions for the impact of atomic corrugation on sliding friction. [1] Fundamentals of Friction; Macroscopic and Microscopic Processes, ed. I.L. Singer and H.M. Pollock, Kluwer, Dordrecht (1992). [2] M. Cieplak, E.D. Smith, and M.O. Robbins, Science 265 (1994) 1209. [3] J. Braun et al., PRL 80 (1998) 125.

  4. Molecular dynamics simulation of atomic-scale frictional behavior of corrugated nano-structured surfaces.

    PubMed

    Kim, Hyun-Joon; Kim, Dae-Eun

    2012-07-01

    Surface morphology is one of the critical parameters that affect the frictional behavior of two contacting bodies in relative motion. It is important because the real contact area as well as the contact stiffness is dictated by the micro- and nano-scale geometry of the surface. In this regard, the frictional behavior may be controlled by varying the surface morphology through nano-structuring. In this study, molecular dynamics simulations were conducted to investigate the effects of contact area and structural stiffness of corrugated nano-structures on the fundamental frictional behavior at the atomic-scale. The nano-structured surface was modeled as an array of corrugated carbon atoms with a given periodicity. It was found that the friction coefficient of the nano-structured surface was lower than that of a smooth surface under specific contact conditions. The effect of applied load on the friction coefficient was dependent on the size of the corrugation. Furthermore, stiffness of the nano-structure was identified to be an important variable in dictating the frictional behavior.

  5. Atomic force spectroscopy and density-functional study of graphene corrugation on Ru(0001)

    NASA Astrophysics Data System (ADS)

    Voloshina, Elena; Dedkov, Yuriy

    2016-06-01

    Graphene, the thinnest material in the world, can form moiré structures on different substrates, including graphite, h -BN, or metal surfaces. In such systems, the structure of graphene, i.e., its corrugation, as well as its electronic and elastic properties, are defined by the combination of the system geometry and local interaction strength at the interface. The corrugation in such structures on metals is heavily extracted from diffraction or local probe microscopy experiments, and it can be obtained only via comparison with theoretical data, which usually simulate the experimental findings. Here we show that graphene corrugation on metals can be measured directly employing atomic force spectroscopy, and the obtained value coincides with state-of-the-art theoretical results. The presented results demonstrate an unexpected space selectivity for the Δ f (z ) signal in the atomic force spectroscopy in the moiré graphene lattice on Ru(0001), which is explained by the different response of the graphene layer on the indentation process. We also address the elastic reaction of the formed graphene nanodoms on the indentation process by the scanning tip that is important for the modeling and fabrication of graphene-based nanoresonators on the nanoscale.

  6. Investigations of heat transfer and friction characteristics of compact cross-corrugated recuperators

    NASA Astrophysics Data System (ADS)

    Zhou, Guo-Yan; Tu, Shan-Tung; Ma, Hu-gen

    2014-09-01

    As one of the key devices in the high temperature gas turbine system, cross-corrugated recuperators provide high heat transfer capabilities with compact size, light weight, strong mechanical strength and are mandatory to achieve 30 % electrical efficiency or higher for micro turbine engines. Flow in such geometries is usually laminar with lower Reynolds numbers. In order to understand mechanisms of flowing and heat transfer, periodic fully developed fluid flow and heat transfer in two types of cross-corrugated structures with inclination angle at 90° are investigated numerically and experimentally. Periodicity was used to reduce the complexity of the channel geometry and enables the smallest possible segment of the flow channel to be modeled. The velocity and temperature distributions were obtained in the three-dimensional complex domain. Besides a detailed flow analysis, comparison of the local heat and mass transfer and the pressure losses for these geometries are presented. It is shown that the flow phenomena caused by the different geometries were of significant influence on the homogeneity and on the quantity of the local heat and mass transfer as well as on the pressure drop. As a recuperator for micro turbine engines, cross-corrugated sinusoidal channels are more preferable to triangular channels.

  7. Fabrication and evaluation of superplastically formed/weld-brazed corrugated compression panels with beaded webs

    NASA Technical Reports Server (NTRS)

    Royster, D. M.; Davis, R. C.; Shinn, J. M., Jr.; Bales, T. T.; Wiant, H. R.

    1985-01-01

    A study was made to investigate the feasibility of superplastically forming corrugated panels with beaded webs and to demonstrate the structural integrity of these panels by testing. The test panels in the study consist of superplastically formed titanium alloy Ti-6Al-4V half-hat elements that are joined by weld-brazing to titanium alloy Ti-6Al-4V caps to form either single-corrugation compression panels or multiple-corrugation compression panels. Stretching and subsequent thinning of the titanium sheet during superplastic forming is reduced by approximately 35 percent with a shallow half-hat die concept instead of a deep die concept and results in a more uniform thickness across the beaded webs. The complete panels are tested in end compression at room temperature and the results compared with analysis. The heavily loaded panels failed at loads approaching the yield strength of the titanium material. At maximum load, the caps wrinkled locally accompanied with separation of the weld-braze joint in the wrinkle. None of the panels tested, however, failed catastrophically in the weld-braze joint. Experimental test results are in good agreement with structural analysis of the panels.

  8. Corrugated Waveguide and Directional Coupler for CW 250-GHz Gyrotron DNP Experiments

    PubMed Central

    Woskov, Paul P.; Bajaj, Vikram S.; Hornstein, Melissa K.; Temkin, Richard J.; Griffin, Robert G.

    2007-01-01

    A 250-GHz corrugated transmission line with a directional coupler for forward and backward power monitoring has been constructed and tested for use with a 25-W continuous-wave gyrotron for dynamic nuclear polarization (DNP) experiments. The main corrugated line (22-mm internal diameter, 2.4-m long) connects the gyrotron output to the DNP probe input. The directional coupler, inserted approximately midway, is a four-port crossed waveguide beamsplitter design. Two beamsplitters, a quartz plate and ten-wire array, were tested with output coupling of 2.5% (−16 dB) at 250.6 GHz and 1.6% (−18 dB), respectively. A pair of mirrors in the DNP probe transferred the gyrotron beam from the 22-mm waveguide to an 8-mm helically corrugated waveguide for transmission through the final 0.58-m distance inside the NMR magnet to the sample. The transmission-line components were all cold tested with a 248 ± 4-GHz radiometer. A total insertion loss of 0.8 dB was achieved for HE11 -mode propagation from the gyrotron to the sample with only 1% insertion loss for the 22-mm-diameter waveguide. A clean Gaussian gyrotron beam at the waveguide output and reliable forward power monitoring were achieved for many hours of continuous operation. PMID:17901907

  9. Fast diffusion along defects and corrugations in phospholipid P beta, liquid crystals.

    PubMed Central

    Schneider, M B; Chan, W K; Webb, W W

    1983-01-01

    The diffusion of a fluorescent lipid analogue in liquid crystals of the anisotropic P beta, phase of dimyristoylphosphatidylcholine (DMPC) had been found to be highly variable, suggesting structural defect pathways. Fluorescence photobleaching recovery (FPR) experiments imply two effective diffusion pathways with coefficients differing by at least 100. This is consistent with fast diffusion along submicroscopic bands of disordered material ("defects") in the bilayer corrugations characteristic of this phase. Due to strains during transformation from the L alpha phase, the axis of the corrugations is ordinarily disrupted by mosaic patches rotationally disoriented within the mean plane of the molecular bilayers, although larger oriented domains are sometimes adventitiously aligned into microscopically visible striped textures. The corrugations are also systematically aligned along positive disclinations pairs or "oily streaks." Thus, fast diffusion occurs parallel to the disclination lines and along the textured stripes. FPR results yield an upper limit on the effective diffusion in the ordered material of D less than or equal to 2 X 10(-16) cm2/s at 22 degrees C, D less than or equal to 3 X 10(-17) cm2/s at 13 degrees C. In contrast the diffusion coefficient along defect pathways where disordered ribbons are aligned is D approximately 4 X 10(-11) cm2/s at 16 degrees C. Images FIGURE 4 FIGURE 6 FIGURE 7 PMID:6616004

  10. The Band-Gap and TRUE Band-Gap in Nominally Metallic Carbon Nanotubes: the Tight-Binding Study on Corrugation Effect

    NASA Astrophysics Data System (ADS)

    Lu, Hongxia; Wu, Jianbao; Wang, Jizhen; Shi, Shaocong; Zhang, Weiyi

    2014-11-01

    In this paper, the band-gap and true band-gap are analyzed for the corrugated structures of various types of single wall carbon nanotubes (SWCNTs) within the tight binding approximation. We show that corrugation, combined with curvature effect, yields naturally the true small band-gap in all SWCNTs with small radius. The more stable corrugated structures of SWCNTs are backed by the abinitio total energy calculations for nominally metallic armchair SWCNTs.

  11. Non-binding conductor load bearing roller for a gas-insulated transmission line having a corrugated outer conductor

    DOEpatents

    Fischer, William H.

    1984-01-01

    A gas-insulated transmission line includes a corrugated outer conductor, an inner conductor disposed within and insulated from the outer conductor by means of support insulators and an insulating gas, and a non-binding transport device for supporting and permitting movement of the inner conductor/insulating support assembly axially along the corrugated outer conductor without radial displacement and for moving without binding along corrugations of any slope less than vertical. The transport device includes two movable contacts, such as skids or rollers, supported on a common pivot lever, the pivot lever being rotatably disposed about a pivot lever axis, which pivot lever axis is in turn disposed on the periphery of a support insulator or particle trap if one is used. The movable contacts are separated axially a distance equal to the axial distance between the peaks and valleys of the corrugations of the outer conductor and separated radially a distance equal to the radial distance between the peaks and valleys of the corrugations of the outer conductor. The transport device has the pivot lever axis disposed parallel to the motion of travel of the inner conductor/insulating support assembly.

  12. Non-binding conductor load bearing roller for a gas-insulated transmission line having a corrugated outer conductor

    SciTech Connect

    Fischer, W.H.

    1984-04-24

    A gas-insulated transmission line includes a corrugated outer conductor, an inner conductor disposed within and insulated from the outer conductor by means of support insulators and an insulating gas, and a non-binding transport device for supporting and permitting movement of the inner conductor/insulating support assembly axially along the corrugated outer conductor without radial displacement and for moving without binding along corrugations of any slope less than vertical. The transport device includes two movable contacts, such as skids or rollers, supported on a common pivot lever, the pivot lever being rotatably disposed about a pivot lever axis, which pivot lever axis is in turn disposed on the periphery of a support insulator or particle trap if one is used. The movable contacts are separated axially a distance equal to the axial distance between the peaks and valleys of the corrugations of the outer conductor and separated radially a distance equal to the radial distance between the peaks and valleys of the corrugations of the outer conductor. The transport device has the pivot lever axis disposed parallel to the motion of travel of the inner conductor/insulating support assembly. 7 figs.

  13. Spectral Formulation for the Solution of Full-Wave Scattering from a Conducting Wedge Tipped with a Corrugated Cylinder

    NASA Astrophysics Data System (ADS)

    Polycarpou, A. C.; Christou, M. A.

    2011-11-01

    A spectral mode-matching technique is formulated to solve for the full-wave scattering of a corrugated cylinder-tipped wedge in the presence of an impressed electric or magnetic line source. Asymptotic approximations of large-order Bessel or Henkel functions for a fixed argument were introduced in order to overcome numerical difficulties in their regular series expansions. The corrugations on the conducting cylinder have the shape of annular sectors. The primary objective of this work is to investigate the impact of corrugations on the scattered field in the shadow region of the structure. An optimally designed corrugated cylinder placed at the tip of a conducting wedge can effectively suppress electromagnetic scattering in the shadow region. Obtained numerical results using the proposed approach prove the above concept. These results were validated against numerical data obtained using a nodal finite element method. The aim of this research is to utilize these corrugated tips in horn antenna design for the reduction of side-lobe level and the shaping of the respective E-plane radiation pattern.

  14. Spectral Formulation for the Solution of Full-Wave Scattering from a Conducting Wedge Tipped with a Corrugated Cylinder

    SciTech Connect

    Polycarpou, A. C.; Christou, M. A.

    2011-11-29

    A spectral mode-matching technique is formulated to solve for the full-wave scattering of a corrugated cylinder-tipped wedge in the presence of an impressed electric or magnetic line source. Asymptotic approximations of large-order Bessel or Henkel functions for a fixed argument were introduced in order to overcome numerical difficulties in their regular series expansions. The corrugations on the conducting cylinder have the shape of annular sectors. The primary objective of this work is to investigate the impact of corrugations on the scattered field in the shadow region of the structure. An optimally designed corrugated cylinder placed at the tip of a conducting wedge can effectively suppress electromagnetic scattering in the shadow region. Obtained numerical results using the proposed approach prove the above concept. These results were validated against numerical data obtained using a nodal finite element method. The aim of this research is to utilize these corrugated tips in horn antenna design for the reduction of side-lobe level and the shaping of the respective E-plane radiation pattern.

  15. Spoof surface plasmon modes on doubly corrugated metal surfaces at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Liu, Yong-Qiang; Kong, Ling-Bao; Du, Chao-Hai; Liu, Pu-Kun

    2016-06-01

    Spoof surface plasmons (SSPs) have many potential applications such as imaging and sensing, communications, innovative leaky wave antenna and many other passive devices in the microwave and terahertz (THz) spectrum. The extraordinary properties of SSPs (e.g. extremely strong near field, enhanced beam–wave interaction) make them especially attractive for developing novel THz electronic sources. SSP modes on doubly corrugated metal surfaces are investigated and analyzed both theoretically and numerically in this paper. The analytical SSP dispersion expressions of symmetric and anti-symmetric modes are obtained with a simplified modal field expansion method; the results are also verified by the finite integration method. Additionally, the propagation losses are also considered for real copper surfaces with a limited constant conductivity in a THz regime. It is shown that the asymptotical frequency of the symmetric mode at the Brillouin boundary decreases along with the decreased gap size between these two corrugated metal surfaces while the asymptotical frequency increases for the anti-symmetric mode. The anti-symmetric mode demonstrates larger propagation losses than the symmetric mode. Further, the losses for both symmetric and anti-symmetric modes decrease when this gap size enlarges. By decreasing groove depth, the asymptotical frequency increases for both the symmetric and the anti-symmetric mode, but the variation of propagation losses is more complicated. Propagation losses increase along with the increased period. Our studies on the dispersion characteristics and propagation losses of SSP modes on this doubly corrugated metallic structure with various parameters is instructive for numerous applications such as waveguides, circuitry systems with high integration, filters and powerful electronic sources in the THz regime.

  16. Helically corrugated waveguide gyrotron traveling wave amplifier using a thermionic cathode electron gun

    NASA Astrophysics Data System (ADS)

    Cross, A. W.; He, W.; Phelps, A. D. R.; Ronald, K.; Whyte, C. G.; Young, A. R.; Robertson, C. W.; Rafferty, E. G.; Thomson, J.

    2007-06-01

    Experimental operation of a gyrotron traveling wave amplifier with a helically corrugated waveguide using a thermionic cathode electron gun is presented. The coupling between the second harmonic cyclotron mode of the gyrating electron beam and the radiation occurred in the region of near infinite phase velocity over a broad frequency band. With an axis-encircling electron beam of pitch factor of 185keV, and current of 6.0A, the amplifier achieved an output power of 220kW, saturated gain of 24dB, saturated bandwidth of 8.4to10.4GHz, and an interaction efficiency of 20%.

  17. Radiation characteristics of electromagnetic eigenmodes at the corrugated interface of a left-handed material.

    PubMed

    Cuevas, Mauro; Depine, Ricardo A

    2009-08-28

    We study the radiation characteristics of electromagnetic surface waves at a periodically corrugated interface between a conventional and a negatively refracting (or left-handed) material. In this case, and contrary to the surface plasmon polariton in a metallic grating, surface plasmon polaritons may radiate on both sides of the rough interface along which they propagate. We find novel radiation regimes which provide an indirect demonstration of other unusual phenomena characteristic of electromagnetic wave propagation in left-handed materials, such as negative refraction or backward wave propagation.

  18. Analysis of Bonded Joints Between the Facesheet and Flange of Corrugated Composite Panels

    NASA Technical Reports Server (NTRS)

    Yarrington, Phillip W.; Collier, Craig S.; Bednarcyk, Brett A.

    2008-01-01

    This paper outlines a method for the stress analysis of bonded composite corrugated panel facesheet to flange joints. The method relies on the existing HyperSizer Joints software, which analyzes the bonded joint, along with a beam analogy model that provides the necessary boundary loading conditions to the joint analysis. The method is capable of predicting the full multiaxial stress and strain fields within the flange to facesheet joint and thus can determine ply-level margins and evaluate delamination. Results comparing the method to NASTRAN finite element model stress fields are provided illustrating the accuracy of the method.

  19. EDDY CURRENT SYSTEM FOR DETECTION OF CRACKING BENEATH BRAIDING IN CORRUGATED METAL HOSE

    SciTech Connect

    Wincheski, Buzz; Simpson, John; Hall, George

    2009-03-03

    In this paper an eddy current system for the detection of partially-through-the-thickness cracks in corrugated metal hose is presented. Design criteria based upon the geometry and conductivity of the part are developed and applied to the fabrication of a prototype inspection system. Experimental data are used to highlight the capabilities of the system and an image processing technique is presented to improve flaw detection capabilities. A case study for detection of cracking damage in a space shuttle radiator retract flex hoses is also presented.

  20. Eddy Current System for Detection of Cracking Beneath Braiding in Corrugated Metal Hose

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Simpson, John; Hall, George

    2008-01-01

    In this paper an eddy current system for the detection of partially-through-the-thickness cracks in corrugated metal hose is presented. Design criteria based upon the geometry and conductivity of the part are developed and applied to the fabrication of a prototype inspection system. Experimental data are used to highlight the capabilities of the system and an image processing technique is presented to improve flaw detection capabilities. A case study for detection of cracking damage in a space shuttle radiator retract flex hoses is also presented.

  1. Distributed-feedback Terahertz Quantum-cascade Lasers with Laterally Corrugated Metal Waveguides

    NASA Technical Reports Server (NTRS)

    Williams, Benjamin S.; Kumar, Sushil; Hu, Qing; Reno, John L.

    2005-01-01

    We report the demonstration of distributed-feedback terahertz quantum-cascade lasers based on a first-order grating fabricated via a lateral corrugation in a double-sided metal ridge waveguide. The phase of the facet reflection was precisely set by lithographically defined facets by dry etching. Single-mode emission was observed at low to moderate injection currents, although multimode emission was observed far beyond threshold owing to spatial hole burning. Finite-element simulations were used to calculate the modal and threshold characteristics for these devices, with results in good agreement with experiments.

  2. Shear Lag in Corrugated Sheets Used for the Chord Member of a Box Beam

    NASA Technical Reports Server (NTRS)

    Newell, Joseph S; Reissner, Eric

    1941-01-01

    The problem of the distribution of normal stress across a wide corrugated sheet used as the chord of a box-beam-like structure is investigated theoretically and experimentally. Expressions are developed giving the stress distribution in beams, symmetrical or unsymmetrical, about a plane passed spanwise through the center of the sheet. The experiments were arranged to insure bending without torsion and surveys of the normal stresses were made by means of mechanical and electrical strain gages. The experimental data showed very good agreement with the new b of the theoretical curves, especially at the highly stressed sections, for both the symmetrical and unsymmetrical beams. Several suggestions for future research are included.

  3. A study of structurally efficient graphite-thermoplastic trapezoidal-corrugation sandwich and semi-sandwich panels

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    1993-01-01

    The structural efficiency of compression-loaded trapezoidal-corrugation sandwich and semi-sandwich composite panels is studied to determine their weight savings potential. Sandwich panels with two identical face sheets and a trapezoidal corrugated core between them, and semi-sandwich panels with a corrugation attached to a single skin are considered. An optimization code is used to find the minimum weight designs for critical compressive load levels ranging from 3,000 to 24,000 lb/in. Graphite-thermoplastic panels based on the optimal minimum weight designs were fabricated and tested. A finite-element analysis of several test specimens was also conducted. The results of the optimization study, the finite-element analysis, and the experiments are presented.

  4. Transmission Loss and Absorption of Corrugated Core Sandwich Panels With Embedded Resonators

    NASA Technical Reports Server (NTRS)

    Allen, Albert R.; Schiller, Noah H.; Zalewski, Bart F.; Rosenthal, Bruce N.

    2014-01-01

    The effect of embedded resonators on the diffuse field sound transmission loss and absorption of composite corrugated core sandwich panels has been evaluated experimentally. Two 1.219 m × 2.438 m panels with embedded resonator arrangements targeting frequencies near 100 Hz were evaluated using non-standard processing of ASTM E90-09 acoustic transmission loss and ASTM C423-09a room absorption test measurements. Each panel is comprised of two composite face sheets sandwiching a corrugated core with a trapezoidal cross section. When inlet openings are introduced in one face sheet, the chambers within the core can be used as embedded acoustic resonators. Changes to the inlet and chamber partition locations allow this type of structure to be tuned for targeted spectrum passive noise control. Because the core chambers are aligned with the plane of the panel, the resonators can be tuned for low frequencies without compromising the sandwich panel construction, which is typically sized to meet static load requirements. Absorption and transmission loss performance improvements attributed to opening the inlets were apparent for some configurations and inconclusive for others.

  5. Inkjet printing of UHF antennas on corrugated cardboards for packaging applications

    NASA Astrophysics Data System (ADS)

    Sowade, Enrico; Göthel, Frank; Zichner, Ralf; Baumann, Reinhard R.

    2015-03-01

    In this study, a method based on inkjet printing has been established to develop UHF antennas on a corrugated cardboard for packaging applications. The use of such a standardized, paper-based packaging substrate as material for printing electronics is challenging in terms of its high surface roughness and high ink absorption rate, especially when depositing very thin films with inkjet printing technology. However, we could obtain well-defined silver layers on the cardboard substrates due to a primer layer approach. The primer layer is based on a UV-curable ink formulation and deposited as well as the silver ink with inkjet printing technology. Industrial relevant printheads were chosen for the deposition of the materials. The usage of inkjet printing allows highest flexibility in terms of pattern design. The primer layer was proven to optimize the surface characteristics of the substrate, mainly reducing the surface roughness and water absorptiveness. Thanks to the primer layer approach, ultra-high-frequency (UHF) radio-frequency identification (RFID) antennas were deposited by inkjet printing on the corrugated cardboards. Along with the characterization and interpretation of electrical properties of the established conductive antenna patterns, the performance of the printed antennas were analyzed in detail by measuring the scattering parameter S11 and the antenna gain.

  6. Investigation of a corrugated channel flow with an open source PIV software

    NASA Astrophysics Data System (ADS)

    Sivas, Deniz; Bahadır Olcay, A.; Ahn, Hojin

    2016-03-01

    In this study, the corrugated channel flow was investigated by using an open-source particle image velocimetry (PIV) software. The open-source software called OpenPIV was first verified by using images of an earlier experimental work of a vortex ring formation. The corrugated channel flow images were taken with 200 W power LED light source and a high speed camera and those images were analysed with these spatial and temporal tools of OpenPIV. Laminar, transient and turbulent flow regimes were identified when Reynolds number was below 1100, in between 1100 and 2000 and higher than 2000, respectively. The velocity vectors were found to be about 20% lower than the previous study results. The flow inside the grooves was also investigated with OpenPIV and flow characteristics at the grooves were captured when interrogation window size was lowered. The visualization of the flow was presented for different Reynolds numbers with the relative scale values. As a result of this study, OpenPIV software was determined as promising open source PIV analysis software.

  7. Study of the effects of corrugated wall structures due to blanket modules around ICRH antennas

    SciTech Connect

    Dumortier, Pierre; Louche, Fabrice; Messiaen, André; Vervier, Michel

    2014-02-12

    In future fusion reactors, and in ITER, the first wall will be covered by blanket modules. These blanket modules, whose dimensions are of the order of the ICRF wavelengths, together with the clearance gaps between them will constitute a corrugated structure which will interact with the electromagnetic waves launched by ICRF antennas. The conditions in which the grooves constituted by the clearance gaps between the blanket modules can become resonant are studied. Simple analytical models and numerical simulations show that mushroom type structures (with larger gaps at the back than at the front) can bring down the resonance frequencies, which could lead to large voltages in the gaps between the blanket modules and perturb the RF properties of the antenna if they are in the ICRF operating range. The effect on the wave propagation along the wall structure, which is acting as a spatially periodic (toroidally and poloidally) corrugated structure, and hence constitutes a slow wave structure modifying the wall boundary condition, is examined.

  8. Atomic-scale friction modulated by potential corrugation in multi-layered graphene materials

    NASA Astrophysics Data System (ADS)

    Zhuang, Chunqiang; Liu, Lei

    2015-03-01

    Friction is an important issue that has to be carefully treated for the fabrication of graphene-based nano-scale devices. So far, the friction mechanism of graphene materials on the atomic scale has not yet been clearly presented. Here, first-principles calculations were employed to unveil the friction behaviors and their atomic-scale mechanism. We found that potential corrugations on sliding surfaces dominate the friction force and the friction anisotropy of graphene materials. Higher friction forces correspond to larger corrugations of potential energy, which are tuned by the number of graphene layers. The friction anisotropy is determined by the regular distributions of potential energy. The sliding along a fold-line path (hollow-atop-hollow) has a relatively small potential energy barrier. Thus, the linear sliding observed in macroscopic friction experiments may probably be attributed to the fold-line sliding mode on the atomic scale. These findings can also be extended to other layer-structure materials, such as molybdenum disulfide (MoS2) and graphene-like BN sheets.

  9. High-efficiency wideband gyro-TWTs and gyro-BWOs with helically corrugated waveguides

    NASA Astrophysics Data System (ADS)

    Bratman, V. L.; Denisov, G. G.; Samsonov, S. V.; Cross, A. W.; Phelps, A. D. R.; Xe, W.

    2007-02-01

    We review the studies of gyrotron-type microwave devices whose electrodynamic system has the form of an oversized metal waveguide with a helically corrugated internal surface. For certain parameters, such a corrugation changes radically the waveguide dispersion ensuring an almost constant group velocity of the eigenmode for a small (close to zero) longitudinal wave number in a wide frequency band. The use of “helical” waveguides along with electron optical systems which form near-axis electron beams makes it possible to create high-efficiency amplifiers based on gyro-traveling-wave tubes (gyro-TWTs) with a wide instantaneous frequency band of amplification and gyro-backward-wave oscillators (gyro-BWOs) with continuous wideband tuning of the oscillation frequency. The studied devices are superior to the well-studied microwave sources of this type (gyroklystrons and gyrotrons) in frequency band, by more than an order of magnitude, and are not inferior to them in efficiency even for a wide spread of electron velocities.

  10. Experimental demonstration of a high-power slow wave electron cyclotron maser utilizing corrugated metal structure

    SciTech Connect

    Minami, K.; Ogura, K.; Kurashina, K; Kim, W.; Watanabe, Tsuguhiro; Carmel, Y.; Destler, W.W.; Granatstein, V.L.

    1994-12-31

    High-power microwave (HPM) sources based on electron cyclotron resonance (ECR) such as gyrotrons are fast wave devices and velocity component of electron beam perpendicular to guiding magnetic field is the origin of HPM. HPM sources based on Cherenkove mechanism are slow wave devices and can be driven by a beam without initial perpendicular velocity. The authors present here the experimental result that seems to be the first demonstration of high-power slow wave electron cyclotron maser (ECM) consisting of a large diameter sinusoidally corrugated metal waveguide driven by a beam with predominant parallel velocity. The designed size parameters of slow wave structure (SWS) are as follows: average radius 30 mm, corrugation pitch 3.4 mm, its amplitude h = 1.7 mm and total length 238 mm. They use an annular beam with radius 26.3 mm, energy 55 keV, current 200 A in their experiment. Expected Cherenkov oscillation frequency of TM01 mode is 20 GHz. The observed high-power microwaves can be quantitatively explained by a backward wave oscillation with Cherenkov mechanism enhanced by positive feedback of anomalous Doppler slow cyclotron wave. In conclusion, the slow wave ECM presented here will be a competitive candidate against gyrotrons for generating multi-MW millimeter microwaves available in fusion plasma research.

  11. Atomic-scale friction modulated by potential corrugation in multi-layered graphene materials

    SciTech Connect

    Zhuang, Chunqiang; Liu, Lei

    2015-03-21

    Friction is an important issue that has to be carefully treated for the fabrication of graphene-based nano-scale devices. So far, the friction mechanism of graphene materials on the atomic scale has not yet been clearly presented. Here, first-principles calculations were employed to unveil the friction behaviors and their atomic-scale mechanism. We found that potential corrugations on sliding surfaces dominate the friction force and the friction anisotropy of graphene materials. Higher friction forces correspond to larger corrugations of potential energy, which are tuned by the number of graphene layers. The friction anisotropy is determined by the regular distributions of potential energy. The sliding along a fold-line path (hollow-atop-hollow) has a relatively small potential energy barrier. Thus, the linear sliding observed in macroscopic friction experiments may probably be attributed to the fold-line sliding mode on the atomic scale. These findings can also be extended to other layer-structure materials, such as molybdenum disulfide (MoS{sub 2}) and graphene-like BN sheets.

  12. Energy corrugation in atomic-scale friction on graphite revisited by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Yu; Qi, Yi-Zhou; Ouyang, Wengen; Feng, Xi-Qiao; Li, Qunyang

    2016-08-01

    Although atomic stick-slip friction has been extensively studied since its first demonstration on graphite, the physical understanding of this dissipation-dominated phenomenon is still very limited. In this work, we perform molecular dynamics (MD) simulations to study the frictional behavior of a diamond tip sliding over a graphite surface. In contrast to the common wisdom, our MD results suggest that the energy barrier associated lateral sliding (known as energy corrugation) comes not only from interaction between the tip and the top layer of graphite but also from interactions among the deformed atomic layers of graphite. Due to the competition of these two subentries, friction on graphite can be tuned by controlling the relative adhesion of different interfaces. For relatively low tip-graphite adhesion, friction behaves normally and increases with increasing normal load. However, for relatively high tip-graphite adhesion, friction increases unusually with decreasing normal load leading to an effectively negative coefficient of friction, which is consistent with the recent experimental observations on chemically modified graphite. Our results provide a new insight into the physical origins of energy corrugation in atomic scale friction.

  13. Radiation patterns of multi-moded corrugated horns for far-IR space applications

    NASA Astrophysics Data System (ADS)

    Murphy, J. Anthony; Colgan, Ruth; O'Sullivan, Creidhe; Maffei, Bruno; Ade, Peter

    2001-12-01

    Multi-moded horn antennas are now being proposed for far-IR space imaging systems in which diffraction limited resolution is not required (e.g. the High-Frequency Instrument (HFI) on the ESA PLANCK Surveyor). In such systems individual modes in the waveguide filter section feeding the horn can couple independently to an overmoded detector (such as a bolometer in an integrating cavity). The number of modes is chosen to optimize the coupling efficiency to the source without compromising any spillover losses. We consider in detail the case of a cylindrically symmetric corrugated configuration, presenting two alternative techniques for modelling such few-moded systems. The first approach is based on a mode-matching description of propagation in a non-uniform waveguide structure, while the second approach makes use of hybrid mode solutions for a waveguide with corrugated walls assuming a uniform but non-isotropic impedance. We present practical examples comparing the radiation patterns predicted by both models.

  14. Simple Expressions for the Design of Linear Tapers in Overmoded Corrugated Waveguides

    PubMed Central

    Schaub, S. C.; Shapiro, M. A.; Temkin, R. J.

    2016-01-01

    Simple analytical formulae are presented for the design of linear tapers with very low mode conversion loss in overmoded corrugated waveguides. For tapers from waveguide radius a2 to a1, with a1 < a2, the optimal length of the taper is 3.198a1a2/λ. Here, λ is the wavelength of radiation. The fractional loss of the HE11 mode in an optimized taper is 0.0293(a2−a1)4∕a12a22. These formulae are accurate when a2 ≲ 2a1. Slightly more complex formulae, accurate for a2 ≤ 4a1, are also presented in this paper. The loss in an overmoded corrugated linear taper is less than 1 % when a2 ≤ 2.12a1 and less than 0.1 % when a2 ≤ 1.53a1. The present analytic results have been benchmarked against a rigorous mode matching code and have been found to be very accurate. The results for linear tapers are compared with the analogous expressions for parabolic tapers. Parabolic tapers may provide lower loss, but linear tapers with moderate values of a2/a1 may be attractive because of their simplicity of fabrication. PMID:27053963

  15. Beam Mode Expansion of Corrugated Conical Horns with Phase Correcting Lens: Application to Radioastronomy Receivers

    NASA Astrophysics Data System (ADS)

    García, E.; de Haro, L.; O'Sullivan, C.; Cahill, G.; López Fernández, J. A.; Tercero, F.; Galocha, B.; Besada, J. L.

    2003-06-01

    A classical radioastronomy receiver is fed with a corrugated horn and an independent lens, both placed in a cryostat to lower the noise temperature. The beam is focused and directed using a combination of elliptical and plane mirrors. This paper proposes modifying the initial feeding system by placing the lens onto the horn aperture, thereby allowing a size reduction of the horn and lens, and a simplification of their mechanical design. The profiled lens is shaped to correct the phase error on the horn aperture. A quasi-optical model of the horn-plus-lens system has been developed using a Beam Mode Expansion (BME). Results using both a hyperbolic-planar lens and a spherical-elliptical lens, as well as results obtained by using Geometrical Optics (GO) with a Kirchoff Huygens integration to get the far-field pattern, have been compared with measurements. As a direct application, a full focusing system for the new 40-m radiotelescope at the “Centro Astronómico de Yebes” is presented for the 22, 30 and 45 GHz bands. This paper has developed a QO model for a corrugated conical horn with a phase-correcting lens.

  16. Corrugation of Phase-Separated Lipid Bilayers Supported by Nanoporous Silica Xerogel Surfaces

    SciTech Connect

    Goksu, E I; Nellis, B A; Lin, W; Satcher Jr., J H; Groves, J T; Risbud, S H; Longo, M L

    2008-10-30

    Lipid bilayers supported by substrates with nanometer-scale surface corrugations holds interest in understanding both nanoparticle-membrane interactions and the challenges of constructing models of cell membranes on surfaces with desirable properties, e.g. porosity. Here, we successfully form a two-phase (gel-fluid) lipid bilayer supported by nanoporous silica xerogel. Surface topology, diffusion, and lipid density in comparison to mica-supported lipid bilayers were characterized by AFM, FRAP, FCS, and quantitative fluorescence microscopy, respectively. We found that the two-phase lipid bilayer follows the xerogel surface contours. The corrugation imparted on the lipid bilayer results in a lipid density that is twice that on a flat mica surface. In direct agreement with the doubling of actual bilayer area in a projected area, we find that the lateral diffusion coefficient (D) of lipids on xerogel ({approx}1.7 {micro}m{sup 2}/s) is predictably lower than on mica ({approx}4.1 {micro}m{sup 2}/s) by both FRAP and FCS techniques. Furthermore, the gel-phase domains on xerogel compared to mica were larger and less numerous. Overall, our results suggest the presence of a relatively defect-free continuous two-phase bilayer that penetrates approximately midway into the first layer of {approx}50 nm xerogel beads.

  17. Simple Correctors for Elimination of High-Order Modes in Corrugated Waveguide Transmission Lines

    PubMed Central

    Kowalski, Elizabeth J.; Shapiro, Michael A.; Temkin, Richard J.

    2014-01-01

    When using overmoded corrugated waveguide transmission lines for high power applications, it is necessary to control the mode content of the system. Ideally, overmoded corrugated transmission lines operate in the fundamental HE11 mode and provide low losses for long distances. Unwanted higher order modes (HOMs), particularly LP11 and HE12, are often excited in the experimental systems due to practical misalignments in the transmission line system. This paper discusses how the unwanted modes propagate along with the fundamental mode in the transmission line system by formulating an equation that relates the center of power offset and angle of propagation of a beam (for the HE11 and LP11 modes) or the waist size and phase front radius of curvature of a beam (for the HE11 and HE12 modes). By introducing two miter bend correctors into the transmission system—miter bends that have slightly angled or ellipsoidal mirrors—the HOMs can be precisely manipulated in the system. This technique can be used to eliminate small quantities of unwanted modes, thereby creating a nearly pure fundamental mode beam with minimal losses. Examples of these applications are calculated and show the theoretical conversion of up to 10% HOM content into the fundamental HE11 mode with minimal losses. PMID:25067859

  18. Periodontal Plastic Surgery

    MedlinePlus

    ... Dental Implants Dentures Direct Bonding Implants versus Bridges Orthodontics and Aligners Periodontal Plastic Surgery Porcelain Crowns Porcelain ... Dental Implants Dentures Direct Bonding Implants versus Bridges Orthodontics and Aligners Periodontal Plastic Surgery Porcelain Crowns Porcelain ...

  19. Plasticity and Geotechnics

    NASA Astrophysics Data System (ADS)

    Yu, Hai-Sui

    Plasticity and Geotechnics is the first attempt to summarize and present, in one volume, the major developments achieved to date in the field of plasticity theory for geotechnical materials and its applications to geotechnical analysis and design.

  20. Plastic Surgery for Teenagers

    MedlinePlus

    ... or severe acne and scarring. Teens frequently gain self-esteem and confidence when their physical problems are corrected. ... art as a helpful index of anxiety and self-esteem with plastic surgery. Plastic and Reconstructive Surgery 2002. ...

  1. Plastic casting resin poisoning

    MedlinePlus

    Epoxy poisoning; Resin poisoning ... Epoxy and resin can be poisonous if they are swallowed or their fumes are breathed in. ... Plastic casting resins are found in various plastic casting resin products.

  2. Ear Plastic Surgery

    MedlinePlus

    ... Meeting Calendar Find an ENT Doctor Near You Ear Plastic Surgery Ear Plastic Surgery Patient Health Information ... they may improve appearance and self-confidence. Can Ear Deformities Be Corrected? Formation of the ear during ...

  3. Plastic encapsulated parts

    SciTech Connect

    Castillo, T.

    1994-10-01

    Plastic semiconductor packages were characterized as possible alternatives for canned devices, which are susceptible to internal shorts caused by conductive particles. Highly accelerated stress testing (HAST) as well as electrical and mechanical testing were conducted on plastic technology devices.

  4. Atomic scale study of corrugating and anticorrugating states on the bare Si(1 0 0) surface

    NASA Astrophysics Data System (ADS)

    Yengui, Mayssa; Pinto, Henry P.; Leszczynski, Jerzy; Riedel, Damien

    2015-02-01

    In this article, we study the origin of the corrugating and anticorrugating states through the electronic properties of the Si(1 0 0) surface via a low-temperature (9 K) scanning tunneling microscope (STM). Our study is based on the analysis of the STM topographies corrugation variations when related to the shift of the local density of states (LDOS) maximum in the [1 \\bar{{1}} 0] direction. Our experimental results are correlated with numerical simulations using the density-functional theory with hybrid Heyd-Scuseria-Ernzerhof (HSE06) functional to simulate the STM topographies, the projected density of states variations at different depths in the silicon surface as well as the three dimensional partial charge density distributions in real-space. This work reveals that the Si(1 0 0) surface exhibits two anticorrugating states at +0.8 and +2.8 V that are associated with a phase shift of the LDOS maximum in the unoccupied states STM topographies. By comparing the calculated data with our experimental results, we have been able to identify the link between the variations of the STM topographies corrugation and the shift of the LDOS maximum observed experimentally. Each surface voltage at which the STM topographies corrugation drops is defined as anticorrugating states. In addition, we have evidenced a sharp jump in the tunnel current when the second LDOS maximum shift is probed, whose origin is discussed and associated with the presence of Van Hove singularities.

  5. Radiative decay effects influence the local electromagnetic response of the monolayer graphene with surface corrugations in terahertz range

    NASA Astrophysics Data System (ADS)

    Firsov, Yu. A.; Firsova, N. E.

    2015-07-01

    We continue the study of surface corrugations influence on the monolayer graphene local electromagnetic response in terahertz range we started earlier. The effects of radiative decay, double-valley structure of charge carriers spectrum in graphene and the "breathing" corrugated surface form induced synthetic electric fields are taken into account. To fulfill this program the generalized nonlinear self-consistent-field equation is obtained. In case of weak external alternating electric field E→ext (t) =E→0 cos ωt for the obtained equation in linear approximation on the external electric field the exact solution is found. It shows that in this case we get local induced current paths depending on the surface form z = h (x , y) . This theoretical result qualitatively explains the corresponding experiments with local current patterns depending on the point by corrugations influence. The induced currents formula was obtained without using fully quantum approach which is necessary for theoretical description of such phenomenon in graphene nanoribbons. Besides the formulae obtained in the present paper could become the basis of the new method of the imaging of surface corrugations form for given experimental picture of local current paths.

  6. Tomorrow's Plastic World

    ERIC Educational Resources Information Center

    Macdonald, Averil

    2005-01-01

    Far from being just cheap packaging materials, plastics may be the materials of tomorrow. Plastic can conduct electricity, and this opens up a host of high-tech possibilities in the home and in energy generation. These possibilities are discussed here along with how plastic can be recycled and perhaps even grown.

  7. Processing of plastics

    PubMed Central

    Spaak, Albert

    1975-01-01

    An overview is given of the processing of plastic materials from the handling of polymers in the pellet and powder form to manufacturing of a plastic fabricated product. Various types of equipment used and melt processing ranges of various polymer formulations to make the myriad of plastic products that are commercially available are discussed. PMID:1175556

  8. Plastics in Building.

    ERIC Educational Resources Information Center

    Skeist, Irving, Ed.

    The evaluation and use of plastics in the construction industry are explained. The contributors offer extensive, timely, and thoroughly researched data on the chemistry, properties, functions, engineering behavior, and specific applications of plastics to building requirements. The major subjects discussed in depth are--(1) the role of plastics in…

  9. Pressure drop of slush nitrogen flow in converging-diverging pipes and corrugated pipes

    NASA Astrophysics Data System (ADS)

    Ohira, Katsuhide; Okuyama, Jun; Nakagomi, Kei; Takahashi, Koichi

    2012-12-01

    Cryogenic slush fluids such as slush hydrogen and slush nitrogen are solid-liquid, two-phase fluids. As a functional thermal fluid, there are high expectations for use of slush fluids in various applications such as fuels for spacecraft engines, clean-energy fuels to improve the efficiency of transportation and storage, and as refrigerants for high-temperature superconducting equipment. Experimental flow tests were performed using slush nitrogen to elucidate pressure-drop characteristics of converging-diverging (C-D) pipes and corrugated pipes. In experimental results regarding pressure drop in two different types of C-D Pipes, i.e., a long-throated pipe and a short-throated pipe, each having an inner diameter of 15 mm, pressure drop for slush nitrogen in the long-throated pipe at a flow velocity of over 1.3 m/s increased by a maximum of 50-60% as compared to that for liquid nitrogen, while the increase was about 4 times as compared to slush nitrogen in the short-throated pipe. At a flow velocity of over 1.5 m/s in the short-throated pipe, pressure drop reduction became apparent, and it was confirmed that the decrease in pressure drop compared to liquid nitrogen was a maximum of 40-50%. In the case of two different types of corrugated pipes with an inner diameter of either 12 mm or 15 mm, a pressure-drop reduction was confirmed at a flow velocity of over 2 m/s, and reached a maximum value of 37% at 30 wt.% compared to liquid nitrogen. The greater the solid fractions, the smaller the pipe friction factor became, and the pipe friction factor at the same solid fraction showed a constant value regardless of the Reynolds number. From the observation of the solid particles' behavior using a high-speed video camera and the PIV method, the pressure-drop reduction mechanisms for both C-D and corrugated pipes were demonstrated.

  10. Effects of carbon coating and pore corrugation on capillary condensation of nitrogen in SBA-15 mesoporous silica.

    PubMed

    Morishige, Kunimitsu

    2013-09-24

    To examine the origin of an ink-bottle-like structure in SBA-15 formed by carbon coating and the effects of pore corrugation on capillary condensation and evaporation of a vapor in the cylindrical pores, we measured the adsorption isotherms of nitrogen at 77 K on 10 kinds of SBA-15 samples before and after a carbon coating process by the exposure to acetylene at 1073 K, as well as desorption scanning curves and subloops on the untreated samples. These SBA-15 samples were synthesized under the different conditions of initial SiO2/P123 ratio and hydrothermal treatment. SBA-15 with relatively large microporosity tends to form easily constrictions inside the main channels by the carbon coating. This strongly suggests that the rough pore walls of SBA-15 may induce the incomplete wetting of carbon layers on the pore walls to form the constrictions inside the cylindrical pores. A comparison of two subloops implies that the pores of SBA-15 synthesized with a SiO2/P123 ratio of 75 consist of an assembly of connecting domains of different diameters; that is, the pores are highly corrugated. For SBA-15 synthesized with a SiO2/P123 ratio of 60, the amplitude of the pore corrugation is significantly decreased by the prolonged hydrothermal treatment at 373 K. On the other hand, for SBA-15 synthesized with a SiO2/P123 ratio of 45, the amplitude of the corrugation is negligibly small, although the cylindrical pores are interconnected through narrow necks with each other. It is found that the smaller the amplitude of the pore corrugation, the smaller the width of the hysteresis loop. PMID:23977846

  11. Biodegradability of Plastics

    PubMed Central

    Tokiwa, Yutaka; Calabia, Buenaventurada P.; Ugwu, Charles U.; Aiba, Seiichi

    2009-01-01

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed. PMID:19865515

  12. Biodegradability of plastics.

    PubMed

    Tokiwa, Yutaka; Calabia, Buenaventurada P; Ugwu, Charles U; Aiba, Seiichi

    2009-08-26

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  13. High second-order nonlinear response of platinum nanoflowers: the role of surface corrugation.

    PubMed

    Ngo, Hoang Minh; Lai, Ngoc Diep; Ledoux-Rak, Isabelle

    2016-02-14

    Platinum nanoflowers (PtNFs) were elaborated using the seed-mediated growth technique applied to monodisperse platinum nanoparticles (∼3.0 nm) synthesized by the chemical reduction method. The X-ray diffraction pattern confirmed the formation of face-centered-cubic platinum nanocrystals. We report the Harmonic Light Scattering (HLS) properties of PtNFs for six different diameters (∼7.0; 8.0; 10.0; 14.0; 20.0 and 31.0 nm). From these HLS data we infer, for the first time, large hyperpolarizability β values of PtNFs. These very high β values of PtNFs are assigned mainly to highly corrugated surfaces for nanoparticles with irregular shapes.

  14. Comparison of finite source and plane wave scattering from corrugated surfaces

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1977-01-01

    The choice of a plane wave to represent incident radiation in the analysis of scatter from corrugated surfaces was examined. The physical optics solution obtained for the scattered fields due to an incident plane wave was compared with the solution obtained when the incident radiation is produced by a source of finite size and finite distance from the surface. The two solutions are equivalent if the observer is in the far field of the scatterer and the distance from observer to scatterer is large compared to the radius of curvature at the scatter points, condition not easily satisfied with extended scatterers such as rough surfaces. In general, the two solutions have essential differences such as in the location of the scatter points and the dependence of the scattered fields on the surface properties. The implication of these differences to the definition of a meaningful radar cross section was examined.

  15. Energy shift of collective electron excitations in highly corrugated graphitic nanostructures: Experimental and theoretical investigation

    SciTech Connect

    Sedelnikova, O. V. Bulusheva, L. G.; Okotrub, A. V.; Asanov, I. P.; Yushina, I. V.

    2014-04-21

    Effect of corrugation of hexagonal carbon network on the collective electron excitations has been studied using optical absorption and X-ray photoelectron spectroscopy in conjunction with density functional theory calculations. Onion-like carbon (OLC) was taken as a material, where graphitic mantle enveloping agglomerates of multi-shell fullerenes is strongly curved. Experiments showed that positions of π and π + σ plasmon modes as well as π → π* absorption peak are substantially redshifted for OLC as compared with those of highly ordered pyrolytic graphite and thermally exfoliated graphite consisted of planar sheets. This effect was reproduced in behavior of dielectric functions of rippled graphite models calculated within the random phase approximation. We conclude that the energy of electron excitations in graphitic materials could be precisely tuned by a simple bending of hexagonal network without change of topology. Moreover, our investigation suggests that in such materials optical exciton can transfer energy to plasmon non-radiatively.

  16. Euler buckling, membrane corrugation and pore formation induced by antimicrobial peptide

    NASA Astrophysics Data System (ADS)

    Golubovic, Leonardo; Gao, Lianghui; Chen, Licui; Jia, Nana; Fang, Weihai

    2014-03-01

    Antimicrobial peptides serve as defense weapons against bacteria. They are secreted by organisms of plants and animals and have a wide variety in composition and structure. In this study, we theoretically explore the effects of the antimicrobial peptides on the lipid bilayer membrane by using analytic arguments and the coarse grained dissipative particle dynamics simulations. We study peptide/lipid membrane complexes by considering peptides with various structure, hydrophobicity and peptide/lipid interaction strength. The role of lipid/water interaction is also discussed. We discuss a rich variety of membrane morphological changes induced by peptides, such as pore formation, membrane corrugation and Euler buckling. Such buckled membrane states have been indeed seen in a number of experiments with bacteria affected by peptide, yet this is the first theoretical study addressing these phenomena more deeply.

  17. Theory of the corrugation instability of a piston-driven shock wave.

    PubMed

    Bates, J W

    2015-01-01

    We analyze the two-dimensional stability of a shock wave driven by a steadily moving corrugated piston in an inviscid fluid with an arbitrary equation of state. For h≤-1 or h>h(c), where h is the D'yakov parameter and h(c) is the Kontorovich limit, we find that small perturbations on the shock front are unstable and grow--at first quadratically and later linearly--with time. Such instabilities are associated with nonequilibrium fluid states and imply a nonunique solution to the hydrodynamic equations. The above criteria are consistent with instability limits observed in shock-tube experiments involving ionizing and dissociating gases and may have important implications for driven shocks in laser-fusion, astrophysical, and/or detonation studies.

  18. Focusing Radially Polarized Light by a Concentrically Corrugated Silver Film without a Hole

    NASA Astrophysics Data System (ADS)

    Wróbel, Piotr; Pniewski, Jacek; Antosiewicz, Tomasz J.; Szoplik, Tomasz

    2009-05-01

    We report a phenomenon of focusing a radially polarized beam from the visible range by a silver film with no hole on the optical axis and double-sided concentric corrugations. The axes of symmetry of grooves and the illuminating beam coincide. An Ag lens of 100 nm thickness, five grooves, of which the outermost has 5μm diameter, at λ=400nm transmits 22% of electric energy and focuses light into a 0.2λ2 spot area at a focal length close to 2λ, while at λ=500nm the results are 11%, 0.16λ2 and λ, respectively. This Ag lens focuses without contribution of evanescent waves a far-field source into a far-field spot. The nanolens acts like a refractive optical system of high numerical aperture close to unity.

  19. The evolution of the magnetic moment in a corrugated magnetic field.

    PubMed

    Demokan, O.; Mirnov, V. V.

    1997-09-01

    In the first part, the equations of motion in a weakly corrugated, periodic magnetic field are linearized and solved by using paraxial approximation, to describe the model and the associated resonance condition. In the second part, the nonlinear evolution of the magnetic moment of resonant particles, in connection with their axial displacement is investigated analytically by using the multiple scale method. It is seen that the linear evolution is converted into a slow and periodic oscillation around the unperturbed value, with a considerable amplitude. The analytic expressions for the period and amplitude of the oscillations are derived and compared with the numerical simulations, which are also presented. Finally, the limitations of the paraxial approximation are concluded by investigating the numerical simulations, with actual field expressions. (c) 1997 American Institute of Physics.

  20. Radial Corrugations of Multi-Walled Carbon Nanotubes Driven by Inter-Wall Nonbonding Interactions

    PubMed Central

    2011-01-01

    We perform large-scale quasi-continuum simulations to determine the stable cross-sectional configurations of free-standing multi-walled carbon nanotubes (MWCNTs). We show that at an inter-wall spacing larger than the equilibrium distance set by the inter-wall van der Waals (vdW) interactions, the initial circular cross-sections of the MWCNTs are transformed into symmetric polygonal shapes or asymmetric water-drop-like shapes. Our simulations also show that removing several innermost walls causes even more drastic cross-sectional polygonization of the MWCNTs. The predicted cross-sectional configurations agree with prior experimental observations. We attribute the radial corrugations to the compressive stresses induced by the excessive inter-wall vdW energy release of the MWCNTs. The stable cross-sectional configurations provide fundamental guidance to the design of single MWCNT-based devices and shed lights on the mechanical control of electrical properties. PMID:27502675

  1. Mastered dispersion of material resonators: Broad corrugated waveguides working under the Littrow regime

    NASA Astrophysics Data System (ADS)

    Benisty, H.; Piskunov, N.

    2013-04-01

    An anomalous dispersion for modes of a material resonator is highly desired to form frequency combs. A resonator free-spectral-range (FSR) controlled by shape so as to increase with frequency ω/2π compensates the normal index dispersion ∂n/∂ω > 0, producing evenly spaced resonances. Only special shapes achieve this scope. We show here that broad periodic corrugated waveguides working at Littrow regime feature such an increasing trend ∂FSR/∂ω > 0. We outline experimentally this trend on silicon-on-insulator devices designed for 45° Littrow operation. We predict dispersion-free silicon-based designs across the 1.4-4.0 μm mid-infrared range.

  2. Dynamical back-action at 5.5 GHz in a corrugated optomechanical beam

    SciTech Connect

    Navarro-Urrios, D.; Gomis-Bresco, J.; Alzina, F.; El-Jallal, S.; Oudich, M.; Pennec, Y.; Djafari-Rouhani, B.; Pitanti, A.; Capuj, N.; Tredicucci, A.; Griol, A.; Martínez, A.; Sotomayor Torres, C. M.

    2014-12-15

    We report on the optomechanical properties of a breathing mechanical mode oscillating at 5.5 GHz in a 1D corrugated Si nanobeam. This mode has an experimental single-particle optomechanical coupling rate of |g{sub o,OM}| = 1.8 MHz (|g{sub o,OM}|/2π = 0.3 MHz) and shows strong dynamical back-action effects at room temperature. The geometrical flexibility of the unit-cell would lend itself to further engineering of the cavity region to localize the mode within the full phononic band-gap present at 4 GHz while keeping high g{sub o,OM} values. This would lead to longer lifetimes at cryogenic temperatures, due to the suppression of acoustic leakage.

  3. High second-order nonlinear response of platinum nanoflowers: the role of surface corrugation

    NASA Astrophysics Data System (ADS)

    Ngo, Hoang Minh; Lai, Ngoc Diep; Ledoux-Rak, Isabelle

    2016-02-01

    Platinum nanoflowers (PtNFs) were elaborated using the seed-mediated growth technique applied to monodisperse platinum nanoparticles (~3.0 nm) synthesized by the chemical reduction method. The X-ray diffraction pattern confirmed the formation of face-centered-cubic platinum nanocrystals. We report the Harmonic Light Scattering (HLS) properties of PtNFs for six different diameters (~7.0 8.0; 10.0; 14.0; 20.0 and 31.0 nm). From these HLS data we infer, for the first time, large hyperpolarizability β values of PtNFs. These very high β values of PtNFs are assigned mainly to highly corrugated surfaces for nanoparticles with irregular shapes.Platinum nanoflowers (PtNFs) were elaborated using the seed-mediated growth technique applied to monodisperse platinum nanoparticles (~3.0 nm) synthesized by the chemical reduction method. The X-ray diffraction pattern confirmed the formation of face-centered-cubic platinum nanocrystals. We report the Harmonic Light Scattering (HLS) properties of PtNFs for six different diameters (~7.0 8.0; 10.0; 14.0; 20.0 and 31.0 nm). From these HLS data we infer, for the first time, large hyperpolarizability β values of PtNFs. These very high β values of PtNFs are assigned mainly to highly corrugated surfaces for nanoparticles with irregular shapes. Electronic supplementary information (ESI) available: The recalculated β and β' values inferred from data by Galletto et al.15 in AuNSs using their reported β values per nanoparticle corrected. See DOI: 10.1039/c5nr07571h

  4. Waste plastics liquefaction technology

    SciTech Connect

    Machidori, Hideki; Ikawa, Hironori

    1996-12-31

    Plastics are now indispensable not only in industries but for daily life because of their excellent convenience. Only in Japan, about 12.25 million tons of plastics were produced in 1993. On the other hand, the production of waste plastics in the form of industrial and municipal wastes reached 7.56 million tons in the same year. A greater part of the produced waste plastics are now disposed of by incineration and landfill. The incineration would however generate detrimental substances from burned-up plastics and emit them into the exhaust gas, while the landfill would reduce rapidly the residual capacity of the final repositories. Under the circumstances, the Law for the Promotion of Sorted Collection and Recommercialization of Plastics Containers and Packages is to be enforced in 2000 in Japan. Waste plastics liquefaction technology has become high-lighted and is presupposed to employ for the treatment of waste plastics other than PET bottles in the law for the reason that relatively wide variety of waste plastics can be processed in quantity by this technology. The Kubota Corporation has made R and D efforts relating to the plastics liquefaction technology for more than 4 years, and it is now entering the stage of its commercialization.

  5. How Plastics Work

    NASA Astrophysics Data System (ADS)

    Bloomfield, Louis

    2013-03-01

    We encounter plastics every day, but despite their widespread use, amazing range of properties, and basic scientific underpinnings, most physicists--like most people--know relatively little about plastics. In contrast to hard crystalline and amorphous solids (e.g., metals, salts, ceramics, and glasses), we take plastics for granted, select them carelessly, and examine them more closely only on a need-to-know basis. By ignoring plastics until we need them, however, we risk not knowing what we don't know and using the wrong ones. To repurpose a familiar advertisement, ``there's a plastic for that.'' This talk will review some of the basic physics and science of plastics. It will examine the roles of temperature, order, intermolecular forces, entanglements, and linkages in plastics, and how those issues affect the properties of a given plastic. We'll stop along the way to recognize a few of the more familiar plastics, natural and synthetic, and explain some of their mechanical, chemical, and optical properties. The talk will conclude by explaining the remarkable properties of a plastic that has been largely misunderstood since its discovery 70 years ago: Silly Putty.

  6. Our plastic age.

    PubMed

    Thompson, Richard C; Swan, Shanna H; Moore, Charles J; vom Saal, Frederick S

    2009-07-27

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation.

  7. Our plastic age

    PubMed Central

    Thompson, Richard C.; Swan, Shanna H.; Moore, Charles J.; vom Saal, Frederick S.

    2009-01-01

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation. PMID:19528049

  8. Our plastic age.

    PubMed

    Thompson, Richard C; Swan, Shanna H; Moore, Charles J; vom Saal, Frederick S

    2009-07-27

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation. PMID:19528049

  9. Plasticized phenolphthalein polycarbonate

    NASA Technical Reports Server (NTRS)

    Harrison, E. S.

    1976-01-01

    Phenolphthalein polycarbonate was successfully plasticized with polychlorinated biphenyls (e.g., Aroclor 1231) or tricresyl phosphate and cast from tetrahydrofuran to give clear films without loss of fire resistance. At loadings of 20 to 30 percent plasticizer the Tg was lowered to approximately 100 C which would render phenolphthalein polycarbonate easily moldable. Although these materials had some mechanical integrity as shown by their film forming ability, the room temperature toughness of the plasticized polymer was not significantly improved over unmodified polymer.

  10. Plasticity and Geomechanics

    NASA Astrophysics Data System (ADS)

    Davis, R. O.; Selvadurai, A. P. S.

    2002-11-01

    Plasticity and Geomechanics is a concise introduction to the general subject of plasticity with a particular emphasis on applications in geomechanics. Derived from the authors' lecture notes, this book is written with students firmly in mind. Excessive use of mathematical methods is avoided and, where possible, physical interpretations are given for important concepts. The authors present a clear introduction to the complex ideas and concepts of plasticity and demonstrate how this developing subject is of critical importance to geomechanics and geotechnical engineering.

  11. Plasticity and Geomechanics

    NASA Astrophysics Data System (ADS)

    Davis, R. O.; Selvadurai, A. P. S.

    2005-08-01

    Plasticity and Geomechanics is a concise introduction to the general subject of plasticity with a particular emphasis on applications in geomechanics. Derived from the authors' lecture notes, this book is written with students firmly in mind. Excessive use of mathematical methods is avoided and, where possible, physical interpretations are given for important concepts. The authors present a clear introduction to the complex ideas and concepts of plasticity and demonstrate how this developing subject is of critical importance to geomechanics and geotechnical engineering.

  12. Plastics and health risks.

    PubMed

    Halden, Rolf U

    2010-01-01

    By 2010, the worldwide annual production of plastics will surpass 300 million tons. Plastics are indispensable materials in modern society, and many products manufactured from plastics are a boon to public health (e.g., disposable syringes, intravenous bags). However, plastics also pose health risks. Of principal concern are endocrine-disrupting properties, as triggered for example by bisphenol A and di-(2-ethylhexyl) phthalate (DEHP). Opinions on the safety of plastics vary widely, and despite more than five decades of research, scientific consensus on product safety is still elusive. This literature review summarizes information from more than 120 peer-reviewed publications on health effects of plastics and plasticizers in lab animals and humans. It examines problematic exposures of susceptible populations and also briefly summarizes adverse environmental impacts from plastic pollution. Ongoing efforts to steer human society toward resource conservation and sustainable consumption are discussed, including the concept of the 5 Rs--i.e., reduce, reuse, recycle, rethink, restrain--for minimizing pre- and postnatal exposures to potentially harmful components of plastics.

  13. The plastics waste problem

    SciTech Connect

    Rowatt, R.J.

    1993-01-01

    Post-consumer plastic is a symptom of the municipal solid waste (MSW) problem, not the cause. Yet the U.S. public sees plastic as a major contributor to the waste stream. Two-thirds say the environmental risks of using plastics outweigh the benefits and that they favor mandatory recycling programs in their community; more than four-fifths think recycling can substantially reduce the amount of solid waste and decry the presence of nonbiodegradable plastics in landfills. Given this perception, the author reviews solid waste management issues and examines the contributions that resin producers can make.

  14. Coatings For Plastic Optics

    NASA Astrophysics Data System (ADS)

    Schaffer, Robert W.

    1983-11-01

    Over the past decade there has been a tremendous surge of interest in the use of plastic optical elements to supplement or replace glass optics. While the technology of molding and polishing plastic optics has been the chief interest, there has been increasing need for precision coatings for these elements. In some instances these coatings are as critical as the elements themselves. In this paper we will describe the difficulties incurred in coating plastic and some of the many coatings presently available today despite the difficulties encountered. We will then cover the durability aspects of these coatings and lastly, point out some areas to consider when evaluating using plastic instead of glass.

  15. Emission Characteristics of Organic Light-Emitting Diodes and Organic Thin-Films with Planar and Corrugated Structures

    PubMed Central

    Wei, Mao-Kuo; Lin, Chii-Wann; Yang, Chih-Chung; Kiang, Yean-Woei; Lee, Jiun-Haw; Lin, Hoang-Yan

    2010-01-01

    In this paper, we review the emission characteristics from organic light-emitting diodes (OLEDs) and organic molecular thin films with planar and corrugated structures. In a planar thin film structure, light emission from OLEDs was strongly influenced by the interference effect. With suitable design of microcavity structure and layer thicknesses adjustment, optical characteristics can be engineered to achieve high optical intensity, suitable emission wavelength, and broad viewing angles. To increase the extraction efficiency from OLEDs and organic thin-films, corrugated structure with micro- and nano-scale were applied. Microstructures can effectively redirects the waveguiding light in the substrate outside the device. For nanostructures, it is also possible to couple out the organic and plasmonic modes, not only the substrate mode. PMID:20480033

  16. Particle trap to sheath non-binding contact for a gas-insulated transmission line having a corrugated outer conductor

    DOEpatents

    Fischer, William H.

    1984-04-24

    A non-binding particle trap to outer sheath contact for use in gas insulated transmission lines having a corrugated outer conductor. The non-binding feature of the contact according to the teachings of the invention is accomplished by having a lever arm rotatably attached to a particle trap by a pivot support axis disposed parallel to the direction of travel of the inner conductor/insulator/particle trap assembly.

  17. Evanescent waves propagation along a periodically corrugated surface and their amplification by relativistic electron beam (quasi-optical theory)

    SciTech Connect

    Ginzburg, N. S.; Malkin, A. M.; Zheleznov, I. V.; Sergeev, A. S.

    2013-06-15

    By using a quasi-optical approach, we study propagation of evanescent waves along a periodically corrugated surface and their excitation by relativistic electron beams. Under assumption of a shallow (in the scale of period) corrugation, the dispersion equation for normal waves is derived and two particular cases are studied. In the first case, the wave frequency is far from the Bragg resonance; therefore, the evanescent wave propagation can be described by using the impedance approximation with deceleration of the zeroth spatial harmonic. The second case takes place at the frequencies close to the Bragg resonance. There, the field can be represented as two counter-propagating quasi-optical wave beams, which are coupled on the corrugated surface and form an evanescent normal wave. With regard to the interaction with an electron beam, the first case corresponds to the convective instability that can be used for amplification of radiation, while the second case corresponds to the absolute instability used in surface-wave oscillators. This paper is focused on studying main features of amplifier schemes, such as the increments, electron efficiency, and formation of a self-consistent spatial structure of the radiated field. For practical applications, the feasibility of realization of relativistic surface-wave amplifiers in the submillimeter wavelength range is estimated.

  18. Trend extraction of rail corrugation measured dynamically based on the relevant low-frequency principal components reconstruction

    NASA Astrophysics Data System (ADS)

    Li, Yanfu; Liu, Hongli; Ma, Ziji

    2016-10-01

    Rail corrugation dynamic measurement techniques are critical to guarantee transport security and guide rail maintenance. During the inspection process, low-frequency trends caused by rail fluctuation are usually superimposed on rail corrugation and seriously affect the assessment of rail maintenance quality. In order to extract and remove the nonlinear and non-stationary trends from original mixed signals, a hybrid model based ensemble empirical mode decomposition (EEMD) and modified principal component analysis (MPCA) is proposed in this paper. Compared with the existing de-trending methods based on EMD, this method first considers low-frequency intrinsic mode functions (IMFs) thought to be underlying trend components that maybe contain some unrelated components, such as white noise and low-frequency signal itself, and proposes to use PCA to accurately extract the pure trends from the IMFs containing multiple components. On the other hand, due to the energy contribution ratio between trends and mixed signals is prior unknown, and the principal components (PCs) decomposed by PCA are arranged in order of energy reduction without considering frequency distribution, the proposed method modifies traditional PCA and just selects relevant low-frequency PCs to reconstruct the trends based on the zero-crossing numbers (ZCN) of each PC. Extensive tests are presented to illustrate the effectiveness of the proposed method. The results show the proposed EEMD-PCA-ZCN is an effective tool for trend extraction of rail corrugation measured dynamically.

  19. Evaporation heat transfer and friction characteristics of R-134a flowing downward in a vertical corrugated tube

    SciTech Connect

    Aroonrat, Kanit; Wongwises, Somchai

    2011-01-15

    Differently from most previous studies, the heat transfer and friction characteristics of the pure refrigerant HFC-134a during evaporation inside a vertical corrugated tube are experimentally investigated. The double tube test sections are 0.5 m long with refrigerant flowing in the inner tube and heating water flowing in the annulus. The inner tubes are one smooth tube and two corrugated tubes, which are constructed from smooth copper tube of 8.7 mm inner diameter. The test runs are performed at evaporating temperatures of 10, 15, and 20 C, heat fluxes of 20, 25, and 30 kW/m{sup 2}, and mass fluxes of 200, 300, and 400 kg/m{sup 2} s. The quality of the refrigerant in the test section is calculated using the temperature and pressure obtained from the experiment. The pressure drop across the test section is measured directly by a differential pressure transducer. The effects of heat flux, mass flux, and evaporation temperature on the heat transfer coefficient and two-phase friction factor are also discussed. It is found that the percentage increases of the heat transfer coefficient and the two-phase friction factor of the corrugated tubes compared with those of the smooth tube are approximately 0-10% and 70-140%, respectively. (author)

  20. Reinforced plastics durability

    SciTech Connect

    Pritchard, G.

    1999-01-01

    Written especially for first-time users of reinforced plastics. The book offers substantial introductory information with key concepts. Chapters examine the long-term threats to the integrity of reinforced plastics: outdoor weathering, solvent/water attack, high temperatures, and repetitive stress.

  1. Coatings for plastic glazing

    SciTech Connect

    Not Available

    1993-05-01

    This article describes how, as a replacement for glass, coated thermoplastic polymers can reduce cost and weight and increase occupant retention and design flexibility. Advances in transparent protective coatings have increased the potential for successful use of plastics in automotive applications. Originally, plastic materials were considered replacements for metals but, with proven performance, the utility of plastics is expanding beyond metal displacement. Now, transparent plastics are being considered as a potential replacement for glass. Driving this approach are many of the same reasons that plastics were first considered as alternatives to metals--cost, weight, design flexibility, and CAFE requirements. Glass has good optical properties, abrasion and chemical resistance, and outdoor durability, but it is also heavy, breakable, and expensive to form into intricate shapes. Although most clear plastics offer good optical properties, moldability, toughness, and cost benefits, their primary limitation is poor surface resistance to abrasion, scratching, chemicals, and the outdoor environment. In many cases, clear protective coatings can minimize these limitations. The potential advantages and disadvantages of plastic vs glass in automotive applications are given. Transparent plastic materials available for consideration as replacements for automotive glazing are listed.

  2. Detecting plastics in seedcotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The US cotton industry wants to increase market share and value by supplying pure cotton. Removing contamination requires developing a means to detect plastics in seedcotton. This study was conducted to determine if Ion Mobility Spectrometry (IMS) could be used to find small amounts of plastic in ...

  3. Track recording plastic compositions

    NASA Technical Reports Server (NTRS)

    Tarle, Gregory (Inventor)

    1983-01-01

    Improved nuclear track recording plastic compositions are provided which exhibit greatly decreased surface roughness when etched to produce visible tracks of energetic nuclear particles which have passed into and/or through said plastic. The improved compositions incorporate a small quantity of a phthalic acid ester into the major plastic component which is derived from the polymerization of monomeric di-ethylene glycol bis allyl carbonate. Di-substituted phthalic acid esters are preferred as the added component, with the further perference that the ester substituent has a chain length of 2 or more carbon atoms. The inclusion of the phthalic acid ester to an extent of from about 1-2% by weight of the plastic compositions is sufficient to drastically reduce the surface roughness ordinarily produced when the track recording plastic is contacted by etchants.

  4. 77 FR 54930 - Carlyle Plastics and Resins, Formerly Known as Fortis Plastics, A Subsidiary of Plastics...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... Employment and Training Administration Carlyle Plastics and Resins, Formerly Known as Fortis Plastics, A... determination was published in the Federal Register on Monday, July 23, 2012 (77 FR 43123). ] At the request of... plastic parts. New information shows that Fortis Plastics is now called Carlyle Plastics and Resins....

  5. Plastic Surgery for Ethnic Patients

    MedlinePlus

    ... Briefing Papers > Plastic Surgery for Ethnic Patients Briefing Paper: Plastic Surgery for Ethnic Patients More than 3. ... 2067-2071. Share Related Links Plastic Surgery Briefing Papers Menu Cosmetic Reconstructive Patient Safety Before & After Find ...

  6. Sound Transmission Loss Through a Corrugated-Core Sandwich Panel with Integrated Acoustic Resonators

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Allen, Albert R.; Zalewski, Bart F; Beck, Benjamin S.

    2014-01-01

    The goal of this study is to better understand the effect of structurally integrated resonators on the transmission loss of a sandwich panel. The sandwich panel has facesheets over a corrugated core, which creates long aligned chambers that run parallel to the facesheets. When ports are introduced through the facesheet, the long chambers within the core can be used as low-frequency acoustic resonators. By integrating the resonators within the structure they contribute to the static load bearing capability of the panel while also attenuating noise. An analytical model of a panel with embedded resonators is derived and compared with numerical simulations. Predictions show that acoustic resonators can significantly improve the transmission loss of the sandwich panel around the natural frequency of the resonators. In one configuration with 0.813 m long internal chambers, the diffuse field transmission loss is improved by more than 22 dB around 104 Hz. The benefit is achieved with no added mass or volume relative to the baseline structure. The embedded resonators are effective because they radiate sound out-of-phase with the structure. This results in destructive interference, which leads to less transmitted sound power.

  7. Implementation of the CMOS MEMS condenser microphone with corrugated metal diaphragm and silicon back-plate.

    PubMed

    Huang, Chien-Hsin; Lee, Chien-Hsing; Hsieh, Tsung-Min; Tsao, Li-Chi; Wu, Shaoyi; Liou, Jhyy-Cheng; Wang, Ming-Yi; Chen, Li-Che; Yip, Ming-Chuen; Fang, Weileun

    2011-01-01

    This study reports a CMOS-MEMS condenser microphone implemented using the standard thin film stacking of 0.35 μm UMC CMOS 3.3/5.0 V logic process, and followed by post-CMOS micromachining steps without introducing any special materials. The corrugated diaphragm for the microphone is designed and implemented using the metal layer to reduce the influence of thin film residual stresses. Moreover, a silicon substrate is employed to increase the stiffness of the back-plate. Measurements show the sensitivity of microphone is -42 ± 3 dBV/Pa at 1 kHz (the reference sound-level is 94 dB) under 6 V pumping voltage, the frequency response is 100 Hz-10 kHz, and the S/N ratio >55 dB. It also has low power consumption of less than 200 μA, and low distortion of less than 1% (referred to 100 dB). PMID:22163953

  8. Ratcheting of Brownian swimmers in periodically corrugated channels: A reduced Fokker-Planck approach

    NASA Astrophysics Data System (ADS)

    Yariv, Ehud; Schnitzer, Ory

    2014-09-01

    We consider the motion of self-propelling Brownian particles in two-dimensional periodically corrugated channels. The point-size swimmers propel themselves in a direction which fluctuates by Brownian rotation; in addition, they undergo Brownian motion. The impermeability of the channel boundaries in conjunction with an asymmetry of the unit-cell geometry enables ratcheting, where a nonzero particle current is animated along the channel. This effect is studied here in the continuum limit using a diffusion-advection description of the probability density in a four-dimensional position-orientation space. Specifically, the mean particle velocity is calculated using macrotransport (generalized Taylor-dispersion) theory. This description reveals that the ratcheting mechanism is indirect: swimming gives rise to a biased spatial particle distribution which in turn results in a purely diffusive net current. For a slowly varying channel geometry, the dependence of this current upon the channel geometry and fluid-particle parameters is studied via a long-wave approximation over a reduced two-dimensional space. This allows for a straightforward seminumerical solution. In the limit where both rotational diffusion and swimming are strong, we find an asymptotic approximation to the particle current, scaling inversely with the square of the swimming Péclet number. For a given swimmer-fluid system, this limit is physically realized with increasing unit-cell size.

  9. Ratcheting of Brownian swimmers in periodically corrugated channels: a reduced Fokker-Planck approach.

    PubMed

    Yariv, Ehud; Schnitzer, Ory

    2014-09-01

    We consider the motion of self-propelling Brownian particles in two-dimensional periodically corrugated channels. The point-size swimmers propel themselves in a direction which fluctuates by Brownian rotation; in addition, they undergo Brownian motion. The impermeability of the channel boundaries in conjunction with an asymmetry of the unit-cell geometry enables ratcheting, where a nonzero particle current is animated along the channel. This effect is studied here in the continuum limit using a diffusion-advection description of the probability density in a four-dimensional position-orientation space. Specifically, the mean particle velocity is calculated using macrotransport (generalized Taylor-dispersion) theory. This description reveals that the ratcheting mechanism is indirect: swimming gives rise to a biased spatial particle distribution which in turn results in a purely diffusive net current. For a slowly varying channel geometry, the dependence of this current upon the channel geometry and fluid-particle parameters is studied via a long-wave approximation over a reduced two-dimensional space. This allows for a straightforward seminumerical solution. In the limit where both rotational diffusion and swimming are strong, we find an asymptotic approximation to the particle current, scaling inversely with the square of the swimming Péclet number. For a given swimmer-fluid system, this limit is physically realized with increasing unit-cell size. PMID:25314403

  10. Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies.

    PubMed

    Ibn-Elhaj, M; Schadt, M

    2001-04-12

    Light reflection from computer monitors, car dashboards and any other optical surface can impair the legibility of displays, degrade transmission of optical components and in some cases may even pose safety hazards. Antireflective coatings are therefore widely used, but existing antireflection technologies often perform sub-optimally or are expensive to implement. Here we present an alternative approach to antireflection coatings, based on an extension of our photo-aligning and photo-patterning technology for liquid-crystal displays (LCDs) and liquid-crystal polymer films with smooth surfaces to optical polymer films with controlled surface topologies. Nano- and micro-corrugated topologies are shown to result from optically induced monomer phase-separation on the polymer surfaces. The properties of the resulting films make them suitable high-performance and low-cost antireflection coatings for optical components of virtually any size, shape and material. Moreover, the approach can be used to form a wide range of other functional polymer thin films with isotropic as well as anisotropic topologies. For example, films can be produced whose optical birefringence exceeds that of the birefringence of the polymer material itself. These new films can also be used as diffractive thin films, diffusers, and directional reflectors which preserve light polarization, or as substrates for aligning liquid crystals to produce bright, low-power-consumption LCDs with integrated optical functions and memory.

  11. Electronic and thermal transport study of sinusoidally corrugated nanowires aiming to improve thermoelectric efficiency.

    PubMed

    Park, K H; Martin, P N; Ravaioli, U

    2016-01-22

    Improvement of thermoelectric efficiency has been very challenging in the solid-state industry due to the interplay among transport coefficients which measure the efficiency. In this work, we modulate the geometry of nanowires to interrupt thermal transport with causing only a minimal impact on electronic transport properties, thereby maximizing the thermoelectric power generation. As it is essential to scrutinize comprehensively both electronic and thermal transport behaviors for nano-scale thermoelectric devices, we investigate the Seebeck coefficient, the electrical conductance, and the thermal conductivity of sinusoidally corrugated silicon nanowires and eventually look into an enhancement of the thermoelectric figure-of-merit [Formula: see text] from the modulated nanowires over typical straight nanowires. A loss in the electronic transport coefficient is calculated with the recursive Green function along with the Landauer formalism, and the thermal transport is simulated with the molecular dynamics. In contrast to a small influence on the thermopower and the electrical conductance of the geometry-modulated nanowires, a large reduction of the thermal conductivity yields an enhancement of the efficiency by 10% to 35% from the typical nanowires. We find that this approach can be easily extended to various structures and materials as we consider the geometrical modulation as a sole source of perturbation to the system.

  12. Improving wet and dry strength properties of recycled old corrugated carton (OCC) pulp using various polymers.

    PubMed

    Hamzeh, Yahya; Sabbaghi, Sanaz; Ashori, Alireza; Abdulkhani, Ali; Soltani, Farshid

    2013-04-15

    In this study, the application of different dosages of low and high molecular weights (MW) of chitosan (Ch), cationic starch (CS) and poly vinyl alcohol (PVA) were systematically investigated using old corrugated carton (OCC) furnishes. Various sequences of above-mentioned polymeric additives were also examined to find out the optimal combination for improving both wet and dry tensile strength. For each treatment, 4 handsheets, each having basis weight of 100 g/m(2), were made. In general, the tensile strength of handsheets was significantly affected by the addition of polymeric agents. The enhancing effect of additives on dry tensile property was much higher than wet condition. The results also showed that the tensile strength of the samples made from OCC furnishes were improved upon the addition of high molecular weight chitosan (ChI) compared to the untreated ones (control). The low MW chitosan did not change the properties of handsheets dramatically. Application of polymeric agents moderately decreased the stretch to rupture, however with increasing dosage the stretch was improved. Sequential addition of used polymers showed that triple application of polymers was beneficial to both dry and wet tensile strength, although the effect was larger for dry. The best results in wet and dry tensile strengths were achieved using sequential of PVA-ChI-CS. Sequential addition of oppositely charged polymers forms a macromolecular layered structure of polyelectrolytes. PMID:23544577

  13. Dynamic test of a corrugated steel keyworker blast shelter. Final report

    SciTech Connect

    Woodson, S.C.; Slawson, T.R.; Holmes, R.L.

    1986-05-01

    At the time this study was initiated, civil defense planning in the United States called for the evacuation of nonessential personnel to safe host areas when a nuclear attack is probable, requiring the construction of blast shelters to protect the key workers remaining in the risk areas. A full-scale corrugated steel keyworker blast shelter was dynamically tested using the High Explosive Simulation Technique (HEST). The test primarily investigated the structural design of the shelter and entryway, survivability of the air-moving system components, and occupant survivability. Alternate blast designs for the 18-man shelter were also tested. The test showed that the structure can withstand a 55-psi peak overpressure loading from a 1-MT nuclear detonation with only minor damage. In-structure shock was within acceptable limits for occupants. However, typical floor-mounted shelter equipment should be shock-isolated with pads to ensure survivability. Structural modifications to decrease the cost and increase the ease of installation of the structure are recommended.

  14. Corrugated paraffin nanocomposite films as large stroke thermal actuators and self-activating thermal interfaces.

    PubMed

    Copic, Davor; Hart, A John

    2015-04-22

    High performance active materials are of rapidly growing interest for applications including soft robotics, microfluidic systems, and morphing composites. In particular, paraffin wax has been used to actuate miniature pumps, solenoid valves, and composite fibers, yet its deployment is typically limited by the need for external volume constraint. We demonstrate that compact, high-performance paraffin actuators can be made by confining paraffin within vertically aligned carbon nanotube (CNT) films. This large-stroke vertical actuation is enabled by strong capillary interaction between paraffin and CNTs and by engineering the CNT morphology by mechanical compression before capillary-driven infiltration of the molten paraffin. The maximum actuation strain of the corrugated CNT-paraffin films (∼0.02-0.2) is comparable to natural muscle, yet the maximum stress is limited to ∼10 kPa by collapse of the CNT network. We also show how a CNT-paraffin film can serve as a self-activating thermal interface that closes a gap when it is heated. These new CNT-paraffin film actuators could be produced by large-area CNT growth, infiltration, and lamination methods, and are attractive for use in miniature systems due to their self-contained design.

  15. A study for sound wave scattering by corrugated ground with complex trench structures

    NASA Astrophysics Data System (ADS)

    Tong, Mei Song; Ting, Leon Yeow; Chew, Weng Cho; White, Michael J.

    Several trench structures in corrugated ground are investigated for the possibility of mitigating gun blast noise by numerical simulations. The blast noise usually includes large explosive energy with nonlinearity in the near field and exhibits a very low-frequency spectrum. In this study, the linearity approximation for the noise is taken because the nonlinearity of the wave reaching the scatterer is not serious for many proved guns and the low-frequency characteristic is concentrated. The structures are designed based on the surface impedance design approach proposed in our previous work and arbitrary three-dimensional (3D) geometries within a truncated ground are now assumed. The acoustic characteristic of the structures is evaluated by using a fast numerical solver. The solver employs the multilevel fast multipole algorithm (MLFMA) as an accelerator and can solve very large acoustic wave scattering problems with millions of unknowns on workstations within several days. This tool allows us to truncate the ground as large as needed for accurate modeling. Four structures are mainly considered in the design, namely, concentric trenches, sectorial trapezoidal trenches, interlaced arc trenches and parabolic reflectors. Some of them may have a sloped inner wall or tilted surface as a means of adjustment. Numerical simulations show that the concentric trench design has a very good mitigation behavior for linear and continuous noise sources and the structure is further studied for mitigating real-world gun blast noise.

  16. Mechanisms of amplification of ultrashort electromagnetic pulses in gyrotron traveling wave tube with helically corrugated waveguide

    NASA Astrophysics Data System (ADS)

    Ginzburg, N. S.; Zotova, I. V.; Sergeev, A. S.; Zaslavsky, V. Yu.; Zheleznov, I. V.; Samsonov, S. V.; Mishakin, S. V.

    2015-11-01

    A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of the incident signal with respect to the electron beam provides feeding of the signal by "fresh" electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam.

  17. Corrugated paraffin nanocomposite films as large stroke thermal actuators and self-activating thermal interfaces.

    PubMed

    Copic, Davor; Hart, A John

    2015-04-22

    High performance active materials are of rapidly growing interest for applications including soft robotics, microfluidic systems, and morphing composites. In particular, paraffin wax has been used to actuate miniature pumps, solenoid valves, and composite fibers, yet its deployment is typically limited by the need for external volume constraint. We demonstrate that compact, high-performance paraffin actuators can be made by confining paraffin within vertically aligned carbon nanotube (CNT) films. This large-stroke vertical actuation is enabled by strong capillary interaction between paraffin and CNTs and by engineering the CNT morphology by mechanical compression before capillary-driven infiltration of the molten paraffin. The maximum actuation strain of the corrugated CNT-paraffin films (∼0.02-0.2) is comparable to natural muscle, yet the maximum stress is limited to ∼10 kPa by collapse of the CNT network. We also show how a CNT-paraffin film can serve as a self-activating thermal interface that closes a gap when it is heated. These new CNT-paraffin film actuators could be produced by large-area CNT growth, infiltration, and lamination methods, and are attractive for use in miniature systems due to their self-contained design. PMID:25822633

  18. Dynamic test of a corrugated steel keyworker blast shelter MISTY PICTURE. Final report

    SciTech Connect

    Holmes, R.L.; Slawson, T.R.; Harris, A.L.

    1987-11-01

    The 18-man blast shelter was tested dynamically on May 14, 1987 in the MISTY PICTURE event at White Sands Missile Range, NM. The main section of the shelter was fabricated from a 9-foot-diameter, 27.5-foot-long section of 10-gage, galvanized, corrugated steel culvert. The shelter included a vertical entryway and air intake and exhaust stacks. The shelter design was found to be conservative during a previous 50-psi validation test, and some constructibility problems were encountered with the entryway-to-shelter connections. This test was conducted to validate the modifications made to the shelter design. The modifications were made to reduce construction costs and improve constructibility. Primary modifications included: replacing the stiffened endwalls with lighter-weight unstiffened plates, connecting the entryway to an endwall rather than to the main section of the shelter, and the inclusion of an emergency exit. The structure was located at the anticipated 200-psi peak overpressure level. Post-test inspection revealed that the main section of the shelter suffered very little damage during the test. Due to the failure of the emergency exit cover plate, it was necessary to determine if enough pressure entered the shelter to affect its structural response. This test also investigated the shock environment inside the shelter.

  19. Mechanisms of amplification of ultrashort electromagnetic pulses in gyrotron traveling wave tube with helically corrugated waveguide

    SciTech Connect

    Ginzburg, N. S. Zaslavsky, V. Yu.; Zotova, I. V.; Sergeev, A. S.; Zheleznov, I. V.; Samsonov, S. V.; Mishakin, S. V.

    2015-11-15

    A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of the incident signal with respect to the electron beam provides feeding of the signal by “fresh” electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam.

  20. SHOCK CORRUGATION BY RAYLEIGH-TAYLOR INSTABILITY IN GAMMA-RAY BURST AFTERGLOW JETS

    SciTech Connect

    Duffell, Paul C.; MacFadyen, Andrew I. E-mail: macfadyen@nyu.edu

    2014-08-10

    Afterglow jets are Rayleigh-Taylor unstable and therefore turbulent during the early part of their deceleration. There are also several processes which actively cool the jet. In this Letter, we demonstrate that if cooling significantly increases the compressibility of the flow, the turbulence collides with the forward shock, destabilizing and corrugating it. In this case, the forward shock is turbulent enough to produce the magnetic fields responsible for synchrotron emission via small-scale turbulent dynamo. We calculate light curves assuming the magnetic field is in energy equipartition with the turbulent kinetic energy and discover that dynamic magnetic fields are well approximated by a constant magnetic-to-thermal energy ratio of 1%, though there is a sizeable delay in the time of peak flux as the magnetic field turns on only after the turbulence has activated. The reverse shock is found to be significantly more magnetized than the forward shock, with a magnetic-to-thermal energy ratio of the order of 10%. This work motivates future Rayleigh-Taylor calculations using more physical cooling models.

  1. Graphene on Ni(111): Electronic Corrugation and Dynamics from Helium Atom Scattering

    PubMed Central

    2015-01-01

    Using helium atom scattering, we have studied the structure and dynamics of a graphene layer prepared in situ on a Ni(111) surface. Graphene/Ni(111) exhibits a helium reflectivity of ∼20% for a thermal helium atom beam and a particularly small surface electron density corrugation ((0.06 ± 0.02) Å peak to peak height). The Debye–Waller attenuation of the elastic diffraction peaks of graphene/Ni(111) and Ni(111) was measured at surface temperatures between 150 and 740 K. A surface Debye temperature of θD = (784 ± 14) K is determined for the graphene/Ni(111) system and θD = (388 ± 7) K for Ni(111), suggesting that the interlayer interaction between graphene and the Ni substrate is intermediary between those for strongly interacting systems like graphene/Ru(0001) and weakly interacting systems like graphene/Pt(111). In addition we present measurements of low frequency surface phonon modes on graphene/Ni(111) where the phonon modes of the Ni(111) substrate can be clearly observed. The similarity of these findings with the graphene/Ru(0001) system indicates that the bonding of graphene to a metal substrate alters the dynamic properties of the graphene surface strongly and is responsible for the high helium reflectivity of these systems. PMID:26617683

  2. Corrugated velocity patterns in the spiral galaxies: NGC 278, NGC 1058, NGC 2500 & UGC 3574

    NASA Astrophysics Data System (ADS)

    Sánchez-Gil, M. Carmen; Alfaro, Emilio J.; Pérez, Enrique

    2015-12-01

    We address the study of the H α vertical velocity field in a sample of four nearly face-on galaxies using long-slit spectroscopy taken with the Intermediate dispersion Spectrograph and Imaging System (ISIS), attached to the William Herschel Telescope (WHT) at the Roque de los Muchachos Observatory (Spain). The spatial structure of the velocity vertical component shows a radial corrugated pattern with spatial scales higher or within the order of 1 kpc. The gas is mainly ionized by high-energy photons: only in some locations of NGC 278 and NGC 1058 is there some evidence of ionization by low-velocity shocks, which, in the case of NGC 278, could be due to minor mergers. The behaviour of the gas in the neighbourhood of the spiral arms fits, in the majority of the observed cases, with that predicted by the so-called hydraulic bore mechanism, where a thick magnetized disc encounters a spiral density perturbation. The results obtained show that it is difficult to explain the H α large-scale velocity field without the presence of a magnetized, thick galactic disc. Larger samples and spatial covering of the galaxy discs are needed to provide further insight into this problem.

  3. On Locally Deformed Stratified Media : Applications To Rough Surfaces And Guided Wave Devices With Corrugated Boundaries

    NASA Astrophysics Data System (ADS)

    Petit, R.; Hugonin, J. P.

    1984-12-01

    In 1977, we published two papers on the diffraction of electromagnetic waves at a locally deformed flat boundary surface and at a locally deformed plane wave-guide. Since this time, an important theoretical and numerical study of locally deformed stratified media has been carried out in our lab. This study has been summarized three years ago in the J.O.S.A. and it has been presented last year as a thesis dissertation. But both the J.O.S.A. paper and the thesis are difficult to read for non specialists because the involved mathematics are rather subtle and, at least, tedious for experimenters. In other words, an important work has been done, which seems to be unknown to most of "practical people". We thought that a SPIE meeting is a good opportunity to cure this regrettable situation. A computer program is now available which probably might be very useful for those working on rough dielectric surfaces and on guided wave devices with corrugated boundaries. We would like to present to engineers the possibilities and the limits of this big computer code called hereafter Program (P)

  4. Shape-Shifting Plastic

    SciTech Connect

    2015-05-20

    A new plastic developed by ORNL and Washington State University transforms from its original shape through a series of temporary shapes and returns to its initial form. The shape-shifting process is controlled through changes in temperature

  5. A Plastic Menagerie

    ERIC Educational Resources Information Center

    Hadley, Mary Jane

    2010-01-01

    Bobble heads had become quite popular, depicting all sorts of sports figures, animals, and even presidents. In this article, the author describes how her fourth graders made bobble head sculptures out of empty plastic drink bottles. (Contains 1 online resource.)

  6. Mechanical plasticity of cells

    NASA Astrophysics Data System (ADS)

    Bonakdar, Navid; Gerum, Richard; Kuhn, Michael; Spörrer, Marina; Lippert, Anna; Schneider, Werner; Aifantis, Katerina E.; Fabry, Ben

    2016-10-01

    Under mechanical loading, most living cells show a viscoelastic deformation that follows a power law in time. After removal of the mechanical load, the cell shape recovers only incompletely to its original undeformed configuration. Here, we show that incomplete shape recovery is due to an additive plastic deformation that displays the same power-law dynamics as the fully reversible viscoelastic deformation response. Moreover, the plastic deformation is a constant fraction of the total cell deformation and originates from bond ruptures within the cytoskeleton. A simple extension of the prevailing viscoelastic power-law response theory with a plastic element correctly predicts the cell behaviour under cyclic loading. Our findings show that plastic energy dissipation during cell deformation is tightly linked to elastic cytoskeletal stresses, which suggests the existence of an adaptive mechanism that protects the cell against mechanical damage.

  7. Recycle plastics into feedstocks

    SciTech Connect

    Kastner, H.; Kaminsky, W.

    1995-05-01

    Thermal cracking of mixed-plastics wastes with a fluidized-bed reactor can be a viable and cost-effective means to meet mandatory recycling laws. Strict worldwide environmental statutes require the hydrocarbon processing industry (HPI) to develop and implement product applications and technologies that reuse post-consumer mixed-plastics waste. Recycling or reuse of plastics waste has a broad definition. Recycling entails more than mechanical regranulation and remelting of polymers for film and molding applications. A European consortium of academia and refiners have investigated if it is possible and profitable to thermally crack plastics into feedstocks for refining and petrochemical applications. Development and demonstration of pyrolysis methods show promising possibilities of converting landfill garbage into valuable feedstocks such as ethylene, propylene, BTX, etc. Fluidized-bed reactor technologies offer HPI operators a possible avenue to meet recycling laws, conserve raw materials and yield a profit. The paper describes thermal cracking for feedstocks and pyrolysis of polyolefins.

  8. Dreaming in plastic

    NASA Astrophysics Data System (ADS)

    Korzhov, Marianna; Andelman, David; Shikler, Rafi

    2008-07-01

    Plastic is one of the most versatile materials available. It is cheap, flexible and easy to process, and as a result it is all around us - from our computer keyboards to the soles of our shoes. One of its most common applications is as an insulating coating for electric wires; indeed, plastic is well known for its insulating characteristics. It came as something of a surprise, therefore, when in the late 1970s a new generation of plastics was discovered that displayed exactly the opposite behaviour - the ability to conduct electricity. In fact, plastics can be made with a whole range of conductivities - there are polymer materials that behave like semiconductors and there are those that can conduct as well as metals. This discovery sparked a revolution in the electronics community, and three decades of research effort is now yielding a range of stunning new applications for this ubiquitous material.

  9. Cortical plasticity and rehabilitation.

    PubMed

    Moucha, Raluca; Kilgard, Michael P

    2006-01-01

    The brain is constantly adapting to environmental and endogenous changes (including injury) that occur at every stage of life. The mechanisms that regulate neural plasticity have been refined over millions of years. Motivation and sensory experience directly shape the rewiring that makes learning and neurological recovery possible. Guiding neural reorganization in a manner that facilitates recovery of function is a primary goal of neurological rehabilitation. As the rules that govern neural plasticity become better understood, it will be possible to manipulate the sensory and motor experience of patients to induce specific forms of plasticity. This review summarizes our current knowledge regarding factors that regulate cortical plasticity, illustrates specific forms of reorganization induced by control of each factor, and suggests how to exploit these factors for clinical benefit.

  10. Laser cutting plastic materials

    SciTech Connect

    Van Cleave, R.A.

    1980-08-01

    A 1000-watt CO/sub 2/ laser has been demonstrated as a reliable production machine tool for cutting of plastics, high strength reinforced composites, and other nonmetals. More than 40 different plastics have been laser cut, and the results are tabulated. Applications for laser cutting described include fiberglass-reinforced laminates, Kevlar/epoxy composites, fiberglass-reinforced phenolics, nylon/epoxy laminates, ceramics, and disposable tooling made from acrylic.

  11. An InP/Si heterojunction photodiode fabricated by self-aligned corrugated epitaxial lateral overgrowth

    NASA Astrophysics Data System (ADS)

    Sun, Y. T.; Omanakuttan, G.; Lourdudoss, S.

    2015-05-01

    An n-InP/p-Si heterojunction photodiode fabricated by corrugated epitaxial lateral overgrowth (CELOG) method is presented. N-InP/p-Si heterojunction has been achieved from a suitable pattern containing circular shaped openings in a triangular lattice on the InP seed layer on p-Si substrate and subsequent CELOG of completely coalesced n-InP. To avoid current path through the seed layer in the final photodiode, semi-insulating InP:Fe was grown with adequate thickness prior to n-InP growth in a low pressure hydride vapor phase epitaxy reactor. The n-InP/p-Si heterointerface was analyzed by scanning electron microscopy and Raman spectroscopy. Room temperature cross-sectional photoluminescence (PL) mapping illustrates the defect reduction effect in InP grown on Si by CELOG method. The InP PL intensity measured above the InP/Si heterojunction is comparable to that of InP grown on a native planar substrate indicating low interface defect density of CELOG InP despite of 8% lattice mismatch with Si. The processed n-InP/p-Si heterojunction photodiodes show diode characteristics from the current-voltage (I-V) measurements with a dark current density of 0.324 mA/cm2 at a reverse voltage of -1 V. Under the illumination of AM1.5 conditions, the InP/Si heterojunction photodiode exhibited photovoltaic effect with an open circuit voltage of 180 mV, a short circuit current density of 1.89 mA/cm2, an external quantum efficiency of 4.3%, and an internal quantum efficiency of 6.4%. This demonstration of epitaxially grown InP/Si heterojunction photodiode will open the door for low cost and high efficiency solar cells and photonic integration of III-Vs on silicon.

  12. Mode Content Determination of Terahertz Corrugated Waveguides Using Experimentally Measured Radiated Field Patterns

    PubMed Central

    Jawla, Sudheer K.; Nanni, Emilio A.; Shapiro, Michael A.; Woskov, Paul P.; Temkin, Richard J.

    2012-01-01

    This work focuses on the accuracy of the mode content measurements in an overmoded corrugated waveguide using measured radiated field patterns. Experimental results were obtained at 250 GHz using a vector network analyzer with over 70 dB of dynamic range. The intensity and phase profiles of the fields radiated from the end of the 19 mm diameter helically tapped brass waveguide were measured on planes at 7, 10, and 13 cm from the waveguide end. The measured fields were back propagated to the waveguide aperture to provide three independent estimates of the field at the waveguide exit aperture. Projecting that field onto the modes of the guide determined the waveguide mode content. The three independent mode content estimates were found to agree with one another to an accuracy of better than ±0.3%. These direct determinations of the mode content were compared with indirect measurements using the experimentally measured amplitude in three planes, with the phase determined by a phase retrieval algorithm. The phase retrieval technique using the planes at 7, 10, and 13 cm yielded a mode content estimate in excellent agreement, within 0.3%, of the direct measurements. Phase retrieval results using planes at 10, 20, and 30 cm were less accurate due to truncation of the measurement in the transverse plane. The reported measurements benefited greatly from a precise mechanical alignment of the scanner with respect to the waveguide axis. These results will help to understand the accuracy of mode content measurements made directly in cold test and indirectly in hot test using the phase retrieval technique. PMID:25264391

  13. An InP/Si heterojunction photodiode fabricated by self-aligned corrugated epitaxial lateral overgrowth

    SciTech Connect

    Sun, Y. T. Omanakuttan, G.; Lourdudoss, S.

    2015-05-25

    An n-InP/p-Si heterojunction photodiode fabricated by corrugated epitaxial lateral overgrowth (CELOG) method is presented. N-InP/p-Si heterojunction has been achieved from a suitable pattern containing circular shaped openings in a triangular lattice on the InP seed layer on p-Si substrate and subsequent CELOG of completely coalesced n-InP. To avoid current path through the seed layer in the final photodiode, semi-insulating InP:Fe was grown with adequate thickness prior to n-InP growth in a low pressure hydride vapor phase epitaxy reactor. The n-InP/p-Si heterointerface was analyzed by scanning electron microscopy and Raman spectroscopy. Room temperature cross-sectional photoluminescence (PL) mapping illustrates the defect reduction effect in InP grown on Si by CELOG method. The InP PL intensity measured above the InP/Si heterojunction is comparable to that of InP grown on a native planar substrate indicating low interface defect density of CELOG InP despite of 8% lattice mismatch with Si. The processed n-InP/p-Si heterojunction photodiodes show diode characteristics from the current-voltage (I-V) measurements with a dark current density of 0.324 mA/cm{sup 2} at a reverse voltage of −1 V. Under the illumination of AM1.5 conditions, the InP/Si heterojunction photodiode exhibited photovoltaic effect with an open circuit voltage of 180 mV, a short circuit current density of 1.89 mA/cm{sup 2}, an external quantum efficiency of 4.3%, and an internal quantum efficiency of 6.4%. This demonstration of epitaxially grown InP/Si heterojunction photodiode will open the door for low cost and high efficiency solar cells and photonic integration of III-Vs on silicon.

  14. The Need for Plastics Education.

    ERIC Educational Resources Information Center

    Society of Plastics Engineers, Inc., Stamford, CT.

    In view of a lack of trained personnel in the industry, the Plastics Education Foundation proposes that educators (1) add more plastics programs, (2) establish plastics engineering degrees at appropriate 4-year institutions, (3) add plastics processing technology to current engineering curricula, and (4) interest younger students in courses and/or…

  15. Analysis of brook trout spatial behavior during passage attempts in corrugated culverts using near-infrared illumination video imagery

    USGS Publications Warehouse

    Bergeron, Normand E.; Constantin, Pierre-Marc; Goerig, Elsa; Castro-Santos, Theodore R.

    2016-01-01

    We used video recording and near-infrared illumination to document the spatial behavior of brook trout of various sizes attempting to pass corrugated culverts under different hydraulic conditions. Semi-automated image analysis was used to digitize fish position at high temporal resolution inside the culvert, which allowed calculation of various spatial behavior metrics, including instantaneous ground and swimming speed, path complexity, distance from side walls, velocity preference ratio (mean velocity at fish lateral position/mean crosssectional velocity) as well as number and duration of stops in forward progression. The presentation summarizes the main results and discusses how they could be used to improve fish passage performance in culverts.

  16. Effect of projection velocity and temperature on the reflection of ultracold atoms from a periodic one-dimensional corrugated magnetic potential

    SciTech Connect

    Singh, Mandip; Hannaford, Peter

    2010-07-15

    The spatial profile of ultracold atoms reflecting from an exponentially decaying magnetic potential depends on parameters such as the corrugation in the magnetic potential and the temperature of the atomic cloud. We report on experimental investigations of the effect of projection velocity which determines the strength of the interaction of the atom cloud with the magnetic potential and the effect of temperature of ultracold {sup 87}Rb atoms reflecting from a periodic one-dimensional corrugated magnetic potential. The magnetic potential is generated on an atom chip by a periodic permanent magnetic structure of period 10 {mu}m. The amplitude of the corrugation is controlled by applying a uniform external-bias magnetic field.

  17. Study of compression-loaded and impact-damaged structurally efficient graphite-thermoplastic trapezoidal-corrugation sandwich and semisandwich panels

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    1992-01-01

    The structural efficiency of compression-loaded trapezoidal-corrugation sandwich and semisandwich composite panels is studied to determine their weight savings potential. Sandwich panels with two identical face sheets and a trapezoidal corrugated core between them and semisandwich panels with a corrugation attached to a single skin are considered. An optimization code is used to find the minimum weight designs for critical compressive load levels ranging from 3000 to 24,000 lb/in. Graphite-thermoplastic panels based on the optimal minimum weight designs were fabricated and tested. A finite element analysis of several test specimens was also conducted. The results of the optimization study, the finite element analysis, and the experiments are presented. The results of testing impact damage panels are also discussed.

  18. The plasticity of clays

    USGS Publications Warehouse

    Group, F.F.

    1905-01-01

    (1) Sand injures plasticity little at first because the grains are suspended in a plastic mass. It is only when grains are abundant enough to come in contact with their neighbors, that the effect becomes serious, and then both strength and amount of possible flow are injured. (2) Certain rare organic colloids increase the plasticity by rendering the water viscous. (3) Fineness also tends to increase plasticity. (4) Plane surfaces (plates) increase the amount of possible flow. They also give a chance for lubrication by thinner films, thus increasing the friction of film, and the strength of the whole mass. The action of plates is thus twofold ; but fineness may be carried to such an extent as to break up plate-like grains into angular fragments. The beneficial effects of plates are also decreased by the fact that each is so closely surrounded by others in the mass. (5) Molecular attraction is twofold in increasing plasticity. As the attraction increases, the coherence and strength of the mass increase, and the amount of possible deformation before crumbling also increases. Fineness increases this action by requiring more water. Colloids and crystalloids in solution may also increase the attraction. It is thus seen to be more active than any other single factor.

  19. Plastic condom developed.

    PubMed

    1992-01-01

    A prototype plastic condom that is expected to be at least as strong as latex, less likely to fail, and more comfortable to use has been designed by researchers at North Carolina-based Family Health International (FHI). The National Institutes of Health has granted the nonprofit medical research organization $1.3 million to conduct tests that will include clinical trials involving volunteer couples to examine the condom/s safety, efficacy in preventing pregnancy, and acceptability among users. Researchers hope the tests, expected to take about 4 years, will show that the plastic condom can be stored for years without weakening, whereas latex loses strength with time. In addition, FHI claims the plastic condom can be used with any kind of lubricant, while Latex is limited to water-based or silicone lubricants. Latex condoms lose up to 90% of their strength when used with oil-based lubricants such as hand lotion, according to studies.

  20. Consumer hazards of plastics.

    PubMed Central

    Wiberg, G S

    1976-01-01

    The modern consumer is exposed to a wide variety of plastic and rubber products in his day to day life: at home, work, school, shopping, recreation and play, and transport. A large variety of toxic sequellae have resulted from untoward exposures by many different routes: oral, dermal, inhalation, and parenteral. Toxic change may result from the plastic itself, migration of unbound components and additives, chemical decomposition or toxic pyrolysis products. The type of damage may involve acute poisoning, chronic organ damage, reproductive disorders, and carcinogenic, mutagenic and teratogenic episodes. Typical examples for all routes are cited along with the activites of Canadian regulatory agencies to reduce both the incidence and severity of plastic-induced disease. PMID:1026409

  1. Adaptation without Plasticity.

    PubMed

    Del Mar Quiroga, Maria; Morris, Adam P; Krekelberg, Bart

    2016-09-27

    Sensory adaptation is a phenomenon in which neurons are affected not only by their immediate input but also by the sequence of preceding inputs. In visual cortex, for example, neurons shift their preferred orientation after exposure to an oriented stimulus. This adaptation is traditionally attributed to plasticity. We show that a recurrent network generates tuning curve shifts observed in cat and macaque visual cortex, even when all synaptic weights and intrinsic properties in the model are fixed. This demonstrates that, in a recurrent network, adaptation on timescales of hundreds of milliseconds does not require plasticity. Given the ubiquity of recurrent connections, this phenomenon likely contributes to responses observed across cortex and shows that plasticity cannot be inferred solely from changes in tuning on these timescales. More broadly, our findings show that recurrent connections can endow a network with a powerful mechanism to store and integrate recent contextual information. PMID:27681421

  2. Cooling Performance and Structural Reliability of a Modified Corrugated-insert Air-cooled Turbine Blade with an Integrally Cast Shell and Base

    NASA Technical Reports Server (NTRS)

    Freche, John C; Schum, Eugene F

    1957-01-01

    A modified corrugated-insert blade with integrally cast shell and base was developed. This blade was as light as a conventional fabricated corrugated-insert blade. Of four test blades operated in a full-scale turbojet engine, one failed after about 15 hours operation at an inlet gas temperature of 1670 degrees F, a coolant-flow ratio of 0.0064, and a 1/3-span centrifugal stress of approximately 28,000 psi. Three other test blades ran for approximately 16, 31, and 36 hours without failure at similar conditions.

  3. Response of reinforced concrete and corrugated steel pipes to surface load

    NASA Astrophysics Data System (ADS)

    Lay, Geoff R.

    Full-scale simulated live load tests were conducted in a controlled laboratory setting using a single-axle frame on 600-mm-inner-diameter reinforced concrete pipe (RCP) and corrugated steel pipe (CSP) when buried in dense, well-graded sand and gravel. Measurements of the RCP at nominal and working forces and beyond are reported for 0.3, 0.6 and 0.9 m of soil cover above the pipe crown. The RCP experienced no cracking when buried at 0.3 m under nominal and working CL-625 and CL-800 single-axle design loads. At these loads, the vertical contraction of the pipe diameter was less than 0.08 and 0.10 mm and the largest tensile strains in the pipe were 75 and 100 muepsilon (50-60% of the cracking strain), respectively. A 0.15 (+/-0.05)-mm-wide axial crack developed at the inner crown in the presence of a 6 kNm/m circumferential bending moment (70% of the theoretical ultimate moment capacity) at the fully factored CL-625 load. This crack did not propagate or widen from 3 series of cyclic load-unload tests. At 1300 kN of applied load the change in pipe diameter was less than 3.5 mm. Increasing soil cover from 0.3 to 0.6 to 0.9 m reduced the circumferential crown bending moment from 6.0 to 3.9 to 2.1 kNm/m, respectively, at 400 kN of axle load. A 1.6- and a 2.8-mm-thick CSP were also subjected to axle loading. No yielding or limit states occurred in the 1.6-mm-thick CSP when buried 0.9-m-deep. However, at 0.6 m of cover a 300 kN axle load caused local yielding at the pipe crown. Increasing soil cover from 0.6 to 0.9 m decreased the vertical diameter change from -3.0 to -1.2 mm and the crown bending moment from 0.7 to 0.2 kNm/m (75% and 20% of the yield moment), respectively, at a 250 kN axle load. Deflections of the thicker CSP were less than the thinner pipe below the CL-625 single-axle load, however further increases in applied load produced a greater response in the thicker pipe, likely due to a haunch support issue. Shallow axle loading produced a greater 3-dimensional

  4. Application of WinSRFR4 program to zigzag corrugated furrow irrigation in Bolivia

    NASA Astrophysics Data System (ADS)

    Roldán Cañas, José; Moreno Perez, Maria Fatima; Garcia Moreno, Francisco Javier; Chipana, Rene

    2013-04-01

    Program WinSRFR4, developed by the Agricultural Research Service-U.S. Department of Agriculture, is used to perform surface irrigation evaluations, to establish appropriate irrigation parameters to get better irrigation efficiencies, to execute irrigation simulations and so to set several alternatives to the design of an irrigation. This paper aims to adapt WinSRFR4 program to zigzag corrugated furrow irrigation performed in the Andean regions of Bolivia. These irrigations are quite peculiar as they are carried out in areas with steep slope and with very low flow rates to avoid the risk of erosion. Besides of this, the flow rates are quite variable during the irrigation application. The greater length of the furrows is drawn on contours performing small jumps between consecutive contours. Available data are taken for seven irrigations for different periods of lettuce crop growth. First, a model that fits irrigations executed has been searched. For this, we have conducted a series of tests with the program WinSRFR4, being necessary to carry some simplifications given the peculiarity of this type of irrigation. The procedure consisted in determining the advance curves during irrigation. Later, the parameters of the Kostiakov - Lewis equation have been calculated by the method of Walker and Elliot. Although the furrow longitudinal profile was available, a mean slope was used at the time of establishing the model. WinSRFR provides a model of analyzed irrigation with a coefficient of determination ranged from R2 = 0.3520 to R2 = 0.9095. Finally, the errors obtained in the mass balances are between 2% and 14%. The model showed that application efficiencies ranged between 9% and 35%, rather poor, while runoff coefficients varied between 47% and 91%. Not too much importance is given to the fact that runoff occurs because runoff water is used in plots located at a lower level Irrigation simulations have been carried out using WinSRFR by changing the operation variables

  5. Comparison of rigorous coupled-wave approach and finite element method for photovoltaic devices with periodically corrugated metallic backreflector.

    PubMed

    Solano, Manuel E; Faryad, Muhammad; Lakhtakia, Akhlesh; Monk, Peter B

    2014-10-01

    Optimal design of photovoltaic devices with a periodically corrugated metallic backreflector requires a rapid and reliable way to simulate the optical characteristics for wide ranges of wavelengths and angles of incidence. Two independent numerical techniques are needed for confidence in numerical results. We compared the rigorous coupled-wave approach (RCWA) and the finite element method (FEM), the former being fast and flexible, but the latter having predictable convergence even for discontinuous constitutive properties. Depending on the shape of the corrugation and the constitutive properties of the metal and dielectric materials making up the device, both techniques can exhibit slow convergence rates for p-polarized light. The chosen model problem in this paper is of this type. As rapid spatial variations of the fields are the underlying cause, suitable selective refinement of the FEM mesh can overcome this slow convergence. Therefore, it would be desirable to have a self-adaptive scheme for choosing the mesh in the FEM. This will slow down the algorithm but give a reliable way to check the RCWA results.

  6. Peculiarities of the Mode Spectrum in Free-Electron Masers Based on Oversized Bragg Resonators with a Corrugation Phase Step

    NASA Astrophysics Data System (ADS)

    Peskov, N. Yu.; Kaminsky, A. K.; Kuzikov, S. V.; Perel'shtein, E. A.; Sedykh, S. N.; Sergeev, A. S.

    2016-03-01

    We study the operating mode splitting caused by interaction of the neighboring Bragg scattering zones in an oversized Bragg resonator with a corrugation phase step, which is operated at the coupled forward and backward waveguide modes with different transverse structures. This effect is described within the framework of the coupled-wave approach using an advanced four-wave model. It is shown that this effect deteriorates the selective properties of the resonator and, finally, restricts the output power and reduces stability of the narrow-band operating regime in the free-electron masers (FEMs) based on such resonators. The results of the theoretical analysis were corroborated by 3D simulations and "cold" electrodynamic tests. Experimental studies of 30-GHz FEMs with the Bragg resonators having different corrugation depths demonstrated the onset of both narrow-band single-mode and multifrequency multimode oscillation regimes in such resonators. The possibility of power enhancement by using passive compression of the FEM output pulse in a double-frequency oscillation regime is discussed.

  7. Corrugated single layer templates for molecules: From h-BN nanomesh to graphene based quantum dot arrays

    NASA Astrophysics Data System (ADS)

    Ma, Hai-Feng; Thomann, Mario; Schmidlin, Jeanette; Roth, Silvan; Morscher, Martin; Greber, Thomas

    2010-12-01

    Functional nano-templates enable self-assembly of otherwise impossible arrangements of molecules. A particular class of such templates is that of sp 2 hybridized single layers of hexagonal boron nitride or carbon (graphene) on metal supports. If the substrate and the single layer have a lattice mismatch, superstructures are formed. On substrates like rhodium or ruthenium these superstructures have unit cells with ˜3-nm lattice constant. They are corrugated and contain sub-units, which behave like traps for molecules or quantum dots, which are small enough to become operational at room temperature. For graphene on Rh(111) we emphasize a new structural element of small extra hills within the corrugation landscape. For the case of molecules like water it is shown that new phases assemble on such templates, and that they can be used as “nano-laboratories” where many individual processes are studied in parallel. Furthermore, it is shown that the h-BN/Rh(111) nanomesh displays a strong scanning tunneling microscopy-induced luminescence contrast within the 3 nm unit cell which is a way to address trapped molecules and/or quantum dots.

  8. Liquid Metal Droplet and Micro Corrugated Diaphragm RF-MEMS for reconfigurable RF filters

    NASA Astrophysics Data System (ADS)

    Irshad, Wasim

    detail and have proved pivotal to this work. The second part of the dissertation focuses on the Liquid Metal Droplet RF-MEMS. A novel tunable RF MEMS resonator that is based upon electrostatic control over the morphology of a liquid metal droplet (LMD) is conceived. We demonstrate an LMD evanescent-mode cavity resonator that simultaneously achieves wide analog tuning from 12 to 18 GHz with a measured quality factor of 1400-1840. A droplet of 250-mum diameter is utilized and the applied bias is limited to 100 V. This device operates on a principle called Electro-Wetting On Dielectric (EWOD). The liquid metal employed is a non-toxic eutectic alloy of Gallium, Indium and Tin known as Galinstan. This device also exploits interfacial surface energy and viscous body forces that dominate at nanoliter scale. We then apply our Liquid Metal Droplet (LMD) RF-MEMS architecture to demonstrate a continuously tunable electrostatic Ku-Band Filter. A 2-pole bandpass filter with measured insertion loss of less than 0.4dB and 3dB FBW of 3.4% is achieved using a Galinstan droplet of 250mum diameter and bias limited to 100V. We demonstrate that the LMD is insensitive to gravity by performing inversion and tilt experiments. In addition, we study its thermal tolerance by subjecting the LMD up to 150° C. The third part of the dissertation is dedicated to the Micro-Corrugated Diaphragm (MCD) RF-MEMS. We present an evanescent-mode cavity bandpass filter with state-of-the-art RF performance metrics like 4:1 tuning ratio from 5 to 20 GHz with less than 2dB insertion loss and 2-6% 3dB bandwidth. Micro-Corrugated Diaphragm (MCD) is a novel electrostatic MEMS design specifically engineered to provide large-scale analog deflections necessary for such continuous and wide tunable filtering with very high quality factor. We demonstrate a 1.25mm radius and 2mum thick Gold MCD which provides 30mum total deflection with nearly 60% analog range. We also present a detailed and systematic MCD design

  9. Plastics in Perspective.

    ERIC Educational Resources Information Center

    Bergandine, David R.; Holm, D. Andrew

    The materials in this curriculum supplement, developed for middle school or high school science classes, present solid waste problems related to plastics. The set of curriculum materials is divided into two units to be used together or independently. Unit I begins by comparing patterns in solid waste from 1960 to 1990 and introducing methods for…

  10. Hydrodynamic Elastic Magneto Plastic

    1985-02-01

    The HEMP code solves the conservation equations of two-dimensional elastic-plastic flow, in plane x-y coordinates or in cylindrical symmetry around the x-axis. Provisions for calculation of fixed boundaries, free surfaces, pistons, and boundary slide planes have been included, along with other special conditions.

  11. [Anesthetic circle system failure caused by a plastic film--a case report].

    PubMed

    Hara, Naoki; Tanaka, Tomohiro; Minami, Toshiaki

    2006-02-01

    A 44-year-old woman, ASA I, with breast cancer was scheduled for mastectomy. The anesthetic induction was performed by inhalation of 5% sevoflurane and 66% nitrous oxide in oxygen. After the loss of eyelash reflex assisted ventilation was initiated. At this point, the capnograph indicated inspired carbon dioxide tension of 18mmHg. Anesthetic machine check was soon carried out again. A visual check of non-return valves detected a plastic film, 18 x 21mm large, caught in the expiratory valve. This plastic film impaired complete occlusion of the orifice for the expiratory gas flow. As a result, the patient was rebreathing carbon dioxide. After removing it, the wave form of the capnograph was normalized and end-tidal carbon dioxide tension decreased immediately from 45mmHg to 33mmHg. As we did not detect any foreign matters at the non-return valves on anesthetic machine check before use, the plastic film might have already existed in the disposable corrugated tube before use. The capnograph is a useful device for detecting anesthetic circle system failure in such a case. It is important that the patients' airway is separated from the anesthetic circle system through the use of a filter to prevent foreign matter from being inhaled. PMID:16491902

  12. Plastics for Elementary School Children

    ERIC Educational Resources Information Center

    Hanson, Jack

    1977-01-01

    Describes three plastics projects (which involve making a styrene fishing bobber, an acrylic salad fork and spoon set, and acetate shrink art) designed to provide elementary level students an opportunity to work with plastics and to learn about careers in plastics production and distribution. (TA)

  13. Seabirds and floating plastic debris.

    PubMed

    Cadée, Gerhard C

    2002-11-01

    80% of floating plastic debris freshly washed ashore on a Dutch coast showed peckmarks made by birds at sea. They either mistake these debris for cuttlebones or simply test all floating objects. Ingestion of plastic is deleterious for marine organisms. It is urgent to set measures to plastic litter production.

  14. A finite element study on rail corrugation based on saturated creep force-induced self-excited vibration of a wheelset-track system

    NASA Astrophysics Data System (ADS)

    Chen, G. X.; Zhou, Z. R.; Ouyang, H.; Jin, X. S.; Zhu, M. H.; Liu, Q. Y.

    2010-10-01

    The present work proposes friction coupling at the wheel-rail interface as the mechanism for formation of rail corrugation. Stability of a wheelset-track system is studied using the finite element complex eigenvalue method. Two models for a wheelset-track system on a tight curved track and on a straight track are established. In these two models, motion of the wheelset is coupled with that of the rail by friction. Creep force at the interface is assumed to become saturated and approximately equal to friction force, which is equal to the normal contact force multiplied by dynamic coefficient of friction. The rail is supported by vertical and lateral springs and dampers at the positions of sleepers. Numerical results show that there is a strong propensity of self-excited vibration of the wheelset-track system when the friction coefficient is larger than 0.21. Some unstable frequencies fall in the range 60-1200 Hz, which correspond to frequencies of rail corrugation. Parameter sensitivity analysis shows that the dynamic coefficient of friction, spring stiffness and damping of the sleeper supports all have important influences on the rail corrugation formation. Bringing the friction coefficient below a certain level can suppress or eliminate rail corrugation.

  15. Simulations of the fluid phase of nitrogen molecules adsorbed on the basal planes of graphite: structural and dynamical effects of the corrugation in the holding potential.

    NASA Astrophysics Data System (ADS)

    Hansen, F. Y.; Bruch, L. W.; Taub, H.

    1997-03-01

    A discrepancy between calculated (F. Y. Hansen, L.W. Bruch and H. Taub, Phys. Rev. B. 52), 8515 (1995) and experimental melting temperatures of submonolayer films was traced to the intermolecular potentials. These have been tested by comparing molecular dynamics simulations of isosteric heats of adsorption in fluid films with experimental measurements (J. Piper, J. A. Morrison, C. Peters and Y. Ozaki, J. Chem. Soc., Faraday Trans. 1, 79), 2863 (1983). The effect of the corrugation in the holding potential on the fluid phases has also been evaluated in a series of simulations. For films on a model uncorrugated graphite surface the melting temperature is lowered by 7 K. Contrary to what is found for films on the corrugated surface, these simulations show that there is a region of liquid--gas coexistence, demonstrating that this is a normal triple point system. Diffusion constants in these fluids are larger than for the fluids on the corrugated graphite surface. At low coverages, a crossover from activated diffusion to nonactivated diffusion is seen. The damping of the hydrodynamic modes causing the long--time tails in the velocity correlation function seems to be a little stronger on a corrugated surface than on a smooth surface.

  16. Anomalous magnetotransport properties of a ballistic non-interacting three-dimensional electron gas confined to narrow potential wells with corrugated barriers

    SciTech Connect

    Sotomayor, N. M.; Davila, L. Y. D.; Lima, B. C.; Gusev, G. M.

    2013-12-04

    The classical dynamics of ballistic non-interacting electrons confined to a narrow electrostatic potential well with corrugated barriers in uniform magnetic field was numerically studied. Trajectories in phase space were analyzed and longitudinal and transversal resistivities were calculated. Commensurability oscillations and negative magnetoresistance similar to those found in antidot lattice devices were observed.

  17. Breathing: Rhythmicity, Plasticity, Chemosensitivity

    PubMed Central

    Feldman, Jack L.; Mitchell, Gordon S.; Nattie, Eugene E.

    2010-01-01

    Breathing is a vital behavior that is particularly amenable to experimental investigation. We review recent progress on three problems of broad interest. (i) Where and how is respiratory rhythm generated? The preBötzinger Complex is a critical site, whereas pacemaker neurons may not be essential. The possibility that coupled oscillators are involved is considered. (ii) What are the mechanisms that underlie the plasticity necessary for adaptive changes in breathing? Serotonin-dependent long-term facilitation following intermittent hypoxia is an important example of such plasticity, and a model that can account for this adaptive behavior is discussed. (iii) Where and how are the regulated variables CO2 and pH sensed? These sensors are essential if breathing is to be appropriate for metabolism. Neurons with appropriate chemosensitivity are spread throughout the brainstem; their individual properties and collective role are just beginning to be understood. PMID:12598679

  18. Stress-gradient plasticity

    PubMed Central

    Chakravarthy, Srinath S.; Curtin, W. A.

    2011-01-01

    A new model, stress-gradient plasticity, is presented that provides unique mechanistic insight into size-dependent phenomena in plasticity. This dislocation-based model predicts strengthening of materials when a gradient in stress acts over dislocation source–obstacle configurations. The model has a physical length scale, the spacing of dislocation obstacles, and is validated by several levels of discrete-dislocation simulations. When incorporated into a continuum viscoplastic model, predictions for bending and torsion in polycrystalline metals show excellent agreement with experiments in the initial strengthening and subsequent hardening as a function of both sample-size dependence and grain size, when the operative obstacle spacing is proportional to the grain size. PMID:21911403

  19. Rail corrugation growth accounting for the flexibility and rotation of the wheel set and the non-Hertzian and non-steady-state effects at contact patch

    NASA Astrophysics Data System (ADS)

    Vila, Paloma; Baeza, Luis; Martínez-Casas, José; Carballeira, Javier

    2014-05-01

    In this work, a simulation tool is developed to analyse the growth of rail corrugation consisting of several models connected in a feedback loop in order to account for both the short-term dynamic vehicle-track interaction and the long-term damage. The time-domain vehicle-track interaction model comprises a flexible rotating wheel set model, a cyclic track model based on a substructuring technique and a non-Hertzian and non-steady-state three-dimensional wheel-rail contact model, based on the variational theory by Kalker. Wear calculation is performed with Archard's wear model by using the contact parameters obtained with the non-Hertzian and non-steady-state three-dimensional contact model. The aim of this paper is to analyse the influence of the excitation of two coinciding resonances of the flexible rotating wheel set on the rail corrugation growth in the frequency range from 20 to 1500 Hz, when contact conditions similar to those that can arise while a wheel set is negotiating a gentle curve are simulated. Numerical results show that rail corrugation grows only on the low rail for two cases in which two different modes of the rotating wheel set coincide in frequency. In the first case, identified by using the Campbell diagram, the excitation of both the backward wheel mode and the forward third bending mode of the wheel set model (B-F modes) promotes the growth of rail corrugation with a wavelength of 110 mm for a vehicle velocity of 142 km/h. In the second case, the excitation of both the backward wheel mode and the backward third bending mode (B-B modes) gives rise to rail corrugation growth at a wavelength of 156 mm when the vehicle velocity is 198 km/h.

  20. Compensatory plasticity: time matters.

    PubMed

    Lazzouni, Latifa; Lepore, Franco

    2014-01-01

    Plasticity in the human and animal brain is the rule, the base for development, and the way to deal effectively with the environment for making the most efficient use of all the senses. When the brain is deprived of one sensory modality, plasticity becomes compensatory: the exception that invalidates the general loss hypothesis giving the opportunity of effective change. Sensory deprivation comes with massive alterations in brain structure and function, behavioral outcomes, and neural interactions. Blind individuals do as good as the sighted and even more, show superior abilities in auditory, tactile and olfactory processing. This behavioral enhancement is accompanied with changes in occipital cortex function, where visual areas at different levels become responsive to non-visual information. The intact senses are in general used more efficiently in the blind but are also used more exclusively. New findings are disentangling these two aspects of compensatory plasticity. What is due to visual deprivation and what is dependent on the extended use of spared modalities? The latter seems to contribute highly to compensatory changes in the congenitally blind. Short-term deprivation through the use of blindfolds shows that cortical excitability of the visual cortex is likely to show rapid modulatory changes after few minutes of light deprivation and therefore changes are possible in adulthood. However, reorganization remains more pronounced in the congenitally blind. Cortico-cortical pathways between visual areas and the areas of preserved sensory modalities are inhibited in the presence of vision, but are unmasked after loss of vision or blindfolding as a mechanism likely to drive cross-modal information to the deafferented visual cortex. The development of specialized higher order visual pathways independently from early sensory experience is likely to preserve their function and switch to the intact modalities. Plasticity in the blind is also accompanied with

  1. Frozen cultural plasticity.

    PubMed

    Houdek, Petr; Novakova, Julie

    2016-01-01

    We discuss cultural group selection under the view of the frozen plasticity theory and the different explanatory power and predictions of this framework. We present evidence that cultural adaptations and their influence on the degree of cooperation may be more complex than presented by Richerson et al., and conclude with the gene-environment-culture relationship and its impacts on cultural group selection. PMID:27561647

  2. Plasticity of amyloid fibrils†

    PubMed Central

    Wetzel, Ronald; Shivaprasad, Shankaramma; Williams, Angela D.

    2008-01-01

    In experiments designed to characterize the basis of amyloid fibril stability through mutational analysis of the Aβ(1-40) molecule, fibrils exhibit consistent, significant structural malleability. In these results, and in other properties, amyloid fibrils appear to more resemble plastic materials generated from synthetic polymers than they do globular proteins. Thus, like synthetic polymers and plastics, amyloid fibrils exhibit both polymorphism, the ability of one polypeptide to form aggregates of different morphologies, and isomorphism, the ability of different polypeptides to grow into a fibrillar amyloid morphology. This view links amyloid with the prehistorical and 20th Century use of proteins as starting materials to make films, fibers, and plastics, and with the classic protein fiber stretching experiments of the Astbury group. Viewing amyloid from the point of view of the polymer chemist may shed new light on issues such as the role of protofibrils in the mechanism of amyloid formation, the biological potency of fibrils, and the prospects for discovering inhibitors of amyloid fibril formation. PMID:17198370

  3. Plastic footwear for leprosy.

    PubMed

    Antia, N H

    1990-03-01

    The anaesthetic foot in leprosy poses the most major problem in the rehabilitation of its patients. Various attempts have been made to produce protective footwear such as the microcellular rubber-car-tyre sandals. Unfortunately these attempts have had little success on a large scale because of the inability to produce them in large numbers and the stigma attached to such unusual footwear. While such footwear may be superior to the 'tennis' shoe in protecting the foot from injury by the penetration of sharp objects, it fails to distribute the weight-bearing forces which is the major cause of plantar damage and ulceration in the anaesthetic foot. This can be achieved by providing rigidity to the sole, as demonstrated by the healing of ulcers in plaster of paris casts or the rigid wooden clog. A new type of moulded plastic footwear has been evolved in conjunction with the plastic footwear industry which provides footwear that can be mass produced at a low price and which overcomes the stigma of leprosy. Controlled rigidity is provided by the incorporation of a spring steel shank between the sponge insole and the hard wearing plastic sole. Trials have demonstrated both the acceptability of the footwear and its protective effects as well as its hard wearing properties. PMID:2319903

  4. Microelectronics plastic molded packaging

    SciTech Connect

    Johnson, D.R.; Palmer, D.W.; Peterson, D.W.

    1997-02-01

    The use of commercial off-the-shelf (COTS) microelectronics for nuclear weapon applications will soon be reality rather than hearsay. The use of COTS for new technologies for uniquely military applications is being driven by the so-called Perry Initiative that requires the U.S. Department of Defense (DoD) to accept and utilize commercial standards for procurement of military systems. Based on this philosophy, coupled with several practical considerations, new weapons systems as well as future upgrades will contain plastic encapsulated microelectronics. However, a conservative Department of Energy (DOE) approach requires lifetime predictive models. Thus, the focus of the current project is on accelerated testing to advance current aging models as well as on the development of the methodology to be used during WR qualification of plastic encapsulated microelectronics. An additional focal point involves achieving awareness of commercial capabilities, materials, and processes. One of the major outcomes of the project has been the definition of proper techniques for handling and evaluation of modern surface mount parts which might be used in future systems. This program is also raising the familiarity level of plastic within the weapons complex, allowing subsystem design rules accommodating COTS to evolve. A two year program plan is presented along with test results and commercial interactions during this first year.

  5. Respiratory Muscle Plasticity

    PubMed Central

    Gransee, Heather M.; Mantilla, Carlos B.; Sieck, Gary C.

    2014-01-01

    Muscle plasticity is defined as the ability of a given muscle to alter its structural and functional properties in accordance with the environmental conditions imposed on it. As such, respiratory muscle is in a constant state of remodeling, and the basis of muscle’s plasticity is its ability to change protein expression and resultant protein balance in response to varying environmental conditions. Here, we will describe the changes of respiratory muscle imposed by extrinsic changes in mechanical load, activity, and innervation. Although there is a large body of literature on the structural and functional plasticity of respiratory muscles, we are only beginning to understand the molecular-scale protein changes that contribute to protein balance. We will give an overview of key mechanisms regulating protein synthesis and protein degradation, as well as the complex interactions between them. We suggest future application of a systems biology approach that would develop a mathematical model of protein balance and greatly improve treatments in a variety of clinical settings related to maintaining both muscle mass and optimal contractile function of respiratory muscles. PMID:23798306

  6. New perspectives in plastic biodegradation.

    PubMed

    Sivan, Alex

    2011-06-01

    During the past 50 years new plastic materials, in various applications, have gradually replaced the traditional metal, wood, leather materials. Ironically, the most preferred property of plastics--durability--exerts also the major environmental threat. Recycling has practically failed to provide a safe solution for disposal of plastic waste (only 5% out of 1 trillion plastic bags, annually produced in the US alone, are being recycled). Since the most utilized plastic is polyethylene (PE; ca. 140 million tons/year), any reduction in the accumulation of PE waste alone would have a major impact on the overall reduction of the plastic waste in the environment. Since PE is considered to be practically inert, efforts were made to isolate unique microorganisms capable of utilizing synthetic polymers. Recent data showed that biodegradation of plastic waste with selected microbial strains became a viable solution.

  7. Planar spoof plasmonic ultra-wideband filter based on low-loss and compact terahertz waveguide corrugated with dumbbell grooves.

    PubMed

    Zhou, Yong Jin; Yang, Bao Jia

    2015-05-10

    Although subwavelength planar terahertz (THz) plasmonic devices can be implemented based on planar spoof surface plasmons (SPs), they still suffer from a little high propagation loss. Here the dispersion and propagation characteristics of the spoof plasmonic waveguide composed of double metal strips corrugated with dumbbell shaped grooves have been investigated. It has been found that much lower propagation loss and longer propagation length can be achieved based on the waveguide compared with the conventional spoof plasmonic waveguide with rectangular grooves. Moreover, the waveguide can implement a decrease in size of about 22%. An ultra-wideband THz plasmonic filter for planar circuits has been demonstrated based on the proposed waveguide. The experimental verification at the microwave frequency has been conducted by scaling up the geometry size of the filter.

  8. Performance of a square, cross-corrugated, polymer film, compact, heat-exchanger with potential application in fuel cells

    NASA Astrophysics Data System (ADS)

    Zaheed, L.; Jachuck, R. J. J.

    This paper describes an experimental investigation of the performance characteristics of a novel, cross-corrugated, polymer film, compact, heat-exchanger (PFCHE) made from poly ether ether ketone (PEEK). The aim is to develop Jh and f correlations over a range of Reynolds numbers under laminar conditions to be used in alternative heat-exchanger designs for potential applications in the fuel-cell industry. The incentive for adopting these designs is the huge weight, energy and cost savings involved. Design correlations for square units are key tools in obtaining alternative designs for applications that are presently monopolized by metallic heat-exchangers. The design correlations are establised and then used to perform case studies in selected applications in the fuel-cell industry to suit the fluids and the configuration.

  9. Highly reliable and bright GaN vertical LED on metal alloy substrate using corrugated pyramid shaped surface technology

    NASA Astrophysics Data System (ADS)

    Chu, Jiunn-Yi; Chu, Chen-Fu; Cheng, Chao-Chen; Liu, Wen-Huan; Cheng, Hao-Chun; Fan, Feng-Hsu; Yen, Jui-Kang; Tran, Chuong Anh; Doan, Trung

    2008-02-01

    GaN vertical LED on metal alloy substrate (VLEDMS) is a desirable technology suitable for solid state lighting application from the viewpoint of reliability and lighting efficacy performance. A new top surface engineering technique for efficient light extraction is employed to VLEDMS to improve power conversion efficiency further. Corrugated pyramid shaped (CPS) surfaces are developed and formed on VLEDMS. By using such structure, VLEDMS exhibit a great enhancement of around 20% in light output power, and a high efficiency of over 100 lumens per watt can also be achieved by white LEDs. In the life test, the light output power of VLEDMS chips drop only by less than 10% within 3,000 hours, and the chips can also endure over 1000 cycles of thermal shocks without significant variations in electro-optical performance. Therefore, the highly reliable and bright VLEDMS using CPS surface engineering technique is very suitable for the solid-state lighting application.

  10. Constraints on non-Newtonian gravity from measuring the Casimir force in a configuration with nanoscale rectangular corrugations

    SciTech Connect

    Bezerra, V. B.; Romero, C.; Klimchitskaya, G. L.; Mostepanenko, V. M.

    2011-04-01

    We report constraints on the parameters of Yukawa-type corrections to Newtonian gravity from measurements of the gradient of the Casimir force in the configuration of an Au-coated sphere above a Si plate covered with corrugations of trapezoidal shape. For this purpose, the exact expression for the gradient of Yukawa force in the experimental configuration is derived and compared with that obtained using the proximity force approximation. The reported constraints are of almost the same strength as those found previously from several different experiments on the Casimir force and extend over a wide interaction range from 30 to 1260 nm. It is discussed how to make them stronger by replacing the material of the plate.

  11. Interfacial interactions between plastic particles in plastics flotation.

    PubMed

    Wang, Chong-qing; Wang, Hui; Gu, Guo-hua; Fu, Jian-gang; Lin, Qing-quan; Liu, You-nian

    2015-12-01

    Plastics flotation used for recycling of plastic wastes receives increasing attention for its industrial application. In order to study the mechanism of plastics flotation, the interfacial interactions between plastic particles in flotation system were investigated through calculation of Lifshitz-van der Waals (LW) function, Lewis acid-base (AB) Gibbs function, and the extended Derjaguin-Landau-Verwey-Overbeek potential energy profiles. The results showed that van der Waals force between plastic particles is attraction force in flotation system. The large hydrophobic attraction, caused by the AB Gibbs function, is the dominant interparticle force. Wetting agents present significant effects on the interfacial interactions between plastic particles. It is found that adsorption of wetting agents promotes dispersion of plastic particles and decreases the floatability. Pneumatic flotation may improve the recovery and purity of separated plastics through selective adsorption of wetting agents on plastic surface. The relationships between hydrophobic attraction and surface properties were also examined. It is revealed that there exists a three-order polynomial relationship between the AB Gibbs function and Lewis base component. Our finding provides some insights into mechanism of plastics flotation.

  12. Interfacial interactions between plastic particles in plastics flotation.

    PubMed

    Wang, Chong-qing; Wang, Hui; Gu, Guo-hua; Fu, Jian-gang; Lin, Qing-quan; Liu, You-nian

    2015-12-01

    Plastics flotation used for recycling of plastic wastes receives increasing attention for its industrial application. In order to study the mechanism of plastics flotation, the interfacial interactions between plastic particles in flotation system were investigated through calculation of Lifshitz-van der Waals (LW) function, Lewis acid-base (AB) Gibbs function, and the extended Derjaguin-Landau-Verwey-Overbeek potential energy profiles. The results showed that van der Waals force between plastic particles is attraction force in flotation system. The large hydrophobic attraction, caused by the AB Gibbs function, is the dominant interparticle force. Wetting agents present significant effects on the interfacial interactions between plastic particles. It is found that adsorption of wetting agents promotes dispersion of plastic particles and decreases the floatability. Pneumatic flotation may improve the recovery and purity of separated plastics through selective adsorption of wetting agents on plastic surface. The relationships between hydrophobic attraction and surface properties were also examined. It is revealed that there exists a three-order polynomial relationship between the AB Gibbs function and Lewis base component. Our finding provides some insights into mechanism of plastics flotation. PMID:26337962

  13. Post-Hartree-Fock studies of the He/Mg(0001) interaction: Anti-corrugation, screening, and pairwise additivity

    NASA Astrophysics Data System (ADS)

    de Lara-Castells, María Pilar; Fernández-Perea, Ricardo; Madzharova, Fani; Voloshina, Elena

    2016-06-01

    The adsorption of noble gases on metallic surfaces represents a paradigmatic case of van-der-Waals (vdW) interaction due to the role of screening effects on the corrugation of the interaction potential [J. L. F. Da Silva et al., Phys. Rev. Lett. 90, 066104 (2003)]. The extremely small adsorption energy of He atoms on the Mg(0001) surface (below 3 meV) and the delocalized nature and mobility of the surface electrons make the He/Mg(0001) system particularly challenging, even for state-of-the-art vdW-corrected density functional-based (vdW-DFT) approaches [M. P. de Lara-Castells et al., J. Chem. Phys. 143, 194701 (2015)]. In this work, we meet this challenge by applying two different procedures. First, the dispersion-corrected second-order Möller-Plesset perturbation theory (MP2C) approach is adopted, using bare metal clusters of increasing size. Second, the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)] is applied at coupled cluster singles and doubles and perturbative triples level, using embedded cluster models of the metal surface. Both approaches provide clear evidences of the anti-corrugation of the interaction potential: the He atom prefers on-top sites, instead of the expected hollow sites. This is interpreted as a signature of the screening of the He atom by the metal for the on-top configuration. The strong screening in the metal is clearly reflected in the relative contribution of successively deeper surface layers to the main dispersion contribution. Aimed to assist future dynamical simulations, a pairwise potential model for the He/surface interaction as a sum of effective He-Mg pair potentials is also presented, as an improvement of the approximation using isolated He-Mg pairs.

  14. Post-Hartree-Fock studies of the He/Mg(0001) interaction: Anti-corrugation, screening, and pairwise additivity.

    PubMed

    de Lara-Castells, María Pilar; Fernández-Perea, Ricardo; Madzharova, Fani; Voloshina, Elena

    2016-06-28

    The adsorption of noble gases on metallic surfaces represents a paradigmatic case of van-der-Waals (vdW) interaction due to the role of screening effects on the corrugation of the interaction potential [J. L. F. Da Silva et al., Phys. Rev. Lett. 90, 066104 (2003)]. The extremely small adsorption energy of He atoms on the Mg(0001) surface (below 3 meV) and the delocalized nature and mobility of the surface electrons make the He/Mg(0001) system particularly challenging, even for state-of-the-art vdW-corrected density functional-based (vdW-DFT) approaches [M. P. de Lara-Castells et al., J. Chem. Phys. 143, 194701 (2015)]. In this work, we meet this challenge by applying two different procedures. First, the dispersion-corrected second-order Möller-Plesset perturbation theory (MP2C) approach is adopted, using bare metal clusters of increasing size. Second, the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)] is applied at coupled cluster singles and doubles and perturbative triples level, using embedded cluster models of the metal surface. Both approaches provide clear evidences of the anti-corrugation of the interaction potential: the He atom prefers on-top sites, instead of the expected hollow sites. This is interpreted as a signature of the screening of the He atom by the metal for the on-top configuration. The strong screening in the metal is clearly reflected in the relative contribution of successively deeper surface layers to the main dispersion contribution. Aimed to assist future dynamical simulations, a pairwise potential model for the He/surface interaction as a sum of effective He-Mg pair potentials is also presented, as an improvement of the approximation using isolated He-Mg pairs. PMID:27369533

  15. Use of recycled plastics in wood plastic composites - a review.

    PubMed

    Kazemi Najafi, Saeed

    2013-09-01

    The use of recycled and waste thermoplastics has been recently considered for producing wood plastic composites (WPCs). They have great potential for WPCs manufacturing according to results of some limited researches. This paper presents a detailed review about some essential properties of waste and recycled plastics, important for WPCs production, and of research published on the effect of recycled plastics on the physical and mechanical properties of WPCs.

  16. Use of recycled plastics in wood plastic composites - a review.

    PubMed

    Kazemi Najafi, Saeed

    2013-09-01

    The use of recycled and waste thermoplastics has been recently considered for producing wood plastic composites (WPCs). They have great potential for WPCs manufacturing according to results of some limited researches. This paper presents a detailed review about some essential properties of waste and recycled plastics, important for WPCs production, and of research published on the effect of recycled plastics on the physical and mechanical properties of WPCs. PMID:23777666

  17. Plastic Surgery and Suicide: A Clinical Guide for Plastic Surgeons

    PubMed Central

    Coffey, M. Justin

    2016-01-01

    Summary: Several studies have identified an increased risk of suicide among patient populations which a plastic surgeon may have a high risk of encountering: women undergoing breast augmentation, cosmetic surgery patients, and breast cancer patients. No formal guidelines exist to assist a plastic surgeon when faced with such a patient, and not every plastic surgery team has mental health clinicians that are readily accessible for consultation or referral. The goal of this clinical guide is to offer plastic surgeons a set of practical approaches to manage potentially suicidal patients. In addition, the authors review a screening tool, which can assist surgeons when encountering high-risk patients.

  18. Direct liquefaction of plastics and coprocessing of coal with plastics

    SciTech Connect

    Huffman, G.P.; Feng, Z.; Mahajan, V.

    1995-12-31

    The objectives of this work were to optimize reaction conditions for the direct liquefaction of waste plastics and the coprocessing of coal with waste plastics. In previous work, the direct liquefaction of medium and high density polyethylene (PE), polypropylene (PPE), poly(ethylene terephthalate) (PET), and a mixed plastic waste, and the coliquefaction of these plastics with coals of three different ranks was studied. The results established that a solid acid catalyst (HZSM-5 zeolite) was highly active for the liquefaction of the plastics alone, typically giving oil yields of 80-95% and total conversions of 90-100% at temperatures of 430-450 {degrees}C. In the coliquefaction experiments, 50:50 mixtures of plastic and coal were used with a tetralin solvent (tetralin:solid = 3:2). Using approximately 1% of the HZSM-5 catalyst and a nanoscale iron catalyst, oil yields of 50-70% and total conversion of 80-90% were typical. In the current year, further investigations were conducted of the liquefaction of PE, PPE, and a commingled waste plastic obtained from the American Plastics Council (APC), and the coprocessing of PE, PPE and the APC plastic with Black Thunder subbituminous coal. Several different catalysts were used in these studies.

  19. Plastic Surgery and Suicide: A Clinical Guide for Plastic Surgeons.

    PubMed

    Reddy, Vikram; Coffey, M Justin

    2016-08-01

    Several studies have identified an increased risk of suicide among patient populations which a plastic surgeon may have a high risk of encountering: women undergoing breast augmentation, cosmetic surgery patients, and breast cancer patients. No formal guidelines exist to assist a plastic surgeon when faced with such a patient, and not every plastic surgery team has mental health clinicians that are readily accessible for consultation or referral. The goal of this clinical guide is to offer plastic surgeons a set of practical approaches to manage potentially suicidal patients. In addition, the authors review a screening tool, which can assist surgeons when encountering high-risk patients. PMID:27622096

  20. Plastic Surgery and Suicide: A Clinical Guide for Plastic Surgeons

    PubMed Central

    Coffey, M. Justin

    2016-01-01

    Summary: Several studies have identified an increased risk of suicide among patient populations which a plastic surgeon may have a high risk of encountering: women undergoing breast augmentation, cosmetic surgery patients, and breast cancer patients. No formal guidelines exist to assist a plastic surgeon when faced with such a patient, and not every plastic surgery team has mental health clinicians that are readily accessible for consultation or referral. The goal of this clinical guide is to offer plastic surgeons a set of practical approaches to manage potentially suicidal patients. In addition, the authors review a screening tool, which can assist surgeons when encountering high-risk patients. PMID:27622096

  1. Processing plastics in Packerland

    SciTech Connect

    Ridgley, H.

    1998-04-01

    Located in Green Bay, Wisconsin, Catenation, Inc. is a privately held recycling company dedicated to the recovery of post-consumer plastic containers. What makes the company stand out is its ability to separate and sort material from a commingled bale. Catenation uses custom-made, high-speed, computer-driven vision equipment to scan and sort every bottle by category. The computer even can be programmed to distinguish soiled jugs from clean containers. This is a selling point for buyers of resin who are insistent on receiving high-grade material.

  2. Fabrication of plastic biochips

    SciTech Connect

    Saaem, Ishtiaq; Ma, Kuo-Sheng; Alam, S. Munir; Tian Jingdong

    2010-07-15

    A versatile surface functionalization procedure based on rf magnetron sputtering of silica was performed on poly(methylmethacrylate), polycarbonate, polypropylene, and cyclic olefin copolymers (Topas 6015). The hybrid thermoplastic surfaces were characterized by x-ray photoelectron spectrometer analysis and contact angle measurements. The authors then used these hybrid materials to perform a sandwich assay targeting an HIV-1 antibody using fluorescent detection and biotinylated peptides immobilized using the bioaffinity of biotin-neutravidin. They found a limit of detection similar to arrays on glass surfaces and believed that this plastic biochip platform may be used for the development of disposable immunosensing and diagnostic applications.

  3. History of reinforced plastics

    SciTech Connect

    Milewski, J.V.; Rosato, D.V.

    1981-01-01

    This history of reinforced plastics is told by combining the individual histories of each reinforcement and the way in which they added to and changed the direction and rate of growth of the industry. The early history is based on all resins, fillers, and fibers found in nature. Then came the Baekeland revolution with the first synthetic resin which lasted about 25 years, at which time synthetic fiber glass and polyester resin dramatically changed the industry. Now, for the 1980s, the high modulus fibers developed 10 to 20 years ago are reshaping the industry. 32 figures.

  4. Psychotherapy and brain plasticity

    PubMed Central

    Collerton, Daniel

    2013-01-01

    In this paper, I will review why psychotherapy is relevant to the question of how consciousness relates to brain plasticity. A great deal of the research and theorizing on consciousness and the brain, including my own on hallucinations for example (Collerton and Perry, 2011) has focused upon specific changes in conscious content which can be related to temporal changes in restricted brain systems. I will argue that psychotherapy, in contrast, allows only a focus on holistic aspects of consciousness; an emphasis which may usefully complement what can be learnt from more specific methodologies. PMID:24046752

  5. Advances in engineering plastics

    SciTech Connect

    Leonard, L.

    1997-12-01

    New polymers are being commercialized in record numbers, offering the product designer a new realm of possibilities, and promising tough competition to the traditional engineering resins. Most of the growth is in single-site catalyzed resins. Metallocene (and non-metallocene) single-site catalysts enhance polymer architecture to generate highly uniform molecules, and even permit tailoring new categories of polymers. These new materials include the truly unique aliphatic polyketone, syndiotactic polystyrene (SPS); polyethylene naphthalate (PEN) resins; and novel variations of established polymers. This article provides a closer look at these newcomers to the plastics marketplace, with an emphasis on their properties and potential applications.

  6. Presynaptic long-term plasticity

    PubMed Central

    Yang, Ying; Calakos, Nicole

    2013-01-01

    Long-term synaptic plasticity is a major cellular substrate for learning, memory, and behavioral adaptation. Although early examples of long-term synaptic plasticity described a mechanism by which postsynaptic signal transduction was potentiated, it is now apparent that there is a vast array of mechanisms for long-term synaptic plasticity that involve modifications to either or both the presynaptic terminal and postsynaptic site. In this article, we discuss current and evolving approaches to identify presynaptic mechanisms as well as discuss their limitations. We next provide examples of the diverse circuits in which presynaptic forms of long-term synaptic plasticity have been described and discuss the potential contribution this form of plasticity might add to circuit function. Finally, we examine the present evidence for the molecular pathways and cellular events underlying presynaptic long-term synaptic plasticity. PMID:24146648

  7. Polyolefins as additives in plastics

    SciTech Connect

    Deanin, R.D.

    1993-12-31

    Polyolefins are not only major commodity plastics - they are also very useful as additives, both in other polyolefins and also in other types of plastics. This review covers ethylene, propylene, butylene and isobutylene polymers, in blends with each other, and as additives to natural rubber, styrene/butadiene rubber, polystyrene, polyvinyl chloride, polymethyl methacrylate, polyphenylene oxide, polycarbonate, thermoplastic polyesters, polyurethanes, polyamides, and mixed automotive plastics recycling.

  8. The commercialization of plastic surgery.

    PubMed

    Swanson, Eric

    2013-09-01

    The last decade has brought a major challenge to the traditional practice of plastic surgery from corporations that treat plastic surgery as a commercial product and market directly to the public. This corporate medicine model may include promotion of a trademarked procedure or device, national advertising that promises stunning results, sales consultants, and claims of innovation, superiority, and improved safety. This article explores the ethics of this business practice and whether corporate medicine is a desirable model for patients and plastic surgeons.

  9. Optogenetics and synaptic plasticity.

    PubMed

    Xie, Yu-feng; Jackson, Michael F; Macdonald, John F

    2013-11-01

    The intricate and complex interaction between different populations of neurons in the brain has imposed limits on our ability to gain detailed understanding of synaptic transmission and its integration when employing classical electrophysiological approaches. Indeed, electrical field stimulation delivered via traditional microelectrodes does not permit the targeted, precise and selective control of neuronal activity amongst a varied population of neurons and their inputs (eg, cholinergic, dopaminergic or glutamatergic neurons). Recently established optogenetic techniques overcome these limitations allowing precise control of the target neuron populations, which is essential for the elucidation of the neural substrates underlying complex animal behaviors. Indeed, by introducing light-activated channels (ie, microbial opsin genes) into specific neuronal populations, optogenetics enables non-invasive optical control of specific neurons with milliseconds precision. These approaches can readily be applied to freely behaving live animals. Recently there is increased interests in utilizing optogenetics tools to understand synaptic plasticity and learning/memory. Here, we summarize recent progress in applying optogenetics in in the study of synaptic plasticity.

  10. Americium behaviour in plastic vessels.

    PubMed

    Legarda, F; Herranz, M; Idoeta, R; Abelairas, A

    2010-01-01

    The adsorption of (241)Am dissolved in water in different plastic storage vessels was determined. Three different plastics were investigated with natural and distilled waters and the retention of (241)Am by these plastics was studied. The same was done by varying vessel agitation time, vessel agitation speed, surface/volume ratio of water in the vessels and water pH. Adsorptions were measured to be between 0% and 70%. The adsorption of (241)Am is minimized with no water agitation, with PET or PVC plastics, and by water acidification. PMID:20042341

  11. Americium behaviour in plastic vessels.

    PubMed

    Legarda, F; Herranz, M; Idoeta, R; Abelairas, A

    2010-01-01

    The adsorption of (241)Am dissolved in water in different plastic storage vessels was determined. Three different plastics were investigated with natural and distilled waters and the retention of (241)Am by these plastics was studied. The same was done by varying vessel agitation time, vessel agitation speed, surface/volume ratio of water in the vessels and water pH. Adsorptions were measured to be between 0% and 70%. The adsorption of (241)Am is minimized with no water agitation, with PET or PVC plastics, and by water acidification.

  12. Plastics recycling: challenges and opportunities

    PubMed Central

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  13. Plastics recycling: challenges and opportunities.

    PubMed

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-07-27

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3-4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  14. Plastics recycling: challenges and opportunities.

    PubMed

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-07-27

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3-4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  15. Recycle your plastic waste

    SciTech Connect

    Kuhlke, W.C. )

    1990-05-01

    This paper discusses how source reduction and recycling are alternatives to managing waste. This includes the recycling of material before it leaves the manufacturer or reducing the size of the product being made. In-plant reprocessing of plastic materials is one method of source reduction. Included are such applications as where an injection molder collects the spur, regrinds it, and feeds it back to make an injection molded part. When a polystyrene sheet is thermoformed to make cups, after cutting, the remaining sheet is recycled, chopped up and reextruded to make a sheet to again be fed to the thermoformer. The alternative would be to sell the waste or send it to the city dump.

  16. Plastics to fuel: A review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reviews recent developments in catalytic and non-catalytic degradation of waste plastics into fuels. Thermal degradation decomposes plastic into three fractions: gas, crude oil, and solid residue. Crude oil from non-catalytic pyrolysis is usually composed of higher boiling point hydrocarb...

  17. Plastics & Composites Technology Needs Assessment.

    ERIC Educational Resources Information Center

    Oakland Community Coll., Farmington, MI. Office of Institutional Planning and Analysis.

    In 1991, a study was conducted by Oakland Community College (OCC) to evaluate the need for a proposed plastics and composites technology program for design engineers. General information was obtained through a literature search, from the Society of the Plastics Industry, Inc., the Michigan Employment Security Commission, and interviews with…

  18. Luminescence of Pulsed Laser Deposited Y2SiO5:Tb3+ Thin Film Phosphors on Flat and Corrugated Quartz Glass Substrates

    NASA Astrophysics Data System (ADS)

    Sohn, Kee-Sun; Park, Duk Hyun; Yoo, Jeong Gon; Kim, Ji Sik

    2005-04-01

    Y2SiO5:Tb3+ thin film phosphors were deposited on flat and corrugated quartz glass plates by pulsed laser deposition (PLD) techniques in an attempt to use them in field emission displays (FED). As a preliminary step, cathodoluminescence and photoluminescence was monitored as a function of several processing parameters such as the oxygen partial pressure, the deposition time and the annealing conditions for films deposited on flat quartz glass plates. By adopting optimum processing conditions taken from the preliminary optimization process based on flat quartz glass substrates, Y2SiO5:Tb3+ thin films were also deposited on substrates on which a two-dimensional photonic crystal layer (2-D PCL) was developed, i.e., corrugated substrates. It was found that the Y2SiO5:Tb3+ thin film phosphor developed by PLD represents a promising candidate for use in field emission displays, and that the use of corrugated substrates enhanced the light extraction efficiency by a factor of 1.72.

  19. Topographic Relationship between the Supratrochlear Nerve and Corrugator Supercilii Muscle—Can This Anatomical Knowledge Improve the Response to Botulinum Toxin Injections in Chronic Migraine?

    PubMed Central

    Lee, Hyung-Jin; Choi, Kwang-Seok; Won, Sung-Yoon; Apinuntrum, Prawit; Hu, Kyung-Seok; Kim, Seong-Taek; Tansatit, Tanvaa; Kim, Hee-Jin

    2015-01-01

    Chronic migraine has been related to the entrapment of the supratrochlear nerve within the corrugator supercilii muscle. Recently, research has shown that people who have undergone botulinum neurotoxin A injection in frontal regions reported disappearance or alleviation of their migraines. There have been numerous anatomical studies conducted on Caucasians revealing possible anatomical problems leading to migraine; on the other hand, relatively few anatomical studies have been conducted on Asians. Thus, the aim of the present study was to determine the topographic relationship between the supratrochlear nerve and corrugator supercilii muscle in the forehead that may be the cause of migraine. Fifty-eight hemifaces from Korean and Thai cadavers were used for this study. The supratrochlear nerve entered the corrugator supercilii muscle in every case. Type I, in which the supratrochlear nerve emerged separately from the supraorbital nerve at the medial one-third portion of the orbit, was observed in 69% (40/58) of cases. Type II, in which the supratrochlear nerve emerged from the orbit at the same location as the supraorbital nerve, was observed in 31% (18/58) of cases. PMID:26193317

  20. Mitigation of Biofilm Formation on Corrugated Cardboard Fresh Produce Packaging Surfaces Using a Novel Thiazolidinedione Derivative Integrated in Acrylic Emulsion Polymers.

    PubMed

    Brandwein, Michael; Al-Quntar, Abed; Goldberg, Hila; Mosheyev, Gregory; Goffer, Moshe; Marin-Iniesta, Fulgencio; López-Gómez, Antonio; Steinberg, Doron

    2016-01-01

    Various surfaces associated with the storage and packing of food are known to harbor distinct bacterial pathogens. Conspicuously absent among the plethora of studies implicating food packaging materials and machinery is the study of corrugated cardboard packaging, the worldwide medium for transporting fresh produce. In this study, we observed the microbial communities of three different store-bought fruits and vegetables, along with their analog cardboard packaging using high throughput sequencing technology. We further developed an anti-biofilm polymer meant to coat corrugated cardboard surfaces and mediate bacterial biofilm growth on said surfaces. Integration of a novel thiazolidinedione derivative into the acrylic emulsion polymers was assessed using Energy Dispersive X-ray Spectrometry (EDS) analysis and surface topography was visualized and quantified on corrugated cardboard surfaces. Biofilm growth was measured using q-PCR targeting the gene encoding 16s rRNA. Additionally, architectural structure of the biofilm was observed using SEM. The uniform integration of the thiazolidinedione derivative TZD-6 was confirmed, and it was determined via q-PCR to reduce biofilm growth by ~80% on tested surfaces. A novel and effective method for reducing microbial load and preventing contamination on food packaging is thereby proposed.

  1. Mitigation of Biofilm Formation on Corrugated Cardboard Fresh Produce Packaging Surfaces Using a Novel Thiazolidinedione Derivative Integrated in Acrylic Emulsion Polymers

    PubMed Central

    Brandwein, Michael; Al-Quntar, Abed; Goldberg, Hila; Mosheyev, Gregory; Goffer, Moshe; Marin-Iniesta, Fulgencio; López-Gómez, Antonio; Steinberg, Doron

    2016-01-01

    Various surfaces associated with the storage and packing of food are known to harbor distinct bacterial pathogens. Conspicuously absent among the plethora of studies implicating food packaging materials and machinery is the study of corrugated cardboard packaging, the worldwide medium for transporting fresh produce. In this study, we observed the microbial communities of three different store-bought fruits and vegetables, along with their analog cardboard packaging using high throughput sequencing technology. We further developed an anti-biofilm polymer meant to coat corrugated cardboard surfaces and mediate bacterial biofilm growth on said surfaces. Integration of a novel thiazolidinedione derivative into the acrylic emulsion polymers was assessed using Energy Dispersive X-ray Spectrometry (EDS) analysis and surface topography was visualized and quantified on corrugated cardboard surfaces. Biofilm growth was measured using q-PCR targeting the gene encoding 16s rRNA. Additionally, architectural structure of the biofilm was observed using SEM. The uniform integration of the thiazolidinedione derivative TZD-6 was confirmed, and it was determined via q-PCR to reduce biofilm growth by ~80% on tested surfaces. A novel and effective method for reducing microbial load and preventing contamination on food packaging is thereby proposed. PMID:26909074

  2. Mitigation of Biofilm Formation on Corrugated Cardboard Fresh Produce Packaging Surfaces Using a Novel Thiazolidinedione Derivative Integrated in Acrylic Emulsion Polymers.

    PubMed

    Brandwein, Michael; Al-Quntar, Abed; Goldberg, Hila; Mosheyev, Gregory; Goffer, Moshe; Marin-Iniesta, Fulgencio; López-Gómez, Antonio; Steinberg, Doron

    2016-01-01

    Various surfaces associated with the storage and packing of food are known to harbor distinct bacterial pathogens. Conspicuously absent among the plethora of studies implicating food packaging materials and machinery is the study of corrugated cardboard packaging, the worldwide medium for transporting fresh produce. In this study, we observed the microbial communities of three different store-bought fruits and vegetables, along with their analog cardboard packaging using high throughput sequencing technology. We further developed an anti-biofilm polymer meant to coat corrugated cardboard surfaces and mediate bacterial biofilm growth on said surfaces. Integration of a novel thiazolidinedione derivative into the acrylic emulsion polymers was assessed using Energy Dispersive X-ray Spectrometry (EDS) analysis and surface topography was visualized and quantified on corrugated cardboard surfaces. Biofilm growth was measured using q-PCR targeting the gene encoding 16s rRNA. Additionally, architectural structure of the biofilm was observed using SEM. The uniform integration of the thiazolidinedione derivative TZD-6 was confirmed, and it was determined via q-PCR to reduce biofilm growth by ~80% on tested surfaces. A novel and effective method for reducing microbial load and preventing contamination on food packaging is thereby proposed. PMID:26909074

  3. delta. M/sub j/ transitions in homonuclear molecule scattering off corrugated surfaces. Square and rectangular lattice symmetry and purely repulsive interaction

    SciTech Connect

    Proctor, T.R.; Kouri, D.J.; Gerber, R.B.

    1984-04-15

    In this paper, we present the first formal and computational studies of ..delta..m/sub j/ transitions occurring in homonuclear molecule-corrugated surface collisions. The model potential is a pairwise additive one which correctly incorporates the fact that ..delta..m/sub j/ transitions occur only for corrugated surfaces (provided the quantization axis is chosen to be the average surface normal). The principal results are: (a) ..delta..m/sub j/ transitions are extremely sensitive to lattice symmetry; (b) strong selection rules obtain for specular scattering; (c) the magnitude of ..delta..m/sub j/ -transition probabilities are strongly sensitive to surface corrugation; (d) the ..delta..m/sub j/ transitions depend strongly on diffraction peak; (e) the ratio of molecular length to lattice dimension (r/a) has a strong influence on the magnitude of ..delta..m/sub j/ -transition probabilities (with the probabilities increasing as (r/a) increases); (f) ..delta..m/sub j/ rainbows are predicted to occur as a function of the (r/a) ratio increases; (g) ..delta..m/sub j/ transitions and the ..delta..m/sub j/ rainbow are expected to accompany ..delta..j-rotational rainbows; (h) such magnetic transition rainbows accompanying ..delta..j rainbows are suggested as an explanation of recent experimental observations of quenching of NO polarization for larger ..delta..j transitions in NO/Ag(111) scattering.

  4. Computational strain gradient crystal plasticity

    NASA Astrophysics Data System (ADS)

    Niordson, Christian F.; Kysar, Jeffrey W.

    2014-01-01

    A numerical method for viscous strain gradient crystal plasticity theory is presented, which incorporates both energetic and dissipative gradient effects. The underlying minimum principles are discussed as well as convergence properties of the proposed finite element procedure. Three problems of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically oriented face centered cubic crystals are developed in terms of the crystallographic slip parameters. The effect on geometrically necessary dislocation structures introduced by plastic deformation is investigated as a function of the ratio of void radius to plasticity length scale.

  5. Biodegradability of degradable plastic waste.

    PubMed

    Agamuthu, P; Faizura, Putri Nadzrul

    2005-04-01

    Plastic waste constitutes the third largest waste volume in Malaysian municipal solid waste (MSW), next to putrescible waste and paper. The plastic component in MSW from Kuala Lumpur averages 24% (by weight), whereas the national mean is about 15%. The 144 waste dumps in the country receive about 95% of the MSW, including plastic waste. The useful life of the landfills is fast diminishing as the plastic waste stays un-degraded for more than 50 years. In this study the compostability of polyethylene and pro-oxidant additive-based environmentally degradable plastics (EDP) was investigated. Linear low-density polyethylene (LLDPE) samples exposed hydrolytically or oxidatively at 60 degrees C showed that the abiotic degradation path was oxidative rather than hydrolytic. There was a weight loss of 8% and the plastic has been oxidized as shown by the additional carbonyl group exhibited in the Fourier transform infra red (FTIR) Spectrum. Oxidation rate seemed to be influenced by the amount of pro-oxidant additive, the chemical structure and morphology of the plastic samples, and the surface area. Composting studies during a 45-day experiment showed that the percentage elongation (reduction) was 20% for McD samples [high-density polyethylene, (HDPE) with 3% additive] and LL samples (LLDPE with 7% additive) and 18% reduction for totally degradable plastic (TDP) samples (HDPE with 3% additive). Lastly, microbial experiments using Pseudomonas aeroginosa on carbon-free media with degradable plastic samples as the sole carbon source, showed confirmatory results. A positive bacterial growth and a weight loss of 2.2% for degraded polyethylene samples were evident to show that the degradable plastic is biodegradable.

  6. Patient Safety: Guide to Safe Plastic Surgery

    MedlinePlus

    ... and Consumer Information > Patient Safety Guide to Safe Plastic Surgery Patient Safety More Resources Choose a surgeon ... Important facts about the safety and risks of plastic surgery Questions to ask my plastic surgeon Choose ...

  7. Temporal growth rate study of a high power backward wave oscillator with semi-circularly corrugated slow wave structure

    NASA Astrophysics Data System (ADS)

    Ghulam Saber, Md.; Hasan Sagor, Rakibul; Ruhul Amin, Md.

    2015-05-01

    The dispersion properties and the temporal growth rate (TGR) of a high power backward wave oscillator (BWO) with a cylindrical metallic slow wave structure with semi-circular corrugation (SCCSWS) driven by an intense relativistic electron beam (IREB) are studied numerically. The IREB is assumed to be guided axially by an infinitely strong magnetic field. The semi-circular axial profile of the SWS is approximated by Fourier series and the study is carried out utilizing linear Rayleigh-Fourier (R-F) theory. The Fourier constants of the axial profile are determined numerically. The dispersion equation is solved numerically for the beam energy of 80-660 kV, beam current of 0.1-1.0 kA. When an electron beam with sufficient energy and current to produce instability propagates through the SWS, microwave radiation is generated. TGR which is obtained from the imaginary value of frequency and wavenumber can be used to qualitatively estimate the strength of the microwave radiation. The periodicity of the axial profile of SCCSWS is varied and the TGR for each case has been calculated by varying the beam parameters for TM01 mode. The proposed structure is comparatively easy to be fabricated and expected to be useful in BWO devices for generating high power microwaves for different applications.

  8. Fabrication of pyramidal corrugated quantum well infrared photodetector focal plane arrays by inductively coupled plasma etching with BCl/Ar

    NASA Astrophysics Data System (ADS)

    Sun, Jason; Choi, Kwong-Kit; Lee, Unchul

    2012-10-01

    We developed an optimized inductively coupled plasma etching process to produce gallium arsenide (GaAs) pyramidal corrugated quantum well infrared photodetector focal plane arrays (C-QWIP FPAs). A statistically designed experiment was performed to optimize the etching parameters. The resulting parameters are discussed in terms of the effect on the etching rate and profile. This process uses a small amount of mask corrosion and the control of the etching mask gap to give a 45 deg to 50 deg V-groove etching profile, which is independent of the crystal orientation of GaAs. In the etching development, scanning electron microscope was used to observe the surface morphology and the pattern profile. In addition, x-ray photoelectron spectroscopy was used to obtain the elemental composition and contamination of the etching surface. It is found that extremely small stoichiometric change and surface damage of the etching surface can be achieved while keeping a relatively high etching rate and ˜45 deg V-groove etching profile. This etching process is applied to the fabrication of pyramidal C-QWIP FPAs successfully, which are expected to have better performance than the regular prism-shaped C-QWIPs according to electromagnetic modeling.

  9. Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication.

    PubMed

    Tang, Yanjun; Shen, Xiaochuang; Zhang, Junhua; Guo, Daliang; Kong, Fangong; Zhang, Nan

    2015-07-10

    Due to its amazing physicochemical properties and high environmental compatibility, cellulose nano-crystals (CNC) hold great promise for serving as a strategic platform for sustainable development. Now, there has been growing interest in the development of processes using waste or residual biomass as CNC source for addressing economic and environmental concerns. In the present work, a combined process involving phosphoric acid hydrolysis, enzymatic hydrolysis and sonication was proposed aiming to efficiently exact CNC from low-cost old corrugated container (OCC) pulp fiber. The effect of enzymatic hydrolysis on the yield and microstructure of resulting CNC was highlighted. Results showed that the enzymatic hydrolysis was effective in enhancing CNC yield after phosphoric acid hydrolysis. CNC was obtained with a yield of 23.98 wt% via the combined process with phosphoric acid concentration of 60 wt%, cellulase dosage of 2 mL (84 EGU) per 2g fiber and sonication intensity of 200 W. Moreover, the presence of enzymatic hydrolysis imparted the obtained CNC with improved dispersion, increased crystallinity and thermal stability.

  10. Extruding plastic scintillator at Fermilab

    SciTech Connect

    Anna Pla-Dalmau; Alan D. Bross; Victor V. Rykalin

    2003-10-31

    An understanding of the costs involved in the production of plastic scintillators and the development of a less expensive material have become necessary with the prospects of building very large plastic scintillation detectors. Several factors contribute to the high cost of plastic scintillating sheets, but the principal reason is the labor-intensive nature of the manufacturing process. In order to significantly lower the costs, the current casting procedures had to be abandoned. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. This concept was tested and high quality extruded plastic scintillator was produced. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. This paper will discuss the characteristics of extruded plastic scintillator and its raw materials, the different manufacturing techniques and the current R&D program at Fermilab.

  11. Plastic hinge modeling of structures

    NASA Astrophysics Data System (ADS)

    Maruthayappan, Ramakrishnan

    1994-07-01

    The rapid changes taking place in vehicle design has resulted in a great variety of vehicles having different structural configurations. The behavior of such structures under impact or crash conditions demand an efficient modeling of the system. Since a vehicle crash is a dynamic phenomenon exhibiting complex interaction between structural and inertial forces, the model should be able to predict the transient deformations which range from small strain elastic deformations to large strain plastic deformations. Among various formulations and modeling techniques available, the plastic hinge theory offers a simple, realistic and a computationally efficient model. This thesis explores and applies the plastic hinge modeling technique to some simple structures ranging from an elementary cantilever beam to a torque box representing a passenger compartment. The nonlinear static and dynamic behavior of a general aviation seat model for different load cases have been predicted using this theory. A detailed study and application of nonlinear finite element technique has also been performed. A comparative study of the responses yielded by plastic hinge model and finite element model demonstrates the effectiveness and accuracy of the plastic hinge model in predicting the behavior of the structures reliably. This thesis also studies and predicts the dynamics of mechanical systems using plastic hinges modeled with flexible and rigid bodies with contact-impact and plastic deformation.

  12. Translational control of synaptic plasticity.

    PubMed

    Richter, Joel D

    2010-12-01

    Synapses, points of contact between axons and dendrites, are conduits for the flow of information in the circuitry of the central nervous system. The strength of synaptic transmission reflects the interconnectedness of the axons and dendrites at synapses; synaptic strength in turn is modified by the frequency with which the synapses are stimulated. This modulation of synaptic strength, or synaptic plasticity, probably forms the cellular basis for learning and memory. RNA metabolism, particularly translational control at or near the synapse, is one process that controls long-lasting synaptic plasticity and, by extension, memory formation and consolidation. In the present paper, I review some salient features of translational control of synaptic plasticity.

  13. Respiratory supercomplexes: plasticity and implications

    PubMed Central

    Porras, Christina A.; Bai, Yidong

    2015-01-01

    The plasticity model of the electron transport chain has slowly begun to replace both the liquid model of free complexes and the solid model of supercomplexes. The plasticity model predicts that respiratory complexes exist and function both as single complexes and as supercomplexes. The advantages of this system is an electron transport train which is able to adapt to changes in its environment. This review will investigate the current body of work on supercomplexes including their assembly, regulation, and plasticity, and particularly their role in the generation of reactive oxygen species and aging. PMID:25553469

  14. Eusol: the plastic surgeon's choice?

    PubMed

    Humzah, M D; Marshall, J; Breach, N M

    1996-08-01

    Many products are currently promoted for use on wounds. Edinburgh University Solution of Lime (Eusol) has recently received adverse publicity regarding its use in wound management. One hundred and twenty-four consultant plastic surgeons were surveyed regarding their use of Eusol. Ninety-five replies were obtained (77%); of those who replied, 78 (82%) still use Eusol, while nine out of 17 who do not are prevented from using it as they are unable to obtain necessary supplies. In plastic surgery, Eusol is still being used by plastic surgeons in specific situations.

  15. Circadian Regulation of Synaptic Plasticity

    PubMed Central

    Frank, Marcos G.

    2016-01-01

    Circadian rhythms refer to oscillations in biological processes with a period of approximately 24 h. In addition to the sleep/wake cycle, there are circadian rhythms in metabolism, body temperature, hormone output, organ function and gene expression. There is also evidence of circadian rhythms in synaptic plasticity, in some cases driven by a master central clock and in other cases by peripheral clocks. In this article, I review the evidence for circadian influences on synaptic plasticity. I also discuss ways to disentangle the effects of brain state and rhythms on synaptic plasticity. PMID:27420105

  16. Circadian Regulation of Synaptic Plasticity.

    PubMed

    Frank, Marcos G

    2016-01-01

    Circadian rhythms refer to oscillations in biological processes with a period of approximately 24 h. In addition to the sleep/wake cycle, there are circadian rhythms in metabolism, body temperature, hormone output, organ function and gene expression. There is also evidence of circadian rhythms in synaptic plasticity, in some cases driven by a master central clock and in other cases by peripheral clocks. In this article, I review the evidence for circadian influences on synaptic plasticity. I also discuss ways to disentangle the effects of brain state and rhythms on synaptic plasticity. PMID:27420105

  17. Recycling of Reinforced Plastics

    NASA Astrophysics Data System (ADS)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  18. Dopamine triggers heterosynaptic plasticity.

    PubMed

    Ishikawa, Masago; Otaka, Mami; Huang, Yanhua H; Neumann, Peter A; Winters, Bradley D; Grace, Anthony A; Schlüter, Oliver M; Dong, Yan

    2013-04-17

    As a classic neuromodulator, dopamine has long been thought to modulate, rather than trigger, synaptic plasticity. In contrast, our present results demonstrate that within the parallel projections of dopaminergic and GABAergic terminals from the ventral tegmental area to the nucleus accumbens core (NAcCo), action-potential-activated release of dopamine heterosynaptically triggers LTD at GABAergic synapses, which is likely mediated by activating presynaptically located dopamine D1 class receptors and expressed by inhibiting presynaptic release of GABA. Moreover, this dopamine-mediated heterosynaptic LTD is abolished after withdrawal from cocaine exposure. These results suggest that action-potential-dependent dopamine release triggers very different cellular consequences from those induced by volume release or pharmacological manipulation. Activation of the ventral tegmental area to NAcCo projections is essential for emotional and motivational responses. This dopamine-mediated LTD allows a flexible output of NAcCo neurons, whereas disruption of this LTD may contribute to the rigid emotional and motivational state observed in addicts during cocaine withdrawal.

  19. THERMAL DEPOLYMERIZATION OF POSTCONSUMER PLASTICS

    EPA Science Inventory

    The University of North Dakota Energy & Environmental Research Center (EERC) performed two series of tests to evaluate process conditions for thermal depolymerization of postconsumer plastics. The objective of the first test series was to provide data for optimization of reactio...

  20. WEATHERABILITY OF ENHANCED DEGRADABLE PLASTICS

    EPA Science Inventory

    The main objective of this study was to assess the performance and the asociated variability of several selected enhanced degradable plastic materials under a variety of different exposure conditions. Other objectives were to identify the major products formed during degradation ...

  1. Network Plasticity as Bayesian Inference

    PubMed Central

    Legenstein, Robert; Maass, Wolfgang

    2015-01-01

    General results from statistical learning theory suggest to understand not only brain computations, but also brain plasticity as probabilistic inference. But a model for that has been missing. We propose that inherently stochastic features of synaptic plasticity and spine motility enable cortical networks of neurons to carry out probabilistic inference by sampling from a posterior distribution of network configurations. This model provides a viable alternative to existing models that propose convergence of parameters to maximum likelihood values. It explains how priors on weight distributions and connection probabilities can be merged optimally with learned experience, how cortical networks can generalize learned information so well to novel experiences, and how they can compensate continuously for unforeseen disturbances of the network. The resulting new theory of network plasticity explains from a functional perspective a number of experimental data on stochastic aspects of synaptic plasticity that previously appeared to be quite puzzling. PMID:26545099

  2. Smartphones and the plastic surgeon.

    PubMed

    Al-Hadithy, Nada; Ghosh, Sudip

    2013-06-01

    Surgical trainees are facing limited training opportunities since the introduction of the European Working Time Directive. Smartphone sales are increasing and have usurped computer sales for the first time. In this context, smartphones are an important portable reference and educational tool, already in the possession of the majority of surgeons in training. Technology in the palm of our hands has led to a revolution of accessible information for the plastic surgery trainee and surgeon. This article reviews the uses of smartphones and applications for plastic surgeons in education, telemedicine and global health. A comprehensive guide to existing and upcoming learning materials and clinical tools for the plastic surgeon is included. E-books, podcasts, educational videos, guidelines, work-based assessment tools and online logbooks are presented. In the limited resource setting of modern clinical practice, savvy plastic surgeons can select technological tools to democratise access to education and best clinical care.

  3. Nano-Ceramic Coated Plastics

    NASA Technical Reports Server (NTRS)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (<100 C) is also a key to generating these ceramic coatings on the plastics. One possible way of processing nanoceramic coatings at low temperatures (< 90 C) is to take advantage of in-situ precipitated nanoparticles and nanostructures grown from aqueous solution. These nanostructures can be tailored to ceramic film formation and the subsequent microstructure development. In addition, the process provides environment- friendly processing because of the

  4. [Plasticity of the cellular phenotype].

    PubMed

    Chneiweiss, Hervé

    2011-01-01

    The tragical consequences of the Hiroshima and Nagasaki atomic bombs in 1945 were to lead to the discovery of hematopoietic stem cells and their phenotypic plasticity, in response to environmental factors. These concepts were much later extended to the founding cells of other tissues. In the following collection of articles, the mechanisms underlying this plasticity, at the frontiers of developmental biology and oncology, are illustrated in the case of various cell types of neural origin and of some tumours. PMID:21501574

  5. [Plasticity of the cellular phenotype].

    PubMed

    Chneiweiss, Hervé

    2011-01-01

    The tragical consequences of the Hiroshima and Nagasaki atomic bombs in 1945 were to lead to the discovery of hematopoietic stem cells and their phenotypic plasticity, in response to environmental factors. These concepts were much later extended to the founding cells of other tissues. In the following collection of articles, the mechanisms underlying this plasticity, at the frontiers of developmental biology and oncology, are illustrated in the case of various cell types of neural origin and of some tumours.

  6. Helene: A Plastic Model

    NASA Astrophysics Data System (ADS)

    Umurhan, O. M.; Moore, J. M.; Howard, A. D.; Schenk, P.; White, O. L.

    2014-12-01

    Helene, the Saturnian L4 Trojan satellite co-orbiting Dionne and sitting within the E-ring, possesses an unusual morphology characteristic of broad km-scale basins and depressions and a generally smooth surface patterned with streaks and grooves which are indicative of non-typical mass transport. Elevation angles do not appear to exceed 10o at most. The nature and origin of the surface materials forming these grooved patterns is unknown. Given the low surface gravity (<5mm/s2), it hard to imagine how such transport features can come about with such low grades and surface gravities. Preliminary examinations of classical linear and nonlinear mass wasting mechanisms do not appear to reproduce these curious features. A suite of hypothesis that we examine is the possibility that the fine grain material on the surface has been either (i) accreted or (ii) generated as refractory detritus resulting from sublimation of the icy bedrock, and that these materials subsequently mass-waste like a non-Newtonian highly non-linear creeping flow. Modifying the landform evolution model MARSSIM to handle two new mass-wasting mechanism, the first due to glacial-like flow via Glen's Law and the second due to plastic-like flow like a Bingham fluid, we setup and test a number of likely scenarios to explain the observations. The numerical results qualitatively indicate that treating the mass-wasting materials as a Bingham material reproduces many of the qualitative features observed. We also find that in those simulations in which accretion is concomitant with Bingham mass-wasting, the long time-evolution of the surface flow shows intermittency in the total surface activity (defined as total surface integral of the absolute magnitude of the mass-flux). Detailed analyses identify the locations where this activity is most pronounced and we will discuss these and its implications in further detail.

  7. Plasticity effects in hydraulic fracturing

    SciTech Connect

    Medlin, W.L.; Masse, L.

    1986-09-01

    The importance of reservoir rock plasticity in fracturing operations has been investigated by laboratory experiments and field results. A Lagrangian formulation for crack propagation provided the basis for the laboratory experiments. A simple crack propagation experiment showed that plasticity effects can be observed and that the importance of plasticity depends on the relative magnitudes of surface energy and energy dissipated in plastic deformation of a reservoir rock. The latter can be evaluated by laboratory measurements of a plasticity coefficient, ..cap alpha.., which comes out of the Lagrangian analysis. To measure ..cap alpha.., the authors developed a triaxial system for applying tensile stress to rock cores under confining pressure at strain rates characteristic of fracturing operations. Strain gauges mounted on each core were used with a servo-controlled press to apply strain at a linear rate between 10/sup -4/ and 10/sup -6/ seconds /sup -1/ and to obtain stress/strain data to the point of tensile failure. To distinguish between plasticity and nonlinear elastic phenomena, the authors also obtained strain hysteresis data.

  8. The Story of the Plastics Industry.

    ERIC Educational Resources Information Center

    Masson, Don, Ed.

    This is an illustrated informative booklet, designed to serve members of the Society of the Plastics Industry, Inc., and the plastics industry as a whole. It provides basic information about the industry's history and growth, plastics raw materials, typical uses of plastics, properties, and methods of processing and fabricating. (Author/DS)

  9. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint...

  10. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint...

  11. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic...

  12. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic...

  13. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint...

  14. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic...

  15. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint...

  16. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic...

  17. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic...

  18. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint...

  19. Optimization of heat and mass transfers in counterflow corrugated-plate liquid-gas exchangers used in a greenhouse dehumidifier

    NASA Astrophysics Data System (ADS)

    Bentounes, N.; Jaffrin, A.

    1998-09-01

    Heat and mass transfers occuring in a counterflow direct contact liquid-gas exchanger determine the performance of a new greenhouse air dehumidifier designed at INRA. This prototype uses triethylene glycol (TEG) as the desiccant fluid which extracts water vapor from the air. The regeneration of the TEG desiccant fluid is then performed by direct contact with combustion gas from a high efficiency boiler equipped with a condensor. The heat and mass transfers between the thin film of diluted TEG and the hot gas were simulated by a model which uses correlation formula from the literature specifically relevant to the present cross-corrugated plates geometry. A simple set of analytical solutions is first derived, which explains why some possible processes can clearly be far from optimal. Then, more exact numerical calculations confirm that some undesirable water recondensations on the upper part of the exchanger were limiting the performance of this prototype. More suitable conditions were defined for the process, which lead to a new design of the apparatus. In this second prototype, a gas-gas exchanger provides dryer and cooler gas to the basis of the regenerators, while a warmer TEG is fed on the top. A whole range of operating conditions was experimented and measured parameters were compared with numerical simulations of this new configuration: recondensation did not occur any more. As a consequence, this second prototype was able to concentrate the desiccant fluid at the desired rate of 20 kg H_{2O}/hour, under temperature and humidity conditions which correspond to the dehumidification of a 1000 m2 greenhouse heated at night during the winter season.

  20. Evolution of phenotypic plasticity in colonizing species.

    PubMed

    Lande, Russell

    2015-05-01

    I elaborate an hypothesis to explain inconsistent empirical findings comparing phenotypic plasticity in colonizing populations or species with plasticity from their native or ancestral range. Quantitative genetic theory on the evolution of plasticity reveals that colonization of a novel environment can cause a transient increase in plasticity: a rapid initial increase in plasticity accelerates evolution of a new optimal phenotype, followed by slow genetic assimilation of the new phenotype and reduction of plasticity. An association of colonization with increased plasticity depends on the difference in the optimal phenotype between ancestral and colonized environments, the difference in mean, variance and predictability of the environment, the cost of plasticity, and the time elapsed since colonization. The relative importance of these parameters depends on whether a phenotypic character develops by one-shot plasticity to a constant adult phenotype or by labile plasticity involving continuous and reversible development throughout adult life.

  1. [A Compact Source of Terahertz Radiation Based on Interaction of Electrons in à Quantum Well with an Electromagnetic Wave of a Corrugated Waveguide].

    PubMed

    Shchurova, L Yu; Namiot, V A; Sarkisyan, D R

    2015-01-01

    Coherent sources of electromagnetic waves in the terahertz frequency range are very promising for various applications, including biology and medicine. In this paper we propose a scheme of a compact terahertz source, in which terahertz radiation is generated due to effective interaction of electrons in a quantum well with an electromagnetic wave of a corrugated waveguide. We have shown that the generation of electromagnetic waves with a frequency of 1012 sec(-1) and an output power of up to 25. mW is possible in the proposed scheme.

  2. Neurogenomic mechanisms of social plasticity.

    PubMed

    Cardoso, Sara D; Teles, Magda C; Oliveira, Rui F

    2015-01-01

    Group-living animals must adjust the expression of their social behaviour to changes in their social environment and to transitions between life-history stages, and this social plasticity can be seen as an adaptive trait that can be under positive selection when changes in the environment outpace the rate of genetic evolutionary change. Here, we propose a conceptual framework for understanding the neuromolecular mechanisms of social plasticity. According to this framework, social plasticity is achieved by rewiring or by biochemically switching nodes of a neural network underlying social behaviour in response to perceived social information. Therefore, at the molecular level, it depends on the social regulation of gene expression, so that different genomic and epigenetic states of this brain network correspond to different behavioural states, and the switches between states are orchestrated by signalling pathways that interface the social environment and the genotype. Different types of social plasticity can be recognized based on the observed patterns of inter- versus intra-individual occurrence, time scale and reversibility. It is proposed that these different types of social plasticity rely on different proximate mechanisms at the physiological, neural and genomic level. PMID:25568461

  3. Surface properties of beached plastics.

    PubMed

    Fotopoulou, Kalliopi N; Karapanagioti, Hrissi K

    2015-07-01

    Studying plastic characteristics in the marine environment is important to better understand interaction between plastics and the environment. In the present study, high-density polyethylene (HDPE), polyethylene terephalate (PET), and polyvinyl chloride (PVC) samples were collected from the coastal environment in order to study their surface properties. Surface properties such as surface functional groups, surface topography, point of zero charge, and color change are important factors that change during degradation. Eroded HDPE demonstrated an altered surface topography and color and new functional groups. Eroded PET surface was uneven, yellow, and occasionally, colonized by microbes. A decrease in Fourier transform infrared (FTIR) peaks was observed for eroded PET suggesting that degradation had occurred. For eroded PVC, its surface became more lamellar and a new FTIR peak was observed. These surface properties were obtained due to degradation and could be used to explain the interaction between plastics, microbes, and pollutants. PMID:25787219

  4. Disposable plasmonic plastic SERS sensor.

    PubMed

    Oo, S Z; Chen, R Y; Siitonen, S; Kontturi, V; Eustace, D A; Tuominen, J; Aikio, S; Charlton, M D B

    2013-07-29

    The 'Klarite™' SERS sensor platform consisting of an array of gold coated inverted square pyramids patterned onto a silicon substrate has become the industry standard over the last decade, providing highly reproducible SERS signals. In this paper, we report successful transfer from silicon to plastic base platform of an optimized SERS substrate design which provides 8 times improvement in sensitivity for a Benzenethiol test molecule compared to standard production Klarite. Transfer is achieved using roll-to-roll and sheet-level nanoimprint fabrication techniques. The new generation plastic SERS sensors provide the added benefit of cheap low cost mass-manufacture, and easy disposal. The plastic replicated SERS sensors are shown to provide ~10(7) enhancement factor with good reproducibility (5%).

  5. MIPP Plastic Ball electronics upgrade

    SciTech Connect

    Baldin, Boris; /Fermilab

    2009-01-01

    An upgrade electronics design for Plastic Ball detector is described. The Plastic Ball detector was a part of several experiments in the past and its back portion (proposed to be used in MIPP) consists of 340 photomultipliers equipped with a sandwich scintillator. The scintillator sandwich has fast and slow signal component with decay times 10 ns and 1 {micro}s respectively. The upgraded MIPP experiment will collect up to 12,000 events during each 4 second spill and read them out in {approx}50 seconds between spills. The MIPP data acquisition system will employ deadtime-less concept successfully implemented in Muon Electronics of Dzero experiment at Fermilab. An 8-channel prototype design of the Plastic Ball Front End (PBFE) implementing these requirements is discussed. Details of the schematic design, simulation and prototype test results are discussed.

  6. Surface properties of beached plastics.

    PubMed

    Fotopoulou, Kalliopi N; Karapanagioti, Hrissi K

    2015-07-01

    Studying plastic characteristics in the marine environment is important to better understand interaction between plastics and the environment. In the present study, high-density polyethylene (HDPE), polyethylene terephalate (PET), and polyvinyl chloride (PVC) samples were collected from the coastal environment in order to study their surface properties. Surface properties such as surface functional groups, surface topography, point of zero charge, and color change are important factors that change during degradation. Eroded HDPE demonstrated an altered surface topography and color and new functional groups. Eroded PET surface was uneven, yellow, and occasionally, colonized by microbes. A decrease in Fourier transform infrared (FTIR) peaks was observed for eroded PET suggesting that degradation had occurred. For eroded PVC, its surface became more lamellar and a new FTIR peak was observed. These surface properties were obtained due to degradation and could be used to explain the interaction between plastics, microbes, and pollutants.

  7. Recycled plastics for food packaging

    SciTech Connect

    Thorsheim, H.R.; Armstrong, D.J.

    1993-08-01

    There is a strong movement in this country to decrease the amount of waste produced and to use resources more efficiently. The Food and Drug Administration (FDA) is interested in helping to resolve the solid waste problem. The FDA supports recycling and the broader societal goal of diverting material from the solid waste stream, when it is consistent with the statutory responsibilities to protect the public health. The National Environmental Policy Act of 1969 (NEPA) mandates that the FDA review the impact of new food-packaging materials on the environment. Currently, no regulations have been issued for the use of recycled polymers in contact with food. Plastics are permeable, and the possibility that a contaminant such as a pesticide or motor oil might be absorbed by a plastic container and remain in the resin after recycling is very real. The paper discusses FDA policy and research to ensure that recycled plastics are safe for food-contact use.

  8. Plasticity in glutamatergic NTS neurotransmission.

    PubMed

    Kline, David D

    2008-12-10

    Changes in the physiological state of an animal or human can result in alterations in the cardiovascular and respiratory system in order to maintain homeostasis. Accordingly, the cardiovascular and respiratory systems are not static but readily adapt under a variety of circumstances. The same can be said for the brainstem circuits that control these systems. The nucleus tractus solitarius (NTS) is the central integration site of baroreceptor and chemoreceptor sensory afferent fibers. This central nucleus, and in particular the synapse between the sensory afferent and second-order NTS cell, possesses a remarkable degree of plasticity in response to a variety of stimuli, both acute and chronic. This brief review is intended to describe the plasticity observed in the NTS as well as the locus and mechanisms as they are currently understood. The functional consequence of NTS plasticity is also discussed.

  9. Oxytocin and Maternal Brain Plasticity.

    PubMed

    Kim, Sohye; Strathearn, Lane

    2016-09-01

    Although dramatic postnatal changes in maternal behavior have long been noted, we are only now beginning to understand the neurobiological mechanisms that support this transition. The present paper synthesizes growing insights from both animal and human research to provide an overview of the plasticity of the mother's brain, with a particular emphasis on the oxytocin system. We examine plasticity observed within the oxytocin system and discuss how these changes mediate an array of other adaptations observed within the maternal brain. We outline factors that affect the oxytocin-mediated plasticity of the maternal brain and review evidence linking disruptions in oxytocin functions to challenges in maternal adaptation. We conclude by suggesting a strategy for intervention with mothers who may be at risk for maladjustment during this transition to motherhood, while highlighting areas where further research is needed. PMID:27589498

  10. [Ocular prosthesis following plastic surgery].

    PubMed

    Morozova, O D; Druianova, Iu S

    1989-01-01

    The shape of the eye prostheses depends on the plastic surgery type. Standard prostheses with thin but not sharp edges are used to recreate the conjunctival cavity, prostheses with a deep retraction or flat ones are employed for a delayed introduction into the stump, prostheses with a 'swelling' at the upper edge are of use in surgery to correct the upper eyelid falling in, prostheses with a flattened lower edge and a 'shelf' at the upper edge are used to fortify the lower eyelid. Individual prostheses are recommended after plastic surgery. The prostheses should not prevent free closing and blinking of the eyelids, retaining the identical opening of the eyes. An inadequately chosen prosthesis brings to nothing the tremendous work made by the surgeon. Ocular prosthetics may be regarded as the final stage stabilizing the results of plastic surgery.

  11. Extruded plastic scintillator including inorganic powders

    DOEpatents

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2006-06-27

    A method for producing a plastic scintillator is disclosed. A plurality of nano-sized particles and one or more dopants can be combined with a plastic material for the formation of a plastic scintillator thereof. The nano-sized particles, the dopant and the plastic material can be combined within the dry inert atmosphere of an extruder to produce a reaction that results in the formation of a plastic scintillator thereof and the deposition of energy within the plastic scintillator, such that the plastic scintillator produces light signifying the detection of a radiative element. The nano-sized particles can be treated with an inert gas prior to processing the nano-sized particles, the dopant and the plastic material utilizing the extruder. The plastic scintillator can be a neutron-sensitive scintillator, x-ray sensitive scintillator and/or a scintillator for the detection of minimum ionizing particles.

  12. Polishing compound for plastic surfaces

    DOEpatents

    Stowell, M.S.

    1993-01-01

    A polishing compound for plastic surfaces is disclosed. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains colloidal silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS{sup TM}, LEXAN{sup TM}, LUCITE{sup TM}, polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired.

  13. Coating processes for plastic optics

    NASA Astrophysics Data System (ADS)

    Schulz, Ulrike

    2014-02-01

    Transparent plastics have been used for optical applications with growing demand. This development is accompanied by a desire for extended surface functionalities. Most important optical surface function is antireflection (AR), which is performed mainly by applying plasma-assisted processes. Critical considerations for coating polymers include interaction with emission from plasma and thermal stress. State-of-the-art vacuum processes for coating on plastic, as well as new results of research and development in the fields of AR design and AR structures will be introduced and discussed.

  14. Plasticity: Resource justification and development

    NASA Astrophysics Data System (ADS)

    Sayre, Eleanor C.

    Physics education research is fundamentally concerned with understanding the processes of student learning and facilitating the development of student understanding. A better understanding of learning processes and outcomes is integral to improving said learning. In this thesis, I detail and expand upon Resource Theory, allowing it to account for the development of resources and connecting the activation and use of resources to experimental data. Resource Theory is a general knowledge-in-pieces schema theory. It bridges cognitive science and education research to describe the phenomenology of problem solving. Resources are small, reusable pieces of thought that make up concepts and arguments. The physical context and cognitive state of the user determine which resources are available to be activated; different people have different resources about different things. Over time, resources may develop, acquiring new meanings as they activate in different situations. In this thesis, I introduce "plasticity," a continuum for describing the development of resources. The plasticity continuum blends elements of Process/Object and Cognitive Science with Resource Theory. The name evokes brain plasticity and myelination (markers of learning power and reasoning speed, respectively) and materials plasticity and solidity (with their attendant properties, deformability and stability). In the plasticity continuum, the two directions are more plastic and more solid. More solid resources are more durable and more connected to other resources. Users tend to be more committed to them because reasoning with them has been fruitful in the past. Similarly, users tend not to perform consistency checks on them any more. In contrast, more plastic resources need to be tested against the existing network more often, as users forge links between them and other resources. To explore these expansions and their application, I present several extended examples drawn from an Intermediate Mechanics

  15. Polishing compound for plastic surfaces

    DOEpatents

    Stowell, M.S.

    1995-08-22

    A polishing compound for plastic surfaces is disclosed. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains fine particles silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS{trademark}, LEXAN{trademark}, LUCITE{trademark}, polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired. 5 figs.

  16. Polishing compound for plastic surfaces

    DOEpatents

    Stowell, Michael S.

    1995-01-01

    A polishing compound for plastic surfaces. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains fine particles silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS.TM., LEXAN.TM., LUCITE.TM., polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired.

  17. [Prophylactic antibiotics in plastic surgery].

    PubMed

    Sabovcík, R; Kyslan, K

    2006-06-01

    There is no consensus on the use of prophylactic antibiotics in plastic surgery to prevent postoperative infection. This study was performed to investigate whether the use of prophylactic antibiotics has an effect on postoperative infection rate. A total of 500 patients were classified into 3 groups based on their diagnosis. Approximately half of the cases received amoxicilin/clavulanate combination the other half had no antibiotics. Wound infection was observed in the post operative period. According to our clinical findings, antibiotic prophylaxis is not necessary in plastic surgery in all patients. We did not find significant difference between the antibiotic prophylaxis and placebo group.

  18. A Multifrequency Notch Filter for Millimeter Wave Plasma Diagnostics based on Photonic Bandgaps in Corrugated Circular Waveguides

    NASA Astrophysics Data System (ADS)

    Wagner, D.; Bongers, W.; Kasparek, W.; Leuterer, F.; Monaco, F.; Münich, M.; Schütz, H.; Stober, J.; Thumm, M.; Brand, H. v. d.

    2015-03-01

    Sensitive millimeter wave diagnostics need often to be protected against unwanted radiation like, for example, stray radiation from high power Electron Cyclotron Heating applied in nuclear fusion plasmas. A notch filter based on a waveguide Bragg reflector (photonic band-gap) may provide several stop bands of defined width within up to two standard waveguide frequency bands. A Bragg reflector that reflects an incident fundamental TE11 into a TM1n mode close to cutoff is combined with two waveguide tapers to fundamental waveguide diameter. Here the fundamental TE11 mode is the only propagating mode at both ends of the reflector. The incident TE11 mode couples through the taper and is converted to the high order TM1n mode by the Bragg structure at the specific Bragg resonances. The TM1n mode is trapped in the oversized waveguide section by the tapers. Once reflected at the input taper it will be converted back into the TE11 mode which then can pass through the taper. Therefore at higher order Bragg resonances, the filter acts as a reflector for the incoming TE11 mode. Outside of the Bragg resonances the TE11 mode can propagate through the oversized waveguide structure with only very small Ohmic attenuation compared to propagating in a fundamental waveguide. Coupling to other modes is negligible in the non-resonant case due to the small corrugation amplitude (typically 0.05·λ0, where λ0 is the free space wavelength). A Bragg reflector for 105 and 140 GHz was optimized by mode matching (scattering matrix) simulations and manufactured by SWISSto12 SA, where the required mechanical accuracy of ± 5 μm could be achieved by stacking stainless steel rings, manufactured by micro-machining, in a high precision guiding pipe. The two smooth-wall tapers were fabricated by electroforming. Several measurements were performed using vector network analyzers from Agilent (E8362B), ABmm (MVNA 8-350) and Rohde&Schwarz (ZVA24) together with frequency multipliers. The stop bands

  19. Experimental study of ethylene glycol-based Al2O3 nanofluid turbulent heat transfer enhancement in the corrugated tube with twisted tapes

    NASA Astrophysics Data System (ADS)

    Mohammadiun, Hamid; Mohammadiun, Mohammad; Hazbehian, Mohammad; Maddah, Heydar

    2016-01-01

    In this study, fluid flow of the Al2O3/ethylene glycol (EG) nanofluid in a corrugated tube fitted with twisted tapes were experimentally studied under turbulent flow conditions. The experiments with different twists ratio and different nanofluid concentration were performed under similar operation condition. The investigated ranges are (1) three different Al2O3 concentrations: 0.5, 1 and 1.5 % by volume (2) three different twist ratios of twisted tape: y/w = 2, 3.6 and 5 and (3) Reynolds number from 6000 to 30,000. Regarding the experimental data, utilization of twists together with nanofluids tends to increase heat transfer and friction factor as compared with the base fluid. In addition, heat transfer performances were weakened by using for high nanoparticle concentration. The thermal performances of the heat exchanger with nanofluid and twisted tapes were evaluated for the assessment of overall improvement in thermal behavior. Over the range studied, the maximum thermal performance factor 4.2 is found with the use of Al2O3/EG nanofluid at concentration of 0.5 % by volume in corrugated tube together with twisted tape at twist ratio of 2.

  20. Micromechanics of nonlinear plastic modes.

    PubMed

    Lerner, Edan

    2016-05-01

    Nonlinear plastic modes (NPMs) are collective displacements that are indicative of imminent plastic instabilities in elastic solids. In this work we formulate the atomistic theory that describes the reversible evolution of NPMs and their associated stiffnesses under external deformations. The deformation dynamics of NPMs is compared to those of the analogous observables derived from atomistic linear elastic theory, namely, destabilizing eigenmodes of the dynamical matrix and their associated eigenvalues. The key result we present and explain is that the dynamics of NPMs and of destabilizing eigenmodes under external deformations follow different scaling laws with respect to the proximity to imminent instabilities. In particular, destabilizing modes vary with a singular rate, whereas NPMs exhibit no such singularity. As a result, NPMs converge much earlier than destabilizing eigenmodes to their common final form at plastic instabilities. This dynamical difference between NPMs and linear destabilizing eigenmodes underlines the usefulness of NPMs for predicting the locus and geometry of plastic instabilities, compared to their linear-elastic counterparts. PMID:27300970

  1. Scribable coating for plastic films

    NASA Technical Reports Server (NTRS)

    Clark, R. T.

    1967-01-01

    Scribable opaque coating for transparent plastic film tape is not affected by aging, vacuum, and moderate temperature extremes. It consists of titanium dioxide, a water-compatible acrylic polymer emulsion, and a detergent. The coating mixture is readily dispersed in water before it is dried.

  2. Boron trifluoride coatings for plastics

    NASA Technical Reports Server (NTRS)

    Kubacki, R. M.

    1978-01-01

    Tough, durable coatings of boron triflouride can be deposited on plastic optical components to protect them from destructive effects of abrasion, scratching, and environment. Coating material can be applied simultaneously with organic polymers, using plasma glow-discharge methods, or it can be used as base material for other coatings to increase adhesion.

  3. Oxytocin and Maternal Brain Plasticity

    ERIC Educational Resources Information Center

    Kim, Sohye; Strathearn, Lane

    2016-01-01

    Although dramatic postnatal changes in maternal behavior have long been noted, we are only now beginning to understand the neurobiological mechanisms that support this transition. The present paper synthesizes growing insights from both animal and human research to provide an overview of the plasticity of the mother's brain, with a particular…

  4. Biobased plastics in a bioeconomy.

    PubMed

    Philp, J C; Ritchie, R J; Guy, K

    2013-02-01

    Bioeconomy plans include a biobased industries sector in which some oil-derived plastics and chemicals are replaced by new or equivalent products derived, at least partially, from biomass. Some of these biobased products are here today, but to fulfil their societal potential, greater attention is required to promote awareness, and to improve their market share while making valuable contributions to climate change mitigation.

  5. For the Classroom: "Plastic" Jellyfish.

    ERIC Educational Resources Information Center

    Current: The Journal of Marine Education, 1989

    1989-01-01

    Describes an activity in which students monitor the plastic waste production in their households, research its effects on freshwater and marine life, and propose ways to lessen the problem. Provides objectives, background information, materials, procedures, extension activities, and an evaluation for students. (Author/RT)

  6. Genetic influences on neural plasticity.

    PubMed

    Pearson-Fuhrhop, Kristin M; Cramer, Steven C

    2010-12-01

    Neural plasticity refers to the capability of the brain to alter function or structure in response to a range of events and is a crucial component of both functional recovery after injury and skill learning in healthy individuals. A number of factors influence neural plasticity and recovery of function after brain injury. The current review considers the impact of genetic factors. Polymorphisms in the human genes coding for brain-derived neurotrophic factor and apolipoprotein E have been studied in the context of plasticity and stroke recovery and are discussed here in detail. Several processes involved in plasticity and stroke recovery, such as depression or pharmacotherapy effects, are modulated by other genetic polymorphisms and are also discussed. Finally, new genetic polymorphisms that have not been studied in the context of stroke are proposed as new directions for study. A better understanding of genetic influences on recovery and response to therapy might allow improved treatment after a number of forms of central nervous system injury.

  7. Synaptic Plasticity and Translation Initiation

    ERIC Educational Resources Information Center

    Klann, Eric; Antion, Marcia D.; Banko, Jessica L.; Hou, Lingfei

    2004-01-01

    It is widely accepted that protein synthesis, including local protein synthesis at synapses, is required for several forms of synaptic plasticity. Local protein synthesis enables synapses to control synaptic strength independent of the cell body via rapid protein production from pre-existing mRNA. Therefore, regulation of translation initiation is…

  8. Micromechanics of nonlinear plastic modes

    NASA Astrophysics Data System (ADS)

    Lerner, Edan

    2016-05-01

    Nonlinear plastic modes (NPMs) are collective displacements that are indicative of imminent plastic instabilities in elastic solids. In this work we formulate the atomistic theory that describes the reversible evolution of NPMs and their associated stiffnesses under external deformations. The deformation dynamics of NPMs is compared to those of the analogous observables derived from atomistic linear elastic theory, namely, destabilizing eigenmodes of the dynamical matrix and their associated eigenvalues. The key result we present and explain is that the dynamics of NPMs and of destabilizing eigenmodes under external deformations follow different scaling laws with respect to the proximity to imminent instabilities. In particular, destabilizing modes vary with a singular rate, whereas NPMs exhibit no such singularity. As a result, NPMs converge much earlier than destabilizing eigenmodes to their common final form at plastic instabilities. This dynamical difference between NPMs and linear destabilizing eigenmodes underlines the usefulness of NPMs for predicting the locus and geometry of plastic instabilities, compared to their linear-elastic counterparts.

  9. American Society of Plastic Surgeons

    MedlinePlus

    ... know the risks and trust a board-certified plastic surgeon to perform your cosmetic or reconstructive surgery. ASPS member surgeons have the training and experience that ... 1300 Chain Bridge Road McLean, VA 22101 (703) 790-5454 Timothy Germain ...

  10. HEMP. Hydrodynamic Elastic Magneto Plastic

    SciTech Connect

    Wilkins, M.L.; Levatin, J.A.

    1985-02-01

    The HEMP code solves the conservation equations of two-dimensional elastic-plastic flow, in plane x-y coordinates or in cylindrical symmetry around the x-axis. Provisions for calculation of fixed boundaries, free surfaces, pistons, and boundary slide planes have been included, along with other special conditions.

  11. Recycling of plastics in Germany

    SciTech Connect

    Thienen, N. von; Patel, M.

    1999-07-01

    This article deals with the waste management of post-consumer plastics in Germany and its potential to save fossil fuels and reduce CO{sub 2} emissions. Since most experience is available for packaging, the paper first gives an overview of the legislative background and the material flows for this sector. Then recycling and recovery processes for plastics waste from all sectors are assessed in terms of their contribution to energy saving and CO{sub 2} abatement. Practically all the options studied show a better performance than waste treatment in an average incinerator which has been chosen as the reference case. High ecological benefits can be achieved by mechanical recycling if virgin polymers are substituted. The paper then presents different scenarios for managing plastic waste in Germany in 1995: considerable savings can be made by strongly enhancing the efficiency of waste incinerators. Under these conditions the distribution of plastics waste among mechanical recycling, feedstock recycling and energy recovery has a comparatively mall impact on the overall results. The maximum savings amount to 74 PJ of energy, i.e, 9% of the chemical sector energy demand in 1995 and 7.0 Mt CO{sub 2}, representing 13% of the sector's emissions. The assessment does not support a general recommendation of energy recovery due to the large difference between the German average and the best available municipal waste-to-energy facilities and also due to new technological developments in the field of mechanical recycling.

  12. Body dysmorphia and plastic surgery.

    PubMed

    Kyle, Allison

    2012-01-01

    Body dysmorphic disorder is a mental disorder characterized by a preoccupation with some aspect of one's appearance. In cosmetic surgery, this preoccupation can be overlooked by practitioners resulting in a discrepancy between expected and realistic outcome. Identifying the characteristics of this disorder may be crucial to the practitioner-patient relationship in the plastic surgery setting. PMID:22929194

  13. Farm surpluses: sources for plastics

    SciTech Connect

    Hardin, B.

    1986-10-01

    Starch from corn may soon replace petrochemicals in plastic films. And glycerol - a byproduct from processing of animal fats, soybeans, and other vegetable oil crops - may one day compete with petrochemicals in acrylic plastic manufacturing. These are two examples of how research may help convert the nation's surplus farm commodities into needed industrial products. Studies at the USDA Agricultural Research Service center in Peoria, IL, show that starch can be blended into plastic films that may serve as biodegradable mulches for tomatoes and other high-value crops. We are working on new formulas for mulches that micro-organisms can break down after a crop is harvested, says chemist Felix Otey. This feature preserves the environment and saves the expense of having to remove and burn or bury the mulches. Home gardeners and farmers use plastic mulches to protect crops from weeds and drought and extend the growing season by warming the soil sooner in the spring. And farmers use them to produce an earlier crop that commands a good price.

  14. Plastics and beaches: a degrading relationship.

    PubMed

    Corcoran, Patricia L; Biesinger, Mark C; Grifi, Meriem

    2009-01-01

    Plastic debris in Earth's oceans presents a serious environmental issue because breakdown by chemical weathering and mechanical erosion is minimal at sea. Following deposition on beaches, plastic materials are exposed to UV radiation and physical processes controlled by wind, current, wave and tide action. Plastic particles from Kauai's beaches were sampled to determine relationships between composition, surface textures, and plastics degradation. SEM images indicated that beach plastics feature both mechanically eroded and chemically weathered surface textures. Granular oxidation textures were concentrated along mechanically weakened fractures and along the margins of the more rounded plastic particles. Particles with oxidation textures also produced the most intense peaks in the lower wavenumber region of FTIR spectra. The textural results suggest that plastic debris is particularly conducive to both chemical and mechanical breakdown in beach environments, which cannot be said for plastics in other natural settings on Earth.

  15. Chemistry technology: Adhesives and plastics: A compilation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Technical information on chemical formulations for improving and/or producing adhesives is presented. Data are also reported on polymeric plastics with special characteristics or those plastics that were produced by innovative means.

  16. Gas Experiments with Plastic Soda Bottles.

    ERIC Educational Resources Information Center

    Kavanah, Patrick; Zipp, Arden P.

    1998-01-01

    Describes the use of an inexpensive device consisting of a plastic soda bottle and a modified plastic cap in a range of demonstrations and experimental activities having to do with the behavior of gases. (Author/WRM)

  17. Plastics and beaches: a degrading relationship.

    PubMed

    Corcoran, Patricia L; Biesinger, Mark C; Grifi, Meriem

    2009-01-01

    Plastic debris in Earth's oceans presents a serious environmental issue because breakdown by chemical weathering and mechanical erosion is minimal at sea. Following deposition on beaches, plastic materials are exposed to UV radiation and physical processes controlled by wind, current, wave and tide action. Plastic particles from Kauai's beaches were sampled to determine relationships between composition, surface textures, and plastics degradation. SEM images indicated that beach plastics feature both mechanically eroded and chemically weathered surface textures. Granular oxidation textures were concentrated along mechanically weakened fractures and along the margins of the more rounded plastic particles. Particles with oxidation textures also produced the most intense peaks in the lower wavenumber region of FTIR spectra. The textural results suggest that plastic debris is particularly conducive to both chemical and mechanical breakdown in beach environments, which cannot be said for plastics in other natural settings on Earth. PMID:18834997

  18. Singing Corrugated Pipes.

    ERIC Educational Resources Information Center

    Cadwell, Louis H.

    1994-01-01

    This article describes different techniques used to measure air flow velocity. The two methods used were Crawford's Wastebasket and a video camera. The results were analyzed and compared to the air flow velocity predicted by Bernoulli's principle. (ZWH)

  19. Think small: nanotechnology for plastic surgeons.

    PubMed

    Nasir, Amir R; Brenner, Sara A

    2012-11-01

    The purpose of this article is to introduce the topic of nanotechnology to plastic surgeons and to discuss its relevance to medicine in general and plastic surgery in particular. Nanotechnology will be defined, and some important historical milestones discussed. Common applications of nanotechnology in various medical and surgical subspecialties will be reviewed. Future applications of nanotechnology to plastic surgery will be examined. Finally, the critical field of nanotoxicology and the safe use of nanotechnology in medicine and plastic surgery will be addressed.

  20. The Rhetorical Limits of the "Plastic Body"

    ERIC Educational Resources Information Center

    Jordan, John W.

    2004-01-01

    This essay analyzes the "plastic body" as it is produced in the discourse of plastic surgery. The contemporary industry has constructed a popular image of plastic surgery as a readily available and personally empowering means to resolve body image issues, on the presumption that any body can become a "better" body. The ideology underlying the…

  1. 7 CFR 58.326 - Plastic cream.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Plastic cream. 58.326 Section 58.326 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.326 Plastic cream. To produce plastic cream eligible for official certification, the...

  2. 7 CFR 58.326 - Plastic cream.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Plastic cream. 58.326 Section 58.326 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.326 Plastic cream. To produce plastic cream eligible for official certification, the...

  3. 7 CFR 58.326 - Plastic cream.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Plastic cream. 58.326 Section 58.326 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.326 Plastic cream. To produce plastic cream eligible for official certification, the...

  4. 7 CFR 58.326 - Plastic cream.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Plastic cream. 58.326 Section 58.326 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.326 Plastic cream. To produce plastic cream eligible for official certification, the...

  5. 7 CFR 58.326 - Plastic cream.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Plastic cream. 58.326 Section 58.326 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.326 Plastic cream. To produce plastic cream eligible for official certification, the...

  6. Background to plastic media blasting

    NASA Astrophysics Data System (ADS)

    Foster, Terry

    1995-04-01

    Chemical strippers based on active phenolic components in a chlorinated solvent have been the traditional method for removing of paints and coatings from aircraft. With the recent recognition of the environmental and health concerns of chlorinated solvents and the problem disposing of phenols there have been some major developments in paint removal technology. One of the first techniques developed to replace chemical strippers and now one of the most widely used techniques for paint removal from aircraft was plastic media blasting (PMB). The PMB technique is similar to traditional grit blasting (slag, sand alumina or carborundum) techniques used on steel and other metals (based on grits) but using polymer based media that are softer and less aggressive. Plastic media are ranked by hardness and density as well as chemical composition.

  7. Polishing compound for plastic surfaces

    DOEpatents

    Stowell, M.S.

    1991-01-01

    This invention is comprised of a polishing compound for plastic materials. The compound includes approximately by approximately by weight 25 to 80 parts at least one petroleum distillate lubricant, 1 to 12 parts mineral spirits, 50 to 155 parts abrasive paste, and 15 to 60 parts water. Preferably, the compound includes approximately 37 to 42 parts at least one petroleum distillate lubricant, up to 8 parts mineral spirits, 95 to 110 parts abrasive paste, and 50 to 55 parts water. The proportions of the ingredients are varied in accordance with the particular application. The compound is used on PLEXIGLAS{trademark}, LEXAN{trademark}, LUCITE{trademark}, polyvinyl chloride (PVC), and similar plastic materials whenever a smooth, clear polished surface is desired.

  8. PPARs and Adipose Cell Plasticity

    PubMed Central

    Casteilla, Louis; Cousin, Béatrice; Carmona, Mamen

    2007-01-01

    Due to the importance of fat tissues in both energy balance and in the associated disorders arising when such balance is not maintained, adipocyte differentiation has been extensively investigated in order to control and inhibit the enlargement of white adipose tissue. The ability of a cell to undergo adipocyte differentiation is one particular feature of all mesenchymal cells. Up until now, the peroxysome proliferator-activated receptor (PPAR) subtypes appear to be the keys and essential players capable of inducing and controlling adipocyte differentiation. In addition, it is now accepted that adipose cells present a broad plasticity that allows them to differentiate towards various mesodermal phenotypes. The role of PPARs in such plasticity is reviewed here, although no definite conclusion can yet be drawn. Many questions thus remain open concerning the definition of preadipocytes and the relative importance of PPARs in comparison to other master factors involved in the other mesodermal phenotypes. PMID:17710234

  9. Public health impact of plastics: An overview

    PubMed Central

    Rustagi, Neeti; Pradhan, S. K.; Singh, Ritesh

    2011-01-01

    Plastic, one of the most preferred materials in today's industrial world is posing serious threat to environment and consumer's health in many direct and indirect ways. Exposure to harmful chemicals during manufacturing, leaching in the stored food items while using plastic packages or chewing of plastic teethers and toys by children are linked with severe adverse health outcomes such as cancers, birth defects, impaired immunity, endocrine disruption, developmental and reproductive effects etc. Promotion of plastics substitutes and safe disposal of plastic waste requires urgent and definitive action to take care of this potential health hazard in future. PMID:22412286

  10. Process for remediation of plastic waste

    SciTech Connect

    Pol, Vilas G.; Thiyagarajan, Pappannan

    2012-04-10

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically egg-shaped and spherical-shaped solid carbons. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  11. Process for remediation of plastic waste

    DOEpatents

    Pol, Vilas G; Thiyagarajan, Pappannan

    2013-11-12

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of about 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically carbon nanotubes having a partially filled core (encapsulated) adjacent to one end of the nanotube. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  12. Public health impact of plastics: An overview.

    PubMed

    Rustagi, Neeti; Pradhan, S K; Singh, Ritesh

    2011-09-01

    Plastic, one of the most preferred materials in today's industrial world is posing serious threat to environment and consumer's health in many direct and indirect ways. Exposure to harmful chemicals during manufacturing, leaching in the stored food items while using plastic packages or chewing of plastic teethers and toys by children are linked with severe adverse health outcomes such as cancers, birth defects, impaired immunity, endocrine disruption, developmental and reproductive effects etc. Promotion of plastics substitutes and safe disposal of plastic waste requires urgent and definitive action to take care of this potential health hazard in future.

  13. Leatherback turtles: the menace of plastic.

    PubMed

    Mrosovsky, N; Ryan, Geraldine D; James, Michael C

    2009-02-01

    The leatherback, Dermochelyscoriacea, is a large sea turtle that feeds primarily on jellyfish. Floating plastic garbage could be mistaken for such prey. Autopsy records of 408 leatherback turtles, spanning 123 years (1885-2007), were studied for the presence or absence of plastic in the GI tract. Plastic was reported in 34% of these cases. If only cases from our first report (1968) of plastic were considered, the figure was 37%. Blockage of the gut by plastic was mentioned in some accounts. These findings are discussed in the context of removal of top predators from poorly understood food chains. PMID:19135688

  14. Public health impact of plastics: An overview.

    PubMed

    Rustagi, Neeti; Pradhan, S K; Singh, Ritesh

    2011-09-01

    Plastic, one of the most preferred materials in today's industrial world is posing serious threat to environment and consumer's health in many direct and indirect ways. Exposure to harmful chemicals during manufacturing, leaching in the stored food items while using plastic packages or chewing of plastic teethers and toys by children are linked with severe adverse health outcomes such as cancers, birth defects, impaired immunity, endocrine disruption, developmental and reproductive effects etc. Promotion of plastics substitutes and safe disposal of plastic waste requires urgent and definitive action to take care of this potential health hazard in future. PMID:22412286

  15. Plasticity in Gray and White

    PubMed Central

    Zatorre, R.J.; Fields, R.D.; Johansen-Berg, H.

    2013-01-01

    Human brain imaging has identified structural changes in gray and white matter that occur with learning. However, ascribing imaging measures to underlying cellular and molecular events is challenging. Here, we review human neuroimaging findings of structural plasticity and then discuss cellular and molecular level changes that could underlie observed imaging effects. We propose that greater dialogue between researchers in these different fields will help to facilitate cross talk between cellular and systems level explanations of how learning sculpts brain structure. PMID:22426254

  16. Neural plasticity: changes with age.

    PubMed

    Nieto-Sampedro, M; Nieto-Díaz, M

    2005-01-01

    Changes in the number, type and function of nervous system connections, in the morphology and function of glia and in neuron-glia interactions, are at the basis of vertebrate adjustment to changing environmental and physiological conditions. Collected under "neural plasticity", these age-dependent changes underlie adaptations apparently as different as the physiological response to dehydration or learning, and its electrophysiological and morphological correlates.

  17. Homegrown lubricants and plastics. [Brassica

    SciTech Connect

    Senft, D.

    1988-10-01

    A small bushy lesquerella plant of the mustard family growing wild in Arizona, New Mexico, Oklahoma and Texas produces seeds that may be used to make lubricants, plastics, protective coatings, surfactants, and pharmaceuticals. The plant thrives on poor soils that receive as little as 10 inches of rain a year. Studies to date indicate that target yields can be reached with a reasonable breeding effort coupled with agronomic research.

  18. Plastic Deformations in Complex Plasmas

    SciTech Connect

    Durniak, C.; Samsonov, D.

    2011-04-29

    Complex plasmas are macroscopic model systems of real solids and liquids, used to study underdamped dynamics and wave phenomena. Plastic deformations of complex plasma crystals under slow uniaxial compression have been studied experimentally and numerically. It is shown that the lattice becomes locally sheared and that this strain is relaxed by shear slips resulting in global uniform compression and heat generation. Shear slips generate pairs of dislocations which move in opposite directions at subsonic speeds.

  19. Biobased plastics in a bioeconomy.

    PubMed

    Philp, J C; Ritchie, R J; Guy, K

    2013-02-01

    Bioeconomy plans include a biobased industries sector in which some oil-derived plastics and chemicals are replaced by new or equivalent products derived, at least partially, from biomass. Some of these biobased products are here today, but to fulfil their societal potential, greater attention is required to promote awareness, and to improve their market share while making valuable contributions to climate change mitigation. PMID:23333433

  20. Anaesthetic complications in plastic surgery.

    PubMed

    Nath, Soumya Sankar; Roy, Debashis; Ansari, Farrukh; Pawar, Sundeep T

    2013-05-01

    Anaesthesia related complications in plastic surgeries are fortunately rare, but potentially catastrophic. Maintaining patient safety in the operating room is a major concern of anaesthesiologists, surgeons, hospitals and surgical facilities. Circumventing preventable complications is essential and pressure to avoid these complications in cosmetic surgery is increasing. Key aspects of patient safety in the operating room are outlined, including patient positioning, airway management and issues related to some specific conditions, essential for minimizing post-operative morbidity. Risks associated with extremes of age in the plastic surgery population, may be minimised by a better understanding of the physiologic changes as well as the pre-operative and post-operative considerations in caring for this special group of patients. An understanding of the anaesthesiologist's concerns during paediatric plastic surgical procedures can facilitate the coordination of efforts between the multiple services involved in the care of these children. Finally, the reader will have a better understanding of the perioperative care of unique populations including the morbidly obese and the elderly. Attention to detail in these aspects of patient safety can help avoid unnecessary complication and significantly improve the patients' experience and surgical outcome. PMID:24501480

  1. The Future of Plastic Surgery: Surgeon's Perspective.

    PubMed

    Ozturk, Sinan; Karagoz, Huseyin; Zor, Fatih

    2015-11-01

    Since the days of Sushruta, innovation has shaped the history of plastic surgery. Plastic surgeons have always been known as innovators or close followers of innovations. With this descriptive international survey study, the authors aimed to evaluate the future of plastic surgeons by analyzing how plastic surgery and plastic surgeons will be affected by new trends in medicine. Aesthetic surgery is the main subclass of plastic surgery thought to be the one that will change the most in the future. Stem cell therapy is considered by plastic surgeons to be the most likely "game changer." Along with changes in surgery, plastic surgeons also expect changes in plastic surgery education. The most approved assumption for the future of plastic surgery is, "The number of cosmetic nonsurgical procedures will increase in the future." If surgeons want to have better outcomes in their practice, they must at least be open minded for innovations if they do not become innovators themselves. Besides the individual effort of each surgeon, international and local plastic surgery associations should develop new strategies to adopt these innovations in surgical practice and education.

  2. Applications and societal benefits of plastics.

    PubMed

    Andrady, Anthony L; Neal, Mike A

    2009-07-27

    This article explains the history, from 1600 BC to 2008, of materials that are today termed 'plastics'. It includes production volumes and current consumption patterns of five main commodity plastics: polypropylene, polyethylene, polyvinyl chloride, polystyrene and polyethylene terephthalate. The use of additives to modify the properties of these plastics and any associated safety, in use, issues for the resulting polymeric materials are described. A comparison is made with the thermal and barrier properties of other materials to demonstrate the versatility of plastics. Societal benefits for health, safety, energy saving and material conservation are described, and the particular advantages of plastics in society are outlined. Concerns relating to littering and trends in recycling of plastics are also described. Finally, we give predictions for some of the potential applications of plastic over the next 20 years.

  3. Adequacy of the rigorous coupled-wave approach for thin-film silicon solar cells with periodically corrugated metallic backreflectors: spectral analysis.

    PubMed

    Shuba, Mikhail V; Faryad, Muhammad; Solano, Manuel E; Monk, Peter B; Lakhtakia, Akhlesh

    2015-07-01

    The rigorous coupled-wave approach (RCWA) is extensively used to compute optical absorption and photon absorption in thin-film photovoltaic solar cells backed by 1D metallic gratings when the wave vector of the incident light lies wholly in the grating plane. The RCWA algorithm converges rapidly for incident s-polarized light over the entire 400-1100 nm solar spectrum. It also performs well for incident p-polarized light in the 400-650 nm spectral regime, but even with a large number of Floquet harmonics in the solution, the total reflectance is underestimated in the 650-1100 nm spectral regime. Despite that shortcoming, the RCWA underestimates the solar-spectrum-integrated photon absorption rate only by 5%-10% for p-polarized light. As sunlight is almost unpolarized, the RCWA should be considered adequate to design thin-film silicon solar cells with periodically corrugated metallic backreflectors.

  4. Development of a Propagating Millimeter-Wave Beam Position and Profile Monitor in the Oversize Corrugated Waveguide Used in an ECRH System

    NASA Astrophysics Data System (ADS)

    Shimozuma, Takashi; Kobayashi, Sakuji; Ito, Satoshi; Ito, Yasuhiko; Kubo, Shin; Yoshimura, Yasuo; Nishiura, Masaki; Igami, Hiroe; Takahashi, Hiromi; Mizuno, Yoshinori; Okada, Kohta; Mutoh, Takashi

    2016-01-01

    In a high-power electron cyclotron resonance heating (ECRH) system for plasma heating, a long-distance and low-loss transmission system of the millimeter wave is required. A real-time monitor of the millimeter-wave beam position and its intensity profile, which can be used in a high-power, evacuated, and cooled transmission line, is proposed, designed, manufactured, and tested. The beam-position and profile monitor (BPM) consists of a reflector, Peltier-device array, and a heat-sink, which is installed in the reflector-plate of a miterbend. The BPM was tested using both simulated electric heater power and high-power gyrotron output power. The profile obtained from the monitor using the gyrotron output was well agreed with the burn patter on a thermal sensitive paper. Methods of data analysis and mode-content analysis of a propagating millimeter-wave in the corrugated waveguide are proposed.

  5. Adequacy of the rigorous coupled-wave approach for thin-film silicon solar cells with periodically corrugated metallic backreflectors: spectral analysis.

    PubMed

    Shuba, Mikhail V; Faryad, Muhammad; Solano, Manuel E; Monk, Peter B; Lakhtakia, Akhlesh

    2015-07-01

    The rigorous coupled-wave approach (RCWA) is extensively used to compute optical absorption and photon absorption in thin-film photovoltaic solar cells backed by 1D metallic gratings when the wave vector of the incident light lies wholly in the grating plane. The RCWA algorithm converges rapidly for incident s-polarized light over the entire 400-1100 nm solar spectrum. It also performs well for incident p-polarized light in the 400-650 nm spectral regime, but even with a large number of Floquet harmonics in the solution, the total reflectance is underestimated in the 650-1100 nm spectral regime. Despite that shortcoming, the RCWA underestimates the solar-spectrum-integrated photon absorption rate only by 5%-10% for p-polarized light. As sunlight is almost unpolarized, the RCWA should be considered adequate to design thin-film silicon solar cells with periodically corrugated metallic backreflectors. PMID:26367148

  6. Hydrogen bonding motifs, spectral characterization, theoretical computations and anticancer studies on chloride salt of 6-mercaptopurine: An assembly of corrugated lamina shows enhanced solubility

    NASA Astrophysics Data System (ADS)

    Suresh Kumar, S.; Athimoolam, S.; Sridhar, B.

    2015-10-01

    6-Mercaptopurine (an anti cancer drug), is coming under the class II Biopharmaceutics Classification System (BCS). In order to enhance the solubility with retained physiochemical/pharmaceutical properties, the present work was attempted with its salt form. The single crystals of 6-mercaptopurinium chloride (6MPCl) were successfully grown by slow evaporation technique under ambient temperature. The X-ray diffraction study shows that the crystal packing is dominated by N-H⋯Cl classical hydrogen bonds leading to corrugated laminar network. The hydrogen bonds present in the lamina can be dismantled as three chain C21(6), C21(7) and C21(8) motifs running along ab-diagonal of the unit cell. These primary chain motifs are interlinked to each other forming ring R63(21) motifs. These chain and ring motifs are aggregated like a dendrimer structure leading to the above said corrugated lamina. This low dimensional molecular architecture differs from the ladder like arrays in pure drug though it possess lattice water molecule in lieu of the chloride anion in the present compound. Geometrical optimizations of 6MPCl were done by Density Functional Theory (DFT) using B3LYP function with two different basis sets. The optimized molecular geometries and computed vibrational spectra are compared with their experimental counterparts. The Natural Bond Orbital (NBO) analysis was carried out to interpret hyperconjugative interaction and Intramolecular Charge Transfer (ICT). The chemical hardness, electronegativity, chemical potential and electrophilicity index of 6MPCl were found along with the HOMO-LUMO plot. The lower band gap value obtained from the Frontier Molecular Orbital (FMO) analysis reiterates the pharmaceutical activity of the compound. The anticancer studies show that 6MPCl retains its activity against human cervical cancer cell line (HeLa). Hence, this anticancer efficacy and improved solubility demands 6MPCl towards the further pharmaceutical applications.

  7. Termination of plastic-clad fiber. [Plastic-clad silica

    SciTech Connect

    Nance, W.R.

    1982-03-01

    Optical waveguides are ideal in a nuclear weapon environment because of their resistance to electromagnetic interference. Of the fibers on today's market, plastic-clad silica (PCS) is the most radiation resistant and therfore the best choice. Because terminating PCS is complex, this paper attemps to address the major problems associated with these terminations including selecting the proper connector and optimizing the terminating procedures. The sources of losses in the connectors are summarized and typical loss values are given for four connectors which were tested.

  8. Recycling of plastic waste: Presence of phthalates in plastics from households and industry.

    PubMed

    Pivnenko, K; Eriksen, M K; Martín-Fernández, J A; Eriksson, E; Astrup, T F

    2016-08-01

    Plastics recycling has the potential to substitute virgin plastics partially as a source of raw materials in plastic product manufacturing. Plastic as a material may contain a variety of chemicals, some potentially hazardous. Phthalates, for instance, are a group of chemicals produced in large volumes and are commonly used as plasticisers in plastics manufacturing. Potential impacts on human health require restricted use in selected applications and a need for the closer monitoring of potential sources of human exposure. Although the presence of phthalates in a variety of plastics has been recognised, the influence of plastic recycling on phthalate content has been hypothesised but not well documented. In the present work we analysed selected phthalates (DMP, DEP, DPP, DiBP, DBP, BBzP, DEHP, DCHP and DnOP) in samples of waste plastics as well as recycled and virgin plastics. DBP, DiBP and DEHP had the highest frequency of detection in the samples analysed, with 360μg/g, 460μg/g and 2700μg/g as the maximum measured concentrations, respectively. Among other, statistical analysis of the analytical results suggested that phthalates were potentially added in the later stages of plastic product manufacturing (labelling, gluing, etc.) and were not removed following recycling of household waste plastics. Furthermore, DEHP was identified as a potential indicator for phthalate contamination of plastics. Close monitoring of plastics intended for phthalates-sensitive applications is recommended if recycled plastics are to be used as raw material in production.

  9. Recycling of plastic waste: Presence of phthalates in plastics from households and industry.

    PubMed

    Pivnenko, K; Eriksen, M K; Martín-Fernández, J A; Eriksson, E; Astrup, T F

    2016-08-01

    Plastics recycling has the potential to substitute virgin plastics partially as a source of raw materials in plastic product manufacturing. Plastic as a material may contain a variety of chemicals, some potentially hazardous. Phthalates, for instance, are a group of chemicals produced in large volumes and are commonly used as plasticisers in plastics manufacturing. Potential impacts on human health require restricted use in selected applications and a need for the closer monitoring of potential sources of human exposure. Although the presence of phthalates in a variety of plastics has been recognised, the influence of plastic recycling on phthalate content has been hypothesised but not well documented. In the present work we analysed selected phthalates (DMP, DEP, DPP, DiBP, DBP, BBzP, DEHP, DCHP and DnOP) in samples of waste plastics as well as recycled and virgin plastics. DBP, DiBP and DEHP had the highest frequency of detection in the samples analysed, with 360μg/g, 460μg/g and 2700μg/g as the maximum measured concentrations, respectively. Among other, statistical analysis of the analytical results suggested that phthalates were potentially added in the later stages of plastic product manufacturing (labelling, gluing, etc.) and were not removed following recycling of household waste plastics. Furthermore, DEHP was identified as a potential indicator for phthalate contamination of plastics. Close monitoring of plastics intended for phthalates-sensitive applications is recommended if recycled plastics are to be used as raw material in production. PMID:27211312

  10. A review of plastic waste biodegradation.

    PubMed

    Zheng, Ying; Yanful, Ernest K; Bassi, Amarjeet S

    2005-01-01

    With more and more plastics being employed in human lives and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. This review looks at the technological advancement made in the development of more easily biodegradable plastics and the biodegradation of conventional plastics by microorganisms. Additives, such as pro-oxidants and starch, are applied in synthetic materials to modify and make plastics biodegradable. Recent research has shown that thermoplastics derived from polyolefins, traditionally considered resistant to biodegradation in ambient environment, are biodegraded following photo-degradation and chemical degradation. Thermoset plastics, such as aliphatic polyester and polyester polyurethane, are easily attacked by microorganisms directly because of the potential hydrolytic cleavage of ester or urethane bonds in their structures. Some microorganisms have been isolated to utilize polyurethane as a sole source of carbon and nitrogen source. Aliphatic-aromatic copolyesters have active commercial applications because of their good mechanical properties and biodegradability. Reviewing published and ongoing studies on plastic biodegradation, this paper attempts to make conclusions on potentially viable methods to reduce impacts of plastic waste on the environment.

  11. Homogenization in micro-plasticity

    NASA Astrophysics Data System (ADS)

    Berdichevsky, Victor L.

    2005-11-01

    Homogenized descriptions of plasticity on micro- and macro-scale are essentially different. A key distinction is that the energy of micron-size specimens, in contrast to that of macro-specimens, is not a functional of integral characteristics of the dislocation networks. Thus, energy must be considered as an independent characteristic of the body which is additional to all other characteristics. In this paper, a homogenized description of dislocation motion on the micro-scale is proposed. The theory is considered for the case of anti-plane constrained shear which admits an analytical treatment.

  12. Glassy features of crystal plasticity

    NASA Astrophysics Data System (ADS)

    Lehtinen, Arttu; Costantini, Giulio; Alava, Mikko J.; Zapperi, Stefano; Laurson, Lasse

    2016-08-01

    Crystal plasticity occurs by deformation bursts due to the avalanchelike motion of dislocations. Here we perform extensive numerical simulations of a three-dimensional dislocation dynamics model under quasistatic stress-controlled loading. Our results show that avalanches are power-law distributed and display peculiar stress and sample size dependence: The average avalanche size grows exponentially with the applied stress, and the amount of slip increases with the system size. These results suggest that intermittent deformation processes in crystalline materials exhibit an extended critical-like phase in analogy to glassy systems instead of originating from a nonequilibrium phase transition critical point.

  13. Plasticity of hematopoietic stem cells.

    PubMed

    Ogawa, Makio; LaRue, Amanda C; Mehrotra, Meenal

    2015-01-01

    Almost two decades ago, a number of cell culture and preclinical transplantation studies suggested the striking concept of the tissue-reconstituting ability of hematopoietic stem cells (HSCs). While this heralded an exciting time of radically new therapies for disorders of many organs and tissues, the concept was soon mired by controversy and remained dormant. This chapter provides a brief review of evidence for HSC plasticity including our findings based on single HSC transplantation in mouse. These studies strongly support the concept that HSCs are pluripotent and may be the source for the majority, if not all, of the cell types in our body. PMID:26590762

  14. On the plasticity event in metallic glass

    NASA Astrophysics Data System (ADS)

    Liu, Weidong; Ruan, Haihui; Zhang, Liangchi

    2013-03-01

    Based on a systematic molecular dynamics analysis, this study reveals that plastic deformation of metallic glass is not through a uniform configuration change but via many localized plasticity events. These events are manifested by the atomic clusters of high kinetic energy and high strain rate, emerging even in the elastic deformation regime. The life of such a plasticity event is on the order of 10-12 s, during which the distribution of kinetic energy follows a power law. The study shows that yielding in metallic glass occurs at the sudden surge point of the number of plasticity events. In the steady plastic deformation regime, the continuous nucleation and annihilation of the plastic events lead to a steady flow stress and stabilized total potential energy.

  15. Applications and societal benefits of plastics

    PubMed Central

    Andrady, Anthony L.; Neal, Mike A.

    2009-01-01

    This article explains the history, from 1600 BC to 2008, of materials that are today termed ‘plastics’. It includes production volumes and current consumption patterns of five main commodity plastics: polypropylene, polyethylene, polyvinyl chloride, polystyrene and polyethylene terephthalate. The use of additives to modify the properties of these plastics and any associated safety, in use, issues for the resulting polymeric materials are described. A comparison is made with the thermal and barrier properties of other materials to demonstrate the versatility of plastics. Societal benefits for health, safety, energy saving and material conservation are described, and the particular advantages of plastics in society are outlined. Concerns relating to littering and trends in recycling of plastics are also described. Finally, we give predictions for some of the potential applications of plastic over the next 20 years. PMID:19528050

  16. Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity

    PubMed Central

    Murren, C J; Auld, J R; Callahan, H; Ghalambor, C K; Handelsman, C A; Heskel, M A; Kingsolver, J G; Maclean, H J; Masel, J; Maughan, H; Pfennig, D W; Relyea, R A; Seiter, S; Snell-Rood, E; Steiner, U K; Schlichting, C D

    2015-01-01

    Phenotypic plasticity is ubiquitous and generally regarded as a key mechanism for enabling organisms to survive in the face of environmental change. Because no organism is infinitely or ideally plastic, theory suggests that there must be limits (for example, the lack of ability to produce an optimal trait) to the evolution of phenotypic plasticity, or that plasticity may have inherent significant costs. Yet numerous experimental studies have not detected widespread costs. Explicitly differentiating plasticity costs from phenotype costs, we re-evaluate fundamental questions of the limits to the evolution of plasticity and of generalists vs specialists. We advocate for the view that relaxed selection and variable selection intensities are likely more important constraints to the evolution of plasticity than the costs of plasticity. Some forms of plasticity, such as learning, may be inherently costly. In addition, we examine opportunities to offset costs of phenotypes through ontogeny, amelioration of phenotypic costs across environments, and the condition-dependent hypothesis. We propose avenues of further inquiry in the limits of plasticity using new and classic methods of ecological parameterization, phylogenetics and omics in the context of answering questions on the constraints of plasticity. Given plasticity's key role in coping with environmental change, approaches spanning the spectrum from applied to basic will greatly enrich our understanding of the evolution of plasticity and resolve our understanding of limits. PMID:25690179

  17. Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity.

    PubMed

    Murren, C J; Auld, J R; Callahan, H; Ghalambor, C K; Handelsman, C A; Heskel, M A; Kingsolver, J G; Maclean, H J; Masel, J; Maughan, H; Pfennig, D W; Relyea, R A; Seiter, S; Snell-Rood, E; Steiner, U K; Schlichting, C D

    2015-10-01

    Phenotypic plasticity is ubiquitous and generally regarded as a key mechanism for enabling organisms to survive in the face of environmental change. Because no organism is infinitely or ideally plastic, theory suggests that there must be limits (for example, the lack of ability to produce an optimal trait) to the evolution of phenotypic plasticity, or that plasticity may have inherent significant costs. Yet numerous experimental studies have not detected widespread costs. Explicitly differentiating plasticity costs from phenotype costs, we re-evaluate fundamental questions of the limits to the evolution of plasticity and of generalists vs specialists. We advocate for the view that relaxed selection and variable selection intensities are likely more important constraints to the evolution of plasticity than the costs of plasticity. Some forms of plasticity, such as learning, may be inherently costly. In addition, we examine opportunities to offset costs of phenotypes through ontogeny, amelioration of phenotypic costs across environments, and the condition-dependent hypothesis. We propose avenues of further inquiry in the limits of plasticity using new and classic methods of ecological parameterization, phylogenetics and omics in the context of answering questions on the constraints of plasticity. Given plasticity's key role in coping with environmental change, approaches spanning the spectrum from applied to basic will greatly enrich our understanding of the evolution of plasticity and resolve our understanding of limits.

  18. Plastic Recycling Experiments in Materials Education

    NASA Technical Reports Server (NTRS)

    Liu, Ping; Waskom, Tommy L.

    1996-01-01

    The objective of this project was to introduce a series of plastic recycling experiments to students in materials-related courses such as materials science, material technology and materials testing. With the plastic recycling experiments, students not only can learn the fundamentals of plastic processing and properties as in conventional materials courses, but also can be exposed to the issue of materials life cycle and the impact on society and environment.

  19. Neuroimaging and plasticity in schizophrenia.

    PubMed

    Meyer-Lindenberg, Andreas; Tost, Heike

    2014-01-01

    Schizophrenia is a frequent and highly heritable brain disorder that typically manifests around or after puberty and has a fluctuating course. Multiple lines of evidence point to a neurodevelopmental origin of the illness and suggest that its (post) pubertal manifestation is related to genetic and environmental risk factors that interfere with the structural and functional reorganization of neural networks at this time. Longitudinal structural neuroimaging studies point to a progressive reduction in gray matter volume in many brain regions in schizophrenia. It has been proposed that these neuroimaging observations reflect an enduring disturbance of experience-dependent synaptic plasticity arising from developmental abnormalities in key neural circuits implicated in schizophrenia, including dorsolateral prefrontal cortex and hippocampal formation. Recent work has identified genetic variants linked to neural plasticity that are associated with changes in these circuits. Furthermore, non-invasive interventions such as transcranial magnetic stimulation have been shown to impact some of these systems-level intermediate phenotypes, suggesting a modifiability of these core pathophysiological processes of schizophrenia that may be exploited by therapy. PMID:23902983

  20. Optical plasticity in fish lenses.

    PubMed

    Kröger, Ronald H H

    2013-05-01

    In a typical fish eye, the crystalline lens is the only refractive element. It is spherical in shape and has high refractive power. Most fish species have elaborate color vision and spectral sensitivity may range from the near-infrared to the near-ultraviolet. Longitudinal chromatic aberration exceeds depth of focus and chromatic blur is compensated for by species-specific multifocality of the lens. The complex optical properties of fish lenses are subject to accurate regulation, including circadian reversible adjustments and irreversible developmental tuning. The mechanisms optimize the transfer of visual information to the retina in diverse and variable environments, and allow for rapid evolutionary changes in color vision. Active optical tuning of the lens is achieved by changes in the refractive index gradient and involves layers of mature, denucleated lens fiber cells. First steps have been taken toward unraveling the signaling systems controlling lens optical plasticity. Multifocal lenses compensating for chromatic blur are common in all major groups of vertebrates, including birds and mammals. Furthermore, the optical quality of a monofocal lens, such as in the human eye, is equally sensitive to the exact shape of the refractive index profile. Optical plasticity in the crystalline lens may thus be present in vertebrates in general.

  1. Phenotypic plasticity in bacterial plasmids.

    PubMed Central

    Turner, Paul E

    2004-01-01

    Plasmid pB15 was previously shown to evolve increased horizontal (infectious) transfer at the expense of reduced vertical (intergenerational) transfer and vice versa, a key trade-off assumed in theories of parasite virulence. Whereas the models predict that susceptible host abundance should determine which mode of transfer is selectively favored, host density failed to mediate the trade-off in pB15. One possibility is that the plasmid's transfer deviates from the assumption that horizontal spread (conjugation) occurs in direct proportion to cell density. I tested this hypothesis using Escherichia coli/pB15 associations in laboratory serial culture. Contrary to most models of plasmid transfer kinetics, my data show that pB15 invades static (nonshaking) bacterial cultures only at intermediate densities. The results can be explained by phenotypic plasticity in traits governing plasmid transfer. As cells become more numerous, the plasmid's conjugative transfer unexpectedly declines, while the trade-off between transmission routes causes vertical transfer to increase. Thus, at intermediate densities the plasmid's horizontal transfer can offset selection against plasmid-bearing cells, but at high densities pB15 conjugates so poorly that it cannot invade. I discuss adaptive vs. nonadaptive causes for the phenotypic plasticity, as well as potential mechanisms that may lead to complex transfer dynamics of plasmids in liquid environments. PMID:15166133

  2. Crossmodal plasticity in sensory loss.

    PubMed

    Frasnelli, Johannes; Collignon, Olivier; Voss, Patrice; Lepore, Franco

    2011-01-01

    In this review, we describe crossmodal plasticity following sensory loss in three parts, with each section focusing on one sensory system. We summarize a wide range of studies showing that sensory loss may lead, depending of the affected sensory system, to functional changes in other, primarily not affected senses, which range from heightened to lowered abilities. In the first part, the effects of blindness on mainly audition and touch are described. The latest findings on brain reorganization in blindness are reported, with a particular emphasis on imaging studies illustrating how nonvisual inputs recruit the visually deafferented occipital cortex. The second part covers crossmodal processing in deafness, with a special focus on the effects of deafness on visual processing. In the last portion of this review, we present the effects that the loss of a chemical sense have on the sensitivity of the other chemical senses, that is, smell, taste, and trigeminal chemosensation. We outline how the convergence of the chemical senses to the same central processing areas may lead to the observed reduction in sensitivity of the primarily not affected senses. Altogether, the studies reviewed herein illustrate the fascinating plasticity of the brain when coping with sensory deprivation. PMID:21741555

  3. Neuroimaging and plasticity in schizophrenia.

    PubMed

    Meyer-Lindenberg, Andreas; Tost, Heike

    2014-01-01

    Schizophrenia is a frequent and highly heritable brain disorder that typically manifests around or after puberty and has a fluctuating course. Multiple lines of evidence point to a neurodevelopmental origin of the illness and suggest that its (post) pubertal manifestation is related to genetic and environmental risk factors that interfere with the structural and functional reorganization of neural networks at this time. Longitudinal structural neuroimaging studies point to a progressive reduction in gray matter volume in many brain regions in schizophrenia. It has been proposed that these neuroimaging observations reflect an enduring disturbance of experience-dependent synaptic plasticity arising from developmental abnormalities in key neural circuits implicated in schizophrenia, including dorsolateral prefrontal cortex and hippocampal formation. Recent work has identified genetic variants linked to neural plasticity that are associated with changes in these circuits. Furthermore, non-invasive interventions such as transcranial magnetic stimulation have been shown to impact some of these systems-level intermediate phenotypes, suggesting a modifiability of these core pathophysiological processes of schizophrenia that may be exploited by therapy.

  4. Network-timing-dependent plasticity

    PubMed Central

    Delattre, Vincent; Keller, Daniel; Perich, Matthew; Markram, Henry; Muller, Eilif B.

    2015-01-01

    Bursts of activity in networks of neurons are thought to convey salient information and drive synaptic plasticity. Here we report that network bursts also exert a profound effect on Spike-Timing-Dependent Plasticity (STDP). In acute slices of juvenile rat somatosensory cortex we paired a network burst, which alone induced long-term depression (LTD), with STDP-induced long-term potentiation (LTP) and LTD. We observed that STDP-induced LTP was either unaffected, blocked or flipped into LTD by the network burst, and that STDP-induced LTD was either saturated or flipped into LTP, depending on the relative timing of the network burst with respect to spike coincidences of the STDP event. We hypothesized that network bursts flip STDP-induced LTP to LTD by depleting resources needed for LTP and therefore developed a resource-dependent STDP learning rule. In a model neural network under the influence of the proposed resource-dependent STDP rule, we found that excitatory synaptic coupling was homeostatically regulated to produce power law distributed burst amplitudes reflecting self-organized criticality, a state that ensures optimal information coding. PMID:26106298

  5. The plasticity of social emotions.

    PubMed

    Klimecki, Olga M

    2015-01-01

    Social emotions such as empathy or compassion greatly facilitate our interactions with others. Despite the importance of social emotions, scientific studies have only recently revealed functional neural plasticity associated with the training of such emotions. Using the framework of two antagonistic neural systems, the threat and social disconnection system on the one hand, and the reward and social connection system on the other, this article describes how training compassion and empathy can change the functioning of these systems in a targeted manner. Whereas excessive empathic sharing of suffering can increase negative feelings and activations in the insula and anterior cingulate cortex (corresponding to the threat and social disconnection system), compassion training can strengthen positive affect and neural activations in the medial orbitofrontal cortex and striatum (corresponding to the reward and social connection system). These neuroimaging findings are complemented by results from behavioral studies showing that compassion is linked to helping and forgiveness behavior, whereas empathic distress not only decreases helping behavior, but is even associated with increased aggressive behavior. Taken together, these data provide encouraging evidence for the plasticity of adaptive social emotions with wide-ranging implications for basic science and applied settings. PMID:26369728

  6. Fabrication of plastic microfluidic components

    NASA Astrophysics Data System (ADS)

    Martin, Peter M.; Matson, Dean W.; Bennett, Wendy D.; Hammerstrom, D. J.

    1998-09-01

    Plastic components have many advantages, including ease of fabrication, low cost, chemical inertness, lightweight, and disposability. We report on the fabrication of three plastics-based microfluidic components: a motherboard, a dialysis unit, and a metal sensor. Microchannels, headers, and interconnects were produced in thin sheets (>=50 microns) of polyimide, PMMA, polyethylene, and polycarbonate using a direct-write excimer laser micromachining system. Machined sheets were laminated by thermal and adhesive bonding to form leak-tight microfluidic components. The microfluidic motherboard borrowed the `functionality on a chip' concept from the electronics industry and was the heart of a complex microfluidic analytical device. The motherboard platform was designed to be tightly integrated and self-contained (i.e., liquid flows are all confined within machined microchannels), reducing the need for tubing with fluid distribution and connectivity. This concept greatly facilitated system integration and miniaturization. As fabricated, the motherboard consisted of three fluid reservoirs connected to micropumps by microchannels. The fluids could either be pumped independently or mixed in microchannels prior to being directed to exterior analytical components via outlet ports. The microdialysis device was intended to separate electrolytic solutes from low volume samples prior to mass spectrometric analysis. The device consisted of a dialysis membrane laminated between opposed serpentine microchannels containing the sample fluid and a buffer solution. The laminated metal sensor consisted of fluid reservoirs, micro-flow channels, micropumps, mixing channels, reaction channels, and detector circuitry.

  7. The plasticity of social emotions.

    PubMed

    Klimecki, Olga M

    2015-01-01

    Social emotions such as empathy or compassion greatly facilitate our interactions with others. Despite the importance of social emotions, scientific studies have only recently revealed functional neural plasticity associated with the training of such emotions. Using the framework of two antagonistic neural systems, the threat and social disconnection system on the one hand, and the reward and social connection system on the other, this article describes how training compassion and empathy can change the functioning of these systems in a targeted manner. Whereas excessive empathic sharing of suffering can increase negative feelings and activations in the insula and anterior cingulate cortex (corresponding to the threat and social disconnection system), compassion training can strengthen positive affect and neural activations in the medial orbitofrontal cortex and striatum (corresponding to the reward and social connection system). These neuroimaging findings are complemented by results from behavioral studies showing that compassion is linked to helping and forgiveness behavior, whereas empathic distress not only decreases helping behavior, but is even associated with increased aggressive behavior. Taken together, these data provide encouraging evidence for the plasticity of adaptive social emotions with wide-ranging implications for basic science and applied settings.

  8. Plastics on the Sargasso sea surface.

    PubMed

    Carpenter, E J; Smith, K L

    1972-03-17

    Plastic particles, in concentrations averaging 3500 pieces and 290 grams per square kilometer, are widespread in the western Sargasso Sea. Pieces are brittle, apparently due to the weathering of the plasticizers, and many are in a pellet shape about 0.25 to 0.5 centimeters in diameter. The particles are surfaces for the attachment of diatoms and hydroids. Increasing production of plastics, combined with present waste-disposal practices, will undoubtedly lead to increases in the concentration of these particles. Plastics could be a source of some of the polychlorinated biphenyls recently observed in oceanic organisms.

  9. Waste product profile: Plastic film and bags

    SciTech Connect

    Miller, C.

    1996-10-01

    Plastic film is recycled by being pelletized following a granulation or densifying process. Manufacturing and converting plants are the major sources of plastic film for recycling because they can supply sufficient amounts of clean raw material of a known resin type. Post-consumer collection programs are more recent. They tend to focus on businesses such as grocery stores that are large generators of plastic bags. In this case, the recycling process is more complex, requiring sorting, washing, and removal of contaminants as a first step. Curbside collection of plastic bags is rare.

  10. Extruded plastic scintillator for MINERvA

    SciTech Connect

    Pla-Dalmau, Anna; Bross, Alan D.; Rykalin, Victor V.; Wood, Brian M.; /NICADD, DeKalb

    2005-11-01

    An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. A new experiment at Fermilab is pursuing the use of extruded plastic scintillator. A new plastic scintillator strip is being tested and its properties characterized. The initial results are presented here.

  11. Plastics processing: statistics, current practices, and evaluation.

    PubMed

    Cooke, F

    1993-11-01

    The health care industry uses a huge quantity of plastic materials each year. Much of the machinery currently used, or supplied, for plastics processing is unsuitable for use in a clean environment. In this article, the author outlines the reasons for the current situation and urges companies to re-examine their plastic-processing methods, whether performed in-house or subcontracted out. Some of the factors that should be considered when evaluating plastics-processing equipment are outlined to assist companies in remaining competitive and complying with impending EC regulations on clean room standards for manufacturing areas.

  12. For lighter cars, a heavier plastics diet

    SciTech Connect

    Not Available

    1980-09-17

    The competition between plastics and aluminum for use in automobile components will intensify after 1985, since up to that time the automobile industry will rely primarily on size reduction to reduce automobile weights. If 1985 automobiles are to achieve 50 mpg, the average weight will have to be cut from the current 2120 lb to 1300 lb, which will require the use of 1000 lb of lightweight material. The cost of plastics in the lightweight car would be less than the cost of aluminum, and the equipment for working plastics is cheaper than metalworking equipment. The equipment for working plastics operates more slowly , however, and plastics cannot withstand the 400/sup 0/F heat of paint ovens, or acquire as good a finish as aluminum. According to the Society of the Plastics Industry Inc., the 1979 uses of plastics in U.S. transportation equipment amounted to (in millions of lb): all thermosets, 569; polyesters, 362; urea and melamine, 24; phenolics, 171; polyurethane foam, 418; all thermoplastics, 1365; low-density polyethylene, 56; high-density polyethylene, 90; polypropylene, 260; ABS and SAN, 317; polystyrene, 23; nylon, 96; PVC, 270; all other thermoplastics, 187; and all plastics (excluding polyurethane foam), 1934. Uses of plastics in specific automobile models are discussed.

  13. Heterosynaptic Plasticity: Multiple Mechanisms and Multiple Roles

    PubMed Central

    Chistiakova, Marina; Bannon, Nicholas M.; Bazhenov, Maxim; Volgushev, Maxim

    2016-01-01

    Plasticity is a universal property of synapses. It is expressed in a variety of forms mediated by a multitude of mechanisms. Here we consider two broad kinds of plasticity that differ in their requirement for presynaptic activity during the induction. Homosynaptic plasticity occurs at synapses that were active during the induction. It is also called input specific or associative, and it is governed by Hebbian-type learning rules. Heterosynaptic plasticity can be induced by episodes of strong postsynaptic activity also at synapses that were not active during the induction, thus making any synapse at a cell a target to heterosynaptic changes. Both forms can be induced by typical protocols used for plasticity induction and operate on the same time scales but have differential computational properties and play different roles in learning systems. Homosynaptic plasticity mediates associative modifications of synaptic weights. Heterosynaptic plasticity counteracts runaway dynamics introduced by Hebbian-type rules and balances synaptic changes. It provides learning systems with stability and enhances synaptic competition. We conclude that homosynaptic and heterosynaptic plasticity represent complementary properties of modifiable synapses, and both are necessary for normal operation of neural systems with plastic synapses. PMID:24727248

  14. National Plastics Corporation: Energy Assessment Helps Automotive Plastic Parts Maker Save $34,000 Per Year

    SciTech Connect

    Not Available

    2005-09-01

    Industrial Technologies Program's BestPractices case study based on a comprehensive plant assessment conducted at National Plastics Corporation by ITP's Industrial Assessment Center in conjunction with The Society of the Plastics Industry, Inc.

  15. 75 FR 34170 - Plastic Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... Automotive Exteriors, LLC, working out of Troy, Michigan. The workers provided office, engineering and sales... Employment and Training Administration Plastic Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC, Troy, MI; Amended Certification Regarding Eligibility To Apply for...

  16. Melting the Plastic Ceiling: Overcoming Obstacles to Foster Leadership in Women Plastic Surgeons.

    PubMed

    Silva, Amanda K; Preminger, Aviva; Slezak, Sheri; Phillips, Linda G; Johnson, Debra J

    2016-09-01

    The underrepresentation of women leaders in plastic surgery echoes a phenomenon throughout society. The importance of female leadership is presented, and barriers to gender equality in plastic surgery, both intrinsic and extrinsic, are discussed. Strategies for fostering women in leadership on an individual level and for the specialty of plastic surgery are presented. PMID:27556609

  17. Melting the Plastic Ceiling: Overcoming Obstacles to Foster Leadership in Women Plastic Surgeons.

    PubMed

    Silva, Amanda K; Preminger, Aviva; Slezak, Sheri; Phillips, Linda G; Johnson, Debra J

    2016-09-01

    The underrepresentation of women leaders in plastic surgery echoes a phenomenon throughout society. The importance of female leadership is presented, and barriers to gender equality in plastic surgery, both intrinsic and extrinsic, are discussed. Strategies for fostering women in leadership on an individual level and for the specialty of plastic surgery are presented.

  18. Method to separate and recover oil and plastic from plastic contaminated with oil

    DOEpatents

    Smith, Henry M.; Bohnert, George W.; Olson, Ronald B.; Hand, Thomas E.

    1998-01-27

    The present invention provides a method to separate and recover oils and recyclable plastic from plastic contaminated with oil. The invention utilizes the different solubility of oil in as liquid or supercritical fluid as compared to a gas to effect separation of the oil from the plastic.

  19. Method to separate and recover oil and plastic from plastic contaminated with oil

    DOEpatents

    Smith, H.M.; Bohnert, G.W.; Olson, R.B.; Hand, T.E.

    1998-01-27

    The present invention provides a method to separate and recover oils and recyclable plastic from plastic contaminated with oil. The invention utilizes the different solubility of oil in a liquid or supercritical fluid as compared to a gas to effect separation of the oil from the plastic. 3 figs.

  20. Motor cortical plasticity in Parkinson's disease.

    PubMed

    Udupa, Kaviraja; Chen, Robert

    2013-09-04

    In Parkinson's disease (PD), there are alterations of the basal ganglia (BG) thalamocortical networks, primarily due to degeneration of nigrostriatal dopaminergic neurons. These changes in subcortical networks lead to plastic changes in primary motor cortex (M1), which mediates cortical motor output and is a potential target for treatment of PD. Studies investigating the motor cortical plasticity using non-invasive transcranial magnetic stimulation (TMS) have found altered plasticity in PD, but there are inconsistencies among these studies. This is likely because plasticity depends on many factors such as the extent of dopaminergic loss and disease severity, response to dopaminergic replacement therapies, development of l-DOPA-induced dyskinesias (LID), the plasticity protocol used, medication, and stimulation status in patients treated with deep brain stimulation (DBS). The influences of LID and DBS on BG and M1 plasticity have been explored in animal models and in PD patients. In addition, many other factors such age, genetic factors (e.g., brain derived neurotropic factor and other neurotransmitters or receptors polymorphism), emotional state, time of the day, physical fitness have been documented to play role in the extent of plasticity induced by TMS in human studies. In this review, we summarize the studies that investigated M1 plasticity in PD and demonstrate how these afore-mentioned factors affect motor cortical plasticity in PD. We conclude that it is important to consider the clinical, demographic, and technical factors that influence various plasticity protocols while developing these protocols as diagnostic or prognostic tools in PD. We also discuss how the modulation of cortical excitability and the plasticity with these non-invasive brain stimulation techniques facilitate the understanding of the pathophysiology of PD and help design potential therapeutic possibilities in this disorder.

  1. Molecular Signaling in Muscle Plasticity

    NASA Technical Reports Server (NTRS)

    Epstein, Henry F.

    1999-01-01

    Extended spaceflight under microgravity conditions leads to significant atrophy of weight-bearing muscles. Atrophy and hypertrophy are the extreme outcomes of the high degree of plasticity exhibited by skeletal muscle. Stimuli which control muscle plasticity include neuronal, hormonal, nutritional, and mechanical inputs. The mechanical stimulus for muscle is directly related to the work or exercise against a load performed. Little or no work is performed by weight-bearing muscles under microgravity conditions. A major hypothesis is that focal adhesion kinase (FAK) which is associated with integrin at the adherens junctions and costa meres of all skeletal muscles is an integral part of the major mechanism for molecular signaling upon mechanical stimulation in all muscle fibers. Additionally, we propose that myotonic protein kinase (DMPK) and dystrophin (DYSTR) also participate in distinct mechanically stimulated molecular signaling pathways that are most critical in type I and type II muscle fibers, respectively. To test these hypotheses, we will use the paradigms of hindlimb unloading and overloading in mice as models for microgravity conditions and a potential exercise countermeasure, respectively, in mice. We expect that FAK loss-of-function will impair hypertrophy and enhance atrophy in all skeletal muscle fibers whereas DYSTR and DMPK loss-of-function will have similar but more selective effects on Type IT and Type I fibers, respectively. Gene expression will be monitored by muscle-specific creatine kinase M promoter-reporter construct activity and specific MRNA and protein accumulation in the soleus (type I primarily) and plantaris (type 11 primarily) muscles. With these paradigms and assays, the following Specific Project Aims will be tested in genetically altered mice: 1) identify the roles of DYSTR and its pathway; 2) evaluate the roles of the DMPK and its pathway; 3) characterize the roles of FAK and its pathway and 4) genetically analyze the mechanisms

  2. Microstructure in plasticity without nonconvexity

    NASA Astrophysics Data System (ADS)

    Das, Amit; Acharya, Amit; Suquet, Pierre

    2016-03-01

    A simplified one dimensional rate dependent model for the evolution of plastic distortion is obtained from a three dimensional mechanically rigorous model of mesoscale field dislocation mechanics. Computational solutions of variants of this minimal model are investigated to explore the ingredients necessary for the development of microstructure. In contrast to prevalent notions, it is shown that microstructure can be obtained even in the absence of non-monotone equations of state. In this model, incorporation of wave propagative dislocation transport is vital for the modeling of spatial patterning. One variant gives an impression of producing stochastic behavior, despite being a completely deterministic model. The computations focus primarily on demanding macroscopic limit situations, where a convergence study reveals that the model-variant including non-monotone equations of state cannot serve as effective equations in the macroscopic limit; the variant without non-monotone ingredients, in all likelihood, can.

  3. Plastic flow of polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Langer, James

    Leo Kadanoff had a long interest in fluid flows, especially fingering instabilities. This interest was one example of his insatiable curiosity about simple, fundamentally important, and often multidisciplinary phenomena. Here is an example of another class of such phenomena that I had hoped to show him this year. The experts in polycrystalline solid mechanics have insisted for decades that their central problem - dislocation-mediated strain hardening - is intrinsically unsolvable. I think they're wrong. My colleagues and I have made progress recently in theories of both amorphous and polycrystalline plasticity by introducing an effective disorder temperature as a dynamical variable in our equations of motion. In this way, we have been able to describe how the densities of flow defects or dislocations evolve in response to external forcing, and thus to develop theories that promise to become as predictive, and full of surprises, as the laws of fluid flow. For Kadanoff session.

  4. Plastic litter in the sea.

    PubMed

    Depledge, M H; Galgani, F; Panti, C; Caliani, I; Casini, S; Fossi, M C

    2013-12-01

    On June 2013 a workshop at the University of Siena (Italy) was organized to review current knowledge and to clarify what is known, and what remains to be investigated, concerning plastic litter in the sea. The content of the workshop was designed to contribute further to the European Marine Strategy Framework Directive (MSFD) following an inaugural workshop in 2012. Here we report a number of statements relevant to policymakers and scientists that was overwhelming agreement from the participants. Many might view this as already providing sufficient grounds for policy action. At the very least, this early warning of the problems that lie ahead should be taken seriously, and serve as a stimulus for further research.

  5. Vulnerability genes or plasticity genes?

    PubMed Central

    Belsky, J; Jonassaint, C; Pluess, M; Stanton, M; Brummett, B; Williams, R

    2009-01-01

    The classic diathesis–stress framework, which views some individuals as particularly vulnerable to adversity, informs virtually all psychiatric research on behavior–gene–environment (G × E) interaction. An alternative framework of ‘differential susceptibility' is proposed, one which regards those most susceptible to adversity because of their genetic make up as simultaneously most likely to benefit from supportive or enriching experiences—or even just the absence of adversity. Recent G × E findings consistent with this perspective and involving monoamine oxidase-A, 5-HTTLPR (5-hydroxytryptamine-linked polymorphic region polymorphism) and dopamine receptor D4 (DRD4) are reviewed for illustrative purposes. Results considered suggest that putative ‘vulnerability genes' or ‘risk alleles' might, at times, be more appropriately conceptualized as ‘plasticity genes', because they seem to make individuals more susceptible to environmental influences—for better and for worse. PMID:19455150

  6. Brain plasticity-based therapeutics

    PubMed Central

    Merzenich, Michael M.; Van Vleet, Thomas M.; Nahum, Mor

    2014-01-01

    The primary objective of this review article is to summarize how the neuroscience of brain plasticity, exploiting new findings in fundamental, integrative and cognitive neuroscience, is changing the therapeutic landscape for professional communities addressing brain-based disorders and disease. After considering the neurological bases of training-driven neuroplasticity, we shall describe how this neuroscience-guided perspective distinguishes this new approach from (a) the more-behavioral, traditional clinical strategies of professional therapy practitioners, and (b) an even more widely applied pharmaceutical treatment model for neurological and psychiatric treatment domains. With that background, we shall argue that neuroplasticity-based treatments will be an important part of future best-treatment practices in neurological and psychiatric medicine. PMID:25018719

  7. Plastic cars for developing nations

    SciTech Connect

    Ashley, S.

    1997-11-01

    Plastic automobiles may have passed a milestone on the long road to commercial reality with the development of Composite Concept Vehicle (CCV) from Chrysler Corp. in Auburn Hills, Mich. This basic compact car--so basic it could be called bare bones--is built by attaching an injection-molded thermoplastic polyester body onto a tubular steel chassis. The 1,200-pound CCV, which is expected to require one-third the labor and investment needed to build a conventional small car, was designed for new buyers in the emerging economies of China, India, and Southeast Asia. If commercialized, the car would likely cost about $6,000--halfway between a motorcycle and an entry-level auto. The small car was unveiled in September 1996 at the Frankfurt Auto Show in Germany.

  8. COMPOSITES FROM RECYCLED WOOD AND PLASTICS

    EPA Science Inventory

    The ultimate goal of this research was to develop technology to convert recycled wood fiber and plastics into durable products that are recyclable and otherwise environmentally friendly. Two processing technologies were used to prepare wood-plastic composites: air-laying and melt...

  9. Nano-plastics in the aquatic environment.

    PubMed

    Mattsson, K; Hansson, L-A; Cedervall, T

    2015-10-01

    The amount of plastics released to the environment in modern days has increased substantially since the development of modern plastics in the early 1900s. As a result, concerns have been raised by the public about the impact of plastics on nature and on, specifically, aquatic wildlife. Lately, much attention has been paid to macro- and micro-sized plastics and their impact on aquatic organisms. However, micro-sized plastics degrade subsequently into nano-sizes whereas nano-sized particles may be released directly into nature. Such particles have a different impact on aquatic organisms than larger pieces of plastic due to their small size, high surface curvature, and large surface area. This review describes the possible sources of nano-sized plastic, its distribution and behavior in nature, the impact of nano-sized plastic on the well-being of aquatic organisms, and the difference of impact between nano- and micro-sized particles. We also identify research areas which urgently need more attention and suggest experimental methods to obtain useful data. PMID:26337600

  10. 7 CFR 58.348 - Plastic cream.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Plastic cream. 58.348 Section 58.348 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Products Bearing Usda Official Identification § 58.348 Plastic cream. The flavor shall be sweet,...

  11. 7 CFR 58.348 - Plastic cream.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Plastic cream. 58.348 Section 58.348 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Products Bearing Usda Official Identification § 58.348 Plastic cream. The flavor shall be sweet,...

  12. Nano-plastics in the aquatic environment.

    PubMed

    Mattsson, K; Hansson, L-A; Cedervall, T

    2015-10-01

    The amount of plastics released to the environment in modern days has increased substantially since the development of modern plastics in the early 1900s. As a result, concerns have been raised by the public about the impact of plastics on nature and on, specifically, aquatic wildlife. Lately, much attention has been paid to macro- and micro-sized plastics and their impact on aquatic organisms. However, micro-sized plastics degrade subsequently into nano-sizes whereas nano-sized particles may be released directly into nature. Such particles have a different impact on aquatic organisms than larger pieces of plastic due to their small size, high surface curvature, and large surface area. This review describes the possible sources of nano-sized plastic, its distribution and behavior in nature, the impact of nano-sized plastic on the well-being of aquatic organisms, and the difference of impact between nano- and micro-sized particles. We also identify research areas which urgently need more attention and suggest experimental methods to obtain useful data.

  13. 7 CFR 58.348 - Plastic cream.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Plastic cream. 58.348 Section 58.348 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Products Bearing Usda Official Identification § 58.348 Plastic cream. The flavor shall be sweet,...

  14. 7 CFR 58.348 - Plastic cream.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Plastic cream. 58.348 Section 58.348 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Products Bearing Usda Official Identification § 58.348 Plastic cream. The flavor shall be sweet,...

  15. Improved hardening theory for cyclic plasticity.

    NASA Technical Reports Server (NTRS)

    Vos, R. G.; Armstrong, W. H.

    1973-01-01

    A temperature-dependent version of a combined hardening theory, including isotropic and kinematic hardening, is presented within the framework of recent plasticity formulations. This theory has been found to be especially useful in finite-element analysis of aerospace vehicle engines under conditions of large plastic strain and low-cycle fatigue.

  16. Plastic crystal phases of simple water models.

    PubMed

    Aragones, J L; Vega, C

    2009-06-28

    We report the appearance of two plastic crystal phases of water at high pressure and temperature using computer simulations. In one of them the oxygen atoms form a body centered cubic structure (bcc) and in the other they form a face centered cubic structure (fcc). In both cases the water molecules were able to rotate almost freely. We have found that the bcc plastic crystal transformed into a fcc plastic crystal via a Martensitic phase transition when heated at constant pressure. We have performed the characterization and localization in the phase diagram of these plastic crystal phases for the SPC/E, TIP4P, and TIP4P/2005 water potential models. For TIP4P/2005 model free energy calculations were carried out for the bcc plastic crystal and fcc plastic crystal using a new method (which is a slight variation of the Einstein crystal method) proposed for these types of solid. The initial coexistence points for the SPC/E and TIP4P models were obtained using Hamiltonian Gibbs-Duhem integration. For all of these models these two plastic crystal phases appear in the high pressure and temperature region of the phase diagram. It would be of interest to study if such plastic crystal phases do indeed exist for real water. This would shed some light on the question of whether these models can describe satisfactorily the high pressure part of the phase diagram of water, and if not, where and why they fail. PMID:19566163

  17. Microwave interferometer controls cutting depth of plastics

    NASA Technical Reports Server (NTRS)

    Heisman, R. M.; Iceland, W. F.

    1969-01-01

    Microwave interferometer system controls the cutting of plastic materials to a prescribed depth. The interferometer is mounted on a carriage with a spindle and cutting tool. A cross slide, mounted on the carriage, allows the interferometer and cutter to move toward or away from the plastic workpiece.

  18. Industrial plastics waste: Identification and segregation

    NASA Technical Reports Server (NTRS)

    Widener, Edward L.

    1990-01-01

    Throwaway plastic products, mainly packaging, are inundating our landfills and incinerators. Most are ethenic thermoplastics, which can be recycled as new products or fossil-fuels. Lab experiments are described, involving destructive and non-destructive tests for identifying and using plastics. The burn-test, with simple apparatus and familiar samples, is recommended as quick, cheap and effective.

  19. Evolutionary Perspectives on Language and Brain Plasticity.

    ERIC Educational Resources Information Center

    Deacon, Terrence W.

    2000-01-01

    This review discusses how general principles of brain development have contributed to both human brain plasticity and the acquisition of the human capacity for speech. Specifically, the role played by plastic developmental processes in the evolution and development of articulate control over vocalization in speech is examined. (Contains…

  20. Gas Property Demonstrations Using Plastic Water Bottles

    ERIC Educational Resources Information Center

    Campbell, Dean J.; Bannon, Stephen J.; Gunter, Molly M.

    2011-01-01

    Plastic water bottles are convenient containers for demonstrations of gas properties illustrating Boyle's law, Charles's law, and Avogadro's law. The contents of iron-based disposable hand warmer packets can be used to remove oxygen gas from the air within an unfilled plastic water bottle.