Science.gov

Sample records for cortex impairs temporal

  1. Knockdown of the Dyslexia-Associated Gene Kiaa0319 Impairs Temporal Responses to Speech Stimuli in Rat Primary Auditory Cortex

    PubMed Central

    Centanni, T. M.; Booker, A. B.; Sloan, A. M.; Chen, F.; Maher, B. J.; Carraway, R. S.; Khodaparast, N.; Rennaker, R.; LoTurco, J. J.; Kilgard, M. P.

    2014-01-01

    One in 15 school age children have dyslexia, which is characterized by phoneme-processing problems and difficulty learning to read. Dyslexia is associated with mutations in the gene KIAA0319. It is not known whether reduced expression of KIAA0319 can degrade the brain's ability to process phonemes. In the current study, we used RNA interference (RNAi) to reduce expression of Kiaa0319 (the rat homolog of the human gene KIAA0319) and evaluate the effect in a rat model of phoneme discrimination. Speech discrimination thresholds in normal rats are nearly identical to human thresholds. We recorded multiunit neural responses to isolated speech sounds in primary auditory cortex (A1) of rats that received in utero RNAi of Kiaa0319. Reduced expression of Kiaa0319 increased the trial-by-trial variability of speech responses and reduced the neural discrimination ability of speech sounds. Intracellular recordings from affected neurons revealed that reduced expression of Kiaa0319 increased neural excitability and input resistance. These results provide the first evidence that decreased expression of the dyslexia-associated gene Kiaa0319 can alter cortical responses and impair phoneme processing in auditory cortex. PMID:23395846

  2. Impaired assessment of cumulative lifetime familiarity for object concepts after left anterior temporal-lobe resection that includes perirhinal cortex but spares the hippocampus.

    PubMed

    Bowles, Ben; Duke, Devin; Rosenbaum, R Shayna; McRae, Ken; Köhler, Stefan

    2016-09-01

    The ability to recognize the prior occurrence of objects can operate effectively even in the absence of successful recollection of episodic contextual detail about a relevant past object encounter. The pertinent process, familiarity assessment, is typically probed in humans with recognition-memory tasks that include an experimentally controlled study phase for a list of items. When meaningful stimuli such as words or pictures of common objects are employed, participants must judge familiarity with reference to the recent experimental encounter rather than their lifetime of autobiographical experience, which may have involved hundreds or thousands of exposures across numerous episodic contexts. Humans can, however, also judge the cumulative familiarity of objects concepts they have encountered over their lifetime. At present, little is known about the cognitive and neural mechanisms that support this ability. Here, we tested an individual (NB) with a rare left anterior temporal-lobe lesion that included perirhinal cortex but spared the hippocampus, who had previously been found to exhibit selective impairments in familiarity assessment on verbal recognition-memory tasks. As NB exhibits normal recollection abilities, her case presents a unique opportunity to examine potential links between both types of familiarity. In Experiment 1, we demonstrated that NB's impairment in making recognition judgments affects cumulative frequency judgments for exposure to concept names in a recent study episode. Experiments 2 and 3 revealed, with a task borrowed from the semantic-memory literature, that NB's impairments do indeed extend to abnormalities in judging cumulative lifetime familiarity for object concepts. These abnormalities were not limited to verbal processing, and were present even when pictures were offered as additional cues. Moreover, they showed sensitivity to concept structure as reflected in semantic feature norms; we only observed them for judgments on object

  3. Ventrolateral and dorsomedial frontal cortex lesions impair mnemonic context retrieval

    PubMed Central

    Chapados, Catherine; Petrides, Michael

    2015-01-01

    The prefrontal cortex appears to contribute to the mnemonic retrieval of the context within which stimuli are experienced, but only under certain conditions that remain to be clarified. Patients with lesions to the frontal cortex, the temporal lobe and neurologically intact individuals were tested for context memory retrieval when verbal stimuli (words) had been experienced across multiple (unstable context condition) or unique (stable context condition) contexts; basic recognition memory of these words-in-contexts was also tested. Patients with lesions to the right ventrolateral prefrontal cortex (VLPFC) were impaired on context retrieval only when the words had been seen in multiple contexts, demonstrating that this prefrontal region is critical for active retrieval processing necessary to disambiguate memory items embedded across multiple contexts. Patients with lesions to the left dorsomedial prefrontal region were impaired on both context retrieval conditions, regardless of the stability of the stimulus-to-context associations. Conversely, prefrontal lesions sparing the ventrolateral and dorsomedial regions did not impair context retrieval. Only patients with temporal lobe excisions were impaired on basic recognition memory. The results demonstrate a basic contribution of the left dorsomedial frontal region to mnemonic context retrieval, with the VLPFC engaged, selectively, when contextual relations are unstable and require disambiguation. PMID:25567650

  4. Fast temporal interactions in human auditory cortex.

    PubMed

    Rupp, A; Hack, S; Gutschalk, A; Schneider, P; Picton, T W; Stippich, C; Scherg, M

    2000-11-27

    The temporal resolution of the human primary auditory cortex (AC) was studied using middle-latency evoked fields. Paired sounds with either the same or different spectral characteristics were presented with gaps between the sounds of 1, 4, 8 and 14 ms. Spatio-temporal modelling showed (1) that the response to the second sound was recognizable with gaps of 1 ms and rapidly increased in amplitude with increasing gap durations, (2) an enhanced N40m amplitude at gaps > 4 ms, (3) delayed N19m-P30m latencies when the stimuli were different. The median psychoacoustical thresholds were 1.6 ms for the same stimuli and 2.5 ms for different stimuli, confirming the electrophysiological evidence for rapid pattern-specific temporal processing in human primary auditory cortex.

  5. Functional connectivity of parietal cortex during temporal selective attention.

    PubMed

    Tyler, Sarah C; Dasgupta, Samhita; Agosta, Sara; Battelli, Lorella; Grossman, Emily D

    2015-04-01

    Perception of natural experiences requires allocation of attention towards features, objects, and events that are moving and changing over time. This allocation of attention is controlled by large-scale brain networks that, when damaged, cause widespread cognitive deficits. In particular, damage to ventral parietal cortex (right lateralized TPJ, STS, supramarginal and angular gyri) is associated with failures to selectively attend to and isolate features embedded within rapidly changing visual sequences (Battelli, Pascual-Leone, & Cavanagh, 2007; Husain, Shapiro, Martin, & Kennard, 1997). In this study, we used fMRI to investigate the neural activity and functional connectivity of intact parietal cortex while typical subjects judged the relative onsets and offsets of rapidly flickering tokens (a phase discrimination task in which right parietal patients are impaired). We found two regions in parietal cortex correlated with task performance: a bilateral posterior TPJ (pTPJ) and an anterior right-lateralized TPJ (R aTPJ). Both regions were deactivated when subjects engaged in the task but showed different patterns of functional connectivity. The bilateral pTPJ was strongly connected to nodes within the default mode network (DMN) and the R aTPJ was connected to the attention network. Accurate phase discriminations were associated with increased functional correlations between sensory cortex (hMT+) and the bilateral pTPJ, whereas accuracy on a control task was associated with yoked activity in the hMT+ and the R aTPJ. We conclude that temporal selective attention is particularly sensitive for revealing information pathways between sensory and core cognitive control networks that, when damaged, can lead to nonspatial attention impairments in right parietal stroke patients. PMID:25747530

  6. Source versus content memory in patients with a unilateral frontal cortex or a temporal lobe excision.

    PubMed

    Thaiss, Laila; Petrides, Michael

    2003-05-01

    It has been suggested previously that patients with a frontal lobe lesion might have a specific impairment in the retrieval of the source of information despite adequate memory for facts. Patients with an anterior temporal excision are known to have impairments in memory for facts and the question arises as to whether they are also impaired in source memory. The present study compared memory for facts and their source in patients with a unilateral frontal cortical or an anterior temporal excision in a situation in which both types of information were encoded explicitly. Patients with a unilateral frontal cortex or a temporal lobe excision watched videos of a game show and were instructed to attend to both the trivia facts and their source (the identity of the speaker or the relative time of presentation). Patients with a frontal cortex excision were not impaired on either fact or source memory. This was true even when a subgroup of patients with an excision involving the dorsolateral frontal cortex was examined. In contrast, patients with a left temporal lobe excision were impaired in both fact and identity source memory and right temporal lobe patients were impaired in identity source memory. All patients performed similarly to normal controls in temporal source memory. The present results are consistent with the view that source information is part of an associative network of information about an episode and that the medial temporal region is critical for both source and content memory. Furthermore, if source information is encoded explicitly, the frontal cortex does not appear to be necessary for its retrieval. Instead, it is proposed that the frontal cortex plays a metacognitive role in memory retrieval. PMID:12690051

  7. Source versus content memory in patients with a unilateral frontal cortex or a temporal lobe excision.

    PubMed

    Thaiss, Laila; Petrides, Michael

    2003-05-01

    It has been suggested previously that patients with a frontal lobe lesion might have a specific impairment in the retrieval of the source of information despite adequate memory for facts. Patients with an anterior temporal excision are known to have impairments in memory for facts and the question arises as to whether they are also impaired in source memory. The present study compared memory for facts and their source in patients with a unilateral frontal cortical or an anterior temporal excision in a situation in which both types of information were encoded explicitly. Patients with a unilateral frontal cortex or a temporal lobe excision watched videos of a game show and were instructed to attend to both the trivia facts and their source (the identity of the speaker or the relative time of presentation). Patients with a frontal cortex excision were not impaired on either fact or source memory. This was true even when a subgroup of patients with an excision involving the dorsolateral frontal cortex was examined. In contrast, patients with a left temporal lobe excision were impaired in both fact and identity source memory and right temporal lobe patients were impaired in identity source memory. All patients performed similarly to normal controls in temporal source memory. The present results are consistent with the view that source information is part of an associative network of information about an episode and that the medial temporal region is critical for both source and content memory. Furthermore, if source information is encoded explicitly, the frontal cortex does not appear to be necessary for its retrieval. Instead, it is proposed that the frontal cortex plays a metacognitive role in memory retrieval.

  8. Reading Without the Left Ventral Occipito-Temporal Cortex

    ERIC Educational Resources Information Center

    Seghier, Mohamed L.; Neufeld, Nicholas H.; Zeidman, Peter; Leff, Alex P.; Mechelli, Andrea; Nagendran, Arjuna; Riddoch, Jane M.; Humphreys, Glyn W.; Price, Cathy J.

    2012-01-01

    The left ventral occipito-temporal cortex (LvOT) is thought to be essential for the rapid parallel letter processing that is required for skilled reading. Here we investigate whether rapid written word identification in skilled readers can be supported by neural pathways that do not involve LvOT. Hypotheses were derived from a stroke patient who…

  9. Preference for Audiovisual Speech Congruency in Superior Temporal Cortex.

    PubMed

    Lüttke, Claudia S; Ekman, Matthias; van Gerven, Marcel A J; de Lange, Floris P

    2016-01-01

    Auditory speech perception can be altered by concurrent visual information. The superior temporal cortex is an important combining site for this integration process. This area was previously found to be sensitive to audiovisual congruency. However, the direction of this congruency effect (i.e., stronger or weaker activity for congruent compared to incongruent stimulation) has been more equivocal. Here, we used fMRI to look at the neural responses of human participants during the McGurk illusion--in which auditory /aba/ and visual /aga/ inputs are fused to perceived /ada/--in a large homogenous sample of participants who consistently experienced this illusion. This enabled us to compare the neuronal responses during congruent audiovisual stimulation with incongruent audiovisual stimulation leading to the McGurk illusion while avoiding the possible confounding factor of sensory surprise that can occur when McGurk stimuli are only occasionally perceived. We found larger activity for congruent audiovisual stimuli than for incongruent (McGurk) stimuli in bilateral superior temporal cortex, extending into the primary auditory cortex. This finding suggests that superior temporal cortex prefers when auditory and visual input support the same representation.

  10. Preference for Audiovisual Speech Congruency in Superior Temporal Cortex.

    PubMed

    Lüttke, Claudia S; Ekman, Matthias; van Gerven, Marcel A J; de Lange, Floris P

    2016-01-01

    Auditory speech perception can be altered by concurrent visual information. The superior temporal cortex is an important combining site for this integration process. This area was previously found to be sensitive to audiovisual congruency. However, the direction of this congruency effect (i.e., stronger or weaker activity for congruent compared to incongruent stimulation) has been more equivocal. Here, we used fMRI to look at the neural responses of human participants during the McGurk illusion--in which auditory /aba/ and visual /aga/ inputs are fused to perceived /ada/--in a large homogenous sample of participants who consistently experienced this illusion. This enabled us to compare the neuronal responses during congruent audiovisual stimulation with incongruent audiovisual stimulation leading to the McGurk illusion while avoiding the possible confounding factor of sensory surprise that can occur when McGurk stimuli are only occasionally perceived. We found larger activity for congruent audiovisual stimuli than for incongruent (McGurk) stimuli in bilateral superior temporal cortex, extending into the primary auditory cortex. This finding suggests that superior temporal cortex prefers when auditory and visual input support the same representation. PMID:26351991

  11. Preparatory Activity in Posterior Temporal Cortex Causally Contributes to Object Detection in Scenes.

    PubMed

    Reeder, Reshanne R; Perini, Francesca; Peelen, Marius V

    2015-11-01

    Theories of visual selective attention propose that top-down preparatory attention signals mediate the selection of task-relevant information in cluttered scenes. Neuroimaging and electrophysiology studies have provided correlative evidence for this hypothesis, finding increased activity in target-selective neural populations in visual cortex in the period between a search cue and target onset. In this study, we used online TMS to test whether preparatory neural activity in visual cortex is causally involved in naturalistic object detection. In two experiments, participants detected the presence of object categories (cars, people) in a diverse set of photographs of real-world scenes. TMS was applied over a region in posterior temporal cortex identified by fMRI as carrying category-specific preparatory activity patterns. Results showed that TMS applied over posterior temporal cortex before scene onset (-200 and -100 msec) impaired the detection of object categories in subsequently presented scenes, relative to vertex and early visual cortex stimulation. This effect was specific to category level detection and was related to the type of attentional template participants adopted, with the strongest effects observed in participants adopting category level templates. These results provide evidence for a causal role of preparatory attention in mediating the detection of objects in cluttered daily-life environments. PMID:26102225

  12. Conceptual representations of action in the lateral temporal cortex.

    PubMed

    Kable, Joseph W; Kan, Irene P; Wilson, Ashley; Thompson-Schill, Sharon L; Chatterjee, Anjan

    2005-12-01

    Retrieval of conceptual information from action pictures causes greater activation than from object pictures bilaterally in human motion areas (MT/MST) and nearby temporal regions. By contrast, retrieval of conceptual information from action words causes greater activation in left middle and superior temporal gyri, anterior and dorsal to the MT/MST. We performed two fMRI experiments to replicate and extend these findings regarding action words. In the first experiment, subjects performed conceptual judgments of action and object words under conditions that stressed visual semantic information. Under these conditions, action words again activated posterior temporal regions close to, but not identical with, the MT/MST. In the second experiment, we included conceptual judgments of manipulable object words in addition to judgments of action and animal words. Both action and manipulable object judgments caused greater activity than animal judgments in the posterior middle temporal gyrus. Both of these experiments support the hypothesis that middle temporal gyrus activation is related to accessing conceptual information about motion attributes, rather than alternative accounts on the basis of lexical or grammatical factors. Furthermore, these experiments provide additional support for the notion of a concrete to abstract gradient of motion representations with the lateral occipito-temporal cortex, extending anterior and dorsal from the MT/MST towards the peri-sylvian cortex.

  13. Spectral features control temporal plasticity in auditory cortex.

    PubMed

    Kilgard, M P; Pandya, P K; Vazquez, J L; Rathbun, D L; Engineer, N D; Moucha, R

    2001-01-01

    Cortical responses are adjusted and optimized throughout life to meet changing behavioral demands and to compensate for peripheral damage. The cholinergic nucleus basalis (NB) gates cortical plasticity and focuses learning on behaviorally meaningful stimuli. By systematically varying the acoustic parameters of the sound paired with NB activation, we have previously shown that tone frequency and amplitude modulation rate alter the topography and selectivity of frequency tuning in primary auditory cortex. This result suggests that network-level rules operate in the cortex to guide reorganization based on specific features of the sensory input associated with NB activity. This report summarizes recent evidence that temporal response properties of cortical neurons are influenced by the spectral characteristics of sounds associated with cholinergic modulation. For example, repeated pairing of a spectrally complex (ripple) stimulus decreased the minimum response latency for the ripple, but lengthened the minimum latency for tones. Pairing a rapid train of tones with NB activation only increased the maximum following rate of cortical neurons when the carrier frequency of each train was randomly varied. These results suggest that spectral and temporal parameters of acoustic experiences interact to shape spectrotemporal selectivity in the cortex. Additional experiments with more complex stimuli are needed to clarify how the cortex learns natural sounds such as speech.

  14. Consolidation of visual associative long-term memory in the temporal cortex of primates.

    PubMed

    Miyashita, Y; Kameyama, M; Hasegawa, I; Fukushima, T

    1998-01-01

    Neuropsychological theories have proposed a critical role for the interaction between the medial temporal lobe and the neocortex in the formation of long-term memory for facts and events, which has often been tested by learning of a series of paired words or figures in humans. We have examined neural mechanisms underlying the memory "consolidation" process by single-unit recording and molecular biological methods in an animal model of a visual pair-association task in monkeys. In our previous studies, we found that long-term associative representations of visual objects are acquired through learning in the neural network of the anterior inferior temporal (IT) cortex. In this article, we propose the hypothesis that limbic neurons undergo rapid modification of synaptic connectivity and provide backward signals that guide the reorganization of neocortical neural circuits. Two experiments tested this hypothesis: (1) we examined the role of the backward connections from the medial temporal lobe to the IT cortex by injecting ibotenic acid into the entorhinal and perirhinal cortices, which provided massive backward projections ipsilaterally to the IT cortex. We found that the limbic lesion disrupted the associative code of the IT neurons between the paired associates, without impairing the visual response to each stimulus. (2) We then tested the first half of this hypothesis by detecting the expression of immediate-early genes in the monkey temporal cortex. We found specific expression of zif268 during the learning of a new set of paired associates in the pair-association task, most intensively in area 36 of the perirhinal cortex. All these results with the visual pair-association task support our hypothesis and demonstrate that the consolidation process, which was first proposed on the basis of clinico-psychological evidence, can now be examined in primates using neurophysiolocical and molecular biological approaches.

  15. Polymodal information processing via temporal cortex Area 37 modeling

    NASA Astrophysics Data System (ADS)

    Peterson, James K.

    2004-04-01

    A model of biological information processing is presented that consists of auditory and visual subsystems linked to temporal cortex and limbic processing. An biologically based algorithm is presented for the fusing of information sources of fundamentally different modalities. Proof of this concept is outlined by a system which combines auditory input (musical sequences) and visual input (illustrations such as paintings) via a model of cortex processing for Area 37 of the temporal cortex. The training data can be used to construct a connectionist model whose biological relevance is suspect yet is still useful and a biologically based model which achieves the same input to output map through biologically relevant means. The constructed models are able to create from a set of auditory and visual clues a combined musical/ illustration output which shares many of the properties of the original training data. These algorithms are not dependent on these particular auditory/ visual modalities and hence are of general use in the intelligent computation of outputs that require sensor fusion.

  16. Connectivity between ventromedial prefrontal cortex and posterior superior temporal sulcus.

    PubMed

    Vallesi, Antonino

    2016-01-01

    The well-articulated Self Attention Network (SAN) framework accounts for a great portion of the available evidence on neurocognitive interactions between self-bias phenomena and attention. I argue that more work is necessary to refine our understanding about the effective and functional connectivity of the different nodes of the proposed network. In particular, the nature of the control of ventro-medial prefrontal cortex over posterior superior temporal sulcus has to be worked out further. Simple excitatory connections between these two nodes, as proposed by the SAN model, do not satisfactorily account for existing neuropsychological dissociations and are not fully warranted by neuroimaging evidence. PMID:26273997

  17. Contribution of the retrosplenial cortex to temporal discrimination learning.

    PubMed

    Todd, Travis P; Meyer, Heidi C; Bucci, David J

    2015-02-01

    The retrosplenial cortex (RSC) has an important role in contextual learning and memory. While the majority of experiments have focused on the physical context, the present study asked whether the RSC is involved in processing the temporal context. Rats were trained in a temporal discrimination procedure where the duration of the intertrial interval (ITI) signaled whether or not the next tone conditioned stimulus would be paired with food pellet reinforcement. When the tone was presented after a 16-min ITI it was reinforced, but when it was presented after a 4-min ITI it was not. Rats demonstrated successful discrimination in this procedure by responding more to the tone on reinforced trials than on non-reinforced trials. Pre-training electrolytic lesions of the RSC attenuated acquisition of the temporal discrimination. The results are the first to demonstrate a role for the RSC in processing temporal information and in turn extend the role of the RSC beyond the physical context to now include the temporal context.

  18. A Hierarchy of Temporal Receptive Windows in Human Cortex

    PubMed Central

    Hasson, Uri; Yang, Eunice; Vallines, Ignacio; Heeger, David J.; Rubin, Nava

    2008-01-01

    Real-world events unfold at different time scales and, therefore, cognitive and neuronal processes must likewise occur at different time scales. We present a novel procedure that identifies brain regions responsive to sensory information accumulated over different time scales. We measured functional magnetic resonance imaging activity while observers viewed silent films presented forward, backward, or piecewise-scrambled in time. Early visual areas (e.g., primary visual cortex and the motion-sensitive area MT+) exhibited high response reliability regardless of disruptions in temporal structure. In contrast, the reliability of responses in several higher brain areas, including the superior temporal sulcus (STS), precuneus, posterior lateral sulcus (LS), temporal parietal junction (TPJ), and frontal eye field (FEF), was affected by information accumulated over longer time scales. These regions showed highly reproducible responses for repeated forward, but not for backward or piecewise-scrambled presentations. Moreover, these regions exhibited marked differences in temporal characteristics, with LS, TPJ, and FEF responses depending on information accumulated over longer durations (~36 s) than STS and precuneus (~12 s). We conclude that, similar to the known cortical hierarchy of spatial receptive fields, there is a hierarchy of progressively longer temporal receptive windows in the human brain. PMID:18322098

  19. Prefrontal cortex stroke induces delayed impairment in spatial memory.

    PubMed

    Zhou, Lisa Y Y; Wright, Tim E; Clarkson, Andrew N

    2016-01-01

    Stroke is the leading cause of long-term disability. Little is known about the effects of stroke on cognitive deficits. The subtle nature of cognition and its respective domains in areas such as working memory and attention can make this difficult to diagnose and treat. We aimed to establish a model of focal ischemia that targets the prefrontal cortex (PFC) and induce memory impairments. Stroke and sham mice were assessed at one and four-weeks post-stroke on various tests: open-field task to assess activity; grid-walk and cylinder task to assess motor impairments; elevated plus maze to assess anxiety; novel-object and object-location recognition tasks to assess memory impairment. Stroke mice in the open-field showed a small increase in activity with no effects on gross motor tasks or anxiety levels (P ≥ 0.05) at one and four-weeks post-stroke. Assessment of stroke mice on the novel object task showed no differences at either one or four-weeks compared to sham mice (P ≥ 0.05). However, assessment of stroke mice on the object-location recognition task revealed a significant (P ≥ 0.05) impairment in spatial memory by four-weeks compared to controls. Further, we show that stroke results in a small decrease in volume of the medial dorsal nucleus of the thalamus (P ≥ 0.05). This is the first evidence that demonstrates stroke to the PFC results in delayed onset impairment in spatial memory, similar to findings in human epidemiological data. We suggest that this model may be a useful tool in assessing potential rehabilitative/cognitive therapies after stroke.

  20. IQ and the fronto-temporal cortex in bipolar disorder.

    PubMed

    Gutiérrez-Galve, Leticia; Bruno, Stefania; Wheeler-Kingshott, Claudia A M; Summers, Mary; Cipolotti, Lisa; Ron, Maria A

    2012-03-01

    Cognitive changes are documented in bipolar disorder (BP). Cortical volume loss, especially in prefrontal regions, has also been reported, but associations between cognition and cortical abnormalities have not been fully documented. This study explores associations between cognitive performance and cortical parameters (area, thickness and volume) of the fronto-temporal cortex in 36 BP patients (25 BPI and 11 BPII). T1-weighted volumetric MRI images were obtained using a 1.5 Tesla scanner. Cortical parameters were measured using surface-based morphometry and their associations with estimated premorbid, current IQ, visual memory, and executive function explored. Premorbid IQ was associated with frontal cortical area and volume, but no such associations were present for current cognitive performance. Cortical parameters were not different in BPI and BPII patients, but the association between current IQ and temporal cortical area was stronger in BPII patients. The pattern of cortico-cognitive associations in BPI and BPII patients merits further consideration. PMID:22264359

  1. Temporal tuning of word and face selective cortex

    PubMed Central

    Yeatman, Jason D.; Norcia, Anthony M.

    2016-01-01

    Sensitivity to temporal change places fundamental limits on object processing in the visual system. An emerging consensus from the behavioral and neuroimaging literature suggests that temporal resolution differs substantially for stimuli of different complexity and for brain areas at different levels of the cortical hierarchy. Here we used Steady-State Visual Evoked Potentials (SSVEPs) to directly measure three fundamental parameters that characterize the underlying neural response to text and face images: temporal resolution, peak temporal frequency and response latency. We presented full-screen images of text or a human face, alternated with a scrambled image, at temporal frequencies between 1 and 12 Hz. These images elicited a robust response at the first harmonic that showed differential tuning, scalp topography and delay for the text and face images. Face selective responses were maximal at 4 Hz, but text selective responses, by contrast were maximal at 1 Hz. The topography of the text image response was strongly left-lateralized at higher stimulation rates, while the response to the face image was slightly right-lateralized but nearly bilateral at all frequencies. Both text and face images elicited steady state activity at more than one apparent latency; we observed early (141ms–160ms) and late (>250ms) text and face selective responses. These differences in temporal tuning profiles are likely to reflect differences in the nature of the computations performed by word and face selective cortex. Despite the close proximity of word and face selective regions on the cortical surface, our measurements demonstrate substantial differences in the temporal dynamics of word-versus face-selective responses. PMID:27378330

  2. Spectral and temporal processing in rat posterior auditory cortex.

    PubMed

    Pandya, Pritesh K; Rathbun, Daniel L; Moucha, Raluca; Engineer, Navzer D; Kilgard, Michael P

    2008-02-01

    The rat auditory cortex is divided anatomically into several areas, but little is known about the functional differences in information processing between these areas. To determine the filter properties of rat posterior auditory field (PAF) neurons, we compared neurophysiological responses to simple tones, frequency modulated (FM) sweeps, and amplitude modulated noise and tones with responses of primary auditory cortex (A1) neurons. PAF neurons have excitatory receptive fields that are on average 65% broader than A1 neurons. The broader receptive fields of PAF neurons result in responses to narrow and broadband inputs that are stronger than A1. In contrast to A1, we found little evidence for an orderly topographic gradient in PAF based on frequency. These neurons exhibit latencies that are twice as long as A1. In response to modulated tones and noise, PAF neurons adapt to repeated stimuli at significantly slower rates. Unlike A1, neurons in PAF rarely exhibit facilitation to rapidly repeated sounds. Neurons in PAF do not exhibit strong selectivity for rate or direction of narrowband one octave FM sweeps. These results indicate that PAF, like nonprimary visual fields, processes sensory information on larger spectral and longer temporal scales than primary cortex.

  3. Spectral and Temporal Processing in Rat Posterior Auditory Cortex

    PubMed Central

    Pandya, Pritesh K.; Rathbun, Daniel L.; Moucha, Raluca; Engineer, Navzer D.; Kilgard, Michael P.

    2009-01-01

    The rat auditory cortex is divided anatomically into several areas, but little is known about the functional differences in information processing between these areas. To determine the filter properties of rat posterior auditory field (PAF) neurons, we compared neurophysiological responses to simple tones, frequency modulated (FM) sweeps, and amplitude modulated noise and tones with responses of primary auditory cortex (A1) neurons. PAF neurons have excitatory receptive fields that are on average 65% broader than A1 neurons. The broader receptive fields of PAF neurons result in responses to narrow and broadband inputs that are stronger than A1. In contrast to A1, we found little evidence for an orderly topographic gradient in PAF based on frequency. These neurons exhibit latencies that are twice as long as A1. In response to modulated tones and noise, PAF neurons adapt to repeated stimuli at significantly slower rates. Unlike A1, neurons in PAF rarely exhibit facilitation to rapidly repeated sounds. Neurons in PAF do not exhibit strong selectivity for rate or direction of narrowband one octave FM sweeps. These results indicate that PAF, like nonprimary visual fields, processes sensory information on larger spectral and longer temporal scales than primary cortex. PMID:17615251

  4. Left anterior temporal cortex actively engages in speech perception: A direct cortical stimulation study.

    PubMed

    Matsumoto, Riki; Imamura, Hisaji; Inouchi, Morito; Nakagawa, Tomokazu; Yokoyama, Yohei; Matsuhashi, Masao; Mikuni, Nobuhiro; Miyamoto, Susumu; Fukuyama, Hidenao; Takahashi, Ryosuke; Ikeda, Akio

    2011-04-01

    Recent neuroimaging studies proposed the importance of the anterior auditory pathway for speech comprehension. Its clinical significance is implicated by semantic dementia or pure word deafness. Neurodegenerative or cerebrovascular nature, however, precluded precise localization of the cortex responsible for speech perception. Electrical cortical stimulation could delineate such localization by producing transient, functional impairment. We investigated engagement of the left anterior temporal cortex in speech perception by means of direct electrical cortical stimulation. Subjects were two partial epilepsy patients, who underwent direct cortical stimulation as a part of invasive presurgical evaluations. Stimulus sites were coregistered to presurgical 3D-MRI, and then to MNI standard space for anatomical localization. Separate from the posterior temporal language area, electrical cortical stimulation revealed a well-restricted language area in the anterior part of the superior temporal sulcus and gyrus (aSTS/STG) in both patients. Auditory sentence comprehension was impaired upon electrical stimulation of aSTS/STG. In one patient, additional investigation revealed that the functional impairment was restricted to auditory sentence comprehension with preserved visual sentence comprehension and perception of music and environmental sounds. Both patients reported that they could hear the voice but not understand the sentence well (e.g., heard as a series of meaningless utterance). The standard coordinates of this restricted area at left aSTS/STG well corresponded with the coordinates of speech perception reported in neuroimaging activation studies in healthy subjects. The present combined anatomo-functional case study, for the first time, demonstrated that aSTS/STG in the language dominant hemisphere actively engages in speech perception.

  5. Mild Perceptual Categorization Deficits Follow Bilateral Removal of Anterior Inferior Temporal Cortex in Rhesus Monkeys

    PubMed Central

    Matsumoto, Narihisa; Eldridge, Mark A.G.; Saunders, Richard C.; Reoli, Rachel

    2016-01-01

    In primates, visual recognition of complex objects depends on the inferior temporal lobe. By extension, categorizing visual stimuli based on similarity ought to depend on the integrity of the same area. We tested three monkeys before and after bilateral anterior inferior temporal cortex (area TE) removal. Although mildly impaired after the removals, they retained the ability to assign stimuli to previously learned categories, e.g., cats versus dogs, and human versus monkey faces, even with trial-unique exemplars. After the TE removals, they learned in one session to classify members from a new pair of categories, cars versus trucks, as quickly as they had learned the cats versus dogs before the removals. As with the dogs and cats, they generalized across trial-unique exemplars of cars and trucks. However, as seen in earlier studies, these monkeys with TE removals had difficulty learning to discriminate between two simple black and white stimuli. These results raise the possibility that TE is needed for memory of simple conjunctions of basic features, but that it plays only a small role in generalizing overall configural similarity across a large set of stimuli, such as would be needed for perceptual categorical assignment. SIGNIFICANCE STATEMENT The process of seeing and recognizing objects is attributed to a set of sequentially connected brain regions stretching forward from the primary visual cortex through the temporal lobe to the anterior inferior temporal cortex, a region designated area TE. Area TE is considered the final stage for recognizing complex visual objects, e.g., faces. It has been assumed, but not tested directly, that this area would be critical for visual generalization, i.e., the ability to place objects such as cats and dogs into their correct categories. Here, we demonstrate that monkeys rapidly and seemingly effortlessly categorize large sets of complex images (cats vs dogs, cars vs trucks), surprisingly, even after removal of area TE

  6. Temporal cortex reflects effects of sentence context on phonetic processing

    PubMed Central

    Guediche, Sara; Salvata, Caden; Blumstein, Sheila E.

    2013-01-01

    Listeners’ perception of acoustically presented speech is constrained by many different sources of information that arise from other sensory modalities and from more abstract higher-level language context. An open question is how perceptual processes are influenced by and interact with these other sources of information. In this study, we use fMRI to examine the effect of a prior sentence-fragment meaning on the categorization of two possible target words that differ in an acoustic phonetic feature of the initial consonant, voice-onset time (VOT). Specifically, we manipulate the bias of the sentence context (biased, neutral) and the target type (ambiguous, unambiguous). Our results show that an interaction between these two factors emerged in a cluster in temporal cortex encompassing the left middle temporal gyrus and the superior temporal gyrus. The locus and pattern of these interactions support an interactive view of speech processing and suggest that both the quality of the input and the potential bias of the context together interact and modulate neural activation patterns. PMID:23281778

  7. Memory impairment and alterations in prefrontal cortex gamma band activity following methamphetamine sensitization

    PubMed Central

    Linsenbardt, David N.; Lapish, Christopher C.

    2015-01-01

    Rationale Repeated methamphetamine (MA) use leads to increases in the incentive motivational properties of the drug as well as cognitive impairments. These behavioral alterations persist for some time following abstinence, and neuroadaptations in the structure and function of the prefrontal cortex (PFC) are particularly important for their expression. However, there is a weak understanding of the changes in neural firing and oscillatory activity in the PFC evoked by repeated drug use, thus complicating the development of novel treatment strategies for addiction. Objectives The purpose of the current study was to assess changes in cognitive and brain function following MA sensitization. Methods Sensitization was induced in rats, then temporal and recognition memory were assessed after 1 or 30 days of abstinence. Electrophysiological recordings from the medial PFC were also acquired from rats whereupon simultaneous measures of oscillatory and spiking activity were examined. Results Impaired temporal memory was observed after 1 and 30 days of abstinence. However, recognition memory was only impaired after 1 day of abstinence. An injection of MA profoundly decreased neuronal firing rate and the anesthesia-induced slow oscillation (SO) in both sensitized (SENS) and control (CTRL) rats. Strong correlations were observed between the SO and gamma band power, which was altered in SENS animals. A decrease in the number of neurons phase-locked to the gamma oscillation was also observed in SENS animals. Conclusions The changes observed in PFC function may play an integral role in the expression of the altered behavioral phenotype evoked by MA sensitization. PMID:25572530

  8. Associative hallucinations result from stimulating left ventromedial temporal cortex.

    PubMed

    Aminoff, Elissa M; Li, Yuanning; Pyles, John A; Ward, Michael J; Richardson, R Mark; Ghuman, Avniel S

    2016-10-01

    Visual recognition requires connecting perceptual information with contextual information and existing knowledge. The ventromedial temporal cortex (VTC), including the medial fusiform, has been linked with object recognition, paired associate learning, contextual processing, and episodic memory, suggesting that this area may be critical in connecting visual processing, context, knowledge and experience. However, evidence for the link between associative processing, episodic memory, and visual recognition in VTC is currently lacking. Using electrocorticography (ECoG) in a single human patient, medial regions of the left VTC were found to be sensitive to the contextual associations of objects. Electrical brain stimulation (EBS) of this part of the left VTC of the patient, functionally defined as sensitive to associative processing, caused memory related, associative experiential visual phenomena. This provides evidence of a relationship between visual recognition, associative processing, and episodic memory. These results suggest a potential role for abnormalities of these processes as part of a mechanism that gives rise to some visual hallucinations.

  9. Encoding of Stimulus Probability in Macaque Inferior Temporal Cortex.

    PubMed

    Bell, Andrew H; Summerfield, Christopher; Morin, Elyse L; Malecek, Nicholas J; Ungerleider, Leslie G

    2016-09-12

    Optimal perceptual decisions require sensory signals to be combined with prior information about stimulus probability. Although several theories propose that probabilistic information about stimulus occurrence is encoded in sensory cortex, evidence from neuronal recordings has not yet fully supported this view. We recorded activity from single neurons in inferior temporal cortex (IT) while monkeys performed a task that involved discriminating degraded images of faces and fruit. The relative probability of the cue being a face versus a fruit was manipulated by a latent variable that was not revealed to the monkeys and that changed unpredictably over the course of each recording session. In addition to responding to stimulus identity (face or fruit), population responses in IT encoded the long-term stimulus probability of whether a face or a fruit stimulus was more likely to occur. Face-responsive neurons showed reduced firing rates to expected faces, an effect consistent with "expectation suppression," but expected stimuli were decoded from multivariate population signals with greater accuracy. These findings support "predictive coding" theories, whereby neural signals in the mammalian visual system actively encode and update predictions about the local sensory environment.

  10. Reading without the left ventral occipito-temporal cortex

    PubMed Central

    Seghier, Mohamed L.; Neufeld, Nicholas H.; Zeidman, Peter; Leff, Alex P.; Mechelli, Andrea; Nagendran, Arjuna; Riddoch, Jane M.; Humphreys, Glyn W.; Price, Cathy J.

    2012-01-01

    The left ventral occipito-temporal cortex (LvOT) is thought to be essential for the rapid parallel letter processing that is required for skilled reading. Here we investigate whether rapid written word identification in skilled readers can be supported by neural pathways that do not involve LvOT. Hypotheses were derived from a stroke patient who acquired dyslexia following extensive LvOT damage. The patient followed a reading trajectory typical of that associated with pure alexia, re-gaining the ability to read aloud many words with declining performance as the length of words increased. Using functional MRI and dynamic causal modelling (DCM), we found that, when short (three to five letter) familiar words were read successfully, visual inputs to the patient’s occipital cortex were connected to left motor and premotor regions via activity in a central part of the left superior temporal sulcus (STS). The patient analysis therefore implied a left hemisphere “reading-without-LvOT” pathway that involved STS. We then investigated whether the same reading-without-LvOT pathway could be identified in 29 skilled readers and whether there was inter-subject variability in the degree to which skilled reading engaged LvOT. We found that functional connectivity in the reading-without-LvOT pathway was strongest in individuals who had the weakest functional connectivity in the LvOT pathway. This observation validates the findings of our patient’s case study. Our findings highlight the contribution of a left hemisphere reading pathway that is activated during the rapid identification of short familiar written words, particularly when LvOT is not involved. Preservation and use of this pathway may explain how patients are still able to read short words accurately when LvOT has been damaged. PMID:23017598

  11. Anatomical pathways for auditory memory II: information from rostral superior temporal gyrus to dorsolateral temporal pole and medial temporal cortex

    PubMed Central

    Muñoz-López, M.; Insausti, R.; Mohedano-Moriano, A.; Mishkin, M.; Saunders, R. C.

    2015-01-01

    Auditory recognition memory in non-human primates differs from recognition memory in other sensory systems. Monkeys learn the rule for visual and tactile delayed matching-to-sample within a few sessions, and then show one-trial recognition memory lasting 10–20 min. In contrast, monkeys require hundreds of sessions to master the rule for auditory recognition, and then show retention lasting no longer than 30–40 s. Moreover, unlike the severe effects of rhinal lesions on visual memory, such lesions have no effect on the monkeys' auditory memory performance. The anatomical pathways for auditory memory may differ from those in vision. Long-term visual recognition memory requires anatomical connections from the visual association area TE with areas 35 and 36 of the perirhinal cortex (PRC). We examined whether there is a similar anatomical route for auditory processing, or that poor auditory recognition memory may reflect the lack of such a pathway. Our hypothesis is that an auditory pathway for recognition memory originates in the higher order processing areas of the rostral superior temporal gyrus (rSTG), and then connects via the dorsolateral temporal pole to access the rhinal cortex of the medial temporal lobe. To test this, we placed retrograde (3% FB and 2% DY) and anterograde (10% BDA 10,000 mW) tracer injections in rSTG and the dorsolateral area 38DL of the temporal pole. Results showed that area 38DL receives dense projections from auditory association areas Ts1, TAa, TPO of the rSTG, from the rostral parabelt and, to a lesser extent, from areas Ts2-3 and PGa. In turn, area 38DL projects densely to area 35 of PRC, entorhinal cortex (EC), and to areas TH/TF of the posterior parahippocampal cortex. Significantly, this projection avoids most of area 36r/c of PRC. This anatomical arrangement may contribute to our understanding of the poor auditory memory of rhesus monkeys. PMID:26041980

  12. Scene construction impairments in Alzheimer's disease - A unique role for the posterior cingulate cortex.

    PubMed

    Irish, Muireann; Halena, Stephanie; Kamminga, Jody; Tu, Sicong; Hornberger, Michael; Hodges, John R

    2015-12-01

    Episodic memory dysfunction represents one of the most prominent and characteristic clinical features of patients with Alzheimer's disease (AD), attributable to the degeneration of medial temporal and posterior parietal regions of the brain. Recent studies have demonstrated marked impairments in the ability to envisage personally relevant events in the future in AD. It remains unclear, however, whether AD patients can imagine fictitious scenes free from temporal constraints, a process that is proposed to rely fundamentally upon the integrity of the hippocampus. The objective of the present study was to investigate the capacity for atemporal scene construction, and its associated neural substrates, in AD. Fourteen AD patients were tested on the scene construction task and their performance was contrasted with 14 age- and education-matched healthy older Control participants. Scene construction performance was strikingly compromised in the AD group, with significant impairments evident for provision of contextual details, spatial coherence, and the overall richness of the imagined experience. Voxel-based morphometry analyses based on structural MRI revealed significant associations between scene construction capacity and atrophy in posterior parietal and lateral temporal brain structures in AD. In contrast, scene construction performance in Controls was related to integrity of frontal, parietal, and medial temporal structures, including the parahippocampal gyrus and posterior hippocampus. The posterior cingulate cortex (PCC) emerged as the common region implicated for scene construction performance across participant groups. Our study highlights the importance of regions specialised for spatial and contextual processing for the construction of atemporal scenes. Damage to these regions in AD compromises the ability to construct novel scenes, leading to the recapitulation of content from previously experienced events.

  13. Neural processing of biological motion in the macaque temporal cortex

    NASA Astrophysics Data System (ADS)

    Oram, Michael W.; Perrett, David I.

    1994-03-01

    Cells have been found in the superior temporal polysensory area (STPa) of the macaque temporal cortex which are selectively responsive to the sight of particular whole body movements (e.g., walking) under normal lighting. These cells typically discriminate the direction of walking and the view of the body (e.g., left profile walking left). We investigated the extent to which these cells are responsive under `biological motion' conditions where the form of the body is defined only by the movement of light patches attached to the points of limb articulation. One third of the cells (25/72) selective for the form and motion of waling bodies, showed sensitivity to the moving light displays. Seven of these cells showed only partial sensitivity to form from motion, in so far as the cells responded more to moving light displays than to moving controls but failed to discriminate body view. These seven cells exhibited directional selectivity. Eighteen cells showed statistical discrimination for both direction of movement and body view under biological motion conditions. Most of these cells showed reduced responses to the impoverished moving light stimuli compared to full light conditions. The 18 cells were thus sensitive to detailed form information (body view) from the pattern of articulating motion. Cellular processing of the global pattern of articulation was indicated by the observations that none of the cells were found sensitive to movement of individual limbs and that jumbling the pattern of moving limbs reduced response magnitude. The cell responses thus provide direct evidence for neural mechanisms computing form from non-rigid motion. The selectivity of the cells was for body view, specific direction and specific type of body motion presented by moving light displays and is not predicted by many current computational approaches to the extraction of form from motion.

  14. Learning Warps Object Representations in the Ventral Temporal Cortex.

    PubMed

    Clarke, Alex; Pell, Philip J; Ranganath, Charan; Tyler, Lorraine K

    2016-07-01

    The human ventral temporal cortex (VTC) plays a critical role in object recognition. Although it is well established that visual experience shapes VTC object representations, the impact of semantic and contextual learning is unclear. In this study, we tracked changes in representations of novel visual objects that emerged after learning meaningful information about each object. Over multiple training sessions, participants learned to associate semantic features (e.g., "made of wood," "floats") and spatial contextual associations (e.g., "found in gardens") with novel objects. fMRI was used to examine VTC activity for objects before and after learning. Multivariate pattern similarity analyses revealed that, after learning, VTC activity patterns carried information about the learned contextual associations of the objects, such that objects with contextual associations exhibited higher pattern similarity after learning. Furthermore, these learning-induced increases in pattern information about contextual associations were correlated with reductions in pattern information about the object's visual features. In a second experiment, we validated that these contextual effects translated to real-life objects. Our findings demonstrate that visual object representations in VTC are shaped by the knowledge we have about objects and show that object representations can flexibly adapt as a consequence of learning with the changes related to the specific kind of newly acquired information. PMID:26967942

  15. Inactivation of the Infralimbic but Not the Prelimbic Cortex Impairs Consolidation and Retrieval of Fear Extinction

    ERIC Educational Resources Information Center

    Laurent, Vincent; Westbrook, R. Frederick

    2009-01-01

    Rats were subjected to one or two cycles of context fear conditioning and extinction to study the roles of the prelimbic cortex (PL) and infralimbic cortex (IL) in learning and relearning to inhibit fear responses. Inactivation of the PL depressed fear responses across the first or second extinction but did not impair learning or relearning fear…

  16. Local but not long-range microstructural differences of the ventral temporal cortex in developmental prosopagnosia.

    PubMed

    Song, Sunbin; Garrido, Lúcia; Nagy, Zoltan; Mohammadi, Siawoosh; Steel, Adam; Driver, Jon; Dolan, Ray J; Duchaine, Bradley; Furl, Nicholas

    2015-11-01

    Individuals with developmental prosopagnosia (DP) experience face recognition impairments despite normal intellect and low-level vision and no history of brain damage. Prior studies using diffusion tensor imaging in small samples of subjects with DP (n=6 or n=8) offer conflicting views on the neurobiological bases for DP, with one suggesting white matter differences in two major long-range tracts running through the temporal cortex, and another suggesting white matter differences confined to fibers local to ventral temporal face-specific functional regions of interest (fROIs) in the fusiform gyrus. Here, we address these inconsistent findings using a comprehensive set of analyzes in a sample of DP subjects larger than both prior studies combined (n=16). While we found no microstructural differences in long-range tracts between DP and age-matched control participants, we found differences local to face-specific fROIs, and relationships between these microstructural measures with face recognition ability. We conclude that subtle differences in local rather than long-range tracts in the ventral temporal lobe are more likely associated with developmental prosopagnosia.

  17. Local but not long-range microstructural differences of the ventral temporal cortex in developmental prosopagnosia

    PubMed Central

    Song, Sunbin; Garrido, Lúcia; Nagy, Zoltan; Mohammadi, Siawoosh; Steel, Adam; Driver, Jon; Dolan, Ray J.; Duchaine, Bradley; Furl, Nicholas

    2015-01-01

    Individuals with developmental prosopagnosia (DP) experience face recognition impairments despite normal intellect and low-level vision and no history of brain damage. Prior studies using diffusion tensor imaging in small samples of subjects with DP (n=6 or n=8) offer conflicting views on the neurobiological bases for DP, with one suggesting white matter differences in two major long-range tracts running through the temporal cortex, and another suggesting white matter differences confined to fibers local to ventral temporal face-specific functional regions of interest (fROIs) in the fusiform gyrus. Here, we address these inconsistent findings using a comprehensive set of analyzes in a sample of DP subjects larger than both prior studies combined (n=16). While we found no microstructural differences in long-range tracts between DP and age-matched control participants, we found differences local to face-specific fROIs, and relationships between these microstructural measures with face recognition ability. We conclude that subtle differences in local rather than long-range tracts in the ventral temporal lobe are more likely associated with developmental prosopagnosia. PMID:26456436

  18. Rhinal and Dorsolateral Prefrontal Cortex Lesions Produce Selective Impairments in Object and Spatial Learning and Memory in Canines

    PubMed Central

    Christie, Lori-Ann; Saunders, Richard C.; Kowalska, Danuta, M.; MacKay, William A.; Head, Elizabeth; Cotman, Carl W.; Milgram, Norton W.

    2014-01-01

    To examine the effects of rhinal and dorsolateral prefrontal cortex lesions on object and spatial recognition memory in canines, we used a protocol in which both an object (delayed non-matching to sample, or DNMS) and a spatial (delayed non-matching to position or DNMP) recognition task were administered daily. The tasks used similar procedures such that only the type of stimulus information to be remembered differed. Rhinal cortex (RC) lesions produced a selective deficit on the DNMS task, both in retention of the task rules at short delays and in object recognition memory. By contrast, performance on the DNMP task remained intact at both short and long delay intervals in RC animals. Subjects who received dorsolateral prefrontal cortex (dlPFC) lesions were impaired on a spatial task at a short, 5-sec delay, suggesting disrupted retention of the general task rules, however, this impairment was transient; long-term spatial memory performance was unaffected in dlPFC subjects. The present results provide support for the involvement of the RC in object, but not visuospatial, processing and recognition memory, whereas the dlPFC appears to mediate retention of a non-matching rule. These findings support theories of functional specialization within the medial temporal lobe and frontal cortex and suggest that rhinal and dorsolateral prefrontal cortices in canines are functionally similar to analogous regions in other mammals. PMID:18792072

  19. Dynamic encoding of speech sequence probability in human temporal cortex.

    PubMed

    Leonard, Matthew K; Bouchard, Kristofer E; Tang, Claire; Chang, Edward F

    2015-05-01

    Sensory processing involves identification of stimulus features, but also integration with the surrounding sensory and cognitive context. Previous work in animals and humans has shown fine-scale sensitivity to context in the form of learned knowledge about the statistics of the sensory environment, including relative probabilities of discrete units in a stream of sequential auditory input. These statistics are a defining characteristic of one of the most important sequential signals humans encounter: speech. For speech, extensive exposure to a language tunes listeners to the statistics of sound sequences. To address how speech sequence statistics are neurally encoded, we used high-resolution direct cortical recordings from human lateral superior temporal cortex as subjects listened to words and nonwords with varying transition probabilities between sound segments. In addition to their sensitivity to acoustic features (including contextual features, such as coarticulation), we found that neural responses dynamically encoded the language-level probability of both preceding and upcoming speech sounds. Transition probability first negatively modulated neural responses, followed by positive modulation of neural responses, consistent with coordinated predictive and retrospective recognition processes, respectively. Furthermore, transition probability encoding was different for real English words compared with nonwords, providing evidence for online interactions with high-order linguistic knowledge. These results demonstrate that sensory processing of deeply learned stimuli involves integrating physical stimulus features with their contextual sequential structure. Despite not being consciously aware of phoneme sequence statistics, listeners use this information to process spoken input and to link low-level acoustic representations with linguistic information about word identity and meaning.

  20. Capturing the temporal evolution of choice across prefrontal cortex.

    PubMed

    Hunt, Laurence T; Behrens, Timothy E J; Hosokawa, Takayuki; Wallis, Jonathan D; Kennerley, Steven W

    2015-12-11

    Activity in prefrontal cortex (PFC) has been richly described using economic models of choice. Yet such descriptions fail to capture the dynamics of decision formation. Describing dynamic neural processes has proven challenging due to the problem of indexing the internal state of PFC and its trial-by-trial variation. Using primate neurophysiology and human magnetoencephalography, we here recover a single-trial index of PFC internal states from multiple simultaneously recorded PFC subregions. This index can explain the origins of neural representations of economic variables in PFC. It describes the relationship between neural dynamics and behaviour in both human and monkey PFC, directly bridging between human neuroimaging data and underlying neuronal activity. Moreover, it reveals a functionally dissociable interaction between orbitofrontal cortex, anterior cingulate cortex and dorsolateral PFC in guiding cost-benefit decisions. We cast our observations in terms of a recurrent neural network model of choice, providing formal links to mechanistic dynamical accounts of decision-making.

  1. Impaired executive function following ischemic stroke in the rat medial prefrontal cortex.

    PubMed

    Cordova, Chris A; Jackson, Danielle; Langdon, Kristopher D; Hewlett, Krista A; Corbett, Dale

    2014-01-01

    Small (lacunar) infarcts frequently arise in frontal and midline thalamic regions in the absence of major stroke. Damage to these areas often leads to impairment of executive function likely as a result of interrupting connections of the prefrontal cortex. Thus, patients experience frontal-like symptoms such as impaired ability to shift ongoing behavior and attention. In contrast, executive dysfunction has not been demonstrated in rodent models of stroke, thereby limiting the development of potential therapies for human executive dysfunction. Male Sprague-Dawley rats (n=40) underwent either sham surgery or bilateral endothelin-1 injections in the mediodorsal nucleus of the thalamus or in the medial prefrontal cortex. Executive function was assessed using a rodent attention set shifting test that requires animals to shift attention to stimuli in different stimulus dimensions. Medial prefrontal cortex ischemia impaired attention shift performance between different stimulus dimensions while sparing stimulus discrimination and attention shifts within a stimulus dimension, indicating a selective attention set-shift deficit. Rats with mediodorsal thalamic lacunar damage did not exhibit a cognitive impairment relative to sham controls. The selective attention set shift impairment observed in this study is consistent with clinical data demonstrating selective executive disorders following stroke within specific sub-regions of frontal cortex. These data contribute to the development and validation of a preclinical animal model of executive dysfunction, that can be employed to identify potential therapies for ameliorating cognitive deficits following stroke.

  2. Repeated Stress Causes Cognitive Impairment by Suppressing Glutamate Receptor Expression and Function in Prefrontal Cortex

    PubMed Central

    Yuen, Eunice Y.; Wei, Jing; Liu, Wenhua; Zhong, Ping; Li, Xiangning; Yan, Zhen

    2012-01-01

    SUMMARY Chronic stress could trigger maladaptive changes associated with stress-related mental disorders, however, the underlying mechanisms remain elusive. In this study, we found that exposing juvenile male rats to repeated stress significantly impaired the temporal order recognition memory, a cognitive process controlled by prefrontal cortex (PFC). Concomitantly, significantly reduced AMPAR- and NMDAR-mediated synaptic transmission and glutamate receptor expression were found in PFC pyramidal neurons from repeatedly stressed animals. All these effects relied on activation of glucocorticoid receptors and the subsequent enhancement of ubiquitin/proteasome-mediated degradation of GluR1 and NR1 subunits, which was controlled by the E3 ubiquitin ligase Nedd4-1 and Fbx2, respectively. Inhibition of proteasomes or knockdown of Nedd4-1 and Fbx2 in PFC prevented the loss of glutamatergic responses and recognition memory in stressed animals. Our results suggest that repeated stress dampens PFC glutamatergic transmission by facilitating glutamate receptor turnover, which causes the detrimental effect on PFC-dependent cognitive processes. PMID:22405206

  3. Capturing the temporal evolution of choice across prefrontal cortex

    PubMed Central

    Hunt, Laurence T; Behrens, Timothy EJ; Hosokawa, Takayuki; Wallis, Jonathan D; Kennerley, Steven W

    2015-01-01

    Activity in prefrontal cortex (PFC) has been richly described using economic models of choice. Yet such descriptions fail to capture the dynamics of decision formation. Describing dynamic neural processes has proven challenging due to the problem of indexing the internal state of PFC and its trial-by-trial variation. Using primate neurophysiology and human magnetoencephalography, we here recover a single-trial index of PFC internal states from multiple simultaneously recorded PFC subregions. This index can explain the origins of neural representations of economic variables in PFC. It describes the relationship between neural dynamics and behaviour in both human and monkey PFC, directly bridging between human neuroimaging data and underlying neuronal activity. Moreover, it reveals a functionally dissociable interaction between orbitofrontal cortex, anterior cingulate cortex and dorsolateral PFC in guiding cost-benefit decisions. We cast our observations in terms of a recurrent neural network model of choice, providing formal links to mechanistic dynamical accounts of decision-making. DOI: http://dx.doi.org/10.7554/eLife.11945.001 PMID:26653139

  4. Dyslexic children lack word selectivity gradients in occipito-temporal and inferior frontal cortex

    PubMed Central

    Olulade, O.A.; Flowers, D.L.; Napoliello, E.M.; Eden, G.F.

    2015-01-01

    fMRI studies using a region-of-interest approach have revealed that the ventral portion of the left occipito-temporal cortex, which is specialized for orthographic processing of visually presented words (and includes the so-called “visual word form area”, VWFA), is characterized by a posterior-to-anterior gradient of increasing selectivity for words in typically reading adults, adolescents, and children (e.g. Brem et al., 2006, 2009). Similarly, the left inferior frontal cortex (IFC) has been shown to exhibit a medial-to-lateral gradient of print selectivity in typically reading adults (Vinckier et al., 2007). Functional brain imaging studies of dyslexia have reported relative underactivity in left hemisphere occipito-temporal and inferior frontal regions using whole-brain analyses during word processing tasks. Hence, the question arises whether gradient sensitivities in these regions are altered in dyslexia. Indeed, a region-of-interest analysis revealed the gradient-specific functional specialization in the occipito-temporal cortex to be disrupted in dyslexic children (van der Mark et al., 2009). Building on these studies, we here (1) investigate if a word-selective gradient exists in the inferior frontal cortex in addition to the occipito-temporal cortex in normally reading children, (2) compare typically reading with dyslexic children, and (3) examine functional connections between these regions in both groups. We replicated the previously reported anterior-to-posterior gradient of increasing selectivity for words in the left occipito-temporal cortex in typically reading children, and its absence in the dyslexic children. Our novel finding is the detection of a pattern of increasing selectivity for words along the medial-to-lateral axis of the left inferior frontal cortex in typically reading children and evidence of functional connectivity between the most lateral aspect of this area and the anterior aspects of the occipito-temporal cortex. We report

  5. Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey

    SciTech Connect

    Petrides, M.; Pandya, D.N.

    1988-07-01

    The projections to the frontal cortex that originate from the various areas of the superior temporal region of the rhesus monkey were investigated with the autoradiographic technique. The results demonstrated that the rostral part of the superior temporal gyrus (areas Pro, Ts1, and Ts2) projects to the proisocortical areas of the orbital and medial frontal cortex, as well as to the nearby orbital areas 13, 12, and 11, and to medial areas 9, 10, and 14. These fibers travel to the frontal lobe as part of the uncinate fascicle. The middle part of the superior temporal gyrus (areas Ts3 and paAlt) projects predominantly to the lateral frontal cortex (areas 12, upper 46, and 9) and to the dorsal aspect of the medial frontal lobe (areas 9 and 10). Only a small number of these fibers terminated within the orbitofrontal cortex. The temporofrontal fibers originating from the middle part of the superior temporal gyrus occupy the lower portion of the extreme capsule and lie just dorsal to the fibers of the uncinate fascicle. The posterior part of the superior temporal gyrus projects to the lateral frontal cortex (area 46, dorsal area 8, and the rostralmost part of dorsal area 6). Some of the fibers from the posterior superior temporal gyrus run initially through the extreme capsule and then cross the claustrum as they ascend to enter the external capsule before continuing their course to the frontal lobe. A larger group of fibers curves round the caudalmost Sylvian fissure and travels to the frontal cortex occupying a position just above and medial to the upper branch of the circular sulcus. This latter pathway constitutes a part of the classically described arcuate fasciculus.

  6. Temporal Processing Capacity in High-Level Visual Cortex Is Domain Specific.

    PubMed

    Stigliani, Anthony; Weiner, Kevin S; Grill-Spector, Kalanit

    2015-09-01

    Prevailing hierarchical models propose that temporal processing capacity--the amount of information that a brain region processes in a unit time--decreases at higher stages in the ventral stream regardless of domain. However, it is unknown if temporal processing capacities are domain general or domain specific in human high-level visual cortex. Using a novel fMRI paradigm, we measured temporal capacities of functional regions in high-level visual cortex. Contrary to hierarchical models, our data reveal domain-specific processing capacities as follows: (1) regions processing information from different domains have differential temporal capacities within each stage of the visual hierarchy and (2) domain-specific regions display the same temporal capacity regardless of their position in the processing hierarchy. In general, character-selective regions have the lowest capacity, face- and place-selective regions have an intermediate capacity, and body-selective regions have the highest capacity. Notably, domain-specific temporal processing capacities are not apparent in V1 and have perceptual implications. Behavioral testing revealed that the encoding capacity of body images is higher than that of characters, faces, and places, and there is a correspondence between peak encoding rates and cortical capacities for characters and bodies. The present evidence supports a model in which the natural statistics of temporal information in the visual world may affect domain-specific temporal processing and encoding capacities. These findings suggest that the functional organization of high-level visual cortex may be constrained by temporal characteristics of stimuli in the natural world, and this temporal capacity is a characteristic of domain-specific networks in high-level visual cortex. Significance statement: Visual stimuli bombard us at different rates every day. For example, words and scenes are typically stationary and vary at slow rates. In contrast, bodies are dynamic

  7. Losing the sound of concepts: damage to auditory association cortex impairs the processing of sound-related concepts.

    PubMed

    Trumpp, Natalie M; Kliese, Daniel; Hoenig, Klaus; Haarmeier, Thomas; Kiefer, Markus

    2013-02-01

    Conceptual knowledge is classically supposed to be abstract and represented in an amodal unitary system, distinct from the sensory and motor brain systems. A more recent embodiment view of conceptual knowledge, however, proposes that concepts are grounded in distributed modality-specific brain areas which typically process sensory or action-related object information. Recent neuroimaging evidence suggested the significance of left auditory association cortex encompassing posterior superior and middle temporal gyrus in coding conceptual sound features of everyday objects. However, a causal role of this region in processing conceptual sound information has yet to be established. Here we had the unique chance to investigate a patient, JR, with a focal lesion in left posterior superior and middle temporal gyrus. To test the necessity of this region in conceptual and perceptual processing of sound information we administered four different experimental tasks to JR: Visual word recognition, category fluency, sound recognition and voice classification. Compared with a matched control group, patient JR was consistently impaired in conceptual processing of sound-related everyday objects (e.g., "bell"), while performance for non-sound-related everyday objects (e.g., "armchair"), animals, whether they typically produce sounds (e.g., "frog") or not (e.g., "tortoise"), and musical instruments (e.g., "guitar") was intact. An analogous deficit pattern in JR was also obtained for perceptual recognition of the corresponding sounds. Hence, damage to left auditory association cortex specifically impairs perceptual and conceptual processing of sounds from everyday objects. In support of modality-specific theories, these findings strongly evidence the necessity of auditory association cortex in coding sound-related conceptual information. PMID:22405961

  8. Effects of neonatal medial versus lateral temporal cortex injury: theoretical comment on Malkova et al. (2010).

    PubMed

    Kolb, Bryan

    2010-12-01

    The article by Malkova, Mishkin, Suomo, and Bachevalier (2010, this issue) adds an important piece to our understanding of the role of the medial versus lateral temporal regions in socioemotional behavior. In their paper, they evaluate the effect of infant and adult amygdala lesions and infant inferotemporal cortex lesions on the social interactions of monkeys in infancy and adulthood. The results show that medial temporal lesions performed in infants produce greater effects on socioaffective behavior than similar lesions in adulthood and that infant monkeys with inferotemporal lesions exhibit social deficits that are resolved by adulthood. These results are relevant to three significant issues: (1) the role of the medial temporal and lateral temporal cortex in the symptoms of the Kluver-Bucy syndrome; (2) the role of age at injury in behavioral change after cerebral injuries; and (3) the importance of lesion locus and behavioral measure for recovery from infant and adult cerebral injury.

  9. Thicker Temporal Cortex Associates with a Developmental Trajectory for Psychopathic Traits in Adolescents

    PubMed Central

    Yang, Yaling; Wang, Pan; Baker, Laura A.; Narr, Katherine L.; Joshi, Shantanu H.; Hafzalla, George; Raine, Adrian; Thompson, Paul M.

    2015-01-01

    Psychopathy is a clinical condition characterized by a failure in normal social interaction and morality. Recent studies have begun to reveal brain structural abnormalities associated with psychopathic tendencies in children. However, little is known about whether variations in brain morphology are linked to the developmental trajectory of psychopathic traits over time. In this study, structural magnetic resonance imaging (sMRI) data from 108 14-year-old adolescents with no history of substance abuse (54 males and 54 females) were examined to detect cortical thickness variations associated with psychopathic traits and individual rates of change in psychopathic traits from ages 9 to 18. We found cortical thickness abnormalities to correlate with psychopathic traits both cross-sectionally and longitudinally. Specifically, at age 14, higher psychopathic scores were correlated with thinner cortex in the middle frontal gyrus, particularly in females, and thicker cortex in the superior temporal gyrus, middle temporal gyrus, and parahippocampal gyrus, particularly in males. Longitudinally, individual rates of change in psychopathic tendency over time were correlated with thicker cortex in the superior temporal gyrus, middle temporal gyrus, inferior temporal gyrus, parahippocampal gyrus, and posterior cingulate gyrus, particularly in males. Findings suggest that abnormal cortical thickness may reflect a delay in brain maturation, resulting in disturbances in frontal and temporal functioning such as impulsivity, sensation-seeking, and emotional dysregulation in adolescents. Thus, findings provide initial evidence supporting that abnormal cortical thickness may serve as a biomarker for the development of psychopathic propensity in adolescents. PMID:26017779

  10. Reversal of interlaminar signal between sensory and memory processing in monkey temporal cortex.

    PubMed

    Takeuchi, Daigo; Hirabayashi, Toshiyuki; Tamura, Keita; Miyashita, Yasushi

    2011-03-18

    The primate temporal cortex implements visual long-term memory. However, how its interlaminar circuitry executes cognitive computations is poorly understood. Using linear-array multicontact electrodes, we simultaneously recorded unit activities across cortical layers in the perirhinal cortex of macaques performing a pair-association memory task. Cortical layers were estimated on the basis of current source density profiles with histological verifications, and the interlaminar signal flow was determined with cross-correlation analysis between spike trains. During the cue period, canonical "feed-forward" signals flowed from granular to supragranular layers and from supragranular to infragranular layers. During the delay period, however, the signal flow reversed to the "feed-back" direction: from infragranular to supragranular layers. This reversal of signal flow highlights how the temporal cortex differentially recruits its laminar circuits for sensory and mnemonic processing.

  11. Temporal pattern of acoustic imaging noise asymmetrically modulates activation in the auditory cortex.

    PubMed

    Ranaweera, Ruwan D; Kwon, Minseok; Hu, Shuowen; Tamer, Gregory G; Luh, Wen-Ming; Talavage, Thomas M

    2016-01-01

    This study investigated the hemisphere-specific effects of the temporal pattern of imaging related acoustic noise on auditory cortex activation. Hemodynamic responses (HDRs) to five temporal patterns of imaging noise corresponding to noise generated by unique combinations of imaging volume and effective repetition time (TR), were obtained using a stroboscopic event-related paradigm with extra-long (≥27.5 s) TR to minimize inter-acquisition effects. In addition to confirmation that fMRI responses in auditory cortex do not behave in a linear manner, temporal patterns of imaging noise were found to modulate both the shape and spatial extent of hemodynamic responses, with classically non-auditory areas exhibiting responses to longer duration noise conditions. Hemispheric analysis revealed the right primary auditory cortex to be more sensitive than the left to the presence of imaging related acoustic noise. Right primary auditory cortex responses were significantly larger during all the conditions. This asymmetry of response to imaging related acoustic noise could lead to different baseline activation levels during acquisition schemes using short TR, inducing an observed asymmetry in the responses to an intended acoustic stimulus through limitations of dynamic range, rather than due to differences in neuronal processing of the stimulus. These results emphasize the importance of accounting for the temporal pattern of the acoustic noise when comparing findings across different fMRI studies, especially those involving acoustic stimulation.

  12. Distributed Processing and Cortical Specialization for Speech and Environmental Sounds in Human Temporal Cortex

    ERIC Educational Resources Information Center

    Leech, Robert; Saygin, Ayse Pinar

    2011-01-01

    Using functional MRI, we investigated whether auditory processing of both speech and meaningful non-linguistic environmental sounds in superior and middle temporal cortex relies on a complex and spatially distributed neural system. We found that evidence for spatially distributed processing of speech and environmental sounds in a substantial…

  13. Temporal pattern of acoustic imaging noise asymmetrically modulates activation in the auditory cortex.

    PubMed

    Ranaweera, Ruwan D; Kwon, Minseok; Hu, Shuowen; Tamer, Gregory G; Luh, Wen-Ming; Talavage, Thomas M

    2016-01-01

    This study investigated the hemisphere-specific effects of the temporal pattern of imaging related acoustic noise on auditory cortex activation. Hemodynamic responses (HDRs) to five temporal patterns of imaging noise corresponding to noise generated by unique combinations of imaging volume and effective repetition time (TR), were obtained using a stroboscopic event-related paradigm with extra-long (≥27.5 s) TR to minimize inter-acquisition effects. In addition to confirmation that fMRI responses in auditory cortex do not behave in a linear manner, temporal patterns of imaging noise were found to modulate both the shape and spatial extent of hemodynamic responses, with classically non-auditory areas exhibiting responses to longer duration noise conditions. Hemispheric analysis revealed the right primary auditory cortex to be more sensitive than the left to the presence of imaging related acoustic noise. Right primary auditory cortex responses were significantly larger during all the conditions. This asymmetry of response to imaging related acoustic noise could lead to different baseline activation levels during acquisition schemes using short TR, inducing an observed asymmetry in the responses to an intended acoustic stimulus through limitations of dynamic range, rather than due to differences in neuronal processing of the stimulus. These results emphasize the importance of accounting for the temporal pattern of the acoustic noise when comparing findings across different fMRI studies, especially those involving acoustic stimulation. PMID:26519093

  14. Lesions to right prefrontal cortex impair real-world planning through premature commitments.

    PubMed

    Goel, Vinod; Vartanian, Oshin; Bartolo, Angela; Hakim, Lila; Ferraro, Anna Maria; Isella, Valeria; Appollonio, Ildebrando; Drei, Silvia; Nichelli, Paolo

    2013-03-01

    While it is well accepted that the left prefrontal cortex plays a critical role in planning and problem-solving tasks, very little is known about the role of the right prefrontal cortex. We addressed this issue by testing five neurological patients with focal lesions to right prefrontal cortex on a real-world travel planning task, and compared their performance with the performance of five neurological patients with focal lesions to left prefrontal cortex, five neurological patients with posterior lesions, and five normal controls. Only patients with lesions to right prefrontal cortex generated substandard solutions compared to normal controls. Examination of the underlying cognitive processes and strategies revealed that patients with lesions to right prefrontal cortex approached the task at an excessively precise, concrete level compared to normal controls, and very early locked themselves into substandard solutions relative to the comparison group. In contrast, the behavior of normal controls was characterized by a judicious interplay of concrete and abstract levels/modes of representations. We suggest that damage to the right prefrontal system impairs the encoding and processing of more abstract and vague representations that facilitate lateral transformations, resulting in premature commitment to precise concrete patterns, and hasty albeit substandard conclusions (because the space of possibilities has not been properly explored).

  15. Lesions to right prefrontal cortex impair real-world planning through premature commitments.

    PubMed

    Goel, Vinod; Vartanian, Oshin; Bartolo, Angela; Hakim, Lila; Ferraro, Anna Maria; Isella, Valeria; Appollonio, Ildebrando; Drei, Silvia; Nichelli, Paolo

    2013-03-01

    While it is well accepted that the left prefrontal cortex plays a critical role in planning and problem-solving tasks, very little is known about the role of the right prefrontal cortex. We addressed this issue by testing five neurological patients with focal lesions to right prefrontal cortex on a real-world travel planning task, and compared their performance with the performance of five neurological patients with focal lesions to left prefrontal cortex, five neurological patients with posterior lesions, and five normal controls. Only patients with lesions to right prefrontal cortex generated substandard solutions compared to normal controls. Examination of the underlying cognitive processes and strategies revealed that patients with lesions to right prefrontal cortex approached the task at an excessively precise, concrete level compared to normal controls, and very early locked themselves into substandard solutions relative to the comparison group. In contrast, the behavior of normal controls was characterized by a judicious interplay of concrete and abstract levels/modes of representations. We suggest that damage to the right prefrontal system impairs the encoding and processing of more abstract and vague representations that facilitate lateral transformations, resulting in premature commitment to precise concrete patterns, and hasty albeit substandard conclusions (because the space of possibilities has not been properly explored). PMID:23266766

  16. Auditory Evoked Fields Elicited by Spectral, Temporal, and Spectral–Temporal Changes in Human Cerebral Cortex

    PubMed Central

    Okamoto, Hidehiko; Teismann, Henning; Kakigi, Ryusuke; Pantev, Christo

    2012-01-01

    Natural sounds contain complex spectral components, which are temporally modulated as time-varying signals. Recent studies have suggested that the auditory system encodes spectral and temporal sound information differently. However, it remains unresolved how the human brain processes sounds containing both spectral and temporal changes. In the present study, we investigated human auditory evoked responses elicited by spectral, temporal, and spectral–temporal sound changes by means of magnetoencephalography. The auditory evoked responses elicited by the spectral–temporal change were very similar to those elicited by the spectral change, but those elicited by the temporal change were delayed by 30–50 ms and differed from the others in morphology. The results suggest that human brain responses corresponding to spectral sound changes precede those corresponding to temporal sound changes, even when the spectral and temporal changes occur simultaneously. PMID:22593751

  17. Face-specific impairment in holistic perception following focal lesion of the right anterior temporal lobe.

    PubMed

    Busigny, Thomas; Van Belle, Goedele; Jemel, Boutheina; Hosein, Anthony; Joubert, Sven; Rossion, Bruno

    2014-04-01

    Recent studies have provided solid evidence for pure cases of prosopagnosia following brain damage. The patients reported so far have posterior lesions encompassing either or both the right inferior occipital cortex and fusiform gyrus, and exhibit a critical impairment in generating a sufficiently detailed holistic percept to individualize faces. Here, we extended these observations to include the prosopagnosic patient LR (Bukach, Bub, Gauthier, & Tarr, 2006), whose damage is restricted to the anterior region of the right temporal lobe. First, we report that LR is able to discriminate parametrically defined individual exemplars of nonface object categories as accurately and quickly as typical observers, which suggests that the visual similarity account of prosopagnosia does not explain his impairments. Then, we show that LR does not present with the typical face inversion effect, whole-part advantage, or composite face effect and, therefore, has impaired holistic perception of individual faces. Moreover, the patient is more impaired at matching faces when the facial part he fixates is masked than when it is selectively revealed by means of gaze contingency. Altogether these observations support the view that the nature of the critical face impairment does not differ qualitatively across patients with acquired prosopagnosia, regardless of the localization of brain damage: all these patients appear to be impaired to some extent at what constitutes the heart of our visual expertise with faces, namely holistic perception at a sufficiently fine-grained level of resolution to discriminate exemplars of the face class efficiently. This conclusion raises issues regarding the existing criteria for diagnosis/classification of patients as cases of apperceptive or associative prosopagnosia.

  18. Topographical memory impairments after unilateral lesions of the anterior thalamus and contralateral inferotemporal cortex.

    PubMed

    Ridley, R M; Baker, H F; Mills, D A; Green, M E; Cummings, R M

    2004-01-01

    Monkeys with crossed unilateral excitotoxic lesions of the anterior thalamus and unilateral inferotemporal cortex ablation were severely impaired at learning two tasks which required the integration of information about the appearance of objects and their positions in space. The lesioned monkeys were also impaired at learning a spatial task and a task which required the integration of information about the appearance of objects and the background on which the objects were situated. Monkeys with only one of the unilateral lesions were not impaired and previous work has shown that monkeys with bilateral lesions of the anterior thalamus were not impaired on these tasks. These results indicate that the whole of the inferotemporal cortex-anterior thalamic circuit, which passes via the hippocampus, fornix, mamillary bodies and mamillothalamic tract, is essential for the topographical analysis of information about specific objects in different positions in space. Together with previous work, the results show that a unilateral lesion may affect cognition in the presence of other brain damage when an equivalent bilateral lesion alone does not. The tasks required the slow acquisition of information into long term memory and therefore assessed semantic knowledge although other research has shown impairment on topographical processing within working or episodic memory following lesions of the hippocampal-diencephalic circuit. It is argued that the hippocampal-diencephalic circuit does not have a role in a specific form of memory such as episodic memory but rather is involved in topographical analysis of the environment in perception and across all types of declarative memory.

  19. Impaired adult myelination in the prefrontal cortex of socially isolated mice

    PubMed Central

    Liu, Jia; Dietz, Karen; DeLoyht, Jacqueline M; Pedre, Xiomara; Kelkar, Dipti; Kaur, Jasbir; Vialou, Vincent; Lobo, Mary Kay; Dietz, David M; Nestler, Eric J; Dupree, Jeffrey; Casaccia, Patrizia

    2013-01-01

    Protracted social isolation of adult mice induced behavioral, transcriptional and ultrastructural changes in oligodendrocytes of the prefrontal cortex (PFC) and impaired adult myelination. Social re-integration was sufficient to normalize behavioral and transcriptional changes. Short periods of isolation affected chromatin and myelin, but did not induce behavioral changes. Thus, myelinating oligodendrocytes in the adult PFC respond to social interaction with chromatin changes, suggesting that myelination acts as a form of adult plasticity. PMID:23143512

  20. Social conceptual impairments in frontotemporal lobar degeneration with right anterior temporal hypometabolism.

    PubMed

    Zahn, Roland; Moll, Jorge; Iyengar, Vijeth; Huey, Edward D; Tierney, Michael; Krueger, Frank; Grafman, Jordan

    2009-03-01

    Inappropriate social behaviours are early and distinctive symptoms of the temporal and frontal variants of frontotemporal lobar degeneration (FTLD). Knowledge of social behaviour is essential for appropriate social conduct. It is unknown, however, in what way this knowledge is degraded in FTLD. In a recent functional MRI study, we have identified a right-lateralized superior anterior temporal lobe (aTL) region showing selective activation for 'social concepts' (i.e. concepts describing social behaviour: e.g. 'polite', 'stingy') as compared with concepts describing less socially relevant animal behaviour ('animal function concepts': e.g. 'trainable', 'nutritious'). In a further fMRI study, superior aTL activation was independent of the context of actions and feelings associated with these social concepts. Here, we investigated whether the right superior sector of the aTL is necessary for context-independent knowledge of social concepts. We assessed neuronal glucose uptake using 18-fluoro-deoxy-glucose-positron emission tomography (FDG-PET) and a novel semantic discrimination task which probed knowledge of social and animal function concepts in patients with FTLD (n = 29) and corticobasal syndrome (n = 18). FTLD and corticobasal syndrome groups performed equally poorly on animal function concepts but FTLD patients showed more pronounced impairments on social concepts than corticobasal syndrome patients. FTLD patients with right superior aTL hypometabolism, as determined on individual ROI analyses, were significantly more impaired on social concepts than on animal function concepts. FTLD patients with selective impairments for social concepts, as determined on individual neuropsychological profiles, showed higher levels of inappropriate social behaviours ('disinhibition') and demonstrated more pronounced hypometabolism in the right superior aTL, the left temporal pole and the right lateral orbitofrontal and dorsomedial prefrontal cortex as compared with FTLD patients

  1. Social conceptual impairments in frontotemporal lobar degeneration with right anterior temporal hypometabolism

    PubMed Central

    Zahn, Roland; Moll, Jorge; Iyengar, Vijeth; Huey, Edward D.; Tierney, Michael; Krueger, Frank

    2009-01-01

    Inappropriate social behaviours are early and distinctive symptoms of the temporal and frontal variants of frontotemporal lobar degeneration (FTLD). Knowledge of social behaviour is essential for appropriate social conduct. It is unknown, however, in what way this knowledge is degraded in FTLD. In a recent functional MRI study, we have identified a right-lateralized superior anterior temporal lobe (aTL) region showing selective activation for ‘social concepts’ (i.e. concepts describing social behaviour: e.g. ‘polite’, ‘stingy’) as compared with concepts describing less socially relevant animal behaviour (‘animal function concepts’: e.g. ‘trainable’, ‘nutritious’). In a further fMRI study, superior aTL activation was independent of the context of actions and feelings associated with these social concepts. Here, we investigated whether the right superior sector of the aTL is necessary for context-independent knowledge of social concepts. We assessed neuronal glucose uptake using 18-fluoro-deoxy-glucose-positron emission tomography (FDG-PET) and a novel semantic discrimination task which probed knowledge of social and animal function concepts in patients with FTLD (n = 29) and corticobasal syndrome (n = 18). FTLD and corticobasal syndrome groups performed equally poorly on animal function concepts but FTLD patients showed more pronounced impairments on social concepts than corticobasal syndrome patients. FTLD patients with right superior aTL hypometabolism, as determined on individual ROI analyses, were significantly more impaired on social concepts than on animal function concepts. FTLD patients with selective impairments for social concepts, as determined on individual neuropsychological profiles, showed higher levels of inappropriate social behaviours (‘disinhibition’) and demonstrated more pronounced hypometabolism in the right superior aTL, the left temporal pole and the right lateral orbitofrontal and dorsomedial prefrontal cortex as

  2. Learning-Dependent Plasticity of the Barrel Cortex Is Impaired by Restricting GABA-Ergic Transmission.

    PubMed

    Posluszny, Anna; Liguz-Lecznar, Monika; Turzynska, Danuta; Zakrzewska, Renata; Bielecki, Maksymilian; Kossut, Malgorzata

    2015-01-01

    Experience-induced plastic changes in the cerebral cortex are accompanied by alterations in excitatory and inhibitory transmission. Increased excitatory drive, necessary for plasticity, precedes the occurrence of plastic change, while decreased inhibitory signaling often facilitates plasticity. However, an increase of inhibitory interactions was noted in some instances of experience-dependent changes. We previously reported an increase in the number of inhibitory markers in the barrel cortex of mice after fear conditioning engaging vibrissae, observed concurrently with enlargement of the cortical representational area of the row of vibrissae receiving conditioned stimulus (CS). We also observed that an increase of GABA level accompanied the conditioning. Here, to find whether unaltered GABAergic signaling is necessary for learning-dependent rewiring in the murine barrel cortex, we locally decreased GABA production in the barrel cortex or reduced transmission through GABAA receptors (GABAARs) at the time of the conditioning. Injections of 3-mercaptopropionic acid (3-MPA), an inhibitor of glutamic acid decarboxylase (GAD), into the barrel cortex prevented learning-induced enlargement of the conditioned vibrissae representation. A similar effect was observed after injection of gabazine, an antagonist of GABAARs. At the behavioral level, consistent conditioned response (cessation of head movements in response to CS) was impaired. These results show that appropriate functioning of the GABAergic system is required for both manifestation of functional cortical representation plasticity and for the development of a conditioned response.

  3. Altered temporal dynamics of neural adaptation in the aging human auditory cortex.

    PubMed

    Herrmann, Björn; Henry, Molly J; Johnsrude, Ingrid S; Obleser, Jonas

    2016-09-01

    Neural response adaptation plays an important role in perception and cognition. Here, we used electroencephalography to investigate how aging affects the temporal dynamics of neural adaptation in human auditory cortex. Younger (18-31 years) and older (51-70 years) normal hearing adults listened to tone sequences with varying onset-to-onset intervals. Our results show long-lasting neural adaptation such that the response to a particular tone is a nonlinear function of the extended temporal history of sound events. Most important, aging is associated with multiple changes in auditory cortex; older adults exhibit larger and less variable response magnitudes, a larger dynamic response range, and a reduced sensitivity to temporal context. Computational modeling suggests that reduced adaptation recovery times underlie these changes in the aging auditory cortex and that the extended temporal stimulation has less influence on the neural response to the current sound in older compared with younger individuals. Our human electroencephalography results critically narrow the gap to animal electrophysiology work suggesting a compensatory release from cortical inhibition accompanying hearing loss and aging. PMID:27459921

  4. Partial loss of presenilin impairs age-dependent neuronal survival in the cerebral cortex.

    PubMed

    Watanabe, Hirotaka; Iqbal, Minah; Zheng, Jin; Wines-Samuelson, Mary; Shen, Jie

    2014-11-26

    Mutations in the presenilin (PSEN1 and PSEN2) genes are linked to familial Alzheimer's disease (AD) and cause loss of its essential function. Complete inactivation of presenilins in excitatory neurons of the adult mouse cerebral cortex results in progressive memory impairment and age-dependent neurodegeneration, recapitulating key features of AD. In this study, we examine the effects of varying presenilin dosage on cortical neuron survival by generating presenilin-1 conditional knock-out (PS1 cKO) mice carrying two, one, or zero copies of the PS2 gene. We found that PS1 cKO;PS2(+/-) mice at 16 months exhibit marked neurodegeneration in the cerebral cortex with ∼17% reduction of cortical volume and neuron number, as well as astrogliosis and microgliosis compared with ∼50% reduction of cortical volume and neuron number in PS1 cKO;PS2(-/-) mice. Moreover, there are more apoptotic neurons labeled by activated caspase-3 immunoreactivity and TUNEL assay in PS1 cKO;PS2(+/-) mice at 16 months, whereas apoptotic neurons are increased in the PS1 cKO;PS2(-/-) cerebral cortex at 4 months. The accumulation of the C-terminal fragments of the amyloid precursor protein is inversely correlated with PS dosage. Interestingly, levels of PS2 are higher in the cerebral cortex of PS1 cKO mice, suggesting a compensatory upregulation that may provide protection against neurodegeneration in these mice. Together, our findings show that partial to complete loss of presenilin activity causes progressively more severe neurodegeneration in the mouse cerebral cortex during aging, suggesting that impaired presenilin function by PSEN mutations may lead to neurodegeneration and dementia in AD. PMID:25429133

  5. Neonatal Nicotine Exposure Impairs Development of Auditory Temporal Processing

    PubMed Central

    Sun, Wei; Hansen, Anna; Zhang, Liyan; Lu, Jianzhong; Stolzberg, Daniel; Kraus, Kari Suzanne

    2008-01-01

    Accurate temporal processing of sound is essential for detecting word structures in speech. Maternal smoking affects speech processing in newborns and may influence child language development; however, it is unclear how neonatal exposure to nicotine, present in cigarettes, affects the normal development of temporal processing. The present study used the gap-induced prepulse inhibition (gap-PPI) of the acoustic startle response to investigate the effects of neonatal nicotine exposure on the normal development of gap detection, a behavioral testing procedure of auditory temporal resolution. Neonatal rats were injected twice per day with saline (control), 1 mg/kg nicotine (N-1mg) or 5 mg/kg nicotine (N-5mg) from postnatal day 8 to 12 (P8–P12). During the first month after birth, rats showed poor gap-PPI in all three groups. At P45 and P60, gap-PPI in control rats improved significantly, whereas rats exposed to nicotine exhibited less improvement. At P60, the gap-detection threshold in the N-5mg group was significantly higher than in the control group, suggesting that neonatal nicotine exposure affects the normal development of gap detection acuity. Additionally, 1 hour after receiving an acute nicotine injection (1 mg/kg), gap-PPI recorded in adult rats from the N-5mg group showed a temporary significant improvement. These results suggest that neonatal nicotine exposure reduces gap-PPI implying an impairment of the normal development of auditory temporal processing by inducing changes in cholinergic systems. PMID:18801421

  6. A Study of Temporal Aspect of Posterior Parietal Cortex in Visual Search Using Transcranial Magnetic Stimulation

    NASA Astrophysics Data System (ADS)

    Ge, Sheng; Matsuoka, Akira; Ueno, Shoogo; Iramina, Keiji

    It is known that the posterior parietal cortex (PPC) plays a dominant role in spatial processing during visual search. However, the temporal aspect of the PPC is unclear. In the present study, to investigate the temporal aspects of the PPC in feature search, we applied Transcranial Magnetic Stimulation (TMS) over the right PPC with the TMS stimulus onset asynchronies (SOAs) set at 100, 150, 200 and 250 ms after visual search stimulation. We found that when SOA was set at 150 ms, compared to the sham TMS condition, there was a significant elevation in response time when TMS pulses were applied. However, there was no significant difference between the TMS and sham TMS conditions for the other SOA settings. Therefore, we suggest that the spatial processing of feature search is probably processed in the posterior parietal cortex at about 150-170 ms after visual search stimuli presentation.

  7. Tracking cortical entrainment in neural activity: auditory processes in human temporal cortex

    PubMed Central

    Thwaites, Andrew; Nimmo-Smith, Ian; Fonteneau, Elisabeth; Patterson, Roy D.; Buttery, Paula; Marslen-Wilson, William D.

    2015-01-01

    A primary objective for cognitive neuroscience is to identify how features of the sensory environment are encoded in neural activity. Current auditory models of loudness perception can be used to make detailed predictions about the neural activity of the cortex as an individual listens to speech. We used two such models (loudness-sones and loudness-phons), varying in their psychophysiological realism, to predict the instantaneous loudness contours produced by 480 isolated words. These two sets of 480 contours were used to search for electrophysiological evidence of loudness processing in whole-brain recordings of electro- and magneto-encephalographic (EMEG) activity, recorded while subjects listened to the words. The technique identified a bilateral sequence of loudness processes, predicted by the more realistic loudness-sones model, that begin in auditory cortex at ~80 ms and subsequently reappear, tracking progressively down the superior temporal sulcus (STS) at lags from 230 to 330 ms. The technique was then extended to search for regions sensitive to the fundamental frequency (F0) of the voiced parts of the speech. It identified a bilateral F0 process in auditory cortex at a lag of ~90 ms, which was not followed by activity in STS. The results suggest that loudness information is being used to guide the analysis of the speech stream as it proceeds beyond auditory cortex down STS toward the temporal pole. PMID:25713530

  8. Impaired Functional Connectivity in the Prefrontal Cortex: A Mechanism for Chronic Stress-Induced Neuropsychiatric Disorders.

    PubMed

    Negrón-Oyarzo, Ignacio; Aboitiz, Francisco; Fuentealba, Pablo

    2016-01-01

    Chronic stress-related psychiatric diseases, such as major depression, posttraumatic stress disorder, and schizophrenia, are characterized by a maladaptive organization of behavioral responses that strongly affect the well-being of patients. Current evidence suggests that a functional impairment of the prefrontal cortex (PFC) is implicated in the pathophysiology of these diseases. Therefore, chronic stress may impair PFC functions required for the adaptive orchestration of behavioral responses. In the present review, we integrate evidence obtained from cognitive neuroscience with neurophysiological research with animal models, to put forward a hypothesis that addresses stress-induced behavioral dysfunctions observed in stress-related neuropsychiatric disorders. We propose that chronic stress impairs mechanisms involved in neuronal functional connectivity in the PFC that are required for the formation of adaptive representations for the execution of adaptive behavioral responses. These considerations could be particularly relevant for understanding the pathophysiology of chronic stress-related neuropsychiatric disorders. PMID:26904302

  9. Impaired Functional Connectivity in the Prefrontal Cortex: A Mechanism for Chronic Stress-Induced Neuropsychiatric Disorders

    PubMed Central

    Negrón-Oyarzo, Ignacio; Aboitiz, Francisco; Fuentealba, Pablo

    2016-01-01

    Chronic stress-related psychiatric diseases, such as major depression, posttraumatic stress disorder, and schizophrenia, are characterized by a maladaptive organization of behavioral responses that strongly affect the well-being of patients. Current evidence suggests that a functional impairment of the prefrontal cortex (PFC) is implicated in the pathophysiology of these diseases. Therefore, chronic stress may impair PFC functions required for the adaptive orchestration of behavioral responses. In the present review, we integrate evidence obtained from cognitive neuroscience with neurophysiological research with animal models, to put forward a hypothesis that addresses stress-induced behavioral dysfunctions observed in stress-related neuropsychiatric disorders. We propose that chronic stress impairs mechanisms involved in neuronal functional connectivity in the PFC that are required for the formation of adaptive representations for the execution of adaptive behavioral responses. These considerations could be particularly relevant for understanding the pathophysiology of chronic stress-related neuropsychiatric disorders. PMID:26904302

  10. Distinct regions of right temporal cortex are associated with biological and human-agent motion: functional magnetic resonance imaging and neuropsychological evidence.

    PubMed

    Han, Zaizhu; Bi, Yanchao; Chen, Jing; Chen, Quanjing; He, Yong; Caramazza, Alfonso

    2013-09-25

    In human lateral temporal cortex, some regions show specific sensitivity to human motion. Here we examine whether such effects reflect a general biological-nonbiological organizational principle or a process specific to human-agent processing by comparing processing of human, animal, and tool motion in a functional magnetic resonance imaging (fMRI) experiment with healthy participants and a voxel-based lesion-symptom mapping (VLSM) study of patients with brain damage (77 stroke patients). The fMRI experiment revealed that in the lateral temporal cortex, the posterior superior temporal sulcus shows a preference for human and animal motion, whereas the middle part of the right superior temporal sulcus/gyrus (mSTS/STG) shows a preference for human and functional tool motion. VLSM analyses also revealed that damage to this right mSTS/STG region led to more severe impairment in the recognition of human and functional tool motion relative to animal motion, indicating the causal role of this brain area in human-agent motion processing. The findings for the right mSTS/STG cannot be reduced to a preference for articulated motion or processing of social variables since neither factor is involved in functional tool motion recognition. We conclude that a unidimensional biological-nonbiological distinction cannot fully explain the visual motion effects in lateral temporal cortex. Instead, the results suggest the existence of distinct components in right posterior temporal cortex and mSTS/STG that are associated, respectively, with biological motion and human-agent motion processing.

  11. Resting-state oscillatory dynamics in sensorimotor cortex in benign epilepsy with centro-temporal spikes and typical brain development.

    PubMed

    Koelewijn, Loes; Hamandi, Khalid; Brindley, Lisa M; Brookes, Matthew J; Routley, Bethany C; Muthukumaraswamy, Suresh D; Williams, Natalie; Thomas, Marie A; Kirby, Amanda; Te Water Naudé, Johann; Gibbon, Frances; Singh, Krish D

    2015-10-01

    Benign Epilepsy with Centro-Temporal Spikes (BECTS) is a common childhood epilepsy associated with deficits in several neurocognitive domains. Neurophysiological studies in BECTS often focus on centro-temporal spikes, but these correlate poorly with morphology and cognitive impairments. To better understand the neural profile of BECTS, we studied background brain oscillations, thought to be integrally involved in neural network communication, in sensorimotor areas. We used independent component analysis of temporally correlated sources on magnetoencephalography recordings to assess sensorimotor resting-state network activity in BECTS patients and typically developing controls. We also investigated the variability of oscillatory characteristics within focal primary motor cortex (M1), localized with a separate finger abduction task. We hypothesized that background oscillations would differ between patients and controls in the sensorimotor network but not elsewhere, especially in the beta band (13-30 Hz) because of its role in network communication and motor processing. The results support our hypothesis: in the sensorimotor network, patients had a greater variability in oscillatory amplitude compared to controls, whereas there was no difference in the visual network. Network measures did not correlate with age. The coefficient of variation of resting M1 peak frequency correlated negatively with age in the beta band only, and was greater than average for a number of patients. Our results point toward a "disorganized" functional sensorimotor network in BECTS, supporting a neurodevelopmental delay in sensorimotor cortex. Our findings further suggest that investigating the variability of oscillatory peak frequency may be a useful tool to investigate deficits of disorganization in neurodevelopmental disorders.

  12. Resting-state oscillatory dynamics in sensorimotor cortex in benign epilepsy with centro-temporal spikes and typical brain development.

    PubMed

    Koelewijn, Loes; Hamandi, Khalid; Brindley, Lisa M; Brookes, Matthew J; Routley, Bethany C; Muthukumaraswamy, Suresh D; Williams, Natalie; Thomas, Marie A; Kirby, Amanda; Te Water Naudé, Johann; Gibbon, Frances; Singh, Krish D

    2015-10-01

    Benign Epilepsy with Centro-Temporal Spikes (BECTS) is a common childhood epilepsy associated with deficits in several neurocognitive domains. Neurophysiological studies in BECTS often focus on centro-temporal spikes, but these correlate poorly with morphology and cognitive impairments. To better understand the neural profile of BECTS, we studied background brain oscillations, thought to be integrally involved in neural network communication, in sensorimotor areas. We used independent component analysis of temporally correlated sources on magnetoencephalography recordings to assess sensorimotor resting-state network activity in BECTS patients and typically developing controls. We also investigated the variability of oscillatory characteristics within focal primary motor cortex (M1), localized with a separate finger abduction task. We hypothesized that background oscillations would differ between patients and controls in the sensorimotor network but not elsewhere, especially in the beta band (13-30 Hz) because of its role in network communication and motor processing. The results support our hypothesis: in the sensorimotor network, patients had a greater variability in oscillatory amplitude compared to controls, whereas there was no difference in the visual network. Network measures did not correlate with age. The coefficient of variation of resting M1 peak frequency correlated negatively with age in the beta band only, and was greater than average for a number of patients. Our results point toward a "disorganized" functional sensorimotor network in BECTS, supporting a neurodevelopmental delay in sensorimotor cortex. Our findings further suggest that investigating the variability of oscillatory peak frequency may be a useful tool to investigate deficits of disorganization in neurodevelopmental disorders. PMID:26177579

  13. Long-term modifications of synaptic efficacy in the human inferior and middle temporal cortex

    NASA Technical Reports Server (NTRS)

    Chen, W. R.; Lee, S.; Kato, K.; Spencer, D. D.; Shepherd, G. M.; Williamson, A.

    1996-01-01

    The primate temporal cortex has been demonstrated to play an important role in visual memory and pattern recognition. It is of particular interest to investigate whether activity-dependent modification of synaptic efficacy, a presumptive mechanism for learning and memory, is present in this cortical region. Here we address this issue by examining the induction of synaptic plasticity in surgically resected human inferior and middle temporal cortex. The results show that synaptic strength in the human temporal cortex could undergo bidirectional modifications, depending on the pattern of conditioning stimulation. High frequency stimulation (100 or 40 Hz) in layer IV induced long-term potentiation (LTP) of both intracellular excitatory postsynaptic potentials and evoked field potentials in layers II/III. The LTP induced by 100 Hz tetanus was blocked by 50-100 microM DL-2-amino-5-phosphonovaleric acid, suggesting that N-methyl-D-aspartate receptors were responsible for its induction. Long-term depression (LTD) was elicited by prolonged low frequency stimulation (1 Hz, 15 min). It was reduced, but not completely blocked, by DL-2-amino-5-phosphonovaleric acid, implying that some other mechanisms in addition to N-methyl-DL-aspartate receptors were involved in LTD induction. LTD was input-specific, i.e., low frequency stimulation of one pathway produced LTD of synaptic transmission in that pathway only. Finally, the LTP and LTD could reverse each other, suggesting that they can act cooperatively to modify the functional state of cortical network. These results suggest that LTP and LTD are possible mechanisms for the visual memory and pattern recognition functions performed in the human temporal cortex.

  14. Language areas involving the inferior temporal cortex on intraoperative mapping in a bilingual patient with glioblastoma.

    PubMed

    Kin, Hidehiro; Ishikawa, Eiichi; Takano, Shingo; Ayuzawa, Satoshi; Matsushita, Akira; Muragaki, Yoshihiro; Aiyama, Hitoshi; Sakamoto, Noriaki; Yamamoto, Tetsuya; Matsumura, Akira

    2013-01-01

    A 40-year-old bilingual man underwent removal of glioblastoma multiforme with intraoperative language mapping, mainly using the picture-naming and auditory responsive-naming tasks under cortical stimulation. Multiple language areas were identified, including one located in the middle of the inferior temporal cortex (ITC). Individual mapping for glioma patients must be performed because language areas might be located in various and unexpected regions, including the ITC.

  15. Representation of interval timing by temporally scalable firing patterns in rat prefrontal cortex

    PubMed Central

    Xu, Min; Zhang, Si-yu; Dan, Yang; Poo, Mu-ming

    2014-01-01

    Perception of time interval on the order of seconds is an essential component of cognition, but the underlying neural mechanism remains largely unknown. In rats trained to estimate time intervals, we found that many neurons in the medial prefrontal cortex (PFC) exhibited sustained spiking activity with diverse temporal profiles of firing-rate modulation during the time-estimation period. Interestingly, in tasks involving different intervals, each neuron exhibited firing-rate modulation with the same profile that was temporally scaled by a factor linearly proportional to the instructed intervals. The behavioral variability across trials within each task also correlated with the intertrial variability of the temporal scaling factor. Local cooling of the medial PFC, which affects neural circuit dynamics, significantly delayed behavioral responses. Thus, PFC neuronal activity contributes to time perception, and temporally scalable firing-rate modulation may reflect a general mechanism for neural representation of interval timing. PMID:24367075

  16. Attentional modulation of background connectivity between ventral visual cortex and the medial temporal lobe.

    PubMed

    Córdova, Natalia I; Tompary, Alexa; Turk-Browne, Nicholas B

    2016-10-01

    Attention prioritizes information that is most relevant to current behavioral goals. This prioritization can be accomplished by amplifying neural responses to goal-relevant information and by strengthening coupling between regions involved in processing this information. Such modulation occurs within and between areas of visual cortex, and relates to behavioral effects of attention on perception. However, attention also has powerful effects on learning and memory behavior, suggesting that similar modulation may occur for memory systems. We used fMRI to investigate this possibility, examining how visual information is prioritized for processing in the medial temporal lobe (MTL). We hypothesized that the way in which ventral visual cortex couples with MTL input structures will depend on the kind of information being attended. Indeed, visual cortex was more coupled with parahippocampal cortex when scenes were attended and more coupled with perirhinal cortex when faces were attended. This switching of MTL connectivity was more pronounced for visual voxels with weak selectivity, suggesting that connectivity might help disambiguate sensory signals. These findings provide an initial window into an attentional mechanism that could have consequences for learning and memory. PMID:27321163

  17. Attentional modulation of background connectivity between ventral visual cortex and the medial temporal lobe.

    PubMed

    Córdova, Natalia I; Tompary, Alexa; Turk-Browne, Nicholas B

    2016-10-01

    Attention prioritizes information that is most relevant to current behavioral goals. This prioritization can be accomplished by amplifying neural responses to goal-relevant information and by strengthening coupling between regions involved in processing this information. Such modulation occurs within and between areas of visual cortex, and relates to behavioral effects of attention on perception. However, attention also has powerful effects on learning and memory behavior, suggesting that similar modulation may occur for memory systems. We used fMRI to investigate this possibility, examining how visual information is prioritized for processing in the medial temporal lobe (MTL). We hypothesized that the way in which ventral visual cortex couples with MTL input structures will depend on the kind of information being attended. Indeed, visual cortex was more coupled with parahippocampal cortex when scenes were attended and more coupled with perirhinal cortex when faces were attended. This switching of MTL connectivity was more pronounced for visual voxels with weak selectivity, suggesting that connectivity might help disambiguate sensory signals. These findings provide an initial window into an attentional mechanism that could have consequences for learning and memory.

  18. Temporal Lobe and Frontal-Subcortical Dissociations in Non-Demented Parkinson’s Disease with Verbal Memory Impairment

    PubMed Central

    Tanner, Jared J.; Mareci, Thomas H.; Okun, Michael S.; Bowers, Dawn; Libon, David J.; Price, Catherine C.

    2015-01-01

    Objective The current investigation examined verbal memory in idiopathic non-dementia Parkinson’s disease and the significance of the left entorhinal cortex and left entorhinal-retrosplenial region connections (via temporal cingulum) on memory impairment in Parkinson’s disease. Methods Forty non-demented Parkinson’s disease patients and forty non-Parkinson’s disease controls completed two verbal memory tests – a wordlist measure (Philadelphia repeatable Verbal Memory Test) and a story measure (Logical Memory). All participants received T1-weighted and diffusion magnetic resonance imaging (3T; Siemens) sequences. Left entorhinal volume and left entorhinal-retrosplenial connectivity (temporal cingulum edge weight) were the primary imaging variables of interest with frontal lobe thickness and subcortical structure volumes as dissociating variables. Results Individuals with Parkinson’s disease showed worse verbal memory, smaller entorhinal volumes, but did not differ in entorhinal-retrosplenial connectivity. For Parkinson’s disease entorhinal-retrosplenial edge weight had the strongest associations with verbal memory. A subset of Parkinson’s disease patients (23%) had deficits (z-scores < -1.5) across both memory measures. Relative to non-impaired Parkinson’s peers, this memory-impaired group had smaller entorhinal volumes. Discussion Although entorhinal cortex volume was significantly reduced in Parkinson’s disease patients relative to non-Parkinson’s peers, only white matter connections associated with the entorhinal cortex were significantly associated with verbal memory performance in our sample. There was also no suggestion of contribution from frontal-subcortical gray or frontal white matter regions. These findings argue for additional investigation into medial temporal lobe gray and white matter connectivity for understanding memory in Parkinson’s disease. PMID:26208170

  19. Neuronal correlate of pictorial short-term memory in the primate temporal cortexYasushi Miyashita

    NASA Astrophysics Data System (ADS)

    Miyashita, Yasushi; Chang, Han Soo

    1988-01-01

    It has been proposed that visual-memory traces are located in the temporal lobes of the cerebral cortex, as electric stimulation of this area in humans results in recall of imagery1. Lesions in this area also affect recognition of an object after a delay in both humans2,3 and monkeys4-7 indicating a role in short-term memory of images8. Single-unit recordings from the temporal cortex have shown that some neurons continue to fire when one of two or four colours are to be remembered temporarily9. But neuronal responses selective to specific complex objects10-18 , including hands10,13 and faces13,16,17, cease soon after the offset of stimulus presentation10-18. These results led to the question of whether any of these neurons could serve the memory of complex objects. We report here a group of shape-selective neurons in an anterior ventral part of the temporal cortex of monkeys that exhibited sustained activity during the delay period of a visual short-term memory task. The activity was highly selective for the pictorial information to be memorized and was independent of the physical attributes such as size, orientation, colour or position of the object. These observations show that the delay activity represents the short-term memory of the categorized percept of a picture.

  20. Impaired recognition of scary music following unilateral temporal lobe excision.

    PubMed

    Gosselin, Nathalie; Peretz, Isabelle; Noulhiane, Marion; Hasboun, Dominique; Beckett, Christine; Baulac, Michel; Samson, Séverine

    2005-03-01

    Music constitutes an ideal means to create a sense of suspense in films. However, there has been minimal investigation into the underlying cerebral organization for perceiving danger created by music. In comparison, the amygdala's role in recognition of fear in non-musical contexts has been well established. The present study sought to fill this gap in exploring how patients with amygdala resection recognize emotional expression in music. To this aim, we tested 16 patients with left (LTR; n = 8) or right (RTR; n = 8) medial temporal resection (including amygdala) for the relief of medically intractable seizures and 16 matched controls in an emotion recognition task involving instrumental music. The musical selections were purposely created to induce fear, peacefulness, happiness and sadness. Participants were asked to rate to what extent each musical passage expressed these four emotions on 10-point scales. In order to check for the presence of a perceptual problem, the same musical selections were presented to the participants in an error detection task. None of the patients was found to perform below controls in the perceptual task. In contrast, both LTR and RTR patients were found to be impaired in the recognition of scary music. Recognition of happy and sad music was normal. These findings suggest that the anteromedial temporal lobe (including the amygdala) plays a role in the recognition of danger in a musical context. PMID:15699060

  1. Human retrosplenial cortex displays transient theta phase locking with medial temporal cortex prior to activation during autobiographical memory retrieval.

    PubMed

    Foster, Brett L; Kaveh, Anthony; Dastjerdi, Mohammad; Miller, Kai J; Parvizi, Josef

    2013-06-19

    The involvement of retrosplenial cortex (RSC) in human autobiographical memory retrieval has been confirmed by functional brain imaging studies, and is supported by anatomical evidence of strong connectivity between the RSC and memory structures within the medial temporal lobe (MTL). However, electrophysiological investigations of the RSC and its interaction with the MTL have mostly remained limited to the rodent brain. Recently, we reported a selective increase of high-frequency broadband (HFB; 70-180 Hz) power within the human RSC during autobiographical retrieval, and a predominance of 3-5 Hz theta band oscillations within the RSC during the resting state. In the current study, we aimed to explore the temporal dynamics of theta band interaction between human RSC and MTL during autobiographical retrieval. Toward this aim, we obtained simultaneous recordings from the RSC and MTL in human subjects undergoing invasive electrophysiological monitoring, and quantified the strength of RSC-MTL theta band phase locking. We observed significant phase locking in the 3-4 Hz theta range between the RSC and the MTL during autobiographical retrieval. This theta band phase coupling was transient and peaked at a consistent latency before the peak of RSC HFB power across subjects. Control analyses confirmed that theta phase coupling between the RSC and MTL was not seen for other conditions studied, other sites of recording, or other frequency ranges of interest (1-20 Hz). Our findings provide the first evidence of theta band interaction between the human RSC and MTL during conditions of autobiographical retrieval.

  2. Encoding of natural sounds at multiple spectral and temporal resolutions in the human auditory cortex.

    PubMed

    Santoro, Roberta; Moerel, Michelle; De Martino, Federico; Goebel, Rainer; Ugurbil, Kamil; Yacoub, Essa; Formisano, Elia

    2014-01-01

    Functional neuroimaging research provides detailed observations of the response patterns that natural sounds (e.g. human voices and speech, animal cries, environmental sounds) evoke in the human brain. The computational and representational mechanisms underlying these observations, however, remain largely unknown. Here we combine high spatial resolution (3 and 7 Tesla) functional magnetic resonance imaging (fMRI) with computational modeling to reveal how natural sounds are represented in the human brain. We compare competing models of sound representations and select the model that most accurately predicts fMRI response patterns to natural sounds. Our results show that the cortical encoding of natural sounds entails the formation of multiple representations of sound spectrograms with different degrees of spectral and temporal resolution. The cortex derives these multi-resolution representations through frequency-specific neural processing channels and through the combined analysis of the spectral and temporal modulations in the spectrogram. Furthermore, our findings suggest that a spectral-temporal resolution trade-off may govern the modulation tuning of neuronal populations throughout the auditory cortex. Specifically, our fMRI results suggest that neuronal populations in posterior/dorsal auditory regions preferably encode coarse spectral information with high temporal precision. Vice-versa, neuronal populations in anterior/ventral auditory regions preferably encode fine-grained spectral information with low temporal precision. We propose that such a multi-resolution analysis may be crucially relevant for flexible and behaviorally-relevant sound processing and may constitute one of the computational underpinnings of functional specialization in auditory cortex. PMID:24391486

  3. Early Impairment of Long-Term Depression in the Perirhinal Cortex of a Mouse Model of Alzheimer's Disease

    PubMed Central

    Tamagnini, Francesco; Burattini, Costanza; Casoli, Tiziana; Balietti, Marta; Fattoretti, Patrizia

    2012-01-01

    Abstract Visual recognition memory is early impaired in Alzheimer's disease. Long-term depression of synaptic transmission in the perirhinal cortex is critically involved in this form of memory. We found that synaptic transmission was impaired in perirhinal cortex slices obtained from 3-month-old Tg2576 mice, and that 3,000 pulses at 5 Hz induced long-term depression in perirhinal cortex slices from age-matched control mice, but not in those from Tg2576 mice. To our knowledge, these data provide the first evidence of synaptic transmission and long-term depression impairment in the perirhinal cortex in an animal model of Alzheimer's disease, and the earliest synaptic deficit in Tg2576 mice. PMID:22533438

  4. Inactivation of Primate Prefrontal Cortex Impairs Auditory and Audiovisual Working Memory

    PubMed Central

    Hwang, Jaewon; Romanski, Lizabeth M.

    2015-01-01

    The prefrontal cortex is associated with cognitive functions that include planning, reasoning, decision-making, working memory, and communication. Neurophysiology and neuropsychology studies have established that dorsolateral prefrontal cortex is essential in spatial working memory while the ventral frontal lobe processes language and communication signals. Single-unit recordings in nonhuman primates has shown that ventral prefrontal (VLPFC) neurons integrate face and vocal information and are active during audiovisual working memory. However, whether VLPFC is essential in remembering face and voice information is unknown. We therefore trained nonhuman primates in an audiovisual working memory paradigm using naturalistic face-vocalization movies as memoranda. We inactivated VLPFC, with reversible cortical cooling, and examined performance when faces, vocalizations or both faces and vocalization had to be remembered. We found that VLPFC inactivation impaired subjects' performance in audiovisual and auditory-alone versions of the task. In contrast, VLPFC inactivation did not disrupt visual working memory. Our studies demonstrate the importance of VLPFC in auditory and audiovisual working memory for social stimuli but suggest a different role for VLPFC in unimodal visual processing. SIGNIFICANCE STATEMENT The ventral frontal lobe, or inferior frontal gyrus, plays an important role in audiovisual communication in the human brain. Studies with nonhuman primates have found that neurons within ventral prefrontal cortex (VLPFC) encode both faces and vocalizations and that VLPFC is active when animals need to remember these social stimuli. In the present study, we temporarily inactivated VLPFC by cooling the cortex while nonhuman primates performed a working memory task. This impaired the ability of subjects to remember a face and vocalization pair or just the vocalization alone. Our work highlights the importance of the primate VLPFC in the processing of faces and

  5. Voxel-based morphometry reveals reduced grey matter volume in the temporal cortex of developmental prosopagnosics

    PubMed Central

    Furl, Nicholas; Draganski, Bogdan; Weiskopf, Nikolaus; Stevens, John; Tan, Geoffrey Chern-Yee; Driver, Jon; Dolan, Ray J.; Duchaine, Bradley

    2009-01-01

    Individuals with developmental prosopagnosia exhibit severe and lasting difficulties in recognizing faces despite the absence of apparent brain abnormalities. We used voxel-based morphometry to investigate whether developmental prosopagnosics show subtle neuroanatomical differences from controls. An analysis based on segmentation of T1-weighted images from 17 developmental prosopagnosics and 18 matched controls revealed that they had reduced grey matter volume in the right anterior inferior temporal lobe and in the superior temporal sulcus/middle temporal gyrus bilaterally. In addition, a voxel-based morphometry analysis based on the segmentation of magnetization transfer parameter maps showed that developmental prosopagnosics also had reduced grey matter volume in the right middle fusiform gyrus and the inferior temporal gyrus. Multiple regression analyses relating three distinct behavioural component scores, derived from a principal component analysis, to grey matter volume revealed an association between a component related to facial identity and grey matter volume in the left superior temporal sulcus/middle temporal gyrus plus the right middle fusiform gyrus/inferior temporal gyrus. Grey matter volume in the lateral occipital cortex was associated with component scores related to object recognition tasks. Our results demonstrate that developmental prosopagnosics have reduced grey matter volume in several regions known to respond selectively to faces and provide new evidence that integrity of these areas relates to face recognition ability. PMID:19887506

  6. Temporal tuning in the bat auditory cortex is sharper when studied with natural echolocation sequences

    PubMed Central

    Beetz, M. Jerome; Hechavarría, Julio C.; Kössl, Manfred

    2016-01-01

    Precise temporal coding is necessary for proper acoustic analysis. However, at cortical level, forward suppression appears to limit the ability of neurons to extract temporal information from natural sound sequences. Here we studied how temporal processing can be maintained in the bats’ cortex in the presence of suppression evoked by natural echolocation streams that are relevant to the bats’ behavior. We show that cortical neurons tuned to target-distance actually profit from forward suppression induced by natural echolocation sequences. These neurons can more precisely extract target distance information when they are stimulated with natural echolocation sequences than during stimulation with isolated call-echo pairs. We conclude that forward suppression does for time domain tuning what lateral inhibition does for selectivity forms such as auditory frequency tuning and visual orientation tuning. When talking about cortical processing, suppression should be seen as a mechanistic tool rather than a limiting element. PMID:27357230

  7. Temporal tuning in the bat auditory cortex is sharper when studied with natural echolocation sequences.

    PubMed

    Beetz, M Jerome; Hechavarría, Julio C; Kössl, Manfred

    2016-01-01

    Precise temporal coding is necessary for proper acoustic analysis. However, at cortical level, forward suppression appears to limit the ability of neurons to extract temporal information from natural sound sequences. Here we studied how temporal processing can be maintained in the bats' cortex in the presence of suppression evoked by natural echolocation streams that are relevant to the bats' behavior. We show that cortical neurons tuned to target-distance actually profit from forward suppression induced by natural echolocation sequences. These neurons can more precisely extract target distance information when they are stimulated with natural echolocation sequences than during stimulation with isolated call-echo pairs. We conclude that forward suppression does for time domain tuning what lateral inhibition does for selectivity forms such as auditory frequency tuning and visual orientation tuning. When talking about cortical processing, suppression should be seen as a mechanistic tool rather than a limiting element. PMID:27357230

  8. A high calorie diet causes memory loss, metabolic syndrome and oxidative stress into hippocampus and temporal cortex of rats.

    PubMed

    Treviño, Samuel; Aguilar-Alonso, Patrícia; Flores Hernandez, Jose Angel; Brambila, Eduardo; Guevara, Jorge; Flores, Gonzalo; Lopez-Lopez, Gustavo; Muñoz-Arenas, Guadalupe; Morales-Medina, Julio Cesar; Toxqui, Veronica; Venegas, Berenice; Diaz, Alfonso

    2015-09-01

    A high calorie intake can induce the appearance of the metabolic syndrome (MS), which is a serious public health problem because it affects glucose levels and triglycerides in the blood. Recently, it has been suggested that MS can cause complications in the brain, since chronic hyperglycemia and insulin resistance are risk factors for triggering neuronal death by inducing a state of oxidative stress and inflammatory response that affect cognitive processes. This process, however, is not clear. In this study, we evaluated the effect of the consumption of a high-calorie diet (HCD) on both neurodegeneration and spatial memory impairment in rats. Our results demonstrated that HCD (90 day consumption) induces an alteration of the main energy metabolism markers, indicating the development of MS in rats. Moreover, an impairment of spatial memory was observed. Subsequently, the brains of these animals showed activation of an inflammatory response (increase in reactive astrocytes and interleukin1-β as well as tumor necrosis factor-α) and oxidative stress (reactive oxygen species and lipid peroxidation), causing a reduction in the number of neurons in the temporal cortex and hippocampus. Altogether, these results suggest that a HCD promotes the development of MS and contributes to the development of a neurodegenerative process and cognitive failure. In this regard, it is important to understand the relationship between MS and neuronal damage in order to prevent the onset of neurodegenerative disorders.

  9. Temporal expectation enhances contrast sensitivity by phase entrainment of low-frequency oscillations in visual cortex

    PubMed Central

    CRAVO, André M.; ROHENKOHL, Gustavo; WYART, Valentin; NOBRE, Anna C.

    2013-01-01

    Although it is increasingly accepted that temporal expectation can modulate early perceptual processing, the underlying neural computations remain unknown. In the present study, we combined a psychophysical paradigm with electrophysiological recordings to investigate the putative contribution of low-frequency oscillatory activity in mediating the modulation of visual perception by temporal expectation. Human participants judged the orientation of brief targets (visual Gabor patterns tilted clockwise or counter-clockwise) embedded within temporally regular or irregular streams of noise-patches used as temporal cues. Psychophysical results indicated that temporal expectation enhanced the contrast sensitivity of visual targets. A diffusion model indicated that rhythmic temporal expectation modulated the signal-to-noise gain of visual processing. The concurrent electrophysiological data revealed that the phase of delta oscillations overlying human visual cortex (1 to 4 Hz) was predictive of the quality of target processing only in regular streams of events. Moreover, in the regular condition, the optimum phase of these perception-predictive oscillations occurred in anticipation of the expected events. Together, these results show a strong correspondence between psychophysical and neurophysiological data, suggesting that the phase entrainment of low-frequency oscillations to external sensory cues can serve as an important and flexible mechanism for enhancing sensory processing. PMID:23447609

  10. Impairment of radial glial scaffold-dependent neuronal migration and formation of double cortex by genetic ablation of afadin.

    PubMed

    Yamamoto, Hideaki; Mandai, Kenji; Konno, Daijiro; Maruo, Tomohiko; Matsuzaki, Fumio; Takai, Yoshimi

    2015-09-16

    Studies of human brain malformations, such as lissencephaly and double cortex, have revealed the importance of neuronal migration during cortical development. Afadin, a membrane scaffolding protein, regulates the formation of adherens junctions (AJs) and cell migration to form and maintain tissue structures. Here, we report that mice with dorsal telencephalon-specific ablation of afadin gene exhibited defects similar to human double cortex, in which the heterotopic cortex was located underneath the normotopic cortex. The normotopic cortex of the mutant mice was arranged in the pattern similar to the cortex of the control mice, while the heterotopic cortex was disorganized. As seen in human patients, double cortex in the mutant mice was formed by impaired neuronal migration during cortical development. Genetic ablation of afadin in the embryonic cerebral cortex disrupted AJs of radial glial cells, likely resulting in the retraction of the apical endfeet from the ventricular surface and the dispersion of radial glial cells from the ventricular zone to the subventricular and intermediate zones. These results indicate that afadin is required for the maintenance of AJs of radial glial cells and that the disruption of AJs might cause an abnormal radial scaffold for neuronal migration. In contrast, the proliferation or differentiation of radial glial cells was not significantly affected. Taken together, these findings indicate that afadin is required for the maintenance of the radial glial scaffold for neuronal migration and that the genetic ablation of afadin leads to the formation of double cortex.

  11. Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice.

    PubMed

    Dono, R; Texido, G; Dussel, R; Ehmke, H; Zeller, R

    1998-08-01

    Fibroblast growth factor-2 (FGF-2) has been implicated in various signaling processes which control embryonic growth and differentiation, adult physiology and pathology. To analyze the in vivo functions of this signaling molecule, the FGF-2 gene was inactivated by homologous recombination in mouse embryonic stem cells. FGF-2-deficient mice are viable, but display cerebral cortex defects at birth. Bromodeoxyuridine pulse labeling of embryos showed that proliferation of neuronal progenitors is normal, whereas a fraction of them fail to colonize their target layers in the cerebral cortex. A corresponding reduction in parvalbumin-positive neurons is observed in adult cortical layers. Neuronal defects are not limited to the cerebral cortex, as ectopic parvalbumin-positive neurons are present in the hippocampal commissure and neuronal deficiencies are observed in the cervical spinal cord. Physiological studies showed that FGF-2-deficient adult mice are hypotensive. They respond normally to angiotensin II-induced hypertension, whereas neural regulation of blood pressure by the baroreceptor reflex is impaired. The present genetic study establishes that FGF-2 participates in controlling fates, migration and differentiation of neuronal cells, whereas it is not essential for their proliferation. The observed autonomic dysfunction in FGF-2-deficient adult mice uncovers more general roles in neural development and function. PMID:9687490

  12. Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice.

    PubMed

    Dono, R; Texido, G; Dussel, R; Ehmke, H; Zeller, R

    1998-08-01

    Fibroblast growth factor-2 (FGF-2) has been implicated in various signaling processes which control embryonic growth and differentiation, adult physiology and pathology. To analyze the in vivo functions of this signaling molecule, the FGF-2 gene was inactivated by homologous recombination in mouse embryonic stem cells. FGF-2-deficient mice are viable, but display cerebral cortex defects at birth. Bromodeoxyuridine pulse labeling of embryos showed that proliferation of neuronal progenitors is normal, whereas a fraction of them fail to colonize their target layers in the cerebral cortex. A corresponding reduction in parvalbumin-positive neurons is observed in adult cortical layers. Neuronal defects are not limited to the cerebral cortex, as ectopic parvalbumin-positive neurons are present in the hippocampal commissure and neuronal deficiencies are observed in the cervical spinal cord. Physiological studies showed that FGF-2-deficient adult mice are hypotensive. They respond normally to angiotensin II-induced hypertension, whereas neural regulation of blood pressure by the baroreceptor reflex is impaired. The present genetic study establishes that FGF-2 participates in controlling fates, migration and differentiation of neuronal cells, whereas it is not essential for their proliferation. The observed autonomic dysfunction in FGF-2-deficient adult mice uncovers more general roles in neural development and function.

  13. Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice.

    PubMed Central

    Dono, R; Texido, G; Dussel, R; Ehmke, H; Zeller, R

    1998-01-01

    Fibroblast growth factor-2 (FGF-2) has been implicated in various signaling processes which control embryonic growth and differentiation, adult physiology and pathology. To analyze the in vivo functions of this signaling molecule, the FGF-2 gene was inactivated by homologous recombination in mouse embryonic stem cells. FGF-2-deficient mice are viable, but display cerebral cortex defects at birth. Bromodeoxyuridine pulse labeling of embryos showed that proliferation of neuronal progenitors is normal, whereas a fraction of them fail to colonize their target layers in the cerebral cortex. A corresponding reduction in parvalbumin-positive neurons is observed in adult cortical layers. Neuronal defects are not limited to the cerebral cortex, as ectopic parvalbumin-positive neurons are present in the hippocampal commissure and neuronal deficiencies are observed in the cervical spinal cord. Physiological studies showed that FGF-2-deficient adult mice are hypotensive. They respond normally to angiotensin II-induced hypertension, whereas neural regulation of blood pressure by the baroreceptor reflex is impaired. The present genetic study establishes that FGF-2 participates in controlling fates, migration and differentiation of neuronal cells, whereas it is not essential for their proliferation. The observed autonomic dysfunction in FGF-2-deficient adult mice uncovers more general roles in neural development and function. PMID:9687490

  14. Retinal Structures and Visual Cortex Activity are Impaired Prior to Clinical Vision Loss in Glaucoma

    PubMed Central

    Murphy, Matthew C.; Conner, Ian P.; Teng, Cindy Y.; Lawrence, Jesse D.; Safiullah, Zaid; Wang, Bo; Bilonick, Richard A.; Kim, Seong-Gi; Wollstein, Gadi; Schuman, Joel S.; Chan, Kevin C.

    2016-01-01

    Glaucoma is the second leading cause of blindness worldwide and its pathogenesis remains unclear. In this study, we measured the structure, metabolism and function of the visual system by optical coherence tomography and multi-modal magnetic resonance imaging in healthy subjects and glaucoma patients with different degrees of vision loss. We found that inner retinal layer thinning, optic nerve cupping and reduced visual cortex activity occurred before patients showed visual field impairment. The primary visual cortex also exhibited more severe functional deficits than higher-order visual brain areas in glaucoma. Within the visual cortex, choline metabolism was perturbed along with increasing disease severity in the eye, optic radiation and visual field. In summary, this study showed evidence that glaucoma deterioration is already present in the eye and the brain before substantial vision loss can be detected clinically using current testing methods. In addition, cortical cholinergic abnormalities are involved during trans-neuronal degeneration and can be detected non-invasively in glaucoma. The current results can be of impact for identifying early glaucoma mechanisms, detecting and monitoring pathophysiological events and eye-brain-behavior relationships, and guiding vision preservation strategies in the visual system, which may help reduce the burden of this irreversible but preventable neurodegenerative disease. PMID:27510406

  15. Retinal Structures and Visual Cortex Activity are Impaired Prior to Clinical Vision Loss in Glaucoma.

    PubMed

    Murphy, Matthew C; Conner, Ian P; Teng, Cindy Y; Lawrence, Jesse D; Safiullah, Zaid; Wang, Bo; Bilonick, Richard A; Kim, Seong-Gi; Wollstein, Gadi; Schuman, Joel S; Chan, Kevin C

    2016-01-01

    Glaucoma is the second leading cause of blindness worldwide and its pathogenesis remains unclear. In this study, we measured the structure, metabolism and function of the visual system by optical coherence tomography and multi-modal magnetic resonance imaging in healthy subjects and glaucoma patients with different degrees of vision loss. We found that inner retinal layer thinning, optic nerve cupping and reduced visual cortex activity occurred before patients showed visual field impairment. The primary visual cortex also exhibited more severe functional deficits than higher-order visual brain areas in glaucoma. Within the visual cortex, choline metabolism was perturbed along with increasing disease severity in the eye, optic radiation and visual field. In summary, this study showed evidence that glaucoma deterioration is already present in the eye and the brain before substantial vision loss can be detected clinically using current testing methods. In addition, cortical cholinergic abnormalities are involved during trans-neuronal degeneration and can be detected non-invasively in glaucoma. The current results can be of impact for identifying early glaucoma mechanisms, detecting and monitoring pathophysiological events and eye-brain-behavior relationships, and guiding vision preservation strategies in the visual system, which may help reduce the burden of this irreversible but preventable neurodegenerative disease. PMID:27510406

  16. Astrocyte pathology in the prefrontal cortex impairs the cognitive function of rats.

    PubMed

    Lima, A; Sardinha, V M; Oliveira, A F; Reis, M; Mota, C; Silva, M A; Marques, F; Cerqueira, J J; Pinto, L; Sousa, N; Oliveira, J F

    2014-07-01

    Interest in astroglial cells is rising due to recent findings supporting dynamic neuron-astrocyte interactions. There is increasing evidence of astrocytic dysfunction in several brain disorders such as depression, schizophrenia or bipolar disorder; importantly these pathologies are characterized by the involvement of the prefrontal cortex and by significant cognitive impairments. Here, to model astrocyte pathology, we injected animals with the astrocyte specific toxin L-α-aminoadipate (L-AA) in the medial prefrontal cortex (mPFC); a behavioral and structural characterization two and six days after the injection was performed. Behavioral data shows that the astrocyte pathology in the mPFC affects the attentional set-shifting, the working memory and the reversal learning functions. Histological analysis of brain sections of the L-AA-injected animals revealed a pronounced loss of astrocytes in the targeted region. Interestingly, analysis of neurons in the lesion sites showed a progressive neuronal loss that was accompanied with dendritic atrophy in the surviving neurons. These results suggest that the L-AA-induced astrocytic loss in the mPFC triggers subsequent neuronal damage leading to cognitive impairment in tasks depending on the integrity of this brain region. These findings are of relevance to better understand the pathophysiological mechanisms underlying disorders that involve astrocytic loss/dysfunction in the PFC.

  17. Semantic Processing Impairment in Patients with Temporal Lobe Epilepsy.

    PubMed

    Jaimes-Bautista, Amanda G; Rodríguez-Camacho, Mario; Martínez-Juárez, Iris E; Rodríguez-Agudelo, Yaneth

    2015-01-01

    The impairment in episodic memory system is the best-known cognitive deficit in patients with temporal lobe epilepsy (TLE). Recent studies have shown evidence of semantic disorders, but they have been less studied than episodic memory. The semantic dysfunction in TLE has various cognitive manifestations, such as the presence of language disorders characterized by defects in naming, verbal fluency, or remote semantic information retrieval, which affects the ability of patients to interact with their surroundings. This paper is a review of recent research about the consequences of TLE on semantic processing, considering neuropsychological, electrophysiological, and neuroimaging findings, as well as the functional role of the hippocampus in semantic processing. The evidence from these studies shows disturbance of semantic memory in patients with TLE and supports the theory of declarative memory of the hippocampus. Functional neuroimaging studies show an inefficient compensatory functional reorganization of semantic networks and electrophysiological studies show a lack of N400 effect that could indicate that the deficit in semantic processing in patients with TLE could be due to a failure in the mechanisms of automatic access to lexicon. PMID:26257956

  18. Semantic Processing Impairment in Patients with Temporal Lobe Epilepsy

    PubMed Central

    Jaimes-Bautista, Amanda G.; Rodríguez-Camacho, Mario; Martínez-Juárez, Iris E.; Rodríguez-Agudelo, Yaneth

    2015-01-01

    The impairment in episodic memory system is the best-known cognitive deficit in patients with temporal lobe epilepsy (TLE). Recent studies have shown evidence of semantic disorders, but they have been less studied than episodic memory. The semantic dysfunction in TLE has various cognitive manifestations, such as the presence of language disorders characterized by defects in naming, verbal fluency, or remote semantic information retrieval, which affects the ability of patients to interact with their surroundings. This paper is a review of recent research about the consequences of TLE on semantic processing, considering neuropsychological, electrophysiological, and neuroimaging findings, as well as the functional role of the hippocampus in semantic processing. The evidence from these studies shows disturbance of semantic memory in patients with TLE and supports the theory of declarative memory of the hippocampus. Functional neuroimaging studies show an inefficient compensatory functional reorganization of semantic networks and electrophysiological studies show a lack of N400 effect that could indicate that the deficit in semantic processing in patients with TLE could be due to a failure in the mechanisms of automatic access to lexicon. PMID:26257956

  19. Semantic Processing Impairment in Patients with Temporal Lobe Epilepsy.

    PubMed

    Jaimes-Bautista, Amanda G; Rodríguez-Camacho, Mario; Martínez-Juárez, Iris E; Rodríguez-Agudelo, Yaneth

    2015-01-01

    The impairment in episodic memory system is the best-known cognitive deficit in patients with temporal lobe epilepsy (TLE). Recent studies have shown evidence of semantic disorders, but they have been less studied than episodic memory. The semantic dysfunction in TLE has various cognitive manifestations, such as the presence of language disorders characterized by defects in naming, verbal fluency, or remote semantic information retrieval, which affects the ability of patients to interact with their surroundings. This paper is a review of recent research about the consequences of TLE on semantic processing, considering neuropsychological, electrophysiological, and neuroimaging findings, as well as the functional role of the hippocampus in semantic processing. The evidence from these studies shows disturbance of semantic memory in patients with TLE and supports the theory of declarative memory of the hippocampus. Functional neuroimaging studies show an inefficient compensatory functional reorganization of semantic networks and electrophysiological studies show a lack of N400 effect that could indicate that the deficit in semantic processing in patients with TLE could be due to a failure in the mechanisms of automatic access to lexicon.

  20. Retrosplenial cortex lesions of area Rgb (but not of area Rga) impair spatial learning and memory in the rat.

    PubMed

    van Groen, Thomas; Kadish, Inga; Wyss, J Michael

    2004-10-01

    The retrosplenial cortex, which is situated in a critical position in the flow of information between the hippocampal formation and the neocortex, contributes to spatial memory, but no studies have examined the distinct contribution of each area of the retrosplenial cortex to this behavior. This study tests the hypothesis that the two areas of the retrosplenial granular cortex play distinct roles in spatial learning and memory. Adult, male Sprague-Dawley rats with small, bilateral lesions (ibotenic acid) of the retrosplenial granular cortex were tested for 2 weeks in a repeated acquisition water maze task. Compared to controls, rats with complete lesions of the retrosplenial granular b cortex (Rgb) were slightly, but significantly impaired, whereas rats with lesions of the retrosplenial granular a cortex (Rga) displayed no impairment. Further, the Rgb-lesioned (but not the Rga-lesioned) group was impaired in the probe trials at the end of the first week of training. All animals were tested in the same paradigm for a second week to determine if the learning and memory impairment in the Rgb-lesioned rats simply reflected "delayed learning." All animals improved their maze performance during the second week of testing, but the Rgb-lesioned group still had no preference for the correct quadrant in the probe trial. Together, these data indicate that Rgb plays a small, independent role in spatial learning and memory. Further, although selective lesions of Rga or Rgb do not cause a large deficit in learning, concomitant destruction of both areas causes a much greater impairment in learning than would be predicted from their independent contributions. The data highlight the unique and complex contribution of each area of the retrosplenial cortex to behavior.

  1. Temporal resolution of the human primary auditory cortex in gap detection.

    PubMed

    Rupp, André; Gutschalk, Alexander; Hack, Sebastian; Scherg, Michael

    2002-12-01

    The temporal resolution of the primary auditory cortex was studied by recording the magnetic middle latency fields (MAEF) evoked by gaps of 3, 6 and 9 ms inserted in the middle of 600 ms broadband noise bursts. Spatio-temporal source modelling showed that a significant neural representation as reflected by MAEF responses is present at gap durations as low as 3 sms. The comparison of the MAEF waveforms elicited by the onset, gap and offset of the noise bursts indicates that the gap related response near threshold is largely determined by the onset to the burst following the gap. The electro-physiologically derived minimum detectable gap closely resembled the psychoacoustic threshold of 2.0 ms obtained in the same subjects.

  2. Aged Rats Are Impaired on an Attentional Set-Shifting Task Sensitive to Medial Frontal Cortex Damage in Young Rats

    PubMed Central

    Barense, Morgan D.; Fox, Matthew T.; Baxter, Mark G.

    2002-01-01

    Normal aging is associated with disruption of neural systems that subserve different aspects of cognitive function, particularly in the hippocampus and frontal cortex. Abnormalities in hippocampal function have been well investigated in rodent models of aging, but studies of frontal cortex function in aged rodents are few. We tested young (4–5 mo old) and aged (27–28 mo old) male Long-Evans rats on an attentional set-shifting task modified slightly from previous publication. After training on two problems in which the reward was consistently associated with the same stimulus dimension, and a reversal of one problem, a new problem was presented in which the reward was consistently associated with the previously irrelevant stimulus dimension (extradimensional shift [EDS]). Aged rats as a group were significantly impaired on the EDS, although some individual aged rats performed as well as young rats on this phase. In addition, some aged rats were impaired on the reversal, although a group effect did not reach significance in this phase. Impairment in neither reversal nor EDS was associated with impairments in spatial learning in the Morris water maze. Young rats with neurotoxic lesions of medial frontal cortex are also selectively impaired on the EDS. These results indicate that normal aging in rats is associated with impaired medial frontal cortex function. Furthermore, age-related declines in frontal cortex function are independent of those in hippocampal function. These results provide a possible basis for correlating age-related changes in neurobiological markers in frontal cortex with cognitive decline. PMID:12177232

  3. Betaine prevents homocysteine-induced memory impairment via matrix metalloproteinase-9 in the frontal cortex.

    PubMed

    Kunisawa, K; Nakashima, N; Nagao, M; Nomura, T; Kinoshita, S; Hiramatsu, M

    2015-10-01

    Betaine plays important roles that include acting as a methyl donor and converting homocysteine (Hcy) to methionine. Elevated plasma Hcy levels are known as hyperhomocysteinemia (HHcy) and contribute to impairments of learning and memory. Although it is commonly known that betaine plays an important role in Hcy metabolism, the effects of betaine on Hcy-induced memory impairment have not been investigated. Previously, we demonstrated the beneficial effects of betaine on acute stress and lipopolysaccharide-induced memory impairment. In the present study, we investigated whether betaine ameliorates Hcy-induced memory impairment and the underlying mechanisms of this putative effect. Mice were treated with Hcy (0.162mg/kg, s.c.) twice a day for nine days, and betaine (25mg/kg, s.c.) was administered 30min before the Hcy injections. The memory functions were evaluated using a spontaneous alternation performance test (Y-maze) at seven days and a step-down type passive avoidance test (SD) at nine and ten days after Hcy injection. We found that betaine suppressed the memory impairment induced by repeated Hcy injections. However, the blood concentrations of Hcy were significantly increased in the Hcy-treated mice immediately after the passive avoidance test, and betaine did not prevent this increase. Furthermore, Hcy induces redox stress in part by activating matrix metalloproteinase-9 (MMP-9), which leads to BBB dysfunction. Therefore, we tested whether betaine affected MMP-9 activity. Interestingly, treatment with betaine significantly inhibited Hcy-induced MMP-9 activity in the frontal cortex but not in the hippocampus after acute Hcy injection. These results suggest that the changes in MMP-9 activity after betaine treatment might have been partially responsible for the amelioration of the memory deficits and that MMP-9 might be a candidate therapeutic target for HHcy.

  4. Impaired water maze navigation of Wistar rats with retrosplenial cortex lesions: effect of nonspatial pretraining.

    PubMed

    Lukoyanov, Nikolai V; Lukoyanova, Elena A; Andrade, José P; Paula-Barbosa, Manuel M

    2005-03-01

    Damage to the retrosplenial cortex (RC) impairs the performance of rodents on spatial learning and memory tasks, but the extent of these deficits was previously reported to be influenced by the lesion type, rat strain, and behavioral task used. The present study addressed the issue of whether or not cytotoxic damage to RC impairs place navigation of Wistar rats in the Morris water maze and, if so, whether this is merely attributable to spatial learning deficits or to impaired learning of general (nonspatial) behavioral strategies required to correctly perform this task or both. Behaviorally naive rats with bilateral lesions to RC were significantly impaired relative to sham-lesioned rats both during the period of initial learning of the task and during the later phases of training. In addition, these animals showed enhanced thigmotaxis, indicating that the lesion was associated with considerable abnormalities in nonspatial learning. In contrast, RC-lesioned animals that have been previously familiarized with general task rules in a series of shaping trials did not show more thigmotaxis than did their respective controls. Furthermore, although these rats were still impaired in the middle of the training process, their performance during the period of initial learning as well as by the end of training was found to now be normal. Our results confirm those of earlier studies indicating that RC is important for spatial navigation. The findings herein reported are also consistent with the notion that, in addition to spatial information processing, RC is involved in cognitive processes underlying the ability of subjects to properly respond to general task demands.

  5. Multi-Voxel Pattern Analysis of Noun and Verb Differences in Ventral Temporal Cortex Marked Revision

    PubMed Central

    Boylan, Christine; Trueswell, John C.; Thompson-Schill, Sharon L.

    2014-01-01

    Recent evidence suggests a probabilistic relationship exists between the phonological/orthographic form of a word and its lexical-syntactic category (specifically nouns vs. verbs) such that syntactic prediction may elicit form-based estimates in sensory cortex. We tested this hypothesis by conducting multi-voxel pattern analysis (MVPA) of fMRI data from early visual cortex (EVC), left ventral temporal (VT) cortex, and a subregion of the latter - the left mid fusiform gyrus (mid FG), sometimes called the “visual word form area.” Crucially, we examined only those volumes sampled when subjects were predicting, but not viewing, nouns and verbs. This allowed us to investigate prediction effects in visual areas without any bottom-up orthographic input. We found that voxels in VT and mid FG, but not in EVC, were able to classify noun-predictive trials vs. verb-predictive trials in sentence contexts, suggesting that sentence-level predictions are sufficient to generate word form-based estimates in visual areas. PMID:25156159

  6. RNA sequencing from neural ensembles activated during fear conditioning in the mouse temporal association cortex.

    PubMed

    Cho, Jin-Hyung; Huang, Ben S; Gray, Jesse M

    2016-01-01

    The stable formation of remote fear memories is thought to require neuronal gene induction in cortical ensembles that are activated during learning. However, the set of genes expressed specifically in these activated ensembles is not known; knowledge of such transcriptional profiles may offer insights into the molecular program underlying stable memory formation. Here we use RNA-Seq to identify genes whose expression is enriched in activated cortical ensembles labeled during associative fear learning. We first establish that mouse temporal association cortex (TeA) is required for remote recall of auditory fear memories. We then perform RNA-Seq in TeA neurons that are labeled by the activity reporter Arc-dVenus during learning. We identify 944 genes with enriched expression in Arc-dVenus+ neurons. These genes include markers of L2/3, L5b, and L6 excitatory neurons but not glial or inhibitory markers, confirming Arc-dVenus to be an excitatory neuron-specific but non-layer-specific activity reporter. Cross comparisons to other transcriptional profiles show that 125 of the enriched genes are also activity-regulated in vitro or induced by visual stimulus in the visual cortex, suggesting that they may be induced generally in the cortex in an experience-dependent fashion. Prominent among the enriched genes are those encoding potassium channels that down-regulate neuronal activity, suggesting the possibility that part of the molecular program induced by fear conditioning may initiate homeostatic plasticity. PMID:27557751

  7. RNA sequencing from neural ensembles activated during fear conditioning in the mouse temporal association cortex

    PubMed Central

    Cho, Jin-Hyung; Huang, Ben S.; Gray, Jesse M.

    2016-01-01

    The stable formation of remote fear memories is thought to require neuronal gene induction in cortical ensembles that are activated during learning. However, the set of genes expressed specifically in these activated ensembles is not known; knowledge of such transcriptional profiles may offer insights into the molecular program underlying stable memory formation. Here we use RNA-Seq to identify genes whose expression is enriched in activated cortical ensembles labeled during associative fear learning. We first establish that mouse temporal association cortex (TeA) is required for remote recall of auditory fear memories. We then perform RNA-Seq in TeA neurons that are labeled by the activity reporter Arc-dVenus during learning. We identify 944 genes with enriched expression in Arc-dVenus+ neurons. These genes include markers of L2/3, L5b, and L6 excitatory neurons but not glial or inhibitory markers, confirming Arc-dVenus to be an excitatory neuron-specific but non-layer-specific activity reporter. Cross comparisons to other transcriptional profiles show that 125 of the enriched genes are also activity-regulated in vitro or induced by visual stimulus in the visual cortex, suggesting that they may be induced generally in the cortex in an experience-dependent fashion. Prominent among the enriched genes are those encoding potassium channels that down-regulate neuronal activity, suggesting the possibility that part of the molecular program induced by fear conditioning may initiate homeostatic plasticity. PMID:27557751

  8. Effects of sound intensity on temporal properties of inhibition in the pallid bat auditory cortex

    PubMed Central

    Razak, Khaleel A.

    2013-01-01

    Auditory neurons in bats that use frequency modulated (FM) sweeps for echolocation are selective for the behaviorally-relevant rates and direction of frequency change. Such selectivity arises through spectrotemporal interactions between excitatory and inhibitory components of the receptive field. In the pallid bat auditory system, the relationship between FM sweep direction/rate selectivity and spectral and temporal properties of sideband inhibition have been characterized. Of note is the temporal asymmetry in sideband inhibition, with low-frequency inhibition (LFI) exhibiting faster arrival times compared to high-frequency inhibition (HFI). Using the two-tone inhibition over time (TTI) stimulus paradigm, this study investigated the interactions between two sound parameters in shaping sideband inhibition: intensity and time. Specifically, the impact of changing relative intensities of the excitatory and inhibitory tones on arrival time of inhibition was studied. Using this stimulation paradigm, single unit data from the auditory cortex of pentobarbital-anesthetized cortex show that the threshold for LFI is on average ~8 dB lower than HFI. For equal intensity tones near threshold, LFI is stronger than HFI. When the inhibitory tone intensity is increased further from threshold, the strength asymmetry decreased. The temporal asymmetry in LFI vs. HFI arrival time is strongest when the excitatory and inhibitory tones are of equal intensities or if excitatory tone is louder. As inhibitory tone intensity is increased, temporal asymmetry decreased suggesting that the relative magnitude of excitatory and inhibitory inputs shape arrival time of inhibition and FM sweep rate and direction selectivity. Given that most FM bats use downward sweeps as echolocation calls, a similar asymmetry in threshold and strength of LFI vs. HFI may be a general adaptation to enhance direction selectivity while maintaining sweep-rate selective responses to downward sweeps. PMID:23761762

  9. Asymmetric projections of the arcuate fasciculus to the temporal cortex underlie lateralized language function in the human brain.

    PubMed

    Takaya, Shigetoshi; Kuperberg, Gina R; Liu, Hesheng; Greve, Douglas N; Makris, Nikos; Stufflebeam, Steven M

    2015-01-01

    The arcuate fasciculus (AF) in the human brain has asymmetric structural properties. However, the topographic organization of the asymmetric AF projections to the cortex and its relevance to cortical function remain unclear. Here we mapped the posterior projections of the human AF in the inferior parietal and lateral temporal cortices using surface-based structural connectivity analysis based on diffusion MRI and investigated their hemispheric differences. We then performed the cross-modal comparison with functional connectivity based on resting-state functional MRI (fMRI) and task-related cortical activation based on fMRI using a semantic classification task of single words. Structural connectivity analysis showed that the left AF connecting to Broca's area predominantly projected in the lateral temporal cortex extending from the posterior superior temporal gyrus to the mid part of the superior temporal sulcus and the middle temporal gyrus, whereas the right AF connecting to the right homolog of Broca's area predominantly projected to the inferior parietal cortex extending from the mid part of the supramarginal gyrus to the anterior part of the angular gyrus. The left-lateralized projection regions of the AF in the left temporal cortex had asymmetric functional connectivity with Broca's area, indicating structure-function concordance through the AF. During the language task, left-lateralized cortical activation was observed. Among them, the brain responses in the temporal cortex and Broca's area that were connected through the left-lateralized AF pathway were specifically correlated across subjects. These results suggest that the human left AF, which structurally and functionally connects the mid temporal cortex and Broca's area in asymmetrical fashion, coordinates the cortical activity in these remote cortices during a semantic decision task. The unique feature of the left AF is discussed in the context of the human capacity for language. PMID:26441551

  10. Asymmetric projections of the arcuate fasciculus to the temporal cortex underlie lateralized language function in the human brain

    SciTech Connect

    Takaya, Shigetoshi; Kuperberg, Gina R.; Liu, Hesheng; Greve, Douglas N.; Makris, Nikos; Stufflebeam, Steven M.

    2015-09-15

    The arcuate fasciculus (AF) in the human brain has asymmetric structural properties. However, the topographic organization of the asymmetric AF projections to the cortex and its relevance to cortical function remain unclear. Here we mapped the posterior projections of the human AF in the inferior parietal and lateral temporal cortices using surface-based structural connectivity analysis based on diffusion MRI and investigated their hemispheric differences. We then performed the cross-modal comparison with functional connectivity based on resting-state functional MRI (fMRI) and task-related cortical activation based on fMRI using a semantic classification task of single words. Structural connectivity analysis showed that the left AF connecting to Broca's area predominantly projected in the lateral temporal cortex extending from the posterior superior temporal gyrus to the mid part of the superior temporal sulcus and the middle temporal gyrus, whereas the right AF connecting to the right homolog of Broca's area predominantly projected to the inferior parietal cortex extending from the mid part of the supramarginal gyrus to the anterior part of the angular gyrus. The left-lateralized projection regions of the AF in the left temporal cortex had asymmetric functional connectivity with Broca's area, indicating structure-function concordance through the AF. During the language task, left-lateralized cortical activation was observed. Among them, the brain responses in the temporal cortex and Broca's area that were connected through the left-lateralized AF pathway were specifically correlated across subjects. These results suggest that the human left AF, which structurally and functionally connects the mid temporal cortex and Broca's area in asymmetrical fashion, coordinates the cortical activity in these remote cortices during a semantic decision task. As a result, the unique feature of the left AF is discussed in the context of the human capacity for language.

  11. Asymmetric projections of the arcuate fasciculus to the temporal cortex underlie lateralized language function in the human brain

    DOE PAGES

    Takaya, Shigetoshi; Kuperberg, Gina R.; Liu, Hesheng; Greve, Douglas N.; Makris, Nikos; Stufflebeam, Steven M.

    2015-09-15

    The arcuate fasciculus (AF) in the human brain has asymmetric structural properties. However, the topographic organization of the asymmetric AF projections to the cortex and its relevance to cortical function remain unclear. Here we mapped the posterior projections of the human AF in the inferior parietal and lateral temporal cortices using surface-based structural connectivity analysis based on diffusion MRI and investigated their hemispheric differences. We then performed the cross-modal comparison with functional connectivity based on resting-state functional MRI (fMRI) and task-related cortical activation based on fMRI using a semantic classification task of single words. Structural connectivity analysis showed that themore » left AF connecting to Broca's area predominantly projected in the lateral temporal cortex extending from the posterior superior temporal gyrus to the mid part of the superior temporal sulcus and the middle temporal gyrus, whereas the right AF connecting to the right homolog of Broca's area predominantly projected to the inferior parietal cortex extending from the mid part of the supramarginal gyrus to the anterior part of the angular gyrus. The left-lateralized projection regions of the AF in the left temporal cortex had asymmetric functional connectivity with Broca's area, indicating structure-function concordance through the AF. During the language task, left-lateralized cortical activation was observed. Among them, the brain responses in the temporal cortex and Broca's area that were connected through the left-lateralized AF pathway were specifically correlated across subjects. These results suggest that the human left AF, which structurally and functionally connects the mid temporal cortex and Broca's area in asymmetrical fashion, coordinates the cortical activity in these remote cortices during a semantic decision task. As a result, the unique feature of the left AF is discussed in the context of the human capacity for language.« less

  12. Blockade of Glutamatergic Transmission in Perirhinal Cortex Impairs Object Recognition Memory in Macaques

    PubMed Central

    Forcelli, Patrick A.; Wellman, Laurie L.; Dybdal, David; Dubach, Mark F.; Gale, Karen

    2015-01-01

    The perirhinal cortex (PRc) is essential for visual recognition memory, as shown by electrophysiological recordings and lesion studies in a variety of species. However, relatively little is known about the functional contributions of perirhinal subregions. Here we used a systematic mapping approach to identify the critical subregions of PRc through transient, focal blockade of glutamate receptors by intracerebral infusion of kynurenic acid. Nine macaques were tested for visual recognition memory using the delayed nonmatch-to-sample task. We found that inactivation of medial PRc (consisting of Area 35 together with the medial portion of Area 36), but not lateral PRc (the lateral portion of Area 36), resulted in a significant delay-dependent impairment. Significant impairment was observed with 30 and 60 s delays but not with 10 s delays. The magnitude of impairment fell within the range previously reported after PRc lesions. Furthermore, we identified a restricted area located within the most anterior part of medial PRc as critical for this effect. Moreover, we found that focal blockade of either NMDA receptors by the receptor-specific antagonist AP-7 or AMPA receptors by the receptor-specific antagonist NBQX was sufficient to disrupt object recognition memory. The present study expands the knowledge of the role of PRc in recognition memory by identifying a subregion within this area that is critical for this function. Our results also indicate that, like in the rodent, both NMDA and AMPA-mediated transmission contributes to object recognition memory. PMID:25810533

  13. Impairment of learning and memory after photothrombosis of the prefrontal cortex in rat brain: effects of Noopept.

    PubMed

    Romanova, G A; Shakova, F M; Gudasheva, T A; Ostrovskaya, R U

    2002-12-01

    Experiments were performed on rats trained conditioned passive avoidance response. Acquisition and retention of memory traces were impaired after photothrombosis of the prefrontal cortex. The acyl-prolyl-containing dipeptide Noopept facilitated retention and retrieval of a conditioned passive avoidance response, normalized learning capacity in animals with ischemic damage to the cerebral cortex, and promoted finish training in rats with hereditary learning deficit. These results show that Noopept improves all three stages of memory. It should be emphasized that the effect of Noopept was most pronounced in animals with impaired mnesic function. PMID:12660828

  14. Neuronal correlate of visual associative long-term memory in the primate temporal cortex

    NASA Astrophysics Data System (ADS)

    Miyashita, Yasushi

    1988-10-01

    In human long-term memory, ideas and concepts become associated in the learning process1. No neuronal correlate for this cognitive function has so far been described, except that memory traces are thought to be localized in the cerebral cortex; the temporal lobe has been assigned as the site for visual experience because electric stimulation of this area results in imagery recall,2 and lesions produce deficits in visual recognition of objects3-9. We previously reported that in the anterior ventral temporal cortex of monkeys, individual neurons have a sustained activity that is highly selective for a few of the 100 coloured fractal patterns used in a visual working-memory task10. Here I report the development of this selectivity through repeated trials involving the working memory. The few patterns for which a neuron was conjointly selective were frequently related to each other through stimulus-stimulus association imposed during training. The results indicate that the selectivity acquired by these cells represents a neuronal correlate of the associative long-term memory of pictures.

  15. Spatial and temporal distribution of visual information coding in lateral prefrontal cortex

    PubMed Central

    Kadohisa, Mikiko; Kusunoki, Makoto; Petrov, Philippe; Sigala, Natasha; Buckley, Mark J; Gaffan, David; Duncan, John

    2015-01-01

    Prefrontal neurons code many kinds of behaviourally relevant visual information. In behaving monkeys, we used a cued target detection task to address coding of objects, behavioural categories and spatial locations, examining the temporal evolution of neural activity across dorsal and ventral regions of the lateral prefrontal cortex (encompassing parts of areas 9, 46, 45A and 8A), and across the two cerebral hemispheres. Within each hemisphere there was little evidence for regional specialisation, with neurons in dorsal and ventral regions showing closely similar patterns of selectivity for objects, categories and locations. For a stimulus in either visual field, however, there was a strong and temporally specific difference in response in the two cerebral hemispheres. In the first part of the visual response (50–250 ms from stimulus onset), processing in each hemisphere was largely restricted to contralateral stimuli, with strong responses to such stimuli, and selectivity for both object and category. Later (300–500 ms), responses to ipsilateral stimuli also appeared, many cells now responding more strongly to ipsilateral than to contralateral stimuli, and many showing selectivity for category. Activity on error trials showed that late activity in both hemispheres reflected the animal's final decision. As information is processed towards a behavioural decision, its encoding spreads to encompass large, bilateral regions of prefrontal cortex. PMID:25307044

  16. Global and fine information coded by single neurons in the temporal visual cortex

    NASA Astrophysics Data System (ADS)

    Sugase, Yasuko; Yamane, Shigeru; Ueno, Shoogo; Kawano, Kenji

    1999-08-01

    When we see a person's face, we can easily recognize their species, individual identity and emotional state. How does the brain represent such complex information? A substantial number of neurons in the macaque temporal cortex respond to faces. However, the neuronal mechanisms underlying the processing ofcomplex information are not yet clear. Here we recorded the activity of single neurons in the temporal cortex of macaque monkeys while presenting visual stimuli consisting of geometric shapes, and monkey and human faces with various expressions. Information theory was used to investigate how well the neuronal responses could categorize the stimuli. We found that single neurons conveyed two different scales of facial information intheir firing patterns, starting at different latencies. Global information, categorizing stimuli as monkey faces, human faces or shapes, was conveyed in the earliest part of the responses. Fineinformation about identity or expression was conveyed later,beginning on average 51ms after global information. We speculate that global information could be used as a `header' to prepare destination areas for receiving more detailed information.

  17. Temporal dynamics of motor cortex excitability during perception of natural emotional scenes.

    PubMed

    Borgomaneri, Sara; Gazzola, Valeria; Avenanti, Alessio

    2014-10-01

    Although it is widely assumed that emotions prime the body for action, the effects of visual perception of natural emotional scenes on the temporal dynamics of the human motor system have scarcely been investigated. Here, we used single-pulse transcranial magnetic stimulation (TMS) to assess motor excitability during observation and categorization of positive, neutral and negative pictures from the International Affective Picture System database. Motor-evoked potentials (MEPs) from TMS of the left motor cortex were recorded from hand muscles, at 150 and 300 ms after picture onset. In the early temporal condition we found an increase in hand motor excitability that was specific for the perception of negative pictures. This early negative bias was predicted by interindividual differences in the disposition to experience aversive feelings (personal distress) in interpersonal emotional contexts. In the later temporal condition, we found that MEPs were similarly increased for both positive and negative pictures, suggesting an increased reactivity to emotionally arousing scenes. By highlighting the temporal course of motor excitability during perception of emotional pictures, our study provides direct neurophysiological support for the evolutionary notions that emotion perception is closely linked to action systems and that emotionally negative events require motor reactions to be more urgently mobilized.

  18. Temporal dynamics of motor cortex excitability during perception of natural emotional scenes

    PubMed Central

    Borgomaneri, Sara; Gazzola, Valeria

    2014-01-01

    Although it is widely assumed that emotions prime the body for action, the effects of visual perception of natural emotional scenes on the temporal dynamics of the human motor system have scarcely been investigated. Here, we used single-pulse transcranial magnetic stimulation (TMS) to assess motor excitability during observation and categorization of positive, neutral and negative pictures from the International Affective Picture System database. Motor-evoked potentials (MEPs) from TMS of the left motor cortex were recorded from hand muscles, at 150 and 300 ms after picture onset. In the early temporal condition we found an increase in hand motor excitability that was specific for the perception of negative pictures. This early negative bias was predicted by interindividual differences in the disposition to experience aversive feelings (personal distress) in interpersonal emotional contexts. In the later temporal condition, we found that MEPs were similarly increased for both positive and negative pictures, suggesting an increased reactivity to emotionally arousing scenes. By highlighting the temporal course of motor excitability during perception of emotional pictures, our study provides direct neurophysiological support for the evolutionary notions that emotion perception is closely linked to action systems and that emotionally negative events require motor reactions to be more urgently mobilized. PMID:23945998

  19. Nucleus basalis magnocellularis and medial septal area lesions differentially impair temporal memory.

    PubMed

    Meck, W H; Church, R M; Wenk, G L; Olton, D S

    1987-11-01

    Functional dissociations between the medial septal area (MSA) and the nucleus basalis magnocellularis (NBM) were examined using the concepts and experimental procedures developed by scalar timing theory. Rats were tested in variations of a signalled discrete-trial peak-interval schedule of reinforcement in which the response rate functions identified the time when the rats expected reinforcement. The variations assessed aspects of both reference and working memory for information obtained from prior trials and from the current trial. A double dissociation was found in reference memory. Rats with NBM lesions, like those with frontal cortex (FC) lesions, remembered the time of reinforcement as having occurred later than it actually did; rats with MSA lesions, like those with fimbria-fornix (FF) lesions, remembered the time of reinforcement as having occurred earlier than it did. A single dissociation was found in working memory. MSA lesions and FF lesions impaired working memory, while NBM and FC lesions had no effect on it. These data begin to identify the brain mechanisms underlying temporal memory; they indicate that the frontal and hippocampal systems are both involved, but in complementary ways; and they provide information that helps specify more clearly the functions of the frontal and hippocampal systems.

  20. Increased excitability of somatosensory cortex in aged humans is associated with impaired tactile acuity.

    PubMed

    Lenz, Melanie; Tegenthoff, Martin; Kohlhaas, Karsten; Stude, Philipp; Höffken, Oliver; Gatica Tossi, Mario A; Kalisch, Tobias; Kowalewski, Rebecca; Dinse, Hubert R

    2012-02-01

    Aging affects all levels of neural processing, including changes of intracortical inhibition and cortical excitability. Paired-pulse stimulation, the application of two stimuli in close succession, is a useful tool to investigate cortical excitability in humans. The paired-pulse behavior is characterized by the second response being significantly suppressed at short stimulus onset asynchronies. While in rat somatosensory cortex, intracortical inhibition has been demonstrated to decline with increasing age, data from human motor cortex of elderly subjects are controversial and there are no data for the human somatosensory cortex (SI). Moreover, behavioral implications of age-related changes of cortical excitability remain elusive. We therefore assessed SI excitability by combining paired-pulse median nerve stimulation with recording somatosensory evoked potentials in 138 healthy subjects aged 17-86 years. We found that paired-pulse suppression was characterized by substantial interindividual variability, but declined significantly with age, confirming reduced intracortical inhibition in elderly subjects. To link the age-related increase of cortical excitability to perceptual changes, we measured tactile two-point discrimination in a subsample of 26 aged participants who showed either low or high paired-pulse suppression. We found that tactile performance was particularly impaired in subjects showing markedly enhanced cortical excitability. Our data demonstrate that paired-pulse suppression of human SI is significantly reduced in older adults, and that age-related enhancement of cortical excitability correlates with degradation of tactile perception. These findings indicate that cortical excitability constitutes an important mechanism that links age-related neurophysiological changes to behavioral alterations in humans.

  1. Stimulation over primary motor cortex during action observation impairs effector recognition.

    PubMed

    Naish, Katherine R; Barnes, Brittany; Obhi, Sukhvinder S

    2016-04-01

    Recent work suggests that motor cortical processing during action observation plays a role in later recognition of the object involved in the action. Here, we investigated whether recognition of the effector making an action is also impaired when transcranial magnetic stimulation (TMS) - thought to interfere with normal cortical activity - is applied over the primary motor cortex (M1) during action observation. In two experiments, single-pulse TMS was delivered over the hand area of M1 while participants watched short clips of hand actions. Participants were then asked whether an image (experiment 1) or a video (experiment 2) of a hand presented later in the trial was the same or different to the hand in the preceding video. In Experiment 1, we found that participants' ability to recognise static images of hands was significantly impaired when TMS was delivered over M1 during action observation, compared to when no TMS was delivered, or when stimulation was applied over the vertex. Conversely, stimulation over M1 did not affect recognition of dot configurations, or recognition of hands that were previously presented as static images (rather than action movie clips) with no object. In Experiment 2, we found that effector recognition was impaired when stimulation was applied part way through (300ms) and at the end (500ms) of the action observation period, indicating that 200ms of action-viewing following stimulation was not long enough to form a new representation that could be used for later recognition. The findings of both experiments suggest that interfering with cortical motor activity during action observation impairs subsequent recognition of the effector involved in the action, which complements previous findings of motor system involvement in object memory. This work provides some of the first evidence that motor processing during action observation is involved in forming representations of the effector that are useful beyond the action observation period

  2. Decoding Multiple Sound Categories in the Human Temporal Cortex Using High Resolution fMRI

    PubMed Central

    Zhang, Fengqing; Wang, Ji-Ping; Kim, Jieun; Parrish, Todd; Wong, Patrick C. M.

    2015-01-01

    Perception of sound categories is an important aspect of auditory perception. The extent to which the brain’s representation of sound categories is encoded in specialized subregions or distributed across the auditory cortex remains unclear. Recent studies using multivariate pattern analysis (MVPA) of brain activations have provided important insights into how the brain decodes perceptual information. In the large existing literature on brain decoding using MVPA methods, relatively few studies have been conducted on multi-class categorization in the auditory domain. Here, we investigated the representation and processing of auditory categories within the human temporal cortex using high resolution fMRI and MVPA methods. More importantly, we considered decoding multiple sound categories simultaneously through multi-class support vector machine-recursive feature elimination (MSVM-RFE) as our MVPA tool. Results show that for all classifications the model MSVM-RFE was able to learn the functional relation between the multiple sound categories and the corresponding evoked spatial patterns and classify the unlabeled sound-evoked patterns significantly above chance. This indicates the feasibility of decoding multiple sound categories not only within but across subjects. However, the across-subject variation affects classification performance more than the within-subject variation, as the across-subject analysis has significantly lower classification accuracies. Sound category-selective brain maps were identified based on multi-class classification and revealed distributed patterns of brain activity in the superior temporal gyrus and the middle temporal gyrus. This is in accordance with previous studies, indicating that information in the spatially distributed patterns may reflect a more abstract perceptual level of representation of sound categories. Further, we show that the across-subject classification performance can be significantly improved by averaging the f

  3. Decoding multiple sound categories in the human temporal cortex using high resolution fMRI.

    PubMed

    Zhang, Fengqing; Wang, Ji-Ping; Kim, Jieun; Parrish, Todd; Wong, Patrick C M

    2015-01-01

    Perception of sound categories is an important aspect of auditory perception. The extent to which the brain's representation of sound categories is encoded in specialized subregions or distributed across the auditory cortex remains unclear. Recent studies using multivariate pattern analysis (MVPA) of brain activations have provided important insights into how the brain decodes perceptual information. In the large existing literature on brain decoding using MVPA methods, relatively few studies have been conducted on multi-class categorization in the auditory domain. Here, we investigated the representation and processing of auditory categories within the human temporal cortex using high resolution fMRI and MVPA methods. More importantly, we considered decoding multiple sound categories simultaneously through multi-class support vector machine-recursive feature elimination (MSVM-RFE) as our MVPA tool. Results show that for all classifications the model MSVM-RFE was able to learn the functional relation between the multiple sound categories and the corresponding evoked spatial patterns and classify the unlabeled sound-evoked patterns significantly above chance. This indicates the feasibility of decoding multiple sound categories not only within but across subjects. However, the across-subject variation affects classification performance more than the within-subject variation, as the across-subject analysis has significantly lower classification accuracies. Sound category-selective brain maps were identified based on multi-class classification and revealed distributed patterns of brain activity in the superior temporal gyrus and the middle temporal gyrus. This is in accordance with previous studies, indicating that information in the spatially distributed patterns may reflect a more abstract perceptual level of representation of sound categories. Further, we show that the across-subject classification performance can be significantly improved by averaging the f

  4. Effects of deafness and cochlear implant use on temporal response characteristics in cat primary auditory cortex.

    PubMed

    Fallon, James B; Shepherd, Robert K; Nayagam, David A X; Wise, Andrew K; Heffer, Leon F; Landry, Thomas G; Irvine, Dexter R F

    2014-09-01

    We have previously shown that neonatal deafness of 7-13 months duration leads to loss of cochleotopy in the primary auditory cortex (AI) that can be reversed by cochlear implant use. Here we describe the effects of a similar duration of deafness and cochlear implant use on temporal processing. Specifically, we compared the temporal resolution of neurons in AI of young adult normal-hearing cats that were acutely deafened and implanted immediately prior to recording with that in three groups of neonatally deafened cats. One group of neonatally deafened cats received no chronic stimulation. The other two groups received up to 8 months of either low- or high-rate (50 or 500 pulses per second per electrode, respectively) stimulation from a clinical cochlear implant, initiated at 10 weeks of age. Deafness of 7-13 months duration had no effect on the duration of post-onset response suppression, latency, latency jitter, or the stimulus repetition rate at which units responded maximally (best repetition rate), but resulted in a statistically significant reduction in the ability of units to respond to every stimulus in a train (maximum following rate). None of the temporal response characteristics of the low-rate group differed from those in acutely deafened controls. In contrast, high-rate stimulation had diverse effects: it resulted in decreased suppression duration, longer latency and greater jitter relative to all other groups, and an increase in best repetition rate and cut-off rate relative to acutely deafened controls. The minimal effects of moderate-duration deafness on temporal processing in the present study are in contrast to its previously-reported pronounced effects on cochleotopy. Much longer periods of deafness have been reported to result in significant changes in temporal processing, in accord with the fact that duration of deafness is a major factor influencing outcome in human cochlear implantees.

  5. Sustained Attentional States Require Distinct Temporal Involvement of the Dorsal and Ventral Medial Prefrontal Cortex

    PubMed Central

    Luchicchi, Antonio; Mnie-Filali, Ouissame; Terra, Huub; Bruinsma, Bastiaan; de Kloet, Sybren F.; Obermayer, Joshua; Heistek, Tim S.; de Haan, Roel; de Kock, Christiaan P. J.; Deisseroth, Karl; Pattij, Tommy; Mansvelder, Huibert D.

    2016-01-01

    Attending the sensory environment for cue detection is a cognitive operation that occurs on a time scale of seconds. The dorsal and ventral medial prefrontal cortex (mPFC) contribute to separate aspects of attentional processing. Pyramidal neurons in different parts of the mPFC are active during cognitive behavior, yet whether this activity is causally underlying attentional processing is not known. We aimed to determine the precise temporal requirements for activation of the mPFC subregions during the seconds prior to cue detection. To test this, we used optogenetic silencing of dorsal or ventral mPFC pyramidal neurons at defined time windows during a sustained attentional state. We find that the requirement of ventral mPFC pyramidal neuron activity is strictly time-locked to stimulus detection. Inhibiting the ventral mPFC 2 s before or during cue presentation reduces response accuracy and hampers behavioral inhibition. The requirement for dorsal mPFC activity on the other hand is temporally more loosely related to a preparatory attentional state, and short lapses in pyramidal neuron activity in dorsal mPFC do not affect performance. This only occurs when the dorsal mPFC is inhibited during the entire preparatory period. Together, our results reveal that a dissociable temporal recruitment of ventral and dorsal mPFC is required during attentional processing.

  6. Sustained Attentional States Require Distinct Temporal Involvement of the Dorsal and Ventral Medial Prefrontal Cortex

    PubMed Central

    Luchicchi, Antonio; Mnie-Filali, Ouissame; Terra, Huub; Bruinsma, Bastiaan; de Kloet, Sybren F.; Obermayer, Joshua; Heistek, Tim S.; de Haan, Roel; de Kock, Christiaan P. J.; Deisseroth, Karl; Pattij, Tommy; Mansvelder, Huibert D.

    2016-01-01

    Attending the sensory environment for cue detection is a cognitive operation that occurs on a time scale of seconds. The dorsal and ventral medial prefrontal cortex (mPFC) contribute to separate aspects of attentional processing. Pyramidal neurons in different parts of the mPFC are active during cognitive behavior, yet whether this activity is causally underlying attentional processing is not known. We aimed to determine the precise temporal requirements for activation of the mPFC subregions during the seconds prior to cue detection. To test this, we used optogenetic silencing of dorsal or ventral mPFC pyramidal neurons at defined time windows during a sustained attentional state. We find that the requirement of ventral mPFC pyramidal neuron activity is strictly time-locked to stimulus detection. Inhibiting the ventral mPFC 2 s before or during cue presentation reduces response accuracy and hampers behavioral inhibition. The requirement for dorsal mPFC activity on the other hand is temporally more loosely related to a preparatory attentional state, and short lapses in pyramidal neuron activity in dorsal mPFC do not affect performance. This only occurs when the dorsal mPFC is inhibited during the entire preparatory period. Together, our results reveal that a dissociable temporal recruitment of ventral and dorsal mPFC is required during attentional processing. PMID:27630545

  7. Sustained Attentional States Require Distinct Temporal Involvement of the Dorsal and Ventral Medial Prefrontal Cortex.

    PubMed

    Luchicchi, Antonio; Mnie-Filali, Ouissame; Terra, Huub; Bruinsma, Bastiaan; de Kloet, Sybren F; Obermayer, Joshua; Heistek, Tim S; de Haan, Roel; de Kock, Christiaan P J; Deisseroth, Karl; Pattij, Tommy; Mansvelder, Huibert D

    2016-01-01

    Attending the sensory environment for cue detection is a cognitive operation that occurs on a time scale of seconds. The dorsal and ventral medial prefrontal cortex (mPFC) contribute to separate aspects of attentional processing. Pyramidal neurons in different parts of the mPFC are active during cognitive behavior, yet whether this activity is causally underlying attentional processing is not known. We aimed to determine the precise temporal requirements for activation of the mPFC subregions during the seconds prior to cue detection. To test this, we used optogenetic silencing of dorsal or ventral mPFC pyramidal neurons at defined time windows during a sustained attentional state. We find that the requirement of ventral mPFC pyramidal neuron activity is strictly time-locked to stimulus detection. Inhibiting the ventral mPFC 2 s before or during cue presentation reduces response accuracy and hampers behavioral inhibition. The requirement for dorsal mPFC activity on the other hand is temporally more loosely related to a preparatory attentional state, and short lapses in pyramidal neuron activity in dorsal mPFC do not affect performance. This only occurs when the dorsal mPFC is inhibited during the entire preparatory period. Together, our results reveal that a dissociable temporal recruitment of ventral and dorsal mPFC is required during attentional processing. PMID:27630545

  8. Impairment of auditory-motor timing and compensatory reorganization after ventral premotor cortex stimulation.

    PubMed

    Kornysheva, Katja; Schubotz, Ricarda I

    2011-01-01

    Integrating auditory and motor information often requires precise timing as in speech and music. In humans, the position of the ventral premotor cortex (PMv) in the dorsal auditory stream renders this area a node for auditory-motor integration. Yet, it remains unknown whether the PMv is critical for auditory-motor timing and which activity increases help to preserve task performance following its disruption. 16 healthy volunteers participated in two sessions with fMRI measured at baseline and following rTMS (rTMS) of either the left PMv or a control region. Subjects synchronized left or right finger tapping to sub-second beat rates of auditory rhythms in the experimental task, and produced self-paced tapping during spectrally matched auditory stimuli in the control task. Left PMv rTMS impaired auditory-motor synchronization accuracy in the first sub-block following stimulation (p<0.01, Bonferroni corrected), but spared motor timing and attention to task. Task-related activity increased in the homologue right PMv, but did not predict the behavioral effect of rTMS. In contrast, anterior midline cerebellum revealed most pronounced activity increase in less impaired subjects. The present findings suggest a critical role of the left PMv in feed-forward computations enabling accurate auditory-motor timing, which can be compensated by activity modulations in the cerebellum, but not in the homologue region contralateral to stimulation. PMID:21738657

  9. Differentiation of oligodendrocyte precursors is impaired in the prefrontal cortex in schizophrenia.

    PubMed

    Mauney, Sarah A; Pietersen, Charmaine Y; Sonntag, Kai-C; Woo, Tsung-Ung W

    2015-12-01

    The pathophysiology of schizophrenia involves disturbances of information processing across brain regions, possibly reflecting, at least in part, a disruption in the underlying axonal connectivity. This disruption is thought to be a consequence of the pathology of myelin ensheathment, the integrity of which is tightly regulated by oligodendrocytes. In order to gain insight into the possible neurobiological mechanisms of myelin deficit, we determined the messenger RNA (mRNA) expression profile of laser captured cells that were immunoreactive for 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), a marker for oligodendrocyte progenitor cells (OPCs) in addition to differentiating and myelinating oligodendrocytes, in the white matter of the prefrontal cortex in schizophrenia subjects. Our findings pointed to the hypothesis that OPC differentiation might be impaired in schizophrenia. To address this hypothesis, we quantified cells that were immunoreactive for neural/glial antigen 2 (NG2), a selective marker for OPCs, and those that were immunoreactive for oligodendrocyte transcription factor 2 (OLIG2), an oligodendrocyte lineage marker that is expressed by OPCs and maturing oligodendrocytes. We found that the density of NG2-immunoreactive cells was unaltered, but the density of OLIG2-immunoreactive cells was significantly decreased in subjects with schizophrenia, consistent with the notion that OPC differentiation impairment may contribute to oligodendrocyte disturbances and thereby myelin deficits in schizophrenia.

  10. Theory of mind impairment in patients with behavioural variant fronto-temporal dementia (bv-FTD) increases caregiver burden

    PubMed Central

    Brioschi Guevara, Andrea; Knutson, Kristine M.; Wassermann, Eric M.; Pulaski, Sarah; Grafman, Jordan; Krueger, Frank

    2015-01-01

    Background: Theory of mind (ToM), the capacity to infer the intention, beliefs and emotional states of others, is frequently impaired in behavioural variant fronto-temporal dementia patients (bv-FTDp); however, its impact on caregiver burden is unexplored. Setting: National Institute of Neurological Disorders and Stroke, National Institutes of Health. Subjects: bv-FTDp (n = 28), a subgroup of their caregivers (n = 20) and healthy controls (n = 32). Methods: we applied a faux-pas (FP) task as a ToM measure in bv-FTDp and healthy controls and the Zarit Burden Interview as a measure of burden in patients' caregivers. Patients underwent structural MRI; we used voxel-based morphometry to examine relationships between regional atrophy and ToM impairment and caregiver burden. Results: FP task performance was impaired in bv-FTDp and negatively associated with caregiver burden. Atrophy was found in areas involved in ToM. Caregiver burden increased with greater atrophy in left lateral premotor cortex, a region associated in animal models with the presence of mirror neurons, possibly involved in empathy. Conclusion: ToM impairment in bv-FTDp is associated with increased caregiver burden. PMID:26025914

  11. Recruitment of medial prefrontal cortex neurons during alcohol withdrawal predicts cognitive impairment and excessive alcohol drinking.

    PubMed

    George, Olivier; Sanders, Chelsea; Freiling, John; Grigoryan, Edward; Vu, Shayla; Allen, Camryn D; Crawford, Elena; Mandyam, Chitra D; Koob, George F

    2012-10-30

    Chronic intermittent access to alcohol leads to the escalation of alcohol intake, similar to binge drinking in humans. Converging lines of evidence suggest that impairment of medial prefrontal cortex (mPFC) cognitive function and overactivation of the central nucleus of the amygdala (CeA) are key factors that lead to excessive drinking in dependence. However, the role of the mPFC and CeA in the escalation of alcohol intake in rats with a history of binge drinking without dependence is currently unknown. To address this issue, we examined FBJ murine osteosarcoma viral oncogene homolog (Fos) expression in the mPFC, CeA, hippocampus, and nucleus accumbens and evaluated working memory and anxiety-like behavior in rats given continuous (24 h/d for 7 d/wk) or intermittent (3 d/wk) access to alcohol (20% vol/vol) using a two-bottle choice paradigm. The results showed that abstinence from alcohol in rats with a history of escalation of alcohol intake specifically recruited GABA and corticotropin-releasing factor (CRF) neurons in the mPFC and produced working memory impairments associated with excessive alcohol drinking during acute (24-72 h) but not protracted (16 -68 d) abstinence. Moreover, abstinence from alcohol was associated with a functional disconnection of the mPFC and CeA but not mPFC and nucleus accumbens. These results show that recruitment of a subset of GABA and CRF neurons in the mPFC during withdrawal and disconnection of the PFC-CeA pathway may be critical for impaired executive control over motivated behavior, suggesting that dysregulation of mPFC interneurons may be an early index of neuroadaptation in alcohol dependence.

  12. Localization of brain activity by temporal anti-correlation with the posterior cingulate cortex.

    PubMed

    Wang, Shijie; Zhang, Zhiqiang; Lu, Guangming; Luo, Limin

    2007-01-01

    The default mode network of brain function hypothesis has recently attracted more attention in the neuro-science community. In this study, we addressed a new data-driven method that based on temporal anti-correlation with the posterior cingulate cortex, one node of the default mode network, to localize the brain activation related to task and spontaneous epileptic discharges. The experimental results of real fMRI data analysis show not only the task-related activation region can be robustly recognized without any prior information on the functional activation paradigm, but also the epileptogenic zone in some patients with frequent interictal epileptiform discharges can be localized reliably using resting-state fMRI without EEG. PMID:18003186

  13. Selective suppression of plasticity in amygdala inputs from temporal association cortex by the external capsule.

    PubMed

    Morozov, Alexei; Sukato, Daniel; Ito, Wataru

    2011-01-01

    GABAergic neurons in the external capsule (EC) provide feedforward inhibition in the lateral amygdala (LA), but how EC affects synaptic transmission and plasticity in inputs from specific cortical areas remains unknown; this is because axonal fibers from different cortical areas are intermingled in the amygdala and cannot be activated selectively using conventional electrical stimulation. Here, we achieved selective activation of fibers from the temporal association cortex (TeA) or the anterior cingulate cortex (ACC) by using channelrhodopsin-2. Long-term potentiation (LTP) in the TeA-LA pathway, which runs through EC, was enabled by cutting connections between EC and LA or by blocking GABA(A) receptor-mediated transmission. In contrast, LTP in the ACC-LA pathway, which bypasses EC, was GABA(A) receptor independent. The EC transection shifted balance between inhibitory and excitatory responses in the TeA-LA pathway toward excitation, but had no effect on the ACC-LA pathway. Thus, EC provides pathway-specific suppression of amygdala plasticity. PMID:21209220

  14. Behavioral demand modulates object category representation in the inferior temporal cortex.

    PubMed

    Emadi, Nazli; Esteky, Hossein

    2014-11-15

    Visual object categorization is a critical task in our daily life. Many studies have explored category representation in the inferior temporal (IT) cortex at the level of single neurons and population. However, it is not clear how behavioral demands modulate this category representation. Here, we recorded from the IT single neurons in monkeys performing two different tasks with identical visual stimuli: passive fixation and body/object categorization. We found that category selectivity of the IT neurons was improved in the categorization compared with the passive task where reward was not contingent on image category. The category improvement was the result of larger rate enhancement for the preferred category and smaller response variability for both preferred and nonpreferred categories. These specific modulations in the responses of IT category neurons enhanced signal-to-noise ratio of the neural responses to discriminate better between the preferred and nonpreferred categories. Our results provide new insight into the adaptable category representation in the IT cortex, which depends on behavioral demands.

  15. A common, high-dimensional model of the representational space in human ventral temporal cortex

    PubMed Central

    Haxby, James V.; Guntupalli, J. Swaroop; Connolly, Andrew C.; Halchenko, Yaroslav O.; Conroy, Bryan R.; Gobbini, M. Ida; Hanke, Michael; Ramadge, Peter J.

    2011-01-01

    Summary We present a high-dimensional model of the representational space in human ventral temporal (VT) cortex in which dimensions are response-tuning functions that are common across individuals and patterns of response are modeled as weighted sums of basis patterns associated with these response-tunings. We map response pattern vectors, measured with fMRI, from individual subjects’ voxel spaces into this common model space using a new method, ‘hyperalignment’. Hyperalignment parameters based on responses during one experiment – movie-viewing – identified 35 common response-tuning functions that captured fine-grained distinctions among a wide range of stimuli in the movie and in two category perception experiments. Between-subject classification (BSC, multivariate pattern classification based on other subjects’ data) of response pattern vectors in common model space greatly exceeded BSC of anatomically-aligned responses and matched within-subject classification. Results indicate that population codes for complex visual stimuli in VT cortex are based on response-tuning functions that are common across individuals. PMID:22017997

  16. Dissimilar processing of emotional facial expressions in human and monkey temporal cortex.

    PubMed

    Zhu, Qi; Nelissen, Koen; Van den Stock, Jan; De Winter, François-Laurent; Pauwels, Karl; de Gelder, Beatrice; Vanduffel, Wim; Vandenbulcke, Mathieu

    2013-02-01

    Emotional facial expressions play an important role in social communication across primates. Despite major progress made in our understanding of categorical information processing such as for objects and faces, little is known, however, about how the primate brain evolved to process emotional cues. In this study, we used functional magnetic resonance imaging (fMRI) to compare the processing of emotional facial expressions between monkeys and humans. We used a 2×2×2 factorial design with species (human and monkey), expression (fear and chewing) and configuration (intact versus scrambled) as factors. At the whole brain level, neural responses to conspecific emotional expressions were anatomically confined to the superior temporal sulcus (STS) in humans. Within the human STS, we found functional subdivisions with a face-selective right posterior STS area that also responded to emotional expressions of other species and a more anterior area in the right middle STS that responded specifically to human emotions. Hence, we argue that the latter region does not show a mere emotion-dependent modulation of activity but is primarily driven by human emotional facial expressions. Conversely, in monkeys, emotional responses appeared in earlier visual cortex and outside face-selective regions in inferior temporal cortex that responded also to multiple visual categories. Within monkey IT, we also found areas that were more responsive to conspecific than to non-conspecific emotional expressions but these responses were not as specific as in human middle STS. Overall, our results indicate that human STS may have developed unique properties to deal with social cues such as emotional expressions.

  17. Sentence processing in anterior superior temporal cortex shows a social-emotional bias.

    PubMed

    Mellem, Monika S; Jasmin, Kyle M; Peng, Cynthia; Martin, Alex

    2016-08-01

    The anterior region of the left superior temporal gyrus/superior temporal sulcus (aSTG/STS) has been implicated in two very different cognitive functions: sentence processing and social-emotional processing. However, the vast majority of the sentence stimuli in previous reports have been of a social or social-emotional nature suggesting that sentence processing may be confounded with semantic content. To evaluate this possibility we had subjects read word lists that differed in phrase/constituent size (single words, 3-word phrases, 6-word sentences) and semantic content (social-emotional, social, and inanimate objects) while scanned in a 7T environment. This allowed us to investigate if the aSTG/STS responded to increasing constituent structure (with increased activity as a function of constituent size) with or without regard to a specific domain of concepts, i.e., social and/or social-emotional content. Activity in the left aSTG/STS was found to increase with constituent size. This region was also modulated by content, however, such that social-emotional concepts were preferred over social and object stimuli. Reading also induced content type effects in domain-specific semantic regions. Those preferring social-emotional content included aSTG/STS, inferior frontal gyrus, posterior STS, lateral fusiform, ventromedial prefrontal cortex, and amygdala, regions included in the "social brain", while those preferring object content included parahippocampal gyrus, retrosplenial cortex, and caudate, regions involved in object processing. These results suggest that semantic content affects higher-level linguistic processing and should be taken into account in future studies. PMID:27329686

  18. Spectral vs. Temporal Auditory Processing in Specific Language Impairment: A Developmental ERP Study

    ERIC Educational Resources Information Center

    Ceponiene, R.; Cummings, A.; Wulfeck, B.; Ballantyne, A.; Townsend, J.

    2009-01-01

    Pre-linguistic sensory deficits, especially in "temporal" processing, have been implicated in developmental language impairment (LI). However, recent evidence has been equivocal with data suggesting problems in the spectral domain. The present study examined event-related potential (ERP) measures of auditory sensory temporal and spectral…

  19. Impaired pitch perception and memory in congenital amusia: the deficit starts in the auditory cortex.

    PubMed

    Albouy, Philippe; Mattout, Jérémie; Bouet, Romain; Maby, Emmanuel; Sanchez, Gaëtan; Aguera, Pierre-Emmanuel; Daligault, Sébastien; Delpuech, Claude; Bertrand, Olivier; Caclin, Anne; Tillmann, Barbara

    2013-05-01

    Congenital amusia is a lifelong disorder of music perception and production. The present study investigated the cerebral bases of impaired pitch perception and memory in congenital amusia using behavioural measures, magnetoencephalography and voxel-based morphometry. Congenital amusics and matched control subjects performed two melodic tasks (a melodic contour task and an easier transposition task); they had to indicate whether sequences of six tones (presented in pairs) were the same or different. Behavioural data indicated that in comparison with control participants, amusics' short-term memory was impaired for the melodic contour task, but not for the transposition task. The major finding was that pitch processing and short-term memory deficits can be traced down to amusics' early brain responses during encoding of the melodic information. Temporal and frontal generators of the N100m evoked by each note of the melody were abnormally recruited in the amusic brain. Dynamic causal modelling of the N100m further revealed decreased intrinsic connectivity in both auditory cortices, increased lateral connectivity between auditory cortices as well as a decreased right fronto-temporal backward connectivity in amusics relative to control subjects. Abnormal functioning of this fronto-temporal network was also shown during the retention interval and the retrieval of melodic information. In particular, induced gamma oscillations in right frontal areas were decreased in amusics during the retention interval. Using voxel-based morphometry, we confirmed morphological brain anomalies in terms of white and grey matter concentration in the right inferior frontal gyrus and the right superior temporal gyrus in the amusic brain. The convergence between functional and structural brain differences strengthens the hypothesis of abnormalities in the fronto-temporal pathway of the amusic brain. Our data provide first evidence of altered functioning of the auditory cortices during pitch

  20. Impaired long-term habituation is dissociated from increased locomotor activity after sensorimotor cortex compression.

    PubMed

    Moreira, Tiago; Cebers, Gvido; Salehi, Mehdi; Wägner, Anna; Liljequist, Sture

    2006-02-15

    Behavioural habituation to a novel environment is a simple form of learning in rodents. We studied the habituation and locomotor activity (LMA) of Wistar rats subjected to unilateral, transient (30min) extradural compression (EC) of the right sensorimotor cortex. One group of rats was tested every 24h during the first 5 days (D1-D5) post-EC. Two other groups were tested for the first time in the LMA boxes on D3 and D6 post-EC and their performance was compared with the group tested on D1 (activity in a novel environment). Total and center locomotion, vertical activity and time spent in the center of the LMA box were reduced on D1 post-EC and normalized by D2. The EC-induced motor paresis was undetectable on the rotarod by D2 and on the beam-walking by D3. Total locomotion, vertical activity and time spent in the center of EC-rats significantly increased from D1 to D3. EC caused neurodegeneration in the cortex, caudate putamen and thalamus as detected by Fluoro-Jade staining. The size of the cortical damage decreased from D2 to D5 in the medial and caudal regions of the compressed hemisphere, in accordance with recovery of motor function. LMA provided additional information in the follow-up of recovery from brain injury and habituation to the environment. Thus, long-term, inter-session habituation was impaired from D1 to D3 but dissociated from increased LMA intra-session on D3, when the motor deficits provoked by EC were already undetectable in the rotarod and beam-walking tests. PMID:16337698

  1. Development of spectral and temporal response selectivity in the auditory cortex.

    PubMed

    Chang, Edward F; Bao, Shaowen; Imaizumi, Kazuo; Schreiner, Christoph E; Merzenich, Michael M

    2005-11-01

    The mechanisms by which hearing selectivity is elaborated and refined in early development are very incompletely determined. In this study, we documented contributions of progressively maturing inhibitory influences on the refinement of spectral and temporal response properties in the primary auditory cortex. Inhibitory receptive fields (IRFs) of infant rat auditory cortical neurons were spectrally far broader and had extended over far longer duration than did those of adults. The selective refinement of IRFs was delayed relative to that of excitatory receptive fields by an approximately 2-week period that corresponded to the critical period for plasticity. Local application of a GABA(A) receptor antagonist revealed that intracortical inhibition contributes to this progressive receptive field maturation for response selectivity in frequency. Conversely, it had no effect on the duration of IRFs or successive-signal cortical response recovery times. The importance of exposure to patterned acoustic inputs was suggested when both spectral and temporal IRF maturation were disrupted in rat pups reared in continuous, moderate-intensity noise. They were subsequently renormalized when animals were returned to standard housing conditions as adults.

  2. The temporal dynamics of early visual cortex involvement in behavioral priming.

    PubMed

    Jacobs, Christianne; de Graaf, Tom A; Goebel, Rainer; Sack, Alexander T

    2012-01-01

    Transcranial magnetic stimulation (TMS) allows for non-invasive interference with ongoing neural processing. Applied in a chronometric design over early visual cortex (EVC), TMS has proved valuable in indicating at which particular time point EVC must remain unperturbed for (conscious) vision to be established. In the current study, we set out to examine the effect of EVC TMS across a broad range of time points, both before (pre-stimulus) and after (post-stimulus) the onset of symbolic visual stimuli. Behavioral priming studies have shown that the behavioral impact of a visual stimulus can be independent from its conscious perception, suggesting two independent neural signatures. To assess whether TMS-induced suppression of visual awareness can be dissociated from behavioral priming in the temporal domain, we thus implemented three different measures of visual processing, namely performance on a standard visual discrimination task, a subjective rating of stimulus visibility, and a visual priming task. To control for non-neural TMS effects, we performed electrooculographical recordings, placebo TMS (sham), and control site TMS (vertex). Our results suggest that, when considering the appropriate control data, the temporal pattern of EVC TMS disruption on visual discrimination, subjective awareness and behavioral priming are not dissociable. Instead, TMS to EVC disrupts visual perception holistically, both when applied before and after the onset of a visual stimulus. The current findings are discussed in light of their implications on models of visual awareness and (subliminal) priming.

  3. Word or Word-Like? Dissociating Orthographic Typicality from Lexicality in the Left Occipito-Temporal Cortex

    ERIC Educational Resources Information Center

    Woollams, Anna M.; Silani, Giorgia; Okada, Kayoko; Patterson, Karalyn; Price, Cathy J.

    2011-01-01

    Prior lesion and functional imaging studies have highlighted the importance of the left ventral occipito-temporal (LvOT) cortex for visual word recognition. Within this area, there is a posterior-anterior hierarchy of subregions that are specialized for different stages of orthographic processing. The aim of the present fMRI study was to…

  4. Toxoplasma gondii Infection in Mice Impairs Long-Term Fear Memory Consolidation through Dysfunction of the Cortex and Amygdala.

    PubMed

    Ihara, Fumiaki; Nishimura, Maki; Muroi, Yoshikage; Mahmoud, Motamed Elsayed; Yokoyama, Naoaki; Nagamune, Kisaburo; Nishikawa, Yoshifumi

    2016-10-01

    Chronic infection with Toxoplasma gondii becomes established in tissues of the central nervous system, where parasites may directly or indirectly modulate neuronal function. Epidemiological studies have revealed that chronic infection in humans is a risk factor for developing mental diseases. However, the mechanisms underlying parasite-induced neuronal dysfunction in the brain remain unclear. Here, we examined memory associated with conditioned fear in mice and found that T. gondii infection impairs consolidation of conditioned fear memory. To examine the brain pathology induced by T. gondii infection, we analyzed the parasite load and histopathological changes. T. gondii infects all brain areas, yet the cortex exhibits more severe tissue damage than other regions. We measured neurotransmitter levels in the cortex and amygdala because these regions are involved in fear memory expression. The levels of dopamine metabolites but not those of dopamine were increased in the cortex of infected mice compared with those in the cortex of uninfected mice. In contrast, serotonin levels were decreased in the amygdala and norepinephrine levels were decreased in the cortex and amygdala of infected mice. The levels of cortical dopamine metabolites were associated with the time spent freezing in the fear-conditioning test. These results suggest that T. gondii infection affects fear memory through dysfunction of the cortex and amygdala. Our findings provide insight into the mechanisms underlying the neurological changes seen during T. gondii infection. PMID:27456832

  5. Toxoplasma gondii Infection in Mice Impairs Long-Term Fear Memory Consolidation through Dysfunction of the Cortex and Amygdala.

    PubMed

    Ihara, Fumiaki; Nishimura, Maki; Muroi, Yoshikage; Mahmoud, Motamed Elsayed; Yokoyama, Naoaki; Nagamune, Kisaburo; Nishikawa, Yoshifumi

    2016-10-01

    Chronic infection with Toxoplasma gondii becomes established in tissues of the central nervous system, where parasites may directly or indirectly modulate neuronal function. Epidemiological studies have revealed that chronic infection in humans is a risk factor for developing mental diseases. However, the mechanisms underlying parasite-induced neuronal dysfunction in the brain remain unclear. Here, we examined memory associated with conditioned fear in mice and found that T. gondii infection impairs consolidation of conditioned fear memory. To examine the brain pathology induced by T. gondii infection, we analyzed the parasite load and histopathological changes. T. gondii infects all brain areas, yet the cortex exhibits more severe tissue damage than other regions. We measured neurotransmitter levels in the cortex and amygdala because these regions are involved in fear memory expression. The levels of dopamine metabolites but not those of dopamine were increased in the cortex of infected mice compared with those in the cortex of uninfected mice. In contrast, serotonin levels were decreased in the amygdala and norepinephrine levels were decreased in the cortex and amygdala of infected mice. The levels of cortical dopamine metabolites were associated with the time spent freezing in the fear-conditioning test. These results suggest that T. gondii infection affects fear memory through dysfunction of the cortex and amygdala. Our findings provide insight into the mechanisms underlying the neurological changes seen during T. gondii infection.

  6. Conditional loss of GluN2B in cortex and hippocampus impairs attentional set formation

    PubMed Central

    Thompson, Shannon M.; Josey, Megan; Holmes, Andrew; Brigman, Jonathan L.

    2015-01-01

    The ability to attend to appropriate stimuli, to plan actions and then alter those actions when environmental conditions change, is essential for an organism to thrive. There is increasing evidence that these executive control processes are mediated in part by N-methyl-D-aspartate receptors (NMDAR). NMDAR subunits confer different physiological properties to the receptor, interact with distinct intracellular postsynaptic scaffolding and signaling molecules and are differentially expressed during development. Recent findings have suggested that the GluN2B subunit may play a unique role in both the acquisition of adaptive choice and the behavioral flexibility required to shift between choices. Here we investigated the role of GluN2B containing NMDARs in the ability to learn, reverse and shift between stimulus dimensions. Mutant mice (floxed-GluN2B x CaMKII-Cre) lacking GluN2B in the dorsal CA1 of the hippocampus and throughout the cortex were tested on an attentional set-shifting task. To explore the role that alterations in motor behavior may have on these behaviors, gross and fine motor behaviors were analyzed in mutant and floxed-control mice. Results show that corticohippocampal loss of GluN2B selectively impaired an initial reversal in a stimulus specific manner and impaired the ability of mutant mice to form an attentional set. Further, GluN2B mice showed normal motor behavior in both overall movement and individual limb behaviors. Together, these results further support the role of NMDAR, and GluN2B in particular, in aspects of executive control including behavioral flexibility and attentional processes. PMID:25798630

  7. Adaptive temporal integration of motion in direction-selective neurons in macaque visual cortex.

    PubMed

    Bair, Wyeth; Movshon, J Anthony

    2004-08-18

    Direction-selective neurons in the primary visual cortex (V1) and the extrastriate motion area MT/V5 constitute a critical channel that links early cortical mechanisms of spatiotemporal integration to downstream signals that underlie motion perception. We studied how temporal integration in direction-selective cells depends on speed, spatial frequency (SF), and contrast using randomly moving sinusoidal gratings and spike-triggered average (STA) analysis. The window of temporal integration revealed by the STAs varied substantially with stimulus parameters, extending farther back in time for slow motion, high SF, and low contrast. At low speeds and high SF, STA peaks were larger, indicating that a single spike often conveyed more information about the stimulus under conditions in which the mean firing rate was very low. The observed trends were similar in V1 and MT and offer a physiological correlate for a large body of psychophysical data on temporal integration. We applied the same visual stimuli to a model of motion detection based on oriented linear filters (a motion energy model) that incorporated an integrate-and-fire mechanism and found that it did not account for the neuronal data. Our results show that cortical motion processing in V1 and in MT is highly nonlinear and stimulus dependent. They cast considerable doubt on the ability of simple oriented filter models to account for the output of direction-selective neurons in a general manner. Finally, they suggest that spike rate tuning functions may miss important aspects of the neural coding of motion for stimulus conditions that evoke low firing rates. PMID:15317857

  8. An architecture for encoding sentence meaning in left mid-superior temporal cortex.

    PubMed

    Frankland, Steven M; Greene, Joshua D

    2015-09-15

    Human brains flexibly combine the meanings of words to compose structured thoughts. For example, by combining the meanings of "bite," "dog," and "man," we can think about a dog biting a man, or a man biting a dog. Here, in two functional magnetic resonance imaging (fMRI) experiments using multivoxel pattern analysis (MVPA), we identify a region of left mid-superior temporal cortex (lmSTC) that flexibly encodes "who did what to whom" in visually presented sentences. We find that lmSTC represents the current values of abstract semantic variables ("Who did it?" and "To whom was it done?") in distinct subregions. Experiment 1 first identifies a broad region of lmSTC whose activity patterns (i) facilitate decoding of structure-dependent sentence meaning ("Who did what to whom?") and (ii) predict affect-related amygdala responses that depend on this information (e.g., "the baby kicked the grandfather" vs. "the grandfather kicked the baby"). Experiment 2 then identifies distinct, but neighboring, subregions of lmSTC whose activity patterns carry information about the identity of the current "agent" ("Who did it?") and the current "patient" ("To whom was it done?"). These neighboring subregions lie along the upper bank of the superior temporal sulcus and the lateral bank of the superior temporal gyrus, respectively. At a high level, these regions may function like topographically defined data registers, encoding the fluctuating values of abstract semantic variables. This functional architecture, which in key respects resembles that of a classical computer, may play a critical role in enabling humans to flexibly generate complex thoughts.

  9. An architecture for encoding sentence meaning in left mid-superior temporal cortex

    PubMed Central

    Frankland, Steven M.; Greene, Joshua D.

    2015-01-01

    Human brains flexibly combine the meanings of words to compose structured thoughts. For example, by combining the meanings of “bite,” “dog,” and “man,” we can think about a dog biting a man, or a man biting a dog. Here, in two functional magnetic resonance imaging (fMRI) experiments using multivoxel pattern analysis (MVPA), we identify a region of left mid-superior temporal cortex (lmSTC) that flexibly encodes “who did what to whom” in visually presented sentences. We find that lmSTC represents the current values of abstract semantic variables (“Who did it?” and “To whom was it done?”) in distinct subregions. Experiment 1 first identifies a broad region of lmSTC whose activity patterns (i) facilitate decoding of structure-dependent sentence meaning (“Who did what to whom?”) and (ii) predict affect-related amygdala responses that depend on this information (e.g., “the baby kicked the grandfather” vs. “the grandfather kicked the baby”). Experiment 2 then identifies distinct, but neighboring, subregions of lmSTC whose activity patterns carry information about the identity of the current “agent” (“Who did it?”) and the current “patient” (“To whom was it done?”). These neighboring subregions lie along the upper bank of the superior temporal sulcus and the lateral bank of the superior temporal gyrus, respectively. At a high level, these regions may function like topographically defined data registers, encoding the fluctuating values of abstract semantic variables. This functional architecture, which in key respects resembles that of a classical computer, may play a critical role in enabling humans to flexibly generate complex thoughts. PMID:26305927

  10. Impaired Head Direction Cell Representation in the Anterodorsal Thalamus after Lesions of the Retrosplenial Cortex

    PubMed Central

    Clark, Benjamin J.; Bassett, Joshua P.; Wang, Sarah S.; Taube, Jeffrey S.

    2010-01-01

    The retrosplenial cortex (RSP), a brain region frequently linked to processes of spatial navigation, contains neurons that discharge as a function of a rat’s head direction (HD). HD cells have been identified throughout the limbic system including the anterodorsal thalamus (ADN) and postsubiculum (PoS), both of which are reciprocally connected to the RSP. The functional relationship between HD cells in the RSP and those found in other limbic regions is presently unknown, but given the intimate connectivity between the RSP and regions such as the ADN and PoS, and the reported loss of spatial orientation in rodents and humans with RSP damage, it is likely that the RSP plays an important role in processing the limbic HD signal. To test this hypothesis, we produced neurotoxic or electrolytic lesions of the RSP and recorded HD cells in the ADN of female Long-Evans rats. HD cells remained present in the ADN after RSP lesions, but the stability of their preferred firing directions was significantly reduced even in the presence of a salient visual landmark. Subsequent tests revealed that lesions of the RSP moderately impaired landmark control over the cells’ preferred firing directions, but spared the cells directional stability when animals were required to update their orientation using self-movement cues. Taken together, these results suggest that the RSP plays a prominent role in processing landmark information for accurate HD cell orientation and may explain the poor directional sense in humans that follows damage to the RSP. PMID:20392951

  11. Impaired Processing in the Primary Auditory Cortex of an Animal Model of Autism

    PubMed Central

    Anomal, Renata Figueiredo; de Villers-Sidani, Etienne; Brandão, Juliana Alves; Diniz, Rebecca; Costa, Marcos R.; Romcy-Pereira, Rodrigo N.

    2015-01-01

    Autism is a neurodevelopmental disorder clinically characterized by deficits in communication, lack of social interaction and repetitive behaviors with restricted interests. A number of studies have reported that sensory perception abnormalities are common in autistic individuals and might contribute to the complex behavioral symptoms of the disorder. In this context, hearing incongruence is particularly prevalent. Considering that some of this abnormal processing might stem from the unbalance of inhibitory and excitatory drives in brain circuitries, we used an animal model of autism induced by valproic acid (VPA) during pregnancy in order to investigate the tonotopic organization of the primary auditory cortex (AI) and its local inhibitory circuitry. Our results show that VPA rats have distorted primary auditory maps with over-representation of high frequencies, broadly tuned receptive fields and higher sound intensity thresholds as compared to controls. However, we did not detect differences in the number of parvalbumin-positive interneurons in AI of VPA and control rats. Altogether our findings show that neurophysiological impairments of hearing perception in this autism model occur independently of alterations in the number of parvalbumin-expressing interneurons. These data support the notion that fine circuit alterations, rather than gross cellular modification, could lead to neurophysiological changes in the autistic brain. PMID:26635548

  12. Damage to the retrosplenial cortex produces specific impairments in spatial working memory.

    PubMed

    Keene, Christopher S; Bucci, David J

    2009-05-01

    Mounting evidence indicates that the retrosplenial cortex (RSP) has a critical role in spatial navigation. The goal of the present study was to characterize the specific nature of spatial memory deficits that are observed following damage to RSP. Rats with RSP lesions or sham lesions were first trained in a working memory task using an 8-arm radial arm maze. Rats were allowed 5min to visit each arm and retrieve food pellets and a 5-s delay was imposed between arm choices. Consistent with previous research, rats with RSP damage committed more errors than controls. In particular, RSP-lesioned rats committed more errors of omission (failing to visit an arm of the maze), but there were no lesion effects on errors of commission (revisiting an arm). Neither group of rats exhibited a turn bias (i.e., always turning a certain direction when choosing an arm). At the end of the training phase of the experiment, both groups had reached asymptote and committed very few errors. In the subsequent test phase, a longer delay (30-s) was imposed during some sessions. Both control and RSP-lesioned rats continued to make few errors during sessions with the standard 5-s delay, but RSP-lesioned rats were impaired at the 30-s delay and committed more errors of commission, consistent with an increase in taxing spatial working memory. PMID:19026755

  13. Impaired periamygdaloid-cortex prodynorphin is characteristic of opiate addiction and depression.

    PubMed

    Anderson, Sarah Ann R; Michaelides, Michael; Zarnegar, Parisa; Ren, Yanhua; Fagergren, Pernilla; Thanos, Panayotis K; Wang, Gene-Jack; Bannon, Michael; Neumaier, John F; Keller, Eva; Volkow, Nora D; Hurd, Yasmin L

    2013-12-01

    Negative affect is critical for conferring vulnerability to opiate addiction as reflected by the high comorbidity of opiate abuse with major depressive disorder (MDD). Rodent models implicate amygdala prodynorphin (Pdyn) as a mediator of negative affect; however, evidence of PDYN involvement in human negative affect is limited. Here, we found reduced PDYN mRNA expression in the postmortem human amygdala nucleus of the periamygdaloid cortex (PAC) in both heroin abusers and MDD subjects. Similar to humans, rats that chronically self-administered heroin had reduced Pdyn mRNA expression in the PAC at a time point associated with a negative affective state. Using the in vivo functional imaging technology DREAMM (DREADD-assisted metabolic mapping, where DREADD indicates designer receptors exclusively activated by designer drugs), we found that selective inhibition of Pdyn-expressing neurons in the rat PAC increased metabolic activity in the extended amygdala, which is a key substrate of the extrahypothalamic brain stress system. In parallel, PAC-specific Pdyn inhibition provoked negative affect-related physiological and behavioral changes. Altogether, our translational study supports a functional role for impaired Pdyn in the PAC in opiate abuse through activation of the stress and negative affect neurocircuitry implicated in addiction vulnerability.

  14. Combined unilateral lesions of the amygdala and orbital prefrontal cortex impair affective processing in rhesus monkeys.

    PubMed

    Izquierdo, Alicia; Murray, Elisabeth A

    2004-05-01

    The amygdala and orbital prefrontal cortex (PFo) interact as part of a system for affective processing. To assess whether there is a hemispheric functional specialization for the processing of emotion or reward or both in nonhuman primates, rhesus monkeys (Macaca mulatta) with combined lesions of the amygdala and PFo in one hemisphere, either left or right, were compared with unoperated controls on a battery of tasks that tax affective processing, including two tasks that tax reward processing and two that assess emotional reactions. Although the two operated groups did not differ from each other, monkeys with unilateral lesions, left and right, showed altered reward-processing abilities as evidenced by attenuated reinforcer devaluation effects and an impairment in object reversal learning relative to controls. In addition, both operated groups showed blunted emotional reactions to a rubber snake. By contrast, monkeys with unilateral lesions did not differ from controls in their responses to an unfamiliar human (human "intruder"). Although the results provide no support for a hemispheric specialization of function, they yield the novel finding that unilateral lesions of the amygdala-orbitofrontal cortical circuit in monkeys are sufficient to significantly disrupt affective processing. PMID:14711973

  15. Orbitofrontal cortex inactivation impairs between- but not within-session Pavlovian extinction: an associative analysis.

    PubMed

    Panayi, Marios C; Killcross, Simon

    2014-02-01

    The orbitofrontal cortex (OFC) is argued to be the neural locus of Pavlovian outcome expectancies. Reinforcement learning theories argue that extinction learning in Pavlovian procedures is caused by the discrepancy between the expected value of the outcome (US) that is elicited by a predictive stimulus (CS), and the lack of experienced US. If the OFC represents Pavlovian outcome expectancies that are necessary for extinction learning, then disrupting OFC function prior to extinction training should impair extinction learning. This was tested. In experiment 1, Long Evans rats received infusions of saline or muscimol targeting the lateral OFC prior to three appetitive Pavlovian extinction sessions. Muscimol infused into the OFC disrupted between-session but not within-session extinction behaviour. This finding was not due to muscimol infusions disrupting the memory consolidation process per se as there was no effect of muscimol infusion when administered immediately post session (experiment 2). These findings support a role for the OFC in representing outcome expectancies that are necessary for learning. A number of ways in which disrupting outcome expectancy information might block learning will be discussed in the context of traditional associative learning theories and the associative structures they depend on.

  16. Neurogranin binds α-synuclein in the human superior temporal cortex and interaction is decreased in Parkinson's disease.

    PubMed

    Koob, Andrew O; Shaked, Gideon M; Bender, Andreas; Bisquertt, Alejandro; Rockenstein, Edward; Masliah, Eliezer

    2014-12-01

    Neurogranin is a calmodulin binding protein that has been implicated in learning and memory, long-term potentiation and synaptic plasticity. Neurons expressing neurogranin in the cortex degenerate in late stages of Parkinson's disease with widespread α-synuclein pathology. While analyzing neurogranin gene expression levels through rtPCR in brains of mouse models overexpressing human α-synuclein, we found levels were elevated 2.5 times when compared to nontransgenic animals. Immunohistochemistry in the cortex revealed colocalization between α-synuclein and neurogranin in mouse transgenics when compared to control mice. Coimmunoprecipitation studies in the superior temporal cortex in humans confirmed interaction between α-synuclein and neurogranin, and decreased interaction between α-synuclein and neurogranin was noticed in patients diagnosed with Parkinson's disease when compared to normal control brains. Additionally, phosphorylated neurogranin levels were also decreased in the human superior temporal cortex in patients diagnosed with Parkinson's disease and patients diagnosed with dementia with Lewy bodies. Here, we show for the first time that neurogranin binds to α-synuclein in the human cortex, and this interaction decreases in Parkinson's disease along with the phosphorylation of neurogranin, a molecular process thought to be involved in learning and memory.

  17. Temporal Asymmetry in Dark–Bright Processing Initiates Propagating Activity across Primary Visual Cortex

    PubMed Central

    Rekauzke, Sascha; Nortmann, Nora; Staadt, Robert; Hock, Howard S.; Schöner, Gregor

    2016-01-01

    Differences between visual pathways representing darks and lights have been shown to affect spatial resolution and detection timing. Both psychophysical and physiological studies suggest an underlying retinal origin with amplification in primary visual cortex (V1). Here we show that temporal asymmetries in the processing of darks and lights create motion in terms of propagating activity across V1. Exploiting the high spatiotemporal resolution of voltage-sensitive dye imaging, we captured population responses to abrupt local changes of luminance in cat V1. For stimulation we used two neighboring small squares presented on either bright or dark backgrounds. When a single square changed from dark to bright or vice versa, we found coherent population activity emerging at the respective retinal input locations. However, faster rising and decay times were obtained for the bright to dark than the dark to bright changes. When the two squares changed luminance simultaneously in opposite polarities, we detected a propagating wave front of activity that originated at the cortical location representing the darkened square and rapidly expanded toward the region representing the brightened location. Thus, simultaneous input led to sequential activation across cortical retinotopy. Importantly, this effect was independent of the squares' contrast with the background. We suggest imbalance in dark–bright processing as a driving force in the generation of wave-like activity. Such propagation may convey motion signals and influence perception of shape whenever abrupt shifts in visual objects or gaze cause counterchange of luminance at high-contrast borders. SIGNIFICANCE STATEMENT An elementary process in vision is the detection of darks and lights through the retina via ON and OFF channels. Psychophysical and physiological studies suggest that differences between these channels affect spatial resolution and detection thresholds. Here we show that temporal asymmetries in the

  18. Ventromedial Prefrontal Cortex Pyramidal Cells Have a Temporal Dynamic Role in Recall and Extinction of Cocaine-Associated Memory

    PubMed Central

    Rotaru, Diana C.; Heinsbroek, Jasper A.; Gouwenberg, Yvonne; Deisseroth, Karl; Stuber, Garret D.; Mansvelder, Huibert D.; Smit, August B.

    2013-01-01

    In addicts, associative memories related to the rewarding effects of drugs of abuse can evoke powerful craving and drug seeking urges, but effective treatment to suppress these memories is not available. Detailed insight into the neural circuitry that mediates expression of drug-associated memory is therefore of crucial importance. Substantial evidence from rodent models of addictive behavior points to the involvement of the ventromedial prefrontal cortex (vmPFC) in conditioned drug seeking, but specific knowledge of the temporal role of vmPFC pyramidal cells is lacking. To this end, we used an optogenetics approach to probe the involvement of vmPFC pyramidal cells in expression of a recent and remote conditioned cocaine memory. In mice, we expressed Channelrhodopsin-2 (ChR2) or Halorhodopsin (eNpHR3.0) in pyramidal cells of the vmPFC and studied the effect of activation or inhibition of these cells during expression of a cocaine-contextual memory on days 1–2 (recent) and ∼3 weeks (remote) after conditioning. Whereas optical activation of pyramidal cells facilitated extinction of remote memory, without affecting recent memory, inhibition of pyramidal cells acutely impaired recall of recent cocaine memory, without affecting recall of remote memory. In addition, we found that silencing pyramidal cells blocked extinction learning at the remote memory time-point. We provide causal evidence of a critical time-dependent switch in the contribution of vmPFC pyramidal cells to recall and extinction of cocaine-associated memory, indicating that the circuitry that controls expression of cocaine memories reorganizes over time. PMID:24227731

  19. Distinct contribution of the parietal and temporal cortex to hand configuration and contextual judgements about tools.

    PubMed

    Andres, Michael; Pelgrims, Barbara; Olivier, Etienne

    2013-09-01

    Neuropsychological studies showed that manipulatory and semantic knowledge can be independently impaired in patients with upper-limb apraxia, leading to different tool use disorders. The present study aimed to dissociate the brain regions involved in judging the hand configuration or the context associated to tool use. We focussed on the left supramarginalis gyrus (SMG) and left middle temporal gyrus (MTG), whose activation, as evidenced by functional magnetic resonance imaging (fMRI) studies, suggests that they may play a critical role in tool use. The distinctive location of SMG in the dorsal visual stream led us to postulate that this parietal region could play a role in processing incoming information about tools to shape hand posture. In contrast, we hypothesized that MTG, because of its interconnections with several cortical areas involved in semantic memory, could contribute to retrieving semantic information necessary to create a contextual representation of tool use. To test these hypotheses, we used neuronavigated transcranial magnetic stimulation (TMS) to interfere transiently with the function of either left SMG or left MTG in healthy participants performing judgement tasks about either hand configuration or context of tool use. We found that SMG virtual lesions impaired hand configuration but not contextual judgements, whereas MTG lesions selectively interfered with judgements about the context of tool use while leaving hand configuration judgements unaffected. This double dissociation demonstrates that the ability to infer a context of use or a hand posture from tool perception relies on distinct processes, performed in the temporal and parietal regions. The present findings suggest that tool use disorders caused by SMG lesions will be characterized by difficulties in selecting the appropriate hand posture for tool use, whereas MTG lesions will yield difficulties in using tools in the appropriate context.

  20. Independent representations of verbs and actions in left lateral temporal cortex.

    PubMed

    Peelen, Marius V; Romagno, Domenica; Caramazza, Alfonso

    2012-10-01

    Verbs and nouns differ not only on formal linguistic grounds but also in what they typically refer to: Verbs typically refer to actions, whereas nouns typically refer to objects. Prior neuroimaging studies have revealed that regions in the left lateral temporal cortex (LTC), including the left posterior middle temporal gyrus (pMTG), respond selectively to action verbs relative to object nouns. Other studies have implicated the left pMTG in action knowledge, raising the possibility that verb selectivity in LTC may primarily reflect action-specific semantic features. Here, using functional neuroimaging, we test this hypothesis. Participants performed a simple memory task on visually presented verbs and nouns that described either events (e.g., "he eats" and "the conversation") or states (e.g., "he exists" and "the value"). Verb-selective regions in the left pMTG and the left STS were defined in individual participants by an independent localizer contrast between action verbs and object nouns. Both regions showed equally strong selectivity for event and state verbs relative to semantically matched nouns. The left STS responded more to states than events, whereas there was no difference between states and events in the left pMTG. Finally, whole-brain group analysis revealed that action verbs, relative to state verbs, activated a cluster in pMTG that was located posterior to the verb-selective pMTG clusters. Together, these results indicate that verb selectivity in LTC is independent of action representations. We consider other differences between verbs and nouns that may underlie verb selectivity in LTC, including the verb property of predication.

  1. Converging Neuronal Activity in Inferior Temporal Cortex during the Classification of Morphed Stimuli

    PubMed Central

    Akrami, Athena; Liu, Yan; Treves, Alessandro

    2009-01-01

    How does the brain dynamically convert incoming sensory data into a representation useful for classification? Neurons in inferior temporal (IT) cortex are selective for complex visual stimuli, but their response dynamics during perceptual classification is not well understood. We studied IT dynamics in monkeys performing a classification task. The monkeys were shown visual stimuli that were morphed (interpolated) between pairs of familiar images. Their ability to classify the morphed images depended systematically on the degree of morph. IT neurons were selected that responded more strongly to one of the 2 familiar images (the effective image). The responses tended to peak ∼120 ms following stimulus onset with an amplitude that depended almost linearly on the degree of morph. The responses then declined, but remained above baseline for several hundred ms. This sustained component remained linearly dependent on morph level for stimuli more similar to the ineffective image but progressively converged to a single response profile, independent of morph level, for stimuli more similar to the effective image. Thus, these neurons represented the dynamic conversion of graded sensory information into a task-relevant classification. Computational models suggest that these dynamics could be produced by attractor states and firing rate adaptation within the population of IT neurons. PMID:18669590

  2. The impact of orientation filtering on face-selective neurons in monkey inferior temporal cortex

    PubMed Central

    Taubert, Jessica; Goffaux, Valerie; Van Belle, Goedele; Vanduffel, Wim; Vogels, Rufin

    2016-01-01

    Faces convey complex social signals to primates. These signals are tolerant of some image transformations (e.g. changes in size) but not others (e.g. picture-plane rotation). By filtering face stimuli for orientation content, studies of human behavior and brain responses have shown that face processing is tuned to selective orientation ranges. In the present study, for the first time, we recorded the responses of face-selective neurons in monkey inferior temporal (IT) cortex to intact and scrambled faces that were filtered to selectively preserve horizontal or vertical information. Guided by functional maps, we recorded neurons in the lateral middle patch (ML), the lateral anterior patch (AL), and an additional region located outside of the functionally defined face-patches (CONTROL). We found that neurons in ML preferred horizontal-passed faces over their vertical-passed counterparts. Neurons in AL, however, had a preference for vertical-passed faces, while neurons in CONTROL had no systematic preference. Importantly, orientation filtering did not modulate the firing rate of neurons to phase-scrambled face stimuli in any recording region. Together these results suggest that face-selective neurons found in the face-selective patches are differentially tuned to orientation content, with horizontal tuning in area ML and vertical tuning in area AL. PMID:26879148

  3. Neural Representations of Personally Familiar and Unfamiliar Faces in the Anterior Inferior Temporal Cortex of Monkeys

    PubMed Central

    Eifuku, Satoshi; De Souza, Wania C.; Nakata, Ryuzaburo; Ono, Taketoshi; Tamura, Ryoi

    2011-01-01

    To investigate the neural representations of faces in primates, particularly in relation to their personal familiarity or unfamiliarity, neuronal activities were chronically recorded from the ventral portion of the anterior inferior temporal cortex (AITv) of macaque monkeys during the performance of a facial identification task using either personally familiar or unfamiliar faces as stimuli. By calculating the correlation coefficients between neuronal responses to the faces for all possible pairs of faces given in the task and then using the coefficients as neuronal population-based similarity measures between the faces in pairs, we analyzed the similarity/dissimilarity relationship between the faces, which were potentially represented by the activities of a population of the face-responsive neurons recorded in the area AITv. The results showed that, for personally familiar faces, different identities were represented by different patterns of activities of the population of AITv neurons irrespective of the view (e.g., front, 90° left, etc.), while different views were not represented independently of their facial identities, which was consistent with our previous report. In the case of personally unfamiliar faces, the faces possessing different identities but presented in the same frontal view were represented as similar, which contrasts with the results for personally familiar faces. These results, taken together, outline the neuronal representations of personally familiar and unfamiliar faces in the AITv neuronal population. PMID:21526206

  4. Reafferent copies of imitated actions in the right superior temporal cortex

    PubMed Central

    Iacoboni, Marco; Koski, Lisa M.; Brass, Marcel; Bekkering, Harold; Woods, Roger P.; Dubeau, Marie-Charlotte; Mazziotta, John C.; Rizzolatti, Giacomo

    2001-01-01

    Imitation is a complex phenomenon, the neural mechanisms of which are still largely unknown. When individuals imitate an action that already is present in their motor repertoire, a mechanism matching the observed action onto an internal motor representation of that action should suffice for the purpose. When one has to copy a new action, however, or to adjust an action present in one's motor repertoire to a different observed action, an additional mechanism is needed that allows the observer to compare the action made by another individual with the sensory consequences of the same action made by himself. Previous experiments have shown that a mechanism that directly matches observed actions on their motor counterparts exists in the premotor cortex of monkeys and humans. Here we report the results of functional magnetic resonance experiments, suggesting that in the superior temporal sulcus, a higher order visual region, there is a sector that becomes active both during hand action observation and during imitation even in the absence of direct vision of the imitator's hand. The motor-related activity is greater during imitation than during control motor tasks. This newly identified region has all the requisites for being the region at which the observed actions, and the reafferent motor-related copies of actions made by the imitator, interact. PMID:11717457

  5. Differential contributions of subregions of medial temporal lobe to memory system in amnestic mild cognitive impairment: insights from fMRI study.

    PubMed

    Chen, Jiu; Duan, Xujun; Shu, Hao; Wang, Zan; Long, Zhiliang; Liu, Duan; Liao, Wenxiang; Shi, Yongmei; Chen, Huafu; Zhang, Zhijun

    2016-01-01

    Altered function of the medial temporal lobe (MTL) is a valuable indicator of conversion from amnestic mild cognitive impairment (aMCI) to Alzheimer's disease. This study is to delineate the functional circuitry of multiple subdivisions of parahippocampal gyrus and hippocampus (HIP) and to examine how this knowledge contributes to a more principled understanding of the contributions of its subregions to memory in aMCI. The functional connectivity (FC) analysis was performed in 85 aMCI and 129 healthy controls. The aMCI demonstrated the distinct disruptive patterns of the MTL subregional connectivity with the whole-brain. The right entorhinal cortex (ERC) and perirhinal cortex (PRC) showed increased connectivity with the left inferior and middle occipital gyrus, respectively, which potentially indicated a compensatory mechanism. Furthermore, the right altered MTL subregional FC was associated with episodic memory performance in aMCI. These results provide novel insights into the heterogeneous nature of its large-scale connectivity in MTL subregions in memory system underlying the memory deficits in aMCI. It further suggests that altered FC of MTL subregions is associated with the impairment of the differential encoding stages of memories and the functional changes in the specific right HIP-ERC-PRC-temporal circuitry may contribute to the impairment of episodic memory in aMCI. PMID:27184985

  6. Differential contributions of subregions of medial temporal lobe to memory system in amnestic mild cognitive impairment: insights from fMRI study

    PubMed Central

    Chen, Jiu; Duan, Xujun; Shu, Hao; Wang, Zan; Long, Zhiliang; Liu, Duan; Liao, Wenxiang; Shi, Yongmei; Chen, Huafu; Zhang, Zhijun

    2016-01-01

    Altered function of the medial temporal lobe (MTL) is a valuable indicator of conversion from amnestic mild cognitive impairment (aMCI) to Alzheimer’s disease. This study is to delineate the functional circuitry of multiple subdivisions of parahippocampal gyrus and hippocampus (HIP) and to examine how this knowledge contributes to a more principled understanding of the contributions of its subregions to memory in aMCI. The functional connectivity (FC) analysis was performed in 85 aMCI and 129 healthy controls. The aMCI demonstrated the distinct disruptive patterns of the MTL subregional connectivity with the whole-brain. The right entorhinal cortex (ERC) and perirhinal cortex (PRC) showed increased connectivity with the left inferior and middle occipital gyrus, respectively, which potentially indicated a compensatory mechanism. Furthermore, the right altered MTL subregional FC was associated with episodic memory performance in aMCI. These results provide novel insights into the heterogeneous nature of its large-scale connectivity in MTL subregions in memory system underlying the memory deficits in aMCI. It further suggests that altered FC of MTL subregions is associated with the impairment of the differential encoding stages of memories and the functional changes in the specific right HIP-ERC-PRC-temporal circuitry may contribute to the impairment of episodic memory in aMCI. PMID:27184985

  7. Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer's disease

    PubMed Central

    Du A, T; Schuff, N; Amend, D; Laakso, M; Hsu, Y; Jagust, W; Yaffe, K; Kramer, J; Reed, B; Norman, D; Chui, H; Weiner, M

    2001-01-01

    OBJECTIVES—To explore volume changes of the entorhinal cortex (ERC) and hippocampus in mild cognitive impairment (MCI) and Alzheimer's disease (AD) compared with normal cognition (NC); to determine the powers of the ERC and the hippocampus for discrimination between these groups.
METHODS—This study included 40 subjects with NC, 36 patients with MCI, and 29 patients with AD. Volumes of the ERC and hippocampus were manually measured based on coronal T1 weighted MR images. Global cerebral changes were assessed using semiautomatic image segmentation.
RESULTS—Both ERC and hippocampal volumes were reduced in MCI (ERC 13%, hippocampus 11%, p<0.05) and AD (ERC 39%, hippocampus 27%, p<0.01) compared with NC. Furthermore, AD showed greater volume losses in the ERC than in the hippocampus (p<0.01). In addition, AD and MCI also had cortical grey matter loss (p< 0.01) and ventricular enlargement (p<0.01) when compared with NC. There was a significant correlation between ERC and hippocampal volumes in MCI and AD (both p<0.001), but not in NC. Using ERC and hippocampus together improved discrimination between AD and CN but did not improve discrimination between MCI and NC. The ERC was better than the hippocampus for distinguishing MCI from AD. In addition, loss of cortical grey matter significantly contributed to the hippocampus for discriminating MCI and AD from NC.
CONCLUSIONS—Volume reductions in the ERC and hippocampus may be early signs of AD pathology that can be measured using MRI.

 PMID:11561025

  8. Selective neuronal degeneration in the retrosplenial cortex impairs the recall of contextual fear memory.

    PubMed

    Sigwald, Eric L; Genoud, Manuel E; Giachero, Marcelo; de Olmos, Soledad; Molina, Víctor A; Lorenzo, Alfredo

    2016-05-01

    The retrosplenial cortex (RSC) is one of the largest cortical areas in rodents, and is subdivided in two main regions, A29 and A30, according to their cytoarchitectural organization and connectivities. However, very little is known about the functional activity of each RSC subdivision during the execution of complex cognitive tasks. Here, we used a well-established fear learning protocol that induced long-lasting contextual fear memory and showed that during evocation of the fear memory, the expression of early growth response gene 1 was up-regulated in A30, and in other brain areas implicated in fear and spatial memory, however, was down-regulated in A29, including layers IV and V. To search for the participation of A29 on fear memory, we triggered selective degeneration of neurons within cortical layers IV and V of A29 by using a non-invasive protocol that takes advantage of the vulnerability that these neurons have MK801-toxicity and the modulation of this neurodegeneration by testosterone. Application of 5 mg/kg MK801 in intact males induced negligible neuronal degeneration of A29 neurons and had no impact on fear memory retrieval. However, in orchiectomized rats, 5 mg/kg MK801 induced overt degeneration of layers IV-V neurons of A29, significantly impairing fear memory recall. Degeneration of A29 neurons did not affect exploratory or anxiety-related behavior nor altered unconditioned freezing. Importantly, protecting A29 neurons from MK801-toxicity by testosterone preserved fear memory recall in orchiectomized rats. Thus, neurons within cortical layers IV-V of A29 are critically required for efficient retrieval of contextual fear memory.

  9. Sleep Deprivation Impairs Object-Selective Attention: A View from the Ventral Visual Cortex

    PubMed Central

    Lim, Julian; Tan, Jiat Chow; Parimal, Sarayu; Dinges, David F.; Chee, Michael W. L.

    2010-01-01

    Background Most prior studies on selective attention in the setting of total sleep deprivation (SD) have focused on behavior or activation within fronto-parietal cognitive control areas. Here, we evaluated the effects of SD on the top-down biasing of activation of ventral visual cortex and on functional connectivity between cognitive control and other brain regions. Methodology/Principal Findings Twenty-three healthy young adult volunteers underwent fMRI after a normal night of sleep (RW) and after sleep deprivation in a counterbalanced manner while performing a selective attention task. During this task, pictures of houses or faces were randomly interleaved among scrambled images. Across different blocks, volunteers responded to house but not face pictures, face but not house pictures, or passively viewed pictures without responding. The appearance of task-relevant pictures was unpredictable in this paradigm. SD resulted in less accurate detection of target pictures without affecting the mean false alarm rate or response time. In addition to a reduction of fronto-parietal activation, attending to houses strongly modulated parahippocampal place area (PPA) activation during RW, but this attention-driven biasing of PPA activation was abolished following SD. Additionally, SD resulted in a significant decrement in functional connectivity between the PPA and two cognitive control areas, the left intraparietal sulcus and the left inferior frontal lobe. Conclusions/Significance SD impairs selective attention as evidenced by reduced selectivity in PPA activation. Further, reduction in fronto-parietal and ventral visual task-related activation suggests that it also affects sustained attention. Reductions in functional connectivity may be an important additional imaging parameter to consider in characterizing the effects of sleep deprivation on cognition. PMID:20140099

  10. Age-related impairment in a complex object discrimination task that engages perirhinal cortex.

    PubMed

    Ryan, L; Cardoza, J A; Barense, M D; Kawa, K H; Wallentin-Flores, J; Arnold, W T; Alexander, G E

    2012-10-01

    Previous lesion studies have shown compromised complex object discrimination in rats, monkeys, and human patients with damage to the perirhinal cortical region (PRC) of the medial temporal lobe. These findings support the notion that the PRC is involved in object discrimination when pairs of objects have a high degree of overlapping features but not when object discrimination can be resolved on the basis of a single feature (e.g., size or color). Recent studies have demonstrated age-related functional changes to the PRC in animals (rats and monkeys) resulting in impaired complex object discrimination and object recognition. To date, no studies have compared younger and older humans using paradigms previously shown to engage the PRC. To investigate the influence of age on complex object discrimination in humans, the present study used an object matching paradigm for blob-like objects that have previously been shown to recruit the PRC. Difficulty was manipulated by varying the number of overlapping features between objects. Functional MRI data was acquired to determine the involvement of the PRC in the two groups during complex object discrimination. Results indicated that while young and older adults performed similarly on the easy version of the task, most older adults were impaired relative to young participants when the number of overlapping features increased. fMRI results suggest that older adults do not engage bilateral anterior PRC to the same extent as young adults. Specifically, complex object matching performance in older adults was predicted by the degree to which they engage left anterior PRC. These results provide evidence for human age-related changes in PRC function that impact complex object discrimination.

  11. Working Memory Deficits in Neuronal Nitric Oxide Synthase Knockout Mice: Potential Impairments in Prefrontal Cortex Mediated Cognitive Function

    PubMed Central

    Zoubovsky, Sandra P.; Pogorelov, Vladimir M.; Taniguchi, Yu; Kim, Sun-Hong; Yoon, Peter; Nwulia, Evaristus; Sawa, Akira; Pletnikov, Mikhail V.; Kamiya, Atsushi

    2011-01-01

    Neuronal nitric oxide synthase (nNOS) forms nitric oxide (NO), which functions as a signaling molecule via S-nitrosylation of various proteins and regulation of soluble guanylate cyclase (cGC)/cyclic guanosine monophosphate (cGMP) pathway in the central nervous system. nNOS signaling regulates diverse cellular processes during brain development and molecular mechanisms required for higher brain function. Human genetics have identified nNOS and several downstream effectors of nNOS as risk genes for schizophrenia. Besides the disease itself, nNOS has also been associated with prefrontal cortical functioning, including cognition, of which disturbances are a core feature of schizophrenia. Although mice with genetic deletion of nNOS display various behavioral deficits, no studies have investigated prefrontal cortex-associated behaviors. Here, we report that nNOS knockout (KO) mice exhibit hyperactivity and impairments in contextual fear conditioning, results consistent with previous reports. nNOS KO mice also display mild impairments in object recognition memory. Most importantly, we report for the first time working memory deficits, potential impairments in prefrontal cortex mediated cognitive function in nNOS KO mice. Furthermore, we demonstrate Disrupted-in-Schizophrenia 1 (DISC1), another genetic risk factor for schizophrenia that plays roles for cortical development and prefrontal cortex functioning, including working memory, is a novel protein binding partner of nNOS in the developing cerebral cortex. Of note, genetic deletion of nNOS appears to increase the binding of DISC1 to NDEL1, regulating neurite outgrowth as previously reported. These results suggest that nNOS KO mice are useful tools in studying the role of nNOS signaling in cortical development and prefrontal cortical functioning. PMID:21539806

  12. Working memory deficits in neuronal nitric oxide synthase knockout mice: potential impairments in prefrontal cortex mediated cognitive function.

    PubMed

    Zoubovsky, Sandra P; Pogorelov, Vladimir M; Taniguchi, Yu; Kim, Sun-Hong; Yoon, Peter; Nwulia, Evaristus; Sawa, Akira; Pletnikov, Mikhail V; Kamiya, Atsushi

    2011-05-20

    Neuronal nitric oxide synthase (nNOS) forms nitric oxide (NO), which functions as a signaling molecule via S-nitrosylation of various proteins and regulation of soluble guanylate cyclase (cGC)/cyclic guanosine monophosphate (cGMP) pathway in the central nervous system. nNOS signaling regulates diverse cellular processes during brain development and molecular mechanisms required for higher brain function. Human genetics have identified nNOS and several downstream effectors of nNOS as risk genes for schizophrenia. Besides the disease itself, nNOS has also been associated with prefrontal cortical functioning, including cognition, of which disturbances are a core feature of schizophrenia. Although mice with genetic deletion of nNOS display various behavioral deficits, no studies have investigated prefrontal cortex-associated behaviors. Here, we report that nNOS knockout (KO) mice exhibit hyperactivity and impairments in contextual fear conditioning, results consistent with previous reports. nNOS KO mice also display mild impairments in object recognition memory. Most importantly, we report for the first time working memory deficits, potential impairments in prefrontal cortex mediated cognitive function in nNOS KO mice. Furthermore, we demonstrate Disrupted-in-Schizophrenia 1 (DISC1), another genetic risk factor for schizophrenia that plays roles for cortical development and prefrontal cortex functioning, including working memory, is a novel protein binding partner of nNOS in the developing cerebral cortex. Of note, genetic deletion of nNOS appears to increase the binding of DISC1 to NDEL1, regulating neurite outgrowth as previously reported. These results suggest that nNOS KO mice are useful tools in studying the role of nNOS signaling in cortical development and prefrontal cortical functioning. PMID:21539806

  13. Temporal and spatial dynamics of thalamus-evoked activity in the anterior cingulate cortex.

    PubMed

    Chang, Wei-Chih; Lee, Chia-Ming; Shyu, Bai-Chuang

    2012-10-11

    In the present study, multielectrode array (MEA) recording was used to illustrate the spatial-temporal progression of anterior cingulate cortex (ACC) activity following stimulation of the thalamus in a thalamocingulate pathway-preserved slice. The MEA was placed under the slice that contained the ACC, and 60 channels of extracellular local field potentials evoked by bipolar electrical stimulation within the thalamus were analyzed. Several distinct thalamic-evoked responses were identified. The early negative component (N1; amplitude, -35.7 ± 5.9 μV) emerged in layer VI near the cingulum 8.4 ± 0.5 ms after stimulation. N1 progressed upward to layers V and II/III in a lateral-to-medial direction. Subsequently, a positive component (P; amplitude, 27.0 ± 3.2 μV) appeared 12.0 ± 0.6 ms after stimulation in layer VI. At 26.8 ± 1.1 ms, a second negative component (N2; amplitude, -20.9 ± 2.7 μV) became apparent in layers II/III and V, followed by a more ventrolateral component (N3; amplitude, -18.9 ± 2.9 μV) at 42.8 ± 2.6 ms. These two late components spread downward to layer VI in a medial-to-lateral direction. The trajectory paths of the evoked components were consistently represented with varied medial thalamic stimulation intensities and sites. Both AMPA/kainate and N-methyl-D-aspartate-type glutamate receptors involved in monosynaptic and polysynaptic transmission participated in this thalamocortical pathway. Morphine mainly diminished the two negative synaptic components, and this suppressive effect was reversed by naloxone. The present study confirmed that functional thalamocingulate activity was preserved in the brain-slice preparation. The thalamus-evoked responses were activated and progressed along a deep surface-deep trajectory loop across the ACC layers. Glutamatergic neurotransmitters were crucially involved in information processing. Opioid interneurons may play a modulatory role in regulating the signal flows in the cingulate cortex.

  14. Intracranial electroencephalography reveals different temporal profiles for dorsal- and ventro-lateral prefrontal cortex in preparing to stop action.

    PubMed

    Swann, Nicole C; Tandon, Nitin; Pieters, Thomas A; Aron, Adam R

    2013-10-01

    Preparing to stop an inappropriate action requires keeping in mind the task goal and using this to influence the action control system. We tested the hypothesis that different subregions of prefrontal cortex show different temporal profiles consistent with dissociable contributions to preparing-to-stop, with dorsolateral prefrontal cortex (DLPFC) representing the task goal and ventrolateral prefrontal cortex (VLPFC) implementing action control. Five human subjects were studied using electrocorticography recorded from subdural grids over right lateral frontal cortex. On each trial, a task cue instructed the subject whether stopping might be needed or not (Maybe Stop [MS] or No Stop [NS]), followed by a go cue, and on some MS trials, a subsequent stop signal. We focused on go trials, comparing MS with NS. In the DLPFC, most subjects had an increase in high gamma activity following the task cue and the go cue. In contrast, in the VLPFC, all subjects had activity after the go cue near the time of the motor response on MS trials, related to behavioral slowing, and significantly later than the DLPFC activity. These different temporal profiles suggest that DLPFC and VLPFC could have dissociable roles, with DLPFC representing task goals and VLPFC implementing action control.

  15. Our Faces in the Dog's Brain: Functional Imaging Reveals Temporal Cortex Activation during Perception of Human Faces.

    PubMed

    Cuaya, Laura V; Hernández-Pérez, Raúl; Concha, Luis

    2016-01-01

    Dogs have a rich social relationship with humans. One fundamental aspect of it is how dogs pay close attention to human faces in order to guide their behavior, for example, by recognizing their owner and his/her emotional state using visual cues. It is well known that humans have specific brain regions for the processing of other human faces, yet it is unclear how dogs' brains process human faces. For this reason, our study focuses on describing the brain correlates of perception of human faces in dogs using functional magnetic resonance imaging (fMRI). We trained seven domestic dogs to remain awake, still and unrestrained inside an MRI scanner. We used a visual stimulation paradigm with block design to compare activity elicited by human faces against everyday objects. Brain activity related to the perception of faces changed significantly in several brain regions, but mainly in the bilateral temporal cortex. The opposite contrast (i.e., everyday objects against human faces) showed no significant brain activity change. The temporal cortex is part of the ventral visual pathway, and our results are consistent with reports in other species like primates and sheep, that suggest a high degree of evolutionary conservation of this pathway for face processing. This study introduces the temporal cortex as candidate to process human faces, a pillar of social cognition in dogs.

  16. Dysregulation of Autophagy, Mitophagy, and Apoptotic Genes in the Medial Temporal Lobe Cortex in an Ischemic Model of Alzheimer's Disease.

    PubMed

    Ułamek-Kozioł, Marzena; Kocki, Janusz; Bogucka-Kocka, Anna; Petniak, Alicja; Gil-Kulik, Paulina; Januszewski, Sławomir; Bogucki, Jacek; Jabłoński, Mirosław; Furmaga-Jabłońska, Wanda; Brzozowska, Judyta; Czuczwar, Stanisław J; Pluta, Ryszard

    2016-07-27

    Ischemic brain damage is a pathological incident that is often linked with medial temporal lobe cortex injury and finally its atrophy. Post-ischemic brain injury associates with poor prognosis since neurons of selectively vulnerable ischemic brain areas are disappearing by apoptotic program of neuronal death. Autophagy has been considered, after brain ischemia, as a guardian against neurodegeneration. Consequently, we have examined changes in autophagy (BECN 1), mitophagy (BNIP 3), and apoptotic (caspase 3) genes in the medial temporal lobe cortex with the use of quantitative reverse-transcriptase PCR following transient 10-min global brain ischemia in rats with survival 2, 7, and 30 days. The intense significant overexpression of BECN 1 gene was noted on the 2nd day, while on days 7-30 the expression of this gene was still upregulated. BNIP 3 gene was downregulated on the 2nd day, but on days 7-30 post-ischemia, there was a significant reverse tendency. Caspase 3 gene, associated with apoptotic neuronal death, was induced in the same way as BNIP 3 gene after brain ischemia. Thus, the demonstrated changes indicate that the considerable dysregulation of expression of BECN 1, BNIP 3, and caspase 3 genes may be connected with a response of neuronal cells in medial temporal lobe cortex to transient complete brain ischemia. PMID:27472881

  17. Our Faces in the Dog's Brain: Functional Imaging Reveals Temporal Cortex Activation during Perception of Human Faces.

    PubMed

    Cuaya, Laura V; Hernández-Pérez, Raúl; Concha, Luis

    2016-01-01

    Dogs have a rich social relationship with humans. One fundamental aspect of it is how dogs pay close attention to human faces in order to guide their behavior, for example, by recognizing their owner and his/her emotional state using visual cues. It is well known that humans have specific brain regions for the processing of other human faces, yet it is unclear how dogs' brains process human faces. For this reason, our study focuses on describing the brain correlates of perception of human faces in dogs using functional magnetic resonance imaging (fMRI). We trained seven domestic dogs to remain awake, still and unrestrained inside an MRI scanner. We used a visual stimulation paradigm with block design to compare activity elicited by human faces against everyday objects. Brain activity related to the perception of faces changed significantly in several brain regions, but mainly in the bilateral temporal cortex. The opposite contrast (i.e., everyday objects against human faces) showed no significant brain activity change. The temporal cortex is part of the ventral visual pathway, and our results are consistent with reports in other species like primates and sheep, that suggest a high degree of evolutionary conservation of this pathway for face processing. This study introduces the temporal cortex as candidate to process human faces, a pillar of social cognition in dogs. PMID:26934715

  18. Our Faces in the Dog's Brain: Functional Imaging Reveals Temporal Cortex Activation during Perception of Human Faces

    PubMed Central

    Cuaya, Laura V.; Hernández-Pérez, Raúl; Concha, Luis

    2016-01-01

    Dogs have a rich social relationship with humans. One fundamental aspect of it is how dogs pay close attention to human faces in order to guide their behavior, for example, by recognizing their owner and his/her emotional state using visual cues. It is well known that humans have specific brain regions for the processing of other human faces, yet it is unclear how dogs’ brains process human faces. For this reason, our study focuses on describing the brain correlates of perception of human faces in dogs using functional magnetic resonance imaging (fMRI). We trained seven domestic dogs to remain awake, still and unrestrained inside an MRI scanner. We used a visual stimulation paradigm with block design to compare activity elicited by human faces against everyday objects. Brain activity related to the perception of faces changed significantly in several brain regions, but mainly in the bilateral temporal cortex. The opposite contrast (i.e., everyday objects against human faces) showed no significant brain activity change. The temporal cortex is part of the ventral visual pathway, and our results are consistent with reports in other species like primates and sheep, that suggest a high degree of evolutionary conservation of this pathway for face processing. This study introduces the temporal cortex as candidate to process human faces, a pillar of social cognition in dogs. PMID:26934715

  19. The Effect of Temporal Adverbials on Past Tense Production by Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    Krantz, Laurie R.; Leonard, Laurence B.

    2007-01-01

    Purpose: Children with specific language impairment (SLI) often fail to produce past tense forms in obligatory contexts, although the factors affecting such inconsistency are not well understood. This study examined the influence of accompanying temporal adverbials (e.g., "just, already") on the past tense production of these children. Method:…

  20. Aspects of Spatio-Temporal Variability during Consonant Production by Greek Speakers with Hearing Impairment

    ERIC Educational Resources Information Center

    Nicolaidis, Katerina

    2007-01-01

    This paper investigates spatio-temporal variability during the production of the lingual consonants /t, k, s, x, n, l, "r"/ by four Greek speakers with profound hearing impairment and with differences in the intelligibility of their speech. It examines important factors that have been documented to influence intelligibility, i.e. durational…

  1. Brainstem Correlates of Temporal Auditory Processing in Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    Basu, Madhavi; Krishnan, Ananthanarayan; Weber-Fox, Christine

    2010-01-01

    Deficits in identification and discrimination of sounds with short inter-stimulus intervals or short formant transitions in children with specific language impairment (SLI) have been taken to reflect an underlying temporal auditory processing deficit. Using the sustained frequency following response (FFR) and the onset auditory brainstem responses…

  2. Impaired tuning of a fast occipito-temporal response for print in dyslexic children learning to read.

    PubMed

    Maurer, Urs; Brem, Silvia; Bucher, Kerstin; Kranz, Felicitas; Benz, Rosmarie; Steinhausen, Hans-Christoph; Brandeis, Daniel

    2007-12-01

    Developmental dyslexia is defined as a disorder of learning to read. It is thus critical to examine the neural processes that impair learning to read during the early phase of reading acquisition, before compensatory mechanisms are adapted by older readers with dyslexia. Using electroencephalography-based event-related imaging, we investigated how tuning of visual activity for print advances in the same children before and after initial reading training in school. The focus was on a fast, coarse form of visual tuning for print, measured as an increase of the occipito-temporal N1 response at 150-270 ms in the event-related potential (ERP) to words compared to symbol strings. The results demonstrate that the initial development of reading skills and visual tuning for print progressed more slowly in those children who became dyslexic than in their control peers. Print-specific tuning in 2nd grade strongly distinguished dyslexic children from controls. It was maximal in the inferior occipito-temporal cortex, left-lateralized in controls, and reduced in dyslexic children. The results suggest that delayed initial visual tuning for print critically contributes to the development of dyslexia.

  3. Representation of Perceptual Color Space in Macaque Posterior Inferior Temporal Cortex (the V4 Complex).

    PubMed

    Bohon, Kaitlin S; Hermann, Katherine L; Hansen, Thorsten; Conway, Bevil R

    2016-01-01

    The lateral geniculate nucleus is thought to represent color using two populations of cone-opponent neurons [L vs M; S vs (L + M)], which establish the cardinal directions in color space (reddish vs cyan; lavender vs lime). How is this representation transformed to bring about color perception? Prior work implicates populations of glob cells in posterior inferior temporal cortex (PIT; the V4 complex), but the correspondence between the neural representation of color in PIT/V4 complex and the organization of perceptual color space is unclear. We compared color-tuning data for populations of glob cells and interglob cells to predictions obtained using models that varied in the color-tuning narrowness of the cells, and the color preference distribution across the populations. Glob cells were best accounted for by simulated neurons that have nonlinear (narrow) tuning and, as a population, represent a color space designed to be perceptually uniform (CIELUV). Multidimensional scaling and representational similarity analyses showed that the color space representations in both glob and interglob populations were correlated with the organization of CIELUV space, but glob cells showed a stronger correlation. Hue could be classified invariant to luminance with high accuracy given glob responses and above-chance accuracy given interglob responses. Luminance could be read out invariant to changes in hue in both populations, but interglob cells tended to prefer stimuli having luminance contrast, regardless of hue, whereas glob cells typically retained hue tuning as luminance contrast was modulated. The combined luminance/hue sensitivity of glob cells is predicted for neurons that can distinguish two colors of the same hue at different luminance levels (orange/brown). PMID:27595132

  4. Representation of Perceptual Color Space in Macaque Posterior Inferior Temporal Cortex (the V4 Complex)

    PubMed Central

    Bohon, Kaitlin S.; Hermann, Katherine L.; Hansen, Thorsten

    2016-01-01

    Abstract The lateral geniculate nucleus is thought to represent color using two populations of cone-opponent neurons [L vs M; S vs (L + M)], which establish the cardinal directions in color space (reddish vs cyan; lavender vs lime). How is this representation transformed to bring about color perception? Prior work implicates populations of glob cells in posterior inferior temporal cortex (PIT; the V4 complex), but the correspondence between the neural representation of color in PIT/V4 complex and the organization of perceptual color space is unclear. We compared color-tuning data for populations of glob cells and interglob cells to predictions obtained using models that varied in the color-tuning narrowness of the cells, and the color preference distribution across the populations. Glob cells were best accounted for by simulated neurons that have nonlinear (narrow) tuning and, as a population, represent a color space designed to be perceptually uniform (CIELUV). Multidimensional scaling and representational similarity analyses showed that the color space representations in both glob and interglob populations were correlated with the organization of CIELUV space, but glob cells showed a stronger correlation. Hue could be classified invariant to luminance with high accuracy given glob responses and above-chance accuracy given interglob responses. Luminance could be read out invariant to changes in hue in both populations, but interglob cells tended to prefer stimuli having luminance contrast, regardless of hue, whereas glob cells typically retained hue tuning as luminance contrast was modulated. The combined luminance/hue sensitivity of glob cells is predicted for neurons that can distinguish two colors of the same hue at different luminance levels (orange/brown).

  5. Representation of Perceptual Color Space in Macaque Posterior Inferior Temporal Cortex (the V4 Complex)

    PubMed Central

    Bohon, Kaitlin S.; Hermann, Katherine L.; Hansen, Thorsten

    2016-01-01

    Abstract The lateral geniculate nucleus is thought to represent color using two populations of cone-opponent neurons [L vs M; S vs (L + M)], which establish the cardinal directions in color space (reddish vs cyan; lavender vs lime). How is this representation transformed to bring about color perception? Prior work implicates populations of glob cells in posterior inferior temporal cortex (PIT; the V4 complex), but the correspondence between the neural representation of color in PIT/V4 complex and the organization of perceptual color space is unclear. We compared color-tuning data for populations of glob cells and interglob cells to predictions obtained using models that varied in the color-tuning narrowness of the cells, and the color preference distribution across the populations. Glob cells were best accounted for by simulated neurons that have nonlinear (narrow) tuning and, as a population, represent a color space designed to be perceptually uniform (CIELUV). Multidimensional scaling and representational similarity analyses showed that the color space representations in both glob and interglob populations were correlated with the organization of CIELUV space, but glob cells showed a stronger correlation. Hue could be classified invariant to luminance with high accuracy given glob responses and above-chance accuracy given interglob responses. Luminance could be read out invariant to changes in hue in both populations, but interglob cells tended to prefer stimuli having luminance contrast, regardless of hue, whereas glob cells typically retained hue tuning as luminance contrast was modulated. The combined luminance/hue sensitivity of glob cells is predicted for neurons that can distinguish two colors of the same hue at different luminance levels (orange/brown). PMID:27595132

  6. Differing contributions of inferior prefrontal and anterior temporal cortex to concrete and abstract conceptual knowledge.

    PubMed

    Hoffman, Paul; Binney, Richard J; Lambon Ralph, Matthew A

    2015-02-01

    Semantic cognition is underpinned by regions involved in representing conceptual knowledge and executive control areas that provide regulation of this information according to current task requirements. Using distortion-corrected fMRI, we investigated the contributions of these two systems to abstract and concrete word comprehension. We contrasted semantic decisions made either with coherent contextual support, which encouraged retrieval of a rich conceptual representation, or with irrelevant contextual information, which instead maximised demands on control processes. Inferior prefrontal cortex was activated more when decisions were made in the presence of irrelevant context, suggesting that this region is crucial for the semantic control functions required to select appropriate aspects of meaning in the face of competing information. It also exhibited greater activation for abstract words, which reflects the fact that abstract words tend to have variable, context-dependent meanings that place higher demands on control processes. In contrast, anterior temporal regions (ATL) were most active when decisions were made with the benefit of a coherent context, suggesting a representational role. There was a graded shift in concreteness effects in this region, with dorsolateral areas particularly active for abstract words and ventromedial areas preferentially activated by concrete words. This supports the idea that concrete concepts are closely associated with visual experience and abstract concepts with auditory-verbal information; and that sub-regions of the ATL display graded specialisation for these two types of knowledge. Between these two extremes, we identified significant activations for both word types in ventrolateral ATL. This area is known to be involved in representing knowledge for concrete concepts; here we established that it is also activated by abstract concepts. These results converge with data from rTMS and neuropsychological investigations in

  7. Representation of Perceptual Color Space in Macaque Posterior Inferior Temporal Cortex (the V4 Complex).

    PubMed

    Bohon, Kaitlin S; Hermann, Katherine L; Hansen, Thorsten; Conway, Bevil R

    2016-01-01

    The lateral geniculate nucleus is thought to represent color using two populations of cone-opponent neurons [L vs M; S vs (L + M)], which establish the cardinal directions in color space (reddish vs cyan; lavender vs lime). How is this representation transformed to bring about color perception? Prior work implicates populations of glob cells in posterior inferior temporal cortex (PIT; the V4 complex), but the correspondence between the neural representation of color in PIT/V4 complex and the organization of perceptual color space is unclear. We compared color-tuning data for populations of glob cells and interglob cells to predictions obtained using models that varied in the color-tuning narrowness of the cells, and the color preference distribution across the populations. Glob cells were best accounted for by simulated neurons that have nonlinear (narrow) tuning and, as a population, represent a color space designed to be perceptually uniform (CIELUV). Multidimensional scaling and representational similarity analyses showed that the color space representations in both glob and interglob populations were correlated with the organization of CIELUV space, but glob cells showed a stronger correlation. Hue could be classified invariant to luminance with high accuracy given glob responses and above-chance accuracy given interglob responses. Luminance could be read out invariant to changes in hue in both populations, but interglob cells tended to prefer stimuli having luminance contrast, regardless of hue, whereas glob cells typically retained hue tuning as luminance contrast was modulated. The combined luminance/hue sensitivity of glob cells is predicted for neurons that can distinguish two colors of the same hue at different luminance levels (orange/brown).

  8. Overexpression of αCaMKII impairs behavioral flexibility and NMDAR-dependent long-term depression in the medial prefrontal cortex.

    PubMed

    Ma, J; Duan, Y; Qin, Z; Wang, J; Liu, W; Xu, M; Zhou, S; Cao, X

    2015-12-01

    The medial prefrontal cortex (mPFC) participates in the behavioral flexibility. As a major downstream molecule in the NMDA receptor signaling, alpha-Ca(2+)/calmodulin-dependent protein kinase II (αCaMKII) is crucial for hippocampal long-term potentiation (LTP) and hippocampus-related memory. However, the role of αCaMKII in mPFC-related behavioral flexibility and mPFC synaptic plasticity remains elusive. In the present study, using chemical-genetic approaches to temporally up-regulate αCaMKII activity, we found that αCaMKII-F89G transgenic mice exhibited impaired behavioral flexibility in Y-water maze arm reversal task. Notably, in vitro electrophysiological analysis showed normal basal synaptic transmission, LTP and depotentiation, but selectively impaired NMDAR-dependent long-term depression (LTD) in the mPFC of αCaMKII-F89G transgenic mice. In accordance with the deficit in NMDAR-dependent LTD, αCaMKII-F89G transgenic mice exhibited impaired AMPAR internalization during NMDAR-dependent chemical LTD expression in the mPFC. Furthermore, the above deficits in behavioral flexibility, NMDAR-dependent LTD and AMPAR internalization could all be reversed by 1-naphthylmethyl (NM)-PP1, a specific inhibitor of exogenous αCaMKII-F89G activity. Taken together, our results for the first time indicate that αCaMKII overexpression in the forebrain impairs behavioral flexibility and NMDAR-dependent LTD in the mPFC, and supports the notion that there is a close relationship between NMDAR-dependent LTD and behavioral flexibility.

  9. Bilateral lesions in a specific subregion of posterior insular cortex impair conditioned taste aversion expression in rats.

    PubMed

    Schier, Lindsey A; Blonde, Ginger D; Spector, Alan C

    2016-01-01

    The gustatory cortex (GC) is widely regarded for its integral role in the acquisition and retention of conditioned taste aversions (CTAs) in rodents, but large lesions in this area do not always result in CTA impairment. Recently, using a new lesion mapping system, we found that severe CTA expression deficits were associated with damage to a critical zone that included the posterior half of GC in addition to the insular cortex (IC) that is just dorsal and caudal to this region (visceral cortex). Lesions in anterior GC were without effect. Here, neurotoxic bilateral lesions were placed in the anterior half of this critical damage zone, at the confluence of the posterior GC and the anterior visceral cortex (termed IC2 ), the posterior half of this critical damage zone that contains just VC (termed IC3), or both of these subregions (IC2 + IC3). Then, pre- and postsurgically acquired CTAs (to 0.1 M NaCl and 0.1 M sucrose, respectively) were assessed postsurgically in 15-minute one-bottle and 96-hour two-bottle tests. Li-injected rats with histologically confirmed bilateral lesions in IC2 exhibited the most severe CTA deficits, whereas those with bilateral lesions in IC3 were relatively normal, exhibiting transient disruptions in the one-bottle sessions. Groupwise lesion maps showed that CTA-impaired rats had more extensive damage to IC2 than did unimpaired rats. Some individual differences in CTA expression among rats with similar lesion profiles were observed, suggesting idiosyncrasies in the topographic representation of information in the IC. Nevertheless, this study implicates IC2 as the critical zone of the IC for normal CTA expression.

  10. Impaired consciousness is linked to changes in effective connectivity of the posterior cingulate cortex within the default mode network

    PubMed Central

    Crone, Julia Sophia; Schurz, Matthias; Höller, Yvonne; Bergmann, Jürgen; Monti, Martin; Schmid, Elisabeth; Trinka, Eugen; Kronbichler, Martin

    2015-01-01

    The intrinsic connectivity of the default mode network has been associated with the level of consciousness in patients with severe brain injury. Especially medial parietal regions are considered to be highly involved in impaired consciousness. To better understand what aspect of this intrinsic architecture is linked to consciousness, we applied spectral dynamic causal modeling to assess effective connectivity within the default mode network in patients with disorders of consciousness. We included 12 controls, 12 patients in minimally conscious state and 13 in vegetative state in this study. For each subject, we first defined the four key regions of the default mode network employing a subject-specific independent component analysis approach. The resulting regions were then included as nodes in a spectral dynamic causal modeling analysis in order to assess how the causal interactions across these regions as well as the characteristics of neuronal fluctuations change with the level of consciousness. The resulting pattern of interaction in controls identified the posterior cingulate cortex as the main driven hub with positive afferent but negative efferent connections. In patients, this pattern appears to be disrupted. Moreover, the vegetative state patients exhibit significantly reduced self-inhibition and increased oscillations in the posterior cingulate cortex compared to minimally conscious state and controls. Finally, the degree of self-inhibition and strength of oscillation in this region is correlated with the level of consciousness. These findings indicate that the equilibrium between excitatory connectivity towards posterior cingulate cortex and its feedback projections is a key aspect of the relationship between alterations in consciousness after severe brain injury and the intrinsic functional architecture of the default mode network. This impairment might be principally due to the disruption of the mechanisms underlying self-inhibition and neuronal

  11. A Small Motor Cortex Lesion Abolished Ocular Dominance Plasticity in the Adult Mouse Primary Visual Cortex and Impaired Experience-Dependent Visual Improvements.

    PubMed

    Pielecka-Fortuna, Justyna; Kalogeraki, Evgenia; Greifzu, Franziska; Löwel, Siegrid

    2015-01-01

    It was previously shown that a small lesion in the primary somatosensory cortex (S1) prevented both cortical plasticity and sensory learning in the adult mouse visual system: While 3-month-old control mice continued to show ocular dominance (OD) plasticity in their primary visual cortex (V1) after monocular deprivation (MD), age-matched mice with a small photothrombotically induced (PT) stroke lesion in S1, positioned at least 1 mm anterior to the anterior border of V1, no longer expressed OD-plasticity. In addition, in the S1-lesioned mice, neither the experience-dependent increase of the spatial frequency threshold ("visual acuity") nor of the contrast threshold ("contrast sensitivity") of the optomotor reflex through the open eye was present. To assess whether these plasticity impairments can also occur if a lesion is placed more distant from V1, we tested the effect of a PT-lesion in the secondary motor cortex (M2). We observed that mice with a small M2-lesion restricted to the superficial cortical layers no longer expressed an OD-shift towards the open eye after 7 days of MD in V1 of the lesioned hemisphere. Consistent with previous findings about the consequences of an S1-lesion, OD-plasticity in V1 of the nonlesioned hemisphere of the M2-lesioned mice was still present. In addition, the experience-dependent improvements of both visual acuity and contrast sensitivity of the open eye were severely reduced. In contrast, sham-lesioned mice displayed both an OD-shift and improvements of visual capabilities of their open eye. To summarize, our data indicate that even a very small lesion restricted to the superficial cortical layers and more than 3mm anterior to the anterior border of V1 compromised V1-plasticity and impaired learning-induced visual improvements in adult mice. Thus both plasticity phenomena cannot only depend on modality-specific and local nerve cell networks but are clearly influenced by long-range interactions even from distant brain regions.

  12. A Small Motor Cortex Lesion Abolished Ocular Dominance Plasticity in the Adult Mouse Primary Visual Cortex and Impaired Experience-Dependent Visual Improvements.

    PubMed

    Pielecka-Fortuna, Justyna; Kalogeraki, Evgenia; Greifzu, Franziska; Löwel, Siegrid

    2015-01-01

    It was previously shown that a small lesion in the primary somatosensory cortex (S1) prevented both cortical plasticity and sensory learning in the adult mouse visual system: While 3-month-old control mice continued to show ocular dominance (OD) plasticity in their primary visual cortex (V1) after monocular deprivation (MD), age-matched mice with a small photothrombotically induced (PT) stroke lesion in S1, positioned at least 1 mm anterior to the anterior border of V1, no longer expressed OD-plasticity. In addition, in the S1-lesioned mice, neither the experience-dependent increase of the spatial frequency threshold ("visual acuity") nor of the contrast threshold ("contrast sensitivity") of the optomotor reflex through the open eye was present. To assess whether these plasticity impairments can also occur if a lesion is placed more distant from V1, we tested the effect of a PT-lesion in the secondary motor cortex (M2). We observed that mice with a small M2-lesion restricted to the superficial cortical layers no longer expressed an OD-shift towards the open eye after 7 days of MD in V1 of the lesioned hemisphere. Consistent with previous findings about the consequences of an S1-lesion, OD-plasticity in V1 of the nonlesioned hemisphere of the M2-lesioned mice was still present. In addition, the experience-dependent improvements of both visual acuity and contrast sensitivity of the open eye were severely reduced. In contrast, sham-lesioned mice displayed both an OD-shift and improvements of visual capabilities of their open eye. To summarize, our data indicate that even a very small lesion restricted to the superficial cortical layers and more than 3mm anterior to the anterior border of V1 compromised V1-plasticity and impaired learning-induced visual improvements in adult mice. Thus both plasticity phenomena cannot only depend on modality-specific and local nerve cell networks but are clearly influenced by long-range interactions even from distant brain regions

  13. Associative-memory representations emerge as shared spatial patterns of theta activity spanning the primate temporal cortex.

    PubMed

    Nakahara, Kiyoshi; Adachi, Ken; Kawasaki, Keisuke; Matsuo, Takeshi; Sawahata, Hirohito; Majima, Kei; Takeda, Masaki; Sugiyama, Sayaka; Nakata, Ryota; Iijima, Atsuhiko; Tanigawa, Hisashi; Suzuki, Takafumi; Kamitani, Yukiyasu; Hasegawa, Isao

    2016-01-01

    Highly localized neuronal spikes in primate temporal cortex can encode associative memory; however, whether memory formation involves area-wide reorganization of ensemble activity, which often accompanies rhythmicity, or just local microcircuit-level plasticity, remains elusive. Using high-density electrocorticography, we capture local-field potentials spanning the monkey temporal lobes, and show that the visual pair-association (PA) memory is encoded in spatial patterns of theta activity in areas TE, 36, and, partially, in the parahippocampal cortex, but not in the entorhinal cortex. The theta patterns elicited by learned paired associates are distinct between pairs, but similar within pairs. This pattern similarity, emerging through novel PA learning, allows a machine-learning decoder trained on theta patterns elicited by a particular visual item to correctly predict the identity of those elicited by its paired associate. Our results suggest that the formation and sharing of widespread cortical theta patterns via learning-induced reorganization are involved in the mechanisms of associative memory representation. PMID:27282247

  14. Associative-memory representations emerge as shared spatial patterns of theta activity spanning the primate temporal cortex

    PubMed Central

    Nakahara, Kiyoshi; Adachi, Ken; Kawasaki, Keisuke; Matsuo, Takeshi; Sawahata, Hirohito; Majima, Kei; Takeda, Masaki; Sugiyama, Sayaka; Nakata, Ryota; Iijima, Atsuhiko; Tanigawa, Hisashi; Suzuki, Takafumi; Kamitani, Yukiyasu; Hasegawa, Isao

    2016-01-01

    Highly localized neuronal spikes in primate temporal cortex can encode associative memory; however, whether memory formation involves area-wide reorganization of ensemble activity, which often accompanies rhythmicity, or just local microcircuit-level plasticity, remains elusive. Using high-density electrocorticography, we capture local-field potentials spanning the monkey temporal lobes, and show that the visual pair-association (PA) memory is encoded in spatial patterns of theta activity in areas TE, 36, and, partially, in the parahippocampal cortex, but not in the entorhinal cortex. The theta patterns elicited by learned paired associates are distinct between pairs, but similar within pairs. This pattern similarity, emerging through novel PA learning, allows a machine-learning decoder trained on theta patterns elicited by a particular visual item to correctly predict the identity of those elicited by its paired associate. Our results suggest that the formation and sharing of widespread cortical theta patterns via learning-induced reorganization are involved in the mechanisms of associative memory representation. PMID:27282247

  15. Eccentricity mapping of the human visual cortex to evaluate temporal dynamics of functional T1ρ mapping

    PubMed Central

    Heo, Hye-Young; Wemmie, John A; Johnson, Casey P; Thedens, Daniel R; Magnotta, Vincent A

    2015-01-01

    Recent experiments suggest that T1 relaxation in the rotating frame (T1ρ) is sensitive to metabolism and can detect localized activity-dependent changes in the human visual cortex. Current functional magnetic resonance imaging (fMRI) methods have poor temporal resolution due to delays in the hemodynamic response resulting from neurovascular coupling. Because T1ρ is sensitive to factors that can be derived from tissue metabolism, such as pH and glucose concentration via proton exchange, we hypothesized that activity-evoked T1ρ changes in visual cortex may occur before the hemodynamic response measured by blood oxygenation level-dependent (BOLD) and arterial spin labeling (ASL) contrast. To test this hypothesis, functional imaging was performed using T1ρ, BOLD, and ASL in human participants viewing an expanding ring stimulus. We calculated eccentricity phase maps across the occipital cortex for each functional signal and compared the temporal dynamics of T1ρ versus BOLD and ASL. The results suggest that T1ρ changes precede changes in the two blood flow-dependent measures. These observations indicate that T1ρ detects a signal distinct from traditional fMRI contrast methods. In addition, these findings support previous evidence that T1ρ is sensitive to factors other than blood flow, volume, or oxygenation. Furthermore, they suggest that tissue metabolism may be driving activity-evoked T1ρ changes. PMID:25966957

  16. Temporal Resolution of the Normal Ear in Listeners with Unilateral Hearing Impairment.

    PubMed

    Mishra, Srikanta K; Dey, Ratul; Davessar, Jai Lal

    2015-12-01

    Unilateral hearing loss (UHL) leads to an imbalanced input to the brain and results in cortical reorganization. In listeners with unilateral impairments, while the perceptual deficits associated with the impaired ear are well documented, less is known regarding the auditory processing in the unimpaired, clinically normal ear. It is commonly accepted that perceptual consequences are unlikely to occur in the normal ear for listeners with UHL. This study investigated whether the temporal resolution in the normal-hearing (NH) ear of listeners with long-standing UHL is similar to those in listeners with NH. Temporal resolution was assayed via measuring gap detection thresholds (GDTs) in within- and between-channel paradigms. GDTs were assessed in the normal ear of adults with long-standing, severe-to-profound UHL (N = 13) and age-matched, NH listeners (N = 22) at two presentation levels (30 and 55 dB sensation level). Analysis indicated that within-channel GDTs for listeners with UHL were not significantly different than those for the NH subject group, but the between-channel GDTs for listeners with UHL were poorer (by greater than a factor of 2) than those for the listeners with NH. The hearing thresholds in the normal or impaired ears were not associated with the elevated between-channel GDTs for listeners with UHL. Contrary to the common assumption that auditory processing capabilities are preserved for the normal ear in listeners with UHL, the current study demonstrated that a long-standing unilateral hearing impairment may adversely affect auditory perception--temporal resolution--in the clinically normal ear. From a translational perspective, these findings imply that the temporal processing deficits in the unimpaired ear of listeners with unilateral hearing impairments may contribute to their overall auditory perceptual difficulties.

  17. Temporally Regular Musical Primes Facilitate Subsequent Syntax Processing in Children with Specific Language Impairment.

    PubMed

    Bedoin, Nathalie; Brisseau, Lucie; Molinier, Pauline; Roch, Didier; Tillmann, Barbara

    2016-01-01

    Children with developmental language disorders have been shown to be also impaired in rhythm and meter perception. Temporal processing and its link to language processing can be understood within the dynamic attending theory. An external stimulus can stimulate internal oscillators, which orient attention over time and drive speech signal segmentation to provide benefits for syntax processing, which is impaired in various patient populations. For children with Specific Language Impairment (SLI) and dyslexia, previous research has shown the influence of an external rhythmic stimulation on subsequent language processing by comparing the influence of a temporally regular musical prime to that of a temporally irregular prime. Here we tested whether the observed rhythmic stimulation effect is indeed due to a benefit provided by the regular musical prime (rather than a cost subsequent to the temporally irregular prime). Sixteen children with SLI and 16 age-matched controls listened to either a regular musical prime sequence or an environmental sound scene (without temporal regularities in event occurrence; i.e., referred to as "baseline condition") followed by grammatically correct and incorrect sentences. They were required to perform grammaticality judgments for each auditorily presented sentence. Results revealed that performance for the grammaticality judgments was better after the regular prime sequences than after the baseline sequences. Our findings are interpreted in the theoretical framework of the dynamic attending theory (Jones, 1976) and the temporal sampling (oscillatory) framework for developmental language disorders (Goswami, 2011). Furthermore, they encourage the use of rhythmic structures (even in non-verbal materials) to boost linguistic structure processing and outline perspectives for rehabilitation. PMID:27378833

  18. Temporally Regular Musical Primes Facilitate Subsequent Syntax Processing in Children with Specific Language Impairment

    PubMed Central

    Bedoin, Nathalie; Brisseau, Lucie; Molinier, Pauline; Roch, Didier; Tillmann, Barbara

    2016-01-01

    Children with developmental language disorders have been shown to be also impaired in rhythm and meter perception. Temporal processing and its link to language processing can be understood within the dynamic attending theory. An external stimulus can stimulate internal oscillators, which orient attention over time and drive speech signal segmentation to provide benefits for syntax processing, which is impaired in various patient populations. For children with Specific Language Impairment (SLI) and dyslexia, previous research has shown the influence of an external rhythmic stimulation on subsequent language processing by comparing the influence of a temporally regular musical prime to that of a temporally irregular prime. Here we tested whether the observed rhythmic stimulation effect is indeed due to a benefit provided by the regular musical prime (rather than a cost subsequent to the temporally irregular prime). Sixteen children with SLI and 16 age-matched controls listened to either a regular musical prime sequence or an environmental sound scene (without temporal regularities in event occurrence; i.e., referred to as “baseline condition”) followed by grammatically correct and incorrect sentences. They were required to perform grammaticality judgments for each auditorily presented sentence. Results revealed that performance for the grammaticality judgments was better after the regular prime sequences than after the baseline sequences. Our findings are interpreted in the theoretical framework of the dynamic attending theory (Jones, 1976) and the temporal sampling (oscillatory) framework for developmental language disorders (Goswami, 2011). Furthermore, they encourage the use of rhythmic structures (even in non-verbal materials) to boost linguistic structure processing and outline perspectives for rehabilitation. PMID:27378833

  19. Inter-trial neuronal activity in inferior temporal cortex: a putative vehicle to generate long-term visual associations.

    PubMed

    Yakovlev, V; Fusi, S; Berman, E; Zohary, E

    1998-08-01

    When monkeys perform a delayed match-to-sample task, some neurons in the anterior inferotemporal cortex show sustained activity following the presentation of specific visual stimuli, typically only those that are shown repeatedly. When sample stimuli are shown in a fixed temporal order, the few images that evoke delay activity in a given neuron are often neighboring stimuli in the sequence, suggesting that this delay activity may be the neural correlate of associative long-term memory. Here we report that stimulus-selective sustained activity is also evident following the presentation of the test stimulus in the same task. We use a neural network model to demonstrate that persistent stimulus-selective activity across the intertrial interval can lead to similar mnemonic representations (distributions of delay activity across the neural population) for neighboring visual stimuli. Thus, inferotemporal cortex may contain neural machinery for generating long-term stimulus-stimulus associations.

  20. Inactivation of BRD7 results in impaired cognitive behavior and reduced synaptic plasticity of the medial prefrontal cortex.

    PubMed

    Xu, Yang; Cao, Wenyu; Zhou, Ming; Li, Changqi; Luo, Yanwei; Wang, Heran; Zhao, Ran; Jiang, Shihe; Yang, Jing; Liu, Yukun; Wang, Xinye; Li, Xiayu; Xiong, Wei; Ma, Jian; Peng, Shuping; Zeng, Zhaoyang; Li, Xiaoling; Tan, Ming; Li, Guiyuan

    2015-06-01

    BRD7 is a bromodomain-containing protein (BCP), and recent evidence implicates the role of BCPs in the initiation and development of neurodevelopmental disorders. However, few studies have investigated the biological functions of BRD7 in the central nervous system. In our study, BRD7 was found to be widely expressed in various regions of the mouse brain, including the medial prefrontal cortex (mPFC), caudate putamen (CPu), hippocampus (Hip), midbrain (Mb), cerebellum (Cb), and mainly co-localized with neuron but not with glia. Using a BRD7 knockout mouse model and a battery of behavioral tests, we report that disruption of BRD7 results in impaired cognitive behavior leaving the emotional behavior unaffected. Moreover, a series of proteins involved in synaptic plasticity were decreased in the medial prefrontal cortex and there was a concomitant decrease in neuronal spine density and dendritic branching in the medial prefrontal cortex. However, no significant difference was found in the hippocampus compared to the wild-type mice. Thus, BRD7 might play a critical role in the regulation of synaptic plasticity and affect cognitive behavior. PMID:25721744

  1. The temporal structure of resting-state brain activity in the medial prefrontal cortex predicts self-consciousness.

    PubMed

    Huang, Zirui; Obara, Natsuho; Davis, Henry Hap; Pokorny, Johanna; Northoff, Georg

    2016-02-01

    Recent studies have demonstrated an overlap between the neural substrate of resting-state activity and self-related processing in the cortical midline structures (CMS). However, the neural and psychological mechanisms mediating this so-called "rest-self overlap" remain unclear. To investigate the neural mechanisms, we estimated the temporal structure of spontaneous/resting-state activity, e.g. its long-range temporal correlations or self-affinity across time as indexed by the power-law exponent (PLE). The PLE was obtained in resting-state activity in the medial prefrontal cortex (MPFC) and the posterior cingulate cortex (PCC) in 47 healthy subjects by functional magnetic resonance imaging (fMRI). We performed correlation analyses of the PLE and Revised Self-Consciousness Scale (SCSR) scores, which enabled us to access different dimensions of self-consciousness and specified rest-self overlap in a psychological regard. The PLE in the MPFC's resting-state activity correlated with private self-consciousness scores from the SCSR. Conversely, we found no correlation between the PLE and the other subscales of the SCSR (public, social) or between other resting-state measures, including functional connectivity, and the SCSR subscales. This is the first evidence for the association between the scale-free dynamics of resting-state activity in the CMS and the private dimension of self-consciousness. This finding implies the relationship of especially the private dimension of self with the temporal structure of resting-state activity.

  2. Immobility behavior during the forced swim test correlates with BNDF levels in the frontal cortex, but not with cognitive impairments.

    PubMed

    Borsoi, Milene; Antonio, Camila Boque; Viana, Alice Fialho; Nardin, Patrícia; Gonçalves, Carlos-Alberto; Rates, Stela Maris Kuze

    2015-03-01

    The forced swim test (FST) is widely used to evaluate the antidepressant-like activity of compounds and is sensitive to stimuli that cause depression-like behaviors in rodents. The immobility behavior observed during the test has been considered to represent behavioral despair. In addition, some studies suggest that the FST impairs rats' performance on cognitive tests, but these findings have rarely been explored. Thus, we investigated the effects of the FST on behavioral tests related to neuropsychiatric diseases that involve different cognitive components: novel object recognition (NOR), the object location test (OLT) and prepulse inhibition (PPI). Brain-derived neurotrophic factor (BDNF) levels in the frontal cortex and hippocampus were evaluated. The rats were forced to swim twice (15-min session followed by a 5-min session 24h later) and underwent cognitive tests 24h after the last swimming exposure. The FST impaired the rats' performance on the OLT and reduced the PPI and acoustic startle responses, whereas the NOR was not affected. The cognitive impairments were not correlated with an immobility behavior profile, but a significant negative correlation between the frontal BDNF levels and immobility behavior was identified. These findings suggest a protective role of BDNF against behavioral despair and demonstrate a deleterious effect of the FST on spatial memory and pre-attentive processes, which point to the FST as a tool to induce cognitive impairments analogous to those observed in depression and in other neuropsychiatric disorders. PMID:25496978

  3. Immobility behavior during the forced swim test correlates with BNDF levels in the frontal cortex, but not with cognitive impairments.

    PubMed

    Borsoi, Milene; Antonio, Camila Boque; Viana, Alice Fialho; Nardin, Patrícia; Gonçalves, Carlos-Alberto; Rates, Stela Maris Kuze

    2015-03-01

    The forced swim test (FST) is widely used to evaluate the antidepressant-like activity of compounds and is sensitive to stimuli that cause depression-like behaviors in rodents. The immobility behavior observed during the test has been considered to represent behavioral despair. In addition, some studies suggest that the FST impairs rats' performance on cognitive tests, but these findings have rarely been explored. Thus, we investigated the effects of the FST on behavioral tests related to neuropsychiatric diseases that involve different cognitive components: novel object recognition (NOR), the object location test (OLT) and prepulse inhibition (PPI). Brain-derived neurotrophic factor (BDNF) levels in the frontal cortex and hippocampus were evaluated. The rats were forced to swim twice (15-min session followed by a 5-min session 24h later) and underwent cognitive tests 24h after the last swimming exposure. The FST impaired the rats' performance on the OLT and reduced the PPI and acoustic startle responses, whereas the NOR was not affected. The cognitive impairments were not correlated with an immobility behavior profile, but a significant negative correlation between the frontal BDNF levels and immobility behavior was identified. These findings suggest a protective role of BDNF against behavioral despair and demonstrate a deleterious effect of the FST on spatial memory and pre-attentive processes, which point to the FST as a tool to induce cognitive impairments analogous to those observed in depression and in other neuropsychiatric disorders.

  4. Temporal Processing Deficits of Language-Learning Impaired Children Ameliorated by Training

    NASA Astrophysics Data System (ADS)

    Merzenich, Michael M.; Jenkins, William M.; Johnston, Paul; Schreiner, Christoph; Miller, Steven L.; Tallal, Paula

    1996-01-01

    Children with language-based learning impairments (LLIs) have major deficits in their recognition of some rapidly successive phonetic elements and nonspeech sound stimuli. In the current study, LLI children were engaged in adaptive training exercises mounted as computer "games" designed to drive improvements in their "temporal processing" skills. With 8 to 16 hours of training during a 20-day period, LLI children improved markedly in their abilities to recognize brief and fast sequences of nonspeech and speech stimuli.

  5. Contralateral Disconnection of the Rat Prelimbic Cortex and Dorsomedial Striatum Impairs Cue-Guided Behavioral Switching

    ERIC Educational Resources Information Center

    Baker, Phillip M.; Ragozzino, Michael E.

    2014-01-01

    Switches in reward outcomes or reward-predictive cues are two fundamental ways in which information is used to flexibly shift response patterns. The rat prelimbic cortex and dorsomedial striatum support behavioral flexibility based on a change in outcomes. The present experiments investigated whether these two brain regions are necessary for…

  6. Disruption of the Perineuronal Net in the Hippocampus or Medial Prefrontal Cortex Impairs Fear Conditioning

    ERIC Educational Resources Information Center

    Hylin, Michael J.; Orsi, Sara A.; Moore, Anthony N.; Dash, Pramod K.

    2013-01-01

    The perineuronal net (PNN) surrounds neurons in the central nervous system and is thought to regulate developmental plasticity. A few studies have shown an involvement of the PNN in hippocampal plasticity and memory storage in adult animals. In addition to the hippocampus, plasticity in the medial prefrontal cortex (mPFC) has been demonstrated to…

  7. Abnormal functioning of the left temporal lobe in language-impaired children.

    PubMed

    Helenius, Päivi; Sivonen, Päivi; Parviainen, Tiina; Isoaho, Pia; Hannus, Sinikka; Kauppila, Timo; Salmelin, Riitta; Isotalo, Leena

    2014-03-01

    Specific language impairment is associated with enduring problems in language-related functions. We followed the spatiotemporal course of cortical activation in SLI using magnetoencephalography. In the experiment, children with normal and impaired language development heard spoken real words and pseudowords presented only once or two times in a row. In typically developing children, the activation in the bilateral superior temporal cortices was attenuated to the second presentation of the same word. In SLI children, this repetition effect was nearly nonexistent in the left hemisphere. Furthermore, the activation was equally strong to words and pseudowords in SLI children whereas in the typically developing children the left hemisphere activation persisted longer for pseudowords than words. Our results indicate that the short-term maintenance of linguistic activation that underlies spoken word recognition is defective in SLI particularly in the left language-dominant hemisphere. The unusually rapid decay of speech-evoked activation can contribute to impaired vocabulary growth.

  8. Abnormal functioning of the left temporal lobe in language-impaired children.

    PubMed

    Helenius, Päivi; Sivonen, Päivi; Parviainen, Tiina; Isoaho, Pia; Hannus, Sinikka; Kauppila, Timo; Salmelin, Riitta; Isotalo, Leena

    2014-03-01

    Specific language impairment is associated with enduring problems in language-related functions. We followed the spatiotemporal course of cortical activation in SLI using magnetoencephalography. In the experiment, children with normal and impaired language development heard spoken real words and pseudowords presented only once or two times in a row. In typically developing children, the activation in the bilateral superior temporal cortices was attenuated to the second presentation of the same word. In SLI children, this repetition effect was nearly nonexistent in the left hemisphere. Furthermore, the activation was equally strong to words and pseudowords in SLI children whereas in the typically developing children the left hemisphere activation persisted longer for pseudowords than words. Our results indicate that the short-term maintenance of linguistic activation that underlies spoken word recognition is defective in SLI particularly in the left language-dominant hemisphere. The unusually rapid decay of speech-evoked activation can contribute to impaired vocabulary growth. PMID:24568877

  9. Temporal processing impairment in children with attention-deficit-hyperactivity disorder.

    PubMed

    Huang, Jia; Yang, Bin-rang; Zou, Xiao-bing; Jing, Jin; Pen, Gang; McAlonan, Gráinne M; Chan, Raymond C K

    2012-01-01

    The current study aimed to investigate temporal processing in Chinese children with Attention-Deficit-Hyperactivity Disorder(ADHD) using time production, time reproduction paradigm and duration discrimination tasks. A battery of tests specifically designed to measure temporal processing was administered to 94 children with ADHD and 100 demographically matched healthy children. A multivariate analysis of variance (MANOVA) and a repeated measure MANOVA indicated that children with ADHD were impaired in time processing functions. The results of pairwise comparisons showed that the probands with a family history of ADHD performed significantly worse than those without family history in the time production tasks and the time reproduction task. Logistic regression analysis showed duration discrimination had a significant role in predicting whether the children were suffering from ADHD or not, while temporal processing had a significant role in predicting whether the ADHD children had a family history or not. This study provides further support for the existence of a generic temporal processing impairment in ADHD children and suggests that abnormalities in time processing and ADHD share some common genetic factors. PMID:22119703

  10. Neural Androgen Receptor Deletion Impairs the Temporal Processing of Objects and Hippocampal CA1-Dependent Mechanisms.

    PubMed

    Picot, Marie; Billard, Jean-Marie; Dombret, Carlos; Albac, Christelle; Karameh, Nida; Daumas, Stéphanie; Hardin-Pouzet, Hélène; Mhaouty-Kodja, Sakina

    2016-01-01

    We studied the role of testosterone, mediated by the androgen receptor (AR), in modulating temporal order memory for visual objects. For this purpose, we used male mice lacking AR specifically in the nervous system. Control and mutant males were gonadectomized at adulthood and supplemented with equivalent amounts of testosterone in order to normalize their hormonal levels. We found that neural AR deletion selectively impaired the processing of temporal information for visual objects, without affecting classical object recognition or anxiety-like behavior and circulating corticosterone levels, which remained similar to those in control males. Thus, mutant males were unable to discriminate between the most recently seen object and previously seen objects, whereas their control littermates showed more interest in exploring previously seen objects. Because the hippocampal CA1 area has been associated with temporal memory for visual objects, we investigated whether neural AR deletion altered the functionality of this region. Electrophysiological analysis showed that neural AR deletion affected basal glutamate synaptic transmission and decreased the magnitude of N-methyl-D-aspartate receptor (NMDAR) activation and high-frequency stimulation-induced long-term potentiation. The impairment of NMDAR function was not due to changes in protein levels of receptor. These results provide the first evidence for the modulation of temporal processing of information for visual objects by androgens, via AR activation, possibly through regulation of NMDAR signaling in the CA1 area in male mice.

  11. Gene expression in the rat brain: High similarity but unique differences between frontomedial-, temporal- and occipital cortex

    PubMed Central

    2011-01-01

    Background The six-layered neocortex of the mammalian brain may appear largely homologous, but is in reality a modular structure of anatomically and functionally distinct areas. However, global gene expression seems to be almost identical across the cerebral cortex and only a few genes have so far been reported to show regional enrichment in specific cortical areas. Results In the present study on adult rat brain, we have corroborated the strikingly similar gene expression among cortical areas. However, differential expression analysis has allowed for the identification of 30, 24 and 11 genes enriched in frontomedial -, temporal- or occipital cortex, respectively. A large proportion of these 65 genes appear to be involved in signal transduction, including the ion channel Fxyd6, the neuropeptide Grp and the nuclear receptor Rorb. We also find that the majority of these genes display increased expression levels around birth and show distinct preferences for certain cortical layers and cell types in rodents. Conclusions Since specific patterns of expression often are linked to equally specialised biological functions, we propose that these cortex sub-region enriched genes are important for proper functioning of the cortical regions in question. PMID:21269499

  12. Perirhinal cortex lesions that impair object recognition memory spare landmark discriminations.

    PubMed

    Nelson, Andrew J D; Olarte-Sánchez, Cristian M; Amin, Eman; Aggleton, John P

    2016-10-15

    Rats with lesions in the perirhinal cortex and their control group learnt to discriminate between mirror-imaged visual landmarks to find a submerged platform in a watermaze. Rats initially learnt this discrimination passively, in that they were repeatedly placed on the platform in one corner of a square watermaze with walls of different appearance, prior to swimming to that same location for the first time in a subsequent probe trial. Perirhinal cortex lesions spared this passively learnt ability, despite the common visual elements shared by the guiding landmarks. These results challenge models of perirhinal function that emphasise its role in solving discriminations between stimuli with ambiguous or overlapping features, while underlining how this cortical region is often not required for spatial processes that involve the hippocampus.

  13. The Role of the Right Posterior Parietal Cortex in Temporal Order Judgment

    ERIC Educational Resources Information Center

    Woo, Sung-Ho; Kim, Ki-Hyun; Lee, Kyoung-Min

    2009-01-01

    Perceived order of two consecutive stimuli may not correspond to the order of their physical onsets. Such a disagreement presumably results from a difference in the speed of stimulus processing toward central decision mechanisms. Since previous evidence suggests that the right posterior parietal cortex (PPC) plays a role in modulating the…

  14. Transient inactivation of the medial prefrontal cortex impairs performance on a working memory-dependent conditional discrimination task.

    PubMed

    Urban, Kimberly R; Layfield, Dylan M; Griffin, Amy L

    2014-12-01

    The rodent medial prefrontal cortex (mPFC) has been implicated in working memory function; lesions and inactivation of this region have been shown to result in impairments in spatial working memory (WM) tasks. Our laboratory has developed a tactile-visual conditional discrimination (CD) task, which uses floor insert cues to signal the correct goal-arm choice in a T maze. This task can be manipulated by altering the floor insert cues to be present throughout the trial (CDSTANDARD) or to be present only at the beginning of the trial (CDWM), thus making the task either WM-independent or WM-dependent, respectively. This ability to manipulate the working memory demand of the task while holding all other task features constant allows us to rule out the possibility that confounding performance variables contribute to the observed impairment. A previous study from our lab showed that mPFC inactivation did not impair performance on CDSTANDARD, confirming that mPFC inactivation does not induce sensorimotor or motivational deficits that could impact task performance. To examine whether mPFC inactivation impairs CDWM, the current study transiently inactivated the mPFC with bilateral microinfusions of muscimol immediately prior to testing on the CDWM task. As predicted, CDWM task performance was significantly impaired during the muscimol-infusion session compared with the control saline-infusion sessions. Together with our previous demonstration that the mPFC in not required for CDSTANDARD, these results not only confirm that the mPFC is crucial for working memory, but also set the stage for using the task-comparison approach to investigate corticolimbic interactions during working memory. PMID:25314661

  15. Chronic restraint stress promotes learning and memory impairment due to enhanced neuronal endoplasmic reticulum stress in the frontal cortex and hippocampus in male mice.

    PubMed

    Huang, Rong-Rong; Hu, Wen; Yin, Yan-Yan; Wang, Yu-Chan; Li, Wei-Ping; Li, Wei-Zu

    2015-02-01

    Chronic stress has been implicated in many types of neurodegenerative diseases, such as Alzheimer's disease (AD). In our previous study, we demonstrated that chronic restraint stress (CRS) induced reactive oxygen species (ROS) overproduction and oxidative damage in the frontal cortex and hippocampus in mice. In the present study, we investigated the effects of CRS (over a period of 8 weeks) on learning and memory impairment and endoplasmic reticulum (ER) stress in the frontal cortex and hippocampus in male mice. The Morris water maze was used to investigate the effects of CRS on learning and memory impairment. Immunohistochemistry and immunoblot analysis were also used to determine the expression levels of protein kinase C α (PKCα), 78 kDa glucose-regulated protein (GRP78), C/EBP-homologous protein (CHOP) and mesencephalic astrocyte-derived neurotrophic factor (MANF). The results revealed that CRS significantly accelerated learning and memory impairment, and induced neuronal damage in the frontal cortex and hippocampus CA1 region. Moreover, CRS significantly increased the expression of PKCα, CHOP and MANF, and decreased that of GRP78 in the frontal cortex and hippocampus. Our data suggest that exposure to CRS (for 8 weeks) significantly accelerates learning and memory impairment, and the mechanisms involved may be related to ER stress in the frontal cortex and hippocampus.

  16. Impaired acquisition of new words after left temporal lobectomy despite normal fast-mapping behavior.

    PubMed

    Warren, David E; Tranel, Daniel; Duff, Melissa C

    2016-01-01

    Word learning has been proposed to rely on unique brain regions including the temporal lobes, and the left temporal lobe appears to be especially important. In order to investigate the role of the left temporal lobe in word learning under different conditions, we tested whether patients with left temporal lobectomies (N=6) could learn novel words using two distinct formats. Previous research has shown that word learning in contrastive fast mapping conditions may rely on different neural substrates than explicit encoding conditions (Sharon et al., 2011). In the current investigation, we used a previously reported word learning task that implemented two distinct study formats (Warren and Duff, 2014): a contrastive fast mapping condition in which a picture of a novel item was displayed beside a picture of a familiar item while the novel item's name was presented aurally ("Click on the numbat."); and an explicit encoding (i.e., control) condition in which a picture of a novel item was displayed while its name was presented aurally ("This is a numbat."). After a delay, learning of the novel words was evaluated with memory tests including three-alternative forced-choice recognition, free recall, cued recall, and familiarity ratings. During the fast-mapping study condition both the left temporal lobectomy and healthy comparison groups performed well, but at test only the comparison group showed evidence of novel word learning. Our findings indicate that unilateral resection of the left temporal lobe including the hippocampus and temporal pole can severely impair word learning, and that fast-mapping study conditions do not promote subsequent word learning in temporal lobectomy populations.

  17. Impaired acquisition of new words after left temporal lobectomy despite normal fast-mapping behavior.

    PubMed

    Warren, David E; Tranel, Daniel; Duff, Melissa C

    2016-01-01

    Word learning has been proposed to rely on unique brain regions including the temporal lobes, and the left temporal lobe appears to be especially important. In order to investigate the role of the left temporal lobe in word learning under different conditions, we tested whether patients with left temporal lobectomies (N=6) could learn novel words using two distinct formats. Previous research has shown that word learning in contrastive fast mapping conditions may rely on different neural substrates than explicit encoding conditions (Sharon et al., 2011). In the current investigation, we used a previously reported word learning task that implemented two distinct study formats (Warren and Duff, 2014): a contrastive fast mapping condition in which a picture of a novel item was displayed beside a picture of a familiar item while the novel item's name was presented aurally ("Click on the numbat."); and an explicit encoding (i.e., control) condition in which a picture of a novel item was displayed while its name was presented aurally ("This is a numbat."). After a delay, learning of the novel words was evaluated with memory tests including three-alternative forced-choice recognition, free recall, cued recall, and familiarity ratings. During the fast-mapping study condition both the left temporal lobectomy and healthy comparison groups performed well, but at test only the comparison group showed evidence of novel word learning. Our findings indicate that unilateral resection of the left temporal lobe including the hippocampus and temporal pole can severely impair word learning, and that fast-mapping study conditions do not promote subsequent word learning in temporal lobectomy populations. PMID:26617264

  18. Distinct medial temporal contributions to different forms of recognition in amnestic mild cognitive impairment and Alzheimer's disease.

    PubMed

    Westerberg, Carmen; Mayes, Andrew; Florczak, Susan M; Chen, Yufen; Creery, Jessica; Parrish, Todd; Weintraub, Sandra; Mesulam, M-Marsel; Reber, Paul J; Paller, Ken A

    2013-10-01

    The simplest expression of episodic memory is the experience of familiarity, the isolated recognition that something has been encountered previously. Brain structures of the medial temporal lobe (MTL) make essential contributions to episodic memory, but the distinct contributions from each MTL structure to familiarity are debatable. Here we used specialized tests to assess recognition impairments and their relationship to MTL integrity in people with amnestic mild cognitive impairment (aMCI, n=19), people with probable Alzheimer's disease (AD; n=10), and age-matched individuals without any neurological disorder (n=20). Recognition of previously presented silhouette objects was tested in two formats-forced-choice recognition with four concurrent choices (one target and three foils) and yes/no recognition with individually presented targets and foils. Every foil was extremely similar to a corresponding target, such that forced-choice recognition could be based on differential familiarity among the choices, whereas yes/no recognition necessitated additional memory and decision factors. Only yes/no recognition was impaired in the aMCI group, whereas both forced-choice and yes/no recognition were impaired in the AD group. Magnetic resonance imaging showed differential brain atrophy, as MTL volume was reduced in the AD group but not in the aMCI group. Pulsed arterial spin-labeled scans demonstrated that MTL blood flow was abnormally increased in aMCI, which could indicate physiological dysfunction prior to the emergence of significant atrophy. Regression analyses with data from all patients revealed that regional patterns of MTL integrity were differentially related to forced-choice and yes/no recognition. Smaller perirhinal cortex volume was associated with lower forced-choice recognition accuracy, but not with lower yes/no recognition accuracy. Instead, smaller hippocampal volumes were associated with lower yes/no recognition accuracy. In sum, familiarity memory can be

  19. Differences between Spectro-Temporal Receptive Fields Derived from Artificial and Natural Stimuli in the Auditory Cortex

    PubMed Central

    Laudanski, Jonathan; Edeline, Jean-Marc; Huetz, Chloé

    2012-01-01

    Spectro-temporal properties of auditory cortex neurons have been extensively studied with artificial sounds but it is still unclear whether they help in understanding neuronal responses to communication sounds. Here, we directly compared spectro-temporal receptive fields (STRFs) obtained from the same neurons using both artificial stimuli (dynamic moving ripples, DMRs) and natural stimuli (conspecific vocalizations) that were matched in terms of spectral content, average power and modulation spectrum. On a population of auditory cortex neurons exhibiting reliable tuning curves when tested with pure tones, significant STRFs were obtained for 62% of the cells with vocalizations and 68% with DMR. However, for many cells with significant vocalization-derived STRFs (STRFvoc) and DMR-derived STRFs (STRFdmr), the BF, latency, bandwidth and global STRFs shape differed more than what would be predicted by spiking responses simulated by a linear model based on a non-homogenous Poisson process. Moreover STRFvoc predicted neural responses to vocalizations more accurately than STRFdmr predicted neural response to DMRs, despite similar spike-timing reliability for both sets of stimuli. Cortical bursts, which potentially introduce nonlinearities in evoked responses, did not explain the differences between STRFvoc and STRFdmr. Altogether, these results suggest that the nonlinearity of auditory cortical responses makes it difficult to predict responses to communication sounds from STRFs computed from artificial stimuli. PMID:23209771

  20. Effects of Swimming Exercise on Limbic and Motor Cortex Neurogenesis in the Kainate-Lesion Model of Temporal Lobe Epilepsy.

    PubMed

    Gorantla, Vasavi R; Sirigiri, Amulya; Volkova, Yulia A; Millis, Richard M

    2016-01-01

    Temporal lobe epilepsy (TLE) is a common neurological disease and antiseizure medication is often inadequate for preventing apoptotic cell death. Aerobic swimming exercise (EX) augments neurogenesis in rats when initiated immediately in the postictal period. This study tests the hypothesis that aerobic exercise also augments neurogenesis over the long term. Male Wistar rats (age of 4 months) were subjected to chemical lesioning using KA and to an EX intervention consisting of a 30 d period of daily swimming for 15 min, in one experiment immediately after KA lesioning (immediate exposure) and in a second experiment after a 60 d period of normal activity (delayed exposure). Morphometric counting of neuron numbers (NN) and dendritic branch points and intersections (DDBPI) was performed in the CA1, CA3, and dentate regions of hippocampus, in basolateral nucleus of amygdala, and in several areas of motor cortex. EX increased NN and DDBPI in the normal control and the KA-lesioned rats in all four limbic and motor cortex areas studied, after both immediate and 60 d delayed exposures to exercise. These findings suggest that, after temporal lobe epileptic seizures in rats, swimming exercise may improve neural plasticity in areas of the brain involved with emotional regulation and motor coordination, even if the exercise treatment is delayed. PMID:27313873

  1. Effects of Swimming Exercise on Limbic and Motor Cortex Neurogenesis in the Kainate-Lesion Model of Temporal Lobe Epilepsy

    PubMed Central

    Gorantla, Vasavi R.; Sirigiri, Amulya; Volkova, Yulia A.; Millis, Richard M.

    2016-01-01

    Temporal lobe epilepsy (TLE) is a common neurological disease and antiseizure medication is often inadequate for preventing apoptotic cell death. Aerobic swimming exercise (EX) augments neurogenesis in rats when initiated immediately in the postictal period. This study tests the hypothesis that aerobic exercise also augments neurogenesis over the long term. Male Wistar rats (age of 4 months) were subjected to chemical lesioning using KA and to an EX intervention consisting of a 30 d period of daily swimming for 15 min, in one experiment immediately after KA lesioning (immediate exposure) and in a second experiment after a 60 d period of normal activity (delayed exposure). Morphometric counting of neuron numbers (NN) and dendritic branch points and intersections (DDBPI) was performed in the CA1, CA3, and dentate regions of hippocampus, in basolateral nucleus of amygdala, and in several areas of motor cortex. EX increased NN and DDBPI in the normal control and the KA-lesioned rats in all four limbic and motor cortex areas studied, after both immediate and 60 d delayed exposures to exercise. These findings suggest that, after temporal lobe epileptic seizures in rats, swimming exercise may improve neural plasticity in areas of the brain involved with emotional regulation and motor coordination, even if the exercise treatment is delayed. PMID:27313873

  2. Impaired extraction of speech rhythm from temporal modulation patterns in speech in developmental dyslexia

    PubMed Central

    Leong, Victoria; Goswami, Usha

    2014-01-01

    Dyslexia is associated with impaired neural representation of the sound structure of words (phonology). The “phonological deficit” in dyslexia may arise in part from impaired speech rhythm perception, thought to depend on neural oscillatory phase-locking to slow amplitude modulation (AM) patterns in the speech envelope. Speech contains AM patterns at multiple temporal rates, and these different AM rates are associated with phonological units of different grain sizes, e.g., related to stress, syllables or phonemes. Here, we assess the ability of adults with dyslexia to use speech AMs to identify rhythm patterns (RPs). We study 3 important temporal rates: “Stress” (~2 Hz), “Syllable” (~4 Hz) and “Sub-beat” (reduced syllables, ~14 Hz). 21 dyslexics and 21 controls listened to nursery rhyme sentences that had been tone-vocoded using either single AM rates from the speech envelope (Stress only, Syllable only, Sub-beat only) or pairs of AM rates (Stress + Syllable, Syllable + Sub-beat). They were asked to use the acoustic rhythm of the stimulus to identity the original nursery rhyme sentence. The data showed that dyslexics were significantly poorer at detecting rhythm compared to controls when they had to utilize multi-rate temporal information from pairs of AMs (Stress + Syllable or Syllable + Sub-beat). These data suggest that dyslexia is associated with a reduced ability to utilize AMs <20 Hz for rhythm recognition. This perceptual deficit in utilizing AM patterns in speech could be underpinned by less efficient neuronal phase alignment and cross-frequency neuronal oscillatory synchronization in dyslexia. Dyslexics' perceptual difficulties in capturing the full spectro-temporal complexity of speech over multiple timescales could contribute to the development of impaired phonological representations for words, the cognitive hallmark of dyslexia across languages. PMID:24605099

  3. Brain Damage and Motor Cortex Impairment in Chronic Obstructive Pulmonary Disease: Implication of Nonrapid Eye Movement Sleep Desaturation

    PubMed Central

    Alexandre, Francois; Heraud, Nelly; Sanchez, Anthony M.J.; Tremey, Emilie; Oliver, Nicolas; Guerin, Philippe; Varray, Alain

    2016-01-01

    Study Objectives: Nonrapid eye movement (NREM) sleep desaturation may cause neuronal damage due to the withdrawal of cerebrovascular reactivity. The current study (1) assessed the prevalence of NREM sleep desaturation in nonhypoxemic patients with chronic obstructive pulmonary disease (COPD) and (2) compared a biological marker of cerebral lesion and neuromuscular function in patients with and without NREM sleep desaturation. Methods: One hundred fifteen patients with COPD (Global Initiative for Chronic Obstructive Lung Disease [GOLD] grades 2 and 3), resting PaO2 of 60–80 mmHg, aged between 40 and 80 y, and without sleep apnea (apnea-hypopnea index < 15) had polysomnographic sleep recordings. In addition, twenty-nine patients (substudy) were assessed i) for brain impairment by serum S100B (biological marker of cerebral lesion), and ii) for neuromuscular function via motor cortex activation and excitability and maximal voluntary quadriceps strength measurement. Results: A total of 51.3% patients (n = 59) had NREM sleep desaturation (NREMDes). Serum S100B was higher in the NREMDes patients of the substudy (n = 14): 45.1 [Q1: 37.7, Q3: 62.8] versus 32.9 [Q1: 25.7, Q3: 39.5] pg.ml−1 (P = 0.028). Motor cortex activation and excitability were lower in NREMDes patients (both P = 0.03), but muscle strength was comparable between groups (P = 0.58). Conclusions: Over half the nonhypoxemic COPD patients exhibited NREM sleep desaturation associated with higher values of the cerebral lesion biomarker and lower neural drive reaching the quadriceps during maximal voluntary contraction. The lack of muscle strength differences between groups suggests a compensatory mechanism(s). Altogether, the results are consistent with an involvement of NREM sleep desaturation in COPD brain impairment. Clinical Trial Registration: The study was registered at www.clinicaltrials.gov as NCT01679782. Citation: Alexandre F, Heraud N, Sanchez AM, Tremey E, Oliver N, Guerin P, Varray A. Brain

  4. Intracranial spectral amplitude dynamics of perceptual suppression in fronto-insular, occipito-temporal, and primary visual cortex

    PubMed Central

    Vidal, Juan R.; Perrone-Bertolotti, Marcela; Kahane, Philippe; Lachaux, Jean-Philippe

    2015-01-01

    If conscious perception requires global information integration across active distant brain networks, how does the loss of conscious perception affect neural processing in these distant networks? Pioneering studies on perceptual suppression (PS) described specific local neural network responses in primary visual cortex, thalamus and lateral prefrontal cortex of the macaque brain. Yet the neural effects of PS have rarely been studied with intracerebral recordings outside these cortices and simultaneously across distant brain areas. Here, we combined (1) a novel experimental paradigm in which we produced a similar perceptual disappearance and also re-appearance by using visual adaptation with transient contrast changes, with (2) electrophysiological observations from human intracranial electrodes sampling wide brain areas. We focused on broadband high-frequency (50–150 Hz, i.e., gamma) and low-frequency (8–24 Hz) neural activity amplitude modulations related to target visibility and invisibility. We report that low-frequency amplitude modulations reflected stimulus visibility in a larger ensemble of recording sites as compared to broadband gamma responses, across distinct brain regions including occipital, temporal and frontal cortices. Moreover, the dynamics of the broadband gamma response distinguished stimulus visibility from stimulus invisibility earlier in anterior insula and inferior frontal gyrus than in temporal regions, suggesting a possible role of fronto-insular cortices in top–down processing for conscious perception. Finally, we report that in primary visual cortex only low-frequency amplitude modulations correlated directly with perceptual status. Interestingly, in this sensory area broadband gamma was not modulated during PS but became positively modulated after 300 ms when stimuli were rendered visible again, suggesting that local networks could be ignited by top–down influences during conscious perception. PMID:25642199

  5. Motion and Actions in Language: Semantic Representations in Occipito-Temporal Cortex

    ERIC Educational Resources Information Center

    Humphreys, Gina F.; Newling, Katherine; Jennings, Caroline; Gennari, Silvia P.

    2013-01-01

    Understanding verbs typically activates posterior temporal regions and, in some circumstances, motion perception area V5. However, the nature and role of this activation remains unclear: does language alone indeed activate V5? And are posterior temporal representations modality-specific motion representations, or supra-modal motion-independent…

  6. Cognitive Impairment in Temporal Lobe Epilepsy: Role of Online and Offline Processing of Single Cell Information

    PubMed Central

    Titiz, A. S.; Mahoney, J. M.; Testorf, M. E.; Holmes, G. L.; Scott, R. C.

    2014-01-01

    Cognitive impairment is a common comorbidity in temporal lobe epilepsy (TLE) and is often considered more detrimental to quality of life than seizures. While it has been previously shown that the encoding of memory during behavior is impaired in the pilocarpine model of TLE in rats, how this information is consolidated during the subsequent sleep period remains unknown. In this study, we first report marked deficits in spatial memory performance and severe cell loss in the CA1 layer of the hippocampus lower spatial coherence of firing in TLE rats. We then present the first evidence that the reactivation of behavior-driven patterns of activity of CA1 place cells in the hippocampus is intact in TLE rats. Using a template-matching method, we discovered that real-time (3–5 s) reactivation structure was intact in TLE rats. Furthermore, we estimated the entropy rate of short time scale (~250 ms) bursting activity using block entropies and found that significant, extended temporal correlations exist in both TLE and Control rats. Fitting a first order Markov Chain model to these bursting time series, we found that long sequences derived from behavior were significantly enriched in the Markov model over corresponding models fit on randomized data confirming the presence of replay in shorter time scales. We propose that the persistent consolidation of poor spatial information in both real-time and during bursting activity may contribute to memory impairments in TLE rats. PMID:24799359

  7. Impaired recognition of musical emotions and facial expressions following anteromedial temporal lobe excision.

    PubMed

    Gosselin, Nathalie; Peretz, Isabelle; Hasboun, Dominique; Baulac, Michel; Samson, Séverine

    2011-10-01

    We have shown that an anteromedial temporal lobe resection can impair the recognition of scary music in a prior study (Gosselin et al., 2005). In other studies (Adolphs et al., 2001; Anderson et al., 2000), similar results have been obtained with fearful facial expressions. These findings suggest that scary music and fearful faces may be processed by common cerebral structures. To assess this possibility, we tested patients with unilateral anteromedial temporal excision and normal controls in two emotional tasks. In the task of identifying musical emotion, stimuli evoked either fear, peacefulness, happiness or sadness. Participants were asked to rate to what extent each stimulus expressed these four emotions on 10-point scales. The task of facial emotion included morphed stimuli whose expression varied from faint to more pronounced and evoked fear, happiness, sadness, surprise, anger or disgust. Participants were requested to select the appropriate label. Most patients were found to be impaired in the recognition of both scary music and fearful faces. Furthermore, the results in both tasks were correlated, suggesting a multimodal representation of fear within the amygdala. However, inspection of individual results showed that recognition of fearful faces can be preserved whereas recognition of scary music can be impaired. Such a dissociation found in two cases suggests that fear recognition in faces and in music does not necessarily involve exactly the same cerebral networks and this hypothesis is discussed in light of the current literature.

  8. Temporal sequence of visuo-auditory interaction in multiple areas of the guinea pig visual cortex.

    PubMed

    Nishimura, Masataka; Song, Wen-Jie

    2012-01-01

    Recent studies in humans and monkeys have reported that acoustic stimulation influences visual responses in the primary visual cortex (V1). Such influences can be generated in V1, either by direct auditory projections or by feedback projections from extrastriate cortices. To test these hypotheses, cortical activities were recorded using optical imaging at a high spatiotemporal resolution from multiple areas of the guinea pig visual cortex, to visual and/or acoustic stimulations. Visuo-auditory interactions were evaluated according to differences between responses evoked by combined auditory and visual stimulation, and the sum of responses evoked by separate visual and auditory stimulations. Simultaneous presentation of visual and acoustic stimulations resulted in significant interactions in V1, which occurred earlier than in other visual areas. When acoustic stimulation preceded visual stimulation, significant visuo-auditory interactions were detected only in V1. These results suggest that V1 is a cortical origin of visuo-auditory interaction.

  9. Dynamin1 concentration in the prefrontal cortex is associated with cognitive impairment in Lewy body dementia

    PubMed Central

    Vallortigara, Julie; Rangarajan, Sindhoo; Whitfield, David; Alghamdi, Amani; Howlett, David; Hortobágyi, Tibor; Johnson, Mary; Attems, Johannes; Ballard, Clive; Thomas, Alan; O’Brien, John; Aarsland, Dag; Francis, Paul

    2014-01-01

    Dementia with Lewy Bodies (DLB) and Parkinson’s Disease Dementia (PDD) together, represent the second most common cause of dementia, after Alzheimer’s disease (AD). The synaptic dysfunctions underlying the cognitive decline and psychiatric symptoms observed throughout the development of PDD and DLB are still under investigation. In this study we examined the expression level of Dynamin1 and phospho-CaMKII, key proteins of endocytosis and synaptic plasticity respectively, as potential markers of molecular processes specifically deregulated with DLB and/or PDD. In order to measure the levels of these proteins, we isolated grey matter from post-mortem prefrontal cortex area (BA9), anterior cingulated gyrus (BA24) and parietal cortex (BA40) from DLB and PDD patients in comparison to age-matched controls and a group of AD cases. Clinical and pathological data available included the MMSE score, neuropsychiatric history, and semi-quantitative scores for AD pathology (plaques - tangles) and for α-synuclein (Lewy bodies). Changes in the expression of the synaptic markers, and correlates with neuropathological features and cognitive decline were predominantly found in the prefrontal cortex. On one hand, levels of Dynamin1 were significantly reduced, and correlated with a higher rate of cognitive decline observed in cases from three dementia groups. On the other hand, the fraction of phospho-CaMKII was decreased, and correlated with a high score of plaques and tangles in BA9. Interestingly, the correlation between the rate of cognitive decline and the level of Dynamin1 remained when the analysis was restricted to the PDD and DLB cases, highlighting an association of Dynamin1 with cognitive decline in people with Lewy Body dementia. PMID:25671083

  10. Viewing the motion of human body parts activates different regions of premotor, temporal, and parietal cortex.

    PubMed

    Wheaton, Kylie J; Thompson, James C; Syngeniotis, Ari; Abbott, David F; Puce, Aina

    2004-05-01

    Activation of premotor and temporoparietal cortex occurs when we observe others movements, particularly relating to objects. Viewing the motion of different body parts without the context of an object has not been systematically evaluated. During a 3T fMRI study, 12 healthy subjects viewed human face, hand, and leg motion, which was not directed at or did not involve an object. Activation was identified relative to static images of the same human face, hand, and leg in both individual subject and group average data. Four clear activation foci emerged: (1) right MT/V5 activated to all forms of viewed motion; (2) right STS activated to face and leg motion; (3) ventral premotor cortex activated to face, hand, and leg motion in the right hemisphere and to leg motion in the left hemisphere; and (4) anterior intraparietal cortex (aIP) was active bilaterally to viewing hand motion and in the right hemisphere leg motion. In addition, in the group data, a somatotopic activation pattern for viewing face, hand, and leg motion occurred in right ventral premotor cortex. Activation patterns in STS and aIP were more complex--typically activation foci to viewing two types of human motion showed some overlap. Activation in individual subjects was similar; however, activation to hand motion also occurred in the STS with a variable location across subjects--explaining the lack of a clear activation focus in the group data. The data indicate that there are selective responses to viewing motion of different body parts in the human brain that are independent of object or tool use.

  11. Neural Representations of Natural and Scrambled Movies Progressively Change from Rat Striate to Temporal Cortex

    PubMed Central

    Vinken, Kasper; Van den Bergh, Gert; Vermaercke, Ben; Op de Beeck, Hans P.

    2016-01-01

    In recent years, the rodent has come forward as a candidate model for investigating higher level visual abilities such as object vision. This view has been backed up substantially by evidence from behavioral studies that show rats can be trained to express visual object recognition and categorization capabilities. However, almost no studies have investigated the functional properties of rodent extrastriate visual cortex using stimuli that target object vision, leaving a gap compared with the primate literature. Therefore, we recorded single-neuron responses along a proposed ventral pathway in rat visual cortex to investigate hallmarks of primate neural object representations such as preference for intact versus scrambled stimuli and category-selectivity. We presented natural movies containing a rat or no rat as well as their phase-scrambled versions. Population analyses showed increased dissociation in representations of natural versus scrambled stimuli along the targeted stream, but without a clear preference for natural stimuli. Along the measured cortical hierarchy the neural response seemed to be driven increasingly by features that are not V1-like and destroyed by phase-scrambling. However, there was no evidence for category selectivity for the rat versus nonrat distinction. Together, these findings provide insights about differences and commonalities between rodent and primate visual cortex. PMID:27146315

  12. Insulin-Independent GABAA Receptor-Mediated Response in the Barrel Cortex of Mice with Impaired Met Activity

    PubMed Central

    Lo, Fu-Sun; Erzurumlu, Reha S.

    2016-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder caused by genetic variants, susceptibility alleles, and environmental perturbations. The autism associated gene MET tyrosine kinase has been implicated in many behavioral domains and endophenotypes of autism, including abnormal neural signaling in human sensory cortex. We investigated somatosensory thalamocortical synaptic communication in mice deficient in Met activity in cortical excitatory neurons to gain insights into aberrant somatosensation characteristic of ASD. The ratio of excitation to inhibition is dramatically increased due to decreased postsynaptic GABAA receptor-mediated inhibition in the trigeminal thalamocortical pathway of mice lacking active Met in the cerebral cortex. Furthermore, in contrast to wild-type mice, insulin failed to increase GABAA receptor-mediated response in the barrel cortex of mice with compromised Met signaling. Thus, lacking insulin effects may be a risk factor in ASD pathogenesis. SIGNIFICANCE STATEMENT A proposed common cause of neurodevelopmental disorders is an imbalance in excitatory neural transmission, provided by the glutamatergic neurons, and the inhibitory signals from the GABAergic interneurons. Many genes associated with autism spectrum disorders impair synaptic transmission in the expected cell type. Previously, inactivation of the autism-associated Met tyrosine kinase receptor in GABAergic interneurons led to decreased inhibition. In thus report, decreased Met signaling in glutamatergic neurons had no effect on excitation, but decimated inhibition. Further experiments indicate that loss of Met activity downregulates GABAA receptors on glutamatergic neurons in an insulin independent manner. These data provide a new mechanism for the loss of inhibition and subsequent abnormal excitation/inhibition balance and potential molecular candidates for treatment or prevention. PMID:27030755

  13. Differential Effects of Orthographic and Phonological Consistency in Cortex for Children with and without Reading Impairment

    ERIC Educational Resources Information Center

    Bolger, Donald J.; Minas, Jennifer; Burman, Douglas D.; Booth, James R.

    2008-01-01

    One of the central challenges in mastering English is becoming sensitive to consistency from spelling to sound (i.e. phonological consistency) and from sound to spelling (i.e. orthographic consistency). Using functional magnetic resonance imaging (fMRI), we examined the neural correlates of consistency in 9-15-year-old Normal and Impaired Readers…

  14. Impaired Pitch Perception and Memory in Congenital Amusia: The Deficit Starts in the Auditory Cortex

    ERIC Educational Resources Information Center

    Albouy, Philippe; Mattout, Jeremie; Bouet, Romain; Maby, Emmanuel; Sanchez, Gaetan; Aguera, Pierre-Emmanuel; Daligault, Sebastien; Delpuech, Claude; Bertrand, Olivier; Caclin, Anne; Tillmann, Barbara

    2013-01-01

    Congenital amusia is a lifelong disorder of music perception and production. The present study investigated the cerebral bases of impaired pitch perception and memory in congenital amusia using behavioural measures, magnetoencephalography and voxel-based morphometry. Congenital amusics and matched control subjects performed two melodic tasks (a…

  15. Transcranial magnetic stimulation of the ventromedial prefrontal cortex impairs theory of mind learning.

    PubMed

    Lev-Ran, S; Shamay-Tsoory, S G; Zangen, A; Levkovitz, Y

    2012-05-01

    Imaging and lesion studies indicate that the prefrontal cortex plays a prominent role in mediating theory of mind (ToM) functioning. Particularly, the ventromedial prefrontal cortex (VMPFC) appears to be involved in mediating ToM functioning. This study utilized slow repetitive transcranial magnetic stimulation (rTMS) over the VMPFC in 13 healthy subjects in order to test whether normal functioning of the VMPFC is necessary for ToM functioning. We found that rTMS to the VMPFC, but not sham-rTMS, significantly disrupted ToM learning. Performance on a control task, not involving affective ToM functioning, was not significantly altered after applying rTMS to the VMPFC or sham-rTMS. In an additional experiment, rTMS to the vertex did not significantly affect ToM learning, confirming specificity of the VMPFC region. These findings indicate that the VMPFC is critical for intact ToM learning and shed further light on the concept and localization of ToM in particular and empathic functioning in general. PMID:21324655

  16. Impaired spatial representation in CA1 after lesion of direct input from entorhinal cortex.

    PubMed

    Brun, Vegard Heimly; Leutgeb, Stefan; Wu, Hui-Qiu; Schwarcz, Robert; Witter, Menno P; Moser, Edvard I; Moser, May-Britt

    2008-01-24

    Place-specific firing in the hippocampus is determined by path integration-based spatial representations in the grid-cell network of the medial entorhinal cortex. Output from this network is conveyed directly to CA1 of the hippocampus by projections from principal neurons in layer III, but also indirectly by axons from layer II to the dentate gyrus and CA3. The direct pathway is sufficient for spatial firing in CA1, but it is not known whether similar firing can also be supported by the input from CA3. To test this possibility, we made selective lesions in layer III of medial entorhinal cortex by local infusion of the neurotoxin gamma-acetylenic GABA. Firing fields in CA1 became larger and more dispersed after cell loss in layer III, whereas CA3 cells, which receive layer II input, still had sharp firing fields. Thus, the direct projection is necessary for precise spatial firing in the CA1 place cell population.

  17. Impaired spatial representation in CA1 after lesion of direct input from entorhinal cortex.

    PubMed

    Brun, Vegard Heimly; Leutgeb, Stefan; Wu, Hui-Qiu; Schwarcz, Robert; Witter, Menno P; Moser, Edvard I; Moser, May-Britt

    2008-01-24

    Place-specific firing in the hippocampus is determined by path integration-based spatial representations in the grid-cell network of the medial entorhinal cortex. Output from this network is conveyed directly to CA1 of the hippocampus by projections from principal neurons in layer III, but also indirectly by axons from layer II to the dentate gyrus and CA3. The direct pathway is sufficient for spatial firing in CA1, but it is not known whether similar firing can also be supported by the input from CA3. To test this possibility, we made selective lesions in layer III of medial entorhinal cortex by local infusion of the neurotoxin gamma-acetylenic GABA. Firing fields in CA1 became larger and more dispersed after cell loss in layer III, whereas CA3 cells, which receive layer II input, still had sharp firing fields. Thus, the direct projection is necessary for precise spatial firing in the CA1 place cell population. PMID:18215625

  18. Transcranial magnetic stimulation of the ventromedial prefrontal cortex impairs theory of mind learning.

    PubMed

    Lev-Ran, S; Shamay-Tsoory, S G; Zangen, A; Levkovitz, Y

    2012-05-01

    Imaging and lesion studies indicate that the prefrontal cortex plays a prominent role in mediating theory of mind (ToM) functioning. Particularly, the ventromedial prefrontal cortex (VMPFC) appears to be involved in mediating ToM functioning. This study utilized slow repetitive transcranial magnetic stimulation (rTMS) over the VMPFC in 13 healthy subjects in order to test whether normal functioning of the VMPFC is necessary for ToM functioning. We found that rTMS to the VMPFC, but not sham-rTMS, significantly disrupted ToM learning. Performance on a control task, not involving affective ToM functioning, was not significantly altered after applying rTMS to the VMPFC or sham-rTMS. In an additional experiment, rTMS to the vertex did not significantly affect ToM learning, confirming specificity of the VMPFC region. These findings indicate that the VMPFC is critical for intact ToM learning and shed further light on the concept and localization of ToM in particular and empathic functioning in general.

  19. Motion verb sentences activate left posterior middle temporal cortex despite static context.

    PubMed

    Wallentin, Mikkel; Lund, Torben Ellegaard; Ostergaard, Svend; Ostergaard, Leif; Roepstorff, Andreas

    2005-04-25

    The left posterior middle temporal region, anterior to V5/MT, has been shown to be responsive both to images with implied motion, to simulated motion, and to motion verbs. In this study, we investigated whether sentence context alters the response of the left posterior middle temporal region. 'Fictive motion' sentences are sentences in which an inanimate subject noun, semantically incapable of self movement, is coupled with a motion verb, yielding an apparent semantic contradiction (e.g. 'The path comes into the garden.'). However, this context yields no less activation in the left posterior middle temporal region than sentences in which the motion can be applied to the subject noun. We speculate that the left posterior middle temporal region activity in fictive motion sentences reflects the fact that the hearer applies motion to the depicted scenario by scanning it egocentrically.

  20. Contribution of Temporal Preparation and Processing Speed to Simple Reaction Time in Persons with Alzheimer's Disease and Mild Cognitive Impairment

    ERIC Educational Resources Information Center

    Sylvain-Roy, Stephanie; Bherer, Louis; Belleville, Sylvie

    2010-01-01

    Temporal preparation was assessed in 15 Alzheimer's disease (AD) patients, 20 persons with mild cognitive impairment (MCI) and 28 healthy older adults. Participants completed a simple reaction time task in which the preparatory interval duration varied randomly within two blocks (short versus long temporal window). Results indicated that AD and…

  1. Vasopressin 1b receptor knock-out impairs memory for temporal order.

    PubMed

    DeVito, Loren M; Konigsberg, Rachael; Lykken, Christine; Sauvage, Magdalena; Young, W Scott; Eichenbaum, Howard

    2009-03-01

    Mice lacking a functional vasopressin 1b receptor (Avpr1b) display decreased levels of aggression and social memory. Here, we used Avpr1b-knock-out (Avpr1b(-/-)) mice to examine whether an abnormality of this receptor results in specific cognitive deficits in the domain of hippocampal function. Avpr1b(-/-) mice were deficient in sociability and in detecting social novelty, extending previous findings of impairment in social recognition in these mutants. Avpr1b(-/-) mice could recognize previously explored objects and remember where they were experienced, but they were impaired in remembering the temporal order of presentation of those objects. Consistent with this finding, Avpr1b(-/-) mice were also impaired on an object-odor paired associate task that involved a temporal discontiguity between the associated elements. Finally, Avpr1b(-/-) mice performed normally in learning a set of overlapping odor discriminations and could infer relationships among odors that were only indirectly associated (i.e., transitive inference), indicating intact relational memory. The Avpr1b is expressed at much higher levels than any other part of the brain in the pyramidal cells of hippocampal CA2 area, a subfield of the hippocampus that has physiological and genetic properties that distinguish it from subfields CA1 and CA3. The combined results suggest that the Avpr1b, perhaps in CA2, may play a highly specific role in social behavior and episodic memory. Because schizophrenia and bipolar disorder are associated with a unique pathology in CA2 and impairments in both social behavior and episodic memory, this animal model could provide insights into the etiology of these disorders.

  2. On the definition and interpretation of voice selective activation in the temporal cortex

    PubMed Central

    Bethmann, Anja; Brechmann, André

    2014-01-01

    Regions along the superior temporal sulci and in the anterior temporal lobes have been found to be involved in voice processing. It has even been argued that parts of the temporal cortices serve as voice-selective areas. Yet, evidence for voice-selective activation in the strict sense is still missing. The current fMRI study aimed at assessing the degree of voice-specific processing in different parts of the superior and middle temporal cortices. To this end, voices of famous persons were contrasted with widely different categories, which were sounds of animals and musical instruments. The argumentation was that only brain regions with statistically proven absence of activation by the control stimuli may be considered as candidates for voice-selective areas. Neural activity was found to be stronger in response to human voices in all analyzed parts of the temporal lobes except for the middle and posterior STG. More importantly, the activation differences between voices and the other environmental sounds increased continuously from the mid-posterior STG to the anterior MTG. Here, only voices but not the control stimuli excited an increase of the BOLD response above a resting baseline level. The findings are discussed with reference to the function of the anterior temporal lobes in person recognition and the general question on how to define selectivity of brain regions for a specific class of stimuli or tasks. In addition, our results corroborate recent assumptions about the hierarchical organization of auditory processing building on a processing stream from the primary auditory cortices to anterior portions of the temporal lobes. PMID:25071527

  3. Postextinction Infusion of a Mitogen-Activated Protein Kinase Inhibitor into the Medial Prefrontal Cortex Impairs Memory of the Extinction of Conditioned Fear

    ERIC Educational Resources Information Center

    Hugues, Sandrine; Deschaux, Olivier; Garcia, Rene

    2004-01-01

    We investigated whether postextinction training infusion of PD098059, a selective inhibitor of mitogen-activated protein kinase (MAPK) activation, into the medial prefrontal cortex, would impair retention of extinction learning in rats. We found that immediate, but not late (2 or 4 h), postextinction infusion of PD098059 provoked a full return of…

  4. Alcohol intoxication impairs mesopic rod and cone temporal processing in social drinkers

    PubMed Central

    Zhuang, Xiaohua; Kang, Para; King, Andrea; Cao, Dingcai

    2015-01-01

    Background Alcohol-related driving accidents and fatalities occur most frequently at nighttime and at dawn, i.e. a mesopic lighting condition in which visual processing depends on both rod and cone photoreceptors. The temporal functions of the rod and cone pathways are critical for driving in this lighting condition. However, how alcohol influences the temporal functions in the rod and cone pathways at mesopic light levels is inconclusive. To address this, the present study investigated whether an acute intoxicating dose of alcohol impairs rod- and/or cone-mediated critical fusion frequency (CFF, the lowest frequency of which an intermittent or flickering light stimulus is perceived as steady). Methods In Experiment I, we measured the CFFs for three types of visual stimuli (rod stimulus alone, cone stimulus alone, and the mixture of both stimuli types), under three illuminant light levels (dim illuminance: 2Td; low illuminance: 20Td; and medium illuminance 80Td) in moderate-heavy social drinkers before and after they consumed an intoxicating dose of alcohol (0.8g/kg) compared with a placebo beverage. In Experiment II, we examined if the illuminance level (dark versus light) of the visual area surrounding the test stimuli alters alcohol’s effect on the temporal processing of rods and cones. Results The results showed that compared with placebo, alcohol significantly reduced CFFs of all stimulus types at all illuminance levels. Furthermore, alcohol intoxication produced a larger impairment on rod-pathway-mediated CFFs under light versus dark surround. Conclusions These results indicate that alcohol intake slows down rod and cone-pathway-mediated temporal processing. Further research may elucidate if this effect may play a role in alcohol-related injury and accidents, which often occur under low light conditions. PMID:26247196

  5. Poststroke Hemiparesis Impairs the Rate but not Magnitude of Adaptation of Spatial and Temporal Locomotor Features

    PubMed Central

    Savin, Douglas N.; Tseng, Shih-Chiao; Whitall, Jill; Morton, Susanne M.

    2015-01-01

    Background Persons with stroke and hemiparesis walk with a characteristic pattern of spatial and temporal asymmetry that is resistant to most traditional interventions. It was recently shown in nondisabled persons that the degree of walking symmetry can be readily altered via locomotor adaptation. However, it is unclear whether stroke-related brain damage affects the ability to adapt spatial or temporal gait symmetry. Objective Determine whether locomotor adaptation to a novel swing phase perturbation is impaired in persons with chronic stroke and hemiparesis. Methods Participants with ischemic stroke (14) and nondisabled controls (12) walked on a treadmill before, during, and after adaptation to a unilateral perturbing weight that resisted forward leg movement. Leg kinematics were measured bilaterally, including step length and single-limb support (SLS) time symmetry, limb angle center of oscillation, and interlimb phasing, and magnitude of “initial” and “late” locomotor adaptation rates were determined. Results All participants had similar magnitudes of adaptation and similar initial adaptation rates both spatially and temporally. All 14 participants with stroke and baseline asymmetry temporarily walked with improved SLS time symmetry after adaptation. However, late adaptation rates poststroke were decreased (took more strides to achieve adaptation) compared with controls. Conclusions Mild to moderate hemiparesis does not interfere with the initial acquisition of novel symmetrical gait patterns in both the spatial and temporal domains, though it does disrupt the rate at which “late” adaptive changes are produced. Impairment of the late, slow phase of learning may be an important rehabilitation consideration in this patient population. PMID:22367915

  6. Bilateral parietal cortex damage does not impair associative memory for paired stimuli.

    PubMed

    Berryhill, Marian E; Drowos, David B; Olson, Ingrid R

    2009-10-01

    Recent neuroimaging and neuropsychological findings indicate that the posterior parietal cortex (PPC) plays an important, albeit undefined, role in episodic memory. Here we ask whether this region is specifically involved in associative aspects of episodic memory. Experiment 1 tested whether PPC damage affects the ability to learn and retrieve novel word pair associations. Experiment 2 tested whether PPC damage affects the retrieval of object-location associations, in a spatial fan task. In both experiments, patients showed normal levels of associative memory. These findings demonstrated that PPC damage did not prevent association memory for verbal items. Finally Experiment 3 tested whether PPC damage affects memory for nonverbal audio-visual pairs. The patients performed with normal accuracy, but with significantly reduced confidence. These findings indicate that the PPC does not have a central role in association formation per se and, instead, indicate that the PPC is involved in other aspects of episodic memory. PMID:20104378

  7. Bilateral Parietal Cortex Damage Does Not Impair Associative Memory for Paired Stimuli

    PubMed Central

    Berryhill, Marian E.; Drowos, David B.; Olson, Ingrid R.

    2010-01-01

    Recent neuroimaging and neuropsychological findings indicate that the posterior parietal cortex (PPC) plays an important, albeit undefined, role in episodic memory. Here we ask whether this region is specifically involved in associative aspects of episodic memory. Experiment 1 tested whether PPC damage affects the ability to learn and retrieve novel word-pair associations. Experiment 2 tested whether PPC damage affects the retrieval of object-location associations, in a spatial fan task. In both experiments, patients showed normal levels of associative memory. These findings demonstrated that PPC damage did not prevent association memory for verbal items. Finally Experiment 3 tested whether PPC damage affects memory for non-verbal audio-visual pairs. The patients performed with normal accuracy, but with significantly reduced confidence. These findings indicate that the PPC does not have a central role in association formation per se and instead, indicate that the PPC is involved in other aspects of episodic memory. PMID:20104378

  8. Prenatal Nicotine Exposure Impairs the Proliferation of Neuronal Progenitors, Leading to Fewer Glutamatergic Neurons in the Medial Prefrontal Cortex.

    PubMed

    Aoyama, Yuki; Toriumi, Kazuya; Mouri, Akihiro; Hattori, Tomoya; Ueda, Eriko; Shimato, Akane; Sakakibara, Nami; Soh, Yuka; Mamiya, Takayoshi; Nagai, Taku; Kim, Hyoung-Chun; Hiramatsu, Masayuki; Nabeshima, Toshitaka; Yamada, Kiyofumi

    2016-01-01

    Cigarette smoking during pregnancy is associated with various disabilities in the offspring such as attention deficit/hyperactivity disorder, learning disabilities, and persistent anxiety. We have reported that nicotine exposure in female mice during pregnancy, in particular from embryonic day 14 (E14) to postnatal day 0 (P0), induces long-lasting behavioral deficits in offspring. However, the mechanism by which prenatal nicotine exposure (PNE) affects neurodevelopment, resulting in behavioral deficits, has remained unclear. Here, we report that PNE disrupted the proliferation of neuronal progenitors, leading to a decrease in the progenitor pool in the ventricular and subventricular zones. In addition, using a cumulative 5-bromo-2'-deoxyuridine labeling assay, we evaluated the rate of cell cycle progression causing the impairment of neuronal progenitor proliferation, and uncovered anomalous cell cycle kinetics in mice with PNE. Accordingly, the density of glutamatergic neurons in the medial prefrontal cortex (medial PFC) was reduced, implying glutamatergic dysregulation. Mice with PNE exhibited behavioral impairments in attentional function and behavioral flexibility in adulthood, and the deficits were ameliorated by microinjection of D-cycloserine into the PFC. Collectively, our findings suggest that PNE affects the proliferation and maturation of progenitor cells to glutamatergic neuron during neurodevelopment in the medial PFC, which may be associated with cognitive deficits in the offspring. PMID:26105135

  9. Childhood abuse is associated with structural impairment in the ventrolateral prefrontal cortex and aggressiveness in patients with borderline personality disorder.

    PubMed

    Morandotti, Niccolò; Dima, Danai; Jogia, Jigar; Frangou, Sophia; Sala, Michela; Vidovich, Giulia Zelda De; Lazzaretti, Matteo; Gambini, Francesca; Marraffini, Elisa; d'Allio, Giorgio; Barale, Francesco; Zappoli, Federico; Caverzasi, Edgardo; Brambilla, Paolo

    2013-07-30

    Volume reduction and functional impairment in areas of the prefrontal cortex (PFC) have been found in borderline personality disorder (BPD), particularly in patients with a history of childhood abuse. These abnormalities may contribute to the expression of emotion dysregulation and aggressiveness. In this study we investigated whether the volume of the PFC is reduced in BPD patients and whether a history of childhood abuse would be associated with greater PFC structural changes. Structural MRI data were obtained from 18 BPD patients and 19 healthy individuals matched for age, sex, handedness, and education and were analyzed using voxel based morphometry. The Child Abuse Scale was used to elicit a past history of abuse; aggression was evaluated using the Buss-Durkee Hostility Inventory (BDHI). The volume of the right ventrolateral PFC (VLPFC) was significantly reduced in BPD subjects with a history of childhood abuse compared to those without this risk factor. Additionally, right VLPFC gray matter volume significantly correlated with the BDHI total score and with BDHI irritability and negativism subscale scores in patients with a history of childhood abuse. Our results suggest that a history of childhood abuse may lead to increased aggression mediated by an impairment of the right VLPFC.

  10. Temporal plasticity involved in recovery from manual dexterity deficit after motor cortex lesion in macaque monkeys.

    PubMed

    Murata, Yumi; Higo, Noriyuki; Hayashi, Takuya; Nishimura, Yukio; Sugiyama, Yoko; Oishi, Takao; Tsukada, Hideo; Isa, Tadashi; Onoe, Hirotaka

    2015-01-01

    The question of how intensive motor training restores motor function after brain damage or stroke remains unresolved. Here we show that the ipsilesional ventral premotor cortex (PMv) and perilesional primary motor cortex (M1) of rhesus macaque monkeys are involved in the recovery of manual dexterity after a lesion of M1. A focal lesion of the hand digit area in M1 was made by means of ibotenic acid injection. This lesion initially caused flaccid paralysis in the contralateral hand but was followed by functional recovery of hand movements, including precision grip, during the course of daily postlesion motor training. Brain imaging of regional cerebral blood flow by means of H2 (15)O-positron emission tomography revealed enhanced activity of the PMv during the early postrecovery period and increased functional connectivity within M1 during the late postrecovery period. The causal role of these areas in motor recovery was confirmed by means of pharmacological inactivation by muscimol during the different recovery periods. These findings indicate that, in both the remaining primary motor and premotor cortical areas, time-dependent plastic changes in neural activity and connectivity are involved in functional recovery from the motor deficit caused by the M1 lesion. Therefore, it is likely that the PMv, an area distant from the core of the lesion, plays an important role during the early postrecovery period, whereas the perilesional M1 contributes to functional recovery especially during the late postrecovery period.

  11. The mid-fusiform sulcus: a landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal cortex.

    PubMed

    Weiner, Kevin S; Golarai, Golijeh; Caspers, Julian; Chuapoco, Miguel R; Mohlberg, Hartmut; Zilles, Karl; Amunts, Katrin; Grill-Spector, Kalanit

    2014-01-01

    Human ventral temporal cortex (VTC) plays a pivotal role in high-level vision. An under-studied macroanatomical feature of VTC is the mid-fusiform sulcus (MFS), a shallow longitudinal sulcus separating the lateral and medial fusiform gyrus (FG). Here, we quantified the morphological features of the MFS in 69 subjects (ages 7-40), and investigated its relationship to both cytoarchitectonic and functional divisions of VTC with four main findings. First, despite being a minor sulcus, we found that the MFS is a stable macroanatomical structure present in all 138 hemispheres with morphological characteristics developed by age 7. Second, the MFS is the locus of a lateral-medial cytoarchitectonic transition within the posterior FG serving as the boundary between cytoarchitectonic regions FG1 and FG2. Third, the MFS predicts a lateral-medial functional transition in eccentricity bias representations in children, adolescents, and adults. Fourth, the anterior tip of the MFS predicts the location of a face-selective region, mFus-faces/FFA-2. These findings are the first to illustrate that a macroanatomical landmark identifies both cytoarchitectonic and functional divisions of high-level sensory cortex in humans and have important implications for understanding functional and structural organization in the human brain.

  12. Recurrent Moderate Hypoglycemia Suppresses Brain-Derived Neurotrophic Factor Expression in the Prefrontal Cortex and Impairs Sensorimotor Gating in the Posthypoglycemic Period in Young Rats.

    PubMed

    Rao, Raghavendra; Ennis, Kathleen; Mitchell, Eugena P; Tran, Phu V; Gewirtz, Jonathan C

    2016-01-01

    Recurrent hypoglycemia is common in infants and children. In developing rat models, recurrent moderate hypoglycemia leads to neuronal injury in the medial prefrontal cortex. To understand the effects beyond neuronal injury, 3-week-old male rats were subjected to 5 episodes of moderate hypoglycemia (blood glucose concentration, approx. 30 mg/dl for 90 min) once daily from postnatal day 24 to 28. Neuronal injury was determined using Fluoro-Jade B histochemistry on postnatal day 29. The effects on brain-derived neurotrophic factor (BDNF) and its cognate receptor, tyrosine kinase receptor B (TrkB) expression, which is critical for prefrontal cortex development, were determined on postnatal day 29 and at adulthood. The effects on prefrontal cortex-mediated function were determined by assessing the prepulse inhibition of the acoustic startle reflex on postnatal day 29 and 2 weeks later, and by testing for fear-potentiated startle at adulthood. Recurrent hypoglycemia led to neuronal injury confined primarily to the medial prefrontal cortex. BDNF/TrkB expression in the prefrontal cortex was suppressed on postnatal day 29 and was accompanied by lower prepulse inhibition, suggesting impaired sensorimotor gating. Following the cessation of recurrent hypoglycemia, the prepulse inhibition had recovered at 2 weeks. BDNF/TrkB expression in the prefrontal cortex had normalized and fear-potentiated startle was intact at adulthood. Recurrent moderate hypoglycemia during development has significant adverse effects on the prefrontal cortex in the posthypoglycemic period. PMID:26820887

  13. Sparse Spectro-Temporal Receptive Fields Based on Multi-Unit and High-Gamma Responses in Human Auditory Cortex

    PubMed Central

    Jenison, Rick L.; Reale, Richard A.; Armstrong, Amanda L.; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A.

    2015-01-01

    Spectro-Temporal Receptive Fields (STRFs) were estimated from both multi-unit sorted clusters and high-gamma power responses in human auditory cortex. Intracranial electrophysiological recordings were used to measure responses to a random chord sequence of Gammatone stimuli. Traditional methods for estimating STRFs from single-unit recordings, such as spike-triggered-averages, tend to be noisy and are less robust to other response signals such as local field potentials. We present an extension to recently advanced methods for estimating STRFs from generalized linear models (GLM). A new variant of regression using regularization that penalizes non-zero coefficients is described, which results in a sparse solution. The frequency-time structure of the STRF tends toward grouping in different areas of frequency-time and we demonstrate that group sparsity-inducing penalties applied to GLM estimates of STRFs reduces the background noise while preserving the complex internal structure. The contribution of local spiking activity to the high-gamma power signal was factored out of the STRF using the GLM method, and this contribution was significant in 85 percent of the cases. Although the GLM methods have been used to estimate STRFs in animals, this study examines the detailed structure directly from auditory cortex in the awake human brain. We used this approach to identify an abrupt change in the best frequency of estimated STRFs along posteromedial-to-anterolateral recording locations along the long axis of Heschl’s gyrus. This change correlates well with a proposed transition from core to non-core auditory fields previously identified using the temporal response properties of Heschl’s gyrus recordings elicited by click-train stimuli. PMID:26367010

  14. Dissociating the Representation of Action- and Sound-Related Concepts in Middle Temporal Cortex

    ERIC Educational Resources Information Center

    Kiefer, Markus; Trumpp, Natalie; Herrnberger, Barbel; Sim, Eun-Jin; Hoenig, Klaus; Pulvermuller, Friedemann

    2012-01-01

    Modality-specific models of conceptual memory propose close links between concepts and the sensory-motor systems. Neuroimaging studies found, in different subject groups, that action-related and sound-related concepts activated different parts of posterior middle temporal gyrus (pMTG), suggesting a modality-specific representation of conceptual…

  15. Immunocytochemical detection of androgen receptor in human temporal cortex characterization and application of polyclonal androgen receptor antibodies in frozen and paraffin-embedded tissues.

    PubMed

    Puy, L; MacLusky, N J; Becker, L; Karsan, N; Trachtenberg, J; Brown, T J

    1995-11-01

    Immunocytochemical and biochemical studies have demonstrated the presence of androgen receptor protein in various regions of the rodent and non-human primate cortex. Localization of androgen receptor in the human brain has, however, not been studied as extensively, because of difficulties in obtaining suitable tissue samples. In the present study, we have localized androgen receptors in both frozen and paraffin-embedded temporal cortex from epileptic patients undergoing resection. Polyclonal antibodies were raised against fusion proteins containing fragments of the human androgen receptor protein. The antibodies were affinity-purified against the corresponding fusion protein. Immunoprecipitation and Western blotting using extracts from human cell lines demonstrated the specificity of the antibodies for the human androgen receptor and lack of cross-reactivity with other steroid hormone receptors. Immunocytochemistry was performed on frozen and paraffin sections of human temporal cortex and in paraffin-embedded benign hyperplastic prostates (BPH), as well as prostate and breast carcinomas, by the streptavidin-biotin-peroxidase method. Antigen-retrieval was performed in paraffin-embedded sections using microwave irradiation. Specific nuclear and cytoplasmic immunoreactivity for androgen receptor was detected in neurons, astrocytes, oligodendrocytes, and microglia cells of the temporal cortex. In contrast, only nuclear staining was observed in BPH, prostate and breast carcinomas. Immunoprecipitation of human temporal cortex lysate and subsequent Western blot analysis demonstrated the expression of a 98 kDa immunoreactive protein, slightly smaller than the reported molecular weight of the wild-type androgen receptor. These results provide further evidence for the expression of androgen receptor in the human temporal cortex. The use of these immunocytochemical techniques should enable the retrospective determination of possible changes in androgen receptor expression in

  16. Crossed unilateral lesions of temporal lobe structures and cholinergic cell bodies impair visual conditional and object discrimination learning in monkeys.

    PubMed

    Barefoot, H C; Baker, H F; Ridley, R M

    2002-02-01

    Monkeys with excitotoxic lesions of the CA1/subiculum region in the right hemisphere and with immunotoxic lesions of the cholinergic cells of the diagonal band in the left hemisphere were impaired on a visual conditional task. In this task, correct choice of one of two objects depends on which of two background fields both objects are presented against, irrespective of the spatial positions of the objects. They were not impaired on simple object or shape discrimination tasks. The pattern of impairments is the same as that seen after bilateral excitotoxic lesions of CA1/subiculum, implying that the diagonal band lesion disables the ipsilateral CA1/subiculum. It also argues that CA1/subiculum, sustained by its cholinergic input, is necessary for some forms of nonspatial conditional learning. Addition of an inferotemporal (IT) cortical ablation to the left hemisphere did not affect simple visual discrimination learning, although all the monkeys then failed to learn a new visual conditional task. This demonstrates that intact IT cortex in only one hemisphere is sufficient to sustain simple visual discrimination learning but implies that the cholinergic input and the inferotemporal cortical input to the hippocampus both contribute to visual conditional learning. The subsequent addition of an immunotoxic lesion of the basal nucleus of Meynert in the right hemisphere resulted in an additional impairment on a difficult shape discrimination. This argues that it is the cholinergic projection to the inferotemporal cortex, rather than to the rest of the cortex, which contributes to visual discrimination learning and memory.

  17. Lesions to right posterior parietal cortex impair visual depth perception from disparity but not motion cues

    PubMed Central

    Leopold, David A.; Humphreys, Glyn W.; Welchman, Andrew E.

    2016-01-01

    The posterior parietal cortex (PPC) is understood to be active when observers perceive three-dimensional (3D) structure. However, it is not clear how central this activity is in the construction of 3D spatial representations. Here, we examine whether PPC is essential for two aspects of visual depth perception by testing patients with lesions affecting this region. First, we measured subjects' ability to discriminate depth structure in various 3D surfaces and objects using binocular disparity. Patients with lesions to right PPC (N = 3) exhibited marked perceptual deficits on these tasks, whereas those with left hemisphere lesions (N = 2) were able to reliably discriminate depth as accurately as control subjects. Second, we presented an ambiguous 3D stimulus defined by structure from motion to determine whether PPC lesions influence the rate of bistable perceptual alternations. Patients' percept durations for the 3D stimulus were generally within a normal range, although the two patients with bilateral PPC lesions showed the fastest perceptual alternation rates in our sample. Intermittent stimulus presentation reduced the reversal rate similarly across subjects. Together, the results suggest that PPC plays a causal role in both inferring and maintaining the perception of 3D structure with stereopsis supported primarily by the right hemisphere, but do not lend support to the view that PPC is a critical contributor to bistable perceptual alternations. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269606

  18. Lesions to right posterior parietal cortex impair visual depth perception from disparity but not motion cues.

    PubMed

    Murphy, Aidan P; Leopold, David A; Humphreys, Glyn W; Welchman, Andrew E

    2016-06-19

    The posterior parietal cortex (PPC) is understood to be active when observers perceive three-dimensional (3D) structure. However, it is not clear how central this activity is in the construction of 3D spatial representations. Here, we examine whether PPC is essential for two aspects of visual depth perception by testing patients with lesions affecting this region. First, we measured subjects' ability to discriminate depth structure in various 3D surfaces and objects using binocular disparity. Patients with lesions to right PPC (N = 3) exhibited marked perceptual deficits on these tasks, whereas those with left hemisphere lesions (N = 2) were able to reliably discriminate depth as accurately as control subjects. Second, we presented an ambiguous 3D stimulus defined by structure from motion to determine whether PPC lesions influence the rate of bistable perceptual alternations. Patients' percept durations for the 3D stimulus were generally within a normal range, although the two patients with bilateral PPC lesions showed the fastest perceptual alternation rates in our sample. Intermittent stimulus presentation reduced the reversal rate similarly across subjects. Together, the results suggest that PPC plays a causal role in both inferring and maintaining the perception of 3D structure with stereopsis supported primarily by the right hemisphere, but do not lend support to the view that PPC is a critical contributor to bistable perceptual alternations.This article is part of the themed issue 'Vision in our three-dimensional world'. PMID:27269606

  19. Tyrosine impairs enzymes of energy metabolism in cerebral cortex of rats.

    PubMed

    de Andrade, Rodrigo Binkowski; Gemelli, Tanise; Rojas, Denise Bertin; Funchal, Cláudia; Dutra-Filho, Carlos Severo; Wannmacher, Clovis Milton Duval

    2012-05-01

    Tyrosine levels are abnormally elevated in tissues and physiological fluids of patients with inborn errors of tyrosine catabolism, especially in tyrosinemia type II, which is caused by deficiency of tyrosine aminotransferase and provokes eyes, skin, and central nervous system disturbances. Considering that the mechanisms of brain damage in these disorders are poorly known, in this study, we investigated the in vivo and in vitro effects of tyrosine on some parameters of energy metabolism in cerebral cortex of 14-day-old Wistar rats. We observed that 2 mM tyrosine inhibited in vitro the pyruvate kinase (PK) activity and that this inhibition was prevented by 1 mM reduced glutathione with 30, 60, and 90 min of preincubation. Moreover, administration of tyrosine methyl ester (TME) (0.5 mg/g of body weight) decreased the activity of PK and this reduction was prevented by pre-treatment with creatine (Cr). On the other hand, tyrosine did not alter adenylate kinase (AK) activity in vitro, but administration of TME enhanced AK activity not prevented by Cr pre-treatment. Finally, TME administration decreased the activity of CK from cytosolic and mitochondrial fractions and this diminution was prevented by Cr pre-treatment. The results suggest that tyrosine alters essential sulfhydryl groups necessary for CK and PK functions, possibly through oxidative stress. In case this also occurs in the patients, it is possible that energy metabolism alterations may contribute, along with other mechanisms, to the neurological dysfunction of hypertyrosinemias.

  20. Lesions to right posterior parietal cortex impair visual depth perception from disparity but not motion cues.

    PubMed

    Murphy, Aidan P; Leopold, David A; Humphreys, Glyn W; Welchman, Andrew E

    2016-06-19

    The posterior parietal cortex (PPC) is understood to be active when observers perceive three-dimensional (3D) structure. However, it is not clear how central this activity is in the construction of 3D spatial representations. Here, we examine whether PPC is essential for two aspects of visual depth perception by testing patients with lesions affecting this region. First, we measured subjects' ability to discriminate depth structure in various 3D surfaces and objects using binocular disparity. Patients with lesions to right PPC (N = 3) exhibited marked perceptual deficits on these tasks, whereas those with left hemisphere lesions (N = 2) were able to reliably discriminate depth as accurately as control subjects. Second, we presented an ambiguous 3D stimulus defined by structure from motion to determine whether PPC lesions influence the rate of bistable perceptual alternations. Patients' percept durations for the 3D stimulus were generally within a normal range, although the two patients with bilateral PPC lesions showed the fastest perceptual alternation rates in our sample. Intermittent stimulus presentation reduced the reversal rate similarly across subjects. Together, the results suggest that PPC plays a causal role in both inferring and maintaining the perception of 3D structure with stereopsis supported primarily by the right hemisphere, but do not lend support to the view that PPC is a critical contributor to bistable perceptual alternations.This article is part of the themed issue 'Vision in our three-dimensional world'.

  1. Short-Term Memory Depends on Dissociable Medial Temporal Lobe Regions in Amnestic Mild Cognitive Impairment.

    PubMed

    Das, Sandhitsu R; Mancuso, Lauren; Olson, Ingrid R; Arnold, Steven E; Wolk, David A

    2016-05-01

    Short-term memory (STM) has generally been thought to be independent of the medial temporal lobe (MTL) in contrast to long-term memory (LTM). Prodromal Alzheimer's disease (AD) is a condition in which the MTL is a major early focus of pathology and LTM is thought disproportionately affected relative to STM. However, recent studies have suggested a role for the MTL in STM, particularly hippocampus, when binding of different elements is required. Other work has suggested involvement of extrahippocampal MTL structures, particularly in STM tasks that involve item-level memory. We examined STM for individual objects, locations, and object-location conjunctions in amnestic mild cognitive impairment (MCI), often associated with prodromal AD. Relative to age-matched, cognitively normal controls, MCI patients not only displayed impairment on object-location conjunctions but were similarly impaired for non-bound objects and locations. Moreover, across all participants, these conditions displayed dissociable correlations of cortical thinning along the long axis of the MTL and associated cortical nodes of anterior and posterior MTL networks. These findings support the role of the MTL in visual STM tasks and the division of labor of MTL in support of different types of memory representations, overlapping with findings in LTM.

  2. Peripheral Inflammation Acutely Impairs Human Spatial Memory via Actions on Medial Temporal Lobe Glucose Metabolism

    PubMed Central

    Harrison, Neil A.; Doeller, Christian F.; Voon, Valerie; Burgess, Neil; Critchley, Hugo D.

    2014-01-01

    Background Inflammation impairs cognitive performance and is implicated in the progression of neurodegenerative disorders. Rodent studies demonstrated key roles for inflammatory mediators in many processes critical to memory, including long-term potentiation, synaptic plasticity, and neurogenesis. They also demonstrated functional impairment of medial temporal lobe (MTL) structures by systemic inflammation. However, human data to support this position are limited. Methods Sequential fluorodeoxyglucose positron emission tomography together with experimentally induced inflammation was used to investigate effects of a systemic inflammatory challenge on human MTL function. Fluorodeoxyglucose positron emission tomography scanning was performed in 20 healthy participants before and after typhoid vaccination and saline control injection. After each scanning session, participants performed a virtual reality spatial memory task analogous to the Morris water maze and a mirror-tracing procedural memory control task. Results Fluorodeoxyglucose positron emission tomography data demonstrated an acute reduction in human MTL glucose metabolism after inflammation. The inflammatory challenge also selectively compromised human spatial, but not procedural, memory; this effect that was independent of actions on motivation or psychomotor response. Effects of inflammation on parahippocampal and rhinal glucose metabolism directly mediated actions of inflammation on spatial memory. Conclusions These data demonstrate acute sensitivity of human MTL to mild peripheral inflammation, giving rise to associated functional impairment in the form of reduced spatial memory performance. Our findings suggest a mechanism for the observed epidemiologic link between inflammation and risk of age-related cognitive decline and progression of neurodegenerative disorders including Alzheimer’s disease. PMID:24534013

  3. Losing sight of the future: Impaired semantic prospection following medial temporal lobe lesions.

    PubMed

    Race, Elizabeth; Keane, Margaret M; Verfaellie, Mieke

    2013-04-01

    The ability to imagine the future (prospection) relies on many of the same brain regions that support memory for the past. To date, scientific research has primarily focused on the neural substrates of episodic forms of prospection (mental simulation of spatiotemporally specific future events); however, little is known about the neural substrates of semantic prospection (mental simulation of future nonpersonal facts). Of particular interest is the role of the medial temporal lobes (MTLs), and specifically the hippocampus. Although the hippocampus has been proposed to play a key role in episodic prospection, recent evidence suggests that it may not play a similar role in semantic prospection. To examine this possibility, amnesic patients with MTL lesions were asked to imagine future issues occurring in the public domain. The results showed that patients could list general semantic facts about the future, but when probed to elaborate, patients produced impoverished descriptions that lacked semantic detail. This impairment occurred despite intact performance on standard neuropsychological tests of semantic processing and did not simply reflect deficits in narrative construction. The performance of a patient with damage limited to the hippocampus was similar to that of the remaining patients with MTL lesions and amnesic patients' impaired elaboration of the semantic future correlated with their impaired elaboration of the semantic past. Together, these results provide novel evidence from MTL amnesia that memory and prospection are linked in the semantic domain and reveal that the MTLs play a critical role in the construction of detailed, multi-element semantic simulations. PMID:23197413

  4. Insights on the Neuromagnetic Representation of Temporal Asymmetry in Human Auditory Cortex.

    PubMed

    Tabas, Alejandro; Siebert, Anita; Supek, Selma; Pressnitzer, Daniel; Balaguer-Ballester, Emili; Rupp, André

    2016-01-01

    Communication sounds are typically asymmetric in time and human listeners are highly sensitive to this short-term temporal asymmetry. Nevertheless, causal neurophysiological correlates of auditory perceptual asymmetry remain largely elusive to our current analyses and models. Auditory modelling and animal electrophysiological recordings suggest that perceptual asymmetry results from the presence of multiple time scales of temporal integration, central to the auditory periphery. To test this hypothesis we recorded auditory evoked fields (AEF) elicited by asymmetric sounds in humans. We found a strong correlation between perceived tonal salience of ramped and damped sinusoids and the AEFs, as quantified by the amplitude of the N100m dynamics. The N100m amplitude increased with stimulus half-life time, showing a maximum difference between the ramped and damped stimulus for a modulation half-life time of 4 ms which is greatly reduced at 0.5 ms and 32 ms. This behaviour of the N100m closely parallels psychophysical data in a manner that: i) longer half-life times are associated with a stronger tonal percept, and ii) perceptual differences between damped and ramped are maximal at 4 ms half-life time. Interestingly, differences in evoked fields were significantly stronger in the right hemisphere, indicating some degree of hemispheric specialisation. Furthermore, the N100m magnitude was successfully explained by a pitch perception model using multiple scales of temporal integration of auditory nerve activity patterns. This striking correlation between AEFs, perception, and model predictions suggests that the physiological mechanisms involved in the processing of pitch evoked by temporal asymmetric sounds are reflected in the N100m. PMID:27096960

  5. Insights on the Neuromagnetic Representation of Temporal Asymmetry in Human Auditory Cortex

    PubMed Central

    Siebert, Anita; Supek, Selma; Pressnitzer, Daniel; Balaguer-Ballester, Emili; Rupp, André

    2016-01-01

    Communication sounds are typically asymmetric in time and human listeners are highly sensitive to this short-term temporal asymmetry. Nevertheless, causal neurophysiological correlates of auditory perceptual asymmetry remain largely elusive to our current analyses and models. Auditory modelling and animal electrophysiological recordings suggest that perceptual asymmetry results from the presence of multiple time scales of temporal integration, central to the auditory periphery. To test this hypothesis we recorded auditory evoked fields (AEF) elicited by asymmetric sounds in humans. We found a strong correlation between perceived tonal salience of ramped and damped sinusoids and the AEFs, as quantified by the amplitude of the N100m dynamics. The N100m amplitude increased with stimulus half-life time, showing a maximum difference between the ramped and damped stimulus for a modulation half-life time of 4 ms which is greatly reduced at 0.5 ms and 32 ms. This behaviour of the N100m closely parallels psychophysical data in a manner that: i) longer half-life times are associated with a stronger tonal percept, and ii) perceptual differences between damped and ramped are maximal at 4 ms half-life time. Interestingly, differences in evoked fields were significantly stronger in the right hemisphere, indicating some degree of hemispheric specialisation. Furthermore, the N100m magnitude was successfully explained by a pitch perception model using multiple scales of temporal integration of auditory nerve activity patterns. This striking correlation between AEFs, perception, and model predictions suggests that the physiological mechanisms involved in the processing of pitch evoked by temporal asymmetric sounds are reflected in the N100m. PMID:27096960

  6. Lesions to Lateral Prefrontal Cortex Impair Lexical Interference Control in Word Production

    PubMed Central

    Piai, Vitória; Riès, Stéphanie K.; Swick, Diane

    2016-01-01

    Speaking is an action that requires control, for example, to prevent interference from distracting or competing information present in the speaker’s environment. Control over task performance is thought to depend on the lateral prefrontal cortex (PFC). However, the neuroimaging literature does not show a consistent relation between left PFC and interference control in word production. Here, we examined the role of left PFC in interference control in word production by testing six patients with lesions to left PFC (centered around the ventrolateral PFC) on a control-demanding task. Patients and age-matched controls named pictures presented along with distractor words, inducing within-trial interference effects. We varied the degree of competing information from distractors to increase the need for interference control. Distractors were semantically related, phonologically related, unrelated to the picture name, or neutral (XXX). Both groups showed lexical interference (slower responses with unrelated than neutral distractors), reflecting naming difficulty in the presence of competing linguistic information. Relative to controls, all six left PFC patients had larger lexical interference effects. By contrast, patients did not show a consistent semantic interference effect (reflecting difficulty in selecting amongst semantic competitors) whereas the controls did. This suggests different control mechanisms may be engaged in semantic compared to lexical interference resolution in this paradigm. Finally, phonological facilitation (faster responses with phonological than unrelated distractors) was larger in patients than in controls. These findings suggest that the lateral PFC is a necessary structure in providing control over lexical interference in word production, possibly through an early attentional blocking mechanism. By contrast, the left PFC does not seem critical in semantic interference resolution in the picture-word interference paradigm. PMID:26834614

  7. Lesions to Lateral Prefrontal Cortex Impair Lexical Interference Control in Word Production.

    PubMed

    Piai, Vitória; Riès, Stéphanie K; Swick, Diane

    2015-01-01

    Speaking is an action that requires control, for example, to prevent interference from distracting or competing information present in the speaker's environment. Control over task performance is thought to depend on the lateral prefrontal cortex (PFC). However, the neuroimaging literature does not show a consistent relation between left PFC and interference control in word production. Here, we examined the role of left PFC in interference control in word production by testing six patients with lesions to left PFC (centered around the ventrolateral PFC) on a control-demanding task. Patients and age-matched controls named pictures presented along with distractor words, inducing within-trial interference effects. We varied the degree of competing information from distractors to increase the need for interference control. Distractors were semantically related, phonologically related, unrelated to the picture name, or neutral (XXX). Both groups showed lexical interference (slower responses with unrelated than neutral distractors), reflecting naming difficulty in the presence of competing linguistic information. Relative to controls, all six left PFC patients had larger lexical interference effects. By contrast, patients did not show a consistent semantic interference effect (reflecting difficulty in selecting amongst semantic competitors) whereas the controls did. This suggests different control mechanisms may be engaged in semantic compared to lexical interference resolution in this paradigm. Finally, phonological facilitation (faster responses with phonological than unrelated distractors) was larger in patients than in controls. These findings suggest that the lateral PFC is a necessary structure in providing control over lexical interference in word production, possibly through an early attentional blocking mechanism. By contrast, the left PFC does not seem critical in semantic interference resolution in the picture-word interference paradigm. PMID:26834614

  8. Temporal Dynamics of L5 Dendrites in Medial Prefrontal Cortex Regulate Integration Versus Coincidence Detection of Afferent Inputs

    PubMed Central

    Zemelman, Boris V.; Johnston, Daniel

    2015-01-01

    Distinct brain regions are highly interconnected via long-range projections. How this inter-regional communication occurs depends not only upon which subsets of postsynaptic neurons receive input, but also, and equally importantly, upon what cellular subcompartments the projections target. Neocortical pyramidal neurons receive input onto their apical dendrites. However, physiological characterization of these inputs thus far has been exclusively somatocentric, leaving how the dendrites respond to spatial and temporal patterns of input unexplored. Here we used a combination of optogenetics with multisite electrode recordings to simultaneously measure dendritic and somatic responses to afferent fiber activation in two different populations of layer 5 (L5) pyramidal neurons in the rat medial prefrontal cortex (mPFC). We found that commissural inputs evoked monosynaptic responses in both intratelencephalic (IT) and pyramidal tract (PT) dendrites, whereas monosynaptic hippocampal input primarily targeted IT, but not PT, dendrites. To understand the role of dendritic integration in the processing of long-range inputs, we used dynamic clamp to simulate synaptic currents in the dendrites. IT dendrites functioned as temporal integrators that were particularly responsive to dendritic inputs within the gamma frequency range (40–140 Hz). In contrast, PT dendrites acted as coincidence detectors by responding to spatially distributed signals within a narrow time window. Thus, the PFC extracts information from different brain regions through the combination of selective dendritic targeting and the distinct dendritic physiological properties of L5 pyramidal dendrites. PMID:25788669

  9. Temporal encoding precision of bat auditory neurons tuned to target distance deteriorates on the way to the cortex.

    PubMed

    Macías, Silvio; Hechavarría, Julio C; Kössl, Manfred

    2016-03-01

    During echolocation, bats estimate distance to avoid obstacles and capture moving prey. The primary distance cue is the delay between the bat's emitted echolocation pulse and the return of an echo. In the bat's auditory system, echo delay-tuned neurons that only respond to pulse-echo pairs having a specific echo delay serve target distance calculation. Accurate prey localization should benefit from the spike precision in such neurons. Here we show that delay-tuned neurons in the inferior colliculus of the mustached bat respond with higher temporal precision, shorter latency and shorter response duration than those of the auditory cortex. Based on these characteristics, we suggest that collicular neurons are best suited for a fast and accurate response that could lead to fast behavioral reactions while cortical neurons, with coarser temporal precision and longer latencies and response durations could be more appropriate for integrating acoustic information over time. The latter could be important for the formation of biosonar images. PMID:26785850

  10. Unilateral Resection of the Anterior Medial Temporal Lobe Impairs Odor Identification and Valence Perception

    PubMed Central

    Juran, Stephanie A.; Lundström, Johan N.; Geigant, Michael; Kumlien, Eva; Fredrikson, Mats; Åhs, Fredrik; Olsson, Mats J.

    2016-01-01

    The anterior medial temporal lobe (TL), including the amygdala, has been implicated in olfactory processing, e.g., coding for intensity and valence, and seems also involved in memory. With this background, the present study evaluated whether anterior medial TL-resections in TL epilepsy affected intensity and valence ratings, as well as free and cued identification of odors. These aspects of odor perception were assessed in 31 patients with unilateral anterior medial TL-resections (17 left, 14 right) and 16 healthy controls. Results suggest that the anterior medial TL is in particular necessary for free, but also cued, odor identification. TL resection was also found to impair odor valence, but not intensity ratings. Left resected patients rated nominally pleasant and unpleasant odors as more neutral suggesting a special role for the left anterior TL in coding for emotional saliency in response to odors. PMID:26779109

  11. Recovery from adaptation to facial identity is larger for upright than inverted faces in the human occipito-temporal cortex.

    PubMed

    Mazard, Angelique; Schiltz, Christine; Rossion, Bruno

    2006-01-01

    Human faces look more similar to each other when they are presented upside-down, leading to an increase of error rates and response times during individual face discrimination tasks. Here we used functional magnetic resonance imaging (fMRI) to test the hypothesis that this perceived similarity leads to a lower recovery from identity adaptation for inverted faces than for upright faces in face-sensitive areas of the occipito-temporal cortex. Ten subjects were presented with blocks of upright and inverted faces, with the same face identity repeated consecutively in half of the blocks, and different facial identities repeated in the other blocks. When face stimuli were presented upright, the percent signal change in the bilateral middle fusiform gyrus (MFG) was larger for different faces as compared to same faces, replicating previous observations of a recovery from facial identity adaptation in this region. However, there was no significant recovery from adaptation when different inverted faces were presented. Most interestingly, the difference in activation between upright and inverted faces increased progressively during a block when different facial identities were presented. A similar pattern of activation was found in the left middle fusiform gyrus, but was less clear-cut in bilateral face-sensitive areas of the inferior occipital cortex. These findings show that the differential level of activation to upright and inverted faces in the fusiform gyrus is mainly due to a difference in recovery from adaptation, and they explain the discrepancies in the results reported in previous fMRI studies which compared the processing of upright and inverted faces. The lack of recovery from adaptation for inverted faces in the fusiform gyrus may underlie the face inversion effect (FIE), which takes place during perceptual encoding of individual face representations. PMID:16229867

  12. Wideband phase locking to modulated whisker vibration point to a temporal code for texture in the rat's barrel cortex.

    PubMed

    Ewert, Tobias A S; Möller, Johannes; Engel, Andreas K; Vahle-Hinz, Christiane

    2015-10-01

    Rats probe objects with their whiskers and make decisions about sizes, shapes, textures and distances within a few tens of milliseconds. This perceptual analysis requires the processing of tactile high-frequency object components reflecting surface roughness. We have shown that neurons in the barrel cortex of rats encode high-frequency sinusoidal vibrations of whiskers for sustained periods when presented with constant amplitudes and frequencies. In a natural situation, however, stimulus parameters change rapidly when whiskers are brushing across objects. In this study, we therefore analysed cortical responses to vibratory movements of single whiskers with rapidly changing amplitudes and frequencies. The results show that different neural codes are employed for a processing of stimulus parameters. The frequency of whisker vibration is encoded by the temporal pattern of spike discharges, i.e., the phase-locked responses of barrel cortex neurons. In addition, oscillatory gamma band activity was induced during high-frequency stimulation. The pivotal descriptor of the amplitude of whisker displacement, the velocity, is reflected in the rate of spike discharges. While phase-locked discharges occurred over the entire range of frequencies tested (10-600 Hz), the discharge rate increased with stimulus velocity only up to about 60 µm/ms, saturating at a mean rate of ~117 spikes/s. In addition, the results show that whisker movements of more than 500 Hz bandwidth may be encoded by phase-locked responses of small groups of cortical neurons. Thus, even single whiskers may transmit information about wide ranges of textural components owing to their set of different types of hair follicle mechanoreceptors.

  13. Matching categorical object representations in inferior temporal cortex of man and monkey.

    PubMed

    Kriegeskorte, Nikolaus; Mur, Marieke; Ruff, Douglas A; Kiani, Roozbeh; Bodurka, Jerzy; Esteky, Hossein; Tanaka, Keiji; Bandettini, Peter A

    2008-12-26

    Inferior temporal (IT) object representations have been intensively studied in monkeys and humans, but representations of the same particular objects have never been compared between the species. Moreover, IT's role in categorization is not well understood. Here, we presented monkeys and humans with the same images of real-world objects and measured the IT response pattern elicited by each image. In order to relate the representations between the species and to computational models, we compare response-pattern dissimilarity matrices. IT response patterns form category clusters, which match between man and monkey. The clusters correspond to animate and inanimate objects; within the animate objects, faces and bodies form subclusters. Within each category, IT distinguishes individual exemplars, and the within-category exemplar similarities also match between the species. Our findings suggest that primate IT across species may host a common code, which combines a categorical and a continuous representation of objects. PMID:19109916

  14. Extensive Gustatory Cortex Lesions Significantly Impair Taste Sensitivity to KCl and Quinine but Not to Sucrose in Rats.

    PubMed

    Bales, Michelle B; Schier, Lindsey A; Blonde, Ginger D; Spector, Alan C

    2015-01-01

    Recently, we reported that large bilateral gustatory cortex (GC) lesions significantly impair taste sensitivity to salts in rats. Here we extended the tastants examined to include sucrose and quinine in rats with ibotenic acid-induced lesions in GC (GCX) and in sham-operated controls (SHAM). Presurgically, immediately after drinking NaCl, rats received a LiCl or saline injection (i.p.), but postsurgical tests indicated a weak conditioned taste aversion (CTA) even in controls. The rats were then trained and tested in gustometers to discriminate a tastant from water in a two-response operant taste detection task. Psychometric functions were derived for sucrose, KCl, and quinine. Our mapping system was used to determine placement, size, and symmetry of the lesions (~91% GC damage on average). For KCl, there was a significant rightward shift (ΔEC50 = 0.57 log10 units; p<0.001) in the GCX psychometric function relative to SHAM, replicating our prior work. There was also a significant lesion-induced impairment (ΔEC50 = 0.41 log10 units; p = 0.006) in quinine sensitivity. Surprisingly, taste sensitivity to sucrose was unaffected by the extensive lesions and was comparable between GCX and SHAM rats. The fact that such large bilateral GC lesions did not shift sucrose psychometric functions relative to SHAM, but did significantly compromise quinine and KCl sensitivity suggests that the neural circuits responsible for the detection of specific taste stimuli are partially dissociable. Lesion-induced impairments were observed in expression of a postsurgical CTA to a maltodextrin solution as assessed in a taste-oriented brief-access test, but were not reflected in a longer term 46-h two-bottle test. Thus, deficits observed in rats after extensive damage to the GC are also dependent on the test used to assess taste function. In conclusion, the degree to which the GC is necessary for the maintenance of normal taste detectability apparently depends on the chemical and

  15. Extensive Gustatory Cortex Lesions Significantly Impair Taste Sensitivity to KCl and Quinine but Not to Sucrose in Rats.

    PubMed

    Bales, Michelle B; Schier, Lindsey A; Blonde, Ginger D; Spector, Alan C

    2015-01-01

    Recently, we reported that large bilateral gustatory cortex (GC) lesions significantly impair taste sensitivity to salts in rats. Here we extended the tastants examined to include sucrose and quinine in rats with ibotenic acid-induced lesions in GC (GCX) and in sham-operated controls (SHAM). Presurgically, immediately after drinking NaCl, rats received a LiCl or saline injection (i.p.), but postsurgical tests indicated a weak conditioned taste aversion (CTA) even in controls. The rats were then trained and tested in gustometers to discriminate a tastant from water in a two-response operant taste detection task. Psychometric functions were derived for sucrose, KCl, and quinine. Our mapping system was used to determine placement, size, and symmetry of the lesions (~91% GC damage on average). For KCl, there was a significant rightward shift (ΔEC50 = 0.57 log10 units; p<0.001) in the GCX psychometric function relative to SHAM, replicating our prior work. There was also a significant lesion-induced impairment (ΔEC50 = 0.41 log10 units; p = 0.006) in quinine sensitivity. Surprisingly, taste sensitivity to sucrose was unaffected by the extensive lesions and was comparable between GCX and SHAM rats. The fact that such large bilateral GC lesions did not shift sucrose psychometric functions relative to SHAM, but did significantly compromise quinine and KCl sensitivity suggests that the neural circuits responsible for the detection of specific taste stimuli are partially dissociable. Lesion-induced impairments were observed in expression of a postsurgical CTA to a maltodextrin solution as assessed in a taste-oriented brief-access test, but were not reflected in a longer term 46-h two-bottle test. Thus, deficits observed in rats after extensive damage to the GC are also dependent on the test used to assess taste function. In conclusion, the degree to which the GC is necessary for the maintenance of normal taste detectability apparently depends on the chemical and

  16. Extensive Gustatory Cortex Lesions Significantly Impair Taste Sensitivity to KCl and Quinine but Not to Sucrose in Rats

    PubMed Central

    Bales, Michelle B.; Schier, Lindsey A.; Blonde, Ginger D.; Spector, Alan C.

    2015-01-01

    Recently, we reported that large bilateral gustatory cortex (GC) lesions significantly impair taste sensitivity to salts in rats. Here we extended the tastants examined to include sucrose and quinine in rats with ibotenic acid-induced lesions in GC (GCX) and in sham-operated controls (SHAM). Presurgically, immediately after drinking NaCl, rats received a LiCl or saline injection (i.p.), but postsurgical tests indicated a weak conditioned taste aversion (CTA) even in controls. The rats were then trained and tested in gustometers to discriminate a tastant from water in a two-response operant taste detection task. Psychometric functions were derived for sucrose, KCl, and quinine. Our mapping system was used to determine placement, size, and symmetry of the lesions (~91% GC damage on average). For KCl, there was a significant rightward shift (ΔEC50 = 0.57 log10 units; p<0.001) in the GCX psychometric function relative to SHAM, replicating our prior work. There was also a significant lesion-induced impairment (ΔEC50 = 0.41 log10 units; p = 0.006) in quinine sensitivity. Surprisingly, taste sensitivity to sucrose was unaffected by the extensive lesions and was comparable between GCX and SHAM rats. The fact that such large bilateral GC lesions did not shift sucrose psychometric functions relative to SHAM, but did significantly compromise quinine and KCl sensitivity suggests that the neural circuits responsible for the detection of specific taste stimuli are partially dissociable. Lesion-induced impairments were observed in expression of a postsurgical CTA to a maltodextrin solution as assessed in a taste-oriented brief-access test, but were not reflected in a longer term 46-h two-bottle test. Thus, deficits observed in rats after extensive damage to the GC are also dependent on the test used to assess taste function. In conclusion, the degree to which the GC is necessary for the maintenance of normal taste detectability apparently depends on the chemical and

  17. The cognitive profile of occipital lobe epilepsy and the selective association of left temporal lobe hypometabolism with verbal memory impairment.

    PubMed

    Knopman, Alex A; Wong, Chong H; Stevenson, Richard J; Homewood, Judi; Mohamed, Armin; Somerville, Ernest; Eberl, Stefan; Wen, Lingfeng; Fulham, Michael; Bleasel, Andrew F

    2014-08-01

    We investigated the cognitive profile of structural occipital lobe epilepsy (OLE) and whether verbal memory impairment is selectively associated with left temporal lobe hypometabolism on [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET). Nine patients with OLE, ages 8-29 years, completed presurgical neuropsychological assessment. Composite measures were calculated for intelligence quotient (IQ), speed, attention, verbal memory, nonverbal memory, and executive functioning. In addition, the Wisconsin Card Sorting Test (WCST) was used as a specific measure of frontal lobe functioning. Presurgical FDG-PET was analyzed with statistical parametric mapping in 8 patients relative to 16 healthy volunteers. Mild impairments were evident for IQ, speed, attention, and executive functioning. Four patients demonstrated moderate or severe verbal memory impairment. Temporal lobe hypometabolism was found in seven of eight patients. Poorer verbal memory was associated with left temporal lobe hypometabolism (p = 0.002), which was stronger (p = 0.03 and p = 0.005, respectively) than the association of left temporal lobe hypometabolism with executive functioning or with performance on the WCST. OLE is associated with widespread cognitive comorbidity, suggesting cortical dysfunction beyond the occipital lobe. Verbal memory impairment is selectively associated with left temporal lobe hypometabolism in OLE, supporting a link between neuropsychological dysfunction and remote hypometabolism in focal epilepsy.

  18. Impaired naming of famous musical melodies is associated with left temporal polar damage

    PubMed Central

    Belfi, Amy M.; Tranel, Daniel

    2014-01-01

    Objective Previous research has shown that damage to the left temporal pole (LTP) is associated with impaired retrieval of words for unique entities, including names of famous people and landmarks. However, it is not known whether retrieving names for famous melodies is associated with the LTP. The aim of this study was to investigate the hypothesis that damage to the LTP would be associated with impaired naming of famous musical melodies. Method A Melody Naming Test was administered to patients with LTP damage, brain damaged comparison (BDC) patients, and normal comparison participants (NC). The test included various well known melodies (e.g., “Pop Goes the Weasel”). After hearing each melody, participants were asked to rate their familiarity with the melody and identify it by name. Results LTP patients named significantly fewer melodies than BDC and NC participants. Recognition of melodies did not differ significantly between groups. Conclusions The findings suggest that LTP supports retrieval of names for famous melodies. More broadly, these results extend support for the theoretical notion that LTP is important for retrieving proper names for unique concepts, irrespectively of stimulus modality or category. PMID:24364392

  19. Spectral vs. temporal auditory processing in specific language impairment: a developmental ERP study.

    PubMed

    Ceponiene, R; Cummings, A; Wulfeck, B; Ballantyne, A; Townsend, J

    2009-09-01

    Pre-linguistic sensory deficits, especially in "temporal" processing, have been implicated in developmental language impairment (LI). However, recent evidence has been equivocal with data suggesting problems in the spectral domain. The present study examined event-related potential (ERP) measures of auditory sensory temporal and spectral processing, and their interaction, in typical children and those with LI (7-17 years; n=25 per group). The stimuli were three CV syllables and three consonant-to-vowel transitions (spectral sweeps) isolated from the syllables. Each of these six stimuli appeared in three durations (transitions: 20, 50, and 80 ms; syllables: 120, 150, and 180 ms). Behaviorally, the group with LIs showed inferior syllable discrimination both with long and short stimuli. In ERPs, trends were observed in the group with LI for diminished long-latency negativities (the N2-N4 peaks) and a developmentally transient enhancement of the P2 peak. Some, but not all, ERP indices of spectral processing also showed trends to be diminished in the group with LI specifically in responses to syllables. Importantly, measures of the transition N2-N4 peaks correlated with expressive language abilities in the LI children. None of the group differences depended on stimulus duration. Therefore, sound brevity did not account for the diminished spectral resolution in these LI children. Rather, the results suggest a deficit in acoustic feature integration at higher levels of auditory sensory processing. The observed maturational trajectory suggests a non-linear developmental deviance rather than simple delay. PMID:19457549

  20. Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. I. Stimulus-response relations.

    PubMed

    Richmond, B J; Optican, L M; Spitzer, H

    1990-08-01

    1. Previously we developed a new approach for investigating visual system neuronal activity in which single neurons are considered to be communication channels transmitting stimulus-dependent codes in their responses. Application of this approach to the stimulus-response relations of inferior temporal (IT) neurons showed that these carry stimulus-dependent information in the temporal modulation as well as in the strength of their responses. IT cortex is a late station in the visual processing stream. Presumably the neuronal properties arise from the properties of the inputs. However, the discovery that IT neuronal spike trains transmit information in stimulus-dependent temporally modulated codes could not be assumed to be true for those earlier stations, so the techniques used in the earlier study were applied to single-striate cortical neurons in the studies reported here. 2. Single-striate cortical neurons were recorded from three awake, fixating rhesus monkeys. The neurons were stimulated by two sets of patterns. The first set was made up of 128 black-and-white patterns based on a complete, orthogonal set of two-dimensional Walsh-Hadamard functions. These stimuli appear as combinations of black-and-white rectangles and squares, and they fully span the range of all possible black-and-white pictures that can be constructed in an 8 x 8 grid. Except for the stimulus that appeared as an all-white or all-black square, each stimulus had equal areas of white and black. The second stimulus set was made up of single bars constructed in the same 8 x 8 grid as the Walsh stimuli. These were presented both as black against a gray background and white against a gray background. The stimuli were centered on the receptive field, and each member of the stimulus set was presented once before any stimulus appeared again. 3. The responses of 21 striate cortical neurons were recorded and analyzed. Two were identified as simple cells and the other 19 as complex cells according to the

  1. Selective Attention to Semantic and Syntactic Features Modulates Sentence Processing Networks in Anterior Temporal Cortex

    PubMed Central

    Rogalsky, Corianne

    2009-01-01

    Numerous studies have identified an anterior temporal lobe (ATL) region that responds preferentially to sentence-level stimuli. It is unclear, however, whether this activity reflects a response to syntactic computations or some form of semantic integration. This distinction is difficult to investigate with the stimulus manipulations and anomaly detection paradigms traditionally implemented. The present functional magnetic resonance imaging study addresses this question via a selective attention paradigm. Subjects monitored for occasional semantic anomalies or occasional syntactic errors, thus directing their attention to semantic integration, or syntactic properties of the sentences. The hemodynamic response in the sentence-selective ATL region (defined with a localizer scan) was examined during anomaly/error-free sentences only, to avoid confounds due to error detection. The majority of the sentence-specific region of interest was equally modulated by attention to syntactic or compositional semantic features, whereas a smaller subregion was only modulated by the semantic task. We suggest that the sentence-specific ATL region is sensitive to both syntactic and integrative semantic functions during sentence processing, with a smaller portion of this area preferentially involved in the later. This study also suggests that selective attention paradigms may be effective tools to investigate the functional diversity of networks involved in sentence processing. PMID:18669589

  2. Maternal Loss of Ube3a Impairs Experience-Driven Dendritic Spine Maintenance in the Developing Visual Cortex

    PubMed Central

    Kim, Hyojin; Kunz, Portia A.; Mooney, Richard

    2016-01-01

    Dendritic spines are a morphological feature of the majority of excitatory synapses in the mammalian neocortex and are motile structures with shapes and lifetimes that change throughout development. Proper cortical development and function, including cortical contributions to learning and memory formation, require appropriate experience-dependent dendritic spine remodeling. Dendritic spine abnormalities have been reported for many neurodevelopmental disorders, including Angelman syndrome (AS), which is caused by the loss of the maternally inherited UBE3A allele (encoding ubiquitin protein ligase E3A). Prior studies revealed that UBE3A protein loss leads to reductions in dendritic spine density and diminished excitatory synaptic transmission. However, the decrease in spine density could come from either a reduction in spine formation or an increase in spine elimination. Here, we used acute and longitudinal in vivo two-photon microscopy to investigate developmental and experience-dependent changes in the numbers, dynamics, and morphology of layer 5 pyramidal neuron apical dendritic spines in the primary visual cortex of control and AS model mice (Ube3am−/p+ mice). We found that neurons in AS model mice undergo a greater elimination of dendritic spines than wild-type mice during the end of the first postnatal month. However, when raised in darkness, spine density and dynamics were indistinguishable between control and AS model mice, which indicates that decreased spine density in AS model mice reflects impaired experience-driven spine maintenance. Our data thus demonstrate an experience-dependent anatomical substrate by which the loss of UBE3A reduces dendritic spine density and disrupts cortical circuitry. SIGNIFICANCE STATEMENT Reduced dendritic spine densities are common in the neurodevelopmental disorder Angelman syndrome (AS). Because prior reports were based on postmortem tissue, it was unknown whether this anatomical deficit arises from decreased spine

  3. From sensorimotor learning to memory cells in prefrontal and temporal association cortex: a neurocomputational study of disembodiment.

    PubMed

    Pulvermüller, Friedemann; Garagnani, Max

    2014-08-01

    Memory cells, the ultimate neurobiological substrates of working memory, remain active for several seconds and are most commonly found in prefrontal cortex and higher multisensory areas. However, if correlated activity in "embodied" sensorimotor systems underlies the formation of memory traces, why should memory cells emerge in areas distant from their antecedent activations in sensorimotor areas, thus leading to "disembodiment" (movement away from sensorimotor systems) of memory mechanisms? We modelled the formation of memory circuits in six-area neurocomputational architectures, implementing motor and sensory primary, secondary and higher association areas in frontotemporal cortices along with known between-area neuroanatomical connections. Sensorimotor learning driven by Hebbian neuroplasticity led to formation of cell assemblies distributed across the different areas of the network. These action-perception circuits (APCs) ignited fully when stimulated, thus providing a neural basis for long-term memory (LTM) of sensorimotor information linked by learning. Subsequent to ignition, activity vanished rapidly from APC neurons in sensorimotor areas but persisted in those in multimodal prefrontal and temporal areas. Such persistent activity provides a mechanism for working memory for actions, perceptions and symbols, including short-term phonological and semantic storage. Cell assembly ignition and "disembodied" working memory retreat of activity to multimodal areas are documented in the neurocomputational models' activity dynamics, at the level of single cells, circuits, and cortical areas. Memory disembodiment is explained neuromechanistically by APC formation and structural neuroanatomical features of the model networks, especially the central role of multimodal prefrontal and temporal cortices in bridging between sensory and motor areas. These simulations answer the "where" question of cortical working memory in terms of distributed APCs and their inner structure

  4. Temporal Lobe Epilepsy Induces Intrinsic Alterations in Na Channel Gating in Layer II Medial Entorhinal Cortex Neurons

    PubMed Central

    Hargus, Nicholas J.; Merrick, Ellen C.; Nigam, Aradhya; Kalmar, Christopher L.; Baheti, Aparna R.; Bertram, Edward H.; Patel, Manoj K.

    2010-01-01

    Temporal lobe epilepsy (TLE) is the most common form of adult epilepsy involving the limbic structures of the temporal lobe. Layer II neurons of the entorhinal cortex (EC) form the major excitatory input into the hippocampus via the perforant path and consist of non-stellate and stellate neurons. These neurons are spared and hyper-excitable in TLE. The basis for the hyper-excitability is likely multifactorial and may include alterations in intrinsic properties. In a rat model of TLE, medial EC (mEC) non-stellate and stellate neurons had significantly higher action potential (AP) firing frequencies than in control. The increase remained in the presence of synaptic blockers, suggesting intrinsic mechanisms. Since sodium (Na) channels play a critical role in AP generation and conduction we sought to determine if Na channel gating parameters and expression levels were altered in TLE. Na channel currents recorded from isolated mEC TLE neurons revealed increased Na channel conductances, depolarizing shifts in inactivation parameters and larger persistent (INaP) and resurgent (INaR) Na currents. Immunofluorescence experiments revealed increased staining of Nav1.6 within the axon initial segment and Nav1.2 within the cell bodies of mEC TLE neurons. These studies provide support for additional intrinsic alterations within mEC layer II neurons in TLE and implicate alterations in Na channel activity and expression, in part, for establishing the profound increase in intrinsic membrane excitability of mEC layer II neurons in TLE. These intrinsic changes, together with changes in the synaptic network, could support seizure activity in TLE. PMID:20946956

  5. Alterations in functional connectivity between the hippocampus and prefrontal cortex as a correlate of depressive symptoms in temporal lobe epilepsy.

    PubMed

    Kemmotsu, Nobuko; Kucukboyaci, N Erkut; Cheng, Christopher E; Girard, Holly M; Tecoma, Evelyn S; Iragui, Vicente J; McDonald, Carrie R

    2013-12-01

    Depression is a common comorbidity in temporal lobe epilepsy (TLE) that is thought to have a neurobiological basis. This study investigated the functional connectivity (FC) of medial temporal networks in depression symptomatology of TLE and the relative contribution of structural versus FC measures. Volumetric MRI and functional connectivity MRI (fcMRI) were performed on nineteen patients with TLE and 20 controls. The hippocampi and amygdalae were selected as seeds, and five prefrontal and five cingulate regions of interest (ROIs) were selected as targets. Low-frequency blood-oxygen-level-dependent signals were isolated from fcMRI data, and ROIs with synchronous signal fluctuations with the seeds were identified. Depressive symptoms were measured by the Beck Depression Inventory-II. The patients with TLE showed greater ipsilateral hippocampal atrophy (HA) and reduced FC between the ipsilateral hippocampus and the ventral posterior cingulate cortex (vPCC). Neither HA nor hippocampal-vPCC FC asymmetry was a robust contributor to depressive symptoms. Rather, hippocampal-anterior prefrontal FC was a stronger contributor to depressive symptoms in left TLE (LTLE). Conversely, right amygdala FC was correlated with depressive symptoms in both patient groups, with a positive and negative correlation in LTLE and right TLE (RTLE), respectively. Frontolimbic network dysfunction is a strong contributor to levels of depressive symptoms in TLE and a better contributor than HA in LTLE. In addition, the right amygdala may play a role in depression symptomatology regardless of the side of the epileptogenic focus. These findings may inform the treatment of depressive symptoms in TLE and inspire future research to help guide surgical planning.

  6. Medial perirhinal cortex disambiguates confusable objects.

    PubMed

    Kivisaari, Sasa L; Tyler, Lorraine K; Monsch, Andreas U; Taylor, Kirsten I

    2012-12-01

    Our brain disambiguates the objects in our cluttered visual world seemingly effortlessly, enabling us to understand their significance and to act appropriately. The role of anteromedial temporal structures in this process, particularly the perirhinal cortex, is highly controversial. In some accounts, the perirhinal cortex is necessary for differentiating between perceptually and semantically confusable objects. Other models claim that the perirhinal cortex neither disambiguates perceptually confusable objects nor plays a unique role in semantic processing. One major hurdle to resolving this central debate is the fact that brain damage in human patients typically encompasses large portions of the anteromedial temporal lobe, such that the identification of individual substructures and precise neuroanatomical locus of the functional impairments has been difficult. We tested these competing accounts in patients with Alzheimer's disease with varying degrees of atrophy in anteromedial structures, including the perirhinal cortex. To assess the functional contribution of each anteromedial temporal region separately, we used a detailed region of interest approach. From each participant, we obtained magnetic resonance imaging scans and behavioural data from a picture naming task that contrasted naming performance with living and non-living things as a way of manipulating perceptual and semantic confusability; living things are more similar to one another than non-living things, which have more distinctive features. We manually traced neuroanatomical regions of interest on native-space cortical surface reconstructions to obtain mean thickness estimates for the lateral and medial perirhinal cortex and entorhinal cortex. Mean cortical thickness in each region of interest, and hippocampal volume, were submitted to regression analyses predicting naming performance. Importantly, atrophy of the medial perirhinal cortex, but not lateral perirhinal cortex, entorhinal cortex or

  7. Explaining left lateralization for words in the ventral occipito-temporal cortex

    PubMed Central

    Seghier, Mohamed L; Price, Cathy J

    2011-01-01

    Summary Reading is a uniquely human task and therefore any sign that neuronal activation is specific to reading has been of considerable interest. One intriguing observation is that ventral occipito-temporal (vOT) activation is more strongly left lateralized for written words than other visual stimuli. This has contributed to claims that left vOT plays a special role in reading. Here, we investigated whether left lateralized vOT responses for words were the consequence of visual feature processing, visual word form selectivity or higher level language processing. Using fMRI in 82 skilled readers, our paradigm compared activation and lateralization for words and non-linguistic stimuli during different tasks. We found that increased left lateralization for words relative to pictures was the consequence of reduced activation in right vOT rather than increased activation in left vOT. We also found that the determinants of lateralization varied with the subregion of vOT tested. In posterior vOT, lateralization depended on the spatial frequency of the visual inputs. In anterior vOT, lateralization depended on the semantic demands of the task. In middle vOT, lateralization depended on a combination of visual expertise in the right hemisphere and semantics in the left hemisphere. These results have implications for interpreting left lateralized vOT activation during reading. Specifically, left lateralized activation in vOT does not necessarily indicate an increase in left vOT processing but is instead a consequence of decreased right vOT function. Moreover, the determinants of lateralization include both visual and semantic factors depending on the subregion tested. PMID:21994390

  8. Dissociable stages of problem solving (II): first evidence for process-contingent temporal order of activation in dorsolateral prefrontal cortex.

    PubMed

    Ruh, Nina; Rahm, Benjamin; Unterrainer, Josef M; Weiller, Cornelius; Kaller, Christoph P

    2012-10-01

    In a companion study, eye-movement analyses in the Tower of London task (TOL) revealed independent indicators of functionally separable cognitive processes during problem solving, with processes of building up an internal representation of the problem preceding actual planning processes. These results imply that processes of internalization and planning should also be distinguishable in time and space with respect to concomitant brain activation patterns. To investigate this possibility, here we conducted analyses of fMRI data for left and right dorsolateral prefrontal cortex (dlPFC) during problem solving in the TOL task by accounting for the trial-by-trial variability of onsets and durations of the different cognitive processing stages. Comparisons between stimulus-locked and response-locked modeling approaches affirmed that activation in left dlPFC was elicited particularly during early processes of internalization, comprising the extraction of goal information and the generation of an internal problem representation, whereas activation in right dlPFC was predominantly attributable to later processes of mental transformations on this representation, that is planning proper. Thus, present data corroborate the proposal that often observed bilateral dlPFC activation patterns during complex cognitive tasks such as problem solving may reflect functionally and, to some extent, even temporally separable processes with opposing lateralizations.

  9. Bodies are Represented as Wholes Rather Than Their Sum of Parts in the Occipital-Temporal Cortex.

    PubMed

    Brandman, Talia; Yovel, Galit

    2016-02-01

    Behavioral studies suggested that bodies are represented as wholes rather than in a part-based manner. However, neural selectivity for body stimuli is found for both whole bodies and body parts. It is therefore undetermined whether the neural representation of bodies is configural or part-based. We used functional MRI to test the role of first-order configuration on body representation in the human occipital-temporal cortex by comparing the response to a whole body versus the sum of its parts. Results show that body-selective areas, whether defined by selectivity to headless bodies or body parts, preferred whole bodies over their sum of parts and successfully decoded body configuration. This configural representation was specific to body stimuli and not found for faces. In contrast, general object areas showed no preference for wholes over parts and decoded the configuration of both bodies and faces. Finally, whereas effects of inversion on configural face representation were specific to face-selective mechanisms, effects of body inversion were not unique to body-selective mechanisms. We conclude that the neural representation of body parts is strengthened by their arrangement into an intact body, thereby demonstrating a central role of first-order configuration in the neural representation of bodies in their category-selective areas.

  10. The perirhinal cortex and conceptual processing: Effects of feature-based statistics following damage to the anterior temporal lobes

    PubMed Central

    Wright, Paul; Randall, Billi; Clarke, Alex; Tyler, Lorraine K.

    2015-01-01

    The anterior temporal lobe (ATL) plays a prominent role in models of semantic knowledge, although it remains unclear how the specific subregions within the ATL contribute to semantic memory. Patients with neurodegenerative diseases, like semantic dementia, have widespread damage to the ATL thus making inferences about the relationship between anatomy and cognition problematic. Here we take a detailed anatomical approach to ask which substructures within the ATL contribute to conceptual processing, with the prediction that the perirhinal cortex (PRc) will play a critical role for concepts that are more semantically confusable. We tested two patient groups, those with and without damage to the PRc, across two behavioural experiments – picture naming and word–picture matching. For both tasks, we manipulated the degree of semantic confusability of the concepts. By contrasting the performance of the two groups, along with healthy controls, we show that damage to the PRc results in worse performance in processing concepts with higher semantic confusability across both experiments. Further by correlating the degree of damage across anatomically defined regions of interest with performance, we find that PRc damage is related to performance for concepts with increased semantic confusability. Our results show that the PRc supports a necessary and crucial neurocognitve function that enables fine-grained conceptual processes to take place through the resolution of semantic confusability. PMID:25637774

  11. The perirhinal cortex and conceptual processing: Effects of feature-based statistics following damage to the anterior temporal lobes.

    PubMed

    Wright, Paul; Randall, Billi; Clarke, Alex; Tyler, Lorraine K

    2015-09-01

    The anterior temporal lobe (ATL) plays a prominent role in models of semantic knowledge, although it remains unclear how the specific subregions within the ATL contribute to semantic memory. Patients with neurodegenerative diseases, like semantic dementia, have widespread damage to the ATL thus making inferences about the relationship between anatomy and cognition problematic. Here we take a detailed anatomical approach to ask which substructures within the ATL contribute to conceptual processing, with the prediction that the perirhinal cortex (PRc) will play a critical role for concepts that are more semantically confusable. We tested two patient groups, those with and without damage to the PRc, across two behavioural experiments - picture naming and word-picture matching. For both tasks, we manipulated the degree of semantic confusability of the concepts. By contrasting the performance of the two groups, along with healthy controls, we show that damage to the PRc results in worse performance in processing concepts with higher semantic confusability across both experiments. Further by correlating the degree of damage across anatomically defined regions of interest with performance, we find that PRc damage is related to performance for concepts with increased semantic confusability. Our results show that the PRc supports a necessary and crucial neurocognitve function that enables fine-grained conceptual processes to take place through the resolution of semantic confusability.

  12. Patterns of spatio-temporal correlations in the neural activity of the cat motor cortex during trained forelimb movements.

    PubMed

    Ghosh, Soumya; Putrino, David; Burro, Bianca; Ring, Alexander

    2009-06-01

    In order to study how neurons in the primary motor cortex (MI) are dynamically linked together during skilled movement, we recorded simultaneously from many cortical neurons in cats trained to perform a reaching and retrieval task using their forelimbs. Analysis of task-related spike activity in the MI of the hemisphere contralateral to the reaching forelimb (in identified forelimb or hindlimb representations) recorded through chronically implanted microwires, was followed by pairwise evaluation of temporally correlated activity in these neurons during task performance using shuffle corrected cross-correlograms. Over many months of recording, a variety of task-related modulations of neural activities were observed in individual efferent zones. Positively correlated activity (mainly narrow peaks at zero or short latencies) was seen during task performance frequently between neurons recorded within the forelimb representation of MI, rarely within the hindlimb area of MI, and never between forelimb and hindlimb areas. Correlated activity was frequently observed between neurons with different patterns of task-related activity or preferential activity during different task elements (reaching, feeding, etc.), and located in efferent zones with dissimilar representation as defined by intracortical microstimulation. The observed synchronization of action potentials among selected but functionally varied groups of MI neurons possibly reflects dynamic recruitment of network connections between efferent zones during skilled movement.

  13. Auditory Temporal Structure Processing in Dyslexia: Processing of Prosodic Phrase Boundaries Is Not Impaired in Children with Dyslexia

    ERIC Educational Resources Information Center

    Geiser, Eveline; Kjelgaard, Margaret; Christodoulou, Joanna A.; Cyr, Abigail; Gabrieli, John D. E.

    2014-01-01

    Reading disability in children with dyslexia has been proposed to reflect impairment in auditory timing perception. We investigated one aspect of timing perception--"temporal grouping"--as present in prosodic phrase boundaries of natural speech, in age-matched groups of children, ages 6-8 years, with and without dyslexia. Prosodic phrase…

  14. A Pencil Rescues Impaired Performance on a Visual Discrimination Task in Patients with Medial Temporal Lobe Lesions

    ERIC Educational Resources Information Center

    Knutson, Ashley R.; Hopkins, Ramona O.; Squire, Larry R.

    2013-01-01

    We tested proposals that medial temporal lobe (MTL) structures support not just memory but certain kinds of visual perception as well. Patients with hippocampal lesions or larger MTL lesions attempted to identify the unique object among twin pairs of objects that had a high degree of feature overlap. Patients were markedly impaired under the more…

  15. Cognitive and affective theory of mind share the same local patterns of activity in posterior temporal but not medial prefrontal cortex.

    PubMed

    Corradi-Dell'Acqua, Corrado; Hofstetter, Christoph; Vuilleumier, Patrik

    2014-08-01

    Understanding emotions in others engages specific brain regions in temporal and medial prefrontal cortices. These activations are often attributed to more general cognitive 'mentalizing' functions, associated with theory of mind and also necessary to represent people's non-emotional mental states, such as beliefs or intentions. Here, we directly investigated whether understanding emotional feelings recruit similar or specific brain systems, relative to other non-emotional mental states. We used functional magnetic resonance imaging with multivoxel pattern analysis in 46 volunteers to compare activation patterns in theory-of-mind tasks for emotions, relative to beliefs or somatic states accompanied with pain. We found a striking dissociation between the temporoparietal cortex, that exhibited a remarkable voxel-by-voxel pattern overlap between emotions and beliefs (but not pain), and the dorsomedial prefrontal cortex, that exhibited distinct (and yet nearby) patterns of activity during the judgment of beliefs and emotions in others. Pain judgment was instead associated with activity in the supramarginal gyrus, middle cingulate cortex and middle insular cortex. Our data reveal for the first time a functional dissociation within brain networks sub-serving theory of mind for different mental contents, with a common recruitment for cognitive and affective states in temporal regions, and distinct recruitment in prefrontal areas.

  16. Cognitive and affective theory of mind share the same local patterns of activity in posterior temporal but not medial prefrontal cortex

    PubMed Central

    Hofstetter, Christoph; Vuilleumier, Patrik

    2014-01-01

    Understanding emotions in others engages specific brain regions in temporal and medial prefrontal cortices. These activations are often attributed to more general cognitive ‘mentalizing’ functions, associated with theory of mind and also necessary to represent people’s non-emotional mental states, such as beliefs or intentions. Here, we directly investigated whether understanding emotional feelings recruit similar or specific brain systems, relative to other non-emotional mental states. We used functional magnetic resonance imaging with multivoxel pattern analysis in 46 volunteers to compare activation patterns in theory-of-mind tasks for emotions, relative to beliefs or somatic states accompanied with pain. We found a striking dissociation between the temporoparietal cortex, that exhibited a remarkable voxel-by-voxel pattern overlap between emotions and beliefs (but not pain), and the dorsomedial prefrontal cortex, that exhibited distinct (and yet nearby) patterns of activity during the judgment of beliefs and emotions in others. Pain judgment was instead associated with activity in the supramarginal gyrus, middle cingulate cortex and middle insular cortex. Our data reveal for the first time a functional dissociation within brain networks sub-serving theory of mind for different mental contents, with a common recruitment for cognitive and affective states in temporal regions, and distinct recruitment in prefrontal areas. PMID:23770622

  17. Cognitive and affective theory of mind share the same local patterns of activity in posterior temporal but not medial prefrontal cortex.

    PubMed

    Corradi-Dell'Acqua, Corrado; Hofstetter, Christoph; Vuilleumier, Patrik

    2014-08-01

    Understanding emotions in others engages specific brain regions in temporal and medial prefrontal cortices. These activations are often attributed to more general cognitive 'mentalizing' functions, associated with theory of mind and also necessary to represent people's non-emotional mental states, such as beliefs or intentions. Here, we directly investigated whether understanding emotional feelings recruit similar or specific brain systems, relative to other non-emotional mental states. We used functional magnetic resonance imaging with multivoxel pattern analysis in 46 volunteers to compare activation patterns in theory-of-mind tasks for emotions, relative to beliefs or somatic states accompanied with pain. We found a striking dissociation between the temporoparietal cortex, that exhibited a remarkable voxel-by-voxel pattern overlap between emotions and beliefs (but not pain), and the dorsomedial prefrontal cortex, that exhibited distinct (and yet nearby) patterns of activity during the judgment of beliefs and emotions in others. Pain judgment was instead associated with activity in the supramarginal gyrus, middle cingulate cortex and middle insular cortex. Our data reveal for the first time a functional dissociation within brain networks sub-serving theory of mind for different mental contents, with a common recruitment for cognitive and affective states in temporal regions, and distinct recruitment in prefrontal areas. PMID:23770622

  18. The anatomy of semantic knowledge: medial vs. lateral temporal lobe.

    PubMed

    Levy, D A; Bayley, P J; Squire, L R

    2004-04-27

    Semantic knowledge (e.g., long-established knowledge about objects, facts, and word meanings) is known to be severely impaired by damage to the anterolateral temporal lobe. For example, patients with semantic dementia have prominent atrophy in anterolateral temporal cortex and also have significant damage within the medial aspect of the temporal lobe. However, there is uncertainty about the contribution of medial temporal lobe damage, including perirhinal cortex damage, to impaired semantic knowledge. Drawing largely on published material from multiple sources, we compared the performance of severely amnesic patients with large medial temporal lobe lesions and patients with semantic dementia on nine tests of semantic knowledge and two tests of new learning ability. On the tests of semantic knowledge, the amnesic patients performed markedly better than the patients with semantic dementia. By contrast, on the tests of new learning, the patients with semantic dementia performed markedly better than the amnesic patients. We conclude that medial temporal lobe damage impairs the formation of declarative memory, and that semantic knowledge is impaired to the extent that damage extends laterally in the temporal lobe. Reports that the extent of atrophy in perirhinal cortex correlated with the severity of impaired semantic knowledge may be understood by supposing that the extent of damage in many temporal lobe areas is intercorrelated in this progressive disease, and that the extent of atrophy in perirhinal cortex is a proxy for the overall severity of dementia. PMID:15090653

  19. Medial perirhinal cortex disambiguates confusable objects

    PubMed Central

    Tyler, Lorraine K.; Monsch, Andreas U.; Taylor, Kirsten I.

    2012-01-01

    Our brain disambiguates the objects in our cluttered visual world seemingly effortlessly, enabling us to understand their significance and to act appropriately. The role of anteromedial temporal structures in this process, particularly the perirhinal cortex, is highly controversial. In some accounts, the perirhinal cortex is necessary for differentiating between perceptually and semantically confusable objects. Other models claim that the perirhinal cortex neither disambiguates perceptually confusable objects nor plays a unique role in semantic processing. One major hurdle to resolving this central debate is the fact that brain damage in human patients typically encompasses large portions of the anteromedial temporal lobe, such that the identification of individual substructures and precise neuroanatomical locus of the functional impairments has been difficult. We tested these competing accounts in patients with Alzheimer’s disease with varying degrees of atrophy in anteromedial structures, including the perirhinal cortex. To assess the functional contribution of each anteromedial temporal region separately, we used a detailed region of interest approach. From each participant, we obtained magnetic resonance imaging scans and behavioural data from a picture naming task that contrasted naming performance with living and non-living things as a way of manipulating perceptual and semantic confusability; living things are more similar to one another than non-living things, which have more distinctive features. We manually traced neuroanatomical regions of interest on native-space cortical surface reconstructions to obtain mean thickness estimates for the lateral and medial perirhinal cortex and entorhinal cortex. Mean cortical thickness in each region of interest, and hippocampal volume, were submitted to regression analyses predicting naming performance. Importantly, atrophy of the medial perirhinal cortex, but not lateral perirhinal cortex, entorhinal cortex or

  20. A more realistic approach, using dynamic stimuli, to test facial emotion recognition impairment in temporal lobe epilepsy.

    PubMed

    Tanaka, Akihiro; Akamatsu, Naoki; Yamano, Mitsuhiko; Nakagawa, Masanori; Kawamura, Mitsuru; Tsuji, Sadatoshi

    2013-07-01

    To explore potentially impaired social functioning in patients with mesial temporal lobe epilepsy (MTLE), we evaluated facial emotion recognition (FER) using dynamic facial stimuli. We evaluated FER in 88 patients with MTLE, including 25 posttemporal lobectomy (PTL) patients, when they watched videos of actors expressing the six basic emotions of happiness, sadness, anger, fear, surprise, and disgust. Thirty-two healthy subjects were examined as controls. The relationships between task, performance, and neurophysiological and radiological variables potentially affecting the ability to recognize moving facial emotions were examined by multivariate analysis. Both the patients with MTLE and the PTL subset demonstrated significantly impaired FER compared with healthy controls. Of the six emotions, they showed impaired recognition of sadness, fear, and disgust. Facial emotion recognition was impaired in patients with chronic MTLE, particularly those with bilateral damage. Failure to recognize emotional expressions, particularly fear, disgust, and sadness, may contribute to difficulties in social functioning and relationship building.

  1. The ACE inhibitor ( sup 3 H)SQ29,852 identifies a high affinity recognition site located in the human temporal cortex

    SciTech Connect

    Barnes, N.M.; Costall, B.; Egli, P.; Horovitz, Z.P.; Ironside, J.W.; Naylor, R.J.; Williams, T.J. )

    1990-07-01

    The angiotensin converting enzyme (ACE) inhibitor ({sup 3}H)SQ29,852 identified a single high affinity recognition site (defined by 10.0 microM captopril) in the human temporal cortex (pKD 8.62 +/- 0.03; Bmax 248 +/- 24 fmol mg-1 protein, mean +/- S.E.M., n = 4). ACE inhibitors and thiorphan competed to a similar level for the ({sup 3}H)SQ29,852 binding site in the human temporal cortex with a rank order of affinity (pKi values mean +/- S.E.M., n = 3), lisinopril (9.49 +/- 0.02), captopril (9.16 +/- 0.08), SQ29,852 (8.58 +/- 0.04), epicaptopril (7.09 +/- 0.08), fosinopril (7.08 +/- 0.05) and thiorphan (6.40 +/- 0.04). Since this rank order of affinity is similar to the affinity of these compounds to inhibit brain ACE activity it is concluded that ({sup 3}H)SQ29,852 selectively labels the inhibitor recognition site of ACE in the human temporal cortex.

  2. Dysregulation of Autophagy, Mitophagy, and Apoptotic Genes in the Medial Temporal Lobe Cortex in an Ischemic Model of Alzheimer’s Disease

    PubMed Central

    Ułamek-Kozioł, Marzena; Kocki, Janusz; Bogucka-Kocka, Anna; Petniak, Alicja; Gil-Kulik, Paulina; Januszewski, Sławomir; Bogucki, Jacek; Jabłoński, Mirosław; Furmaga-Jabłońska, Wanda; Brzozowska, Judyta; Czuczwar, Stanisław J.; Pluta, Ryszard

    2016-01-01

    Ischemic brain damage is a pathological incident that is often linked with medial temporal lobe cortex injury and finally its atrophy. Post-ischemic brain injury associates with poor prognosis since neurons of selectively vulnerable ischemic brain areas are disappearing by apoptotic program of neuronal death. Autophagy has been considered, after brain ischemia, as a guardian against neurodegeneration. Consequently, we have examined changes in autophagy (BECN 1), mitophagy (BNIP 3), and apoptotic (caspase 3) genes in the medial temporal lobe cortex with the use of quantitative reverse-transcriptase PCR following transient 10-min global brain ischemia in rats with survival 2, 7, and 30 days. The intense significant overexpression of BECN 1 gene was noted on the 2nd day, while on days 7–30 the expression of this gene was still upregulated. BNIP 3 gene was downregulated on the 2nd day, but on days 7–30 post-ischemia, there was a significant reverse tendency. Caspase 3 gene, associated with apoptotic neuronal death, was induced in the same way as BNIP 3 gene after brain ischemia. Thus, the demonstrated changes indicate that the considerable dysregulation of expression of BECN 1, BNIP 3, and caspase 3 genes may be connected with a response of neuronal cells in medial temporal lobe cortex to transient complete brain ischemia. PMID:27472881

  3. Temporal expression of mutant LRRK2 in adult rats impairs dopamine reuptake.

    PubMed

    Zhou, Hongxia; Huang, Cao; Tong, Jianbin; Hong, Weimin C; Liu, Yong-Jian; Xia, Xu-Gang

    2011-01-01

    Parkinson's disease (PD) results from progressive degeneration of dopaminergic neurons. Most PD cases are sporadic, but some have pathogenic mutation in the individual genes. Mutation of the leucine-rich repeat kinase-2 (LRRK2) gene is associated with familial and sporadic PD, as exemplified by G2019S substitution. While constitutive expression of mutant LRRK2 in transgenic mice fails to induce neuron death, transient expression of the disease gene by viral delivery causes a substantial loss of dopaminergic neurons in mice. To further assess LRRK2 pathogenesis, we created inducible transgenic rats expressing human LRRK2 with G2019S substitution. Temporal overexpression of LRRK2(G2019S) in adult rats impaired dopamine reuptake by dopamine transporter (DAT) and thus enhanced locomotor activity, the phenotypes that were not observed in transgenic rats constitutively expressing the gene throughout life time. Reduced DAT binding activity is an early sign of dopaminergic dysfunction in asymptomatic subjects carrying pathogenic mutation in LRRK2. Our transgenic rats recapitulated the initiation process of dopaminergic dysfunction caused by pathogenic mutation in LRRK2. Inducible transgenic approach uncovered phenotypes that may be obscured by developmental compensation in constitutive transgenic rats. Finding in inducible LRRK2 transgenic rats would guide developing effective strategy in transgenic studies: Inducible expression of transgene may induce greater phenotypes than constitutive gene expression, particularly in rodents with short life time. PMID:21698001

  4. Assessing a Metacognitive Account of Associative Memory Impairments in Temporal Lobe Epilepsy

    PubMed Central

    Kemp, Steven; Souchay, Céline; Moulin, Chris J. A.

    2016-01-01

    Previous research has pointed to a deficit in associative recognition in temporal lobe epilepsy (TLE). Associative recognition tasks require discrimination between various combinations of words which have and have not been seen previously (such as old-old or old-new pairs). People with TLE tend to respond to rearranged old-old pairs as if they are “intact” old-old pairs, which has been interpreted as a failure to use a recollection strategy to overcome the familiarity of two recombined words into a new pairing. We examined this specific deficit in the context of metacognition, using postdecision confidence judgements at test. We expected that TLE patients would show inappropriate levels of confidence for associative recognition. Although TLE patients reported lower confidence levels in their responses overall, they were sensitive to the difficulty of varying pair types in their judgements and gave significantly higher confidence ratings for their correct answers. We conclude that a strategic deficit is not at play in the associative recognition of people with TLE, insofar as they are able to monitor the status of their memory system. This adds to a growing body of research suggesting that recollection is impaired in TLE, but not metacognition. PMID:27721992

  5. Temporal Lobe Impairment in West Syndrome: Event-Related Potential Evidence

    PubMed Central

    Werner, Klaus; Fosi, Tangunu; Boyd, Stewart G; Baldeweg, Torsten; Scott, Rod C; Neville, Brian G

    2015-01-01

    Objective This study investigates auditory processing in infants with West syndrome (WS) using event-related potentials (ERPs). Methods ERPs were measured in 25 infants with mainly symptomatic WS (age range = 3–10 months) and 26 healthy term infants (age range = 3–9 months) using an auditory novelty oddball paradigm. The ERP recordings were made during wakefulness and repeated in stage II sleep. Results The obligatory components (P150, N250, P350) and novelty response components (P300, Nc) were recordable during both sleep and wakefulness in patients and controls. All ERP latencies decreased with age in controls but not in the WS group (age × group interaction, F = 22.3, p < 0.0001). These ERP latency alterations were not affected by pharmacological treatment for WS. Interpretation This study demonstrated a persistently altered ERP signature in patients with a recent history of infantile spasms. The prolongation of auditory obligatory and novelty ERPs in WS patients indicates a severe failure of temporal lobe maturation during infancy. It remains to be investigated whether this predicts long-term cognitive impairments characteristic for this epileptic encephalopathy. PMID:25363285

  6. Behavioral measures of cochlear compression and temporal resolution as predictors of speech masking release in hearing-impaired listeners.

    PubMed

    Gregan, Melanie J; Nelson, Peggy B; Oxenham, Andrew J

    2013-10-01

    Hearing-impaired (HI) listeners often show less masking release (MR) than normal-hearing listeners when temporal fluctuations are imposed on a steady-state masker, even when accounting for overall audibility differences. This difference may be related to a loss of cochlear compression in HI listeners. Behavioral estimates of compression, using temporal masking curves (TMCs), were compared with MR for band-limited (500-4000 Hz) speech and pure tones in HI listeners and age-matched, noise-masked normal-hearing (NMNH) listeners. Compression and pure-tone MR estimates were made at 500, 1500, and 4000 Hz. The amount of MR was defined as the difference in performance between steady-state and 10-Hz square-wave-gated speech-shaped noise. In addition, temporal resolution was estimated from the slope of the off-frequency TMC. No significant relationship was found between estimated cochlear compression and MR for either speech or pure tones. NMNH listeners had significantly steeper off-frequency temporal masking recovery slopes than did HI listeners, and a small but significant correlation was observed between poorer temporal resolution and reduced MR for speech. The results suggest either that the effects of hearing impairment on MR are not determined primarily by changes in peripheral compression, or that the TMC does not provide a sufficiently reliable measure of cochlear compression. PMID:24116426

  7. Relative contributions of temporal envelope and fine structure cues to lexical tone recognition in hearing-impaired listeners.

    PubMed

    Wang, Shuo; Xu, Li; Mannell, Robert

    2011-12-01

    It has been reported that normal-hearing Chinese speakers base their lexical tone recognition on fine structure regardless of temporal envelope cues. However, a few psychoacoustic and perceptual studies have demonstrated that listeners with sensorineural hearing impairment may have an impaired ability to use fine structure information, whereas their ability to use temporal envelope information is close to normal. The purpose of this study is to investigate the relative contributions of temporal envelope and fine structure cues to lexical tone recognition in normal-hearing and hearing-impaired native Mandarin Chinese speakers. Twenty-two normal-hearing subjects and 31 subjects with various degrees of sensorineural hearing loss participated in the study. Sixteen sets of Mandarin monosyllables with four tone patterns for each were processed through a "chimeric synthesizer" in which temporal envelope from a monosyllabic word of one tone was paired with fine structure from the same monosyllable of other tones. The chimeric tokens were generated in the three channel conditions (4, 8, and 16 channels). Results showed that differences in tone responses among the three channel conditions were minor. On average, 90.9%, 70.9%, 57.5%, and 38.2% of tone responses were consistent with fine structure for normal-hearing, moderate, moderate to severe, and severely hearing-impaired groups respectively, whereas 6.8%, 21.1%, 31.4%, and 44.7% of tone responses were consistent with temporal envelope cues for the above-mentioned groups. Tone responses that were consistent neither with temporal envelope nor fine structure had averages of 2.3%, 8.0%, 11.1%, and 17.1% for the above-mentioned groups of subjects. Pure-tone average thresholds were negatively correlated with tone responses that were consistent with fine structure, but were positively correlated with tone responses that were based on the temporal envelope cues. Consistent with the idea that the spectral resolvability is

  8. Impaired cerebral blood flow networks in temporal lobe epilepsy with hippocampal sclerosis: A graph theoretical approach.

    PubMed

    Sone, Daichi; Matsuda, Hiroshi; Ota, Miho; Maikusa, Norihide; Kimura, Yukio; Sumida, Kaoru; Yokoyama, Kota; Imabayashi, Etsuko; Watanabe, Masako; Watanabe, Yutaka; Okazaki, Mitsutoshi; Sato, Noriko

    2016-09-01

    Graph theory is an emerging method to investigate brain networks. Altered cerebral blood flow (CBF) has frequently been reported in temporal lobe epilepsy (TLE), but graph theoretical findings of CBF are poorly understood. Here, we explored graph theoretical networks of CBF in TLE using arterial spin labeling imaging. We recruited patients with TLE and unilateral hippocampal sclerosis (HS) (19 patients with left TLE, and 21 with right TLE) and 20 gender- and age-matched healthy control subjects. We obtained all participants' CBF maps using pseudo-continuous arterial spin labeling and analyzed them using the Graph Analysis Toolbox (GAT) software program. As a result, compared to the controls, the patients with left TLE showed a significantly low clustering coefficient (p=0.024), local efficiency (p=0.001), global efficiency (p=0.010), and high transitivity (p=0.015), whereas the patients with right TLE showed significantly high assortativity (p=0.046) and transitivity (p=0.011). The group with right TLE also had high characteristic path length values (p=0.085), low global efficiency (p=0.078), and low resilience to targeted attack (p=0.101) at a trend level. Lower normalized clustering coefficient (p=0.081) in the left TLE and higher normalized characteristic path length (p=0.089) in the right TLE were found also at a trend level. Both the patients with left and right TLE showed significantly decreased clustering in similar areas, i.e., the cingulate gyri, precuneus, and occipital lobe. Our findings revealed differing left-right network metrics in which an inefficient CBF network in left TLE and vulnerability to irritation in right TLE are suggested. The left-right common finding of regional decreased clustering might reflect impaired default-mode networks in TLE. PMID:27497065

  9. Impaired cerebral blood flow networks in temporal lobe epilepsy with hippocampal sclerosis: A graph theoretical approach.

    PubMed

    Sone, Daichi; Matsuda, Hiroshi; Ota, Miho; Maikusa, Norihide; Kimura, Yukio; Sumida, Kaoru; Yokoyama, Kota; Imabayashi, Etsuko; Watanabe, Masako; Watanabe, Yutaka; Okazaki, Mitsutoshi; Sato, Noriko

    2016-09-01

    Graph theory is an emerging method to investigate brain networks. Altered cerebral blood flow (CBF) has frequently been reported in temporal lobe epilepsy (TLE), but graph theoretical findings of CBF are poorly understood. Here, we explored graph theoretical networks of CBF in TLE using arterial spin labeling imaging. We recruited patients with TLE and unilateral hippocampal sclerosis (HS) (19 patients with left TLE, and 21 with right TLE) and 20 gender- and age-matched healthy control subjects. We obtained all participants' CBF maps using pseudo-continuous arterial spin labeling and analyzed them using the Graph Analysis Toolbox (GAT) software program. As a result, compared to the controls, the patients with left TLE showed a significantly low clustering coefficient (p=0.024), local efficiency (p=0.001), global efficiency (p=0.010), and high transitivity (p=0.015), whereas the patients with right TLE showed significantly high assortativity (p=0.046) and transitivity (p=0.011). The group with right TLE also had high characteristic path length values (p=0.085), low global efficiency (p=0.078), and low resilience to targeted attack (p=0.101) at a trend level. Lower normalized clustering coefficient (p=0.081) in the left TLE and higher normalized characteristic path length (p=0.089) in the right TLE were found also at a trend level. Both the patients with left and right TLE showed significantly decreased clustering in similar areas, i.e., the cingulate gyri, precuneus, and occipital lobe. Our findings revealed differing left-right network metrics in which an inefficient CBF network in left TLE and vulnerability to irritation in right TLE are suggested. The left-right common finding of regional decreased clustering might reflect impaired default-mode networks in TLE.

  10. Fluoride and arsenic exposure impairs learning and memory and decreases mGluR5 expression in the hippocampus and cortex in rats.

    PubMed

    Jiang, Shoufang; Su, Jing; Yao, Sanqiao; Zhang, Yanshu; Cao, Fuyuan; Wang, Fei; Wang, Huihui; Li, Jun; Xi, Shuhua

    2014-01-01

    Fluoride and arsenic are two common inorganic contaminants in drinking water that are associated with impairment in child development and retarded intelligence. The present study was conducted to explore the effects on spatial learning, memory, glutamate levels, and group I metabotropic glutamate receptors (mGluRs) expression in the hippocampus and cortex after subchronic exposure to fluoride, arsenic, and a fluoride and arsenic combination in rats. Weaned male Sprague-Dawley rats were assigned to four groups. The control rats drank tap water. Rats in the three exposure groups drank water with sodium fluoride (120 mg/L), sodium arsenite (70 mg/L), and a sodium fluoride (120 mg/L) and sodium arsenite (70 mg/L) combination for 3 months. Spatial learning and memory was measured in Morris water maze. mGluR1 and mGluR5 mRNA and protein expression in the hippocampus and cortex was detected using RT-PCR and Western blot, respectively. Compared with controls, learning and memory ability declined in rats that were exposed to fluoride and arsenic both alone and combined. Combined fluoride and arsenic exposure did not have a more pronounced effect on spatial learning and memory compared with arsenic and fluoride exposure alone. Compared with controls, glutamate levels decreased in the hippocampus and cortex of rats exposed to fluoride and combined fluoride and arsenic, and in cortex of arsenic-exposed rats. mGluR5 mRNA and protein expressions in the hippocampus and mGluR5 protein expression in the cortex decreased in rats exposed to arsenic alone. Interestingly, compared with fluoride and arsenic exposure alone, fluoride and arsenic combination decreased mGluR5 mRNA expression in the cortex and protein expression in the hippocampus, suggesting a synergistic effect of fluoride and arsenic. These data indicate that fluoride and arsenic, either alone or combined, can decrease learning and memory ability in rats. The mechanism may be associated with changes of glutamate level and

  11. Fluoride and arsenic exposure impairs learning and memory and decreases mGluR5 expression in the hippocampus and cortex in rats.

    PubMed

    Jiang, Shoufang; Su, Jing; Yao, Sanqiao; Zhang, Yanshu; Cao, Fuyuan; Wang, Fei; Wang, Huihui; Li, Jun; Xi, Shuhua

    2014-01-01

    Fluoride and arsenic are two common inorganic contaminants in drinking water that are associated with impairment in child development and retarded intelligence. The present study was conducted to explore the effects on spatial learning, memory, glutamate levels, and group I metabotropic glutamate receptors (mGluRs) expression in the hippocampus and cortex after subchronic exposure to fluoride, arsenic, and a fluoride and arsenic combination in rats. Weaned male Sprague-Dawley rats were assigned to four groups. The control rats drank tap water. Rats in the three exposure groups drank water with sodium fluoride (120 mg/L), sodium arsenite (70 mg/L), and a sodium fluoride (120 mg/L) and sodium arsenite (70 mg/L) combination for 3 months. Spatial learning and memory was measured in Morris water maze. mGluR1 and mGluR5 mRNA and protein expression in the hippocampus and cortex was detected using RT-PCR and Western blot, respectively. Compared with controls, learning and memory ability declined in rats that were exposed to fluoride and arsenic both alone and combined. Combined fluoride and arsenic exposure did not have a more pronounced effect on spatial learning and memory compared with arsenic and fluoride exposure alone. Compared with controls, glutamate levels decreased in the hippocampus and cortex of rats exposed to fluoride and combined fluoride and arsenic, and in cortex of arsenic-exposed rats. mGluR5 mRNA and protein expressions in the hippocampus and mGluR5 protein expression in the cortex decreased in rats exposed to arsenic alone. Interestingly, compared with fluoride and arsenic exposure alone, fluoride and arsenic combination decreased mGluR5 mRNA expression in the cortex and protein expression in the hippocampus, suggesting a synergistic effect of fluoride and arsenic. These data indicate that fluoride and arsenic, either alone or combined, can decrease learning and memory ability in rats. The mechanism may be associated with changes of glutamate level and

  12. Fluoride and Arsenic Exposure Impairs Learning and Memory and Decreases mGluR5 Expression in the Hippocampus and Cortex in Rats

    PubMed Central

    Jiang, Shoufang; Su, Jing; Yao, Sanqiao; Zhang, Yanshu; Cao, Fuyuan; Wang, Fei; Wang, Huihui; Li, Jun; Xi, Shuhua

    2014-01-01

    Fluoride and arsenic are two common inorganic contaminants in drinking water that are associated with impairment in child development and retarded intelligence. The present study was conducted to explore the effects on spatial learning, memory, glutamate levels, and group I metabotropic glutamate receptors (mGluRs) expression in the hippocampus and cortex after subchronic exposure to fluoride, arsenic, and a fluoride and arsenic combination in rats. Weaned male Sprague-Dawley rats were assigned to four groups. The control rats drank tap water. Rats in the three exposure groups drank water with sodium fluoride (120 mg/L), sodium arsenite (70 mg/L), and a sodium fluoride (120 mg/L) and sodium arsenite (70 mg/L) combination for 3 months. Spatial learning and memory was measured in Morris water maze. mGluR1 and mGluR5 mRNA and protein expression in the hippocampus and cortex was detected using RT-PCR and Western blot, respectively. Compared with controls, learning and memory ability declined in rats that were exposed to fluoride and arsenic both alone and combined. Combined fluoride and arsenic exposure did not have a more pronounced effect on spatial learning and memory compared with arsenic and fluoride exposure alone. Compared with controls, glutamate levels decreased in the hippocampus and cortex of rats exposed to fluoride and combined fluoride and arsenic, and in cortex of arsenic-exposed rats. mGluR5 mRNA and protein expressions in the hippocampus and mGluR5 protein expression in the cortex decreased in rats exposed to arsenic alone. Interestingly, compared with fluoride and arsenic exposure alone, fluoride and arsenic combination decreased mGluR5 mRNA expression in the cortex and protein expression in the hippocampus, suggesting a synergistic effect of fluoride and arsenic. These data indicate that fluoride and arsenic, either alone or combined, can decrease learning and memory ability in rats. The mechanism may be associated with changes of glutamate level and

  13. Functional specialization and convergence in the occipito-temporal cortex supporting haptic and visual identification of human faces and body parts: an fMRI study.

    PubMed

    Kitada, Ryo; Johnsrude, Ingrid S; Kochiyama, Takanori; Lederman, Susan J

    2009-10-01

    Humans can recognize common objects by touch extremely well whenever vision is unavailable. Despite its importance to a thorough understanding of human object recognition, the neuroscientific study of this topic has been relatively neglected. To date, the few published studies have addressed the haptic recognition of nonbiological objects. We now focus on haptic recognition of the human body, a particularly salient object category for touch. Neuroimaging studies demonstrate that regions of the occipito-temporal cortex are specialized for visual perception of faces (fusiform face area, FFA) and other body parts (extrastriate body area, EBA). Are the same category-sensitive regions activated when these components of the body are recognized haptically? Here, we use fMRI to compare brain organization for haptic and visual recognition of human body parts. Sixteen subjects identified exemplars of faces, hands, feet, and nonbiological control objects using vision and haptics separately. We identified two discrete regions within the fusiform gyrus (FFA and the haptic face region) that were each sensitive to both haptically and visually presented faces; however, these two regions differed significantly in their response patterns. Similarly, two regions within the lateral occipito-temporal area (EBA and the haptic body region) were each sensitive to body parts in both modalities, although the response patterns differed. Thus, although the fusiform gyrus and the lateral occipito-temporal cortex appear to exhibit modality-independent, category-sensitive activity, our results also indicate a degree of functional specialization related to sensory modality within these structures.

  14. Early-onset motor impairment and increased accumulation of phosphorylated α-synuclein in the motor cortex of normal aging mice are ameliorated by coenzyme Q.

    PubMed

    Takahashi, Kazuhide; Ohsawa, Ikuroh; Shirasawa, Takuji; Takahashi, Mayumi

    2016-08-01

    Brain mitochondrial function declines with age; however, the accompanying behavioral and histological alterations that are characteristic of Parkinson's disease (PD) are poorly understood. We found that the mitochondrial oxygen consumption rate (OCR) and coenzyme Q (CoQ) content were reduced in aged (15-month-old) male mice compared to those in young (6-month-old) male mice. Concomitantly, motor functions, including the rate of movement and exploratory and voluntary motor activities, were significantly reduced in the aged mice compared to the young mice. In the motor cortex of the aged mouse brain, the accumulation of α-synuclein (α-syn) phosphorylated at serine129 (Ser129) significantly increased, and the level of vesicular glutamate transporter 1 (VGluT1) decreased compared with that in the young mouse brain. The administration of exogenous water-soluble CoQ10 to aged mice via drinking water restored the mitochondrial OCR, motor function, and phosphorylated α-syn and VGluT1 levels in the motor cortex. These results suggest that early-onset motor impairment and the increased accumulation of Ser129-phosphorylated α-syn in the motor cortex are ameliorated by the exogenous administration of CoQ10. PMID:27143639

  15. Dietary High Cholesterol and Trace Metals in the Drinking Water Increase Levels of ABCA1 in the Rabbit Hippocampus and Temporal Cortex

    PubMed Central

    Schreurs, Bernard G.; Sparks, D. Larry

    2015-01-01

    Background Cholesterol-fed rabbits have been documented to show increased amyloid-β (Aβ) deposits in the brain that can be exacerbated by the quality of drinking water especially if rabbits drink tap water or distilled water containing copper. One mechanism of cholesterol and Aβ clearance may be through the ATP-binding cassette transporter A1 (ABCA1). Objective and Methods Using an ABCA1 antibody, we determined the number of ABCA1-immunopositive neurons in three areas of rabbit brain as a function of feeding 2% cholesterol and providing tap water, distilled water, or distilled water to which aluminum, copper, or zinc was added. Results The number of neurons with ABCA1 immunoreactivity was increased significantly as a result of dietary cholesterol in the rabbit hippocampus and inferior and superior temporal cortex. The number of neurons with ABCA1 immunoreactivity was further increased in all three areas as a result of cholesterol-fed rabbits drinking tap water or distilled water with copper. Finally, cholesterol-fed rabbits that drank distilled water with aluminum also showed an increased number of ABCA1-immunopositive neurons in inferior and superior temporal cortex. Conclusions These data suggest that ABCA1 levels increase in parallel with previously documented increases in Aβ levels as a result of high dietary cholesterol and copper in the drinking water. Addition of aluminum to distilled water may have a similar effect in the temporal cortex. ABCA1 has been proposed as a means of clearing Aβ from the brain and manipulations that increase Aβ also result in an increase of clearance machinery. PMID:26444796

  16. Temporal filtering of reward signals in the dorsal anterior cingulate cortex during a mixed-strategy game.

    PubMed

    Seo, Hyojung; Lee, Daeyeol

    2007-08-01

    The process of decision making in humans and other animals is adaptive and can be tuned through experience so as to optimize the outcomes of their choices in a dynamic environment. Previous studies have demonstrated that the anterior cingulate cortex plays an important role in updating the animal's behavioral strategies when the action outcome contingencies change. Moreover, neurons in the anterior cingulate cortex often encode the signals related to expected or actual reward. We investigated whether reward-related activity in the anterior cingulate cortex is affected by the animal's previous reward history. This was tested in rhesus monkeys trained to make binary choices in a computer-simulated competitive zero-sum game. The animal's choice behavior was relatively close to the optimal strategy but also revealed small systematic biases that are consistent with the use of a reinforcement learning algorithm. In addition, the activity of neurons in the dorsal anterior cingulate cortex that was related to the reward received by the animal in a given trial often was modulated by the rewards in the previous trials. Some of these neurons encoded the rate of rewards in previous trials, whereas others displayed activity modulations more closely related to the reward prediction errors. In contrast, signals related to the animal's choices were represented only weakly in this cortical area. These results suggest that neurons in the dorsal anterior cingulate cortex might be involved in the subjective evaluation of choice outcomes based on the animal's reward history. PMID:17670983

  17. Perception of Temporal Order Is Impaired during the Time Course of the Attentional Blink

    ERIC Educational Resources Information Center

    Spalek, Thomas M.; Lagroix, Hayley E. P.; Yanko, Matthew R.; Di Lollo, Vincent

    2012-01-01

    Identification accuracy for the second of two target (T2) is impaired when presented shortly after the first (T1). Does this attentional blink (AB) also impair the perception of the order of presentation? In four experiments, three letter targets (T1, T2, T3) were inserted in a stream of digit distractors displayed in rapid serial visual…

  18. Post-Learning Infusion of Anisomycin into the Anterior Cingulate Cortex Impairs Instrumental Acquisition through an Effect on Reinforcer Valuation

    ERIC Educational Resources Information Center

    Jonkman, Sietse; Everitt, Barry J.

    2009-01-01

    The integrity of the rodent anterior cingulate cortex (ACC) is essential for various aspects of instrumental behavior, but it is not clear if the ACC is important for the acquisition of a simple instrumental response. Here, it was demonstrated that post-session infusions of anisomycin into the rat ACC completely prevented the acquisition of…

  19. The effects of hearing impairment on the ability to glimpse speech in a spectro-temporally complex noise

    NASA Astrophysics Data System (ADS)

    Ozmeral, Erol James

    The aim of this project was to investigate the effects of hearing impairment on speech perception in spectro-temporally complex noise. The specific objective of the project was to psychophysically and computationally assess speech reception in the presence of a masker that fluctuates both in time and frequency. The experiments were designed to compare hearing-impaired and normal-hearing listeners on a task which has been shown to highlight the effect of spread of masking. Through dichotic stimulation, a previous study had shown a sizeable benefit when compared to monaural stimulation. Experiment 1 tested normal-hearing and hearing-impaired listeners on consonant recognition in the presence of an asynchronously modulated noise. We tested the primary hypotheses that spread of masking reduces available glimpsing opportunities for hearing-impaired listeners, and that removing spread of masking enhances performance relative to normal-hearing listeners. Results showed greater masking release in normal-hearing listeners compared to hearing-impaired listeners, but all listeners achieved some benefit of reducing the effects of spread of masking. Experiment 2 tested consonant recognition in similar masking conditions as Experiment 1, testing normal-hearing listeners with simulated reduced audibility and reduced frequency resolution. We tested the primary hypothesis that reduced audibility is not the only limiting factor for hearing-impaired listeners to glimpse speech, but rather, that reduced frequency resolution also plays an important role in the ability to glimpse speech in spectro-temporally complex noise. Results showed that while reduced audibility was a key factor, reduced frequency resolution also contributes to deficits seen in Experiment 1. Experiment 3 tested a computational glimpsing model. We tested the hypotheses that spectral resolution plays a key role in glimpsing for both normal-hearing and hearing-impaired listeners; by analyzing dichotically presented

  20. Similarity-Based Fusion of MEG and fMRI Reveals Spatio-Temporal Dynamics in Human Cortex During Visual Object Recognition

    PubMed Central

    Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude

    2016-01-01

    Every human cognitive function, such as visual object recognition, is realized in a complex spatio-temporal activity pattern in the brain. Current brain imaging techniques in isolation cannot resolve the brain's spatio-temporal dynamics, because they provide either high spatial or temporal resolution but not both. To overcome this limitation, we developed an integration approach that uses representational similarities to combine measurements of magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) to yield a spatially and temporally integrated characterization of neuronal activation. Applying this approach to 2 independent MEG–fMRI data sets, we observed that neural activity first emerged in the occipital pole at 50–80 ms, before spreading rapidly and progressively in the anterior direction along the ventral and dorsal visual streams. Further region-of-interest analyses established that dorsal and ventral regions showed MEG–fMRI correspondence in representations later than early visual cortex. Together, these results provide a novel and comprehensive, spatio-temporally resolved view of the rapid neural dynamics during the first few hundred milliseconds of object vision. They further demonstrate the feasibility of spatially unbiased representational similarity-based fusion of MEG and fMRI, promising new insights into how the brain computes complex cognitive functions. PMID:27235099

  1. Similarity-Based Fusion of MEG and fMRI Reveals Spatio-Temporal Dynamics in Human Cortex During Visual Object Recognition.

    PubMed

    Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude

    2016-08-01

    Every human cognitive function, such as visual object recognition, is realized in a complex spatio-temporal activity pattern in the brain. Current brain imaging techniques in isolation cannot resolve the brain's spatio-temporal dynamics, because they provide either high spatial or temporal resolution but not both. To overcome this limitation, we developed an integration approach that uses representational similarities to combine measurements of magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) to yield a spatially and temporally integrated characterization of neuronal activation. Applying this approach to 2 independent MEG-fMRI data sets, we observed that neural activity first emerged in the occipital pole at 50-80 ms, before spreading rapidly and progressively in the anterior direction along the ventral and dorsal visual streams. Further region-of-interest analyses established that dorsal and ventral regions showed MEG-fMRI correspondence in representations later than early visual cortex. Together, these results provide a novel and comprehensive, spatio-temporally resolved view of the rapid neural dynamics during the first few hundred milliseconds of object vision. They further demonstrate the feasibility of spatially unbiased representational similarity-based fusion of MEG and fMRI, promising new insights into how the brain computes complex cognitive functions.

  2. Similarity-Based Fusion of MEG and fMRI Reveals Spatio-Temporal Dynamics in Human Cortex During Visual Object Recognition.

    PubMed

    Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude

    2016-08-01

    Every human cognitive function, such as visual object recognition, is realized in a complex spatio-temporal activity pattern in the brain. Current brain imaging techniques in isolation cannot resolve the brain's spatio-temporal dynamics, because they provide either high spatial or temporal resolution but not both. To overcome this limitation, we developed an integration approach that uses representational similarities to combine measurements of magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) to yield a spatially and temporally integrated characterization of neuronal activation. Applying this approach to 2 independent MEG-fMRI data sets, we observed that neural activity first emerged in the occipital pole at 50-80 ms, before spreading rapidly and progressively in the anterior direction along the ventral and dorsal visual streams. Further region-of-interest analyses established that dorsal and ventral regions showed MEG-fMRI correspondence in representations later than early visual cortex. Together, these results provide a novel and comprehensive, spatio-temporally resolved view of the rapid neural dynamics during the first few hundred milliseconds of object vision. They further demonstrate the feasibility of spatially unbiased representational similarity-based fusion of MEG and fMRI, promising new insights into how the brain computes complex cognitive functions. PMID:27235099

  3. Impaired Spatio-Temporal Predictive Motor Timing Associated with Spinocerebellar Ataxia Type 6

    PubMed Central

    Onuki, Yoshiyuki; Abdelgabar, Abdel R.; Owens, Cullen B.; Picard, Samuel; Willems, Jessica; Boele, Henk-Jan; Gazzola, Valeria; Van der Werf, Ysbrand D.; De Zeeuw, Chris I.

    2016-01-01

    Many daily life activities demand precise integration of spatial and temporal information of sensory inputs followed by appropriate motor actions. This type of integration is carried out in part by the cerebellum, which has been postulated to play a central role in learning and timing of movements. Cerebellar damage due to atrophy or lesions may compromise forward-model processing, in which both spatial and temporal cues are used to achieve prediction for future motor states. In the present study we sought to further investigate the cerebellar contribution to predictive and reactive motor timing, as well as to learning of sequential order and temporal intervals in these tasks. We tested patients with spinocerebellar ataxia type 6 (SCA6) and healthy controls for two related motor tasks; one requiring spatio-temporal prediction of dynamic visual stimuli and another one requiring reactive timing only. We found that healthy controls established spatio-temporal prediction in their responses with high temporal precision, which was absent in the cerebellar patients. SCA6 patients showed lower predictive motor timing, coinciding with a reduced number of correct responses during the ‘anticipatory’ period on the task. Moreover, on the task utilizing reactive motor timing functions, control participants showed both sequence order and temporal interval learning, whereas patients only showed sequence order learning. These results suggest that SCA6 affects predictive motor timing and temporal interval learning. Our results support and highlight cerebellar contribution to timing and argue for cerebellar engagement during spatio-temporal prediction of upcoming events. PMID:27571363

  4. Impaired Spatio-Temporal Predictive Motor Timing Associated with Spinocerebellar Ataxia Type 6.

    PubMed

    Broersen, Robin; Onuki, Yoshiyuki; Abdelgabar, Abdel R; Owens, Cullen B; Picard, Samuel; Willems, Jessica; Boele, Henk-Jan; Gazzola, Valeria; Van der Werf, Ysbrand D; De Zeeuw, Chris I

    2016-01-01

    Many daily life activities demand precise integration of spatial and temporal information of sensory inputs followed by appropriate motor actions. This type of integration is carried out in part by the cerebellum, which has been postulated to play a central role in learning and timing of movements. Cerebellar damage due to atrophy or lesions may compromise forward-model processing, in which both spatial and temporal cues are used to achieve prediction for future motor states. In the present study we sought to further investigate the cerebellar contribution to predictive and reactive motor timing, as well as to learning of sequential order and temporal intervals in these tasks. We tested patients with spinocerebellar ataxia type 6 (SCA6) and healthy controls for two related motor tasks; one requiring spatio-temporal prediction of dynamic visual stimuli and another one requiring reactive timing only. We found that healthy controls established spatio-temporal prediction in their responses with high temporal precision, which was absent in the cerebellar patients. SCA6 patients showed lower predictive motor timing, coinciding with a reduced number of correct responses during the 'anticipatory' period on the task. Moreover, on the task utilizing reactive motor timing functions, control participants showed both sequence order and temporal interval learning, whereas patients only showed sequence order learning. These results suggest that SCA6 affects predictive motor timing and temporal interval learning. Our results support and highlight cerebellar contribution to timing and argue for cerebellar engagement during spatio-temporal prediction of upcoming events. PMID:27571363

  5. Memory impairment caused by cerebral hematoma in the left medial temporal lobe due to ruptured posterior cerebral artery aneurysm

    PubMed Central

    2014-01-01

    Background Cognitive disorders, such as memory disturbances, are often observed following a subarachnoid hemorrhage. We present a very rare case where rupture of a posterior cerebral artery aneurysm caused restricted damage to the hippocampus unilaterally, and caused memory disturbances. Case presentation A 56-year-old, right-handed man, with a formal education history of 16 years and company employees was admitted to our hospital because of a consciousness disturbance. He was diagnosed as having a subarachnoid hemorrhage due to a left posterior cerebral artery dissecting aneurysm, and coil embolization was performed. Subsequently, he had neither motor paresis nor sensory disturbances, but he showed disorientation, and both retrograde and anterograde amnesia. Although immediate recall and remote memory were almost intact, his recent memory was moderately impaired. Both verbal and non-verbal memories were impaired. Brain computed tomography (CT) and magnetic resonance imaging (MRI) revealed a cerebral hematoma in the left temporal lobe involving the hippocampus and parahippocampal gyrus, and single-photon emission computed tomography (SPECT) demonstrated low perfusion areas in the left medial temporal lobe. Conclusions We suggest that the memory impairment was caused by local tissue destruction of Papez’s circuit in the dominant hemisphere due to the cerebral hematoma. PMID:24602130

  6. Temporal Processing Impairment in Children with Attention-Deficit-Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Huang, Jia; Yang, Bin-rang; Zou, Xiao-bing; Jing, Jin; Pen, Gang; McAlonan, Grainne M.; Chan, Raymond C. K.

    2012-01-01

    The current study aimed to investigate temporal processing in Chinese children with Attention-Deficit-Hyperactivity Disorder(ADHD) using time production, time reproduction paradigm and duration discrimination tasks. A battery of tests specifically designed to measure temporal processing was administered to 94 children with ADHD and 100…

  7. Differential dynamics of amino acid release in the amygdala and olfactory cortex during odor fear acquisition as revealed with simultaneous high temporal resolution microdialysis.

    PubMed

    Hegoburu, Chloé; Sevelinges, Yannick; Thévenet, Marc; Gervais, Rémi; Parrot, Sandrine; Mouly, Anne-Marie

    2009-11-01

    Although the amygdala seems to be essential to the formation and storage of fear memories, it might store only some aspects of the aversive event and facilitate the storage of more specific sensory aspects in cortical areas. We addressed the time course of amygdala and cortical activation in the context of odor fear conditioning in rats. Using high temporal resolution (1-min sampling) intracerebral microdialysis, we investigated the dynamics of glutamate and GABA fluctuations simultaneously in basolateral amygdala (BLA) and posterior piriform cortex (pPCx) during the course of the acquisition session, which consisted of six odor (conditioned stimulus)-footshock (unconditioned stimulus) pairings. In BLA, we observed a transient increase in amino acid concentrations following the first odor-shock pairing, after which concentrations returned to baseline levels or slightly below. In pPCx, transient increases were seen after each pairing and were also observed after the last odor-shock pairing, corresponding to the predicted times of anticipated trials. Furthermore, we observed that for the first pairing, the increase in BLA occurred earlier than the increase in pPCx. These data suggest that the amygdala is engaged early during acquisition and precedes the activation of the olfactory cortex, which is maintained until the end of the session. In addition, our data raise the challenging idea that the olfactory cortex might store certain aspects of fear conditioning related to the timing of the associations.

  8. Impaired facial expression recognition in children with temporal lobe epilepsy: impact of early seizure onset on fear recognition.

    PubMed

    Golouboff, Nathalie; Fiori, Nicole; Delalande, Olivier; Fohlen, Martine; Dellatolas, Georges; Jambaqué, Isabelle

    2008-04-01

    The amygdala has been implicated in the recognition of facial emotions, especially fearful expressions, in adults with early-onset right temporal lobe epilepsy (TLE). The present study investigates the recognition of facial emotions in children and adolescents, 8-16 years old, with epilepsy. Twenty-nine subjects had TLE (13 right, 16 left) and eight had fronto-central epilepsy (FCE). Each was matched on age and gender with a control subject. Subjects were asked to label the emotions expressed in pictures of children's faces miming five basic emotions (happiness, sadness, fear, disgust and anger) or neutrality (no emotion). All groups of children with epilepsy performed less well than controls. Patterns of impairment differed according to the topography of the epilepsy: the left-TLE (LTLE) group was impaired in recognizing fear and neutrality, the right-TLE (RTLE) group was impaired in recognizing disgust and, the FCE group was impaired in recognizing happiness. We clearly demonstrated that early seizure onset is associated with poor recognition of facial expression of emotion in TLE group, particularly for fear. Although right-TLE and left-TLE subjects were both impaired in the recognition of facial emotion, their psychosocial adjustment, as measured by the CBCL questionnaire [Achenbach, T. M. (1991). Manual for the Child Behavior Checklist and Youth Self-report. Burlington, VT: University of Vermont Department of Psychiatry], showed that poor recognition of fearful expressions was related to behavioral disorders only in children with right-TLE. Our study demonstrates for the first time that early-onset TLE can compromise the development of recognizing facial expressions of emotion in children and adolescents and suggests a link between impaired fear recognition and behavioral disorders.

  9. Inactivation of the dorsal hippocampus or the medial prefrontal cortex impairs retrieval but has differential effect on spatial memory reconsolidation.

    PubMed

    Rossato, Janine I; Köhler, Cristiano A; Radiske, Andressa; Bevilaqua, Lia R M; Cammarota, Martín

    2015-11-01

    Active memories can incorporate new information through reconsolidation. However, the notion that memory retrieval is necessary for reconsolidation has been recently challenged. Non-reinforced retrieval induces hippocampus and medial prefrontal cortex (mPFC)-dependent reconsolidation of spatial memory in the Morris water maze (MWM). We found that the effect of protein synthesis inhibition on this process is abolished when retrieval of the learned spatial preference is hindered through mPFC inactivation but not when it is blocked by deactivation of dorsal CA1. Our results do not fully agree with the hypothesis that retrieval is unneeded for reconsolidation. Instead, they support the idea that a hierarchic interaction between the hippocampus and the mPFC controls spatial memory in the MWM, and indicate that this cortex is sufficient to retrieve the information essential to reconsolidate the spatial memory trace, even when the hippocampus is inactivated.

  10. Positive Effect of Impairment-Oriented Training on N-Acetylaspartate Levels of Ipsilesional Motor Cortex in Subcortical Stroke: A Case Study

    PubMed Central

    Ahmed, Ali Bani; Cirstea, Carmen M

    2016-01-01

    Background and Purpose We investigated the effects of an intensive impairment-oriented training on neuronal state (assessed by proton MR spectroscopy, 1H-MRS) of the spared motor and premotor cortices in the injured (ipsilesional) hemisphere and clinical impairment in a patient with chronic subcortical stroke. Methods One survivor of a single ischemic stroke located outside of the motor and premotor cortices (assessed on T1-weighted MRI) was studied at six months after stroke. We used functional MRI-guided 1H-MRS to quantify the levels of N-acetylaspartate (NAA - a putative neuronal marker) in the hand representation within ipsilesional primary motor cortex (M1), dorsal premotor cortex (dPM) and supplementary motor area (SMA), and Fugl-Meyer (normal=66 points) test to assess the arm motor impairment immediately before and after a motor training paradigm. Training comprised intensive variable practice (1080 repetitions over 12 day-period) of a reach-to-grasp task with the impaired hand while focusing the learner's attention on an altered movement component, i.e., decreased elbow extension. Results At baseline, the patient was severely impaired (Fugl-Meyer score=25 points) and exhibited lower level of NAA in all areas (M1, 9.2 mM vs. 11.6 ± 2.0 mM in healthy controls; dPM, 8.9 mM vs. 12.2 ± 1.9 mM; SMA, 7.4 mM vs. 11.0 ± 2.3 mM). After training, the patient improved clinically (by 6 points) and displayed higher levels of NAA across all areas (by 0.6-3.3 mM). Conclusions Our data demonstrated that the radiologically normal-appearing ipsilesional motor and premotor areas have the resources to boost behavioral output in response to an intervention. We hope that these data will act as a starting point for further research to test the potential of 1H-MRS measures to provide a biomarker of neuroplasticity in response to restorative therapies in chronic stroke. PMID:27066519

  11. Temporal Masking Contributions of Inherent Envelope Fluctuations for Listeners with Normal and Impaired Hearing

    NASA Astrophysics Data System (ADS)

    Svec, Adam

    Gaussian noise (GN) simultaneous maskers yield higher masked thresholds for pure tones than low-fluctuation noise (LFN) simultaneous maskers for listeners with normal hearing. This increased residual masking is thought to be due to inherent fluctuations in the temporal envelope of Gaussian noise, but these masking effects using forward maskers have been previously unexamined. Because differences in forward masking due to age and hearing loss are known, the first study measured forward-masked detection thresholds for younger and older adults with normal hearing (NH) and older adults with hearing loss (HI) for a 4000 Hz pure-tone probe at a single masker-probe delay in narrowband noises with maximal (GN) or minimal (LFN) inherent envelope fluctuations. As predicted, results suggested that no effect of age was observed. Surprisingly, forward-masked threshold differences between GN and LFN, an estimate of the magnitude of the effect of inherent masker envelope fluctuations, were not significantly different for older HI listeners compared to younger or older NH listeners. Due to the surprising similarities between listeners with normal and impaired hearing, the second study was designed to assess effects of hearing loss on the slopes and magnitudes of recovery from forward maskers that varied in inherent envelope fluctuations for masker-probe delays of 25, 50, and 75 ms. In addition to measuring these effects centered at 4000 Hz, forward-masked thresholds were also measured at 2000 Hz, a region of better hearing for the HI listeners. As hypothesized, regardless of masker fluctuations, slopes of recovery from forward masking were shallower for HI than NH listeners in all conditions. At 4000 Hz, additional residual masking was greater in HI than NH listeners at the longest masker-probe delays; whereas, no differences in additional residual masking between HI and NH listeners were observed for 2000 Hz. These results suggest that the masking effects from inherent envelope

  12. Removal of Perineuronal Nets in the Medial Prefrontal Cortex Impairs the Acquisition and Reconsolidation of a Cocaine-Induced Conditioned Place Preference Memory

    PubMed Central

    Slaker, Megan; Churchill, Lynn; Todd, Ryan P.; Blacktop, Jordan M.; Zuloaga, Damian G.; Raber, Jacob; Darling, Rebecca A.; Brown, Travis E.

    2015-01-01

    Pyramidal neurons in the medial prefrontal cortex (mPFC) critically contribute to cocaine-seeking behavior in humans and rodents. Activity of these neurons is significantly modulated by GABAergic, parvalbumin-containing, fast-spiking interneurons, the majority of which are enveloped by specialized structures of extracellular matrix called perineuronal nets (PNNs), which are integral to the maintenance of many types of plasticity. Using a conditioned place preference (CPP) procedure, we found that removal of PNNs primarily from the prelimbic region of the mPFC of adult, male, Sprague Dawley rats impaired the acquisition and reconsolidation of a cocaine-induced CPP memory. This impairment was accompanied by a decrease in the number of c-Fos-positive cells surrounded by PNNs. Following removal of PNNs, the frequency of inhibitory currents in mPFC pyramidal neurons was decreased; but following cocaine-induced CPP, both frequency and amplitude of inhibitory currents were decreased. Our findings suggest that cocaine-induced plasticity is impaired by removal of prelimbic mPFC PNNs and that PNNs may be a therapeutic target for disruption of cocaine CPP memories. PMID:25762666

  13. Removal of perineuronal nets in the medial prefrontal cortex impairs the acquisition and reconsolidation of a cocaine-induced conditioned place preference memory.

    PubMed

    Slaker, Megan; Churchill, Lynn; Todd, Ryan P; Blacktop, Jordan M; Zuloaga, Damian G; Raber, Jacob; Darling, Rebecca A; Brown, Travis E; Sorg, Barbara A

    2015-03-11

    Pyramidal neurons in the medial prefrontal cortex (mPFC) critically contribute to cocaine-seeking behavior in humans and rodents. Activity of these neurons is significantly modulated by GABAergic, parvalbumin-containing, fast-spiking interneurons, the majority of which are enveloped by specialized structures of extracellular matrix called perineuronal nets (PNNs), which are integral to the maintenance of many types of plasticity. Using a conditioned place preference (CPP) procedure, we found that removal of PNNs primarily from the prelimbic region of the mPFC of adult, male, Sprague Dawley rats impaired the acquisition and reconsolidation of a cocaine-induced CPP memory. This impairment was accompanied by a decrease in the number of c-Fos-positive cells surrounded by PNNs. Following removal of PNNs, the frequency of inhibitory currents in mPFC pyramidal neurons was decreased; but following cocaine-induced CPP, both frequency and amplitude of inhibitory currents were decreased. Our findings suggest that cocaine-induced plasticity is impaired by removal of prelimbic mPFC PNNs and that PNNs may be a therapeutic target for disruption of cocaine CPP memories.

  14. Morphology and kainate-receptor immunoreactivity of identified neurons within the entorhinal cortex projecting to superior temporal sulcus in the cynomolgus monkey

    NASA Technical Reports Server (NTRS)

    Good, P. F.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    Projections of the entorhinal cortex to the hippocampus are well known from the classical studies of Cajal (Ramon y Cajal, 1904) and Lorente de No (1933). Projections from the entorhinal cortex to neocortical areas are less well understood. Such connectivity is likely to underlie the consolidation of long-term declarative memory in neocortical sites. In the present study, a projection arising in layer V of the entorhinal cortex and terminating in a polymodal association area of the superior temporal gyrus has been identified with the use of retrograde tracing. The dendritic arbors of neurons giving rise to this projection were further investigated by cell filling and confocal microscopy with computer reconstruction. This analysis demonstrated that the dendritic arbor of identified projection neurons was largely confined to layer V, with the exception of a solitary, simple apical dendrite occasionally ascending to superficial laminae but often confined to the lamina dissecans (layer IV). Finally, immunoreactivity for glutamate-receptor subunit proteins GluR 5/6/7 of the dendritic arbor of identified entorhinal projection neurons was examined. The solitary apical dendrite of identified entorhinal projection neurons was prominently immunolabeled for GluR 5/6/7, as was the dendritic arbor of basilar dendrites of these neurons. The restriction of the large bulk of the dendritic arbor of identified entorhinal projection neurons to layer V implies that these neurons are likely to be heavily influenced by hippocampal output arriving in the deep layers of the entorhinal cortex. Immunoreactivity for GluR 5/6/7 throughout the dendritic arbor of such neurons indicates that this class of glutamate receptor is in a position to play a prominent role in mediating excitatory neurotransmission within hippocampal-entorhinal circuits.

  15. Enhancing memory performance with rTMS in healthy subjects and individuals with Mild Cognitive Impairment: the role of the right dorsolateral prefrontal cortex

    PubMed Central

    Turriziani, Patrizia; Smirni, Daniela; Zappalà, Giuseppe; Mangano, Giuseppa R.; Oliveri, Massimiliano; Cipolotti, Lisa

    2012-01-01

    A debated question in the literature is the degree of anatomical and functional lateralization of the executive control processes sub-served by the dorsolateral prefrontal cortex (DLPFC) during recognition memory retrieval. We investigated if transient inhibition and excitation of the left and right DLPFC at retrieval by means of repetitive transcranial magnetic stimulation (rTMS) modulate recognition memory performance in 100 healthy controls (HCs) and in eight patients with Mild Cognitive Impairment (MCI). Recognition memory tasks of faces, buildings, and words were used in different experiments. rTMS-inhibition of the right DLPFC enhanced recognition memory in both HCs and MCIs. rTMS-excitation of the same region in HCs deteriorated memory performance. Inhibition of the right DLPFC could modulate the excitability of a network of brain regions, in the ipsilateral as well as in the contralateral hemisphere, enhancing function in HCs or restoring an adaptive equilibrium in MCI. PMID:22514525

  16. The BTBR mouse model of autism spectrum disorders has learning and attentional impairments and alterations in acetylcholine and kynurenic acid in prefrontal cortex.

    PubMed

    McTighe, Stephanie M; Neal, Sarah J; Lin, Qian; Hughes, Zoë A; Smith, Daniel G

    2013-01-01

    Autism is a complex spectrum of disorders characterized by core behavioral deficits in social interaction, communication, repetitive stereotyped behaviors and restricted interests. Autism frequently presents with additional cognitive symptoms, including attentional deficits and intellectual disability. Preclinical models are important tools for studying the behavioral domains and biological underpinnings of autism, and potential treatment targets. The inbred BTBR T+tf/J (BTBR) mouse strain has been used as an animal model of core behavioral deficits in autism. BTBR mice exhibit repetitive behaviors and deficits in sociability and communication, but other aspects of their cognitive phenotype, including attentional performance, are not well characterized. We examined the attentional abilities of BTBR mice in the 5-choice serial reaction time task (5-CSRTT) using an automated touchscreen testing apparatus. The 5-CSRTT is an analogue of the human continuous performance task of attention, and so both the task and apparatus have translational relevance to human touchscreen cognitive testing. We also measured basal extracellular levels of a panel of neurotransmitters within the medial prefrontal cortex, a brain region critically important for performing the 5-CSRTT. We found that BTBR mice have increased impulsivity, defined as an inability to withhold responding, and decreased motivation, as compared to C57Bl/6J mice. Both of these features characterize attentional deficit disorders in humans. BTBR mice also display decreased accuracy in detecting short stimuli, lower basal levels of extracellular acetylcholine and higher levels of kynurenic acid within the prefrontal cortex. Intact cholinergic transmission in prefrontal cortex is required for accurate performance of the 5-CSRTT, consequently this cholinergic deficit may underlie less accurate performance in BTBR mice. Based on our findings that BTBR mice have attentional impairments and alterations in a key neural

  17. Acute ozone (O3) -induced impairment of glucose regulation: Age-related and temporal changes

    EPA Science Inventory

    O3 is associated with adverse cardiopulmonary health effects in humans and is thought to produce metabolic effects, such as insulin resistance. Recently, we showed that episodic O3 exposure increased insulin levels in aged rats. We hypothesized that O3 exposure could impair gluc...

  18. Interhemispheric Temporal Lobe Connectivity Predicts Language Impairment in Adolescents Born Preterm

    ERIC Educational Resources Information Center

    Northam, Gemma B.; Liegeois, Frederique; Tournier, Jacques-Donald; Croft, Louise J.; Johns, Paul N.; Chong, Wui K.; Wyatt, John S.; Baldeweg, Torsten

    2012-01-01

    Although language difficulties are common in children born prematurely, robust neuroanatomical correlates of these impairments remain to be established. This study investigated whether the greater prevalence of language problems in preterm (versus term-born) children might reflect injury to major intra- or interhemispheric white matter pathways…

  19. Imidacloprid toxicity impairs spatial memory of echolocation bats through neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas.

    PubMed

    Hsiao, Chun-Jen; Lin, Ching-Lung; Lin, Tian-Yu; Wang, Sheue-Er; Wu, Chung-Hsin

    2016-04-13

    It has been reported that the decimation of honey bees was because of pesticides of imidacloprid. The imidacloprid is a wildly used neonicotinoid insecticide. However, whether imidacloprid toxicity interferes with the spatial memory of echolocation bats is still unclear. Thus, we compared the spatial memory of Formosan leaf-nosed bats, Hipposideros terasensis, before and after chronic treatment with a low dose of imidacloprid. We observed that stereotyped flight patterns of echolocation bats that received chronic imidacloprid treatment were quite different from their originally learned paths. We further found that neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas of echolocation bats that received imidacloprid treatment was significantly enhanced in comparison with echolocation bats that received sham treatment. Thus, we suggest that imidacloprid toxicity may interfere with the spatial memory of echolocation bats through neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas. The results provide direct evidence that pesticide toxicity causes a spatial memory disorder in echolocation bats. This implies that agricultural pesticides may pose severe threats to the survival of echolocation bats. PMID:26966783

  20. What are the Effects of Severe Visual Impairment on the Cortical Organization and Connectivity of Primary Visual Cortex?

    PubMed Central

    Larsen, DeLaine D.; Luu, Julie D.; Burns, Marie E.; Krubitzer, Leah

    2009-01-01

    The organization and connections of the primary visual area (V1) were examined in mice that lacked functional rods (Gnat−/−), but had normal cone function. Because mice are nocturnal and rely almost exclusively on rod vision for normal behaviors, the Gnat−/− mice used in the present study are considered functionally blind. Our goal was to determine if visual cortex is reorganized in these mice, and to examine the neuroanatomical connections that may subserve reorganization. We found that most neurons in V1 responded to auditory, or some combination of auditory, somatosensory, and/or visual stimulation. We also determined that cortical connections of V1 in Gnat−/− mice were similar to those in normal animals, but even in normal animals, there is sparse input from auditory cortex (AC) to V1. An important observation was that most of the subcortical inputs to V1 were from thalamic nuclei that normally project to V1 such as the lateral geniculate (LG), lateral posterior (LP), and lateral dorsal (LD) nuclei. However, V1 also received some abnormal subcortical inputs from the anterior thalamic nuclei, the ventral posterior, the ventral lateral and the posterior nuclei. While the vision generated from the small number of cones appears to be sufficient to maintain most of the patterns of normal connectivity, the sparse abnormal thalamic inputs to VI, existing inputs from AC, and possibly abnormal inputs to LG and LP may be responsible for generating the alterations in the functional organization of V1. PMID:20057935

  1. Efficient Visual Object and Word Recognition Relies on High Spatial Frequency Coding in the Left Posterior Fusiform Gyrus: Evidence from a Case-Series of Patients with Ventral Occipito-Temporal Cortex Damage

    PubMed Central

    Roberts, Daniel J.; Woollams, Anna M.; Kim, Esther; Beeson, Pelagie M.; Rapcsak, Steven Z.; Lambon Ralph, Matthew A.

    2013-01-01

    Recent visual neuroscience investigations suggest that ventral occipito-temporal cortex is retinotopically organized, with high acuity foveal input projecting primarily to the posterior fusiform gyrus (pFG), making this region crucial for coding high spatial frequency information. Because high spatial frequencies are critical for fine-grained visual discrimination, we hypothesized that damage to the left pFG should have an adverse effect not only on efficient reading, as observed in pure alexia, but also on the processing of complex non-orthographic visual stimuli. Consistent with this hypothesis, we obtained evidence that a large case series (n = 20) of patients with lesions centered on left pFG: 1) Exhibited reduced sensitivity to high spatial frequencies; 2) demonstrated prolonged response latencies both in reading (pure alexia) and object naming; and 3) were especially sensitive to visual complexity and similarity when discriminating between novel visual patterns. These results suggest that the patients' dual reading and non-orthographic recognition impairments have a common underlying mechanism and reflect the loss of high spatial frequency visual information normally coded in the left pFG. PMID:22923086

  2. Inferior-frontal cortex phase synchronizes with the temporal-parietal junction prior to successful change detection.

    PubMed

    Micheli, Cristiano; Kaping, Daniel; Westendorff, Stephanie; Valiante, Taufik A; Womelsdorf, Thilo

    2015-10-01

    The inferior frontal gyrus (IFG) and the temporo-parietal junction (TPJ) are believed to be core structures of human brain networks that activate when sensory top-down expectancies guide goal directed behavior and attentive perception. But it is unclear how activity in IFG and TPJ coordinates during attention demanding tasks and whether functional interactions between both structures are related to successful attentional performance. Here, we tested these questions in electrocorticographic (ECoG) recordings in human subjects using a visual detection task that required sustained attentional expectancy in order to detect non-salient, near-threshold visual events. We found that during sustained attention the successful visual detection was predicted by increased phase synchronization of band-limited 15-30 Hz beta band activity that was absent prior to misses. Increased beta-band phase alignment during attentional engagement early during the task was restricted to inferior and lateral prefrontal cortex, but with sustained attention it extended to long-range IFG-TPJ phase synchronization and included superior prefrontal areas. In addition to beta, a widely distributed network of brain areas comprising the occipital cortex showed enhanced and reduced alpha band phase synchronization before correct detections. These findings identify long-range phase synchrony in the 15-30 Hz beta band as the mesoscale brain signal that predicts the successful deployment of attentional expectancy of sensory events. We speculate that localized beta coherent states in prefrontal cortex index 'top-down' sensory expectancy whose coupling with TPJ subregions facilitates the gating of relevant visual information. PMID:26119023

  3. Individual Sensitivity to Spectral and Temporal Cues in Listeners with Hearing Impairment

    ERIC Educational Resources Information Center

    Souza, Pamela E.; Wright, Richard A.; Blackburn, Michael C.; Tatman, Rachael; Gallun, Frederick J.

    2015-01-01

    Purpose: The present study was designed to evaluate use of spectral and temporal cues under conditions in which both types of cues were available. Method: Participants included adults with normal hearing and hearing loss. We focused on 3 categories of speech cues: static spectral (spectral shape), dynamic spectral (formant change), and temporal…

  4. A case for conflict across multiple domains: Memory and language impairments following damage to ventrolateral prefrontal cortex

    PubMed Central

    Novick, Jared M.; Kan, Irene P.; Trueswell, John C.; Thompson-Schill, Sharon L.

    2013-01-01

    Patients with focal lesions to the left inferior frontal gyrus (LIFG; BA 44/45) exhibit difficulty with language production and comprehension tasks, although the nature of their impairments has been somewhat difficult to characterize. No reported cases suggest that these patients are Broca's aphasics in the classic agrammatic sense. Recent case studies, however, do reveal a consistent pattern of deficit regarding their general cognitive processes: They are reliably impaired on tasks in which conflicting representations must be resolved by implementing top-down cognitive control (e.g., Stroop; memory tasks involving proactive interference). In the present study, we ask whether the language production and comprehension impairments displayed by a patient with circumscribed LIFG damage can best be understood within a general conflict resolution deficit account. We focus on one patient in particular—patient I.G.—and discuss the implications for language processing abilities as a consequence of a general cognitive control disorder. We compared I.G. and other frontal patients to age-matched control participants across four experiments. Experiment 1 tested participants’ general conflict resolution abilities within a modified working memory paradigm in an attempt to replicate prior case study findings. We then tested language production abilities on tasks of picture naming (Experiment 2) and verbal fluency (Experiment 3), tasks that generated conflict at the semantic and/or conceptual levels. Experiment 4 tested participants’ sentence processing and comprehension abilities using both online (eye movement) and offline measures. In this task, participants carried out spoken instructions containing a syntactic ambiguity, in which early interpretation commitments had to be overridden in order to recover an alternative, intended analysis of sentence meaning. Comparisons of I.G.'s performance with frontal and healthy control participants supported the following claim: I

  5. Reduced self-regulation of cerebrum contributes to executive impairment in patients with temporal lobe epilepsy.

    PubMed

    Zheng, Jin-Ou; Yu, Lu; Huang, Dong-Hong; Cao, Xiao-Li; Chen, Zi-Rong; Ye, Wei

    2015-01-01

    The aim of this study was to investigate the role of self-regulation of cerebrum in the executive impairment. 22 subjects were enrolled were assessed by a neuropsychological test of executive function using attentional networks test and the cerebral activity was evaluated by functional magnetic resonance imaging. The patients with TLE had a longer reaction time than controls (P < 0.05). Moreover, the healthy controls showed more right hemisphere lateralized activation in incongruent tasks. Finally, both positively and negatively correlated cerebral areas were found in the healthy controls but only negatively correlated cerebral areas were found in the TLE patients. Reduced cerebral lead to areas and lack of activation of right midline positively self-regulatory cerebral areas may executive impairment in TLE patients.

  6. Single exposure to cocaine impairs aspartate uptake in the pre-frontal cortex via dopamine D1-receptor dependent mechanisms.

    PubMed

    Sathler, Matheus Figueiredo; Stutz, Bernardo; Martins, Robertta Silva; Dos Santos Pereira, Maurício; Pecinalli, Ney Roner; Santos, Luis E; Taveira-da-Silva, Rosilane; Lowe, Jennifer; de Freitas, Isis Grigorio; de Melo Reis, Ricardo Augusto; Manhães, Alex C; Kubrusly, Regina C C

    2016-08-01

    Dopamine and glutamate play critical roles in the reinforcing effects of cocaine. We demonstrated that a single intraperitoneal administration of cocaine induces a significant decrease in [(3)H]-d-aspartate uptake in the pre-frontal cortex (PFC). This decrease is associated with elevated dopamine levels, and requires dopamine D1-receptor signaling (D1R) and adenylyl cyclase activation. The effect was observed within 10min of cocaine administration and lasted for up to 30min. This rapid response is related to D1R-mediated cAMP-mediated activation of PKA and phosphorylation of the excitatory amino acid transporters EAAT1, EAAT2 and EAAT3. We also demonstrated that cocaine exposure increases extracellular d-aspartate, l-glutamate and d-serine in the PFC. Our data suggest that cocaine activates dopamine D1 receptor signaling and PKA pathway to regulate EAATs function and extracellular EAA level in the PFC.

  7. Single exposure to cocaine impairs aspartate uptake in the pre-frontal cortex via dopamine D1-receptor dependent mechanisms.

    PubMed

    Sathler, Matheus Figueiredo; Stutz, Bernardo; Martins, Robertta Silva; Dos Santos Pereira, Maurício; Pecinalli, Ney Roner; Santos, Luis E; Taveira-da-Silva, Rosilane; Lowe, Jennifer; de Freitas, Isis Grigorio; de Melo Reis, Ricardo Augusto; Manhães, Alex C; Kubrusly, Regina C C

    2016-08-01

    Dopamine and glutamate play critical roles in the reinforcing effects of cocaine. We demonstrated that a single intraperitoneal administration of cocaine induces a significant decrease in [(3)H]-d-aspartate uptake in the pre-frontal cortex (PFC). This decrease is associated with elevated dopamine levels, and requires dopamine D1-receptor signaling (D1R) and adenylyl cyclase activation. The effect was observed within 10min of cocaine administration and lasted for up to 30min. This rapid response is related to D1R-mediated cAMP-mediated activation of PKA and phosphorylation of the excitatory amino acid transporters EAAT1, EAAT2 and EAAT3. We also demonstrated that cocaine exposure increases extracellular d-aspartate, l-glutamate and d-serine in the PFC. Our data suggest that cocaine activates dopamine D1 receptor signaling and PKA pathway to regulate EAATs function and extracellular EAA level in the PFC. PMID:27208619

  8. Short-term sleep deprivation disrupts the molecular composition of ionotropic glutamate receptors in entorhinal cortex and impairs the rat spatial reference memory.

    PubMed

    Xie, Meilan; Li, Chao; He, Chao; Yang, Li; Tan, Gang; Yan, Jie; Wang, Jiali; Hu, Zhian

    2016-03-01

    Numerous studies reported that sleep deprivation (SD) causes impairment in spatial cognitive performance. However, the molecular mechanisms affected by SD underlying this behavioral phenomenon remain elusive. Here, we focused on the entorhinal cortex (EC), the gateway of the hippocampus, and investigated how SD affected the subunit expression of AMPARs and NMDARs, the main ionotropic glutamategic receptors serving a pivotal role in spatial cognition. In EC, we found 4h SD remarkably reduced surface expression of GluA1, while there was an increase in the surface expression of GluA2 and GluA3. As for NMDARs, SD with short duration significantly reduced the surface expression levels of GluN1 and GluN2B without effect on the GluN2A. In parallel with the alterations in AMPARs and NMDARs, we found the 4h SD impaired rat spatial reference memory as assessed by Morris water maze task. Overall, these data indicate that brief SD differently affects the AMPAR and NMDAR subunit expressions in EC and might consequently disrupt the composition and functional properties of these receptors. PMID:26455878

  9. Low-level temporal coding impairments in psychosis: preliminary findings and recommendations for further studies.

    PubMed

    Schmidt, Heike; McFarland, John; Ahmed, Mohamed; McDonald, Colm; Elliott, Mark A

    2011-05-01

    The authors investigated whether difficulties with temporal event coding, previously reported in patients with schizophrenia, are already present during first-episode psychosis (FEP). In this experiment, the subjective judgments of the simultaneity of visually presented stimuli were compared between 11 healthy controls, 9 patients with chronic schizophrenia (CSZ), and a sample of 11 FEP patients. Participants were asked to indicate whether 2 vertical bars appeared at the same time or at different times on a computer monitor. CSZ patients' thresholds were elevated, and the FEP sample showed higher thresholds relative to controls. Although preliminary, these findings indicate a generalized disturbance in event-structure coding at early stages of psychosis and question the specificity of its disturbance. Considering the proposed relationship between event-structure coding and the experience of time in general, this study recommends that future studies refocus on psychosis in general, rather than on schizophrenia as a particular case of abnormal temporal processing. In addition, it is suggested that the relevant psychopathology will be best determined by means of a comprehensive analysis of low-level temporal coding performance in different types of psychosis.

  10. The effect of orbital prefrontal cortex lesions on performance on a progressive ratio schedule: implications for models of inter-temporal choice.

    PubMed

    Kheramin, S; Body, S; Herrera, F Miranda; Bradshaw, C M; Szabadi, E; Deakin, J F W; Anderson, I M

    2005-01-01

    In a previous experiment [Kheramin S, Body S, Mobini S, Ho M-Y, Velazquez-Martinez DN, Bradshaw CM, et al. Effects of quinolinic acid-induced lesions of the orbital prefrontal cortex on inter-temporal choice: a quantitative analysis. Psychopharmacology 2002;165: 9-17], destruction of the orbital prefrontal cortex (OPFC) in rats altered choice between two delayed food reinforcers, enhancing preference for the larger reinforcer. Theoretical analysis based on a quantitative model of inter-temporal choice [Ho M-Y, Mobini S, Chiang T-J, Bradshaw CM, Szabadi E. Theory and method in the quantitative analysis of 'impulsive choice' behaviour: implications for psychopharmacology. Psychopharmacology 1999;146:362-72] indicated that the lesion had increased the relative value of the larger of the two reinforcers due to a general reduction of absolute reinforcer value. The present experiment tested this hypothesis using a reinforcement schedule that did not entail either explicit choice or delayed reinforcement. Ten rats received quinolinic acid-induced lesions of the OPFC, and ten rats received sham lesions. The rats were trained under a progressive-ratio schedule of food reinforcement for 60 daily sessions. Response rates in successive ratios were a bitonic (inverted-U) function of ratio size. Analysis of the data using a three-parameter equation derived from a quantitative model of ratio schedule performance [Killeen PR. Mathematical principles of reinforcement. Behav. Brain Sci. 1994;17:105-72] revealed that the parameter specifying hypothetical reinforcer value was significantly lower in the OPFC-lesioned group than in the sham-lesioned group, consistent with the hypothesis that destruction of the OPFC resulted in devaluation of the food reinforcer.

  11. Spatio-temporal characteristics of cerebral blood volume changes in different microvascular compartments evoked by sciatic nerve stimulation in rat somatosensory cortex

    NASA Astrophysics Data System (ADS)

    Li, Pengcheng; Luo, Qingming; Luo, Weihua; Chen, Shangbin; Chen, Haiying; Zeng, Shaoqun

    2003-10-01

    The spatio-temporal characteristics of changes in cerebral blood volume associated with neuronal activity were investigated in the hindlimb somatosensory cortex of α-chloralose/urethan anesthetized rats (n=10) with optical imaging at 570nm through a thinned skull. Activation of cortex was carried out by electrical stimulation of the contralateral sciatic nerve with 5Hz, 0.3V pulses (0.5ms) for duration of 2s. The stimulation evoked a monophasic optical reflectance decrease at cortical parenchyma and arteries sites rapidly after the onset of stimulation, whereas no similar response was observed at vein compartments. The optical signal changes reached 10% of the peak response 0.70+/-0.32s after stimulation onset and no significant time lag in this 10% start latency time was observed between the response at cortical parenchyma and arteries compartments. The evoked optical reflectance decrease reached the peak (0.25%+/-0.047%)2.66+/-0.61s after the stimulus onset at parenchyma site, 0.40+/-0.20s earlier (P<0.05) than that at arteries site (0.50%+/-0.068% 3.06+/-0.70s). Variable location within the cortical parenchyma and arteries compartment themselves didn"t affect the temporal characteristics of the evoked signal significantly. These results suggest that the sciatic nerve stimulation evokes a local blood volume increase at both capillaries (cortical parenchyma) and arterioles rapidly after the stimulus onset but the evoked blood volume increase in capillaries could not be entirely accounted for by the dilation of arterioles.

  12. The Medial Temporal Lobe and the Left Inferior Prefrontal Cortex Jointly Support Interference Resolution in Verbal Working Memory

    ERIC Educational Resources Information Center

    Oztekin, Ilke; Curtis, Clayton E.; McElree, Brian

    2009-01-01

    During working memory retrieval, proactive interference (PI) can be induced by semantic similarity and episodic familiarity. Here, we used fMRI to test hypotheses about the role of the left inferior frontal gyrus (LIFG) and the medial temporal lobe (MTL) regions in successful resolution of PI. Participants studied six-word lists and responded to a…

  13. Temporal profiles and 2-dimensional oxy-, deoxy-, and total-hemoglobin somatosensory maps in rat versus mouse cortex

    PubMed Central

    Prakash, Neal; Biag, Jonathan D.; Sheth, Sameer A.; Mitsuyama, Satoshi; Theriot, Jeremy; Ramachandra, Chaithanya; Toga, Arthur W.

    2007-01-01

    Background Mechanisms of neurovascular coupling—the relationship between neuronal chemoelectrical activity and compensatory metabolic and hemodynamic changes—appear to be preserved across species from rats to humans despite differences in scale. However, previous work suggests that the highly cellular dense mouse somatosensory cortex has different functional hemodynamic changes compared to other species. Methods We developed novel hardware and software for 2-dimensional optical spectroscopy (2DOS). Optical changes at four simultaneously recorded wavelengths were measured in both rat and mouse primary somatosensory cortex (S1) evoked by forepaw stimulation to create four spectral maps. The spectral maps were converted to maps of deoxy-, oxy-, and total-hemoglobin (HbR, HbO, and HbT) concentration changes using the modified Beer-Lambert law and phantom HbR and HbO absorption spectra. Results Functional hemodynamics were different in mouse versus rat neocortex. On average, hemodynamics were as expected in rat primary somatosensory cortex (S1): the fractional change in the log of HbT concentration increased monophasically 2 s after stimulus, whereas HbO changes mirrored HbR changes, with HbO showing a small initial dip at 0.5 s followed by a large increase 3.0 s post stimulus. In contrast, mouse S1 showed a novel type of stimulus-evoked hemodynamic response, with prolonged, concurrent, monophasic increases in HbR and HbT and a parallel decrease in HbO that all peaked 3.5–4.5 s post stimulus onset. For rats, at any given time point the average size and shape of HbO and HbR forepaw maps were the same, whereas surface veins distorted the shape of the HbT map. For mice, HbO, HbR, and HbT forepaw maps were generally the same size and shape at any post-stimulus time point. Conclusions 2DOS using image splitting optics is feasible across species for brain mapping and quantifying the map topography of cortical hemodynamics. These results suggest that during physiologic

  14. The laminar and temporal structure of stimulus information in the phase of field potentials of auditory cortex.

    PubMed

    Szymanski, Francois D; Rabinowitz, Neil C; Magri, Cesare; Panzeri, Stefano; Schnupp, Jan W H

    2011-11-01

    Recent studies have shown that the phase of low-frequency local field potentials (LFPs) in sensory cortices carries a significant amount of information about complex naturalistic stimuli, yet the laminar circuit mechanisms and the aspects of stimulus dynamics responsible for generating this phase information remain essentially unknown. Here we investigated these issues by means of an information theoretic analysis of LFPs and current source densities (CSDs) recorded with laminar multi-electrode arrays in the primary auditory area of anesthetized rats during complex acoustic stimulation (music and broadband 1/f stimuli). We found that most LFP phase information originated from discrete "CSD events" consisting of granular-superficial layer dipoles of short duration and large amplitude, which we hypothesize to be triggered by transient thalamocortical activation. These CSD events occurred at rates of 2-4 Hz during both stimulation with complex sounds and silence. During stimulation with complex sounds, these events reliably reset the LFP phases at specific times during the stimulation history. These facts suggest that the informativeness of LFP phase in rat auditory cortex is the result of transient, large-amplitude events, of the "evoked" or "driving" type, reflecting strong depolarization in thalamo-recipient layers of cortex. Finally, the CSD events were characterized by a small number of discrete types of infragranular activation. The extent to which infragranular regions were activated was stimulus dependent. These patterns of infragranular activations may reflect a categorical evaluation of stimulus episodes by the local circuit to determine whether to pass on stimulus information through the output layers.

  15. Synaptic Impairment in Layer 1 of the Prefrontal Cortex Induced by Repeated Stress During Adolescence is Reversed in Adulthood.

    PubMed

    Negrón-Oyarzo, Ignacio; Dagnino-Subiabre, Alexies; Muñoz Carvajal, Pablo

    2015-01-01

    Chronic stress is a risk factor for the development of psychiatric disorders, some of which involve dysfunction of the prefrontal cortex (PFC). There is a higher prevalence of these chronic stress-related psychiatric disorders during adolescence, when the PFC has not yet fully matured. In the present work we studied the effect of repeated stress during adolescence on synaptic function in the PFC in adolescence and adulthood. To this end, adolescent Sprague-Dawley rats were subjected to seven consecutive days of restraint stress. Afterward, both synaptic transmission and short- and long-term synaptic plasticity were evaluated in layer 1 of medial-PFC (mPFC) slices from adolescent and adult rats. We found that repeated stress significantly reduced the amplitude of evoked field excitatory post-synaptic potential (fEPSP) in the mPFC. Isolation of excitatory transmission reveled that lower-amplitude fEPSPs were associated with a reduction in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated transmission. We also found that repeated stress significantly decreased long-term depression (LTD). Interestingly, AMPA/kainate receptor-mediated transmission and LTD were recovered in adult animals that experienced a three-week stress-free recovery period. The data indicates that the changes in synaptic transmission and plasticity in the mPFC induced by repeated stress during adolescence are reversed in adulthood after a stress-free period. PMID:26617490

  16. Synaptic Impairment in Layer 1 of the Prefrontal Cortex Induced by Repeated Stress During Adolescence is Reversed in Adulthood

    PubMed Central

    Negrón-Oyarzo, Ignacio; Dagnino-Subiabre, Alexies; Muñoz Carvajal, Pablo

    2015-01-01

    Chronic stress is a risk factor for the development of psychiatric disorders, some of which involve dysfunction of the prefrontal cortex (PFC). There is a higher prevalence of these chronic stress-related psychiatric disorders during adolescence, when the PFC has not yet fully matured. In the present work we studied the effect of repeated stress during adolescence on synaptic function in the PFC in adolescence and adulthood. To this end, adolescent Sprague-Dawley rats were subjected to seven consecutive days of restraint stress. Afterward, both synaptic transmission and short- and long-term synaptic plasticity were evaluated in layer 1 of medial-PFC (mPFC) slices from adolescent and adult rats. We found that repeated stress significantly reduced the amplitude of evoked field excitatory post-synaptic potential (fEPSP) in the mPFC. Isolation of excitatory transmission reveled that lower-amplitude fEPSPs were associated with a reduction in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated transmission. We also found that repeated stress significantly decreased long-term depression (LTD). Interestingly, AMPA/kainate receptor-mediated transmission and LTD were recovered in adult animals that experienced a three-week stress-free recovery period. The data indicates that the changes in synaptic transmission and plasticity in the mPFC induced by repeated stress during adolescence are reversed in adulthood after a stress-free period. PMID:26617490

  17. Synaptic Impairment in Layer 1 of the Prefrontal Cortex Induced by Repeated Stress During Adolescence is Reversed in Adulthood.

    PubMed

    Negrón-Oyarzo, Ignacio; Dagnino-Subiabre, Alexies; Muñoz Carvajal, Pablo

    2015-01-01

    Chronic stress is a risk factor for the development of psychiatric disorders, some of which involve dysfunction of the prefrontal cortex (PFC). There is a higher prevalence of these chronic stress-related psychiatric disorders during adolescence, when the PFC has not yet fully matured. In the present work we studied the effect of repeated stress during adolescence on synaptic function in the PFC in adolescence and adulthood. To this end, adolescent Sprague-Dawley rats were subjected to seven consecutive days of restraint stress. Afterward, both synaptic transmission and short- and long-term synaptic plasticity were evaluated in layer 1 of medial-PFC (mPFC) slices from adolescent and adult rats. We found that repeated stress significantly reduced the amplitude of evoked field excitatory post-synaptic potential (fEPSP) in the mPFC. Isolation of excitatory transmission reveled that lower-amplitude fEPSPs were associated with a reduction in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated transmission. We also found that repeated stress significantly decreased long-term depression (LTD). Interestingly, AMPA/kainate receptor-mediated transmission and LTD were recovered in adult animals that experienced a three-week stress-free recovery period. The data indicates that the changes in synaptic transmission and plasticity in the mPFC induced by repeated stress during adolescence are reversed in adulthood after a stress-free period.

  18. Deficiency of the microglial receptor CX3CR1 impairs postnatal functional development of thalamocortical synapses in the barrel cortex.

    PubMed

    Hoshiko, Maki; Arnoux, Isabelle; Avignone, Elena; Yamamoto, Nobuhiko; Audinat, Etienne

    2012-10-24

    Accumulative evidence indicates that microglial cells influence the normal development of brain synapses. Yet, the mechanisms by which these immune cells target maturating synapses and influence their functional development at early postnatal stages remain poorly understood. Here, we analyzed the role of CX3CR1, a microglial receptor activated by the neuronal chemokine CX3CL1 (or fractalkine) which controls key functions of microglial cells. In the whisker-related barrel field of the mouse somatosensory cortex, we show that the recruitment of microglia to the sites where developing thalamocortical synapses are concentrated (i.e., the barrel centers) occurs only after postnatal day 5 and is controlled by the fractalkine/CX3CR1 signaling pathway. Indeed, at this developmental stage fractalkine is overexpressed within the barrels and CX3CR1 deficiency delays microglial cell recruitment into the barrel centers. Functional analysis of thalamocortical synapses shows that CX3CR1 deficiency also delays the functional maturation of postsynaptic glutamate receptors which normally occurs at these synapses between the first and second postnatal week. These results show that reciprocal interactions between neurons and microglial cells control the functional maturation of cortical synapses. PMID:23100431

  19. Visual extinction and prior entry: impaired perception of temporal order with intact motion perception after unilateral parietal damage.

    PubMed

    Rorden, C; Mattingley, J B; Karnath, H O; Driver, J

    1997-04-01

    Two patients with left-sided visual extinction after right parietal damage were each given two 'prior entry' tasks that have recently been used to study attentional biases in normals. The first task presented two unconnected bars, one in each visual field, with the patients asked to judge which appeared sooner. Both patients reported that the right bar preceded the left unless the latter led by over 200 msec, suggesting a severe bias to the right affecting the time-course of visual awareness. The second task presented one continuous line in a scrolling format across the same spatial extent, with the patients asked to judge which direction the line moved in. The patients now performed normally. Thus, the perception of temporal order for separate events was impaired by the lesions, but without disrupting motion perception within single events. The implications are discussed for theories of normal and pathological attention, visual awareness, and motion perception.

  20. Increased expression of interleukin 17 in the cortex and hippocampus from patients with mesial temporal lobe epilepsy.

    PubMed

    He, Jiao-Jiang; Sun, Fei-Ji; Wang, Yu; Luo, Xiao-Qin; Lei, Peng; Zhou, Jie; Zhu, Di; Li, Zhi-Yun; Yang, Hui

    2016-09-15

    Mesial temporal lobe epilepsy (MTLE) is the most common form of focal epilepsies in adults and proinflammatory cytokines have long been thought to play an important role in pathogenesis and epileptogenicity. In the present study, we investigated the levels and expression patterns of the interleukin 17 (IL-17) system in temporal neocortex and hippocampus from 24 patients with MTLE and 8 control (Ctr) samples. We found that IL-17 and IL-17 receptor (IL-17R) were clearly upregulated in MTLE at both mRNA and protein levels, compared with Ctr. Immunostaining indicated that neurons, astrocytes, microglia and endothelial cells of blood vessels are the major sources of IL-17. These findings suggest that IL-17 system may be involved in the pathogenesis and epileptogenicity of MTLE. PMID:27609289

  1. Differential roles of right temporal cortex and Broca's area in pitch processing: evidence from music and Mandarin.

    PubMed

    Nan, Yun; Friederici, Angela D

    2013-09-01

    Superior temporal and inferior frontal cortices are involved in the processing of pitch information in the domain of language and music. Here, we used fMRI to test the particular roles of these brain regions in the neural implementation of pitch in music and in tone language (Mandarin) with a group of Mandarin speaking musicians whose pertaining experiences in pitch are similar across domains. Our findings demonstrate that the neural network for pitch processing includes the pars triangularis of Broca's area and the right superior temporal gyrus (STG) across domains. Within this network, pitch sensitive activation in Broca's area is tightly linked to the behavioral performance of pitch congruity judgment, thereby reflecting controlled processes. Activation in the right STG is independent of performance and more sensitive to pitch congruity in music than in tone language, suggesting a domain-specific modulation of the perceptual processes. These observations provide a first glimpse at the cortical pitch processing network shared across domains.

  2. Impaired Pavlovian predictive learning between temporally phasic but not static events in autism-model strain mice.

    PubMed

    Kosaki, Yutaka; Watanabe, Shigeru

    2016-10-01

    Autism-spectrum disorder (ASD) is a multi-aspect developmental disorder characterised by various social and non-social behavioural abnormalities. Using BTBR T+ tf mouse strain (BTBR), a promising animal model displaying a number of behavioural and neural characteristics associated with ASD, we tested the hypothesis that at the core of various symptoms of ASD lies a fundamental deficit in predictive learning between events. In five experiments, we conducted a variety of Pavlovian conditioning tasks, some requiring the establishment of associations between temporally phasic events and others involving static events. BTBR mice were impaired in the acquisition of conditioned magazine approach responses with an appetitive unconditioned stimulus (US) (Experiment 1) and conditioned freezing with an electric shock US (Experiment 2). Both of these tasks had temporally phasic conditioned stimuli (CSs). Conversely, these mice showed normal acquisition of conditioned place preference (CPP), whether the US was a systemic injection of methamphetamine (Experiment 3A) or the presence of food (Experiment 3B). Experiment 4 showed normal acquisition of conditioned taste aversion (CTA) to a flavour-taste compound CS, although BTBR mice still exhibited an abnormal stimulus selection when learning for each element of the compound CS was assessed separately. Experiment 5 revealed a weaker latent inhibition of CTA in BTBR mice. The BTBR mouse's impaired predictive learning between phasic events and intact associations between static events are discussed in terms of dysfunctional contingency-based, but not contiguity-based learning, which may accompany abnormal selective attention to relevant cues. We propose that such dysfunctional contingency learning mechanisms may underlie the development of various social and non-social symptoms of ASD.

  3. Impaired Pavlovian predictive learning between temporally phasic but not static events in autism-model strain mice.

    PubMed

    Kosaki, Yutaka; Watanabe, Shigeru

    2016-10-01

    Autism-spectrum disorder (ASD) is a multi-aspect developmental disorder characterised by various social and non-social behavioural abnormalities. Using BTBR T+ tf mouse strain (BTBR), a promising animal model displaying a number of behavioural and neural characteristics associated with ASD, we tested the hypothesis that at the core of various symptoms of ASD lies a fundamental deficit in predictive learning between events. In five experiments, we conducted a variety of Pavlovian conditioning tasks, some requiring the establishment of associations between temporally phasic events and others involving static events. BTBR mice were impaired in the acquisition of conditioned magazine approach responses with an appetitive unconditioned stimulus (US) (Experiment 1) and conditioned freezing with an electric shock US (Experiment 2). Both of these tasks had temporally phasic conditioned stimuli (CSs). Conversely, these mice showed normal acquisition of conditioned place preference (CPP), whether the US was a systemic injection of methamphetamine (Experiment 3A) or the presence of food (Experiment 3B). Experiment 4 showed normal acquisition of conditioned taste aversion (CTA) to a flavour-taste compound CS, although BTBR mice still exhibited an abnormal stimulus selection when learning for each element of the compound CS was assessed separately. Experiment 5 revealed a weaker latent inhibition of CTA in BTBR mice. The BTBR mouse's impaired predictive learning between phasic events and intact associations between static events are discussed in terms of dysfunctional contingency-based, but not contiguity-based learning, which may accompany abnormal selective attention to relevant cues. We propose that such dysfunctional contingency learning mechanisms may underlie the development of various social and non-social symptoms of ASD. PMID:27521755

  4. Reverberation impairs brainstem temporal representations of voiced vowel sounds: challenging "periodicity-tagged" segregation of competing speech in rooms.

    PubMed

    Sayles, Mark; Stasiak, Arkadiusz; Winter, Ian M

    2014-01-01

    The auditory system typically processes information from concurrently active sound sources (e.g., two voices speaking at once), in the presence of multiple delayed, attenuated and distorted sound-wave reflections (reverberation). Brainstem circuits help segregate these complex acoustic mixtures into "auditory objects." Psychophysical studies demonstrate a strong interaction between reverberation and fundamental-frequency (F0) modulation, leading to impaired segregation of competing vowels when segregation is on the basis of F0 differences. Neurophysiological studies of complex-sound segregation have concentrated on sounds with steady F0s, in anechoic environments. However, F0 modulation and reverberation are quasi-ubiquitous. We examine the ability of 129 single units in the ventral cochlear nucleus (VCN) of the anesthetized guinea pig to segregate the concurrent synthetic vowel sounds /a/ and /i/, based on temporal discharge patterns under closed-field conditions. We address the effects of added real-room reverberation, F0 modulation, and the interaction of these two factors, on brainstem neural segregation of voiced speech sounds. A firing-rate representation of single-vowels' spectral envelopes is robust to the combination of F0 modulation and reverberation: local firing-rate maxima and minima across the tonotopic array code vowel-formant structure. However, single-vowel F0-related periodicity information in shuffled inter-spike interval distributions is significantly degraded in the combined presence of reverberation and F0 modulation. Hence, segregation of double-vowels' spectral energy into two streams (corresponding to the two vowels), on the basis of temporal discharge patterns, is impaired by reverberation; specifically when F0 is modulated. All unit types (primary-like, chopper, onset) are similarly affected. These results offer neurophysiological insights to perceptual organization of complex acoustic scenes under realistically challenging listening

  5. Reverberation impairs brainstem temporal representations of voiced vowel sounds: challenging “periodicity-tagged” segregation of competing speech in rooms

    PubMed Central

    Sayles, Mark; Stasiak, Arkadiusz; Winter, Ian M.

    2015-01-01

    The auditory system typically processes information from concurrently active sound sources (e.g., two voices speaking at once), in the presence of multiple delayed, attenuated and distorted sound-wave reflections (reverberation). Brainstem circuits help segregate these complex acoustic mixtures into “auditory objects.” Psychophysical studies demonstrate a strong interaction between reverberation and fundamental-frequency (F0) modulation, leading to impaired segregation of competing vowels when segregation is on the basis of F0 differences. Neurophysiological studies of complex-sound segregation have concentrated on sounds with steady F0s, in anechoic environments. However, F0 modulation and reverberation are quasi-ubiquitous. We examine the ability of 129 single units in the ventral cochlear nucleus (VCN) of the anesthetized guinea pig to segregate the concurrent synthetic vowel sounds /a/ and /i/, based on temporal discharge patterns under closed-field conditions. We address the effects of added real-room reverberation, F0 modulation, and the interaction of these two factors, on brainstem neural segregation of voiced speech sounds. A firing-rate representation of single-vowels' spectral envelopes is robust to the combination of F0 modulation and reverberation: local firing-rate maxima and minima across the tonotopic array code vowel-formant structure. However, single-vowel F0-related periodicity information in shuffled inter-spike interval distributions is significantly degraded in the combined presence of reverberation and F0 modulation. Hence, segregation of double-vowels' spectral energy into two streams (corresponding to the two vowels), on the basis of temporal discharge patterns, is impaired by reverberation; specifically when F0 is modulated. All unit types (primary-like, chopper, onset) are similarly affected. These results offer neurophysiological insights to perceptual organization of complex acoustic scenes under realistically challenging listening

  6. Dynamics of Phase-Independent Spectro-Temporal Tuning in Primary Auditory Cortex of the Awake Ferret

    PubMed Central

    Depireux, D.A.; Dobbins, H.D.; Marvit, P.; Shechter, B.

    2012-01-01

    Tuning of cortical neurons is often measured as a static property, or during a steady-state regime, despite a number of studies suggesting that tuning depends on when it is meaured during a neuron’s response (e.g., onset vs. sustained vs. offset). We have previously shown that phase-locked tuning to feature transients evolves as a dynamic quantity from the onset of the sound. In this follow-up study, we examined the phase-indepenent tuning during feature transients. Based on previous results, we hypothesized phase-independent tuning should evolve on the same timescale as phase-locked tuning. We used stimuli of constant level, but alternating between flat spectro-temporal envelope and a modulated envelope with well defined spectral density and temporal periodicity This allowed the measure of changes in tuning to novel spectro-temporal content, as happens during running speech and other sounds with rapid transitions without a confounding change in sound level. For 95% of neurons, tuning changed significantly from the onset, over the course of the response. For a majority of these cells, the change occurred within the first 40 ms following a feature onset, often even around 10–20ms. This solidifies the idea that tuning can change rapidly from onset tuning to the sustained, steady-state tuning. PMID:22531376

  7. Stability of Spectro-Temporal Tuning over Several Seconds in Primary Auditory Cortex of the Awake Ferret

    PubMed Central

    B., Shechter; D.A., Depireux

    2007-01-01

    The steady-state spectro-temporal tuning of auditory cortical cells has been studied using a variety of broad-band stimuli that characterize neurons by their steady-state responses to long duration stimuli, lasting from about a second to several minutes. Central sensory stations are thought to adapt in their response to stimuli presented over extended periods of time. For instance, we have previously shown that auditory cortical neurons display a second order of adaptation, whereby the rate of their adaptation to the repeated presentation of fixed alternating stimuli decreases with each presentation. The auditory grating (or ripple) method of characterizing central auditory neurons, and its extensions, have proven very effective. But these stimuli are typically used with spectro-temporal content held fixed over time-scales of seconds, introducing the possibility of rapid adaptation while the receptive field is being measured, whereas the neural response used to compute a spectro-temporal receptive field (STRF) assumes stationarity in the neural input/output function. We demonstrate dynamic changes in some parameters during the measurement of the STRF over a period of seconds, even absent of a relevant behavioral task. Specifically, we find small but systematic changes in duration and breadth of tuning of STRFs when comparing the early (0.25 sec - 1.75 sec) and late (4.5 sec - 6 sec) segments of the responses to these stimuli. PMID:17693032

  8. Impaired reward processing in the human prefrontal cortex distinguishes between persistent and remittent attention deficit hyperactivity disorder.

    PubMed

    Wetterling, Friedrich; McCarthy, Hazel; Tozzi, Leonardo; Skokauskas, Norbert; O'Doherty, John P; Mulligan, Aisling; Meaney, James; Fagan, Andrew J; Gill, Michael; Frodl, Thomas

    2015-11-01

    Symptoms of attention deficit hyperactivity disorder (ADHD) in children often persist into adulthood and can lead to severe antisocial behavior. However, to-date it remains unclear whether neuro-functional abnormalities cause ADHD, which in turn can then provide a marker of persistent ADHD. Using event-related functional magnetic resonance imaging (fMRI), we measured blood oxygenation level dependent (BOLD) signal changes in subjects during a reversal learning task in which choice of the correct stimulus led to a probabilistically determined 'monetary' reward or punishment. Participants were diagnosed with ADHD during their childhood (N=32) and were paired with age, gender, and education matched healthy controls (N=32). Reassessment of the ADHD group as adults resulted in a split between either persistent (persisters, N=17) or remitted ADHDs (remitters, N=15). All three groups showed significantly decreased activation in the medial prefrontal cortex (PFC) and the left striatum during punished correct responses, however only remitters and controls presented significant psycho-physiological interaction between these fronto-striatal reward and outcome valence networks. Comparing persisters to remitters and controls showed significantly inverted responses to punishment (P<0.05, family-wise error corrected) in left PFC region. Interestingly, the decreased activation shown after punishment was located in different areas of the PFC for remitters compared with controls, suggesting that remitters might have learned compensation strategies to overcome their ADHD symptoms. Thus, fMRI helps understanding the neuro-functional basis of ADHD related behavior differences and differentiates between persistent and remittent ADHD. PMID:26287509

  9. Impaired cognitive ability and anxiety-like behavior following acute seizures in the Theiler's virus model of temporal lobe epilepsy.

    PubMed

    Umpierre, Anthony D; Remigio, Gregory J; Dahle, E Jill; Bradford, Kate; Alex, Anitha B; Smith, Misty D; West, Peter J; White, H Steve; Wilcox, Karen S

    2014-04-01

    Viral infection of the CNS can result in encephalitis and acute seizures, increasing the risk for later-life epilepsy. We have previously characterized a novel animal model of temporal lobe epilepsy that recapitulates key sequela in the development of epilepsy following viral infection. C57BL/6J mice inoculated with the Daniel's strain of Theiler's Murine Encephalomyelitis Virus (TMEV; 3×10(5) PFU, i.c.) display acute limbic seizures that secondarily generalize. A majority of acutely seized animals develop spontaneous seizures weeks to months later. As part of our investigation, we sought to assess behavioral comorbidity following TMEV inoculation. Anxiety, depression, cognitive impairment, and certain psychoses are diagnosed in persons with epilepsy at rates far more frequent than in the general population. We used a battery of behavioral tests to assess anxiety, depression, cognitive impairment, and general health in acutely seized animals inoculated with TMEV and compared behavioral outcomes against age-matched controls receiving a sham injection. We determined that TMEV-seized animals are less likely to move through the exposed center of an open field and are less likely to enter into the lighted half of a light/dark box; both behaviors may be indicative of anxiety-like behavior. TMEV-seized animals also display early and persistent reductions in novel object exploration during novel object place tasks and do not improve in their ability to find a hidden escape platform in Morris water maze testing, indicative of impairment in episodic and spatial memory, respectively. Cresyl violet staining at 35 and 250 days after injection reveals bilateral reductions in hippocampal area, with extensive sclerosis of CA1 evident bilaterally along the rostral-caudal axis. Early and persistent behavioral changes in the TMEV model provide surrogate markers for assessing disease progression as well as endpoints in screening for the efficacy of novel compounds to manage both

  10. Temporal coupling between neuronal activity and blood flow in rat cerebellar cortex as indicated by field potential analysis

    PubMed Central

    Mathiesen, Claus; Caesar, Kirsten; Lauritzen, Martin

    2000-01-01

    Laser-Doppler flowmetry and extracellular recordings of field potentials were used to examine the temporal coupling between neuronal activity and increases in cerebellar blood flow (CeBF). Climbing fibre-evoked increases in CeBF were dependent on stimulus duration, indicating that increases in CeBF reflected a time integral in neuronal activity. The simplest way to represent neuronal activity over time was to obtain a running summation of evoked field potential amplitudes (runΣFP). RunΣFP was calculated for each stimulus protocol and compared with the time course of the CeBF responses to demonstrate coupling between nerve cell activity and CeBF. In the climbing fibre system, the amplitude and time course of CeBF were in agreement with the calculated postsynaptic runΣFP (2–20 Hz for 60 s). This suggested coupling between CeBF and neuronal activity in this excitatory, monosynaptic, afferent-input system under these conditions. There was no correlation between runΣFP and CeBF during prolonged stimulation. Parallel fibre-evoked increases in CeBF correlated with runΣFP of pre- and postsynaptic potentials (2–15 Hz for 60 s). At higher stimulation frequencies and during longer-lasting stimulation the time course and amplitudes of CeBF responses correlated with runΣFP of presynaptic, but not postsynaptic potentials. This suggested a more complex relationship in this mixed inhibitory-excitatory, disynaptic, afferent-input system. This study has demonstrated temporal coupling between neuronal activity and CeBF in the monosynaptic, excitatory climbing-fibre system. In the mixed mono- and disynaptic parallel fibre system, temporal coupling was most clearly observed at low stimulation frequencies. We propose that appropriate modelling of electrophysiological data is needed to document functional coupling of neuronal activity and blood flow. PMID:10673558

  11. Functional MR imaging of visual and motor cortex stimulation at high temporal resolution using a FLASH technique on a standard 1.5 Tesla scanner.

    PubMed

    Wiener, E; Schad, L R; Baudendistel, K T; Essig, M; Müller, E; Lorenz, W J

    1996-01-01

    Functional magnetic resonance imaging (fMRI) was performed on a conventional 1.5 T scanner by means of a modified FLASH-technique at temporal resolutions of 80 and 320 ms. The method's stability was assessed by phantom measurements and by investigation of three volunteers resulting in a low amplitude (3%) periodic (4 s) signal modulation for the in vivo measurements, which was not observable in the phantom experiments. fMRI activation studies of motor and visual cortices of four adjacent slices were carried out on 12 healthy right-handed volunteers. Stimulation was performed by a triggered single white light flash or single finger-to-thumb opposition movement, respectively. Event-related response of visual and motor activation was traced over 10.24 s with a temporal resolution of 320 ms for the four slice measurements. Brain activation maps were calculated by correlation of measured signal time course with a time-shifted boxcar function. Activation was quantified by calculation of percentual signal change in relation to the baseline. Observed signal magnitudes were about 5-7% in visual and about 8-12% in primary motor cortex. While photic response was delayed by about 2 s, motor stimulation showed an instantaneous increase of the MR signal. MR signal responses for both stimuli had decayed completely after about 5 s. Our results show that event-related fMRI enables mapping of brain function at sufficient spatial resolution with a temporal resolution of up to 80 ms on a conventional scanner.

  12. Locomotor exercise induces long-lasting impairments in the capacity of the human motor cortex to voluntarily activate knee extensor muscles.

    PubMed

    Sidhu, Simranjit K; Bentley, David J; Carroll, Timothy J

    2009-02-01

    Muscle fatigue is a reduction in the capacity to exert force and may involve a "central" component originating in the brain and/or spinal cord. Here we examined whether supraspinal factors contribute to impaired central drive after locomotor endurance exercise. On 2 separate days, 10 moderately active individuals completed a locomotor cycling exercise session or a control session. Brief (2 s) and sustained (30 s) isometric knee extension contractions were completed before and after locomotor exercise consisting of eight, 5-min bouts of cycling at 80% of maximum workload. In the control session, subjects completed the isometric contractions in a rested state. Twitch responses to supramaximal motor nerve stimulation and transcranial magnetic stimulation were obtained to assess peripheral force-generating capacity and voluntary activation. Maximum voluntary contraction (MVC) force during brief contractions decreased by 23 +/- 6.3% after cycling exercise and remained 12 +/- 2.8% below baseline 45 min later (F(1,9) > 15.5; P < 0.01). Resting twitch amplitudes declined by approximately 45% (F(1,9) = 28.3; P < 0.001). Cortical voluntary activation declined from 90.6 +/- 1.6% at baseline to 80.6 +/- 2.1% after exercise (F(1,9) = 28.0; P < 0.001) and remained significantly reduced relative to control 30-45 min later (80.6 +/- 3.4%; F(1,9) = 10.7; P < 0.01). Thus locomotor exercise caused a long-lasting impairment in the capacity of the motor cortex to drive the knee extensors. Force was reduced more during sustained MVC after locomotor exercise than in the control session. Peripheral mechanisms contributed relatively more to this force reduction in the control session, whereas supraspinal fatigue played a greater role in sustained MVC reduction after locomotor exercise. PMID:19056999

  13. Correlation between Motor Cortex Excitability Changes and Cognitive Impairment in Vascular Depression: Pathophysiological Insights from a Longitudinal TMS Study.

    PubMed

    Pennisi, Manuela; Lanza, Giuseppe; Cantone, Mariagiovanna; Ricceri, Riccardo; Spampinato, Concetto; Pennisi, Giovanni; Di Lazzaro, Vincenzo; Bella, Rita

    2016-01-01

    Background. Transcranial magnetic stimulation (TMS) highlighted functional changes in dementia, whereas there are few data in patients with vascular cognitive impairment-no dementia (VCI-ND). Similarly, little is known about the neurophysiological impact of vascular depression (VD) on deterioration of cognitive functions. We test whether depression might affect not only cognition but also specific cortical circuits in subcortical vascular disease. Methods. Sixteen VCI-ND and 11 VD patients, age-matched with 15 controls, underwent a clinical-cognitive, neuroimaging, and TMS assessment. After approximately two years, all participants were prospectively reevaluated. Results. At baseline, a significant more pronounced intracortical facilitation (ICF) was found in VCI-ND patients. Reevaluation revealed an increase of the global excitability in both VCI-ND and VD subjects. At follow-up, the ICF of VCI-ND becomes similar to the other groups. Only VD patients showed cognitive deterioration. Conclusions. Unlike VD, the hyperfacilitation found at baseline in VCI-ND patients suggests enhanced glutamatergic neurotransmission that might contribute to the preservation of cognitive functioning. The hyperexcitability observed at follow-up in both groups of patients also indicates functional changes in glutamatergic neurotransmission. The mechanisms enhancing the risk of dementia in VD might be related either to subcortical vascular lesions or to the lack of compensatory functional cortical changes. PMID:27525127

  14. Correlation between Motor Cortex Excitability Changes and Cognitive Impairment in Vascular Depression: Pathophysiological Insights from a Longitudinal TMS Study

    PubMed Central

    Cantone, Mariagiovanna; Spampinato, Concetto

    2016-01-01

    Background. Transcranial magnetic stimulation (TMS) highlighted functional changes in dementia, whereas there are few data in patients with vascular cognitive impairment-no dementia (VCI-ND). Similarly, little is known about the neurophysiological impact of vascular depression (VD) on deterioration of cognitive functions. We test whether depression might affect not only cognition but also specific cortical circuits in subcortical vascular disease. Methods. Sixteen VCI-ND and 11 VD patients, age-matched with 15 controls, underwent a clinical-cognitive, neuroimaging, and TMS assessment. After approximately two years, all participants were prospectively reevaluated. Results. At baseline, a significant more pronounced intracortical facilitation (ICF) was found in VCI-ND patients. Reevaluation revealed an increase of the global excitability in both VCI-ND and VD subjects. At follow-up, the ICF of VCI-ND becomes similar to the other groups. Only VD patients showed cognitive deterioration. Conclusions. Unlike VD, the hyperfacilitation found at baseline in VCI-ND patients suggests enhanced glutamatergic neurotransmission that might contribute to the preservation of cognitive functioning. The hyperexcitability observed at follow-up in both groups of patients also indicates functional changes in glutamatergic neurotransmission. The mechanisms enhancing the risk of dementia in VD might be related either to subcortical vascular lesions or to the lack of compensatory functional cortical changes. PMID:27525127

  15. ERPs reveal the temporal dynamics of auditory word recognition in specific language impairment.

    PubMed

    Malins, Jeffrey G; Desroches, Amy S; Robertson, Erin K; Newman, Randy Lynn; Archibald, Lisa M D; Joanisse, Marc F

    2013-07-01

    We used event-related potentials (ERPs) to compare auditory word recognition in children with specific language impairment (SLI group; N=14) to a group of typically developing children (TD group; N=14). Subjects were presented with pictures of items and heard auditory words that either matched or mismatched the pictures. Mismatches overlapped expected words in word-onset (cohort mismatches; see: DOLL, hear: dog), rhyme (CONE -bone), or were unrelated (SHELL -mug). In match trials, the SLI group showed a different pattern of N100 responses to auditory stimuli compared to the TD group, indicative of early auditory processing differences in SLI. However, the phonological mapping negativity (PMN) response to mismatching items was comparable across groups, suggesting that just like TD children, children with SLI are capable of establishing phonological expectations and detecting violations of these expectations in an online fashion. Perhaps most importantly, we observed a lack of attenuation of the N400 for rhyming words in the SLI group, which suggests that either these children were not as sensitive to rhyme similarity as their typically developing peers, or did not suppress lexical alternatives to the same extent. These findings help shed light on the underlying deficits responsible for SLI.

  16. Responses of neurons in the middle temporal visual area after long-standing lesions of the primary visual cortex in adult new world monkeys.

    PubMed

    Collins, Christine E; Lyon, David C; Kaas, Jon H

    2003-03-15

    The retinotopic organization of the middle temporal visual area (MT) was determined in six adult owl monkeys and one adult marmoset 69 d to 10 months after lesions of the dorsolateral primary visual cortex (V1). The lesions removed were limited to extensive parts of the representation of the lower visual quadrant in V1. Microelectrodes were used to record from neurons at numerous sites in MT to determine whether parts of MT normally devoted to the lower visual quadrant (1) were unresponsive to visual stimuli, (2) acquired responsiveness to inputs from intact portions of V1, or (3) became responsive to some other visually driven input such as a relay from the superior colliculus via the pulvinar to MT. All monkeys (n = 6) with moderate to moderately large lesions had unresponsive portions of MT even after 10 months of recovery. These unresponsive regions were retinotopically equivalent to the removed parts of V1 in normal animals. Thus, there was no evidence for an alternative source of activation. In addition, these results indicate that any retinotopic reorganization of MT based on inputs from intact portions of V1 was not extensive, yet neurons near the margins of responsive cortex may have acquired new receptive fields, and the smallest 5 degrees lesion of V1 failed to produce an unresponsive zone. Deprived portions of MT were not remarkably changed in histological appearance in cytochrome oxidase, Nissl, and Wisteria floribunda agglutinin preparations. Nevertheless, some reduction in myelin staining and other histological changes were suggested. We conclude that MT is highly dependent on V1 for activation in these monkeys, and alternative sources do not become effective over months when normal activation is absent. Additionally, remaining V1 inputs have only a limited capacity to expand their activation territory into deprived portions of MT.

  17. Top-down and bottom-up influences on the left ventral occipito-temporal cortex during visual word recognition: an analysis of effective connectivity.

    PubMed

    Schurz, Matthias; Kronbichler, Martin; Crone, Julia; Richlan, Fabio; Klackl, Johannes; Wimmer, Heinz

    2014-04-01

    The functional role of the left ventral occipito-temporal cortex (vOT) in visual word processing has been studied extensively. A prominent observation is higher activation for unfamiliar but pronounceable letter strings compared to regular words in this region. Some functional accounts have interpreted this finding as driven by top-down influences (e.g., Dehaene and Cohen [2011]: Trends Cogn Sci 15:254-262; Price and Devlin [2011]: Trends Cogn Sci 15:246-253), while others have suggested a difference in bottom-up processing (e.g., Glezer et al. [2009]: Neuron 62:199-204; Kronbichler et al. [2007]: J Cogn Neurosci 19:1584-1594). We used dynamic causal modeling for fMRI data to test bottom-up and top-down influences on the left vOT during visual processing of regular words and unfamiliar letter strings. Regular words (e.g., taxi) and unfamiliar letter strings of pseudohomophones (e.g., taksi) were presented in the context of a phonological lexical decision task (i.e., "Does the item sound like a word?"). We found no differences in top-down signaling, but a strong increase in bottom-up signaling from the occipital cortex to the left vOT for pseudohomophones compared to words. This finding can be linked to functional accounts which assume that the left vOT contains neurons tuned to complex orthographic features such as morphemes or words [e.g., Dehaene and Cohen [2011]: Trends Cogn Sci 15:254-262; Kronbichler et al. [2007]: J Cogn Neurosci 19:1584-1594]: For words, bottom-up signals converge onto a matching orthographic representation in the left vOT. For pseudohomophones, the propagated signals do not converge, but (partially) activate multiple orthographic word representations, reflected in increased effective connectivity. PMID:23670980

  18. Sublexical properties of spoken words modulate activity in Broca's area but not superior temporal cortex: implications for models of speech recognition.

    PubMed

    Vaden, Kenneth I; Piquado, Tepring; Hickok, Gregory

    2011-10-01

    Many models of spoken word recognition posit that the acoustic stream is parsed into phoneme level units, which in turn activate larger representations [McClelland, J. L., & Elman, J. L. The TRACE model of speech perception. Cognitive Psychology, 18, 1-86, 1986], whereas others suggest that larger units of analysis are activated without the need for segmental mediation [Greenberg, S. A multitier theoretical framework for understanding spoken language. In S. Greenberg & W. A. Ainsworth (Eds.), Listening to speech: An auditory perspective (pp. 411-433). Mahwah, NJ: Erlbaum, 2005; Klatt, D. H. Speech perception: A model of acoustic-phonetic analysis and lexical access. Journal of Phonetics, 7, 279-312, 1979; Massaro, D. W. Preperceptual images, processing time, and perceptual units in auditory perception. Psychological Review, 79, 124-145, 1972]. Identifying segmental effects in the brain's response to speech may speak to this question. For example, if such effects were localized to relatively early processing stages in auditory cortex, this would support a model of speech recognition in which segmental units are explicitly parsed out. In contrast, segmental processes that occur outside auditory cortex may indicate that alternative models should be considered. The current fMRI experiment manipulated the phonotactic frequency (PF) of words that were auditorily presented in short lists while participants performed a pseudoword detection task. PF is thought to modulate networks in which phoneme level units are represented. The present experiment identified activity in the left inferior frontal gyrus that was positively correlated with PF. No effects of PF were found in temporal lobe regions. We propose that the observed phonotactic effects during speech listening reflect the strength of the association between acoustic speech patterns and articulatory speech codes involving phoneme level units. On the basis of existing lesion evidence, we interpret the function of this

  19. Prefrontal D1 dopamine signaling is required for temporal control.

    PubMed

    Narayanan, Nandakumar S; Land, Benjamin B; Solder, John E; Deisseroth, Karl; DiLeone, Ralph J

    2012-12-11

    Temporal control, or how organisms guide movements in time to achieve behavioral goals, depends on dopamine signaling. The medial prefrontal cortex controls many goal-directed behaviors and receives dopaminergic input primarily from the midbrain ventral tegmental area. However, this system has never been linked with temporal control. Here, we test the hypothesis that dopaminergic projections from the ventral tegmental area to the prefrontal cortex influence temporal control. Rodents were trained to perform a fixed-interval timing task with an interval of 20 s. We report several results: first, that decreasing dopaminergic neurotransmission using virally mediated RNA interference of tyrosine hydroxylase impaired temporal control, and second that pharmacological disruption of prefrontal D1 dopamine receptors, but not D2 dopamine receptors, impaired temporal control. We then used optogenetics to specifically and selectively manipulate prefrontal neurons expressing D1 dopamine receptors during fixed-interval timing performance. Selective inhibition of D1-expressing prefrontal neurons impaired fixed-interval timing, whereas stimulation made animals more efficient during task performance. These data provide evidence that ventral tegmental dopaminergic projections to the prefrontal cortex influence temporal control via D1 receptors. The results identify a critical circuit for temporal control of behavior that could serve as a target for the treatment of dopaminergic diseases.

  20. Frontal cortex, timing and memory.

    PubMed

    Olton, D S

    1989-01-01

    Two sets of experiments examine the psychological functions and neural organization of the frontal lobes. The first set investigates the effects of lesions of the frontal cortex (FC) on the ability to perform temporal discriminations, using the techniques and theoretical framework of scalar timing theory. FC lesions changed the reference memory for the expected time of reinforcement, so that rats expected reinforcement later than it actually occurred. These results demonstrate that the FC modulates temporal memory. The second set of experiments examined the behavioral effects of lesions in the nucleus basalis magnocellularis (NBM), an area in the basal forebrain that has a significant projection to the frontal cortex. NBM lesions produced impairments in many different tasks assessing both recent and long-term memory. A comparison of the behavioral and neurochemical effects of different types of lesions in the NBM examines the role of cholinergic and noncholinergic neurotransmitters in these behavioral deficits. These data demonstrate that a "frontal syndrome" can follow selective lesions in the NBM, and indicate that the NBM must have a strong role in frontal lobe function.

  1. Contrast Affects fMRI Activity in Middle Temporal Cortex Related to Center–Surround Interaction in Motion Perception

    PubMed Central

    Turkozer, Halide B.; Pamir, Zahide; Boyaci, Huseyin

    2016-01-01

    As the size of a high contrast drifting Gabor patch increases, perceiving its direction of motion becomes harder. However, the same behavioral effect is not observed for a low contrast Gabor patch. Neuronal mechanisms underlying this size–contrast interaction are not well understood. Here using psychophysical methods and functional magnetic resonance imaging (fMRI), we investigated the neural correlates of this behavioral effect. In the behavioral experiments, motion direction discrimination thresholds were assessed for drifting Gabor patches with different sizes and contrasts. Thresholds increased significantly as the size of the stimulus increased for high contrast (65%) but did not change for low contrast (2%) stimuli. In the fMRI experiment, cortical activity was recorded while observers viewed drifting Gabor patches with different contrasts and sizes. We found that the activity in middle temporal (MT) area increased with size at low contrast, but did not change at high contrast. Taken together, our results show that MT activity reflects the size–contrast interaction in motion perception. PMID:27065922

  2. Neural correlates of anosognosia for cognitive impairment in Alzheimer's disease.

    PubMed

    Salmon, Eric; Perani, Daniela; Herholz, Karl; Marique, Patricia; Kalbe, Elke; Holthoff, Vjera; Delbeuck, Xavier; Beuthien-Baumann, Bettina; Pelati, Oriana; Lespagnard, Solange; Collette, Fabienne; Garraux, Gaëtan

    2006-07-01

    We explored the neural substrate of anosognosia for cognitive impairment in Alzheimer's disease (AD). Two hundred nine patients with mild to moderate dementia and their caregivers assessed patients' cognitive impairment by answering a structured questionnaire. Subjects rated 13 cognitive domains as not impaired or associated with mild, moderate, severe, or very severe difficulties, and a sum score was calculated. Two measures of anosognosia were derived. A patient's self assessment, unconfounded by objective measurements of cognitive deficits such as dementia severity and episodic memory impairment, provided an estimate of impaired self-evaluative judgment about cognition in AD. Impaired self-evaluation was related to a decrease in brain metabolism measured with 18F-2-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) in orbital prefrontal cortex and in medial temporal structures. In a cognitive model of anosognosia, medial temporal dysfunction might impair a comparison mechanism between current information on cognition and personal knowledge. Hypoactivity in orbitofrontal cortex may not allow AD patients to update the qualitative judgment associated with their impaired cognitive abilities. Caregivers perceived greater cognitive impairments than patients did. The discrepancy score between caregiver's and patient's evaluations, an other measure of anosognosia, was negatively related to metabolic activity located in the temporoparietal junction, consistent with an impairment of self-referential processes and perspective taking in AD. PMID:16247783

  3. Temporal Cortex Activation to Audiovisual Speech in Normal-Hearing and Cochlear Implant Users Measured with Functional Near-Infrared Spectroscopy

    PubMed Central

    van de Rijt, Luuk P. H.; van Opstal, A. John; Mylanus, Emmanuel A. M.; Straatman, Louise V.; Hu, Hai Yin; Snik, Ad F. M.; van Wanrooij, Marc M.

    2016-01-01

    Background: Speech understanding may rely not only on auditory, but also on visual information. Non-invasive functional neuroimaging techniques can expose the neural processes underlying the integration of multisensory processes required for speech understanding in humans. Nevertheless, noise (from functional MRI, fMRI) limits the usefulness in auditory experiments, and electromagnetic artifacts caused by electronic implants worn by subjects can severely distort the scans (EEG, fMRI). Therefore, we assessed audio-visual activation of temporal cortex with a silent, optical neuroimaging technique: functional near-infrared spectroscopy (fNIRS). Methods: We studied temporal cortical activation as represented by concentration changes of oxy- and deoxy-hemoglobin in four, easy-to-apply fNIRS optical channels of 33 normal-hearing adult subjects and five post-lingually deaf cochlear implant (CI) users in response to supra-threshold unisensory auditory and visual, as well as to congruent auditory-visual speech stimuli. Results: Activation effects were not visible from single fNIRS channels. However, by discounting physiological noise through reference channel subtraction (RCS), auditory, visual and audiovisual (AV) speech stimuli evoked concentration changes for all sensory modalities in both cohorts (p < 0.001). Auditory stimulation evoked larger concentration changes than visual stimuli (p < 0.001). A saturation effect was observed for the AV condition. Conclusions: Physiological, systemic noise can be removed from fNIRS signals by RCS. The observed multisensory enhancement of an auditory cortical channel can be plausibly described by a simple addition of the auditory and visual signals with saturation. PMID:26903848

  4. An objective index of individual face discrimination in the right occipito-temporal cortex by means of fast periodic oddball stimulation.

    PubMed

    Liu-Shuang, Joan; Norcia, Anthony M; Rossion, Bruno

    2014-01-01

    We introduce an approach based on fast periodic oddball stimulation that provides objective, high signal-to-noise ratio (SNR), and behavior-free measures of the human brain's discriminative response to complex visual patterns. High-density electroencephalogram (EEG) was recorded for human observers presented with 60s sequences containing a base-face (A) sinusoidally contrast-modulated at a frequency of 5.88 Hz (F), with face size varying every cycle. Different oddball-faces (B, C, D...) were introduced at fixed intervals (every 4 stimuli = F/5 = 1.18 Hz: AAAABAAAACAAAAD...). Individual face discrimination was indexed by responses at this 1.18 Hz oddball frequency. Following only 4 min of recording, significant responses emerged at exactly 1.18 Hz and its harmonics (e.g., 2F/5 = 2.35 Hz, 3F/5 = 3.53 Hz...), with up to a 300% signal increase over the right occipito-temporal cortex. This response was present in all participants, for both color and greyscale faces, providing a robust implicit neural measure of individual face discrimination. Face inversion or contrast-reversal did not affect the basic 5.88 Hz periodic response over medial occipital channels. However, these manipulations substantially reduced the 1.18 Hz oddball discrimination response over the right occipito-temporal region, indicating that this response reflects high-level processes that are partly face-specific. These observations indicate that fast periodic oddball stimulation can be used to rapidly and objectively characterize the discrimination of visual patterns and may become invaluable in characterizing this process in typical adult, developmental, and neuropsychological patient populations.

  5. The anterior temporal cortex is a primary semantic source of top-down influences on object recognition.

    PubMed

    Chiou, Rocco; Lambon Ralph, Matthew A

    2016-06-01

    Perception emerges from a dynamic interplay between feed-forward sensory input and feedback modulation along the cascade of neural processing. Prior knowledge, a major form of top-down modulatory signal, benefits perception by enabling efficacious inference and resolving ambiguity, particularly under circumstances of degraded visual input. Despite semantic information being a potentially critical source of this top-down influence, to date, the core neural substrate of semantic knowledge (the anterolateral temporal lobe - ATL) has not been considered as a key component of the feedback system. Here we provide direct evidence of its significance for visual cognition - the ATL underpins the semantic aspect of object recognition, amalgamating sensory-based (amount of accumulated sensory input) and semantic-based (representational proximity between exemplars and typicality of appearance) influences. Using transcranial theta-burst stimulation combined with a novel visual identification paradigm, we demonstrate that the left ATL contributes to discrimination between visual objects. Crucially, its contribution is especially vital under situations where semantic knowledge is most needed for supplementing deficiency of input (brief visual exposure), discerning analogously-coded exemplars (close representational distance), and resolving discordance (target appearance violating the statistical typicality of its category). Our findings characterise functional properties of the ATL in object recognition: this neural structure is summoned to augment the visual system when the latter is overtaxed by challenging conditions (insufficient input, overlapped neural coding, and conflict between incoming signal and expected configuration). This suggests a need to revisit current theories of object recognition, incorporating the ATL that interfaces high-level vision with semantic knowledge. PMID:27088615

  6. Abnormal development of sensory-motor, visual temporal and parahippocampal cortex in children with learning disabilities and borderline intellectual functioning

    PubMed Central

    Baglio, Francesca; Cabinio, Monia; Ricci, Cristian; Baglio, Gisella; Lipari, Susanna; Griffanti, Ludovica; Preti, Maria G.; Nemni, Raffaello; Clerici, Mario; Zanette, Michela; Blasi, Valeria

    2014-01-01

    Borderline intellectual functioning (BIF) is a condition characterized by an intelligence quotient (IQ) between 70 and 85. BIF children present with cognitive, motor, social, and adaptive limitations that result in learning disabilities and are more likely to develop psychiatric disorders later in life. The aim of this study was to investigate brain morphometry and its relation to IQ level in BIF children. Thirteen children with BIF and 14 age- and sex-matched typically developing (TD) children were enrolled. All children underwent a full IQ assessment (WISC-III scale) and a magnetic resonance (MR) examination including conventional sequences to assess brain structural abnormalities and high resolution 3D images for voxel-based morphometry analysis. To investigate to what extent the group influenced gray matter (GM) volumes, both univariate and multivariate generalized linear model analysis of variance were used, and the varimax factor analysis was used to explore variable correlations and clusters among subjects. Results showed that BIF children, compared to controls have increased regional GM volume in bilateral sensorimotor and right posterior temporal cortices and decreased GM volume in the right parahippocampal gyrus. GM volumes were highly correlated with IQ indices. The present work is a case study of a group of BIF children showing that BIF is associated with abnormal cortical development in brain areas that have a pivotal role in motor, learning, and behavioral processes. Our findings, although allowing for little generalization to the general population, contribute to the very limited knowledge in this field. Future longitudinal MR studies will be useful in verifying whether cortical features can be modified over time even in association with rehabilitative intervention. PMID:25360097

  7. Top-Down Regulation of Laminar Circuit via Inter-Area Signal for Successful Object Memory Recall in Monkey Temporal Cortex.

    PubMed

    Takeda, Masaki; Koyano, Kenji W; Hirabayashi, Toshiyuki; Adachi, Yusuke; Miyashita, Yasushi

    2015-05-01

    Memory retrieval in primates is orchestrated by a brain-wide neuronal circuit. To elucidate the operation of this circuit, it is imperative to comprehend neuronal mechanisms of coordination between area-to-area interaction and information processing within individual areas. By simultaneous recording from area 36 (A36) and area TE (TE) of the temporal cortex while monkeys performed a pair-association memory task, we found two distinct inter-area signal flows during memory retrieval: A36 spiking activity exhibited coherence with low-frequency field activity in either the supragranular or infragranular layer of TE. Of these two flows, only signal flow targeting the infragranular layer of TE was further translaminarly coupled with gamma activity in the supragranular layer of TE. Moreover, this coupling was observed when monkeys succeeded in the retrieval of the sought object but not when they failed. The results suggest that local translaminar processing can be recruited via a layer-specific inter-area network for memory retrieval.

  8. The influence of temporal pattern of stimulation on delay tuning of neurons in the auditory cortex of the FM bat, Myotis lucifugus.

    PubMed

    Tanaka, H; Wong, D

    1993-03-01

    In echolocating bats, delay-sensitive neurons show facilitative responses to simulated pulse-echo pairs at particular echo delays. Three experiments examined how the temporal pattern of stimulation affected the delay tuning of neurons in the auditory cortex of the awake FM bat, Myotis lucifugus. First, delay tuning was compared using a series of pulse-echo pairs fixed in echo delay ('standard' stimuli), and a series of pulse-echo pairs in which successive sound pairs decreased by a fixed echo-delay step ('approach' stimuli). Similar best delays were measured with both stimulation patterns presented at repetition rates in which the neuron was delay-sensitive. At the higher delay-sensitive pulse repetition rates, approach stimuli evoked larger delay-dependent responses. Second, approach stimuli were fixed at different intertrial intervals. The best delay was unaffected by intertrial interval, although some neurons showed larger responses for longer intertrial intervals (0.5, 1.0 s), especially at the higher delay-sensitive pulse repetition rates. Third, approach stimuli were fixed at different echo-delay steps to simulate target velocity. The majority of neurons showed some sensitivity to echo-delay step, with clear preference for target velocity mainly between 1.8-7.0 m/s. This suggests that delay-sensitive neurons compute target velocity by rate of change of echo delay over successive echoes. Thus, response properties of cortical neurons are influenced by dynamic acoustic conditions found in target-directed flight. PMID:8473246

  9. Multineuronal vectorization is more efficient than time-segmental vectorization for information extraction from neuronal activities in the inferior temporal cortex.

    PubMed

    Kaneko, Hidekazu; Tamura, Hiroshi; Tate, Shunta; Kawashima, Takahiro; Suzuki, Shinya S; Fujita, Ichiro

    2010-08-01

    In order for patients with disabilities to control assistive devices with their own neural activity, multineuronal spike trains must be efficiently decoded because only limited computational resources can be used to generate prosthetic control signals in portable real-time applications. In this study, we compare the abilities of two vectorizing procedures (multineuronal and time-segmental) to extract information from spike trains during the same total neuron-seconds. In the multineuronal vectorizing procedure, we defined a response vector whose components represented the spike counts of one to five neurons. In the time-segmental vectorizing procedure, a response vector consisted of components representing a neuron's spike counts for one to five time-segment(s) of a response period of 1 s. Spike trains were recorded from neurons in the inferior temporal cortex of monkeys presented with visual stimuli. We examined whether the amount of information of the visual stimuli carried by these neurons differed between the two vectorizing procedures. The amount of information calculated with the multineuronal vectorizing procedure, but not the time-segmental vectorizing procedure, significantly increased with the dimensions of the response vector. We conclude that the multineuronal vectorizing procedure is superior to the time-segmental vectorizing procedure in efficiently extracting information from neuronal signals.

  10. Pre-ictal increase in theta synchrony between the hippocampus and prefrontal cortex in a rat model of temporal lobe epilepsy.

    PubMed

    Broggini, Ana Clara Silveira; Esteves, Ingrid Miranda; Romcy-Pereira, Rodrigo Neves; Leite, João Pereira; Leão, Richardson Naves

    2016-05-01

    The pathologically synchronized neuronal activity in temporal lobe epilepsy (TLE) can be triggered by network events that were once normal. Under normal conditions, hippocampus and medial prefrontal cortex (mPFC) work in synchrony during a variety of cognitive states. Abnormal changes in this circuit may aid to seizure onset and also help to explain the high association of TLE with mood disorders. We used a TLE rat model generated by perforant path (PP) stimulation to understand whether synchrony between dorsal hippocampal and mPFC networks is altered shortly before a seizure episode. We recorded hippocampal and mPFC local field potentials (LFPs) of animals with spontaneous recurrent seizures (SRSs) to verify the connectivity between these regions. We showed that SRSs decrease hippocampal theta oscillations whereas coherence in theta increases over time prior to seizure onset. This increase in synchrony is accompanied by a stronger coupling between hippocampal theta and mPFC gamma oscillation. Finally, using Granger causality we showed that hippocampus/mPFC synchrony increases in the pre-ictal phase and this increase is likely to be caused by hippocampal networks. The dorsal hippocampus is not directly connected to the mPFC; however, the functional coupling in theta between these two structures rises pre-ictally. Our data indicates that the increase in synchrony between dorsal hippocampus and mPFC may be predictive of seizures and may help to elucidate the network mechanisms that lead to seizure generation. PMID:26953232

  11. Similar ventral occipito-temporal cortex activations in literate and illiterate adults during the Chinese character matching task: an fMRI study.

    PubMed

    Qi, Geqi; Li, Xiujun; Yan, Tianyi; Wang, Bin; Yang, Jiajia; Wu, Jinglong; Guo, Qiyong

    2014-04-30

    Visual word expertise is typically associated with enhanced ventral occipito-temporal (vOT) cortex activation in response to written words. Previous study utilized a passive viewing task and found that vOT response to written words was significantly stronger in literate compared to the illiterate subjects. However, recent neuroimaging findings have suggested that vOT response properties are highly dependent upon the task demand. Thus, it is unknown whether literate adults would show stronger vOT response to written words compared to illiterate adults during other cognitive tasks, such as perceptual matching. We addressed this issue by comparing vOT activations between literate and illiterate adults during a Chinese character and simple figure matching task. Unlike passive viewing, a perceptual matching task requires active shape comparison, therefore minimizing automatic word processing bias. We found that although the literate group performed better at Chinese character matching task, the two subject groups showed similar strong vOT responses during this task. Overall, the findings indicate that the vOT response to written words is not affected by expertise during a perceptual matching task, suggesting that the association between visual word expertise and vOT response may depend on the task demand. PMID:24582905

  12. Energy Drink Administration in Combination with Alcohol Causes an Inflammatory Response and Oxidative Stress in the Hippocampus and Temporal Cortex of Rats

    PubMed Central

    Díaz, Alfonso; Treviño, Samuel; Guevara, Jorge; Muñoz-Arenas, Guadalupe; Brambila, Eduardo; Espinosa, Blanca; Moreno-Rodríguez, Albino; Lopez-Lopez, Gustavo; Peña-Rosas, Ulises; Venegas, Berenice; Handal-Silva, Anabella; Morán-Perales, José Luis; Flores, Gonzalo; Aguilar-Alonso, Patricia

    2016-01-01

    Energy drinks (EDs) are often consumed in combination with alcohol because they reduce the depressant effects of alcohol. However, different researches suggest that chronic use of these psychoactive substances in combination with alcohol can trigger an oxidative and inflammatory response. These processes are regulated by both a reactive astrogliosis and an increase of proinflammatory cytokines such as IL-1β, TNF-α, and iNOS, causing cell death (apoptosis) at the central and peripheral nervous systems. Currently, mechanisms of toxicity caused by mixing alcohol and ED in the brain are not well known. In this study, we evaluated the effect of chronic alcohol consumption in combination with ED on inflammatory response and oxidative stress in the temporal cortex (TCx) and hippocampus (Hp) of adult rats (90 days old). Our results demonstrated that consuming a mixture of alcohol and ED for 60 days induced an increase in reactive gliosis, IL-1β, TNF-α, iNOS, reactive oxygen species, lipid peroxidation, and nitric oxide, in the TCx and Hp. We also found immunoreactivity to caspase-3 and a decrease of synaptophysin in the same brain regions. The results suggested that chronic consumption of alcohol in combination with ED causes an inflammatory response and oxidative stress, which induced cell death via apoptosis in the TCx and Hp of the adult rats. PMID:27069534

  13. Energy Drink Administration in Combination with Alcohol Causes an Inflammatory Response and Oxidative Stress in the Hippocampus and Temporal Cortex of Rats.

    PubMed

    Díaz, Alfonso; Treviño, Samuel; Guevara, Jorge; Muñoz-Arenas, Guadalupe; Brambila, Eduardo; Espinosa, Blanca; Moreno-Rodríguez, Albino; Lopez-Lopez, Gustavo; Peña-Rosas, Ulises; Venegas, Berenice; Handal-Silva, Anabella; Morán-Perales, José Luis; Flores, Gonzalo; Aguilar-Alonso, Patricia

    2016-01-01

    Energy drinks (EDs) are often consumed in combination with alcohol because they reduce the depressant effects of alcohol. However, different researches suggest that chronic use of these psychoactive substances in combination with alcohol can trigger an oxidative and inflammatory response. These processes are regulated by both a reactive astrogliosis and an increase of proinflammatory cytokines such as IL-1β, TNF-α, and iNOS, causing cell death (apoptosis) at the central and peripheral nervous systems. Currently, mechanisms of toxicity caused by mixing alcohol and ED in the brain are not well known. In this study, we evaluated the effect of chronic alcohol consumption in combination with ED on inflammatory response and oxidative stress in the temporal cortex (TCx) and hippocampus (Hp) of adult rats (90 days old). Our results demonstrated that consuming a mixture of alcohol and ED for 60 days induced an increase in reactive gliosis, IL-1β, TNF-α, iNOS, reactive oxygen species, lipid peroxidation, and nitric oxide, in the TCx and Hp. We also found immunoreactivity to caspase-3 and a decrease of synaptophysin in the same brain regions. The results suggested that chronic consumption of alcohol in combination with ED causes an inflammatory response and oxidative stress, which induced cell death via apoptosis in the TCx and Hp of the adult rats.

  14. Increased densities of nitric oxide synthase expressing neurons in the temporal cortex and the hypothalamic paraventricular nucleus of polytoxicomanic heroin overdose victims: possible implications for heroin neurotoxicity.

    PubMed

    Bernstein, Hans-Gert; Trübner, Kurt; Krebs, Philipp; Dobrowolny, Henrik; Bielau, Hendrik; Steiner, Johann; Bogerts, Bernhard

    2014-01-01

    Heroin is one of the most dangerous drugs of abuse, which may exert various neurotoxic actions on the brain (such as gray matter loss, neuronal apoptosis, mitochondrial dysfunction, synaptic defects, depression of adult neurogenensis, as well as development of spongiform leucoencephalopathy). Some of these toxic effects are probably mediated by the gas nitric oxide (NO). We studied by morphometric analysis the numerical density of neurons expressing neuronal nitric oxide synthase (nNOS) in cortical and hypothalamic areas of eight heroin overdose victims and nine matched controls. Heroin addicts showed significantly increased numerical densities of nNOS immunoreactive cells in the right temporal cortex and the left paraventricular nucleus. Remarkably, in heroin abusers, but not in controls, we observed not only immunostained interneurons, but also cortical pyramidal cells. Given that increased cellular expression of nNOS was accompanied by elevated NO generation in brains of heroin addicts, these elevated levels of NO might have contributed to some of the known toxic effects of heroin (for example, reduced adult neurogenesis, mitochondrial pathology or disturbances in synaptic functioning).

  15. [Dose-dependent tazepam modulation of amplitude-temporal characteristics of thalamocortical responses and the constant potential of the sensorimotor cortex in rabbits at eye opening].

    PubMed

    Shimko, I A; Fokin, V F

    2000-01-01

    The pronounced benzodiazepine (antiphobic) modulation of the amplitude-temporal parameters of different components of the thalamocortical responses (TCR) of the sensorimotor cortex is observed in rabbits in their early postnatal ontogeny. This modulation is of a dose-dependent character and is registered not after the injection of tazepam in a concentration of the "therapeutic tranquilizing window" but also in the psychotoxic plasma range. A gradual increase in blood tazepam concentration in a young rabbit pup is accompanied by the wave-like and differential decrease in the amplitude of the second and third positive (P2 and P3) and third negative (N3) TCR components, while the second negative (N2) and fourth positive (P4) components tend to a wave-like increase. The dose-dependent dynamics of tazepam modulation of the P2, P3, and N3 latencies is characterized by a wave-like and differential increase. The latency of P4 decreases slightly and that of the N2 increases with a low degree of significance. The selective dynamics of benzodiazepine modulation appears to be related with peculiarities of the electrogenesis of each of the components. The dose-dependent modulation of the level of cortical DC potential is of the same character as the respective amplitude changes in P2, P3, and N3, but its fluctiatuons are more pronounced.

  16. Top-Down Regulation of Laminar Circuit via Inter-Area Signal for Successful Object Memory Recall in Monkey Temporal Cortex.

    PubMed

    Takeda, Masaki; Koyano, Kenji W; Hirabayashi, Toshiyuki; Adachi, Yusuke; Miyashita, Yasushi

    2015-05-01

    Memory retrieval in primates is orchestrated by a brain-wide neuronal circuit. To elucidate the operation of this circuit, it is imperative to comprehend neuronal mechanisms of coordination between area-to-area interaction and information processing within individual areas. By simultaneous recording from area 36 (A36) and area TE (TE) of the temporal cortex while monkeys performed a pair-association memory task, we found two distinct inter-area signal flows during memory retrieval: A36 spiking activity exhibited coherence with low-frequency field activity in either the supragranular or infragranular layer of TE. Of these two flows, only signal flow targeting the infragranular layer of TE was further translaminarly coupled with gamma activity in the supragranular layer of TE. Moreover, this coupling was observed when monkeys succeeded in the retrieval of the sought object but not when they failed. The results suggest that local translaminar processing can be recruited via a layer-specific inter-area network for memory retrieval. PMID:25913857

  17. Energy Drink Administration in Combination with Alcohol Causes an Inflammatory Response and Oxidative Stress in the Hippocampus and Temporal Cortex of Rats.

    PubMed

    Díaz, Alfonso; Treviño, Samuel; Guevara, Jorge; Muñoz-Arenas, Guadalupe; Brambila, Eduardo; Espinosa, Blanca; Moreno-Rodríguez, Albino; Lopez-Lopez, Gustavo; Peña-Rosas, Ulises; Venegas, Berenice; Handal-Silva, Anabella; Morán-Perales, José Luis; Flores, Gonzalo; Aguilar-Alonso, Patricia

    2016-01-01

    Energy drinks (EDs) are often consumed in combination with alcohol because they reduce the depressant effects of alcohol. However, different researches suggest that chronic use of these psychoactive substances in combination with alcohol can trigger an oxidative and inflammatory response. These processes are regulated by both a reactive astrogliosis and an increase of proinflammatory cytokines such as IL-1β, TNF-α, and iNOS, causing cell death (apoptosis) at the central and peripheral nervous systems. Currently, mechanisms of toxicity caused by mixing alcohol and ED in the brain are not well known. In this study, we evaluated the effect of chronic alcohol consumption in combination with ED on inflammatory response and oxidative stress in the temporal cortex (TCx) and hippocampus (Hp) of adult rats (90 days old). Our results demonstrated that consuming a mixture of alcohol and ED for 60 days induced an increase in reactive gliosis, IL-1β, TNF-α, iNOS, reactive oxygen species, lipid peroxidation, and nitric oxide, in the TCx and Hp. We also found immunoreactivity to caspase-3 and a decrease of synaptophysin in the same brain regions. The results suggested that chronic consumption of alcohol in combination with ED causes an inflammatory response and oxidative stress, which induced cell death via apoptosis in the TCx and Hp of the adult rats. PMID:27069534

  18. Review of the Literature on Temporal Resolution in Listeners With Cochlear Hearing Impairment: A Critical Assessment of the Role of Suprathreshold Deficits

    PubMed Central

    Reed, Charlotte M.; Braida, Louis D.; Zurek, Patrick M.

    2009-01-01

    A critical review of studies of temporal resolution in listeners with cochlear hearing impairment is presented with the aim of assessing evidence for suprathreshold deficits. Particular attention is paid to the roles of variables—such as stimulus audibility, overall stimulus level, and participant's age—which may complicate the interpretation of experimental findings in comparing the performance of hearing-impaired (HI) and normal-hearing (NH) listeners. On certain temporal tasks (e.g., gap detection), the performance of HI listeners appears to be degraded relative to that of NH listeners when compared at equal SPL (sound pressure level). For other temporal tasks (e.g., forward masking), HI performance is degraded relative to that of NH listeners when compared at equal sensation level. A relatively small group of studies exists, however, in which the effects of stimulus audibility and level (and occasionally participant's age) have been controlled through the use of noise-masked simulation of hearing loss in NH listeners. For some temporal tasks (including gap-detection, gap-duration discrimination, and detection of brief tones in modulated noise), the performance of HI listeners is well reproduced in the results of noise-masked NH listeners. For other tasks (i.e., temporal integration), noise-masked hearing-loss simulations do not reproduce the results of HI listeners. In three additional areas of temporal processing (duration discrimination, detection of temporal modulation in noise, and various temporal-masking paradigms), further studies employing control of stimulus audibility and level, as well as age, are necessary for a more complete understanding of the role of suprathreshold deficits in the temporal-processing abilities of HI listeners. PMID:19074452

  19. Secretion-Positive LGI1 Mutations Linked to Lateral Temporal Epilepsy Impair Binding to ADAM22 and ADAM23 Receptors

    PubMed Central

    Dazzo, Emanuela; Belluzzi, Elisa; Malacrida, Sandro; Vitiello, Libero; Greggio, Elisa; Tosatto, Silvio C. E.

    2016-01-01

    Autosomal dominant lateral temporal epilepsy (ADTLE) is a focal epilepsy syndrome caused by mutations in the LGI1 gene, which encodes a secreted protein. Most ADLTE-causing mutations inhibit LGI1 protein secretion, and only a few secretion-positive missense mutations have been reported. Here we describe the effects of four disease-causing nonsynonymous LGI1 mutations, T380A, R407C, S473L, and R474Q, on protein secretion and extracellular interactions. Expression of LGI1 mutant proteins in cultured cells shows that these mutations do not inhibit protein secretion. This finding likely results from the lack of effects of these mutations on LGI1 protein folding, as suggested by 3D protein modelling. In addition, immunofluorescence and co-immunoprecipitation experiments reveal that all four mutations significantly impair interaction of LGI1 with the ADAM22 and ADAM23 receptors on the cell surface. These results support the existence of a second mechanism, alternative to inhibition of protein secretion, by which ADLTE-causing LGI1 mutations exert their loss-of-function effect extracellularly, and suggest that interactions of LGI1 with both ADAM22 and ADAM23 play an important role in the molecular mechanisms leading to ADLTE. PMID:27760137

  20. Spatial dynamics of receptive fields in cat primary visual cortex related to the temporal structure of thalamocortical feedforward activity. Experiments and models.

    PubMed

    Suder, Katrin; Funke, Klaus; Zhao, Yongqiang; Kerscher, Nicolas; Wennekers, Thomas; Wörgötter, Florentin

    2002-06-01

    We investigated how changes in the temporal firing rate of thalamocortical activity affect the spatiotemporal structure of receptive field (RF) subunits in cat primary visual cortex. Spike activity of 67 neurons (48 simple, 19 complex cells) was extracellulary recorded from area 17/18 of anesthetized and paralyzed cats. A total of 107 subfields (on/off) were mapped by applying a reverse correlation technique to the activity elicited by bright and dark rectangles flashed for 300 ms in a 20x10 grid. We found that the width of the (suprathreshold) discharge fields shrank on average by 22% during this 300-ms-long stimulus presentation time. Fifty-eight subfields (54%) shrank by more than 20% of peak width and only ten (less than 10%) showed a slight increase over time. The main size reduction took place 40-60 ms after response onset, which corresponded to the transition from transient peak firing to tonic visual activity in thalamocortical relay cells (TC). The experimentally obtained RFs were then fitted with the aid of a neural field model of the primary visual pathway. Assuming a Gaussian-shaped spatial sensitivity profile across the RF subfield width, the model allowed us to estimate the subthreshold RF (depolarization field, D-field) from the minimal discharge field (MDF). The model allowed us to test to what degree the temporal dynamics of thalamocortical activity contributes to the spatiotemporal changes of cortical RFs. To this end, we performed the fitting procedure either with a pure feedforward model or with a field model that also included intracortical feedback. Spatial and temporal parameters obtained from fits of the experimental RFs matched closely to those achieved by simulating a pure feedforward system with the field model but were not compatible with additional intracortical feedback. Thus, our results show that dot stimulation, which optimally excites thalamocortical cells, leads to a shrinkage with respect to the size of the RF subfield at the

  1. A Single Neonatal Injection of Ethinyl Estradiol Impairs Passive Avoidance Learning and Reduces Expression of Estrogen Receptor α in the Hippocampus and Cortex of Adult Female Rats

    PubMed Central

    Shiga, Tatsuomi; Nakamura, Takahiro J.; Komine, Chiaki; Goto, Yoshikuni; Mizoguchi, Yasushi; Yoshida, Midori; Kondo, Yasuhiko; Kawaguchi, Maiko

    2016-01-01

    Although perinatal exposure of female rats to estrogenic compounds produces irreversible changes in brain function, it is still unclear how the amount and timing of exposure to those substances affect learning function, or if exposure alters estrogen receptor α (ERα) expression in the hippocampus and cortex. In adult female rats, we investigated the effects of neonatal exposure to a model estrogenic compound, ethinyl estradiol (EE), on passive avoidance learning and ERα expression. Female Wistar-Imamichi rats were subcutaneously injected with oil, 0.02 mg/kg EE, 2 mg/kg EE, or 20 mg/kg 17β-estradiol within 24 h after birth. All females were tested for passive avoidance learning at the age of 6 weeks. Neonatal 0.02 mg/kg EE administration significantly disrupted passive avoidance compared with oil treatment in gonadally intact females. In a second experiment, another set of experimental females, treated as described above, was ovariectomized under pentobarbital anesthesia at 10 weeks of age. At 15–17 weeks of age, half of each group received a subcutaneous injection of 5 μg estradiol benzoate a day before the passive avoidance learning test. Passive avoidance learning behavior was impaired by the 0.02 mg/kg EE dose, but notably only in the estradiol benzoate-injected group. At 17–19 weeks of age, hippocampal and cortical samples were collected from rats with or without the 5 μg estradiol benzoate injection, and western blots used to determine ERα expression. A significant decrease in ERα expression was observed in the hippocampus of the estradiol-injected, neonatal EE-treated females. The results demonstrated that exposure to EE immediately after birth decreased learning ability in adult female rats, and that this may be at least partly mediated by the decreased expression of ERα in the hippocampus. PMID:26741502

  2. A Single Neonatal Injection of Ethinyl Estradiol Impairs Passive Avoidance Learning and Reduces Expression of Estrogen Receptor α in the Hippocampus and Cortex of Adult Female Rats.

    PubMed

    Shiga, Tatsuomi; Nakamura, Takahiro J; Komine, Chiaki; Goto, Yoshikuni; Mizoguchi, Yasushi; Yoshida, Midori; Kondo, Yasuhiko; Kawaguchi, Maiko

    2016-01-01

    Although perinatal exposure of female rats to estrogenic compounds produces irreversible changes in brain function, it is still unclear how the amount and timing of exposure to those substances affect learning function, or if exposure alters estrogen receptor α (ERα) expression in the hippocampus and cortex. In adult female rats, we investigated the effects of neonatal exposure to a model estrogenic compound, ethinyl estradiol (EE), on passive avoidance learning and ERα expression. Female Wistar-Imamichi rats were subcutaneously injected with oil, 0.02 mg/kg EE, 2 mg/kg EE, or 20 mg/kg 17β-estradiol within 24 h after birth. All females were tested for passive avoidance learning at the age of 6 weeks. Neonatal 0.02 mg/kg EE administration significantly disrupted passive avoidance compared with oil treatment in gonadally intact females. In a second experiment, another set of experimental females, treated as described above, was ovariectomized under pentobarbital anesthesia at 10 weeks of age. At 15-17 weeks of age, half of each group received a subcutaneous injection of 5 μg estradiol benzoate a day before the passive avoidance learning test. Passive avoidance learning behavior was impaired by the 0.02 mg/kg EE dose, but notably only in the estradiol benzoate-injected group. At 17-19 weeks of age, hippocampal and cortical samples were collected from rats with or without the 5 μg estradiol benzoate injection, and western blots used to determine ERα expression. A significant decrease in ERα expression was observed in the hippocampus of the estradiol-injected, neonatal EE-treated females. The results demonstrated that exposure to EE immediately after birth decreased learning ability in adult female rats, and that this may be at least partly mediated by the decreased expression of ERα in the hippocampus. PMID:26741502

  3. Asymmetric c-fos expression in the ventral orbital cortex is associated with impaired reversal learning in a right-sided neuropathy

    PubMed Central

    2014-01-01

    Background Recently we showed that unilateral peripheral neuropathic lesions impacted differentially on rat’s emotional/cognitive behavior depending on its left/right location; importantly, this observation recapitulates clinical reports. The prefrontal cortex (PFC), a brain region morphofunctionally affected in chronic pain conditions, is involved in the modulation of both emotion and executive function and displays functional lateralization. To test whether the PFC is involved in the lateralization bias associated with left/right pain, c-fos expression in medial and orbital areas was analyzed in rats with an unilateral spared nerve injury neuropathy installed in the left or in the right side after performing an attentional set-shifting, a strongly PFC-dependent task. Results SNI-R animals required more trials to successfully terminate the reversal steps of the attentional set-shifting task. A generalized increase of c-fos density in medial and orbital PFC (mPFC/OFC), irrespectively of the hemisphere, was observed in both SNI-L and SNI-R. However, individual laterality indexes revealed that contrary to controls and SNI-L, SNI-R animals presented a leftward shift in c-fos density in the ventral OFC (VO). None of these effects were observed in the neighboring primary motor area. Conclusions Our results demonstrate that chronic neuropathic pain is associated with a bilateral mPFC and OFC hyperactivation. We hypothesize that the impaired performance of SNI-R animals is associated with a left/right activity inversion in the VO, whose functional integrity is critical for reversal learning. PMID:24958202

  4. Requirement for the endocannabinoid system in social interaction impairment induced by coactivation of dopamine D1 and D2 receptors in the piriform cortex.

    PubMed

    Zenko, Michelle; Zhu, Yongyong; Dremencov, Eliyahu; Ren, Wei; Xu, Lin; Zhang, Xia

    2011-08-01

    The dopamine receptor family consists of D1-D5 receptors (D1R-D5R), and we explored the contributions of each dopamine receptor subtype in the piriform cortex (PirC) to social interaction impairment (SII). Rats received behavioral tests or electrophysiological recording of PirC neuronal activity after injection of the D1R/D5R agonist SKF38393, the D2R/D3R/D4R agonist quinpirole, or both, with or without pretreatment with dopamine receptor antagonists, D1R or D5R antisense oligonucleotides, the cannabinoid CB1 receptor antagonist AM281, or the endocannabinoid transporter inhibitor VDM11. Systemic injection of SKF38393 and quinpirole together, but not each one alone, induced SII and increased PirC firing rate, which were blocked by D1R or D2R antagonist. Intra-PirC microinfusion of SKF38393 and quinpirole together, but not each one alone, also induced SII, which was blocked by D1R antisense oligonucleotides or D2R antagonist but not by D3R or D4R antagonist or D5R antisense oligonucleotides. SII induced by intra-PirC SKF38393/quinpirole was blocked by AM281 and enhanced by VDM11, whereas neither AM281 nor VDM11 alone affected social interaction behavior. Coadministration of SKF38393 and quinpirole produced anxiolytic effects without significant effects on locomotor activity, olfaction, and acquisition of olfactory short-term memory. These findings suggest that SII induced by coactivation of PirC D1R and D2R requires the endocannabinoid system.

  5. Temporal Fine-Structure Coding and Lateralized Speech Perception in Normal-Hearing and Hearing-Impaired Listeners.

    PubMed

    Lőcsei, Gusztáv; Pedersen, Julie H; Laugesen, Søren; Santurette, Sébastien; Dau, Torsten; MacDonald, Ewen N

    2016-01-01

    This study investigated the relationship between speech perception performance in spatially complex, lateralized listening scenarios and temporal fine-structure (TFS) coding at low frequencies. Young normal-hearing (NH) and two groups of elderly hearing-impaired (HI) listeners with mild or moderate hearing loss above 1.5 kHz participated in the study. Speech reception thresholds (SRTs) were estimated in the presence of either speech-shaped noise, two-, four-, or eight-talker babble played reversed, or a nonreversed two-talker masker. Target audibility was ensured by applying individualized linear gains to the stimuli, which were presented over headphones. The target and masker streams were lateralized to the same or to opposite sides of the head by introducing 0.7-ms interaural time differences between the ears. TFS coding was assessed by measuring frequency discrimination thresholds and interaural phase difference thresholds at 250 Hz. NH listeners had clearly better SRTs than the HI listeners. However, when maskers were spatially separated from the target, the amount of SRT benefit due to binaural unmasking differed only slightly between the groups. Neither the frequency discrimination threshold nor the interaural phase difference threshold tasks showed a correlation with the SRTs or with the amount of masking release due to binaural unmasking, respectively. The results suggest that, although HI listeners with normal hearing thresholds below 1.5 kHz experienced difficulties with speech understanding in spatially complex environments, these limitations were unrelated to TFS coding abilities and were only weakly associated with a reduction in binaural-unmasking benefit for spatially separated competing sources. PMID:27601071

  6. White matter hyperintensities in mild cognitive impairment: clinical impact of location and interaction with lacunes and medial temporal atrophy.

    PubMed

    Yoon, Bora; Shim, Yong S; Cheong, Hae-Kwan; Hong, Yun-Jeong; Lee, Kwang-Soo; Park, Kee Hyung; Ahn, Kook Jin; Kim, Dai Jin; Kim, Yong-Duk; Choi, Seong Hye; Yang, Dong-Won

    2014-01-01

    This study was to evaluate the influence on cognition and activities of daily living (ADL) by white matter hyperintensities (WMHs) based on the severity and location, as well as the interactions among WMHs, lacunes, and medial temporal atrophy (MTA). In 150 patients with amnestic mild cognitive impairment, WMHs were quantified with the use of a semiautomated volumetric method. Lacune counting and MTA assessment were performed by visual rating. The severer WMHs were, the more executive functions decreased. The influence on executive functions such as verbal fluency test and Stroop color reading test were greater in periventricular (PV) WMHs than deep WMHs, as well as bigger in anterior, middle, and posterior areas in order. The instrumental (I) ADL was strongly associated with the anterior (P = .028) and middle area (P = .014) of PVWMHs only. WMHs had synergistic interactions with lacunes in Controlled Oral Word Association Task-semantic (ß = -1.12; R(2) = .24; P = .039), Stroop color (ß = -2.07; R(2) = .15; P = .049), and IADL (ß = .23; R(2) = .20; P = .009). Anterior PVWMHs demonstrated the most powerful impact on frontal executive dysfunction and poor performance of IADL. WMHs had synergistic effects with the number of lacunes on them. Therefore, it is desirable to consider WMHs and lacunes simultaneously as potential imaging biomarkers for predicting cognition and IADL in aMCI.

  7. Temporal Fine-Structure Coding and Lateralized Speech Perception in Normal-Hearing and Hearing-Impaired Listeners

    PubMed Central

    Pedersen, Julie H.; Laugesen, Søren; Santurette, Sébastien; Dau, Torsten; MacDonald, Ewen N.

    2016-01-01

    This study investigated the relationship between speech perception performance in spatially complex, lateralized listening scenarios and temporal fine-structure (TFS) coding at low frequencies. Young normal-hearing (NH) and two groups of elderly hearing-impaired (HI) listeners with mild or moderate hearing loss above 1.5 kHz participated in the study. Speech reception thresholds (SRTs) were estimated in the presence of either speech-shaped noise, two-, four-, or eight-talker babble played reversed, or a nonreversed two-talker masker. Target audibility was ensured by applying individualized linear gains to the stimuli, which were presented over headphones. The target and masker streams were lateralized to the same or to opposite sides of the head by introducing 0.7-ms interaural time differences between the ears. TFS coding was assessed by measuring frequency discrimination thresholds and interaural phase difference thresholds at 250 Hz. NH listeners had clearly better SRTs than the HI listeners. However, when maskers were spatially separated from the target, the amount of SRT benefit due to binaural unmasking differed only slightly between the groups. Neither the frequency discrimination threshold nor the interaural phase difference threshold tasks showed a correlation with the SRTs or with the amount of masking release due to binaural unmasking, respectively. The results suggest that, although HI listeners with normal hearing thresholds below 1.5 kHz experienced difficulties with speech understanding in spatially complex environments, these limitations were unrelated to TFS coding abilities and were only weakly associated with a reduction in binaural-unmasking benefit for spatially separated competing sources. PMID:27601071

  8. A robust index of lexical representation in the left occipito-temporal cortex as evidenced by EEG responses to fast periodic visual stimulation.

    PubMed

    Lochy, Aliette; Van Belle, Goedele; Rossion, Bruno

    2015-01-01

    Despite decades of research on reading, including the relatively recent contributions of neuroimaging and electrophysiology, identifying selective representations of whole visual words (in contrast to pseudowords) in the human brain remains challenging, in particular without an explicit linguistic task. Here we measured discrimination responses to written words by means of electroencephalography (EEG) during fast periodic visual stimulation. Sequences of pseudofonts, nonwords, or pseudowords were presented through sinusoidal contrast modulation at a periodic 10 Hz frequency rate (F), in which words were interspersed at regular intervals of every fifth item (i.e., F/5, 2 Hz). Participants monitored a central cross color change and had no linguistic task to perform. Within only 3 min of stimulation, a robust discrimination response for words at 2 Hz (and its harmonics, i.e., 4 and 6 Hz) was observed in all conditions, located predominantly over the left occipito-temporal cortex. The magnitude of the response was largest for words embedded in pseudofonts, and larger in nonwords than in pseudowords, showing that list context effects classically reported in behavioral lexical decision tasks are due to visual discrimination rather than decisional processes. Remarkably, the oddball response was significant even for the critical words/pseudowords discrimination condition in every individual participant. A second experiment replicated this words/pseudowords discrimination, and showed that this effect is not accounted for by a higher bigram frequency of words than pseudowords. Without any explicit task, our results highlight the potential of an EEG fast periodic visual stimulation approach for understanding the representation of written language. Its development in the scientific community might be valuable to rapidly and objectively measure sensitivity to word processing in different human populations, including neuropsychological patients with dyslexia and other reading

  9. A robust index of lexical representation in the left occipito-temporal cortex as evidenced by EEG responses to fast periodic visual stimulation.

    PubMed

    Lochy, Aliette; Van Belle, Goedele; Rossion, Bruno

    2015-01-01

    Despite decades of research on reading, including the relatively recent contributions of neuroimaging and electrophysiology, identifying selective representations of whole visual words (in contrast to pseudowords) in the human brain remains challenging, in particular without an explicit linguistic task. Here we measured discrimination responses to written words by means of electroencephalography (EEG) during fast periodic visual stimulation. Sequences of pseudofonts, nonwords, or pseudowords were presented through sinusoidal contrast modulation at a periodic 10 Hz frequency rate (F), in which words were interspersed at regular intervals of every fifth item (i.e., F/5, 2 Hz). Participants monitored a central cross color change and had no linguistic task to perform. Within only 3 min of stimulation, a robust discrimination response for words at 2 Hz (and its harmonics, i.e., 4 and 6 Hz) was observed in all conditions, located predominantly over the left occipito-temporal cortex. The magnitude of the response was largest for words embedded in pseudofonts, and larger in nonwords than in pseudowords, showing that list context effects classically reported in behavioral lexical decision tasks are due to visual discrimination rather than decisional processes. Remarkably, the oddball response was significant even for the critical words/pseudowords discrimination condition in every individual participant. A second experiment replicated this words/pseudowords discrimination, and showed that this effect is not accounted for by a higher bigram frequency of words than pseudowords. Without any explicit task, our results highlight the potential of an EEG fast periodic visual stimulation approach for understanding the representation of written language. Its development in the scientific community might be valuable to rapidly and objectively measure sensitivity to word processing in different human populations, including neuropsychological patients with dyslexia and other reading

  10. Examining Brain-Cognition Effects of Ginkgo Biloba Extract: Brain Activation in the Left Temporal and Left Prefrontal Cortex in an Object Working Memory Task

    PubMed Central

    Silberstein, R. B.; Pipingas, A.; Song, J.; Camfield, D. A.; Nathan, P. J.; Stough, C.

    2011-01-01

    Ginkgo Biloba extract (GBE) is increasingly used to alleviate symptoms of age related cognitive impairment, with preclinical evidence pointing to a pro-cholinergic effect. While a number of behavioral studies have reported improvements to working memory (WM) associated with GBE, electrophysiological studies of GBE have typically been limited to recordings during a resting state. The current study investigated the chronic effects of GBE on steady state visually evoked potential (SSVEP) topography in nineteen healthy middle-aged (50-61 year old) male participants whilst completing an object WM task. A randomized double-blind crossover design was employed in which participants were allocated to receive 14 days GBE and 14 days placebo in random order. For both groups, SSVEP was recorded from 64 scalp electrode sites during the completion of an object WM task both pre- and 14 days post-treatment. GBE was found to improve behavioural performance on the WM task. GBE was also found to increase the SSVEP amplitude at occipital and frontal sites and increase SSVEP latency at left temporal and left frontal sites during the hold component of the WM task. These SSVEP changes associated with GBE may represent more efficient processing during WM task completion. PMID:21941584

  11. Passive heat exposure induced by hot water leg immersion increased oxyhemoglobin in pre-frontal cortex to preserve oxygenation and did not contribute to impaired cognitive functioning.

    PubMed

    Wijayanto, Titis; Toramoto, Sayo; Tochihara, Yutaka

    2013-07-01

    This study investigated the effects of passive heat exposure on pre-frontal cortex oxygenation and cognitive functioning, specifically to examine whether the change in pre-frontal cortex oxygenation coincided with cognitive functioning during heat exposure. Eleven male students who participated in this study immersed their lower legs to the knees in three different water temperatures, 38 °C, 40 °C, and 42 °C water in an air temperature of 28 º C and 50 % relative humidity for 60 min. After 45 min of leg immersion they performed cognitive functioning tasks assessing their short-term memory while immersing their lower legs. There were higher rectal temperature (P < 0.05) and higher increase of oxyhemoglobin in both left (P < 0.05) and right (P < 0.05) pre-frontal cortex at the final stage of 45-min leg immersion in the 42 °C condition with unaltered tissue oxygenation index among the three conditions (P > 0.05). No statistical difference in cognitive functioning among the three conditions was observed with a higher increase of oxyhemoglobin during the cognitive functioning in the 42 °C condition for the left (P = 0.05) and right (P < 0.05) pre-frontal cortex. The findings of this study suggest, first, passive heat exposure increases oxygen delivery in the pre-frontal cortex to maintain pre-frontal cortex oxygenation; second, there is no evidence of passive heat exposure in cognitive functioning in this study; and third, the greater increases of oxyhemoglobin in the pre-frontal cortex during cognitive functioning at the hottest condition suggests a recruitment of available neural resources or greater effort to maintain the same performance at the same level as when they felt thermally comfortable.

  12. Passive heat exposure induced by hot water leg immersion increased oxyhemoglobin in pre-frontal cortex to preserve oxygenation and did not contribute to impaired cognitive functioning

    NASA Astrophysics Data System (ADS)

    Wijayanto, Titis; Toramoto, Sayo; Tochihara, Yutaka

    2013-07-01

    This study investigated the effects of passive heat exposure on pre-frontal cortex oxygenation and cognitive functioning, specifically to examine whether the change in pre-frontal cortex oxygenation coincided with cognitive functioning during heat exposure. Eleven male students who participated in this study immersed their lower legs to the knees in three different water temperatures, 38 °C, 40 °C, and 42 °C water in an air temperature of 28 º C and 50 % relative humidity for 60 min. After 45 min of leg immersion they performed cognitive functioning tasks assessing their short-term memory while immersing their lower legs. There were higher rectal temperature ( P < 0.05) and higher increase of oxyhemoglobin in both left ( P < 0.05) and right ( P < 0.05) pre-frontal cortex at the final stage of 45-min leg immersion in the 42 °C condition with unaltered tissue oxygenation index among the three conditions ( P > 0.05). No statistical difference in cognitive functioning among the three conditions was observed with a higher increase of oxyhemoglobin during the cognitive functioning in the 42 °C condition for the left ( P = 0.05) and right ( P < 0.05) pre-frontal cortex. The findings of this study suggest, first, passive heat exposure increases oxygen delivery in the pre-frontal cortex to maintain pre-frontal cortex oxygenation; second, there is no evidence of passive heat exposure in cognitive functioning in this study; and third, the greater increases of oxyhemoglobin in the pre-frontal cortex during cognitive functioning at the hottest condition suggests a recruitment of available neural resources or greater effort to maintain the same performance at the same level as when they felt thermally comfortable.

  13. Absent activation in medial prefrontal cortex and temporoparietal junction but not superior temporal sulcus during the perception of biological motion in schizophrenia: a functional MRI study

    PubMed Central

    Hashimoto, Naoki; Toyomaki, Atsuhito; Hirai, Masahiro; Miyamoto, Tamaki; Narita, Hisashi; Okubo, Ryo; Kusumi, Ichiro

    2014-01-01

    Background Patients with schizophrenia show disturbances in both visual perception and social cognition. Perception of biological motion (BM) is a higher-level visual process, and is known to be associated with social cognition. BM induces activation in the “social brain network”, including the superior temporal sulcus (STS). Although deficits in the detection of BM and atypical activation in the STS have been reported in patients with schizophrenia, it remains unclear whether other nodes of the “social brain network” are also atypical in patients with schizophrenia. Purpose We aimed to explore whether brain regions other than STS were involved during BM perception in patients with schizophrenia, using functional magnetic resonance imaging (fMRI). Methods and patients Seventeen patients with schizophrenia, and 17 age- and sex- matched healthy controls, underwent fMRI scanning during a one-back visual task, containing three experimental conditions: (1) BM, (2) scrambled motion (SM), and (3) static condition. We used one-sample t-tests to examine neural responses selective to BM versus SM within each group, and two-sample t-tests to directly compare neural patterns to BM versus SM in schizophrenics versus controls. Results We found significant activation in the STS region when BM was contrasted with SM in both groups, with no significant difference between groups. On the contrary, significant activation in the medial prefrontal cortex (MPFC) and bilateral temporoparietal junction (TPJ) was found only in the control group. When we directly compared the two groups, the healthy controls showed significant greater activation in left MPFC and TPJ to BM versus SM than patients with schizophrenia. Conclusion Our findings suggest that patients with schizophrenia show normal activation to biologically and socially relevant motion stimuli in the STS, but atypical activation in other regions of the social brain network, specifically MPFC and TPJ. Moreover, these results

  14. Impaired facial emotion recognition in patients with mesial temporal lobe epilepsy associated with hippocampal sclerosis (MTLE-HS): Side and age at onset matters.

    PubMed

    Hlobil, Ulf; Rathore, Chaturbhuj; Alexander, Aley; Sarma, Sankara; Radhakrishnan, Kurupath

    2008-08-01

    To define the determinants of impaired facial emotion recognition (FER) in patients with mesial temporal lobe epilepsy associated with hippocampal sclerosis (MTLE-HS), we examined 76 patients with unilateral MTLE-HS, 36 prior to antero-mesial temporal lobectomy (AMTL) and 40 after AMTL, and 28 healthy control subjects with a FER test consisting of 60 items (20 each for anger, fear, and happiness). Mean percentages of the accurate responses were calculated for different subgroups: right vs. left MTLE-HS, early (age at onset <6 years) vs. late-onset, and before vs. after AMTL. After controlling for years of education, duration of epilepsy and number of antiepileptic drugs (AEDs) taken, on multivariate analysis, fear recognition was profoundly impaired in early-onset right MTLE-HS patients compared to other MTLE patients and control subjects. Happiness recognition was significantly better in post-AMTL MTLE-HS patients compared to pre-AMTL patients while anger and fear recognition did not differ. We conclude that patients with right MTLE-HS with age at seizure onset <6 years are maximally predisposed to impaired fear recognition. In them, right AMTL does not further worsen FER abilities. Longitudinal studies comparing FER in the same patients before and after AMTL will be required to refine and confirm our cross-sectional observations.

  15. Cognitive impairment related changes in the elemental concentration in the brain of old rat

    NASA Astrophysics Data System (ADS)

    Serpa, R. F. B.; de Jesus, E. F. O.; Anjos, M. J.; Lopes, R. T.; do Carmo, M. G. T.; Rocha, M. S.; Rodrigues, L. C.; Moreira, S.; Martinez, A. M. B.

    2006-11-01

    In order to evaluate the elemental concentration as a function of learning and memory deficiency, six different structures of the brain were analyzed by total reflection X-ray fluorescence spectrometry with synchrotron radiation (SR-TXRF). To evaluate the cognitive processes, the animals were tested in an adaptation of the Morris water maze. After the test, the animals were divided into two groups: cognitively healthy (control group) and cognitively impaired. The measurements were carried out at XRF beam line at Light Synchrotron Brazilian laboratory, Campinas, Brazil. The following elements were identified: Al, P, S, Cl, K, Ca, Ti, Cr, Fe, Cu, Zn, Br and Rb. K concentration was higher in all regions of the brain studied for control group than the cognitively impaired group. Moreover, the control group presented higher levels for P and Fe in the entorhinal cortex, in the temporal cortex (only P), in the hypothalamus and in the thalamus, than the cognitively impaired group. Br concentration in the animals which presented cognitive impairment was three times larger in the hypothalamus and thalamus, twice larger in temporal cortex and higher in visual cortex than the cognitively healthy group. Cu was more remarkable in the hippocampus and hypothalamus from the animals with cognitive impairment than the control group. We observed that the cognitively impaired group presented highest concentrations of Br and Cu in certain areas than the control group, on the other hand, this group presented highest levels of K for all brain areas studied.

  16. The Influence of Cochlear Mechanical Dysfunction, Temporal Processing Deficits, and Age on the Intelligibility of Audible Speech in Noise for Hearing-Impaired Listeners

    PubMed Central

    Johannesen, Peter T.; Pérez-González, Patricia; Kalluri, Sridhar; Blanco, José L.

    2016-01-01

    The aim of this study was to assess the relative importance of cochlear mechanical dysfunction, temporal processing deficits, and age on the ability of hearing-impaired listeners to understand speech in noisy backgrounds. Sixty-eight listeners took part in the study. They were provided with linear, frequency-specific amplification to compensate for their audiometric losses, and intelligibility was assessed for speech-shaped noise (SSN) and a time-reversed two-talker masker (R2TM). Behavioral estimates of cochlear gain loss and residual compression were available from a previous study and were used as indicators of cochlear mechanical dysfunction. Temporal processing abilities were assessed using frequency modulation detection thresholds. Age, audiometric thresholds, and the difference between audiometric threshold and cochlear gain loss were also included in the analyses. Stepwise multiple linear regression models were used to assess the relative importance of the various factors for intelligibility. Results showed that (a) cochlear gain loss was unrelated to intelligibility, (b) residual cochlear compression was related to intelligibility in SSN but not in a R2TM, (c) temporal processing was strongly related to intelligibility in a R2TM and much less so in SSN, and (d) age per se impaired intelligibility. In summary, all factors affected intelligibility, but their relative importance varied across maskers. PMID:27604779

  17. The Influence of Cochlear Mechanical Dysfunction, Temporal Processing Deficits, and Age on the Intelligibility of Audible Speech in Noise for Hearing-Impaired Listeners.

    PubMed

    Johannesen, Peter T; Pérez-González, Patricia; Kalluri, Sridhar; Blanco, José L; Lopez-Poveda, Enrique A

    2016-01-01

    The aim of this study was to assess the relative importance of cochlear mechanical dysfunction, temporal processing deficits, and age on the ability of hearing-impaired listeners to understand speech in noisy backgrounds. Sixty-eight listeners took part in the study. They were provided with linear, frequency-specific amplification to compensate for their audiometric losses, and intelligibility was assessed for speech-shaped noise (SSN) and a time-reversed two-talker masker (R2TM). Behavioral estimates of cochlear gain loss and residual compression were available from a previous study and were used as indicators of cochlear mechanical dysfunction. Temporal processing abilities were assessed using frequency modulation detection thresholds. Age, audiometric thresholds, and the difference between audiometric threshold and cochlear gain loss were also included in the analyses. Stepwise multiple linear regression models were used to assess the relative importance of the various factors for intelligibility. Results showed that (a) cochlear gain loss was unrelated to intelligibility, (b) residual cochlear compression was related to intelligibility in SSN but not in a R2TM, (c) temporal processing was strongly related to intelligibility in a R2TM and much less so in SSN, and (d) age per se impaired intelligibility. In summary, all factors affected intelligibility, but their relative importance varied across maskers. PMID:27604779

  18. Precuneus and Cingulate Cortex Atrophy and Hypometabolism in Patients with Alzheimer's Disease and Mild Cognitive Impairment: MRI and 18F-FDG PET Quantitative Analysis Using FreeSurfer

    PubMed Central

    Bailly, Matthieu; Destrieux, Christophe; Hommet, Caroline; Mondon, Karl; Cottier, Jean-Philippe; Beaufils, Emilie; Vierron, Emilie; Vercouillie, Johnny; Ibazizene, Méziane; Voisin, Thierry; Payoux, Pierre; Barré, Louisa; Camus, Vincent; Guilloteau, Denis; Ribeiro, Maria-Joao

    2015-01-01

    Objective. The objective of this study was to compare glucose metabolism and atrophy, in the precuneus and cingulate cortex, in patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI), using FreeSurfer. Methods. 47 individuals (17 patients with AD, 17 patients with amnestic MCI, and 13 healthy controls (HC)) were included. MRI and PET images using 18F-FDG (mean injected dose of 185 MBq) were acquired and analyzed using FreeSurfer to define regions of interest in the hippocampus, amygdala, precuneus, and anterior and posterior cingulate cortex. Regional volumes were generated. PET images were registered to the T1-weighted MRI images and regional uptake normalized by cerebellum uptake (SUVr) was measured. Results. Mean posterior cingulate volume was reduced in MCI and AD. SUVr were different between the three groups: mean precuneus SUVr was 1.02 for AD, 1.09 for MCI, and 1.26 for controls (p < 0.05); mean posterior cingulate SUVr was 0.96, 1.06, and 1.22 for AD, MCI, and controls, respectively (p < 0.05). Conclusion. We found graduated hypometabolism in the posterior cingulate cortex and the precuneus in prodromal AD (MCI) and AD, whereas atrophy was not significant. This suggests that the use of 18F-FDG in these two regions could be a neurodegenerative biomarker. PMID:26346648

  19. Targeted Lipidomics of Fontal Cortex and Plasma Diacylglycerols (DAG) in Mild Cognitive Impairment and Alzheimer's Disease: Validation of DAG Accumulation Early in the Pathophysiology of Alzheimer's Disease.

    PubMed

    Wood, Paul L; Medicherla, Srikanth; Sheikh, Naveen; Terry, Bradley; Phillipps, Aaron; Kaye, Jeffrey A; Quinn, Joseph F; Woltjer, Randall L

    2015-01-01

    Previous studies have demonstrated augmented levels of diacylglycerols (DAG) in the frontal cortex and plasma of Alzheimer's disease (AD) patients. We extended these findings from non-targeted lipidomics studies to design a lipidomics platform to interrogate DAGs and monoacylglycerols (MAG) in the frontal cortex and plasma of MCI subjects. Control subjects included both aged normal controls and controls with normal cognition, but AD pathology at autopsy, individuals termed non-demented AD neuropathology. DAGs with saturated, unsaturated, and polyunsaturated fatty acid substituents were found to be elevated in MCI frontal cortex and plasma. Tandem mass spectrometry of the DAGs did not reveal any differences in the distributions of the fatty acid substitutions between MCI and control subjects. While triacylglycerols were not altered in MCI subjects there were increases in MAG levels both in the frontal cortex and plasma. In toto, increased levels of DAGs and MAGs appear to occur early in AD pathophysiology and require both further validation in a larger patient cohort and elucidation of the lipidomics alteration(s) that lead to the accumulation of DAGs in MCI subjects. PMID:26402017

  20. Targeted Lipidomics of Fontal Cortex and Plasma Diacylglycerols (DAG) in Mild Cognitive Impairment and Alzheimer's Disease: Validation of DAG Accumulation Early in the Pathophysiology of Alzheimer's Disease.

    PubMed

    Wood, Paul L; Medicherla, Srikanth; Sheikh, Naveen; Terry, Bradley; Phillipps, Aaron; Kaye, Jeffrey A; Quinn, Joseph F; Woltjer, Randall L

    2015-01-01

    Previous studies have demonstrated augmented levels of diacylglycerols (DAG) in the frontal cortex and plasma of Alzheimer's disease (AD) patients. We extended these findings from non-targeted lipidomics studies to design a lipidomics platform to interrogate DAGs and monoacylglycerols (MAG) in the frontal cortex and plasma of MCI subjects. Control subjects included both aged normal controls and controls with normal cognition, but AD pathology at autopsy, individuals termed non-demented AD neuropathology. DAGs with saturated, unsaturated, and polyunsaturated fatty acid substituents were found to be elevated in MCI frontal cortex and plasma. Tandem mass spectrometry of the DAGs did not reveal any differences in the distributions of the fatty acid substitutions between MCI and control subjects. While triacylglycerols were not altered in MCI subjects there were increases in MAG levels both in the frontal cortex and plasma. In toto, increased levels of DAGs and MAGs appear to occur early in AD pathophysiology and require both further validation in a larger patient cohort and elucidation of the lipidomics alteration(s) that lead to the accumulation of DAGs in MCI subjects.

  1. Inactivation of the Anterior Cingulate Cortex Impairs Extinction of Rabbit Jaw Movement Conditioning and Prevents Extinction-Related Inhibition of Hippocampal Activity

    ERIC Educational Resources Information Center

    Griffin, Amy L.; Berry, Stephen D.

    2004-01-01

    Although past research has highlighted the involvement of limbic structures such as the anterior cingulate cortex (ACC) and hippocampus in learning, few have addressed the nature of their interaction. The current study of rabbit jaw movement conditioning used a combination of reversible lesions and electrophysiology to examine the involvement of…

  2. Hearing shapes our perception of time: temporal discrimination of tactile stimuli in deaf people.

    PubMed

    Bolognini, Nadia; Cecchetto, Carlo; Geraci, Carlo; Maravita, Angelo; Pascual-Leone, Alvaro; Papagno, Costanza

    2012-02-01

    Confronted with the loss of one type of sensory input, we compensate using information conveyed by other senses. However, losing one type of sensory information at specific developmental times may lead to deficits across all sensory modalities. We addressed the effect of auditory deprivation on the development of tactile abilities, taking into account changes occurring at the behavioral and cortical level. Congenitally deaf and hearing individuals performed two tactile tasks, the first requiring the discrimination of the temporal duration of touches and the second requiring the discrimination of their spatial length. Compared with hearing individuals, deaf individuals were impaired only in tactile temporal processing. To explore the neural substrate of this difference, we ran a TMS experiment. In deaf individuals, the auditory association cortex was involved in temporal and spatial tactile processing, with the same chronometry as the primary somatosensory cortex. In hearing participants, the involvement of auditory association cortex occurred at a later stage and selectively for temporal discrimination. The different chronometry in the recruitment of the auditory cortex in deaf individuals correlated with the tactile temporal impairment. Thus, early hearing experience seems to be crucial to develop an efficient temporal processing across modalities, suggesting that plasticity does not necessarily result in behavioral compensation.

  3. Impaired Tuning of a Fast Occipito-Temporal Response for Print in Dyslexic Children Learning to Read

    ERIC Educational Resources Information Center

    Maurer, Urs; Brem, Silvia; Bucher, Kerstin; Kranz, Felicitas; Benz, Rosmarie; Steinhausen, Hans-Christoph; Brandeis, Daniel

    2007-01-01

    Developmental dyslexia is defined as a disorder of learning to read. It is thus critical to examine the neural processes that impair learning to read during the early phase of reading acquisition, before compensatory mechanisms are adapted by older readers with dyslexia. Using electroencephalography-based event-related imaging, we investigated how…

  4. Discrepancy in Expression of β-Secretase and Amyloid-β Protein Precursor in Alzheimer-Related Genes in the Rat Medial Temporal Lobe Cortex Following Transient Global Brain Ischemia.

    PubMed

    Pluta, Ryszard; Kocki, Janusz; Ułamek-Kozioł, Marzena; Petniak, Alicja; Gil-Kulik, Paulina; Januszewski, Sławomir; Bogucki, Jacek; Jabłoński, Mirosław; Brzozowska, Judyta; Furmaga-Jabłońska, Wanda; Bogucka-Kocka, Anna; Czuczwar, Stanisław J

    2016-01-01

    Brain ischemia may be causally related with Alzheimer's disease. Presumably, β-secretase and amyloid-β protein precursor gene expression changes may be associated with Alzheimer's disease neuropathology. Consequently, we have examined quantitative changes in both β-secretase and amyloid-β protein precursor genes in the medial temporal lobe cortex with the use of quantitative rtPCR analysis following 10-min global brain ischemia in rats with survival of 2, 7, and 30 days. The greatest significant overexpression of β-secretase gene was noted on the 2nd day, while on days 7-30 the expression of this gene was only modestly downregulated. Amyloid-β protein precursor gene was downregulated on the 2nd day, but on days 7-30 postischemia, there was a significant reverse tendency. Thus, the demonstrated alterations indicate that the considerable changes of expression of β-secretase and amyloid-β protein precursor genes may be connected with a response of neurons in medial temporal lobe cortex to transient global brain ischemia. Finally, the ischemia-induced gene changes may play a key role in a late and slow onset of Alzheimer-type pathology. PMID:26890784

  5. Patients with mild cognitive impairment have an abnormal upper-alpha event-related desynchronization/synchronization (ERD/ERS) during a task of temporal attention.

    PubMed

    Caravaglios, Giuseppe; Muscoso, Emma Gabriella; Di Maria, Giulia; Costanzo, Erminio

    2015-03-01

    There are several evidences indicating that an impairment in attention-executive functions is present in prodromal Alzheimer's disease and predict future global cognitive decline. In particular, the issue of temporal orienting of attention in patients with mild cognitive impairment (MCI) due to Alzheimer's disease has been overlooked. The present research aimed to explore whether subtle deficits of cortical activation are present in these patients early in the course of the disease. We studied the upper-alpha event-related synchronization/desynchronization phenomenon during a paradigm of temporal orientation of attention. MCI patients (n = 27) and healthy elderly controls (n = 15) performed a task in which periodically omitted tones had to be predicted and their virtual onset time had to be marked by pressing a button. Single-trial responses were measured, respectively, before and after the motor response. Then, upper-alpha responses were compared to upper-alpha power during eyes-closed resting state. The time course of the task was characterized by two different behavioral conditions: (1) a pre-event epoch, in which the subject awaited the virtual onset of the omitted tone, (2) a post-event epoch (after button pressing), in which the subject was in a post-motor response condition. The principal findings are: (1) during the waiting epoch, only healthy elderly had an upper-alpha ERD at the level of both temporal and posterior brain regions; (2) during the post-motor epoch, the aMCI patients had a weaker upper-alpha ERS on prefrontal regions; (3) only healthy elderly showed a laterality effect: (a) during the waiting epoch, the upper-alpha ERD was greater at the level of the right posterior-temporal lead; during the post-motor epoch, the upper alpha ERS was greater on the left prefrontal lead. The relevance of these findings is that the weaker upper-alpha response observed in aMCI patients is evident even if the accuracy of the behavioral performance (i.e., button

  6. Stimulus familiarity modulates functional connectivity of the perirhinal cortex and anterior hippocampus during visual discrimination of faces and objects

    PubMed Central

    McLelland, Victoria C.; Chan, David; Ferber, Susanne; Barense, Morgan D.

    2014-01-01

    Recent research suggests that the medial temporal lobe (MTL) is involved in perception as well as in declarative memory. Amnesic patients with focal MTL lesions and semantic dementia patients showed perceptual deficits when discriminating faces and objects. Interestingly, these two patient groups showed different profiles of impairment for familiar and unfamiliar stimuli. For MTL amnesics, the use of familiar relative to unfamiliar stimuli improved discrimination performance. By contrast, patients with semantic dementia—a neurodegenerative condition associated with anterolateral temporal lobe damage—showed no such facilitation from familiar stimuli. Given that the two patient groups had highly overlapping patterns of damage to the perirhinal cortex, hippocampus, and temporal pole, the neuroanatomical substrates underlying their performance discrepancy were unclear. Here, we addressed this question with a multivariate reanalysis of the data presented by Barense et al. (2011), using functional connectivity to examine how stimulus familiarity affected the broader networks with which the perirhinal cortex, hippocampus, and temporal poles interact. In this study, healthy participants were scanned while they performed an odd-one-out perceptual task involving familiar and novel faces or objects. Seed-based analyses revealed that functional connectivity of the right perirhinal cortex and right anterior hippocampus was modulated by the degree of stimulus familiarity. For familiar relative to unfamiliar faces and objects, both right perirhinal cortex and right anterior hippocampus showed enhanced functional correlations with anterior/lateral temporal cortex, temporal pole, and medial/lateral parietal cortex. These findings suggest that in order to benefit from stimulus familiarity, it is necessary to engage not only the perirhinal cortex and hippocampus, but also a network of regions known to represent semantic information. PMID:24624075

  7. Treatment for Alexia with Agraphia Following Left Ventral Occipito-Temporal Damage: Strengthening Orthographic Representations Common to Reading and Spelling

    ERIC Educational Resources Information Center

    Kim, Esther S.; Rising, Kindle; Rapcsak, Steven Z.; Beeson, Pélagie M.

    2015-01-01

    Purpose: Damage to left ventral occipito-temporal cortex can give rise to written language impairment characterized by pure alexia/letter-by-letter (LBL) reading, as well as surface alexia and agraphia. The purpose of this study was to examine the therapeutic effects of a combined treatment approach to address concurrent LBL reading with surface…

  8. Isolated executive impairment and associated frontal neuropathology.

    PubMed

    Johnson, Julene K; Vogt, Brent A; Kim, Ronald; Cotman, Carl W; Head, Elizabeth

    2004-01-01

    Cognitive impairment in the absence of dementia is common in elderly individuals and is most often studied in the context of an isolated impairment in memory. In the current study, we report the neuropsychological and neuropathological features of a nondemented elderly individual with isolated impairment on a test of executive function (i.e., Trail Making Test) and preserved memory, language, and visuospatial function. Postmortem studies indicated that cortical neurofibrillary tangles (NFT) varied considerably, and some regions contained large numbers of neuritic senile plaques. Semiquantitative immunohistochemistry showed higher NFT and amyloid-beta (Abeta) loads in the frontal cortex relative to the temporal, entorhinal, occipital, and parietal cortices. A survey of the entire cingulate gyrus showed a wide dispersion of Abeta42 with the highest concentration in the perigenual part of the anterior cingulate cortex; Abeta appeared to be linked with neuron loss and did not overlap with the heaviest neuritic degeneration. The current case may represent a nonmemory presentation of mild cognitive impairment (executive mild cognitive impairment) that is associated with frontal and anterior cingulate pathology and may be an early stage of the frontal variant of Alzheimer disease.

  9. Impaired Facial Expression Recognition in Children with Temporal Lobe Epilepsy: Impact of Early Seizure Onset on Fear Recognition

    ERIC Educational Resources Information Center

    Golouboff, Nathalie; Fiori, Nicole; Delalande, Olivier; Fohlen, Martine; Dellatolas, Georges; Jambaque, Isabelle

    2008-01-01

    The amygdala has been implicated in the recognition of facial emotions, especially fearful expressions, in adults with early-onset right temporal lobe epilepsy (TLE). The present study investigates the recognition of facial emotions in children and adolescents, 8-16 years old, with epilepsy. Twenty-nine subjects had TLE (13 right, 16 left) and…

  10. Theta responses are abnormal in mild cognitive impairment: evidence from analysis of theta event-related synchronization during a temporal expectancy task.

    PubMed

    Caravaglios, Giuseppe; Muscoso, Emma Gabriella; Di Maria, Giulia; Costanzo, Erminio

    2013-07-01

    We examined the hypothesis that the attention/executive deficits in mild cognitive impairment (MCI) due to Alzheimer's disease is associated to an abnormal cortical activation, revealed by the method of event-related synchronization/desynchronization (ERS/ERD) in the theta band during a paradigm of temporal orienting of attention. MCI patients (n = 25) and healthy elderly (HE) matched controls (n = 15) performed a task in which periodically omitted tones had to be predicted and their virtual onset time had to be marked by pressing a button. Single-trial theta responses were measured, respectively, before and after the motor response. Then, theta responses were compared to theta power during eyes closed resting state (ERD/ERS method).The temporal course of the task was characterized by two different behavioural conditions: (1) a pre-event epoch, in which the subject awaited the virtual onset of the omitted tone, (2) a post-event (after button pressing) epoch, in which the subject was in a post-motor response condition. The most important findings are summarized as follows: (1) in both groups, the pre-event epoch was characterized by theta ERS on temporal electrodes, but HE had a greater theta ERS compared to that of MCI group; (2) in both groups, during the post-motor condition, there was a theta ERS on prefrontal regions, and, also in this case, HE showed a greater theta enhancement compared to that of MCI patients; (3) HE showed evidence of lateralization: during the waiting epoch, theta ERS was dominant on the right posterior temporal lead (T6), whilst, during the post-motor epoch, theta ERS was greater on the left, as well as the midline prefrontal leads. Compared to the traditional neuropsychological measures for the episodic memory, these theta ERS indicators were less accurate in differentiating MCI patients from healthy elderly. The clinical relevance of these findings is that the weaker theta reactivity in MCI would indicate an early impairment in the

  11. Impairment of holistic face perception following right occipito-temporal damage in prosopagnosia: converging evidence from gaze-contingency.

    PubMed

    Van Belle, Goedele; Busigny, Thomas; Lefèvre, Philippe; Joubert, Sven; Felician, Olivier; Gentile, Francesco; Rossion, Bruno

    2011-09-01

    Gaze-contingency is a method traditionally used to investigate the perceptual span in reading by selectively revealing/masking a portion of the visual field in real time. Introducing this approach in face perception research showed that the performance pattern of a brain-damaged patient with acquired prosopagnosia (PS) in a face matching task was reversed, as compared to normal observers: the patient showed almost no further decrease of performance when only one facial part (eye, mouth, nose, etc.) was available at a time (foveal window condition, forcing part-based analysis), but a very large impairment when the fixated part was selectively masked (mask condition, promoting holistic perception) (Van Belle, De Graef, Verfaillie, Busigny, & Rossion, 2010a; Van Belle, De Graef, Verfaillie, Rossion, & Lefèvre, 2010b). Here we tested the same manipulation in a recently reported case of pure prosopagnosia (GG) with unilateral right hemisphere damage (Busigny, Joubert, Felician, Ceccaldi, & Rossion, 2010). Contrary to normal observers, GG was also significantly more impaired with a mask than with a window, demonstrating impairment with holistic face perception. Together with our previous study, these observations support a generalized account of acquired prosopagnosia as a critical impairment of holistic (individual) face perception, implying that this function is a key element of normal human face recognition. Furthermore, the similar behavioral pattern of the two patients despite different lesion localizations supports a distributed network view of the neural face processing structures, suggesting that the key function of human face processing, namely holistic perception of individual faces, requires the activity of several brain areas of the right hemisphere and their mutual connectivity.

  12. Susceptibility of Primary Sensory Cortex to Spreading Depolarizations

    PubMed Central

    Bogdanov, Volodymyr B.; Middleton, Natalie A.; Theriot, Jeremy J.; Parker, Patrick D.; Abdullah, Osama M.; Ju, Y. Sungtaek; Hartings, Jed A.

    2016-01-01

    Spreading depolarizations (SDs) are recognized as actors in neurological disorders as diverse as migraine and traumatic brain injury (TBI). Migraine aura involves sensory percepts, suggesting that sensory cortices might be intrinsically susceptible to SDs. We used optical imaging, MRI, and field potential and potassium electrode recordings in mice and electrocorticographic recordings in humans to determine the susceptibility of different brain regions to SDs. Optical imaging experiments in mice under isoflurane anesthesia showed that both cortical spreading depression and terminal anoxic depolarization arose preferentially in the whisker barrel region of parietal sensory cortex. MRI recordings under isoflurane, ketamine/xylazine, ketamine/isoflurane, and urethane anesthesia demonstrated that the depolarizations did not propagate from a subcortical source. Potassium concentrations showed larger increases in sensory cortex, suggesting a mechanism of susceptibility. Sensory stimulation biased the timing but not the location of depolarization onset. In humans with TBI, there was a trend toward increased incidence of SDs in parietal/temporal sensory cortex compared with other regions. In conclusion, SDs are inducible preferentially in primary sensory cortex in mice and most likely in humans. This tropism can explain the predominant sensory phenomenology of migraine aura. It also demonstrates that sensory cortices are vulnerable in brain injury. SIGNIFICANCE STATEMENT Spreading depolarizations (SDs) are involved in neurologic disorders as diverse as migraine and traumatic brain injury. In migraine, the nature of aura symptoms suggests that sensory cortex may be preferentially susceptible. In brain injury, SDs occur at a vulnerable time, during which the issue of sensory stimulation is much debated. We show, in mouse and human, that sensory cortex is more susceptible to SDs. We find that sensory stimulation biases the timing but not the location of the depolarizations

  13. Environmental enrichment rescues the degraded auditory temporal resolution of cortical neurons induced by early noise exposure.

    PubMed

    Jiang, Cuiping; Xu, Xiaoxiao; Yu, Liping; Xu, Jinghong; Zhang, Jiping

    2015-09-01

    The accurate processing of sound temporal information is crucial to human speech perception and other species-specific communication. During postnatal development, the auditory cortex shows environmental and experience-dependent plasticity. However, how the postnatal environment affects cortical processing of sound temporal information is not fully understood. The aim of the present study was to determine whether postnatal noise exposure impairs neural temporal resolution in the auditory cortex, and, if so, whether environmental enrichment can rescue this degraded neural temporal acuity. Using the neural gap detection threshold determined in anesthetized rats as an index of temporal acuity, we found that exposure of juvenile rats to moderate-level noise induced much higher neural gap detection thresholds in adulthood than exposure of adult rats to the same noise. Environmental enrichment did not affect cortical neural gap detection thresholds in normally developing rats. However, rearing of rats with early noise exposure in an enriched environment promoted recovery from the noise-induced degraded neural temporal resolution. In addition, the tonal stimuli in the enriched environment contributed to only a portion of the recovery. These results provide evidence for noise-induced developmental impairment in neural gap detection thresholds in the auditory cortex, and suggest a therapeutic potential for environmental enrichment as a non-invasive approach to rescue developmentally degraded auditory temporal processing.

  14. Maps of the Auditory Cortex.

    PubMed

    Brewer, Alyssa A; Barton, Brian

    2016-07-01

    One of the fundamental properties of the mammalian brain is that sensory regions of cortex are formed of multiple, functionally specialized cortical field maps (CFMs). Each CFM comprises two orthogonal topographical representations, reflecting two essential aspects of sensory space. In auditory cortex, auditory field maps (AFMs) are defined by the combination of tonotopic gradients, representing the spectral aspects of sound (i.e., tones), with orthogonal periodotopic gradients, representing the temporal aspects of sound (i.e., period or temporal envelope). Converging evidence from cytoarchitectural and neuroimaging measurements underlies the definition of 11 AFMs across core and belt regions of human auditory cortex, with likely homology to those of macaque. On a macrostructural level, AFMs are grouped into cloverleaf clusters, an organizational structure also seen in visual cortex. Future research can now use these AFMs to investigate specific stages of auditory processing, key for understanding behaviors such as speech perception and multimodal sensory integration. PMID:27145914

  15. Impaired Energy Metabolism and Disturbed Dopamine and Glutamate Signalling in the Striatum and Prefrontal Cortex of the Spontaneously Hypertensive Rat Model of Attention-Deficit Hyperactivity Disorder.

    PubMed

    Dimatelis, Jacqueline J; Hsieh, Jennifer H; Sterley, Toni-Lee; Marais, Lelanie; Womersley, Jacqueline S; Vlok, Maré; Russell, Vivienne A

    2015-07-01

    Attention deficit hyperactivity disorder (ADHD) is a heterogeneous behavioural disorder that affects 3-15 % of children worldwide. Spontaneously hypertensive rats (SHR) display the major symptoms of ADHD (hyperactivity, impulsivity and poor performance in tasks that require sustained attention) and are widely used to model the disorder. The present study aimed to test the hypothesis that SHR have a diminished capacity to generate ATP required for rapid synchronized neuronal firing, failure of which might lead to disturbances in neurotransmission that could contribute to their ADHD-like behaviour. Duplicate pooled (n = 5) samples of prefrontal cortex and striatum of prepubertal (35-day-old) SHR and Wistar Kyoto (WKY) rats were subjected to iTRAQ labeling and matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS). The MS/MS spectra were analyzed with ProteinPilot using the Ratus ratus database. Proteins detected with >95 % confidence were tested. SHR had decreased levels of several proteins involved in energy metabolism, cytoskeletal structure, myelination and neurotransmitter function when compared to WKY. Differences in protein levels between SHR and WKY were similar in prefrontal cortex and striatum, suggesting global changes in cortico-striato-thalamo-cortical circuits.

  16. Presymptomatic semantic impairment in a case of fronto-temporal lobar degeneration associated with the +16 mutation in MAPT.

    PubMed

    Garrard, Peter; Carroll, Erin

    2005-10-01

    We describe a patient who came to neurological attention because of his at-risk status for the +16 exon 10 splice mutation in the tau gene (microtubule associated protein tau, MAPT), which had given rise to progressive behavioural disturbances in two of his siblings. The patient began to exhibit early signs of behavioural disturbance at around the age of symptom onset in both of his siblings. Although he did not spontaneously complain of difficulties in the domain of language, he met clinical, radiological and neuropsychological criteria for semantic dementia. On the assumption that his illness is mediated by the same pathological process as those of his siblings, we propose that this clinical picture represents the earliest changes of a semantic impairment - a phase of the illness that is often retrospectively described by patients and their relations, but has never previously been documented at first hand. Although typical of semantic dementia in many respects, the illness had several interesting and atypical features that emerged on detailed testing: first, he exhibited no insight into his difficulties; secondly, progression over a twelve-month interval was unusually slow; thirdly, he evinced a striking and consistent advantage for nonliving over living concepts; fourthly, a differential impairment of distinctive over shared knowledge did not emerge except when items that he could still name were compared with those for which he was anomic. Finally, the availability of post mortem pathological analysis from the brains of both of his affected siblings allowed us to attribute his illness to a specific pathological process which is considered unusual for patients with this clinical phenotype. PMID:16251138

  17. Clinico-pathological subtypes of hippocampal sclerosis in temporal lobe epilepsy and their differential impact on memory impairment.

    PubMed

    Coras, R; Blümcke, I

    2015-11-19

    Hippocampal anatomy and network organization are capable to generate drug-resistant temporal lobe epilepsy (TLE) in humans and particularly vulnerable to segmental neuronal cell loss. Surgical hippocampectomy has been proven successful in treatment and available human tissue specimens allow systematic clinico-pathological examination. Different patterns of hippocampal cell loss have been identified in TLE patients and are recently classified by the International League against Epilepsy (ILAE) into four distinct subtypes in order to stratify the heterogenous group of TLE patients also with respect to postsurgical outcome. Another important aim of the international consensus classification system of hippocampal sclerosis (HS) is to gain further insights into the morpho-functional organization of human memory frequently compromised in TLE patients. PMID:26254830

  18. Loss of GluN2B-containing NMDA receptors in CA1 hippocampus and cortex impairs long-term depression, reduces dendritic spine density and disrupts learning

    PubMed Central

    Brigman, Jonathan L.; Wright, Tara; Talani, Giuseppe; Prasad-Mulcare, Shweta; Jinde, Seiichiro; Seabold, Gail K.; Mathur, Poonam; Davis, Margaret I.; Bock, Roland; Gustin, Richard M.; Colbran, Roger J.; Alvarez, Veronica A.; Nakazawa, Kazu; Delpire, Eric; Lovinger, David M.; Holmes, Andrew

    2010-01-01

    N-methyl-D-aspartate receptors (NMDARs) are key mediators of certain forms of synaptic plasticity and learning. NMDAR complexes are heteromers composed of an obligatory GluN1 subunit and one or more GluN2 (GluN2A- GluN2D) subunits. Different subunits confer distinct physiological and molecular properties to NMDARs, but their contribution to synaptic plasticity and learning in the adult brain remains uncertain. Here, we generated mice lacking GluN2B in pyramidal neurons of cortex and CA1 subregion of hippocampus. We found that hippocampal principal neurons of adult GluN2B mutants had faster decaying NMDAR-mediated excitatory postsynaptic currents (EPSCs) than non-mutant controls, and were insensitive to GluN2B but not NMDAR antagonism. A sub-saturating form of hippocampal long-term potentiation (LTP) was impaired in the mutants, whereas a saturating form of LTP was intact. A NMDAR-dependent form of long-term depression (LTD) produced by low-frequency stimulation combined with glutamate transporter inhibition was abolished in the mutants. Additionally, mutants exhibited decreased dendritic spine density in CA1 hippocampal neurons as compared to controls. On multiple assays for corticohippocampal-mediated learning and memory (hidden platform Morris water maze, T-maze spontaneous alternation, Pavlovian trace fear conditioning), mutants were impaired. These data further demonstrate the importance of GluN2B for synaptic plasticity in the adult hippocampus and suggest a particularly critical role in LTD, at least the form studied here. The finding that loss of GluN2B was sufficient to cause learning deficits illustrates the contribution of GluN2B-mediated forms of plasticity to memory formation, with implications for elucidating NMDAR-related dysfunction in disease-related cognitive impairment. PMID:20357110

  19. Impaired metabolic capacity in the perirhinal and posterior parietal cortex lead to dissociation between attentional, motivational and spatial components of exploration in the Naples High-Excitability rat.

    PubMed

    Gallo, A; Gonzalez-Lima, F; Sadile, A G

    2002-03-10

    This study aimed at investigating the neural substrates of spatial and non-spatial Behavioural components of exploration to novelty by a neurogenetic approach. Thus, functional imaging and Behavioural analysis were carried out in the Naples High-Excitability (NHE) rats, a model of hyperactivity and attention-deficit. Quantitative cytochrome oxidase (C.O.) histochemistry was used to measure the basal metabolic capacity of different forebrain structures. In parallel experiments, exploration in an 8-arm radial maze (Olton-maze) with extra-maze cues was used to measure attentional, motivational and spatial components of Behaviour after feeding rats' ad-libitum or at a reduced diet. Functional imaging analysis: brains from naive rats were stained for quantitative C.O. histochemistry along with standards. NHE rats showed lower C.O. activity in perirhinal and posterior-parietal cortex (all layers) and cortical amygdala, and greater activity in entorhinal cortex (superficial layers). The outer granular cell layer of the dentate gyrus had greater activity in NHE. Behavioural analysis: at low and high motivational level, maze exploration was reinforced during shaping throughout and then only a single arm. The Behaviour was monitored by a CCD camera and videotaped. (i) There was no line difference in working memory during non reinforced maze exploration, independent of the motivational level; (ii) during shaping with all baited arms, there was no line difference in working memory, but NHE rats showed a very low or lower food consumption at low and high motivational level, respectively; (iii) rats showed a higher working memory in finding the single baited arm at high motivational level; (iv) NHE rats paid little attention towards reinforcement upon visiting the baited arm only at low motivational level. Thus, Behavioural and functional neuroimaging analysis suggests the neural substrates of spatial and non-spatial components of exploration to be underlined by different

  20. Reducing Inter-subject Anatomical Variation: Effect of Normalization Method on Sensitivity of Functional Magnetic Resonance Imaging Data Analysis in Auditory Cortex and the Superior Temporal Region

    PubMed Central

    Tahmasebi, Amir M.; Abolmaesumi, Purang; Zheng, Zane Z.; Munhall, Kevin G.; Johnsrude, Ingrid S.

    2009-01-01

    Conventional group analysis of functional MRI (fMRI) data usually involves spatial alignment of anatomy across participants by registering every brain image to an anatomical reference image. Due to the high degree of inter-subject anatomical variability, a low-resolution average anatomical model is typically used as the target template, and/or smoothing kernels are applied to the fMRI data to increase the overlap among subjects’ image data. However, such smoothing can make it difficult to resolve small regions such as subregions of auditory cortex when anatomical morphology varies among subjects. Here, we use data from an auditory fMRI study to show that using a high-dimensional registration technique (HAMMER) results in an enhanced functional signal-to-noise ratio (fSNR) for functional data analysis within auditory regions, with more localized activation patterns. The technique is validated against DARTEL, a high-dimensional diffeomorphic registration, as well as against commonly used low-dimensional normalization techniques such as the techniques provided with SPM2 (cosine basis functions) and SPM5 (unified segmentation) software packages. We also systematically examine how spatial resolution of the template image and spatial smoothing of the functional data affect the results. Only the high-dimensional technique (HAMMER) appears to be able to capitalize on the excellent anatomical resolution of a single-subject reference template, and, as expected, smoothing increased fSNR, but at the cost of spatial resolution. In general, results demonstrate significant improvement in fSNR using HAMMER compared to analysis after normalization using DARTEL, or conventional normalization such as cosine basis function and unified segmentation in SPM, with more precisely localized activation foci, at least for activation in the region of auditory cortex. PMID:19481162

  1. Temporal precision in population—but not individual neuron—dynamics reveals rapid experience-dependent plasticity in the rat barrel cortex

    PubMed Central

    Eldawlatly, Seif; Oweiss, Karim G.

    2014-01-01

    Cortical reorganization following sensory deprivation is characterized by alterations in the connectivity between neurons encoding spared and deprived cortical inputs. The extent to which this alteration depends on Spike Timing Dependent Plasticity (STDP), however, is largely unknown. We quantified changes in the functional connectivity between layer V neurons in the vibrissal primary somatosensory cortex (vSI) (barrel cortex) of rats following sensory deprivation. One week after chronic implantation of a microelectrode array in vSI, sensory-evoked activity resulting from mechanical deflections of individual whiskers was recorded (control data) after which two whiskers on the contralateral side were paired by sparing them while trimming all other whiskers on the rat's mystacial pad. The rats' environment was then enriched by placing novel objects in the cages to encourage exploratory behavior with the spared whiskers. Sensory-evoked activity in response to individual stimulation of spared whiskers and adjacent re-grown whiskers was then recorded under anesthesia 1–2 days and 6–7 days post-trimming (plasticity data). We analyzed spike trains within 100 ms of stimulus onset and confirmed previously published reports documenting changes in receptive field sizes in the spared whisker barrels. We analyzed the same data using Dynamic Bayesian Networks (DBNs) to infer the functional connectivity between the recorded neurons. We found that DBNs inferred from population responses to stimulation of each of the spared whiskers exhibited graded increase in similarity that was proportional to the pairing duration. A significant early increase in network similarity in the spared-whisker barrels was detected 1–2 days post pairing, but not when single neuron responses were examined during the same period. These results suggest that rapid reorganization of cortical neurons following sensory deprivation may be mediated by an STDP mechanism. PMID:25505407

  2. The 12 Years Preceding Mild Cognitive Impairment Due to Alzheimer’s Disease: The Temporal Emergence of Cognitive Decline

    PubMed Central

    Mistridis, Panagiota; Krumm, Sabine; Monsch, Andreas U.; Berres, Manfred; Taylor, Kirsten I.

    2015-01-01

    Abstract Background: The identification of the type and sequence of cognitive decline in preclinical mild cognitive impairment (MCI) prior to Alzheimer’s disease (AD) is crucial for understanding AD pathogenesis and implementing therapeutic interventions. Objective: To model the longitudinal courses of different neuropsychological functions in MCI due to AD. Methods: We investigated the prodromal phase of MCI over a 12-year period in 27 initially healthy participants with subsequent MCI preceding AD (NC-MCI) and 60 demographically matched healthy individuals (NC-NC). The longitudinal courses of cognitive performance (verbal and visual episodic memory, semantic memory, executive functioning, constructional praxis, psychomotor speed, language, and informant-based reports) were analyzed with linear mixed effects models. Results: The sequence with which different cognitive functions declined in the NC-MCI relative to the NC-NC group began with verbal memory and savings performance approximately eight years, and verbal episodic learning, visual memory, and semantic memory (animal fluency) circa four years prior to the MCI diagnosis. Executive functioning, psychomotor speed, and informant-based reports of the NC-MCI group declined approximately two years preceding the MCI diagnosis. Conclusions: Measurable neuropsychological deterioration occurs up to approximately eight years preceding MCI due to AD. PMID:26402083

  3. Polysialic Acid Acute Depletion Induces Structural Plasticity in Interneurons and Impairs the Excitation/Inhibition Balance in Medial Prefrontal Cortex Organotypic Cultures

    PubMed Central

    Castillo-Gómez, Esther; Pérez-Rando, Marta; Vidueira, Sandra; Nacher, Juan

    2016-01-01

    The structure and function of the medial prefrontal cortex (mPFC) is affected in several neuropsychiatric disorders, including schizophrenia and major depression. Recent studies suggest that imbalances between excitatory and inhibitory activity (E/I) may be responsible for this cortical dysfunction and therefore, may underlie the core symptoms of these diseases. This E/I imbalance seems to be correlated with alterations in the plasticity of interneurons but there is still scarce information on the mechanisms that may link these phenomena. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) is a good candidate, because it modulates the neuronal plasticity of interneurons and its expression is altered in schizophrenia and major depression. To address this question, we have developed an in vitro model using mPFC organotypic cultures of transgenic mice displaying fluorescent spiny interneurons. After enzymatic depletion of PSA, the spine density of interneurons, the number of synaptic puncta surrounding pyramidal neuron somata and the E/I ratio were strongly affected. These results point to the polysialylation of NCAM as an important factor in the maintenance of E/I balance and the structural plasticity of interneurons. This may be particularly relevant for better understanding the etiology of schizophrenia and major depression. PMID:27445697

  4. The Effects of Sesquiterpenes-Rich Extract of Alpinia oxyphylla Miq. on Amyloid-β-Induced Cognitive Impairment and Neuronal Abnormalities in the Cortex and Hippocampus of Mice

    PubMed Central

    Shi, Shao