Sample records for cortex acc activity

  1. Coordinated Interaction between Hippocampal Sharp-Wave Ripples and Anterior Cingulate Unit Activity

    PubMed Central

    2016-01-01

    Hippocampal–cortical interaction during sleep promotes transformation of memory for long-term storage in the cortex. In particular, hippocampal sharp-wave ripple-associated neural activation is important for this transformation during slow-wave sleep. The anterior cingulate cortex (ACC) has been shown to be crucial for expression and likely storage of long-term memory. However, little is known about how ACC activity is influenced by hippocampal ripple activity during sleep. We report here about coordinated interactions between hippocampal ripple activity and ACC neural firings. By recording from the ACC and hippocampal CA1 simultaneously in mice, we found that almost all ACC neurons showed increased activity before hippocampal ripple activity; moreover, a subpopulation (17%) displayed a further activation immediately after ripple activity. This postripple activation of ACC neurons correlated positively with ripple amplitude, and the same neurons were excited upon electrical stimulation of the CA1. Interestingly, the preripple activation of ACC neurons was present during the sleep state, but not during the awake state. These results suggest intimate interactions between hippocampal sharp-wave ripples and ACC neurons in a state-dependent manner. Importantly, sharp-wave ripples and associated activation appear to regulate activity of a small population of ACC neurons, a process that may play a critical role in memory consolidation. SIGNIFICANCE STATEMENT The hippocampus communicates with the cortex for memory transformation. Memories of previous experiences become less dependent on the hippocampus and increasingly dependent on cortical areas, such as the anterior cingulate cortex (ACC). However, little evidence is available to directly support this hippocampus-to-cortex information transduction hypothesis of memory consolidation. Here we show that a subpopulation of ACC neurons becomes active just after hippocampal ripple activity, and that electrical stimulation of the hippocampus excites the same ACC neurons. In addition, the majority of ACC neurons are activated just before ripple activity during the sleep state, but not during the awake state. These results provide evidence supporting the hypothesis of hippocampus-to-cortex information flow for memory consolidation as well as reciprocal interaction between the hippocampus and the cortex. PMID:27733616

  2. The time course of activity in dorsolateral prefrontal cortex and anterior cingulate cortex during top-down attentional control.

    PubMed

    Silton, Rebecca Levin; Heller, Wendy; Towers, David N; Engels, Anna S; Spielberg, Jeffrey M; Edgar, J Christopher; Sass, Sarah M; Stewart, Jennifer L; Sutton, Bradley P; Banich, Marie T; Miller, Gregory A

    2010-04-15

    A network of brain regions has been implicated in top-down attentional control, including left dorsolateral prefrontal cortex (LDLPFC) and dorsal anterior cingulate cortex (dACC). The present experiment evaluated predictions of the cascade-of-control model (Banich, 2009), which predicts that during attentionally-demanding tasks, LDLPFC imposes a top-down attentional set which precedes late-stage selection performed by dACC. Furthermore, the cascade-of-control model argues that dACC must increase its activity to compensate when top-down control by LDLPFC is poor. The present study tested these hypotheses using fMRI and dense-array ERP data collected from the same 80 participants in separate sessions. fMRI results guided ERP source modeling to characterize the time course of activity in LDLPFC and dACC. As predicted, dACC activity subsequent to LDLPFC activity distinguished congruent and incongruent conditions on the Stroop task. Furthermore, when LDLPFC activity was low, the level of dACC activity was related to performance outcome. These results demonstrate that dACC responds to attentional demand in a flexible manner that is dependent on the level of LDLPFC activity earlier in a trial. Overall, results were consistent with the temporal course of regional brain function proposed by the cascade-of-control model. Copyright 2009 Elsevier Inc. All rights reserved.

  3. Anticipatory activity in anterior cingulate cortex can be independent of conflict and error likelihood.

    PubMed

    Aarts, Esther; Roelofs, Ardi; van Turennout, Miranda

    2008-04-30

    Previous studies have found no agreement on whether anticipatory activity in the anterior cingulate cortex (ACC) reflects upcoming conflict, error likelihood, or actual control adjustments. Using event-related functional magnetic resonance imaging, we investigated the nature of preparatory activity in the ACC. Informative cues told the participants whether an upcoming target would or would not involve conflict in a Stroop-like task. Uninformative cues provided no such information. Behavioral responses were faster after informative than after uninformative cues, indicating cue-based adjustments in control. ACC activity was larger after informative than uninformative cues, as would be expected if the ACC is involved in anticipatory control. Importantly, this activation in the ACC was observed for informative cues even when the information conveyed by the cue was that the upcoming target evokes no response conflict and has low error likelihood. This finding demonstrates that the ACC is involved in anticipatory control processes independent of upcoming response conflict or error likelihood. Moreover, the response of the ACC to the target stimuli was critically dependent on whether the cue was informative or not. ACC activity differed among target conditions after uninformative cues only, indicating ACC involvement in actual control adjustments. Together, these findings argue strongly for a role of the ACC in anticipatory control independent of anticipated conflict and error likelihood, and also show that such control can eliminate conflict-related ACC activity during target processing. Models of frontal cortex conflict-detection and conflict-resolution mechanisms require modification to include consideration of these anticipatory control properties of the ACC.

  4. A functional dissociation of conflict processing within anterior cingulate cortex.

    PubMed

    Kim, Chobok; Kroger, James K; Kim, Jeounghoon

    2011-02-01

    Goal-directed behavior requires cognitive control to regulate the occurrence of conflict. The dorsal anterior cingulate cortex (dACC) has been suggested in detecting response conflict during various conflict tasks. Recent findings, however, have indicated not only that two distinct subregions of dACC are involved in conflict processing but also that the conflict occurs at both perceptual and response levels. In this study, we sought to examine whether perceptual and response conflicts are functionally dissociated in dACC. Thirteen healthy subjects performed a version of the Stroop task during functional magnetic resonance imaging (fMRI) scanning. We identified a functional dissociation of the caudal dACC (cdACC) and the rostral dACC (rdACC) in their responses to different sources of conflict. The cdACC was selectively engaged in perceptual conflict whereas the rdACC was more active in response conflict. Further, the dorsolateral prefrontal cortex (DLPFC) was coactivated not with cdACC but with rdACC. We suggest that cdACC plays an important role in regulative processing of perceptual conflict whereas rdACC is involved in detecting response conflict. Copyright © 2010 Wiley-Liss, Inc.

  5. Neuropathic Pain Causes Pyramidal Neuronal Hyperactivity in the Anterior Cingulate Cortex.

    PubMed

    Zhao, Ruohe; Zhou, Hang; Huang, Lianyan; Xie, Zhongcong; Wang, Jing; Gan, Wen-Biao; Yang, Guang

    2018-01-01

    The anterior cingulate cortex (ACC) is thought to be important for acute pain perception as well as the development of chronic pain after peripheral nerve injury. Nevertheless, how ACC neurons respond to sensory stimulation under chronic pain states is not well understood. Here, we used an in vivo two-photon imaging technique to monitor the activity of individual neurons in the ACC of awake, head restrained mice. Calcium imaging in the dorsal ACC revealed robust somatic activity in layer 5 (L5) pyramidal neurons in response to peripheral noxious stimuli, and the degree of evoked activity was correlated with the intensity of noxious stimulation. Furthermore, the activation of ACC neurons occurred bilaterally upon noxious stimulation to either contralateral or ipsilateral hind paws. Notably, with nerve injury-induced neuropathic pain in one limb, L5 pyramidal neurons in both sides of the ACC showed enhanced activity in the absence or presence of pain stimuli. These results reveal hyperactivity of L5 pyramidal neurons in the bilateral ACC during the development of neuropathic pain.

  6. Conflict processing in the anterior cingulate cortex constrains response priming.

    PubMed

    Pastötter, Bernhard; Hanslmayr, Simon; Bäuml, Karl-Heinz T

    2010-05-01

    A prominent function of the anterior cingulate cortex (ACC) is to process conflict between competing response options. In this study, we investigated the role of conflict processing in a response-priming task in which manual responses were either validly or invalidly cued. Examining electrophysiological measurements of oscillatory brain activity on the source level, we found response priming to be related to a beta power decrease in the premotor cortex and conflict processing to be linked to a theta power increase in the ACC. In particular, correlation of oscillatory brain activities in the ACC and the premotor cortex showed that conflict processing reduces response priming by slowing response time in valid trials and lowering response errors in invalid trials. This relationship emerged on a between subjects level as well as within subjects, on a single trial level. These findings suggest that conflict processing in the ACC constrains the automatic priming process. 2010 Elsevier Inc. All rights reserved.

  7. Context conditioning and extinction in humans: differential contribution of the hippocampus, amygdala and prefrontal cortex

    PubMed Central

    Lang, Simone; Kroll, Alexander; Lipinski, Slawomira J; Wessa, Michèle; Ridder, Stephanie; Christmann, Christoph; Schad, Lothar R; Flor, Herta

    2009-01-01

    Functional magnetic resonance imaging was used to investigate the role of the hippocampus, amygdala and medial prefrontal cortex (mPFC) in a contextual conditioning and extinction paradigm provoking anxiety. Twenty-one healthy persons participated in a differential context conditioning procedure with two different background colours as contexts. During acquisition increased activity to the conditioned stimulus (CS+) relative to the CS− was found in the left hippocampus and anterior cingulate cortex (ACC). The amygdala, insula and inferior frontal cortex were differentially active during late acquisition. Extinction was accompanied by enhanced activation to CS+ vs. CS− in the dorsal anterior cingulate cortex (dACC). The results are in accordance with animal studies and provide evidence for the important role of the hippocampus in contextual learning in humans. Connectivity analyses revealed correlated activity between the left posterior hippocampus and dACC (BA32) during early acquisition and the dACC, left posterior hippocampus and right amygdala during extinction. These data are consistent with theoretical models that propose an inhibitory effect of the mPFC on the amygdala. The interaction of the mPFC with the hippocampus may reflect the context-specificity of extinction learning. PMID:19200075

  8. Amitriptyline reduces rectal pain related activation of the anterior cingulate cortex in patients with irritable bowel syndrome.

    PubMed

    Morgan, V; Pickens, D; Gautam, S; Kessler, R; Mertz, H

    2005-05-01

    Irritable bowel syndrome (IBS) is a disorder of intestinal hypersensitivity and altered motility, exacerbated by stress. Functional magnetic resonance imaging (fMRI) during painful rectal distension in IBS has demonstrated greater activation of the anterior cingulate cortex (ACC), an area relevant to pain and emotions. Tricyclic antidepressants are effective for IBS. The aim of this study was to determine if low dose amitriptyline reduces ACC activation during painful rectal distension in IBS to confer clinical benefits. Secondary aims were to identify other brain regions altered by amitriptyline, and to determine if reductions in cerebral activation are greater during mental stress. Nineteen women with painful IBS were randomised to amitriptyline 50 mg or placebo for one month and then crossed over to the alternate treatment after washout. Cerebral activation during rectal distension was compared between placebo and amitriptyline groups by fMRI. Distensions were performed alternately during auditory stress and relaxing music. Rectal pain induced significant activation of the perigenual ACC, right insula, and right prefrontal cortex. Amitriptyline was associated with reduced pain related cerebral activations in the perigenual ACC and the left posterior parietal cortex, but only during stress. The tricyclic antidepressant amitriptyline reduces brain activation during pain in the perigenual (limbic) anterior cingulated cortex and parietal association cortex. These reductions are only seen during stress. Amitriptyline is likely to work in the central nervous system rather than peripherally to blunt pain and other symptoms exacerbated by stress in IBS.

  9. Sexual attraction enhances glutamate transmission in mammalian anterior cingulate cortex

    PubMed Central

    Wu, Long-Jun; Kim, Susan S; Li, Xiangyao; Zhang, Fuxing; Zhuo, Min

    2009-01-01

    Functional human brain imaging studies have indicated the essential role of cortical regions, such as the anterior cingulate cortex (ACC), in romantic love and sex. However, the neurobiological basis of how the ACC neurons are activated and engaged in sexual attraction remains unknown. Using transgenic mice in which the expression of green fluorescent protein (GFP) is controlled by the promoter of the activity-dependent gene c-fos, we found that ACC pyramidal neurons are activated by sexual attraction. The presynaptic glutamate release to the activated neurons is increased and pharmacological inhibition of neuronal activities in the ACC reduced the interest of male mice to female mice. Our results present direct evidence of the critical role of the ACC in sexual attraction, and long-term increases in glutamate mediated excitatory transmission may contribute to sexual attraction between male and female mice. PMID:19419552

  10. Abnormalities in the Anterior Cingulate Cortex Associated with Attentional and Inhibitory Control Deficits: A Neurophysiological Study on Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Chan, Agnes S.; Han, Yvonne M. Y.; Leung, Winnie Wing-man; Leung, Connie; Wong, Virginia C. N.; Cheung, Mei-chun

    2011-01-01

    Previous studies showed that the anterior cingulate cortex (ACC) is activated when individuals engage in attention and inhibitory control tasks. The present study examined whether ACC activity is associated with behavioral performance of the two tasks. Twenty normal and 20 children with autism spectrum disorders (ASDs) were subjected to…

  11. Enhanced responses of the anterior cingulate cortex neurones to colonic distension in viscerally hypersensitive rats

    PubMed Central

    Gao, Jun; Wu, Xiaoyin; Owyang, Chung; Li, Ying

    2006-01-01

    The anterior cingulate cortex (ACC) is critically involved in processing the affective component of pain sensation. Visceral hypersensitivity is a characteristic of irritable bowel syndrome. Electrophysiological activity of the ACC with regard to visceral sensitization has not been characterized. Single ACC neuronal activities in response to colorectal distension (CRD) were recorded in control, sham-treated rats and viscerally hypersensitive (EA) rats (induced by chicken egg albumin injection, i.p). The ACC neurones of controls failed to respond to 10 or 30 mmHg CRD; only 22% were activated by 50 mmHg CRD. Among the latter, 16.4% exhibited an excitatory response to CRD and were labelled ‘CRD-excited’ neurones. In contrast, CRD (10, 30 and 50 mmHg) markedly increased ACC neuronal responses of EA rats (10%, 28% and 47%, respectively). CRD produced greater pressure-dependent increases in ACC spike firing rates in EA rats compared with controls. Splanchnicectomy combined with pelvic nerve section abolished ACC responses to CRD in EA rats. Spontaneous activity in CRD-excited ACC neurones was significantly higher in EA rats than in controls. CRD-excited ACC neurones in control and EA rats (7 of 16 (42%) and 8 of 20 (40%), respectively) were activated by transcutaneous electrical and thermal stimuli. However, ACC neuronal activity evoked by noxious cutaneous stimuli did not change significantly in EA rats. This study identifies CRD-responsive neurones in the ACC and establishes for the first time that persistence of a heightened visceral afferent nociceptive input to the ACC induces ACC sensitization, characterized by increased spontaneous activity of CRD-excited neurones, decreased CRD pressure threshold, and increased response magnitude. Enhanced ACC nociceptive transmission in viscerally hypersensitive rats is restricted to visceral afferent input. PMID:16239277

  12. Theta–gamma coordination between anterior cingulate and prefrontal cortex indexes correct attention shifts

    PubMed Central

    Voloh, Benjamin; Valiante, Taufik A.; Everling, Stefan; Womelsdorf, Thilo

    2015-01-01

    Anterior cingulate and lateral prefrontal cortex (ACC/PFC) are believed to coordinate activity to flexibly prioritize the processing of goal-relevant over irrelevant information. This between-area coordination may be realized by common low-frequency excitability changes synchronizing segregated high-frequency activations. We tested this coordination hypothesis by recording in macaque ACC/PFC during the covert utilization of attention cues. We found robust increases of 5–10 Hz (theta) to 35–55 Hz (gamma) phase–amplitude correlation between ACC and PFC during successful attention shifts but not before errors. Cortical sites providing theta phases (i) showed a prominent cue-induced phase reset, (ii) were more likely in ACC than PFC, and (iii) hosted neurons with burst firing events that synchronized to distant gamma activity. These findings suggest that interareal theta–gamma correlations could follow mechanistically from a cue-triggered reactivation of rule memory that synchronizes theta across ACC/PFC. PMID:26100868

  13. Reward salience and risk aversion underlie differential ACC activity in substance dependence

    PubMed Central

    Alexander, William H.; Fukunaga, Rena; Finn, Peter; Brown, Joshua W.

    2015-01-01

    The medial prefrontal cortex, especially the dorsal anterior cingulate cortex (ACC), has long been implicated in cognitive control and error processing. Although the association between ACC and behavior has been established, it is less clear how ACC contributes to dysfunctional behavior such as substance dependence. Evidence from neuroimaging studies investigating ACC function in substance users is mixed, with some studies showing disengagement of ACC in substance dependent individuals (SDs), while others show increased ACC activity related to substance use. In this study, we investigate ACC function in SDs and healthy individuals performing a change signal task for monetary rewards. Using a priori predictions derived from a recent computational model of ACC, we find that ACC activity differs between SDs and controls in factors related to reward salience and risk aversion between SDs and healthy individuals. Quantitative fits of a computational model to fMRI data reveal significant differences in best fit parameters for reward salience and risk preferences. Specifically, the ACC in SDs shows greater risk aversion, defined as concavity in the utility function, and greater attention to rewards relative to reward omission. Furthermore, across participants risk aversion and reward salience are positively correlated. The results clarify the role that ACC plays in both the reduced sensitivity to omitted rewards and greater reward valuation in SDs. Clinical implications of applying computational modeling in psychiatry are also discussed. PMID:26106528

  14. Reward salience and risk aversion underlie differential ACC activity in substance dependence.

    PubMed

    Alexander, William H; Fukunaga, Rena; Finn, Peter; Brown, Joshua W

    2015-01-01

    The medial prefrontal cortex, especially the dorsal anterior cingulate cortex (ACC), has long been implicated in cognitive control and error processing. Although the association between ACC and behavior has been established, it is less clear how ACC contributes to dysfunctional behavior such as substance dependence. Evidence from neuroimaging studies investigating ACC function in substance users is mixed, with some studies showing disengagement of ACC in substance dependent individuals (SDs), while others show increased ACC activity related to substance use. In this study, we investigate ACC function in SDs and healthy individuals performing a change signal task for monetary rewards. Using a priori predictions derived from a recent computational model of ACC, we find that ACC activity differs between SDs and controls in factors related to reward salience and risk aversion between SDs and healthy individuals. Quantitative fits of a computational model to fMRI data reveal significant differences in best fit parameters for reward salience and risk preferences. Specifically, the ACC in SDs shows greater risk aversion, defined as concavity in the utility function, and greater attention to rewards relative to reward omission. Furthermore, across participants risk aversion and reward salience are positively correlated. The results clarify the role that ACC plays in both the reduced sensitivity to omitted rewards and greater reward valuation in SDs. Clinical implications of applying computational modeling in psychiatry are also discussed.

  15. Multiple cognitive control mechanisms associated with the nature of conflict.

    PubMed

    Kim, Chobok; Chung, Chongwook; Kim, Jeounghoon

    2010-06-07

    Cognitive control is required to regulate conflict. The conflict monitoring theory suggests that the dorsal anterior cingulate cortex (dACC) is involved in detecting response conflict and the dorsolateral prefrontal cortex (DLPFC) plays a critical role in regulating conflict. Recent studies, however, have suggested that rostral dACC (rdACC) responds to response conflict whereas caudal dACC (cdACC) is associated with perceptual conflict. Moreover, DLPFC has been engaged only in regulation of response conflict. A neural network involved in perceptual conflict, however, remains unclear. In this study, we used functional magnetic resonance imaging (fMRI) in an attempt to reveal monitor-controller networks corresponding to either perceptual conflict or response conflict. A version of the Stroop color matching task was used to manipulate perceptual conflict, response conflict was manipulated by an arrow. The results demonstrated that rdACC and DLPFC were engaged in response conflict whereas cdACC and the dorsal portion of premotor cortex (pre-PMd) were involved in perceptual conflict. Interestingly, the posterior parietal cortex (PPC) was activated by both types of conflict. Correlation analyses between behavioral conflict effects and neural responses demonstrated that rdACC and DLPFC were associated with response conflict whereas cdACC and pre-PMd were associated with perceptual conflict. PPC was not correlated with either perceptual conflict or response conflict. We suggest that cdACC and pre-PMd play critical roles in perceptual conflict processing, and this network is independent from the rdACC/DLPFC network for response conflict processing. We also discussed the function of PPC in conflict processing. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Activation of Extracellular Signal-Regulated Kinase in the Anterior Cingulate Cortex Contributes to the Induction and Expression of Affective Pain

    PubMed Central

    Cao, Hong; Gao, Yong-Jing; Ren, Wen-Hua; Li, Ting-Ting; Duan, Kai-Zheng; Cui, Yi-Hui; Cao, Xiao-Hua; Zhao, Zhi-Qi; Ji, Ru-Rong; Zhang, Yu-Qiu

    2009-01-01

    The anterior cingulate cortex (ACC) is implicated in the affective response to noxious stimuli. However, little is known about the molecular mechanisms involved. The present study demonstrated that extracellular signal-regulated kinase (ERK) activation in the ACC plays a crucial role in pain-related negative emotion. Intraplantar formalin injection produced a transient ERK activation in laminae V–VI and a persistent ERK activation in laminae II–III of the rostral ACC (rACC) bilaterally. Using formalin-induced conditioned place avoidance (F-CPA) in rats, which is believed to reflect the pain-related negative emotion, we found that blockade of ERK activation in the rACC with MEK inhibitors prevented the induction of F-CPA. Interestingly, this blockade did not affect formalin-induced two-phase spontaneous nociceptive responses and CPA acquisition induced by electric foot-shock or U69,593, an innocuous aversive agent. Upstream, NMDA receptor, adenylyl cyclase (AC) and PKA activators activated ERK in rACC slices. Consistently, intra-rACC microinjection of AC or PKA inhibitors prevented F-CPA induction. Downstream, phosphorylation of cAMP response element binding protein (CREB) was induced in the rACC by formalin injection and by NMDA, AC and PKA activators in brain slices, which was suppressed by MEK inhibitors. Furthermore, ERK also contributed to the expression of pain-related negative emotion. Thus, when rats were re-exposed to the conditioning context for retrieval of pain experience, ERK and CREB were re-activated in the rACC, and inhibiting ERK activation blocked the expression of F-CPA. All together, our results demonstrate that ERK activation in the rACC is required for the induction and expression of pain-related negative affect. PMID:19279268

  17. Dissociating response conflict and error likelihood in anterior cingulate cortex.

    PubMed

    Yeung, Nick; Nieuwenhuis, Sander

    2009-11-18

    Neuroimaging studies consistently report activity in anterior cingulate cortex (ACC) in conditions of high cognitive demand, leading to the view that ACC plays a crucial role in the control of cognitive processes. According to one prominent theory, the sensitivity of ACC to task difficulty reflects its role in monitoring for the occurrence of competition, or "conflict," between responses to signal the need for increased cognitive control. However, a contrasting theory proposes that ACC is the recipient rather than source of monitoring signals, and that ACC activity observed in relation to task demand reflects the role of this region in learning about the likelihood of errors. Response conflict and error likelihood are typically confounded, making the theories difficult to distinguish empirically. The present research therefore used detailed computational simulations to derive contrasting predictions regarding ACC activity and error rate as a function of response speed. The simulations demonstrated a clear dissociation between conflict and error likelihood: fast response trials are associated with low conflict but high error likelihood, whereas slow response trials show the opposite pattern. Using the N2 component as an index of ACC activity, an EEG study demonstrated that when conflict and error likelihood are dissociated in this way, ACC activity tracks conflict and is negatively correlated with error likelihood. These findings support the conflict-monitoring theory and suggest that, in speeded decision tasks, ACC activity reflects current task demands rather than the retrospective coding of past performance.

  18. Depression and anxious apprehension distinguish frontocingulate cortical activity during top-down attentional control.

    PubMed

    Silton, Rebecca Levin; Heller, Wendy; Engels, Anna S; Towers, David N; Spielberg, Jeffrey M; Edgar, J Christopher; Sass, Sarah M; Stewart, Jennifer L; Sutton, Bradley P; Banich, Marie T; Miller, Gregory A

    2011-05-01

    A network consisting of left dorsolateral prefrontal cortex (LDLPFC) and dorsal anterior cingulate cortex (dACC) has been implicated in top-down attentional control. Few studies have systematically investigated how this network is altered in psychopathology, despite evidence that depression and anxiety are associated with attentional control impairments. Functional MRI and dense-array event-related brain potential (ERP) data were collected in separate sessions from 100 participants during a color-word Stroop task. Functional MRI results guided ERP source modeling to characterize the time course of activity in LDLPFC (300-440 ms) and dACC (520-680 ms). At low levels of depression, LDLPFC activity was indirectly related to Stroop interference and only via dACC activity. In contrast, at high levels of depression, dACC did not play an intervening role, and increased LDLPFC activity was directly related to decreased Stroop interference. Specific to high levels of anxious apprehension, higher dACC activity was related to more Stroop interference. Results indicate that depression and anxious apprehension modulate temporally and functionally distinct aspects of the frontocingulate network involved in top-down attention control.

  19. Anterior cingulate cortex activity can be independent of response conflict in Stroop-like tasks.

    PubMed

    Roelofs, Ardi; van Turennout, Miranda; Coles, Michael G H

    2006-09-12

    Cognitive control includes the ability to formulate goals and plans of action and to follow these while facing distraction. Previous neuroimaging studies have shown that the presence of conflicting response alternatives in Stroop-like tasks increases activity in dorsal anterior cingulate cortex (ACC), suggesting that the ACC is involved in cognitive control. However, the exact nature of ACC function is still under debate. The prevailing conflict detection hypothesis maintains that the ACC is involved in performance monitoring. According to this view, ACC activity reflects the detection of response conflict and acts as a signal that engages regulative processes subserved by lateral prefrontal brain regions. Here, we provide evidence from functional MRI that challenges this view and favors an alternative view, according to which the ACC has a role in regulation itself. Using an arrow-word Stroop task, subjects responded to incongruent, congruent, and neutral stimuli. A critical prediction made by the conflict detection hypothesis is that ACC activity should be increased only when conflicting response alternatives are present. Our data show that ACC responses are larger for neutral than for congruent stimuli, in the absence of response conflict. This result demonstrates the engagement of the ACC in regulation itself. A computational model of Stroop-like performance instantiating a version of the regulative hypothesis is shown to account for our findings.

  20. The dorsal anterior cingulate cortex is selective for pain: Results from large-scale reverse inference

    PubMed Central

    Lieberman, Matthew D.; Eisenberger, Naomi I.

    2015-01-01

    Dorsal anterior cingulate cortex (dACC) activation is commonly observed in studies of pain, executive control, conflict monitoring, and salience processing, making it difficult to interpret the dACC’s specific psychological function. Using Neurosynth, an automated brainmapping database [of over 10,000 functional MRI (fMRI) studies], we performed quantitative reverse inference analyses to explore the best general psychological account of the dACC function P(Ψ process|dACC activity). Results clearly indicated that the best psychological description of dACC function was related to pain processing—not executive, conflict, or salience processing. We conclude by considering that physical pain may be an instance of a broader class of survival-relevant goals monitored by the dACC, in contrast to more arbitrary temporary goals, which may be monitored by the supplementary motor area. PMID:26582792

  1. Emotion triggers executive attention: anterior cingulate cortex and amygdala responses to emotional words in a conflict task.

    PubMed

    Kanske, Philipp; Kotz, Sonja A

    2011-02-01

    Coherent behavior depends on attentional control that detects and resolves conflict between opposing actions. The current functional magnetic resonance imaging study tested the hypothesis that emotion triggers attentional control to speed up conflict processing in particularly salient situations. Therefore, we presented emotionally negative and neutral words in a version of the flanker task. In response to conflict, we found activation of the dorsal anterior cingulate cortex (ACC) and of the amygdala for emotional stimuli. When emotion and conflict coincided, a region in the ventral ACC was activated, which resulted in faster conflict processing in reaction times. Emotion also increased functional connectivity between the ventral ACC and activation of the dorsal ACC and the amygdala in conflict trials. These data suggest that the ventral ACC integrates emotion and conflict and prioritizes the processing of conflict in emotional trials. This adaptive mechanism ensures rapid detection and resolution of conflict in potentially threatening situations signaled by emotional stimuli. Copyright © 2010 Wiley-Liss, Inc.

  2. Antidepressant Effects of Electroconvulsive Therapy Correlate With Subgenual Anterior Cingulate Activity and Connectivity in Depression

    PubMed Central

    Liu, Yi; Du, Lian; Li, Yongmei; Liu, Haixia; Zhao, Wenjing; Liu, Dan; Zeng, Jinkun; Li, Xingbao; Fu, Yixiao; Qiu, Haitang; Li, Xirong; Qiu, Tian; Hu, Hua; Meng, Huaqing; Luo, Qinghua

    2015-01-01

    Abstract The mechanisms underlying the effects of electroconvulsive therapy (ECT) in major depressive disorder (MDD) are not fully understood. Resting-state functional magnetic resonance imaging (rs-fMRI) is a new tool to study the effects of brain stimulation interventions, particularly ECT. The authors aim to investigate the mechanisms of ECT in MDD by rs-fMRI. They used rs-fMRI to measure functional changes in the brain of first-episode, treatment-naive MDD patients (n = 23) immediately before and then following 8 ECT sessions (brief-pulse square-wave apparatus, bitemporal). They also computed voxel-wise amplitude of low-frequency fluctuation (ALFF) as a measure of regional brain activity and selected the left subgenual anterior cingulate cortex (sgACC) to evaluate functional connectivity between the sgACC and other brain regions. Increased regional brain activity measured by ALFF mainly in the left sgACC following ECT. Functional connectivity of the left sgACC increased in the ipsilateral parahippocampal gyrus, pregenual ACC, contralateral middle temporal pole, and orbitofrontal cortex. Importantly, reduction in depressive symptoms were negatively correlated with increased ALFF in the left sgACC and left hippocampus, and with distant functional connectivity between the left sgACC and contralateral middle temporal pole. That is, across subjects, as depression improved, regional brain activity in sgACC and its functional connectivity increased in the brain. Eight ECT sessions in MDD patients modulated activity in the sgACC and its networks. The antidepressant effects of ECT were negatively correlated with sgACC brain activity and connectivity. These findings suggest that sgACC-associated prefrontal-limbic structures are associated with the therapeutic effects of ECT in MDD. PMID:26559309

  3. Sex and performance level effects on brain activation during a verbal fluency task: a functional magnetic resonance imaging study.

    PubMed

    Gauthier, Christophe T; Duyme, Michel; Zanca, Michel; Capron, Christiane

    2009-02-01

    Neuroimaging studies investigating the neural correlates of verbal fluency (VF) focused on sex differences without taking into account behavioural variation. Nevertheless, group differences in this verbal ability might account for neurocognitive differences elicited between men and women. The aim of this study was to test sex and performance level effects and the combination of these on cerebral activation. Four samples of 11 healthy students (N=44) selected on the basis of sex and contrasted VF scores, high fluency (HF) versus low fluency (LF), performed a covert phonological VF task during scans. Within- and between-group analyses were conducted. Consistent with previous studies, for each sample, the whole-group analysis reported activation in the inferior frontal gyrus (IFG), insula, anterior cingulate cortex (ACC), medial frontal gyrus (mFG), superior (SPL) and inferior parietal lobules (IPL), inferior visual areas, cerebellum, thalamus and basal ganglia. Between-group analyses showed an interaction between sexes and performances in the right precuneus, left ACC, right IFG and left dorsolateral prefrontal cortex (dlPFC). HF men showed more activation than LF ones in the right precuneus and left dlPFC. LF men showed more activation in the right IFG than HF ones and LF women elicited more activation in the left ACC than HF ones. A sex main effect was found regardless of performance in the left inferior temporal gyrus (ITG), cerebellum, anterior and posterior cingulate cortexes and in the right superior frontal gyrus (SFG) and dlPFC, lingual gyrus and ACC, with men eliciting significantly greater activations than women. A performance main effect was found for the left ACC and the left cerebellum regardless of sex. LF subjects had stronger activations than HF ones in the ACC whereas HF subjects showed stronger activations in the cerebellum. Activity in three discrete subregions of the ACC is related to sex, performance and their interaction, respectively. Our findings emphasize the need to consider sex and performance level in functional imaging studies of VF.

  4. A meta-analysis of the anterior cingulate contribution to social pain

    PubMed Central

    Lemogne, Cedric; Hinfray, Sophie; Huguet, Pascal; Grynszpan, Ouriel; Tartour, Eric; George, Nathalie; Fossati, Philippe

    2015-01-01

    Many functional magnetic resonance imaging studies have explored the neural correlates of social pain that results from social threat, exclusion, rejection, loss or negative evaluation. Although activations have consistently been reported within the anterior cingulate cortex (ACC), it remains unclear which ACC subdivision is particularly involved. To provide a quantitative estimation of the specific involvement of ACC subdivisions in social pain, we conducted a voxel-based meta-analysis. The literature search identified 46 articles that included 940 subjects, the majority of which used the cyberball task. Significant likelihoods of activation were found in both the ventral and dorsal ACC for both social pain elicitation and self-reported distress during social pain. Self-reported distress involved more specifically the subgenual and pregenual ACC than social pain-related contrasts. The cyberball task involved the anterior midcingulate cortex to a lesser extent than other experimental tasks. During social pain, children exhibited subgenual activations to a greater extent than adults. Finally, the ventro-dorsal gradient of ACC activations in cyberball studies was related to the length of exclusion phases. The present meta-analysis contributes to a better understanding of the role of ACC subdivisions in social pain, and it could be of particular importance for guiding future studies of social pain and its neural underpinnings. PMID:25140048

  5. [Effects of noxious coldness and non-noxious warmth on the magnitude of cerebral cortex activation during intraoral stimulation with water].

    PubMed

    Xiuwen, Yang; Hongchen, Liu; Ke, Li; Zhen, Jin; Gang, Liu

    2014-12-01

    We used functional magnetic resonance imaging (fMRI) to explore the effects of noxious coldness and non-noxious warmth on the magnitude of cerebral cortex activation during intraoral stimulation with water. Six male and female subjects were subjected to whole-brain fMRI during the phasic delivery of non-noxious hot (23 °C) and no- xious cold (4 °C) water intraoral stimulation. A block-design blood oxygenation level-dependent fMRI scan covering the entire brain was also carried out. The activated cortical areas were as follows: left pre-/post-central gyrus, insula/operculum, anterior cingulate cortex (ACC), orbital frontal cortex (OFC), midbrain red nucleus, and thalamus. The activated cortical areas under cold condition were as follows: left occipital lobe, premotor cortex/Brodmann area (BA) 6, right motor language area BA44, lingual gyrus, parietal lobule (BA7, 40), and primary somatosensory cortex S I. Comparisons of the regional cerebral blood flow response magnitude were made among stereotactically concordant brain regions that showed significant responses under the two conditions of this study. Compared with non-noxious warmth, more regions were activated in noxious coldness, and the magnitude of activation in areas produced after non-noxious warm stimulation significantly increased. However, ACC only significantly increased the magnitude of activation under noxious coldness stimulation. Results suggested that a similar network of regions was activated common to the perception of pain and no-pain produced by either non-noxious warmth or noxious coldness stimulation. Non-noxious warmth also activated more brain regions and significantly increased the response magnitude of cerebral-cortex activation compared with noxious coldness. Noxious coldness stimulation further significantly increased the magnitude of activation in ACC areas compared with noxious warmth.

  6. An Examination of Rostral Anterior Cingulate Cortex Function and Neurochemistry in Obsessive–Compulsive Disorder

    PubMed Central

    Brennan, Brian P; Tkachenko, Olga; Schwab, Zachary J; Juelich, Richard J; Ryan, Erin M; Athey, Alison J; Pope, Harrison G; Jenike, Michael A; Baker, Justin T; Killgore, William DS; Hudson, James I; Jensen, J Eric; Rauch, Scott L

    2015-01-01

    The anterior cingulate cortex is implicated in the neurobiology of obsessive–compulsive disorder (OCD). However, few studies have examined functional and neurochemical abnormalities specifically in the rostral subdivision of the ACC (rACC) in OCD patients. We used functional magnetic resonance imaging (fMRI) during an emotional counting Stroop task and single-voxel J-resolved proton magnetic resonance spectroscopy (1H-MRS) in the rACC to examine the function and neurochemistry of the rACC in individuals with OCD and comparison individuals without OCD. Between-group differences in rACC activation and glutamine/glutamate ratio (Gln/Glu), Glu, and Gln levels, as well as associations between rACC activation, Gln/Glu, Glu, Gln, behavioral, and clinical measures were examined using linear regression. In a sample of 30 participants with OCD and 29 age- and sex-matched participants without OCD, participants with OCD displayed significantly reduced rACC deactivation compared with those without OCD in response to OCD-specific words versus neutral words on the emotional counting Stroop task. However, Gln/Glu, Glu, and Gln in the rACC did not differ between groups nor was there an association between reduced rACC deactivation and Gln/Glu, Glu, or Gln in the OCD group. Taken together, these findings strengthen the evidence for rACC dysfunction in OCD, but weigh against an underlying association with abnormal rACC glutamatergic neurotransmission. PMID:25662837

  7. Motivation of extended behaviors by anterior cingulate cortex.

    PubMed

    Holroyd, Clay B; Yeung, Nick

    2012-02-01

    Intense research interest over the past decade has yielded diverse and often discrepant theories about the function of anterior cingulate cortex (ACC). In particular, a dichotomy has emerged between neuropsychological theories suggesting a primary role for ACC in motivating or 'energizing' behavior, and neuroimaging-inspired theories emphasizing its contribution to cognitive control and reinforcement learning. To reconcile these views, we propose that ACC supports the selection and maintenance of 'options' - extended, context-specific sequences of behavior directed toward particular goals - that are learned through a process of hierarchical reinforcement learning. This theory accounts for ACC activity in relation to learning and control while simultaneously explaining the effects of ACC damage as disrupting the motivational context supporting the production of goal-directed action sequences. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Emotion speeds up conflict resolution: a new role for the ventral anterior cingulate cortex?

    PubMed

    Kanske, Philipp; Kotz, Sonja A

    2011-04-01

    It has been hypothesized that processing of conflict is facilitated by emotion. Emotional stimuli signal significance in a situation. Thus, when an emotional stimulus is task relevant, more resources may be devoted to conflict processing to reduce the time that an organism is unable to act. In the present electroencephalography and functional magnetic resonance imaging (fMRI) studies, we employed a conflict task and manipulated the emotional content and prosody of auditory target stimuli. In line with our hypothesis, reaction times revealed faster conflict resolution for emotional stimuli. Early stages of event-related potential conflict processing were modulated by emotion as indexed in an enhanced frontocentral negativity at 420 ms. FMRI yielded conflict activation in the dorsal anterior cingulate cortex (dACC), a crucial part of the executive control network. The right ventral ACC (vACC) was activated for conflict processing in emotional stimuli, suggesting that it is additionally activated for conflict processing in emotional stimuli. The amygdala was also activated by emotion. Furthermore, emotion increased functional connectivity between the vACC and activity in the amygdala and the dACC. The results support the hypothesis that emotion speeds up conflict processing and suggest a new role for the vACC in processing conflict in particularly significant situations signaled by emotion.

  9. Alternative mechanisms for regulating racial responses according to internal vs external cues.

    PubMed

    Amodio, David M; Kubota, Jennifer T; Harmon-Jones, Eddie; Devine, Patricia G

    2006-06-01

    Personal (internal) and normative (external) impetuses for regulating racially biased behaviour are well-documented, yet the extent to which internally and externally driven regulatory processes arise from the same mechanism is unknown. Whereas the regulation of race bias according to internal cues has been associated with conflict-monitoring processes and activation of the dorsal anterior cingulate cortex (dACC), we proposed that responses regulated according to external cues to respond without prejudice involves mechanisms of error-perception, a process associated with rostral anterior cingulate cortex (rACC) activity. We recruited low-prejudice participants who reported high or low sensitivity to non-prejudiced norms, and participants completed a stereotype inhibition task in private or public while electroencephalography was recorded. Analysis of event-related potentials revealed that the error-related negativity component, linked to dACC activity, predicted behavioural control of bias across conditions, whereas the error-perception component, linked to rACC activity, predicted control only in public among participants sensitive to external pressures to respond without prejudice.

  10. Effect of trait anxiety on prefrontal control mechanisms during emotional conflict.

    PubMed

    Comte, Magali; Cancel, Aïda; Coull, Jennifer T; Schön, Daniele; Reynaud, Emmanuelle; Boukezzi, Sarah; Rousseau, Pierre-François; Robert, Gabriel; Khalfa, Stéphanie; Guedj, Eric; Blin, Olivier; Weinberger, Daniel R; Fakra, Eric

    2015-06-01

    Converging evidence points to a link between anxiety proneness and altered emotional functioning, including threat-related biases in selective attention and higher susceptibility to emotionally ambiguous stimuli. However, during these complex emotional situations, it remains unclear how trait anxiety affects the engagement of the prefrontal emotional control system and particularly the anterior cingulate cortex (ACC), a core region at the intersection of the limbic and prefrontal systems. Using an emotional conflict task and functional magnetic resonance imaging (fMRI), we investigated in healthy subjects the relations between trait anxiety and both regional activity and functional connectivity (psychophysiological interaction) of the ACC. Higher levels of anxiety were associated with stronger task-related activation in ACC but with reduced functional connectivity between ACC and lateral prefrontal cortex (LPFC). These results support the hypothesis that when one is faced with emotionally incompatible information, anxiety leads to inefficient high-order control, characterized by insufficient ACC-LPFC functional coupling and increases, possibly compensatory, in activation of ACC. Our findings provide a deeper understanding of the pathophysiology of the neural circuitry underlying anxiety and may offer potential treatment markers for anxiety disorders. © 2015 Wiley Periodicals, Inc.

  11. Competition between learned reward and error outcome predictions in anterior cingulate cortex.

    PubMed

    Alexander, William H; Brown, Joshua W

    2010-02-15

    The anterior cingulate cortex (ACC) is implicated in performance monitoring and cognitive control. Non-human primate studies of ACC show prominent reward signals, but these are elusive in human studies, which instead show mainly conflict and error effects. Here we demonstrate distinct appetitive and aversive activity in human ACC. The error likelihood hypothesis suggests that ACC activity increases in proportion to the likelihood of an error, and ACC is also sensitive to the consequence magnitude of the predicted error. Previous work further showed that error likelihood effects reach a ceiling as the potential consequences of an error increase, possibly due to reductions in the average reward. We explored this issue by independently manipulating reward magnitude of task responses and error likelihood while controlling for potential error consequences in an Incentive Change Signal Task. The fMRI results ruled out a modulatory effect of expected reward on error likelihood effects in favor of a competition effect between expected reward and error likelihood. Dynamic causal modeling showed that error likelihood and expected reward signals are intrinsic to the ACC rather than received from elsewhere. These findings agree with interpretations of ACC activity as signaling both perceptions of risk and predicted reward. Copyright 2009 Elsevier Inc. All rights reserved.

  12. A meta-analysis of the anterior cingulate contribution to social pain.

    PubMed

    Rotge, Jean-Yves; Lemogne, Cedric; Hinfray, Sophie; Huguet, Pascal; Grynszpan, Ouriel; Tartour, Eric; George, Nathalie; Fossati, Philippe

    2015-01-01

    Many functional magnetic resonance imaging studies have explored the neural correlates of social pain that results from social threat, exclusion, rejection, loss or negative evaluation. Although activations have consistently been reported within the anterior cingulate cortex (ACC), it remains unclear which ACC subdivision is particularly involved. To provide a quantitative estimation of the specific involvement of ACC subdivisions in social pain, we conducted a voxel-based meta-analysis. The literature search identified 46 articles that included 940 subjects, the majority of which used the cyberball task. Significant likelihoods of activation were found in both the ventral and dorsal ACC for both social pain elicitation and self-reported distress during social pain. Self-reported distress involved more specifically the subgenual and pregenual ACC than social pain-related contrasts. The cyberball task involved the anterior midcingulate cortex to a lesser extent than other experimental tasks. During social pain, children exhibited subgenual activations to a greater extent than adults. Finally, the ventro-dorsal gradient of ACC activations in cyberball studies was related to the length of exclusion phases. The present meta-analysis contributes to a better understanding of the role of ACC subdivisions in social pain, and it could be of particular importance for guiding future studies of social pain and its neural underpinnings. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  13. Common and distinct networks underlying reward valence and processing stages: A meta-analysis of functional neuroimaging studies

    PubMed Central

    Liu, Xun; Hairston, Jacqueline; Schrier, Madeleine; Fan, Jin

    2011-01-01

    To better understand the reward circuitry in human brain, we conducted activation likelihood estimation (ALE) and parametric voxel-based meta-analyses (PVM) on 142 neuroimaging studies that examined brain activation in reward-related tasks in healthy adults. We observed several core brain areas that participated in reward-related decision making, including the nucleus accumbens (NAcc), caudate, putamen, thalamus, orbitofrontal cortex (OFC), bilateral anterior insula, anterior (ACC) and posterior (PCC) cingulate cortex, as well as cognitive control regions in the inferior parietal lobule and prefrontal cortex (PFC). The NAcc was commonly activated by both positive and negative rewards across various stages of reward processing (e.g., anticipation, outcome, and evaluation). In addition, the medial OFC and PCC preferentially responded to positive rewards, whereas the ACC, bilateral anterior insula, and lateral PFC selectively responded to negative rewards. Reward anticipation activated the ACC, bilateral anterior insula, and brain stem, whereas reward outcome more significantly activated the NAcc, medial OFC, and amygdala. Neurobiological theories of reward-related decision making should therefore distributed and interrelated representations of reward valuation and valence assessment into account. PMID:21185861

  14. Impact of Family History of Alcoholism on Glutamine/Glutamate Ratio in Anterior Cingulate Cortex in Substance-Naïve Adolescents

    PubMed Central

    Cohen-Gilbert, Julia E.; Sneider, Jennifer T.; Crowley, David J.; Rosso, Isabelle M.; Jensen, J. Eric; Silveri, Marisa M.

    2015-01-01

    Neuroimaging studies of individuals with family histories of alcoholism provide evidence suggesting neurobiological risk factors for alcoholism. Youth family history positive (FH+) for alcoholism exhibit increased impulsivity compared to family history negative (FH−) peers, in conjunction with altered functional activation in prefrontal cortex, including anterior cingulate cortex (ACC). This study examined glutamate (Glu) and glutamine (Gln), amino acids vital to protein synthesis, cellular metabolism and neurotransmission, acquired from ACC and parieto-occipital cortex (POC) using magnetic resonance spectroscopy (MRS) at 4T. Participants were 28 adolescents (13 male, 12–14yrs) and 31 emerging adults (16 male, 18–25yrs), stratified into FH− and FH+ groups. Significantly higher ACC Gln/Glu was observed in emerging adults versus adolescents in FH− but not FH+ groups. In FH− adolescents, higher impulsivity was significantly associated with higher ACC Gln/Glu. In FH+ emerging adults, higher impulsivity was negatively associated with ACC Gln/Glu. No differences or associations were observed for POC. These findings provide preliminary evidence that family history of alcoholism is associated with a neurochemical profile that may influence normative age differences in glutamatergic metabolites and their association with impulse control, which together could confer greater genetic risk of addiction later in life. PMID:26025607

  15. Abnormal Resting-State Functional Connectivity of the Anterior Cingulate Cortex in Unilateral Chronic Tinnitus Patients

    PubMed Central

    Chen, Yu-Chen; Liu, Shenghua; Lv, Han; Bo, Fan; Feng, Yuan; Chen, Huiyou; Xu, Jin-Jing; Yin, Xindao; Wang, Shukui; Gu, Jian-Ping

    2018-01-01

    Purpose: The anterior cingulate cortex (ACC) has been suggested to be involved in chronic subjective tinnitus. Tinnitus may arise from aberrant functional coupling between the ACC and cerebral cortex. To explore this hypothesis, we used resting-state functional magnetic resonance imaging (fMRI) to illuminate the functional connectivity (FC) network of the ACC subregions in chronic tinnitus patients. Methods: Resting-state fMRI scans were obtained from 31 chronic right-sided tinnitus patients and 40 healthy controls (age, sex, and education well-matched) in this study. Rostral ACC and dorsal ACC were selected as seed regions to investigate the intrinsic FC with the whole brain. The resulting FC patterns were correlated with clinical tinnitus characteristics including the tinnitus duration and tinnitus distress. Results: Compared with healthy controls, chronic tinnitus patients showed disrupted FC patterns of ACC within several brain networks, including the auditory cortex, prefrontal cortex, visual cortex, and default mode network (DMN). The Tinnitus Handicap Questionnaires (THQ) scores showed positive correlations with increased FC between the rostral ACC and left precuneus (r = 0.507, p = 0.008) as well as the dorsal ACC and right inferior parietal lobe (r = 0.447, p = 0.022). Conclusions: Chronic tinnitus patients have abnormal FC networks originating from ACC to other selected brain regions that are associated with specific tinnitus characteristics. Resting-state ACC-cortical FC disturbances may play an important role in neuropathological features underlying chronic tinnitus. PMID:29410609

  16. Selection, integration, and conflict monitoring; assessing the nature and generality of prefrontal cognitive control mechanisms.

    PubMed

    Badre, David; Wagner, Anthony D

    2004-02-05

    Prefrontal cortex (PFC) supports flexible behavior by mediating cognitive control, though the elemental forms of control supported by PFC remain a central debate. Dorsolateral PFC (DLPFC) is thought to guide response selection under conditions of response conflict or, alternatively, may refresh recently active representations within working memory. Lateral frontopolar cortex (FPC) may also adjudicate response conflict, though others propose that FPC supports higher order control processes such as subgoaling and integration. Anterior cingulate cortex (ACC) is hypothesized to upregulate response selection by detecting response conflict; it remains unclear whether ACC functions generalize beyond monitoring response conflict. The present fMRI experiment directly tested these competing theories regarding the functional roles of DLPFC, FPC, and ACC. Results reveal dissociable control processes in PFC, with mid-DLPFC selectively mediating resolution of response conflict and FPC further mediating subgoaling/integration. ACC demonstrated a broad sensitivity to control demands, suggesting a generalized role in modulating cognitive control.

  17. Rostral anterior cingulate cortex activity and early symptom improvement during treatment for major depressive disorder

    PubMed Central

    Korb, Alexander S.; Hunter, Aimee M.; Cook, Ian A.; Leuchter, Andrew F.

    2011-01-01

    In treatment trials for Major Depressive Disorder (MDD), early symptom improvement is predictive of eventual clinical response. Clinical response may also be predicted by elevated pretreatment theta (4-7 Hz) current density in the rostral anterior cingulate (rACC) and medial orbitofrontal cortex (mOFC). We investigated the relationship between pretreatment EEG and early improvement in predicting clinical outcome in 72 MDD subjects across three placebo-controlled treatment trials. Subjects were randomized to receive fluoxetine, venlafaxine, or placebo. Theta current density in the rACC and mOFC was computed with Low-Resolution Brain Electromagnetic Tomography (LORETA). An ANCOVA, examining week 8 Hamilton Depression Rating Scale (HamD) percent change, showed a significant effect of week-2-HamD-percent-change, and a significant three-way interaction of week-2-HamD-percent-change × Treatment × rACC. Medication subjects with robust early improvement showed almost no relationship between rACC theta current density and final clinical outcome. However, in subjects with little early improvement, rACC activity showed a strong relationship with clinical outcome. The model examining mOFC showed a trend in the three-way interaction. A combination of pretreatment rACC activity and early symptom improvement may be useful for predicting treatment response. PMID:21546222

  18. Reinforcement learning signals in the anterior cingulate cortex code for others' false beliefs.

    PubMed

    Apps, M A J; Green, R; Ramnani, N

    2013-01-01

    The ability to recognise that another's belief is false is a hallmark of our capacity to understand others' mental states. It has been suggested that the computational and neural mechanisms that underpin learning about others' mental states may be similar to those that underpin first-person Reinforcement Learning (RL). In RL, unexpected decision-making outcomes constitute prediction errors (PE), which are coded for by neurons in the Anterior Cingulate Cortex (ACC). Does the ACC signal the PEs (false beliefs) of others about the outcomes of their decisions? We scanned subjects using fMRI while they monitored a third-person's decisions and similar responses made by a computer. The outcomes of the trials were manipulated, such that the actual outcome was unexpectedly different from the predicted outcome on 1/3 of trials. We examined activity time-locked to privileged information which indicated the actual outcomes only to subjects. Activity in the gyral ACC was found when the outcomes of the third-person's decisions were unexpectedly positive. Activity in the sulcal ACC was found when the third-person's or computer's outcomes were unexpectedly positive. We suggest that a property of the ACC is that it codes PEs, with a portion of the gyral ACC specialised for processing the PEs of others. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Intra- and Interhemispheric Propagation of Electrophysiological Synchronous Activity and Its Modulation by Serotonin in the Cingulate Cortex of Juvenile Mice

    PubMed Central

    Rovira, Víctor; Geijo-Barrientos, Emilio

    2016-01-01

    Disinhibition of the cortex (e.g., by GABA -receptor blockade) generates synchronous and oscillatory electrophysiological activity that propagates along the cortex. We have studied, in brain slices of the cingulate cortex of mice (postnatal age 14–20 days), the propagation along layer 2/3 as well as the interhemispheric propagation through the corpus callosum of synchronous discharges recorded extracellularly and evoked in the presence of 10 μM bicuculline by electrical stimulation of layer 1. The latency of the responses obtained at the same distance from the stimulus electrode was longer in anterior cingulate cortex (ACC: 39.53 ± 2.83 ms, n = 7) than in retrosplenial cortex slices (RSC: 21.99 ± 2.75 ms, n = 5; p<0.05), which is equivalent to a lower propagation velocity in the dorso-ventral direction in ACC than in RSC slices (43.0 mm/s vs 72.9 mm/s). We studied the modulation of this propagation by serotonin. Serotonin significantly increased the latency of the intracortical synchronous discharges (18.9% in the ipsilateral hemisphere and 40.2% in the contralateral hemisphere), and also increased the interhemispheric propagation time by 86.4%. These actions of serotonin were mimicked by the activation of either 5-HT1B or 5-HT2A receptors, but not by the activation of the 5-HT1A subtype. These findings provide further knowledge about the propagation of synchronic electrical activity in the cerebral cortex, including its modulation by serotonin, and suggest the presence of deep differences between the ACC and RSC in the structure of the local cortical microcircuits underlying the propagation of synchronous discharges. PMID:26930051

  20. Motivation and Affective Judgments Differentially Recruit Neurons in the Primate Dorsolateral Prefrontal and Anterior Cingulate Cortex

    PubMed Central

    Amemori, Ken-ichi; Amemori, Satoko

    2015-01-01

    The judgment of whether to accept or to reject an offer is determined by positive and negative affect related to the offer, but affect also induces motivational responses. Rewarding and aversive cues influence the firing rates of many neurons in primate prefrontal and cingulate neocortical regions, but it still is unclear whether neurons in these regions are related to affective judgment or to motivation. To address this issue, we recorded simultaneously the neuronal spike activities of single units in the dorsolateral prefrontal cortex (dlPFC) and the anterior cingulate cortex (ACC) of macaque monkeys as they performed approach–avoidance (Ap–Av) and approach–approach (Ap–Ap) decision-making tasks that can behaviorally dissociate affective judgment and motivation. Notably, neurons having activity correlated with motivational condition could be distinguished from neurons having activity related to affective judgment, especially in the Ap–Av task. Although many neurons in both regions exhibited similar, selective patterns of task-related activity, we found a larger proportion of neurons activated in low motivational conditions in the dlPFC than in the ACC, and the onset of this activity was significantly earlier in the dlPFC than in the ACC. Furthermore, the temporal onsets of affective judgment represented by neuronal activities were significantly slower in the low motivational conditions than in the other conditions. These findings suggest that motivation and affective judgment both recruit dlPFC and ACC neurons but with differential degrees of involvement and timing. PMID:25653353

  1. Activation of cannabinoid system in anterior cingulate cortex and orbitofrontal cortex modulates cost-benefit decision making.

    PubMed

    Khani, Abbas; Kermani, Mojtaba; Hesam, Soghra; Haghparast, Abbas; Argandoña, Enrike G; Rainer, Gregor

    2015-06-01

    Despite the evidence for altered decision making in cannabis abusers, the role of the cannabinoid system in decision-making circuits has not been studied. Here, we examined the effects of cannabinoid modulation during cost-benefit decision making in the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC), key brain areas involved in decision making. We trained different groups of rats in a delay-based and an effort-based form of cost-benefit T-maze decision-making task. During test days, the rats received local injections of either vehicle or ACEA, a cannabinoid type-1 receptor (CB1R) agonist in the ACC or OFC. We measured spontaneous locomotor activity following the same treatments and characterized CB1Rs localization on different neuronal populations within these regions using immunohistochemistry. We showed that CB1R activation in the ACC impaired decision making such that rats were less willing to invest physical effort to gain high reward. Similarly, CB1R activation in the OFC induced impulsive pattern of choice such that rats preferred small immediate rewards to large delayed rewards. Control tasks ensured that the effects were specific for differential cost-benefit tasks. Furthermore, we characterized widespread colocalizations of CB1Rs on GABAergic axonal ends but few colocalizations on glutamatergic, dopaminergic, and serotonergic neuronal ends. These results provide first direct evidence that the cannabinoid system plays a critical role in regulating cost-benefit decision making in the ACC and OFC and implicate cannabinoid modulation of synaptic ends of predominantly interneurons and to a lesser degree other neuronal populations in these two frontal regions.

  2. Nicotine-induced activation of caudate and anterior cingulate cortex in response to errors in schizophrenia.

    PubMed

    Moran, Lauren V; Stoeckel, Luke E; Wang, Kristina; Caine, Carolyn E; Villafuerte, Rosemond; Calderon, Vanessa; Baker, Justin T; Ongur, Dost; Janes, Amy C; Evins, A Eden; Pizzagalli, Diego A

    2018-03-01

    Nicotine improves attention and processing speed in individuals with schizophrenia. Few studies have investigated the effects of nicotine on cognitive control. Prior functional magnetic resonance imaging (fMRI) research demonstrates blunted activation of dorsal anterior cingulate cortex (dACC) and rostral anterior cingulate cortex (rACC) in response to error and decreased post-error slowing in schizophrenia. Participants with schizophrenia (n = 13) and healthy controls (n = 12) participated in a randomized, placebo-controlled, crossover study of the effects of transdermal nicotine on cognitive control. For each drug condition, participants underwent fMRI while performing the stop signal task where participants attempt to inhibit prepotent responses to "go (motor activation)" signals when an occasional "stop (motor inhibition)" signal appears. Error processing was evaluated by comparing "stop error" trials (failed response inhibition) to "go" trials. Resting-state fMRI data were collected prior to the task. Participants with schizophrenia had increased nicotine-induced activation of right caudate in response to errors compared to controls (DRUG × GROUP effect: p corrected  < 0.05). Both groups had significant nicotine-induced activation of dACC and rACC in response to errors. Using right caudate activation to errors as a seed for resting-state functional connectivity analysis, relative to controls, participants with schizophrenia had significantly decreased connectivity between the right caudate and dACC/bilateral dorsolateral prefrontal cortices. In sum, we replicated prior findings of decreased post-error slowing in schizophrenia and found that nicotine was associated with more adaptive (i.e., increased) post-error reaction time (RT). This proof-of-concept pilot study suggests a role for nicotinic agents in targeting cognitive control deficits in schizophrenia.

  3. Disrupted Prefrontal Activity during Emotion Processing in Complicated Grief: an fMRI Investigation

    PubMed Central

    Arizmendi, Brian; Kaszniak, Alfred W.; O’Connor, Mary-Frances

    2015-01-01

    Complicated Grief, marked by a persistent and intrusive grief lasting beyond the expected period of adaptation, is associated with a relative inability to disengage from idiographic loss-relevant stimuli (O’Connor & Arizmendi, 2014). In other populations, functional magnetic resonance imaging (fMRI) studies investigating the neural networks associated with this bias consistently implicate the anterior cingulate cortex (ACC) during emotion regulation. In the present study, twenty-eight older adults were categorized into three groups based on grief severity: Complicated Grief (n=8), Non-Complicated Grief (n=9), and Nonbereaved, married controls (n=11). Using a block design, all participants completed 8 blocks (20 stimuli per block) of the ecStroop task during fMRI data acquisition. Differences in neural activity during grief-related (as opposed to neutral) stimuli across groups were examined. Those with Complicated Grief showed an absence of increased rostral ACC (rACC) and fronto-cortical recruitment relative to Nonbereaved controls. Activity in the orbitofrontal cortex (x=6, y=54, z=−10) was significantly elevated in the Non-Complicated Grief group when compared to Nonbereaved controls. Post hoc analysis evidenced activity in the dorsal ACC in the Complicated Grief and Nonbereaved groups late in the task. These findings, supported by behavioral data, suggest a relative inability to recruit the regions necessary for successful completion of this emotional task in those with Complicated Grief. This deficit was not observed in recruitment of the orbitofrontal cortex and the rACC during processing of idiographic semantic stimuli in Non-Complicated Grief. PMID:26434802

  4. Disrupted prefrontal activity during emotion processing in complicated grief: An fMRI investigation.

    PubMed

    Arizmendi, Brian; Kaszniak, Alfred W; O'Connor, Mary-Frances

    2016-01-01

    Complicated Grief, marked by a persistent and intrusive grief lasting beyond the expected period of adaptation, is associated with a relative inability to disengage from idiographic loss-relevant stimuli (O'Connor and Arizmendi, 2014). In other populations, functional magnetic resonance imaging (fMRI) studies investigating the neural networks associated with this bias consistently implicate the anterior cingulate cortex (ACC) during emotion regulation. In the present study, twenty-eight older adults were categorized into three groups based on grief severity: Complicated Grief (n=8), Non-Complicated Grief (n=9), and Nonbereaved, married controls (n=11). Using a block design, all participants completed 8 blocks (20 stimuli per block) of the ecStroop task during fMRI data acquisition. Differences in neural activity during grief-related (as opposed to neutral) stimuli across groups were examined. Those with Complicated Grief showed an absence of increased rostral ACC (rACC) and fronto-cortical recruitment relative to Nonbereaved controls. Activity in the orbitofrontal cortex (x=6, y=54, z=-10) was significantly elevated in the Non-Complicated Grief group when compared to Nonbereaved controls. Post hoc analysis evidenced activity in the dorsal ACC in the Complicated Grief and Nonbereaved groups late in the task. These findings, supported by behavioral data, suggest a relative inability to recruit the regions necessary for successful completion of this emotional task in those with Complicated Grief. This deficit was not observed in recruitment of the orbitofrontal cortex and the rACC during processing of idiographic semantic stimuli in Non-Complicated Grief. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Exposure to blue wavelength light modulates anterior cingulate cortex activation in response to 'uncertain' versus 'certain' anticipation of positive stimuli.

    PubMed

    Alkozei, Anna; Smith, Ryan; Killgore, William D S

    2016-03-11

    Blue wavelength light has been used as an effective treatment for some types of mood disorders and circadian rhythm related sleep problems. We hypothesized that acute exposure to blue wavelength light would directly affect the functioning of neurocircuity implicated in emotion regulation (i.e., ventromedial prefrontal cortex, amygdala, insula, and anterior cingulate cortex [ACC]) during 'certain' and 'uncertain' anticipation of negative and positive stimuli. Thirty-five healthy adults were randomized to receive a thirty-minute exposure to either blue (active) or amber (placebo) light, immediately followed by an emotional anticipation task during functional magnetic resonance imaging (fMRI). In contrast to placebo, participants in the blue light group showed significantly reduced activation within the rostral ACC during 'uncertain' anticipation (i.e., uncertainty regarding whether a positive or negative stimulus would be shown) in comparison to 'certain' anticipation of a positive stimulus. These findings may be explicable in terms of interactions between blue light exposure and the influence of specific neuromodulators on ACC-mediated decision-making mechanisms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Treatment effects on insular and anterior cingulate cortex activation during classic and emotional Stroop interference in child abuse-related complex post-traumatic stress disorder.

    PubMed

    Thomaes, K; Dorrepaal, E; Draijer, N; de Ruiter, M B; Elzinga, B M; van Balkom, A J; Smit, J H; Veltman, D J

    2012-11-01

    Functional neuroimaging studies have shown increased Stroop interference coupled with altered anterior cingulate cortex (ACC) and insula activation in post-traumatic stress disorder (PTSD). These brain areas are associated with error detection and emotional arousal. There is some evidence that treatment can normalize these activation patterns. At baseline, we compared classic and emotional Stroop performance and blood oxygenation level-dependent responses (functional magnetic resonance imaging) of 29 child abuse-related complex PTSD patients with 22 non-trauma-exposed healthy controls. In 16 of these patients, we studied treatment effects of psycho-educational and cognitive behavioural stabilizing group treatment (experimental treatment; EXP) added to treatment as usual (TAU) versus TAU only, and correlations with clinical improvement. At baseline, complex PTSD patients showed a trend for increased left anterior insula and dorsal ACC activation in the classic Stroop task. Only EXP patients showed decreased dorsal ACC and left anterior insula activation after treatment. In the emotional Stroop contrasts, clinical improvement was associated with decreased dorsal ACC activation and decreased left anterior insula activation. We found further evidence that successful treatment in child abuse-related complex PTSD is associated with functional changes in the ACC and insula, which may be due to improved selective attention and lower emotional arousal, indicating greater cognitive control over PTSD symptoms.

  7. Substrates of neuropsychological functioning in stimulant dependence: a review of functional neuroimaging research

    PubMed Central

    Crunelle, Cleo L; Veltman, Dick J; Booij, Jan; Emmerik – van Oortmerssen, Katelijne; den Brink, Wim

    2012-01-01

    Stimulant dependence is associated with neuropsychological impairments. Here, we summarize and integrate the existing neuroimaging literature on the neural substrates of neuropsychological (dys)function in stimulant dependence, including cocaine, (meth-)amphetamine, ecstasy and nicotine dependence, and excessive caffeine use, comparing stimulant abusers (SAs) to nondrug using healthy controls (HCs). Despite some inconsistencies, most studies indicated altered brain activation in prefrontal cortex (PFC) and insula in response to reward and punishment, and higher limbic and anterior cingulate cortex (ACC)/PFC activation during craving and attentional bias paradigms in SAs compared with HCs. Impulsivity in SAs was associated with lower ACC and presupplementary motor area activity compared with HCs, and related to both ventral (amygdala, ventrolateral PFC, insula) and dorsal (dorsolateral PFC, dorsal ACC, posterior parietal cortex) systems. Decision making in SAs was associated with low dorsolateral PFC activity and high orbitofrontal activity. Finally, executive function in SAs was associated with lower activation in frontotemporal regions and higher activation in premotor cortex compared with HCs. It is concluded that the lower activations compared with HCs are likely to reflect the neural substrate of impaired neurocognitive functions, whereas higher activations in SAs compared with HCs are likely to reflect compensatory cognitive control mechanisms to keep behavioral task performance to a similar level as in HCs. However, before final conclusions can be drawn, additional research is needed using neuroimaging in SAs and HCs using larger and more homogeneous samples as well as more comparable task paradigms, study designs, and statistical analyses. PMID:22950052

  8. Altered neural responses to heat pain in drug-naive patients with Parkinson disease.

    PubMed

    Forkmann, Katarina; Grashorn, Wiebke; Schmidt, Katharina; Fründt, Odette; Buhmann, Carsten; Bingel, Ulrike

    2017-08-01

    Pain is a frequent but still neglected nonmotor symptom of Parkinson disease (PD). However, neural mechanisms underlying pain in PD are poorly understood. Here, we explored whether the high prevalence of pain in PD might be related to dysfunctional descending pain control. Using functional magnetic resonance imaging we explored neural responses during the anticipation and processing of heat pain in 21 PD patients (Hoehn and Yahr I-III) and 23 healthy controls (HC). Parkinson disease patients were naive to dopaminergic medication to avoid confounding drug effects. Fifteen heat pain stimuli were applied to the participants' forearm. Intensity and unpleasantness ratings were provided for each stimulus. Subjective pain perception was comparable for PD patients and HC. Neural processing, however, differed between groups: PD patients showed lower activity in several descending pain modulation regions (dorsal anterior cingulate cortex [dACC], subgenual anterior cingulate cortex, and dorsolateral prefrontal cortex [DLPFC]) and lower functional connectivity between dACC and DLPFC during pain anticipation. Parkinson disease symptom severity was negatively correlated with dACC-DLPFC connectivity indicating impaired functional coupling of pain modulatory regions with disease progression. During pain perception PD patients showed higher midcingulate cortex activity compared with HC, which also scaled with PD severity. Interestingly, dACC-DLPFC connectivity during pain anticipation was negatively associated with midcingulate cortex activity during the receipt of pain in PD patients. This study indicates altered neural processing during the anticipation and receipt of experimental pain in drug-naive PD patients. It provides first evidence for a progressive decline in descending pain modulation in PD, which might be related to the high prevalence of pain in later stages of PD.

  9. Neurotoxicity and reactive astrogliosis in the anterior cingulate cortex in acute ciguatera poisoning.

    PubMed

    Zhang, Xu; Cao, Bing; Wang, Jun; Liu, Jin; Tung, Vivian Oi Vian; Lam, Paul Kwan Sing; Chan, Leo Lai; Li, Ying

    2013-06-01

    Ciguatoxins (CTXs) cause long-term disturbance of cerebral functions. The primary mechanism of neurotoxicity is related to their interaction with voltage-gated sodium channels. However, until now, the neurological targets for CTXs in the brain of intact animals have not been described. In our study, 1 day following oral exposure to 0.26 ng/g of Pacific ciguatoxin 1 (P-CTX-1), we performed in vivo electrophysiological recordings in the rat anterior cingulate cortex (ACC) and identified the increase in spontaneous firings and enhanced responses to visceral noxious stimulation. Local field recordings characterized the P-CTX-1-induced synaptic potentiation and blockage of the induction of electrical stimulation-induced long-term potentiation in the medial thalamus (MT)-ACC pathway. Furthermore, intracerebroventricular administration of P-CTX-1 at doses of 1.0, 5.0, and 10 nM produced a dose-dependent increase in ACC neuronal firings and MT-ACC synaptic transmission. Further studies showed upregulated Na(+) channel expression in astrocytes under pathological conditions. We hypothesized that the astrocytes might have been activated in the ciguatera poisoning in vivo. Increases in glial fibrillary acid protein expression were detected in reactive astrocytes in the rat ACC. The activation of astroglia was further indicated by activation of the gap junction protein connexin 43 and upregulation of excitatory amino acid transporter 2 expression suggesting that glutamate was normally rapidly cleared from the synaptic cleft during acute ciguatera poisoning. However, neurotoxicity and reactive astrogliosis were not detected in the ACC after 7 days of P-CTX-1 exposure. The present results are the first characterization of P-CTX-1-invoked brain cortex neuronal excitotoxicity in vivo and supported the theme that neuron and astroglia signals might play roles in acute ciguatera poisoning.

  10. Transient alcohol craving suppression by rTMS of dorsal anterior cingulate: an fMRI and LORETA EEG study.

    PubMed

    De Ridder, Dirk; Vanneste, Sven; Kovacs, Silvia; Sunaert, Stefan; Dom, Geert

    2011-05-27

    It has recently become clear that alcohol addiction might be related to a brain dysfunction, in which a genetic background and environmental factors shape brain mechanisms involved with alcohol consumption. Craving, a major component determining relapses in alcohol abuse has been linked to abnormal activity in the orbitofrontal cortex, dorsal anterior cingulated cortex (dACC) and amygdala. We report the results of a patient who underwent rTMS targeting the dACC using a double cone coil in an attempt to suppress very severe intractable alcohol craving. Functional imaging studies consisting of fMRI and resting state EEG were performed before rTMS, after successful rTMS and after unsuccessful rTMS with relapse. Craving was associated with EEG beta activity and connectivity between the dACC and PCC in the patient in comparison to a healthy population, which disappeared after successful rTMS. Cue induced worsening of craving pre-rTMS activated the ACC-vmPFC and PCC on fMRI, as well as the nucleus accumbens area, and lateral frontoparietal areas. The nucleus accumbens, ACC-vmPFC and PCC activation disappeared on fMRI following successful rTMS. Relapse was associated with recurrence of ACC and PCC EEG activity, but in gamma band, in comparison to a healthy population. On fMRI nucleus accumbens, ACC and PCC activation returned to the initial activation pattern. A pathophysiological approach is described to suppress alcohol craving temporarily by rTMS directed at the anterior cingulate. Linking functional imaging changes to craving intensity suggests this approach warrants further exploration. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Prefrontal control and predictors of cognitive behavioral therapy response in social anxiety disorder

    PubMed Central

    Fitzgerald, Daniel A.; Piejko, Katherine; Roberts, Julia; Kennedy, Amy E.; Phan, K. Luan

    2016-01-01

    Generalized social anxiety disorder (gSAD) is associated with aberrant anterior cingulate cortex (ACC) response to threat distractors. Perceptual load has been shown to modulate ACC activity such that under high load, when demands on processing capacity is restricted, individuals with gSAD exhibit compensatory activation to threat distractors yet under low load, there is evidence of reduced activation. It is not known if neural predictors of response to cognitive behavioral therapy (CBT), based on such emotional conflict resolution, interact with demands on controlled processes. Prior to CBT, 32 patients with gSAD completed an fMRI task involving a target letter in a string of identical targets (low perceptual load) or a target letter in a mixed letter string (high perceptual load) superimposed on fearful, angry and neutral face distractors. Whole-brain voxel-wise analyses revealed better CBT outcome was predicted by more frontopartial activity that included dorsal ACC (dACC) and insula to threat (vs neutral) distractors during high, but not low, perceptual load. Psychophysiological interaction analysis with dACC as the seed region revealed less connectivity with dorsolateral prefrontal cortex to threat distractors during high load. Results indicate patients with less regulatory capability when demands on higher-order control are great may benefit more from CBT. PMID:26634281

  12. Impact of family history of alcoholism on glutamine/glutamate ratio in anterior cingulate cortex in substance-naïve adolescents.

    PubMed

    Cohen-Gilbert, Julia E; Sneider, Jennifer T; Crowley, David J; Rosso, Isabelle M; Jensen, J Eric; Silveri, Marisa M

    2015-12-01

    Neuroimaging studies of individuals with family histories of alcoholism provide evidence suggesting neurobiological risk factors for alcoholism. Youth family history positive (FH+) for alcoholism exhibit increased impulsivity compared to family history negative (FH-) peers in conjunction with altered functional activation in prefrontal cortex, including anterior cingulate cortex (ACC). This study examined glutamate (Glu) and glutamine (Gln), amino acids vital to protein synthesis, cellular metabolism and neurotransmission, acquired from ACC and parieto-occipital cortex (POC) using magnetic resonance spectroscopy (MRS) at 4T. Participants were 28 adolescents (13 male, 12-14 yrs) and 31 emerging adults (16 male, 18-25 yrs), stratified into FH- and FH+ groups. Significantly higher ACC Gln/Glu was observed in emerging adults versus adolescents in FH- but not FH+ groups. In FH- adolescents, higher impulsivity was significantly associated with higher ACC Gln/Glu. In FH+ emerging adults, higher impulsivity was negatively associated with ACC Gln/Glu. No differences or associations were observed for POC. These findings provide preliminary evidence that family history of alcoholism is associated with a neurochemical profile that may influence normative age differences in glutamatergic metabolites and their association with impulse control, which together could confer greater genetic risk of addiction later in life. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Neurons in the Frontal Lobe Encode the Value of Multiple Decision Variables

    PubMed Central

    Kennerley, Steven W.; Dahmubed, Aspandiar F.; Lara, Antonio H.; Wallis, Jonathan D.

    2009-01-01

    A central question in behavioral science is how we select among choice alternatives to obtain consistently the most beneficial outcomes. Three variables are particularly important when making a decision: the potential payoff, the probability of success, and the cost in terms of time and effort. A key brain region in decision making is the frontal cortex as damage here impairs the ability to make optimal choices across a range of decision types. We simultaneously recorded the activity of multiple single neurons in the frontal cortex while subjects made choices involving the three aforementioned decision variables. This enabled us to contrast the relative contribution of the anterior cingulate cortex (ACC), the orbito-frontal cortex, and the lateral prefrontal cortex to the decision-making process. Neurons in all three areas encoded value relating to choices involving probability, payoff, or cost manipulations. However, the most significant signals were in the ACC, where neurons encoded multiplexed representations of the three different decision variables. This supports the notion that the ACC is an important component of the neural circuitry underlying optimal decision making. PMID:18752411

  14. Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults

    PubMed Central

    Wong, Chelsea N.; Chaddock-Heyman, Laura; Voss, Michelle W.; Burzynska, Agnieszka Z.; Basak, Chandramallika; Erickson, Kirk I.; Prakash, Ruchika S.; Szabo-Reed, Amanda N.; Phillips, Siobhan M.; Wojcicki, Thomas; Mailey, Emily L.; McAuley, Edward; Kramer, Arthur F.

    2015-01-01

    Higher cardiorespiratory fitness is associated with better cognitive performance and enhanced brain activation. Yet, the extent to which cardiorespiratory fitness-related brain activation is associated with better cognitive performance is not well understood. In this cross-sectional study, we examined whether the association between cardiorespiratory fitness and executive function was mediated by greater prefrontal cortex activation in healthy older adults. Brain activation was measured during dual-task performance with functional magnetic resonance imaging in a sample of 128 healthy older adults (59–80 years). Higher cardiorespiratory fitness was associated with greater activation during dual-task processing in several brain areas including the anterior cingulate and supplementary motor cortex (ACC/SMA), thalamus and basal ganglia, right motor/somatosensory cortex and middle frontal gyrus, and left somatosensory cortex, controlling for age, sex, education, and gray matter volume. Of these regions, greater ACC/SMA activation mediated the association between cardiorespiratory fitness and dual-task performance. We provide novel evidence that cardiorespiratory fitness may support cognitive performance by facilitating brain activation in a core region critical for executive function. PMID:26321949

  15. Age-Related Changes in Amygdala-Frontal Connectivity during Emotional Face Processing from Childhood into Young Adulthood

    PubMed Central

    Wu, Minjie; Kujawa, Autumn; Lu, Lisa H.; Fitzgerald, Daniel A.; Klumpp, Heide; Fitzgerald, Kate D.; Monk, Christopher S.; Phan, K. Luan

    2016-01-01

    The ability to process and respond to emotional facial expressions is a critical skill for healthy social and emotional development. There has been growing interest in understanding the neural circuitry underlying development of emotional processing, with previous research implicating functional connectivity between amygdala and frontal regions. However, existing work has focused on threatening emotional faces, raising questions regarding the extent to which these developmental patterns are specific to threat or to emotional face processing more broadly. In the current study, we examined age-related changes in brain activity and amygdala functional connectivity during an fMRI emotional face matching task (including angry, fearful and happy faces) in 61 healthy subjects aged 7–25 years. We found age-related decreases in ventral medial prefrontal cortex (vmPFC) activity in response to happy faces but not to angry or fearful faces, and an age-related change (shifting from positive to negative correlation) in amygdala-anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC) functional connectivity to all emotional faces. Specifically, positive correlations between amygdala and ACC/mPFC in children changed to negative correlations in adults, which may suggest early emergence of bottom-up amygdala excitatory signaling to ACC/mPFC in children and later development of top-down inhibitory control of ACC/mPFC over amygdala in adults. Age-related changes in amygdala-ACC/mPFC connectivity did not vary for processing of different facial emotions, suggesting changes in amygdala-ACC/mPFC connectivity may underlie development of broad emotional processing, rather than threat-specific processing. PMID:26931629

  16. Implications of Starvation-Induced Change in Right Dorsal Anterior Cingulate Volume in Anorexia Nervosa

    PubMed Central

    McCormick, Laurie M.; Keel, Pamela K.; Brumm, Michael C.; Bowers, Wayne; Swayze, Victor; Andersen, Arnold; Andreasen, Nancy

    2013-01-01

    Objective Converging evidence suggests a role for the anterior cingulate cortex (ACC) in the pathophysiology of anorexia nervosa (AN). This study sought to determine whether ACC volume was affected by starvation in active AN and, if so, whether this had any clinical significance. Method Eighteen patients with active AN and age- and gender-matched normal controls underwent magnetic resonance imaging (MRI). Sixteen patients (89%) with AN had intelligence quotients (IQ) testing at intake, 14 (78%) had repeat MRIs after weight normalization, and 10 (56%) had outcome data at 1-year post-hospitalization. Results Right dorsal ACC volume was significantly reduced in active AN patients versus controls and was correlated with lower performance IQ. While ACC normalization occurred with weight restoration, smaller change in right dorsal ACC volume prospectively predicted relapse after treatment. Conclusion Reduced right dorsal ACC volume during active AN relates to deficits in perceptual organization and conceptual reasoning. The degree of right dorsal ACC normalization during treatment is related to outcome. PMID:18473337

  17. Implications of starvation-induced change in right dorsal anterior cingulate volume in anorexia nervosa.

    PubMed

    McCormick, Laurie M; Keel, Pamela K; Brumm, Michael C; Bowers, Wayne; Swayze, Victor; Andersen, Arnold; Andreasen, Nancy

    2008-11-01

    Converging evidence suggests a role for the anterior cingulate cortex (ACC) in the pathophysiology of anorexia nervosa (AN). This study sought to determine whether ACC volume was affected by starvation in active AN and, if so, whether this had any clinical significance. Eighteen patients with active AN and age- and gender-matched normal controls underwent magnetic resonance imaging (MRI). Sixteen patients (89%) with AN had intelligence quotients (IQ) testing at intake, 14 (78%) had repeat MRIs after weight normalization, and 10 (56%) had outcome data at 1-year posthospitalization. Right dorsal ACC volume was significantly reduced in active AN patients versus controls and was correlated with lower performance IQ. While ACC normalization occurred with weight restoration, smaller change in right dorsal ACC volume prospectively predicted relapse after treatment. Reduced right dorsal ACC volume during active AN relates to deficits in perceptual organization and conceptual reasoning. The degree of right dorsal ACC normalization during treatment is related to outcome.

  18. A Computational Model of Major Depression: the Role of Glutamate Dysfunction on Cingulo-Frontal Network Dynamics

    PubMed Central

    Ramirez-Mahaluf, Juan P.; Roxin, Alexander; Mayberg, Helen S.; Compte, Albert

    2017-01-01

    Abstract Major depression disease (MDD) is associated with the dysfunction of multinode brain networks. However, converging evidence implicates the reciprocal interaction between midline limbic regions (typified by the ventral anterior cingulate cortex, vACC) and the dorso-lateral prefrontal cortex (dlPFC), reflecting interactions between emotions and cognition. Furthermore, growing evidence suggests a role for abnormal glutamate metabolism in the vACC, while serotonergic treatments (selective serotonin reuptake inhibitor, SSRI) effective for many patients implicate the serotonin system. Currently, no mechanistic framework describes how network dynamics, glutamate, and serotonin interact to explain MDD symptoms and treatments. Here, we built a biophysical computational model of 2 areas (vACC and dlPFC) that can switch between emotional and cognitive processing. MDD networks were simulated by slowing glutamate decay in vACC and demonstrated sustained vACC activation. This hyperactivity was not suppressed by concurrent dlPFC activation and interfered with expected dlPFC responses to cognitive signals, mimicking cognitive dysfunction seen in MDD. Simulation of clinical treatments (SSRI or deep brain stimulation) counteracted this aberrant vACC activity. Theta and beta/gamma oscillations correlated with network function, representing markers of switch-like operation in the network. The model shows how glutamate dysregulation can cause aberrant brain dynamics, respond to treatments, and be reflected in EEG rhythms as biomarkers of MDD. PMID:26514163

  19. Motivation and affective judgments differentially recruit neurons in the primate dorsolateral prefrontal and anterior cingulate cortex.

    PubMed

    Amemori, Ken-ichi; Amemori, Satoko; Graybiel, Ann M

    2015-02-04

    The judgment of whether to accept or to reject an offer is determined by positive and negative affect related to the offer, but affect also induces motivational responses. Rewarding and aversive cues influence the firing rates of many neurons in primate prefrontal and cingulate neocortical regions, but it still is unclear whether neurons in these regions are related to affective judgment or to motivation. To address this issue, we recorded simultaneously the neuronal spike activities of single units in the dorsolateral prefrontal cortex (dlPFC) and the anterior cingulate cortex (ACC) of macaque monkeys as they performed approach-avoidance (Ap-Av) and approach-approach (Ap-Ap) decision-making tasks that can behaviorally dissociate affective judgment and motivation. Notably, neurons having activity correlated with motivational condition could be distinguished from neurons having activity related to affective judgment, especially in the Ap-Av task. Although many neurons in both regions exhibited similar, selective patterns of task-related activity, we found a larger proportion of neurons activated in low motivational conditions in the dlPFC than in the ACC, and the onset of this activity was significantly earlier in the dlPFC than in the ACC. Furthermore, the temporal onsets of affective judgment represented by neuronal activities were significantly slower in the low motivational conditions than in the other conditions. These findings suggest that motivation and affective judgment both recruit dlPFC and ACC neurons but with differential degrees of involvement and timing. Copyright © 2015 the authors 0270-6474/15/351939-15$15.00/0.

  20. Cognitive Strategy Use as an Index of Developmental Differences in Neural Responses to Feedback

    ERIC Educational Resources Information Center

    Andersen, Lau M.; Visser, Ingmar; Crone, Eveline A.; Koolschijn, P. Cédric M. P.; Raijmakers, Maartje E. J.

    2014-01-01

    Developmental differences in dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), and superior parietal cortex (SPC) activation are associated with differences in how children, adolescents, and adults learn from performance feedback in rule-learning tasks (Crone, Zanolie, Leijenhorst, Westenberg, & Rombouts, 2008). Both…

  1. Conflict adaptation in prefrontal cortex: now you see it, now you don't.

    PubMed

    Kim, Chobok; Johnson, Nathan F; Gold, Brian T

    2014-01-01

    Daily life requires people to monitor and resolve conflict arising from distracting information irrelevant to current goals. The highly influential conflict monitoring theory (CMT) holds that the anterior cingulate cortex (ACC) detects conflict and subsequently triggers the dorsolateral prefrontal cortex (DLPFC) to regulate that conflict. Multiple lines of evidence have provided support for CMT. For example, performance is faster on incongruent trials that follow other incongruent trials (iI), and is accompanied by reduced ACC and increased DLPFC activation (the conflict adaptation effect). In this fMRI study, we explored whether ACC-DLPFC conflict signaling can result in behavioral adjustments beyond on-line contexts. Participants completed a modified version of the Stroop conflict adaptation paradigm which tested for conflict adaptation effects on the current (N) trial associated with not only the immediately preceding (N - 1) trial, but also 2-back (N - 2) trials. Results demonstrated evidence for direct relationships between ACC activity on N - 2 trials and both N trial DLPFC activity and behavioral adjustment when intervening trials were congruent (i.e., icI). In contrast, when N - 1 trials were incongruent (i.e., iiI), ACC-DLPFC signaling failed and conflict adaptation was absent. These results provide new evidence demonstrating that the conflict monitor-controller maintains previously experienced conflict in the service of subsequent behavioral adjustment. However, the processing of multiple, temporally proximal conflict signals takes a toll on the working memory (WM) system, which appears to require resetting in order to adapt our behavior to frequently changing environmental demands. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Aberrant error processing in relation to symptom severity in obsessive–compulsive disorder: A multimodal neuroimaging study

    PubMed Central

    Agam, Yigal; Greenberg, Jennifer L.; Isom, Marlisa; Falkenstein, Martha J.; Jenike, Eric; Wilhelm, Sabine; Manoach, Dara S.

    2014-01-01

    Background Obsessive–compulsive disorder (OCD) is characterized by maladaptive repetitive behaviors that persist despite feedback. Using multimodal neuroimaging, we tested the hypothesis that this behavioral rigidity reflects impaired use of behavioral outcomes (here, errors) to adaptively adjust responses. We measured both neural responses to errors and adjustments in the subsequent trial to determine whether abnormalities correlate with symptom severity. Since error processing depends on communication between the anterior and the posterior cingulate cortex, we also examined the integrity of the cingulum bundle with diffusion tensor imaging. Methods Participants performed the same antisaccade task during functional MRI and electroencephalography sessions. We measured error-related activation of the anterior cingulate cortex (ACC) and the error-related negativity (ERN). We also examined post-error adjustments, indexed by changes in activation of the default network in trials surrounding errors. Results OCD patients showed intact error-related ACC activation and ERN, but abnormal adjustments in the post- vs. pre-error trial. Relative to controls, who responded to errors by deactivating the default network, OCD patients showed increased default network activation including in the rostral ACC (rACC). Greater rACC activation in the post-error trial correlated with more severe compulsions. Patients also showed increased fractional anisotropy (FA) in the white matter underlying rACC. Conclusions Impaired use of behavioral outcomes to adaptively adjust neural responses may contribute to symptoms in OCD. The rACC locus of abnormal adjustment and relations with symptoms suggests difficulty suppressing emotional responses to aversive, unexpected events (e.g., errors). Increased structural connectivity of this paralimbic default network region may contribute to this impairment. PMID:25057466

  3. The role of the anterior cingulate cortex in the affective evaluation of conflict

    PubMed Central

    Braem, Senne; King, Joseph A.; Korb, Franziska M.; Krebs, Ruth M.; Notebaert, Wim; Egner, Tobias

    2017-01-01

    An influential theory of anterior cingulate cortex (ACC) function argues that this brain region plays a crucial role in the affective evaluation of performance monitoring and control demands. Specifically, control-demanding processes such as response conflict, are thought to be registered as aversive signals by the ACC, which in turn triggers processing adjustments to support avoidance-learning. In support of conflict being treated as an aversive event, recent behavioural studies demonstrated that incongruent (i.e., conflict-inducing) relative to congruent stimuli can speed up subsequent negative relative to positive affective picture processing. Here, we used functional magnetic resonance imaging (fMRI) to investigate directly whether ACC activity in response to negative versus positive pictures is modulated by preceding control demands, consisting of conflict and task-switching conditions. The results show that negative relative to positive pictures elicited higher ACC activation following congruent relative to incongruent trials, suggesting that the ACC’s response to negative (positive) pictures was indeed affectively primed by incongruent (congruent) trials. Interestingly, this pattern of results was observed on task repetitions, but disappeared on task alternations. Our findings support the proposal that conflict induces negative affect, and are the first to show that this affective signal is reflected in ACC activation. PMID:27575278

  4. Theta-frequency phase-locking of single anterior cingulate cortex neurons and synchronization with the medial thalamus are modulated by visceral noxious stimulation in rats.

    PubMed

    Wang, J; Cao, B; Yu, T R; Jelfs, B; Yan, J; Chan, R H M; Li, Y

    2015-07-09

    The rodent anterior cingulate cortex (ACC) is critical for visceral pain and pain-related aversive response in chronic visceral hypersensitive (VH) state. Long-term potentiation (LTP), induced by theta burst stimulation (TBS) in the medial thalamus (MT)-ACC pathway, is blocked in VH rats. However, the neuronal intrinsic firing characteristics and the MT-ACC connectivity have not been investigated in visceral pain. Using repetitive distension of the colon and rectum (rCRD) as a sensitization paradigm, we have identified that the spontaneous firing rates of ACC neurons and the CRD-stimulated neuronal firings were increased after repetitive visceral noxious stimulation. This correlates with increases in visceral pain responses (visceromotor responses, VMRs). Two multichannel arrays of electrodes were implanted in the MT and ACC. Recordings were performed in free-moving rats before and after repeated CRD treatment. Power spectral density analysis showed that the local field potential (LFP) recorded in the ACC displayed increases in theta band power (4-10 Hz) that were modulated by rCRD. Neural spike activity in the ACC becomes synchronized with ongoing theta oscillations of LFP. Furthermore, cross correlation analysis showed augmented synchronization of thalamo-ACC theta band LFPs, which was consistent with an increase of neuronal communication between the two regions. In conclusion, these results reveal theta oscillations and theta-frequency phase-locking as prominent features of neural activity in the ACC and a candidate neural mechanism underlying acute visceral pain. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Belief in a just world is associated with activity in insula and somatosensory cortices as a response to the perception of norm violations.

    PubMed

    Denke, Claudia; Rotte, Michael; Heinze, Hans-Jochen; Schaefer, Michael

    2014-01-01

    Previous studies identified a network of brain regions involved in the perception of norm violations, including insula, anterior cingulate cortex (ACC), and right temporoparietal junction area (RTPJ). Activations in these regions are suggested to reflect the perception of norm violations and unfairness. The current study aimed to test this hypothesis by exploring whether a personal disposition to perceive the world as being just is related to neural responses to moral evaluations. The just-world-hypothesis describes a cognitive bias to believe in a just world in which everyone gets what he or she deserves and deserves what he or she gets. Since it has been demonstrated that ACC, RTPJ, and insula are involved in the perception of unfairness, we hypothesized that individual differences in the belief in a just world are reflected by different activations of these brain areas. Participants were confronted with scenarios describing norm-violating or -confirming behavior. FMRI results revealed an activation of dorsal ACC, RTPJ, and insula when perceiving norm violations, but only activity in insula/somatosensory cortex correlated with the belief in a just world. Thus, our results suggest a role for insula/somatosensory cortex for the belief in a just world.

  6. Inactivation of the prelimbic or infralimbic cortex impairs decision-making in the rat gambling task.

    PubMed

    Zeeb, Fiona D; Baarendse, P J J; Vanderschuren, L J M J; Winstanley, Catharine A

    2015-12-01

    Studies employing the Iowa Gambling Task (IGT) demonstrated that areas of the frontal cortex, including the ventromedial prefrontal cortex, orbitofrontal cortex (OFC), dorsolateral prefrontal cortex, and anterior cingulate cortex (ACC), are involved in the decision-making process. However, the precise role of these regions in maintaining optimal choice is not clear. We used the rat gambling task (rGT), a rodent analogue of the IGT, to determine whether inactivation of or altered dopamine signalling within discrete cortical sub-regions disrupts decision-making. Following training on the rGT, animals were implanted with guide cannulae aimed at the prelimbic (PrL) or infralimbic (IL) cortices, the OFC, or the ACC. Prior to testing, rats received an infusion of saline or a combination of baclofen and muscimol (0.125 μg of each/side) to inactivate the region and an infusion of a dopamine D2 receptor antagonist (0, 0.1, 0.3, and 1.0 μg/side). Rats tended to increase their choice of a disadvantageous option and decrease their choice of the optimal option following inactivation of either the IL or PrL cortex. In contrast, OFC or ACC inactivation did not affect decision-making. Infusion of a dopamine D2 receptor antagonist into any sub-region did not alter choice preference. Online activity of the IL or PrL cortex is important for maintaining an optimal decision-making strategy, but optimal performance on the rGT does not require frontal cortex dopamine D2 receptor activation. Additionally, these results demonstrate that the roles of different cortical regions in cost-benefit decision-making may be dissociated using the rGT.

  7. Distracted and down: neural mechanisms of affective interference in subclinical depression

    PubMed Central

    Andrews-Hanna, Jessica R.; Spielberg, Jeffrey M.; Warren, Stacie L.; Sutton, Bradley P.; Miller, Gregory A.; Heller, Wendy; Banich, Marie T.

    2015-01-01

    Previous studies have shown that depressed individuals have difficulty directing attention away from negative distractors, a phenomenon known as affective interference. However, findings are mixed regarding the neural mechanisms and network dynamics of affective interference. The present study addressed these issues by comparing neural activation during emotion-word and color-word Stroop tasks in participants with varying levels of (primarily subclinical) depression. Depressive symptoms predicted increased activation to negative distractors in areas of dorsal anterior cingulate cortex (dACC) and posterior cingulate cortex (PCC), regions implicated in cognitive control and internally directed attention, respectively. Increased dACC activity was also observed in the group-average response to incongruent distractors, suggesting that dACC activity during affective interference is related to overtaxed cognitive control. In contrast, regions of PCC were deactivated across the group in response to incongruent distractors, suggesting that PCC activity during affective interference represents task-independent processing. A psychophysiological interaction emerged in which higher depression predicted more positively correlated activity between dACC and PCC during affective interference, i.e. greater connectivity between cognitive control and internal-attention systems. These findings suggest that, when individuals high in depression are confronted by negative material, increased attention to internal thoughts and difficulty shifting resources to the external world interfere with goal-directed behavior. PMID:25062838

  8. Neurons in Anterior Cingulate Cortex Multiplex Information about Reward and Action

    PubMed Central

    Hayden, Benjamin Y.; Platt, Michael L.

    2010-01-01

    The dorsal anterior cingulate cortex (dACC) is thought to play a critical role in forming associations between rewards and actions. Currently available physiological data, however, remain inconclusive regarding the question of whether dACC neurons carry information linking particular actions to reward or, instead, encode abstract reward information independent of specific actions. Here we show that firing rates of a majority of dACC neurons in a population studied in an eight-option variably rewarded choice task were sensitive to both saccade direction and reward value. Furthermore, the influences of reward and saccade direction on neuronal activity were roughly equal in magnitude over the range of rewards tested and were statistically independent. Our results indicate that dACC neurons multiplex information about both reward and action, endorsing the idea that this area links motivational outcomes to behavior and undermining the notion that its neurons solely contribute to reward processing in the abstract. PMID:20203193

  9. Color-word matching stroop task: separating interference and response conflict.

    PubMed

    Zysset, S; Müller, K; Lohmann, G; von Cramon , D Y

    2001-01-01

    The Stroop interference task requires a person to respond to a specific dimension of a stimulus while suppressing a competing stimulus dimension. Previous PET and fMRI studies using the Color Stroop paradigm have shown increased activity in the "cognitive division" of the cingulate cortex. In our fMRI study with nine subjects, we used a Color-Word Matching Stroop task. A frontoparietal network, including structures in the lateral prefrontal cortex, the frontopolar region, the intraparietal sulcus, as well as the lateral occipitotemporal gyrus, was activated when contrasting the incongruent vs the neutral condition. However, no substantial activation in either the right or left hemisphere of the anterior cingulate cortex (ACC) was detected. In accordance with a series of recent articles, we argue that the ACC is not specifically involved in interference processes. The ACC seems rather involved in motor preparation processes which were controlled in the present Color-Word Matching Stroop task. We argue that the region around the banks of the inferior frontal sulcus is required to solve interference problems, a concept which can also be seen as a component of task set management. Copyright 2001 Academic Press.

  10. Decreased ventral anterior cingulate cortex activity is associated with reduced social pain during emotional support.

    PubMed

    Onoda, Keiichi; Okamoto, Yasumasa; Nakashima, Ken'ichiro; Nittono, Hiroshi; Ura, Mitsuhiro; Yamawaki, Shigeto

    2009-01-01

    People feel psychological pain when they are excluded, and this pain is often attenuated when emotional support is received. It is therefore likely that a specific neural mechanism underlies the detection of social exclusion. Similarly, specific neural mechanisms may underlie the beneficial effects of emotional support. Although neuroimaging researchers have recently examined the neural basis of social pain, there is presently no agreement as to which part of the anterior cingulate cortex (ACC) is involved in the perception and modulation of social pain. We hypothesized that activity in those brain regions that are associated with social pain would be correlated with decrements in social pain induced by emotional support. To examine the effects of emotional support on social pain caused by exclusion, we conducted an fMRI study in which participants played a virtual ball-tossing game. Participants were initially included and later excluded from the game. In the latter half of the session from which participants were excluded, participants received emotionally supportive text messages. We found that emotional support led to increased activity in the left lateral/medial prefrontal cortices and some temporal regions. Those individuals who experienced greater attenuation of social pain exhibited lower ventral ACC and higher left lateral prefrontal cortex activation. These results suggest that the ventral ACC underlies social pain, and that emotional support enhances prefrontal cortex activity, which in turn may lead to a weakened affective response.

  11. Modulation of Beta-Band Activity in the Subgenual Anterior Cingulate Cortex during Emotional Empathy in Treatment-Resistant Depression.

    PubMed

    Merkl, Angela; Neumann, Wolf-Julian; Huebl, Julius; Aust, Sabine; Horn, Andreas; Krauss, Joachim K; Dziobek, Isabel; Kuhn, Jens; Schneider, Gerd-Helge; Bajbouj, Malek; Kühn, Andrea A

    2016-06-01

    Deep brain stimulation (DBS) is a promising approach in treatment-resistant depression (TRD). TRD is associated with problems in interpersonal relationships, which might be linked to impaired empathy. Here, we investigate the influence of DBS in the subgenual anterior cingulate cortex (sgACC) on empathy in patients with TRD and explore the pattern of oscillatory sgACC activity during performance of the multifaceted empathy test. We recorded local field potential activity directly from sgACC via DBS electrodes in patients. Based on previous behavioral findings, we expected disrupted empathy networks. Patients showed increased empathic involvement ratings toward negative stimuli as compared with healthy subjects that were significantly reduced after 6 months of DBS. Stimulus-related oscillatory activity pattern revealed a broad desynchronization in the beta (14-35 Hz) band that was significantly larger during patients' reported emotional empathy for negative stimuli than when patients reported to have no empathy. Beta desynchronization for empathic involvement correlated with self-reported severity of depression. Our results indicate a "negativity bias" in patients that can be reduced by DBS. Moreover, direct recordings show activation of the sgACC area during emotional processing and propose that changes in beta-band oscillatory activity in the sgACC might index empathic involvement of negative emotion in TRD. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Network Mechanisms of Clinical Response to Transcranial Magnetic Stimulation in Posttraumatic Stress Disorder and Major Depressive Disorder.

    PubMed

    Philip, Noah S; Barredo, Jennifer; van 't Wout-Frank, Mascha; Tyrka, Audrey R; Price, Lawrence H; Carpenter, Linda L

    2018-02-01

    Repetitive transcranial magnetic stimulation (TMS) therapy can modulate pathological neural network functional connectivity in major depressive disorder (MDD). Posttraumatic stress disorder is often comorbid with MDD, and symptoms of both disorders can be alleviated with TMS therapy. This is the first study to evaluate TMS-associated changes in connectivity in patients with comorbid posttraumatic stress disorder and MDD. Resting-state functional connectivity magnetic resonance imaging was acquired before and after TMS therapy in 33 adult outpatients in a prospective open trial. TMS at 5 Hz was delivered, in up to 40 daily sessions, to the left dorsolateral prefrontal cortex. Analyses used a priori seeds relevant to TMS, posttraumatic stress disorder, or MDD (subgenual anterior cingulate cortex [sgACC], left dorsolateral prefrontal cortex, hippocampus, and basolateral amygdala) to identify imaging predictors of response and to evaluate clinically relevant changes in connectivity after TMS, followed by leave-one-out cross-validation. Imaging results were explored using data-driven multivoxel pattern activation. More negative pretreatment connectivity between the sgACC and the default mode network predicted clinical improvement, as did more positive amygdala-to-ventromedial prefrontal cortex connectivity. After TMS, symptom reduction was associated with reduced connectivity between the sgACC and the default mode network, left dorsolateral prefrontal cortex, and insula, and reduced connectivity between the hippocampus and the salience network. Multivoxel pattern activation confirmed seed-based predictors and correlates of treatment outcomes. These results highlight the central role of the sgACC, default mode network, and salience network as predictors of TMS response and suggest their involvement in mechanisms of action. Furthermore, this work indicates that there may be network-based biomarkers of clinical response relevant to these commonly comorbid disorders. Published by Elsevier Inc.

  13. Brain-derived neurotrophic factor (BDNF) in the rostral anterior cingulate cortex (rACC) contributes to neuropathic spontaneous pain-related aversion via NR2B receptors.

    PubMed

    Zhang, Le; Wang, Gongming; Ma, Jinben; Liu, Chengxiao; Liu, Xijiang; Zhan, Yufeng; Zhang, Mengyuan

    2016-10-01

    The rostral anterior cingulate cortex (rACC) plays an important role in pain affect. Previous investigations have reported that the rACC mediates the negative affective component of inflammatory pain and contributed to the aversive state of nerve injury-induced neuropathic pain. Brain-derived neurotrophic factor (BDNF), an activity-dependent neuromodulator in the adult brain, is believed to play a role in the development and maintenance of inflammatory and neuropathic pain in the spinal cord. However, whether and how BDNF in the rACC regulates pain-related aversion due to peripheral nerve injury is largely unknown. Behaviorally, using conditioned place preference (CPP) training in rats, which is thought to reveal spontaneous pain-related aversion, we found that CPP was acquired following spinal clonidine in rats with partial sciatic nerve transection. Importantly, BDNF was upregulated within the rACC in of rats with nerve injury and enhanced the CPP acquisition, while a local injection of a BDNF-tropomyosin receptor kinase B (TrkB) antagonist into the rACC completely blocked this process. Finally, we demonstrated that the BDNF/TrkB pathway exerted its function by activating the NR2B receptor, which is widely accepted to be a crucial factor contributing to pain affect. In conclusion, our results demonstrate that the BDNF/TrkB-mediated signaling pathway in the rACC is involved in the development of neuropathic spontaneous pain-related aversion and that this process is dependent upon activation of NR2B receptors. These findings suggest that suppression of the BDNF-related signaling pathway in the rACC may provide a novel strategy to overcome pain-related aversion. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. The subthalamic nucleus during decision-making with multiple alternatives.

    PubMed

    Keuken, Max C; Van Maanen, Leendert; Bogacz, Rafal; Schäfer, Andreas; Neumann, Jane; Turner, Robert; Forstmann, Birte U

    2015-10-01

    Several prominent neurocomputational models predict that an increase of choice alternatives is modulated by increased activity in the subthalamic nucleus (STN). In turn, increased STN activity allows prolonged accumulation of information. At the same time, areas in the medial frontal cortex such as the anterior cingulate cortex (ACC) and the pre-SMA are hypothesized to influence the information processing in the STN. This study set out to test concrete predictions of STN activity in multiple-alternative decision-making using a multimodal combination of 7 Tesla structural and functional Magnetic Resonance Imaging, and ancestral graph (AG) modeling. The results are in line with the predictions in that increased STN activity was found with an increasing amount of choice alternatives. In addition, our study shows that activity in the ACC is correlated with activity in the STN without directly modulating it. This result sheds new light on the information processing streams between medial frontal cortex and the basal ganglia. © 2015 Wiley Periodicals, Inc.

  15. Age-related changes in amygdala-frontal connectivity during emotional face processing from childhood into young adulthood.

    PubMed

    Wu, Minjie; Kujawa, Autumn; Lu, Lisa H; Fitzgerald, Daniel A; Klumpp, Heide; Fitzgerald, Kate D; Monk, Christopher S; Phan, K Luan

    2016-05-01

    The ability to process and respond to emotional facial expressions is a critical skill for healthy social and emotional development. There has been growing interest in understanding the neural circuitry underlying development of emotional processing, with previous research implicating functional connectivity between amygdala and frontal regions. However, existing work has focused on threatening emotional faces, raising questions regarding the extent to which these developmental patterns are specific to threat or to emotional face processing more broadly. In the current study, we examined age-related changes in brain activity and amygdala functional connectivity during an fMRI emotional face matching task (including angry, fearful, and happy faces) in 61 healthy subjects aged 7-25 years. We found age-related decreases in ventral medial prefrontal cortex activity in response to happy faces but not to angry or fearful faces, and an age-related change (shifting from positive to negative correlation) in amygdala-anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC) functional connectivity to all emotional faces. Specifically, positive correlations between amygdala and ACC/mPFC in children changed to negative correlations in adults, which may suggest early emergence of bottom-up amygdala excitatory signaling to ACC/mPFC in children and later development of top-down inhibitory control of ACC/mPFC over amygdala in adults. Age-related changes in amygdala-ACC/mPFC connectivity did not vary for processing of different facial emotions, suggesting changes in amygdala-ACC/mPFC connectivity may underlie development of broad emotional processing, rather than threat-specific processing. Hum Brain Mapp 37:1684-1695, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Bilingualism tunes the anterior cingulate cortex for conflict monitoring.

    PubMed

    Abutalebi, Jubin; Della Rosa, Pasquale Anthony; Green, David W; Hernandez, Mireia; Scifo, Paola; Keim, Roland; Cappa, Stefano F; Costa, Albert

    2012-09-01

    Monitoring and controlling 2 language systems is fundamental to language use in bilinguals. Here, we reveal in a combined functional (event-related functional magnetic resonance imaging) and structural neuroimaging (voxel-based morphometry) study that dorsal anterior cingulate cortex (ACC), a structure tightly bound to domain-general executive control functions, is a common locus for language control and resolving nonverbal conflict. We also show an experience-dependent effect in the same region: Bilinguals use this structure more efficiently than monolinguals to monitor nonlinguistic cognitive conflicts. They adapted better to conflicting situations showing less ACC activity while outperforming monolinguals. Importantly, for bilinguals, brain activity in the ACC, as well as behavioral measures, also correlated positively with local gray matter volume. These results suggest that early learning and lifelong practice of 2 languages exert a strong impact upon human neocortical development. The bilingual brain adapts better to resolve cognitive conflicts in domain-general cognitive tasks.

  17. Interpersonal violence in posttraumatic women: brain networks triggered by trauma-related pictures.

    PubMed

    Neumeister, Paula; Feldker, Katharina; Heitmann, Carina Y; Helmich, Ruth; Gathmann, Bettina; Becker, Michael P I; Straube, Thomas

    2017-04-01

    Interpersonal violence (IPV) is one of the most frequent causes for the development of posttraumatic stress disorder (PTSD) in women. Trauma-related triggers have been proposed to evoke automatic emotional responses in PTSD. The present functional magnetic resonance study investigated the neural basis of trauma-related picture processing in women with IPV-PTSD (n = 18) relative to healthy controls (n = 18) using a newly standardized trauma-related picture set and a non-emotional vigilance task. We aimed to identify brain activation and connectivity evoked by trauma-related pictures, and associations with PTSD symptom severity. We found hyperactivation during trauma-related vs neutral picture processing in both subcortical [basolateral amygdala (BLA), thalamus, brainstem] and cortical [anterior cingulate cortex (ACC), medial prefrontal cortex (mPFC), insula, occipital cortex] regions in IPV-PTSD. In patients, brain activation in amygdala, ACC, insula, occipital cortex and brainstem correlated positively with symptom severity. Furthermore, connectivity analyses revealed hyperconnectivity between BLA and dorsal ACC/mPFC. Results show symptom severity-dependent brain activation and hyperconnectivity in response to trauma-related pictures in brain regions related to fear and visual processing in women suffering from IPV-PTSD. These brain mechanisms appear to be associated with immediate responses to trauma-related triggers presented in a non-emotional context in this PTSD subgroup. © The Author (2016). Published by Oxford University Press.

  18. Long-range functional interactions of anterior insula and medial frontal cortex are differently modulated by visuospatial and inductive reasoning tasks.

    PubMed

    Ebisch, Sjoerd J H; Mantini, Dante; Romanelli, Roberta; Tommasi, Marco; Perrucci, Mauro G; Romani, Gian Luca; Colom, Roberto; Saggino, Aristide

    2013-09-01

    The brain is organized into functionally specific networks as characterized by intrinsic functional relationships within discrete sets of brain regions. However, it is poorly understood whether such functional networks are dynamically organized according to specific task-states. The anterior insular cortex (aIC)-dorsal anterior cingulate cortex (dACC)/medial frontal cortex (mFC) network has been proposed to play a central role in human cognitive abilities. The present functional magnetic resonance imaging (fMRI) study aimed at testing whether functional interactions of the aIC-dACC/mFC network in terms of temporally correlated patterns of neural activity across brain regions are dynamically modulated by transitory, ongoing task demands. For this purpose, functional interactions of the aIC-dACC/mFC network are compared during two distinguishable fluid reasoning tasks, Visualization and Induction. The results show an increased functional coupling of bilateral aIC with visual cortices in the occipital lobe during the Visualization task, whereas coupling of mFC with right anterior frontal cortex was enhanced during the Induction task. These task-specific modulations of functional interactions likely reflect ability related neural processing. Furthermore, functional connectivity strength between right aIC and right dACC/mFC reliably predicts general task performance. The findings suggest that the analysis of long-range functional interactions may provide complementary information about brain-behavior relationships. On the basis of our results, it is proposed that the aIC-dACC/mFC network contributes to the integration of task-common and task-specific information based on its within-network as well as its between-network dynamic functional interactions. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Impact of emotional salience on episodic memory in attention-deficit/hyperactivity disorder: a functional magnetic resonance imaging study.

    PubMed

    Krauel, Kerstin; Duzel, Emrah; Hinrichs, Hermann; Santel, Stephanie; Rellum, Thomas; Baving, Lioba

    2007-06-15

    Patients with attention-deficit/hyperactivity disorder (ADHD) show episodic memory deficits especially in complex memory tasks. We investigated the neural correlates of memory formation in ADHD and their modulation by stimulus salience. We recorded event-related functional magnetic resonance imaging during an episodic memory paradigm with neutral and emotional pictures in 12 male ADHD subjects and 12 healthy adolescents. Emotional salience did significantly augment memory performance in ADHD patients. Successful encoding of neutral pictures was associated with activation of the anterior cingulate cortex (ACC) in healthy adolescents but with activation of the superior parietal lobe (SPL) and precuneus in ADHD patients. Successful encoding of emotional pictures was associated with prefrontal and inferior temporal cortex activation in both groups. Healthy adolescents, moreover, showed deactivation in the inferior parietal lobe. From a pathophysiological point of view, the most striking functional differences between healthy adolescents and ADHD patients were in the ACC and SPL. We suggest that increased SPL activation in ADHD reflected attentional compensation for low ACC activation during the encoding of neutral pictures. The higher salience of emotional stimuli, in contrast, regulated the interplay between ACC and SPL in conjunction with improving memory to the level of healthy adolescents.

  20. The functional integration of the anterior cingulate cortex during conflict processing.

    PubMed

    Fan, Jin; Hof, Patrick R; Guise, Kevin G; Fossella, John A; Posner, Michael I

    2008-04-01

    Although functional activation of the anterior cingulate cortex (ACC) related to conflict processing has been studied extensively, the functional integration of the subdivisions of the ACC and other brain regions during conditions of conflict is still unclear. In this study, participants performed a task designed to elicit conflict processing by using flanker interference on target response while they were scanned using event-related functional magnetic resonance imaging. The physiological response of several brain regions in terms of an interaction between conflict processing and activity of the anterior rostral cingulate zone (RCZa) of the ACC, and the effective connectivity between this zone and other regions were examined using psychophysiological interaction analysis and dynamic causal modeling, respectively. There was significant integration of the RCZa with the caudal cingulate zone (CCZ) of the ACC and other brain regions such as the lateral prefrontal, primary, and supplementary motor areas above and beyond the main effect of conflict and baseline connectivity. The intrinsic connectivity from the RCZa to the CCZ was modulated by the context of conflict. These findings suggest that conflict processing is associated with the effective contribution of the RCZa to the neuronal activity of CCZ, as well as other cortical regions.

  1. Distinct roles of three frontal cortical areas in reward-guided behavior

    PubMed Central

    Noonan, M.P.; Mars, R.B.; Rushworth, M.F.S

    2011-01-01

    Functional magnetic resonance imaging (fMRI) was used to measure activity in three frontal cortical areas, lateral orbitofrontal cortex (lOFC), medial orbitofrontal cortex/ventromedial frontal cortex (mOFC/vmPFC), and anterior cingulate cortex (ACC) when expectations about type of reward, and not just reward presence or absence, could be learned. Two groups of human subjects learned twelve stimulus-response pairings. In one group (Consistent), correct performances of a given pairing were always reinforced with a specific reward outcome whereas in the other group (Inconsistent), correct performances were reinforced with randomly selected rewards. MOFC/vmPFC and lOFC were not distinguished by simple differences in relative preference for positive and negative outcomes. Instead lOFC activity reflected updating of reward-related associations specific to reward type; lOFC was active whenever informative outcomes allowed updating of reward-related associations regardless of whether the outcomes were positive or negative and the effects were greater when consistent stimulus-outcome and response-outcome mappings were present. A psycho-physiological interaction (PPI) analysis demonstrated changed coupling between lOFC and brain areas for visual object representation, such as perirhinal cortex, and reward-guided learning, such as amygdala, ventral striatum, and habenula /mediodorsal thalamus. By contrast mOFC/vmPFC activity reflected expected values of outcomes and occurrence of positive outcomes, irrespective of consistency of outcome mappings. The third frontal cortical region, ACC, reflected the use of reward type information to guide response selection. ACC activity reflected the probability of selecting the correct response, was greater when consistent outcome mappings were present, and was related to individual differences in propensity to select the correct response. PMID:21976525

  2. Reward sensitivity modulates brain activity in the prefrontal cortex, ACC and striatum during task switching.

    PubMed

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2015-01-01

    Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies.

  3. Reward Sensitivity Modulates Brain Activity in the Prefrontal Cortex, ACC and Striatum during Task Switching

    PubMed Central

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C.; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2015-01-01

    Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies. PMID:25875640

  4. fMRI Neurofeedback Training for Increasing Anterior Cingulate Cortex Activation in Adult Attention Deficit Hyperactivity Disorder. An Exploratory Randomized, Single-Blinded Study.

    PubMed

    Zilverstand, Anna; Sorger, Bettina; Slaats-Willemse, Dorine; Kan, Cornelis C; Goebel, Rainer; Buitelaar, Jan K

    2017-01-01

    Attention Deficit Hyperactivity Disorder (ADHD) is characterized by poor cognitive control/attention and hypofunctioning of the dorsal anterior cingulate cortex (dACC). In the current study, we investigated for the first time whether real-time fMRI neurofeedback (rt-fMRI) training targeted at increasing activation levels within dACC in adults with ADHD leads to a reduction of clinical symptoms and improved cognitive functioning. An exploratory randomized controlled treatment study with blinding of the participants was conducted. Participants with ADHD (n = 7 in the neurofeedback group, and n = 6 in the control group) attended four weekly MRI training sessions (60-min training time/session), during which they performed a mental calculation task at varying levels of difficulty, in order to learn how to up-regulate dACC activation. Only neurofeedback participants received continuous feedback information on actual brain activation levels within dACC. Before and after the training, ADHD symptoms and relevant cognitive functioning was assessed. Results showed that both groups achieved a significant increase in dACC activation levels over sessions. While there was no significant difference between the neurofeedback and control group in clinical outcome, neurofeedback participants showed stronger improvement on cognitive functioning. The current study demonstrates the general feasibility of the suggested rt-fMRI neurofeedback training approach as a potential novel treatment option for ADHD patients. Due to the study's small sample size, potential clinical benefits need to be further investigated in future studies. ISRCTN12390961.

  5. Kainate-induced network activity in the anterior cingulate cortex.

    PubMed

    Shinozaki, R; Hojo, Y; Mukai, H; Hashizume, M; Murakoshi, T

    2016-06-14

    Anterior cingulate cortex (ACC) plays a pivotal role in higher order processing of cognition, attention and emotion. The network oscillation is considered an essential means for integration of these CNS functions. The oscillation power and coherence among related areas are often dis-regulated in several psychiatric and pathological conditions with a hemispheric asymmetric manner. Here we describe the network-based activity of field potentials recorded from the superficial layer of the mouse ACC in vitro using submerged type recordings. A short activation by kainic acid administration to the preparation induced populational activities ranging over several frequency bands including theta (3-8Hz), alpha (8-12Hz), beta (13-30Hz), low gamma (30-50Hz) and high gamma (50-80Hz). These responses were repeatable and totally abolished by tetrodotoxin, and greatly diminished by inhibitors of ionotropic and metabotropic glutamate receptors, GABAA receptor or gap-junctions. These observations suggest that the kainate-induced network activity can be a useful model of the network oscillation in the ACC circuit. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Subthalamic nucleus involvement in executive functions with increased cognitive load: a subthalamic nucleus and anterior cingulate cortex depth recording study.

    PubMed

    Aulická, Stefania Rusnáková; Jurák, Pavel; Chládek, Jan; Daniel, Pavel; Halámek, Josef; Baláž, Marek; Bočková, Martina; Chrastina, Jan; Rektor, Ivan

    2014-10-01

    We studied the appearance of broadband oscillatory changes (ranging 2-45 Hz) induced by a cognitive task with two levels of complexity. The event-related de/synchronizations (ERD/S) in the subthalamic nucleus (STN) and in the anterior cingulate cortex (ACC) were evaluated in an executive function test. Four epilepsy surgery candidates with intracerebral electrodes implanted in the ACC and three Parkinson's disease patients with externalized deep brain stimulation electrodes implanted in the STN participated in the study. A Flanker test (FT) with visual stimuli (arrows) was performed. Subjects reacted to four types of stimuli presented on the monitor by pushing the right or left button: congruent arrows to the right or left side (simple task) and incongruent arrows to the right or left side (more difficult complex task). We explored the activation of STN and the activation of the ACC while processing the FT. Both conditions, i.e. congruent and incongruent, induced oscillatory changes in the ACC and also STN with significantly higher activation during incongruent trial. At variance with the ACC, in the STN not only the ERD beta but also the ERD alpha activity was significantly more activated by the incongruent condition. In line with our earlier studies, the STN appears to be involved in activities linked with increased cognitive load. The specificity and complexity of task-related activation of the STN might indicate the involvement of the STN in processes controlling human behaviour, e.g. in the selection and inhibition of competing alternatives.

  7. Threat distractor and perceptual load modulate test-retest reliability of anterior cingulate cortex response.

    PubMed

    Bunford, Nora; Kinney, Kerry L; Michael, Jamie; Klumpp, Heide

    2017-07-03

    Accumulating data from fMRI studies implicate the rostral anterior cingulate cortex (rACC) in inhibition of attention to threat distractors that compete with task-relevant goals for processing resources. However, little data is available on the reliability of rACC activation. Our aim in the current study was to examine test-retest reliability of rACC activation over a 12-week period, in the context of a validated emotional interference paradigm that varied in perceptual load. During functional MRI, 23 healthy volunteers completed a task involving a target letter in a string of identical letters (low load) or in a string of mixed letters (high load) superimposed on angry, fearful, and neutral face distractors. Intraclass correlation coefficients (ICCs) indicated that under low, but not high perceptual load, rACC activation to fearful vs. neutral distractors was moderately reliable. Conversely, regardless of perceptual load, rACC activation to angry vs. neutral distractors was not reliable. Regarding behavioral performance, ICCs indicated that accuracy was not reliable regardless of distractor type or perceptual load. Although reaction time (RT) was similarly not reliable regardless of distractor type under low perceptual load, RT to angry vs. neutral distractors and to fearful vs. neutral distractors was reliable under high perceptual load. Together, results indicate the test-retest reliability of rACC activation and corresponding behavioral performance are context dependent; reliability of the former varies as a function of distractor type and level of cognitive demand, whereas reliability of the latter depends on behavioral index (accuracy vs. RT) and level of cognitive demand but not distractor type. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Rostral anterior cingulate cortex morphology predicts treatment response to internet-based CBT for depression

    PubMed Central

    Webb, Christian A.; Olson, Elizabeth A.; Killgore, William D.S.; Pizzagalli, Diego A.; Rauch, Scott L.; Rosso, Isabelle M.

    2018-01-01

    Background Rostral and subgenual anterior cingulate cortex (rACC and sgACC) activity and, to a lesser extent, volume have been shown to predict depressive symptom improvement across different antidepressant treatments. This study extends prior work by examining whether rACC and/or sgACC morphology predicts treatment response to internet-based cognitive behavioral therapy (iCBT) for major depressive disorder (MDD). This is the first study to examine neural predictors of response to iCBT. Methods Hierarchical linear modeling tested whether pre-treatment rACC and sgACC volumes predicted depressive symptom improvement during a 6-session (10-week) randomized clinical trial of iCBT (n = 35) vs. a monitored attention control (MAC; n = 38). Analyses also tested whether pre-treatment rACC and sgACC volumes differed between patients who achieved depression remission versus those who did not remit. Results Larger pre-treatment right rACC volume was a significant predictor of greater depressive symptom improvement in iCBT, even when controlling for demographic (age, gender, race) and clinical (baseline depression, anhedonia and anxiety) variables previously linked to treatment response. In addition, pre-treatment right rACC volume was larger among iCBT patients whose depression eventually remitted relative to those who did not remit. Corresponding analyses in the MAC group and for the sgACC were not significant. Conclusions rACC volume prior to iCBT demonstrated incremental predictive validity beyond clinical and demographic variables previously found to predict symptom improvement. Such findings may help inform our understanding of the mediating anatomy of iCBT and, if replicated, may suggest neural targets to augment treatment response (e.g., via modulation of rACC function). ClinicalTrials.gov Identifier NCT01598922 PMID:29486867

  9. Ventromedial prefrontal and anterior cingulate cortex adopt choice and default reference frames during sequential multialternative choice

    PubMed Central

    Boorman, Erie D; Rushworth, Matthew F; Behrens, Tim E

    2013-01-01

    Although damage to medial frontal cortex causes profound decision-making impairments, it has been difficult to pinpoint the relative contributions of key anatomical subdivisions. Here we use fMRI to examine the contributions of human ventromedial prefrontal cortex (vmPFC) and dorsal anterior cingulate cortex (dACC) during sequential choices between multiple alternatives – two key features of choices made in ecological settings. By carefully constructing options whose current value at any given decision was dissociable from their longer-term value, we were able to examine choices in current and long-term frames of reference. We present evidence showing that activity at choice and feedback in vmPFC and dACC was tied to the current choice and the best long-term option, respectively. vmPFC, mid-cingulate, and PCC encoded the relative value between the chosen and next-best option at each sequential decision, whereas dACC encoded the relative value of adapting choices from the option with the highest value in the longer-term. Furthermore, at feedback we identify temporally dissociable effects that predict repetition of the current choice and adaptation away from the long-term best option in vmPFC and dACC, respectively. These functional dissociations at choice and feedback suggest that sequential choices are subject to competing cortical mechanisms. PMID:23392656

  10. Prefrontal transcranial direct current stimulation alters activation and connectivity in cortical and subcortical reward systems: a tDCS-fMRI study.

    PubMed

    Weber, Matthew J; Messing, Samuel B; Rao, Hengyi; Detre, John A; Thompson-Schill, Sharon L

    2014-08-01

    Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique used both experimentally and therapeutically to modulate regional brain function. However, few studies have directly measured the aftereffects of tDCS on brain activity or examined changes in task-related brain activity consequent to prefrontal tDCS. To investigate the neural effects of tDCS, we collected fMRI data from 22 human subjects, both at rest and while performing the Balloon Analog Risk Task (BART), before and after true or sham transcranial direct current stimulation. TDCS decreased resting blood perfusion in orbitofrontal cortex and the right caudate and increased task-related activity in the right dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) in response to losses but not wins or increasing risk. Network analysis showed that whole-brain connectivity of the right ACC correlated positively with the number of pumps subjects were willing to make on the BART, and that tDCS reduced connectivity between the right ACC and the rest of the brain. Whole-brain connectivity of the right DLPFC also correlated negatively with pumps on the BART, as prior literature would suggest. Our results suggest that tDCS can alter activation and connectivity in regions distal to the electrodes. Copyright © 2014 Wiley Periodicals, Inc.

  11. Distracted and down: neural mechanisms of affective interference in subclinical depression.

    PubMed

    Kaiser, Roselinde H; Andrews-Hanna, Jessica R; Spielberg, Jeffrey M; Warren, Stacie L; Sutton, Bradley P; Miller, Gregory A; Heller, Wendy; Banich, Marie T

    2015-05-01

    Previous studies have shown that depressed individuals have difficulty directing attention away from negative distractors, a phenomenon known as affective interference. However, findings are mixed regarding the neural mechanisms and network dynamics of affective interference. The present study addressed these issues by comparing neural activation during emotion-word and color-word Stroop tasks in participants with varying levels of (primarily subclinical) depression. Depressive symptoms predicted increased activation to negative distractors in areas of dorsal anterior cingulate cortex (dACC) and posterior cingulate cortex (PCC), regions implicated in cognitive control and internally directed attention, respectively. Increased dACC activity was also observed in the group-average response to incongruent distractors, suggesting that dACC activity during affective interference is related to overtaxed cognitive control. In contrast, regions of PCC were deactivated across the group in response to incongruent distractors, suggesting that PCC activity during affective interference represents task-independent processing. A psychophysiological interaction emerged in which higher depression predicted more positively correlated activity between dACC and PCC during affective interference, i.e. greater connectivity between cognitive control and internal-attention systems. These findings suggest that, when individuals high in depression are confronted by negative material, increased attention to internal thoughts and difficulty shifting resources to the external world interfere with goal-directed behavior. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. Mindfulness meditation improves emotion regulation and reduces drug abuse.

    PubMed

    Tang, Yi-Yuan; Tang, Rongxiang; Posner, Michael I

    2016-06-01

    The core clinical symptoms of addiction include an enhanced incentive for drug taking (craving), impaired self-control (impulsivity and compulsivity), emotional dysregulation (negative mood) and increased stress reactivity. Symptoms related to impaired self-control involve reduced activity in anterior cingulate cortex (ACC), adjacent prefrontal cortex (mPFC) and other brain areas. Behavioral training such as mindfulness meditation can increase the function of control networks including those leading to improved emotion regulation and thus may be a promising approach for the treatment of addiction. In a series of randomized controlled trials (RCTs), we tested whether increased ACC/mPFC activity is related to better self-control abilities in executive functions, emotion regulation and stress response in healthy and addicted populations. After a brief mindfulness training (Integrative Body-Mind Training, IBMT), we used the Positive and Negative Affect Schedule (PANAS) and Profile of Mood States (POMS) to measure emotion regulation, salivary cortisol for the stress response and fMRI for brain functional and DTI structural changes. Relaxation training was used to serve as an active control. In both smokers and nonsmokers, improved self-control abilities in emotion regulation and stress reduction were found after training and these changes were related to increased ACC/mPFC activity following training. Compared with nonsmokers, smokers showed reduced ACC/mPFC activity in the self-control network before training, and these deficits were ameliorated after training. These results indicate that promoting emotion regulation and improving ACC/mPFC brain activity can help for addiction prevention and treatment. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  13. Neural correlates of experienced moral emotion: an fMRI investigation of emotion in response to prejudice feedback.

    PubMed

    Fourie, Melike M; Thomas, Kevin G F; Amodio, David M; Warton, Christopher M R; Meintjes, Ernesta M

    2014-01-01

    Guilt, shame, and embarrassment are quintessential moral emotions with important regulatory functions for the individual and society. Moral emotions are, however, difficult to study with neuroimaging methods because their elicitation is more intricate than that of basic emotions. Here, using functional MRI (fMRI), we employed a novel social prejudice paradigm to examine specific brain regions associated with real-time moral emotion, focusing on guilt and related moral-negative emotions. The paradigm induced intense moral-negative emotion (primarily guilt) in 22 low-prejudice individuals through preprogrammed feedback indicating implicit prejudice against Black and disabled people. fMRI data indicated that this experience of moral-negative emotion was associated with increased activity in anterior paralimbic structures, including the anterior cingulate cortex (ACC) and anterior insula, in addition to areas associated with mentalizing, including the dorsomedial prefrontal cortex, posterior cingulate cortex, and precuneus. Of significance was prominent conflict-related activity in the supragenual ACC, which is consistent with theories proposing an association between acute guilt and behavioral inhibition. Finally, a significant negative association between self-reported guilt and neural activity in the pregenual ACC suggested a role of self-regulatory processes in response to moral-negative affect. These findings are consistent with the multifaceted self-regulatory functions of moral-negative emotions in social behavior.

  14. Errors without Conflict: Implications for Performance Monitoring Theories of Anterior Cingulate Cortex

    ERIC Educational Resources Information Center

    van Veen, V.; Holroyd, C.B.; Cohen, J.D.; Stenger, V.A.; Carter, C.S.

    2004-01-01

    Recent theories of the neural basis of performance monitoring have emphasized a central role for the anterior cingulate cortex (ACC). Replicating an earlier event-related potential (ERP) study, which showed an error feedback negativity that was modeled as having an ACC generator, we used event-related fMRI to investigate whether the ACC would…

  15. Cognitive Functioning after Medial Frontal Lobe Damage Including the Anterior Cingulate Cortex: A Preliminary Investigation

    ERIC Educational Resources Information Center

    Baird, Amee; Dewar, Bonnie-Kate; Critchley, Hugo; Gilbert, Sam J.; Dolan, Raymond J.; Cipolotti, Lisa

    2006-01-01

    Two patients with medial frontal lobe damage involving the anterior cingulate cortex (ACC) performed a range of cognitive tasks, including tests of executive function and anterior attention. Both patients lesions extended beyond the ACC, therefore caution needs to be exerted in ascribing observed deficits to the ACC alone. Patient performance was…

  16. Left Posterior Orbitofrontal Cortex Is Associated With Odor-Induced Autobiographical Memory: An fMRI Study.

    PubMed

    Watanabe, Keiko; Masaoka, Yuri; Kawamura, Mitsuru; Yoshida, Masaki; Koiwa, Nobuyoshi; Yoshikawa, Akira; Kubota, Satomi; Ida, Masahiro; Ono, Kenjiro; Izumizaki, Masahiko

    2018-01-01

    Autobiographical odor memory (AM-odor) accompanied by a sense of realism of a specific memory elicits strong emotions. AM-odor differs from memory triggered by other sensory modalities, possibly because olfaction involves a unique sensory process. Here, we examined the orbitofrontal cortex (OFC), using functional magnetic resonance imaging (fMRI) to determine which OFC subregions are related to AM-odor. Both AM-odor and a control odor successively increased subjective ratings of comfortableness and pleasantness. Importantly, AM-odor also increased arousal levels and the vividness of memories, and was associated with a deep and slow breathing pattern. fMRI analysis indicated robust activation in the left posterior OFC (L-POFC). Connectivity between the POFC and whole brain regions was estimated using psychophysiological interaction analysis (PPI). We detected several trends in connectivity between L-POFC and bilateral precuneus, bilateral rostral dorsal anterior cingulate cortex (rdACC), and left parahippocampus, which will be useful for targeting our hypotheses for future investigations. The slow breathing observed in AM-odor was correlated with rdACC activation. Odor associated with emotionally significant autobiographical memories was accompanied by slow and deep breathing, possibly involving rdACC processing.

  17. Meditation reduces pain-related neural activity in the anterior cingulate cortex, insula, secondary somatosensory cortex, and thalamus

    PubMed Central

    Nakata, Hiroki; Sakamoto, Kiwako; Kakigi, Ryusuke

    2014-01-01

    Recent studies have shown that meditation inhibits or relieves pain perception. To clarify the underlying mechanisms for this phenomenon, neuroimaging methods, such as functional magnetic resonance imaging, and neurophysiological methods, such as magnetoencephalography and electroencephalography, have been used. However, it has been difficult to interpret the results, because there is some paradoxical evidence. For example, some studies reported increased neural responses to pain stimulation during meditation in the anterior cingulate cortex (ACC) and insula, whereas others showed a decrease in these regions. There have been inconsistent findings to date. Moreover, in general, since the activities of the ACC and insula are correlated with pain perception, the increase in neural activities during meditation would be related to the enhancement of pain perception rather than its reduction. These contradictions might directly contribute to the ‘mystery of meditation.’ In this review, we presented previous findings for brain regions during meditation and the anatomical changes that occurred in the brain with long-term meditation training. We then discussed the findings of previous studies that examined pain-related neural activity during meditation. We also described the brain mechanisms responsible for pain relief during meditation, and possible reasons for paradoxical evidence among previous studies. By thoroughly overviewing previous findings, we hypothesized that meditation reduces pain-related neural activity in the ACC, insula, secondary somatosensory cortex, and thalamus. We suggest that the characteristics of the modulation of this activity may depend on the kind of meditation and/or number of years of experience of meditation, which were associated with paradoxical findings among previous studies that investigated pain-related neural activities during meditation. PMID:25566158

  18. Co-occurring anxiety influences patterns of brain activity in depression.

    PubMed

    Engels, Anna S; Heller, Wendy; Spielberg, Jeffrey M; Warren, Stacie L; Sutton, Bradley P; Banich, Marie T; Miller, Gregory A

    2010-03-01

    Brain activation associated with anhedonic depression and co-occurring anxious arousal and anxious apprehension was measured by fMRI during performance of an emotion word Stroop task. Consistent with EEG findings, depression was associated with rightward frontal lateralization in the dorsolateral prefrontal cortex (DLPFC), but only when anxious arousal was elevated and anxious apprehension was low. Activity in the right inferior frontal gyrus (IFG) was also reduced for depression under the same conditions. In contrast, depression was associated with more activity in the anterior cingulate cortex (dorsal ACC and rostral ACC) and the bilateral amygdala. Results imply that depression, particularly when accompanied by anxious arousal, may result in a failure to implement top-down processing by appropriate brain regions (left DLPFC, right IFG) due to increased activation in regions associated with responding to emotionally salient information (right DLPFC, amygdala).

  19. Co-occurring Anxiety Influences Patterns of Brain Activity in Depression

    PubMed Central

    Engels, Anna S.; Heller, Wendy; Spielberg, Jeffrey M.; Warren, Stacie L.; Sutton, Bradley P.; Banich, Marie T.; Miller, Gregory A.

    2011-01-01

    Brain activation associated with anhedonic depression and co-occurring anxious arousal and anxious apprehension was measured by fMRI during performance of an emotion-word Stroop task. Consistent with EEG findings, depression was associated with rightward frontal lateralization in dorsolateral prefrontal cortex (DLPFC), but only when anxious arousal was elevated and anxious apprehension was low. Activity in right inferior frontal gyrus (IFG) was also reduced for depression under the same conditions. In contrast, depression was associated with more activity in anterior cingulate cortex (dACC and rACC) and bilateral amygdala. Results imply that depression, particularly when accompanied by anxious arousal, may result in a failure to implement top-down processing by appropriate brain regions (left DLPFC, right IFG) due to increased activation in regions associated with responding to emotionally salient information (right DLPFC, amygdala). PMID:20233962

  20. Attentional Control of Task and Response in Lateral and Medial Frontal Cortex: Brain Activity and Reaction Time Distributions

    ERIC Educational Resources Information Center

    Aarts, Esther; Roelofs, Ardi; van Turennout, Miranda

    2009-01-01

    It is unclear whether task conflict is reflected in the anterior cingulate cortex (ACC) or in more dorsal regions of the medial frontal cortex (MFC). When participants switch between tasks involving incongruent, congruent, and neutral stimuli, it is possible to examine both response conflict (incongruent vs. congruent) and task conflict (congruent…

  1. Perceptual load modulates anterior cingulate cortex response to threat distractors in generalized social anxiety disorder.

    PubMed

    Wheaton, Michael G; Fitzgerald, Daniel A; Phan, K Luan; Klumpp, Heide

    2014-09-01

    Generalized social anxiety disorder (gSAD) is associated with impoverished anterior cingulate cortex (ACC) engagement during attentional control. Attentional Control Theory proposes such deficiencies may be offset when demands on resources are increased to execute goals. To test the hypothesis attentional demands affect ACC response 23 patients with gSAD and 24 matched controls performed an fMRI task involving a target letter in a string of identical targets (low load) or a target letter in a mixed letter string (high load) superimposed on fearful, angry, and neutral face distractors. Regardless of load condition, groups were similar in accuracy and reaction time. Under low load gSAD patients showed deficient rostral ACC recruitment to fearful (vs. neutral) distractors. For high load, increased activation to fearful (vs. neutral) distractors was observed in gSAD suggesting a compensatory function. Results remained after controlling for group differences in depression level. Findings indicate perceptual demand modulates ACC in gSAD. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Neuronal activity in primate dorsal anterior cingulate cortex signals task conflict and predicts adjustments in pupil-linked arousal

    PubMed Central

    Ebitz, R. Becket; Platt, Michael L.

    2014-01-01

    Summary Whether driving a car, shopping for food, or paying attention in a classroom of boisterous teenagers, it’s often hard to maintain focus on goals in the face of distraction. Brain imaging studies in humans implicate the dorsal anterior cingulate cortex (dACC) in regulating the conflict between goals and distractors. Here we show for the first time that single dACC neurons signal conflict between task goals and distractors in the rhesus macaque, particularly for biologically-relevant social stimuli. For some neurons, task conflict signals predicted subsequent changes in pupil size—a peripheral index of arousal linked to noradrenergic tone—associated with reduced distractor interference. dACC neurons also responded to errors and these signals predicted adjustments in pupil size. These findings provide the first neurophysiological endorsement of the hypothesis that dACC regulates conflict, in part, via modulation of pupil-linked processes such as arousal. PMID:25654259

  3. Systems Reconsolidation Reveals a Selective Role for the Anterior Cingulate Cortex in Generalized Contextual Fear Memory Expression

    PubMed Central

    Einarsson, Einar Ö; Pors, Jennifer; Nader, Karim

    2015-01-01

    After acquisition, hippocampus-dependent memories undergo a systems consolidation process, during which they become independent of the hippocampus and dependent on the anterior cingulate cortex (ACC) for memory expression. However, consolidated remote memories can become transiently hippocampus-dependent again following memory reactivation. How this systems reconsolidation affects the role of the ACC in remote memory expression is not known. Using contextual fear conditioning, we show that the expression of 30-day-old remote memory can transiently be supported by either the ACC or the dorsal hippocampus following memory reactivation, and that the ACC specifically mediates expression of remote generalized contextual fear memory. We found that suppression of neural activity in the ACC with the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) impaired the expression of remote, but not recent, contextual fear memory. Fear expression was not affected by this treatment if preceded by memory reactivation 6 h earlier, nor was it affected by suppression of neural activity in the dorsal hippocampus with the GABA-receptor agonist muscimol. However, simultaneous targeting of both the ACC and the dorsal hippocampus 6 h after memory reactivation disrupted contextual fear memory expression. Second, we observed that expression of a 30-day-old generalized contextual fear memory in a novel context was not affected by memory reactivation 6 h earlier. However, intra-ACC CNQX infusion before testing impaired contextual fear expression in the novel context, but not the original training context. Together, these data suggest that although the dorsal hippocampus may be recruited during systems reconsolidation, the ACC remains necessary for the expression of generalized contextual fear memory. PMID:25091528

  4. Systems reconsolidation reveals a selective role for the anterior cingulate cortex in generalized contextual fear memory expression.

    PubMed

    Einarsson, Einar Ö; Pors, Jennifer; Nader, Karim

    2015-01-01

    After acquisition, hippocampus-dependent memories undergo a systems consolidation process, during which they become independent of the hippocampus and dependent on the anterior cingulate cortex (ACC) for memory expression. However, consolidated remote memories can become transiently hippocampus-dependent again following memory reactivation. How this systems reconsolidation affects the role of the ACC in remote memory expression is not known. Using contextual fear conditioning, we show that the expression of 30-day-old remote memory can transiently be supported by either the ACC or the dorsal hippocampus following memory reactivation, and that the ACC specifically mediates expression of remote generalized contextual fear memory. We found that suppression of neural activity in the ACC with the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) impaired the expression of remote, but not recent, contextual fear memory. Fear expression was not affected by this treatment if preceded by memory reactivation 6 h earlier, nor was it affected by suppression of neural activity in the dorsal hippocampus with the GABA-receptor agonist muscimol. However, simultaneous targeting of both the ACC and the dorsal hippocampus 6 h after memory reactivation disrupted contextual fear memory expression. Second, we observed that expression of a 30-day-old generalized contextual fear memory in a novel context was not affected by memory reactivation 6 h earlier. However, intra-ACC CNQX infusion before testing impaired contextual fear expression in the novel context, but not the original training context. Together, these data suggest that although the dorsal hippocampus may be recruited during systems reconsolidation, the ACC remains necessary for the expression of generalized contextual fear memory.

  5. Distinct patterns of brain activity evoked by histamine-induced itch reveal an association with itch intensity and disease severity in atopic dermatitis

    PubMed Central

    Ishiuji, Y.; Coghill, R.C.; Patel, T.S.; Oshiro, Y.; Kraft, R.A.; Yosipovitch, G.

    2009-01-01

    Summary Background Little is known about brain mechanisms supporting the experience of chronic puritus in disease states. Objectives To examine the difference in brain processing of histamine-induced itch in patients with active atopic dermatitis (AD) vs. healthy controls with the emerging technique of functional magnetic resonance imaging (fMRI) using arterial spin labelling (ASL). Methods Itch was induced with histamine iontophoresis in eight patients with AD and seven healthy subjects. Results We found significant differences in brain processing of histamine-induced itch between patients with AD and healthy subjects. Patients with AD exhibited bilateral activation of the anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), retrosplenial cingulate cortex and dorsolateral prefrontal cortex (DLPFC) as well as contralateral activation of the caudate nucleus and putamen. In contrast, healthy subjects activated the primary motor cortex, primary somatosensory cortex and superior parietal lobe. The PCC and precuneus exhibited significantly greater activity in patients vs. healthy subjects. A significant correlation between percentage changes of brain activation was noted in the activation of the ACC and contralateral insula and histamine-induced itch intensity as well as disease severity in patients with AD. In addition, an association was noted between DLPFC activity and disease severity. Conclusions Our results demonstrate that ASL fMRI is a promising technique to assess brain activity in chronic itch. Brain activity of acute itch in AD seems to differ from that in healthy subjects. Moreover, the activity in cortical areas involved in affect and emotion correlated to measures of disease severity. PMID:19663870

  6. From Threat to Fear: The neural organization of defensive fear systems in humans

    PubMed Central

    Mobbs, Dean; Marchant, Jennifer L; Hassabis, Demis; Seymour, Ben; Tan, Geoffrey; Gray, Marcus; Petrovic, Predrag; Dolan, Raymond J.; Frith, Christopher D.

    2009-01-01

    Post-encounter and circa-strike defensive contexts represent two adaptive responses to potential and imminent danger. In the context of a predator, the post-encounter reflects the initial detection of the potential threat, whilst the circa-strike is associated with direct predatory attack. We used fMRI to investigate the neural organization of anticipation and avoidance of artificial predators with high or low probability of capturing the subject across analogous post-encounter and circa-strike contexts of threat. Consistent with defense systems models, post-encounter threat elicited activity in forebrain areas including subgenual anterior cingulate cortex (sgACC), hippocampus and amygdala. Conversely, active avoidance during circa-strike threat increased activity in mid-dorsal ACC and midbrain areas. During the circa-strike condition, subjects showed increased coupling between the midbrain and mid-dorsal ACC and decreased coupling with the sgACC, amygdala and hippocampus. Greater activity was observed in the right pregenual ACC for high compared to low probability of capture during circa-strike threat. This region showed decreased coupling with the amygdala, insula and ventromedial prefrontal cortex. Finally, we found that locomotor errors correlated with subjective reports of panic for the high compared to low probability of capture during the circa-strike threat and these panic-related locomotor errors were correlated with midbrain activity. These findings support models suggesting that higher forebrain areas are involved in early threat responses, including the assignment and control of fear, whereas as imminent danger results in fast, likely “hard-wired”, defensive reactions mediated by the midbrain. PMID:19793982

  7. fMRI Neurofeedback Training for Increasing Anterior Cingulate Cortex Activation in Adult Attention Deficit Hyperactivity Disorder. An Exploratory Randomized, Single-Blinded Study

    PubMed Central

    Slaats-Willemse, Dorine; Kan, Cornelis C.; Goebel, Rainer; Buitelaar, Jan K.

    2017-01-01

    Attention Deficit Hyperactivity Disorder (ADHD) is characterized by poor cognitive control/attention and hypofunctioning of the dorsal anterior cingulate cortex (dACC). In the current study, we investigated for the first time whether real-time fMRI neurofeedback (rt-fMRI) training targeted at increasing activation levels within dACC in adults with ADHD leads to a reduction of clinical symptoms and improved cognitive functioning. An exploratory randomized controlled treatment study with blinding of the participants was conducted. Participants with ADHD (n = 7 in the neurofeedback group, and n = 6 in the control group) attended four weekly MRI training sessions (60-min training time/session), during which they performed a mental calculation task at varying levels of difficulty, in order to learn how to up-regulate dACC activation. Only neurofeedback participants received continuous feedback information on actual brain activation levels within dACC. Before and after the training, ADHD symptoms and relevant cognitive functioning was assessed. Results showed that both groups achieved a significant increase in dACC activation levels over sessions. While there was no significant difference between the neurofeedback and control group in clinical outcome, neurofeedback participants showed stronger improvement on cognitive functioning. The current study demonstrates the general feasibility of the suggested rt-fMRI neurofeedback training approach as a potential novel treatment option for ADHD patients. Due to the study’s small sample size, potential clinical benefits need to be further investigated in future studies. Trial Registration: ISRCTN12390961 PMID:28125735

  8. Functional roles of the cingulo-frontal network in performance on working memory.

    PubMed

    Kondo, Hirohito; Morishita, Masanao; Osaka, Naoyuki; Osaka, Mariko; Fukuyama, Hidenao; Shibasaki, Hiroshi

    2004-01-01

    We examined the relationship between brain activities and task performance on working memory. A large-scale study was initially administered to identify good and poor performers using the operation span and reading span tasks. On the basis of those span scores, we divided 20 consenting participants into high- and low-span groups. In an fMRI study, the participants performed verification of arithmetic problems and retention of target words either concurrently or separately. The behavioral results showed that performance was better in the high-span group than in the low-span group under a dual-task condition, but not under two single-task conditions. The anterior cingulate cortex (ACC), left prefrontal cortex (PFC), left inferior frontal cortex, and bilateral parietal cortex were primarily activated for both span groups. We found that signal changes in the ACC were greater in the high-span group than in the low-span group under the dual-task condition, but not under the single-task conditions. Structural equation modeling indicated that an estimate of effective connectivity from the ACC to the left PFC was positive for the high-span group and negative for the-low span group, suggesting that closer cooperation between the two brain regions was strongly related to working memory performance. We conclude that central executive functioning for attention shifting is modulated by the cingulo-frontal network.

  9. Modelling brain activations and connectivity of pain modulated by having a loved one nearby

    NASA Astrophysics Data System (ADS)

    Tamam, Sofina; Ahmad, Asma Hayati; Kamil, Wan Ahmad

    2018-06-01

    This study is to model the connectivity between activated areas in the brain associated with pain responses in the presence and absence of a loved one. We used Th:YAG laser targeted onto the dorsum of the right hand of 17 Malay-female participants (mean age 20.59; SD 2.85 years) in two conditions: (1) in the absence of a loved one in the functional magnetic resonance imaging (fMRI) room (Alone condition), and (2) in the presence of a loved one (Support condition). The laser-induced pain stimuli were delivered according to an fMRI paradigm utilising blocked design comprising 15 blocks of activity and 15 blocks of rest. Brain activations and connectivity were analysed using statistical parametric mapping (SPM), dynamic causal modelling (DCM) and Bayesian model selection (BMS) analyses. Individual responses to pain were found to be divided into two categories: (1) Love Hurts (participants who reported more pain in the presence of a loved one) involved activations in thalamus (THA), parahippocampal gyrus (PHG) and hippocampus (HIP); and (2) Love Heals (participants who reported less pain in the presence of a loved one) involved activations in all parts of cingulate cortex. BMS showed that Love Heals could be represented by a cortical network involving the area of anterior cingulate cortex (ACC), middle cingulate cortex (MCC) and posterior cingulate cortex (PCC) in the intrinsic connectivity of ACC → PCC → MCC and ACC → MCC. There was no optimal model to explain the increase in pain threshold when accompanied by the loved one in Love Hurts. The present study reveals a new possible cortical network for the reduction of pain by having a loved one nearby.

  10. Dissociated roles of the anterior cingulate cortex in reward and conflict processing as revealed by the feedback error-related negativity and N200.

    PubMed

    Baker, Travis E; Holroyd, Clay B

    2011-04-01

    The reinforcement learning theory of the error-related negativity (ERN) holds that the impact of reward signals carried by the midbrain dopamine system modulates activity of the anterior cingulate cortex (ACC), alternatively disinhibiting and inhibiting the ACC following unpredicted error and reward events, respectively. According to a recent formulation of the theory, activity that is intrinsic to the ACC produces a component of the event-related brain potential (ERP) called the N200, and following unpredicted rewards, the N200 is suppressed by extrinsically applied positive dopamine reward signals, resulting in an ERP component called the feedback-ERN (fERN). Here we demonstrate that, despite extensive spatial and temporal overlap between the two ERP components, the functional processes indexed by the N200 (conflict) and the fERN (reward) are dissociable. These results point toward avenues for future investigation. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Self-esteem Modulates Medial Prefrontal Cortical Responses to Evaluative Social Feedback

    PubMed Central

    Kelley, William M.; Heatherton, Todd F.

    2010-01-01

    Self-esteem is a facet of personality that influences perception of social standing and modulates the salience of social acceptance and rejection. As such, self-esteem may bias neural responses to positive and negative social feedback across individuals. During functional magnetic resonance imaging scanning, participants (n = 42) engaged in a social evaluation task whereby they ostensibly received feedback from peers indicating they were liked or disliked. Results demonstrated that individuals with low self-esteem believed that they received less positive feedback from others and showed enhanced activity to positive versus negative social feedback in the ventral anterior cingulate cortex/medial prefrontal cortex (vACC/mPFC). By contrast, vACC/mPFC activity was insensitive to positive versus negative feedback in individuals with high self-esteem, and these individuals consistently overestimated the amount of positive feedback received from peers. Voxelwise analyses supported these findings; lower self-esteem predicted a linear increase in vACC/mPFC response to positive versus negative social feedback. Taken together, the present findings propose a functional role for the vACC/mPFC in representing the salience of social feedback and shaping perceptions of relative social standing. PMID:20351022

  12. Risk prediction and aversion by anterior cingulate cortex.

    PubMed

    Brown, Joshua W; Braver, Todd S

    2007-12-01

    The recently proposed error-likelihood hypothesis suggests that anterior cingulate cortex (ACC) and surrounding areas will become active in proportion to the perceived likelihood of an error. The hypothesis was originally derived from a computational model prediction. The same computational model now makes a further prediction that ACC will be sensitive not only to predicted error likelihood, but also to the predicted magnitude of the consequences, should an error occur. The product of error likelihood and predicted error consequence magnitude collectively defines the general "expected risk" of a given behavior in a manner analogous but orthogonal to subjective expected utility theory. New fMRI results from an incentivechange signal task now replicate the error-likelihood effect, validate the further predictions of the computational model, and suggest why some segments of the population may fail to show an error-likelihood effect. In particular, error-likelihood effects and expected risk effects in general indicate greater sensitivity to earlier predictors of errors and are seen in risk-averse but not risk-tolerant individuals. Taken together, the results are consistent with an expected risk model of ACC and suggest that ACC may generally contribute to cognitive control by recruiting brain activity to avoid risk.

  13. Lies that feel honest: Dissociating between incentive and deviance processing when evaluating dishonesty.

    PubMed

    Lelieveld, Gert-Jan; Shalvi, Shaul; Crone, Eveline A

    2016-05-01

    This study investigated neural responses to evaluations of lies made by others. Participants learned about other individuals who were instructed to privately roll a die twice and report the outcome of the first roll to determine their pay (with higher rolls leading to higher pay). Participants evaluated three types of outcomes: honest reports, justifiable lies (reporting the second outcome instead of the first), or unjustifiable lies (reporting a different outcome than both die rolls). Evaluating lies relative to honest reports was associated with increased activation in the anterior cingulate cortex (ACC), insula and lateral prefrontal cortex. Moreover, justifiable lies were associated with even stronger activity in the dorsal ACC and dorsolateral prefrontal cortex compared to unjustifiable lies. These activities were more pronounced for justifiable lies where the deviance from the real outcome was larger. Together, these findings have implications for understanding how humans judge misconduct behavior of others. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Post-learning infusion of anisomycin into the anterior cingulate cortex impairs instrumental acquisition through an effect on reinforcer valuation

    PubMed Central

    Jonkman, Sietse; Everitt, Barry J.

    2009-01-01

    The integrity of the rodent anterior cingulate cortex (ACC) is essential for various aspects of instrumental behavior, but it is not clear if the ACC is important for the acquisition of a simple instrumental response. Here, it was demonstrated that post-session infusions of anisomycin into the rat ACC completely prevented the acquisition of instrumental responding. The experimental use of post-session intracranial infusions of plasticity inhibitors is assumed to affect local consolidation of plasticity, but not behavioral task performance. However, in associative appetitive conditioning, post-session intracranial infusion of pharmaco-active compounds could actually interfere with subsequent task performance indirectly through retrospective effects on the valuation of ingested rewards. Thus, it was subsequently demonstrated that the intracranial infusion of anisomycin into the ACC after sucrose pellet consumption significantly reduced subsequent pellet consumption, suggesting that the infusion of anisomycin into the ACC produced conditioned taste avoidance. In the third experiment, an innovative procedure was introduced that dissociated the effects of intracranial infusions after conditioning sessions on task-learning and unconditioned stimulus valuation. With this procedure, the infusion of anisomycin into the ACC after instrumental sessions did not affect instrumental reinforcer valuation or the acquisition of instrumental responding, suggesting that plasticity in the ACC is not necessary for the acquisition of instrumental behavior. PMID:19864297

  15. Altered baseline brain activity differentiates regional mechanisms subserving biological and psychological alterations in obese men

    PubMed Central

    Zhang, Bin; Tian, Derun; Yu, Chunshui; Li, Meng; Zang, Yufeng; Liu, Yijun; Walter, Martin

    2015-01-01

    Obesity as a chronic disease is a major factor for insulin resistance and Type 2 diabetes, which has become a global health problem. In the present study, we used resting state functional MRI to investigate the amplitude of low frequency fluctuations of spontaneous signal during both hunger and satiety states in 20 lean and 20 obese males. We found that, before food intake, obese men had significantly greater baseline activity in the precuneus and lesser activity in dorsal anterior cingulate cortex (dACC) relative to lean subjects. Furthermore, after food intake, obese males had significantly lesser activity in dACC than lean males. We further found a significant positive correlation between precuneus activation and hunger ratings before food intake, while dACC activity was negatively correlated with plasma insulin levels before and after food intake. These results indicated that both precuneus and dACC may play an important role in eating behavior. While precuneus rather seemed to mediate subjective satiety, dACC levels rather reflected indirect measures of glucose utilization. PMID:26099208

  16. Inhibition of mammalian target of rapamycin activation in the rostral anterior cingulate cortex attenuates pain-related aversion in rats.

    PubMed

    Lu, Bo; Jiang, Jingyan; Sun, Jianliang; Xiao, Chun; Meng, Bo; Zheng, Jinwei; Li, Xiaoyu; Wang, Ruichun; Wu, Guorong; Chen, Junping

    2016-09-01

    Pain is a complex experience that comprises both sensory and affective dimensions. Mammalian target of rapamycin (mTOR) plays an important role in the modulation of neuronal plasticity associated with the pathogenesis of pain sensation. However, the role of mTOR in pain affect is unclear. Using a formalin-induced conditioned place avoidance (F-CPA) test, the current study investigated the effects of the mTOR specific inhibitor rapamycin on noxious stimulation induced aversion in the rostral anterior cingulate cortex (rACC). Intraplantar injection of 5% formalin was associated with significant activation of mTOR, as well as p70 ribosomal S6 protein (p70S6K), its downstream effector, in the rACC. The inhibition of mTOR activation with rapamycin disrupted pain-related aversion; however, this inhibition did not affect formalin-induced spontaneous nociceptive behaviors in rats. These findings demonstrated for the first time that mTOR and its downstream pathway in the rACC contribute to the induction of pain-related negative emotion. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Neural representation of cost-benefit selections in rat anterior cingulate cortex in self-paced decision making.

    PubMed

    Wang, Shuai; Shi, Yi; Li, Bao-Ming

    2017-03-01

    The anterior cingulate cortex (ACC) is crucial for decision making which involves the processing of cost-benefit information. Our previous study has shown that ACC is essential for self-paced decision making. However, it is unclear how ACC neurons represent cost-benefit selections during the decision-making process. In the present study, we trained rats on the same "Do More Get More" (DMGM) task as in our previous work. In each trial, the animals stand upright and perform a sustained nosepoke of their own will to earn a water reward, with the amount of reward positively correlated to the duration of the nosepoke (i.e., longer nosepokes earn larger rewards). We then recorded ACC neuronal activity on well-trained rats while they were performing the DMGM task. Our results show that (1) approximately 3/5 ACC neurons (296/496, 59.7%) exhibited changes in firing frequency that were temporally locked with the main events of the DMGM task; (2) about 1/5 ACC neurons (101/496, 20.4%) or 1/3 of the event-modulated neurons (101/296, 34.1%) showed differential firing rate changes for different cost-benefit selections; and (3) many ACC neurons exhibited linear encoding of the cost-benefit selections in the DMGM task events. These results suggest that ACC neurons are engaged in encoding cost-benefit information, thus represent the selections in self-paced decision making. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Brain Activity and Functional Connectivity Associated with Hypnosis.

    PubMed

    Jiang, Heidi; White, Matthew P; Greicius, Michael D; Waelde, Lynn C; Spiegel, David

    2017-08-01

    Hypnosis has proven clinical utility, yet changes in brain activity underlying the hypnotic state have not yet been fully identified. Previous research suggests that hypnosis is associated with decreased default mode network (DMN) activity and that high hypnotizability is associated with greater functional connectivity between the executive control network (ECN) and the salience network (SN). We used functional magnetic resonance imaging to investigate activity and functional connectivity among these three networks in hypnosis. We selected 57 of 545 healthy subjects with very high or low hypnotizability using two hypnotizability scales. All subjects underwent four conditions in the scanner: rest, memory retrieval, and two different hypnosis experiences guided by standard pre-recorded instructions in counterbalanced order. Seeds for the ECN, SN, and DMN were left and right dorsolateral prefrontal cortex, dorsal anterior cingulate cortex (dACC), and posterior cingulate cortex (PCC), respectively. During hypnosis there was reduced activity in the dACC, increased functional connectivity between the dorsolateral prefrontal cortex (DLPFC;ECN) and the insula in the SN, and reduced connectivity between the ECN (DLPFC) and the DMN (PCC). These changes in neural activity underlie the focused attention, enhanced somatic and emotional control, and lack of self-consciousness that characterizes hypnosis. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Processing of emotional stimuli is reflected by modulations of beta band activity in the subgenual anterior cingulate cortex in patients with treatment resistant depression

    PubMed Central

    Huebl, Julius; Brücke, Christof; Merkl, Angela; Bajbouj, Malek; Schneider, Gerd-Helge

    2016-01-01

    Deep brain stimulation (DBS) of the subgenual anterior cingulate cortex (sgACC) has emerged as a new therapeutic option in patients with treatment resistant depression (TRD). At the same time, DBS offers a unique opportunity as an innovative research tool to study brain function in vivo. Indirect measures of brain function such as positron-emission-tomography imaging findings have revealed a hypermetabolism in the sgACC area in patients with TRD that normalizes in parallel with treatment response to DBS. We used direct intracranial recordings via implanted DBS electrodes to study the neuronal oscillatory activity in the sgACC area during a picture viewing task including emotional and neutral stimuli in eight patients with TRD who underwent DBS. We found a stimulus-induced decrease in beta-band and increase in gamma-band activity, with a main effect of valence for event-related desynchronisation in the beta-frequency range (14–30 Hz). Unpleasant stimuli induced the strongest and most sustained beta-power decrease. The degree of beta-band modulation upon emotional stimuli correlated with the patients’ rating of stimulus valence. Our findings confirm the involvement of the sgACC area in emotional processing that was more enhanced for unpleasant stimuli. Moreover, stimulus evaluation may be encoded by modulations of beta-band activity. PMID:27013105

  20. Dopamine D1 Receptors in the Anterior Cingulate Cortex Regulate Effort-Based Decision Making

    ERIC Educational Resources Information Center

    Schweimer, Judith; Hauber, Wolfgang

    2006-01-01

    The anterior cingulate cortex (ACC) has been implicated in encoding whether or not an action is worth performing in view of the expected benefit and the cost of performing the action. Dopamine input to the ACC may be critical for this form of effort-based decision making; however, the role of distinct ACC dopamine receptors is yet unknown.…

  1. Post-Learning Infusion of Anisomycin into the Anterior Cingulate Cortex Impairs Instrumental Acquisition through an Effect on Reinforcer Valuation

    ERIC Educational Resources Information Center

    Jonkman, Sietse; Everitt, Barry J.

    2009-01-01

    The integrity of the rodent anterior cingulate cortex (ACC) is essential for various aspects of instrumental behavior, but it is not clear if the ACC is important for the acquisition of a simple instrumental response. Here, it was demonstrated that post-session infusions of anisomycin into the rat ACC completely prevented the acquisition of…

  2. Vicarious reinforcement learning signals when instructing others.

    PubMed

    Apps, Matthew A J; Lesage, Elise; Ramnani, Narender

    2015-02-18

    Reinforcement learning (RL) theory posits that learning is driven by discrepancies between the predicted and actual outcomes of actions (prediction errors [PEs]). In social environments, learning is often guided by similar RL mechanisms. For example, teachers monitor the actions of students and provide feedback to them. This feedback evokes PEs in students that guide their learning. We report the first study that investigates the neural mechanisms that underpin RL signals in the brain of a teacher. Neurons in the anterior cingulate cortex (ACC) signal PEs when learning from the outcomes of one's own actions but also signal information when outcomes are received by others. Does a teacher's ACC signal PEs when monitoring a student's learning? Using fMRI, we studied brain activity in human subjects (teachers) as they taught a confederate (student) action-outcome associations by providing positive or negative feedback. We examined activity time-locked to the students' responses, when teachers infer student predictions and know actual outcomes. We fitted a RL-based computational model to the behavior of the student to characterize their learning, and examined whether a teacher's ACC signals when a student's predictions are wrong. In line with our hypothesis, activity in the teacher's ACC covaried with the PE values in the model. Additionally, activity in the teacher's insula and ventromedial prefrontal cortex covaried with the predicted value according to the student. Our findings highlight that the ACC signals PEs vicariously for others' erroneous predictions, when monitoring and instructing their learning. These results suggest that RL mechanisms, processed vicariously, may underpin and facilitate teaching behaviors. Copyright © 2015 Apps et al.

  3. The influence of 5-HTTLPR transporter genotype on amygdala-subgenual anterior cingulate cortex connectivity in autism spectrum disorder.

    PubMed

    Velasquez, Francisco; Wiggins, Jillian Lee; Mattson, Whitney I; Martin, Donna M; Lord, Catherine; Monk, Christopher S

    2017-04-01

    Social deficits in autism spectrum disorder (ASD) are linked to amygdala functioning and functional connection between the amygdala and subgenual anterior cingulate cortex (sACC) is involved in the modulation of amygdala activity. Impairments in behavioral symptoms and amygdala activation and connectivity with the sACC seem to vary by serotonin transporter-linked polymorphic region (5-HTTLPR) variant genotype in diverse populations. The current preliminary investigation examines whether amygdala-sACC connectivity differs by 5-HTTLPR genotype and relates to social functioning in ASD. A sample of 108 children and adolescents (44 ASD) completed an fMRI face-processing task. Youth with ASD and low expressing 5-HTTLPR genotypes showed significantly greater connectivity than youth with ASD and higher expressing genotypes as well as typically developing (TD) individuals with both low and higher expressing genotypes, in the comparison of happy vs. baseline faces and happy vs. neutral faces. Moreover, individuals with ASD and higher expressing genotypes exhibit a negative relationship between amygdala-sACC connectivity and social dysfunction. Altered amygdala-sACC coupling based on 5-HTTLPR genotype may help explain some of the heterogeneity in neural and social function observed in ASD. This is the first ASD study to combine genetic polymorphism analyses and functional connectivity in the context of a social task. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Neurocircuitry underlying risk and resilience to social anxiety disorder

    PubMed Central

    Clauss, Jacqueline A.; Avery, Suzanne N.; VanDerKlok, Ross M.; Rogers, Baxter P.; Cowan, Ronald L.; Benningfield, Margaret M.; Blackford, Jennifer Urbano

    2015-01-01

    Background Almost half of children with an inhibited temperament will develop social anxiety disorder by late adolescence. Importantly, this means that half of children with an inhibited temperament will not develop social anxiety disorder. Studying adults with an inhibited temperament provides a unique opportunity to identify neural signatures of both risk and resilience to social anxiety disorder. Methods Functional MRI was used to measure brain activation during the anticipation of viewing fear faces in 34 young adults (17 inhibited, 17 uninhibited). To identify neural signatures of risk, we tested for group differences in functional activation and connectivity in regions implicated in social anxiety disorder, including the prefrontal cortex, amygdala, and insula. To identify neural signatures of resilience, we tested correlations between brain activation and both emotion regulation and social anxiety scores. Results Inhibited subjects had greater activation of a prefrontal network when anticipating viewing fear faces, relative to uninhibited subjects. No group differences were identified in the amygdala. Inhibited subjects had more negative connectivity between the rostral anterior cingulate cortex (ACC) and the bilateral amygdala. Within the inhibited group, those with fewer social anxiety symptoms and better emotion regulation skills had greater ACC activation and greater functional connectivity between the ACC and amygdala. Conclusions These finding suggest that engaging regulatory prefrontal regions during anticipation may be a protective factor, or putative neural marker of resilience, in high-risk individuals. Cognitive training targeting prefrontal cortex function may provide protection against anxiety, especially in high-risk individuals, such as those with inhibited temperament. PMID:24753211

  5. Neural responses to negative feedback are related to negative emotionality in healthy adults

    PubMed Central

    Santesso, Diane L.; Bogdan, Ryan; Birk, Jeffrey L.; Goetz, Elena L.; Holmes, Avram J.

    2012-01-01

    Prior neuroimaging and electrophysiological evidence suggests that potentiated responses in the anterior cingulate cortex (ACC), particularly the rostral ACC, may contribute to abnormal responses to negative feedback in individuals with elevated negative affect and depressive symptoms. The feedback-related negativity (FRN) represents an electrophysiological index of ACC-related activation in response to performance feedback. The purpose of the present study was to examine the FRN and underlying ACC activation using low resolution electromagnetic tomography source estimation techniques in relation to negative emotionality (a composite index including negative affect and subclinical depressive symptoms). To this end, 29 healthy adults performed a monetary incentive delay task while 128-channel event-related potentials were recorded. We found that enhanced FRNs and increased rostral ACC activation in response to negative—but not positive—feedback was related to greater negative emotionality. These results indicate that individual differences in negative emotionality—a putative risk factor for emotional disorders—modulate ACC-related processes critically implicated in assessing the motivational impact and/or salience of environmental feedback. PMID:21917847

  6. Subchronic glucocorticoids, glutathione depletion and a postpartum model elevate monoamine oxidase a activity in the prefrontal cortex of rats.

    PubMed

    Raitsin, Sofia; Tong, Junchao; Kish, Stephen; Xu, Xin; Magomedova, Lilia; Cummins, Carolyn; Andreazza, Ana C; Scola, Gustavo; Baker, Glen; Meyer, Jeffrey H

    2017-07-01

    Recent human brain imaging studies implicate dysregulation of monoamine oxidase-A (MAO-A), in particular in the prefrontal cortex (PFC) and anterior cingulate cortex (ACC), in the development of major depressive disorder (MDD). This study investigates the influence of four alterations underlying important pathologies of MDD, namely, chronic elevation of glucocorticoid levels, glutathione depletion, changes in female gonadal sex hormones and serotonin concentration fluctuation, on MAO-A and MAO-B activities in rats. Young adult rats exposed chronically to the synthetic glucocorticoid dexamethasone at 0, 0.05, 0.5, and 2.0mg/kg/day (osmotic minipumps) for eight days showed significant dose-dependent increases in activities of MAO-A in PFC (+17%, p<0.001) and ACC (+9%, p<0.01) and MAO-B in PFC (+14%, p<0.001) and increased serotonin turnover in the PFC (+31%, p<0.01), not accounted for by dexamethasone-induced changes in serotonin levels, since neither serotonin depletion nor supplementation affected MAO-A activity. Sub-acute depletion of the major antioxidant glutathione by diethyl maleate (5mmol/kg, i.p.) for three days, which resulted in a 36% loss of glutathione in PFC (p=0.0005), modestly, but significantly, elevated activities of MAO-A in PFC and MAO-B in PFC, ACC and hippocampus (+6-9%, p<0.05). Changes in estrogen and progesterone representing pseudopregnancy were associated with significantly elevated MAO-A activity in the ACC day 4-7 postpartum (10-18%, p<0.05 to p<0.0001) but not the PFC or hippocampus. Hence, our study provides data in support of strategies targeting glucocorticoid and glutathione systems, as well as changes in female sex hormones for normalization of MAO-A activities and thus treatment of mood disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Brain activation responses to subliminal or supraliminal rectal stimuli and to auditory stimuli in irritable bowel syndrome.

    PubMed

    Andresen, V; Bach, D R; Poellinger, A; Tsrouya, C; Stroh, A; Foerschler, A; Georgiewa, P; Zimmer, C; Mönnikes, H

    2005-12-01

    Visceral hypersensitivity in irritable bowel syndrome (IBS) has been associated with altered cerebral activations in response to visceral stimuli. It is unclear whether these processing alterations are specific for visceral sensation. In this study we aimed to determine by functional magnetic resonance imaging (fMRI) whether cerebral processing of supraliminal and subliminal rectal stimuli and of auditory stimuli is altered in IBS. In eight IBS patients and eight healthy controls, fMRI activations were recorded during auditory and rectal stimulation. Intensities of rectal balloon distension were adapted to the individual threshold of first perception (IPT): subliminal (IPT -10 mmHg), liminal (IPT), or supraliminal (IPT +10 mmHg). IBS patients relative to controls responded with lower activations of the prefrontal cortex (PFC) and anterior cingulate cortex (ACC) to both subliminal and supraliminal stimulation and with higher activation of the hippocampus (HC) to supraliminal stimulation. In IBS patients, not in controls, ACC and HC were also activated by auditory stimulation. In IBS patients, decreased ACC and PFC activation with subliminal and supraliminal rectal stimuli and increased HC activation with supraliminal stimuli suggest disturbances of the associative and emotional processing of visceral sensation. Hyperreactivity to auditory stimuli suggests that altered sensory processing in IBS may not be restricted to visceral sensation.

  8. Dysfunctional Noise Cancelling of the Rostral Anterior Cingulate Cortex in Tinnitus Patients

    PubMed Central

    Song, Jae Jin; Vanneste, Sven; De Ridder, Dirk

    2015-01-01

    Background Peripheral auditory deafferentation and central compensation have been regarded as the main culprits of tinnitus generation. However, patient-to-patient discrepancy in the range of the percentage of daytime in which tinnitus is perceived (tinnitus awareness percentage, 0 – 100%), is not fully explicable only by peripheral deafferentation, considering that the deafferentation is a stable persisting phenomenon but tinnitus is intermittently perceived in most patients. Consequently, the involvement of a dysfunctional noise cancellation mechanism has recently been suggested with regard to the individual differences in reported tinnitus awareness. By correlating the tinnitus awareness percentage with resting-state source-localized electroencephalography findings, we may be able to retrieve the cortical area that is negatively correlated with tinnitus awareness percentage, and then the area may be regarded as the core of the noise cancelling system that is defective in patients with tinnitus. Methods and Findings Using resting-state cortical oscillation, we investigated 80 tinnitus patients by correlating the tinnitus awareness percentage with their source-localized cortical oscillatory activity and functional connectivity. The activity of bilateral rostral anterior cingulate cortices (ACCs), left dorsal- and pregenual ACCs for the delta band, bilateral rostral/pregenual/subgenual ACCs for the theta band, and left rostral/pregenual ACC for the beta 1 band displayed significantly negative correlations with tinnitus awareness percentage. Also, the connectivity between the left primary auditory cortex (A1) and the rostral ACC, as well as between the left A1 and the subgenual ACC for the beta 1 band, were negatively correlated with tinnitus awareness percentage. Conclusions These results may designate the role of the rostral ACC as the core of the descending noise cancellation system, and thus dysfunction of the rostral ACC may result in perception of tinnitus. The present study also opens a possibility of tinnitus modulation by neuromodulatory approaches targeting the rostral ACC. PMID:25875099

  9. Dissociable effects of surprise and model update in parietal and anterior cingulate cortex

    PubMed Central

    O’Reilly, Jill X.; Schüffelgen, Urs; Cuell, Steven F.; Behrens, Timothy E. J.; Mars, Rogier B.; Rushworth, Matthew F. S.

    2013-01-01

    Brains use predictive models to facilitate the processing of expected stimuli or planned actions. Under a predictive model, surprising (low probability) stimuli or actions necessitate the immediate reallocation of processing resources, but they can also signal the need to update the underlying predictive model to reflect changes in the environment. Surprise and updating are often correlated in experimental paradigms but are, in fact, distinct constructs that can be formally defined as the Shannon information (IS) and Kullback–Leibler divergence (DKL) associated with an observation. In a saccadic planning task, we observed that distinct behaviors and brain regions are associated with surprise/IS and updating/DKL. Although surprise/IS was associated with behavioral reprogramming as indexed by slower reaction times, as well as with activity in the posterior parietal cortex [human lateral intraparietal area (LIP)], the anterior cingulate cortex (ACC) was specifically activated during updating of the predictive model (DKL). A second saccade-sensitive region in the inferior posterior parietal cortex (human 7a), which has connections to both LIP and ACC, was activated by surprise and modulated by updating. Pupillometry revealed a further dissociation between surprise and updating with an early positive effect of surprise and late negative effect of updating on pupil area. These results give a computational account of the roles of the ACC and two parietal saccade regions, LIP and 7a, by which their involvement in diverse tasks can be understood mechanistically. The dissociation of functional roles between regions within the reorienting/reprogramming network may also inform models of neurological phenomena, such as extinction and Balint syndrome, and neglect. PMID:23986499

  10. Evaluating choices by single neurons in the frontal lobe: outcome value encoded across multiple decision variables

    PubMed Central

    Kennerley, Steven W.; Wallis, Jonathan D.

    2009-01-01

    Damage to the frontal lobe can cause severe decision-making impairments. A mechanism that may underlie this is that neurons in the frontal cortex encode many variables that contribute to the valuation of a choice, such as its costs, benefits and probability of success. However, optimal decision-making requires that one considers these variables, not only when faced with the choice, but also when evaluating the outcome of the choice, in order to adapt future behaviour appropriately. To examine the role of the frontal cortex in encoding the value of different choice outcomes, we simultaneously recorded the activity of multiple single neurons in the anterior cingulate cortex (ACC), orbitofrontal cortex (OFC) and lateral prefrontal cortex (LPFC) while subjects evaluated the outcome of choices involving manipulations of probability, payoff and cost. Frontal neurons encoded many of the parameters that enabled the calculation of the value of these variables, including the onset and offset of reward and the amount of work performed, and often encoded the value of outcomes across multiple decision variables. In addition, many neurons encoded both the predicted outcome during the choice phase of the task as well as the experienced outcome in the outcome phase of the task. These patterns of selectivity were more prevalent in ACC relative to OFC and LPFC. These results support a role for the frontal cortex, principally ACC, in selecting between choice alternatives and evaluating the outcome of that selection thereby ensuring that choices are optimal and adaptive. PMID:19453638

  11. Differential functional connectivity of rostral anterior cingulate cortex during emotional interference

    PubMed Central

    Szekely, Akos; Silton, Rebecca L.; Heller, Wendy; Miller, Gregory A.

    2017-01-01

    Abstract The rostral-ventral subdivision of the anterior cingulate cortex (rACC) plays a key role in the regulation of emotional processing. Although rACC has strong anatomical connections with anterior insular cortex (AIC), amygdala, prefrontal cortex and striatal brain regions, it is unclear whether the functional connectivity of rACC with these regions changes when regulating emotional processing. Furthermore, it is not known whether this connectivity changes with deficits in emotion regulation seen in different kinds of anxiety and depression. To address these questions regarding rACC functional connectivity, non-patients high in self-reported anxious apprehension (AP), anxious arousal (AR), anhedonic depression (AD) or none (CON) indicated the ink color of pleasant, neutral and unpleasant words during functional magnetic resonance imaging. While ignoring task-irrelevant unpleasant words, AD and CON showed an increase in the functional connectivity of rACC with AIC, putamen, caudate and ventral pallidum. There was a decrease in this connectivity in AP and AR, with AP showing greater reduction than AR. These findings provide support for the role of rACC in integrating interoceptive, emotional and cognitive functions via interactions with insula and striatal regions during effective emotion regulation in healthy individuals and a failure of this integration that may be specific to anxiety, particularly AP. PMID:27998997

  12. Look who's judging-Feedback source modulates brain activation to performance feedback in social anxiety.

    PubMed

    Peterburs, Jutta; Sandrock, Carolin; Miltner, Wolfgang H R; Straube, Thomas

    2016-06-01

    It is as yet unknown if behavioral and neural correlates of performance monitoring in socially anxious individuals are affected by whether feedback is provided by a person or a computer. This fMRI study investigated modulation of feedback processing by feedback source (person vs. computer) in participants with high (HSA) (N=16) and low social anxiety (LSA) (N=16). Subjects performed a choice task in which they were informed that they would receive positive or negative feedback from a person or the computer. Subjective ratings indicated increased arousal and anxiety in HSA versus LSA, most pronounced for social and negative feedback. FMRI analyses yielded hyperactivation in ventral medial prefrontal cortex (vmPFC)/anterior cingulate cortex (ACC) and insula for social relative to computer feedback, and in mPFC/ventral ACC for positive relative to negative feedback in HSA as compared to LSA. These activation patterns are consistent with increased interoception and self-referential processing in social anxiety, especially during processing of positive feedback. Increased ACC activation in HSA to positive feedback may link to unexpectedness of (social) praise as posited in social anxiety disorder (SAD) psychopathology. Activation in rostral ACC showed a reversed pattern, with decreased activation to positive feedback in HSA, possibly indicating altered action values depending on feedback source and valence. The present findings corroborate a crucial role of mPFC for performance monitoring in social anxiety. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Dissociable Genetic Contributions to Error Processing: A Multimodal Neuroimaging Study

    PubMed Central

    Agam, Yigal; Vangel, Mark; Roffman, Joshua L.; Gallagher, Patience J.; Chaponis, Jonathan; Haddad, Stephen; Goff, Donald C.; Greenberg, Jennifer L.; Wilhelm, Sabine; Smoller, Jordan W.; Manoach, Dara S.

    2014-01-01

    Background Neuroimaging studies reliably identify two markers of error commission: the error-related negativity (ERN), an event-related potential, and functional MRI activation of the dorsal anterior cingulate cortex (dACC). While theorized to reflect the same neural process, recent evidence suggests that the ERN arises from the posterior cingulate cortex not the dACC. Here, we tested the hypothesis that these two error markers also have different genetic mediation. Methods We measured both error markers in a sample of 92 comprised of healthy individuals and those with diagnoses of schizophrenia, obsessive-compulsive disorder or autism spectrum disorder. Participants performed the same task during functional MRI and simultaneously acquired magnetoencephalography and electroencephalography. We examined the mediation of the error markers by two single nucleotide polymorphisms: dopamine D4 receptor (DRD4) C-521T (rs1800955), which has been associated with the ERN and methylenetetrahydrofolate reductase (MTHFR) C677T (rs1801133), which has been associated with error-related dACC activation. We then compared the effects of each polymorphism on the two error markers modeled as a bivariate response. Results We replicated our previous report of a posterior cingulate source of the ERN in healthy participants in the schizophrenia and obsessive-compulsive disorder groups. The effect of genotype on error markers did not differ significantly by diagnostic group. DRD4 C-521T allele load had a significant linear effect on ERN amplitude, but not on dACC activation, and this difference was significant. MTHFR C677T allele load had a significant linear effect on dACC activation but not ERN amplitude, but the difference in effects on the two error markers was not significant. Conclusions DRD4 C-521T, but not MTHFR C677T, had a significant differential effect on two canonical error markers. Together with the anatomical dissociation between the ERN and error-related dACC activation, these findings suggest that these error markers have different neural and genetic mediation. PMID:25010186

  14. Diminished Medial Prefrontal Activity behind Autistic Social Judgments of Incongruent Information

    PubMed Central

    Watanabe, Takamitsu; Yahata, Noriaki; Abe, Osamu; Kuwabara, Hitoshi; Inoue, Hideyuki; Takano, Yosuke; Iwashiro, Norichika; Natsubori, Tatsunobu; Aoki, Yuta; Takao, Hidemasa; Sasaki, Hiroki; Gonoi, Wataru; Murakami, Mizuho; Katsura, Masaki; Kunimatsu, Akira; Kawakubo, Yuki; Matsuzaki, Hideo; Tsuchiya, Kenji J.; Kato, Nobumasa; Kano, Yukiko; Miyashita, Yasushi; Kasai, Kiyoto; Yamasue, Hidenori

    2012-01-01

    Individuals with autism spectrum disorders (ASD) tend to make inadequate social judgments, particularly when the nonverbal and verbal emotional expressions of other people are incongruent. Although previous behavioral studies have suggested that ASD individuals have difficulty in using nonverbal cues when presented with incongruent verbal-nonverbal information, the neural mechanisms underlying this symptom of ASD remain unclear. In the present functional magnetic resonance imaging study, we compared brain activity in 15 non-medicated adult males with high-functioning ASD to that of 17 age-, parental-background-, socioeconomic-, and intelligence-quotient-matched typically-developed (TD) male participants. Brain activity was measured while each participant made friend or foe judgments of realistic movies in which professional actors spoke with conflicting nonverbal facial expressions and voice prosody. We found that the ASD group made significantly less judgments primarily based on the nonverbal information than the TD group, and they exhibited significantly less brain activity in the right inferior frontal gyrus, bilateral anterior insula, anterior cingulate cortex/ventral medial prefrontal cortex (ACC/vmPFC), and dorsal medial prefrontal cortex (dmPFC) than the TD group. Among these five regions, the ACC/vmPFC and dmPFC were most involved in nonverbal-information-biased judgments in the TD group. Furthermore, the degree of decrease of the brain activity in these two brain regions predicted the severity of autistic communication deficits. The findings indicate that diminished activity in the ACC/vmPFC and dmPFC underlies the impaired abilities of individuals with ASD to use nonverbal content when making judgments regarding other people based on incongruent social information. PMID:22745788

  15. Alleviating neuropathic pain mechanical allodynia by increasing Cdh1 in the anterior cingulate cortex.

    PubMed

    Tan, Wei; Yao, Wen-Long; Hu, Rong; Lv, You-You; Wan, Li; Zhang, Chuan-Han; Zhu, Chang

    2015-09-12

    Plastic changes in the anterior cingulate cortex (ACC) are critical in the pathogenesis of pain hypersensitivity caused by injury to peripheral nerves. Cdh1, a co-activator subunit of anaphase-promoting complex/cyclosome (APC/C) regulates synaptic differentiation and transmission. Based on this, we hypothesised that the APC/C-Cdh1 played an important role in long-term plastic changes induced by neuropathic pain in ACC. We employed spared nerve injury (SNI) model in rat and found Cdh1 protein level in the ACC was down-regulated 3, 7 and 14 days after SNI surgery. We detected increase in c-Fos expression, numerical increase of organelles, swollen myelinated fibre and axon collapse of neuronal cells in the ACC of SNI rat. Additionally, AMPA receptor GluR1 subunit protein level was up-regulated on the membrane through a pathway that involves EphA4 mediated by APC/C-Cdh1, 3 and 7 days after SNI surgery. To confirm the effect of Cdh1 in neuropathic pain, Cdh1-expressing lentivirus was injected into the ACC of SNI rat. Intra-ACC treatment with Cdh1-expressing lentivirus vectors elevated Cdh1 levels, erased synaptic strengthening, as well as alleviating established mechanical allodynia in SNI rats. We also found Cdh1-expressing lentivirus normalised SNI-induced redistribution of AMPA receptor GluR1 subunit in ACC by regulating AMPA receptor trafficking. These results provide evidence that Cdh1 in ACC synapses may offer a novel therapeutic strategy for treating chronic neuropathic pain.

  16. The role of the anterior cingulate cortex in emotional response inhibition.

    PubMed

    Albert, Jacobo; López-Martín, Sara; Tapia, Manuel; Montoya, Daniel; Carretié, Luis

    2012-09-01

    Although the involvement of the anterior cingulate cortex (ACC) in emotional response inhibition is well established, there are several outstanding issues about the nature of this involvement that are not well understood. The present study aimed to examine the precise contribution of the ACC to emotion-modulated response inhibition by capitalizing on fine temporal resolution of the event-related potentials (ERPs) and the recent advances in source localization. To this end, participants (N = 30) performed an indirect affective Go/Nogo task (i.e., unrelated to the emotional content of stimulation) that required the inhibition of a motor response to three types of visual stimuli: arousing negative (A-), neutral (N), and arousing positive (A+). Behavioral data revealed that participants made more commission errors to A+ than to N and A-. Electrophysiological data showed that a specific region of the ACC at the intersection of its dorsal and rostral subdivisions was significantly involved in the interaction between emotional processing and motor inhibition. Specifically, activity reflecting this interaction was observed in the P3 (but not in the N2) time range, and was greater during the inhibition of responses to A+ than to N and A-. Additionally, regression analyses showed that inhibition-related activity within this ACC region was associated with the emotional content of the stimuli (its activity increased as stimulus valence was more positive), and also with behavioral performance (both with reaction times and commission errors). The present results provide additional data for understanding how, when, and where emotion interacts with response inhibition within the ACC. Copyright © 2011 Wiley Periodicals, Inc.

  17. Behavioral conflict, anterior cingulate cortex, and experiment duration: implications of diverging data.

    PubMed

    Erickson, Kirk I; Milham, Michael P; Colcombe, Stanley J; Kramer, Arthur F; Banich, Marie T; Webb, Andrew; Cohen, Neal J

    2004-02-01

    We investigated the relationship between behavioral measures of conflict and the degree of activity in the anterior cingulate cortex (ACC). We reanalyzed an existing data set that employed the Stroop task using functional magnetic resonance imaging [Milham et al., Brain Cogn 2002;49:277-296]. Although we found no changes in the behavioral measures of conflict from the first to the second half of task performance, we found a reliable reduction in the activity of the anterior cingulate cortex. This result suggests the lack of a strong relationship between behavioral measurements of conflict and anterior cingulate activity. A concomitant increase in dorsolateral prefrontal cortex activity was also found, which may reflect a tradeoff in the neural substrates involved in supporting conflict resolution, detection, or monitoring processes. A second analysis of the data revealed that the duration of an experiment can dramatically affect interpretations of the results, including the roles in which particular regions are thought to play in cognition. These results are discussed in relation to current conceptions of ACC's role in attentional control. In addition, we discuss the implication of our results with current conceptions of conflict and of its instantiation in the brain. Hum. Brain Mapping 21:96-105, 2004. Copyright 2003 Wiley-Liss, Inc.

  18. Neural Processing of Emotional Musical and Nonmusical Stimuli in Depression

    PubMed Central

    Atchley, Ruth Ann; Chrysikou, Evangelia; Martin, Laura E.; Clair, Alicia A.; Ingram, Rick E.; Simmons, W. Kyle; Savage, Cary R.

    2016-01-01

    Background Anterior cingulate cortex (ACC) and striatum are part of the emotional neural circuitry implicated in major depressive disorder (MDD). Music is often used for emotion regulation, and pleasurable music listening activates the dopaminergic system in the brain, including the ACC. The present study uses functional MRI (fMRI) and an emotional nonmusical and musical stimuli paradigm to examine how neural processing of emotionally provocative auditory stimuli is altered within the ACC and striatum in depression. Method Nineteen MDD and 20 never-depressed (ND) control participants listened to standardized positive and negative emotional musical and nonmusical stimuli during fMRI scanning and gave subjective ratings of valence and arousal following scanning. Results ND participants exhibited greater activation to positive versus negative stimuli in ventral ACC. When compared with ND participants, MDD participants showed a different pattern of activation in ACC. In the rostral part of the ACC, ND participants showed greater activation for positive information, while MDD participants showed greater activation to negative information. In dorsal ACC, the pattern of activation distinguished between the types of stimuli, with ND participants showing greater activation to music compared to nonmusical stimuli, while MDD participants showed greater activation to nonmusical stimuli, with the greatest response to negative nonmusical stimuli. No group differences were found in striatum. Conclusions These results suggest that people with depression may process emotional auditory stimuli differently based on both the type of stimulation and the emotional content of that stimulation. This raises the possibility that music may be useful in retraining ACC function, potentially leading to more effective and targeted treatments. PMID:27284693

  19. Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task.

    PubMed

    Goldstein, Rita Z; Woicik, Patricia A; Maloney, Thomas; Tomasi, Dardo; Alia-Klein, Nelly; Shan, Juntian; Honorio, Jean; Samaras, Dimitris; Wang, Ruiliang; Telang, Frank; Wang, Gene-Jack; Volkow, Nora D

    2010-09-21

    Anterior cingulate cortex (ACC) hypoactivations during cognitive demand are a hallmark deficit in drug addiction. Methylphenidate (MPH) normalizes cortical function, enhancing task salience and improving associated cognitive abilities, in other frontal lobe pathologies; however, in clinical trials, MPH did not improve treatment outcome in cocaine addiction. We hypothesized that oral MPH will attenuate ACC hypoactivations and improve associated performance during a salient cognitive task in individuals with cocaine-use disorders (CUD). In the current functional MRI study, we used a rewarded drug cue-reactivity task previously shown to be associated with hypoactivations in both major ACC subdivisions (implicated in default brain function) in CUD compared with healthy controls. The task was performed by 13 CUD and 14 matched healthy controls on 2 d: after ingesting a single dose of oral MPH (20 mg) or placebo (lactose) in a counterbalanced fashion. Results show that oral MPH increased responses to this salient cognitive task in both major ACC subdivisions (including the caudal-dorsal ACC and rostroventromedial ACC extending to the medial orbitofrontal cortex) in the CUD. These functional MRI results were associated with reduced errors of commission (a common impulsivity measure) and improved task accuracy, especially during the drug (vs. neutral) cue-reactivity condition in all subjects. The clinical application of such MPH-induced brain-behavior enhancements remains to be tested.

  20. Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, R.Z.; Goldstein, R.Z.; Woicik, P.A.

    Anterior cingulate cortex (ACC) hypoactivations during cognitive demand are a hallmark deficit in drug addiction. Methylphenidate (MPH) normalizes cortical function, enhancing task salience and improving associated cognitive abilities, in other frontal lobe pathologies; however, in clinical trials, MPH did not improve treatment outcome in cocaine addiction. We hypothesized that oral MPH will attenuate ACC hypoactivations and improve associated performance during a salient cognitive task in individuals with cocaine-use disorders (CUD). In the current functional MRI study, we used a rewarded drug cue-reactivity task previously shown to be associated with hypoactivations in both major ACC subdivisions (implicated in default brain function)more » in CUD compared with healthy controls. The task was performed by 13 CUD and 14 matched healthy controls on 2 d: after ingesting a single dose of oral MPH (20 mg) or placebo (lactose) in a counterbalanced fashion. Results show that oral MPH increased responses to this salient cognitive task in both major ACC subdivisions (including the caudal-dorsal ACC and rostroventromedial ACC extending to the medial orbitofrontal cortex) in the CUD. These functional MRI results were associated with reduced errors of commission (a common impulsivity measure) and improved task accuracy, especially during the drug (vs. neutral) cue-reactivity condition in all subjects. The clinical application of such MPH-induced brain-behavior enhancements remains to be tested.« less

  1. Functional Connectivity of Multiple Brain Regions Required for the Consolidation of Social Recognition Memory.

    PubMed

    Tanimizu, Toshiyuki; Kenney, Justin W; Okano, Emiko; Kadoma, Kazune; Frankland, Paul W; Kida, Satoshi

    2017-04-12

    Social recognition memory is an essential and basic component of social behavior that is used to discriminate familiar and novel animals/humans. Previous studies have shown the importance of several brain regions for social recognition memories; however, the mechanisms underlying the consolidation of social recognition memory at the molecular and anatomic levels remain unknown. Here, we show a brain network necessary for the generation of social recognition memory in mice. A mouse genetic study showed that cAMP-responsive element-binding protein (CREB)-mediated transcription is required for the formation of social recognition memory. Importantly, significant inductions of the CREB target immediate-early genes c-fos and Arc were observed in the hippocampus (CA1 and CA3 regions), medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), and amygdala (basolateral region) when social recognition memory was generated. Pharmacological experiments using a microinfusion of the protein synthesis inhibitor anisomycin showed that protein synthesis in these brain regions is required for the consolidation of social recognition memory. These findings suggested that social recognition memory is consolidated through the activation of CREB-mediated gene expression in the hippocampus/mPFC/ACC/amygdala. Network analyses suggested that these four brain regions show functional connectivity with other brain regions and, more importantly, that the hippocampus functions as a hub to integrate brain networks and generate social recognition memory, whereas the ACC and amygdala are important for coordinating brain activity when social interaction is initiated by connecting with other brain regions. We have found that a brain network composed of the hippocampus/mPFC/ACC/amygdala is required for the consolidation of social recognition memory. SIGNIFICANCE STATEMENT Here, we identify brain networks composed of multiple brain regions for the consolidation of social recognition memory. We found that social recognition memory is consolidated through CREB-meditated gene expression in the hippocampus, medial prefrontal cortex, anterior cingulate cortex (ACC), and amygdala. Importantly, network analyses based on c-fos expression suggest that functional connectivity of these four brain regions with other brain regions is increased with time spent in social investigation toward the generation of brain networks to consolidate social recognition memory. Furthermore, our findings suggest that hippocampus functions as a hub to integrate brain networks and generate social recognition memory, whereas ACC and amygdala are important for coordinating brain activity when social interaction is initiated by connecting with other brain regions. Copyright © 2017 the authors 0270-6474/17/374103-14$15.00/0.

  2. Cognitive strategy use as an index of developmental differences in neural responses to feedback.

    PubMed

    Andersen, Lau M; Visser, Ingmar; Crone, Eveline A; Koolschijn, P Cédric M P; Raijmakers, Maartje E J

    2014-12-01

    Developmental differences in dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), and superior parietal cortex (SPC) activation are associated with differences in how children, adolescents, and adults learn from performance feedback in rule-learning tasks (Crone, Zanolie, Leijenhorst, Westenberg, & Rombouts, 2008). Both maturational differences and performance differences can potentially explain variance in functional brain activation. To disentangle those effects, we established strategy differences in the performance of participants on the task of Crone et al. (2008) by the application of latent mixture models (McLachlan & Peel, 2000). We found 4 categorically different strategies, which were divided across age groups. Both adults and adolescents were distributed among all strategy groups except for the worst performing one, whereas children were distributed among all strategy groups except for the best performing one. Strategy use was a mediator and largely explained the relation between age and variance in activation patterns in the DLPFC and the SPC but not in the ACC. These findings are interpreted vis-à-vis age versus performance predictors of brain development. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  3. Processing of emotional stimuli is reflected by modulations of beta band activity in the subgenual anterior cingulate cortex in patients with treatment resistant depression.

    PubMed

    Huebl, Julius; Brücke, Christof; Merkl, Angela; Bajbouj, Malek; Schneider, Gerd-Helge; Kühn, Andrea A

    2016-08-01

    Deep brain stimulation (DBS) of the subgenual anterior cingulate cortex (sgACC) has emerged as a new therapeutic option in patients with treatment resistant depression (TRD). At the same time, DBS offers a unique opportunity as an innovative research tool to study brain function in vivo Indirect measures of brain function such as positron-emission-tomography imaging findings have revealed a hypermetabolism in the sgACC area in patients with TRD that normalizes in parallel with treatment response to DBS. We used direct intracranial recordings via implanted DBS electrodes to study the neuronal oscillatory activity in the sgACC area during a picture viewing task including emotional and neutral stimuli in eight patients with TRD who underwent DBS.We found a stimulus-induced decrease in beta-band and increase in gamma-band activity, with a main effect of valence for event-related desynchronisation in the beta-frequency range (14-30 Hz). Unpleasant stimuli induced the strongest and most sustained beta-power decrease. The degree of beta-band modulation upon emotional stimuli correlated with the patients' rating of stimulus valence. Our findings confirm the involvement of the sgACC area in emotional processing that was more enhanced for unpleasant stimuli. Moreover, stimulus evaluation may be encoded by modulations of beta-band activity. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. Attracting Dynamics of Frontal Cortex Ensembles during Memory-Guided Decision-Making

    PubMed Central

    Seamans, Jeremy K.; Durstewitz, Daniel

    2011-01-01

    A common theoretical view is that attractor-like properties of neuronal dynamics underlie cognitive processing. However, although often proposed theoretically, direct experimental support for the convergence of neural activity to stable population patterns as a signature of attracting states has been sparse so far, especially in higher cortical areas. Combining state space reconstruction theorems and statistical learning techniques, we were able to resolve details of anterior cingulate cortex (ACC) multiple single-unit activity (MSUA) ensemble dynamics during a higher cognitive task which were not accessible previously. The approach worked by constructing high-dimensional state spaces from delays of the original single-unit firing rate variables and the interactions among them, which were then statistically analyzed using kernel methods. We observed cognitive-epoch-specific neural ensemble states in ACC which were stable across many trials (in the sense of being predictive) and depended on behavioral performance. More interestingly, attracting properties of these cognitively defined ensemble states became apparent in high-dimensional expansions of the MSUA spaces due to a proper unfolding of the neural activity flow, with properties common across different animals. These results therefore suggest that ACC networks may process different subcomponents of higher cognitive tasks by transiting among different attracting states. PMID:21625577

  5. Differential functional connectivity of rostral anterior cingulate cortex during emotional interference.

    PubMed

    Szekely, Akos; Silton, Rebecca L; Heller, Wendy; Miller, Gregory A; Mohanty, Aprajita

    2017-03-01

    The rostral-ventral subdivision of the anterior cingulate cortex (rACC) plays a key role in the regulation of emotional processing. Although rACC has strong anatomical connections with anterior insular cortex (AIC), amygdala, prefrontal cortex and striatal brain regions, it is unclear whether the functional connectivity of rACC with these regions changes when regulating emotional processing. Furthermore, it is not known whether this connectivity changes with deficits in emotion regulation seen in different kinds of anxiety and depression. To address these questions regarding rACC functional connectivity, non-patients high in self-reported anxious apprehension (AP), anxious arousal (AR), anhedonic depression (AD) or none (CON) indicated the ink color of pleasant, neutral and unpleasant words during functional magnetic resonance imaging. While ignoring task-irrelevant unpleasant words, AD and CON showed an increase in the functional connectivity of rACC with AIC, putamen, caudate and ventral pallidum. There was a decrease in this connectivity in AP and AR, with AP showing greater reduction than AR. These findings provide support for the role of rACC in integrating interoceptive, emotional and cognitive functions via interactions with insula and striatal regions during effective emotion regulation in healthy individuals and a failure of this integration that may be specific to anxiety, particularly AP. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. Gender and neural substrates subserving implicit processing of death-related linguistic cues.

    PubMed

    Qin, Jungang; Shi, Zhenhao; Ma, Yina; Han, Shihui

    2018-02-01

    Our recent functional magnetic resonance imaging study revealed decreased activities in the anterior cingulate cortex (ACC) and bilateral insula for women during the implicit processing of death-related linguistic cues. Current work tested whether aforementioned activities are common for women and men and explored potential gender differences. We scanned twenty males while they performed a color-naming task on death-related, negative-valence, and neutral-valence words. Whole-brain analysis showed increased left frontal activity and decreased activities in the ACC and bilateral insula to death-related versus negative-valence words for both men and women. However, relative to women, men showed greater increased activity in the left middle frontal cortex and decreased activity in the right cerebellum to death-related versus negative-valence words. The results suggest, while implicit processing of death-related words is characterized with weakened sense of oneself for both women and men, men may recruit stronger cognitive regulation of emotion than women.

  7. Distinct Roles for the Anterior Cingulate and Dorsolateral Prefrontal Cortices During Conflict Between Abstract Rules.

    PubMed

    Boschin, Erica A; Brkic, Merima M; Simons, Jon S; Buckley, Mark J

    2017-01-01

    Distinct patterns of activity within the anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (dlPFC) reported in neuroimaging studies during tasks involving conflict between competing responses have often been cited as evidence for their key contributions to conflict-monitoring and behavioral adaptation, respectively. However, supporting evidence from neuropsychological patients has been scarce and contradictory. We administered a well-studied analog of the Wisconsin Card Sorting Test, designed to elicit conflict between 2 abstract rules, to a cohort of 6 patients with damage to ACC or dlPFC. Patients who had sustained more significant damage to the ACC were not impaired either on a measure of "conflict cost" nor on measures of "conflict-induced behavioral adaptation." In contrast, damage to dlPFC did not affect the conflict cost measure but abolished the patients' ability to adapt their behavior following exposure to conflict, compared with controls. This pattern of results complements the findings from nonhuman primates with more circumscribed lesions to ACC or dlPFC on the same task and provides converging evidence that ACC is not necessary for performance when conflict is elicited between 2 abstract rules, whereas dlPFC plays a fundamental role in behavioral adaptation. © The Author 2016. Published by Oxford University Press.

  8. Distinct Roles for the Anterior Cingulate and Dorsolateral Prefrontal Cortices During Conflict Between Abstract Rules

    PubMed Central

    Boschin, Erica A.; Brkic, Merima M.; Simons, Jon S.; Buckley, Mark J.

    2017-01-01

    Abstract Distinct patterns of activity within the anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (dlPFC) reported in neuroimaging studies during tasks involving conflict between competing responses have often been cited as evidence for their key contributions to conflict-monitoring and behavioral adaptation, respectively. However, supporting evidence from neuropsychological patients has been scarce and contradictory. We administered a well-studied analog of the Wisconsin Card Sorting Test, designed to elicit conflict between 2 abstract rules, to a cohort of 6 patients with damage to ACC or dlPFC. Patients who had sustained more significant damage to the ACC were not impaired either on a measure of “conflict cost” nor on measures of “conflict-induced behavioral adaptation.” In contrast, damage to dlPFC did not affect the conflict cost measure but abolished the patients’ ability to adapt their behavior following exposure to conflict, compared with controls. This pattern of results complements the findings from nonhuman primates with more circumscribed lesions to ACC or dlPFC on the same task and provides converging evidence that ACC is not necessary for performance when conflict is elicited between 2 abstract rules, whereas dlPFC plays a fundamental role in behavioral adaptation. PMID:28365775

  9. Depression in chronic ketamine users: Sex differences and neural bases.

    PubMed

    Li, Chiang-Shan R; Zhang, Sheng; Hung, Chia-Chun; Chen, Chun-Ming; Duann, Jeng-Ren; Lin, Ching-Po; Lee, Tony Szu-Hsien

    2017-11-30

    Chronic ketamine use leads to cognitive and affective deficits including depression. Here, we examined sex differences and neural bases of depression in chronic ketamine users. Compared to non-drug using healthy controls (HC), ketamine-using females but not males showed increased depression score as assessed by the Center of Epidemiological Studies Depression Scale (CES-D). We evaluated resting state functional connectivity (rsFC) of the subgenual anterior cingulate cortex (sgACC), a prefrontal structure consistently implicated in the pathogenesis of depression. Compared to HC, ketamine users (KU) did not demonstrate significant changes in sgACC connectivities at a corrected threshold. However, in KU, a linear regression against CES-D score showed less sgACC connectivity to the orbitofrontal cortex (OFC) with increasing depression severity. Examined separately, male and female KU showed higher sgACC connectivity to bilateral superior temporal gyrus and dorsomedial prefrontal cortex (dmPFC), respectively, in correlation with depression. The linear correlation of sgACC-OFC and sgACC-dmPFC connectivity with depression was significantly different in slope between KU and HC. These findings highlighted changes in rsFC of the sgACC as associated with depression and sex differences in these changes in chronic ketamine users. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Social reinforcement can regulate localized brain activity.

    PubMed

    Mathiak, Krystyna A; Koush, Yury; Dyck, Miriam; Gaber, Tilman J; Alawi, Eliza; Zepf, Florian D; Zvyagintsev, Mikhail; Mathiak, Klaus

    2010-11-01

    Social learning is essential for adaptive behavior in humans. Neurofeedback based on functional magnetic resonance imaging (fMRI) trains control over localized brain activity. It can disentangle learning processes at the neural level and thus investigate the mechanisms of operant conditioning with explicit social reinforcers. In a pilot study, a computer-generated face provided a positive feedback (smiling) when activity in the anterior cingulate cortex (ACC) increased and gradually returned to a neutral expression when the activity dropped. One female volunteer without previous experience in fMRI underwent training based on a social reinforcer. Directly before and after the neurofeedback runs, neural responses to a cognitive interference task (Simon task) were recorded. We observed a significant increase in activity within ACC during the neurofeedback blocks, correspondent with the a-priori defined anatomical region of interest. In the course of the neurofeedback training, the subject learned to regulate ACC activity and could maintain the control even without direct feedback. Moreover, ACC was activated significantly stronger during Simon task after the neurofeedback training when compared to before. Localized brain activity can be controlled by social reward. The increased ACC activity transferred to a cognitive task with the potential to reduce cognitive interference. Systematic studies are required to explore long-term effects on social behavior and clinical applications.

  11. The neural system of metacognition accompanying decision-making in the prefrontal cortex

    PubMed Central

    Qiu, Lirong; Su, Jie; Ni, Yinmei; Bai, Yang; Zhang, Xuesong; Li, Xiaoli

    2018-01-01

    Decision-making is usually accompanied by metacognition, through which a decision maker monitors uncertainty regarding a decision and may then consequently revise the decision. These metacognitive processes can occur prior to or in the absence of feedback. However, the neural mechanisms of metacognition remain controversial. One theory proposes an independent neural system for metacognition in the prefrontal cortex (PFC); the other, that metacognitive processes coincide and overlap with the systems used for the decision-making process per se. In this study, we devised a novel “decision–redecision” paradigm to investigate the neural metacognitive processes involved in redecision as compared to the initial decision-making process. The participants underwent a perceptual decision-making task and a rule-based decision-making task during functional magnetic resonance imaging (fMRI). We found that the anterior PFC, including the dorsal anterior cingulate cortex (dACC) and lateral frontopolar cortex (lFPC), were more extensively activated after the initial decision. The dACC activity in redecision positively scaled with decision uncertainty and correlated with individual metacognitive uncertainty monitoring abilities—commonly occurring in both tasks—indicating that the dACC was specifically involved in decision uncertainty monitoring. In contrast, the lFPC activity seen in redecision processing was scaled with decision uncertainty reduction and correlated with individual accuracy changes—positively in the rule-based decision-making task and negatively in the perceptual decision-making task. Our results show that the lFPC was specifically involved in metacognitive control of decision adjustment and was subject to different control demands of the tasks. Therefore, our findings support that a separate neural system in the PFC is essentially involved in metacognition and further, that functions of the PFC in metacognition are dissociable. PMID:29684004

  12. Sex differences in neural responses to stress and alcohol context cues.

    PubMed

    Seo, Dongju; Jia, Zhiru; Lacadie, Cheryl M; Tsou, Kristen A; Bergquist, Keri; Sinha, Rajita

    2011-11-01

    Stress and alcohol context cues are each associated with alcohol-related behaviors, yet neural responses underlying these processes remain unclear. This study investigated the neural correlates of stress and alcohol context cue experiences and examined sex differences in these responses. Using functional magnetic resonance imaging, brain responses were examined while 43 right-handed, socially drinking, healthy individuals (23 females) engaged in brief guided imagery of personalized stress, alcohol-cue, and neutral-relaxing scenarios. Stress and alcohol-cue exposure increased activity in the cortico-limbic-striatal circuit (P < 0.01, corrected), encompassing the medial prefrontal cortex (mPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), left anterior insula, striatum, and visuomotor regions (parietal and occipital lobe, and cerebellum). Activity in the left dorsal striatum increased during stress, while bilateral ventral striatum activity was evident during alcohol-cue exposure. Men displayed greater stress-related activations in the mPFC, rostral ACC, posterior insula, amygdala, and hippocampus than women, whereas women showed greater alcohol-cue-related activity in the superior and middle frontal gyrus (SFG/MFG) than men. Stress-induced anxiety was positively associated with activity in emotion-modulation regions, including the medial OFC, ventromedial PFC, left superior-mPFC, and rostral ACC in men, but in women with activation in the SFG/MFG, regions involved in cognitive processing. Alcohol craving was significantly associated with the striatum (encompassing dorsal, and ventral) in men, supporting its involvement in alcohol "urge" in healthy men. These results indicate sex differences in neural processing of stress and alcohol-cue experiences and have implications for sex-specific vulnerabilities to stress- and alcohol-related psychiatric disorders. Copyright © 2010 Wiley-Liss, Inc.

  13. Neural substrates of updating the prediction through prediction error during decision making.

    PubMed

    Wang, Ying; Ma, Ning; He, Xiaosong; Li, Nan; Wei, Zhengde; Yang, Lizhuang; Zha, Rujing; Han, Long; Li, Xiaoming; Zhang, Daren; Liu, Ying; Zhang, Xiaochu

    2017-08-15

    Learning of prediction error (PE), including reward PE and risk PE, is crucial for updating the prediction in reinforcement learning (RL). Neurobiological and computational models of RL have reported extensive brain activations related to PE. However, the occurrence of PE does not necessarily predict updating the prediction, e.g., in a probability-known event. Therefore, the brain regions specifically engaged in updating the prediction remain unknown. Here, we conducted two functional magnetic resonance imaging (fMRI) experiments, the probability-unknown Iowa Gambling Task (IGT) and the probability-known risk decision task (RDT). Behavioral analyses confirmed that PEs occurred in both tasks but were only used for updating the prediction in the IGT. By comparing PE-related brain activations between the two tasks, we found that the rostral anterior cingulate cortex/ventral medial prefrontal cortex (rACC/vmPFC) and the posterior cingulate cortex (PCC) activated only during the IGT and were related to both reward and risk PE. Moreover, the responses in the rACC/vmPFC and the PCC were modulated by uncertainty and were associated with reward prediction-related brain regions. Electric brain stimulation over these regions lowered the performance in the IGT but not in the RDT. Our findings of a distributed neural circuit of PE processing suggest that the rACC/vmPFC and the PCC play a key role in updating the prediction through PE processing during decision making. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Impaired Voluntary Control in PTSD: Probing Self-Regulation of the ACC With Real-Time fMRI

    PubMed Central

    Zweerings, Jana; Pflieger, Eliza M.; Mathiak, Krystyna A.; Zvyagintsev, Mikhail; Kacela, Anastasia; Flatten, Guido; Mathiak, Klaus

    2018-01-01

    Background: Post-traumatic stress disorder (PTSD) is characterized by deficits in the self-regulation of cognitions and emotions. Neural networks of emotion regulation may exhibit reduced control mediated by the anterior cingulate cortex (ACC), contributing to aberrant limbic responses in PTSD. Methods: Real-time fMRI neurofeedback (rt-fMRI NF) assessed self-regulation of the ACC in nine patients with PTSD after single trauma exposure and nine matched healthy controls. All participants were instructed to train ACC upregulation on three training days. Results: Both groups achieved regulation, which was associated with wide-spread brain activation encompassing the ACC. Compared to the controls, regulation amplitude and learning rate was lower in patients, correlating with symptom severity. In addition, a frontopolar activation cluster was associated with self-regulation efforts in patients. Conclusions: For the first time, we tested self-regulation of the ACC in patients with PTSD. The observed impairment supports models of ACC-mediated regulation deficits that may contribute to the psychopathology of PTSD. Controlled trials in a larger sample are needed to confirm our findings and to directly investigate whether training of central regulation mechanisms improves emotion regulation in PTSD. PMID:29899712

  15. Impaired Voluntary Control in PTSD: Probing Self-Regulation of the ACC With Real-Time fMRI.

    PubMed

    Zweerings, Jana; Pflieger, Eliza M; Mathiak, Krystyna A; Zvyagintsev, Mikhail; Kacela, Anastasia; Flatten, Guido; Mathiak, Klaus

    2018-01-01

    Background: Post-traumatic stress disorder (PTSD) is characterized by deficits in the self-regulation of cognitions and emotions. Neural networks of emotion regulation may exhibit reduced control mediated by the anterior cingulate cortex (ACC), contributing to aberrant limbic responses in PTSD. Methods: Real-time fMRI neurofeedback (rt-fMRI NF) assessed self-regulation of the ACC in nine patients with PTSD after single trauma exposure and nine matched healthy controls. All participants were instructed to train ACC upregulation on three training days. Results: Both groups achieved regulation, which was associated with wide-spread brain activation encompassing the ACC. Compared to the controls, regulation amplitude and learning rate was lower in patients, correlating with symptom severity. In addition, a frontopolar activation cluster was associated with self-regulation efforts in patients. Conclusions: For the first time, we tested self-regulation of the ACC in patients with PTSD. The observed impairment supports models of ACC-mediated regulation deficits that may contribute to the psychopathology of PTSD. Controlled trials in a larger sample are needed to confirm our findings and to directly investigate whether training of central regulation mechanisms improves emotion regulation in PTSD.

  16. Relation of obesity to neural activation in response to food commercials

    PubMed Central

    Yokum, Sonja; Stice, Eric; Harris, Jennifer L.; Brownell, Kelly D.

    2014-01-01

    Adolescents view thousands of food commercials annually, but the neural response to food advertising and its association with obesity is largely unknown. This study is the first to examine how neural response to food commercials differs from other stimuli (e.g. non-food commercials and television show) and to explore how this response may differ by weight status. The blood oxygen level-dependent functional magnetic resonance imaging activation was measured in 30 adolescents ranging from lean to obese in response to food and non-food commercials imbedded in a television show. Adolescents exhibited greater activation in regions implicated in visual processing (e.g. occipital gyrus), attention (e.g. parietal lobes), cognition (e.g. temporal gyrus and posterior cerebellar lobe), movement (e.g. anterior cerebellar cortex), somatosensory response (e.g. postcentral gyrus) and reward [e.g. orbitofrontal cortex and anterior cingulate cortex (ACC)] during food commercials. Obese participants exhibited less activation during food relative to non-food commercials in neural regions implicated in visual processing (e.g. cuneus), attention (e.g. posterior cerebellar lobe), reward (e.g. ventromedial prefrontal cortex and ACC) and salience detection (e.g. precuneus). Obese participants did exhibit greater activation in a region implicated in semantic control (e.g. medial temporal gyrus). These findings may inform current policy debates regarding the impact of food advertising to minors. PMID:23576811

  17. Predicting reading and mathematics from neural activity for feedback learning.

    PubMed

    Peters, Sabine; Van der Meulen, Mara; Zanolie, Kiki; Crone, Eveline A

    2017-01-01

    Although many studies use feedback learning paradigms to study the process of learning in laboratory settings, little is known about their relevance for real-world learning settings such as school. In a large developmental sample (N = 228, 8-25 years), we investigated whether performance and neural activity during a feedback learning task predicted reading and mathematics performance 2 years later. The results indicated that feedback learning performance predicted both reading and mathematics performance. Activity during feedback learning in left superior dorsolateral prefrontal cortex (DLPFC) predicted reading performance, whereas activity in presupplementary motor area/anterior cingulate cortex (pre-SMA/ACC) predicted mathematical performance. Moreover, left superior DLPFC and pre-SMA/ACC activity predicted unique variance in reading and mathematics ability over behavioral testing of feedback learning performance alone. These results provide valuable insights into the relationship between laboratory-based learning tasks and learning in school settings, and the value of neural assessments for prediction of school performance over behavioral testing alone. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  18. Neural representations of close others in collectivistic brains

    PubMed Central

    Wang, Gang; Mao, Lihua; Ma, Yina; Yang, Xuedong; Cao, Jingqian; Liu, Xi; Wang, Jinzhao; Wang, Xiaoying

    2012-01-01

    Our recent work showed that close relationships result in shared cognitive and neural representations of the self and one’s mother in collectivistic individuals (Zhu et al., 2007, Neuroimage, 34, 1310–7). However, it remains unknown whether close others, such as mother, father and best friend, are differentially represented in collectivistic brains. Here, using functional magnetic resonance imaging and a trait judgment task, we showed evidence that, while trait judgments of the self and mother generated comparable activity in the medial prefrontal cortex (MPFC) and anterior cingulate (ACC) of Chinese adults, trait judgments of mother induced greater MPFC/ACC activity than trait judgments of father and best friend. Our results suggest that, while neural representations of the self and mother overlapped in the MPFC/ACC, close others such as mother, father and best friend are unequally represented in the MPFC/ACC of collectivistic brains. PMID:21382966

  19. Inactivation of the Anterior Cingulate Cortex Impairs Extinction of Rabbit Jaw Movement Conditioning and Prevents Extinction-Related Inhibition of Hippocampal Activity

    ERIC Educational Resources Information Center

    Griffin, Amy L.; Berry, Stephen D.

    2004-01-01

    Although past research has highlighted the involvement of limbic structures such as the anterior cingulate cortex (ACC) and hippocampus in learning, few have addressed the nature of their interaction. The current study of rabbit jaw movement conditioning used a combination of reversible lesions and electrophysiology to examine the involvement of…

  20. CHILDHOOD MALTREATMENT PREDICTS REDUCED INHIBITION-RELATED ACTIVITY IN THE ROSTRAL ANTERIOR CINGULATE IN PTSD, BUT NOT TRAUMA-EXPOSED CONTROLS.

    PubMed

    Stevens, Jennifer S; Ely, Timothy D; Sawamura, Takehito; Guzman, Dora; Bradley, Bekh; Ressler, Kerry J; Jovanovic, Tanja

    2016-07-01

    A deficit in the ability to inhibit fear has been proposed as a biomarker of posttraumatic stress disorder (PTSD). Previous research indicates that individuals with PTSD show reduced inhibition-related activation in rostral anterior cingulate cortex (rACC). The goal of the current study was to investigate differential influences of an early environmental risk factor for PTSD-childhood maltreatment-on inhibition-related brain function in individuals with PTSD versus trauma-exposed controls. Individuals with PTSD (n = 37) and trauma-exposed controls (n = 53) were recruited from the primary care waiting rooms of an urban public hospital in Atlanta, GA. Participants completed an inhibition task during fMRI, and reported childhood and adult traumatic experiences. The groups were matched for adult and child trauma load. We observed an interaction between childhood maltreatment severity and PTSD status in the rACC (P < .05, corrected), such that maltreatment was negatively associated with inhibition-related rACC activation in the PTSD group, but did not influence rACC activation in the TC group. Rostral ACC activation was associated with inhibition-related task performance in the TC group but not the PTSD group, suggesting a possible contribution to stress resilience. Findings highlight individual differences in neural function following childhood trauma, and point to inhibition-related activation in rostral ACC as a risk factor for PTSD. © 2016 Wiley Periodicals, Inc.

  1. Quitting-Unmotivated and Quitting-Motivated Cigarette Smokers Exhibit Different Patterns of Cue-Elicited Brain Activation When Anticipating an Opportunity to Smoke

    PubMed Central

    Wilson, Stephen J.; Sayette, Michael A.; Fiez, Julie A.

    2013-01-01

    The authors examined the effects of smoking expectancy on cue-reactivity among those motivated and those unmotivated to quit smoking using functional magnetic resonance imaging. Cue-elicited activation was observed in the rostral prefrontal cortex (PFC) in smokers who expected to smoke within seconds, but not in those who expected to have to wait hours before having the chance to smoke, regardless of quitting motivation. For quitting-unmotivated smokers expecting to smoke, rostral PFC activation was strongly positively correlated with the activation of several areas previously linked to cue-reactivity, including the medial orbitofrontal cortex (OFC) and rostral anterior cingulate cortex (ACC). In contrast, there was a non-significant negative relationship between activation of the rostral PFC and activation of the medial OFC/rostral ACC in quitting-motivated smokers expecting to smoke. Results extend previous work examining the effects of smoking expectancy and highlight the utility of examining interregional covariation during cue exposure. Findings also suggest that investigators may need to pay close attention to the motivational contexts associated with their experiments when studying cue-reactivity, as these contexts can modulate not only responses to drug cues, but perhaps also the functional implications of observed activity. PMID:21859165

  2. Empathy for the social suffering of friends and strangers recruits distinct patterns of brain activation

    PubMed Central

    Meyer, Meghan L.; Masten, Carrie L.; Ma, Yina; Wang, Chenbo; Shi, Zhenhao; Eisenberger, Naomi I.; Han, Shihui

    2013-01-01

    Humans observe various peoples’ social suffering throughout their lives, but it is unknown whether the same brain mechanisms respond to people we are close to and strangers’ social suffering. To address this question, we had participant’s complete functional magnetic resonance imaging (fMRI) while observing a friend and stranger experience social exclusion. Observing a friend’s exclusion activated affective pain regions associated with the direct (i.e. firsthand) experience of exclusion [dorsal anterior cingulate cortex (dACC) and insula], and this activation correlated with self-reported self-other overlap with the friend. Alternatively, observing a stranger’s exclusion activated regions associated with thinking about the traits, mental states and intentions of others [‘mentalizing’; dorsal medial prefrontal cortex (DMPFC), precuneus, and temporal pole]. Comparing activation from observing friend’s vs stranger’s exclusion showed increased activation in brain regions associated with the firsthand experience of exclusion (dACC and anterior insula) and with thinking about the self [medial prefrontal cortex (MPFC)]. Finally, functional connectivity analyses demonstrated that MPFC and affective pain regions activated in concert during empathy for friends, but not strangers. These results suggest empathy for friends’ social suffering relies on emotion sharing and self-processing mechanisms, whereas empathy for strangers’ social suffering may rely more heavily on mentalizing systems. PMID:22355182

  3. Cortico-Cortical White Matter Motor Pathway Microstructure Is Related to Psychomotor Retardation in Major Depressive Disorder

    PubMed Central

    Bracht, Tobias; Federspiel, Andrea; Schnell, Susanne; Horn, Helge; Höfle, Oliver; Wiest, Roland; Dierks, Thomas; Strik, Werner; Müller, Thomas J.; Walther, Sebastian

    2012-01-01

    Alterations of brain structure and function have been associated with psychomotor retardation in major depressive disorder (MDD). However, the association of motor behaviour and white matter integrity of motor pathways in MDD is unclear. The aim of the present study was to first investigate structural connectivity of white matter motor pathways in MDD. Second, we explore the relation of objectively measured motor activity and white matter integrity of motor pathways in MDD. Therefore, 21 patients with MDD and 21 healthy controls matched for age, gender, education and body mass index underwent diffusion tensor imaging and 24 hour actigraphy (measure of the activity level) the same day. Applying a probabilistic fibre tracking approach we extracted connection pathways between the dorsolateral prefrontal cortex (dlPFC), the rostral anterior cingulate cortex (rACC), the pre-supplementary motor area (pre-SMA), the SMA-proper, the primary motor cortex (M1), the caudate nucleus, the putamen, the pallidum and the thalamus. Patients had lower activity levels and demonstrated increased mean diffusivity (MD) in pathways linking left pre-SMA and SMA-proper, and right SMA-proper and M1. Exploratory analyses point to a positive association of activity level and mean-fractional anisotropy in the right rACC-pre-SMA connection in MDD. Only MDD patients with low activity levels had a negative linear association of activity level and mean-MD in the left dlPFC-pre-SMA connection. Our results point to structural alterations of cortico-cortical white matter motor pathways in MDD. Altered white matter organisation of rACC-pre-SMA and dlPFC-pre-SMA pathways may contribute to movement initiation in MDD. PMID:23284950

  4. Cortico-cortical white matter motor pathway microstructure is related to psychomotor retardation in major depressive disorder.

    PubMed

    Bracht, Tobias; Federspiel, Andrea; Schnell, Susanne; Horn, Helge; Höfle, Oliver; Wiest, Roland; Dierks, Thomas; Strik, Werner; Müller, Thomas J; Walther, Sebastian

    2012-01-01

    Alterations of brain structure and function have been associated with psychomotor retardation in major depressive disorder (MDD). However, the association of motor behaviour and white matter integrity of motor pathways in MDD is unclear. The aim of the present study was to first investigate structural connectivity of white matter motor pathways in MDD. Second, we explore the relation of objectively measured motor activity and white matter integrity of motor pathways in MDD. Therefore, 21 patients with MDD and 21 healthy controls matched for age, gender, education and body mass index underwent diffusion tensor imaging and 24 hour actigraphy (measure of the activity level) the same day. Applying a probabilistic fibre tracking approach we extracted connection pathways between the dorsolateral prefrontal cortex (dlPFC), the rostral anterior cingulate cortex (rACC), the pre-supplementary motor area (pre-SMA), the SMA-proper, the primary motor cortex (M1), the caudate nucleus, the putamen, the pallidum and the thalamus. Patients had lower activity levels and demonstrated increased mean diffusivity (MD) in pathways linking left pre-SMA and SMA-proper, and right SMA-proper and M1. Exploratory analyses point to a positive association of activity level and mean-fractional anisotropy in the right rACC-pre-SMA connection in MDD. Only MDD patients with low activity levels had a negative linear association of activity level and mean-MD in the left dlPFC-pre-SMA connection. Our results point to structural alterations of cortico-cortical white matter motor pathways in MDD. Altered white matter organisation of rACC-pre-SMA and dlPFC-pre-SMA pathways may contribute to movement initiation in MDD.

  5. Neurons in Dorsal Anterior Cingulate Cortex Signal Postdecisional Variables in a Foraging Task

    PubMed Central

    Hayden, Benjamin Y.

    2014-01-01

    The dorsal anterior cingulate cortex (dACC) is a key hub of the brain's executive control system. Although a great deal is known about its role in outcome monitoring and behavioral adjustment, whether and how it contributes to the decision process remain unclear. Some theories suggest that dACC neurons track decision variables (e.g., option values) that feed into choice processes and is thus “predecisional.” Other theories suggest that dACC activity patterns differ qualitatively depending on the choice that is made and is thus “postdecisional.” To compare these hypotheses, we examined responses of 124 dACC neurons in a simple foraging task in which monkeys accepted or rejected offers of delayed rewards. In this task, options that vary in benefit (reward size) and cost (delay) appear for 1 s; accepting the option provides the cued reward after the cued delay. To get at dACC neurons' contributions to decisions, we focused on responses around the time of choice, several seconds before the reward and the end of the trial. We found that dACC neurons signal the foregone value of the rejected option, a postdecisional variable. Neurons also signal the profitability (that is, the relative value) of the offer, but even these signals are qualitatively different on accept and reject decisions, meaning that they are also postdecisional. These results suggest that dACC can be placed late in the decision process and also support models that give it a regulatory role in decision, rather than serving as a site of comparison. PMID:24403162

  6. Racial Bias in Neural Response for Pain Is Modulated by Minimal Group

    PubMed Central

    Shen, Fengtao; Hu, Yang; Fan, Mingxia; Wang, Huimin; Wang, Zhaoxin

    2018-01-01

    Whether empathic racial bias could be modulated is a subject of intense interest. The present study was carried out to explore whether empathic racial bias for pain is modulated by minimal group. Chinese/Western faces with neutral expressions receiving painful (needle penetration) or non-painful (Q-tip touch) stimulation were presented. Participants were asked to rate the pain intensity felt by Chinese/Western models of ingroup/outgroup members. Their implicit racial bias were also measured. Two lines of evidence indicated that the anterior cingulate cortex (ACC) was modulated by racial bias: (1) Chinese models elicited stronger activity than Western did in the ACC, and (2) activity in the ACC was modulated by implicit racial bias. Whereas the right anterior insula (rAI) were modulated by ingroup bias, in which ingroup member elicited stronger activity than outgroup member did. Furthermore, activity in the ACC was modulated by activity of rAI (i.e., ingroup bias) in the pain condition, while activity in the rAI was modulated by activity of ACC (i.e., racial bias) in the nopain condition. Our results provide evidence that there are different neural correlates for racial bias and ingroup bias, and neural racial bias for pain can be modulated by minimal group. PMID:29379429

  7. Racial Bias in Neural Response for Pain Is Modulated by Minimal Group.

    PubMed

    Shen, Fengtao; Hu, Yang; Fan, Mingxia; Wang, Huimin; Wang, Zhaoxin

    2017-01-01

    Whether empathic racial bias could be modulated is a subject of intense interest. The present study was carried out to explore whether empathic racial bias for pain is modulated by minimal group. Chinese/Western faces with neutral expressions receiving painful (needle penetration) or non-painful (Q-tip touch) stimulation were presented. Participants were asked to rate the pain intensity felt by Chinese/Western models of ingroup/outgroup members. Their implicit racial bias were also measured. Two lines of evidence indicated that the anterior cingulate cortex (ACC) was modulated by racial bias: (1) Chinese models elicited stronger activity than Western did in the ACC, and (2) activity in the ACC was modulated by implicit racial bias. Whereas the right anterior insula (rAI) were modulated by ingroup bias, in which ingroup member elicited stronger activity than outgroup member did. Furthermore, activity in the ACC was modulated by activity of rAI (i.e., ingroup bias) in the pain condition, while activity in the rAI was modulated by activity of ACC (i.e., racial bias) in the nopain condition. Our results provide evidence that there are different neural correlates for racial bias and ingroup bias, and neural racial bias for pain can be modulated by minimal group.

  8. Women's Preference for a Male Acquaintance Enhances Social Reward Processing of Material Goods in the Anterior Cingulate Cortex.

    PubMed

    Nakagawa, Jun; Takahashi, Muneyoshi; Okada, Rieko; Matsushima, Eisuke; Matsuda, Tetsuya

    2015-01-01

    Men, like the male of many animal species, use gifts to build satisfactory relationships with a desired woman. From the woman's perspective, all gifts are not always equally rewarding; the reward value of a gift depends on two factors: (1) the giver and (2) the type of the gift (the gift's social meaning). In this study, we investigated how these two factors interactively determine the reward value of a gift. Specifically, we examined how the neural processing for understanding a gift's social meaning is modulated by preferences for the giver. We performed a functional magnetic resonance imaging (fMRI) study in which a female participant was asked to judge a gift from a male she was acquainted with in real life. We examined the interactive effects between (1) the female participant's attitude toward the male acquaintance (liked vs. uninteresting) and (2) the type of the gift (romantic [e.g., bouquet, earrings, and perfumes] vs. non-romantic [e.g., pencils, memo pad, and moneybox]). We found that preference for an acquaintance selectively modulated activity in the anterior cingulate cortex (ACC) in response to romantic gifts, compared to non-romantic gifts. In contrast, if the woman was indifferent toward an acquaintance, no activity modulation was observed in this area for the same gifts. In addition, the ACC showed functional connectivity with the supplementary motor area/dorsal ACC (SMA/dACC), an area within the dorsal mediofrontal cortex, suggesting that it integrates action monitoring and emotional and cognitive processing in decision-making. These results suggest that attitude toward an opposite sex member has a modulatory role in recognizing the social meaning of material goods--preference for the member is a powerful modulator of social reward processing.

  9. Women’s Preference for a Male Acquaintance Enhances Social Reward Processing of Material Goods in the Anterior Cingulate Cortex

    PubMed Central

    Nakagawa, Jun; Takahashi, Muneyoshi; Okada, Rieko; Matsushima, Eisuke; Matsuda, Tetsuya

    2015-01-01

    Men, like the male of many animal species, use gifts to build satisfactory relationships with a desired woman. From the woman’s perspective, all gifts are not always equally rewarding; the reward value of a gift depends on two factors: (1) the giver and (2) the type of the gift (the gift’s social meaning). In this study, we investigated how these two factors interactively determine the reward value of a gift. Specifically, we examined how the neural processing for understanding a gift’s social meaning is modulated by preferences for the giver. We performed a functional magnetic resonance imaging (fMRI) study in which a female participant was asked to judge a gift from a male she was acquainted with in real life. We examined the interactive effects between (1) the female participant’s attitude toward the male acquaintance (liked vs. uninteresting) and (2) the type of the gift (romantic [e.g., bouquet, earrings, and perfumes] vs. non-romantic [e.g., pencils, memo pad, and moneybox]). We found that preference for an acquaintance selectively modulated activity in the anterior cingulate cortex (ACC) in response to romantic gifts, compared to non-romantic gifts. In contrast, if the woman was indifferent toward an acquaintance, no activity modulation was observed in this area for the same gifts. In addition, the ACC showed functional connectivity with the supplementary motor area/dorsal ACC (SMA/dACC), an area within the dorsal mediofrontal cortex, suggesting that it integrates action monitoring and emotional and cognitive processing in decision-making. These results suggest that attitude toward an opposite sex member has a modulatory role in recognizing the social meaning of material goods—preference for the member is a powerful modulator of social reward processing. PMID:26301954

  10. Neural correlates of ostracism in transgender persons living according to their gender identity: a potential risk marker for psychopathology?

    PubMed

    Mueller, Sven C; Wierckx, Katrien; Boccadoro, Sara; T'Sjoen, Guy

    2018-01-15

    Stigmatization in society carries a high risk for development of psychopathology. Transgender persons are at particularly high risk for such stigmatization and social rejection by others. However, the neural correlates of ostracism in this group have not been captured. Twenty transgender men (TM, female-to-male) and 19 transgender women (TW, male-to-female) already living in their gender identity and 20 cisgender men (CM) and 20 cisgender women (CW) completed a cyberball task assessing both exclusion and re-inclusion during functional magnetic resonance imaging (fMRI). During psychosocial stress between-group differences were found in the dorsal and ventral anterior cingulate cortex (ACC) and the inferior frontal gyrus (IFG). Patterns were consistent with sex assigned at birth, i.e. CW showed greater activation in dorsal ACC and IFG relative to CM and TW. During re-inclusion, transgender persons showed greater ventral ACC activity relative to CW, possibly indicating persistent feelings of exclusion. Functional connectivity analyses supported these findings but showed a particularly altered functional connectivity between ACC and lateral prefrontal cortex in TM, which may suggest reduced emotional regulation to the ostracism experience in this group. Depressive symptoms or hormonal levels were not associated with these findings. The results bear implications for the role of social exclusion in development of mental health problems in socially marginalized groups.

  11. Pharmacological rescue of cortical synaptic and network potentiation in a mouse model for fragile X syndrome.

    PubMed

    Chen, Tao; Lu, Jing-Shan; Song, Qian; Liu, Ming-Gang; Koga, Kohei; Descalzi, Giannina; Li, Yun-Qing; Zhuo, Min

    2014-07-01

    Fragile X syndrome, caused by the mutation of the Fmr1 gene, is characterized by deficits of attention and learning ability. In the hippocampus of Fmr1 knockout mice (KO), long-term depression is enhanced whereas long-term potentiation (LTP) including late-phase LTP (L-LTP) is reduced or unaffected. Here we examined L-LTP in the anterior cingulate cortex (ACC) in Fmr1 KO mice by using a 64-electrode array recording system. In wild-type mice, theta-burst stimulation induced L-LTP that does not occur in all active electrodes/channels within the cingulate circuit and is typically detected in ∼75% of active channels. Furthermore, L-LTP recruited new responses from previous inactive channels. Both L-LTP and the recruitment of inactive responses were blocked in the ACC slices of Fmr1 KO mice. Bath application of metabotropic glutamate receptor 5 (mGluR5) antagonist or glycogen synthase kinase-3 (GSK3) inhibitors rescued the L-LTP and network recruitment. Our results demonstrate that loss of FMRP will greatly impair L-LTP and recruitment of cortical network in the ACC that can be rescued by pharmacological inhibition of mGluR5 or GSK3. This study is the first report of the network properties of L-LTP in the ACC, and provides basic mechanisms for future treatment of cortex-related cognitive defects in fragile X patients.

  12. Inflexible Functional Connectivity of the Dorsal Anterior Cingulate Cortex in Adolescent Major Depressive Disorder.

    PubMed

    Ho, Tiffany C; Sacchet, Matthew D; Connolly, Colm G; Margulies, Daniel S; Tymofiyeva, Olga; Paulus, Martin P; Simmons, Alan N; Gotlib, Ian H; Yang, Tony T

    2017-11-01

    Recent evidence suggests that anterior cingulate cortex (ACC) maturation during adolescence contributes to or underlies the development of major depressive disorder (MDD) during this sensitive period. The ACC is a structure that sits at the intersection of several task-positive networks (eg, central executive network, CEN), which are still developing during adolescence. While recent work using seed-based approaches indicate that depressed adolescents show limited task-evoked vs resting-state connectivity (termed 'inflexibility') between the ACC and task-negative networks, no study has used network-based approaches to investigate inflexibility of the ACC in task-positive networks to understand adolescent MDD. Here, we used graph theory to compare flexibility of network-level topology in eight subregions of the ACC (spanning three task-positive networks) in 42 unmedicated adolescents with MDD and 53 well-matched healthy controls. All participants underwent fMRI scanning during resting state and a response inhibition task that robustly engages task-positive networks. Relative to controls, depressed adolescents were characterized by inflexibility in local efficiency of a key ACC node in the CEN: right dorsal anterior cingulate cortex/medial frontal gyrus (R dACC/MFG). Furthermore, individual differences in flexibility of local efficiency of R dACC/MFG significantly predicted inhibition performance, consistent with current literature demonstrating that flexible network organization affords successful cognitive control. Finally, reduced local efficiency of dACC/MFG during the task was significantly associated with an earlier age of depression onset, consistent with prior work suggesting that MDD may alter functional network development. Our results support a neurodevelopmental hypothesis of MDD wherein dysfunctional self-regulation is potentially reflected by altered ACC maturation.

  13. Sustained reduction of nicotine craving with real-time neurofeedback: exploring the role of severity of dependence.

    PubMed

    Canterberry, Melanie; Hanlon, Colleen A; Hartwell, Karen J; Li, Xingbao; Owens, Max; LeMatty, Todd; Prisciandaro, James J; Borckardt, Jeffrey; Saladin, Michael E; Brady, Kathleen T; George, Mark S

    2013-12-01

    Neurofeedback delivered via real-time functional magnetic resonance imaging (rtfMRI) is a promising therapeutic technique being explored to facilitate self-regulation of craving in nicotine-dependent cigarette smokers. The current study examined the role of nicotine-dependence severity and the efficacy of multiple visits of neurofeedback from a single region of interest (ROI) in the anterior cingulate cortex (ACC) on craving reduction. Nine nicotine-dependent cigarette smokers participated in three rtfMRI visits that examined cue-induced craving and brain activation. Severity of nicotine dependence was assessed with the Fagerström Test for Nicotine Dependence. When viewing smoking-related images with instructions to "crave," patient-tailored ROIs were generated in the vicinity of the ACC. Activity levels from the ROI were fed back while participants viewed smoking cues with the instruction to reduce craving. Neurofeedback from a single ROI in the ACC led to consistent decreases in self-reported craving and activation in the ACC across the three visits. Dependence severity predicted response to neurofeedback at Visit 3. This study builds upon previous rtfMRI studies on the regulation of nicotine craving in demonstrating that feedback from the ACC can reduce activation to smoking cues across three separate visits. Individuals with lower nicotine-dependence severity were more successful in reducing ACC activation over time. These data highlight the need to consider dependence severity in developing more individualized neurofeedback methods.

  14. Impairment of decision making and disruption of synchrony between basolateral amygdala and anterior cingulate cortex in the maternally separated rat.

    PubMed

    Cao, Bing; Wang, Jun; Zhang, Xu; Yang, Xiangwei; Poon, David Chun-Hei; Jelfs, Beth; Chan, Rosa H M; Wu, Justin Che-Yuen; Li, Ying

    2016-12-01

    There is considerable evidence to suggest early life experiences, such as maternal separation (MS), play a role in the prevalence of emotional dysregulation and cognitive impairment. At the same time, optimal decision making requires functional integrity between the amygdala and anterior cingulate cortex (ACC), and any dysfunction of this system is believed to induce decision-making deficits. However, the impact of MS on decision-making behavior and the underlying neurophysiological mechanisms have not been thoroughly studied. As such, we consider the impact of MS on the emotional and cognitive functions of rats by employing the open-field test, elevated plus-maze test, and rat gambling task (RGT). Using multi-channel recordings from freely behaving rats, we assessed the effects of MS on the large scale synchrony between the basolateral amygdala (BLA) and the ACC; while also characterizing the relationship between neural spiking activity and the ongoing oscillations in theta frequency band across the BLA and ACC. The results indicated that the MS rats demonstrated anxiety-like behavior. While the RGT showed a decrease in the percentage of good decision-makers, and an increase in the percentage of poor decision-makers. Electrophysiological data revealed an increase in the total power in the theta band of the LFP in the BLA and a decrease in theta power in the ACC in MS rats. MS was also found to disrupt the spike-field coherence of the ACC single unit spiking activity to the ongoing theta oscillations in the BLA and interrupt the synchrony in the BLA-ACC pathway. We provide specific evidence that MS leads to decision-making deficits that are accompanied by alteration of the theta band LFP in the BLA-ACC circuitries and disruption of the neural network integrity. These observations may help revise fundamental notions regarding neurophysiological biomarkers to treat cognitive impairment induced by early life stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Cascade of neural processing orchestrates cognitive control in human frontal cortex

    PubMed Central

    Tang, Hanlin; Yu, Hsiang-Yu; Chou, Chien-Chen; Crone, Nathan E; Madsen, Joseph R; Anderson, William S; Kreiman, Gabriel

    2016-01-01

    Rapid and flexible interpretation of conflicting sensory inputs in the context of current goals is a critical component of cognitive control that is orchestrated by frontal cortex. The relative roles of distinct subregions within frontal cortex are poorly understood. To examine the dynamics underlying cognitive control across frontal regions, we took advantage of the spatiotemporal resolution of intracranial recordings in epilepsy patients while subjects resolved color-word conflict. We observed differential activity preceding the behavioral responses to conflict trials throughout frontal cortex; this activity was correlated with behavioral reaction times. These signals emerged first in anterior cingulate cortex (ACC) before dorsolateral prefrontal cortex (dlPFC), followed by medial frontal cortex (mFC) and then by orbitofrontal cortex (OFC). These results disassociate the frontal subregions based on their dynamics, and suggest a temporal hierarchy for cognitive control in human cortex. DOI: http://dx.doi.org/10.7554/eLife.12352.001 PMID:26888070

  16. Cognitive Control Functions of Anterior Cingulate Cortex in Macaque Monkeys Performing a Wisconsin Card Sorting Test Analog

    PubMed Central

    Kuwabara, Masaru; Mansouri, Farshad A.; Buckley, Mark J.

    2014-01-01

    Monkeys were trained to select one of three targets by matching in color or matching in shape to a sample. Because the matching rule frequently changed and there were no cues for the currently relevant rule, monkeys had to maintain the relevant rule in working memory to select the correct target. We found that monkeys' error commission was not limited to the period after the rule change and occasionally occurred even after several consecutive correct trials, indicating that the task was cognitively demanding. In trials immediately after such error trials, monkeys' speed of selecting targets was slower. Additionally, in trials following consecutive correct trials, the monkeys' target selections for erroneous responses were slower than those for correct responses. We further found evidence for the involvement of the cortex in the anterior cingulate sulcus (ACCs) in these error-related behavioral modulations. First, ACCs cell activity differed between after-error and after-correct trials. In another group of ACCs cells, the activity differed depending on whether the monkeys were making a correct or erroneous decision in target selection. Second, bilateral ACCs lesions significantly abolished the response slowing both in after-error trials and in error trials. The error likelihood in after-error trials could be inferred by the error feedback in the previous trial, whereas the likelihood of erroneous responses after consecutive correct trials could be monitored only internally. These results suggest that ACCs represent both context-dependent and internally detected error likelihoods and promote modes of response selections in situations that involve these two types of error likelihood. PMID:24872558

  17. Attenuation of pCREB and Egr1 expression in the insular and anterior cingulate cortices associated with enhancement of CFA-evoked mechanical hypersensitivity after repeated forced swim stress.

    PubMed

    Imbe, Hiroki; Kimura, Akihisa

    2017-09-01

    The perception and response to pain are severely impacted by exposure to stressors. In some animal models, stress increases pain sensitivity, which is termed stress-induced hyperalgesia (SIH). The insular cortex (IC) and anterior cingulate cortex (ACC), which are typically activated by noxious stimuli, affect pain perception through the descending pain modulatory system. In the present study, we examined the expression of phospho-cAMP response element-binding protein (pCREB) and early growth response 1 (Egr1) in the IC and ACC at 3h (the acute phase of peripheral tissue inflammation) after complete Freund's adjuvant (CFA) injection in naïve rats and rats preconditioned with forced swim stress (FS) to clarify the effect of FS, a stressor, on cortical cell activities in the rats showing SIH induced by FS. The CFA injection into the hindpaw induced mechanical hypersensitivity and increased the expression of the pCREB and Egr1 in the IC and ACC at 3h after the injection. FS (day 1, 10min; days 2-3, 20min) prior to the CFA injection enhanced the CFA-induced mechanical hypersensitivity and attenuated the increase in the expression of pCREB and Egr1 in the IC and ACC. These findings suggested that FS modulates the CFA injection-induced neuroplasticity in the IC and ACC to enhance the mechanical hypersensitivity. These findings are thought to signify stressor-induced dysfunction of the descending pain modulatory system. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Dissociable Frontal Controls during Visible and Memory-guided Eye-Tracking of Moving Targets

    PubMed Central

    Ding, Jinhong; Powell, David; Jiang, Yang

    2009-01-01

    When tracking visible or occluded moving targets, several frontal regions including the frontal eye fields (FEF), dorsal-lateral prefrontal cortex (DLPFC), and Anterior Cingulate Cortex (ACC) are involved in smooth pursuit eye movements (SPEM). To investigate how these areas play different roles in predicting future locations of moving targets, twelve healthy college students participated in a smooth pursuit task of visual and occluded targets. Their eye movements and brain responses measured by event-related functional MRI were simultaneously recorded. Our results show that different visual cues resulted in time discrepancies between physical and estimated pursuit time only when the moving dot was occluded. Visible phase velocity gain was higher than that of occlusion phase. We found bilateral FEF association with eye-movement whether moving targets are visible or occluded. However, the DLPFC and ACC showed increased activity when tracking and predicting locations of occluded moving targets, and were suppressed during smooth pursuit of visible targets. When visual cues were increasingly available, less activation in the DLPFC and the ACC was observed. Additionally, there was a significant hemisphere effect in DLPFC, where right DLPFC showed significantly increased responses over left when pursuing occluded moving targets. Correlation results revealed that DLPFC, the right DLPFC in particular, communicates more with FEF during tracking of occluded moving targets (from memory). The ACC modulates FEF more during tracking of visible targets (likely related to visual attention). Our results suggest that DLPFC and ACC modulate FEF and cortical networks differentially during visible and memory-guided eye tracking of moving targets. PMID:19434603

  19. The Brain Functional Networks Associated to Human and Animal Suffering Differ among Omnivores, Vegetarians and Vegans

    PubMed Central

    Filippi, Massimo; Riccitelli, Gianna; Falini, Andrea; Di Salle, Francesco; Vuilleumier, Patrik; Comi, Giancarlo; Rocca, Maria A.

    2010-01-01

    Empathy and affective appraisals for conspecifics are among the hallmarks of social interaction. Using functional MRI, we hypothesized that vegetarians and vegans, who made their feeding choice for ethical reasons, might show brain responses to conditions of suffering involving humans or animals different from omnivores. We recruited 20 omnivore subjects, 19 vegetarians, and 21 vegans. The groups were matched for sex and age. Brain activation was investigated using fMRI and an event-related design during observation of negative affective pictures of human beings and animals (showing mutilations, murdered people, human/animal threat, tortures, wounds, etc.). Participants saw negative-valence scenes related to humans and animals, alternating with natural landscapes. During human negative valence scenes, compared with omnivores, vegetarians and vegans had an increased recruitment of the anterior cingulate cortex (ACC) and inferior frontal gyrus (IFG). More critically, during animal negative valence scenes, they had decreased amygdala activation and increased activation of the lingual gyri, the left cuneus, the posterior cingulate cortex and several areas mainly located in the frontal lobes, including the ACC, the IFG and the middle frontal gyrus. Nonetheless, also substantial differences between vegetarians and vegans have been found responding to negative scenes. Vegetarians showed a selective recruitment of the right inferior parietal lobule during human negative scenes, and a prevailing activation of the ACC during animal negative scenes. Conversely, during animal negative scenes an increased activation of the inferior prefrontal cortex was observed in vegans. These results suggest that empathy toward non conspecifics has different neural representation among individuals with different feeding habits, perhaps reflecting different motivational factors and beliefs. PMID:20520767

  20. Involvement of the Rat Anterior Cingulate Cortex in Control of Instrumental Responses Guided by Reward Expectancy

    ERIC Educational Resources Information Center

    Schweimer, Judith; Hauber, Wolfgang

    2005-01-01

    The anterior cingulate cortex (ACC) plays a critical role in stimulus-reinforcement learning and reward-guided selection of actions. Here we conducted a series of experiments to further elucidate the role of the ACC in instrumental behavior involving effort-based decision-making and instrumental learning guided by reward-predictive stimuli. In…

  1. The Essential Role of Primate Orbitofrontal Cortex in Conflict-Induced Executive Control Adjustment

    PubMed Central

    Buckley, Mark J.; Tanaka, Keiji

    2014-01-01

    Conflict in information processing evokes trial-by-trial behavioral modulations. Influential models suggest that adaptive tuning of executive control, mediated by mid-dorsal lateral prefrontal cortex (mdlPFC) and anterior cingulate cortex (ACC), underlies these modulations. However, mdlPFC and ACC are parts of distributed brain networks including orbitofrontal cortex (OFC), posterior cingulate cortex (PCC), and superior-dorsal lateral prefrontal cortex (sdlPFC). Contributions of these latter areas in adaptive tuning of executive control are unknown. We trained monkeys to perform a matching task in which they had to resolve the conflict between two behavior-guiding rules. Here, we report that bilateral lesions in OFC, but not in PCC or sdlPFC, impaired selection between these competing rules. In addition, the behavioral adaptation that is normally induced by experiencing conflict disappeared in OFC-lesioned, but remained normal in PCC-lesioned or sdlPFC-lesioned monkeys. Exploring underlying neuronal processes, we found that the activity of neurons in OFC represented the conflict between behavioral options independent from the other aspects of the task. Responses of OFC neurons to rewards also conveyed information of the conflict level that the monkey had experienced along the course to obtain the reward. Our findings indicate dissociable functions for five closely interconnected cortical areas suggesting that OFC and mdlPFC, but not PCC or sdlPFC or ACC, play indispensable roles in conflict-dependent executive control of on-going behavior. Both mdlPFC and OFC support detection of conflict and its integration with the task goal, but in contrast to mdlPFC, OFC does not retain the necessary information for conflict-induced modulation of future decisions. PMID:25122901

  2. Neurophysiological correlates of anhedonia in feedback processing

    PubMed Central

    Mies, Gabry W.; Van den Berg, Ivo; Franken, Ingmar H. A.; Smits, Marion; Van der Molen, Maurits W.; Van der Veen, Frederik M.

    2013-01-01

    Disturbances in feedback processing and a dysregulation of the neural circuit in which the cingulate cortex plays a key role have been frequently observed in depression. Since depression is a heterogeneous disease, instead of focusing on the depressive state in general, this study investigated the relations between the two core symptoms of depression, i.e., depressed mood and anhedonia, and the neural correlates of feedback processing using fMRI. The focus was on the different subdivisions of the anterior cingulate cortex (ACC). Undergraduates with varying levels of depressed mood and anhedonia performed a time-estimation task in which they received positive and negative feedback that was either valid or invalid (i.e., related vs. unrelated to actual performance). The rostral cingulate zone (RCZ), corresponding to the dorsal part of the ACC, was less active in response to feedback in more anhedonic individuals, after correcting for the influence of depressed mood, whereas the subgenual ACC was more active in these individuals. Task performance was not affected by anhedonia, however. No statistically significant effects were found for depressed mood above and beyond the effects of anhedonia. This study therefore implies that increasing levels of anhedonia involve changes in the neural circuitry underlying feedback processing. PMID:23532800

  3. GAD65 Promoter Polymorphism rs2236418 Modulates Harm Avoidance in Women via Inhibition/Excitation Balance in the Rostral ACC.

    PubMed

    Colic, Lejla; Li, Meng; Demenescu, Liliana Ramona; Li, Shija; Müller, Iris; Richter, Anni; Behnisch, Gusalija; Seidenbecher, Constanze I; Speck, Oliver; Schott, Björn H; Stork, Oliver; Walter, Martin

    2018-05-30

    Anxiety disorders are common and debilitating conditions with higher prevalence in women. However, factors that predispose women to anxiety phenotypes are not clarified. Here we investigated potential contribution of the single nucleotide polymorphism rs2236418 in GAD2 gene to changes in regional inhibition/excitation balance, anxiety-like traits, and related neural activity in both sexes. One hundred and five healthy individuals were examined with high-field (7T) multimodal magnetic resonance imaging (MRI); including resting-state functional MRI in combination with assessment of GABA and glutamate (Glu) levels via MR spectroscopy. Regional GABA/Glu levels in anterior cingulate cortex (ACC) subregions were assessed as mediators of gene-personality interaction for the trait harm avoidance and moderation by sex was tested. In AA homozygotes, with putatively lower GAD2 promoter activity, we observed increased intrinsic neuronal activity and higher inhibition/excitation balance in pregenual ACC (pgACC) compared with G carriers. The pgACC drove a significant interaction of genotype, region, and sex, where inhibition/excitation balance was significantly reduced only in female AA carriers. This finding was specific for rs2236418 as other investigated single nucleotide polymorphisms of the GABA synthesis related enzymes ( GAD1 , GAD2 , and GLS ) were not significant. Furthermore, only in women there was a negative association of pgACC GABA/Glu ratios with harm avoidance. A moderated-mediation model revealed that pgACC GABA/Glu also mediated the association between the genotype variant and level of harm avoidance, dependent on sex. Our data thus provide new insights into the neurochemical mechanisms that control emotional endophenotypes in humans and constitute predisposing factors for the development of anxiety disorders in women. SIGNIFICANCE STATEMENT Anxiety disorders are among the most common and burdensome psychiatric disorders, with higher prevalence rates in women. The causal mechanisms are, however, poorly understood. In this study we propose a neurobiological basis that could help to explain female bias of anxiety endophenotypes. Using magnetic resonance brain imaging and personality questionnaires we show an interaction of the genetic variation rs2236418 in the GAD2 gene and sex on GABA/glutamate (Glu) balance in the pregenual anterior cingulate cortex (pgACC), a region previously connected to affect regulation and anxiety disorders. The GAD2 gene polymorphism further influenced baseline neuronal activity in the pgACC. Importantly, GABA/Glu was shown to mediate the relationship between the genetic variant and harm avoidance, however, only in women. Copyright © 2018 the authors 0270-6474/18/385068-11$15.00/0.

  4. Longitudinal development of frontoparietal activity during feedback learning: Contributions of age, performance, working memory and cortical thickness.

    PubMed

    Peters, Sabine; Van Duijvenvoorde, Anna C K; Koolschijn, P Cédric M P; Crone, Eveline A

    2016-06-01

    Feedback learning is a crucial skill for cognitive flexibility that continues to develop into adolescence, and is linked to neural activity within a frontoparietal network. Although it is well conceptualized that activity in the frontoparietal network changes during development, there is surprisingly little consensus about the direction of change. Using a longitudinal design (N=208, 8-27 years, two measurements in two years), we investigated developmental trajectories in frontoparietal activity during feedback learning. Our first aim was to test for linear and nonlinear developmental trajectories in dorsolateral prefrontal cortex (DLPFC), superior parietal cortex (SPC), supplementary motor area (SMA) and anterior cingulate cortex (ACC). Second, we tested which factors (task performance, working memory, cortical thickness) explained additional variance in time-related changes in activity besides age. Developmental patterns for activity in DLPFC and SPC were best characterized by a quadratic age function leveling off/peaking in late adolescence. There was a linear increase in SMA and a linear decrease with age in ACC activity. In addition to age, task performance explained variance in DLPFC and SPC activity, whereas cortical thickness explained variance in SMA activity. Together, these findings provide a novel perspective of linear and nonlinear developmental changes in the frontoparietal network during feedback learning. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Deciphering neuronal population codes for acute thermal pain

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Zhang, Qiaosheng; Phuong Sieu Tong, Ai; Manders, Toby R.; Wang, Jing

    2017-06-01

    Objective. Pain is defined as an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage. Current pain research mostly focuses on molecular and synaptic changes at the spinal and peripheral levels. However, a complete understanding of pain mechanisms requires the physiological study of the neocortex. Our goal is to apply a neural decoding approach to read out the onset of acute thermal pain signals, which can be used for brain-machine interface. Approach. We used micro wire arrays to record ensemble neuronal activities from the primary somatosensory cortex (S1) and anterior cingulate cortex (ACC) in freely behaving rats. We further investigated neural codes for acute thermal pain at both single-cell and population levels. To detect the onset of acute thermal pain signals, we developed a novel latent state-space framework to decipher the sorted or unsorted S1 and ACC ensemble spike activities, which reveal information about the onset of pain signals. Main results. The state space analysis allows us to uncover a latent state process that drives the observed ensemble spike activity, and to further detect the ‘neuronal threshold’ for acute thermal pain on a single-trial basis. Our method achieved good detection performance in sensitivity and specificity. In addition, our results suggested that an optimal strategy for detecting the onset of acute thermal pain signals may be based on combined evidence from S1 and ACC population codes. Significance. Our study is the first to detect the onset of acute pain signals based on neuronal ensemble spike activity. It is important from a mechanistic viewpoint as it relates to the significance of S1 and ACC activities in the regulation of the acute pain onset.

  6. A meta-analysis of neuroimaging studies on divergent thinking using activation likelihood estimation.

    PubMed

    Wu, Xin; Yang, Wenjing; Tong, Dandan; Sun, Jiangzhou; Chen, Qunlin; Wei, Dongtao; Zhang, Qinglin; Zhang, Meng; Qiu, Jiang

    2015-07-01

    In this study, an activation likelihood estimation (ALE) meta-analysis was used to conduct a quantitative investigation of neuroimaging studies on divergent thinking. Based on the ALE results, the functional magnetic resonance imaging (fMRI) studies showed that distributed brain regions were more active under divergent thinking tasks (DTTs) than those under control tasks, but a large portion of the brain regions were deactivated. The ALE results indicated that the brain networks of the creative idea generation in DTTs may be composed of the lateral prefrontal cortex, posterior parietal cortex [such as the inferior parietal lobule (BA 40) and precuneus (BA 7)], anterior cingulate cortex (ACC) (BA 32), and several regions in the temporal cortex [such as the left middle temporal gyrus (BA 39), and left fusiform gyrus (BA 37)]. The left dorsolateral prefrontal cortex (BA 46) was related to selecting the loosely and remotely associated concepts and organizing them into creative ideas, whereas the ACC (BA 32) was related to observing and forming distant semantic associations in performing DTTs. The posterior parietal cortex may be involved in the semantic information related to the retrieval and buffering of the formed creative ideas, and several regions in the temporal cortex may be related to the stored long-term memory. In addition, the ALE results of the structural studies showed that divergent thinking was related to the dopaminergic system (e.g., left caudate and claustrum). Based on the ALE results, both fMRI and structural MRI studies could uncover the neural basis of divergent thinking from different aspects (e.g., specific cognitive processing and stable individual difference of cognitive capability). © 2015 Wiley Periodicals, Inc.

  7. Relation of obesity to neural activation in response to food commercials.

    PubMed

    Gearhardt, Ashley N; Yokum, Sonja; Stice, Eric; Harris, Jennifer L; Brownell, Kelly D

    2014-07-01

    Adolescents view thousands of food commercials annually, but the neural response to food advertising and its association with obesity is largely unknown. This study is the first to examine how neural response to food commercials differs from other stimuli (e.g. non-food commercials and television show) and to explore how this response may differ by weight status. The blood oxygen level-dependent functional magnetic resonance imaging activation was measured in 30 adolescents ranging from lean to obese in response to food and non-food commercials imbedded in a television show. Adolescents exhibited greater activation in regions implicated in visual processing (e.g. occipital gyrus), attention (e.g. parietal lobes), cognition (e.g. temporal gyrus and posterior cerebellar lobe), movement (e.g. anterior cerebellar cortex), somatosensory response (e.g. postcentral gyrus) and reward [e.g. orbitofrontal cortex and anterior cingulate cortex (ACC)] during food commercials. Obese participants exhibited less activation during food relative to non-food commercials in neural regions implicated in visual processing (e.g. cuneus), attention (e.g. posterior cerebellar lobe), reward (e.g. ventromedial prefrontal cortex and ACC) and salience detection (e.g. precuneus). Obese participants did exhibit greater activation in a region implicated in semantic control (e.g. medial temporal gyrus). These findings may inform current policy debates regarding the impact of food advertising to minors. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  8. Time course of recovery showing initial prefrontal cortex changes at 16 weeks, extending to subcortical changes by 3 years in pediatric bipolar disorder.

    PubMed

    Yang, Hongyu; Lu, Lisa H; Wu, Minjie; Stevens, Michael; Wegbreit, Ezra; Fitzgerald, Jacklynn; Levitan, Bryn; Shankman, Stewart; Pavuluri, Mani N

    2013-09-05

    Activation changes at the interface of affective and cognitive systems are examined over a 3 year period in pediatric bipolar disorder (PBD). Thirteen participants with PBD and 10 healthy controls (HC) matched on demographics and IQ were scanned at baseline, at 16 weeks, and after 3 years. All patients received pharmacotherapy based on a medication algorithm. A pediatric affective color matching paradigm was used to probe cognitive processing under emotional challenge. At baseline, in response to emotional vs. neutral words, patients with PBD showed greater activation than HC in the right dorsal lateral prefrontal cortex (DLPFC) and amygdala, ventral lateral prefrontal cortex (VLPFC), bilateral anterior cingulate cortex (ACC), and ventral striatum. Increased activation in DLPFC in the PBD group normalized by 16 weeks. By 3 years, normalization was observed in VLPFC, ACC, amygdala, and striatum. Small sample size renders the present findings preliminary. Greater activation in fronto-striatal and fronto-limbic circuits were observed in unmedicated patients with PBD. Present findings suggest the possibility that DLPFC is most malleable to pharmacological intervention with systematic pharmacotherapy leading to immediate response, which extended to amygdalostriatal and ventral cortical regions at 3 years. The seminal observation from this study is the prolonged length of recovery time in the normalization of subcortical activity along with their interfacing cortical regions. Findings from this proof of concept study need to be replicated in a larger sample. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Altered neural activity and emotions following right middle cerebral artery stroke.

    PubMed

    Paradiso, Sergio; Anderson, Beth M; Boles Ponto, Laura L; Tranel, Daniel; Robinson, Robert G

    2011-01-01

    Stroke of the right MCA is common. Such strokes often have consequences for emotional experience, but these can be subtle. In such cases diagnosis is difficult because emotional awareness (limiting reporting of emotional changes) may be affected. The present study sought to clarify the mechanisms of altered emotion experience after right MCA stroke. It was predicted that after right MCA stroke the anterior cingulate cortex (ACC), a brain region concerned with emotional awareness, would show reduced neural activity. Brain activity during presentation of emotional stimuli was measured in 6 patients with stable stroke, and in 12 age- and sex-matched nonlesion comparisons using positron emission tomography and the [(15)O]H(2)O autoradiographic method. MCA stroke was associated with weaker pleasant experience and decreased activity ipsilaterally in the ACC. Other regions involved in emotional processing including thalamus, dorsal and medial prefrontal cortex showed reduced activity ipsilaterally. Dorsal and medial prefrontal cortex, association visual cortex and cerebellum showed reduced activity contralaterally. Experience from unpleasant stimuli was unaltered and was associated with decreased activity only in the left midbrain. Right MCA stroke may reduce experience of pleasant emotions by altering brain activity in limbic and paralimbic regions distant from the area of direct damage, in addition to changes due to direct tissue damage to insula and basal ganglia. The knowledge acquired in this study begins to explain the mechanisms underlying emotional changes following right MCA stroke. Recognizing these changes may improve diagnoses, management and rehabilitation of right MCA stroke victims. Copyright © 2011 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  10. Witnessing hateful people in pain modulates brain activity in regions associated with physical pain and reward

    PubMed Central

    Fox, Glenn R.; Sobhani, Mona; Aziz-Zadeh, Lisa

    2013-01-01

    How does witnessing a hateful person in pain compare to witnessing a likable person in pain? The current study compared the brain bases for how we perceive likable people in pain with those of viewing hateful people in pain. While social bonds are built through sharing the plight and pain of others in the name of empathy, viewing a hateful person in pain also has many potential ramifications. In this functional Magnetic Resonance Imaging (fMRI) study, Caucasian Jewish male participants viewed videos of (1) disliked, hateful, anti-Semitic individuals, and (2) liked, non-hateful, tolerant individuals in pain. The results showed that, compared with viewing liked people, viewing hateful people in pain elicited increased responses in regions associated with observation of physical pain (the insular cortex, the anterior cingulate cortex (ACC), and the somatosensory cortex), reward processing (the striatum), and frontal regions associated with emotion regulation. Functional connectivity analyses revealed connections between seed regions in the left ACC and right insular cortex with reward regions, the amygdala, and frontal regions associated with emotion regulation. These data indicate that regions of the brain active while viewing someone in pain may be more active in response to the danger or threat posed by witnessing the pain of a hateful individual more so than the desire to empathize with a likable person's pain. PMID:24167496

  11. The neural basis of stereotypic impact on multiple social categorization.

    PubMed

    Hehman, Eric; Ingbretsen, Zachary A; Freeman, Jonathan B

    2014-11-01

    Perceivers extract multiple social dimensions from another's face (e.g., race, emotion), and these dimensions can become linked due to stereotypes (e.g., Black individuals → angry). The current research examined the neural basis of detecting and resolving conflicts between top-down stereotypes and bottom-up visual information in person perception. Participants viewed faces congruent and incongruent with stereotypes, via variations in race and emotion, while neural activity was measured using fMRI. Hand movements en route to race/emotion responses were recorded using mouse-tracking to behaviorally index individual differences in stereotypical associations during categorization. The medial prefrontal cortex (mPFC) and anterior cingulate cortex (ACC) showed stronger activation to faces that violated stereotypical expectancies at the intersection of multiple social categories (i.e., race and emotion). These regions were highly sensitive to the degree of incongruency, exhibiting linearly increasing responses as race and emotion became stereotypically more incongruent. Further, the ACC exhibited greater functional connectivity with the lateral fusiform cortex, a region implicated in face processing, when viewing stereotypically incongruent (relative to congruent) targets. Finally, participants with stronger behavioral tendencies to link race and emotion stereotypically during categorization showed greater dorsolateral prefrontal cortex activation to stereotypically incongruent targets. Together, the findings provide insight into how conflicting stereotypes at the nexus of multiple social dimensions are resolved at the neural level to accurately perceive other people. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. PROBING HUMAN AND MONKEY ANTERIOR CINGULATE CORTEX IN VARIABLE ENVIRONMENTS

    PubMed Central

    Walton, Mark E.; Mars, Rogier B.

    2008-01-01

    Previous research has identified the anterior cingulate cortex (ACC) as an important node in the neural network underlying decision making in primates. Decision making can, however, be studied under large variety of circumstances, ranging from the standard well-controlled lab situation to more natural, stochastic settings during which multiple agents interact. Here, we illustrate how these different varieties of decision making studied can influence theories of ACC function in monkeys. Converging evidence from unit recordings and lesions studies now suggest that the ACC is important for interpreting outcome information according to the current task context to guide future action selection. We then apply this framework to the study of human ACC function and discuss its potential implications. PMID:18189014

  13. Localized microstimulation of primate pregenual cingulate cortex induces negative decision-making.

    PubMed

    Amemori, Ken-ichi; Graybiel, Ann M

    2012-05-01

    The pregenual anterior cingulate cortex (pACC) has been implicated in human anxiety disorders and depression, but the circuit-level mechanisms underlying these disorders are unclear. In healthy individuals, the pACC is involved in cost-benefit evaluation. We developed a macaque version of an approach-avoidance decision task used to evaluate anxiety and depression in humans and, with multi-electrode recording and cortical microstimulation, we probed pACC function as monkeys performed this task. We found that the macaque pACC has an opponent process-like organization of neurons representing motivationally positive and negative subjective value. Spatial distribution of these two neuronal populations overlapped in the pACC, except in one subzone, where neurons with negative coding were more numerous. Notably, microstimulation in this subzone, but not elsewhere in the pACC, increased negative decision-making, and this negative biasing was blocked by anti-anxiety drug treatment. This cortical zone could be critical for regulating negative emotional valence and anxiety in decision-making.

  14. Self-identification and empathy modulate error-related brain activity during the observation of penalty shots between friend and foe

    PubMed Central

    Ganesh, Shanti; van Schie, Hein T.; De Bruijn, Ellen R. A.; Bekkering, Harold

    2009-01-01

    The ability to detect and process errors made by others plays an important role is many social contexts. The capacity to process errors is typically found to rely on sites in the medial frontal cortex. However, it remains to be determined whether responses at these sites are driven primarily by action errors themselves or by the affective consequences normally associated with their commission. Using an experimental paradigm that disentangles action errors and the valence of their affective consequences, we demonstrate that sites in the medial frontal cortex (MFC), including the ventral anterior cingulate cortex (vACC) and pre-supplementary motor area (pre-SMA), respond to action errors independent of the valence of their consequences. The strength of this response was negatively correlated with the empathic concern subscale of the Interpersonal Reactivity Index. We also demonstrate a main effect of self-identification by showing that errors committed by friends and foes elicited significantly different BOLD responses in a separate region of the middle anterior cingulate cortex (mACC). These results suggest that the way we look at others plays a critical role in determining patterns of brain activation during error observation. These findings may have important implications for general theories of error processing. PMID:19015079

  15. Sulcal Polymorphisms of the IFC and ACC Contribute to Inhibitory Control Variability in Children and Adults

    PubMed Central

    Linzarini, Adriano; Dollfus, Sonia; Etard, Olivier; Orliac, François; Houdé, Olivier

    2018-01-01

    Abstract Inhibitory control (IC) is a core executive function that enables humans to resist habits, temptations, or distractions. IC efficiency in childhood is a strong predictor of academic and professional success later in life. Based on analysis of the sulcal pattern, a qualitative feature of cortex anatomy determined during fetal life and stable during development, we searched for evidence that interindividual differences in IC partly trace back to prenatal processes. Using anatomical magnetic resonance imaging (MRI), we analyzed the sulcal pattern of two key regions of the IC neural network, the dorsal anterior cingulate cortex (ACC) and the inferior frontal cortex (IFC), which limits the inferior frontal gyrus. We found that the sulcal pattern asymmetry of both the ACC and IFC contributes to IC (Stroop score) in children and adults: participants with asymmetrical ACC or IFC sulcal patterns had better IC efficiency than participants with symmetrical ACC or IFC sulcal patterns. Such additive effects of IFC and ACC sulcal patterns on IC efficiency suggest that distinct early neurodevelopmental mechanisms targeting different brain regions likely contribute to IC efficiency. This view shares some analogies with the “common variant–small effect” model in genetics, which states that frequent genetic polymorphisms have small effects but collectively account for a large portion of the variance. Similarly, each sulcal polymorphism has a small but additive effect: IFC and ACC sulcal patterns, respectively, explained 3% and 14% of the variance of the Stroop interference scores. PMID:29527565

  16. Sulcal Polymorphisms of the IFC and ACC Contribute to Inhibitory Control Variability in Children and Adults.

    PubMed

    Tissier, Cloélia; Linzarini, Adriano; Allaire-Duquette, Geneviève; Mevel, Katell; Poirel, Nicolas; Dollfus, Sonia; Etard, Olivier; Orliac, François; Peyrin, Carole; Charron, Sylvain; Raznahan, Armin; Houdé, Olivier; Borst, Grégoire; Cachia, Arnaud

    2018-01-01

    Inhibitory control (IC) is a core executive function that enables humans to resist habits, temptations, or distractions. IC efficiency in childhood is a strong predictor of academic and professional success later in life. Based on analysis of the sulcal pattern, a qualitative feature of cortex anatomy determined during fetal life and stable during development, we searched for evidence that interindividual differences in IC partly trace back to prenatal processes. Using anatomical magnetic resonance imaging (MRI), we analyzed the sulcal pattern of two key regions of the IC neural network, the dorsal anterior cingulate cortex (ACC) and the inferior frontal cortex (IFC), which limits the inferior frontal gyrus. We found that the sulcal pattern asymmetry of both the ACC and IFC contributes to IC (Stroop score) in children and adults: participants with asymmetrical ACC or IFC sulcal patterns had better IC efficiency than participants with symmetrical ACC or IFC sulcal patterns. Such additive effects of IFC and ACC sulcal patterns on IC efficiency suggest that distinct early neurodevelopmental mechanisms targeting different brain regions likely contribute to IC efficiency. This view shares some analogies with the "common variant-small effect" model in genetics, which states that frequent genetic polymorphisms have small effects but collectively account for a large portion of the variance. Similarly, each sulcal polymorphism has a small but additive effect: IFC and ACC sulcal patterns, respectively, explained 3% and 14% of the variance of the Stroop interference scores.

  17. The interactive effect of social pain and executive functioning on aggression: an fMRI experiment.

    PubMed

    Chester, David S; Eisenberger, Naomi I; Pond, Richard S; Richman, Stephanie B; Bushman, Brad J; Dewall, C Nathan

    2014-05-01

    Social rejection often increases aggression, but the neural mechanisms underlying this effect remain unclear. This experiment tested whether neural activity in the dorsal anterior cingulate cortex (dACC) and anterior insula in response to social rejection predicted greater subsequent aggression. Additionally, it tested whether executive functioning moderated this relationship. Participants completed a behavioral measure of executive functioning, experienced social rejection while undergoing functional magnetic resonance imaging and then completed a task in which they could aggress against a person who rejected them using noise blasts . We found that dACC activation and executive functioning interacted to predict aggression. Specifically, participants with low executive functioning showed a positive association between dACC activation and aggression, whereas individuals with high executive functioning showed a negative association. Similar results were found for the left anterior insula. These findings suggest that social pain can increase or decrease aggression, depending on an individual's regulatory capability.

  18. Neural encoding of competitive effort in the anterior cingulate cortex.

    PubMed

    Hillman, Kristin L; Bilkey, David K

    2012-09-01

    In social environments, animals often compete to obtain limited resources. Strategically electing to work against another animal represents a cost-benefit decision. Is the resource worth an investment of competitive effort? The anterior cingulate cortex (ACC) has been implicated in cost-benefit decision-making, but its role in competitive effort has not been examined. We recorded ACC neurons in freely moving rats as they performed a competitive foraging choice task. When at least one of the two choice options demanded competitive effort, the majority of ACC neurons exhibited heightened and differential firing between the goal trajectories. Inter- and intrasession manipulations revealed that differential firing was not attributable to effort or reward in isolation; instead ACC encoding patterns appeared to indicate net utility assessments of available choice options. Our findings suggest that the ACC is important for encoding competitive effort, a cost-benefit domain that has received little neural-level investigation despite its predominance in nature.

  19. Frontal beta-theta network during REM sleep

    PubMed Central

    Vijayan, Sujith; Lepage, Kyle Q; Kopell, Nancy J; Cash, Sydney S

    2017-01-01

    We lack detailed knowledge about the spatio-temporal physiological signatures of REM sleep, especially in humans. By analyzing intracranial electrode data from humans, we demonstrate for the first time that there are prominent beta (15–35 Hz) and theta (4–8 Hz) oscillations in both the anterior cingulate cortex (ACC) and the DLPFC during REM sleep. We further show that these theta and beta activities in the ACC and the DLPFC, two relatively distant but reciprocally connected regions, are coherent. These findings suggest that, counter to current prevailing thought, the DLPFC is active during REM sleep and likely interacting with other areas. Since the DLPFC and the ACC are implicated in memory and emotional regulation, and the ACC has motor areas and is thought to be important for error detection, the dialogue between these two areas could play a role in the regulation of emotions and in procedural motor and emotional memory consolidation. DOI: http://dx.doi.org/10.7554/eLife.18894.001 PMID:28121613

  20. Age, sex and individual differences in punishment sensitivity: factors influencing the feedback-related negativity.

    PubMed

    Santesso, Diane L; Dzyundzyak, Angela; Segalowitz, Sidney J

    2011-11-01

    The anterior cingulate cortex (ACC) is central to evaluating performance outcomes and has been linked to individual differences in affective responses to feedback. We used electrophysiological source localization to examine the feedback-related negativity (FRN) and related ACC activity during a gambling task in relation to punishment and reward sensitivity among 16- to 17-year-old adolescents (n=20) and 18- to 29-year-old adults (n=30). The FRN was larger for monetary loss compared to win feedback and larger for high relative to low monetary value feedback, with no age differences in the FRN for win or loss feedback. Self-reported sensitivity to punishment accounted for unique variance (over sex and sensitivity to reward) in FRNs, with higher scores relating to larger FRNs and increased rostral ACC activity. These results support the ACC role in experiencing negative performance feedback, especially for individuals highly sensitive to punishment. Copyright © 2011 Society for Psychophysiological Research.

  1. Activation of the serotonergic system by pedaling exercise changes anterior cingulate cortex activity and improves negative emotion.

    PubMed

    Ohmatsu, Satoko; Nakano, Hideki; Tominaga, Takanori; Terakawa, Yuzo; Murata, Takaho; Morioka, Shu

    2014-08-15

    Pedaling exercise (PE) of moderate intensity has been shown to ease anxiety and discomfort; however, little is known of the changes that occur in brain activities and in the serotonergic (5-HT) system after PE. Therefore, this study was conducted for the following reasons: (1) to localize the changes in the brain activities induced by PE using a distributed source localization algorithm, (2) to examine the changes in frontal asymmetry, as used in the Davidson model, with electroencephalography (EEG) activity, and (3) to examine the effect of PE on the 5-HT system. A 32-channel EEG was used to record before and after PE. Profile of Mood States tests indicated that there was a significant decrease in tension-anxiety and a significant increase in vigor after PE. A standardized low-resolution brain electromagnetic tomography analysis showed a significant decrease in brain activities after PE in the alpha-2 band (10-12.5 Hz) in the anterior cingulate cortex (ACC). Moreover, a significant increase in frontal EEG asymmetry was observed after PE in the alpha-1 band (7.5-10 Hz). Urine 5-HT levels significantly increased after PE. Urine 5-HT levels positively correlated with the degree of frontal EEG asymmetry in the alpha-1 band and negatively correlated with brain activity in ACC. Our results suggested that PE activates the 5-HT system and consequently induces increases in frontal EEG asymmetry in the alpha-1 band and reductions of brain activity in the alpha-2 band in the ACC region. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Anterior cingulate cortex-related connectivity in first-episode schizophrenia: a spectral dynamic causal modeling study with functional magnetic resonance imaging

    PubMed Central

    Cui, Long-Biao; Liu, Jian; Wang, Liu-Xian; Li, Chen; Xi, Yi-Bin; Guo, Fan; Wang, Hua-Ning; Zhang, Lin-Chuan; Liu, Wen-Ming; He, Hong; Tian, Ping; Yin, Hong; Lu, Hongbing

    2015-01-01

    Understanding the neural basis of schizophrenia (SZ) is important for shedding light on the neurobiological mechanisms underlying this mental disorder. Structural and functional alterations in the anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC), hippocampus, and medial prefrontal cortex (MPFC) have been implicated in the neurobiology of SZ. However, the effective connectivity among them in SZ remains unclear. The current study investigated how neuronal pathways involving these regions were affected in first-episode SZ using functional magnetic resonance imaging (fMRI). Forty-nine patients with a first-episode of psychosis and diagnosis of SZ—according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision—were studied. Fifty healthy controls (HCs) were included for comparison. All subjects underwent resting state fMRI. We used spectral dynamic causal modeling (DCM) to estimate directed connections among the bilateral ACC, DLPFC, hippocampus, and MPFC. We characterized the differences using Bayesian parameter averaging (BPA) in addition to classical inference (t-test). In addition to common effective connectivity in these two groups, HCs displayed widespread significant connections predominantly involved in ACC not detected in SZ patients, but SZ showed few connections. Based on BPA results, SZ patients exhibited anterior cingulate cortico-prefrontal-hippocampal hyperconnectivity, as well as ACC-related and hippocampal-dorsolateral prefrontal-medial prefrontal hypoconnectivity. In summary, spectral DCM revealed the pattern of effective connectivity involving ACC in patients with first-episode SZ. This study provides a potential link between SZ and dysfunction of ACC, creating an ideal situation to associate mechanisms behind SZ with aberrant connectivity among these cognition and emotion-related regions. PMID:26578933

  3. Self-referential processing influences functional activation during cognitive control: an fMRI study

    PubMed Central

    Koch, Kathrin; Schachtzabel, Claudia; Peikert, Gregor; Schultz, Carl Christoph; Reichenbach, Jürgen R.; Sauer, Heinrich; Schlösser, Ralf G.

    2013-01-01

    Rostral anterior cingulate cortex (rACC) plays a central role in the pathophysiology of major depressive disorder (MDD). As we reported in our previous study (Wagner et al., 2006), patients with MDD were characterized by an inability to deactivate this region during cognitive processing leading to a compensatory prefrontal hyperactivation. This hyperactivation in rACC may be related to a deficient inhibitory control of negative self-referential processes, which in turn may interfere with cognitive control task execution and the underlying fronto-cingulate network activation. To test this assumption, a functional magnetic resonance imaging study was conducted in 34 healthy subjects. Univariate and functional connectivity analyses in statistical parametric mapping software 8 were used. Self-referential stimuli and the Stroop task were presented in an event-related design. As hypothesized, rACC was specifically engaged during negative self-referential processing (SRP) and was significantly related to the degree of depressive symptoms in participants. BOLD signal in rACC showed increased valence-dependent (negative vs neutral SRP) interaction with BOLD signal in prefrontal and dorsal anterior cingulate regions during Stroop task performance. This result provides strong support for the notion that enhanced rACC interacts with brain regions involved in cognitive control processes and substantiates our previous interpretation of increased rACC and prefrontal activation in patients during Stroop task. PMID:22798398

  4. Structural and functional associations of the rostral anterior cingulate cortex with subjective happiness.

    PubMed

    Matsunaga, Masahiro; Kawamichi, Hiroaki; Koike, Takahiko; Yoshihara, Kazufumi; Yoshida, Yumiko; Takahashi, Haruka K; Nakagawa, Eri; Sadato, Norihiro

    2016-07-01

    Happiness is one of the most fundamental human goals, which has led researchers to examine the source of individual happiness. Happiness has usually been discussed regarding two aspects (a temporary positive emotion and a trait-like long-term sense of being happy) that are interrelated; for example, individuals with a high level of trait-like subjective happiness tend to rate events as more pleasant. In this study, we hypothesized that the interaction between the two aspects of happiness could be explained by the interaction between structure and function in certain brain regions. Thus, we first assessed the association between gray matter density (GMD) of healthy participants and trait-like subjective happiness using voxel-based morphometry (VBM). Further, to assess the association between the GMD and brain function, we conducted functional magnetic resonance imaging (MRI) using the task of positive emotion induction (imagination of several emotional life events). VBM indicated that the subjective happiness was positively correlated with the GMD of the rostral anterior cingulate cortex (rACC). Functional MRI demonstrated that experimentally induced temporal happy feelings were positively correlated with subjective happiness level and rACC activity. The rACC response to positive events was also positively correlated with its GMD. These results provide convergent structural and functional evidence that the rACC is related to happiness and suggest that the interaction between structure and function in the rACC may explain the trait-state interaction in happiness. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Functional segregation of the human cingulate cortex is confirmed by functional connectivity based neuroanatomical parcellation.

    PubMed

    Yu, Chunshui; Zhou, Yuan; Liu, Yong; Jiang, Tianzi; Dong, Haiwei; Zhang, Yunting; Walter, Martin

    2011-02-14

    The four-region model with 7 specified subregions represents a theoretical construct of functionally segregated divisions of the cingulate cortex based on integrated neurobiological assessments. Under this framework, we aimed to investigate the functional specialization of the human cingulate cortex by analyzing the resting-state functional connectivity (FC) of each subregion from a network perspective. In 20 healthy subjects we systematically investigated the FC patterns of the bilateral subgenual (sACC) and pregenual (pACC) anterior cingulate cortices, anterior (aMCC) and posterior (pMCC) midcingulate cortices, dorsal (dPCC) and ventral (vPCC) posterior cingulate cortices and retrosplenial cortices (RSC). We found that each cingulate subregion was specifically integrated in the predescribed functional networks and showed anti-correlated resting-state fluctuations. The sACC and pACC were involved in an affective network and anti-correlated with the sensorimotor and cognitive networks, while the pACC also correlated with the default-mode network and anti-correlated with the visual network. In the midcingulate cortex, however, the aMCC was correlated with the cognitive and sensorimotor networks and anti-correlated with the visual, affective and default-mode networks, whereas the pMCC only correlated with the sensorimotor network and anti-correlated with the cognitive and visual networks. The dPCC and vPCC involved in the default-mode network and anti-correlated with the sensorimotor, cognitive and visual networks, in contrast, the RSC was mainly correlated with the PCC and thalamus. Based on a strong hypothesis driven approach of anatomical partitions of the cingulate cortex, we could confirm their segregation in terms of functional neuroanatomy, as suggested earlier by task studies or exploratory multi-seed investigations. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. An Herbal Nasal Drop Enhanced Frontal and Anterior Cingulate Cortex Activity

    PubMed Central

    Chan, Agnes S.; Cheung, Mei-chun; Sze, Sophia L.; Leung, Winnie W.; Shi, Dejian

    2011-01-01

    The present study examined the neuro-electrophysiological activity of the brain associated with the application of a herbal remedy developed by a Shaolin monk based upon the Chan healing principle of clearing the orifices (i.e., the nasal cavities). A repeated-measures design was used. Fourteen normal adults were administered herbal remedy and saline solution intranasally on separate sessions. Two intervals of eyes-closed resting EEG data were obtained individually before and after each administration. Results showed that only the herbal remedy but not the saline solution induced elevation in cordance, an index correlated with cerebral perfusion, in the anterior brain region. In addition, the activity of the anterior cingulate cortex (ACC), as examined by the LORETA analysis, was also increased after the application of the herbal remedy but not saline solution. The present study provided some preliminary evidence suggesting that the herbal nasal drop enhanced the activity of the frontal lobe and ACC. Implications for the potential clinical application of the herbal remedy to treat patients with frontal lobe disorders were discussed. PMID:19996154

  7. Age-related changes in anterior cingulate cortex glutamate in schizophrenia: A (1)H MRS Study at 7 Tesla.

    PubMed

    Brandt, Allison S; Unschuld, Paul G; Pradhan, Subechhya; Lim, Issel Anne L; Churchill, Gregory; Harris, Ashley D; Hua, Jun; Barker, Peter B; Ross, Christopher A; van Zijl, Peter C M; Edden, Richard A E; Margolis, Russell L

    2016-04-01

    The extent of age-related changes in glutamate and other neurometabolites in the anterior cingulate cortex (ACC) in individuals with schizophrenia remain unclear. Magnetic resonance spectroscopy (MRS) at 7 T, which yields precise measurements of various metabolites and can distinguish glutamate from glutamine, was used to determine levels of ACC glutamate and other metabolites in 24 individuals with schizophrenia and 24 matched controls. Multiple regression analysis revealed that ACC glutamate decreased with age in patients but not controls. No changes were detected in levels of glutamine, N-acetylaspartate, N-acetylaspartylglutamic acid, myo-inositol, GABA, glutathione, total creatine, and total choline. These results suggest that age may be an important modifier of ACC glutamate in schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Disrupted functional connectivity of the pain network in fibromyalgia.

    PubMed

    Cifre, Ignacio; Sitges, Carolina; Fraiman, Daniel; Muñoz, Miguel Ángel; Balenzuela, Pablo; González-Roldán, Ana; Martínez-Jauand, Mercedes; Birbaumer, Niels; Chialvo, Dante R; Montoya, Pedro

    2012-01-01

    To investigate the impact of chronic pain on brain dynamics at rest. Functional connectivity was examined in patients with fibromyalgia (FM) (n = 9) and healthy controls (n = 11) by calculating partial correlations between low-frequency blood oxygen level-dependent fluctuations extracted from 15 brain regions. Patients with FM had more positive and negative correlations within the pain network than healthy controls. Patients with FM displayed enhanced functional connectivity of the anterior cingulate cortex (ACC) with the insula (INS) and basal ganglia (p values between .01 and .05), the secondary somatosensory area with the caudate (CAU) (p = .012), the primary motor cortex with the supplementary motor area (p = .007), the globus pallidus with the amygdala and superior temporal sulcus (both p values < .05), and the medial prefrontal cortex with the posterior cingulate cortex (PCC) and CAU (both p values < .05). Functional connectivity of the ACC with the amygdala and periaqueductal gray (PAG) matter (p values between .001 and .05), the thalamus with the INS and PAG (both p values < .01), the INS with the putamen (p = .038), the PAG with the CAU (p = .038), the secondary somatosensory area with the motor cortex and PCC (both p values < .05), and the PCC with the superior temporal sulcus (p = .002) was also reduced in FM. In addition, significant negative correlations were observed between depression and PAG connectivity strength with the thalamus (r = -0.64, p = .003) and ACC (r = -0.60, p = .004). These findings demonstrate that patients with FM display a substantial imbalance of the connectivity within the pain network during rest, suggesting that chronic pain may also lead to changes in brain activity during internally generated thought processes such as occur at rest.

  9. Modeling conflict and error in the medial frontal cortex.

    PubMed

    Mayer, Andrew R; Teshiba, Terri M; Franco, Alexandre R; Ling, Josef; Shane, Matthew S; Stephen, Julia M; Jung, Rex E

    2012-12-01

    Despite intensive study, the role of the dorsal medial frontal cortex (dMFC) in error monitoring and conflict processing remains actively debated. The current experiment manipulated conflict type (stimulus conflict only or stimulus and response selection conflict) and utilized a novel modeling approach to isolate error and conflict variance during a multimodal numeric Stroop task. Specifically, hemodynamic response functions resulting from two statistical models that either included or isolated variance arising from relatively few error trials were directly contrasted. Twenty-four participants completed the task while undergoing event-related functional magnetic resonance imaging on a 1.5-Tesla scanner. Response times monotonically increased based on the presence of pure stimulus or stimulus and response selection conflict. Functional results indicated that dMFC activity was present during trials requiring response selection and inhibition of competing motor responses, but absent during trials involving pure stimulus conflict. A comparison of the different statistical models suggested that relatively few error trials contributed to a disproportionate amount of variance (i.e., activity) throughout the dMFC, but particularly within the rostral anterior cingulate gyrus (rACC). Finally, functional connectivity analyses indicated that an empirically derived seed in the dorsal ACC/pre-SMA exhibited strong connectivity (i.e., positive correlation) with prefrontal and inferior parietal cortex but was anti-correlated with the default-mode network. An empirically derived seed from the rACC exhibited the opposite pattern, suggesting that sub-regions of the dMFC exhibit different connectivity patterns with other large scale networks implicated in internal mentations such as daydreaming (default-mode) versus the execution of top-down attentional control (fronto-parietal). Copyright © 2011 Wiley Periodicals, Inc.

  10. The extended fronto-striatal model of obsessive compulsive disorder: convergence from event-related potentials, neuropsychology and neuroimaging

    PubMed Central

    Melloni, Margherita; Urbistondo, Claudia; Sedeño, Lucas; Gelormini, Carlos; Kichic, Rafael; Ibanez, Agustin

    2012-01-01

    In this work, we explored convergent evidence supporting the fronto-striatal model of obsessive-compulsive disorder (FSMOCD) and the contribution of event-related potential (ERP) studies to this model. First, we considered minor modifications to the FSMOCD model based on neuroimaging and neuropsychological data. We noted the brain areas most affected in this disorder -anterior cingulate cortex (ACC), basal ganglia (BG), and orbito-frontal cortex (OFC) and their related cognitive functions, such as monitoring and inhibition. Then, we assessed the ERPs that are directly related to the FSMOCD, including the error-related negativity (ERN), N200, and P600. Several OCD studies present enhanced ERN and N2 responses during conflict tasks as well as an enhanced P600 during working memory (WM) tasks. Evidence from ERP studies (especially regarding ERN and N200 amplitude enhancement), neuroimaging and neuropsychological findings suggests abnormal activity in the OFC, ACC, and BG in OCD patients. Moreover, additional findings from these analyses suggest dorsolateral prefrontal and parietal cortex involvement, which might be related to executive function (EF) deficits. Thus, these convergent results suggest the existence of a self-monitoring imbalance involving inhibitory deficits and executive dysfunctions. OCD patients present an impaired ability to monitor, control, and inhibit intrusive thoughts, urges, feelings, and behaviors. In the current model, this imbalance is triggered by an excitatory role of the BG (associated with cognitive or motor actions without volitional control) and inhibitory activity of the OFC as well as excessive monitoring of the ACC to block excitatory impulses. This imbalance would interact with the reduced activation of the parietal-DLPC network, leading to executive dysfunction. ERP research may provide further insight regarding the temporal dynamics of action monitoring and executive functioning in OCD. PMID:23015786

  11. Neurodynamics of executive control processes in bilinguals: evidence from ERP and source reconstruction analyses.

    PubMed

    Heidlmayr, Karin; Hemforth, Barbara; Moutier, Sylvain; Isel, Frédéric

    2015-01-01

    The present study was designed to examine the impact of bilingualism on the neuronal activity in different executive control processes namely conflict monitoring, control implementation (i.e., interference suppression and conflict resolution) and overcoming of inhibition. Twenty-two highly proficient but non-balanced successive French-German bilingual adults and 22 monolingual adults performed a combined Stroop/Negative priming task while event-related potential (ERP) were recorded online. The data revealed that the ERP effects were reduced in bilinguals in comparison to monolinguals but only in the Stroop task and limited to the N400 and the sustained fronto-central negative-going potential time windows. This result suggests that bilingualism may impact the process of control implementation rather than the process of conflict monitoring (N200). Critically, our study revealed a differential time course of the involvement of the anterior cingulate cortex (ACC) and the prefrontal cortex (PFC) in conflict processing. While the ACC showed major activation in the early time windows (N200 and N400) but not in the latest time window (late sustained negative-going potential), the PFC became unilaterally active in the left hemisphere in the N400 and the late sustained negative-going potential time windows. Taken together, the present electroencephalography data lend support to a cascading neurophysiological model of executive control processes, in which ACC and PFC may play a determining role.

  12. Neurodynamics of executive control processes in bilinguals: evidence from ERP and source reconstruction analyses

    PubMed Central

    Heidlmayr, Karin; Hemforth, Barbara; Moutier, Sylvain; Isel, Frédéric

    2015-01-01

    The present study was designed to examine the impact of bilingualism on the neuronal activity in different executive control processes namely conflict monitoring, control implementation (i.e., interference suppression and conflict resolution) and overcoming of inhibition. Twenty-two highly proficient but non-balanced successive French–German bilingual adults and 22 monolingual adults performed a combined Stroop/Negative priming task while event-related potential (ERP) were recorded online. The data revealed that the ERP effects were reduced in bilinguals in comparison to monolinguals but only in the Stroop task and limited to the N400 and the sustained fronto-central negative-going potential time windows. This result suggests that bilingualism may impact the process of control implementation rather than the process of conflict monitoring (N200). Critically, our study revealed a differential time course of the involvement of the anterior cingulate cortex (ACC) and the prefrontal cortex (PFC) in conflict processing. While the ACC showed major activation in the early time windows (N200 and N400) but not in the latest time window (late sustained negative-going potential), the PFC became unilaterally active in the left hemisphere in the N400 and the late sustained negative-going potential time windows. Taken together, the present electroencephalography data lend support to a cascading neurophysiological model of executive control processes, in which ACC and PFC may play a determining role. PMID:26124740

  13. Higher Media Multi-Tasking Activity Is Associated with Smaller Gray-Matter Density in the Anterior Cingulate Cortex

    PubMed Central

    Loh, Kep Kee; Kanai, Ryota

    2014-01-01

    Media multitasking, or the concurrent consumption of multiple media forms, is increasingly prevalent in today’s society and has been associated with negative psychosocial and cognitive impacts. Individuals who engage in heavier media-multitasking are found to perform worse on cognitive control tasks and exhibit more socio-emotional difficulties. However, the neural processes associated with media multi-tasking remain unexplored. The present study investigated relationships between media multitasking activity and brain structure. Research has demonstrated that brain structure can be altered upon prolonged exposure to novel environments and experience. Thus, we expected differential engagements in media multitasking to correlate with brain structure variability. This was confirmed via Voxel-Based Morphometry (VBM) analyses: Individuals with higher Media Multitasking Index (MMI) scores had smaller gray matter density in the anterior cingulate cortex (ACC). Functional connectivity between this ACC region and the precuneus was negatively associated with MMI. Our findings suggest a possible structural correlate for the observed decreased cognitive control performance and socio-emotional regulation in heavy media-multitaskers. While the cross-sectional nature of our study does not allow us to specify the direction of causality, our results brought to light novel associations between individual media multitasking behaviors and ACC structure differences. PMID:25250778

  14. Right Anterior Cingulate Cortical Thickness and Bilateral Striatal Volume Correlate with CBCL Aggressive Behavior Scores in Healthy Children

    PubMed Central

    Ducharme, Simon; Hudziak, James J; Botteron, Kelly N; Ganjavi, Hooman; Lepage, Claude; Collins, D Louis; Albaugh, Matthew D.; Evans, Alan C; Karama, Sherif

    2011-01-01

    Background The anterior cingulate cortex (ACC), orbito-frontal cortex (OFC) and basal ganglia have been implicated in pathological aggression. This study aimed at identifying neuroanatomical correlates of impulsive aggression in healthy children. Methods Data from 193 representative 6–18 year-old healthy children were obtained from the NIH MRI Study of Normal Brain Development after a blinded quality control (1). Cortical thickness and subcortical volumes were obtained with automated software. Aggression levels were measured with the Aggressive Behavior scale (AGG) of the Child Behavior Checklist (CBCL). AGG scores were regressed against cortical thickness and basal ganglia volumes using first and second-order linear models while controlling for age, gender, scanner site and total brain volume. ‘Gender by AGG’ interactions were analyzed. Results There were positive associations between bilateral striatal volumes and AGG scores (right: r=0.238, p=0.001; left: r=0.188, p=0.01). A significant association was found with right ACC and subgenual ACC cortical thickness in a second-order linear model (p<0.05, corrected). High AGG scores were associated with a relatively thin right ACC cortex. An ‘AGG by gender’ interaction trend was found in bilateral OFC and ACC associations with AGG scores. Conclusion This study shows the existence of relationships between impulsive aggression in healthy children and the structure of the striatum and right ACC. It also suggests the existence of gender specific patterns of association in OFC/ACC grey matter. These results may guide research on oppositional-defiant and conduct disorders. PMID:21531391

  15. Right anterior cingulate cortical thickness and bilateral striatal volume correlate with child behavior checklist aggressive behavior scores in healthy children.

    PubMed

    Ducharme, Simon; Hudziak, James J; Botteron, Kelly N; Ganjavi, Hooman; Lepage, Claude; Collins, D Louis; Albaugh, Matthew D; Evans, Alan C; Karama, Sherif

    2011-08-01

    The anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), and basal ganglia have been implicated in pathological aggression. This study aimed at identifying neuroanatomical correlates of impulsive aggression in healthy children. Data from 193 representative 6- to 18-year-old healthy children were obtained from the National Institutes of Health Magnetic Resonance Imaging Study of Normal Brain Development after a blinded quality control. Cortical thickness and subcortical volumes were obtained with automated software. Aggression levels were measured with the Aggressive Behavior scale (AGG) of the Child Behavior Checklist. AGG scores were regressed against cortical thickness and basal ganglia volumes using first- and second-order linear models while controlling for age, gender, scanner site, and total brain volume. Gender by AGG interactions were analyzed. There were positive associations between bilateral striatal volumes and AGG scores (right: r = .238, p = .001; left: r = .188, p = .01). A significant association was found with right ACC and subgenual ACC cortical thickness in a second-order linear model (p < .05, corrected). High AGG scores were associated with a relatively thin right ACC cortex. An AGG by gender interaction trend was found in bilateral OFC and ACC associations with AGG scores. This study shows the existence of relationships between impulsive aggression in healthy children and the structure of the striatum and right ACC. It also suggests the existence of gender-specific patterns of association in OFC/ACC gray matter. These results may guide research on oppositional-defiant and conduct disorders. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. Is desire for social relationships mediated by the serotonergic system in the prefrontal cortex? An [(18)F]setoperone PET study.

    PubMed

    Gerretsen, Philip; Graff-Guerrero, Ariel; Menon, Mahesh; Pollock, Bruce G; Kapur, Shitij; Vasdev, Neil; Houle, Sylvain; Mamo, David

    2010-01-01

    Social behavior and desire for social relationships have been independently linked to the serotonergic system, the prefrontal cortex, especially the orbitofrontal cortex (OFC), and the anterior cingulate cortex (ACC). The goal of this study was to explore the role of serotonin 5HT(2A) receptors in these brain regions in forming and maintaining close interpersonal relationships. Twenty-four healthy subjects completed the Temperament and Character Inventory (TCI) prior to undergoing [(18)F]setoperone brain positron emission tomography (PET) to measure serotonin 5HT(2A) receptor availability within the OFC (BA 11 and 47) and ACC (BA 32). We explored the relationship between desire for social relationships, as measured by the TCI reward dependence (RD) scale, and 5HT(2A) receptor non-displaceable binding potential (BP(nd)) in these regions. Scores of RD were negatively correlated with 5HT(2A) BP(nd) in the ACC (BA 32, r = -.528, p = .012) and OFC (BA 11, r = -.489, p = .021; BA 47, r = -.501, p = .017). These correlations were corroborated by a voxel-wise analysis. These results suggest that the serotonergic system may have a regulatory effect on the OFC and ACC for establishing and maintaining social relationships.

  17. Anterior cingulate cortex surface area relates to behavioral inhibition in adolescents with and without heavy prenatal alcohol exposure

    PubMed Central

    Migliorini, Robyn; Moore, Eileen M.; Glass, Leila; Infante, M. Alejandra; Tapert, Susan F.; Jones, Kenneth Lyons; Mattson, Sarah N.; Riley, Edward P.

    2015-01-01

    Prenatal alcohol exposure is associated with behavioral disinhibition, yet the brain structure correlates of this deficit have not been determined with sufficient detail. We examined the hypothesis that the structure of the anterior cingulate cortex (ACC) relates to inhibition performance in youth with histories of heavy prenatal alcohol exposure (AE, n = 32) and non-exposed controls (CON, n = 21). Adolescents (12–17 years) underwent structural magnetic resonance imaging yielding measures of gray matter volume, surface area, and thickness across four ACC subregions. A subset of subjects were administered the NEPSY-II Inhibition subtest. MANCOVA was utilized to test for group differences in ACC and inhibition performance and multiple linear regression was used to probe ACC-inhibition relationships. ACC surface area was significantly smaller in AE, though this effect was primarily driven by reduced right caudal ACC (rcACC). AE also performed significantly worse on inhibition speed but not on inhibition accuracy. Regression analyses with the rcACC revealed a significant group × ACC interaction. A smaller rcACC surface area was associated with slower inhibition completion time for AE but was not significantly associated with inhibition in CON. After accounting for processing speed, smaller rcACC surface area was associated with worse (i.e., slower) inhibition regardless of group. Examining processing speed independently, a decrease in rcACC surface area was associated with faster processing speed for CON but not significantly associated with processing speed in AE. Results support the theory that caudal ACC may monitor reaction time in addition to inhibition and highlight the possibility of delayed ACC neurodevelopment in prenatal alcohol exposure. PMID:26025509

  18. Anterior cingulate cortex surface area relates to behavioral inhibition in adolescents with and without heavy prenatal alcohol exposure.

    PubMed

    Migliorini, Robyn; Moore, Eileen M; Glass, Leila; Infante, M Alejandra; Tapert, Susan F; Jones, Kenneth Lyons; Mattson, Sarah N; Riley, Edward P

    2015-10-01

    Prenatal alcohol exposure is associated with behavioral disinhibition, yet the brain structure correlates of this deficit have not been determined with sufficient detail. We examined the hypothesis that the structure of the anterior cingulate cortex (ACC) relates to inhibition performance in youth with histories of heavy prenatal alcohol exposure (AE, n = 32) and non-exposed controls (CON, n = 21). Adolescents (12-17 years) underwent structural magnetic resonance imaging yielding measures of gray matter volume, surface area, and thickness across four ACC subregions. A subset of subjects were administered the NEPSY-II Inhibition subtest. MANCOVA was utilized to test for group differences in ACC and inhibition performance and multiple linear regression was used to probe ACC-inhibition relationships. ACC surface area was significantly smaller in AE, though this effect was primarily driven by reduced right caudal ACC (rcACC). AE also performed significantly worse on inhibition speed but not on inhibition accuracy. Regression analyses with the rcACC revealed a significant group × ACC interaction. A smaller rcACC surface area was associated with slower inhibition completion time for AE but was not significantly associated with inhibition in CON. After accounting for processing speed, smaller rcACC surface area was associated with worse (i.e., slower) inhibition regardless of group. Examining processing speed independently, a decrease in rcACC surface area was associated with faster processing speed for CON but not significantly associated with processing speed in AE. Results support the theory that caudal ACC may monitor reaction time in addition to inhibition and highlight the possibility of delayed ACC neurodevelopment in prenatal alcohol exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Persistent antidepressant effect of low-dose ketamine and activation in the supplementary motor area and anterior cingulate cortex in treatment-resistant depression: A randomized control study.

    PubMed

    Chen, Mu-Hong; Li, Cheng-Ta; Lin, Wei-Chen; Hong, Chen-Jee; Tu, Pei-Chi; Bai, Ya-Mei; Cheng, Chih-Ming; Su, Tung-Ping

    2018-01-01

    A single low-dose ketamine infusion exhibited a rapid antidepressant effect within 1h. Despite its short biological half-life (approximately 3h), the antidepressant effect of ketamine has been demonstrated to persist for several days. However, changes in brain function responsible for the persistent antidepressant effect of a single low-dose ketamine infusion remain unclear METHODS: Twenty-four patients with treatment-resistant depression (TRD) were randomized into three groups according to the treatment received: 0.5mg/kg ketamine, 0.2mg/kg ketamine, and normal saline infusion. Standardized uptake values (SUVs) of glucose metabolism measured through 18 F-FDG positron-emission-tomography before infusion and 1day after a 40-min ketamine or normal saline infusion were used for subsequent whole-brain voxel-wise analysis and were correlated with depressive symptoms, as defined using the Hamilton Depression Rating Scale-17 (HDRS-17) score RESULTS: The voxel-wise analysis revealed that patients with TRD receiving the 0.5mg/kg ketamine infusion had significantly higher SUVs (corrected for family-wise errors, P = 0.014) in the supplementary motor area (SMA) and dorsal anterior cingulate cortex (dACC) than did those receiving the 0.2mg/kg ketamine infusion. The increase in the SUV in the dACC was negatively correlated with depressive symptoms at 1day after ketamine infusion DISCUSSION: The persistent antidepressant effect of a 0.5mg/kg ketamine infusion may be mediated by increased activation in the SMA and dACC. The higher increase in dACC activation was related to the reduction in depressive symptoms after ketamine infusion. A 0.5mg/kg ketamine infusion facilitated the glutamatergic neurotransmission in the SMA and dACC, which may be responsible for the persistent antidepressant effect of ketamine much beyond its half-life. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Dorsal Anterior Cingulate Cortex Responses to Repeated Social Evaluative Feedback in Young Women with and without a History of Depression

    PubMed Central

    Dedovic, Katarina; Slavich, George M.; Muscatell, Keely A.; Irwin, Michael R.; Eisenberger, Naomi I.

    2016-01-01

    The dorsal anterior cingulate cortex (dACC) is recruited when a person is socially rejected or negatively evaluated. However, it remains to be fully understood how this region responds to repeated exposure to personally-relevant social evaluation, in both healthy populations and those vulnerable to Major Depressive Disorder (MDD), as well as how responding in these regions is associated with subsequent clinical functioning. To address this gap in the literature, we recruited 17 young women with past history of MDD (previously depressed) and 31 healthy controls and exposed them to a social evaluative session in a neuroimaging environment. In two bouts, participants received an equal amount of positive, negative, and neutral feedback from a confederate. All participants reported increases in feelings of social evaluation in response to the evaluative task. However, compared to healthy controls, previously depressed participants tended to show greater increases in depressed mood following the task. At the neural level, in response to negative (vs. positive) feedback, no main effect of group or evaluation periods was observed. However, a significant interaction between group and evaluation periods was found. Specifically, over the two bouts of evaluation, activity in the dACC decreased among healthy participants while it increased among previously depressed individuals. Interestingly and unexpectedly, in the previously depressed group specifically, this increased activity in dACC over time was associated with lower levels of depressive symptoms at baseline and at 6-months following the evaluation session (controlling for baseline levels). Thus, the subset of previously depressed participants who showed increases in the recruitment of the dACC over time in response to the negative evaluation seemed to fair better emotionally. These findings suggest that examining how the dACC responds to repeated bouts of negative evaluation reveals a new dimension to the role of the dACC in processing exclusion and contributing to mental health outcomes in a population vulnerable to MDD. Further, investigation of the dynamics of the dACC response to negative social evaluation is warranted. PMID:27065828

  1. Altered functional connectivity between the insula and the cingulate cortex in patients with temporomandibular disorder: a pilot study.

    PubMed

    Ichesco, Eric; Quintero, Andres; Clauw, Daniel J; Peltier, Scott; Sundgren, Pia M; Gerstner, Geoffrey E; Schmidt-Wilcke, Tobias

    2012-03-01

    Among the most common chronic pain conditions, yet poorly understood, are temporomandibular disorders (TMDs), with a prevalence estimate of 3-15% for Western populations. Although it is increasingly acknowledged that central nervous system mechanisms contribute to pain amplification and chronicity in TMDs, further research is needed to unravel neural correlates that might abet the development of chronic pain. The insular cortex (IC) and cingulate cortex (CC) are both critically involved in the experience of pain. The current study sought specifically to investigate IC-CC functional connectivity in TMD patients and healthy controls (HCs), both during resting state and during the application of a painful stimulus. Eight patients with TMD, and 8 age- and sex-matched HCs were enrolled in the present study. Functional magnetic resonance imaging data during resting state and during the performance of a pressure pain stimulus to the temple were acquired. Predefined seed regions were placed in the IC (anterior and posterior insular cortices) and the extracted signal was correlated with brain activity throughout the whole brain. Specifically, we were interested whether TMD patients and HCs would show differences in IC-CC connectivity, both during resting state and during the application of a painful stimulus to the face. As a main finding, functional connectivity analyses revealed an increased functional connectivity between the left anterior IC and pregenual anterior cingulate cortex (ACC) in TMD patients, during both resting state and applied pressure pain. Within the patient group, there was a negative correlation between the anterior IC-ACC connectivity and clinical pain intensity as measured by a visual analog scale. Since the pregenual region of the ACC is critically involved in antinociception, we hypothesize that an increase in anterior IC-ACC connectivity is indicative of an adaptation of the pain modulatory system early in the chronification process. © 2011 American Headache Society.

  2. Altered Brain Activities Associated with Craving and Cue Reactivity in People with Internet Gaming Disorder: Evidence from the Comparison with Recreational Internet Game Users.

    PubMed

    Wang, Lingxiao; Wu, Lingdan; Wang, Yifan; Li, Hui; Liu, Xiaoyue; Du, Xiaoxia; Dong, Guangheng

    2017-01-01

    Although the neural substrates of cue reactivity in Internet gaming disorder (IGD) have been examined in previous studies, most of these studies focused on the comparison between IGD subjects and healthy controls, which cannot exclude a potential effect of cue-familiarity. To overcome this limitation, the current study focuses on the comparison between IGD subjects and recreational Internet game users (RGU) who play online games recreationally but do not develop dependence. Data from 40 RGU and 30 IGD subjects were collected while they were performing an event-related cue reactivity task in the fMRI scanner. The results showed that the IGD subjects were associated with enhanced activation in the left orbitofrontal cortex (OFC) and decreased activation in the right anterior cingulate cortex (ACC), right precuneus, left precentral gyrus and right postcentral gyrus in comparison with the RGU subjects. OFC is involved in reward evaluation and ACC is implicated in executive control function based on previous researches. Moreover, the activation of OFC were correlated with the desire for game-playing. Thus, the higher activation in OFC might suggests high desire for game playing, and the lower activation in ACC might indicates impaired ability in inhibiting the urge to gaming-related stimuli in IGD subjects. Additionally, decreased activation in the precuneus, the precentral and postcentral gyrus may suggest the deficit in disentangling from game-playing stimuli. These findings explain why IGD subjects develop dependence on game-playing while RGU subjects can play online games recreationally and prevent the transition from voluntary game-playing to eventually IGD.

  3. A functional magnetic resonance imaging study of human brain in pain-related areas induced by electrical stimulation with different intensities.

    PubMed

    Yuan, Wang; Ming, Zhang; Rana, Netra; Hai, Liu; Chen-wang, Jin; Shao-hui, Ma

    2010-01-01

    Pain-related studies have mainly been performed through traditional methods, which lack the rigorous analysis of anatomical locations. Functional magnetic resonance imaging (fMRI) is a noninvasive method detecting neural activity, and has the ability to precisely locate related activations in vivo. Moreover, few studies have used painful stimulation of changed intensity to investigate relevant functioning nuclei in the human brain. This study mainly focused on the pain-related activations induced by electrical stimulation with different intensities using fMRI. Furthermore, the electrophysiological characteristics of different pain-susceptible-neurons were analyzed to construct the pain modulatory network, which was corresponding to painful stimulus of changed intensity. Twelve volunteers underwent functional scanning receiving different electrical stimulation. The data were collected and analyzed to generate the corresponding functional activation maps and response time curves related to pain. The common activations were mainly located in several specific regions, including the secondary somatosensory cortex (SII), insula, anterior cingulate cortex (ACC), thalamus, and other cerebral regions. Moreover, innocuous electrical stimulation primarily activated the lateral portions of SII and thalamus, as well as the posterior insula, anterior ACC, whereas noxious electrical stimulation primarily activated the medial portions of SII and thalamus, as well as the anterior insula, the posterior ACC, with larger extensions and greater intensities. Several specified cerebral regions displayed different response patterns during electrical stimulation by means of fMRI, which implied that the corresponding pain-susceptible-neurons might process specific aspects of pain. Elucidation of functions on pain-related regions will help to understand the delicate pain modulation of human brain.

  4. Parametric modulation of reward sequences during a reversal task in ACC and VMPFC but not amygdala and striatum.

    PubMed

    Becker, Michael P I; Nitsch, Alexander M; Hewig, Johannes; Miltner, Wolfgang H R; Straube, Thomas

    2016-12-01

    Several regions of the frontal cortex interact with striatal and amygdala regions to mediate the evaluation of reward-related information and subsequent adjustment of response choices. Recent theories discuss the particular relevance of dorsal anterior cingulate cortex (dACC) for switching behavior; consecutively, ventromedial prefrontal cortex (VMPFC) is involved in mediating exploitative behaviors by tracking reward values unfolding after the behavioral switch. Amygdala, on the other hand, has been implied in coding the valence of stimulus-outcome associations and the ventral striatum (VS) has consistently been shown to code a reward prediction error (RPE). Here, we used fMRI data acquired in humans during a reversal task to parametrically model different sequences of positive feedback in order to unravel differential contributions of these brain regions to the tracking and exploitation of rewards. Parameters from an Optimal Bayesian Learner accurately predicted the divergent involvement of dACC and VMPFC during feedback processing: dACC signaled the first, but not later, presentations of positive feedback, while VMPFC coded trial-by-trial accumulations in reward value. Our results confirm that dACC carries a prominent confirmatory signal during processing of first positive feedback. Amygdala coded positive feedbacks more uniformly, while striatal regions were associated with RPE. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Down-regulation of NR2B receptors partially contributes to analgesic effects of Gentiopicroside in persistent inflammatory pain.

    PubMed

    Chen, Lei; Liu, Jin-cheng; Zhang, Xiao-nan; Guo, Yan-yan; Xu, Zhao-hui; Cao, Wei; Sun, Xiao-li; Sun, Wen-ji; Zhao, Ming-Gao

    2008-06-01

    Gentiopicroside is one of the secoiridoid compound isolated from Gentiana lutea. It exhibits analgesic activities in the mice. The anterior cingulate cortex (ACC) is a forebrain structure known for its roles in pain transmission and modulation. Painful stimuli potentiate the prefrontal synaptic transmission and induce glutamate NMDA NR2B receptor expression in the ACC. But little is known about Gentiopicroside on the persistent inflammatory pain and chronic pain-induced synaptic transmission changes in the ACC. The present study was undertaken to investigate its analgesic activities and central synaptic modulation to the peripheral painful inflammation. Gentiopicroside produced significant analgesic effects against persistent inflammatory pain stimuli in mice. Systemic administration of Gentiopicroside significantly reversed NR2B over-expression during the chronic phases of persistent inflammation caused by hind-paw administration of complete Freunds adjuvant (CFA) in mice. Whole-cell patch clamp recordings revealed that Gentiopicroside significantly reduced NR2B receptors mediated postsynaptic currents in the ACC. Our findings provide strong evidence that analgesic effects of Gentiopicroside involve down-regulation of NR2B receptors in the ACC to persistent inflammatory pain.

  6. Differentiating between bipolar and unipolar depression in functional and structural MRI studies.

    PubMed

    Han, Kyu-Man; De Berardis, Domenico; Fornaro, Michele; Kim, Yong-Ku

    2018-03-28

    Distinguishing depression in bipolar disorder (BD) from unipolar depression (UD) solely based on clinical clues is difficult, which has led to the exploration of promising neural markers in neuroimaging measures for discriminating between BD depression and UD. In this article, we review structural and functional magnetic resonance imaging (MRI) studies that directly compare UD and BD depression based on neuroimaging modalities including functional MRI studies on regional brain activation or functional connectivity, structural MRI on gray or white matter morphology, and pattern classification analyses using a machine learning approach. Numerous studies have reported distinct functional and structural alterations in emotion- or reward-processing neural circuits between BD depression and UD. Different activation patterns in neural networks including the amygdala, anterior cingulate cortex (ACC), prefrontal cortex (PFC), and striatum during emotion-, reward-, or cognition-related tasks have been reported between BD and UD. A stronger functional connectivity pattern in BD was pronounced in default mode and in frontoparietal networks and brain regions including the PFC, ACC, parietal and temporal regions, and thalamus compared to UD. Gray matter volume differences in the ACC, hippocampus, amygdala, and dorsolateral prefrontal cortex (DLPFC) have been reported between BD and UD, along with a thinner DLPFC in BD compared to UD. BD showed reduced integrity in the anterior part of the corpus callosum and posterior cingulum compared to UD. Several studies performed pattern classification analysis using structural and functional MRI data to distinguish between UD and BD depression using a supervised machine learning approach, which yielded a moderate level of accuracy in classification. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. A Primary Role for Nucleus Accumbens and Related Limbic Network in Vocal Tics.

    PubMed

    McCairn, Kevin W; Nagai, Yuji; Hori, Yukiko; Ninomiya, Taihei; Kikuchi, Erika; Lee, Ju-Young; Suhara, Tetsuya; Iriki, Atsushi; Minamimoto, Takafumi; Takada, Masahiko; Isoda, Masaki; Matsumoto, Masayuki

    2016-01-20

    Inappropriate vocal expressions, e.g., vocal tics in Tourette syndrome, severely impact quality of life. Neural mechanisms underlying vocal tics remain unexplored because no established animal model representing the condition exists. We report that unilateral disinhibition of the nucleus accumbens (NAc) generates vocal tics in monkeys. Whole-brain PET imaging identified prominent, bilateral limbic cortico-subcortical activation. Local field potentials (LFPs) developed abnormal spikes in the NAc and the anterior cingulate cortex (ACC). Vocalization could occur without obvious LFP spikes, however, when phase-phase coupling of alpha oscillations were accentuated between the NAc, ACC, and the primary motor cortex. These findings contrasted with myoclonic motor tics induced by disinhibition of the dorsolateral putamen, where PET activity was confined to the ipsilateral sensorimotor system and LFP spikes always preceded motor tics. We propose that vocal tics emerge as a consequence of dysrhythmic alpha coupling between critical nodes in the limbic and motor networks. VIDEO ABSTRACT. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The Neural Correlates of Mindful Awareness: A Possible Buffering Effect on Anxiety-Related Reduction in Subgenual Anterior Cingulate Cortex Activity

    PubMed Central

    Hakamata, Yuko; Iwase, Mikio; Kato, Takashi; Senda, Kohei; Inada, Toshiya

    2013-01-01

    Background Human personality consists of two fundamental elements character and temperament. Character allays automatic and preconceptual emotional responses determined by temperament. However, the neurobiological basis of character and its interplay with temperament remain elusive. Here, we examined character-temperament interplay and explored the neural basis of character, with a particular focus on the subgenual anterior cingulate cortex extending to a ventromedial portion of the prefrontal cortex (sgACC/vmPFC). Methods Resting brain glucose metabolism (GM) was measured using [18F] fluorodeoxyglucose positron emission tomography in 140 healthy adults. Personality traits were assessed using the Temperament and Character Inventory. Regions of interest (ROI) analysis and whole-brain analysis were performed to examine a combination effect of temperament and character on the sgACC/vmPFC and to explore the neural correlates of character, respectively. Results Harm avoidance (HA), a temperament trait (i.e., depressive, anxious, vulnerable), showed a significant negative impact on the sgACC/vmPFC GM, whereas self-transcendence (ST), a character trait (i.e., intuitive, judicious, spiritual), exhibited a significant positive effect on GM in the same region (HA β = −0.248, p = 0.003; ST: β = 0.250, p = 0.003). In addition, when coupled with strong ST, individuals with strong HA maintained the sgACC/vmPFC GM level comparable to the level of those with low scores on both HA and ST. Furthermore, exploratory whole-brain analysis revealed a significant positive relationship between ST and sgACC/vmPFC GM (peak voxel at x = −8, y = 32, z = −8, k = 423, Z = 4.41, corrected p FDR = 0.030). Conclusion The current findings indicate that the sgACC/vmPFC might play a critical role in mindful awareness to something beyond as well as in emotional regulation. Developing a sense of mindfulness may temper exaggerated emotional responses in individuals with a risk for or having anxiety and depressive disorders. PMID:24130715

  9. The neural correlates of mindful awareness: a possible buffering effect on anxiety-related reduction in subgenual anterior cingulate cortex activity.

    PubMed

    Hakamata, Yuko; Iwase, Mikio; Kato, Takashi; Senda, Kohei; Inada, Toshiya

    2013-01-01

    Human personality consists of two fundamental elements character and temperament. Character allays automatic and preconceptual emotional responses determined by temperament. However, the neurobiological basis of character and its interplay with temperament remain elusive. Here, we examined character-temperament interplay and explored the neural basis of character, with a particular focus on the subgenual anterior cingulate cortex extending to a ventromedial portion of the prefrontal cortex (sgACC/vmPFC). Resting brain glucose metabolism (GM) was measured using [(18)F] fluorodeoxyglucose positron emission tomography in 140 healthy adults. Personality traits were assessed using the Temperament and Character Inventory. Regions of interest (ROI) analysis and whole-brain analysis were performed to examine a combination effect of temperament and character on the sgACC/vmPFC and to explore the neural correlates of character, respectively. Harm avoidance (HA), a temperament trait (i.e., depressive, anxious, vulnerable), showed a significant negative impact on the sgACC/vmPFC GM, whereas self-transcendence (ST), a character trait (i.e., intuitive, judicious, spiritual), exhibited a significant positive effect on GM in the same region (HA β = -0.248, p = 0.003; ST: β = 0.250, p = 0.003). In addition, when coupled with strong ST, individuals with strong HA maintained the sgACC/vmPFC GM level comparable to the level of those with low scores on both HA and ST. Furthermore, exploratory whole-brain analysis revealed a significant positive relationship between ST and sgACC/vmPFC GM (peak voxel at x = -8, y = 32, z = -8, k = 423, Z = 4.41, corrected p (FDR) = 0.030). The current findings indicate that the sgACC/vmPFC might play a critical role in mindful awareness to something beyond as well as in emotional regulation. Developing a sense of mindfulness may temper exaggerated emotional responses in individuals with a risk for or having anxiety and depressive disorders.

  10. Neural network underlying ictal pouting ("chapeau de gendarme") in frontal lobe epilepsy.

    PubMed

    Souirti, Zouhayr; Landré, Elisabeth; Mellerio, Charles; Devaux, Bertrand; Chassoux, Francine

    2014-08-01

    In order to determine the anatomical neural network underlying ictal pouting (IP), with the mouth turned down like a "chapeau de gendarme", in frontal lobe epilepsy (FLE), we reviewed the video-EEG recordings of 36 patients with FLE who became seizure-free after surgery. We selected the cases presenting IP, defined as a symmetrical and sustained (>5s) lowering of labial commissures with contraction of chin, mimicking an expression of fear, disgust, or menace. Ictal pouting was identified in 11 patients (8 males; 16-48 years old). We analyzed the clinical semiology, imaging, and electrophysiological data associated with IP, including FDG-PET in 10 and SEEG in 9 cases. In 37 analyzed seizures (2-7/patient), IP was an early symptom, occurring during the first 10s in 9 cases. The main associated features consisted of fear, anguish, vegetative disturbances, behavioral disorders (sudden agitation, insults, and fighting), tonic posturing, and complex motor activities. The epileptogenic zone assessed by SEEG involved the mesial frontal areas, especially the anterior cingulate cortex (ACC) in 8 patients, whereas lateral frontal onset with an early spread to the ACC was seen in the other patient. Ictal pouting associated with emotional changes and hypermotor behavior had high localizing value for rostroventral "affective" ACC, whereas less intense facial expressions were related to the dorsal "cognitive" ACC. Fluorodeoxyglucose positron emission tomography demonstrated the involvement of both the ACC and lateral cortex including the anterior insula in all cases. We propose that IP is sustained by reciprocal mesial and lateral frontal interactions involved in emotional and cognitive processes, in which the ACC plays a pivotal role. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Dissociating prefrontal circuitry in intelligence and memory: neuropsychological correlates of magnetic resonance and diffusion tensor imaging.

    PubMed

    Nestor, Paul G; Ohtani, Toshiyuki; Bouix, Sylvain; Hosokawa, Taiga; Saito, Yukiko; Newell, Dominick T; Kubicki, Marek

    2015-12-01

    We examined intelligence and memory in 25 healthy participants who had both prior magnetic resonance imaging (MRI) of gray matter volumes of medial orbital frontal cortex (mOFC) and rostral anterior cingulate cortex (rACC), along with diffusion tensor imaging (DTI) of posterior and anterior mOFC-rACC white matter microstructure, as assessed by fractional anisotropy (FA). Results showed distinct relationships between these basic structural brain parameters and higher cognition, highlighted by a highly significant correlation of left rACC gray matter volume with memory, and to a lesser extent, though still statistically significant, correlation of left posterior mOFC-rACC FA with intelligence. Regression analyses showed that left posterior mOFC-rACC connections and left rACC gray matter volume each contributed to intelligence, with left posterior mOFC-rACC FA uniquely accounting for between 20.43 and 24.99% of the variance in intelligence, in comparison to 13.54 to 17.98% uniquely explained by left rACC gray matter volume. For memory, only left rACC gray matter volume explained neuropsychological performance, uniquely accounting for a remarkably high portion of individual variation, ranging from 73.61 to 79.21%. These results pointed to differential contributions of white mater microstructure connections and gray matter volumes to individual differences in intelligence and memory, respectively.

  12. Neurophysiology and functional neuroanatomy of pain perception.

    PubMed

    Schnitzler, A; Ploner, M

    2000-11-01

    The traditional view that the cerebral cortex is not involved in pain processing has been abandoned during the past decades based on anatomic and physiologic investigations in animals, and lesion, functional neuroimaging, and neurophysiologic studies in humans. These studies have revealed an extensive central network associated with nociception that consistently includes the thalamus, the primary (SI) and secondary (SII) somatosensory cortices, the insula, and the anterior cingulate cortex (ACC). Anatomic and electrophysiologic data show that these cortical regions receive direct nociceptive thalamic input. From the results of human studies there is growing evidence that these different cortical structures contribute to different dimensions of pain experience. The SI cortex appears to be mainly involved in sensory-discriminative aspects of pain. The SII cortex seems to have an important role in recognition, learning, and memory of painful events. The insula has been proposed to be involved in autonomic reactions to noxious stimuli and in affective aspects of pain-related learning and memory. The ACC is closely related to pain unpleasantness and may subserve the integration of general affect, cognition, and response selection. The authors review the evidence on which the proposed relationship between cortical areas, pain-related neural activations, and components of pain perception is based.

  13. Modulating Emotional Experience Using Electrical Stimulation of the Medial-Prefrontal Cortex: A Preliminary tDCS-fMRI Study.

    PubMed

    Abend, Rany; Sar-El, Roy; Gonen, Tal; Jalon, Itamar; Vaisvaser, Sharon; Bar-Haim, Yair; Hendler, Talma

    2018-05-09

    Implicit regulation of emotions involves medial-prefrontal cortex (mPFC) regions exerting regulatory control over limbic structures. Diminished regulation relates to aberrant mPFC functionality and psychopathology. Establishing means of modulating mPFC functionality could benefit research on emotion and its dysregulation. Here, we tested the capacity of transcranial direct current stimulation (tDCS) targeting mPFC to modulate subjective emotional states by facilitating implicit emotion regulation. Stimulation was applied concurrently with functional magnetic resonance imaging to validate its neurobehavioral effect. Sixteen participants were each scanned twice, counterbalancing active and sham tDCS application, while undergoing negative mood induction (clips featuring negative vs. neutral contents). Effects of stimulation on emotional experience were assessed using subjective and neural measures. Subjectively, active stimulation led to significant reduction in reported intensity of experienced emotions to negatively valenced (p = 0.005) clips but not to neutral clips (p > 0.99). Active stimulation further mitigated a rise in stress levels from pre- to post-induction (sham: p = 0.004; active: p = 0.15). Neurally, stimulation increased activation in mPFC regions associated with implicit emotion regulation (ventromedial-prefrontal cortex; subgenual anterior-cingulate cortex, sgACC), and in ventral striatum, a core limbic structure (all ps < 0.05). Stimulation also altered functional connectivity (assessed using whole-brain psycho-physiological interaction) between these regions, and with additional limbic regions. Stimulation-induced sgACC activation correlated with reported emotion intensity and depressive symptoms (rs > 0.64, ps < 0.018), suggesting individual differences in stimulation responsivity. Results of this study indicate the potential capacity of tDCS to facilitate brain activation in mPFC regions underlying implicit regulation of emotion and accordingly modulate subjective emotional experiences. © 2018 International Neuromodulation Society.

  14. Smoking reduces conflict-related anterior cingulate activity in abstinent cigarette smokers performing a Stroop task.

    PubMed

    Azizian, Allen; Nestor, Liam J; Payer, Doris; Monterosso, John R; Brody, Arthur L; London, Edythe D

    2010-02-01

    Prior research suggests that abrupt initiation of abstinence from cigarette smoking reduces neural cognitive efficiency. When cognitive efficiency is high, processing speed and accuracy are maximized with minimal allocation of cognitive resources. The study presented here tested the effects of resumption of smoking on cognitive response conflict after overnight abstinence from smoking, hypothesizing that smoking would enhance cognitive efficiency. Twenty paid research volunteers who were chronic cigarette smokers abstained from smoking overnight (>12 h) before undergoing fMRI while performing a color-word Stroop task during two separate test sessions: one that did not include smoking before testing and another one that did. Statistical analyses were performed by modeling the Stroop effect (incongruent >congruent) BOLD response within a collection of a priori regions of interest that have consistently been associated with cognitive control. Behavioral assessment alone did not reveal any significant differences in the Stroop effect between the two sessions. BOLD activations, however, indicated that in the right anterior cingulate cortex (ACC), smokers had significantly less task-related activity following smoking (p<0.02). In contrast, the right middle frontal gyrus exhibited significantly greater activity after smoking as compared to the no-smoking session (p<0.003). Exaggerated neural activity in the ACC during nicotine withdrawal may reflect a compensatory mechanism by which cognitive control networks expend excessive energy to support selective attention processes. Resumption of smoking may enhance cognitive control in smokers, involving a reduction in ACC response conflict activity together with improvement in conflict resolution involving the dorsolateral prefrontal cortex.

  15. Double dissociation of value computations in orbitofrontal and anterior cingulate neurons

    PubMed Central

    Kennerley, Steven W.; Behrens, Timothy E. J.; Wallis, Jonathan D.

    2011-01-01

    Damage to prefrontal cortex (PFC) impairs decision-making, but the underlying value computations that might cause such impairments remain unclear. Here we report that value computations are doubly dissociable within PFC neurons. While many PFC neurons encoded chosen value, they used opponent encoding schemes such that averaging the neuronal population eliminated value coding. However, a special population of neurons in anterior cingulate cortex (ACC) - but not orbitofrontal cortex (OFC) - multiplex chosen value across decision parameters using a unified encoding scheme, and encoded reward prediction errors. In contrast, neurons in OFC - but not ACC - encoded chosen value relative to the recent history of choice values. Together, these results suggest complementary valuation processes across PFC areas: OFC neurons dynamically evaluate current choices relative to recent choice values, while ACC neurons encode choice predictions and prediction errors using a common valuation currency reflecting the integration of multiple decision parameters. PMID:22037498

  16. Voluntary modulation of anterior cingulate response to negative feedback.

    PubMed

    Shane, Matthew S; Weywadt, Christina R

    2014-01-01

    Anterior cingulate and medial frontal cortex (dACC/mFC) response to negative feedback represents the actions of a generalized error-monitoring system critical for the management of goal-directed behavior. Magnitude of dACC/mFC response to negative feedback correlates with levels of post-feedback behavioral change, and with proficiency of operant learning processes. With this in mind, it follows that an ability to alter dACC/mFC response to negative feedback may lead to representative changes in operant learning proficiency. To this end, the present study investigated the extent to which healthy individuals would show modulation of their dACC/mFC response when instructed to try to either maximize or minimize their neural response to the presentation of contingent negative feedback. Participants performed multiple runs of a standard time-estimation task, during which they received feedback regarding their ability to accurately estimate a one-second duration. On Watch runs, participants were simply instructed to try to estimate as closely as possible the one second duration. On Increase and Decrease runs, participants performed the same task, but were instructed to "try to increase [decrease] their brain's response every time they received negative feedback". Results indicated that participants showed changes in dACC/mFC response under these differing instructional conditions: dACC/mFC activity following negative feedback was higher in the Increase condition, and dACC activity trended lower in the Decrease condition, compared to the Watch condition. Moreover, dACC activity correlated with post-feedback performance adjustments, and these adjustments were highest in the Increase condition. Potential implications for neuromodulation and facilitated learning are discussed.

  17. Conflict effects without conflict in anterior cingulate cortex: multiple response effects and context specific representations

    PubMed Central

    Brown, Joshua W.

    2009-01-01

    The error likelihood computational model of anterior cingulate cortex (ACC) (Brown & Braver, 2005) has successfully predicted error likelihood effects, risk prediction effects, and how individual differences in conflict and error likelihood effects vary with trait differences in risk aversion. The same computational model now makes a further prediction that apparent conflict effects in ACC may result in part from an increasing number of simultaneously active responses, regardless of whether or not the cued responses are mutually incompatible. In Experiment 1, the model prediction was tested with a modification of the Eriksen flanker task, in which some task conditions require two otherwise mutually incompatible responses to be generated simultaneously. In that case, the two response processes are no longer in conflict with each other. The results showed small but significant medial PFC effects in the incongruent vs. congruent contrast, despite the absence of response conflict, consistent with model predictions. This is the multiple response effect. Nonetheless, actual response conflict led to greater ACC activation, suggesting that conflict effects are specific to particular task contexts. In Experiment 2, results from a change signal task suggested that the context dependence of conflict signals does not depend on error likelihood effects. Instead, inputs to ACC may reflect complex and task specific representations of motor acts, such as bimanual responses. Overall, the results suggest the existence of a richer set of motor signals monitored by medial PFC and are consistent with distinct effects of multiple responses, conflict, and error likelihood in medial PFC. PMID:19375509

  18. Neural Systems Underlying Emotional and Non-emotional Interference Processing: An ALE Meta-Analysis of Functional Neuroimaging Studies

    PubMed Central

    Xu, Min; Xu, Guiping; Yang, Yang

    2016-01-01

    Understanding how the nature of interference might influence the recruitments of the neural systems is considered as the key to understanding cognitive control. Although, interference processing in the emotional domain has recently attracted great interest, the question of whether there are separable neural patterns for emotional and non-emotional interference processing remains open. Here, we performed an activation likelihood estimation meta-analysis of 78 neuroimaging experiments, and examined common and distinct neural systems for emotional and non-emotional interference processing. We examined brain activation in three domains of interference processing: emotional verbal interference in the face-word conflict task, non-emotional verbal interference in the color-word Stroop task, and non-emotional spatial interference in the Simon, SRC and Flanker tasks. Our results show that the dorsal anterior cingulate cortex (ACC) was recruited for both emotional and non-emotional interference. In addition, the right anterior insula, presupplementary motor area (pre-SMA), and right inferior frontal gyrus (IFG) were activated by interference processing across both emotional and non-emotional domains. In light of these results, we propose that the anterior insular cortex may serve to integrate information from different dimensions and work together with the dorsal ACC to detect and monitor conflicts, whereas pre-SMA and right IFG may be recruited to inhibit inappropriate responses. In contrast, the dorsolateral prefrontal cortex (DLPFC) and posterior parietal cortex (PPC) showed different degrees of activation and distinct lateralization patterns for different processing domains, which suggests that these regions may implement cognitive control based on the specific task requirements. PMID:27895564

  19. Neural correlates of true and false belief reasoning.

    PubMed

    Sommer, Monika; Döhnel, Katrin; Sodian, Beate; Meinhardt, Jörg; Thoermer, Claudia; Hajak, Göran

    2007-04-15

    Belief reasoning plays a central role in making inferences about other people's mental states. The ability to reason about false beliefs is considered as a critical test for having a Theory of Mind (ToM). There is some controversy as to whether it is the medial prefrontal cortex (MPFC) or the temporo-parietal junction (TPJ) that is centrally involved in belief reasoning. According to developmental studies of belief reasoning we conducted an fMRI experiment with a carefully controlled paradigm (Sally Anne scenario). We compared false belief reasoning with true belief reasoning in parallel tasks, using a series of cartoon stories depicting transfer of an object unbeknownst to the protagonist (false belief) or with the protagonist witnessing (true belief). The false belief versus true belief contrast revealed activation of the dorsal part of the anterior cingulate cortex (dACC), the right lateral rostral prefrontal cortex and the right TPJ associated with false belief. We suggest that the activation of the dACC and the lateral PFC might be associated with action monitoring and stimulus-independent cognitive processing whereas the activation of the TPJ might be related to the computation of mental representations that create perspective differences, such as a person's false belief that contrasts with reality and therefore might be centrally involved in the decoupling mechanism. Additionally we found common patterns of activation for true and false belief reasoning, including inferior parietal and precuneus activation, but we found no activation of the MPFC or the TPJ in general belief reasoning.

  20. Regulatory brain development: balancing emotion and cognition.

    PubMed

    Perlman, Susan B; Pelphrey, Kevin A

    2010-01-01

    Emotion regulation is a critical aspect of children's social development, yet few studies have examined the brain mechanisms involved in its development. Theoretical accounts have conceptualized emotion regulation as relying on prefrontal control of limbic regions, specifying the anterior cingulate cortex (ACC) as a key brain region. Functional magnetic resonance imaging in 5- to 11-year-olds during emotion regulation and processing of emotionally expressive faces revealed that older children preferentially recruited the more dorsal “cognitive” areas of the ACC, while younger children preferentially engaged the more ventral “emotional” areas. Additionally, children with more fearful temperaments exhibited more ventral ACC activity while less fearful children exhibited increased activity in the dorsal ACC. These findings provide insight into a potential neurobiological mechanism underlying well-documented behavioral and cognitive changes from more emotional to more cognitive regulatory strategies with increasing age, as well as individual differences in this developmental process as a function of temperament. Our results hold important implications for our understanding of normal development and should also help to inform our understanding and management of emotional disorders. © 2010 Psychology Press

  1. Linear increases in BOLD response associated with increasing proportion of incongruent trials across time in a colour Stroop task.

    PubMed

    Mitchell, Rachel L C

    2010-05-01

    Selective attention is popularly assessed with colour Stroop tasks in which participants name the ink colour of colour words, whilst resisting interference from the natural tendency to read the words. Prior studies hinted that the key brain regions (dorsolateral prefrontal (dlPFC) and anterior cingulate cortex (ACC)) may vary their degree of involvement, dependent on attentional demand. This study aimed to determine whether a parametrically varied increase in attentional demand resulted in linearly increased activity in these regions, and/or whether additional regions would be recruited during high attentional demand. Twenty-eight healthy young adults underwent fMRI whilst naming the font colour of colour words. Linear increases in BOLD response were assessed with increasing percentage incongruent trials per block (0, 20, 40, 60, 80, and 100%). Whilst ACC activation increased linearly according to incongruity level, dlPFC activity appeared constant. Together with behavioural evidence of reduced Stroop interference, these data support a load-dependent conflict-related response in ACC, but not dlPFC.

  2. The interactive effect of social pain and executive functioning on aggression: an fMRI experiment

    PubMed Central

    Eisenberger, Naomi I.; Pond, Richard S.; Richman, Stephanie B.; Bushman, Brad J.; DeWall, C. Nathan

    2014-01-01

    Social rejection often increases aggression, but the neural mechanisms underlying this effect remain unclear. This experiment tested whether neural activity in the dorsal anterior cingulate cortex (dACC) and anterior insula in response to social rejection predicted greater subsequent aggression. Additionally, it tested whether executive functioning moderated this relationship. Participants completed a behavioral measure of executive functioning, experienced social rejection while undergoing functional magnetic resonance imaging and then completed a task in which they could aggress against a person who rejected them using noise blasts . We found that dACC activation and executive functioning interacted to predict aggression. Specifically, participants with low executive functioning showed a positive association between dACC activation and aggression, whereas individuals with high executive functioning showed a negative association. Similar results were found for the left anterior insula. These findings suggest that social pain can increase or decrease aggression, depending on an individual’s regulatory capability. PMID:23482622

  3. Medial frontal white and gray matter contributions to general intelligence.

    PubMed

    Ohtani, Toshiyuki; Nestor, Paul G; Bouix, Sylvain; Saito, Yukiko; Hosokawa, Taiga; Kubicki, Marek

    2014-01-01

    The medial orbitofrontal cortex (mOFC) and rostral anterior cingulate cortex (rACC) are part of a wider neural network that plays an important role in general intelligence and executive function. We used structural brain imaging to quantify magnetic resonance gray matter volume and diffusion tensor white matter integrity of the mOFC-rACC network in 26 healthy participants who also completed neuropsychological tests of intellectual abilities and executive function. Stochastic tractography, the most effective Diffusion Tensor Imaging method for examining white matter connections between adjacent gray matter regions, was employed to assess the integrity of mOFC-rACC pathways. Fractional anisotropy (FA), which reflects the integrity of white matter connections, was calculated. Results indicated that higher intelligence correlated with greater gray matter volumes for both mOFC and rACC, as well as with increased FA for left posterior mOFC-rACC connectivity. Hierarchical regression analyses revealed that DTI-derived FA of left posterior mOFC-rACC uniquely accounted for 29%-34% of the variance in IQ, in comparison to 11%-16% uniquely explained by gray matter volume of the left rACC. Together, left rACC gray matter volume and white matter connectivity between left posterior mOFC and rACC accounted for up to 50% of the variance in general intelligence. This study is to our knowledge the first to examine white matter connectivity between OFC and ACC, two gray matter regions of interests that are very close in physical proximity, and underscores the important independent contributions of variations in rACC gray matter volume and mOFC-rACC white matter connectivity to individual differences in general intelligence.

  4. Partially dissociable roles of OFC and ACC in stimulus-guided and action-guided decision making.

    PubMed

    Khani, Abbas

    2014-05-01

    Recently, the functional specialization of prefrontal areas of the brain, and, specifically, the functional dissociation of the orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC), during decision making have become a particular focus of research. A number of neuropsychological and lesion studies have shown that the OFC and ACC have dissociable functions in various dimensions of decision making, which are supported by their different anatomical connections. A recent single-neuron study, however, described a more complex picture of the functional dissociation between these two frontal regions during decision making. Here, I discuss the results of that study and consider alternative interpretations in connection with other findings.

  5. A dual but asymmetric role of the dorsal anterior cingulate cortex in response inhibition and switching from a non-salient to salient action

    PubMed Central

    Manza, Peter; Hu, Sien; Chao, Herta H.; Zhang, Sheng; Leung, Hoi-Chung; Li, Chiang-shan R.

    2016-01-01

    Response inhibition and salience detection are among the most studied psychological constructs of cognitive control. Despite a growing body of work, how inhibition and salience processing interact and engage regional brain activations remains unclear. Here, we examined this issue in a stop signal task (SST), where a prepotent response needs to be inhibited to allow an alternative, less dominant response. Sixteen adult individuals performed two versions of the SST each with 25% (SST25) and 75% (SST75) of stop trials. We posited that greater regional activations to the infrequent trial type in each condition (i.e., to stop as compared to go trials in SST25 and to go as compared to stop trials in SST75) support salience detection. Further, successful inhibition in stop trials requires attention to the stop signal to trigger motor inhibition, and the stop signal reaction time (SSRT) has been used to index the efficiency of motor response inhibition. Therefore, greater regional activations to stop as compared to go success trials in association with the stop signal reaction time (SSRT) serves to expedite response inhibition. In support of an interactive role, the dorsal anterior cingulate cortex (dACC) increases activation to salience detection in both SST25 and SST75, but only mediates response inhibition in SST75. Thus, infrequency response in the dACC supports motor inhibition only when stopping has become a routine. In contrast, although the evidence is less robust, the pre-supplementary motor area (pre-SMA) increases activity to the infrequent stimulus and supports inhibition in both SST25 and SST75. These findings clarify a unique role of the dACC and add to the literature that distinguishes dACC and pre-SMA functions in cognitive control. PMID:27126003

  6. A dual but asymmetric role of the dorsal anterior cingulate cortex in response inhibition and switching from a non-salient to salient action.

    PubMed

    Manza, Peter; Hu, Sien; Chao, Herta H; Zhang, Sheng; Leung, Hoi-Chung; Li, Chiang-Shan R

    2016-07-01

    Response inhibition and salience detection are among the most studied psychological constructs of cognitive control. Despite a growing body of work, how inhibition and salience processing interact and engage regional brain activations remains unclear. Here, we examined this issue in a stop signal task (SST), where a prepotent response needs to be inhibited to allow an alternative, less dominant response. Sixteen adult individuals performed two versions of the SST each with 25% (SST25) and 75% (SST75) of stop trials. We posited that greater regional activations to the infrequent trial type in each condition (i.e., to stop as compared to go trials in SST25 and to go as compared to stop trials in SST75) support salience detection. Further, successful inhibition in stop trials requires attention to the stop signal to trigger motor inhibition, and the stop signal reaction time (SSRT) has been used to index the efficiency of motor response inhibition. Therefore, greater regional activations to stop as compared to go success trials in association with the stop signal reaction time (SSRT) serve to expedite response inhibition. In support of an interactive role, the dorsal anterior cingulate cortex (dACC) increases activation to salience detection in both SST25 and SST75, but only mediates response inhibition in SST75. Thus, infrequency response in the dACC supports motor inhibition only when stopping has become a routine. In contrast, although the evidence is less robust, the pre-supplementary motor area (pre-SMA) increases activity to the infrequent stimulus and supports inhibition in both SST25 and SST75. These findings clarify a unique role of the dACC and add to the literature that distinguishes dACC and pre-SMA functions in cognitive control. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The impact of hypoglycaemia awareness status on regional brain responses to acute hypoglycaemia in men with type 1 diabetes.

    PubMed

    Dunn, Joel T; Choudhary, Pratik; Teh, Ming Ming; Macdonald, Ian; Hunt, Katharine F; Marsden, Paul K; Amiel, Stephanie A

    2018-05-12

    Impaired awareness of hypoglycaemia (IAH) in type 1 diabetes increases the risk of severe hypoglycaemia sixfold and can be resistant to intervention. We explored the impact of IAH on central responses to hypoglycaemia to investigate the mechanisms underlying barriers to therapeutic intervention. We conducted [ 15 O]water positron emission tomography studies of regional brain perfusion during euglycaemia (target 5 mmol/l), hypoglycaemia (achieved level, 2.4 mmol/l) and recovery (target 5 mmol/l) in 17 men with type 1 diabetes: eight with IAH, and nine with intact hypoglycaemia awareness (HA). Hypoglycaemia with HA was associated with increased activation in brain regions including the thalamus, insula, globus pallidus (GP), anterior cingulate cortex (ACC), orbital cortex, dorsolateral frontal (DLF) cortex, angular gyrus and amygdala; deactivation occurred in the temporal and parahippocampal regions. IAH was associated with reduced catecholamine and symptom responses to hypoglycaemia vs HA (incremental AUC: autonomic scores, 26.2 ± 35.5 vs 422.7 ± 237.1; neuroglycopenic scores, 34.8 ± 88.8 vs 478.9 ± 311.1; both p < 0.002). There were subtle differences (p < 0.005, k ≥ 50 voxels) in brain activation at hypoglycaemia, including early differences in the right central operculum, bilateral medial orbital (MO) cortex, and left posterior DLF cortex, with additional differences in the ACC, right GP and post- and pre-central gyri in established hypoglycaemia, and lack of deactivation in temporal regions in established hypoglycaemia. Differences in activation in the post- and pre-central gyri may be expected in people with reduced subjective responses to hypoglycaemia. Alterations in the activity of regions involved in the drive to eat (operculum), emotional salience (MO cortex), aversion (GP) and recall (temporal) suggest differences in the perceived importance and urgency of responses to hypoglycaemia in IAH compared with HA, which may be key to the persistence of the condition.

  8. Preserved Self-Awareness following Extensive Bilateral Brain Damage to the Insula, Anterior Cingulate, and Medial Prefrontal Cortices

    PubMed Central

    Khalsa, Sahib S.; Damasio, Antonio; Tranel, Daniel; Landini, Gregory; Williford, Kenneth

    2012-01-01

    It has been proposed that self-awareness (SA), a multifaceted phenomenon central to human consciousness, depends critically on specific brain regions, namely the insular cortex, the anterior cingulate cortex (ACC), and the medial prefrontal cortex (mPFC). Such a proposal predicts that damage to these regions should disrupt or even abolish SA. We tested this prediction in a rare neurological patient with extensive bilateral brain damage encompassing the insula, ACC, mPFC, and the medial temporal lobes. In spite of severe amnesia, which partially affected his “autobiographical self”, the patient's SA remained fundamentally intact. His Core SA, including basic self-recognition and sense of self-agency, was preserved. His Extended SA and Introspective SA were also largely intact, as he has a stable self-concept and intact higher-order metacognitive abilities. The results suggest that the insular cortex, ACC and mPFC are not required for most aspects of SA. Our findings are compatible with the hypothesis that SA is likely to emerge from more distributed interactions among brain networks including those in the brainstem, thalamus, and posteromedial cortices. PMID:22927899

  9. Role of the Perigenual Anterior Cingulate and Orbitofrontal Cortex in Contingency Learning in the Marmoset

    PubMed Central

    Jackson, Stacey A. W.; Horst, Nicole K.; Pears, Andrew; Robbins, Trevor W.; Roberts, Angela C.

    2016-01-01

    Two learning mechanisms contribute to decision-making: goal-directed actions and the “habit” system, by which action-outcome and stimulus-response associations are formed, respectively. Rodent lesion studies and human neuroimaging have implicated both the medial prefrontal cortex (mPFC) and the orbitofrontal cortex (OFC) in the neural basis of contingency learning, a critical component of goal-directed actions, though some published findings are conflicting. We sought to reconcile the existing literature by comparing the effects of excitotoxic lesions of the perigenual anterior cingulate cortex (pgACC), a region of the mPFC, and OFC on contingency learning in the marmoset monkey using a touchscreen-based paradigm, in which the contingent relationship between one of a pair of actions and its outcome was degraded selectively. Both the pgACC and OFC lesion groups were insensitive to the contingency degradation, whereas the control group demonstrated selectively higher performance of the nondegraded action when compared with the degraded action. These findings suggest the pgACC and OFC are both necessary for normal contingency learning and therefore goal-directed behavior. PMID:27130662

  10. Physiological and psychological individual differences influence resting brain function measured by ASL perfusion.

    PubMed

    Kano, M; Coen, S J; Farmer, A D; Aziz, Q; Williams, S C R; Alsop, D C; Fukudo, S; O'Gorman, R L

    2014-09-01

    Effects of physiological and/or psychological inter-individual differences on the resting brain state have not been fully established. The present study investigated the effects of individual differences in basal autonomic tone and positive and negative personality dimensions on resting brain activity. Whole-brain resting cerebral perfusion images were acquired from 32 healthy subjects (16 males) using arterial spin labeling perfusion MRI. Neuroticism and extraversion were assessed with the Eysenck Personality Questionnaire-Revised. Resting autonomic activity was assessed using a validated measure of baseline cardiac vagal tone (CVT) in each individual. Potential associations between the perfusion data and individual CVT (27 subjects) and personality score (28 subjects) were tested at the level of voxel clusters by fitting a multiple regression model at each intracerebral voxel. Greater baseline perfusion in the dorsal anterior cingulate cortex (ACC) and cerebellum was associated with lower CVT. At a corrected significance threshold of p < 0.01, strong positive correlations were observed between extraversion and resting brain perfusion in the right caudate, brain stem, and cingulate gyrus. Significant negative correlations between neuroticism and regional cerebral perfusion were identified in the left amygdala, bilateral insula, ACC, and orbitofrontal cortex. These results suggest that individual autonomic tone and psychological variability influence resting brain activity in brain regions, previously shown to be associated with autonomic arousal (dorsal ACC) and personality traits (amygdala, caudate, etc.) during active task processing. The resting brain state may therefore need to be taken into account when interpreting the neurobiology of individual differences in structural and functional brain activity.

  11. Individual Differences in Risk Preference Predict Neural Responses during Financial Decision-Making

    PubMed Central

    Engelmann, Jan B.; Tamir, Diana

    2009-01-01

    We investigated the neural correlates of subjective valuations during a task involving risky choices about lotteries. Because expected value was held constant across all lotteries, decisions were influenced by subjective preferences, which manifest behaviorally as risk-seeking or risk-averse attitudes. To isolate structures encoding risk preference during choice, we probed for areas showing increased activation as a function of selected risk-level. Such response patterns were obtained in anterior (ACC) and posterior cingulate cortex (PCC), superior frontal gyrus, caudate nucleus, and substantia nigra. Behavioral results revealed the presence of risk-averse and risk-neutral individuals. In parallel, brain signals revealed modulation of activity by risk-attitude during choice. Correlations between risk-seeking attitudes and neural activity during risky choice were obtained in superior and inferior frontal gyri, medial and lateral orbitofrontal cortex, and parahippocampal gyrus, while correlations with risk-averse attitudes were found in the caudate. The dynamics of neural responses relevant to each stage of the task (decision, anticipation, outcome) were investigated via timeseries and conjunction analyses. Though the networks engaged in each of the task stages were mostly distinct, regions of ACC, PCC and caudate were consistently activated during each decision-making phase. These results demonstrate (1) that subjective assessments of risk, as well as individual attitudes toward risk, play a significant role in modulating activity within brain regions recruited during decision-making, and (2) that ACC, PCC and caudate are relevant during each phase of a decision-making task requiring subjective valuations, strengthening the role of these regions in self-referential subjective valuations during choice. PMID:19576868

  12. Approach-bias predicts development of cannabis problem severity in heavy cannabis users: results from a prospective FMRI study.

    PubMed

    Cousijn, Janna; Goudriaan, Anna E; Ridderinkhof, K Richard; van den Brink, Wim; Veltman, Dick J; Wiers, Reinout W

    2012-01-01

    A potentially powerful predictor for the course of drug (ab)use is the approach-bias, that is, the pre-reflective tendency to approach rather than avoid drug-related stimuli. Here we investigated the neural underpinnings of cannabis approach and avoidance tendencies. By elucidating the predictive power of neural approach-bias activations for future cannabis use and problem severity, we aimed at identifying new intervention targets. Using functional Magnetic Resonance Imaging (fMRI), neural approach-bias activations were measured with a Stimulus Response Compatibility task (SRC) and compared between 33 heavy cannabis users and 36 matched controls. In addition, associations were examined between approach-bias activations and cannabis use and problem severity at baseline and at six-month follow-up. Approach-bias activations did not differ between heavy cannabis users and controls. However, within the group of heavy cannabis users, a positive relation was observed between total lifetime cannabis use and approach-bias activations in various fronto-limbic areas. Moreover, approach-bias activations in the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) independently predicted cannabis problem severity after six months over and beyond session-induced subjective measures of craving. Higher DLPFC/ACC activity during cannabis approach trials, but lower activity during cannabis avoidance trials were associated with decreases in cannabis problem severity. These findings suggest that cannabis users with deficient control over cannabis action tendencies are more likely to develop cannabis related problems. Moreover, the balance between cannabis approach and avoidance responses in the DLPFC and ACC may help identify individuals at-risk for cannabis use disorders and may be new targets for prevention and treatment.

  13. Approach-Bias Predicts Development of Cannabis Problem Severity in Heavy Cannabis Users: Results from a Prospective FMRI Study

    PubMed Central

    Cousijn, Janna; Goudriaan, Anna E.; Ridderinkhof, K. Richard; van den Brink, Wim; Veltman, Dick J.; Wiers, Reinout W.

    2012-01-01

    A potentially powerful predictor for the course of drug (ab)use is the approach-bias, that is, the pre-reflective tendency to approach rather than avoid drug-related stimuli. Here we investigated the neural underpinnings of cannabis approach and avoidance tendencies. By elucidating the predictive power of neural approach-bias activations for future cannabis use and problem severity, we aimed at identifying new intervention targets. Using functional Magnetic Resonance Imaging (fMRI), neural approach-bias activations were measured with a Stimulus Response Compatibility task (SRC) and compared between 33 heavy cannabis users and 36 matched controls. In addition, associations were examined between approach-bias activations and cannabis use and problem severity at baseline and at six-month follow-up. Approach-bias activations did not differ between heavy cannabis users and controls. However, within the group of heavy cannabis users, a positive relation was observed between total lifetime cannabis use and approach-bias activations in various fronto-limbic areas. Moreover, approach-bias activations in the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) independently predicted cannabis problem severity after six months over and beyond session-induced subjective measures of craving. Higher DLPFC/ACC activity during cannabis approach trials, but lower activity during cannabis avoidance trials were associated with decreases in cannabis problem severity. These findings suggest that cannabis users with deficient control over cannabis action tendencies are more likely to develop cannabis related problems. Moreover, the balance between cannabis approach and avoidance responses in the DLPFC and ACC may help identify individuals at-risk for cannabis use disorders and may be new targets for prevention and treatment. PMID:22957019

  14. Computational Models of Anterior Cingulate Cortex: At the Crossroads between Prediction and Effort.

    PubMed

    Vassena, Eliana; Holroyd, Clay B; Alexander, William H

    2017-01-01

    In the last two decades the anterior cingulate cortex (ACC) has become one of the most investigated areas of the brain. Extensive neuroimaging evidence suggests countless functions for this region, ranging from conflict and error coding, to social cognition, pain and effortful control. In response to this burgeoning amount of data, a proliferation of computational models has tried to characterize the neurocognitive architecture of ACC. Early seminal models provided a computational explanation for a relatively circumscribed set of empirical findings, mainly accounting for EEG and fMRI evidence. More recent models have focused on ACC's contribution to effortful control. In parallel to these developments, several proposals attempted to explain within a single computational framework a wider variety of empirical findings that span different cognitive processes and experimental modalities. Here we critically evaluate these modeling attempts, highlighting the continued need to reconcile the array of disparate ACC observations within a coherent, unifying framework.

  15. Impulsive Internet Game Play Is Associated With Increased Functional Connectivity Between the Default Mode and Salience Networks in Depressed Patients With Short Allele of Serotonin Transporter Gene.

    PubMed

    Hong, Ji Sun; Kim, Sun Mi; Bae, Sujin; Han, Doug Hyun

    2018-01-01

    Problematic Internet game play is often accompanied by major depressive disorder (MDD). Depression seems to be closely related to altered functional connectivity (FC) within (and between) the default mode network (DMN) and salience network. In addition, serotonergic neurotransmission may regulate the symptoms of depression, including impulsivity, potentially by modulating the DMN. We hypothesized that altered connectivity between the DMN and salience network could mediate an association between the 5HTTLPR genotype and impulsivity in patients with depression. A total of 54 participants with problematic Internet game play and MDD completed the research protocol. We genotyped for 5HTTLPR and assessed the DMN FC using resting-state functional magnetic resonance imaging. The severity of Internet game play, depressive symptoms, anxiety, attention and impulsivity, and behavioral inhibition and activation were assessed using the Young Internet Addiction Scale (YIAS), Beck Depressive Inventory, Beck Anxiety Inventory (BAI), Korean Attention Deficit Hyperactivity Disorder scale, and the Behavioral Inhibition and Activation Scales (BIS-BAS), respectively. The SS allele was associated with increased FC within the DMN, including the middle prefrontal cortex (MPFC) to the posterior cingulate cortex, and within the salience network, including the right supramarginal gyrus (SMG) to the right rostral prefrontal cortex (RPFC), right anterior insular (AInsular) to right SMG, anterior cingulate cortex (ACC) to left RPFC, and left AInsular to right RPFC, and between the DMN and salience network, including the MPFC to the ACC. In addition, the FC from the MPFC to ACC positively correlated with the BIS and YIAS scores in the SS allele group. The SS allele of 5HTTLPR might modulate the FC within and between the DMN and salience network, which may ultimately be a risk factor for impulsive Internet game play in patients with MDD.

  16. NMDA and AMPA receptors in the anterior cingulate cortex mediates visceral pain in visceral hypersensitivity rats.

    PubMed

    Zhou, Lin; Huang, Junjing; Gao, Jun; Zhang, Guanpo; Jiang, Jinjin

    2014-02-01

    Several studies have shown that N-methyl-D-aspartate (NMDA)-receptor activation in anterior cingulate cortex (ACC) neurons plays critical roles in modulating visceral pain responses in visceral hypersensitivity (VH) rats. However, there are few reports about the expressions of NMDA and α-amino-3-hydroxy-5-methyl-4-isox-azolepropionic-acid (AMPA) receptor subtypes in ACC of VH model rats at different time points. The current study was undertaken to investigate NR2A, NR2B and GluR2 expressions in ACC of VH rats that were induced by administration with 5% mustard oil. Our results indicated that NR2B, but not NR2A, was highly expressed in VH model group on day 15, 22, and 36 compared with normal group (p < 0.05). GluR2 expression was also higher in VH model group on day 15, 22, and 36 than that of normal group (p < 0.05). These findings suggested increased expression of NR2B and GluR2 might be key mechanisms for long-term synaptic plastic changes in VH rats. Copyright © 2014. Published by Elsevier Inc.

  17. Glutamatergic and Resting-State Functional Connectivity Correlates of Severity in Major Depression – The Role of Pregenual Anterior Cingulate Cortex and Anterior Insula

    PubMed Central

    Horn, Dorothea I.; Yu, Chunshui; Steiner, Johann; Buchmann, Julia; Kaufmann, Joern; Osoba, Annemarie; Eckert, Ulf; Zierhut, Kathrin C.; Schiltz, Kolja; He, Huiguang; Biswal, Bharat; Bogerts, Bernhard; Walter, Martin

    2010-01-01

    Glutamatergic mechanisms and resting-state functional connectivity alterations have been recently described as factors contributing to major depressive disorder (MDD). Furthermore, the pregenual anterior cingulate cortex (pgACC) seems to play an important role for major depressive symptoms such as anhedonia and impaired emotion processing. We investigated 22 MDD patients and 22 healthy subjects using a combined magnetic resonance spectroscopy (MRS) and resting-state functional magnetic resonance imaging (fMRI) approach. Severity of depression was rated using the 21-item Hamilton depression scale (HAMD) and patients were divided into severely and mildly depressed subgroups according to HAMD scores. Because of their hypothesized role in depression we investigated the functional connectivity between pgACC and left anterior insular cortex (AI). The sum of Glutamate and Glutamine (Glx) in the pgACC, but not in left AI, predicted the resting-state functional connectivity between the two regions exclusively in depressed patients. Furthermore, functional connectivity between these regions was significantly altered in the subgroup of severely depressed patients (HAMD > 15) compared to healthy subjects and mildly depressed patients. Similarly the Glx ratios, relative to Creatine, in the pgACC were lowest in severely depressed patients. These findings support the involvement of glutamatergic mechanisms in severe MDD which are related to the functional connectivity between pgACC and AI and depression severity. PMID:20700385

  18. Emotional processing in anterior cingulate and medial prefrontal cortex

    PubMed Central

    Etkin, Amit; Egner, Tobias; Kalisch, Raffael

    2010-01-01

    Negative emotional stimuli activate a broad network, including the medial prefrontal (mPFC) and anterior cingulate (ACC) cortices. An early influential view dichotomized these regions into dorsal-caudal “cognitive” and ventral-rostral “affective” subdivisions. In this review, we examine a wealth of recent research on negative emotions in animals and humans, using the example of fear/anxiety, and conclude that, contrary to the traditional dichotomy, both subdivisions make key contributions to emotional processing. Specifically, dorsal-caudal regions of the ACC/mPFC are involved in appraisal and expression of negative emotion, while ventral-rostral portions of the ACC/mPFC have a regulatory role with respect to limbic regions involved in generating emotional responses. Moreover, this new framework is broadly consistent with emerging data on other negative and positive emotions. PMID:21167765

  19. Response to learned threat: an fMRI study in adolescent and adult anxiety

    PubMed Central

    Britton, Jennifer C.; Grillon, Christian; Lissek, Shmuel; Norcross, Maxine A.; Szuhany, Kristin L.; Chen, Gang; Ernst, Monique; Nelson, Eric E.; Leibenluft, Ellen; Shechner, Tomer; Pine, Daniel S.

    2013-01-01

    Objective Poor threat-safety discrimination reflects prefrontal cortex dysfunction in adult anxiety disorders. While adolescent anxiety disorders are impairing and predict high risk for adult anxiety disorders, no prior study examines neural correlates of threat-safety discrimination in this group. The current study compares prefrontal cortex function in anxious and healthy adolescents and adults following conditioning and extinction, processes requiring threat-safety learning. Method Anxious and healthy adolescents and adults (n=114) completed fear conditioning and extinction in the clinic. Conditioned stimuli (CS+) were neutral faces, paired with an aversive scream. Physiological and subjective data were acquired. Several weeks later, 82 participants viewed the CS+ and morphed images resembling the CS+ in a magnetic resonance imaging (MRI) scanner. During scanning, participants made difficult threat-safety discriminations while appraising threat and explicit memory of the CS+. Results During conditioning and extinction, anxious groups reported more fear than healthy groups, but patient groups did not differ on physiology. During imaging, both anxious adolescents and adults exhibited lower sub-genual anterior cingulate (sgACC) activation than healthy peers, specifically when appraising threat. In ventromedial prefrontal cortex (vmPFC), relative to their age-matched peer groups, anxious adults exhibited reduced activation when appraising threat, whereas anxious adolescents exhibited a U-shaped pattern of activation, with greater activation to the most extreme CS and CS−. Conclusions Two regions of the prefrontal cortex are involved in anxiety disorders. Reduced sgACC engagement is a shared feature in adult and adolescent anxiety disorders, but vmPFC dysfunction is age-specific. The unique U-shaped pattern of vmPFC activation in many anxious adolescents could reflect heightened sensitivity to threat and safety conditions. How variations in the pattern relate to later risk for adult illness remains to be determined. PMID:23929092

  20. Strategies influence neural activity for feedback learning across child and adolescent development.

    PubMed

    Peters, Sabine; Koolschijn, P Cédric M P; Crone, Eveline A; Van Duijvenvoorde, Anna C K; Raijmakers, Maartje E J

    2014-09-01

    Learning from feedback is an important aspect of executive functioning that shows profound improvements during childhood and adolescence. This is accompanied by neural changes in the feedback-learning network, which includes pre-supplementary motor area (pre- SMA)/anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC), superior parietal cortex (SPC), and the basal ganglia. However, there can be considerable differences within age ranges in performance that are ascribed to differences in strategy use. This is problematic for traditional approaches of analyzing developmental data, in which age groups are assumed to be homogenous in strategy use. In this study, we used latent variable models to investigate if underlying strategy groups could be detected for a feedback-learning task and whether there were differences in neural activation patterns between strategies. In a sample of 268 participants between ages 8 to 25 years, we observed four underlying strategy groups, which were cut across age groups and varied in the optimality of executive functioning. These strategy groups also differed in neural activity during learning; especially the most optimal performing group showed more activity in DLPFC, SPC and pre-SMA/ACC compared to the other groups. However, age differences remained an important contributor to neural activation, even when correcting for strategy. These findings contribute to the debate of age versus performance predictors of neural development, and highlight the importance of studying individual differences in strategy use when studying development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. A Magnetic Resonance Spectroscopy Study of the Anterior Cingulate Cortex In Youth with Emotional Dysregulation

    PubMed Central

    Wozniak, Janet; Gönenç, Atilla; Biederman, Joseph; Moore, Constance; Joshi, Gagan; Georgiopoulos, Anna; Hammerness, Paul; McKillop, Hannah; Lukas, Scot E.; Henin, Aude

    2017-01-01

    Background The main aim of this study was to use proton Magnetic Resonance Spectroscopy (MRS) to identify brain biomarkers for emotional dysregulation in youth as measured by subscales of the Child Behavior Checklist (CBCL). Methods We measured glutamate (Glu) concentrations in the anterior cingulated cortex (ACC) of 37 pediatric subjects (aged 6-17 years) using high field (4.0 Tesla) proton Magnetic Resonance Spectroscopy (MRS). Subjects were grouped based on combined T scores on three subscales (Anxiety/Depression, Aggression and Attention) of the CBCL previously associated with deficits in the regulation of emotion. Subjects were stratified into those with high (>180) (N=10) and low (<180) (N=27) scores. Limitations Limitations include small sample size, wide age range studied, focus on Anterior Cingulate Cortex (ACC) only, and that some subjects received psychopharmacological treatments. Results We found a statistically significant correlation between Glu levels in the ACC and CBCL dysregulation profile scores among subjects with high dysregulation profile scores. Conclusions These results suggest that glutamatergic dysregulation in the ACC may represent a useful biomarker of emotional dysregulation in youth. Further investigation into the causality, time line and utility as a predictive metric is warranted. PMID:22652930

  2. Functional MRI study of specific animal phobia using an event-related emotional counting stroop paradigm.

    PubMed

    Britton, Jennifer C; Gold, Andrea L; Deckersbach, Thilo; Rauch, Scott L

    2009-01-01

    Emotional interference tasks may be useful in probing anterior cingulate cortex (ACC) function to understand abnormal attentional study in individuals with specific phobia. In a 3 T functional MRI study, individuals with specific phobias of the animal subtype (SAP, n=12) and healthy comparison (HC) adults (n=12) completed an event-related emotional counting Stroop task. Individuals were presented phobia-related, negative, and neutral words and were instructed to report via button press the number of words displayed on each trial. Compared to the HC group, the SAP group exhibited greater rostral ACC activation (i.e., greater response to phobia-related words than neutral words). In this same contrast, HCs exhibited greater right amygdala and posterior insula activations as well as greater thalamic deactivation than the SAP group. Both groups exhibited anterior cingulate, dorsomedial prefrontal cortex, inferior frontal gyrus/insula, and amygdala activations as well as thalamic deactivation. Psychophysiological interaction analysis highlighted a network of activation in these regions in response to phobia-related words in the SAP group. Taken together, these findings implicate a circuit of dysfunction, which is linked to attention abnormalities in individuals with SAP.

  3. Sex differences in extinction recall in posttraumatic stress disorder: A pilot fMRI study

    PubMed Central

    Shvil, Erel; Sullivan, Gregory M.; Schafer, Scott; Markowitz, John C.; Campeas, Miriam; Wager, Tor D.; Milad, Mohammed R.; Neria, Yuval

    2014-01-01

    Recent research has found that individuals with posttraumatic stress disorder (PTSD) exhibit an impaired memory of fear extinction compounded by deficient functional activation of key nodes of the fear network including the amygdala, hippocampus, ventromedial prefrontal cortex (vmPFC) and dorsal anterior cingulate cortex (dACC). Research has shown these regions are sexually dimorphic and activate differentially in healthy men and women during fear learning tasks. To explore biological markers of sex differences following exposure to psychological trauma, we used a fear learning and extinction paradigm together with functional magnetic resonance imaging (fMRI) and skin conductance response (SCR) to assess 31 individuals with PTSD (18 women; 13 men) and 25 matched trauma-exposed healthy control subjects (13 women; 12 men). Whereas no sex differences appeared within the trauma-exposed healthy control group, both psychophysiological and neural activation patterns within the PTSD group indicated deficient recall of extinction memory among men and not among women. Men with PTSD exhibited increased activation in the left rostral dACC during extinction recall compared with women with PTSD. These findings highlight the importance of tracking sex differences in fear extinction when characterizing the underlying neurobiological mechanisms of PTSD psychopathology. PMID:24560771

  4. Altered Brain Activities Associated with Craving and Cue Reactivity in People with Internet Gaming Disorder: Evidence from the Comparison with Recreational Internet Game Users

    PubMed Central

    Wang, Lingxiao; Wu, Lingdan; Wang, Yifan; Li, Hui; Liu, Xiaoyue; Du, Xiaoxia; Dong, Guangheng

    2017-01-01

    Although the neural substrates of cue reactivity in Internet gaming disorder (IGD) have been examined in previous studies, most of these studies focused on the comparison between IGD subjects and healthy controls, which cannot exclude a potential effect of cue-familiarity. To overcome this limitation, the current study focuses on the comparison between IGD subjects and recreational Internet game users (RGU) who play online games recreationally but do not develop dependence. Data from 40 RGU and 30 IGD subjects were collected while they were performing an event-related cue reactivity task in the fMRI scanner. The results showed that the IGD subjects were associated with enhanced activation in the left orbitofrontal cortex (OFC) and decreased activation in the right anterior cingulate cortex (ACC), right precuneus, left precentral gyrus and right postcentral gyrus in comparison with the RGU subjects. OFC is involved in reward evaluation and ACC is implicated in executive control function based on previous researches. Moreover, the activation of OFC were correlated with the desire for game-playing. Thus, the higher activation in OFC might suggests high desire for game playing, and the lower activation in ACC might indicates impaired ability in inhibiting the urge to gaming-related stimuli in IGD subjects. Additionally, decreased activation in the precuneus, the precentral and postcentral gyrus may suggest the deficit in disentangling from game-playing stimuli. These findings explain why IGD subjects develop dependence on game-playing while RGU subjects can play online games recreationally and prevent the transition from voluntary game-playing to eventually IGD. PMID:28744240

  5. Social pain and social gain in the adolescent brain: A common neural circuitry underlying both positive and negative social evaluation

    PubMed Central

    Dalgleish, Tim; Walsh, Nicholas D.; Mobbs, Dean; Schweizer, Susanne; van Harmelen, Anne-Laura; Dunn, Barnaby; Dunn, Valerie; Goodyer, Ian; Stretton, Jason

    2017-01-01

    Social interaction inherently involves the subjective evaluation of cues salient to social inclusion and exclusion. Testifying to the importance of such social cues, parts of the neural system dedicated to the detection of physical pain, the dorsal anterior cingulate cortex (dACC) and anterior insula (AI), have been shown to be equally sensitive to the detection of social pain experienced after social exclusion. However, recent work suggests that this dACC-AI matrix may index any socially pertinent information. We directly tested the hypothesis that the dACC-AI would respond to cues of both inclusion and exclusion, using a novel social feedback fMRI paradigm in a population-derived sample of adolescents. We show that the dACC and left AI are commonly activated by feedback cues of inclusion and exclusion. Our findings suggest that theoretical accounts of the dACC-AI network as a neural alarm system restricted within the social domain to the processing of signals of exclusion require significant revision. PMID:28169323

  6. Anterior cingulate cortex and intuitive bias detection during number conservation.

    PubMed

    Simon, Grégory; Lubin, Amélie; Houdé, Olivier; De Neys, Wim

    2015-01-01

    Children's number conservation is often biased by misleading intuitions but the precise nature of these conservation errors is not clear. A key question is whether children detect that their erroneous conservation judgment is unwarranted. The present study reanalyzed available fMRI data to test the implication of the anterior cingulate cortex (ACC) in this detection process. We extracted mean BOLD (Blood Oxygen Level Dependent) signal values in an independently defined ACC region of interest (ROI) during presentation of classic and control number conservation problems. In classic trials, an intuitively cued visuospatial response conflicted with the correct conservation response, whereas this conflict was not present in the control trials. Results showed that ACC activation increased when solving the classic conservation problems. Critically, this increase did not differ between participants who solved the classic problems correctly (i.e., so-called conservers) and incorrectly (i.e., so-called non-conservers). Additional control analyses of inferior and lateral prefrontal ROIs showed that the group of conservers did show stronger activation in the right inferior frontal gyrus and right lateral middle frontal gyrus. In line with recent behavioral findings, these data lend credence to the hypothesis that even non-conserving children detect the biased nature of their judgment. The key difference between conservers and non-conservers seems to lie in a differential recruitment of inferior and lateral prefrontal regions associated with inhibitory control.

  7. Neurobehavioral assessment of maternal odor in developing rat pups: implications for social buffering.

    PubMed

    Al Aïn, Syrina; Perry, Rosemarie E; Nuñez, Bestina; Kayser, Kassandra; Hochman, Chase; Brehman, Elizabeth; LaComb, Miranda; Wilson, Donald A; Sullivan, Regina M

    2017-02-01

    Social support can attenuate the behavioral and stress hormone response to threat, a phenomenon called social buffering. The mother's social buffering of the infant is one of the more robust examples; yet we understand little about the neurobiology. Using a rodent model, we explore the neurobiology of social buffering by assessing neural processing of the maternal odor, a major cue controlling social buffering in rat pups. We used pups before (postnatal day (PN) 7) and after (PN14, PN23) the functional emergence of social buffering. Pups were injected with 14 C 2-deoxyglucose (2-DG) and presented with the maternal odor, a control preferred odor incapable of social buffering (acetophenone), or no odor. Brains were removed, processed for autoradiography and brain areas identified as important in adult social buffering were assessed, including the amygdala basolateral complex (Basolateral Amygdala [BLA]), medial prefrontal cortex (mPFC), and anterior cingulate cortex (ACC). Results suggest dramatic changes in the processing of maternal odor. PN7 pups show mPFC and ACC activation, although PN14 pups showed no activation of the mPFC, ACC, or BLA. All brain areas assessed were recruited by PN23. Additional analysis suggests substantial changes in functional connectivity across development. Together, these results imply complex nonlinear transitions in the neurobiology of social buffering in early life that may provide insight into the changing role of the mother in supporting social buffering.

  8. The influence of oxytocin on volitional and emotional ambivalence.

    PubMed

    Preckel, Katrin; Scheele, Dirk; Eckstein, Monika; Maier, Wolfgang; Hurlemann, René

    2015-07-01

    Moral decisions and social relationships are often characterized by strong feelings of ambivalence which can be a catalyst for emotional distress and several health-related problems. The anterior cingulate cortex (ACC) has been identified as a key brain region in monitoring conflicting information, but the neurobiological substrates of ambivalence processing are still widely unknown. We have conducted two randomized, double-blind, placebo-controlled, functional magnetic resonance imaging experiments involving 70 healthy male volunteers to investigate the effects of the neuropeptide oxytocin (OXT) on neural and behavioral correlates of ambivalence. We chose moral decision-making and the imagery of partner infidelity as examples to probe volitional and emotional ambivalence. In both experiments, intranasal OXT diminished neural responses in the ACC to ambivalence. Under OXT, moral dilemma vignettes also elicited a reduced activation in the orbitofrontal cortex, and the imagery of partner infidelity was rated as less arousing. Interestingly, the OXT-induced differential activation in the ACC predicted the magnitude of arousal reduction. Taken together, our findings reveal an unprecedented role of OXT in causing a domain-general decrease of neural responses to ambivalence. By alleviating emotional distress, OXT may qualify as a treatment option for psychiatric disorders with heightened ambivalence sensitivity such as schizophrenia or obsessive-compulsive disorder. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  9. Conflict detection and resolution rely on a combination of common and distinct cognitive control networks.

    PubMed

    Li, Qi; Yang, Guochun; Li, Zhenghan; Qi, Yanyan; Cole, Michael W; Liu, Xun

    2017-12-01

    Cognitive control can be activated by stimulus-stimulus (S-S) and stimulus-response (S-R) conflicts. However, whether cognitive control is domain-general or domain-specific remains unclear. To deepen the understanding of the functional organization of cognitive control networks, we conducted activation likelihood estimation (ALE) from 111 neuroimaging studies to examine brain activation in conflict-related tasks. We observed that fronto-parietal and cingulo-opercular networks were commonly engaged by S-S and S-R conflicts, showing a domain-general pattern. In addition, S-S conflicts specifically activated distinct brain regions to a greater degree. These regions were implicated in the processing of the semantic-relevant attribute, including the inferior frontal cortex (IFC), superior parietal cortex (SPC), superior occipital cortex (SOC), and right anterior cingulate cortex (ACC). By contrast, S-R conflicts specifically activated the left thalamus, middle frontal cortex (MFC), and right SPC, which were associated with detecting response conflict and orienting spatial attention. These findings suggest that conflict detection and resolution involve a combination of domain-general and domain-specific cognitive control mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Less efficient and costly processes of frontal cortex in childhood chronic fatigue syndrome.

    PubMed

    Mizuno, Kei; Tanaka, Masaaki; Tanabe, Hiroki C; Joudoi, Takako; Kawatani, Junko; Shigihara, Yoshihito; Tomoda, Akemi; Miike, Teruhisa; Imai-Matsumura, Kyoko; Sadato, Norihiro; Watanabe, Yasuyoshi

    2015-01-01

    The ability to divide one's attention deteriorates in patients with childhood chronic fatigue syndrome (CCFS). We conducted a study using a dual verbal task to assess allocation of attentional resources to two simultaneous activities (picking out vowels and reading for story comprehension) and functional magnetic resonance imaging. Patients exhibited a much larger area of activation, recruiting additional frontal areas. The right middle frontal gyrus (MFG), which is included in the dorsolateral prefrontal cortex, of CCFS patients was specifically activated in both the single and dual tasks; this activation level was positively correlated with motivation scores for the tasks and accuracy of story comprehension. In addition, in patients, the dorsal anterior cingulate gyrus (dACC) and left MFG were activated only in the dual task, and activation levels of the dACC and left MFG were positively associated with the motivation and fatigue scores, respectively. Patients with CCFS exhibited a wider area of activated frontal regions related to attentional resources in order to increase their poorer task performance with massive mental effort. This is likely to be less efficient and costly in terms of energy requirements. It seems to be related to the pathophysiology of patients with CCFS and to cause a vicious cycle of further increases in fatigue.

  11. Less efficient and costly processes of frontal cortex in childhood chronic fatigue syndrome

    PubMed Central

    Mizuno, Kei; Tanaka, Masaaki; Tanabe, Hiroki C.; Joudoi, Takako; Kawatani, Junko; Shigihara, Yoshihito; Tomoda, Akemi; Miike, Teruhisa; Imai-Matsumura, Kyoko; Sadato, Norihiro; Watanabe, Yasuyoshi

    2015-01-01

    The ability to divide one's attention deteriorates in patients with childhood chronic fatigue syndrome (CCFS). We conducted a study using a dual verbal task to assess allocation of attentional resources to two simultaneous activities (picking out vowels and reading for story comprehension) and functional magnetic resonance imaging. Patients exhibited a much larger area of activation, recruiting additional frontal areas. The right middle frontal gyrus (MFG), which is included in the dorsolateral prefrontal cortex, of CCFS patients was specifically activated in both the single and dual tasks; this activation level was positively correlated with motivation scores for the tasks and accuracy of story comprehension. In addition, in patients, the dorsal anterior cingulate gyrus (dACC) and left MFG were activated only in the dual task, and activation levels of the dACC and left MFG were positively associated with the motivation and fatigue scores, respectively. Patients with CCFS exhibited a wider area of activated frontal regions related to attentional resources in order to increase their poorer task performance with massive mental effort. This is likely to be less efficient and costly in terms of energy requirements. It seems to be related to the pathophysiology of patients with CCFS and to cause a vicious cycle of further increases in fatigue. PMID:26594619

  12. Spatiotemporal Spike Coding of Behavioral Adaptation in the Dorsal Anterior Cingulate Cortex

    PubMed Central

    Logiaco, Laureline; Quilodran, René; Procyk, Emmanuel; Arleo, Angelo

    2015-01-01

    The frontal cortex controls behavioral adaptation in environments governed by complex rules. Many studies have established the relevance of firing rate modulation after informative events signaling whether and how to update the behavioral policy. However, whether the spatiotemporal features of these neuronal activities contribute to encoding imminent behavioral updates remains unclear. We investigated this issue in the dorsal anterior cingulate cortex (dACC) of monkeys while they adapted their behavior based on their memory of feedback from past choices. We analyzed spike trains of both single units and pairs of simultaneously recorded neurons using an algorithm that emulates different biologically plausible decoding circuits. This method permits the assessment of the performance of both spike-count and spike-timing sensitive decoders. In response to the feedback, single neurons emitted stereotypical spike trains whose temporal structure identified informative events with higher accuracy than mere spike count. The optimal decoding time scale was in the range of 70–200 ms, which is significantly shorter than the memory time scale required by the behavioral task. Importantly, the temporal spiking patterns of single units were predictive of the monkeys’ behavioral response time. Furthermore, some features of these spiking patterns often varied between jointly recorded neurons. All together, our results suggest that dACC drives behavioral adaptation through complex spatiotemporal spike coding. They also indicate that downstream networks, which decode dACC feedback signals, are unlikely to act as mere neural integrators. PMID:26266537

  13. Interhemispheric Asymmetries and Theta Activity in the Rostral Anterior Cingulate Cortex as EEG Signature of HIV-Related Depression: Gender Matters.

    PubMed

    Kremer, Heidemarie; Lutz, Franz P C; McIntosh, Roger C; Dévieux, Jessy G; Ironson, Gail

    2016-04-01

    Resting EEGs of 40 people living with HIV (PLWH) on long-term antiretroviral treatment were examined for z-scored deviations from a healthy control (normative database) to examine the main and interaction effects of depression and gender. Regions of interest were frontal (alpha) and central (all bands) for interhemispheric asymmetries in quantitative EEGs and theta in the rostral anterior cingulate cortex (rACC) in low-resolution electromagnetic tomography (LORETA). Z-scored normed deviations of depressed PLWH, compared with nondepressed, showed right-dominant interhemispheric asymmetries in all regions. However, after adjusting for multiple testing, significance remained only central for theta, alpha, and beta. Reversed (left-dominant) frontal alpha asymmetry is a potential EEG marker of depression in the HIV negative population that was not reversed in depressive PLWH; however, corresponding with extant literature, gender had an effect on the size of frontal alpha asymmetry. The LORETA analysis revealed a trending interactional effect of depression and gender on theta activity in the rACC in Brodmann area 32. We found that compared to men, women had greater right-dominant frontal alpha-asymmetry and elevated theta activity in voxels of the rACC, which may indicate less likelihood of depression and a higher likelihood of response to antidepressants. In conclusion, subtle EEG deviations, such as right-dominant central theta, alpha, and beta asymmetries and theta activity in the rACC may mark HIV-related depressive symptoms and may predict the likelihood of response to antidepressants but gender effects need to be taken into account. Although this study introduced the use of LORETA to examine the neurophysiological correlates of negative affect in PLWH, further research is needed to assess the utility of this tool in diagnostics and treatment monitoring of depression in PLWH. © EEG and Clinical Neuroscience Society (ECNS) 2015.

  14. Neural correlates of text-based emoticons: a preliminary fMRI study.

    PubMed

    Kim, Ko Woon; Lee, Sang Won; Choi, Jeewook; Kim, Tae Min; Jeong, Bumseok

    2016-08-01

    Like nonverbal cues in oral interactions, text-based emoticons, which are textual portrayals of a writer's facial expressions, are commonly used in electronic device-mediated communication. Little is known, however, about how text-based emoticons are processed in the human brain. With this study, we investigated whether the text-based emoticons are processed as face expressions using fMRI. During fMRI scan, subjects were asked to respond by pressing a button, indicating whether text-based emoticons represented positive or negative emotions. Voxel-wise analyses were performed to compare the responses and contrasted with emotional versus scrambled emoticons and among emoticons with different emotions. To explore processing strategies for text-based emoticons, brain activity in the bilateral occipital and fusiform face areas were compared. In the voxel-wise analysis, both emotional and scrambled emoticons were processed mainly in the bilateral fusiform gyri, inferior division of lateral occipital cortex, inferior frontal gyri, dorsolateral prefrontal cortex (DLPFC), dorsal anterior cingulate cortex (dACC), and parietal cortex. In a percent signal change analysis, the right occipital and fusiform face areas showed significantly higher activation than left ones. In comparisons among emoticons, sad one showed significant BOLD signal decrease in the dACC, the left AIC, the bilateral thalamus, and the precuneus as compared with other conditions. The results of this study imply that people recognize text-based emoticons as pictures representing face expressions. Even though text-based emoticons contain emotional meaning, they are not associated with the amygdala while previous studies using emotional stimuli documented amygdala activation.

  15. Serotonin transporter genotype and action monitoring dysfunction: a possible substrate underlying increased vulnerability to depression.

    PubMed

    Holmes, Avram J; Bogdan, Ryan; Pizzagalli, Diego A

    2010-04-01

    A variable number of tandem repeats (short (S) vs long (L)) in the promoter region of the serotonin transporter gene (5-HTTLPR) and a functional variant of a single-nucleotide polymorphism (rs25531) in 5-HTTLPR have been recently associated with increased risk for major depressive disorder (MDD). In particular, relative to L/L or L(A) homozygotes (hereafter referred to as L' participants), S carriers or L(g)-allele carriers (S' participants) have been found to have a higher probability of developing depression after stressful life events, although inconsistencies abound. Previous research indicates that patients with MDD are characterized by executive dysfunction and abnormal activation within the anterior cingulate cortex (ACC), particularly in situations requiring adaptive behavioral adjustments following errors and response conflict (action monitoring). The goal of this study was to test whether psychiatrically healthy S' participants would show abnormalities similar to those of MDD subjects. To this end, 19 S' and 14 L' participants performed a modified Flanker task known to induce errors, response conflict, and activations in various ACC subdivisions during functional magnetic resonance imaging. As hypothesized, relative to L' participants, S' participants showed (1) impaired post-error and post-conflict behavioral adjustments; (2) larger error-related rostral ACC activation; and (3) lower conflict-related dorsal ACC activation. As similar behavioral and neural dysfunctions have been recently described in MDD patient samples, the current results raise the possibility that impaired action monitoring and associated ACC dysregulation may represent risk factors increased vulnerability to depression.

  16. Successful choice behavior is associated with distinct and coherent network states in anterior cingulate cortex

    PubMed Central

    Lapish, Christopher C.; Durstewitz, Daniel; Chandler, L. Judson; Seamans, Jeremy K.

    2008-01-01

    Successful decision making requires an ability to monitor contexts, actions, and outcomes. The anterior cingulate cortex (ACC) is thought to be critical for these functions, monitoring and guiding decisions especially in challenging situations involving conflict and errors. A number of different single-unit correlates have been observed in the ACC that reflect the diverse cognitive components involved. Yet how ACC neurons function as an integrated network is poorly understood. Here we show, using advanced population analysis of multiple single-unit recordings from the rat ACC during performance of an ecologically valid decision-making task, that ensembles of neurons move through different coherent and dissociable states as the cognitive requirements of the task change. This organization into distinct network patterns with respect to both firing-rate changes and correlations among units broke down during trials with numerous behavioral errors, especially at choice points of the task. These results point to an underlying functional organization into cell assemblies in the ACC that may monitor choices, outcomes, and task contexts, thus tracking the animal's progression through “task space.” PMID:18708525

  17. A pilot study investigating changes in neural processing after mindfulness training in elite athletes.

    PubMed

    Haase, Lori; May, April C; Falahpour, Maryam; Isakovic, Sara; Simmons, Alan N; Hickman, Steven D; Liu, Thomas T; Paulus, Martin P

    2015-01-01

    The ability to pay close attention to the present moment can be a crucial factor for performing well in a competitive situation. Training mindfulness is one approach to potentially improve elite athletes' ability to focus their attention on the present moment. However, virtually nothing is known about whether these types of interventions alter neural systems that are important for optimal performance. This pilot study examined whether an intervention aimed at improving mindfulness [Mindful Performance Enhancement, Awareness and Knowledge (mPEAK)] changes neural activation patterns during an interoceptive challenge. Participants completed a task involving anticipation and experience of loaded breathing during functional magnetic resonance imaging recording. There were five main results following mPEAK training: (1) elite athletes self-reported higher levels of interoceptive awareness and mindfulness and lower levels of alexithymia; (2) greater insula and anterior cingulate cortex (ACC) activation during anticipation and post-breathing load conditions; (3) increased ACC activation during the anticipation condition was associated with increased scores on the describing subscale of the Five Facet Mindfulness Questionnaire; (4) increased insula activation during the post-load condition was associated with decreases in the Toronto Alexithymia Scale identifying feelings subscale; (5) decreased resting state functional connectivity between the PCC and the right medial frontal cortex and the ACC. Taken together, this pilot study suggests that mPEAK training may lead to increased attention to bodily signals and greater neural processing during the anticipation and recovery from interoceptive perturbations. This association between attention to and processing of interoceptive afferents may result in greater adaptation during stressful situations in elite athletes.

  18. Effect of Dopamine Transporter Gene (SLC6A3) Variation on Dorsal Anterior Cingulate Function in Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Brown, Ariel B.; Biederman, Joseph; Valera, Eve M.; Doyle, Alysa E.; Bush, George; Spencer, Thomas; Monuteaux, Michael C.; Mick, Eric; Whitfield-Gabrieli, Susan; Makris, Nikos; LaViolette, Peter S.; Oscar-Berman, Marlene; Faraone, Stephen V.; Seidman, Larry J.

    2010-01-01

    Objective - Although Attention-Deficit/Hyperactivity Disorder (ADHD) is associated both with brain alterations in attention and executive function (EF) circuitry and with genetic variations within the dopamine system (including the dopamine transporter gene [SLC6A3]), few studies have directly investigated how genetic variations are linked to brain alterations. We sought to examine how a polymorphism in the 3’ untranslated region (UTR) of SLC6A3, associated with ADHD in meta-analysis, might contribute to variation in dorsal anterior cingulate cortex (dACC) function in subjects with ADHD. Method - We collected fMRI scans of 42 individuals with ADHD, all of European descent and over the age of 17, while they performed the Multi-Source Interference Task (MSIT), a cognitive task shown to activate dACC. SLC6A3 3’ UTR variable number tandem repeat (VNTR) polymorphisms were genotyped and brain activity was compared for groups based on allele status. Results - ADHD individuals homozygous for the 10R allele showed significant hypoactivation in the left dACC compared to 9R-carriers. Exploratory analysis also showed trends toward hypoactivation in the 10R homozygotes in left cerebellar vermis and right lateral prefrontal cortex. Further breakdown of genotype groups showed similar activation in individuals heterozygous and homozygous for the 9R allele. Conclusions - Alterations in activation of attention and EF networks found previously to be involved in ADHD are likely influenced by SLC6A3 genotype. This genotype may contribute to heterogeneity of brain alterations found within ADHD samples. PMID:19676101

  19. Main Effects of Diagnoses, Brain Regions, and their Interaction Effects for Cerebral Metabolites in Bipolar and Unipolar Depressive Disorders

    NASA Astrophysics Data System (ADS)

    Tan, Hai-Zhu; Li, Hui; Liu, Chen-Feng; Guan, Ji-Tian; Guo, Xiao-Bo; Wen, Can-Hong; Ou, Shao-Min; Zhang, Yin-Nan; Zhang, Jie; Xu, Chong-Tao; Shen, Zhi-Wei; Wu, Ren-Hua; Wang, Xue-Qin

    2016-11-01

    Previous studies suggested patients with bipolar depressive disorder (BDd) or unipolar depressive disorder (UDd) have cerebral metabolites abnormalities. These abnormalities may stem from multiple sub-regions of gray matter in brain regions. Thirteen BDd patients, 20 UDd patients and 20 healthy controls (HC) were enrolled to investigate these abnormalities. Absolute concentrations of 5 cerebral metabolites (glutamate-glutamine (Glx), N-acetylaspartate (NAA), choline (Cho), myo-inositol (mI), creatine (Cr), parietal cortex (PC)) were measured from 4 subregions (the medial frontal cortex (mPFC), anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and parietal cortex (PC)) of gray matter. Main and interaction effects of cerebral metabolites across subregions of gray matter were evaluated. For example, the Glx was significantly higher in BDd compared with UDd, and so on. As the interaction analyses showed, some interaction effects existed. The concentrations of BDds’ Glx, Cho, Cr in the ACC and HCs’ mI and Cr in the PC were higher than that of other interaction effects. In addition, the concentrations of BDds’ Glx and Cr in the PC and HCs’ mI in the ACC were statistically significant lower than that of other interaction effects. These findings point to region-related abnormalities of cerebral metabolites across subjects with BDd and UDd.

  20. Main Effects of Diagnoses, Brain Regions, and their Interaction Effects for Cerebral Metabolites in Bipolar and Unipolar Depressive Disorders.

    PubMed

    Tan, Hai-Zhu; Li, Hui; Liu, Chen-Feng; Guan, Ji-Tian; Guo, Xiao-Bo; Wen, Can-Hong; Ou, Shao-Min; Zhang, Yin-Nan; Zhang, Jie; Xu, Chong-Tao; Shen, Zhi-Wei; Wu, Ren-Hua; Wang, Xue-Qin

    2016-11-21

    Previous studies suggested patients with bipolar depressive disorder (BDd) or unipolar depressive disorder (UDd) have cerebral metabolites abnormalities. These abnormalities may stem from multiple sub-regions of gray matter in brain regions. Thirteen BDd patients, 20 UDd patients and 20 healthy controls (HC) were enrolled to investigate these abnormalities. Absolute concentrations of 5 cerebral metabolites (glutamate-glutamine (Glx), N-acetylaspartate (NAA), choline (Cho), myo-inositol (mI), creatine (Cr), parietal cortex (PC)) were measured from 4 subregions (the medial frontal cortex (mPFC), anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and parietal cortex (PC)) of gray matter. Main and interaction effects of cerebral metabolites across subregions of gray matter were evaluated. For example, the Glx was significantly higher in BDd compared with UDd, and so on. As the interaction analyses showed, some interaction effects existed. The concentrations of BDds' Glx, Cho, Cr in the ACC and HCs' mI and Cr in the PC were higher than that of other interaction effects. In addition, the concentrations of BDds' Glx and Cr in the PC and HCs' mI in the ACC were statistically significant lower than that of other interaction effects. These findings point to region-related abnormalities of cerebral metabolites across subjects with BDd and UDd.

  1. Ventral anterior cingulate cortex and social decision-making.

    PubMed

    Lockwood, Patricia L; Wittmann, Marco K

    2018-06-07

    Studies in the field of social neuroscience have recently made use of computational models of decision-making to provide new insights into how we learn about the self and others during social interactions. Importantly, these studies have increasingly drawn attention to brain areas outside of classical cortical "social brain" regions that may be critical for social processing. In particular, two portions of the ventral anterior cingulate cortex (vACC), subgenual anterior cingulate cortex and perigenual anterior cingulate cortex, have been linked to social and self learning signals, respectively. Here we discuss the emerging parallels between these studies. Uncovering the function of vACC during social interactions could provide important new avenues to understand social decision-making in health and disease. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Auditory Conflict Resolution Correlates with Medial–Lateral Frontal Theta/Alpha Phase Synchrony

    PubMed Central

    Huang, Samantha; Rossi, Stephanie; Hämäläinen, Matti; Ahveninen, Jyrki

    2014-01-01

    When multiple persons speak simultaneously, it may be difficult for the listener to direct attention to correct sound objects among conflicting ones. This could occur, for example, in an emergency situation in which one hears conflicting instructions and the loudest, instead of the wisest, voice prevails. Here, we used cortically-constrained oscillatory MEG/EEG estimates to examine how different brain regions, including caudal anterior cingulate (cACC) and dorsolateral prefrontal cortices (DLPFC), work together to resolve these kinds of auditory conflicts. During an auditory flanker interference task, subjects were presented with sound patterns consisting of three different voices, from three different directions (45° left, straight ahead, 45° right), sounding out either the letters “A” or “O”. They were asked to discriminate which sound was presented centrally and ignore the flanking distracters that were phonetically either congruent (50%) or incongruent (50%) with the target. Our cortical MEG/EEG oscillatory estimates demonstrated a direct relationship between performance and brain activity, showing that efficient conflict resolution, as measured with reduced conflict-induced RT lags, is predicted by theta/alpha phase coupling between cACC and right lateral frontal cortex regions intersecting the right frontal eye fields (FEF) and DLPFC, as well as by increased pre-stimulus gamma (60–110 Hz) power in the left inferior fontal cortex. Notably, cACC connectivity patterns that correlated with behavioral conflict-resolution measures were found during both the pre-stimulus and the pre-response periods. Our data provide evidence that, instead of being only transiently activated upon conflict detection, cACC is involved in sustained engagement of attentional resources required for effective sound object selection performance. PMID:25343503

  3. Auditory conflict resolution correlates with medial-lateral frontal theta/alpha phase synchrony.

    PubMed

    Huang, Samantha; Rossi, Stephanie; Hämäläinen, Matti; Ahveninen, Jyrki

    2014-01-01

    When multiple persons speak simultaneously, it may be difficult for the listener to direct attention to correct sound objects among conflicting ones. This could occur, for example, in an emergency situation in which one hears conflicting instructions and the loudest, instead of the wisest, voice prevails. Here, we used cortically-constrained oscillatory MEG/EEG estimates to examine how different brain regions, including caudal anterior cingulate (cACC) and dorsolateral prefrontal cortices (DLPFC), work together to resolve these kinds of auditory conflicts. During an auditory flanker interference task, subjects were presented with sound patterns consisting of three different voices, from three different directions (45° left, straight ahead, 45° right), sounding out either the letters "A" or "O". They were asked to discriminate which sound was presented centrally and ignore the flanking distracters that were phonetically either congruent (50%) or incongruent (50%) with the target. Our cortical MEG/EEG oscillatory estimates demonstrated a direct relationship between performance and brain activity, showing that efficient conflict resolution, as measured with reduced conflict-induced RT lags, is predicted by theta/alpha phase coupling between cACC and right lateral frontal cortex regions intersecting the right frontal eye fields (FEF) and DLPFC, as well as by increased pre-stimulus gamma (60-110 Hz) power in the left inferior fontal cortex. Notably, cACC connectivity patterns that correlated with behavioral conflict-resolution measures were found during both the pre-stimulus and the pre-response periods. Our data provide evidence that, instead of being only transiently activated upon conflict detection, cACC is involved in sustained engagement of attentional resources required for effective sound object selection performance.

  4. Systemic inflammation and resting state connectivity of the default mode network.

    PubMed

    Marsland, Anna L; Kuan, Dora C-H; Sheu, Lei K; Krajina, Katarina; Kraynak, Thomas E; Manuck, Stephen B; Gianaros, Peter J

    2017-05-01

    The default mode network (DMN) encompasses brain systems that exhibit coherent neural activity at rest. DMN brain systems have been implicated in diverse social, cognitive, and affective processes, as well as risk for forms of dementia and psychiatric disorders that associate with systemic inflammation. Areas of the anterior cingulate cortex (ACC) and surrounding medial prefrontal cortex (mPFC) within the DMN have been implicated specifically in regulating autonomic and neuroendocrine processes that relate to systemic inflammation via bidirectional signaling mechanisms. However, it is still unclear whether indicators of inflammation relate directly to coherent resting state activity of the ACC, mPFC, or other areas within the DMN. Accordingly, we tested whether plasma interleukin (IL)-6, an indicator of systemic inflammation, covaried with resting-state functional connectivity of the DMN among 98 adults aged 30-54 (39% male; 81% Caucasian). Independent component analyses were applied to resting state fMRI data to generate DMN connectivity maps. Voxel-wise regression analyses were then used to test for associations between IL-6 and DMN connectivity across individuals, controlling for age, sex, body mass index, and fMRI signal motion. Within the DMN, IL-6 covaried positively with connectivity of the sub-genual ACC and negatively with a region of the dorsal medial PFC at corrected statistical thresholds. These novel findings offer evidence for a unique association between a marker of systemic inflammation (IL-6) and ACC and mPFC functional connectivity within the DMN, a network that may be important for linking aspects of immune function to psychological and behavioral states in health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The relation of general socio-emotional processing to parenting specific behavior: a study of mothers with and without posttraumatic stress disorder

    PubMed Central

    Moser, Dominik A.; Aue, Tatjana; Suardi, Francesca; Manini, Aurélia; Sancho Rossignol, Ana; Cordero, Maria I.; Merminod, Gaëlle; Ansermet, François; Rusconi Serpa, Sandra; Favez, Nicolas; Schechter, Daniel S.

    2015-01-01

    Socio-emotional information processing during everyday human interactions has been assumed to translate to social-emotional information processing when parenting a child. Yet, few studies have examined whether this is indeed the case. This study aimed to improve on this by connecting the functional neuroimaging data when seeing socio-emotional interactions that are not parenting specific to observed maternal sensitivity. The current study considered 45 mothers of small children (12–42 months of age). It included healthy controls (HC) and mothers with interpersonal violence-related posttraumatic stress disorder (IPV-PTSD), as well as mothers without PTSD, both with and without IPV exposure. We found that anterior cingulate cortex (ACC) and ventromedial prefrontal cortex (vmPFC) activity correlated negatively with observed maternal sensitivity when mothers watched videos of menacing vs. prosocial adult male–female interactions. This relationship was independent of whether mothers were HC or had IPV-PTSD. We also found dorsolateral prefrontal cortex (dlPFC) activity to be correlated negatively with maternal sensitivity when mothers watched any kind of arousing adult interactions. With regards to ACC and vmPFC activity, we interpret our results to mean that the ease of general emotional information integration translates to parenting-specific behavior. Our dlPFC activity findings support the idea that the efficiency of top-down control of socio-emotional processing in non-parenting specific contexts may be predictive of parenting behavior. PMID:26578996

  6. Negative BOLD response and serotonin concentration within rostral subgenual portion of the anterior cingulate cortex for long-allele carriers during perceptual processing of emotional tasks

    NASA Astrophysics Data System (ADS)

    Hadi, Shamil M.; Siadat, Mohamad R.; Babajani-Feremi, Abbas

    2012-03-01

    We investigated the effect of synaptic serotonin concentration on hemodynamic responses. The stimuli paradigm involved the presentation of fearful and threatening facial expressions to a set of 24 subjects who were either5HTTLPR long- or short-allele carriers (12 of each type in each group). The BOLD signals of the rACC from subjects of each group were averaged to increase the signal-to-noise ratio. We used a Bayesian approach to estimate the parameters of the underlying hemodynamic model. Our results, during this perceptual processing of emotional task, showed a negative BOLD signal in the rACC in the subjects with long-alleles. In contrast, the subjects with short-alleles showed positive BOLD signals in the rACC. These results suggest that high synaptic serotonin concentration in the rACC inhibits neuronal activity in a fashion similar to GABA, and a consequent negative BOLD signal ensues.

  7. Changes of oscillatory activity in pitch processing network and related tinnitus relief induced by acoustic CR neuromodulation

    PubMed Central

    Adamchic, Ilya; Hauptmann, Christian; Tass, Peter A.

    2012-01-01

    Chronic subjective tinnitus is characterized by abnormal neuronal synchronization in the central auditory system. As shown in a controlled clinical trial, acoustic coordinated reset (CR) neuromodulation causes a significant relief of tinnitus symptoms along with a significant decrease of pathological oscillatory activity in a network comprising auditory and non-auditory brain areas, which is often accompanied with a significant tinnitus pitch change. Here we studied if the tinnitus pitch change correlates with a reduction of tinnitus loudness and/or annoyance as assessed by visual analog scale (VAS) scores. Furthermore, we studied if the changes of the pattern of brain synchrony in tinnitus patients induced by 12 weeks of CR therapy depend on whether or not the patients undergo a pronounced tinnitus pitch change. Therefore, we applied standardized low-resolution brain electromagnetic tomography (sLORETA) to EEG recordings from two groups of patients with a sustained CR-induced relief of tinnitus symptoms with and without tinnitus pitch change. We found that absolute changes of VAS loudness and VAS annoyance scores significantly correlate with the modulus, i.e., the absolute value, of the tinnitus pitch change. Moreover, as opposed to patients with small or no pitch change we found a significantly stronger decrease in gamma power in patients with pronounced tinnitus pitch change in right parietal cortex (Brodmann area, BA 40), right frontal cortex (BA 9, 46), left temporal cortex (BA 22, 42), and left frontal cortex (BA 4, 6), combined with a significantly stronger increase of alpha (10–12 Hz) activity in the right and left anterior cingulate cortex (ACC; BA 32, 24). In addition, we revealed a significantly lower functional connectivity in the gamma band between the right dorsolateral prefrontal cortex (BA 46) and the right ACC (BA 32) after 12 weeks of CR therapy in patients with pronounced pitch change. Our results indicate a substantial, CR-induced reduction of tinnitus-related auditory binding in a pitch processing network. PMID:22493570

  8. Cholinergic depletion in nucleus accumbens impairs mesocortical dopamine activation and cognitive function in rats.

    PubMed

    Laplante, François; Zhang, Zi-Wei; Huppé-Gourgues, Frédéric; Dufresne, Marc M; Vaucher, Elvire; Sullivan, Ron M

    2012-11-01

    In rats, selective depletion of the cholinergic interneurons in the ventral striatum (nucleus accumbens or N.Acc.) results in heightened behavioural sensitivity to amphetamine and impaired sensorimotor gating processes, suggesting a hyper-responsiveness to dopamine (DA) activity in the N.Acc. We hypothesized that local cholinergic depletion may also trigger distal functional alterations, particularly in prefrontal cortex (PFC). Adult male Sprague-Dawley rats were injected bilaterally in the N.Acc. with an immunotoxin targeting choline acetyltransferase. Two weeks later, cognitive function was assessed using the delayed alternation paradigm in the T-maze. The rats were then implanted with voltammetric recording electrodes in the ventromedial PFC to measure in vivo extracellular DA release in response to mild tail pinch stress. The PFC was also examined for density of tyrosine hydroxylase (TH)-labelled varicosities. In another cohort of control and lesioned rats, we measured post mortem tissue content of DA. Depletion of cholinergic neurons (restricted to N.Acc.) significantly impaired delayed alternation performance across delay intervals. While (basal) post mortem indices of PFC DA function were unaffected by N.Acc. lesions, in vivo mesocortical DA activation was markedly reduced; this deficit correlated significantly with cognitive impairments. TH-labelled varicosities however, were unaffected in cortical layer V relative to controls. These data suggest that selective depletion of cholinergic interneurons in N.Acc. triggers widespread functional impairments in mesocorticolimbic DA function and cognition. The possible relevance of these findings is also discussed in relation to schizophrenia, where reduced density of cholinergic neurons in ventral striatum has been reported. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Assessment of Anterior Cingulate Cortex (ACC) and Left Cerebellar Metabolism in Asperger's Syndrome with Proton Magnetic Resonance Spectroscopy (MRS).

    PubMed

    Goji, Aya; Ito, Hiromichi; Mori, Kenji; Harada, Masafumi; Hisaoka, Sonoka; Toda, Yoshihiro; Mori, Tatsuo; Abe, Yoko; Miyazaki, Masahito; Kagami, Shoji

    2017-01-01

    Proton magnetic resonance spectroscopy (1H MRS) is a noninvasive neuroimaging method to quantify biochemical metabolites in vivo and it can serve as a powerful tool to monitor neurobiochemical profiles in the brain. Asperger's syndrome (AS) is a type of autism spectrum disorder, which is characterized by impaired social skills and restrictive, repetitive patterns of interest and activities, while intellectual levels and language skills are relatively preserved. Despite clinical aspects have been well-characterized, neurometabolic profiling in the brain of AS remains to be clear. The present study used proton magnetic resonance spectroscopy (1H MRS) to investigate whether pediatric AS is associated with measurable neurometabolic abnormalities that can contribute new information on the neurobiological underpinnings of the disorder. Study participants consisted of 34 children with AS (2-12 years old; mean age 5.2 (±2.0); 28 boys) and 19 typically developed children (2-11 years old; mean age 5.6 (±2.6); 12 boys) who served as the normal control group. The 1H MRS data were obtained from two regions of interest: the anterior cingulate cortex (ACC) and left cerebellum. In the ACC, levels of N-acetylaspartate (NAA), total creatine (tCr), total choline-containing compounds (tCho) and myo-Inositol (mI) were significantly decreased in children with AS compared to controls. On the other hand, no significant group differences in any of the metabolites were found in the left cerebellum. Neither age nor sex accounted for the metabolic findings in the regions. The finding of decreased levels of NAA, tCr, tCho, and mI in the ACC but not in left cerebellar voxels in the AS, suggests a lower ACC neuronal density in the present AS cohort compared to controls.

  10. Functional, structural, and emotional correlates of impaired insight in cocaine addiction

    PubMed Central

    Moeller, Scott J.; Konova, Anna B.; Parvaz, Muhammad A.; Tomasi, Dardo; Lane, Richard D.; Fort, Carolyn; Goldstein, Rita Z.

    2014-01-01

    Context Individuals with cocaine use disorder (CUD) have difficulty monitoring ongoing behavior, possibly stemming from dysfunction of brain regions subserving insight and self-awareness [e.g., anterior cingulate cortex (ACC)]. Objective To test the hypothesis that CUD with impaired insight (iCUD) would show abnormal (A) ACC activity during error processing, assessed with functional magnetic resonance imaging during a classic inhibitory control task; (B) ACC gray matter integrity assessed with voxel-based morphometry; and (C) awareness of one’s own emotional experiences, assessed with the Levels of Emotional Awareness Scale (LEAS). Using a previously validated probabilistic choice task, we grouped 33 CUD according to insight [iCUD: N=15; unimpaired insight CUD: N=18]; we also studied 20 healthy controls, all with unimpaired insight. Design Multimodal imaging design. Setting Clinical Research Center at Brookhaven National Laboratory. Participants Thirty-three CUD and 20 healthy controls. Main Outcome Measure Functional magnetic resonance imaging, voxel-based morphometry, LEAS, and drug use variables. Results Compared with the other two study groups, iCUD showed lower (A) error-induced rostral ACC (rACC) activity as associated with more frequent cocaine use; (B) gray matter within the rACC; and (C) LEAS scores. Conclusions These results point to rACC functional and structural abnormalities, and diminished emotional awareness, in a subpopulation of CUD characterized by impaired insight. Because the rACC has been implicated in appraising the affective/motivational significance of errors and other types of self-referential processing, functional and structural abnormalities in this region could result in lessened concern (frequently ascribed to minimization and denial) about behavioral outcomes that could potentially culminate in increased drug use. Treatments targeting this CUD subgroup could focus on enhancing the salience of errors (e.g., lapses). PMID:24258223

  11. Dysfunctional insular connectivity during reward prediction in patients with first-episode psychosis

    PubMed Central

    Schmidt, André; Palaniyappan, Lena; Smieskova, Renata; Simon, Andor; Riecher-Rössler, Anita; Lang, Undine E.; Fusar-Poli, Paolo; McGuire, Philip; Borgwardt, Stefan J.

    2016-01-01

    Background Increasing evidence indicates that psychosis is associated with abnormal reward processing. Imaging studies in patients with first-episode psychosis (FEP) have revealed reduced activity in diverse brain regions, including the ventral striatum, insula and anterior cingulate cortex (ACC), during reward prediction. However, whether these reductions in local brain activity are due to altered connectivity has rarely been explored. Methods We applied dynamic causal modelling and Bayesian model selection to fMRI data during the Salience Attribution Task to investigate whether patients with FEP showed abnormal modulation of connectivity between the ventral striatum, insula and ACC induced by rewarding cues and whether these changes were related to positive psychotic symptoms and atypical antipsychotic medication. Results The model including reward-induced modulation of insula–ACC connectivity was the best fitting model in each group. Compared with healthy controls (n = 19), patients with FEP (n = 29) revealed reduced right insula–ACC connectivity. After subdividing patients according to current antipsychotic medication, we found that the reduced insula–ACC connectivity relative to healthy controls was observed only in untreated patients (n = 17), not in patients treated with antipsychotics (n = 12), and that it correlated negatively with unusual thought content in untreated patients with FEP. Limitations The modest sample size of untreated patients with FEP was a limitation of our study. Conclusion This study indicates that insula–ACC connectivity during reward prediction is reduced in untreated patients with FEP and related to the formation of positive psychotic symptoms. Our study further suggests that atypical antipsychotics may reverse connectivity between the insula and the ACC during reward prediction. PMID:26854756

  12. Impaired cortico-limbic functional connectivity in schizophrenia patients during emotion processing

    PubMed Central

    Comte, Magali; Zendjidjian, Xavier Y; Coull, Jennifer T; Cancel, Aïda; Boutet, Claire; Schneider, Fabien C; Sage, Thierry; Lazerges, Pierre-Emmanuel; Jaafari, Nematollah; Ibrahim, El Chérif; Azorin, Jean-Michel; Blin, Olivier; Fakra, Eric

    2018-01-01

    Abstract Functional dysconnection is increasingly recognized as a core pathological feature in schizophrenia. Aberrant interactions between regions of the cortico-limbic circuit may underpin the abnormal emotional processing associated with this illness. We used a functional magnetic resonance imaging paradigm designed to dissociate the various components of the cortico-limbic circuit (i.e. a ventral automatic circuit that is intertwined with a dorsal cognitive circuit), to explore bottom-up appraisal as well as top-down control during emotion processing. In schizophrenia patients compared with healthy controls, bottom-up processes were associated with reduced interaction between the amygdala and both the anterior cingulate cortex (ACC) and the dorsolateral prefrontal cortex. Contrariwise, top-down control processes led to stronger connectivity between the ventral affective and the dorsal cognitive circuits, i.e. heightened interactions between the ventral ACC and the dorsolateral prefrontal cortex as well as between dorsal and ventral ACC. These findings offer a comprehensive view of the cortico-limbic dysfunction in schizophrenia. They confirm previous results of impaired propagation of information between the amygdala and the prefrontal cortex and suggest a defective functional segregation in the dorsal cognitive part of the cortico-limbic circuit. PMID:29069508

  13. Role of the Perigenual Anterior Cingulate and Orbitofrontal Cortex in Contingency Learning in the Marmoset.

    PubMed

    Jackson, Stacey A W; Horst, Nicole K; Pears, Andrew; Robbins, Trevor W; Roberts, Angela C

    2016-07-01

    Two learning mechanisms contribute to decision-making: goal-directed actions and the "habit" system, by which action-outcome and stimulus-response associations are formed, respectively. Rodent lesion studies and human neuroimaging have implicated both the medial prefrontal cortex (mPFC) and the orbitofrontal cortex (OFC) in the neural basis of contingency learning, a critical component of goal-directed actions, though some published findings are conflicting. We sought to reconcile the existing literature by comparing the effects of excitotoxic lesions of the perigenual anterior cingulate cortex (pgACC), a region of the mPFC, and OFC on contingency learning in the marmoset monkey using a touchscreen-based paradigm, in which the contingent relationship between one of a pair of actions and its outcome was degraded selectively. Both the pgACC and OFC lesion groups were insensitive to the contingency degradation, whereas the control group demonstrated selectively higher performance of the nondegraded action when compared with the degraded action. These findings suggest the pgACC and OFC are both necessary for normal contingency learning and therefore goal-directed behavior. © The Author 2016. Published by Oxford University Press.

  14. Mirth and laughter elicited by electrical stimulation of the human anterior cingulate cortex.

    PubMed

    Caruana, Fausto; Avanzini, Pietro; Gozzo, Francesca; Francione, Stefano; Cardinale, Francesco; Rizzolatti, Giacomo

    2015-10-01

    Laughter is a complex motor behavior that, typically, expresses mirth. Despite its fundamental role in social life, knowledge about the neural basis of laughter is very limited and mostly based on a few electrical stimulation (ES) studies carried out in epileptic patients. In these studies laughter was elicited from temporal areas where it was accompanied by mirth and from frontal areas plus an anterior cingulate case where laughter without mirth was observed. On the basis of these findings, it has been proposed a dichotomy between temporal lobe areas processing the emotional content of laughter and anterior cingulate cortex (ACC) and motor areas responsible of laughter production. The present study is aimed to understand the role of ACC in laughter. We report the effects of stimulation of 10 rostral, pregenual ACC (pACC) patients in which the ES elicited laughter. In half of the patients ES elicited a clear burst of laughter with mirth, while in the other half mirth was not evident. This large dataset allow us to offer a more reliable picture of the functional contribute of this region in laughter, and to precisely localize it in the cingulate cortex. We conclude that the pACC is involved in both the motor and the affective components of emotions, and challenge the validity of a sharp dichotomy between motor and emotional centers for laughing. Finally, we suggest a possible anatomical network for the production of positive emotional expressions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Not so bad: avoidance and aversive discounting modulate threat appraisal in anterior cingulate and medial prefrontal cortex

    PubMed Central

    Schlund, Michael W.; Brewer, Adam T.; Richman, David M.; Magee, Sandy K.; Dymond, Simon

    2015-01-01

    The dorsal anterior cingulate (adACC) and dorsal medial prefrontal cortex (dmPFC) play a central role in the discrimination and appraisal of threatening stimuli. Yet, little is known about what specific features of threatening situations recruit these regions and how avoidance may modulate appraisal and activation through prevention of aversive events. In this investigation, 30 healthy adults underwent functional neuroimaging while completing an avoidance task in which responses to an Avoidable CS+ threat prevented delivery of an aversive stimulus, but not to an Unavoidable CS+ threat. Extinction testing was also completed where CSs were presented without aversive stimulus delivery and an opportunity to avoid. The Avoidable CS+ relative to the Unavoidable CS+ was associated with reductions in ratings of negative valence, fear, and US expectancy and activation. Greater regional activation was consistently observed to the Unavoidable CS+ during avoidance, which declined during extinction. Individuals exhibiting greater aversive discounting—that is, those more avoidant of immediate monetary loss compared to a larger delayed loss—also displayed greater activation to the Unavoidable CS+, highlighting aversive discounting as a significant individual difference variable. These are the first results linking adACC/dmPFC reactivity to avoidance-based reductions of aversive events and modulation of activation by individual differences in aversive discounting. PMID:26113813

  16. Rostral Anterior Cingulate Cortex Theta Current Density and Response to Antidepressants and Placebo in Major Depression

    PubMed Central

    Korb, Alexander S.; Hunter, Aimee M.; Cook, Ian A.; Leuchter, Andrew F.

    2009-01-01

    Objective To assess whether pretreatment theta current density in the rostral anterior cingulate (rACC) and medial orbitofrontal cortex (mOFC) differentiates responders from non-responders to antidepressant medication or placebo in a double-blinded study. Methods Pretreatment EEGs were collected from 72 subjects with Major Depressive Disorder (MDD) who participated in one of three placebo-controlled trials. Subjects were randomized to receive treatment with fluoxetine, venlafaxine, or placebo. Low-resolution brain electromagnetic tomography (LORETA) was used to assess theta current density in the rACC and mOFC. Results Medication responders showed elevated rACC and mOFC theta current density compared to medication non-responders (rACC: p=0.042; mOFC: p=0.039). There was no significant difference in either brain region between placebo responders and placebo non-responders. Conclusions Theta current density in the rACC and mOFC may be useful as a biomarker for prediction of response to antidepressant medication. Significance This is the first double-blinded treatment study to examine pretreatment rACC and mOFC theta current density in relation to antidepressant response and placebo response. Results support the potential clinical utility of this approach for predicting clinical outcome to antidepressant treatments in MDD. PMID:19539524

  17. Subliminal trauma reminders impact neural processing of cognitive control in adults with developmental earthquake trauma: a preliminary report.

    PubMed

    Du, Xue; Li, Yu; Ran, Qian; Kim, Pilyoung; Ganzel, Barbara L; Liang, GuangSheng; Hao, Lei; Zhang, Qinglin; Meng, Huaqing; Qiu, Jiang

    2016-03-01

    Little is known about the effects of developmental trauma on the neural basis of cognitive control among adults who do not have posttraumatic stress disorder. To examine this question, we used functional magnetic resonance imaging to compare the effect of subliminal priming with earthquake-related images on attentional control during a Stroop task in survivors of the 2008 Wenchuan earthquake in China (survivor group, survivors were adolescents at the time of the earthquake) and in matched controls (control group). We found that the survivor group showed greater activation in the left ventral anterior cingulate cortex (vACC) and the bilateral parahippocampal gyrus during the congruent versus incongruent condition, as compared to the control group. Depressive symptoms were positively correlated with left vACC activation during the congruent condition. Moreover, psychophysiological interaction results showed that the survivor group had stronger functional connectivity between the left parahippocampal gyrus and the left vACC than the control group under the congruent-incongruent condition. These results suggested that trauma-related information was linked to abnormal activity in brain networks associated with cognitive control (e.g., vACC-parahippocampal gyrus). This may be a potential biomarker for depression following developmental trauma, and it may also provide a mechanism linking trauma reminders with depression.

  18. Neural correlates of appetitive extinction in humans

    PubMed Central

    Tapia León, Isabell; Stark, Rudolf; Klucken, Tim

    2017-01-01

    Abstract Appetitive extinction receives attention as an important model for the treatment of psychiatric disorders. However, in humans, its underlying neural correlates remain unknown. To close this gap, we investigated appetitive acquisition and extinction with fMRI in a 2-day monetary incentive delay paradigm. During appetitive conditioning, one stimulus (CS+) was paired with monetary reward, while another stimulus (CS−) was never rewarded. Twenty-four hours later, subjects underwent extinction, in which neither CS was reinforced. Appetitive conditioning elicited stronger skin conductance responses to the CS+ as compared with the CS−. Regarding subjective ratings, the CS+ was rated more pleasant and arousing than the CS− after conditioning. Furthermore, fMRI-results (CS+ − CS−) showed activation of the reward circuitry including amygdala, midbrain and striatal areas. During extinction, conditioned responses were successfully extinguished. In the early phase of extinction, we found a significant activation of the caudate, the hippocampus, the dorsal and ventral anterior cingulate cortex (dACC and vACC). In the late phase, we found significant activation of the nucleus accumbens (NAcc) and the amygdala. Correlational analyses with subjective ratings linked extinction success to the vACC and the NAcc, while associating the dACC with reduced extinction. The results reveal neural correlates of appetitive extinction in humans and extend assumptions from models for human extinction learning. PMID:27803289

  19. Individual differences in neural responses to social rejection: the joint effect of self-esteem and attentional control

    PubMed Central

    Hooker, Christine I.; Miyakawa, Asako; Verosky, Sara; Luerssen, Anna; Ayduk, Özlem N.

    2012-01-01

    Individuals with low self-esteem have been found to react more negatively to signs of interpersonal rejection than those with high self-esteem. However, previous research has found that individual differences in attentional control can attenuate negative reactions to social rejection among vulnerable, low self-esteem individuals. The current fMRI study sought to elucidate the neurobiological substrate of this buffering effect. We hypothesized and found that while looking at scenes of social rejection (vs negative scenes) low self-esteem high attentional control individuals engaged the rostral anterior cingulate cortex (rACC), an area of the brain associated with emotional control, more than their low self-esteem low attentional control peers. Furthermore, we found that low self-esteem high attentional control individuals evaluated social rejection as less arousing and less rejecting in a separate behavioral task. Importantly, activation in the rACC fully mediated the relationship between the interaction of self-esteem and attentional control and emotional evaluations, suggesting that the rACC activation underlies the buffering effects of attentional control. Results are discussed in terms of individual differences in emotional vulnerability and protection and by highlighting the role of rACC in emotion regulation. PMID:21609969

  20. Sister grouping of chimpanzees and humans as revealed by genome-wide phylogenetic analysis of brain gene expression profiles

    PubMed Central

    Uddin, Monica; Wildman, Derek E.; Liu, Guozhen; Xu, Wenbo; Johnson, Robert M.; Hof, Patrick R.; Kapatos, Gregory; Grossman, Lawrence I.; Goodman, Morris

    2004-01-01

    Gene expression profiles from the anterior cingulate cortex (ACC) of human, chimpanzee, gorilla, and macaque samples provide clues about genetic regulatory changes in human and other catarrhine primate brains. The ACC, a cerebral neocortical region, has human-specific histological features. Physiologically, an individual's ACC displays increased activity during that individual's performance of cognitive tasks. Of ≈45,000 probe sets on microarray chips representing transcripts of all or most human genes, ≈16,000 were commonly detected in human ACC samples and comparable numbers, 14,000–15,000, in gorilla and chimpanzee ACC samples. Phylogenetic results obtained from gene expression profiles contradict the traditional expectation that the non-human African apes (i.e., chimpanzee and gorilla) should be more like each other than either should be like humans. Instead, the chimpanzee ACC profiles are more like the human than like the gorilla; these profiles demonstrate that chimpanzees are the sister group of humans. Moreover, for those unambiguous expression changes mapping to important biological processes and molecular functions that statistically are significantly represented in the data, the chimpanzee clade shows at least as much apparent regulatory evolution as does the human clade. Among important changes in the ancestry of both humans and chimpanzees, but to a greater extent in humans, are the up-regulated expression profiles of aerobic energy metabolism genes and neuronal function-related genes, suggesting that increased neuronal activity required increased supplies of energy. PMID:14976249

  1. Frontolimbic dysfunction in response to facial emotion in borderline personality disorder: an event-related fMRI study

    PubMed Central

    Minzenberg, Michael J.; Fan, Jin; New, Antonia S.; Tang, Cheuk Y.; Siever, Larry J.

    2007-01-01

    Clinical hallmarks of borderline personality disorder (BPD) include social and emotional dysregulation. We tested a model of frontolimbic dysfunction in facial emotion processing in BPD. Groups of 12 unmedicated adults with BPD by DSM-IV and 12 demographically-matched healthy controls (HC) viewed facial expressions (Conditions) of neutral emotion, fear and anger, and made gender discriminations during rapid event-related functional magnetic resonance imaging (fMRI). Analysis of variance of Region of Interest signal change revealed a statistically significant effect of the Group-by-Region-by-Condition interaction. This was due to the BPD group exhibiting a significantly larger magnitude of deactivation (relative to HC) in the bilateral rostral/subgenual anterior cingulate cortex (ACC) to fear and in the left ACC to fear minus neutral; and significantly greater activation in the right amygdala to fear minus neutral. There were no significant between-group differences in ROI signal change in response to anger. In voxel-wise analyses constrained within these ROIs, the BPD group exhibited significant changes in the fear minus neutral contrast, with relatively less activation in the bilateral rostral/subgenual ACC, and greater activation in the right amygdala. In the anger minus neutral contrast this pattern was reversed, with the BPD group showing greater activation in the bilateral rostral/subgenual ACC and less activation in the bilateral amygdala. We conclude that adults with BPD exhibit changes in fronto-limbic activity in the processing of fear stimuli, with exaggerated amygdala response and impaired emotion-modulation of ACC activity. The neural substrates underlying processing of anger may also be altered. These changes may represent an expression of the volumetric and serotonergic deficits observed in these brain areas in BPD. PMID:17601709

  2. Fronto-limbic dysfunction in response to facial emotion in borderline personality disorder: an event-related fMRI study.

    PubMed

    Minzenberg, Michael J; Fan, Jin; New, Antonia S; Tang, Cheuk Y; Siever, Larry J

    2007-08-15

    Clinical hallmarks of borderline personality disorder (BPD) include social and emotional dysregulation. We tested a model of fronto-limbic dysfunction in facial emotion processing in BPD. Groups of 12 unmedicated adults with BPD by DSM-IV and 12 demographically-matched healthy controls (HC) viewed facial expressions (Conditions) of neutral emotion, fear and anger, and made gender discriminations during rapid event-related functional magnetic resonance imaging (fMRI). Analysis of variance of Region of Interest signal change revealed a statistically significant effect of the Group-by-Region-by-Condition interaction. This was due to the BPD group exhibiting a significantly larger magnitude of deactivation (relative to HC) in the bilateral rostral/subgenual anterior cingulate cortex (ACC) to fear and in the left ACC to fear minus neutral; and significantly greater activation in the right amygdala to fear minus neutral. There were no significant between-group differences in ROI signal change in response to anger. In voxel-wise analyses constrained within these ROIs, the BPD group exhibited significant changes in the fear minus neutral contrast, with relatively less activation in the bilateral rostral/subgenual ACC, and greater activation in the right amygdala. In the anger minus neutral contrast this pattern was reversed, with the BPD group showing greater activation in the bilateral rostral/subgenual ACC and less activation in the bilateral amygdala. We conclude that adults with BPD exhibit changes in fronto-limbic activity in the processing of fear stimuli, with exaggerated amygdala response and impaired emotion-modulation of ACC activity. The neural substrates underlying processing of anger may also be altered. These changes may represent an expression of the volumetric and serotonergic deficits observed in these brain areas in BPD.

  3. A role for primate subgenual cingulate cortex in sustaining autonomic arousal

    PubMed Central

    Rudebeck, Peter H.; Putnam, Philip T.; Daniels, Teresa E.; Yang, Tianming; Mitz, Andrew R.; Rhodes, Sarah E. V.; Murray, Elisabeth A.

    2014-01-01

    The subgenual anterior cingulate cortex (subgenual ACC) plays an important role in regulating emotion, and degeneration in this area correlates with depressed mood and anhedonia. Despite this understanding, it remains unknown how this part of the prefrontal cortex causally contributes to emotion, especially positive emotions. Using Pavlovian conditioning procedures in macaque monkeys, we examined the contribution of the subgenual ACC to autonomic arousal associated with positive emotional events. After such conditioning, autonomic arousal increases in response to cues that predict rewards, and monkeys maintain this heightened state of arousal during an interval before reward delivery. Here we show that although monkeys with lesions of the subgenual ACC show the initial, cue-evoked arousal, they fail to sustain a high level of arousal until the anticipated reward is delivered. Control procedures showed that this impairment did not result from differences in autonomic responses to reward delivery alone, an inability to learn the association between cues and rewards, or to alterations in the light reflex. Our data indicate that the subgenual ACC may contribute to positive affect by sustaining arousal in anticipation of positive emotional events. A failure to maintain positive affect for expected pleasurable events could provide insight into the pathophysiology of psychological disorders in which negative emotions dominate a patient’s affective experience. PMID:24706828

  4. A direct comparison of appetitive and aversive anticipation: Overlapping and distinct neural activation.

    PubMed

    Sege, Christopher T; Bradley, Margaret M; Weymar, Mathias; Lang, Peter J

    2017-05-30

    fMRI studies of reward find increased neural activity in ventral striatum and medial prefrontal cortex (mPFC), whereas other regions, including the dorsolateral prefrontal cortex (dlPFC), anterior cingulate cortex (ACC), and anterior insula, are activated when anticipating aversive exposure. Although these data suggest differential activation during anticipation of pleasant or of unpleasant exposure, they also arise in the context of different paradigms (e.g., preparation for reward vs. threat of shock) and participants. To determine overlapping and unique regions active during emotional anticipation, we compared neural activity during anticipation of pleasant or unpleasant exposure in the same participants. Cues signalled the upcoming presentation of erotic/romantic, violent, or everyday pictures while BOLD activity during the 9-s anticipatory period was measured using fMRI. Ventral striatum and a ventral mPFC subregion were activated when anticipating pleasant, but not unpleasant or neutral, pictures, whereas activation in other regions was enhanced when anticipating appetitive or aversive scenes. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Adrenocortical neoplasia: evolving concepts in tumorigenesis with an emphasis on adrenal cortical carcinoma variants.

    PubMed

    de Krijger, Ronald R; Papathomas, Thomas G

    2012-01-01

    Adrenocortical carcinoma (ACC) is a rare, heterogeneous malignancy with a poor prognosis. According to WHO classification 2004, ACC variants include oncocytic ACCs, myxoid ACCs and ACCs with sarcomatous areas. Herein, we provide a comprehensive review of these rare subtypes of adrenocortical malignancy and emphasize their clinicopathological features with the aim of elucidating aspects of diagnostic categorization, differential diagnostics and biological behavior. The issue of current terminology, applied to biphasic tumors with pleomorphic, sarcomatous or sarcomatoid elements arising in adrenal cortex, is also discussed. We additionally present emerging evidence concerning the adrenal cortical tumorigenesis and the putative adenoma-carcinoma sequence as well.

  6. Epigenetic silencing of RASSF1A deregulates cytoskeleton and promotes malignant behavior of adrenocortical carcinoma

    PubMed Central

    2013-01-01

    Background Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with high mutational heterogeneity and a generally poor clinical outcome. Despite implicated roles of deregulated TP53, IGF-2 and Wnt signaling pathways, a clear genetic association or unique mutational link to the disease is still missing. Recent studies suggest a crucial role for epigenetic modifications in the genesis and/or progression of ACC. This study specifically evaluates the potential role of epigenetic silencing of RASSF1A, the most commonly silenced tumor suppressor gene, in adrenocortical malignancy. Results Using adrenocortical tumor and normal tissue specimens, we show a significant reduction in expression of RASSF1A mRNA and protein in ACC. Methylation-sensitive and -dependent restriction enzyme based PCR assays revealed significant DNA hypermethylation of the RASSF1A promoter, suggesting an epigenetic mechanism for RASSF1A silencing in ACC. Conversely, the RASSF1A promoter methylation profile in benign adrenocortical adenomas (ACAs) was found to be very similar to that found in normal adrenal cortex. Enforced expression of ectopic RASSF1A in the SW-13 ACC cell line reduced the overall malignant behavior of the cells, which included impairment of invasion through the basement membrane, cell motility, and solitary cell survival and growth. On the other hand, expression of RASSF1A/A133S, a loss-of-function mutant form of RASSF1A, failed to elicit similar malignancy-suppressing responses in ACC cells. Moreover, association of RASSF1A with the cytoskeleton in RASSF1A-expressing ACC cells and normal adrenal cortex suggests a role for RASSF1A in modulating microtubule dynamics in the adrenal cortex, and thereby potentially blocking malignant progression. Conclusions Downregulation of RASSF1A via promoter hypermethylation may play a role in the malignant progression of adrenocortical carcinoma possibly by abrogating differentiation-promoting RASSF1A- microtubule interactions. PMID:23915220

  7. Sex Differences in Gamma Band Functional Connectivity Between the Frontal Lobe and Cortical Areas During an Auditory Oddball Task, as Revealed by Imaginary Coherence Assessment.

    PubMed

    Fujimoto, Toshiro; Okumura, Eiichi; Kodabashi, Atsushi; Takeuchi, Kouzou; Otsubo, Toshiaki; Nakamura, Katsumi; Yatsushiro, Kazutaka; Sekine, Masaki; Kamiya, Shinichiro; Shimooki, Susumu; Tamura, Toshiyo

    2016-01-01

    We studied sex-related differences in gamma oscillation during an auditory oddball task, using magnetoencephalography and electroencephalography assessment of imaginary coherence (IC). We obtained a statistical source map of event-related desynchronization (ERD) / event-related synchronization (ERS), and compared females and males regarding ERD / ERS. Based on the results, we chose respectively seed regions for IC determinations in low (30-50 Hz), mid (50-100 Hz) and high gamma (100-150 Hz) bands. In males, ERD was increased in the left posterior cingulate cortex (CGp) at 500 ms in the low gamma band, and in the right caudal anterior cingulate cortex (cACC) at 125 ms in the mid-gamma band. ERS was increased in the left rostral anterior cingulate cortex (rACC) at 375 ms in the high gamma band. We chose the CGp, cACC and rACC as seeds, and examined IC between the seed and certain target regions using the IC map. IC changes depended on the height of the gamma frequency and the time window in the gamma band. Although IC in the mid and high gamma bands did not show sex-specific differences, IC at 30-50 Hz in males was increased between the left rACC and the frontal, orbitofrontal, inferior temporal and fusiform target regions. Increased IC in males suggested that males may acomplish the task constructively, analysingly, emotionally, and by perfoming analysis, and that information processing was more complicated in the cortico-cortical circuit. On the other hand, females showed few differences in IC. Females planned the task with general attention and economical well-balanced processing, which was explained by the higher overall functional cortical connectivity. CGp, cACC and rACC were involved in sex differences in information processing and were likely related to differences in neuroanatomy, hormones and neurotransmitter systems.

  8. Effects of intensive cognitive-behavioral therapy on cingulate neurochemistry in obsessive–compulsive disorder

    PubMed Central

    O'Neill, Joseph; Gorbis, Eda; Feusner, Jamie D.; Yip, Jenny C.; Chang, Susanna; Maidment, Karron M.; Levitt, Jennifer G.; Salamon, Noriko; Ringman, John M.; Saxena, Sanjaya

    2013-01-01

    The neurophysiological bases of cognitive-behavioral therapy (CBT) for obsessive–compulsive disorder (OCD) are incompletely understood. Previous studies, though sparse, implicate metabolic changes in pregenual anterior cingulate cortex (pACC) and anterior middle cingulate cortex (aMCC) as neural correlates of response to CBT. The goal of this pilot study was to determine the relationship between levels of the neurochemically interlinked metabolites glutamate + glutamine (Glx) and N-acetyl-aspartate + N-acetyl-aspartyl-glutamate (tNAA) in pACC and aMCC to pretreatment OCD diagnostic status and OCD response to CBT. Proton magnetic resonance spectroscopic imaging (1H MRSI) was acquired from pACC and aMCC in 10 OCD patients at baseline, 8 of whom had a repeat scan after 4 weeks of intensive CBT. pACC was also scanned (baseline only) in 8 age-matched healthy controls. OCD symptoms improved markedly in 8/8 patients after CBT. In right pACC, tNAA was significantly lower in OCD patients than controls at baseline and then increased significantly after CBT. Baseline tNAA also correlated with post-CBT change in OCD symptom severity. In left aMCC, Glx decreased significantly after intensive CBT. These findings add to evidence implicating the pACC and aMCC as loci of the metabolic effects of CBT in OCD, particularly effects on glutamatergic and N-acetyl compounds. Moreover, these metabolic responses occurred after just 4 weeks of intensive CBT, compared to 3 months for standard weekly CBT. Baseline levels of tNAA in the pACC may be associated with response to CBT for OCD. Lateralization of metabolite effects of CBT, previously observed in subcortical nuclei and white matter, may also occur in cingulate cortex. Tentative mechanisms for these effects are discussed. Comorbid depressive symptoms in OCD patients may have contributed to metabolite effects, although baseline and post-CBT change in depression ratings varied with choline-compounds and myo-inositol rather than Glx or tNAA. PMID:23290560

  9. Response conflict and frontocingulate dysfunction in unmedicated participants with major depression.

    PubMed

    Holmes, Avram J; Pizzagalli, Diego A

    2008-10-01

    Individuals with major depressive disorder (MDD) often exhibit impaired executive function, particularly in experimental tasks that involve response conflict and require adaptive behavioral adjustments. Prior research suggests that these deficits might be due to dysfunction within frontocingulate pathways implicated in response conflict monitoring and the recruitment of cognitive control. However, the temporal unfolding of conflict monitoring impairments in MDD remains poorly understood. To address this issue, we recorded 128-channel event-related potentials while 20 unmedicated participants with MDD and 20 demographically matched, healthy controls performed a Stroop task. Compared to healthy controls, MDD subjects showed larger Stroop interference effects and reduced N2 and N450 amplitudes. Source localization analyses at the time of maximal N450 activity revealed that MDD subjects had significantly reduced dorsal anterior cingulate cortex (dACC; Brodmann area 24/32) and left dorsolateral prefrontal cortex (Brodmann area 10/46) activation to incongruent relative to congruent trials. Consistent with the heterogeneous nature of depression, follow-up analyses revealed that depressed participants with the lowest level of conflict-related dACC activation 620 ms post-stimulus were characterized by the largest Stroop interference effects (relatively increased slowing and reduced accuracy for incongruent trials). Conversely, MDD participants with relatively stronger dACC recruitment did not differ from controls in terms of interference effects. These findings suggest that for some, but not all individuals, MDD is associated with impaired performance in trials involving competition among different response options, and reduced recruitment of frontocingulate pathways implicated in conflict monitoring and cognitive control.

  10. Decision Making in the Balloon Analogue Risk Task (BART): Anterior Cingulate Cortex Signals Loss-Aversion but not the Infrequency of Risky Choices

    PubMed Central

    Fukunaga, Rena; Brown, Joshua W.; Bogg, Tim

    2012-01-01

    The inferior frontal gyrus/anterior insula (IFG/AI) and anterior cingulate cortex (ACC) are key regions involved in risk appraisal during decision making, but accounts of how these regions contribute to decision-making under risk remain contested. To help clarify the roles of these and other related regions, we used a modified version of the Balloon Analogue Risk Task (Lejuez et al., 2002) to distinguish between decision-making and feedback-related processes when participants decided to pursue a gain as the probability of loss increased parametrically. Specifically, we set out to test whether ACC and IFG/AI regions correspond to loss-aversion at the time of decision making in a way that is not confounded with either reward-seeking or infrequency effects. When participants chose to discontinue inflating the balloon (win option), we observed greater ACC and mainly bilateral IFG/AI activity at the time of decision as the probability of explosion increased, consistent with increased loss-aversion but inconsistent with an infrequency effect. In contrast, we found robust vmPFC activity when participants chose to continue inflating the balloon (risky option), consistent with reward-seeking. However, in the cingulate and mainly bilateral IFG regions, BOLD activation decreased when participants chose to inflate the balloon as the probability of explosion increased, findings consistent with a reduced loss-aversion signal. Our results highlight the existence of distinct reward-seeking and loss-averse signals during decision-making, as well as the importance of distinguishing decision and feedback signals. PMID:22707378

  11. Response conflict and frontocingulate dysfunction in unmedicated participants with Major Depression

    PubMed Central

    Holmes, Avram J.; Pizzagalli, Diego A.

    2008-01-01

    Individuals with major depressive disorder (MDD) often exhibit impaired executive function, particularly in experimental tasks that involve response conflict and require adaptive behavioral adjustments. Prior research suggests that these deficits might be due to dysfunction within frontocingulate pathways implicated in response conflict monitoring and the recruitment of cognitive control. However, the temporal unfolding of conflict monitoring impairments in MDD remains poorly understood. To address this issue, we recorded 128-channel event-related potentials while 20 unmedicated participants with MDD and 20 demographically matched, healthy controls performed a Stroop task. Compared to healthy controls, MDD subjects showed larger Stroop interference effects and reduced N2 and N450 amplitudes. Source localization analyses at the time of maximal N450 activity revealed that MDD subjects had significantly reduced dorsal anterior cingulate cortex (dACC; Brodmann area 24/32) and left dorsolateral prefrontal cortex (Brodmann area 10/46) activation to incongruent relative to congruent trials. Consistent with the heterogeneous nature of depression, follow-up analyses revealed that depressed participants with the lowest level of conflict-related dACC activation 620 ms post-stimulus were characterized by the largest Stroop interference effects (relatively increased slowing and reduced accuracy for incongruent trials). Conversely, MDD participants with relatively stronger dACC recruitment did not differ from controls in terms of interference effects. These findings suggest that for some, but not all individuals, MDD is associated with impaired performance in trials involving competition among different response options, and reduced recruitment of frontocingulate pathways implicated in conflict monitoring and cognitive control. PMID:18577391

  12. Role of right pregenual anterior cingulate cortex in self-conscious emotional reactivity

    PubMed Central

    Sollberger, Marc; Seeley, William W.; Rankin, Katherine P.; Ascher, Elizabeth A.; Rosen, Howard J.; Miller, Bruce L.; Levenson, Robert W.

    2013-01-01

    Self-conscious emotions such as embarrassment arise when one’s actions fail to meet salient social expectations and are accompanied by marked physiological and behavioral activation. We investigated the neural correlates of self-conscious emotional reactivity in 27 patients with behavioral variant frontotemporal dementia (bvFTD), a neurodegenerative disease that disrupts self-conscious emotion and targets brain regions critical for emotional functioning early in the disease course, and in 33 healthy older controls. Subjects participated in an embarrassing karaoke task in which they watched a video clip of themselves singing. They also watched a sad film clip; these data were used to control for non-self-conscious emotional reactivity in response to audiovisual stimuli. Using Freesurfer to quantify regional brain volumes from structural magnetic resonance imaging, right pregenual anterior cingulate cortex (pACC) gray matter volume was the only brain region that was a significant predictor of self-conscious emotion. Smaller pACC volume was associated with attenuated physiological and behavioral self-conscious emotional reactivity, and this relationship was not specific to diagnosis. We argue that these results reflect the significant role that right pACC plays in the visceromotor responding that accompanies self-conscious emotion and that neurodegeneration in this region may underlie the self-conscious emotional decline seen in bvFTD. PMID:22345371

  13. Role of right pregenual anterior cingulate cortex in self-conscious emotional reactivity.

    PubMed

    Sturm, Virginia E; Sollberger, Marc; Seeley, William W; Rankin, Katherine P; Ascher, Elizabeth A; Rosen, Howard J; Miller, Bruce L; Levenson, Robert W

    2013-04-01

    Self-conscious emotions such as embarrassment arise when one's actions fail to meet salient social expectations and are accompanied by marked physiological and behavioral activation. We investigated the neural correlates of self-conscious emotional reactivity in 27 patients with behavioral variant frontotemporal dementia (bvFTD), a neurodegenerative disease that disrupts self-conscious emotion and targets brain regions critical for emotional functioning early in the disease course, and in 33 healthy older controls. Subjects participated in an embarrassing karaoke task in which they watched a video clip of themselves singing. They also watched a sad film clip; these data were used to control for non-self-conscious emotional reactivity in response to audiovisual stimuli. Using Freesurfer to quantify regional brain volumes from structural magnetic resonance imaging, right pregenual anterior cingulate cortex (pACC) gray matter volume was the only brain region that was a significant predictor of self-conscious emotion. Smaller pACC volume was associated with attenuated physiological and behavioral self-conscious emotional reactivity, and this relationship was not specific to diagnosis. We argue that these results reflect the significant role that right pACC plays in the visceromotor responding that accompanies self-conscious emotion and that neurodegeneration in this region may underlie the self-conscious emotional decline seen in bvFTD.

  14. Altered resting-state amygdala functional connectivity in men with posttraumatic stress disorder

    PubMed Central

    Sripada, Rebecca K.; King, Anthony P.; Garfinkel, Sarah N.; Wang, Xin; Sripada, Chandra S.; Welsh, Robert C.; Liberzon, Israel

    2012-01-01

    Background Converging neuroimaging research suggests altered emotion neurocircuitry in individuals with posttraumatic stress disorder (PTSD). Emotion activation studies in these individuals have shown hyperactivation in emotion-related regions, including the amygdala and insula, and hypoactivation in emotion-regulation regions, including the medial prefrontal cortex (mPFC) and anterior cingulate cortex (ACC). However, few studies have examined patterns of connectivity at rest in individuals with PTSD, a potentially powerful method for illuminating brain network structure. Methods Using the amygdala as a seed region, we measured resting-state brain connectivity using 3 T functional magnetic resonance imaging in returning male veterans with PTSD and combat controls without PTSD. Results Fifteen veterans with PTSD and 14 combat controls enrolled in our study. Compared with controls, veterans with PTSD showed greater positive connectivity between the amygdala and insula, reduced positive connectivity between the amygdala and hippocampus, and reduced anticorrelation between the amygdala and dorsal ACC and rostral ACC. Limitations Only male veterans with combat exposure were tested, thus our findings cannot be generalized to women or to individuals with non–combat related PTSD. Conclusion These results demonstrate that studies of functional connectivity during resting state can discern aberrant patterns of coupling within emotion circuits and suggest a possible brain basis for emotion-processing and emotion-regulation deficits in individuals with PTSD. PMID:22313617

  15. Positive Emotion Facilitates Cognitive Flexibility: An fMRI Study

    PubMed Central

    Wang, Yanmei; Chen, Jie; Yue, Zhenzhu

    2017-01-01

    Cognitive flexibility is the ability to switch rapidly between multiple goals. By using a task-switching paradigm, the present study investigated how positive emotion affected cognitive flexibility and the underlying neural mechanisms. After viewing pictures of different emotional valence (positive, negative, or neutral), participants discriminated whether a target digit in a specific color was odd or even. After a series of trials, the color of target stimuli was changed, i.e., the switch condition. Switch costs were measured by the increase of reaction times (RTs) in the switch trials compared to those in the repeat trials. Behavior results indicated that switch costs significantly decreased in the positive emotional condition, and increased in the negative emotional condition, compared with those in the neutral condition. Imaging data revealed enhanced activation in the dorsal anterior cingulate cortex (dACC) in switch trials than those in repeat trials. Moreover, the interaction between emotion (positive, negative, neutral) and trial type (repeat vs. switch) was significant. For switch trials, the activation of dACC decreased significantly in the positive condition, while increased significantly in the negative condition compared to neutral condition. By contrast, for repeat trials, no significant difference was observed for the activation of dACC among three emotional conditions. Our results showed that positive emotions could increase the cognitive flexibility and reduce the conflict by decreasing the activation of dACC. PMID:29163255

  16. Prefrontal Cortex and Drug Abuse Vulnerability: Translation to Prevention and Treatment Interventions

    PubMed Central

    Perry, Jennifer L.; Joseph, Jane E.; Jiang, Yang; Zimmerman, Rick S.; Kelly, Thomas H.; Darna, Mahesh; Huettl, Peter; Dwoskin, Linda P.; Bardo, Michael T.

    2010-01-01

    Vulnerability to drug abuse is related to both reward seeking and impulsivity, two constructs thought to have a biological basis in the prefrontal cortex (PFC). This review addresses similarities and differences in neuroanatomy, neurochemistry and behavior associated with PFC function in rodents and primates. Emphasis is placed on monoamine and amino acid neurotransmitter systems located in anatomically distinct subregions: medial prefrontal cortex (mPFC); lateral prefrontal cortex (lPFC); anterior cingulate cortex (ACC); and orbitofrontal cortex (OFC). While there are complex interconnections and overlapping functions among these regions, each is thought to be involved in various functions related to health-related risk behaviors and drug abuse vulnerability. Among the various functions implicated, evidence suggests that mPFC is involved in reward processing, attention and drug reinstatement; lPFC is involved in decision-making, behavioral inhibition and attentional gating; ACC is involved in attention, emotional processing and self-monitoring; and OFC is involved in behavioral inhibition, signaling of expected outcomes and reward/punishment sensitivity. Individual differences factors (e.g., age and sex) influence functioning of these regions, which, in turn, impacts drug abuse vulnerability. Implications for the development of drug abuse prevention and treatment strategies aimed at engaging PFC inhibitory processes that may reduce risk-related behaviors are discussed, including the design of effective public service announcements, cognitive exercises, physical activity, direct current stimulation, feedback control training and pharmacotherapies. A major challenge in drug abuse prevention and treatment rests with improving intervention strategies aimed at strengthening PFC inhibitory systems among at-risk individuals. PMID:20837060

  17. Neurobehavioral assessment of maternal odor in developing rat pups: implications for social buffering

    PubMed Central

    Al Aïn, Syrina; Perry, Rosemarie E.; Nuñez, Bestina; Kayser, Kassandra; Hochman, Chase; Brehman, Elizabeth; LaComb, Miranda; Wilson, Donald A.; Sullivan, Regina M.

    2016-01-01

    Social support can attenuate the behavioral and stress hormone response to threat, a phenomenon called social buffering. The mother’s social buffering of the infant is one of the more robust examples; yet we understand little about the neurobiology. Using a rodent model, we explore the neurobiology of social buffering by assessing neural processing of the maternal odor, a major cue controlling social buffering in rat pups. We used pups before (postnatal day (PN) 7) and after (PN14, PN23) the functional emergence of social buffering. Pups were injected with 14C 2-deoxyglucose (2-DG) and presented with the maternal odor, a control preferred odor incapable of social buffering (acetophenone), or no odor. Brains were removed, processed for autoradiography and brain areas identified as important in adult social buffering were assessed, including the amygdala basolateral complex (Basolateral Amygdala [BLA]), medial prefrontal cortex (mPFC), and anterior cingulate cortex (ACC). Results suggest dramatic changes in the processing of maternal odor. PN7 pups show mPFC and ACC activation, although PN14 pups showed no activation of the mPFC, ACC, or BLA. All brain areas assessed were recruited by PN23. Additional analysis suggests substantial changes in functional connectivity across development. Together, these results imply complex nonlinear transitions in the neurobiology of social buffering in early life that may provide insight into the changing role of the mother in supporting social buffering. PMID:26934130

  18. The Anterior Cingulate Gyrus Signals the Net Value of Others' Rewards

    PubMed Central

    Ramnani, Narender

    2014-01-01

    Evaluating the costs and benefits of our own choices is central to most forms of decision-making and its mechanisms in the brain are becoming increasingly well understood. To interact successfully in social environments, it is also essential to monitor the rewards that others receive. Previous studies in nonhuman primates have found neurons in the anterior cingulate cortex (ACC) that signal the net value (benefit minus cost) of rewards that will be received oneself and also neurons that signal when a reward will be received by someone else. However, little is understood about the way in which the human brain engages in cost–benefit analyses during social interactions. Does the ACC signal the net value (the benefits minus the costs) of rewards that others will receive? Here, using fMRI, we examined activity time locked to cues that signaled the anticipated reward magnitude (benefit) to be gained and the level of effort (cost) to be incurred either by a subject themselves or by a social confederate. We investigated whether activity in the ACC covaries with the net value of rewards that someone else will receive when that person is required to exert effort for the reward. We show that, although activation in the sulcus of the ACC signaled the costs on all trials, gyral ACC (ACCg) activity varied parametrically only with the net value of rewards gained by others. These results suggest that the ACCg plays an important role in signaling cost–benefit information by signaling the value of others' rewards during social interactions. PMID:24790190

  19. Conflict-related anterior cingulate functional connectivity is associated with past suicidal ideation and behavior in recent-onset schizophrenia.

    PubMed

    Minzenberg, Michael J; Lesh, Tyler; Niendam, Tara; Yoon, Jong H; Cheng, Yaoan; Rhoades, Remy; Carter, Cameron S

    2015-06-01

    Suicide is highly prevalent in schizophrenia (SZ), yet it remains unclear how suicide risk factors such as past suicidal ideation or behavior relate to brain function. Circuits modulated by the prefrontal cortex (PFC) are altered in SZ, including in dorsal anterior cingulate cortex (dACC) during conflict-monitoring (an important component of cognitive control), and dACC changes are observed in post-mortem studies of heterogeneous suicide victims. We tested whether conflict-related dACC functional connectivity is associated with past suicidal ideation and behavior in SZ. 32 patients with recent-onset of DSM-IV-TR-defined SZ were evaluated with the Columbia Suicide Severity Rating Scale and functional MRI during cognitive control (AX-CPT) task performance. Group-level regression models relating past history of suicidal ideation or behavior to dACC-seeded functional connectivity during conflict-monitoring controlled for severity of depression, psychosis and impulsivity. Past suicidal ideation was associated with relatively higher functional connectivity of the dACC with the precuneus during conflict-monitoring. Intensity of worst-point past suicidal ideation was associated with relatively higher dACC functional connectivity in medial parietal lobe and striato-thalamic nuclei. In contrast, among those with past suicidal ideation (n = 17), past suicidal behavior was associated with lower conflict-related dACC connectivity with multiple lateral and medial PFC regions, parietal and temporal cortical regions. This study provides unique evidence that recent-onset schizophrenia patients with past suicidal ideation or behavior show altered dACC-based circuit function during conflict-monitoring. Suicidal ideation and suicidal behavior have divergent patterns of associated dACC functional connectivity, suggesting a differing pattern of conflict-related brain dysfunction with these two distinct features of suicide phenomenology. Published by Elsevier Ltd.

  20. Reward-based contextual learning supported by anterior cingulate cortex.

    PubMed

    Umemoto, Akina; HajiHosseini, Azadeh; Yates, Michael E; Holroyd, Clay B

    2017-06-01

    The anterior cingulate cortex (ACC) is commonly associated with cognitive control and decision making, but its specific function is highly debated. To explore a recent theory that the ACC learns the reward values of task contexts (Holroyd & McClure in Psychological Review, 122, 54-83, 2015; Holroyd & Yeung in Trends in Cognitive Sciences, 16, 122-128, 2012), we recorded the event-related brain potentials (ERPs) from participants as they played a novel gambling task. The participants were first required to select from among three games in one "virtual casino," and subsequently they were required to select from among three different games in a different virtual casino; unbeknownst to them, the payoffs for the games were higher in one casino than in the other. Analysis of the reward positivity, an ERP component believed to reflect reward-related signals carried to the ACC by the midbrain dopamine system, revealed that the ACC is sensitive to differences in the reward values associated with both the casinos and the games inside the casinos, indicating that participants learned the values of the contexts in which rewards were delivered. These results highlight the importance of the ACC in learning the reward values of task contexts in order to guide action selection.

  1. The influence of self-awareness on emotional memory formation: an fMRI study

    PubMed Central

    Wing, Erik A.; Cabeza, Roberto

    2016-01-01

    Evidence from functional neuroimaging studies of emotional perception shows that when attention is focused on external features of emotional stimuli (external perceptual orienting—EPO), the amygdala is primarily engaged, but when attention is turned inwards towards one’s own emotional state (interoceptive self-orienting—ISO), regions of the salience network, such as the anterior insula (AI) and the dorsal anterior cingulate cortex (dACC), also play a major role. Yet, it is unknown if ISO boosts the contributions of AI and dACC not only to emotional ‘perception’ but also to emotional ‘memory’. To investigate this issue, participants were scanned with functional magnetic resonance imaging (fMRI) while viewing emotional and neutral pictures under ISO or EPO, and memory was tested several days later. The study yielded three main findings: (i) emotion boosted perception-related activity in the amygdala during both ISO and EPO and in the right AI exclusively during ISO; (ii) emotion augmented activity predicting subsequent memory in AI and dACC during ISO but not during EPO and (iii) high confidence memory was associated with increased amygdala–dACC connectivity, selectively for ISO encoding. These findings show, for the first time, that ISO promotes emotional memory formation via regions associated with interoceptive awareness of emotional experience, such as AI and dACC. PMID:26645274

  2. Cognitive behavioral therapy changes functional connectivity between medial prefrontal and anterior cingulate cortices.

    PubMed

    Yoshimura, Shinpei; Okamoto, Yasumasa; Matsunaga, Miki; Onoda, Keiichi; Okada, Go; Kunisato, Yoshihiko; Yoshino, Atsuo; Ueda, Kazutaka; Suzuki, Shin-Ichi; Yamawaki, Shigeto

    2017-01-15

    Depression is characterized by negative self-cognition. Our previous study (Yoshimura et al. 2014) revealed changes in brain activity after cognitive behavioral therapy (CBT) for depression, but changes in functional connectivity were not assessed. This study included 29 depressive patients and 15 healthy control participants. Functional Magnetic Resonance Imaging was used to investigate possible CBT-related functional connectivity changes associated with negative emotional self-referential processing. Depressed and healthy participants (overlapping with our previous study, Yoshimura et al. 2014) were included. We defined a seed region (medial prefrontal cortex) and coupled region (ACC) based on our previous study, and we examined changes in MPFC-ACC functional connectivity from pretreatment to posttreatment. CBT was associated with reduced functional connectivity between the MPFC and ACC. Symptom change with CBT was positively correlated with change in MPFC-ACC functional connectivity. Patients received pharmacotherapy including antidepressant. The present sample size was quite small and more study is needed. Statistical threshold in fMRI analysis was relatively liberal. CBT for depression may disrupt MPFC-ACC connectivity, with associated improvements in depressive symptoms and dysfunctional cognition. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Subliminal food images compromise superior working memory performance in women with restricting anorexia nervosa.

    PubMed

    Brooks, Samantha J; O'Daly, Owen G; Uher, Rudolf; Schiöth, Helgi B; Treasure, Janet; Campbell, Iain C

    2012-06-01

    Prefrontal cortex (PFC) is dysregulated in women with restricting anorexia nervosa (RAN). It is not known whether appetitive non-conscious stimuli bias cognitive responses in those with RAN. Thirteen women with RAN and 20 healthy controls (HC) completed a dorsolateral PFC (DLPFC) working memory task and an anterior cingulate cortex (ACC) conflict task, while masked subliminal food, aversive and neutral images were presented. During the DLPFC task, accuracy was higher in the RAN compared to the HC group, but superior performance was compromised when subliminal food stimuli were presented: errors positively correlated with self-reported trait anxiety in the RAN group. These effects were not observed in the ACC task. Appetitive activation is intact and anxiogenic in women with RAN, and non-consciously interacts with working memory processes associated with the DLPFC. This interaction mechanism may underlie cognitive inhibition of appetitive processes that are anxiety inducing, in people with AN. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Anterior cingulate cortex supports effort allocation towards a qualitatively preferred option.

    PubMed

    Hart, Evan E; Gerson, Julian O; Zoken, Yael; Garcia, Marisella; Izquierdo, Alicia

    2017-07-01

    The anterior cingulate cortex (ACC) is known to be involved in effortful choice, yet its role in cost-benefit evaluation of qualitatively different rewards (more/less preferred), beyond magnitude differences (larger/smaller), is poorly understood. Selecting between qualitatively different options is a decision type commonly faced by humans. Here, we assessed the role of ACC on a task that has primarily been used to probe striatal function in motivation. Rats were trained to stable performance on a progressive ratio schedule for sucrose pellets and were then given sham surgeries (control) or excitotoxic NMDA lesions of ACC. Subsequently, a choice was introduced: chow was concurrently available while animals could work for the preferred sucrose pellets. ACC lesions produced a significant decrease in lever presses for sucrose pellets compared to control, whereas chow consumption was unaffected. Lesions had no effect on sucrose pellet preference when both options were freely available. When laboratory chow was not concurrently available, ACC-lesioned rats exhibited similar lever pressing as controls. During a test under specific satiety for sucrose pellets, ACC-lesioned rats also showed intact devaluation effects. The effects of ACC lesions in our task are not mediated by decreased appetite, a change in food preference, a failure to update value or a learning deficit. Taken together, we found that ACC lesions decreased effort for a qualitatively preferred option. These results are discussed with reference to effects of striatal manipulations and our recent report of a role for basolateral amygdala in effortful choice. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. Rostral anterior cingulate cortex volume correlates with depressed mood in normal healthy children

    PubMed Central

    Boes, Aaron D.; McCormick, Laurie M.; Coryell, William H.; Nopoulos, Peg

    2008-01-01

    BACKGROUND The rostral anterior cingulate cortex (rACC) has been implicated as a structural neural correlate of familial major depressive disorder, raising the possibility that the structure of this region may act as a biologic marker of depression vulnerability. The aim of the current study was to determine whether children and adolescents with depressive symptoms have lower rACC volume relative to those without symptoms and examine how a positive family history of depression affects this relationship. METHODS 112 normal healthy children (59 boys, 53 girls), age 7–17, without a current diagnosis or history of depression or other psychiatric illness, were recruited from the community. Mood symptoms were collected using the Pediatric Behavior Scale, a parent- and teacher-reported questionnaire. Volumetric measures of the rACC were generated using structural MRI. The relationship of depressive symptoms and rACC volume was examined. RESULTS 1) The rACC volume was significantly lower in boys with subclinical depressive symptoms compared to boys with no depressive symptoms, particularly on the left side (14.6% reduction; F = 8.90, p = .005). 2) In comparing the correlation of depressive symptoms and rACC volume in boys with a positive family history of depression to those with no family history there was a more robust negative correlation in subjects with a positive family history. 3) In girls there was not a significant association of depressive symptoms and rACC volume. CONCLUSIONS These findings lend further support to the notion that rACC structure may act as a biologic marker of vulnerability or trait-marker of depression. PMID:17916329

  6. Altered brain activation in a reversal learning task unmasks adaptive changes in cognitive control in writer's cramp.

    PubMed

    Zeuner, Kirsten E; Knutzen, Arne; Granert, Oliver; Sablowsky, Simone; Götz, Julia; Wolff, Stephan; Jansen, Olav; Dressler, Dirk; Schneider, Susanne A; Klein, Christine; Deuschl, Günther; van Eimeren, Thilo; Witt, Karsten

    2016-01-01

    Previous receptor binding studies suggest dopamine function is altered in the basal ganglia circuitry in task-specific dystonia, a condition characterized by contraction of agonist and antagonist muscles while performing specific tasks. Dopamine plays a role in reward-based learning. Using fMRI, this study compared 31 right-handed writer's cramp patients to 35 controls in reward-based learning of a probabilistic reversal-learning task. All subjects chose between two stimuli and indicated their response with their left or right index finger. One stimulus response was rewarded 80%, the other 20%. After contingencies reversal, the second stimulus response was rewarded in 80%. We further linked the DRD2/ANKK1-TaqIa polymorphism, which is associated with 30% reduction of the striatal dopamine receptor density with reward-based learning and assumed impaired reversal learning in A + subjects. Feedback learning in patients was normal. Blood-oxygen level dependent (BOLD) signal in controls increased with negative feedback in the insula, rostral cingulate cortex, middle frontal gyrus and parietal cortex (pFWE < 0.05). In comparison to controls, patients showed greater increase in BOLD activity following negative feedback in the dorsal anterior cingulate cortex (BA32). The genetic status was not correlated with the BOLD activity. The Brodmann area 32 (BA32) is part of the dorsal anterior cingulate cortex (dACC) that plays an important role in coordinating and integrating information to guide behavior and in reward-based learning. The dACC is connected with the basal ganglia-thalamo-loop modulated by dopaminergic signaling. This finding suggests disturbed integration of reinforcement history in decision making and implicate that the reward system might contribute to the pathogenesis in writer's cramp.

  7. Sex differences in extinction recall in posttraumatic stress disorder: a pilot fMRI study.

    PubMed

    Shvil, Erel; Sullivan, Gregory M; Schafer, Scott; Markowitz, John C; Campeas, Miriam; Wager, Tor D; Milad, Mohammed R; Neria, Yuval

    2014-09-01

    Recent research has found that individuals with posttraumatic stress disorder (PTSD) exhibit an impaired memory of fear extinction compounded by deficient functional activation of key nodes of the fear network including the amygdala, hippocampus, ventromedial prefrontal cortex (vmPFC) and dorsal anterior cingulate cortex (dACC). Research has shown these regions are sexually dimorphic and activate differentially in healthy men and women during fear learning tasks. To explore biological markers of sex differences following exposure to psychological trauma, we used a fear learning and extinction paradigm together with functional magnetic resonance imaging (fMRI) and skin conductance response (SCR) to assess 31 individuals with PTSD (18 women; 13 men) and 25 matched trauma-exposed healthy control subjects (13 women; 12 men). Whereas no sex differences appeared within the trauma-exposed healthy control group, both psychophysiological and neural activation patterns within the PTSD group indicated deficient recall of extinction memory among men and not among women. Men with PTSD exhibited increased activation in the left rostral dACC during extinction recall compared with women with PTSD. These findings highlight the importance of tracking sex differences in fear extinction when characterizing the underlying neurobiological mechanisms of PTSD psychopathology. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Task modulations of racial bias in neural responses to others' suffering.

    PubMed

    Sheng, Feng; Liu, Qiang; Li, Hong; Fang, Fang; Han, Shihui

    2014-03-01

    Recent event related brain potential research observed a greater frontal activity to pain expressions of racial in-group than out-group members and such racial bias in neural responses to others' suffering was modulated by task demands that emphasize race identity or painful feeling. However, as pain expressions activate multiple brain regions in the pain matrix, it remains unclear which part of the neural circuit in response to others' suffering undergoes modulations by task demands. We scanned Chinese adults, using functional MRI, while they categorized Asian and Caucasian faces with pain or neutral expressions in terms of race or identified painful feelings of each individual face. We found that pain vs. neutral expressions of Asian but not Caucasian faces activated the anterior cingulate (ACC) and anterior insular (AI) activity during race judgments. However, pain compared to race judgments increased ACC and AI activity to pain expressions of Caucasian but not Asian faces. Moreover, race judgments induced increased activity in the dorsal medial prefrontal cortex whereas pain judgments increased activity in the bilateral temporoparietal junction. The results suggest that task demands emphasizing an individual's painful feeling increase ACC/AI activities to pain expressions of racial out-group members and reduce the racial bias in empathic neural responses. © 2013.

  9. The Development of the Neural Substrates of Cognitive Control in Adolescents with Autism Spectrum Disorders

    PubMed Central

    Solomon, Marjorie; Yoon, Jong; Ragland, J. Daniel; Niendam, Tara; Lesh, Tyler A.; Fairbrother, Wonja; Carter, Cameron S.

    2013-01-01

    Background Autism spectrum disorders (ASD) involve impairments in cognitive control. In typical development (TYP), neural systems underlying cognitive control undergo substantial maturation during adolescence. Development is delayed in adolescents with ASD. Little is known about the neural substrates of this delay. Method We used event-related functional magnetic resonance imaging (fMRI) and a cognitive control task involving overcoming a prepotent response tendency to examine the development of cognitive control in young (ages 12–15; n = 13 with ASD and n = 13 with TYP) and older (ages 16–18; n= 14 with ASD and n = 14 with TYP) adolescents with whole-brain voxel-wise univariate and task-related functional connectivity analyses. Results Older ASD and TYP showed reduced activation in sensory and premotor areas relative to younger ones. The older ASD group showed reduced left parietal activation relative to TYP. Functional connectivity analyses showed a significant age by group interaction with the older ASD group exhibiting increased functional connectivity strength between the ventrolateral prefrontal cortex (VLPFC) and the anterior cingulate cortex (ACC), bilaterally. This functional connectivity strength was related to task performance in ASD, whereas that between DLPFC and parietal cortex (BA 9 and BA 40) was related to task performance in TYP. Conclusions Adolescents with ASD rely more on “reactive” cognitive control, involving last minute conflict detection and control implementation by the ACC and VLPFC, versus “proactive” cognitive control requiring processing by DLPFC and parietal cortex. Findings await replication in larger longitudinal studies that examine their functional consequences and amenability to intervention. PMID:24209777

  10. Glutamate and GABA contributions to medial prefrontal cortical activity to emotion: implications for mood disorders.

    PubMed

    Stan, Ana D; Schirda, Claudiu V; Bertocci, Michele A; Bebko, Genna M; Kronhaus, Dina M; Aslam, Haris A; LaBarbara, Eduard J; Tanase, Costin; Lockovich, Jeanette C; Pollock, Myrna H; Stiffler, Richelle S; Phillips, Mary L

    2014-09-30

    The dorsomedial prefrontal cortex (MdPFC) and anterior cingulate cortices (ACC) play a critical role in implicit emotion regulation; however the understanding of the specific neurotransmitters that mediate such role is lacking. In this study, we examined relationships between MdPFC concentrations of two neurotransmitters, glutamate and γ-amino butyric acid (GABA), and BOLD activity in ACC during performance of an implicit facial emotion-processing task. Twenty healthy volunteers, aged 20-35 years, were scanned while performing an implicit facial emotion-processing task, whereby presented facial expressions changed from neutral to one of the four emotions: happy, anger, fear, or sad. Glutamate concentrations were measured before and after the emotion-processing task in right MdPFC using magnetic resonance spectroscopy (MRS). GABA concentrations were measured in bilateral MdPFC after the emotion-processing task. Multiple regression models were run to determine the relative contribution of glutamate and GABA concentration, age, and gender to BOLD signal in ACC to each of the four emotions. Multiple regression analyses revealed a significant negative correlation between MdPFC GABA concentration and BOLD signal in subgenual ACC (p<0.05, corrected) to sad versus shape contrast. For the anger versus shape contrast, there was a significant negative correlation between age and BOLD signal in pregenual ACC (p<0.05, corrected) and a positive correlation between MdPFC glutamate concentration (pre-task) and BOLD signal in pregenual ACC (p<0.05, corrected). Our findings are the first to provide insight into relationships between MdPFC neurotransmitter concentrations and ACC BOLD signal, and could further understanding of molecular mechanisms underlying emotion processing in healthy and mood-disordered individuals. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Developmental changes of neuronal networks associated with strategic social decision-making.

    PubMed

    Steinmann, Elisabeth; Schmalor, Antonia; Prehn-Kristensen, Alexander; Wolff, Stephan; Galka, Andreas; Möhring, Jan; Gerber, Wolf-Dieter; Petermann, Franz; Stephani, Ulrich; Siniatchkin, Michael

    2014-04-01

    One of the important prerequisites for successful social interaction is the willingness of each individual to cooperate socially. Using the ultimatum game, several studies have demonstrated that the process of decision-making to cooperate or to defeat in interaction with a partner is associated with activation of the dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), anterior insula (AI), and inferior frontal cortex (IFC). This study investigates developmental changes in this neuronal network. 15 healthy children (8-12 years), 15 adolescents (13-18 years) and 15 young adults (19-28 years) were investigated using the ultimatum game. Neuronal networks representing decision-making based on strategic thinking were characterized using functional MRI. In all age groups, the process of decision-making in reaction to unfair offers was associated with hemodynamic changes in similar regions. Compared with children, however, healthy adults and adolescents revealed greater activation in the IFC and the fusiform gyrus, as well as the nucleus accumbens. In contrast, healthy children displayed more activation in the AI, the dorsal part of the ACC, and the DLPFC. There were no differences in brain activations between adults and adolescents. The neuronal mechanisms underlying strategic social decision making are already developed by the age of eight. Decision-making based on strategic thinking is associated with age-dependent involvement of different brain regions. Neuronal networks underlying theory of mind and reward anticipation are more activated in adults and adolescents with regard to the increasing perspective taking with age. In relation to emotional reactivity and respective compensatory coping in younger ages, children have higher activations in a neuronal network associated with emotional processing and executive control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The effect of regulatory mode on procrastination: Bi-stable parahippocampus connectivity with dorsal anterior cingulate and anterior prefrontal cortex.

    PubMed

    Zhang, Chenyan; Ni, Yan; Feng, Tingyong

    2017-06-30

    Previous research has elucidated that procrastination can be influenced by regulatory mode orientations. However, the neural mechanism of regulatory modes affecting procrastination is not well understood. To address this question, we employed resting-state functional magnetic resonance imaging (RS-fMRI) to test the influence of two regulatory modes (assessment and locomotion) on procrastination. The behavioral results showed that procrastination was positively correlated with assessment orientation but negatively correlated with locomotion orientation. Neuroimaging results indicated that the functional connectivity between parahippocampal cortex (PHC) and dorsal anterior cingulate (dACC) was negatively correlated with assessment scores, while the functional connectivity between anterior prefrontal cortex (aPFC) and parahippocampal cortex (PHC) was negatively correlated with locomotion scores. Critically, mediation analysis showed that the different effects of two distinct regulatory modes on procrastination were mediated by PHC-dACC and aPFC-PHC functional connectivity respectively. These results suggested that people's procrastination could be predicted by regulatory mode orientations, which is mediated by PHC connectivity with dACC and aPFC respectively. The present study extends our knowledge on procrastination and provides neural mechanism for understanding the link between regulatory mode orientations and procrastination. Copyright © 2017. Published by Elsevier B.V.

  13. The Mediodorsal Thalamus Drives Feedforward Inhibition in the Anterior Cingulate Cortex via Parvalbumin Interneurons

    PubMed Central

    Delevich, Kristen; Tucciarone, Jason; Huang, Z. Josh

    2015-01-01

    Although the medial prefrontal cortex (mPFC) is classically defined by its reciprocal connections with the mediodorsal thalamic nucleus (MD), the nature of information transfer between MD and mPFC is poorly understood. In sensory thalamocortical pathways, thalamic recruitment of feedforward inhibition mediated by fast-spiking, putative parvalbumin-expressing (PV) interneurons is a key feature that enables cortical neurons to represent sensory stimuli with high temporal fidelity. Whether a similar circuit mechanism is in place for the projection from the MD (a higher-order thalamic nucleus that does not receive direct input from the periphery) to the mPFC is unknown. Here we show in mice that inputs from the MD drive disynaptic feedforward inhibition in the dorsal anterior cingulate cortex (dACC) subregion of the mPFC. In particular, we demonstrate that axons arising from MD neurons directly synapse onto and excite PV interneurons that in turn mediate feedforward inhibition of pyramidal neurons in layer 3 of the dACC. This feedforward inhibition in the dACC limits the time window during which pyramidal neurons integrate excitatory synaptic inputs and fire action potentials, but in a manner that allows for greater flexibility than in sensory cortex. These findings provide a foundation for understanding the role of MD-PFC circuit function in cognition. PMID:25855185

  14. Exploring individual differences in task switching: Persistence and other personality traits related to anterior cingulate cortex function.

    PubMed

    Umemoto, A; Holroyd, C B

    2016-01-01

    Anterior cingulate cortex (ACC) is involved in cognitive control and decision-making but its precise function is still highly debated. Based on evidence from lesion, neurophysiological, and neuroimaging studies, we have recently proposed a critical role for ACC in motivating extended behaviors according to learned task values (Holroyd and Yeung, 2012). Computational simulations based on this theory suggest a hierarchical mechanism in which a caudal division of ACC selects and applies control over task execution, and a rostral division of ACC facilitates switches between tasks according to a higher task strategy (Holroyd and McClure, 2015). This theoretical framework suggests that ACC may contribute to personality traits related to persistence and reward sensitivity (Holroyd and Umemoto, 2016). To explore this possibility, we carried out a voluntary task switching experiment in which on each trial participants freely chose one of two tasks to perform, under the condition that they try to select the tasks "at random" and equally often. The participants also completed several questionnaires that assessed personality trait related to persistence, apathy, anhedonia, and rumination, in addition to the Big 5 personality inventory. Among other findings, we observed greater compliance with task instructions by persistent individuals, as manifested by a greater facility with switching between tasks, which is suggestive of increased engagement of rostral ACC. © 2016 Elsevier B.V. All rights reserved.

  15. Increased error-related thalamic activity during early compared to late cocaine abstinence.

    PubMed

    Li, Chiang-Shan R; Luo, Xi; Sinha, Rajita; Rounsaville, Bruce J; Carroll, Kathleen M; Malison, Robert T; Ding, Yu-Shin; Zhang, Sheng; Ide, Jaime S

    2010-06-01

    Altered cognitive control is implicated in the shaping of cocaine dependence. One of the key component processes of cognitive control is error monitoring. Our previous imaging work highlighted greater activity in distinct cortical and subcortical regions including the dorsal anterior cingulate cortex (dACC), thalamus and insula when participants committed an error during the stop signal task (Li et al., 2008b). Importantly, dACC, thalamic and insular activity has been associated with drug craving. One hypothesis is that the intense interoceptive activity during craving prevents these cerebral structures from adequately registering error and/or monitoring performance. Alternatively, the dACC, thalamus and insula show abnormally heightened responses to performance errors, suggesting that excessive responses to salient stimuli such as drug cues could precipitate craving. The two hypotheses would each predict decreased and increased activity during stop error (SE) as compared to stop success (SS) trials in the SST. Here we showed that cocaine dependent patients (PCD) experienced greater subjective feeling of loss of control and cocaine craving during early (average of day 6) compared to late (average of day 18) abstinence. Furthermore, compared to PCD during late abstinence, PCD scanned during early abstinence showed increased thalamic as well as insular but not dACC responses to errors (SE>SS). These findings support the hypothesis that heightened thalamic reactivity to salient stimuli co-occur with cocaine craving and loss of self control. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Anterior cingulate cortex and cerebellar hemisphere neurometabolite changes in depression treatment: A 1H magnetic resonance spectroscopy study.

    PubMed

    Chen, Li-Ping; Dai, Hai-Yang; Dai, Zhuo-Zhi; Xu, Chong-Tao; Wu, Ren-Hua

    2014-05-01

    We utilized single-voxel 1H magnetic resonance spectroscopy to determine biochemical abnormalities related to major depressive disorder (MDD) in the bilateral dorsolateral prefrontal cortex, anterior cingulate cortex (ACC), and cerebellar hemisphere before and after antidepressant treatment. Fifteen adult MDD patients and 15 age- and sex-matched healthy controls were involved. Magnetic resonance spectroscopy of the brain was conducted in all subjects at the beginning of the study and the depressed subjects were reassessed after 8 weeks of antidepressant treatment. At baseline, N-acetyl aspartate (NAA), total glutamine plus glutamate (Glx) and myo-inositol (MI) levels in the bilateral ACC were significantly lower in MDD patients than in controls (P < 0.05/3). MI in the bilateral cerebellar hemisphere were also decreased in patients compared with controls. After the treatment, the lower NAA, Glx and MI in ACC were normalized in MDD patients and the NAA and Glx increased compared to baseline values. The MI levels in the bilateral cerebellar hemisphere were also normalized in patients. MI and choline levels in the right cerebellar hemisphere were elevated compared to those at baseline. Our study suggests that metabolic abnormalities in the ACC and cerebellar hemisphere are implicated in MDD. Antidepressants may alter the local metabolic abnormalities in these areas. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.

  17. Adolescents’ risky decision-making activates neural networks related to social cognition and cognitive control processes

    PubMed Central

    Rodrigo, María José; Padrón, Iván; de Vega, Manuel; Ferstl, Evelyn C.

    2014-01-01

    This study examines by means of functional magnetic resonance imaging the neural mechanisms underlying adolescents’ risk decision-making in social contexts. We hypothesize that the social context could engage brain regions associated with social cognition processes and developmental changes are also expected. Sixty participants (adolescents: 17–18, and young adults: 21–22 years old) read narratives describing typical situations of decision-making in the presence of peers. They were asked to make choices in risky situations (e.g., taking or refusing a drug) or ambiguous situations (e.g., eating a hamburger or a hotdog). Risky as compared to ambiguous scenarios activated bilateral temporoparietal junction (TPJ), bilateral middle temporal gyrus (MTG), right medial prefrontal cortex, and the precuneus bilaterally; i.e., brain regions related to social cognition processes, such as self-reflection and theory of mind (ToM). In addition, brain structures related to cognitive control were active [right anterior cingulate cortex (ACC), bilateral dorsolateral prefrontal cortex (DLPFC), bilateral orbitofrontal cortex], whereas no significant clusters were obtained in the reward system (ventral striatum). Choosing the dangerous option involved a further activation of control areas (ACC) and emotional and social cognition areas (temporal pole). Adolescents employed more neural resources than young adults in the right DLPFC and the right TPJ in risk situations. When choosing the dangerous option, young adults showed a further engagement in ToM related regions (bilateral MTG) and in motor control regions related to the planning of actions (pre-supplementary motor area). Finally, the right insula and the right superior temporal gyrus were more activated in women than in men, suggesting more emotional involvement and more intensive modeling of the others’ perspective in the risky conditions. These findings call for more comprehensive developmental accounts of decision-making in social contexts that incorporate the role of emotional and social cognition processes. PMID:24592227

  18. Prefrontal cortex based sex differences in tinnitus perception: same tinnitus intensity, same tinnitus distress, different mood.

    PubMed

    Vanneste, Sven; Joos, Kathleen; De Ridder, Dirk

    2012-01-01

    Tinnitus refers to auditory phantom sensation. It is estimated that for 2% of the population this auditory phantom percept severely affects the quality of life, due to tinnitus related distress. Although the overall distress levels do not differ between sexes in tinnitus, females are more influenced by distress than males. Typically, pain, sleep, and depression are perceived as significantly more severe by female tinnitus patients. Studies on gender differences in emotional regulation indicate that females with high depressive symptoms show greater attention to emotion, and use less anti-rumination emotional repair strategies than males. The objective of this study was to verify whether the activity and connectivity of the resting brain is different for male and female tinnitus patients using resting-state EEG. Females had a higher mean score than male tinnitus patients on the BDI-II. Female tinnitus patients differ from male tinnitus patients in the orbitofrontal cortex (OFC) extending to the frontopolar cortex in beta1 and beta2. The OFC is important for emotional processing of sounds. Increased functional alpha connectivity is found between the OFC, insula, subgenual anterior cingulate (sgACC), parahippocampal (PHC) areas and the auditory cortex in females. Our data suggest increased functional connectivity that binds tinnitus-related auditory cortex activity to auditory emotion-related areas via the PHC-sgACC connections resulting in a more depressive state even though the tinnitus intensity and tinnitus-related distress are not different from men. Comparing male tinnitus patients to a control group of males significant differences could be found for beta3 in the posterior cingulate cortex (PCC). The PCC might be related to cognitive and memory-related aspects of the tinnitus percept. Our results propose that sex influences in tinnitus research cannot be ignored and should be taken into account in functional imaging studies related to tinnitus.

  19. Thinking on luxury or pragmatic brand products: Brain responses to different categories of culturally based brands.

    PubMed

    Schaefer, Michael; Rotte, Michael

    2007-08-24

    Culturally based brands have a high impact on people's economic actions. Here we aimed to examine whether socioeconomic information conveyed by certain classes of brands (prestigious versus pragmatic classes) differentially evoke brain response. We presented icons of brands while recording subject's brain activity during a functional magnetic resonance imaging (fMRI) session. After the experiment, we asked subjects to assess the brands according to different characteristics. Results revealed an active network of bilateral superior frontal gyri, hippocampus and posterior cingulate related to familiar brands in general. Brands of the category sports and luxury activated regions in medial prefrontal cortex (MPFC) and precuneus. In contrast, brands rated as value products activated the left superior frontal gyrus and anterior cingulate cortex (ACC). The results suggest an active cortical network related to cognitive control for value brands and a network known to be associated with self-relevant processing for prestigious brands. We discuss the results as differential engagement of the prefrontal cortex depending on the attributed characteristic of a brand.

  20. Developmental Aspects of Error and High-Conflict-Related Brain Activity in Pediatric Obsessive-Compulsive Disorder: A FMRI Study with a Flanker Task before and after CBT

    ERIC Educational Resources Information Center

    Huyser, Chaim; Veltman, Dick J.; Wolters, Lidewij H.; de Haan, Else; Boer, Frits

    2011-01-01

    Background: Heightened error and conflict monitoring are considered central mechanisms in obsessive-compulsive disorder (OCD) and are associated with anterior cingulate cortex (ACC) function. Pediatric obsessive-compulsive patients provide an opportunity to investigate the development of this area and its associations with psychopathology.…

  1. ‘Imagined guilt’ vs ‘recollected guilt’: implications for fMRI

    PubMed Central

    Mclatchie, Neil; Giner-Sorolla, Roger; Derbyshire, Stuart W. G.

    2016-01-01

    Abstract Guilt is thought to maintain social harmony by motivating reparation. This study compared two methodologies commonly used to identify the neural correlates of guilt. The first, imagined guilt, requires participants to read hypothetical scenarios and then imagine themselves as the protagonist. The second, recollected guilt, requires participants to reflect on times they personally experienced guilt. In the fMRI scanner, participants were presented with guilt/neutral memories and guilt/neutral hypothetical scenarios. Contrasts confirmed a priori predictions that guilt memories, relative to guilt scenarios, were associated with significantly greater activity in regions associated with affect [anterior cingulate cortex (ACC), Caudate, Insula, orbital frontal cortex (OFC)] and social cognition [temporal pole (TP), precuneus). Similarly, results indicated that guilt memories, relative to neutral memories, were also associated with greater activity in affective (ACC, amygdala, Insula, OFC) and social cognition (mPFC, TP, precuneus, temporo-parietal junction) regions. There were no significant differences between guilt hypothetical scenarios and neutral hypothetical scenarios in either affective or social cognition regions. The importance of distinguishing between different guilt inductions inside the scanner is discussed. We offer explanations of our results and discuss ideas for future research. PMID:26746179

  2. 'Imagined guilt' vs 'recollected guilt': implications for fMRI.

    PubMed

    Mclatchie, Neil; Giner-Sorolla, Roger; Derbyshire, Stuart W G

    2016-05-01

    Guilt is thought to maintain social harmony by motivating reparation. This study compared two methodologies commonly used to identify the neural correlates of guilt. The first, imagined guilt, requires participants to read hypothetical scenarios and then imagine themselves as the protagonist. The second, recollected guilt, requires participants to reflect on times they personally experienced guilt. In the fMRI scanner, participants were presented with guilt/neutral memories and guilt/neutral hypothetical scenarios. Contrasts confirmed a priori predictions that guilt memories, relative to guilt scenarios, were associated with significantly greater activity in regions associated with affect [anterior cingulate cortex (ACC), Caudate, Insula, orbital frontal cortex (OFC)] and social cognition [temporal pole (TP), precuneus). Similarly, results indicated that guilt memories, relative to neutral memories, were also associated with greater activity in affective (ACC, amygdala, Insula, OFC) and social cognition (mPFC, TP, precuneus, temporo-parietal junction) regions. There were no significant differences between guilt hypothetical scenarios and neutral hypothetical scenarios in either affective or social cognition regions. The importance of distinguishing between different guilt inductions inside the scanner is discussed. We offer explanations of our results and discuss ideas for future research. © The Author (2016). Published by Oxford University Press.

  3. Abnormal object recall and anterior cingulate overactivation correlate with formal thought disorder in schizophrenia.

    PubMed

    Assaf, Michal; Rivkin, Paul R; Kuzu, Cheedem H; Calhoun, Vince D; Kraut, Michael A; Groth, Karyn M; Yassa, Michael A; Hart, John; Pearlson, Godfrey D

    2006-03-01

    The neural basis of formal thought disorder (FTD) is unknown. An influential theory is that FTD results from impaired semantic memory processing. We explored the neural correlates of semantic memory retrieval in schizophrenia using an imaging task assessing semantic object recall. Sixteen healthy control subjects and sixteen schizophrenia patients whose FTD symptoms were measured with the Thought Disorder Index completed a verbal object-recall task during functional magnetic resonance imaging. Participants viewed two words describing object features that either evoked (object recall) or did not evoke a semantic concept. Schizophrenia patients tended to overrecall objects for feature pairs that did not describe the same object. Functionally, rostral anterior cingulate cortex (ACC) activation in patients positively correlated with FTD severity during both correct recalled and overrecalled trials. Compared with control subjects, during object recalling, patients overactivated bilateral ACC, temporooccipital junctions, temporal poles and parahippocampi, right inferior frontal gyrus, and dorsolateral prefrontal cortex, but underactivated inferior parietal lobules. Our results support impaired semantic memory retrieval as underlying FTD pathophysiology. Schizophrenia patients showed abnormal activations of brain areas involved in semantic memory, verbal working memory, and initiation and suppression of conflicting responses, which were associated with semantic overrecall and FTD.

  4. Impact of transient emotions on functional connectivity during subsequent resting state: a wavelet correlation approach.

    PubMed

    Eryilmaz, Hamdi; Van De Ville, Dimitri; Schwartz, Sophie; Vuilleumier, Patrik

    2011-02-01

    The functional properties of resting brain activity are poorly understood, but have generally been related to self-monitoring and introspective processes. Here we investigated how emotionally positive and negative information differentially influenced subsequent brain activity at rest. We acquired fMRI data in 15 participants during rest periods following fearful, joyful, and neutral movies. Several brain regions were more active during resting than during movie-watching, including posterior/anterior cingulate cortices (PCC, ACC), bilateral insula and inferior parietal lobules (IPL). Functional connectivity at different frequency bands was also assessed using a wavelet correlation approach and small-world network analysis. Resting activity in ACC and insula as well as their coupling were strongly enhanced by preceding emotions, while coupling between ventral-medial prefrontal cortex and amygdala was selectively reduced. These effects were more pronounced after fearful than joyful movies for higher frequency bands. Moreover, the initial suppression of resting activity in ACC and insula after emotional stimuli was followed by a gradual restoration over time. Emotions did not affect IPL average activity but increased its connectivity with other regions. These findings reveal specific neural circuits recruited during the recovery from emotional arousal and highlight the complex functional dynamics of default mode networks in emotionally salient contexts. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Involvement of the anterior cingulate cortex in time-based prospective memory task monitoring: An EEG analysis of brain sources using Independent Component and Measure Projection Analysis

    PubMed Central

    Burgos, Pablo; Kilborn, Kerry; Evans, Jonathan J.

    2017-01-01

    Objective Time-based prospective memory (PM), remembering to do something at a particular moment in the future, is considered to depend upon self-initiated strategic monitoring, involving a retrieval mode (sustained maintenance of the intention) plus target checking (intermittent time checks). The present experiment was designed to explore what brain regions and brain activity are associated with these components of strategic monitoring in time-based PM tasks. Method 24 participants were asked to reset a clock every four minutes, while performing a foreground ongoing word categorisation task. EEG activity was recorded and data were decomposed into source-resolved activity using Independent Component Analysis. Common brain regions across participants, associated with retrieval mode and target checking, were found using Measure Projection Analysis. Results Participants decreased their performance on the ongoing task when concurrently performed with the time-based PM task, reflecting an active retrieval mode that relied on withdrawal of limited resources from the ongoing task. Brain activity, with its source in or near the anterior cingulate cortex (ACC), showed changes associated with an active retrieval mode including greater negative ERP deflections, decreased theta synchronization, and increased alpha suppression for events locked to the ongoing task while maintaining a time-based intention. Activity in the ACC was also associated with time-checks and found consistently across participants; however, we did not find an association with time perception processing per se. Conclusion The involvement of the ACC in both aspects of time-based PM monitoring may be related to different functions that have been attributed to it: strategic control of attention during the retrieval mode (distributing attentional resources between the ongoing task and the time-based task) and anticipatory/decision making processing associated with clock-checks. PMID:28863146

  6. Neural correlates of appetitive extinction in humans.

    PubMed

    Kruse, Onno; Tapia León, Isabell; Stark, Rudolf; Klucken, Tim

    2017-01-01

    Appetitive extinction receives attention as an important model for the treatment of psychiatric disorders. However, in humans, its underlying neural correlates remain unknown. To close this gap, we investigated appetitive acquisition and extinction with fMRI in a 2-day monetary incentive delay paradigm. During appetitive conditioning, one stimulus (CS+) was paired with monetary reward, while another stimulus (CS-) was never rewarded. Twenty-four hours later, subjects underwent extinction, in which neither CS was reinforced. Appetitive conditioning elicited stronger skin conductance responses to the CS+ as compared with the CS-. Regarding subjective ratings, the CS+ was rated more pleasant and arousing than the CS- after conditioning. Furthermore, fMRI-results (CS+ - CS-) showed activation of the reward circuitry including amygdala, midbrain and striatal areas. During extinction, conditioned responses were successfully extinguished. In the early phase of extinction, we found a significant activation of the caudate, the hippocampus, the dorsal and ventral anterior cingulate cortex (dACC and vACC). In the late phase, we found significant activation of the nucleus accumbens (NAcc) and the amygdala. Correlational analyses with subjective ratings linked extinction success to the vACC and the NAcc, while associating the dACC with reduced extinction. The results reveal neural correlates of appetitive extinction in humans and extend assumptions from models for human extinction learning. © The Author (2016). Published by Oxford University Press.

  7. Neurophysiological effects of modafinil on cue-exposure in cocaine dependence: a randomized placebo-controlled cross-over study using pharmacological fMRI.

    PubMed

    Goudriaan, Anna E; Veltman, Dick J; van den Brink, Wim; Dom, Geert; Schmaal, Lianne

    2013-02-01

    Enhanced reactivity to substance related cues is a central characteristic of addiction and has been associated with increased activity in motivation, attention, and memory related brain circuits and with a higher probability of relapse. Modafinil was promising in the first clinical trials in cocaine dependence, and was able to reduce craving in addictive disorders. However, its mechanism of action remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study therefore, cue reactivity in cocaine dependent patients was compared to cue reactivity in healthy controls (HCs) under modafinil and placebo conditions. An fMRI cue reactivity study, with a double-blind, placebo-controlled cross-over challenge with a single dose of modafinil (200mg) was employed in 13 treatment seeking cocaine dependent patients and 16 HCs. In the placebo condition, watching cocaine-related pictures (versus neutral pictures) resulted in higher brain activation in the medial frontal cortex, anterior cingulate cortex, angular gyrus, left orbitofrontal cortex, and ventral tegmental area (VTA) in the cocaine dependent group compared to HCs. However, in the modafinil condition, no differences in brain activation patterns were found between cocaine dependent patients and HCs. Group interactions revealed decreased activity in the VTA and increased activity in the right ACC and putamen in the modafinil condition relative to the placebo condition in cocaine dependent patients, whereas such changes were not present in healthy controls. Decreases in self-reported craving when watching cocaine-related cues after modafinil administration compared to the placebo condition were associated with modafinil-induced increases in ACC and putamen activation. Enhanced cue reactivity in the cocaine dependent group compared to healthy controls was found in brain circuitries related to reward, motivation, and autobiographical memory processes. In cocaine dependent patients, these enhanced brain responses were attenuated by modafinil, mainly due to decreases in cue- reactivity in reward-related brain areas (VTA) and increases in cue reactivity in cognitive control areas (ACC). These modafinil-induced changes in brain activation in response to cocaine-related visual stimuli were associated with diminished self-reported craving. These findings imply that in cocaine dependent patients, modafinil, although mainly known as a cognitive enhancer, acts on both the motivational and the cognitive brain circuitry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Response of the μ-opioid system to social rejection and acceptance.

    PubMed

    Hsu, D T; Sanford, B J; Meyers, K K; Love, T M; Hazlett, K E; Wang, H; Ni, L; Walker, S J; Mickey, B J; Korycinski, S T; Koeppe, R A; Crocker, J K; Langenecker, S A; Zubieta, J-K

    2013-11-01

    The endogenous opioid system, which alleviates physical pain, is also known to regulate social distress and reward in animal models. To test this hypothesis in humans (n=18), we used an μ-opioid receptor (MOR) radiotracer to measure changes in MOR availability in vivo with positron emission tomography during social rejection (not being liked by others) and acceptance (being liked by others). Social rejection significantly activated the MOR system (i.e., reduced receptor availability relative to baseline) in the ventral striatum, amygdala, midline thalamus and periaqueductal gray (PAG). This pattern of activation is consistent with the hypothesis that the endogenous opioids have a role in reducing the experience of social pain. Greater trait resiliency was positively correlated with MOR activation during rejection in the amygdala, PAG and subgenual anterior cingulate cortex (sgACC), suggesting that MOR activation in these areas is protective or adaptive. In addition, MOR activation in the pregenual ACC was correlated with reduced negative affect during rejection. In contrast, social acceptance resulted in MOR activation in the amygdala and anterior insula, and MOR deactivation in the midline thalamus and sgACC. In the left ventral striatum, MOR activation during acceptance predicted a greater desire for social interaction, suggesting a role for the MOR system in social reward. The ventral striatum, amygdala, midline thalamus, PAG, anterior insula and ACC are rich in MORs and comprise a pathway by which social cues may influence mood and motivation. MOR regulation of this pathway may preserve and promote emotional well being in the social environment.

  9. Normalization of Intrinsic Neural Circuits Governing Tourette's Syndrome Using Cranial Electrotherapy Stimulation.

    PubMed

    Qiao, Jianping; Weng, Shenhong; Wang, Pengwei; Long, Jun; Wang, Zhishun

    2015-05-01

    The aim of this study was to investigate the normalization of the intrinsic functional activity and connectivity of TS adolescents before and after the cranial electrotherapy stimulation (CES) with alpha stim device. We performed resting-state functional magnetic resonance imaging on eight adolescents before and after CES with mean age of about nine-years old who had Tourette's syndrome with moderate to severe tics symptom. Independent component analysis (ICA) with hierarchical partner matching method was used to examine the functional connectivity between regions within cortico-striato-thalamo-cortical (CSTC) circuit. Granger causality was used to investigate effective connectivity among these regions detected by ICA. We then performed pattern classification on independent components with significant group differences that served as endophenotype markers to distinguish the adolescents between TS and the normalized ones after CES. Results showed that TS adolescents after CES treatment had stronger functional activity and connectivity in anterior cingulate cortex (ACC), caudate and posterior cingulate cortex while had weaker activity in supplementary motor area within the motor pathway compared with TS before CES. The results suggest that the functional activity and connectivity in motor pathway was suppressed while activities in the control portions within CSTC loop including ACC and caudate were increased in TS adolescents after CES compared with adolescents before CES. The normalization of the balance between motor and control portions of the CSTC circuit may result in the recovery of TS adolescents.

  10. Source localization of intermittent rhythmic delta activity in a patient with acute confusional migraine: cross-spectral analysis using standardized low-resolution brain electromagnetic tomography (sLORETA).

    PubMed

    Kim, Dae-Eun; Shin, Jung-Hyun; Kim, Young-Hoon; Eom, Tae-Hoon; Kim, Sung-Hun; Kim, Jung-Min

    2016-01-01

    Acute confusional migraine (ACM) shows typical electroencephalography (EEG) patterns of diffuse delta slowing and frontal intermittent rhythmic delta activity (FIRDA). The pathophysiology of ACM is still unclear but these patterns suggest neuronal dysfunction in specific brain areas. We performed source localization analysis of IRDA (in the frequency band of 1-3.5 Hz) to better understand the ACM mechanism. Typical IRDA EEG patterns were recorded in a patient with ACM during the acute stage. A second EEG was obtained after recovery from ACM. To identify source localization of IRDA, statistical non-parametric mapping using standardized low-resolution brain electromagnetic tomography was performed for the delta frequency band comparisons between ACM attack and non-attack periods. A difference in the current density maximum was found in the dorsal anterior cingulated cortex (ACC). The significant differences were widely distributed over the frontal, parietal, temporal and limbic lobe, paracentral lobule and insula and were predominant in the left hemisphere. Dorsal ACC dysfunction was demonstrated for the first time in a patient with ACM in this source localization analysis of IRDA. The ACC plays an important role in the frontal attentional control system and acute confusion. This dysfunction of the dorsal ACC might represent an important ACM pathophysiology.

  11. How affective information from faces and scenes interacts in the brain

    PubMed Central

    Vandenbulcke, Mathieu; Sinke, Charlotte B. A.; Goebel, Rainer; de Gelder, Beatrice

    2014-01-01

    Facial expression perception can be influenced by the natural visual context in which the face is perceived. We performed an fMRI experiment presenting participants with fearful or neutral faces against threatening or neutral background scenes. Triangles and scrambled scenes served as control stimuli. The results showed that the valence of the background influences face selective activity in the right anterior parahippocampal place area (PPA) and subgenual anterior cingulate cortex (sgACC) with higher activation for neutral backgrounds compared to threatening backgrounds (controlled for isolated background effects) and that this effect correlated with trait empathy in the sgACC. In addition, the left fusiform gyrus (FG) responds to the affective congruence between face and background scene. The results show that valence of the background modulates face processing and support the hypothesis that empathic processing in sgACC is inhibited when affective information is present in the background. In addition, the findings reveal a pattern of complex scene perception showing a gradient of functional specialization along the posterior–anterior axis: from sensitivity to the affective content of scenes (extrastriate body area: EBA and posterior PPA), over scene emotion–face emotion interaction (left FG) via category–scene interaction (anterior PPA) to scene–category–personality interaction (sgACC). PMID:23956081

  12. Reduced NoGo-anteriorisation during continuous performance test in deletion syndrome 22q11.2.

    PubMed

    Romanos, Marcel; Ehlis, Ann-Christine; Baehne, Christina G; Jacob, Christian; Renner, Tobias J; Storch, Astrid; Briegel, Wolfgang; Walitza, Susanne; Lesch, Klaus-Peter; Fallgatter, Andreas J

    2010-09-01

    Deletion syndrome 22q11.2 (DS22q11.2) is a high-risk factor for psychiatric disorders. Alterations in brain morphology and function including the anterior cingulate cortex (ACC) are suggested to underlie the increased psychiatric disposition. We assessed response-inhibition in patients with DS22q11.2 (n=13) and healthy controls (n=13) matched for age, sex, and handedness by means of a Go-NoGo-Task during recording of a multi-channel electroencephalography (EEG). Analysis of event-related potentials (P300) resulted in an aberrant topographical pattern and NoGo-anteriorisation (NGA) as a parameter of medial prefrontal function was significantly reduced in patients with DS22q11.2 compared to controls. Differences in IQ between groups did not account for the findings. Source localization analysis (LORETA) revealed diminished left temporal brain activation during the Go-condition, but no altered ACC activation in DS22q11 during the NoGo-condition. Despite recent reports of structural alterations of the ACC in DS22q11.2 our findings suggest that response-inhibition mediated by the ACC is not impaired in DS22q11.2. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. Sex differences, hormones, and fMRI stress response circuitry deficits in psychoses.

    PubMed

    Goldstein, Jill M; Lancaster, Katie; Longenecker, Julia M; Abbs, Brandon; Holsen, Laura M; Cherkerzian, Sara; Whitfield-Gabrieli, Susan; Makris, Nicolas; Tsuang, Ming T; Buka, Stephen L; Seidman, Larry J; Klibanski, Anne

    2015-06-30

    Response to stress is dysregulated in psychosis (PSY). fMRI studies showed hyperactivity in hypothalamus (HYPO), hippocampus (HIPP), amygdala (AMYG), anterior cingulate (ACC), orbital and medial prefrontal (OFC; mPFC) cortices, with some studies reporting sex differences. We predicted abnormal steroid hormone levels in PSY would be associated with sex differences in hyperactivity in HYPO, AMYG, and HIPP, and hypoactivity in PFC and ACC, with more severe deficits in men. We studied 32 PSY cases (50.0% women) and 39 controls (43.6% women) using a novel visual stress challenge while collecting blood. PSY males showed BOLD hyperactivity across all hypothesized regions, including HYPO and ACC by FWE-correction. Females showed hyperactivity in HIPP and AMYG and hypoactivity in OFC and mPFC, the latter FWE-corrected. Interaction of group by sex was significant in mPFC (F = 7.00, p = 0.01), with PSY females exhibiting the lowest activity. Male hyperactivity in HYPO and ACC was significantly associated with hypercortisolemia post-stress challenge, and mPFC with low androgens. Steroid hormones and neural activity were dissociated in PSY women. Findings suggest disruptions in neural circuitry-hormone associations in response to stress are sex-dependent in psychosis, particularly in prefrontal cortex. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Altered cortico-basal ganglia motor pathways reflect reduced volitional motor activity in schizophrenia.

    PubMed

    Bracht, Tobias; Schnell, Susanne; Federspiel, Andrea; Razavi, Nadja; Horn, Helge; Strik, Werner; Wiest, Roland; Dierks, Thomas; Müller, Thomas J; Walther, Sebastian

    2013-02-01

    Little is known about the neurobiology of hypokinesia in schizophrenia. Therefore, the aim of this study was to investigate alterations of white matter motor pathways in schizophrenia and to relate our findings to objectively measured motor activity. We examined 21 schizophrenia patients and 21 healthy controls using diffusion tensor imaging and actigraphy. We applied a probabilistic fibre tracking approach to investigate pathways connecting the dorsolateral prefrontal cortex (dlPFC), the rostral anterior cingulate cortex (rACC), the pre-supplementary motor area (pre-SMA), the supplementary motor area proper (SMA-proper), the primary motor cortex (M1), the caudate nucleus, the striatum, the pallidum and the thalamus. Schizophrenia patients had lower activity levels than controls. In schizophrenia we found higher probability indices forming part of a bundle of interest (PIBI) in pathways connecting rACC, pre-SMA and SMA-proper as well as in pathways connecting M1 and pre-SMA with caudate nucleus, putamen, pallidum and thalamus and a reduced spatial extension of motor pathways in schizophrenia. There was a positive correlation between PIBI and activity level in the right pre-SMA-pallidum and the left M1-thalamus connection in healthy controls, and in the left pre-SMA-SMA-proper pathway in schizophrenia. Our results point to reduced volitional motor activity and altered motor pathway organisation in schizophrenia. The identified associations between the amount of movement and structural connectivity of motor pathways suggest dysfunction of cortico-basal ganglia pathways in the pathophysiology of hypokinesia in schizophrenia. Schizophrenia patients may use cortical pathways involving the supplementary motor area to compensate for basal ganglia dysfunction. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Neural Correlates of Three Promising Endophenotypes of Depression: Evidence from the EMBARC Study

    PubMed Central

    Webb, Christian A; Dillon, Daniel G; Pechtel, Pia; Goer, Franziska K; Murray, Laura; Huys, Quentin JM; Fava, Maurizio; McGrath, Patrick J; Weissman, Myrna; Parsey, Ramin; Kurian, Benji T; Adams, Phillip; Weyandt, Sarah; Trombello, Joseph M; Grannemann, Bruce; Cooper, Crystal M; Deldin, Patricia; Tenke, Craig; Trivedi, Madhukar; Bruder, Gerard; Pizzagalli, Diego A

    2016-01-01

    Major depressive disorder (MDD) is clinically, and likely pathophysiologically, heterogeneous. A potentially fruitful approach to parsing this heterogeneity is to focus on promising endophenotypes. Guided by the NIMH Research Domain Criteria initiative, we used source localization of scalp-recorded EEG resting data to examine the neural correlates of three emerging endophenotypes of depression: neuroticism, blunted reward learning, and cognitive control deficits. Data were drawn from the ongoing multi-site EMBARC study. We estimated intracranial current density for standard EEG frequency bands in 82 unmedicated adults with MDD, using Low-Resolution Brain Electromagnetic Tomography. Region-of-interest and whole-brain analyses tested associations between resting state EEG current density and endophenotypes of interest. Neuroticism was associated with increased resting gamma (36.5–44 Hz) current density in the ventral (subgenual) anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC). In contrast, reduced cognitive control correlated with decreased gamma activity in the left dorsolateral prefrontal cortex (dlPFC), decreased theta (6.5–8 Hz) and alpha2 (10.5–12 Hz) activity in the dorsal ACC, and increased alpha2 activity in the right dlPFC. Finally, blunted reward learning correlated with lower OFC and left dlPFC gamma activity. Computational modeling of trial-by-trial reinforcement learning further indicated that lower OFC gamma activity was linked to reduced reward sensitivity. Three putative endophenotypes of depression were found to have partially dissociable resting intracranial EEG correlates, reflecting different underlying neural dysfunctions. Overall, these findings highlight the need to parse the heterogeneity of MDD by focusing on promising endophenotypes linked to specific pathophysiological abnormalities. PMID:26068725

  16. Sequential inhibitory control processes assessed through simultaneous EEG-fMRI.

    PubMed

    Baumeister, Sarah; Hohmann, Sarah; Wolf, Isabella; Plichta, Michael M; Rechtsteiner, Stefanie; Zangl, Maria; Ruf, Matthias; Holz, Nathalie; Boecker, Regina; Meyer-Lindenberg, Andreas; Holtmann, Martin; Laucht, Manfred; Banaschewski, Tobias; Brandeis, Daniel

    2014-07-01

    Inhibitory response control has been extensively investigated in both electrophysiological (ERP) and hemodynamic (fMRI) studies. However, very few multimodal results address the coupling of these inhibition markers. In fMRI, response inhibition has been most consistently linked to activation of the anterior insula and inferior frontal cortex (IFC), often also the anterior cingulate cortex (ACC). ERP work has established increased N2 and P3 amplitudes during NoGo compared to Go conditions in most studies. Previous simultaneous EEG-fMRI imaging reported association of the N2/P3 complex with activation of areas like the anterior midcingulate cortex (aMCC) and anterior insula. In this study we investigated inhibitory control in 23 healthy young adults (mean age=24.7, n=17 for EEG during fMRI) using a combined Flanker/NoGo task during simultaneous EEG and fMRI recording. Separate fMRI and ERP analysis yielded higher activation in the anterior insula, IFG and ACC as well as increased N2 and P3 amplitudes during NoGo trials in accordance with the literature. Combined analysis modelling sequential N2 and P3 effects through joint parametric modulation revealed correlation of higher N2 amplitude with deactivation in parts of the default mode network (DMN) and the cingulate motor area (CMA) as well as correlation of higher central P3 amplitude with activation of the left anterior insula, IFG and posterior cingulate. The EEG-fMRI results resolve the localizations of these sequential activations. They suggest a general role for allocation of attentional resources and motor inhibition for N2 and link memory recollection and internal reflection to P3 amplitude, in addition to previously described response inhibition as reflected by the anterior insula. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Decision making in the Balloon Analogue Risk Task (BART): anterior cingulate cortex signals loss aversion but not the infrequency of risky choices.

    PubMed

    Fukunaga, Rena; Brown, Joshua W; Bogg, Tim

    2012-09-01

    The inferior frontal gyrus/anterior insula (IFG/AI) and anterior cingulate cortex (ACC) are key regions involved in risk appraisal during decision making, but accounts of how these regions contribute to decision making under risk remain contested. To help clarify the roles of these and other related regions, we used a modified version of the Balloon Analogue Risk Task (Lejuez et al., Journal of Experimental Psychology: Applied, 8, 75-84, 2002) to distinguish between decision-making and feedback-related processes when participants decided to pursue a gain as the probability of loss increased parametrically. Specifically, we set out to test whether the ACC and IFG/AI regions correspond to loss aversion at the time of decision making in a way that is not confounded with either reward-seeking or infrequency effects. When participants chose to discontinue inflating the balloon (win option), we observed greater ACC and mainly bilateral IFG/AI activity at the time of decision as the probability of explosion increased, consistent with increased loss aversion but inconsistent with an infrequency effect. In contrast, we found robust vmPFC activity when participants chose to continue inflating the balloon (risky option), consistent with reward seeking. However, in the cingulate and in mainly bilateral IFG regions, blood-oxygenation-level-dependent activation decreased when participants chose to inflate the balloon as the probability of explosion increased, findings that are consistent with a reduced loss aversion signal. Our results highlight the existence of distinct reward-seeking and loss-averse signals during decision making, as well as the importance of distinguishing between decision and feedback signals.

  18. Uncertainty during Anticipation Modulates Neural Responses to Aversion in Human Insula and Amygdala

    PubMed Central

    Sarinopoulos, I.; Grupe, D. W.; Mackiewicz, K. L.; Herrington, J. D.; Lor, M.; Steege, E. E.

    2010-01-01

    Uncertainty about potential negative future outcomes can cause stress and is a central feature of anxiety disorders. The stress and anxiety associated with uncertain situations may lead individuals to overestimate the frequency with which uncertain cues are followed by negative outcomes, an example of covariation bias. Using functional magnetic resonance imaging, we found that uncertainty-related expectations modulated neural responses to aversion. Insula and amygdala responses to aversive pictures were larger after an uncertain cue (that preceded aversive or neutral pictures) than a certain cue (that always preceded aversive pictures). Anticipatory anterior cingulate cortex (ACC) activity elicited by the cues was inversely associated with the insula and amygdala responses to aversive pictures following the cues. Nearly 75% of subjects overestimated the frequency of aversive pictures following uncertain cues, and ACC and insula activity predicted this uncertainty-related covariation bias. Findings provide the first evidence of the brain mechanisms of covariation bias and highlight the temporal dynamics of ACC, insula, and amygdala recruitment for processing aversion in the context of uncertainty. PMID:19679543

  19. Enhanced processing of threat stimuli under limited attentional resources.

    PubMed

    De Martino, Benedetto; Kalisch, Raffael; Rees, Geraint; Dolan, Raymond J

    2009-01-01

    The ability to process stimuli that convey potential threat, under conditions of limited attentional resources, confers adaptive advantages. This study examined the neurobiology underpinnings of this capacity. Employing an attentional blink paradigm, in conjunction with functional magnetic resonance imaging, we manipulated the salience of the second of 2 face target stimuli (T2), by varying emotionality. Behaviorally, fearful T2 faces were identified significantly more than neutral faces. Activity in fusiform face area increased with correct identification of T2 faces. Enhanced activity in rostral anterior cingulate cortex (rACC) accounted for the benefit in detection of fearful stimuli reflected in a significant interaction between target valence and correct identification. Thus, under conditions of limited attention resources activation in rACC correlated with enhanced processing of emotional stimuli. We suggest that these data support a model in which a prefrontal "gate" mechanism controls conscious access of emotional information under conditions of limited attentional resources.

  20. 7 Tesla magnetic resonance imaging of caudal anterior cingulate and posterior cingulate cortex atrophy in patients with trigeminal neuralgia.

    PubMed

    Moon, Hyeong Cheol; Park, Chan-A; Jeon, Yeong-Jae; You, Soon Tae; Baek, Hyun Man; Lee, Youn Joo; Cho, Chul Beom; Cheong, Chae Joon; Park, Young Seok

    2018-05-16

    The cingulate cortex (CC) is a brain region that plays a key role in pain processing, but CC abnormalities are not unclear in patients with trigeminal neuralgia (TN). The purpose of this study was to determine the central causal mechanisms of TN and the surrounding brain structure in healthy controls and patients with TN using 7 Tesla (T) magnetic resonance imaging (MRI). Whole-brain parcellation in gray matter volume and thickness was assessed in 15 patients with TN and 16 healthy controls matched for sex, age, and regional variability using T1-weighted imaging. Regions of interest (ROIs) were measured in rostral anterior CC (rACC), caudal anterior CC (cACC) and posterior CC (PCC). We also investigated associations between gray matter volume or thickness and clinical symptoms, such as pain duration, Barrow Neurologic Institute (BNI) scores, offender vessel, and medications, in patients with TN. The cACC and PCC exhibited gray matter atrophy and reduced thickness between the TN and control groups. However, the rACC did not. Cortical volumes were negatively correlated with pain duration in transverse and inferior temporal areas, and thickness was also negatively correlated with pain duration in superior frontal and parietal areas. The cACC and PCC gray matter atrophy occurred in the patients with TN, and pain duration was associated with frontal, parietal, and temporal cortical regions. These results suggest that the cACC, PCC but not the rACC are associated with central pain mechanisms in TN. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Dissociable contributions of anterior cingulate cortex and basolateral amygdala on a rodent cost/benefit decision-making task of cognitive effort.

    PubMed

    Hosking, Jay G; Cocker, Paul J; Winstanley, Catharine A

    2014-06-01

    Personal success often requires the choice to expend greater effort for larger rewards, and deficits in such effortful decision making accompany a number of illnesses including depression, schizophrenia, and attention-deficit/hyperactivity disorder. Animal models have implicated brain regions such as the basolateral amygdala (BLA) and anterior cingulate cortex (ACC) in physical effort-based choice, but disentangling the unique contributions of these two regions has proven difficult, and effort demands in industrialized society are predominantly cognitive in nature. Here we utilize the rodent cognitive effort task (rCET), a modification of the five-choice serial reaction-time task, wherein animals can choose to expend greater visuospatial attention to obtain larger sucrose rewards. Temporary inactivation (via baclofen-muscimol) of BLA and ACC showed dissociable effects: BLA inactivation caused hard-working rats to 'slack off' and 'slacker' rats to work harder, whereas ACC inactivation caused all animals to reduce willingness to expend mental effort. Furthermore, BLA inactivation increased the time needed to make choices, whereas ACC inactivation increased motor impulsivity. These data illuminate unique contributions of BLA and ACC to effort-based decision making, and imply overlapping yet distinct circuitry for cognitive vs physical effort. Our understanding of effortful decision making may therefore require expanding our models beyond purely physical costs.

  2. Deep brain stimulation of the dorsal anterior cingulate cortex for the treatment of chronic neuropathic pain.

    PubMed

    Russo, Jennifer F; Sheth, Sameer A

    2015-06-01

    Chronic neuropathic pain is estimated to affect 3%-4.5% of the worldwide population. It is associated with significant loss of productive time, withdrawal from the workforce, development of mood disorders such as depression and anxiety, and disruption of family and social life. Current medical therapeutics often fail to adequately treat chronic neuropathic pain. Deep brain stimulation (DBS) targeting subcortical structures such as the periaqueductal gray, the ventral posterior lateral and medial thalamic nuclei, and the internal capsule has been investigated for the relief of refractory neuropathic pain over the past 3 decades. Recent work has identified the dorsal anterior cingulate cortex (dACC) as a new potential neuromodulation target given its central role in cognitive and affective processing. In this review, the authors briefly discuss the history of DBS for chronic neuropathic pain in the United States and present evidence supporting dACC DBS for this indication. They review existent literature on dACC DBS and summarize important findings from imaging and neurophysiological studies supporting a central role for the dACC in the processing of chronic neuropathic pain. The available neurophysiological and empirical clinical evidence suggests that dACC DBS is a viable therapeutic option for the treatment of chronic neuropathic pain and warrants further investigation.

  3. GABA+ levels in postmenopausal women with mild-to-moderate depression

    PubMed Central

    Wang, Zhensong; Zhang, Aiying; Zhao, Bin; Gan, Jie; Wang, Guangbin; Gao, Fei; Liu, Bo; Gong, Tao; Liu, Wen; Edden, Richard A.E.

    2016-01-01

    Abstract Background: It is increasingly being recognized that alterations of the GABAergic system are implicated in the pathophysiology of depression. This study aimed to explore in vivo gamma-aminobutyric acid (GABA) levels in the anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC) and posterior-cingulate cortex (PCC) of postmenopausal women with depression using magnetic resonance spectroscopy (1H-MRS). Methods: Nineteen postmenopausal women with depression and thirteen healthy controls were enrolled in the study. All subjects underwent 1H-MRS of the ACC/mPFC and PCC using the “MEGA Point Resolved Spectroscopy Sequence” (MEGA-PRESS) technique. The severity of depression was assessed by 17-item Hamilton Depression Scale (HAMD). Quantification of MRS data was performed using Gannet program. Differences of GABA+ levels from patients and controls were tested using one-way analysis of variance. Spearman correlation coefficients were used to evaluate the linear associations between GABA+ levels and HAMD scores, as well as estrogen levels. Results: Significantly lower GABA+ levels were detected in the ACC/mPFC of postmenopausal women with depression compared to healthy controls (P = 0.002). No significant correlations were found between 17-HAMD/14-HAMA and GABA+ levels, either in ACC/mPFC (P = 0.486; r = 0.170/P = 0.814; r = −0.058) or PCC (P = 0.887; r = 0.035/ P = 0.987; r = −0.004) in the patients; there is also no significant correlation between GABA+ levels and estrogen levels in patients group (ACC/mPFC: P = 0.629, r = −0.018; PCC: P = 0.861, r = 0.043). Conclusion: Significantly lower GABA+ levels were found in the ACC/mPFC of postmenopausal women with depression, suggesting that the dysfunction of the GABAergic system may also be involved in the pathogenesis of depression in postmenopausal women. PMID:27684829

  4. Anterior Cingulate Cortex and Cognitive Control: Neuropsychological and Electrophysiological Findings in Two Patients with Lesions to Dorsomedial Prefrontal Cortex

    ERIC Educational Resources Information Center

    Lovstad, M.; Funderud, I.; Meling, T.; Kramer, U. M.; Voytek, B.; Due-Tonnessen, P.; Endestad, T.; Lindgren, M.; Knight, R. T.; Solbakk, A. K.

    2012-01-01

    Whereas neuroimaging studies of healthy subjects have demonstrated an association between the anterior cingulate cortex (ACC) and cognitive control functions, including response monitoring and error detection, lesion studies are sparse and have produced mixed results. Due to largely normal behavioral test results in two patients with medial…

  5. Frontal Metabolite Concentration Deficits in Opiate Dependence Relate to Substance Use, Cognition, and Self-Regulation

    PubMed Central

    Murray, Donna E; Durazzo, Timothy C; Schmidt, Thomas P; Abé, Christoph; Guydish, Joseph; Meyerhoff, Dieter J

    2016-01-01

    Objective Proton magnetic resonance spectroscopy (1H MRS) in opiate dependence showed abnormalities in neuronal viability and glutamate concentration in the anterior cingulate cortex (ACC). Metabolite levels in dorsolateral prefrontal cortex (DLPFC) or orbitofrontal cortex (OFC) and their neuropsychological correlates have not been investigated in opiate dependence. Methods Single-volume proton MRS at 4 Tesla and neuropsychological testing were conducted in 21 opiate-dependent individuals (OD) on buprenorphine maintenance therapy. Results were compared to 28 controls (CON) and 35 alcohol-dependent individuals (ALC), commonly investigated treatment-seekers providing context for OD evaluation. Metabolite concentrations were measured from ACC, DLPFC, OFC and parieto-occipital cortical (POC) regions. Results Compared to CON, OD had lower concentrations of N-acetylaspartate (NAA), glutamate (Glu), creatine +phosphocreatine (Cr) and myo-Inositol (mI) in the DLPFC and lower NAA, Cr, and mI in the ACC. OD, ALC, and CON were equivalent on metabolite levels in the POC and γ-aminobutyric acid (GABA) concentration did not differ between groups in any region. In OD, prefrontal metabolite deficits in ACC Glu as well as DLPFC NAA and choline containing metabolites (Cho) correlated with poorer working memory, executive and visuospatial functioning; metabolite deficits in DLPFC Glu and ACC GABA and Cr correlated with substance use measures. In the OFC of OD, Glu and choline-containing metabolites were elevated and lower Cr concentration related to higher nonplanning impulsivity. Compared to 3 week abstinent ALC, OD had significant DLPFC metabolite deficits. Conclusion The anterior frontal metabolite profile of OD differed significantly from that of CON and ALC. The frontal lobe metabolite abnormalities in OD and their neuropsychological correlates may play a role in treatment outcome and could be explored as specific targets for improved OD treatment. PMID:27695638

  6. Theta signal as the neural signature of social exclusion.

    PubMed

    Cristofori, Irene; Moretti, Laura; Harquel, Sylvain; Posada, Andres; Deiana, Gianluca; Isnard, Jean; Mauguière, François; Sirigu, Angela

    2013-10-01

    The feeling of being excluded from a social interaction triggers social pain, a sensation as intense as actual physical pain. Little is known about the neurophysiological underpinnings of social pain. We addressed this issue using intracranial electroencephalography in 15 patients performing a ball game where inclusion and exclusion blocks were alternated. Time-frequency analyses showed an increase in power of theta-band oscillations during exclusion in the anterior insula (AI) and posterior insula, the subgenual anterior cingulate cortex (sACC), and the fusiform "face area" (FFA). Interestingly, the AI showed an initial fast response to exclusion but the signal rapidly faded out. Activity in the sACC gradually increased and remained significant thereafter. This suggests that the AI may signal social pain by detecting emotional distress caused by the exclusion, whereas the sACC may be linked to the learning aspects of social pain. Theta activity in the FFA was time-locked to the observation of a player poised to exclude the participant, suggesting that the FFA encodes the social value of faces. Taken together, our findings suggest that theta activity represents the neural signature of social pain. The time course of this signal varies across regions important for processing emotional features linked to social information.

  7. Motivation but not valence modulates neuroticism-dependent cingulate cortex and insula activity.

    PubMed

    Deng, Yaling; Li, Shijia; Zhou, Renlai; Walter, Martin

    2018-04-01

    Neuroticism has been found to specifically modulate amygdala activations during differential processing of valence and motivation while other brain networks yet are unexplored for associated effects. The main purpose of this study was to investigate whether neural mechanisms processing valence or motivation are prone to neuroticism in the salience network (SN), a network that is anchored in the anterior cingulate cortex (ACC) and the anterior insula. This study used functional magnetic resonance imaging (fMRI) and an approach/avoid emotional pictures task to investigate brain activations modulated by pictures' valence or motivational status between high and low neurotic individuals. We found that neuroticism-dependent SN and the parahippocampal-fusiform area activations were modulated by motivation but not valence. Valence in contrast interacted with neuroticism in the lateral orbitofrontal cortex. We suggested that neuroticism modulated valence and motivation processing, however, under the influence of the two distinct networks. Neuroticism modulated the motivation through the SN while it modulated the valence through the orbitofrontal networks. © 2018 Wiley Periodicals, Inc.

  8. Testing a dual-systems model of adolescent brain development using resting-state connectivity analyses.

    PubMed

    van Duijvenvoorde, A C K; Achterberg, M; Braams, B R; Peters, S; Crone, E A

    2016-01-01

    The current study aimed to test a dual-systems model of adolescent brain development by studying changes in intrinsic functional connectivity within and across networks typically associated with cognitive-control and affective-motivational processes. To this end, resting-state and task-related fMRI data were collected of 269 participants (ages 8-25). Resting-state analyses focused on seeds derived from task-related neural activation in the same participants: the dorsal lateral prefrontal cortex (dlPFC) from a cognitive rule-learning paradigm and the nucleus accumbens (NAcc) from a reward-paradigm. Whole-brain seed-based resting-state analyses showed an age-related increase in dlPFC connectivity with the caudate and thalamus, and an age-related decrease in connectivity with the (pre)motor cortex. nAcc connectivity showed a strengthening of connectivity with the dorsal anterior cingulate cortex (ACC) and subcortical structures such as the hippocampus, and a specific age-related decrease in connectivity with the ventral medial PFC (vmPFC). Behavioral measures from both functional paradigms correlated with resting-state connectivity strength with their respective seed. That is, age-related change in learning performance was mediated by connectivity between the dlPFC and thalamus, and age-related change in winning pleasure was mediated by connectivity between the nAcc and vmPFC. These patterns indicate (i) strengthening of connectivity between regions that support control and learning, (ii) more independent functioning of regions that support motor and control networks, and (iii) more independent functioning of regions that support motivation and valuation networks with age. These results are interpreted vis-à-vis a dual-systems model of adolescent brain development. Copyright © 2015. Published by Elsevier Inc.

  9. Brain Hypoactivation, Autonomic Nervous System Dysregulation, and Gonadal Hormones in Depression: A Preliminary Study

    PubMed Central

    Holsen, Laura M.; Lee, Jong-Hwan; Spaeth, Sarah B.; Ogden, Lauren A.; Klibanski, Anne; Whitfield-Gabrieli, Susan; Sloan, Richard P.; Goldstein, Jill M.

    2012-01-01

    The comorbidity of major depressive disorder (MDD) and cardiovascular disease (CVD) is among the 10th leading cause of morbidity and mortality worldwide. Thus, understanding the co-occurrence of these disorders will have major public health significance. MDD is associated with an abnormal stress response, manifested in brain circuitry deficits, gonadal dysfunction, and autonomic nervous system (ANS) dysregulation. Contribution of the relationships between these systems to the pathophysiology of MDD is not well understood. The objective of this preliminary study was to investigate, in parallel, relationships between HPG-axis functioning, stress response circuitry activation, and parasympathetic reactivity in healthy controls and women with MDD. Using fMRI with pulse oximetry [from which we calculated the high frequency (HF) component of R-R interval variability (HF-RRV), a measure of parasympathetic modulation] and hormone data, we studied eight women with recurrent MDD in remission and six controls during a stress response paradigm. We demonstrated that hypoactivations of hypothalamus, amygdala, hippocampus, anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), and subgenual ACC were associated with lower parasympathetic cardiac modulation in MDD women. Estradiol and progesterone attenuated group differences in the effect of HF-RRV on hypoactivation in the amygdala, hippocampus, ACC, and OFC in MDD women. Findings have implications for understanding the relationship between mood, arousal, heart regulation, and gonadal hormones, and may provide insights into MDD and CVD risk comorbidity. PMID:22395084

  10. Brain network dysfunction in youth with obsessive-compulsive disorder induced by simple uni-manual behavior: The role of the dorsal anterior cingulate cortex

    PubMed Central

    Friedman, Amy L.; Burgess, Ashley; Ramaseshan, Karthik; Easter, Phil; Khatib, Dalal; Chowdury, Asadur; Arnold, Paul D.; Hanna, Gregory L.; Rosenberg, David R.; Diwadkar, Vaibhav A.

    2017-01-01

    In an effort to elucidate differences in functioning brain networks between youth with obsessive-compulsive disorder and controls, we used fMRI signals to analyze brain network interactions of the dorsal anterior cingulate cortex (dACC) during visually coordinated motor responses. Subjects made a uni-manual response to briefly presented probes, at periodic (allowing participants to maintain a “motor set”) or random intervals (demanding reactive responses). Network interactions were assessed using psycho-physiological interaction (PPI), a basic model of functional connectivity evaluating modulatory effects of the dACC in the context of each task condition. Across conditions, OCD were characterized by hyper-modulation by the dACC, with loci alternatively observed as both condition-general and condition-specific. Thus, dynamically driven task demands during simple uni-manual motor control induce compensatory network interactions in cortical-thalamic regions in OCD. These findings support previous research in OCD showing compensatory network interactions during complex memory tasks, but establish that these network effects are observed during basic sensorimotor processing. Thus, these patterns of network dysfunction may in fact be independent of the complexity of tasks used to induce brain network activity. Hypothesis-driven approaches coupled with sophisticated network analyses are a highly valuable approach in using fMRI to uncover mechanisms in disorders like OCD. PMID:27992792

  11. A multivariate analysis of age-related differences in functional networks supporting conflict resolution.

    PubMed

    Salami, Alireza; Rieckmann, Anna; Fischer, Håkan; Bäckman, Lars

    2014-02-01

    Functional neuroimaging studies demonstrate age-related differences in recruitment of a large-scale attentional network during interference resolution, especially within dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC). These alterations in functional responses have been frequently observed despite equivalent task performance, suggesting age-related reallocation of neural resources, although direct evidence for a facilitating effect in aging is sparse. We used the multi-source interference task and multivariate partial-least-squares to investigate age-related differences in the neuronal signature of conflict resolution, and their behavioral implications in younger and older adults. There were interference-related increases in activity, involving fronto-parietal and basal ganglia networks that generalized across age. In addition an age-by-task interaction was observed within a distributed network, including DLPFC and ACC, with greater activity during interference in the old. Next, we combined brain-behavior and functional connectivity analyses to investigate whether compensatory brain changes were present in older adults, using DLPFC and ACC as regions of interest (i.e. seed regions). This analysis revealed two networks differentially related to performance across age groups. A structural analysis revealed age-related gray-matter losses in regions facilitating performance in the young, suggesting that functional reorganization may partly reflect structural alterations in aging. Collectively, these findings suggest that age-related structural changes contribute to reductions in the efficient recruitment of a youth-like interference network, which cascades into instantiation of a different network facilitating conflict resolution in elderly people. © 2013. Published by Elsevier Inc. All rights reserved.

  12. Cerebral control of the lower urinary tract: How age-related changes might predispose to urge incontinence

    PubMed Central

    Griffiths, D.; Tadic, S.D.; Schaefer, W.; Resnick, N.M.

    2009-01-01

    Loss of bladder control (urge incontinence) is common in elderly; the cause is usually unknown. Functional imaging has revealed the brain network controlling responses to bladder filling. Age-related changes in this network might predispose to urge incontinence. We sought such changes in 10 continent, healthy women aged 30 – 79 years who underwent fMRI while fluid (20 ml) was repeatedly infused into and withdrawn from the bladder. Data were collected in 4 measurement blocks with progressively increasing bladder volumes and were analyzed by SPM2, using the contrast infuse-withdraw to quantify response to bladder infusion. Effective connectivity was examined by physiophysiological interaction (PhPI; see interpretation in Supplementary Material), with right insula (RI) and dorsal anterior cingulate cortex (dACC) as seed regions. Dependence on age and bladder volume (=block number) was assessed. Bladder infusion evoked expected activations. Activation decreased with age in bilateral insula and dACC. PhPI revealed connectivity with RI and dACC in regions that included bilateral putamen and R pontine micturition center. Interaction (connectivity) tended to increase with age in regions including L insula, L paracentral lobule and PAG. Consistent with a special role in maintaining continence, medial prefrontal cortex (mPFC) showed a trend to deactivation on bladder infusion that became more prominent in old age, and a trend to negative interaction (connectivity) that weakened significantly with age. Thus, with increasing age, weaker signals in the bladder control network as a whole and/or changes in mPFC function or connecting pathways may be responsible for the development of urge incontinence. PMID:19427909

  13. Modulation of intrinsic brain activity by electroconvulsive therapy in major depression

    PubMed Central

    Leaver, Amber M.; Espinoza, Randall; Pirnia, Tara; Joshi, Shantanu H.; Woods, Roger P.; Narr, Katherine L.

    2015-01-01

    Introduction One of the most effective interventions for intractable major depressive episodes is electroconvulsive therapy (ECT). Because ECT is also relatively fast-acting, longitudinal study of its neurobiological effects offers critical insight into the mechanisms underlying depression and antidepressant response. Here we assessed modulation of intrinsic brain activity in corticolimbic networks associated with ECT and clinical response. Methods We measured resting-state functional connectivity (RSFC) in patients with treatment-resistant depression (n=30), using functional magnetic resonance imaging (fMRI) acquired before and after completing a treatment series with right-unilateral ECT. Using independent component analysis, we assessed changes in RSFC with 1) symptom improvement and 2) ECT regardless of treatment outcome in patients, with reference to healthy controls (n=33, also scanned twice). Results After ECT, consistent changes in RSFC within targeted depression-relevant functional networks were observed in the dorsal anterior cingulate (ACC), mediodorsal thalamus (mdTh), hippocampus, and right anterior temporal, medial parietal, and posterior cingulate cortex in all patients. In a separate analysis, changes in depressive symptoms were associated with RSFC changes in the dorsal ACC, mdTh, putamen, medial prefrontal, and lateral parietal cortex. RSFC of these regions did not change in healthy controls. Conclusions Neuroplasticity underlying clinical change was in part separable from changes associated with the effects of ECT observed in all patients. However, both ECT and clinical change were associated with RSFC modulation in dorsal ACC, mdTh and hippocampus, which may indicate that these regions underlie the mechanisms of clinical outcome in ECT and may be effective targets for future neurostimulation therapies. PMID:26878070

  14. Neural plasticity in amplitude of low frequency fluctuation, cortical hub construction, regional homogeneity resulting from working memory training.

    PubMed

    Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Sekiguchi, Atsushi; Kotozaki, Yuka; Nakagawa, Seishu; Makoto Miyauchi, Carlos; Sassa, Yuko; Kawashima, Ryuta

    2017-05-03

    Working memory training (WMT) induces changes in cognitive function and various neurological systems. Here, we investigated changes in recently developed resting state functional magnetic resonance imaging measures of global information processing [degree of the cortical hub, which may have a central role in information integration in the brain, degree centrality (DC)], the magnitude of intrinsic brain activity [fractional amplitude of low frequency fluctuation (fALFF)], and local connectivity (regional homogeneity) in young adults, who either underwent WMT or received no intervention for 4 weeks. Compared with no intervention, WMT increased DC in the anatomical cluster, including anterior cingulate cortex (ACC), to the medial prefrontal cortex (mPFC). Furthermore, WMT increased fALFF in the anatomical cluster including the right dorsolateral prefrontal cortex (DLPFC), frontopolar area and mPFC. WMT increased regional homogeneity in the anatomical cluster that spread from the precuneus to posterior cingulate cortex and posterior parietal cortex. These results suggest WMT-induced plasticity in spontaneous brain activity and global and local information processing in areas of the major networks of the brain during rest.

  15. Activation of Anterior Insula during Self-Reflection

    PubMed Central

    Modinos, Gemma; Ormel, Johan; Aleman, André

    2009-01-01

    Background Functional neuroimaging studies have suggested activation of midline frontoparietal brain regions to be at the core of self-related processes. However, although some studies reported involvement of the insula, little attention has been paid to this region as forming part of the “self”-network. Methodology/Principal Findings Using functional magnetic resonance imaging (fMRI), we aimed at replicating and extending previous studies by scanning subjects whilst reflecting upon their own personal qualities as compared to those of an acquaintance. A third condition with statements about general knowledge was used to control for attention, semantic processing and decision making processes. The results showed a significant effect of task in brain activity, consistent with previous findings, by which both person conditions recruited a common set of medial prefrontal and posterior regions, yet significant differences between self and other were found in the medial prefrontal cortex (MPFC) and the anterior cingulate cortex (ACC). Notably, significant neural activation in the left anterior insula was observed as uniquely associated with self-reflection. Conclusions/Significance The results provide further evidence for the specific recruitment of anterior MPFC and ACC regions for self-related processing, and highlight a role for the insula in self-reflection. As the insula is closely connected with ascending internal body signals, this may indicate that the accumulation of changes in affective states that might be implied in self-processing may contribute to our sense of self. PMID:19242539

  16. Activation of anterior insula during self-reflection.

    PubMed

    Modinos, Gemma; Ormel, Johan; Aleman, André

    2009-01-01

    Functional neuroimaging studies have suggested activation of midline frontoparietal brain regions to be at the core of self-related processes. However, although some studies reported involvement of the insula, little attention has been paid to this region as forming part of the "self"-network. Using functional magnetic resonance imaging (fMRI), we aimed at replicating and extending previous studies by scanning subjects whilst reflecting upon their own personal qualities as compared to those of an acquaintance. A third condition with statements about general knowledge was used to control for attention, semantic processing and decision making processes. The results showed a significant effect of task in brain activity, consistent with previous findings, by which both person conditions recruited a common set of medial prefrontal and posterior regions, yet significant differences between self and other were found in the medial prefrontal cortex (MPFC) and the anterior cingulate cortex (ACC). Notably, significant neural activation in the left anterior insula was observed as uniquely associated with self-reflection. The results provide further evidence for the specific recruitment of anterior MPFC and ACC regions for self-related processing, and highlight a role for the insula in self-reflection. As the insula is closely connected with ascending internal body signals, this may indicate that the accumulation of changes in affective states that might be implied in self-processing may contribute to our sense of self.

  17. Anterior Cingulate Volumetric Alterations in Treatment-Naive Adults with ADHD: A Pilot Study

    ERIC Educational Resources Information Center

    Makris, Nikos; Seidman, Larry J.; Valera, Eve M.; Biederman, Joseph; Monuteaux, Michael C.; Kennedy, David N.; Caviness, Verne S., Jr.; Bush, George; Crum, Katherine; Brown, Ariel B.; Faraone, Stephen V.

    2010-01-01

    Objective: We sought to examine preliminary results of brain alterations in anterior cingulate cortex (ACC) in treatment-naive adults with ADHD. The ACC is a central brain node for the integration of cognitive control and allocation of attention, affect and drive. Thus its anatomical alteration may give rise to impulsivity, hyperactivity and…

  18. Lower Activation in Frontal Cortex and Posterior Cingulate Cortex Observed during Sex Determination Test in Early-Stage Dementia of the Alzheimer Type

    PubMed Central

    Rajmohan, Ravi; Anderson, Ronald C.; Fang, Dan; Meyer, Austin G.; Laengvejkal, Pavis; Julayanont, Parunyou; Hannabas, Greg; Linton, Kitten; Culberson, John; Khan, Hafiz; De Toledo, John; Reddy, P. Hemachandra; O’Boyle, Michael W.

    2017-01-01

    Face-labeling refers to the ability to classify faces into social categories. This plays a critical role in human interaction as it serves to define concepts of socially acceptable interpersonal behavior. The purpose of the current study was to characterize, what, if any, impairments in face-labeling are detectable in participants with early-stage clinically diagnosed dementia of the Alzheimer type (CDDAT) through the use of the sex determination test (SDT). In the current study, four (1 female, 3 males) CDDAT and nine (4 females, 5 males) age-matched neurotypicals (NT) completed the SDT using chimeric faces while undergoing BOLD fMRI. It was expected that CDDAT participants would have poor verbal fluency, which would correspond to poor performance on the SDT. This could be explained by decreased activation and connectivity patterns within the fusiform face area (FFA) and anterior cingulate cortex (ACC). DTI was also performed to test the association of pathological deterioration of connectivity in the uncinate fasciculus (UF) and verbally-mediated performance. CDDAT showed lower verbal fluency test (VFT) performance, but VFT was not significantly correlated to SDT and no significant difference was seen between CDDAT and NT for SDT performance as half of the CDDAT performed substantially worse than NT while the other half performed similarly. BOLD fMRI of SDT displayed differences in the left superior frontal gyrus and posterior cingulate cortex (PCC), but not the FFA or ACC. Furthermore, although DTI showed deterioration of the right inferior and superior longitudinal fasciculi, as well as the PCC, it did not demonstrate significant deterioration of UF tracts. Taken together, early-stage CDDAT may represent a common emerging point for the loss of face labeling ability. PMID:28588478

  19. Lower Activation in Frontal Cortex and Posterior Cingulate Cortex Observed during Sex Determination Test in Early-Stage Dementia of the Alzheimer Type.

    PubMed

    Rajmohan, Ravi; Anderson, Ronald C; Fang, Dan; Meyer, Austin G; Laengvejkal, Pavis; Julayanont, Parunyou; Hannabas, Greg; Linton, Kitten; Culberson, John; Khan, Hafiz; De Toledo, John; Reddy, P Hemachandra; O'Boyle, Michael W

    2017-01-01

    Face-labeling refers to the ability to classify faces into social categories. This plays a critical role in human interaction as it serves to define concepts of socially acceptable interpersonal behavior. The purpose of the current study was to characterize, what, if any, impairments in face-labeling are detectable in participants with early-stage clinically diagnosed dementia of the Alzheimer type (CDDAT) through the use of the sex determination test (SDT). In the current study, four (1 female, 3 males) CDDAT and nine (4 females, 5 males) age-matched neurotypicals (NT) completed the SDT using chimeric faces while undergoing BOLD fMRI. It was expected that CDDAT participants would have poor verbal fluency, which would correspond to poor performance on the SDT. This could be explained by decreased activation and connectivity patterns within the fusiform face area (FFA) and anterior cingulate cortex (ACC). DTI was also performed to test the association of pathological deterioration of connectivity in the uncinate fasciculus (UF) and verbally-mediated performance. CDDAT showed lower verbal fluency test (VFT) performance, but VFT was not significantly correlated to SDT and no significant difference was seen between CDDAT and NT for SDT performance as half of the CDDAT performed substantially worse than NT while the other half performed similarly. BOLD fMRI of SDT displayed differences in the left superior frontal gyrus and posterior cingulate cortex (PCC), but not the FFA or ACC. Furthermore, although DTI showed deterioration of the right inferior and superior longitudinal fasciculi, as well as the PCC, it did not demonstrate significant deterioration of UF tracts. Taken together, early-stage CDDAT may represent a common emerging point for the loss of face labeling ability.

  20. The social evaluation of faces: a meta-analysis of functional neuroimaging studies

    PubMed Central

    Mende-Siedlecki, Peter; Said, Christopher P.

    2013-01-01

    Neuroscience research on the social evaluation of faces has accumulated over the last decade, yielding divergent results. We used a meta-analytic technique, multi-level kernel density analysis (MKDA), to analyze 29 neuroimaging studies on face evaluation. Across negative face evaluations, we observed the most consistent activations in bilateral amygdala. Across positive face evaluations, we observed the most consistent activations in medial prefrontal cortex, pregenual anterior cingulate cortex (pgACC), medial orbitofrontal cortex (mOFC), left caudate and nucleus accumbens (NAcc). Based on additional analyses comparing linear and non-linear responses, we propose a ventral/dorsal dissociation within the amygdala, wherein separate populations of neurons code for face valence and intensity, respectively. Finally, we argue that some of the differences between studies are attributable to differences in the typicality of face stimuli. Specifically, extremely attractive faces are more likely to elicit responses in NAcc/caudate and mOFC. PMID:22287188

  1. Impaired cortico-limbic functional connectivity in schizophrenia patients during emotion processing.

    PubMed

    Comte, Magali; Zendjidjian, Xavier Y; Coull, Jennifer T; Cancel, Aïda; Boutet, Claire; Schneider, Fabien C; Sage, Thierry; Lazerges, Pierre-Emmanuel; Jaafari, Nematollah; Ibrahim, El Chérif; Azorin, Jean-Michel; Blin, Olivier; Fakra, Eric

    2017-10-23

    Functional dysconnection is increasingly recognized as a core pathological feature in schizophrenia. Aberrant interactions between regions of the cortico-limbic circuit may underpin the abnormal emotional processing associated with this illness. We used a functional magnetic resonance imaging (fMRI) paradigm designed to dissociate the various components of the cortico-limbic circuit (i.e. a ventral automatic circuit that is intertwined with a dorsal cognitive circuit), in order to explore bottom-up appraisal as well as top-down control during emotion processing. In schizophrenia patients compared to healthy controls, bottom-up processes were associated with reduced interaction between the amygdala and both the anterior cingulate cortex (ACC) and the dorsolateral prefrontal cortex (DLPFC). Contrariwise, top-down control processes led to stronger connectivity between the ventral affective and the dorsal cognitive circuits, i.e. heightened interactions between the ventral ACC and the DLPFC as well as between dorsal and ventral ACC. These findings offer a comprehensive view of the cortico-limbic dysfunction in schizophrenia. They confirm previous results of impaired propagation of information between the amygdala and the prefrontal cortex and suggest a defective functional segregation in the dorsal cognitive part of the cortico-limbic circuit. © The Author (2017). Published by Oxford University Press.

  2. Adverse Effects of Cannabis on Adolescent Brain Development: A Longitudinal Study

    PubMed Central

    Camchong, Jazmin; Lim, Kelvin O; Kumra, Sanjiv

    2017-01-01

    Abstract Cannabis is widely perceived as a safe recreational drug and its use is increasing in youth. It is important to understand the implications of cannabis use during childhood and adolescence on brain development. This is the first longitudinal study that compared resting functional connectivity of frontally mediated networks between 43 healthy controls (HCs; 20 females; age M = 16.5 ± 2.7) and 22 treatment-seeking adolescents with cannabis use disorder (CUD; 8 females; age M = 17.6 ± 2.4). Increases in resting functional connectivity between caudal anterior cingulate cortex (ACC) and superior frontal gyrus across time were found in HC, but not in CUD. CUD showed a decrease in functional connectivity between caudal ACC and dorsolateral and orbitofrontal cortices across time. Lower functional connectivity between caudal ACC cortex and orbitofrontal cortex at baseline predicted higher amounts of cannabis use during the following 18 months. Finally, high amounts of cannabis use during the 18-month interval predicted lower intelligence quotient and slower cognitive function measured at follow-up. These data provide compelling longitudinal evidence suggesting that repeated exposure to cannabis during adolescence may have detrimental effects on brain resting functional connectivity, intelligence, and cognitive function. PMID:26912785

  3. Altered resting state functional connectivity of anterior insula in young smokers.

    PubMed

    Bi, Yanzhi; Yuan, Kai; Guan, Yanyan; Cheng, Jiadong; Zhang, Yajuan; Li, Yangding; Yu, Dahua; Qin, Wei; Tian, Jie

    2017-02-01

    The insula has been implicated in cognitive control and craving, all of which are critical to the clinical manifestations of nicotine dependence. However, little evidence exists about the abnormalities in resting state functional connectivity (RSFC) of the insula in young smokers, which might improve our understanding of the neural mechanisms of nicotine dependence. Due to the structural and functional heterogeneity of the insula, the RSFC patterns of both left and right anterior (AI) and posterior insula (PI) were investigated in young smokers and non-smokers. Meanwhile, the relationship was assessed between the neuroimaging findings and clinical information (pack-years, FTND, and craving) as well as cognitive control deficits measured by Stroop task performance. Compared with non-smokers, young smokers showed reduced RSFC between right AI and anterior cingulate cortex (ACC), ventromedial prefrontal cortex (VMPFC), amygdala, left dorsolateral prefrontal cortex, and dorsal striatum. Additionally, left AI showed reduced RSFC with ACC. Both left and right PI network differences were not observed between two groups. Moreover, in young smokers, FTND and incongruent errors in the Stroop task were negatively correlated with the RSFC between AI and ACC. Craving scores showed a significantly negative relationship with the RSFC strength between right AI and left VMPFC. These results provide a more thorough network-level understanding the role of insula in cigarette smoking. The findings provide new insights into the roles of AI-ACC circuit in cognitive control deficits and right AI-VMPFC circuit relevant to the craving of nicotine dependence for young smokers.

  4. Altered anterior cingulate neurochemistry in emerging adult binge drinkers with a history of alcohol-induced blackouts

    PubMed Central

    Silveri, Marisa M.; Cohen-Gilbert, Julia; Crowley, David J.; Rosso, Isabelle M.; Jensen, J. Eric; Sneider, Jennifer T.

    2015-01-01

    Background Binge alcohol consumption is associated with multiple neurobiological consequences, including altered neurophysiology, brain structure and functional activation. Magnetic resonance spectroscopy (MRS) studies have demonstrated neurochemical alterations in the frontal lobe of alcohol users, although most studies focused on older, alcohol dependent subjects. Methods In this study, neurochemical data were acquired using MRS at 4T from emerging adults (18–24 years old) who were binge alcohol drinkers (BD, n=23) or light drinkers (LD, n=31). Since binge drinking is also associated with increased prevalence of experiencing an alcohol-induced blackout, BD were stratified into alcohol-induced blackout (BDBO) and non-blackout groups (BDN). Results Overall, BD had significantly lower gamma amino-butyric acid (GABA) and N-acetyl-aspartate (NAA) in the anterior cingulate cortex (ACC) than LD. When stratified by blackout history, BDBO also had lower ACC glutamate (Glu) than LD. No group differences in MRS metabolites were observed in the parietal-occipital cortex. Lower ACC GABA and glutamate remained significant after accounting for lower grey matter content in BD, however NAA differences were no longer evident. In addition, low ACC GABA levels were associated with greater alcohol use consequences, and worse response inhibition and attention/mental flexibility in BD. Conclusions These data indicate that binge drinking affects frontal lobe neurochemistry, more so in those who had experienced an alcohol-induced blackout. Characterization of the neurochemical profiles associated with binge alcohol consumption and blackout history may help identify unique risk factors for the later manifestation of alcohol abuse and dependence, in young individuals who are heavy, frequent drinkers, but who do not meet the criteria for alcohol use disorders. PMID:24512596

  5. Comparing the actions of lanicemine and ketamine in depression: key role of the anterior cingulate.

    PubMed

    Downey, Darragh; Dutta, Arpan; McKie, Shane; Dawson, Gerard R; Dourish, Colin T; Craig, Kevin; Smith, Mark A; McCarthy, Dennis J; Harmer, Catherine J; Goodwin, Guy M; Williams, Steve; Deakin, J F William

    2016-06-01

    Intravenous infusion of lanicemine (formerly AZD6765), a low trapping non-selective N-methyl-D-aspartate (NMDA) receptor antagonist, induces antidepressant effects with a similar time course to ketamine. We investigated whether a single dose lanicemine infusion would reproduce the previously reported decrease in subgenual anterior cingulate cortex (sgACC) activity evoked by ketamine, a potential mechanism of antidepressant efficacy. Sixty un-medicated adults meeting the criteria for major depressive disorder were randomly assigned to receive constant intravenous infusions of ketamine, lanicemine or saline during a 60min pharmacological magnetic resonance imaging (phMRI) scan. Both ketamine and lanicemine gradually increased the blood oxygen level dependent signal in sgACC and rostral ACC as the primary outcome measure. No decreases in signal were seen in any region. Interviewer-rated psychotic and dissociative symptoms were minimal following administration of lanicemine. There was no significant antidepressant effect of either infusion compared to saline. The previously reported deactivation of sgACC after ketamine probably reflects the rapid and pronounced subjective effects evoked by the bolus-infusion method used in the previous study. Activation of the ACC was observed following two different NMDA compounds in both Manchester and Oxford using different 3T MRI scanners, and this effect predicted improvement in mood 1 and 7 days post-infusion. These findings suggest that the initial site of antidepressant action for NMDA antagonists may be the ACC (NCT01046630. A Phase I, Multi-centre, Double-blind, Placebo-controlled Parallel Group Study to Assess the pharmacoMRI Effects of AZD6765 in Male and Female Subjects Fulfilling the Criteria for Major Depressive Disorder; http://clinicaltrials.gov/show/NCT01046630). Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  6. Neural circuitry of emotional and cognitive conflict revealed through facial expressions.

    PubMed

    Chiew, Kimberly S; Braver, Todd S

    2011-03-09

    Neural systems underlying conflict processing have been well studied in the cognitive realm, but the extent to which these overlap with those underlying emotional conflict processing remains unclear. A novel adaptation of the AX Continuous Performance Task (AX-CPT), a stimulus-response incompatibility paradigm, was examined that permits close comparison of emotional and cognitive conflict conditions, through the use of affectively-valenced facial expressions as the response modality. Brain activity was monitored with functional magnetic resonance imaging (fMRI) during performance of the emotional AX-CPT. Emotional conflict was manipulated on a trial-by-trial basis, by requiring contextually pre-cued facial expressions to emotional probe stimuli (IAPS images) that were either affectively compatible (low-conflict) or incompatible (high-conflict). The emotion condition was contrasted against a matched cognitive condition that was identical in all respects, except that probe stimuli were emotionally neutral. Components of the brain cognitive control network, including dorsal anterior cingulate cortex (ACC) and lateral prefrontal cortex (PFC), showed conflict-related activation increases in both conditions, but with higher activity during emotion conditions. In contrast, emotion conflict effects were not found in regions associated with affective processing, such as rostral ACC. These activation patterns provide evidence for a domain-general neural system that is active for both emotional and cognitive conflict processing. In line with previous behavioural evidence, greatest activity in these brain regions occurred when both emotional and cognitive influences additively combined to produce increased interference.

  7. Neural Circuitry of Emotional and Cognitive Conflict Revealed through Facial Expressions

    PubMed Central

    Chiew, Kimberly S.; Braver, Todd S.

    2011-01-01

    Background Neural systems underlying conflict processing have been well studied in the cognitive realm, but the extent to which these overlap with those underlying emotional conflict processing remains unclear. A novel adaptation of the AX Continuous Performance Task (AX-CPT), a stimulus-response incompatibility paradigm, was examined that permits close comparison of emotional and cognitive conflict conditions, through the use of affectively-valenced facial expressions as the response modality. Methodology/Principal Findings Brain activity was monitored with functional magnetic resonance imaging (fMRI) during performance of the emotional AX-CPT. Emotional conflict was manipulated on a trial-by-trial basis, by requiring contextually pre-cued facial expressions to emotional probe stimuli (IAPS images) that were either affectively compatible (low-conflict) or incompatible (high-conflict). The emotion condition was contrasted against a matched cognitive condition that was identical in all respects, except that probe stimuli were emotionally neutral. Components of the brain cognitive control network, including dorsal anterior cingulate cortex (ACC) and lateral prefrontal cortex (PFC), showed conflict-related activation increases in both conditions, but with higher activity during emotion conditions. In contrast, emotion conflict effects were not found in regions associated with affective processing, such as rostral ACC. Conclusions/Significance These activation patterns provide evidence for a domain-general neural system that is active for both emotional and cognitive conflict processing. In line with previous behavioural evidence, greatest activity in these brain regions occurred when both emotional and cognitive influences additively combined to produce increased interference. PMID:21408006

  8. Neural mechanisms of economic commitment in the human medial prefrontal cortex

    PubMed Central

    Tsetsos, Konstantinos; Wyart, Valentin; Shorkey, S Paul; Summerfield, Christopher

    2014-01-01

    Neurobiologists have studied decisions by offering successive, independent choices between goods or gambles. However, choices often have lasting consequences, as when investing in a house or choosing a partner. Here, humans decided whether to commit (by acceptance or rejection) to prospects that provided sustained financial return. BOLD signals in the rostral medial prefrontal cortex (rmPFC) encoded stimulus value only when acceptance or rejection was deferred into the future, suggesting a role in integrating value signals over time. By contrast, the dorsal anterior cingulate cortex (dACC) encoded stimulus value only when participants rejected (or deferred accepting) a prospect. dACC BOLD signals reflected two decision biases–to defer commitments to later, and to weight potential losses more heavily than gains–that (paradoxically) maximised reward in this task. These findings offer fresh insights into the pressures that shape economic decisions, and the computation of value in the medial prefrontal cortex. DOI: http://dx.doi.org/10.7554/eLife.03701.001 PMID:25333687

  9. Individual differences in the anterior insula are associated with the likelihood of financially helping versus harming others.

    PubMed

    Greening, Steven; Norton, Loretta; Virani, Karim; Ty, Ambrose; Mitchell, Derek; Finger, Elizabeth

    2014-03-01

    The neural basis of individual differences in positive and negative social decisions and behaviors in healthy populations is yet undetermined. Recent work has focused on the potential role of the anterior insula in guiding social and nonsocial decision making, but the specific nature of its activation during such decision making remains unclear. To identify the neural regions mediating individual differences in helpful and harmful decisions and to assess the nature of insula activation during such decisions, in the present study we used a novel fMRI task featuring intentional and unintentional decisions to financially harm or help persons in need. Based on a whole-brain, unbiased approach, our findings indicate that individual differences in dorsal anterior insula, anterior cingulate cortex (ACC), and right temporo-parietal junction activation are associated with behavioral tendencies to financially harm or help another. Furthermore, activity in the dorsal anterior insula and ACC was greatest during unintended outcomes, whether these were gains or losses for a charity or for oneself, supporting models of the role of these regions in salience prediction error signaling. Together, the results suggest that individual differences in risk anticipation, as reflected in the dorsal anterior insula and dorsal ACC, guide social decisions to refrain from harming others.

  10. A cerebellar thalamic cortical circuit for error-related cognitive control.

    PubMed

    Ide, Jaime S; Li, Chiang-shan R

    2011-01-01

    Error detection and behavioral adjustment are core components of cognitive control. Numerous studies have focused on the anterior cingulate cortex (ACC) as a critical locus of this executive function. Our previous work showed greater activation in the dorsal ACC and subcortical structures during error detection, and activation in the ventrolateral prefrontal cortex (VLPFC) during post-error slowing (PES) in a stop signal task (SST). However, the extent of error-related cortical or subcortical activation across subjects was not correlated with VLPFC activity during PES. So then, what causes VLPFC activation during PES? To address this question, we employed Granger causality mapping (GCM) and identified regions that Granger caused VLPFC activation in 54 adults performing the SST during fMRI. These brain regions, including the supplementary motor area (SMA), cerebellum, a pontine region, and medial thalamus, represent potential targets responding to errors in a way that could influence VLPFC activation. In confirmation of this hypothesis, the error-related activity of these regions correlated with VLPFC activation during PES, with the cerebellum showing the strongest association. The finding that cerebellar activation Granger causes prefrontal activity during behavioral adjustment supports a cerebellar function in cognitive control. Furthermore, multivariate GCA described the "flow of information" across these brain regions. Through connectivity with the thalamus and SMA, the cerebellum mediates error and post-error processing in accord with known anatomical projections. Taken together, these new findings highlight the role of the cerebello-thalamo-cortical pathway in an executive function that has heretofore largely been ascribed to the anterior cingulate-prefrontal cortical circuit. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. A Functional Magnetic Resonance Imaging Predictor of Treatment Response to Venlafaxine in Generalized Anxiety Disorder

    PubMed Central

    Johnstone, Tom; Somerville, Leah H.; Nitschke, Jack B.; Polis, Sara; Alexander, Andrew L.; Davidson, Richard J.; Kalin, Ned H.

    2008-01-01

    Background Functional magnetic resonance imaging (fMRI) holds promise as a noninvasive means of identifying neural responses that can be used to predict treatment response before beginning a drug trial. Imaging paradigms employing facial expressions as presented stimuli have been shown to activate the amygdala and anterior cingulate cortex (ACC). Here, we sought to determine whether pretreatment amygdala and rostral ACC (rACC) reactivity to facial expressions could predict treatment outcomes in patients with generalized anxiety disorder (GAD). Methods Fifteen subjects (12 female subjects) with GAD participated in an open-label venlafaxine treatment trial. Functional magnetic resonance imaging responses to facial expressions of emotion collected before subjects began treatment were compared with changes in anxiety following 8 weeks of venlafaxine administration. In addition, the magnitude of fMRI responses of subjects with GAD were compared with that of 15 control subjects (12 female subjects) who did not have GAD and did not receive venlafaxine treatment. Results The magnitude of treatment response was predicted by greater pretreatment reactivity to fearful faces in rACC and lesser reactivity in the amygdala. These individual differences in pretreatment rACC and amygdala reactivity within the GAD group were observed despite the fact that 1) the overall magnitude of pretreatment rACC and amygdala reactivity did not differ between subjects with GAD and control subjects and 2) there was no main effect of treatment on rACC-amygdala reactivity in the GAD group. Conclusions These findings show that this pattern of rACC-amygdala responsivity could prove useful as a predictor of venlafaxine treatment response in patients with GAD. PMID:17964548

  12. Temporal Dynamics of Antidepressant Ketamine Effects on Glutamine Cycling Follow Regional Fingerprints of AMPA and NMDA Receptor Densities.

    PubMed

    Li, Meng; Demenescu, Liliana Ramona; Colic, Lejla; Metzger, Coraline Danielle; Heinze, Hans-Jochen; Steiner, Johann; Speck, Oliver; Fejtova, Anna; Salvadore, Giacomo; Walter, Martin

    2017-05-01

    The anterior cingulate cortex (ACC) has shown decreased glutamate levels in patients with major depressive disorder. Subanesthetic doses of ketamine were repeatedly shown to improve depressive symptoms within 24 h after infusion and this antidepressant effect was attributed to increased α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) throughput. To elucidate ketamine's mechanism of action, we tested whether the clinical time course of the improvement is mirrored by the change of glutamine/glutamate ratio and if such effects show a regional and temporal specificity in two distinct subdivisions of ACC with different AMPA/N-methyl-D-aspartate receptor profiles. In a double-blind, placebo-controlled intravenous infusion study of ketamine, we measured glutamate and glutamine in the pregenual ACC (pgACC) and the anterior midcingulate cortex at 1 and 24 h post infusion with magnetic resonance spectroscopy at 7 T. A significant interaction of time, region, and treatment was found for the glutamine/glutamate ratios (placebo, n=14; ketamine, n=12). Post-hoc analyses revealed that the glutamine/glutamate ratio increased significantly in the ketamine group, compared with placebo, specifically in the pgACC after 24 h. The glutamine/glutamate increase in the pgACC caused by ketamine at 24 h post infusion was reproduced in an enlarged sample (placebo, n=24; ketamine, n=20). Our results support a significant temporal and regional response in glutamine/glutamate ratios to a single subanesthetic dose of ketamine, which mirrors the time course of the antidepressant response and reversal of the molecular deficits in patients and which may be associated with the histoarchitectonical receptor fingerprints of the ACC subregions.

  13. Temporal Dynamics of Antidepressant Ketamine Effects on Glutamine Cycling Follow Regional Fingerprints of AMPA and NMDA Receptor Densities

    PubMed Central

    Li, Meng; Demenescu, Liliana Ramona; Colic, Lejla; Metzger, Coraline Danielle; Heinze, Hans-Jochen; Steiner, Johann; Speck, Oliver; Fejtova, Anna; Salvadore, Giacomo; Walter, Martin

    2017-01-01

    The anterior cingulate cortex (ACC) has shown decreased glutamate levels in patients with major depressive disorder. Subanesthetic doses of ketamine were repeatedly shown to improve depressive symptoms within 24 h after infusion and this antidepressant effect was attributed to increased α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) throughput. To elucidate ketamine's mechanism of action, we tested whether the clinical time course of the improvement is mirrored by the change of glutamine/glutamate ratio and if such effects show a regional and temporal specificity in two distinct subdivisions of ACC with different AMPA/N-methyl-D-aspartate receptor profiles. In a double-blind, placebo-controlled intravenous infusion study of ketamine, we measured glutamate and glutamine in the pregenual ACC (pgACC) and the anterior midcingulate cortex at 1 and 24 h post infusion with magnetic resonance spectroscopy at 7 T. A significant interaction of time, region, and treatment was found for the glutamine/glutamate ratios (placebo, n=14; ketamine, n=12). Post-hoc analyses revealed that the glutamine/glutamate ratio increased significantly in the ketamine group, compared with placebo, specifically in the pgACC after 24 h. The glutamine/glutamate increase in the pgACC caused by ketamine at 24 h post infusion was reproduced in an enlarged sample (placebo, n=24; ketamine, n=20). Our results support a significant temporal and regional response in glutamine/glutamate ratios to a single subanesthetic dose of ketamine, which mirrors the time course of the antidepressant response and reversal of the molecular deficits in patients and which may be associated with the histoarchitectonical receptor fingerprints of the ACC subregions. PMID:27604568

  14. The roles of the anterior cingulate cortex and its dopamine receptors in self-paced cost-benefit decision making in rats.

    PubMed

    Wang, Shuai; Hu, Shan-Hu; Shi, Yi; Li, Bao-Ming

    2017-03-01

    It has been shown that the anterior cingulate cortex (ACC) and its dopamine system are crucial for decision making that requires physical/emotional effort, but not for all forms of cost-benefit decision making. Previous studies had mostly employed behavioral tasks with two competing cost-reward options that were preset by the experimenters. However, few studies have been conducted using scenarios in which the subjects have full control over the energy/time expenditure required to obtain a proportional reward. Here, we assessed the roles of the ACC and its dopamine system in cost-benefit decision making by utilizing a "do more get more" (DMGM) task and a time-reward trade-off (TRTO) task, wherein the animals were able to self-determine how much effort or time to expend at a nosepoke operandum for a proportional reward. Our results showed that (1) ACC inactivation severely impaired DMGM task performance, with a reduction in the rate of correct responses and a decrease in the effort expended, but did not affect the TRTO task; and (2) blocking ACC D2 receptors had no impact on DMGM task performance in the baseline cost-benefit scenario, but it significantly reduced the attempts to invest increased effort for a large reward when the benefit-cost ratio was reduced by half. In contrast, blocking ACC D1 receptors had no effect on DMGM task performance. These findings suggest that the ACC is required for self-paced effort-based but not for time-reward trade-off decision making. Furthermore, ACC dopamine D2 but not D1 receptors are involved in DMGM decision making.

  15. MEG Can Map Short and Long-Term Changes in Brain Activity following Deep Brain Stimulation for Chronic Pain

    PubMed Central

    Mohseni, Hamid R.; Smith, Penny P.; Parsons, Christine E.; Young, Katherine S.; Hyam, Jonathan A.; Stein, Alan; Stein, John F.; Green, Alexander L.; Aziz, Tipu Z.; Kringelbach, Morten L.

    2012-01-01

    Deep brain stimulation (DBS) has been shown to be clinically effective for some forms of treatment-resistant chronic pain, but the precise mechanisms of action are not well understood. Here, we present an analysis of magnetoencephalography (MEG) data from a patient with whole-body chronic pain, in order to investigate changes in neural activity induced by DBS for pain relief over both short- and long-term. This patient is one of the few cases treated using DBS of the anterior cingulate cortex (ACC). We demonstrate that a novel method, null-beamforming, can be used to localise accurately brain activity despite the artefacts caused by the presence of DBS electrodes and stimulus pulses. The accuracy of our source localisation was verified by correlating the predicted DBS electrode positions with their actual positions. Using this beamforming method, we examined changes in whole-brain activity comparing pain relief achieved with deep brain stimulation (DBS ON) and compared with pain experienced with no stimulation (DBS OFF). We found significant changes in activity in pain-related regions including the pre-supplementary motor area, brainstem (periaqueductal gray) and dissociable parts of caudal and rostral ACC. In particular, when the patient reported experiencing pain, there was increased activity in different regions of ACC compared to when he experienced pain relief. We were also able to demonstrate long-term functional brain changes as a result of continuous DBS over one year, leading to specific changes in the activity in dissociable regions of caudal and rostral ACC. These results broaden our understanding of the underlying mechanisms of DBS in the human brain. PMID:22675503

  16. Chronic pain induces generalized enhancement of aversion

    PubMed Central

    Zhang, Qiaosheng; Manders, Toby; Tong, Ai Phuong; Yang, Runtao; Garg, Arpan; Martinez, Erik; Zhou, Haocheng; Dale, Jahrane; Goyal, Abhinav; Urien, Louise; Yang, Guang; Chen, Zhe; Wang, Jing

    2017-01-01

    A hallmark feature of chronic pain is its ability to impact other sensory and affective experiences. It is notably associated with hypersensitivity at the site of tissue injury. It is less clear, however, if chronic pain can also induce a generalized site-nonspecific enhancement in the aversive response to nociceptive inputs. Here, we showed that chronic pain in one limb in rats increased the aversive response to acute pain stimuli in the opposite limb, as assessed by conditioned place aversion. Interestingly, neural activities in the anterior cingulate cortex (ACC) correlated with noxious intensities, and optogenetic modulation of ACC neurons showed bidirectional control of the aversive response to acute pain. Chronic pain, however, altered acute pain intensity representation in the ACC to increase the aversive response to noxious stimuli at anatomically unrelated sites. Thus, chronic pain can disrupt cortical circuitry to enhance the aversive experience in a generalized anatomically nonspecific manner. DOI: http://dx.doi.org/10.7554/eLife.25302.001 PMID:28524819

  17. ERN and the Placebo: A Misattribution Approach to Studying the Arousal Properties of the Error-Related Negativity

    ERIC Educational Resources Information Center

    Inzlicht, Michael; Al-Khindi, Timour

    2012-01-01

    Performance monitoring in the anterior cingulate cortex (ACC) has largely been viewed as a cognitive, computational process devoid of emotion. A growing body of research, however, suggests that performance is moderated by motivational engagement and that a signal generated by the ACC, the error-related negativity (ERN), may partially reflect a…

  18. Callous-unemotional traits modulate the neural response associated with punishing another individual during social exchange: a preliminary investigation.

    PubMed

    White, Stuart F; Brislin, Sarah J; Meffert, Harma; Sinclair, Stephen; Blair, R James R

    2013-02-01

    The current study examined whether Callous-Unemotional (CU) traits, a core component of psychopathy, modulate neural responses of participants engaged in a social exchange game. In this task, participants were offered an allocation of money and then given the chance to punish the offerer. Twenty youth participated and responses to both offers and the participant's punishment (or not) of these offers were examined. Increasingly unfair offers were associated with increased dorsal anterior cingulate cortex (dACC) activity but this responsiveness was not modulated by CU traits. Increasing punishment of unfair offers was associated with increased dACC and anterior insula activity and this activity was modulated by CU traits. Higher CU trait participants showed a weaker association between activity and punishment level. These data suggest that CU traits are associated with appropriate expectations of other individual's normative behavior but weaker representations of such information when guiding behavior of the self.

  19. Alterations in anterior cingulate cortex myoinositol and aggression in veterans with suicidal behavior: A proton magnetic resonance spectroscopy study.

    PubMed

    Sheth, Chandni; Prescot, Andrew; Bueler, Elliott; DiMuzio, Jennifer; Legarreta, Margaret; Renshaw, Perry F; Yurgelun-Todd, Deborah; McGlade, Erin

    2018-06-30

    Studies investigating the neurochemical changes that correspond with suicidal behavior (SB) have not yielded conclusive results. Suicide correlates such as aggression have been used to explore risk factors for SB. Yet the neurobiological basis for the association between aggression and SB is unclear. Aggression and SB are both prevalent in veterans relative to civilian populations. The current study evaluated the relationship between brain chemistry in the anterior (ACC) and the posterior cingulate cortex (POC), as well as the relationship between aggression and SB in a veteran population using proton magnetic resonance spectroscopy ( 1 H-MRS). Single-voxel MRS data at 3 Tesla (T) were acquired from the ACC and POC voxels using a 2-dimensional J-resolved point spectroscopy sequence and quantified using the ProFit algorithm. Participants also completed a structured diagnostic interview and a clinical battery. Our results showed that the myoinositol (mI)/H2O ratio in the ACC and POC was significantly higher in veterans who reported SB when compared to veterans who did not. The two groups did not differ significantly with regard to other metabolites. Second, verbal aggression and SB measures positively correlated with mI/H2O in the ACC. Finally, verbal aggression mediated the relationship between mI/H2O in the ACC and SB. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Bi-Directional Tuning of Amygdala Sensitivity in Combat Veterans Investigated with fMRI

    PubMed Central

    Brashers-Krug, Tom; Jorge, Ricardo

    2015-01-01

    Objectives Combat stress can be followed by persistent emotional consequences. It is thought that these emotional consequences are caused in part by increased amygdala reactivity. It is also thought that amygdala hyper-reactivity results from decreased inhibition from portions of the anterior cingulate cortex (ACC) in which activity is negatively correlated with activity in the amygdala. However, experimental support for these proposals has been inconsistent. Methods We showed movies of combat and civilian scenes during a functional magnetic resonance imaging (fMRI) session to 50 veterans of recent combat. We collected skin conductance responses (SCRs) as measures of emotional arousal. We examined the relation of blood oxygenation-level dependent (BOLD) signal in the amygdala and ACC to symptom measures and to SCRs. Results Emotional arousal, as measured with SCR, was greater during the combat movie than during the civilian movie and did not depend on symptom severity. As expected, amygdala signal during the less-arousing movie increased with increasing symptom severity. Surprisingly, during the more-arousing movie amygdala signal decreased with increasing symptom severity. These differences led to the unexpected result that amygdala signal in highly symptomatic subjects was lower during the more-arousing movie than during the less-arousing movie. Also unexpectedly, we found no significant inverse correlation between any portions of the amygdala and ACC. Rather, signal throughout more than 80% of the ACC showed a strong positive correlation with signal throughout more than 90% of the amygdala. Conclusions Amygdala reactivity can be tuned bi-directionally, either up or down, in the same person depending on the stimulus and the degree of post-traumatic symptoms. The exclusively positive correlations in BOLD activity between the amygdala and ACC contrast with findings that have been cited as evidence for inhibitory control of the amygdala by the ACC. The conceptualization of post-traumatic changes in neural function should be reconsidered. PMID:26120848

  1. Dissociable roles of medial and lateral PFC in rule learning.

    PubMed

    Cao, Bihua; Li, Wei; Li, Fuhong; Li, Hong

    2016-11-01

    Although the neural basis of rule learning is of great interest to cognitive neuroscientists, the pattern of transient brain activation during rule discovery remains to be investigated. In this study, we measured event-related functional magnetic resonance imaging (fMRI) during distinct phases of rule learning. Twenty-one healthy human volunteers were presented with a series of cards, each containing a clock-like display of 12 circles numbered sequentially. Participants were instructed that a fictitious animal would move from one circle to another either in a regular pattern (according to a rule hidden in consecutive trials) or randomly. Participants were then asked to judge whether a given step followed a rule. While the rule-search phase evoked more activation in the posterior lateral prefrontal cortex (LPFC), the rule-following phase caused stronger activation in the anterior medial prefrontal cortex (MPFC). Importantly, the intermediate phase, the rule-discovery phase evoked more activations in MPFC and dorsal anterior cingulate cortex (dACC) than rule search, and more activations in LPFC than rule following. Therefore, we can conclude that the medial and lateral PFC have dissociable contributions in rule learning.

  2. Functional organization of human subgenual cortical areas: Relationship between architectonical segregation and connectional heterogeneity.

    PubMed

    Palomero-Gallagher, Nicola; Eickhoff, Simon B; Hoffstaedter, Felix; Schleicher, Axel; Mohlberg, Hartmut; Vogt, Brent A; Amunts, Katrin; Zilles, Karl

    2015-07-15

    Human subgenual anterior cingulate cortex (sACC) is involved in affective experiences and fear processing. Functional neuroimaging studies view it as a homogeneous cortical entity. However, sACC comprises several distinct cyto- and receptorarchitectonical areas: 25, s24, s32, and the ventral portion of area 33. Thus, we hypothesized that the areas may also be connectionally and functionally distinct. We performed structural post mortem and functional in vivo analyses. We computed probabilistic maps of each area based on cytoarchitectonical analysis of ten post mortem brains. Maps, publicly available via the JuBrain atlas and the Anatomy Toolbox, were used to define seed regions of task-dependent functional connectivity profiles and quantitative functional decoding. sACC areas presented distinct co-activation patterns within widespread networks encompassing cortical and subcortical regions. They shared common functional domains related to emotion, perception and cognition. A more specific analysis of these domains revealed an association of s24 with sadness, and of s32 with fear processing. Both areas were activated during taste evaluation, and co-activated with the amygdala, a key node of the affective network. s32 co-activated with areas of the executive control network, and was associated with tasks probing cognition in which stimuli did not have an emotional component. Area 33 was activated by painful stimuli, and co-activated with areas of the sensorimotor network. These results support the concept of a connectional and functional specificity of the cyto- and receptorarchitectonically defined areas within the sACC, which can no longer be seen as a structurally and functionally homogeneous brain region. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Automatic attention to emotional stimuli: neural correlates.

    PubMed

    Carretié, Luis; Hinojosa, José A; Martín-Loeches, Manuel; Mercado, Francisco; Tapia, Manuel

    2004-08-01

    We investigated the capability of emotional and nonemotional visual stimulation to capture automatic attention, an aspect of the interaction between cognitive and emotional processes that has received scant attention from researchers. Event-related potentials were recorded from 37 subjects using a 60-electrode array, and were submitted to temporal and spatial principal component analyses to detect and quantify the main components, and to source localization software (LORETA) to determine their spatial origin. Stimuli capturing automatic attention were of three types: emotionally positive, emotionally negative, and nonemotional pictures. Results suggest that initially (P1: 105 msec after stimulus), automatic attention is captured by negative pictures, and not by positive or nonemotional ones. Later (P2: 180 msec), automatic attention remains captured by negative pictures, but also by positive ones. Finally (N2: 240 msec), attention is captured only by positive and nonemotional stimuli. Anatomically, this sequence is characterized by decreasing activation of the visual association cortex (VAC) and by the growing involvement, from dorsal to ventral areas, of the anterior cingulate cortex (ACC). Analyses suggest that the ACC and not the VAC is responsible for experimental effects described above. Intensity, latency, and location of neural activity related to automatic attention thus depend clearly on the stimulus emotional content and on its associated biological importance. Copyright 2004 Wiley-Liss, Inc.

  4. Combat veterans with comorbid PTSD and mild TBI exhibit a greater inhibitory processing ERP from the dorsal anterior cingulate cortex.

    PubMed

    Shu, I-Wei; Onton, Julie A; O'Connell, Ryan M; Simmons, Alan N; Matthews, Scott C

    2014-10-30

    Posttraumatic stress disorder (PTSD) is common among combat personnel with mild traumatic brain injury (mTBI). While patients with either PTSD or mTBI share abnormal activation of multiple frontal brain areas, anterior cingulate cortex (ACC) activity during inhibitory processing may be particularly affected by PTSD. To further test this hypothesis, we recorded electroencephalography from 32 combat veterans with mTBI-17 of whom were also comorbid for PTSD (mTBI+PTSD) and 15 without PTSD (mTBI-only). Subjects performed the Stop Task, a validated inhibitory control task requiring inhibition of initiated motor responses. We observed a larger inhibitory processing eventrelated potential (ERP) in veterans with mTBI+PTSD, including greater N200 negativity. Furthermore, greater N200 negativity correlated with greater PTSD severity. This correlation was most dependent on contributions from the dorsal ACC. Support vector machine analysis demonstrated that N200 and P300 amplitudes objectively classified veterans into mTBI-only or mTBI+PTSD groups with 79.4% accuracy. Our results support a model where, in combat veterans with mTBI, larger ERPs from cingulate areas are associated with greater PTSD severity and likely related to difficulty controlling ongoing brain processes, including trauma-related thoughts and feelings. Published by Elsevier Ireland Ltd.

  5. Effects of acute alcohol intoxication on saccadic conflict and error processing.

    PubMed

    Marinkovic, Ksenija; Rickenbacher, Elizabeth; Azma, Sheeva; Artsy, Elinor; Lee, Adrian K C

    2013-12-01

    Flexible behavior optimization relies on cognitive control which includes the ability to suppress automatic responses interfering with relevant goals. Extensive evidence suggests that the anterior cingulate cortex (ACC) is the central node in a predominantly frontal cortical network subserving executive tasks. Neuroimaging studies indicate that the ACC is sensitive to acute intoxication during conflict, but such evidence is limited to tasks using manual responses with arbitrary response contingencies. The present study was designed to examine whether alcohol's effects on top-down cognitive control would generalize to the oculomotor system during inhibition of hardwired saccadic responses. Healthy social drinkers (N = 22) underwent functional magnetic resonance imaging (fMRI) scanning and eye movement tracking during alcohol (0.6 g/kg ethanol for men, 0.55 g/kg for women) and placebo conditions in a counterbalanced design. They performed visually guided prosaccades (PS) towards a target and volitional antisaccades (AS) away from it. To mitigate possible vasoactive effects of alcohol on the BOLD (blood oxygenation level-dependent) signal, resting perfusion was quantified with arterial spin labeling (ASL) and used as a covariate in the BOLD analysis. Saccadic conflict was subserved by a distributed frontoparietal network. However, alcohol intoxication selectively attenuated activity only in the ACC to volitional AS and erroneous responses. This study provides converging evidence for the selective ACC vulnerability to alcohol intoxication during conflict across different response modalities and executive tasks, confirming its supramodal, high-level role in cognitive control. Alcohol intoxication may impair top-down regulative functions by attenuating the ACC activity, resulting in behavioral disinhibition and decreased self-control.

  6. Frontal glutamate and reward processing in adolescence and adulthood.

    PubMed

    Gleich, Tobias; Lorenz, Robert C; Pöhland, Lydia; Raufelder, Diana; Deserno, Lorenz; Beck, Anne; Heinz, Andreas; Kühn, Simone; Gallinat, Jürgen

    2015-11-01

    The fronto-limbic network interaction, driven by glutamatergic and dopaminergic neurotransmission, represents a core mechanism of motivated behavior and personality traits. Reward seeking behavior undergoes tremendous changes in adolescence paralleled by neurobiological changes of this network including the prefrontal cortex, striatum and amygdala. Since fronto-limbic dysfunctions also underlie major psychiatric diseases beginning in adolescence, this investigation focuses on network characteristics separating adolescents from adults. To investigate differences in network interactions, the brain reward system activity (slot machine task) together with frontal glutamate concentration (anterior cingulate cortex, ACC) was measured in 28 adolescents and 26 adults employing functional magnetic resonance imaging and magnetic resonance spectroscopy, respectively. An inverse coupling of glutamate concentrations in the ACC and activation of the ventral striatum was observed in adolescents. Further, amygdala response in adolescents was negatively correlated with the personality trait impulsivity. For adults, no significant associations of network components or correlations with impulsivity were found. The inverse association between frontal glutamate concentration and striatal activation in adolescents is in line with the triadic model of motivated behavior stressing the important role of frontal top-down inhibition on limbic structures. Our data identified glutamate as the mediating neurotransmitter of this inhibitory process and demonstrates the relevance of glutamate on the reward system and related behavioral traits like impulsivity. This fronto-limbic coupling may represent a vulnerability factor for psychiatric disorders starting in adolescence but not in adulthood.

  7. Load-related brain activation predicts spatial working memory performance in youth aged 9–12 and is associated with executive function at earlier ages

    PubMed Central

    Huang, Anna S.; Klein, Daniel N.; Leung, Hoi-Chung

    2015-01-01

    Spatial working memory is a central cognitive process that matures through adolescence in conjunction with major changes in brain function and anatomy. Here we focused on late childhood and early adolescence to more closely examine the neural correlates of performance variability during this important transition period. Using a modified spatial 1-back task with two memory load conditions in an fMRI study, we examined the relationship between load-dependent neural responses and task performance in a sample of 39 youth aged 9–12 years. Our data revealed that between-subject differences in task performance was predicted by load-dependent deactivation in default network regions, including the ventral anterior cingulate cortex (vACC) and posterior cingulate cortex (PCC). Although load-dependent increases in activation in prefrontal and posterior parietal regions were only weakly correlated with performance, increased prefrontal-parietal coupling was associated with better performance. Furthermore, behavioral measures of executive function from as early as age 3 predicted current load-dependent deactivation in vACC and PCC. These findings suggest that both task positive and task negative brain activation during spatial working memory contributed to successful task performance in late childhood/early adolescence. This may serve as a good model for studying executive control deficits in developmental disorders. PMID:26562059

  8. The role of the anterior cingulate cortex in women's sexual decision making.

    PubMed

    Rupp, Heather A; James, Thomas W; Ketterson, Ellen D; Sengelaub, Dale R; Janssen, Erick; Heiman, Julia R

    2009-01-02

    Women's sexual decision making is a complex process balancing the potential rewards of conception and pleasure against the risks of possible low paternal care or sexually transmitted infection. Although neural processes underlying social decision making are suggested to overlap with those involved in economic decision making, the neural systems associated with women's sexual decision making are unknown. Using fMRI, we measured the brain activation of 12 women while they viewed photos of men's faces. Face stimuli were accompanied by information regarding each man's potential risk as a sexual partner, indicated by a written description of the man's number of previous sexual partners and frequency of condom use. Participants were asked to evaluate how likely they would be to have sex with the man depicted. Women reported that they would be more likely to have sex with low compared to high risk men. Stimuli depicting low risk men also elicited stronger activation in the anterior cingulate cortex (ACC), midbrain, and intraparietal sulcus, possibly reflecting an influence of sexual risk on women's attraction, arousal, and attention during their sexual decision making. Activation in the ACC was positively correlated with women's subjective evaluations of sex likelihood and response times during their evaluations of high, but not low risk men. These findings provide evidence that neural systems involved in sexual decision making in women overlap with those described previously to underlie nonsexual decision making.

  9. Load-related brain activation predicts spatial working memory performance in youth aged 9-12 and is associated with executive function at earlier ages.

    PubMed

    Huang, Anna S; Klein, Daniel N; Leung, Hoi-Chung

    2016-02-01

    Spatial working memory is a central cognitive process that matures through adolescence in conjunction with major changes in brain function and anatomy. Here we focused on late childhood and early adolescence to more closely examine the neural correlates of performance variability during this important transition period. Using a modified spatial 1-back task with two memory load conditions in an fMRI study, we examined the relationship between load-dependent neural responses and task performance in a sample of 39 youth aged 9-12 years. Our data revealed that between-subject differences in task performance was predicted by load-dependent deactivation in default network regions, including the ventral anterior cingulate cortex (vACC) and posterior cingulate cortex (PCC). Although load-dependent increases in activation in prefrontal and posterior parietal regions were only weakly correlated with performance, increased prefrontal-parietal coupling was associated with better performance. Furthermore, behavioral measures of executive function from as early as age 3 predicted current load-dependent deactivation in vACC and PCC. These findings suggest that both task positive and task negative brain activation during spatial working memory contributed to successful task performance in late childhood/early adolescence. This may serve as a good model for studying executive control deficits in developmental disorders. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Transient inactivation of the anterior cingulate cortex in rats disrupts avoidance of a dynamic object.

    PubMed

    Svoboda, Jan; Lobellová, Veronika; Popelíková, Anna; Ahuja, Nikhil; Kelemen, Eduard; Stuchlík, Aleš

    2017-03-01

    Although animals often learn and monitor the spatial properties of relevant moving objects such as conspecifics and predators to properly organize their own spatial behavior, the underlying brain substrate has received little attention and hence remains elusive. Because the anterior cingulate cortex (ACC) participates in conflict monitoring and effort-based decision making, and ACC neurons respond to objects in the environment, it may also play a role in the monitoring of moving cues and exerting the appropriate spatial response. We used a robot avoidance task in which a rat had to maintain at least a 25cm distance from a small programmable robot to avoid a foot shock. In successive sessions, we trained ten Long Evans male rats to avoid a fast-moving robot (4cm/s), a stationary robot, and a slow-moving robot (1cm/s). In each condition, the ACC was transiently inactivated by bilateral injections of muscimol in the penultimate session and a control saline injection was given in the last session. Compared to the corresponding saline session, ACC-inactivated rats received more shocks when tested in the fast-moving condition, but not in the stationary or slow robot conditions. Furthermore, ACC-inactivated rats less frequently responded to an approaching robot with appropriate escape responses although their response to shock stimuli remained preserved. Since we observed no effect on slow or stationary robot avoidance, we conclude that the ACC may exert cognitive efforts for monitoring dynamic updating of the position of an object, a role complementary to the dorsal hippocampus. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Mood influences supraspinal pain processing separately from attention.

    PubMed

    Villemure, Chantal; Bushnell, M Catherine

    2009-01-21

    Studies show that inducing a positive mood or diverting attention from pain decreases pain perception. Nevertheless, induction manipulations, such as viewing interesting movies or performing mathematical tasks, often influence both emotional and attentional states. Imaging studies have examined the neural basis of psychological pain modulation, but none has explicitly separated the effects of emotion and attention. Using odors to modulate mood and shift attention from pain, we previously showed that the perceptual consequences of changing mood differed from those of altering attention, with mood primarily altering pain unpleasantness and attention preferentially altering pain intensity. These findings suggest that brain circuits involved in pain modulation provoked by mood or attention are partially separable. Here we used functional magnetic resonance imaging to directly compare the neurocircuitry involved in mood- and attention-related pain modulation. We manipulated independently mood state and attention direction, using tasks involving heat pain and pleasant and unpleasant odors. Pleasant odors, independent of attentional focus, induced positive mood changes and decreased pain unpleasantness and pain-related activity within the anterior cingulate (ACC), medial thalamus, and primary and secondary somatosensory cortices. The effects of attentional state were less robust, with only the activity in anterior insular cortex (aIC) showing possible attentional modulation. Lateral inferior frontal cortex [LinfF; Brodmann's area (BA) 45/47] activity correlated with mood-related modulation, whereas superior posterior parietal (SPP; BA7) and entorhinal activity correlated with attention-related modulation. ACC activity covaried with LinfF and periacqueductal gray activity, whereas aIC activity covaried with SPP activity. These findings suggest that separate neuromodulatory circuits underlie emotional and attentional modulation of pain.

  12. Activity of the anterior cingulate cortex and ventral hippocampus underlie increases in contextual fear generalization.

    PubMed

    Cullen, Patrick K; Gilman, T Lee; Winiecki, Patrick; Riccio, David C; Jasnow, Aaron M

    2015-10-01

    Memories for context become less specific with time resulting in animals generalizing fear from training contexts to novel contexts. Though much attention has been given to the neural structures that underlie the long-term consolidation of a context fear memory, very little is known about the mechanisms responsible for the increase in fear generalization that occurs as the memory ages. Here, we examine the neural pattern of activation underlying the expression of a generalized context fear memory in male C57BL/6J mice. Animals were context fear conditioned and tested for fear in either the training context or a novel context at recent and remote time points. Animals were sacrificed and fluorescent in situ hybridization was performed to assay neural activation. Our results demonstrate activity of the prelimbic, infralimbic, and anterior cingulate (ACC) cortices as well as the ventral hippocampus (vHPC) underlie expression of a generalized fear memory. To verify the involvement of the ACC and vHPC in the expression of a generalized fear memory, animals were context fear conditioned and infused with 4% lidocaine into the ACC, dHPC, or vHPC prior to retrieval to temporarily inactivate these structures. The results demonstrate that activity of the ACC and vHPC is required for the expression of a generalized fear memory, as inactivation of these regions returned the memory to a contextually precise form. Current theories of time-dependent generalization of contextual memories do not predict involvement of the vHPC. Our data suggest a novel role of this region in generalized memory, which should be incorporated into current theories of time-dependent memory generalization. We also show that the dorsal hippocampus plays a prolonged role in contextually precise memories. Our findings suggest a possible interaction between the ACC and vHPC controls the expression of fear generalization. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Anterior Insular Cortex and Emotional Awareness

    PubMed Central

    Gu, Xiaosi; Hof, Patrick R.; Friston, Karl J.; Fan, Jin

    2014-01-01

    This paper reviews the foundation for a role of the human anterior insular cortex (AIC) in emotional awareness, defined as the conscious experience of emotions. We first introduce the neuroanatomical features of AIC and existing findings on emotional awareness. Using empathy, the awareness and understanding of other people’s emotional states, as a test case, we then present evidence to demonstrate: 1) AIC and anterior cingulate cortex (ACC) are commonly coactivated as revealed by a meta-analysis, 2) AIC is functionally dissociable from ACC, 3) AIC integrates stimulus-driven and top-down information, and 4) AIC is necessary for emotional awareness. We propose a model in which AIC serves two major functions: integrating bottom-up interoceptive signals with top-down predictions to generate a current awareness state and providing descending predictions to visceral systems that provide a point of reference for autonomic reflexes. We argue that AIC is critical and necessary for emotional awareness. PMID:23749500

  14. [Neuroimaging the various symptom dimensions of obsessive-compulsive disorder].

    PubMed

    Dold, Markus; Aigner, Martin

    2009-01-01

    Following consensus on fronto-striato-thalamo-frontal dysfunction as the neuronal basis of obsessive-compulsive disorder, and increasing sub-classification of this clinical picture, neurobiological differentiation of the various obsessive symptoms is also attracting interest in neuroimaging research. Original papers studying the neurobiological correlates of the various dimensions of obsessive-compulsive disorder were listed by a systematic literature search. The "washing" factor seems to involve particular brain structures dealing with emotional control (mainly the orbito-frontal cortex (OFC), anterior cingulate cortex (ACC), amygdala and insula), but the predominant areas in the "forbidden thoughts" factor are cognitive control brain regions (mainly basal ganglia and ACC), and in hoarding obsessions and compulsions they are decision-making areas (mainly ventro-medial parts of the OFC and dorso-lateral prefrontal cortex (DLPFC)). The results underline the neurobiological heterogeneity of the obsessive-compulsive disorder clinical picture, pointing the way for future research approaches.

  15. The effects of physical activity on functional MRI activation associated with cognitive control in children: a randomized controlled intervention

    PubMed Central

    Chaddock-Heyman, Laura; Erickson, Kirk I.; Voss, Michelle W.; Knecht, Anya M.; Pontifex, Matthew B.; Castelli, Darla M.; Hillman, Charles H.; Kramer, Arthur F.

    2013-01-01

    This study used functional magnetic resonance imaging (fMRI) to examine the influence of a 9-month physical activity program on task-evoked brain activation during childhood. The results demonstrated that 8- to 9-year-old children who participated in 60+ min of physical activity, 5 days per week, for 9 months, showed decreases in fMRI brain activation in the right anterior prefrontal cortex coupled with within-group improvements in performance on a task of attentional and interference control. Children assigned to a wait-list control group did not show changes in brain function. Furthermore, at post-test, children in the physical activity group showed similar anterior frontal brain patterns and incongruent accuracy rates to a group of college-aged young adults. Children in the wait-list control group still differed from the young adults in terms of anterior prefrontal activation and performance at post-test. There were no significant changes in fMRI activation in the anterior cingulate cortex (ACC) for either group. These results suggest that physical activity during childhood may enhance specific elements of prefrontal cortex function involved in cognitive control. PMID:23487583

  16. Functional effects of chronic paroxetine versus placebo on the fear, stress and anxiety brain circuit in Social Anxiety Disorder: initial validation of an imaging protocol for drug discovery.

    PubMed

    Giménez, Mónica; Ortiz, Hector; Soriano-Mas, Carles; López-Solà, Marina; Farré, Magí; Deus, Joan; Martín-Santos, Rocio; Fernandes, Sofia; Fina, Paolo; Bani, Massimo; Zancan, Stefano; Pujol, Jesús; Merlo-Pich, Emilio

    2014-01-01

    Recent studies suggest that pharmacologic effects of anxiolytic agents can be mapped as functional changes in the fear, stress and anxiety brain circuit. In this work we investigated the effects of a standard treatment, paroxetine (20mg/day), in subjects with Social Anxiety Disorder (SAD) versus placebo using different fMRI paradigms. The fMRI sessions, performed before and after the treatment, consisted of a public exposition of recorded performance task (PERPT), an emotional face processing task (EFPT) and a 6-min resting state followed by an off-scanner public speaking test. Paroxetine significantly improved the clinical conditions of SAD patients (n=17) vs. placebo (n=16) as measured with Clinical Global Inventory - Improvement (CGI-I) while no change was seen when using Liebowitz Social Anxiety Scale, as expected given the small size of the study population. Paroxetine reduced the activation of insula, thalamus and subgenual/anterior cingulate cortex (ACC) in PERPT. Resting-state fMRI assessment using Independent Component Analysis indicated that paroxetine reduced functional connectivity in insula, thalamus and ACC when compared with placebo. Both paradigms showed significant correlation with CGI-I in rostral prefrontal cortex. Conversely, paroxetine compared to placebo produced activation of right amygdala and bilateral insula and no effects in ACC when tested with EFPT. No treatment effects on distress scores were observed in the off-scanner Public Speaking Test. Overall this study supports the use of fMRI as sensitive approach to explore the neurobiological substrate of the effects of pharmacologic treatments and, in particular, of resting state fMRI given its simplicity and task independence. © 2013 Elsevier B.V. and ECNP. All rights reserved.

  17. Spine growth in the anterior cingulate cortex is necessary for the consolidation of contextual fear memory

    PubMed Central

    Vetere, Gisella; Restivo, Leonardo; Cole, Christina J.; Ross, P. Joel; Ammassari-Teule, Martine; Josselyn, Sheena A.; Frankland, Paul W.

    2011-01-01

    Remodeling of cortical connectivity is thought to allow initially hippocampus-dependent memories to be expressed independently of the hippocampus at remote time points. Consistent with this, consolidation of a contextual fear memory is associated with dendritic spine growth in neurons of the anterior cingulate cortex (aCC). To directly test whether such cortical structural remodeling is necessary for memory consolidation, we disrupted spine growth in the aCC at different times following contextual fear conditioning in mice. We took advantage of previous studies showing that the transcription factor myocyte enhancer factor 2 (MEF2) negatively regulates spinogenesis both in vitro and in vivo. We found that increasing MEF2-dependent transcription in the aCC during a critical posttraining window (but not at later time points) blocked both the consolidation-associated dendritic spine growth and subsequent memory expression. Together, these data strengthen the causal link between cortical structural remodeling and memory consolidation and, further, identify MEF2 as a key regulator of these processes. PMID:21531906

  18. Acute stress exposure preceding transient global brain ischemia exacerbates the decrease in cortical remodeling potential in the rat retrosplenial cortex.

    PubMed

    Kutsuna, Nobuo; Yamashita, Akiko; Eriguchi, Takashi; Oshima, Hideki; Suma, Takeshi; Sakatani, Kaoru; Yamamoto, Takamitsu; Yoshino, Atsuo; Katayama, Yoichi

    2014-01-01

    Doublecortin (DCX)-immunoreactive (-ir) cells are candidates that play key roles in adult cortical remodeling. We have previously reported that DCX-ir cells decrease after stress exposure or global brain ischemia (GBI) in the cingulate cortex (Cg) of rats. Herein, we investigate whether the decrease in DCX-ir cells is exacerbated after GBI due to acute stress exposure preconditioning. Twenty rats were divided into 3 groups: acute stress exposure before GBI (Group P), non-stress exposure before GBI (Group G), and controls (Group C). Acute stress or GBI was induced by a forced swim paradigm or by transient bilateral common carotid artery occlusion, respectively. DCX-ir cells were investigated in the anterior cingulate cortex (ACC) and retrosplenial cortex (RS). The number of DCX-ir cells per unit area (mm(2)) decreased after GBI with or without stress preconditioning in the ACC and in the RS (ANOVA followed by a Tukey-type test, P<0.001). Moreover, compared to Group G, the number in Group P decreased significantly in RS (P<0.05), though not significantly in ACC. Many of the DCX-ir cells were co-localized with the GABAergic neuronal marker parvalbumin. The present study indicates that cortical remodeling potential of GABAergic neurons of Cg decreases after GBI, and moreover, the ratio of the decrease is exacerbated by acute stress preconditioning in the RS. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  19. Neuronal and behavioral correlates of health anxiety: results of an illness-related emotional Stroop task.

    PubMed

    Witthöft, Michael; Mier, Daniela; Ofer, Julia; Müller, Tobias; Rist, Fred; Kirsch, Peter; Bailer, Josef; Diener, Carsten

    2013-01-01

    Health anxiety (HA) is defined as the objectively unfounded fear or conviction of suffering from a severe illness. Predominant attention allocation to illness-related information is regarded as a central process in the development and maintenance of HA, yet little is known about the neuronal correlates of this attentional bias. An emotional Stroop task with body symptom, illness, and neutral words was employed to elicit emotional interference in healthy participants with high (HA+, n = 12) and low (HA-, n = 12) HA during functional magnetic resonance imaging. Prolonged reaction times for indicating the color of symptom words and a decrease in rostral anterior cingulate cortex (rACC) activation were seen in HA+ participants. Emotional interference effects on the behavioral level were negatively related to rACC activity over the whole group. Groups did not differ during the processing of threatening illness words. The results indicate stronger attention allocation toward body symptom words already in subclinical HA. This attentional bias appears to be linked to hypoactivity of the rACC which impedes effective emotional interference reduction, leading instead to a ruminative processing of the stimulus content. Copyright © 2013 S. Karger AG, Basel.

  20. Sound the Alarm: The Effect of Narcissism on Retaliatory Aggression is Moderated by dACC Reactivity to Rejection

    PubMed Central

    Chester, David S.; DeWall, C. Nathan

    2015-01-01

    Objective Narcissists behave aggressively when their egos are threatened by interpersonal insults. This effect has been explained in terms of narcissist’s motivation to reduce the discrepancy between their grandiose self and its threatened version, though no research has directly tested this hypothesis. If this notion is true, the link between narcissism and retaliatory aggression should be moderated by neural structures that subserve discrepancy detection, such as the dorsal anterior cingulate cortex (dACC). This study tested the hypothesis that narcissism would only predict greater retaliatory aggression in response to social rejection when the dACC was recruited by the threat. Method Thirty participants (15 females; MAge=18.86, SD=1.25; 77% White) completed a trait narcissism inventory, were socially accepted and then rejected while undergoing fMRI, and then could behave aggressively towards one of the rejecters by blasting them with unpleasant noise. Results When narcissists displayed greater dACC activation during rejection, they behaved aggressively. But there was only a weak or nonsignificant relation between narcissism and aggression among participants with a blunted dACC response. Conclusions Narcissism’s role in aggressive retaliation to interpersonal threats is likely determined by the extent to which the brain’s discrepancy detector registers the newly-created gap between the grandiose and threatened selves. PMID:25564936

  1. Sound the Alarm: The Effect of Narcissism on Retaliatory Aggression Is Moderated by dACC Reactivity to Rejection.

    PubMed

    Chester, David S; DeWall, C Nathan

    2016-06-01

    Narcissists behave aggressively when their egos are threatened by interpersonal insults. This effect has been explained in terms of narcissists' motivation to reduce the discrepancy between their grandiose self and its threatened version, though no research has directly tested this hypothesis. If this notion is true, the link between narcissism and retaliatory aggression should be moderated by neural structures that subserve discrepancy detection, such as the dorsal anterior cingulate cortex (dACC). This study tested the hypothesis that narcissism would only predict greater retaliatory aggression in response to social rejection when the dACC was recruited by the threat. Thirty participants (15 females; Mage  = 18.86, SD = 1.25; 77% White) completed a trait narcissism inventory, were socially accepted and then rejected while undergoing fMRI, and then could behave aggressively toward one of the rejecters by blasting him or her with unpleasant noise. When narcissists displayed greater dACC activation during rejection, they behaved aggressively. But there was only a weak or nonsignificant relation between narcissism and aggression among participants with a blunted dACC response. Narcissism's role in aggressive retaliation to interpersonal threats is likely determined by the extent to which the brain's discrepancy detector registers the newly created gap between the grandiose and threatened selves. © 2015 Wiley Periodicals, Inc.

  2. Glutathione and glutamate in schizophrenia: a 7T MRS study.

    PubMed

    Kumar, Jyothika; Liddle, Elizabeth B; Fernandes, Carolina C; Palaniyappan, Lena; Hall, Emma L; Robson, Siân E; Simmonite, Molly; Fiesal, Jan; Katshu, Mohammad Z; Qureshi, Ayaz; Skelton, Michael; Christodoulou, Nikolaos G; Brookes, Matthew J; Morris, Peter G; Liddle, Peter F

    2018-06-22

    In schizophrenia, abnormal neural metabolite concentrations may arise from cortical damage following neuroinflammatory processes implicated in acute episodes. Inflammation is associated with increased glutamate, whereas the antioxidant glutathione may protect against inflammation-induced oxidative stress. We hypothesized that patients with stable schizophrenia would exhibit a reduction in glutathione, glutamate, and/or glutamine in the cerebral cortex, consistent with a post-inflammatory response, and that this reduction would be most marked in patients with "residual schizophrenia", in whom an early stage with positive psychotic symptoms has progressed to a late stage characterized by long-term negative symptoms and impairments. We recruited 28 patients with stable schizophrenia and 45 healthy participants matched for age, gender, and parental socio-economic status. We measured glutathione, glutamate and glutamine concentrations in the anterior cingulate cortex (ACC), left insula, and visual cortex using 7T proton magnetic resonance spectroscopy (MRS). Glutathione and glutamate were significantly correlated in all three voxels. Glutamine concentrations across the three voxels were significantly correlated with each other. Principal components analysis (PCA) produced three clear components: an ACC glutathione-glutamate component; an insula-visual glutathione-glutamate component; and a glutamine component. Patients with stable schizophrenia had significantly lower scores on the ACC glutathione-glutamate component, an effect almost entirely leveraged by the sub-group of patients with residual schizophrenia. All three metabolite concentration values in the ACC were significantly reduced in this group. These findings are consistent with the hypothesis that excitotoxicity during the acute phase of illness leads to reduced glutathione and glutamate in the residual phase of the illness.

  3. Neuropsychiatric Phenotypes Produced by GABA Reduction in Mouse Cortex and Hippocampus.

    PubMed

    Kolata, Stefan M; Nakao, Kazuhito; Jeevakumar, Vivek; Farmer-Alroth, Emily L; Fujita, Yuko; Bartley, Aundrea F; Jiang, Sunny Zhihong; Rompala, Gregory R; Sorge, Robert E; Jimenez, Dennisse V; Martinowich, Keri; Mateo, Yolanda; Hashimoto, Kenji; Dobrunz, Lynn E; Nakazawa, Kazu

    2018-05-01

    Whereas cortical GAD67 reduction and subsequent GABA level decrease are consistently observed in schizophrenia and depression, it remains unclear how these GABAergic abnormalities contribute to specific symptoms. We modeled cortical GAD67 reduction in mice, in which the Gad1 gene is genetically ablated from ~50% of cortical and hippocampal interneurons. Mutant mice showed a reduction of tissue GABA in the hippocampus and cortex including mPFC, and exhibited a cluster of effort-based behavior deficits including decreased home-cage wheel running and increased immobility in both tail suspension and forced swim tests. Since saccharine preference, progressive ratio responding to food, and learned helplessness task were normal, such avolition-like behavior could not be explained by anhedonia or behavioral despair. In line with the prevailing view that dopamine in anterior cingulate cortex (ACC) plays a role in evaluating effort cost for engaging in actions, we found that tail-suspension triggered dopamine release in ACC of controls, which was severely attenuated in the mutant mice. Conversely, ACC dopamine release by progressive ratio responding to reward, during which animals were allowed to effortlessly perform the nose-poking, was not affected in mutants. These results suggest that cortical GABA reduction preferentially impairs the effort-based behavior which requires much effort with little benefit, through a deficit of ACC dopamine release triggered by high-effort cost behavior, but not by reward-seeking behavior. Collectively, a subset of negative symptoms with a reduced willingness to expend costly effort, often observed in patients with schizophrenia and depression, may be attributed to cortical GABA level reduction.

  4. Disrupted functional connectivity of the hippocampus in patients with hyperthyroidism: evidence from resting-state fMRI.

    PubMed

    Zhang, Wei; Liu, Xianjun; Zhang, Yi; Song, Lingheng; Hou, Jingming; Chen, Bing; He, Mei; Cai, Ping; Lii, Haitao

    2014-10-01

    The hippocampus expresses high levels of thyroid hormone receptors, suggesting that hippocampal functions, including cognition and regulation of mood, can be disrupted by thyroid pathology. Indeed, structural and functional alterations within the hippocampus have been observed in hyperthyroid patients. In addition to internal circuitry, hippocampal processing is dependent on extensive connections with other limbic and neocortical structures, but the effects of hyperthyroidism on functional connectivity (FC) with these areas have not been studied. The purpose of this study was to investigate possible abnormalities in the FC between the hippocampus and other neural structures in hyperthyroid patients using resting-state fMRI. Seed-based correlation analysis was performed on resting-state fMRI data to reveal possible differences in hippocampal FC between hyperthyroid patients and healthy controls. Correlation analysis was used to investigate the relationships between the strength of FC in regions showing significant group differences and clinical variables. Compared to controls, hyperthyroid patients showed weaker FC between the bilateral hippocampus and both the bilateral anterior cingulate cortex (ACC) and bilateral posterior cingulate cortex (PCC), as well as between the right hippocampus and right medial orbitofrontal cortex (mOFC). Disease duration was negatively correlated with FC strength between the bilateral hippocampus and bilateral ACC and PCC. Levels of depression and anxiety were negatively correlated with FC strength between the bilateral hippocampus and bilateral ACC. Decreased functional connectivity between the hippocampus and bilateral ACC, PCC, and right mOFC may contribute to the emotional and cognitive dysfunction associated with hyperthyroidism. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Amygdala Functional Connectivity is Reduced After the Cold Pressor Task

    PubMed Central

    Clewett, David; Schoeke, Andrej; Mather, Mara

    2013-01-01

    The amygdala forms a crucial link between central pain and stress systems. There is much evidence that psychological stress affects amygdala activity, but it is less clear how painful stressors influence subsequent amygdala functional connectivity. In the present study, we used pulsed arterial spin labeling (PASL) to investigate differences in healthy male adults’ resting-state amygdala functional connectivity following a cold pressor versus control task, with the stressor and control conditions conducted on different days. During the period of peak cortisol response to acute stress (approximately fifteen to thirty minutes after stressor onset), participants were asked to rest for six minutes with their eyes closed during a PASL scanning sequence. The cold pressor task led to reduced resting-state functional connectivity between the amygdalae and orbitofrontal cortex (OFC) and ventromedial prefrontal cortex (VMPFC), which occurred irrespective of cortisol release. The stressor also induced greater inverse connectivity between the left amygdala and dorsal anterior cingulate cortex (dACC), a brain region implicated in the down-regulation of amygdala responsivity. Furthermore, the degree of post-stressor left amygdala decoupling with the lateral OFC varied according to self-reported pain intensity during the cold pressor task. These findings indicate that the cold pressor task alters amygdala interactions with prefrontal and ACC regions 15–30 minutes after the stressor, and that these altered functional connectivity patterns are related to pain perception rather than cortisol feedback. PMID:23645370

  6. Neural markers of social and monetary rewards in children with Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder.

    PubMed

    Gonzalez-Gadea, Maria Luz; Sigman, Mariano; Rattazzi, Alexia; Lavin, Claudio; Rivera-Rei, Alvaro; Marino, Julian; Manes, Facundo; Ibanez, Agustin

    2016-07-28

    Recent theories of decision making propose a shared value-related brain mechanism for encoding monetary and social rewards. We tested this model in children with Attention-Deficit/Hyperactivity Disorder (ADHD), children with Autism Spectrum Disorder (ASD) and control children. We monitored participants' brain dynamics using high density-electroencephalography while they played a monetary and social reward tasks. Control children exhibited a feedback Error-Related Negativity (fERN) modulation and Anterior Cingulate Cortex (ACC) source activation during both tasks. Remarkably, although cooperation resulted in greater losses for the participants, the betrayal options generated greater fERN responses. ADHD subjects exhibited an absence of fERN modulation and reduced ACC activation during both tasks. ASD subjects exhibited normal fERN modulation during monetary choices and inverted fERN/ACC responses in social options than did controls. These results suggest that in neurotypicals, monetary losses and observed disloyal social decisions induced similar activity in the brain value system. In ADHD children, difficulties in reward processing affected early brain signatures of monetary and social decisions. Conversely, ASD children showed intact neural markers of value-related monetary mechanisms, but no brain modulation by prosociality in the social task. These results offer insight into the typical and atypical developments of neural correlates of monetary and social reward processing.

  7. Motivational orientation modulates the neural response to reward.

    PubMed

    Linke, Julia; Kirsch, Peter; King, Andrea V; Gass, Achim; Hennerici, Michael G; Bongers, André; Wessa, Michèle

    2010-02-01

    Motivational orientation defines the source of motivation for an individual to perform a particular action and can either originate from internal desires (e.g., interest) or external compensation (e.g., money). To this end, motivational orientation should influence the way positive or negative feedback is processed during learning situations and this might in turn have an impact on the learning process. In the present study, we thus investigated whether motivational orientation, i.e., extrinsic and intrinsic motivation modulates the neural response to reward and punishment as well as learning from reward and punishment in 33 healthy individuals. To assess neural responses to reward, punishment and learning of reward contingencies we employed a probabilistic reversal learning task during functional magnetic resonance imaging. Extrinsic and intrinsic motivation were assessed with a self-report questionnaire. Rewarding trials fostered activation in the medial orbitofrontal cortex and anterior cingulate gyrus (ACC) as well as the amygdala and nucleus accumbens, whereas for punishment an increased neural response was observed in the medial and inferior prefrontal cortex, the superior parietal cortex and the insula. High extrinsic motivation was positively correlated to increased neural responses to reward in the ACC, amygdala and putamen, whereas a negative relationship between intrinsic motivation and brain activation in these brain regions was observed. These findings show that motivational orientation indeed modulates the responsiveness to reward delivery in major components of the human reward system and therefore extends previous results showing a significant influence of individual differences in reward-related personality traits on the neural processing of reward. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  8. Pathophysiology of obsessive-compulsive disorder: a necessary link between phenomenology, neuropsychology, imagery and physiology.

    PubMed

    Aouizerate, Bruno; Guehl, Dominique; Cuny, Emmanuel; Rougier, Alain; Bioulac, Bernard; Tignol, Jean; Burbaud, Pierre

    2004-02-01

    Obsessive-compulsive disorder (OCD) is characterized by repetitive intrusive thoughts and compulsive time-consuming behaviors classified into three to five distinct symptom dimensions including: (1) aggressive/somatic obsessions with checking compulsions; (2) contamination concerns with washing compulsions; (3) symmetry obsessions with counting/ordering compulsions; (4) hoarding obsessions with collecting compulsions; and (5) sexual/religious concerns. Phenomenologically, OCD could be thought of as the irruption of internal signals centered on the erroneous perception that "something is wrong" in a specific situation. This generates severe anxiety, leading to recurrent behaviors aimed at reducing the emotional tension. In this paper, we examine how the abnormalities in brain activity reported in OCD can be interpreted in the light of physiology after consideration of various approaches (phenomenology, neuropsychology, neuroimmunology and neuroimagery) that contribute to proposing the central role of several cortical and subcortical regions, especially the orbitofrontal cortex (OFC), the anterior cingulate cortex (ACC), the dorsolateral prefrontal cortex (DLPC), the head of the caudate nucleus and the thalamus. The OFC is involved in the significance attributed to the consequences of action, thereby subserving decision-making, whereas the ACC is particularly activated in situations in which there are conflicting options and a high likelihood of making an error. The DLPC plays a critical part in the cognitive processing of relevant information. This cortical information is then integrated by the caudate nucleus, which controls behavioral programs. A dysfunction of these networks at one or several stages will result in the emergence and maintenance of repetitive thoughts and characteristic OCD behavior. Copyright 2004 Elsevier Ltd.

  9. Neural Circuitry of Impaired Emotion Regulation in Substance Use Disorders.

    PubMed

    Wilcox, Claire E; Pommy, Jessica M; Adinoff, Bryon

    2016-04-01

    Impaired emotion regulation contributes to the development and severity of substance use disorders (substance disorders). This review summarizes the literature on alterations in emotion regulation neural circuitry in substance disorders, particularly in relation to disorders of negative affect (without substance disorder), and it presents promising areas of future research. Emotion regulation paradigms during functional magnetic resonance imaging are conceptualized into four dimensions: affect intensity and reactivity, affective modulation, cognitive modulation, and behavioral control. The neural circuitry associated with impaired emotion regulation is compared in individuals with and without substance disorders, with a focus on amygdala, insula, and prefrontal cortex activation and their functional and structural connectivity. Hypoactivation of the rostral anterior cingulate cortex/ventromedial prefrontal cortex (rACC/vmPFC) is the most consistent finding across studies, dimensions, and clinical populations (individuals with and without substance disorders). The same pattern is evident for regions in the cognitive control network (anterior cingulate and dorsal and ventrolateral prefrontal cortices) during cognitive modulation and behavioral control. These congruent findings are possibly related to attenuated functional and/or structural connectivity between the amygdala and insula and between the rACC/vmPFC and cognitive control network. Although increased amygdala and insula activation is associated with impaired emotion regulation in individuals without substance disorders, it is not consistently observed in substance disorders. Emotion regulation disturbances in substance disorders may therefore stem from impairments in prefrontal functioning, rather than excessive reactivity to emotional stimuli. Treatments for emotion regulation in individuals without substance disorders that normalize prefrontal functioning may offer greater efficacy for substance disorders than treatments that dampen reactivity.

  10. Neural Circuitry of Impaired Emotion Regulation in Substance Use Disorders

    PubMed Central

    Wilcox, Claire E.; Pommy, Jessica M.; Adinoff, Bryon

    2016-01-01

    Impaired emotion regulation contributes to the development and severity of substance use disorders (substance disorders). This review summarizes the literature on alterations in emotion regulation neural circuitry in substance disorders, particularly in relation to disorders of negative affect (without substance disorder), and it presents promising areas of future research. Emotion regulation paradigms during functional magnetic resonance imaging are conceptualized into four dimensions: affect intensity and reactivity, affective modulation, cognitive modulation, and behavioral control. The neural circuitry associated with impaired emotion regulation is compared in individuals with and without substance disorders, with a focus on amygdala, insula, and prefrontal cortex activation and their functional and structural connectivity. Hypoactivation of the rostral anterior cingulate cortex/ventromedial prefrontal cortex (rACC/vmPFC) is the most consistent finding across studies, dimensions, and clinical populations (individuals with and without substance disorders). The same pattern is evident for regions in the cognitive control network (anterior cingulate and dorsal and ventrolateral prefrontal cortices) during cognitive modulation and behavioral control. These congruent findings are possibly related to attenuated functional and/or structural connectivity between the amygdala and insula and between the rACC/vmPFC and cognitive control network. Although increased amygdala and insula activation is associated with impaired emotion regulation in individuals without substance disorders, it is not consistently observed in substance disorders. Emotion regulation disturbances in substance disorders may therefore stem from impairments in prefrontal functioning, rather than excessive reactivity to emotional stimuli. Treatments for emotion regulation in individuals without substance disorders that normalize prefrontal functioning may offer greater efficacy for substance disorders than treatments that dampen reactivity. PMID:26771738

  11. Adverse Effects of Cannabis on Adolescent Brain Development: A Longitudinal Study.

    PubMed

    Camchong, Jazmin; Lim, Kelvin O; Kumra, Sanjiv

    2017-03-01

    Cannabis is widely perceived as a safe recreational drug and its use is increasing in youth. It is important to understand the implications of cannabis use during childhood and adolescence on brain development. This is the first longitudinal study that compared resting functional connectivity of frontally mediated networks between 43 healthy controls (HCs; 20 females; age M = 16.5 ± 2.7) and 22 treatment-seeking adolescents with cannabis use disorder (CUD; 8 females; age M = 17.6 ± 2.4). Increases in resting functional connectivity between caudal anterior cingulate cortex (ACC) and superior frontal gyrus across time were found in HC, but not in CUD. CUD showed a decrease in functional connectivity between caudal ACC and dorsolateral and orbitofrontal cortices across time. Lower functional connectivity between caudal ACC cortex and orbitofrontal cortex at baseline predicted higher amounts of cannabis use during the following 18 months. Finally, high amounts of cannabis use during the 18-month interval predicted lower intelligence quotient and slower cognitive function measured at follow-up. These data provide compelling longitudinal evidence suggesting that repeated exposure to cannabis during adolescence may have detrimental effects on brain resting functional connectivity, intelligence, and cognitive function. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Neurobiological evidence for attention bias to food, emotional dysregulation, disinhibition and deficient somatosensory awareness in obesity with binge eating disorder.

    PubMed

    Aviram-Friedman, Roni; Astbury, Nerys; Ochner, Christopher N; Contento, Isobel; Geliebter, Allan

    2018-02-01

    To refine the biobehavioral markers of binge eating disorder (BED). We conducted fMRI brain scans using images of high energy processed food (HEPF), low energy unprocessed food (LEUF), or non-foods (NF) in 42 adults (obese with BED [obese -BED; n=13] and obese with no BED [obese non-BED; n=29]) selected via ads. Two blood oxygenated level dependent (BOLD) signal contrast maps were examined: food versus nonfood, and HEPF versus LEUF. In addition, score differences on the disinhibition scale were correlated with BOLD signals. food versus nonfood showed greater BOLD activity for BED in emotional, motivational and somatosensory brain areas: insula, anterior cingulate cortex (ACC), Brodmann areas (BA) 19 & 32, inferior parietal lobule (IPL), posterior cingulate cortex (PCC), and lingual, postcentral, middle temporal and cuneate gyri (p≤0.005; k≥88). HEPF versus LEUF showed greater BOLD activity for BED in inhibitory brain regions: BA 6, middle and superior frontal gyri (p<0.01; k≥119). The groups also differed in the relationships between disinhibition and BOLD activity in the postcentral gyrus (PCG; p=0.04) and ACC-BA 32 (p=0.02). For all participants jointly, PCG BOLD amplitude predicted greater disinhibition (p=0.04). Food images elicited neural activity indicating attention bias (cuneate & PCG), emotion dysregulation (BA 19 & 32), and disinhibition (MFG, BA6 & SFG) in obese with BED. These may help tailor a treatment for the obesity with BED phenotype. Copyright © 2017. Published by Elsevier Inc.

  13. Tuning the Brake While Raising the Stake: Network Dynamics during Sequential Decision-Making.

    PubMed

    Meder, David; Haagensen, Brian Numelin; Hulme, Oliver; Morville, Tobias; Gelskov, Sofie; Herz, Damian Marc; Diomsina, Beata; Christensen, Mark Schram; Madsen, Kristoffer Hougaard; Siebner, Hartwig Roman

    2016-05-11

    When gathering valued goods, risk and reward are often coupled and escalate over time, for instance, during foraging, trading, or gambling. This escalating frame requires agents to continuously balance expectations of reward against those of risk. To address how the human brain dynamically computes these tradeoffs, we performed whole-brain fMRI while healthy young individuals engaged in a sequential gambling task. Participants were repeatedly confronted with the option to continue with throwing a die to accumulate monetary reward under escalating risk, or the alternative option to stop to bank the current balance. Within each gambling round, the accumulation of gains gradually increased reaction times for "continue" choices, indicating growing uncertainty in the decision to continue. Neural activity evoked by "continue" choices was associated with growing activity and connectivity of a cortico-subcortical "braking" network that positively scaled with the accumulated gains, including pre-supplementary motor area (pre-SMA), inferior frontal gyrus, caudate, and subthalamic nucleus (STN). The influence of the STN on continue-evoked activity in the pre-SMA was predicted by interindividual differences in risk-aversion attitudes expressed during the gambling task. Furthermore, activity in dorsal anterior cingulate cortex (ACC) reflected individual choice tendencies by showing increased activation when subjects made nondefault "continue" choices despite an increasing tendency to stop, but ACC activity did not change in proportion with subjective choice uncertainty. Together, the results implicate a key role of dorsal ACC, pre-SMA, inferior frontal gyrus, and STN in computing the trade-off between escalating reward and risk in sequential decision-making. Using a paradigm where subjects experienced increasing potential rewards coupled with increasing risk, this study addressed two unresolved questions in the field of decision-making: First, we investigated an "inhibitory" network of regions that has so far been investigated with externally cued action inhibition. In this study, we show that the dynamics in this network under increasingly risky decisions are predictive of subjects' risk attitudes. Second, we contribute to a currently ongoing debate about the anterior cingulate cortex's role in sequential foraging decisions by showing that its activity is related to making nondefault choices rather than to choice uncertainty. Copyright © 2016 Meder, Haagensen, et al.

  14. Neural activity during interoceptive awareness and its associations with alexithymia—An fMRI study in major depressive disorder and non-psychiatric controls

    PubMed Central

    Wiebking, Christine; Northoff, Georg

    2015-01-01

    Objective: Alexithymia relates to difficulties recognizing and describing emotions. It has been linked to subjectively increased interoceptive awareness (IA) and to psychiatric illnesses such as major depressive disorder (MDD) and somatization. MDD in turn is characterized by aberrant emotion processing and IA on the subjective as well as on the neural level. However, a link between neural activity in response to IA and alexithymic traits in health and depression remains unclear. Methods: A well-established fMRI task was used to investigate neural activity during IA (heartbeat counting) and exteroceptive awareness (tone counting) in non-psychiatric controls (NC) and MDD. Firstly, comparing MDD and NC, a linear relationship between IA-related activity and scores of the Toronto Alexithymia Scale (TAS) was investigated through whole-brain regression. Secondly, NC were divided by median-split of TAS scores into groups showing low (NC-low) or high (NC-high) alexithymia. MDD and NC-high showed equally high TAS scores. Subsequently, IA-related neural activity was compared on a whole-brain level between the three independent samples (MDD, NC-low, NC-high). Results: Whole-brain regressions between MDD and NC revealed neural differences during IA as a function of TAS-DD (subscale difficulty describing feelings) in the supragenual anterior cingulate cortex (sACC; BA 24/32), which were due to negative associations between TAS-DD and IA-related activity in NC. Contrasting NC subgroups after median-split on a whole-brain level, high TAS scores were associated with decreased neural activity during IA in the sACC and increased insula activity. Though having equally high alexithymia scores, NC-high showed increased insula activity during IA compared to MDD, whilst both groups showed decreased activity in the sACC. Conclusions: Within the context of decreased sACC activity during IA in alexithymia (NC-high and MDD), increased insula activity might mirror a compensatory mechanism in NC-high, which is disrupted in MDD. PMID:26074827

  15. Potentiation of motor sub-networks for motor control but not working memory: Interaction of dACC and SMA revealed by resting-state directed functional connectivity

    PubMed Central

    Diwadkar, Vaibhav A.; Asemi, Avisa; Burgess, Ashley; Chowdury, Asadur; Bressler, Steven L.

    2017-01-01

    The dorsal Anterior Cingulate Cortex (dACC) and the Supplementary Motor Area (SMA) are known to interact during motor coordination behavior. We previously discovered that the directional influences underlying this interaction in a visuo-motor coordination task are asymmetric, with the dACC→SMA influence being significantly greater than that in the reverse direction. To assess the specificity of this effect, here we undertook an analysis of the interaction between dACC and SMA in two distinct contexts. In addition to the motor coordination task, we also assessed these effects during a (n-back) working memory task. We applied directed functional connectivity analysis to these two task paradigms, and also to the rest condition of each paradigm, in which rest blocks were interspersed with task blocks. We report here that the previously known asymmetric interaction between dACC and SMA, with dACC→SMA dominating, was significantly larger in the motor coordination task than the memory task. Moreover the asymmetry between dACC and SMA was reversed during the rest condition of the motor coordination task, but not of the working memory task. In sum, the dACC→SMA influence was significantly greater in the motor task than the memory task condition, and the SMA→dACC influence was significantly greater in the motor rest than the memory rest condition. We interpret these results as suggesting that the potentiation of motor sub-networks during the motor rest condition supports the motor control of SMA by dACC during the active motor task condition. PMID:28278267

  16. Separable Neural Mechanisms Contribute to Feedback Processing in a Rule-Learning Task

    ERIC Educational Resources Information Center

    Zanolie, K.; Van Leijenhorst, L.; Rombouts, S. A. R. B.; Crone, E. A.

    2008-01-01

    To adjust performance appropriately to environmental demands, it is important to monitor ongoing action and process performance feedback for possible errors. In this study, we used fMRI to test whether medial prefrontal cortex (PFC)/anterior cingulate cortex (ACC) and dorsolateral (DL) PFC have different roles in feedback processing. Twenty adults…

  17. Anterior Cingulate Cortex Instigates Adaptive Switches in Choice by Integrating Immediate and Delayed Components of Value in Ventromedial Prefrontal Cortex

    PubMed Central

    Guitart-Masip, Marc; Kurth-Nelson, Zeb; Dolan, Raymond J.

    2014-01-01

    Actions can lead to an immediate reward or punishment and a complex set of delayed outcomes. Adaptive choice necessitates the brain track and integrate both of these potential consequences. Here, we designed a sequential task whereby the decision to exploit or forego an available offer was contingent on comparing immediate value and a state-dependent future cost of expending a limited resource. Crucially, the dynamics of the task demanded frequent switches in policy based on an online computation of changing delayed consequences. We found that human subjects choose on the basis of a near-optimal integration of immediate reward and delayed consequences, with the latter computed in a prefrontal network. Within this network, anterior cingulate cortex (ACC) was dynamically coupled to ventromedial prefrontal cortex (vmPFC) when adaptive switches in choice were required. Our results suggest a choice architecture whereby interactions between ACC and vmPFC underpin an integration of immediate and delayed components of value to support flexible policy switching that accommodates the potential delayed consequences of an action. PMID:24573291

  18. Anterior cingulate cortex instigates adaptive switches in choice by integrating immediate and delayed components of value in ventromedial prefrontal cortex.

    PubMed

    Economides, Marcos; Guitart-Masip, Marc; Kurth-Nelson, Zeb; Dolan, Raymond J

    2014-02-26

    Actions can lead to an immediate reward or punishment and a complex set of delayed outcomes. Adaptive choice necessitates the brain track and integrate both of these potential consequences. Here, we designed a sequential task whereby the decision to exploit or forego an available offer was contingent on comparing immediate value and a state-dependent future cost of expending a limited resource. Crucially, the dynamics of the task demanded frequent switches in policy based on an online computation of changing delayed consequences. We found that human subjects choose on the basis of a near-optimal integration of immediate reward and delayed consequences, with the latter computed in a prefrontal network. Within this network, anterior cingulate cortex (ACC) was dynamically coupled to ventromedial prefrontal cortex (vmPFC) when adaptive switches in choice were required. Our results suggest a choice architecture whereby interactions between ACC and vmPFC underpin an integration of immediate and delayed components of value to support flexible policy switching that accommodates the potential delayed consequences of an action.

  19. Changed Hub and Corresponding Functional Connectivity of Subgenual Anterior Cingulate Cortex in Major Depressive Disorder

    PubMed Central

    Wu, Huawang; Sun, Hui; Xu, Jinping; Wu, Yan; Wang, Chao; Xiao, Jing; She, Shenglin; Huang, Jianwei; Zou, Wenjin; Peng, Hongjun; Lu, Xiaobing; Huang, Guimao; Jiang, Tianzi; Ning, Yuping; Wang, Jiaojian

    2016-01-01

    Major depressive disorder (MDD) is one of the most prevalent mental disorders. In the brain, the hubs of the brain network play a key role in integrating and transferring information between different functional modules. However, whether the changed pattern in functional network hubs contributes to the onset of MDD remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI) and graph theory methods, we investigated whether alterations of hubs can be detected in MDD. First, we constructed the whole-brain voxel-wise functional networks and calculated a functional connectivity strength (FCS) map in each subject in 34 MDD patients and 34 gender-, age- and education level-matched healthy controls (HCs). Next, the two-sample t-test was applied to compare the FCS maps between HC and MDD patients and identified significant decrease of FCS in subgenual anterior cingulate cortex (sgACC) in MDD patients. Subsequent functional connectivity analyses of sgACC showed disruptions in functional connectivity with posterior insula, middle and inferior temporal gyrus, lingual gyrus and cerebellum in MDD patients. Furthermore, the changed FCS of sgACC and functional connections to sgACC were significantly correlated with the Hamilton Depression Rating Scale (HDRS) scores in MDD patients. The results of the present study revealed the abnormal hub of sgACC and its corresponding disrupted frontal-limbic-visual cognitive-cerebellum functional networks in MDD. These findings may provide a new insight for the diagnosis and treatment of MDD. PMID:28018183

  20. Elevated Glutamatergic Compounds in Pregenual Anterior Cingulate in Pediatric Autism Spectrum Disorder Demonstrated by 1H MRS and 1H MRSI

    PubMed Central

    Bejjani, Anthony; O'Neill, Joseph; Kim, John A.; Frew, Andrew J.; Yee, Victor W.; Ly, Ronald; Kitchen, Christina; Salamon, Noriko; McCracken, James T.; Toga, Arthur W.; Alger, Jeffry R.; Levitt, Jennifer G.

    2012-01-01

    Recent research in autism spectrum disorder (ASD) has aroused interest in anterior cingulate cortex and in the neurometabolite glutamate. We report two studies of pregenual anterior cingulate cortex (pACC) in pediatric ASD. First, we acquired in vivo single-voxel proton magnetic resonance spectroscopy (1H MRS) in 8 children with ASD and 10 typically developing controls who were well matched for age, but with fewer males and higher IQ. In the ASD group in midline pACC, we found mean 17.7% elevation of glutamate + glutamine (Glx) (p<0.05) and 21.2% (p<0.001) decrement in creatine + phosphocreatine (Cr). We then performed a larger (26 subjects with ASD, 16 controls) follow-up study in samples now matched for age, gender, and IQ using proton magnetic resonance spectroscopic imaging (1H MRSI). Higher spatial resolution enabled bilateral pACC acquisition. Significant effects were restricted to right pACC where Glx (9.5%, p<0.05), Cr (6.7%, p<0.05), and N-acetyl-aspartate + N-acetyl-aspartyl-glutamate (10.2%, p<0.01) in the ASD sample were elevated above control. These two independent studies suggest hyperglutamatergia and other neurometabolic abnormalities in pACC in ASD, with possible right-lateralization. The hyperglutamatergic state may reflect an imbalance of excitation over inhibition in the brain as proposed in recent neurodevelopmental models of ASD. PMID:22848344

  1. Decisions during Negatively-Framed Messages Yield Smaller Risk-Aversion-Related Brain Activation in Substance-Dependent Individuals

    PubMed Central

    Fukunaga, Rena; Bogg, Tim; Finn, Peter R.; Brown, Joshua W.

    2012-01-01

    A sizable segment of addiction research investigates the effects of persuasive message appeals on risky and deleterious behaviors. However, to date, little research has examined how various forms of message framing and corresponding behavioral choices might by mediated by risk-related brain regions. Using event-related functional magnetic resonance imaging, we investigated brain regions hypothesized to mediate the influence of message appeals on decision making in substance-dependent (SD) compared to non-substance-dependent (non-SD) individuals. The Iowa Gambling Task (IGT) was modified to include positively-framed, negatively-framed, and control messages about long-term deck payoffs. In the positively-framed condition, the SD and non-SD groups showed improved decision-making performance that corresponded to higher risk-aversion-related brain activity in the anterior cingulate cortex (ACC) and anterior insula (AI). In contrast, in the negatively-framed condition, the SD group showed poorer performance that corresponded to lower risk-aversion-related brain activity in the AI region. In addition, only the non-SD group showed a positive association between decision quality and greater risk-related activity in the ACC, regardless of message type. The findings suggest substance-dependent individuals may have reduced neurocognitive sensitivity in the ACC and AI regions involved in risk perception and aversion during decision-making, especially in response to framed messages that emphasize reduced prospects for long-term gains. PMID:23148798

  2. Increased anterior cingulate cortex response precedes behavioural adaptation in anorexia nervosa

    PubMed Central

    Geisler, Daniel; Ritschel, Franziska; King, Joseph A.; Bernardoni, Fabio; Seidel, Maria; Boehm, Ilka; Runge, Franziska; Goschke, Thomas; Roessner, Veit; Smolka, Michael N.; Ehrlich, Stefan

    2017-01-01

    Patients with anorexia nervosa (AN) are characterised by increased self-control, cognitive rigidity and impairments in set-shifting, but the underlying neural mechanisms are poorly understood. Here we used functional magnetic resonance imaging (fMRI) to elucidate the neural correlates of behavioural adaptation to changes in reward contingencies in young acutely ill AN patients. Thirty-six adolescent/young adult, non-chronic female AN patients and 36 age-matched healthy females completed a well-established probabilistic reversal learning task during fMRI. We analysed hemodynamic responses in empirically-defined regions of interest during positive feedback and negative feedback not followed/followed by behavioural adaptation and conducted functional connectivity analyses. Although overall task performance was comparable between groups, AN showed increased shifting after receiving negative feedback (lose-shift behaviour) and altered dorsal anterior cingulate cortex (dACC) responses as a function of feedback. Specifically, patients had increased dACC responses (which correlated with perfectionism) and task-related coupling with amygdala preceding behavioural adaption. Given the generally preserved task performance in young AN, elevated dACC responses specifically during behavioural adaption is suggestive of increased monitoring for the need to adjust performance strategies. Higher dACC-amygdala coupling and increased adaptation after negative feedback underlines this interpretation and could be related to intolerance of uncertainty which has been suggested for AN. PMID:28198813

  3. Executive Dysfunction in Obsessive-Compulsive Disorder and Anterior Cingulate-Based Resting State Functional Connectivity

    PubMed Central

    Yun, Je-Yeon; Jang, Joon Hwan; Jung, Wi Hoon; Shin, Na Young; Kim, Sung Nyun; Hwang, Jae Yeon

    2017-01-01

    Objective Executive dysfunction might be an important determinant for response to pharmacotherapy in obsessive-compulsive disorder (OCD), and could be sustained independently of symptom relief. The anterior cingulate cortex (ACC) has been indicated as a potential neural correlate of executive functioning in OCD. The present study examined the brain-executive function relationships in OCD from the ACC-based resting state functional connectivity networks (rs-FCNs), which reflect information processing mechanisms during task performance. Methods For a total of 58 subjects [OCD, n=24; healthy controls (HCs), n=34], four subdomains of executive functioning were measured using the Rey-Osterrieth Complex Figure Test (RCFT), the Stroop Color-Word Test (SCWT), the Wisconsin Card Sorting Test (WCST), and the Trail Making Test part B (TMT-B). To probe for differential patterns of the brain-cognition relationship in OCD compared to HC, the ACC-centered rs-FCN were calculated using five seed regions systemically placed throughout the ACC. Results Significant differences between the OCD group and the HCs with respect to the WCST perseverative errors, SCWT interference scores, and TMT-B reaction times (p<0.05) were observed. Moreover, significant interactions between diagnosis×dorsal ACC [S3]-based rs-FCN strength in the right dorsolateral prefrontal cortex for RCFT organization summary scores as well as between diagnosis×perigenual ACC [S7]-based rs-FCN strength in the left frontal eye field for SCWT color-word interference scores were unveiled. Conclusion These network-based neural foundations for executive dysfunction in OCD could become a potential target of future treatment, which could improve global domains of functioning broader than symptomatic relief. PMID:28539952

  4. 5-Hydroxytryptamine (serotonin)2A receptors in rat anterior cingulate cortex mediate the discriminative stimulus properties of d-lysergic acid diethylamide.

    PubMed

    Gresch, Paul J; Barrett, Robert J; Sanders-Bush, Elaine; Smith, Randy L

    2007-02-01

    d-Lysergic acid diethylamide (LSD), an indoleamine hallucinogen, produces profound alterations in mood, thought, and perception in humans. The brain site(s) that mediates the effects of LSD is currently unknown. In this study, we combine the drug discrimination paradigm with intracerebral microinjections to investigate the anatomical localization of the discriminative stimulus of LSD in rats. Based on our previous findings, we targeted the anterior cingulate cortex (ACC) to test its involvement in mediating the discriminative stimulus properties of LSD. Rats were trained to discriminate systemically administered LSD (0.085 mg/kg s.c.) from saline. Following acquisition of the discrimination, bilateral cannulae were implanted into the ACC (AP, +1.2 mm; ML, +/-1.0 mm; DV, -2.0 mm relative to bregma). Rats were tested for their ability to discriminate varying doses of locally infused LSD (0.1875, 0.375, and 0.75 microg/side) or artificial cerebrospinal fluid (n = 3-7). LSD locally infused into ACC dose-dependently substituted for systemically administered LSD, with 0.75 microg/side LSD substituting completely (89% correct). Systemic administration of the selective 5-hydroxytryptamine (serotonin) (5-HT)(2A) receptor antagonist R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidine-methanol (M100907; 0.4 mg/kg) blocked the discriminative cue of LSD (0.375 microg/side) infused into ACC (from 68 to 16% drug lever responding). Furthermore, M100907 (0.5 microg/microl/side) locally infused into ACC completely blocked the stimulus effects of systemic LSD (0.04 mg/kg; from 80 to 12% on the LSD lever). Taken together, these data indicate that 5-HT(2A) receptors in the ACC are a primary target mediating the discriminative stimulus properties of LSD.

  5. Sympathetic regulation and anterior cingulate cortex volume are altered in a rat model of chronic back pain.

    PubMed

    Touj, Sara; Houle, Sébastien; Ramla, Djamel; Jeffrey-Gauthier, Renaud; Hotta, Harumi; Bronchti, Gilles; Martinoli, Maria-Grazia; Piché, Mathieu

    2017-06-03

    Chronic pain is associated with autonomic disturbance. However, specific effects of chronic back pain on sympathetic regulation remain unknown. Chronic pain is also associated with structural changes in the anterior cingulate cortex (ACC), which may be linked to sympathetic dysregulation. The aim of this study was to determine whether sympathetic regulation and ACC surface and volume are affected in a rat model of chronic back pain, in which complete Freund Adjuvant (CFA) is injected in back muscles. Sympathetic regulation was assessed with renal blood flow (RBF) changes induced by electrical stimulation of a hind paw, while ACC structure was examined by measuring cortical surface and volume. RBF changes and ACC volume were compared between control rats and rats injected with CFA in back muscles segmental (T10) to renal sympathetic innervation or not (T2). In rats with CFA, chronic inflammation was observed in the affected muscles in addition to increased nuclear factor-kappa B (NF-kB) protein expression in corresponding spinal cord segments (p=0.01) as well as decreased ACC volume (p<0.05). In addition, intensity-dependent decreases in RBF during hind paw stimulation were attenuated by chronic pain at T2 (p's<0.05) and T10 (p's<0.05), but less so at T10 compared with T2 (p's<0.05). These results indicate that chronic back pain alters sympathetic functions through non-segmental mechanisms, possibly by altering descending regulatory pathways from ACC. Yet, segmental somato-sympathetic reflexes may compete with non-segmental processes depending on the back region affected by pain and according to the segmental organization of the sympathetic nervous system. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Elevated Monoamine Oxidase-A Distribution Volume in Borderline Personality Disorder Is Associated With Severity Across Mood Symptoms, Suicidality, and Cognition.

    PubMed

    Kolla, Nathan J; Chiuccariello, Lina; Wilson, Alan A; Houle, Sylvain; Links, Paul; Bagby, R Michael; McMain, Shelley; Kellow, Charis; Patel, Jalpa; Rekkas, Paraskevi V; Pasricha, Suvercha; Meyer, Jeffrey H

    2016-01-15

    Monoamine oxidase-A (MAO-A) is a treatment target in neurodegenerative illness and mood disorders that increases oxidative stress and predisposition toward apoptosis. Increased MAO-A levels in prefrontal cortex (PFC) and anterior cingulate cortex (ACC) occur in rodent models of depressive behavior and human studies of depressed moods. Extreme dysphoria is common in borderline personality disorder (BPD), especially when severe, and the molecular underpinnings of severe BPD are largely unknown. We hypothesized that MAO-A levels in PFC and ACC would be highest in severe BPD and would correlate with symptom magnitude. [(11)C] Harmine positron emission tomography measured MAO-A total distribution volume (MAO-A VT), an index of MAO-A density, in severe BPD subjects (n = 14), moderate BPD subjects (n = 14), subjects with a major depressive episode (MDE) only (n = 14), and healthy control subjects (n = 14). All subjects were female. Severe BPD was associated with greater PFC and ACC MAO-A VT compared with moderate BPD, MDE, and healthy control subjects (multivariate analysis of variance group effect: F6,102 = 5.6, p < .001). In BPD, PFC and ACC MAO-A VT were positively correlated with mood symptoms (PFC: r = .52, p = .005; ACC: r = .53, p = .004) and suicidality (PFC: r = .40, p = .037; ACC: r = .38, p = .046), while hippocampus MAO-A VT was negatively correlated with verbal memory (r = -.44, p = .023). These results suggest that elevated MAO-A VT is associated with multiple indicators of BPD severity, including BPD symptomatology, mood symptoms, suicidality, and neurocognitive impairment. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. Dismissing Attachment Characteristics Dynamically Modulate Brain Networks Subserving Social Aversion.

    PubMed

    Krause, Anna Linda; Borchardt, Viola; Li, Meng; van Tol, Marie-José; Demenescu, Liliana Ramona; Strauss, Bernhard; Kirchmann, Helmut; Buchheim, Anna; Metzger, Coraline D; Nolte, Tobias; Walter, Martin

    2016-01-01

    Attachment patterns influence actions, thoughts and feeling through a person's "inner working model". Speech charged with attachment-dependent content was proposed to modulate the activation of cognitive-emotional schemata in listeners. We performed a 7 Tesla rest-task-rest functional magnetic resonance imaging (fMRI)-experiment, presenting auditory narratives prototypical of dismissing attachment representations to investigate their effect on 23 healthy males. We then examined effects of participants' attachment style and childhood trauma on brain state changes using seed-based functional connectivity (FC) analyses, and finally tested whether subjective differences in responsivity to narratives could be predicted by baseline network states. In comparison to a baseline state, we observed increased FC in a previously described "social aversion network" including dorsal anterior cingulated cortex (dACC) and left anterior middle temporal gyrus (aMTG) specifically after exposure to insecure-dismissing attachment narratives. Increased dACC-seeded FC within the social aversion network was positively related to the participants' avoidant attachment style and presence of a history of childhood trauma. Anxious attachment style on the other hand was positively correlated with FC between the dACC and a region outside of the "social aversion network", namely the dorsolateral prefrontal cortex, which suggests decreased network segregation as a function of anxious attachment. Finally, the extent of subjective experience of friendliness towards the dismissing narrative was predicted by low baseline FC-values between hippocampus and inferior parietal lobule (IPL). Taken together, our study demonstrates an activation of networks related to social aversion in terms of increased connectivity after listening to insecure-dismissing attachment narratives. A causal interrelation of brain state changes and subsequent changes in social reactivity was further supported by our observation of direct prediction of neuronal responses by individual attachment and trauma characteristics and reversely prediction of subjective experience by intrinsic functional connections. We consider these findings of activation of within-network and between-network connectivity modulated by inter-individual differences as substantial for the understanding of interpersonal processes, particularly in clinical settings.

  8. Differences in resting corticolimbic functional connectivity in bipolar I euthymia

    PubMed Central

    Torrisi, Salvatore; Moody, Teena D; Vizueta, Nathalie; Thomason, Moriah E; Monti, Martin M; Townsend, Jennifer D; Bookheimer, Susan Y; Altshuler, Lori L

    2012-01-01

    Objective We examined resting state functional connectivity in the brain between key emotion regulation regions in bipolar I disorder to delineate differences in coupling from healthy subjects. Methods Euthymic subjects with bipolar I disorder (n = 20) and matched healthy subjects (n = 20) participated in a resting state functional magnetic resonance imaging scan. Low frequency fluctuations in blood oxygen level-dependent (BOLD) signal were correlated in the six connections between four anatomically-defined nodes: left and right amygdala and left and right ventrolateral prefrontal cortex (vlPFC). Seed-to-voxel connectivity results were probed for commonly coupled regions. Following this, an identified region was included in a mediation analysis to determine the potential of mediation. Results The bipolar I disorder group exhibited significant hyperconnectivity between right amygdala and right vlPFC relative to healthy subjects. The connectivity between these regions in the bipolar I disorder group was partially mediated by activity in the anterior cingulate cortex (ACC). Conclusions Greater coupling between right amygdala and right vlPFC and their partial mediation by the ACC were found in bipolar I disorder subjects in remission and in the absence of a psychological task. These findings have implications for a trait-related and clinically-important imaging biomarker. PMID:23347587

  9. Neural mechanisms of dissonance: an fMRI investigation of choice justification.

    PubMed

    Kitayama, Shinobu; Chua, Hannah Faye; Tompson, Steven; Han, Shihui

    2013-04-01

    Cognitive dissonance theory proposes that difficult choice produces negatively arousing cognitive conflict (called dissonance), which motivates the chooser to justify her decision by increasing her preference for the chosen option while decreasing her preference for the rejected option. At present, however, neural mechanisms of dissonance are poorly understood. To address this gap of knowledge, we scanned 24 young Americans as they made 60 choices between pairs of popular music CDs. As predicted, choices between CDs that were close (vs. distant) in attractiveness (referred to as difficult vs. easy choices) resulted in activations of the dorsal anterior cingulate cortex (dACC), a brain region associated with cognitive conflict, and the left anterior insula (left aINS), a region often linked with aversive emotional arousal. Importantly, a separate analysis showed that choice-justifying attitude change was predicted by the in-choice signal intensity of the posterior cingulate cortex (PCC), a region that is linked to self-processing. The three regions identified (dACC, left aINS, and PCC) were correlated, within-subjects, across choices. The results were interpreted to support the hypothesis that cognitive dissonance plays a key role in producing attitudes that justify the choice. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Association of Resting Metabolism in the Fear Neural Network With Extinction Recall Activations and Clinical Measures in Trauma-Exposed Individuals.

    PubMed

    Marin, Marie-France; Song, Huijin; VanElzakker, Michael B; Staples-Bradley, Lindsay K; Linnman, Clas; Pace-Schott, Edward F; Lasko, Natasha B; Shin, Lisa M; Milad, Mohammed R

    2016-09-01

    Exposure-based therapy, an effective treatment for posttraumatic stress disorder (PTSD), relies on extinction learning principles. In PTSD patients, dysfunctional patterns in the neural circuitry underlying fear extinction have been observed using resting-state or functional activation measures. It remains undetermined whether resting activity predicts activations during extinction recall or PTSD symptom severity. Moreover, it remains unclear whether trauma exposure per se affects resting activity in this circuitry. The authors employed a multimodal approach to examine the relationships among resting metabolism, clinical symptoms, and activations during extinction recall. Three cohorts were recruited: PTSD patients (N=24), trauma-exposed individuals with no PTSD (TENP) (N=20), and trauma-unexposed healthy comparison subjects (N=21). Participants underwent a resting positron emission tomography scan 4 days before a functional MRI fear conditioning and extinction paradigm. Amygdala resting metabolism negatively correlated with clinical functioning (as measured by the Global Assessment of Functioning Scale) in the TENP group, and hippocampal resting metabolism negatively correlated with clinical functioning in the PTSD group. In the PTSD group, dorsal anterior cingulate cortex (dACC) resting metabolism positively correlated with PTSD symptom severity, and it predicted increased dACC activations but decreased hippocampal and ventromedial prefrontal cortex activations during extinction recall. The TENP group had lower amygdala resting metabolism compared with the PTSD and healthy comparison groups, and it exhibited lower hippocampus resting metabolism relative to the healthy comparison group. Resting metabolism in the fear circuitry correlated with functioning, PTSD symptoms, and extinction recall activations, further supporting the relevance of this network to the pathophysiology of PTSD. The study findings also highlight the fact that chronic dysfunction in the amygdala and hippocampus is demonstrable in PTSD and other trauma-exposed individuals, even without exposure to an evocative stimulus.

  11. The tipping point: Value differences and parallel dorsal-ventral frontal circuits gating human approach-avoidance behavior.

    PubMed

    Schlund, Michael W; Brewer, Adam T; Magee, Sandy K; Richman, David M; Solomon, Scott; Ludlum, MaDonna; Dymond, Simon

    2016-08-01

    Excessive avoidance and diminished approach behavior are both prominent features of anxiety, trauma and stress related disorders. Despite this, little is known about the neuronal mechanisms supporting gating of human approach-avoidance behavior. Here, we used functional magnetic resonance imaging (fMRI) to track dorsal anterior cingulate and medial prefrontal (dACC/dmPFC) activation along an approach-avoidance continuum to assess sensitivity to competing appetitive and aversive contingencies and correspondence with behavior change. Behavioral and fMRI experiments were conducted using a novel approach-avoidance task where a monetary reward appeared in the presence of a conditioned stimulus (CS), or threat, that signaled increasing probability of unconditioned stimulus (US) delivery. Approach produced the reward or probabilistic US, while avoidance prevented US delivery, and across trials, reward remained fixed while the CS threat level varied unpredictably. Increasing the CS threat level (i.e., US probability) produced the desired approach-avoidance transition and inverted U-shaped changes in decision times, electrodermal activity and activation in pregenual ACC, dACC/dmPFC, striatum, anterior insula and inferior frontal regions. Conversely, U-shaped changes in activation were observed in dorsolateral and ventromedial prefrontal cortex and bimodal changes in the orbitofrontal and ventral hippocampus. These new results show parallel dorsal-ventral frontal circuits support gating of human approach-avoidance behavior where dACC/dmPFC signals inversely correlate with value differences between approach and avoidance contingencies while ventral frontal signals correlate with the value of predictable outcomes. Our findings provide an important bridge between basic research on brain mechanisms of value-guided decision-making and value-focused clinical theories of anxiety and related interventions. Published by Elsevier Inc.

  12. Connectivity underlying emotion conflict regulation in older adults with 5-HTTLPR short allele: a preliminary investigation.

    PubMed

    Waring, Jill D; Etkin, Amit; Hallmayer, Joachim F; O'Hara, Ruth

    2014-09-01

    The serotonin transporter polymorphism short (s) allele is associated with heightened emotional reactivity and reduced emotion regulation, which increases vulnerability to depression and anxiety disorders. We investigated behavioral and neural markers of emotion regulation in community-dwelling older adults, contrasting s allele carriers and long allele homozygotes. Participants (N = 26) completed a face-word emotion conflict task during functional magnetic resonance imaging, in which facilitated regulation of emotion conflict was observed on face-word incongruent trials following another incongruent trial (i.e., emotional conflict adaptation). There were no differences between genetic groups in behavioral task performance or neural activation in postincongruent versus postcongruent trials. By contrast, connectivity between dorsal anterior cingulate cortex (ACC) and pregenual ACC, regions previously implicated in emotion conflict regulation, was impaired in s carriers for emotional conflict adaptation. This is the first demonstration of an association between serotonin transporter polymorphism and functional connectivity in older adults. Poor dorsal ACC-pregenual ACC connectivity in s carriers may be one route by which these individuals experience greater difficulty in implementing effective emotional regulation, which may contribute to their vulnerability for affective disorders. Copyright © 2014 American Association for Geriatric Psychiatry. All rights reserved.

  13. Impaired Prefrontal Cortical Dopamine Release in Schizophrenia During a Cognitive Task: A [11C]FLB 457 Positron Emission Tomography Study.

    PubMed

    Rao, Naren; Northoff, Georg; Tagore, Abanti; Rusjan, Pablo; Kenk, Miran; Wilson, Alan; Houle, Sylvain; Strafella, Antonio; Remington, Gary; Mizrahi, Romina

    2018-06-07

    Evidence from several lines of research suggests decreased dopamine release in the prefrontal cortex as the neurochemical correlates of cognitive deficits in schizophrenia (SCZ). However, in vivo examination of cortical hypodopaminergia using positron emission tomography (PET) during cognitive task performance in SCZ remains to be investigated. We examined dopamine release in anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC), using PET while participants were performing a cognitive task. Thirteen drug-free patients with SCZ and 13 healthy volunteers (HV) matched for age and sex participated in the study. Data were acquired between 2011 and 2015. Two PET scans with [11C]FLB 457 were acquired while the participants were performing the Wisconsin Card Sorting Test (WCST) and a sensorimotor control task (SMCT). A magnetic resonance image was acquired for anatomical delineation. Differences in cortical dopamine release between SCZ and HV, indexed as percentage change in binding potential between WCST and SMCT (ΔBPND), were calculated in ACC and DLPFC. We observed significant differences in the ΔBPND in ACC (HV = 4.40 ± 6.00; SCZ = -11.48 ± 15.08; t = 3.52; P = .003) and a trend-level difference in ΔBPND in DLPFC (HV = -0.58 ± 8.45; SCZ = -7.79 ± 11.28; t = 1.84; P = .079), suggesting dopamine depletion in cortical brain regions in patients with SCZ while performing a cognitive task. These results provide the first in vivo evidence for reduced dopamine release or even dopamine depletion while performing cognitive task in ACC and DLPFC in patients with SCZ. The present results provide support for the frontal hypodopaminergia hypothesis of cognitive symptoms in SCZ.

  14. Effects of a GABA-ergic medication combination and initial alcohol withdrawal severity on cue-elicited brain activation among treatment-seeking alcoholics.

    PubMed

    Schacht, Joseph P; Anton, Raymond F; Randall, Patrick K; Li, Xingbao; Henderson, Scott; Myrick, Hugh

    2013-06-01

    Many studies have reported medication effects on alcohol cue-elicited brain activation or associations between such activation and subsequent drinking. However, few have combined the methodological rigor of a randomized clinical trial (RCT) with follow-up assessments to determine whether cue-elicited activation predicts relapse during treatment, the crux of alcoholism. This study analyzed functional magnetic resonance imaging (fMRI) data from 48 alcohol-dependent subjects enrolled in a 6-week RCT of an investigational pharmacotherapy. Subjects were randomized, based on their level of alcohol withdrawal (AW) at study entry, to receive either a combination of gabapentin (GBP; up to 1,200 mg for 39 days) and flumazenil (FMZ) infusions (2 days) or two placebos. Midway through the RCT, subjects were administered an fMRI alcohol cue reactivity task. There were no main effects of medication or initial AW status on cue-elicited activation, but these factors interacted, such that the GBP/FMZ/higher AW and placebo/lower AW groups, which had previously been shown to have relatively reduced drinking, demonstrated greater dorsal anterior cingulate cortex (dACC) activation to alcohol cues. Further analysis suggested that this finding represented differences in task-related deactivation and was associated with greater control over alcohol-related thoughts. Among study completers, regardless of medication or AW status, greater left dorsolateral prefrontal cortex (DLPFC) activation predicted more post-scan heavy drinking. These data suggest that alterations in task-related deactivation of dACC, a component of the default mode network, may predict better alcohol treatment response, while activation of DLPFC, an area associated with selective attention, may predict relapse drinking.

  15. Increased Task Demand during Spatial Memory Testing Recruits the Anterior Cingulate Cortex

    ERIC Educational Resources Information Center

    Carr, Joshua K.; Fournier, Neil M.; Lehmann, Hugo

    2016-01-01

    We examined whether increasing retrieval difficulty in a spatial memory task would promote the recruitment of the anterior cingulate cortex (ACC) similar to what is typically observed during remote memory retrieval. Rats were trained on the hidden platform version of the Morris Water Task and tested three or 30 d later. Retrieval difficulty was…

  16. Anatomical and functional overlap within the insula and anterior cingulate cortex during interoception and phobic symptom provocation.

    PubMed

    Caseras, Xavier; Murphy, Kevin; Mataix-Cols, David; López-Solà, Marina; Soriano-Mas, Carles; Ortriz, Hector; Pujol, Jesus; Torrubia, Rafael

    2013-05-01

    The anterior insula and the dorsal anterior cingulate cortex (ACC) are regarded as key brain structures associated with the integration of perceived phobic characteristics of external stimuli and the perception of ones own body responses that leads to emotional feelings. To test to what extent the activity in these two brain structures anatomically and functionally overlap during phobic reactions and interoception, we submitted the same group of phobic participants (n = 29; either spider or blood-injection-injury (BII) phobics) and controls (n = 17) to both type of experimental paradigms. Results showed that there was a clear anatomical overlap in the Blood Oxygen Level-Dependent (BOLD) responses within the anterior insula and ACC elicited during phobic symptom provocation and during interoceptive awareness. The activity within these two brain structures also showed to be correlated in the spider phobia group, but not in the BII phobic participants. Our results seem to support the idea that the activity within these two brain areas would be associated with the integration of perceived stimuli characteristics and bodily responses that lead to what we label as "fear." However, that seems not to be the case in BII phobia, where more research is needed in order to clarify to what extent that could be associated with the idiosyncratic physiological response that these patients present in front of phobic stimuli (i.e., drop in heart rate and blood pressure). Copyright © 2011 Wiley Periodicals, Inc.

  17. Neural responses to affective and cognitive theory of mind in children and adolescents with autism spectrum disorder.

    PubMed

    Kim, Eunjoo; Kyeong, Sunghyon; Cheon, Keun-Ah; Park, Bumhee; Oh, Maeng-Keun; Chun, Ji Won; Park, Hae-Jeong; Kim, Jae-Jin; Song, Dong-Ho

    2016-05-16

    Children and adolescents with Autism Spectrum Disorder (ASD) are characterized by an impaired Theory of Mind (ToM). Recent evidence suggested that two aspects of ToM (cognitive ToM versus affective ToM) are differentially impaired in individuals with ASD. In this study, we examined the neural correlates of cognitive and affective ToM in children and adolescents with ASD compared to typically developing children (TDCs). Twelve children and adolescents with ASD and 12 age, IQ matched TDCs participated in this functional MRI study. The ToM task involved the attribution of cognitive and affective mental states to a cartoon character based on verbal and eye-gaze cues. In cognitive ToM tasks, ASD participants recruited the medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), and superior temporal gyrus (STG) to a greater extent than did TDCs. In affective ToM tasks, both ASD and TDC participants showed more activation in the insula and other subcortical regions than in cognitive ToM tasks. Correlational analysis revealed that greater activation of the mPFC/ACC regions was associated with less symptom severity in ASD patients. In sum, our study suggests that the recruitment of additional prefrontal resources can compensate for the successful behavioral performance in the ToM task in ASD participants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. What makes your brain suggestible? Hypnotizability is associated with differential brain activity during attention outside hypnosis.

    PubMed

    Cojan, Yann; Piguet, Camille; Vuilleumier, Patrik

    2015-08-15

    Theoretical models of hypnosis have emphasized the importance of attentional processes in accounting for hypnotic phenomena but their exact nature and brain substrates remain unresolved. Individuals vary in their susceptibility to hypnosis, a variability often attributed to differences in attentional functioning such as greater ability to filter irrelevant information and inhibit prepotent responses. However, behavioral studies of attentional performance outside the hypnotic state have provided conflicting results. We used fMRI to investigate the recruitment of attentional networks during a modified flanker task in High and Low hypnotizable participants. The task was performed in a normal (no hypnotized) state. While behavioral performance did not reliably differ between groups, components of the fronto-parietal executive network implicated in monitoring (anterior cingulate cortex; ACC), adjustment (lateral prefrontal cortex; latPFC), and implementation of attentional control (intraparietal sulcus; IPS) were differently activated depending on the hypnotizability of the subjects: the right inferior frontal gyrus (rIFG) was more recruited, whereas IPS and ACC were less recruited by High susceptible individuals compared to Low. Our results demonstrate that susceptibility to hypnosis is associated with particular executive control capabilities allowing efficient attentional focusing, and point to specific neural substrates in right prefrontal cortex. We demonstrated that outside hypnosis, low hypnotizable subjects recruited more parietal cortex and anterior cingulate regions during selective attention conditions suggesting a better detection and implementation of conflict. However, outside hypnosis the right inferior frontal gyrus (rIFG) was more recruited by highly hypnotizable subjects during selective attention conditions suggesting a better control of conflict. Furthermore, in highly hypnotizable subjects this region was more connected to the default mode network suggesting a tight dialogue between internally and externally driven processes that may permit higher flexibility in attention and underlie a greater ability to dissociate. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Multiple Neural Mechanisms of Decision Making and Their Competition under Changing Risk Pressure

    PubMed Central

    Kolling, Nils; Wittmann, Marco; Rushworth, Matthew F.S.

    2014-01-01

    Summary Sometimes when a choice is made, the outcome is not guaranteed and there is only a probability of its occurrence. Each individual’s attitude to probability, sometimes called risk proneness or aversion, has been assumed to be static. Behavioral ecological studies, however, suggest such attitudes are dynamically modulated by the context an organism finds itself in; in some cases, it may be optimal to pursue actions with a low probability of success but which are associated with potentially large gains. We show that human subjects rapidly adapt their use of probability as a function of current resources, goals, and opportunities for further foraging. We demonstrate that dorsal anterior cingulate cortex (dACC) carries signals indexing the pressure to pursue unlikely choices and signals related to the taking of such choices. We show that dACC exerts this control over behavior when it, rather than ventromedial prefrontal cortex, interacts with posterior cingulate cortex. PMID:24607236

  20. Long-Term Temporal Imprecision of Information Coding in the Anterior Cingulate Cortex of Mice with Peripheral Inflammation or Nerve Injury

    PubMed Central

    Li, Xiang-Yao; Wang, Ning; Wang, Yong-Jie; Zuo, Zhen-Xing; Koga, Kohei; Luo, Fei

    2014-01-01

    Temporal properties of spike firing in the central nervous system (CNS) are critical for neuronal coding and the precision of information storage. Chronic pain has been reported to affect cognitive and emotional functions, in addition to trigger long-term plasticity in sensory synapses and behavioral sensitization. Less is known about the possible changes in temporal precision of cortical neurons in chronic pain conditions. In the present study, we investigated the temporal precision of action potential firing in the anterior cingulate cortex (ACC) by using both in vivo and in vitro electrophysiological approaches. We found that peripheral inflammation caused by complete Freund's adjuvant (CFA) increased the standard deviation (SD) of spikes latency (also called jitter) of ∼51% of recorded neurons in the ACC of adult rats in vivo. Similar increases in jitter were found in ACC neurons using in vitro brain slices from adult mice with peripheral inflammation or nerve injury. Bath application of glutamate receptor antagonists CNQX and AP5 abolished the enhancement of jitter induced by CFA injection or nerve injury, suggesting that the increased jitter depends on the glutamatergic synaptic transmission. Activation of adenylyl cyclases (ACs) by bath application of forskolin increased jitter, whereas genetic deletion of AC1 abolished the change of jitter caused by CFA inflammation. Our study provides strong evidence for long-term changes of temporal precision of information coding in cortical neurons after peripheral injuries and explains neuronal mechanism for chronic pain caused cognitive and emotional impairment. PMID:25100600

  1. Common and Distinct Neural Mechanisms of Attentional Switching and Response Conflict

    PubMed Central

    Kim, Chobok; Johnson, Nathan F.; Gold, Brian T.

    2012-01-01

    The human capacities for overcoming prepotent actions and flexibly switching between tasks represent cornerstones of cognitive control. Functional neuroimaging has implicated a diverse set of brain regions contributing to each of these cognitive control processes. However, the extent to which attentional switching and response conflict draw on shared or distinct neural mechanisms remains unclear. The current study examined the neural correlates of response conflict and attentional switching using event-related functional magnetic resonance imaging (fMRI) and a fully randomized 2×2 design. We manipulated an arrow-word version of the Stroop task to measure conflict and switching in the context of a single task decision, in response to a common set of stimuli. Under these common conditions, both behavioral and imaging data showed significant main effects of conflict and switching but no interaction. However, conjunction analyses identified frontal regions involved in both switching and response conflict, including the dorsal anterior cingulate cortex (dACC) and left inferior frontal junction. In addition, connectivity analyses demonstrated task-dependent functional connectivity patterns between dACC and inferior temporal cortex for attentional switching and between dACC and posterior parietal cortex for response conflict. These results suggest that the brain makes use of shared frontal regions, but can dynamically modulate the connectivity patterns of some of those regions, to deal with attentional switching and response conflict. PMID:22750124

  2. Common and distinct neural mechanisms of attentional switching and response conflict.

    PubMed

    Kim, Chobok; Johnson, Nathan F; Gold, Brian T

    2012-08-21

    The human capacities for overcoming prepotent actions and flexibly switching between tasks represent cornerstones of cognitive control. Functional neuroimaging has implicated a diverse set of brain regions contributing to each of these cognitive control processes. However, the extent to which attentional switching and response conflict draw on shared or distinct neural mechanisms remains unclear. The current study examined the neural correlates of response conflict and attentional switching using event-related functional magnetic resonance imaging (fMRI) and a fully randomized 2×2 design. We manipulated an arrow-word version of the Stroop task to measure conflict and switching in the context of a single task decision, in response to a common set of stimuli. Under these common conditions, both behavioral and imaging data showed significant main effects of conflict and switching but no interaction. However, conjunction analyses identified frontal regions involved in both switching and response conflict, including the dorsal anterior cingulate cortex (dACC) and left inferior frontal junction. In addition, connectivity analyses demonstrated task-dependent functional connectivity patterns between dACC and inferior temporal cortex for attentional switching and between dACC and posterior parietal cortex for response conflict. These results suggest that the brain makes use of shared frontal regions, but can dynamically modulate the connectivity patterns of some of those regions, to deal with attentional switching and response conflict. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Pedophilic sex offenders are characterised by reduced GABA concentration in dorsal anterior cingulate cortex.

    PubMed

    Ristow, Inka; Li, Meng; Colic, Lejla; Marr, Vanessa; Födisch, Carina; von Düring, Felicia; Schiltz, Kolja; Drumkova, Krasimira; Witzel, Joachim; Walter, Henrik; Beier, Klaus; Kruger, Tillmann H C; Ponseti, Jorge; Schiffer, Boris; Walter, Martin

    2018-01-01

    A pedophilic disorder is characterised by abnormal sexual urges towards prepubescent children. Child abusive behavior is frequently a result of lack of behavioral inhibition and current treatment options entail, next to suppressing unchangeable sexual orientation, measures to increase cognitive and attentional control. We tested, if in brain regions subserving attentional control of behavior and perception of salient stimuli, such inhibition deficit can be observed also on the level of inhibitory neurotransmitters. We measured GABA concentration in the dorsal anterior cingulate cortex (dACC) and in a control region, the pregenual anterior cingulate cortex (pgACC) in pedophilic sex offenders ( N  = 13) and matched controls ( N  = 13) using a 7 Tesla STEAM magnetic resonance spectroscopy (MRS). In dACC but not in the control region pedophilic sex offenders showed reduced GABA/Cr concentrations compared to healthy controls. The reduction was robust after controlling for potential influence of age and gray matter proportion within the MRS voxel ( p  < 0.04). Importantly, reduced GABA/Cr in patients was correlated with lower self-control measured with the Barratt Impulsiveness Scale (p = 0.028, r = -0.689). In a region related to cognitive control and salience mapping, pedophilic sex offenders showed reduction of the inhibitory neurotransmitter GABA which may be seen as a neuronal correlate of inhibition and behavioral control.

  4. Characterization of neuronal intrinsic properties and synaptic transmission in layer I of anterior cingulate cortex from adult mice

    PubMed Central

    2012-01-01

    The neurons in neocortex layer I (LI) provide inhibition to the cortical networks. Despite increasing use of mice for the study of brain functions, few studies were reported about mouse LI neurons. In the present study, we characterized intrinsic properties of LI neurons of the anterior cingulate cortex (ACC), a key cortical area for sensory and cognitive functions, by using whole-cell patch clamp recording approach. Seventy one neurons in LI and 12 pyramidal neurons in LII/III were recorded. Although all of the LI neurons expressed continuous adapting firing characteristics, the unsupervised clustering results revealed five groups in the ACC, including: Spontaneous firing neurons; Delay-sAHP neurons, Delay-fAHP neurons, and two groups of neurons with ADP, named ADP1 and ADP2, respectively. Using pharmacological approaches, we found that LI neurons received both excitatory (mediated by AMPA, kainate and NMDA receptors), and inhibitory inputs (which were mediated by GABAA receptors). Our studies provide the first report characterizing the electrophysiological properties of neurons in LI of the ACC from adult mice. PMID:22818293

  5. Strategic modulation of cognitive control.

    PubMed

    Lungu, Ovidiu V; Liu, Tao; Waechter, Tobias; Willingham, Daniel T; Ashe, James

    2007-08-01

    The neural substrate of cognitive control is thought to comprise an evaluative component located in the anterior cingulate cortex (ACC) and an executive component in the prefrontal cortex (PFC). The control mechanism itself is mainly local, triggered by response conflict (monitored by the ACC) and involving the allocation of executive resources (recruited by the PFC) in a trial-to-trial fashion. However, another way to achieve control would be to use a strategic mechanism based on long-term prediction of upcoming events and on a chronic response strategy that ignores local features of the task. In the current study, we showed that such a strategic control mechanism was based on a functional dissociation or complementary relationship between the ACC and the PFC. When information in the environment was available to make predictions about upcoming stimuli, local task features (e.g., response conflict) were no longer used as a control signal. We suggest that having separate control mechanisms based on local or global task features allows humans to be persistent in pursuing their goals, yet flexible enough to adapt to changes in the environment.

  6. Effects of selective excitotoxic lesions of the nucleus accumbens core, anterior cingulate cortex, and central nucleus of the amygdala on autoshaping performance in rats.

    PubMed

    Cardinal, Rudolf N; Parkinson, John A; Lachenal, Guillaume; Halkerston, Katherine M; Rudarakanchana, Nung; Hall, Jeremy; Morrison, Caroline H; Howes, Simon R; Robbins, Trevor W; Everitt, Barry J

    2002-08-01

    The nucleus accumbens core (AcbC), anterior cingulate cortex (ACC), and central nucleus of the amygdala (CeA) are required for normal acquisition of tasks based on stimulus-reward associations. However, it is not known whether they are involved purely in the learning process or are required for behavioral expression of a learned response. Rats were trained preoperatively on a Pavlovian autoshaping task in which pairing a visual conditioned stimulus (CS+) with food causes subjects to approach the CS+ while not approaching an unpaired stimulus (CS-). Subjects then received lesions of the AcbC, ACC, or CeA before being retested. AcbC lesions severely impaired performance; lesioned subjects approached the CS+ significantly less often than controls, failing to discriminate between the CS+ and CS-. ACC lesions also impaired performance but did not abolish discrimination entirely. CeA lesions had no effect on performance. Thus, the CeA is required for learning, but not expression, of a conditioned approach response, implying that it makes a specific contribution to the learning of stimulus-reward associations.

  7. Multivariate representation of food preferences in the human brain.

    PubMed

    Pogoda, Luca; Holzer, Matthias; Mormann, Florian; Weber, Bernd

    2016-12-01

    One major goal in decision neuroscience is to investigate the neuronal mechanisms being responsible for the computation of product preferences. The aim of the present fMRI study was to investigate whether similar patterns of brain activity, reflecting category dependent and category independent preference signals, can be observed in case of different food product categories (i.e. chocolate bars and salty snacks). To that end we used a multivariate searchlight approach in which a linear support vector machine (l-SVM) was trained to distinguish preferred from non-preferred chocolate bars and subsequently tested its predictive power in case of chocolate bars (within category prediction) and salty snacks (across category prediction). Preferences were measured by a binary forced choice decision paradigm before the fMRI task. In the scanner, subjects saw only one product per trial which they had to rate after presentation. Consistent with previous multi voxel pattern analysis (MVPA) studies, we found category dependent preference signals in the ventral parts of medial prefrontal cortex (mPFC), but also in dorsal anterior cingulate cortex (dACC) and dorsolateral prefrontal cortex (dlPFC). Category independent preference signals were observed in the dorsal parts of mPFC, dACC, and dlPFC. While the first two results have also been reported in a closely related study, the activation in dlPFC is new in this context. We propose that the dlPFC activity does not reflect the products' value computation per se, but rather a modulatory signal which is computed in anticipation of the forthcoming product rating after stimulus presentation. Furthermore we postulate that this kind of dlPFC activation emerges only if the anticipated choices fall into the domain of primary rewards, such as foods. Thus, in contrast to previous studies which investigated preference decoding for stimuli from utterly different categories, the present study revealed some food domain specific aspects of preference processing in the human brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Decomposing interference during Stroop performance into different conflict factors: an event-related fMRI study.

    PubMed

    Melcher, Tobias; Gruber, Oliver

    2009-02-01

    In the current event-related functional magnetic resonance imaging (fMRI) study, we sought to trace back Stroop-interference to circumscribed properties of task-irrelevant word information - response-incompatibility, semantic incongruency and task-reference - that we conceive as conflict factors. Thereby, we particularly wanted to disentangle intermingled contributions of semantic conflict and response conflict to the overall Stroop-interference effect. To delineate neural substrates of single factors, we referred to the logics of cognitive subtraction and cognitive conjunction. Moreover, in a second step, we conducted correlation analyses to determine the relationship between neural activations and behavioral interference costs (i.e., conflict-related reaction time (RT) slowing) so as to further elucidate the functional role of the respective brain regions in conflict processing. Response-incompatibility was associated with activation in the left premotor cortex which can be interpreted as indicating motor competition or conflict, i.e., the presence of competing response tendencies. Accordingly, this activation was positively correlated with behavioral conflict costs. Semantic incongruency exhibited specific activation in the anterior cingulate cortex (ACC), the bilateral insula, and thalamus as well as in left somatosensory cortex. As supported by the consistent negative correlation with behavioral conflict costs, these activations most probably reflect strengthened control efforts to overcome interference and to ensure adequate task performance. Finally, task-reference elicited activation in the left temporo-polar cortex (TPC) and the right medial superior as well as in left rostroventral prefrontal cortex (rvPFC, sub-threshold activation). As strongly supported by prior studies' findings, this neural activation pattern may underlie residual semantic processing of the task-irrelevant word information.

  9. Neural Correlates of Psychotherapeutic Treatment of Post-traumatic Stress Disorder: A Systematic Literature Review.

    PubMed

    Malejko, Kathrin; Abler, Birgit; Plener, Paul L; Straub, Joana

    2017-01-01

    Post-traumatic stress disorder (PTSD) is a common psychiatric disease with changes in neural circuitries. Neurobiological models conceptualize the symptoms of PTSD as correlates of a dysfunctional stress reaction to traumatic events. Functional imaging studies showed an increased amygdala and a decreased prefrontal cortex response in PTSD patients. As psychotherapeutic approaches represent the gold standard for PTSD treatment, it is important to examine its underlying neurobiological correlates. Studies published until August 2016 were selected through systematic literature research in the databases PubMed, PsychInfo, and Cochrane Library's Central Register of Controlled Trials or were identified manually by searching reference lists of selected articles. Search terms were "neural correlates" OR "fMRI" OR "SPECT," AND "therapy" AND "PTSD." A total of 19 articles were included in the present review whereof 15 studies compared pre-to-post-therapy signal changes, six studies related pre-treatment activity to pre-to-post-symptom improvement, and four studies compared neural correlates of responders versus non-responders. The disposed therapy forms were cognitive behavioral therapy (CBT), eye movement desensitization and reprocessing, cognitive therapy, exposure therapy, mindfulness-based intervention, brief eclectic psychotherapy, and unspecified therapy. Successful psychotherapy of PTSD was repeatedly shown to be accompanied by decreased activity in the amygdala and the insula as well as increased activity in the dorsal anterior cingulate cortex (dACC) and hippocampus. Elevated dACC activity prior to treatment was related to subsequent treatment success and a positive predictor for treatment response. Elevated amygdala and insula pre-treatment activities were related to treatment failure. Decreased activity in limbic brain regions and increased activity in frontal brain areas in PTSD patients after successful psychotherapeutic treatment might reflect regained top-down control over previously impaired bottom-up processes.

  10. Emotion and attention interaction studied through event-related potentials.

    PubMed

    Carretié, L; Martín-Loeches, M; Hinojosa, J A; Mercado, F

    2001-11-15

    Several studies on hemodynamic brain activity indicate that emotional visual stimuli elicit greater activation than neutral stimuli in attention-related areas such as the anterior cingulate cortex (ACC) and the visual association cortex (VAC). In order to explore the temporo-spatial characteristics of the interaction between attention and emotion, two processes characterized by involving short and rapid phases, event-related potentials (ERPs) were measured in 29 subjects using a 60-electrode array and the LORETA source localization software. A cue/target paradigm was employed in order to investigate both expectancy-related and input processing-related attention. Four categories of stimuli were presented to subjects: positive arousing, negative arousing, relaxing, and neutral. Three attention-related components were finally analyzed: N280pre (from pretarget ERPs), P200post and P340post (both from posttarget ERPs). N280pre had a prefrontal focus (ACC and/or medial prefrontal cortex) and presented significantly lower amplitudes in response to cues announcing negative targets. This result suggests a greater capacity of nonaversive stimuli to generate expectancy-related attention. P200post and P340post were both elicited in the VAC, and showed their highest amplitudes in response to negative- and to positive-arousing stimuli, respectively. The origin of P200post appears to be located dorsally with respect to the clear ventral-stream origin of P340post. The conjunction of temporal and spatial characteristics of P200post and P340post leads to the deduction that input processing-related attention associated with emotional visual stimulation involves an initial, rapid, and brief "early" attentional response oriented to rapid motor action, being more prominent towards negative stimulation. This is followed by a slower but longer "late" attentional response oriented to deeper processing, elicited to a greater extent by appetitive stimulation.

  11. Working memory load modulation of parieto-frontal connections: evidence from dynamic causal modeling

    PubMed Central

    Ma, Liangsuo; Steinberg, Joel L.; Hasan, Khader M.; Narayana, Ponnada A.; Kramer, Larry A.; Moeller, F. Gerard

    2011-01-01

    Previous neuroimaging studies have shown that working memory load has marked effects on regional neural activation. However, the mechanism through which working memory load modulates brain connectivity is still unclear. In this study, this issue was addressed using dynamic causal modeling (DCM) based on functional magnetic resonance imaging (fMRI) data. Eighteen normal healthy subjects were scanned while they performed a working memory task with variable memory load, as parameterized by two levels of memory delay and three levels of digit load (number of digits presented in each visual stimulus). Eight regions of interest, i.e., bilateral middle frontal gyrus (MFG), anterior cingulate cortex (ACC), inferior frontal cortex (IFC), and posterior parietal cortex (PPC), were chosen for DCM analyses. Analysis of the behavioral data during the fMRI scan revealed that accuracy decreased as digit load increased. Bayesian inference on model structure indicated that a bilinear DCM in which memory delay was the driving input to bilateral PPC and in which digit load modulated several parieto-frontal connections was the optimal model. Analysis of model parameters showed that higher digit load enhanced connection from L PPC to L IFC, and lower digit load inhibited connection from R PPC to L ACC. These findings suggest that working memory load modulates brain connectivity in a parieto-frontal network, and may reflect altered neuronal processes, e.g., information processing or error monitoring, with the change in working memory load. PMID:21692148

  12. Neural markers of social and monetary rewards in children with Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder

    PubMed Central

    Gonzalez-Gadea, Maria Luz; Sigman, Mariano; Rattazzi, Alexia; Lavin, Claudio; Rivera-Rei, Alvaro; Marino, Julian; Manes, Facundo; Ibanez, Agustin

    2016-01-01

    Recent theories of decision making propose a shared value-related brain mechanism for encoding monetary and social rewards. We tested this model in children with Attention-Deficit/Hyperactivity Disorder (ADHD), children with Autism Spectrum Disorder (ASD) and control children. We monitored participants’ brain dynamics using high density-electroencephalography while they played a monetary and social reward tasks. Control children exhibited a feedback Error-Related Negativity (fERN) modulation and Anterior Cingulate Cortex (ACC) source activation during both tasks. Remarkably, although cooperation resulted in greater losses for the participants, the betrayal options generated greater fERN responses. ADHD subjects exhibited an absence of fERN modulation and reduced ACC activation during both tasks. ASD subjects exhibited normal fERN modulation during monetary choices and inverted fERN/ACC responses in social options than did controls. These results suggest that in neurotypicals, monetary losses and observed disloyal social decisions induced similar activity in the brain value system. In ADHD children, difficulties in reward processing affected early brain signatures of monetary and social decisions. Conversely, ASD children showed intact neural markers of value-related monetary mechanisms, but no brain modulation by prosociality in the social task. These results offer insight into the typical and atypical developments of neural correlates of monetary and social reward processing. PMID:27464551

  13. Reward-dependent modulation of working memory is associated with negative symptoms in schizophrenia.

    PubMed

    Hager, Oliver M; Kirschner, Matthias; Bischof, Martin; Hartmann-Riemer, Matthias N; Kluge, Agne; Seifritz, Erich; Tobler, Philippe N; Kaiser, Stefan

    2015-10-01

    The negative symptoms of schizophrenia have been associated with altered neural activity during both reward processing and cognitive processing. Even though increasing evidence suggests a strong interaction between these two domains, it has not been studied in relation to negative symptoms. To elucidate neural mechanisms of the reward-cognition interaction, we applied a letter variant of the n-back working memory task and varied the financial incentives for performance. In the interaction contrast, we found a significantly activated cluster in the rostral anterior cingulate cortex (ACC), the middle frontal gyrus, and the bilateral superior frontal gyrus. The interaction did not differ significantly between the patient group and a healthy control group, suggesting that patients with schizophrenia are on average able to integrate reward information and utilize this information to maximize cognitive performance. However within the patient group, we found a significant inverse correlation of ACC activity with the factor diminished expression. This finding is consistent with the model that a lack of available cognitive resources leads to diminished expression. We therefore argue that patients with diminished expression have difficulties in recruiting additional cognitive resources (as implemented in the ACC) in response to an anticipated reward. Due to this lack of cognitive resources, less processing capacity is available for effective expression, resulting in diminished expressive behavior. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Nonconscious attention bias to threat is correlated with anterior cingulate cortex gray matter volume: a voxel-based morphometry result and replication.

    PubMed

    Carlson, Joshua M; Beacher, Felix; Reinke, Karen S; Habib, Reza; Harmon-Jones, Eddie; Mujica-Parodi, Lilianne R; Hajcak, Greg

    2012-01-16

    An important aspect of the fear response is the allocation of spatial attention toward threatening stimuli. This response is so powerful that modulations in spatial attention can occur automatically without conscious awareness. Functional neuroimaging research suggests that the amygdala and anterior cingulate cortex (ACC) form a network involved in the rapid orienting of attention to threat. A hyper-responsive attention bias to threat is a common component of anxiety disorders. Yet, little is known of how individual differences in underlying brain morphometry relate to variability in attention bias to threat. Here, we performed two experiments using dot-probe tasks that measured individuals' attention bias to backward masked fearful faces. We collected whole-brain structural magnetic resonance images and used voxel-based morphometry to measure brain morphometry. We tested the hypothesis that reduced gray matter within the amygdala and ACC would be associated with reduced attention bias to threat. In Experiment 1, we found that backward masked fearful faces captured spatial attention and that elevated attention bias to masked threat was associated with greater ACC gray matter volumes. In Experiment 2, this association was replicated in a separate sample. Thus, we provide initial and replicating evidence that ACC gray matter volume is correlated with biased attention to threat. Importantly, we demonstrate that variability in affective attention bias within the healthy population is associated with ACC morphometry. This result opens the door for future research into the underlying brain morphometry associated with attention bias in clinically anxious populations. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Age and sex effects levels of choline compounds in the anterior cingulate cortex of adolescent methamphetamine users.

    PubMed

    Cloak, Christine C; Alicata, Daniel; Chang, Linda; Andrews-Shigaki, Brian; Ernst, Thomas

    2011-12-15

    Methamphetamine can be neurotoxic to the adult brain; however, many individuals first use methamphetamine during adolescence, and the drug's impact on this period of brain development is unknown. Therefore, we evaluated young methamphetamine users for possible abnormalities in brain metabolite concentrations. Anterior cingulate cortex (ACC), frontal white matter (FWM), basal ganglia, and thalamus were studied with localized proton magnetic resonance spectroscopy in 54 periadolescent (ages 13-23 years) methamphetamine users and 53 comparison subjects. The concentrations of major brain metabolites and their associations with age, sex and cognition were assessed. FWM total-creatine correlated with age in methamphetamine-using males and comparison females, but not comparison males or methamphetamine-using females, leading to a drug by sex by age interaction (p=0.003) and ACC choline-containing compounds (CHO) correlated with age only in comparison males leading to a drug by sex by age interaction (p=0.03). Higher ACC CHO was associated with faster performance on the Stroop Interference task in the control males. Male methamphetamine users had slowest performance on the Stroop Interference task and did not show age-appropriate levels of ACC CHO. The altered age-appropriate levels of ACC CHO and poorer executive function in male methamphetamine users suggest methamphetamine abuse may interfere with brain maturation. These periadolescents did not have the abnormal neuronal markers previously reported in adult methamphetamine users, suggesting that neuronal abnormalities may be the result of long-term use or interference in normal cortical maturation, emphasizing the need for early intervention for young methamphetamine users. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Age and sex effects levels of choline compounds in the anterior cingulate cortex of adolescent methamphetamine users

    PubMed Central

    Cloak, Christine C.; Alicata, Daniel; Chang, Linda; Andrews-Shigaki, Brian; Ernst, Thomas

    2011-01-01

    Background Methamphetamine can be neurotoxic to the adult brain; however, many individuals first use methamphetamine during adolescence, and the drug’s impact on this period of brain development is unknown. Therefore, we evaluated young methamphetamine users for possible abnormalities in brain metabolite concentrations. Methods Anterior cingulate cortex (ACC), frontal white matter (FWM), basal ganglia, and thalamus were studied with localized proton magnetic resonance spectroscopy in 54 periadolescent (ages 13–23 years) methamphetamine users and 53 comparison subjects. The concentrations of major brain metabolites and their associations with age, sex and cognition were assessed. Results FWM total-creatine correlated with age in methamphetamine-using males and comparison females, but not comparison males or methamphetamine-using females, leading to a drug by sex by age interaction (p=0.003) and ACC choline-containing compounds (CHO) correlated with age only in comparison males leading to a drug by sex by age interaction (p=0.03). Higher ACC CHO was associated with faster performance on the Stroop Interference task in the control males. Male methamphetamine users had slowest performance on the Stroop Interference task and did not show showed age-appropriate levels of ACC CHO. Conclusions The altered age-appropriate levels of ACC CHO and poorer executive function in male methamphetamine users suggest methamphetamine abuse may interfere with brain maturation. These periadolescents did not have the abnormal neuronal markers previously reported in adult methamphetamine users, suggesting that neuronal abnormalities may be the result of long-term use or interference in normal cortical maturation, emphasizing the need for early intervention for young methamphetamine users. PMID:21775074

  17. The impact of multiple memory formation on dendritic complexity in the hippocampus and anterior cingulate cortex assessed at recent and remote time points

    PubMed Central

    Wartman, Brianne C.; Holahan, Matthew R.

    2014-01-01

    Consolidation processes, involving synaptic and systems level changes, are suggested to stabilize memories once they are formed. At the synaptic level, dendritic structural changes are associated with long-term memory storage. At the systems level, memory storage dynamics between the hippocampus and anterior cingulate cortex (ACC) may be influenced by the number of sequentially encoded memories. The present experiment utilized Golgi-Cox staining and neuron reconstruction to examine recent and remote structural changes in the hippocampus and ACC following training on three different behavioral procedures. Rats were trained on one hippocampal-dependent task only (a water maze task), two hippocampal-dependent tasks (a water maze task followed by a radial arm maze task), or one hippocampal-dependent and one non-hippocampal-dependent task (a water maze task followed by an operant conditioning task). Rats were euthanized recently or remotely. Brains underwent Golgi-Cox processing and neurons were reconstructed using Neurolucida software (MicroBrightField, Williston, VT, USA). Rats trained on two hippocampal-dependent tasks displayed increased dendritic complexity compared to control rats, in neurons examined in both the ACC and hippocampus at recent and remote time points. Importantly, this behavioral group showed consistent, significant structural differences in the ACC compared to the control group at the recent time point. These findings suggest that taxing the demand placed upon the hippocampus, by training rats on two hippocampal-dependent tasks, engages synaptic and systems consolidation processes in the ACC at an accelerated rate for recent and remote storage of spatial memories. PMID:24795581

  18. Effect of cooperation level of group on punishment for non-cooperators: a functional magnetic resonance imaging study.

    PubMed

    Kodaka, Fumitoshi; Takahashi, Hidehiko; Yamada, Makiko; Takano, Harumasa; Nakayama, Kazuhiko; Ito, Hiroshi; Suhara, Tetsuya

    2012-01-01

    Sometimes we punish non-cooperators in our society. Such behavior could be derived from aversive emotion for inequity (inequity aversion) to make non-cooperators cooperative. Thus, punishing behavior derived from inequity is believed to be important for maintaining our society. Meanwhile, our daily experiences suggest that the degree of cooperation by the members of society (cooperation level of the group) could change the punishing behavior for non-cooperators even if the inequity were equal. Such effect of the cooperation level of the group cannot be explained by simple inequity aversion. Although punishment-related brain regions have been reported in previous functional magnetic resonance imaging (fMRI) study, little is known about such regions affected by the cooperation level of the group. In the present fMRI study, we investigated the effect of the cooperation level of the group on the punishing behavior for non-cooperators and its related brain activations by a paradigm in which the degree of the cooperative state varied from low to high. Punishment-related activations were observed in brain regions such as the anterior insula, dorsolateral prefrontal cortex (DLPFC), and anterior cingulate cortex (ACC). The quantity of punishment in a high cooperation context was greater than in a low cooperation context, and activation in the right DLPFC and ACC in a high cooperation context showed greater activity than in a low cooperation context. This indicates that the cooperation level of the group, as well as aversive emotion for inequity, is the important factor of punishing behavior.

  19. Neural Correlates of Antidepressant-Related Sexual Dysfunction: A Placebo-Controlled fMRI Study on Healthy Males Under Subchronic Paroxetine and Bupropion

    PubMed Central

    Abler, Birgit; Seeringer, Angela; Hartmann, Antonie; Grön, Georg; Metzger, Coraline; Walter, Martin; Stingl, Julia

    2011-01-01

    Sexual dysfunction is a common side effect of selective serotonin reuptake inhibitors (SSRIs) like paroxetine in the treatment of depression, imposing a considerable risk on medication adherence and hence therapeutic success. Bupropion, a norepinephrine and dopamine reuptake inhibitor, is recommended as an alternative treatment without adverse effects concerning sexual arousal and libido. We investigated the neural bases of paroxetine-related subjective sexual dysfunction when compared with bupropion and placebo. We scanned 18 healthy, heterosexual males in a randomized, double-blind, within-subject design while watching video clips of erotic and nonerotic content under steady-state conditions after taking 20 mg of paroxetine, 150 mg of bupropion, and placebo for 7 days each. Under paroxetine, ratings of subjective sexual dysfunction increased compared with placebo or bupropion. Activation along the anterior cingulate cortex (ACC), including subgenual, pregenual, and midcingulate cortices, in the ventral striatum and midbrain was decreased when compared with placebo. In contrast, bupropion let subjective ratings and ACC activations unchanged and increased activity of brain regions including posterior midcingulate cortex, mediodorsal thalamus, and extended amygdala relative to placebo and paroxetine. Brain regions that have been related to the processing of motivational (ventral striatum), emotional, and autonomic components of erotic stimulation (anterior cingulate) in previous studies showed reduced responsiveness under paroxetine in our study. Drug effects on these regions may be part of the mechanism underlying SSRI-related sexual dysfunction. Increased activation under bupropion may point to an opposite effect that may relate to the lack of impaired sexual functioning. PMID:21544071

  20. Neural correlates of antidepressant-related sexual dysfunction: a placebo-controlled fMRI study on healthy males under subchronic paroxetine and bupropion.

    PubMed

    Abler, Birgit; Seeringer, Angela; Hartmann, Antonie; Grön, Georg; Metzger, Coraline; Walter, Martin; Stingl, Julia

    2011-08-01

    Sexual dysfunction is a common side effect of selective serotonin reuptake inhibitors (SSRIs) like paroxetine in the treatment of depression, imposing a considerable risk on medication adherence and hence therapeutic success. Bupropion, a norepinephrine and dopamine reuptake inhibitor, is recommended as an alternative treatment without adverse effects concerning sexual arousal and libido. We investigated the neural bases of paroxetine-related subjective sexual dysfunction when compared with bupropion and placebo. We scanned 18 healthy, heterosexual males in a randomized, double-blind, within-subject design while watching video clips of erotic and nonerotic content under steady-state conditions after taking 20 mg of paroxetine, 150 mg of bupropion, and placebo for 7 days each. Under paroxetine, ratings of subjective sexual dysfunction increased compared with placebo or bupropion. Activation along the anterior cingulate cortex (ACC), including subgenual, pregenual, and midcingulate cortices, in the ventral striatum and midbrain was decreased when compared with placebo. In contrast, bupropion let subjective ratings and ACC activations unchanged and increased activity of brain regions including posterior midcingulate cortex, mediodorsal thalamus, and extended amygdala relative to placebo and paroxetine. Brain regions that have been related to the processing of motivational (ventral striatum), emotional, and autonomic components of erotic stimulation (anterior cingulate) in previous studies showed reduced responsiveness under paroxetine in our study. Drug effects on these regions may be part of the mechanism underlying SSRI-related sexual dysfunction. Increased activation under bupropion may point to an opposite effect that may relate to the lack of impaired sexual functioning.

  1. SPIDER OR NO SPIDER? NEURAL CORRELATES OF SUSTAINED AND PHASIC FEAR IN SPIDER PHOBIA.

    PubMed

    Münsterkötter, Anna Luisa; Notzon, Swantje; Redlich, Ronny; Grotegerd, Dominik; Dohm, Katharina; Arolt, Volker; Kugel, Harald; Zwanzger, Peter; Dannlowski, Udo

    2015-09-01

    Processes of phasic fear responses to threatening stimuli are thought to be distinct from sustained, anticipatory anxiety toward an unpredicted, potential threat. There is evidence for dissociable neural correlates of phasic fear and sustained anxiety. Whereas increased amygdala activity has been associated with phasic fear, sustained anxiety has been linked with activation of the bed nucleus of stria terminalis (BNST), anterior cingulate cortex (ACC), and the insula. So far, only a few studies have focused on the dissociation of neural processes related to both phasic and sustained fear in specific phobia. We suggested that first, conditions of phasic and sustained fear would involve different neural networks and, second, that overall neural activity would be enhanced in a sample of phobic compared to nonphobic participants. Pictures of spiders and neutral stimuli under conditions of either predicted (phasic) or unpredicted (sustained) fear were presented to 28 subjects with spider phobia and 28 nonphobic control subjects during functional magnetic resonance imaging (fMRI) scanning. Phobic patients revealed significantly higher amygdala activation than controls under conditions of phasic fear. Sustained fear processing was significantly related to activation in the insula and ACC, and phobic patients showed a stronger activation than controls of the BNST and the right ACC under conditions of sustained fear. Functional connectivity analysis revealed enhanced connectivity of the BNST and the amygdala in phobic subjects. Our findings support the idea of distinct neural correlates of phasic and sustained fear processes. Increased neural activity and functional connectivity in these networks might be crucial for the development and maintenance of anxiety disorders. © 2015 Wiley Periodicals, Inc.

  2. Midcingulate cortex: Structure, connections, homologies, functions and diseases.

    PubMed

    Vogt, Brent A

    2016-07-01

    Midcingulate cortex (MCC) has risen in prominence as human imaging identifies unique structural and functional activity therein and this is the first review of its structure, connections, functions and disease vulnerabilities. The MCC has two divisions (anterior, aMCC and posterior, pMCC) that represent functional units and the cytoarchitecture, connections and neurocytology of each is shown with immunohistochemistry and receptor binding. The MCC is not a division of anterior cingulate cortex (ACC) and the "dorsal ACC" designation is a misnomer as it incorrectly implies that MCC is a division of ACC. Interpretation of findings among species and developing models of human diseases requires detailed comparative studies which is shown here for five species with flat maps and immunohistochemistry (human, monkey, rabbit, rat, mouse). The largest neurons in human cingulate cortex are in layer Vb of area 24 d in pMCC which project to the spinal cord. This area is part of the caudal cingulate premotor area which is involved in multisensory orientation of the head and body in space and neuron responses are tuned for the force and direction of movement. In contrast, the rostral cingulate premotor area in aMCC is involved in action-reinforcement associations and selection based on the amount of reward or aversive properties of a potential movement. The aMCC is activated by nociceptive information from the midline, mediodorsal and intralaminar thalamic nuclei which evoke fear and mediates nocifensive behaviors. This subregion also has high dopaminergic afferents and high dopamine-1 receptor binding and is engaged in reward processes. Opposing pain/avoidance and reward/approach functions are selected by assessment of potential outcomes and error detection according to feedback-mediated, decision making. Parietal afferents differentially terminate in MCC and provide for multisensory control in an eye- and head-centric manner. Finally, MCC vulnerability in human disease confirms the unique organization of MCC and supports the predictive validity of the MCC dichotomy. Vulnerability of aMCC is shown in chronic pain, obsessive-compulsive disorder with checking symptoms and attention-deficit/hyperactivity disorder and methylphenidate and pain medications selectively impact aMCC. In contrast, pMCC vulnerabilities are for progressive supranuclear palsy, unipolar depression and posttraumatic stress disorder. Thus, there is an emerging picture of the organization, functions and diseases of MCC. Future work will take this type of modular analysis to individual areas of which there are at least 10 in MCC. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Face processing pattern under top-down perception: a functional MRI study

    NASA Astrophysics Data System (ADS)

    Li, Jun; Liang, Jimin; Tian, Jie; Liu, Jiangang; Zhao, Jizheng; Zhang, Hui; Shi, Guangming

    2009-02-01

    Although top-down perceptual process plays an important role in face processing, its neural substrate is still puzzling because the top-down stream is extracted difficultly from the activation pattern associated with contamination caused by bottom-up face perception input. In the present study, a novel paradigm of instructing participants to detect faces from pure noise images is employed, which could efficiently eliminate the interference of bottom-up face perception in topdown face processing. Analyzing the map of functional connectivity with right FFA analyzed by conventional Pearson's correlation, a possible face processing pattern induced by top-down perception can be obtained. Apart from the brain areas of bilateral fusiform gyrus (FG), left inferior occipital gyrus (IOG) and left superior temporal sulcus (STS), which are consistent with a core system in the distributed cortical network for face perception, activation induced by top-down face processing is also found in these regions that include the anterior cingulate gyrus (ACC), right oribitofrontal cortex (OFC), left precuneus, right parahippocampal cortex, left dorsolateral prefrontal cortex (DLPFC), right frontal pole, bilateral premotor cortex, left inferior parietal cortex and bilateral thalamus. The results indicate that making-decision, attention, episodic memory retrieving and contextual associative processing network cooperate with general face processing regions to process face information under top-down perception.

  4. The neural systems for perceptual updating.

    PubMed

    Stöttinger, Elisabeth; Aichhorn, Markus; Anderson, Britt; Danckert, James

    2018-04-01

    In a constantly changing environment we must adapt to both abrupt and gradual changes to incoming information. Previously, we demonstrated that a distributed network (including the anterior insula and anterior cingulate cortex) was active when participants updated their initial representations (e.g., it's a cat) in a gradually morphing picture task (e.g., now it's a rabbit; Stöttinger et al., 2015). To shed light on whether these activations reflect the proactive decisions to update or perceptual uncertainty, we introduced two additional conditions. By presenting picture morphs twice we controlled for uncertainty in perceptual decision making. Inducing an abrupt shift in a third condition allowed us to differentiate between a proactive decision in uncertainty-driven updating and a reactive decision in surprise-based updating. We replicated our earlier result, showing the robustness of the effect. In addition, we found activation in the anterior insula (bilaterally) and the mid frontal area/ACC in all three conditions, indicative of the importance of these areas in updating of all kinds. When participants were naïve as to the identity of the second object, we found higher activations in the mid-cingulate cortex and cuneus - areas typically associated with task difficulty, in addition to higher activations in the right TPJ most likely reflecting the shift to a new perspective. Activations associated with the proactive decision to update to a new interpretation were found in a network including the dorsal ACC known to be involved in exploration and the endogenous decision to switch to a new interpretation. These findings suggest a general network commonly engaged in all types of perceptual decision making supported by additional networks associated with perceptual uncertainty or updating provoked by either proactive or reactive decision making. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Neurobiological Basis of Failure to Recall Extinction Memory in Posttraumatic Stress Disorder

    PubMed Central

    Milad, Mohammed R.; Pitman, Roger K.; Ellis, Cameron B.; Gold, Andrea L.; Shin, Lisa M; Lasko, Natasha B.; Zeidan, Mohamed A.; Handwerger, Kathryn; Orr, Scott P.; Rauch, Scott L.

    2009-01-01

    Background: A clinical characteristic of posttraumatic stress disorder (PTSD) is persistently elevated fear responses to stimuli associated with the traumatic event. The objective herein is to determine whether extinction of fear responses is impaired in PTSD and whether such impairment is related to dysfunctional activation of brain regions known to be involved in fear extinction, viz., amygdala, hippocampus, ventromedial prefrontal cortex (vmPFC), and dorsal anterior cingulate cortex (dACC). Methods: Sixteen individuals diagnosed with PTSD and 15 trauma-exposed non-PTSD controls (TENCs) underwent a two-day fear conditioning and extinction protocol in a 3T fMRI scanner. Conditioning and extinction training were conducted on day 1. Extinction recall (or extinction memory) test was conducted on day 2 (extinguished conditioned stimuli presented in the absence of shock). Skin conductance response (SCR) was scored throughout the experiment as an index of the conditioned response. Results: SCR data revealed no significant differences between groups during acquisition and extinction of conditioned fear on day 1. On day 2, however, PTSD subjects showed impaired recall of extinction memory. Analysis of fMRI data showed greater amygdala activation in the PTSD group during day 1 extinction learning. During extinction recall, lesser activation in hippocampus and vmPFC, and greater activation in dACC, was observed in the PTSD group. The magnitude of extinction memory across all subjects was correlated with activation of hippocampus and vmPFC during extinction recall testing. Conclusions: These findings support the hypothesis that fear extinction is impaired in PTSD. They further suggest that dysfunctional activation in brain structures that mediate fear extinction learning, and especially its recall, underlie this impairment. PMID:19748076

  6. Involvement of the Anterior Cingulate Cortex in Formation, Consolidation, and Reconsolidation of Recent and Remote Contextual Fear Memory

    ERIC Educational Resources Information Center

    Einarsson, Einar O.; Nader, Karim

    2012-01-01

    It has been suggested that memories become more stable and less susceptible to the disruption of reconsolidation over weeks after learning. Here, we test this by targeting the anterior cingulate cortex (ACC) and test its involvement in the formation, consolidation, and reconsolidation of recent and remote contextual fear memory. We found that…

  7. Sex differences in structural brain asymmetry predict overt aggression in early adolescents.

    PubMed

    Visser, Troy A W; Ohan, Jeneva L; Whittle, Sarah; Yücel, Murat; Simmons, Julian G; Allen, Nicholas B

    2014-04-01

    The devastating social, emotional and economic consequences of human aggression are laid bare nightly on newscasts around the world. Aggression is principally mediated by neural circuitry comprising multiple areas of the prefrontal cortex and limbic system, including the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), amygdala and hippocampus. A striking characteristic of these regions is their structural asymmetry about the midline (i.e. left vs right hemisphere). Variations in these asymmetries have been linked to clinical disorders characterized by aggression and the rate of aggressive behavior in psychiatric patients. Here, we show for the first time that structural asymmetries in prefrontal cortical areas are also linked to aggression in a normal population of early adolescents. Our findings indicate a relationship between parent reports of aggressive behavior in adolescents and structural asymmetries in the limbic and paralimbic ACC and OFC, and moreover, that this relationship varies by sex. Furthermore, while there was no relationship between aggression and structural asymmetries in the amygdala or hippocampus, hippocampal volumes did predict aggression in females. Taken together, the results suggest that structural asymmetries in the prefrontal cortex may influence human aggression, and that the anatomical basis of aggression varies substantially by sex.

  8. Glutamatergic and neurometabolic alterations in chronic cocaine users measured with (1) H-magnetic resonance spectroscopy.

    PubMed

    Hulka, Lea M; Scheidegger, Milan; Vonmoos, Matthias; Preller, Katrin H; Baumgartner, Markus R; Herdener, Marcus; Seifritz, Erich; Henning, Anke; Quednow, Boris B

    2016-01-01

    Cocaine addiction is a chronically relapsing disorder that is associated with harmful consequences. Relapses occur frequently and effective pharmacotherapies are currently sparse. Preclinical studies suggest that altered glutamatergic signaling is crucial for the maintenance of cocaine self-administration. However, the translational validity of these models is currently unknown. Therefore, we investigated potential differences of glutamate, glutamine and further metabolite levels in the pregenual anterior cingulate cortex (pgACC) and the right dorsolateral prefrontal cortex (rDLPFC) of chronic cocaine users and controls using the PRior knOwledge FITting 2.0 tool in combination with two-dimensional J-resolved single-voxel (1) H-magnetic resonance spectroscopy at 3T and voxel tissue composition and relaxation correction. Glutamate and glutamine levels did not differ between cocaine users and controls, but higher weekly cocaine use and higher cocaine hair concentrations were associated with lower glutamine/creatine ratios in the pgACC. Interestingly, cocaine users exhibited higher glucose/total creatine ratios than controls in the pgACC and higher choline/creatine ratios in the pgACC and rDLPFC. These results imply that cocaine use is associated with altered cortical glucose metabolism and membrane turnover. Finally, cocaine use over the past 6 months appears to decrease cortical glutamine levels indicating changes in glutamate cycling. © 2014 Society for the Study of Addiction.

  9. Exploring the neural substrates of attentional control and human intelligence: Diffusion tensor imaging of prefrontal white matter tractography in healthy cognition.

    PubMed

    Ohtani, Toshiyuki; Nestor, Paul G; Bouix, Sylvain; Newell, Dominick; Melonakos, Eric D; McCarley, Robert W; Shenton, Martha E; Kubicki, Marek

    2017-01-26

    We combined diffusion tension imaging (DTI) of prefrontal white matter integrity and neuropsychological measures to examine the functional neuroanatomy of human intelligence. Healthy participants completed the Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) along with neuropsychological tests of attention and executive control, as measured by Trail Making Test (TMT) and Wisconsin Card Sorting Test (WCST). Stochastic tractography, considered the most effective DTI method, quantified white matter integrity of the medial orbital frontal cortex (mOFC) and rostral anterior cingulate cortex (rACC) circuitry. Based on prior studies, we hypothesized that posterior mOFC-rACC connections may play a key structural role linking attentional control processes and intelligence. Behavioral results provided strong support for this hypothesis, specifically linking attentional control processes, measured by Trails B and WCST perseverative errors, to intelligent quotient (IQ). Hierarchical regression results indicated left posterior mOFC-rACC fractional anisotropy (FA) and Trails B performance time, but not WCST perseverative errors, each contributed significantly to IQ, accounting for approximately 33.95-51.60% of the variance in IQ scores. These findings suggested that left posterior mOFC-rACC white matter connections may play a key role in supporting the relationship of executive functions of attentional control and general intelligence in healthy cognition. Copyright © 2016. Published by Elsevier Ltd.

  10. Preferential Representation of Past Outcome Information and Future Choice Behavior by Putative Inhibitory Interneurons Rather Than Putative Pyramidal Neurons in the Primate Dorsal Anterior Cingulate Cortex.

    PubMed

    Kawai, Takashi; Yamada, Hiroshi; Sato, Nobuya; Takada, Masahiko; Matsumoto, Masayuki

    2018-05-02

    The dorsal anterior cingulate cortex (dACC) plays crucial roles in monitoring the outcome of a choice and adjusting a subsequent choice behavior based on the outcome information. In the present study, we investigated how different types of dACC neurons, that is, putative pyramidal neurons and putative inhibitory interneurons, contribute to these processes. We analyzed single-unit database obtained from the dACC in monkeys performing a reversal learning task. The monkey was required to adjust choice behavior from past outcome experiences. Depending on their action potential waveforms, the recorded neurons were classified into putative pyramidal neurons and putative inhibitory interneurons. We found that these neurons do not equally contribute to outcome monitoring and behavioral adjustment. Although both neuron types evenly responded to the current outcome, a larger proportion of putative inhibitory interneurons than putative pyramidal neurons stored the information about the past outcome. The putative inhibitory interneurons further represented choice-related signals more frequently, such as whether the monkey would shift the last choice to an alternative at the next choice opportunity. Our findings suggest that putative inhibitory interneurons, which are thought not to project to brain areas outside the dACC, preferentially transmit signals that would adjust choice behavior based on past outcome experiences.

  11. Deficient reinforcement learning in medial frontal cortex as a model of dopamine-related motivational deficits in ADHD.

    PubMed

    Silvetti, Massimo; Wiersema, Jan R; Sonuga-Barke, Edmund; Verguts, Tom

    2013-10-01

    Attention Deficit/Hyperactivity Disorder (ADHD) is a pathophysiologically complex and heterogeneous condition with both cognitive and motivational components. We propose a novel computational hypothesis of motivational deficits in ADHD, drawing together recent evidence on the role of anterior cingulate cortex (ACC) and associated mesolimbic dopamine circuits in both reinforcement learning and ADHD. Based on findings of dopamine dysregulation and ACC involvement in ADHD we simulated a lesion in a previously validated computational model of ACC (Reward Value and Prediction Model, RVPM). We explored the effects of the lesion on the processing of reinforcement signals. We tested specific behavioral predictions about the profile of reinforcement-related deficits in ADHD in three experimental contexts; probability tracking task, partial and continuous reward schedules, and immediate versus delayed rewards. In addition, predictions were made at the neurophysiological level. Behavioral and neurophysiological predictions from the RVPM-based lesion-model of motivational dysfunction in ADHD were confirmed by data from previously published studies. RVPM represents a promising model of ADHD reinforcement learning suggesting that ACC dysregulation might play a role in the pathogenesis of motivational deficits in ADHD. However, more behavioral and neurophysiological studies are required to test core predictions of the model. In addition, the interaction with different brain networks underpinning other aspects of ADHD neuropathology (i.e., executive function) needs to be better understood. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Laminar recordings in frontal cortex suggest distinct layers for maintenance and control of working memory

    PubMed Central

    Bastos, André M.; Loonis, Roman; Kornblith, Simon; Lundqvist, Mikael; Miller, Earl K.

    2018-01-01

    All of the cerebral cortex has some degree of laminar organization. These different layers are composed of neurons with distinct connectivity patterns, embryonic origins, and molecular profiles. There are little data on the laminar specificity of cognitive functions in the frontal cortex, however. We recorded neuronal spiking/local field potentials (LFPs) using laminar probes in the frontal cortex (PMd, 8A, 8B, SMA/ACC, DLPFC, and VLPFC) of monkeys performing working memory (WM) tasks. LFP power in the gamma band (50–250 Hz) was strongest in superficial layers, and LFP power in the alpha/beta band (4–22 Hz) was strongest in deep layers. Memory delay activity, including spiking and stimulus-specific gamma bursting, was predominately in superficial layers. LFPs from superficial and deep layers were synchronized in the alpha/beta bands. This was primarily unidirectional, with alpha/beta bands in deep layers driving superficial layer activity. The phase of deep layer alpha/beta modulated superficial gamma bursting associated with WM encoding. Thus, alpha/beta rhythms in deep layers may regulate the superficial layer gamma bands and hence maintenance of the contents of WM. PMID:29339471

  13. Laminar recordings in frontal cortex suggest distinct layers for maintenance and control of working memory.

    PubMed

    Bastos, André M; Loonis, Roman; Kornblith, Simon; Lundqvist, Mikael; Miller, Earl K

    2018-01-30

    All of the cerebral cortex has some degree of laminar organization. These different layers are composed of neurons with distinct connectivity patterns, embryonic origins, and molecular profiles. There are little data on the laminar specificity of cognitive functions in the frontal cortex, however. We recorded neuronal spiking/local field potentials (LFPs) using laminar probes in the frontal cortex (PMd, 8A, 8B, SMA/ACC, DLPFC, and VLPFC) of monkeys performing working memory (WM) tasks. LFP power in the gamma band (50-250 Hz) was strongest in superficial layers, and LFP power in the alpha/beta band (4-22 Hz) was strongest in deep layers. Memory delay activity, including spiking and stimulus-specific gamma bursting, was predominately in superficial layers. LFPs from superficial and deep layers were synchronized in the alpha/beta bands. This was primarily unidirectional, with alpha/beta bands in deep layers driving superficial layer activity. The phase of deep layer alpha/beta modulated superficial gamma bursting associated with WM encoding. Thus, alpha/beta rhythms in deep layers may regulate the superficial layer gamma bands and hence maintenance of the contents of WM. Copyright © 2018 the Author(s). Published by PNAS.

  14. The role of hippocampus dysfunction in deficient memory encoding and positive symptoms in schizophrenia.

    PubMed

    Zierhut, Kathrin; Bogerts, Bernhard; Schott, Björn; Fenker, Daniela; Walter, Martin; Albrecht, Dominik; Steiner, Johann; Schütze, Hartmut; Northoff, Georg; Düzel, Emrah; Schiltz, Kolja

    2010-09-30

    Declarative memory disturbances, known to substantially contribute to cognitive impairment in schizophrenia, have previously been attributed to prefrontal as well as hippocampal dysfunction. To characterize the role of prefrontal and mesolimbic/hippocampal dysfunction during memory encoding in schizophrenia. Neuronal activation in schizophrenia patients and controls was assessed using functional magnetic resonance imaging (fMRI) during encoding of words in a deep (semantic judgement) and shallow (case judgment) task. A free recall (no delay) and a recognition task (24h delay) were performed. Free recall, but not recognition performance was reduced in patients. Reduced performance was correlated with positive symptoms which in turn were related to increased left hippocampal activity during successful encoding. Furthermore, schizophrenia patients displayed a hippocampal hyperactivity during deep encoding irrespective of encoding success along with a reduced anterior cingulate cortex (ACC) and dorsomedial prefrontal cortex (DMPFC) activity in successful encoding but an intact left inferior frontal cortex (LIFC) activity. This study provides the first evidence directly linking positive symptoms and memory deficits to dysfunctional hippocampal hyperactivity. It thereby underscores the pivotal pathophysiological role of a hyperdopaminergic mesolimbic state in schizophrenia. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Nicotine increases neural response to unpleasant stimuli and anxiety in non-smokers.

    PubMed

    Kobiella, Andrea; Ulshöfer, Dorothea E; Vollmert, Christian; Vollstädt-Klein, Sabine; Bühler, Mira; Esslinger, Christine; Smolka, Michael N

    2011-04-01

    Studies in smokers suggest that nicotine might exert anxiolytic, stress-dampening and mood-enhancing effects and beneficially influences neural processing of affective information. Regarding non-smokers, results are inconsistent, and no data exist on the effect of nicotine on neural emotion processing. We applied functional magnetic resonance imaging (fMRI) to assess the influence of nicotine on brain activation during processing of emotional stimuli in 31 non-smokers with a maximum lifetime cigarette consumption of 20 cigarettes. Participants were subjected to two fMRI scans with event-related presentations of images taken from the International Affective Picture System, receiving nicotine (2 mg) and placebo gums in a double-blinded, randomized cross-over design. Furthermore, subjective affect was assessed. Nicotine increased brain activity in response to unpleasant stimuli in the amygdala, anterior cingulate cortex (ACC) and basal ganglia, whereas processing of pleasant stimuli was not altered. Psychophysiological interaction (PPI) analyses revealed that nicotine increased connectivity between the amygdala and the perigenual ACC (pACC) during processing of unpleasant stimuli and decreased connectivity between those structures during processing of pleasant stimuli. Participants reported higher state anxiety under nicotine than placebo. A single dose of nicotine acted as a stressor in non-smokers, leading to increased anxiety and neural activation elicited by unpleasant stimuli as well as altered connectivity within the amygdala-pACC circuit. Besides the possibility that reactions to nicotine may differ between non-smokers and smokers due to tolerance and neuroadaptive processes that occur during prolonged nicotine use, a priori differences in smokers and non-smokers might potentially explain diverse effects of nicotine on affect and emotional reactivity. © 2010 The Authors, Addiction Biology © 2010 Society for the Study of Addiction.

  16. Decisions during negatively-framed messages yield smaller risk-aversion-related brain activation in substance-dependent individuals.

    PubMed

    Fukunaga, Rena; Bogg, Tim; Finn, Peter R; Brown, Joshua W

    2013-12-01

    A sizable segment of addiction research investigates the effects of persuasive message appeals on risky and deleterious behaviors. However, to date, little research has examined how various forms of message framing and corresponding behavioral choices might by mediated by risk-related brain regions. Using event-related functional MRI, we investigated brain regions hypothesized to mediate the influence of message appeals on decision making in substance-dependent (SD) compared with nonsubstance-dependent (non-SD) individuals. The Iowa Gambling Task (IGT) was modified to include positively-framed, negatively-framed, and control messages about long-term deck payoffs. In the positively-framed condition, the SD and non-SD groups showed improved decision-making performance that corresponded to higher risk-aversion-related brain activity in the anterior cingulate cortex (ACC) and anterior insula (AI). In contrast, in the negatively-framed condition, the SD group showed poorer performance that corresponded to lower risk-aversion-related brain activity in the AI region. In addition, only the non-SD group showed a positive association between decision quality and greater risk-related activity in the ACC, regardless of message type. The findings suggest substance-dependent individuals may have reduced neurocognitive sensitivity in the ACC and AI regions involved in risk perception and aversion during decision-making, especially in response to framed messages that emphasize reduced prospects for long-term gains. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  17. Atypical Learning in Autism Spectrum Disorders: A Functional Magnetic Resonance Imaging Study of Transitive Inference

    PubMed Central

    Solomon, Marjorie; Ragland, J. Daniel; Niendam, Tara A.; Lesh, Tyler A.; Beck, Jonathan S.; Matter, John C.; Frank, Michael J.; Carter, Cameron S.

    2015-01-01

    Objective To investigate the neural mechanisms underlying impairments in generalizing learning shown by adolescents with autism spectrum disorder (ASD). Method Twenty-one high-functioning individuals with ASD aged 12–18 years, and 23 gender, IQ, and age-matched adolescents with typical development (TYP) completed a transitive inference (TI) task implemented using rapid event-related functional magnetic resonance imaging (fMRI). They were trained on overlapping pairs in a stimulus hierarchy of colored ovals where A>B>C>D>E>F and then tested on generalizing this training to new stimulus pairings (AF, BD, BE) in a “Big Game.” Whole-brain univariate, region of interest, and functional connectivity analyses were used. Results During training, TYP exhibited increased recruitment of the prefrontal cortex (PFC), while the group with ASD showed greater functional connectivity between the PFC and the anterior cingulate cortex (ACC). Both groups recruited the hippocampus and caudate comparably; however, functional connectivity between these regions was positively associated with TI performance for only the group with ASD. During the Big Game, TYP showed greater recruitment of the PFC, parietal cortex, and the ACC. Recruitment of these regions increased with age in the group with ASD. Conclusion During TI, TYP recruited cognitive control-related brain regions implicated in mature problem solving/reasoning including the PFC, parietal cortex, and ACC, while the group with ASD showed functional connectivity of the hippocampus and the caudate that was associated with task performance. Failure to reliably engage cognitive control-related brain regions may produce less integrated flexible learning in those with ASD unless they are provided with task support that in essence provides them with cognitive control, but this pattern may normalize with age. PMID:26506585

  18. Altered Neural Processing to Social Exclusion in Young Adult Marijuana Users

    PubMed Central

    Gilman, Jodi M.; Curran, Max T.; Calderon, Vanessa; Schuster, Randi M.; Evins, A. Eden

    2015-01-01

    Previous studies have reported that peer groups are one of the most important predictors of adolescent and young adult marijuana use, and yet the neural correlates of social processing in marijuana users have not yet been studied. In the current study, marijuana-using young adults (n = 20) and non-using controls (n = 22) participated in a neuroimaging social exclusion task called Cyberball, a computerized ball-tossing game in which the participant is excluded from the game after a pre-determined number of ball tosses. Controls, but not marijuana users, demonstrated significant activation in the insula, a region associated with negative emotion, when being excluded from the game. Both groups demonstrated activation of the ventral anterior cingulate cortex (vACC), a region associated with affective monitoring, during peer exclusion. Only the marijuana group showed a correlation between vACC activation and scores on a self-report measure of peer conformity. This study indicates that marijuana users show atypical neural processing of social exclusion, which may be either caused by, or the result of, regular marijuana use. PMID:26977454

  19. Distinct Regions within Medial Prefrontal Cortex Process Pain and Cognition

    PubMed Central

    Jahn, Andrew; Nee, Derek Evan; Alexander, William H.

    2016-01-01

    Neuroimaging studies of the medial prefrontal cortex (mPFC) suggest that the dorsal anterior cingulate cortex (dACC) region is responsive to a wide variety of stimuli and psychological states, such as pain, cognitive control, and prediction error (PE). In contrast, a recent meta-analysis argues that the dACC is selective for pain, whereas the supplementary motor area (SMA) and pre-SMA are specifically associated with higher-level cognitive processes (Lieberman and Eisenberger, 2015). To empirically test this claim, we manipulated effects of pain, conflict, and PE in a single experiment using human subjects. We observed a robust dorsal-ventral dissociation within the mPFC with cognitive effects of PE and conflict overlapping dorsally and pain localized more ventrally. Classification of subjects based on the presence or absence of a paracingulate sulcus showed that PE effects extended across the dorsal area of the dACC and into the pre-SMA. These results begin to resolve recent controversies by showing the following: (1) the mPFC includes dissociable regions for pain and cognitive processing; and (2) meta-analyses are correct in localizing cognitive effects to the dACC, although these effects extend to the pre-SMA as well. These results both provide evidence distinguishing between different theories of mPFC function and highlight the importance of taking individual anatomical variability into account when conducting empirical studies of the mPFC. SIGNIFICANCE STATEMENT Decades of neuroimaging research have shown the mPFC to represent a wide variety of stimulus processing and cognitive states. However, recently it has been argued whether distinct regions of the mPFC separately process pain and cognitive phenomena. To address this controversy, this study directly compared pain and cognitive processes within subjects. We found a double dissociation within the mPFC with pain localized ventral to the cingulate sulcus and cognitive effects localized more dorsally within the dACC and spreading into the pre-supplementary motor area. This provides empirical evidence to help resolve the current debate about the functional architecture of the mPFC. PMID:27807031

  20. Spatial Working Memory Impairment in Patients with Non-neuropsychiatric Systemic Lupus Erythematosus: A Blood-oxygen-level Dependent Functional Magnetic Resonance Imaging Study.

    PubMed

    Zhu, Chun-Min; Ma, Ye; Xie, Lei; Huang, Jin-Zhuang; Sun, Zong-Bo; Duan, Shou-Xing; Lin, Zhi-Rong; Yin, Jing-Jing; Le, Hong-Bo; Sun, Dan-Miao; Xu, Wen-Can; Ma, Shu-Hua

    2017-02-01

    Using ethology and functional magnetic resonance imaging (fMRI) to explore mild cognitive dysfunction and spatial working memory (WM) impairment in patients with systemic lupus erythematosus (SLE) without overt neuropsychiatric symptoms (non-NPSLE) and to study whether any clinical biomarkers could serve as predictors of brain dysfunction in this disease. Eighteen non-NPSLE patients and 18 matched subjects were all tested using the Montreal cognitive assessment scale test and scanned using blood-oxygen-level dependent fMRI while performing the n-back task to investigate the activation intensity of some cognition-related areas. Ethology results showed that non-NPSLE patients had mild cognitive dysfunction and memory dysfunction (p < 0.05). The fMRI scan confirmed a neural network consisting of bilateral dorsolateral prefrontal cortex (DLPFC), premotor area, parietal lobe, and supplementary motor area (SMA)/anterior cingulate cortex (ACC) that was activated during the n-back task, with right hemisphere dominance. However, only the right SMA/ACC showed a load effect in the non-NPSLE group; the activation intensity of most WM-related brain areas for the non-NPSLE group was lower than for the control group under 3 memory loads. Further, we found that the activation intensity of some cognition-related areas, including the bilateral caudate nucleus/insula and hippocampus/parahippocampal gyrus were lower than the control group under the memory loads. An inverse correlation existed between individual activation intensity and disease duration. Non-NPSLE-related brain damage with right DLPFC-posterior parietal lobe and parahippocampal gyrus default network causes impairment of spatial WM and mild cognitive dysfunction. Patients with longer disease duration would be expected to exhibit increased central nervous system damage.

Top