Thaker, A A; Weinberg, B D; Dillon, W P; Hess, C P; Cabral, H J; Fleischman, D A; Leurgans, S E; Bennett, D A; Hyman, B T; Albert, M S; Killiany, R J; Fischl, B; Dale, A M; Desikan, R S
2017-05-01
The entorhinal cortex, a critical gateway between the neocortex and hippocampus, is one of the earliest regions affected by Alzheimer disease-associated neurofibrillary tangle pathology. Although our prior work has automatically delineated an MR imaging-based measure of the entorhinal cortex, whether antemortem entorhinal cortex thickness is associated with postmortem tangle burden within the entorhinal cortex is still unknown. Our objective was to evaluate the relationship between antemortem MRI measures of entorhinal cortex thickness and postmortem neuropathological measures. We evaluated 50 participants from the Rush Memory and Aging Project with antemortem structural T1-weighted MR imaging and postmortem neuropathologic assessments. Here, we focused on thickness within the entorhinal cortex as anatomically defined by our previously developed MR imaging parcellation system (Desikan-Killiany Atlas in FreeSurfer). Using linear regression, we evaluated the association between entorhinal cortex thickness and tangles and amyloid-β load within the entorhinal cortex and medial temporal and neocortical regions. We found a significant relationship between antemortem entorhinal cortex thickness and entorhinal cortex ( P = .006) and medial temporal lobe tangles ( P = .002); we found no relationship between entorhinal cortex thickness and entorhinal cortex ( P = .09) and medial temporal lobe amyloid-β ( P = .09). We also found a significant association between entorhinal cortex thickness and cortical tangles ( P = .003) and amyloid-β ( P = .01). We found no relationship between parahippocampal gyrus thickness and entorhinal cortex ( P = .31) and medial temporal lobe tangles ( P = .051). Our findings indicate that entorhinal cortex-associated in vivo cortical thinning may represent a marker of postmortem medial temporal and neocortical Alzheimer disease pathology. © 2017 by American Journal of Neuroradiology.
Hippocampal and Parahippocampal Volumes in Schizophrenia: A Structural MRI Study
Sim, Kang; DeWitt, Iain; Ditman, Tali; Zalesak, Martin; Greenhouse, Ian; Goff, Donald; Weiss, Anthony P; Heckers, Stephan
2006-01-01
Smaller medial temporal lobe volume is a frequent finding in studies of patients with schizophrenia, but the relative contributions of the hippocampus and three surrounding cortical regions (entorhinal cortex, perirhinal cortex, and parahippocampal cortex) are poorly understood. We tested the hypothesis that the volumes of medial temporal lobe regions are selectively changed in schizophrenia. We studied 19 male patients with schizophrenia and 19 age-matched male control subjects. Hippocampal and cortical volumes were estimated using a three-dimensional morphometric protocol for the analysis of high-resolution structural magnetic resonance images, and repeated measures ANOVA was used to test for region-specific differences. Patients had smaller overall medial temporal lobe volumes compared to controls. The volume difference was not specific for either region or hemisphere. The finding of smaller medial temporal lobe volumes in the absence of regional specificity has important implications for studying the functional role of the hippocampus and surrounding cortical regions in schizophrenia. PMID:16319377
Kolb, Bryan
2010-12-01
The article by Malkova, Mishkin, Suomo, and Bachevalier (2010, this issue) adds an important piece to our understanding of the role of the medial versus lateral temporal regions in socioemotional behavior. In their paper, they evaluate the effect of infant and adult amygdala lesions and infant inferotemporal cortex lesions on the social interactions of monkeys in infancy and adulthood. The results show that medial temporal lesions performed in infants produce greater effects on socioaffective behavior than similar lesions in adulthood and that infant monkeys with inferotemporal lesions exhibit social deficits that are resolved by adulthood. These results are relevant to three significant issues: (1) the role of the medial temporal and lateral temporal cortex in the symptoms of the Kluver-Bucy syndrome; (2) the role of age at injury in behavioral change after cerebral injuries; and (3) the importance of lesion locus and behavioral measure for recovery from infant and adult cerebral injury. © 2010 APA, all rights reserved.
Cholecystokinin from the entorhinal cortex enables neural plasticity in the auditory cortex
Li, Xiao; Yu, Kai; Zhang, Zicong; Sun, Wenjian; Yang, Zhou; Feng, Jingyu; Chen, Xi; Liu, Chun-Hua; Wang, Haitao; Guo, Yi Ping; He, Jufang
2014-01-01
Patients with damage to the medial temporal lobe show deficits in forming new declarative memories but can still recall older memories, suggesting that the medial temporal lobe is necessary for encoding memories in the neocortex. Here, we found that cortical projection neurons in the perirhinal and entorhinal cortices were mostly immunopositive for cholecystokinin (CCK). Local infusion of CCK in the auditory cortex of anesthetized rats induced plastic changes that enabled cortical neurons to potentiate their responses or to start responding to an auditory stimulus that was paired with a tone that robustly triggered action potentials. CCK infusion also enabled auditory neurons to start responding to a light stimulus that was paired with a noise burst. In vivo intracellular recordings in the auditory cortex showed that synaptic strength was potentiated after two pairings of presynaptic and postsynaptic activity in the presence of CCK. Infusion of a CCKB antagonist in the auditory cortex prevented the formation of a visuo-auditory association in awake rats. Finally, activation of the entorhinal cortex potentiated neuronal responses in the auditory cortex, which was suppressed by infusion of a CCKB antagonist. Together, these findings suggest that the medial temporal lobe influences neocortical plasticity via CCK-positive cortical projection neurons in the entorhinal cortex. PMID:24343575
Cortico-hippocampal systems involved in memory and cognition: the PMAT framework.
Ritchey, Maureen; Libby, Laura A; Ranganath, Charan
2015-01-01
In this chapter, we review evidence that the cortical pathways to the hippocampus appear to extend from two large-scale cortical systems: a posterior medial (PM) system that includes the parahippocampal cortex and retrosplenial cortex, and an anterior temporal (AT) system that includes the perirhinal cortex. This "PMAT" framework accounts for differences in the anatomical and functional connectivity of the medial temporal lobes, which may underpin differences in cognitive function between the systems. The PM and AT systems make distinct contributions to memory and to other cognitive domains, and convergent findings suggest that they are involved in processing information about contexts and items, respectively. In order to support the full complement of memory-guided behavior, the two systems must interact, and the hippocampal and ventromedial prefrontal cortex may serve as sites of integration between the two systems. We conclude that when considering the "connected hippocampus," inquiry should extend beyond the medial temporal lobes to include the large-scale cortical systems of which they are a part. © 2015 Elsevier B.V. All rights reserved.
Distinct medial temporal networks encode surprise during motivation by reward versus punishment
Murty, Vishnu P.; LaBar, Kevin S.; Adcock, R. Alison
2016-01-01
Adaptive motivated behavior requires predictive internal representations of the environment, and surprising events are indications for encoding new representations of the environment. The medial temporal lobe memory system, including the hippocampus and surrounding cortex, encodes surprising events and is influenced by motivational state. Because behavior reflects the goals of an individual, we investigated whether motivational valence (i.e., pursuing rewards versus avoiding punishments) also impacts neural and mnemonic encoding of surprising events. During functional magnetic resonance imaging (fMRI), participants encountered perceptually unexpected events either during the pursuit of rewards or avoidance of punishments. Despite similar levels of motivation across groups, reward and punishment facilitated the processing of surprising events in different medial temporal lobe regions. Whereas during reward motivation, perceptual surprises enhanced activation in the hippocampus, during punishment motivation surprises instead enhanced activation in parahippocampal cortex. Further, we found that reward motivation facilitated hippocampal coupling with ventromedial PFC, whereas punishment motivation facilitated parahippocampal cortical coupling with orbitofrontal cortex. Behaviorally, post-scan testing revealed that reward, but not punishment, motivation resulted in greater memory selectivity for surprising events encountered during goal pursuit. Together these findings demonstrate that neuromodulatory systems engaged by anticipation of reward and punishment target separate components of the medial temporal lobe, modulating medial temporal lobe sensitivity and connectivity. Thus, reward and punishment motivation yield distinct neural contexts for learning, with distinct consequences for how surprises are incorporated into predictive mnemonic models of the environment. PMID:26854903
Distinct medial temporal networks encode surprise during motivation by reward versus punishment.
Murty, Vishnu P; LaBar, Kevin S; Adcock, R Alison
2016-10-01
Adaptive motivated behavior requires predictive internal representations of the environment, and surprising events are indications for encoding new representations of the environment. The medial temporal lobe memory system, including the hippocampus and surrounding cortex, encodes surprising events and is influenced by motivational state. Because behavior reflects the goals of an individual, we investigated whether motivational valence (i.e., pursuing rewards versus avoiding punishments) also impacts neural and mnemonic encoding of surprising events. During functional magnetic resonance imaging (fMRI), participants encountered perceptually unexpected events either during the pursuit of rewards or avoidance of punishments. Despite similar levels of motivation across groups, reward and punishment facilitated the processing of surprising events in different medial temporal lobe regions. Whereas during reward motivation, perceptual surprises enhanced activation in the hippocampus, during punishment motivation surprises instead enhanced activation in parahippocampal cortex. Further, we found that reward motivation facilitated hippocampal coupling with ventromedial PFC, whereas punishment motivation facilitated parahippocampal cortical coupling with orbitofrontal cortex. Behaviorally, post-scan testing revealed that reward, but not punishment, motivation resulted in greater memory selectivity for surprising events encountered during goal pursuit. Together these findings demonstrate that neuromodulatory systems engaged by anticipation of reward and punishment target separate components of the medial temporal lobe, modulating medial temporal lobe sensitivity and connectivity. Thus, reward and punishment motivation yield distinct neural contexts for learning, with distinct consequences for how surprises are incorporated into predictive mnemonic models of the environment. Copyright © 2016 Elsevier Inc. All rights reserved.
Smagula, Stephen F; Karim, Helmet T; Rangarajan, Anusha; Santos, Fernando Pasquini; Wood, Sossena C; Santini, Tales; Jakicic, John M; Reynolds, Charles F; Cameron, Judy L; Vallejo, Abbe N; Butters, Meryl A; Rosano, Caterina; Ibrahim, Tamer S; Erickson, Kirk I; Aizenstein, Howard J
2018-06-01
Hippocampal hyperactivation marks preclinical dementia pathophysiology, potentially due to differences in the connectivity of specific medial temporal lobe structures. Our aims were to characterize the resting-state functional connectivity of medial temporal lobe sub-structures in older adults, and evaluate whether specific substructural (rather than global) functional connectivity relates to memory function. In 15 adults (mean age: 69 years), we evaluated the resting state functional connectivity of medial temporal lobe substructures: dentate/Cornu Ammonis (CA) 4, CA1, CA2/3, subiculum, the molecular layer, entorhinal cortex, and parahippocampus. We used 7-Tesla susceptibility weighted imaging and magnetization-prepared rapid gradient echo sequences to segment substructures of the hippocampus, which were used as structural seeds for examining functional connectivity in a resting BOLD sequence. We then assessed correlations between functional connectivity with memory performance (short and long delay free recall on the California Verbal Learning Test [CVLT]). All the seed regions had significant connectivity within the temporal lobe (including the fusiform, temporal, and lingual gyri). The left CA1 was the only seed with significant functional connectivity to the amygdala. The left entorhinal cortex was the only seed to have significant functional connectivity with frontal cortex (anterior cingulate and superior frontal gyrus). Only higher left dentate-left lingual connectivity was associated with poorer CVLT performance (Spearman r = -0.81, p = 0.0003, Benjamini-Hochberg false discovery rate: 0.01) after multiple comparison correction. Rather than global hyper-connectivity of the medial temporal lobe, left dentate-lingual connectivity may provide a specific assay of medial temporal lobe hyper-connectivity relevant to memory in aging. Copyright © 2018 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
Villena-Gonzalez, Mario; Wang, Hao-Ting; Sormaz, Mladen; Mollo, Giovanna; Margulies, Daniel S; Jefferies, Elizabeth A; Smallwood, Jonathan
2018-02-01
It is well recognized that the default mode network (DMN) is involved in states of imagination, although the cognitive processes that this association reflects are not well understood. The DMN includes many regions that function as cortical "hubs", including the posterior cingulate/retrosplenial cortex, anterior temporal lobe and the hippocampus. This suggests that the role of the DMN in cognition may reflect a process of cortical integration. In the current study we tested whether functional connectivity from uni-modal regions of cortex into the DMN is linked to features of imaginative thought. We found that strong intrinsic communication between visual and retrosplenial cortex was correlated with the degree of social thoughts about the future. Using an independent dataset, we show that the same region of retrosplenial cortex is functionally coupled to regions of primary visual cortex as well as core regions that make up the DMN. Finally, we compared the functional connectivity of the retrosplenial cortex, with a region of medial prefrontal cortex implicated in the integration of information from regions of the temporal lobe associated with future thought in a prior study. This analysis shows that the retrosplenial cortex is preferentially coupled to medial occipital, temporal lobe regions and the angular gyrus, areas linked to episodic memory, scene construction and navigation. In contrast, the medial prefrontal cortex shows preferential connectivity with motor cortex and lateral temporal and prefrontal regions implicated in language, motor processes and working memory. Together these findings suggest that integrating neural information from visual cortex into retrosplenial cortex may be important for imagining the future and may do so by creating a mental scene in which prospective simulations play out. We speculate that the role of the DMN in imagination may emerge from its capacity to bind together distributed representations from across the cortex in a coherent manner. Copyright © 2017 Elsevier Ltd. All rights reserved.
Common and distinct networks for self-referential and social stimulus processing in the human brain.
Herold, Dorrit; Spengler, Stephanie; Sajonz, Bastian; Usnich, Tatiana; Bermpohl, Felix
2016-09-01
Self-referential processing is a complex cognitive function, involving a set of implicit and explicit processes, complicating investigation of its distinct neural signature. The present study explores the functional overlap and dissociability of self-referential and social stimulus processing. We combined an established paradigm for explicit self-referential processing with an implicit social stimulus processing paradigm in one fMRI experiment to determine the neural effects of self-relatedness and social processing within one study. Overlapping activations were found in the orbitofrontal cortex and in the intermediate part of the precuneus. Stimuli judged as self-referential specifically activated the posterior cingulate cortex, the ventral medial prefrontal cortex, extending into anterior cingulate cortex and orbitofrontal cortex, the dorsal medial prefrontal cortex, the ventral and dorsal lateral prefrontal cortex, the left inferior temporal gyrus, and occipital cortex. Social processing specifically involved the posterior precuneus and bilateral temporo-parietal junction. Taken together, our data show, not only, first, common networks for both processes in the medial prefrontal and the medial parietal cortex, but also, second, functional differentiations for self-referential processing versus social processing: an anterior-posterior gradient for social processing and self-referential processing within the medial parietal cortex and specific activations for self-referential processing in the medial and lateral prefrontal cortex and for social processing in the temporo-parietal junction.
Content-Specific Source Encoding in the Human Medial Temporal Lobe
ERIC Educational Resources Information Center
Awipi, T.; Davachi, L.
2008-01-01
Although the medial temporal lobe (MTL) is known to be essential for episodic encoding, the contributions of individual MTL subregions remain unclear. Data from recognition memory studies have provided evidence that the hippocampus supports relational encoding important for later episodic recollection, whereas the perirhinal cortex has been linked…
Beer, Anton L.; Plank, Tina; Meyer, Georg; Greenlee, Mark W.
2013-01-01
Functional magnetic resonance imaging (MRI) showed that the superior temporal and occipital cortex are involved in multisensory integration. Probabilistic fiber tracking based on diffusion-weighted MRI suggests that multisensory processing is supported by white matter connections between auditory cortex and the temporal and occipital lobe. Here, we present a combined functional MRI and probabilistic fiber tracking study that reveals multisensory processing mechanisms that remained undetected by either technique alone. Ten healthy participants passively observed visually presented lip or body movements, heard speech or body action sounds, or were exposed to a combination of both. Bimodal stimulation engaged a temporal-occipital brain network including the multisensory superior temporal sulcus (msSTS), the lateral superior temporal gyrus (lSTG), and the extrastriate body area (EBA). A region-of-interest (ROI) analysis showed multisensory interactions (e.g., subadditive responses to bimodal compared to unimodal stimuli) in the msSTS, the lSTG, and the EBA region. Moreover, sounds elicited responses in the medial occipital cortex. Probabilistic tracking revealed white matter tracts between the auditory cortex and the medial occipital cortex, the inferior occipital cortex (IOC), and the superior temporal sulcus (STS). However, STS terminations of auditory cortex tracts showed limited overlap with the msSTS region. Instead, msSTS was connected to primary sensory regions via intermediate nodes in the temporal and occipital cortex. Similarly, the lSTG and EBA regions showed limited direct white matter connections but instead were connected via intermediate nodes. Our results suggest that multisensory processing in the STS is mediated by separate brain areas that form a distinct network in the lateral temporal and inferior occipital cortex. PMID:23407860
Li, Jay-Shake; Hsiao, Kun-Yuan; Chen, Wei-Min
2011-03-17
Previous animal studies have defined the ability to remember the details of what, where, and when of an event as an episodic-like memory to be used to model episodic memory in humans. Numerous findings indicate that the hippocampal-frontal cortical circuitry plays a major part in its neural mechanism. Researchers have intensively studied roles of diverse hippocampus sub-regions using animal models. By contrast, the impact of prefrontal cortex lesions on episodic-like memory in animals is still unknown. Here we show that Wistar rats with bilateral medial prefrontal cortex lesions failed to use the temporal-contextual information to retrieve memory of a fear-conditioning event, indicating impairments in their episodic-like memory. Subsequent experiments excluded alternative interpretations that the manipulation impaired the fear-conditioning per se, or interfered with the sensory preconditioning process. We concluded that damages in this area might impair temporal information processing, or interfere with integrating temporal and contextual elements of fear-conditioning events to form a conjunctive entity. These findings can help understand how the medial prefrontal cortex contributes to episodic-like memory. Copyright © 2010 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Sommer, Tobias; Rose, Michael; Glascher, Jan; Wolbers, Thomas; Buchel, Christian
2005-01-01
The crucial role of the medial temporal lobe (MTL) in episodic memory is well established. Although there is little doubt that its anatomical subregions--the hippocampus, peri-, entorhinal and parahippocampal cortex (PHC)--contribute differentially to mnemonic processes, their specific functions in episodic memory are under debate. Data from…
Medial perirhinal cortex disambiguates confusable objects
Tyler, Lorraine K.; Monsch, Andreas U.; Taylor, Kirsten I.
2012-01-01
Our brain disambiguates the objects in our cluttered visual world seemingly effortlessly, enabling us to understand their significance and to act appropriately. The role of anteromedial temporal structures in this process, particularly the perirhinal cortex, is highly controversial. In some accounts, the perirhinal cortex is necessary for differentiating between perceptually and semantically confusable objects. Other models claim that the perirhinal cortex neither disambiguates perceptually confusable objects nor plays a unique role in semantic processing. One major hurdle to resolving this central debate is the fact that brain damage in human patients typically encompasses large portions of the anteromedial temporal lobe, such that the identification of individual substructures and precise neuroanatomical locus of the functional impairments has been difficult. We tested these competing accounts in patients with Alzheimer’s disease with varying degrees of atrophy in anteromedial structures, including the perirhinal cortex. To assess the functional contribution of each anteromedial temporal region separately, we used a detailed region of interest approach. From each participant, we obtained magnetic resonance imaging scans and behavioural data from a picture naming task that contrasted naming performance with living and non-living things as a way of manipulating perceptual and semantic confusability; living things are more similar to one another than non-living things, which have more distinctive features. We manually traced neuroanatomical regions of interest on native-space cortical surface reconstructions to obtain mean thickness estimates for the lateral and medial perirhinal cortex and entorhinal cortex. Mean cortical thickness in each region of interest, and hippocampal volume, were submitted to regression analyses predicting naming performance. Importantly, atrophy of the medial perirhinal cortex, but not lateral perirhinal cortex, entorhinal cortex or hippocampus, significantly predicted naming performance on living relative to non-living things. These findings indicate that one specific anteromedial temporal lobe region—the medial perirhinal cortex—is necessary for the disambiguation of perceptually and semantically confusable objects. Taken together, these results support a hierarchical account of object processing, whereby the perirhinal cortex at the apex of the ventral object processing system is required to bind properties of not just perceptually, but also semantically confusable objects together, enabling their disambiguation from other similar objects and thus comprehension. Significantly, this model combining a hierarchical object processing architecture with a semantic feature statistic account explains why category-specific semantic impairments for living things are associated with anteromedial temporal lobe damage, and pinpoints the root of this syndrome to perirhinal cortex damage. PMID:23250887
H.M.'s contributions to neuroscience: a review and autopsy studies.
Augustinack, Jean C; van der Kouwe, André J W; Salat, David H; Benner, Thomas; Stevens, Allison A; Annese, Jacopo; Fischl, Bruce; Frosch, Matthew P; Corkin, Suzanne
2014-11-01
H.M., Henry Molaison, was one of the world's most famous amnesic patients. His amnesia was caused by an experimental brain operation, bilateral medial temporal lobe resection, carried out in 1953 to relieve intractable epilepsy. He died on December 2, 2008, and that night we conducted a wide variety of in situ MRI scans in a 3 T scanner at the Massachusetts General Hospital (Mass General) Athinoula A. Martinos Center for Biomedical Imaging. For the in situ experiments, we acquired a full set of standard clinical scans, 1 mm isotropic anatomical scans, and multiple averages of 440 μm isotropic anatomical scans. The next morning, H.M.'s body was transported to the Mass General Morgue for autopsy. The photographs taken at that time provided the first documentation of H.M.'s lesions in his physical brain. After tissue fixation, we obtained ex vivo structural data at ultra-high resolution using 3 T and 7 T magnets. For the ex vivo acquisitions, the highest resolution images were 210 μm isotropic. Based on the MRI data, the anatomical areas removed during H.M.'s experimental operation were the medial temporopolar cortex, piriform cortex, virtually all of the entorhinal cortex, most of the perirhinal cortex and subiculum, the amygdala (except parts of the dorsal-most nuclei-central and medial), anterior half of the hippocampus, and the dentate gyrus (posterior head and body). The posterior parahippocampal gyrus and medial temporal stem were partially damaged. Spared medial temporal lobe tissue included the dorsal-most amygdala, the hippocampal-amygdalo-transition-area, ∼2 cm of the tail of the hippocampus, a small part of perirhinal cortex, a small portion of medial hippocampal tissue, and ∼2 cm of posterior parahippocampal gyrus. H.M.'s impact on the field of memory has been remarkable, and his contributions to neuroscience continue with a unique dataset that includes in vivo, in situ, and ex vivo high-resolution MRI. Copyright © 2014 Wiley Periodicals, Inc.
Integrating automatic and controlled processes into neurocognitive models of social cognition.
Satpute, Ajay B; Lieberman, Matthew D
2006-03-24
Interest in the neural systems underlying social perception has expanded tremendously over the past few decades. However, gaps between behavioral literatures in social perception and neuroscience are still abundant. In this article, we apply the concept of dual-process models to neural systems in an effort to bridge the gap between many of these behavioral studies and neural systems underlying social perception. We describe and provide support for a neural division between reflexive and reflective systems. Reflexive systems correspond to automatic processes and include the amygdala, basal ganglia, ventromedial prefrontal cortex, dorsal anterior cingulate cortex, and lateral temporal cortex. Reflective systems correspond to controlled processes and include lateral prefrontal cortex, posterior parietal cortex, medial prefrontal cortex, rostral anterior cingulate cortex, and the hippocampus and surrounding medial temporal lobe region. This framework is considered to be a working model rather than a finished product. Finally, the utility of this model and its application to other social cognitive domains such as Theory of Mind are discussed.
Medial Temporal Lobe Contributions to Cued Retrieval of Items and Contexts
Hannula, Deborah E.; Libby, Laura A.; Yonelinas, Andrew P.; Ranganath, Charan
2013-01-01
Several models have proposed that different regions of the medial temporal lobes contribute to different aspects of episodic memory. For instance, according to one view, the perirhinal cortex represents specific items, parahippocampal cortex represents information regarding the context in which these items were encountered, and the hippocampus represents item-context bindings. Here, we used event-related functional magnetic resonance imaging (fMRI) to test a specific prediction of this model – namely, that successful retrieval of items from context cues will elicit perirhinal recruitment and that successful retrieval of contexts from item cues will elicit parahippocampal cortex recruitment. Retrieval of the bound representation in either case was expected to elicit hippocampal engagement. To test these predictions, we had participants study several item-context pairs (i.e., pictures of objects and scenes, respectively), and then had them attempt to recall items from associated context cues and contexts from associated item cues during a scanned retrieval session. Results based on both univariate and multivariate analyses confirmed a role for hippocampus in content-general relational memory retrieval, and a role for parahippocampal cortex in successful retrieval of contexts from item cues. However, we also found that activity differences in perirhinal cortex were correlated with successful cued recall for both items and contexts. These findings provide partial support for the above predictions and are discussed with respect to several models of medial temporal lobe function. PMID:23466350
The topology of connections between rat prefrontal and temporal cortices
Bedwell, Stacey A.; Billett, E. Ellen; Crofts, Jonathan J.; MacDonald, Danielle M.; Tinsley, Chris J.
2015-01-01
Understanding the structural organization of the prefrontal cortex (PFC) is an important step toward determining its functional organization. Here we investigated the organization of PFC using different neuronal tracers. We injected retrograde (Fluoro-Gold, 100 nl) and anterograde [Biotinylated dextran amine (BDA) or Fluoro-Ruby, 100 nl] tracers into sites within PFC subdivisions (prelimbic, ventral orbital, ventrolateral orbital, dorsolateral orbital) along a coronal axis within PFC. At each injection site one injection was made of the anterograde tracer and one injection was made of the retrograde tracer. The projection locations of retrogradely labeled neurons and anterogradely labeled axon terminals were then analyzed in the temporal cortex: area Te, entorhinal and perirhinal cortex. We found evidence for an ordering of both the anterograde (anterior-posterior, dorsal-ventral, and medial-lateral axes: p < 0.001) and retrograde (anterior-posterior, dorsal-ventral, and medial-lateral axes: p < 0.001) connections of PFC. We observed that anterograde and retrograde labeling in ipsilateral temporal cortex (i.e., PFC inputs and outputs) often occurred reciprocally (i.e., the same brain region, such as area 35d in perirhinal cortex, contained anterograde and retrograde labeling). However, often the same specific columnar temporal cortex regions contained only either labeling of retrograde or anterograde tracer, indicating that PFC inputs and outputs are frequently non-matched. PMID:26042005
Prefrontal cortex afferents to the anterior temporal lobe in the Macaca fascicularis monkey.
Mohedano-Moriano, Alicia; Muñoz-López, Mónica; Sanz-Arigita, Ernesto; Pró-Sistiaga, Palma; Martínez-Marcos, Alino; Legidos-Garcia, María Ester; Insausti, Ana María; Cebada-Sánchez, Sandra; Arroyo-Jiménez, María Del Mar; Marcos, Pilar; Artacho-Pérula, Emilio; Insausti, Ricardo
2015-12-01
The anatomical organization of the lateral prefrontal cortex (LPFC) afferents to the anterior part of the temporal lobe (ATL) remains to be clarified. The LPFC has two subdivisions, dorsal (dLPFC) and ventral (vLPFC), which have been linked to cognitive processes. The ATL includes several different cortical areas, namely, the temporal polar cortex and rostral parts of the perirhinal, inferotemporal, and anterior tip of the superior temporal gyrus cortices. Multiple sensory modalities converge in the ATL. All of them (except the rostral inferotemporal and superior temporal gyrus cortices) are components of the medial temporal lobe, which is critical for long-term memory processing. We studied the LPFC connections with the ATL by placing retrograde tracer injections into the ATL: the temporal polar (n = 3), perirhinal (areas 35 and 36, n = 6), and inferotemporal cortices (area TE, n = 5), plus one additional deposit in the posterior parahippocampal cortex (area TF, n = 1). Anterograde tracer deposits into the dLPFC (A9 and A46, n = 2), the vLPFC (A46v, n = 2), and the orbitofrontal cortex (OF; n = 2) were placed for confirmation of those projections. The results showed that the vLPFC displays a moderate projection to rostral area TE and the dorsomedial portion of the temporal polar cortex; in contrast, the dLPFC connections with the ATL were weak. By comparison, the OFC and medial frontal cortices (MFC) showed dense connectivity with the ATL, namely, A13 with the temporopolar and perirhinal cortices. All areas of the MFC projected to the temporopolar cortex, albeit with a lower intensity. The functional significance of such paucity of LPFC afferents is unknown. © 2015 Wiley Periodicals, Inc.
Persistently active neurons in human medial frontal and medial temporal lobe support working memory
Kamiński, J; Sullivan, S; Chung, JM; Ross, IB; Mamelak, AN; Rutishauser, U
2017-01-01
Persistent neural activity is a putative mechanism for the maintenance of working memories. Persistent activity relies on the activity of a distributed network of areas, but the differential contribution of each area remains unclear. We recorded single neurons in the human medial frontal cortex and the medial temporal lobe while subjects held up to three items in memory. We found persistently active neurons in both areas. Persistent activity of hippocampal and amygdala neurons was stimulus-specific, formed stable attractors, and was predictive of memory content. Medial frontal cortex persistent activity, on the other hand, was modulated by memory load and task set but was not stimulus-specific. Trial-by-trial variability in persistent activity in both areas was related to memory strength, because it predicted the speed and accuracy by which stimuli were remembered. This work reveals, in humans, direct evidence for a distributed network of persistently active neurons supporting working memory maintenance. PMID:28218914
Chareyron, Loïc J; Banta Lavenex, Pamela; Amaral, David G; Lavenex, Pierre
2017-12-01
Hippocampal damage in adult humans impairs episodic and semantic memory, whereas hippocampal damage early in life impairs episodic memory but leaves semantic learning relatively preserved. We have previously shown a similar behavioral dissociation in nonhuman primates. Hippocampal lesion in adult monkeys prevents allocentric spatial relational learning, whereas spatial learning persists following neonatal lesion. Here, we quantified the number of cells expressing the immediate-early gene c-fos, a marker of neuronal activity, to characterize the functional organization of the medial temporal lobe memory system following neonatal hippocampal lesion. Ninety minutes before brain collection, three control and four adult monkeys with bilateral neonatal hippocampal lesions explored a novel environment to activate brain structures involved in spatial learning. Three other adult monkeys with neonatal hippocampal lesions remained in their housing quarters. In unlesioned monkeys, we found high levels of c-fos expression in the intermediate and caudal regions of the entorhinal cortex, and in the perirhinal, parahippocampal, and retrosplenial cortices. In lesioned monkeys, spatial exploration induced an increase in c-fos expression in the intermediate field of the entorhinal cortex, the perirhinal, parahippocampal, and retrosplenial cortices, but not in the caudal entorhinal cortex. These findings suggest that different regions of the medial temporal lobe memory system may require different types of interaction with the hippocampus in support of memory. The caudal perirhinal cortex, the parahippocampal cortex, and the retrosplenial cortex may contribute to spatial learning in the absence of functional hippocampal circuits, whereas the caudal entorhinal cortex may require hippocampal output to support spatial learning.
Flexible timing by temporal scaling of cortical responses
Wang, Jing; Narain, Devika; Hosseini, Eghbal A.; Jazayeri, Mehrdad
2017-01-01
Musicians can perform at different tempos, speakers can control the cadence of their speech, and children can flexibly vary their temporal expectations of events. To understand the neural basis of such flexibility, we recorded from the medial frontal cortex of nonhuman primates trained to produce different time intervals with different effectors. Neural responses were heterogeneous, nonlinear and complex, and exhibited a remarkable form of temporal invariance: firing rate profiles were temporally scaled to match the produced intervals. Recording from downstream neurons in the caudate and thalamic neurons projecting to the medial frontal cortex indicated that this phenomenon originates within cortical networks. Recurrent neural network models trained to perform the task revealed that temporal scaling emerges from nonlinearities in the network and degree of scaling is controlled by the strength of external input. These findings demonstrate a simple and general mechanism for conferring temporal flexibility upon sensorimotor and cognitive functions. PMID:29203897
Hsu, Chia-Fen; Sonuga-Barke, Edmund J S
2016-08-01
fMRI studies have implicated the medial prefrontal cortex and medial temporal lobe, components of the default mode network (DMN), in episodic prospection. This study compared quantitative EEG localized to these DMN regions during prospection and during resting and while waiting for rewards. EEG was recorded in twenty-two adults while they were asked to (i) envision future monetary episodes; (ii) wait for rewards and (iii) rest. Activation sources were localized to core DMN regions. EEG power and phase coherence were compared across conditions. Prospection, compared to resting and waiting, was associated with reduced power in the medial prefrontal gyrus and increased power in the bilateral medial temporal gyrus across frequency bands as well as greater phase synchrony between these regions in the delta band. The current quantitative EEG analysis confirms prior fMRI research suggesting that medial prefrontal and medial temporal gyrus interactions are central to the capacity for episodic prospection. Copyright © 2016 Elsevier B.V. All rights reserved.
McLelland, Victoria C.; Chan, David; Ferber, Susanne; Barense, Morgan D.
2014-01-01
Recent research suggests that the medial temporal lobe (MTL) is involved in perception as well as in declarative memory. Amnesic patients with focal MTL lesions and semantic dementia patients showed perceptual deficits when discriminating faces and objects. Interestingly, these two patient groups showed different profiles of impairment for familiar and unfamiliar stimuli. For MTL amnesics, the use of familiar relative to unfamiliar stimuli improved discrimination performance. By contrast, patients with semantic dementia—a neurodegenerative condition associated with anterolateral temporal lobe damage—showed no such facilitation from familiar stimuli. Given that the two patient groups had highly overlapping patterns of damage to the perirhinal cortex, hippocampus, and temporal pole, the neuroanatomical substrates underlying their performance discrepancy were unclear. Here, we addressed this question with a multivariate reanalysis of the data presented by Barense et al. (2011), using functional connectivity to examine how stimulus familiarity affected the broader networks with which the perirhinal cortex, hippocampus, and temporal poles interact. In this study, healthy participants were scanned while they performed an odd-one-out perceptual task involving familiar and novel faces or objects. Seed-based analyses revealed that functional connectivity of the right perirhinal cortex and right anterior hippocampus was modulated by the degree of stimulus familiarity. For familiar relative to unfamiliar faces and objects, both right perirhinal cortex and right anterior hippocampus showed enhanced functional correlations with anterior/lateral temporal cortex, temporal pole, and medial/lateral parietal cortex. These findings suggest that in order to benefit from stimulus familiarity, it is necessary to engage not only the perirhinal cortex and hippocampus, but also a network of regions known to represent semantic information. PMID:24624075
ERIC Educational Resources Information Center
Oztekin, Ilke; Curtis, Clayton E.; McElree, Brian
2009-01-01
During working memory retrieval, proactive interference (PI) can be induced by semantic similarity and episodic familiarity. Here, we used fMRI to test hypotheses about the role of the left inferior frontal gyrus (LIFG) and the medial temporal lobe (MTL) regions in successful resolution of PI. Participants studied six-word lists and responded to a…
ERIC Educational Resources Information Center
Graham, Kim S.; Barense, Morgan D.; Lee, Andy C. H.
2010-01-01
Studies in rats and non-human primates suggest that medial temporal lobe (MTL) structures play a role in perceptual processing, with the hippocampus necessary for spatial discrimination, and the perirhinal cortex for object discrimination. Until recently, there was little convergent evidence for analogous functional specialisation in humans, or…
Medial temporal lobe contributions to cued retrieval of items and contexts.
Hannula, Deborah E; Libby, Laura A; Yonelinas, Andrew P; Ranganath, Charan
2013-10-01
Several models have proposed that different regions of the medial temporal lobes contribute to different aspects of episodic memory. For instance, according to one view, the perirhinal cortex represents specific items, parahippocampal cortex represents information regarding the context in which these items were encountered, and the hippocampus represents item-context bindings. Here, we used event-related functional magnetic resonance imaging (fMRI) to test a specific prediction of this model-namely, that successful retrieval of items from context cues will elicit perirhinal recruitment and that successful retrieval of contexts from item cues will elicit parahippocampal cortex recruitment. Retrieval of the bound representation in either case was expected to elicit hippocampal engagement. To test these predictions, we had participants study several item-context pairs (i.e., pictures of objects and scenes, respectively), and then had them attempt to recall items from associated context cues and contexts from associated item cues during a scanned retrieval session. Results based on both univariate and multivariate analyses confirmed a role for hippocampus in content-general relational memory retrieval, and a role for parahippocampal cortex in successful retrieval of contexts from item cues. However, we also found that activity differences in perirhinal cortex were correlated with successful cued recall for both items and contexts. These findings provide partial support for the above predictions and are discussed with respect to several models of medial temporal lobe function. Copyright © 2013 Elsevier Ltd. All rights reserved.
Liu, Tao; Li, Jianjun; Huang, Shixiong; Li, Changqinq; Zhao, Zhongyan; Wen, Guoqiang; Chen, Feng
2017-10-13
We used resting-state functional magnetic resonance imaging to investigate the global spontaneous neural activity involved in pathological laughing and crying after stroke. Twelve pathological laughing and crying patients with isolated pontine infarction were included, along with 12 age- and gender-matched acute isolated pontine infarction patients without pathological laughing and crying, and 12 age- and gender-matched healthy controls. We examined both the amplitude of low-frequency fluctuation and the regional homogeneity in order to comprehensively evaluate the intrinsic activity in patients with post-stroke pathological laughing and crying. In the post-stroke pathological laughing and crying group, changes in these measures were observed mainly in components of the default mode network (medial prefrontal cortex/anterior cingulate cortex, middle temporal gyrus, inferior temporal gyrus, superior frontal gyrus, middle frontal gyrus and inferior parietal lobule), sensorimotor network (supplementary motor area, precentral gyrus and paracentral lobule), affective network (medial prefrontal cortex/anterior cingulate cortex, parahippocampal gyrus, middle temporal gyrus and inferior temporal gyrus) and cerebellar lobes (cerebellum posterior lobe). We therefore speculate that when disinhibition of the volitional system is lost, increased activation of the emotional system causes pathological laughing and crying.
Bright, Peter; Buckman, Joseph; Fradera, Alex; Yoshimasu, Haruo; Colchester, Alan C F; Kopelman, Michael D
2006-01-01
There is considerable controversy concerning the theoretical basis of retrograde amnesia (R.A.). In the present paper, we compare medial temporal, medial plus lateral temporal, and frontal lesion patients on a new autobiographical memory task and measures of the more semantic aspects of memory (famous faces and news events). Only those patients with damage extending beyond the medial temporal cortex into the lateral temporal regions showed severe impairment on free recall remote memory tasks, and this held for both the autobiographical and the more semantic memory tests. However, on t-test analysis, the medial temporal group was impaired in retrieving recent autobiographical memories. Within the medial temporal group, those patients who had combined hippocampal and parahippocampal atrophy (H+) on quantified MRI performed somewhat worse on the semantic tasks than those with atrophy confined to the hippocampi (H-), but scores were very similar on autobiographical episodic recall. Correlational analyses with regional MRI volumes showed that lateral temporal volume was correlated significantly with performance on all three retrograde amnesia tests. The findings are discussed in terms of consolidation, reconsolidation, and multiple trace theory: We suggest that a widely distributed network of regions underlies the retrieval of past memories, and that the extent of lateral temporal damage appears to be critical to the emergence of a severe remote memory impairment.
Axonal synapse sorting in medial entorhinal cortex
NASA Astrophysics Data System (ADS)
Schmidt, Helene; Gour, Anjali; Straehle, Jakob; Boergens, Kevin M.; Brecht, Michael; Helmstaedter, Moritz
2017-09-01
Research on neuronal connectivity in the cerebral cortex has focused on the existence and strength of synapses between neurons, and their location on the cell bodies and dendrites of postsynaptic neurons. The synaptic architecture of individual presynaptic axonal trees, however, remains largely unknown. Here we used dense reconstructions from three-dimensional electron microscopy in rats to study the synaptic organization of local presynaptic axons in layer 2 of the medial entorhinal cortex, the site of grid-like spatial representations. We observe path-length-dependent axonal synapse sorting, such that axons of excitatory neurons sequentially target inhibitory neurons followed by excitatory neurons. Connectivity analysis revealed a cellular feedforward inhibition circuit involving wide, myelinated inhibitory axons and dendritic synapse clustering. Simulations show that this high-precision circuit can control the propagation of synchronized activity in the medial entorhinal cortex, which is known for temporally precise discharges.
Neural microgenesis of personally familiar face recognition
Ramon, Meike; Vizioli, Luca; Liu-Shuang, Joan; Rossion, Bruno
2015-01-01
Despite a wealth of information provided by neuroimaging research, the neural basis of familiar face recognition in humans remains largely unknown. Here, we isolated the discriminative neural responses to unfamiliar and familiar faces by slowly increasing visual information (i.e., high-spatial frequencies) to progressively reveal faces of unfamiliar or personally familiar individuals. Activation in ventral occipitotemporal face-preferential regions increased with visual information, independently of long-term face familiarity. In contrast, medial temporal lobe structures (perirhinal cortex, amygdala, hippocampus) and anterior inferior temporal cortex responded abruptly when sufficient information for familiar face recognition was accumulated. These observations suggest that following detailed analysis of individual faces in core posterior areas of the face-processing network, familiar face recognition emerges categorically in medial temporal and anterior regions of the extended cortical face network. PMID:26283361
Neural microgenesis of personally familiar face recognition.
Ramon, Meike; Vizioli, Luca; Liu-Shuang, Joan; Rossion, Bruno
2015-09-01
Despite a wealth of information provided by neuroimaging research, the neural basis of familiar face recognition in humans remains largely unknown. Here, we isolated the discriminative neural responses to unfamiliar and familiar faces by slowly increasing visual information (i.e., high-spatial frequencies) to progressively reveal faces of unfamiliar or personally familiar individuals. Activation in ventral occipitotemporal face-preferential regions increased with visual information, independently of long-term face familiarity. In contrast, medial temporal lobe structures (perirhinal cortex, amygdala, hippocampus) and anterior inferior temporal cortex responded abruptly when sufficient information for familiar face recognition was accumulated. These observations suggest that following detailed analysis of individual faces in core posterior areas of the face-processing network, familiar face recognition emerges categorically in medial temporal and anterior regions of the extended cortical face network.
Hippocampus, Perirhinal Cortex, and Complex Visual Discriminations in Rats and Humans
ERIC Educational Resources Information Center
Hales, Jena B.; Broadbent, Nicola J.; Velu, Priya D.; Squire, Larry R.; Clark, Robert E.
2015-01-01
Structures in the medial temporal lobe, including the hippocampus and perirhinal cortex, are known to be essential for the formation of long-term memory. Recent animal and human studies have investigated whether perirhinal cortex might also be important for visual perception. In our study, using a simultaneous oddity discrimination task, rats with…
Dyslexic children lack word selectivity gradients in occipito-temporal and inferior frontal cortex.
Olulade, O A; Flowers, D L; Napoliello, E M; Eden, G F
2015-01-01
fMRI studies using a region-of-interest approach have revealed that the ventral portion of the left occipito-temporal cortex, which is specialized for orthographic processing of visually presented words (and includes the so-called "visual word form area", VWFA), is characterized by a posterior-to-anterior gradient of increasing selectivity for words in typically reading adults, adolescents, and children (e.g. Brem et al., 2006, 2009). Similarly, the left inferior frontal cortex (IFC) has been shown to exhibit a medial-to-lateral gradient of print selectivity in typically reading adults (Vinckier et al., 2007). Functional brain imaging studies of dyslexia have reported relative underactivity in left hemisphere occipito-temporal and inferior frontal regions using whole-brain analyses during word processing tasks. Hence, the question arises whether gradient sensitivities in these regions are altered in dyslexia. Indeed, a region-of-interest analysis revealed the gradient-specific functional specialization in the occipito-temporal cortex to be disrupted in dyslexic children (van der Mark et al., 2009). Building on these studies, we here (1) investigate if a word-selective gradient exists in the inferior frontal cortex in addition to the occipito-temporal cortex in normally reading children, (2) compare typically reading with dyslexic children, and (3) examine functional connections between these regions in both groups. We replicated the previously reported anterior-to-posterior gradient of increasing selectivity for words in the left occipito-temporal cortex in typically reading children, and its absence in the dyslexic children. Our novel finding is the detection of a pattern of increasing selectivity for words along the medial-to-lateral axis of the left inferior frontal cortex in typically reading children and evidence of functional connectivity between the most lateral aspect of this area and the anterior aspects of the occipito-temporal cortex. We report absence of an IFC gradient and connectivity between the lateral aspect of the IFC and the anterior occipito-temporal cortex in the dyslexic children. Together, our results provide insights into the source of the anomalies reported in previous studies of dyslexia and add to the growing evidence of an orthographic role of IFC in reading.
Kiernan, J. A.
2012-01-01
Only primates have temporal lobes, which are largest in man, accommodating 17% of the cerebral cortex and including areas with auditory, olfactory, vestibular, visual and linguistic functions. The hippocampal formation, on the medial side of the lobe, includes the parahippocampal gyrus, subiculum, hippocampus, dentate gyrus, and associated white matter, notably the fimbria, whose fibres continue into the fornix. The hippocampus is an inrolled gyrus that bulges into the temporal horn of the lateral ventricle. Association fibres connect all parts of the cerebral cortex with the parahippocampal gyrus and subiculum, which in turn project to the dentate gyrus. The largest efferent projection of the subiculum and hippocampus is through the fornix to the hypothalamus. The choroid fissure, alongside the fimbria, separates the temporal lobe from the optic tract, hypothalamus and midbrain. The amygdala comprises several nuclei on the medial aspect of the temporal lobe, mostly anterior the hippocampus and indenting the tip of the temporal horn. The amygdala receives input from the olfactory bulb and from association cortex for other modalities of sensation. Its major projections are to the septal area and prefrontal cortex, mediating emotional responses to sensory stimuli. The temporal lobe contains much subcortical white matter, with such named bundles as the anterior commissure, arcuate fasciculus, inferior longitudinal fasciculus and uncinate fasciculus, and Meyer's loop of the geniculocalcarine tract. This article also reviews arterial supply, venous drainage, and anatomical relations of the temporal lobe to adjacent intracranial and tympanic structures. PMID:22934160
Neural activation and memory for natural scenes: Explicit and spontaneous retrieval.
Weymar, Mathias; Bradley, Margaret M; Sege, Christopher T; Lang, Peter J
2018-05-06
Stimulus repetition elicits either enhancement or suppression in neural activity, and a recent fMRI meta-analysis of repetition effects for visual stimuli (Kim, 2017) reported cross-stimulus repetition enhancement in medial and lateral parietal cortex, as well as regions of prefrontal, temporal, and posterior cingulate cortex. Repetition enhancement was assessed here for repeated and novel scenes presented in the context of either an explicit episodic recognition task or an implicit judgment task, in order to study the role of spontaneous retrieval of episodic memories. Regardless of whether episodic memory was explicitly probed or not, repetition enhancement was found in medial posterior parietal (precuneus/cuneus), lateral parietal cortex (angular gyrus), as well as in medial prefrontal cortex (frontopolar), which did not differ by task. Enhancement effects in the posterior cingulate cortex were significantly larger during explicit compared to implicit task, primarily due to a lack of functional activity for new scenes. Taken together, the data are consistent with an interpretation that medial and (ventral) lateral parietal cortex are associated with spontaneous episodic retrieval, whereas posterior cingulate cortical regions may reflect task or decision processes. © 2018 Society for Psychophysiological Research.
Hippocampus, perirhinal cortex, and complex visual discriminations in rats and humans
Hales, Jena B.; Broadbent, Nicola J.; Velu, Priya D.
2015-01-01
Structures in the medial temporal lobe, including the hippocampus and perirhinal cortex, are known to be essential for the formation of long-term memory. Recent animal and human studies have investigated whether perirhinal cortex might also be important for visual perception. In our study, using a simultaneous oddity discrimination task, rats with perirhinal lesions were impaired and did not exhibit the normal preference for exploring the odd object. Notably, rats with hippocampal lesions exhibited the same impairment. Thus, the deficit is unlikely to illuminate functions attributed specifically to perirhinal cortex. Both lesion groups were able to acquire visual discriminations involving the same objects used in the oddity task. Patients with hippocampal damage or larger medial temporal lobe lesions were intact in a similar oddity task that allowed participants to explore objects quickly using eye movements. We suggest that humans were able to rely on an intact working memory capacity to perform this task, whereas rats (who moved slowly among the objects) needed to rely on long-term memory. PMID:25593294
Network analysis of brain activations in working memory: behavior and age relationships.
Mencl, W E; Pugh, K R; Shaywitz, S E; Shaywitz, B A; Fulbright, R K; Constable, R T; Skudlarski, P; Katz, L; Marchione, K E; Lacadie, C; Gore, J C
2000-10-01
Forty-six middle-aged female subjects were scanned using functional Magnetic Resonance Imaging (fMRI) during performance of three distinct stages of a working memory task-encoding, rehearsal, and recognition-for both printed pseudowords and visual forms. An expanse of areas, involving the inferior frontal, parietal, and extrastriate cortex, was active in response to stimuli during both the encoding and recognition periods. Additional increases during memory recognition were seen in right prefrontal regions, replicating a now-common finding [for reviews, see Fletcher et al. (1997) Trends Neurosci 20:213-218; MacLeod et al. (1998) NeuroImage 7:41-48], and broadly supporting the Hemispheric Encoding/Retrieval Asymmetry hypothesis [Tulving et al. (1994) Proc Natl Acad Sci USA 91:2016-2020]. Notably, this asymmetry was not qualified by the type of material being processed. A few sites demonstrated higher activity levels during the rehearsal period, in the absence of any new stimuli, including the medial extrastriate, precuneus, and the medial temporal lobe. Further analyses examined relationships among subjects' brain activations, age, and behavioral scores on working memory tests, acquired outside the scanner. Correlations between brain scores and behavior scores indicated that activations in a number of areas, mainly frontal, were associated with performance. A multivariate analysis, Partial Least Squares [McIntosh et al. (1996) NeuroImage 3:143-157, (1997) Hum Brain Map 5:323-327], was then used to extract component effects from this large set of univariate correlations. Results indicated that better memory performance outside the scanner was associated with higher activity at specific sites within the frontal and, additionally, the medial temporal lobes. Analysis of age effects revealed that younger subjects tended to activate more than older subjects in areas of extrastriate cortex, medial frontal cortex, and the right medial temporal lobe; older subjects tended to activate more than younger subjects in the insular cortex, right inferior temporal lobe, and right inferior frontal gyrus. These results extend recent reports indicating that these regions are specifically involved in the memory impairments seen with aging. Copyright 2000 Wiley-Liss, Inc.
Sampedro, Frederic; de la Fuente Revenga, Mario; Valle, Marta; Roberto, Natalia; Domínguez-Clavé, Elisabet; Elices, Matilde; Luna, Luís Eduardo; Crippa, José Alexandre S; Hallak, Jaime E C; de Araujo, Draulio B; Friedlander, Pablo; Barker, Steven A; Álvarez, Enrique; Soler, Joaquim; Pascual, Juan C; Feilding, Amanda; Riba, Jordi
2017-09-01
Ayahuasca is a plant tea containing the psychedelic 5-HT2A agonist N,N-dimethyltryptamine and harmala monoamine-oxidase inhibitors. Acute administration leads to neurophysiological modifications in brain regions of the default mode network, purportedly through a glutamatergic mechanism. Post-acutely, ayahuasca potentiates mindfulness capacities in volunteers and induces rapid and sustained antidepressant effects in treatment-resistant patients. However, the mechanisms underlying these fast and maintained effects are poorly understood. Here, we investigated in an open-label uncontrolled study in 16 healthy volunteers ayahuasca-induced post-acute neurometabolic and connectivity modifications and their association with mindfulness measures. Using 1H-magnetic resonance spectroscopy and functional connectivity, we compared baseline and post-acute neurometabolites and seed-to-voxel connectivity in the posterior and anterior cingulate cortex after a single ayahuasca dose. Magnetic resonance spectroscopy showed post-acute reductions in glutamate+glutamine, creatine, and N-acetylaspartate+N-acetylaspartylglutamate in the posterior cingulate cortex. Connectivity was increased between the posterior cingulate cortex and the anterior cingulate cortex, and between the anterior cingulate cortex and limbic structures in the right medial temporal lobe. Glutamate+glutamine reductions correlated with increases in the "nonjudging" subscale of the Five Facets Mindfulness Questionnaire. Increased anterior cingulate cortex-medial temporal lobe connectivity correlated with increased scores on the self-compassion questionnaire. Post-acute neural changes predicted sustained elevations in nonjudging 2 months later. These results support the involvement of glutamate neurotransmission in the effects of psychedelics in humans. They further suggest that neurometabolic changes in the posterior cingulate cortex, a key region within the default mode network, and increased connectivity between the anterior cingulate cortex and medial temporal lobe structures involved in emotion and memory potentially underlie the post-acute psychological effects of ayahuasca. © The Author 2017. Published by Oxford University Press on behalf of CINP.
Sampedro, Frederic; de la Fuente Revenga, Mario; Valle, Marta; Roberto, Natalia; Domínguez-Clavé, Elisabet; Elices, Matilde; Luna, Luís Eduardo; Crippa, José Alexandre S; Hallak, Jaime E C; de Araujo, Draulio B; Friedlander, Pablo; Barker, Steven A; Álvarez, Enrique; Soler, Joaquim; Pascual, Juan C; Feilding, Amanda
2017-01-01
Abstract Background Ayahuasca is a plant tea containing the psychedelic 5-HT2A agonist N,N-dimethyltryptamine and harmala monoamine-oxidase inhibitors. Acute administration leads to neurophysiological modifications in brain regions of the default mode network, purportedly through a glutamatergic mechanism. Post-acutely, ayahuasca potentiates mindfulness capacities in volunteers and induces rapid and sustained antidepressant effects in treatment-resistant patients. However, the mechanisms underlying these fast and maintained effects are poorly understood. Here, we investigated in an open-label uncontrolled study in 16 healthy volunteers ayahuasca-induced post-acute neurometabolic and connectivity modifications and their association with mindfulness measures. Methods Using 1H-magnetic resonance spectroscopy and functional connectivity, we compared baseline and post-acute neurometabolites and seed-to-voxel connectivity in the posterior and anterior cingulate cortex after a single ayahuasca dose. Results Magnetic resonance spectroscopy showed post-acute reductions in glutamate+glutamine, creatine, and N-acetylaspartate+N-acetylaspartylglutamate in the posterior cingulate cortex. Connectivity was increased between the posterior cingulate cortex and the anterior cingulate cortex, and between the anterior cingulate cortex and limbic structures in the right medial temporal lobe. Glutamate+glutamine reductions correlated with increases in the “nonjudging” subscale of the Five Facets Mindfulness Questionnaire. Increased anterior cingulate cortex-medial temporal lobe connectivity correlated with increased scores on the self-compassion questionnaire. Post-acute neural changes predicted sustained elevations in nonjudging 2 months later. Conclusions These results support the involvement of glutamate neurotransmission in the effects of psychedelics in humans. They further suggest that neurometabolic changes in the posterior cingulate cortex, a key region within the default mode network, and increased connectivity between the anterior cingulate cortex and medial temporal lobe structures involved in emotion and memory potentially underlie the post-acute psychological effects of ayahuasca. PMID:28525587
Self-development: integrating cognitive, socioemotional, and neuroimaging perspectives.
Pfeifer, Jennifer H; Peake, Shannon J
2012-01-01
This review integrates cognitive, socioemotional, and neuroimaging perspectives on self-development. Neural correlates of key processes implicated in personal and social identity are reported from studies of children, adolescents, and adults, including autobiographical memory, direct and reflected self-appraisals, and social exclusion. While cortical midline structures of medial prefrontal cortex and medial posterior parietal cortex are consistently identified in neuroimaging studies considering personal identity from a primarily cognitive perspective ("who am I?"), additional regions are implicated by studies considering personal and social identity from a more socioemotional perspective ("what do others think about me, where do I fit in?"), especially in child or adolescent samples. The involvement of these additional regions (including tempo-parietal junction and posterior superior temporal sulcus, temporal poles, anterior insula, ventral striatum, anterior cingulate cortex, middle cingulate cortex, and ventrolateral prefrontal cortex) suggests mentalizing, emotion, and emotion regulation are central to self-development. In addition, these regions appear to function atypically during personal and social identity tasks in autism and depression, exhibiting a broad pattern of hypoactivation and hyperactivation, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hofstetter, Christoph; Vuilleumier, Patrik
2014-01-01
Understanding emotions in others engages specific brain regions in temporal and medial prefrontal cortices. These activations are often attributed to more general cognitive ‘mentalizing’ functions, associated with theory of mind and also necessary to represent people’s non-emotional mental states, such as beliefs or intentions. Here, we directly investigated whether understanding emotional feelings recruit similar or specific brain systems, relative to other non-emotional mental states. We used functional magnetic resonance imaging with multivoxel pattern analysis in 46 volunteers to compare activation patterns in theory-of-mind tasks for emotions, relative to beliefs or somatic states accompanied with pain. We found a striking dissociation between the temporoparietal cortex, that exhibited a remarkable voxel-by-voxel pattern overlap between emotions and beliefs (but not pain), and the dorsomedial prefrontal cortex, that exhibited distinct (and yet nearby) patterns of activity during the judgment of beliefs and emotions in others. Pain judgment was instead associated with activity in the supramarginal gyrus, middle cingulate cortex and middle insular cortex. Our data reveal for the first time a functional dissociation within brain networks sub-serving theory of mind for different mental contents, with a common recruitment for cognitive and affective states in temporal regions, and distinct recruitment in prefrontal areas. PMID:23770622
Contributions of primate prefrontal cortex and medial temporal lobe to temporal-order memory.
Naya, Yuji; Chen, He; Yang, Cen; Suzuki, Wendy A
2017-12-19
Neuropsychological and neurophysiological studies have emphasized the role of the prefrontal cortex (PFC) in maintaining information about the temporal order of events or items for upcoming actions. However, the medial temporal lobe (MTL) has also been considered critical to bind individual events or items to their temporal context in episodic memory. Here we characterize the contributions of these brain areas by comparing single-unit activity in the dorsal and ventral regions of macaque lateral PFC (d-PFC and v-PFC) with activity in MTL areas including the hippocampus (HPC), entorhinal cortex, and perirhinal cortex (PRC) as well as in area TE during the encoding phase of a temporal-order memory task. The v-PFC cells signaled specific items at particular time periods of the task. By contrast, MTL cortical cells signaled specific items across multiple time periods and discriminated the items between time periods by modulating their firing rates. Analysis of the temporal dynamics of these signals showed that the conjunctive signal of item and temporal-order information in PRC developed earlier than that seen in v-PFC. During the delay interval between the two cue stimuli, while v-PFC provided prominent stimulus-selective delay activity, MTL areas did not. Both regions of PFC and HPC exhibited an incremental timing signal that appeared to represent the continuous passage of time during the encoding phase. However, the incremental timing signal in HPC was more prominent than that observed in PFC. These results suggest that PFC and MTL contribute to the encoding of the integration of item and timing information in distinct ways.
Functional neuroimaging of extraversion-introversion.
Lei, Xu; Yang, Tianliang; Wu, Taoyu
2015-12-01
Neuroimaging techniques such as functional magnetic resonance imaging and positron emission tomography have provided an unprecedented neurobiological perspective for research on personality traits. Evidence from task-related neuroimaging has shown that extraversion is associated with activations in regions of the anterior cingulate cortex, dorsolateral prefrontal cortex, middle temporal gyrus and the amygdala. Currently, resting-state neuroimaging is being widely used in cognitive neuroscience. Initial exploration of extraversion has revealed correlations with the medial prefrontal cortex, anterior cingulate cortex, insular cortex, and the precuneus. Recent research work has indicated that the long-range temporal dependence of the resting-state spontaneous oscillation has high test-retest reliability. Moreover, the long-range temporal dependence of the resting-state networks is highly correlated with personality traits, and this can be used for the prediction of extraversion. As the long-range temporal dependence reflects real-time information updating in individuals, this method may provide a new approach to research on personality traits.
Proton magnetic resonance spectroscopy (MRS) in on-line game addiction
Han, Doug Hyun; Lee, Young Sik; Shi, Xianfeng; Renshaw, Perry F.
2015-01-01
Recent brain imaging studies suggested that both the frontal and temporal cortices are important candidate areas for mediating the symptoms of internet addiction. We hypothesized that deficits of prefrontal and temporal cortical function in patients with on-line game addiction (PGA) would be reflected in decreased levels of N-acetyl aspartate (NAA) and cytosolic, choline containing compound (Cho). Seventy three young PGA and 38 age and sex matched healthy control subjects were recruited in the study. Structural MR and 1H MRS data were acquired using a 3.0 T MRI scanner. Voxels were sequentially placed in right frontal cortex and right medial temporal cortices. In the right frontal cortex, the levels of NAA in PGA were lower than those in healthy controls. In the medial temporal cortex, the levels of Cho in PGA participants were lower than those observed in healthy controls. The Young Internet Addiction Scale (YIAS) scores and perseverative responses in PGA were negatively correlated with the level of NAA in right frontal cortex. The Beck Depressive Inventory (BDI) scores in the PGA cohort were negatively correlated with Cho levels in the right temporal lobe. To the best of our knowledge, this is the first MRS study of individuals with on-line game addiction. Although, the subjects with on-line game addiction in the current study were free from psychiatric co-morbidity, patients with on-line game addiction appear to share characteristics with ADHD and MDD in terms of neurochemical changes in frontal and temporal cortices. PMID:25088284
Aggleton, John P
2012-08-01
A review of medial temporal lobe connections reveals three distinct groupings of hippocampal efferents. These efferent systems and their putative memory functions are: (1) The 'extended-hippocampal system' for episodic memory, which involves the anterior thalamic nuclei, mammillary bodies and retrosplenial cortex, originates in the subicular cortices, and has a largely laminar organisation; (2) The 'rostral hippocampal system' for affective and social learning, which involves prefrontal cortex, amygdala and nucleus accumbens, has a columnar organisation, and originates from rostral CA1 and subiculum; (3) The 'reciprocal hippocampal-parahippocampal system' for sensory processing and integration, which originates from the length of CA1 and the subiculum, and is characterised by columnar, connections with reciprocal topographies. A fourth system, the 'parahippocampal-prefrontal system' that supports familiarity signalling and retrieval processing, has more widespread prefrontal connections than those of the hippocampus, along with different thalamic inputs. Despite many interactions between these four systems, they may retain different roles in memory which when combined explain the importance of the medial temporal lobe for the formation of declarative memories. Copyright © 2011 Elsevier Ltd. All rights reserved.
Iwata, Saeko; Tsukiura, Takashi
2017-11-01
Episodic memory is defined as memory for personally experienced events, and includes memory content and contextual information of time and space. Previous neuroimaging and neuropsychological studies have demonstrated three possible roles of the temporal context in episodic memory. First, temporal information contributes to the arrangement of temporal order for sequential events in episodic memory, and this process is involved in the lateral prefrontal cortex. The second possible role of temporal information in episodic memory is the segregation between memories of multiple events, which are segregated by cues of different time information. The role of segregation is associated with the orbitofrontal regions including the orbitofrontal cortex and basal forebrain region. Third, temporal information in episodic memory plays an important role in the integration of multiple components into a coherent episodic memory, in which episodic components in the different modalities are combined by temporal information as an index. The role of integration is mediated by the medial temporal lobe including the hippocampus and parahippocampal gyrus. Thus, temporal information in episodic memory could be represented in multiple stages, which are involved in a network of the lateral prefrontal, orbitofrontal, and medial temporal lobe regions.
A real-world size organization of object responses in occipito-temporal cortex
Konkle, Talia; Oliva, Aude
2012-01-01
SUMMARY While there are selective regions of occipito-temporal cortex that respond to faces, letters, and bodies, the large-scale neural organization of most object categories remains unknown. Here we find that object representations can be differentiated along the ventral temporal cortex by their real-world size. In a functional neuroimaging experiment, observers were shown pictures of big and small real-world objects (e.g. table, bathtub; paperclip, cup), presented at the same retinal size. We observed a consistent medial-to-lateral organization of big and small object preferences in the ventral temporal cortex, mirrored along the lateral surface. Regions in the lateral-occipital, infero-temporal, and parahippocampal cortices showed strong peaks of differential real-world size selectivity, and maintained these preferences over changes in retinal size and in mental imagery. These data demonstrate that the real-world size of objects can provide insight into the spatial topography of object representation. PMID:22726840
Brain activity related to working memory for temporal order and object information.
Roberts, Brooke M; Libby, Laura A; Inhoff, Marika C; Ranganath, Charan
2017-06-08
Maintaining items in an appropriate sequence is important for many daily activities; however, remarkably little is known about the neural basis of human temporal working memory. Prior work suggests that the prefrontal cortex (PFC) and medial temporal lobe (MTL), including the hippocampus, play a role in representing information about temporal order. The involvement of these areas in successful temporal working memory, however, is less clear. Additionally, it is unknown whether regions in the PFC and MTL support temporal working memory across different timescales, or at coarse or fine levels of temporal detail. To address these questions, participants were scanned while completing 3 working memory task conditions (Group, Position and Item) that were matched in terms of difficulty and the number of items to be actively maintained. Group and Position trials probed temporal working memory processes, requiring the maintenance of hierarchically organized coarse and fine temporal information, respectively. To isolate activation related to temporal working memory, Group and Position trials were contrasted against Item trials, which required detailed working memory maintenance of visual objects. Results revealed that working memory encoding and maintenance of temporal information relative to visual information was associated with increased activation in dorsolateral PFC (DLPFC), and perirhinal cortex (PRC). In contrast, maintenance of visual details relative to temporal information was characterized by greater activation of parahippocampal cortex (PHC), medial and anterior PFC, and retrosplenial cortex. In the hippocampus, a dissociation along the longitudinal axis was observed such that the anterior hippocampus was more active for working memory encoding and maintenance of visual detail information relative to temporal information, whereas the posterior hippocampus displayed the opposite effect. Posterior parietal cortex was the only region to show sensitivity to temporal working memory across timescales, and was particularly involved in the encoding and maintenance of fine temporal information relative to maintenance of temporal information at more coarse timescales. Collectively, these results highlight the involvement of PFC and MTL in temporal working memory processes, and suggest a dissociation in the type of working memory information represented along the longitudinal axis of the hippocampus. Copyright © 2017 Elsevier B.V. All rights reserved.
Kubota, Yuichi; Ochiai, Taku; Hori, Tomokatsu; Kawamata, Takakazu
2017-07-01
Surgical options for medial temporal lobe epilepsy (MTLE) include anterior temporal lobectomy (ATL) and selective amygdalohippocampectomy (SAH). Optimal criteria for choosing the appropriate surgical approach remain uncertain. This article reports 11 consecutive cases in which electrophysiological findings of stereoelectroencephalography (SEEG) were used to determine the optimal surgical approach. Eleven consecutive patients with MTLE underwent SEEG evaluation and were placed in either the medial or the medial+lateral group based on the findings. Patients in the medial group underwent SAH using the subtemporal approach, and patients in the medial+lateral group underwent SEEG-guided anterior temporal lobectomy. SEEG findings were also compared with other examinations including flumazenil (FMZ)-positron emission tomography (PET), fluorine-18 labeled fluorodeoxyglucose (FDG)-PET, and magnetoencephalography (MEG). Results were evaluated to determine which examinations most consistently identified the epileptogenic zone. Of the 11 cases, 4 patients were placed in the medial group, and 7 patients in the medial+lateral group. Of patients, 90.9% were classified in class I of the Engel Epilepsy Surgery Outcome Scale, while 72.7% were classified in class I by the International League Against Epilepsy (ILAE) system. Analyzed by group, 100% of the medial group experienced an Engel class I outcome in the medial group, compared to 85.7% in the medial+lateral group. SEEG findings were comparable with FDG-PET results (10 of 11, 91%). Tailored surgery guided by SEEG is an electrophysiologically feasible treatment for MTLE that can result in favorable outcomes. Although seizures are thought to originate in the medial temporal lobe in MTLE, it is important for involvement of the lateral temporal cortex to be also considered in some cases. Copyright © 2017. Published by Elsevier B.V.
Predicted sequence of cortical tau and amyloid-β deposition in Alzheimer disease spectrum.
Cho, Hanna; Lee, Hye Sun; Choi, Jae Yong; Lee, Jae Hoon; Ryu, Young Hoon; Lee, Myung Sik; Lyoo, Chul Hyoung
2018-04-17
We investigated sequential order between tau and amyloid-β (Aβ) deposition in Alzheimer disease spectrum using a conditional probability method. Two hundred twenty participants underwent 18 F-flortaucipir and 18 F-florbetaben positron emission tomography scans and neuropsychological tests. The presence of tau and Aβ in each region and impairment in each cognitive domain were determined by Z-score cutoffs. By comparing pairs of conditional probabilities, the sequential order of tau and Aβ deposition were determined. Probability for the presence of tau in the entorhinal cortex was higher than that of Aβ in all cortical regions, and in the medial temporal cortices, probability for the presence of tau was higher than that of Aβ. Conversely, in the remaining neocortex above the inferior temporal cortex, probability for the presence of Aβ was always higher than that of tau. Tau pathology in the entorhinal cortex may appear earlier than neocortical Aβ and may spread in the absence of Aβ within the neighboring medial temporal regions. However, Aβ may be required for massive tau deposition in the distant cortical areas. Copyright © 2018 Elsevier Inc. All rights reserved.
Fornix and medial temporal lobe lesions lead to comparable deficits in complex visual perception.
Lech, Robert K; Koch, Benno; Schwarz, Michael; Suchan, Boris
2016-05-04
Recent research dealing with the structures of the medial temporal lobe (MTL) has shifted away from exclusively investigating memory-related processes and has repeatedly incorporated the investigation of complex visual perception. Several studies have demonstrated that higher level visual tasks can recruit structures like the hippocampus and perirhinal cortex in order to successfully perform complex visual discriminations, leading to a perceptual-mnemonic or representational view of the medial temporal lobe. The current study employed a complex visual discrimination paradigm in two patients suffering from brain lesions with differing locations and origin. Both patients, one with extensive medial temporal lobe lesions (VG) and one with a small lesion of the anterior fornix (HJK), were impaired in complex discriminations while showing otherwise mostly intact cognitive functions. The current data confirmed previous results while also extending the perceptual-mnemonic theory of the MTL to the main output structure of the hippocampus, the fornix. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Waidergoren, Shani; Segalowicz, Judith; Gilboa, Asaf
2012-01-01
Dual-process models suggest that recognition memory is independently supported by recollection and familiarity. Current theories attribute recollection solely to hippocampally mediated episodic memory (EM), and familiarity to both episodic and semantic memory (SM) supported by medial temporal lobe cortex (MTLC) and prefrontal cortex. We tested…
Category Learning in the Brain
Seger, Carol A.; Miller, Earl K.
2013-01-01
The ability to group items and events into functional categories is a fundamental characteristic of sophisticated thought. It is subserved by plasticity in many neural systems, including neocortical regions (sensory, prefrontal, parietal, and motor cortex), the medial temporal lobe, the basal ganglia, and midbrain dopaminergic systems. These systems interact during category learning. Corticostriatal loops may mediate recursive, bootstrapping interactions between fast reward-gated plasticity in the basal ganglia and slow reward-shaded plasticity in the cortex. This can provide a balance between acquisition of details of experiences and generalization across them. Interactions between the corticostriatal loops can integrate perceptual, response, and feedback-related aspects of the task and mediate the shift from novice to skilled performance. The basal ganglia and medial temporal lobe interact competitively or cooperatively, depending on the demands of the learning task. PMID:20572771
Proton magnetic resonance spectroscopy (MRS) in on-line game addiction.
Han, Doug Hyun; Lee, Young Sik; Shi, Xianfeng; Renshaw, Perry F
2014-11-01
Recent brain imaging studies suggested that both the frontal and temporal cortices are important candidate areas for mediating the symptoms of internet addiction. We hypothesized that deficits of prefrontal and temporal cortical function in patients with on-line game addiction (PGA) would be reflected in decreased levels of N-acetyl aspartate (NAA) and cytosolic, choline containing compound (Cho). Seventy three young PGA and 38 age and sex matched healthy control subjects were recruited in the study. Structural MR and (1)H MRS data were acquired using a 3.0 T MRI scanner. Voxels were sequentially placed in right frontal cortex and right medial temporal cortices. In the right frontal cortex, the levels of NAA in PGA were lower than those in healthy controls. In the medial temporal cortex, the levels of Cho in PGA participants were lower than those observed in healthy controls. The Young Internet Addiction Scale (YIAS) scores and perseverative responses in PGA were negatively correlated with the level of NAA in right frontal cortex. The Beck Depressive Inventory (BDI) scores in the PGA cohort were negatively correlated with Cho levels in the right temporal lobe. To the best of our knowledge, this is the first MRS study of individuals with on-line game addiction. Although, the subjects with on-line game addiction in the current study were free from psychiatric co-morbidity, patients with on-line game addiction appear to share characteristics with ADHD and MDD in terms of neurochemical changes in frontal and temporal cortices. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cheng, Wei; Rolls, Edmund T; Qiu, Jiang; Liu, Wei; Tang, Yanqing; Huang, Chu-Chung; Wang, XinFa; Zhang, Jie; Lin, Wei; Zheng, Lirong; Pu, JunCai; Tsai, Shih-Jen; Yang, Albert C; Lin, Ching-Po; Wang, Fei; Xie, Peng; Feng, Jianfeng
2016-12-01
The first brain-wide voxel-level resting state functional connectivity neuroimaging analysis of depression is reported, with 421 patients with major depressive disorder and 488 control subjects. Resting state functional connectivity between different voxels reflects correlations of activity between those voxels and is a fundamental tool in helping to understand the brain regions with altered connectivity and function in depression. One major circuit with altered functional connectivity involved the medial orbitofrontal cortex Brodmann area 13, which is implicated in reward, and which had reduced functional connectivity in depression with memory systems in the parahippocampal gyrus and medial temporal lobe, especially involving the perirhinal cortex Brodmann area 36 and entorhinal cortex Brodmann area 28. The Hamilton Depression Rating Scale scores were correlated with weakened functional connectivity of the medial orbitofrontal cortex Brodmann area 13. Thus in depression there is decreased reward-related and memory system functional connectivity, and this is related to the depressed symptoms. The lateral orbitofrontal cortex Brodmann area 47/12, involved in non-reward and punishing events, did not have this reduced functional connectivity with memory systems. Second, the lateral orbitofrontal cortex Brodmann area 47/12 had increased functional connectivity with the precuneus, the angular gyrus, and the temporal visual cortex Brodmann area 21. This enhanced functional connectivity of the non-reward/punishment system (Brodmann area 47/12) with the precuneus (involved in the sense of self and agency), and the angular gyrus (involved in language) is thus related to the explicit affectively negative sense of the self, and of self-esteem, in depression. A comparison of the functional connectivity in 185 depressed patients not receiving medication and 182 patients receiving medication showed that the functional connectivity of the lateral orbitofrontal cortex Brodmann area 47/12 with these three brain areas was lower in the medicated than the unmedicated patients. This is consistent with the hypothesis that the increased functional connectivity of the lateral orbitofrontal cortex Brodmann area 47/12 is related to depression. Relating the changes in cortical connectivity to our understanding of the functions of different parts of the orbitofrontal cortex in emotion helps to provide new insight into the brain changes related to depression. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kessler, Robert M; Woodward, Neil D; Riccardi, Patrizia; Li, Rui; Ansari, M Sib; Anderson, Sharlett; Dawant, Benoit; Zald, David; Meltzer, Herbert Y
2009-06-15
Studies in schizophrenic patients have reported dopaminergic abnormalities in striatum, substantia nigra, thalamus, anterior cingulate, hippocampus, and cortex that have been related to positive symptoms and cognitive impairments. [(18)F]fallypride positron emission tomography studies were performed in off-medication or never-medicated schizophrenic subjects (n = 11, 6 men, 5 women; mean age of 30.5 +/- 8.0 [SD] years; 4 drug-naive) and age-matched healthy subjects (n = 11, 5 men, 6 women, mean age of 31.6 +/- 9.2 [SD]) to examine dopamine D(2) receptor (DA D(2)r) levels in the caudate, putamen, ventral striatum, medial thalamus, posterior thalamus, substantia nigra, amygdala, temporal cortex, anterior cingulate, and hippocampus. In schizophrenic subjects, increased DA D(2)r levels were seen in the substantia nigra bilaterally; decreased levels were seen in the left medial thalamus. Correlations of symptoms with ROI data demonstrated a significant correlation of disorganized thinking/nonparanoid delusions with the right temporal cortex ROI (r = .94, p = .0001), which remained significant after correction for multiple comparisons (p < .03). Correlations of symptoms with parametric images of DA D(2)r levels revealed no significant clusters of correlations with negative symptoms but significant clusters of positive correlations of total positive symptoms, delusions and bizarre behavior with the lateral and anterior temporal cortex, and hallucinations with the left ventral striatum. The results of this study demonstrate abnormal DA D(2)r-mediated neurotransmission in the substantia nigra consistent with nigral dysfunction in schizophrenia and suggest that both temporal cortical and ventral striatal DA D(2)r mediate positive symptoms.
Morales-Botello, M. L.; Aguilar, J.; Foffani, G.
2012-01-01
We employed voltage-sensitive dye (VSD) imaging to investigate the spatio-temporal dynamics of the responses of the supragranular somatosensory cortex to stimulation of the four paws in urethane-anesthetized rats. We obtained the following main results. (1) Stimulation of the contralateral forepaw evoked VSD responses with greater amplitude and smaller latency than stimulation of the contralateral hindpaw, and ipsilateral VSD responses had a lower amplitude and greater latency than contralateral responses. (2) While the contralateral stimulation initially activated only one focus, the ipsilateral stimulation initially activated two foci: one focus was typically medial to the focus activated by contralateral stimulation and was stereotaxically localized in the motor cortex; the other focus was typically posterior to the focus activated by contralateral stimulation and was stereotaxically localized in the somatosensory cortex. (3) Forepaw and hindpaw somatosensory stimuli activated large areas of the sensorimotor cortex, well beyond the forepaw and hindpaw somatosensory areas of classical somatotopic maps, and forepaw stimuli activated larger cortical areas with greater activation velocity than hindpaw stimuli. (4) Stimulation of the forepaw and hindpaw evoked different cortical activation dynamics: forepaw responses displayed a clear medial directionality, whereas hindpaw responses were much more uniform in all directions. In conclusion, this work offers a complete spatio-temporal map of the supragranular VSD cortical activation in response to stimulation of the paws, showing important somatotopic differences between contralateral and ipsilateral maps as well as differences in the spatio-temporal activation dynamics in response to forepaw and hindpaw stimuli. PMID:22829873
ERIC Educational Resources Information Center
Squire, Larry R.; Levy, Daniel A.; Shrager, Yael
2005-01-01
The perirhinal cortex is known to be important for memory, but there has recently been interest in the possibility that it might also be involved in visual perceptual functions. In four experiments, we assessed visual discrimination ability and visual discrimination learning in severely amnesic patients with large medial temporal lobe lesions that…
ERIC Educational Resources Information Center
Mitchell, Karen J.; Johnson, Marcia K.
2009-01-01
Focusing primarily on functional magnetic resonance imaging (fMRI), this article reviews evidence regarding the roles of subregions of the medial temporal lobes, prefrontal cortex, posterior representational areas, and parietal cortex in source memory. In addition to evidence from standard episodic memory tasks assessing accuracy for neutral…
Weiner, Kevin S.; Golarai, Golijeh; Caspers, Julian; Chuapoco, Miguel R.; Mohlberg, Hartmut; Zilles, Karl; Amunts, Katrin; Grill-Spector, Kalanit
2014-01-01
Human ventral temporal cortex (VTC) plays a pivotal role in high-level vision. An under-studied macroanatomical feature of VTC is the mid-fusiform sulcus (MFS), a shallow longitudinal sulcus separating the lateral and medial fusiform gyrus (FG). Here, we quantified the morphological features of the MFS in 69 subjects (ages 7–40), and investigated its relationship to both cytoarchitectonic and functional divisions of VTC with four main findings. First, despite being a minor sulcus, we found that the MFS is a stable macroanatomical structure present in all 138 hemispheres with morphological characteristics developed by age 7. Second, the MFS is the locus of a lateral-medial cytoarchitechtonic transition within the posterior FG serving as the boundary between cytoarchitectonic regions FG1 and FG2. Third, the MFS predicts a lateral-medial functional transition in eccentricity bias representations in children, adolescents, and adults. Fourth, the anterior tip of the MFS predicts the location of a face-selective region, mFus-faces/FFA-2. These findings are the first to illustrate that a macroanatomical landmark identifies both cytoarchitectonic and functional divisions of high-level sensory cortex in humans and have important implications for understanding functional and structural organization in the human brain. PMID:24021838
Coexistence of gamma and high-frequency oscillations in rat medial entorhinal cortex in vitro
Cunningham, M O; Halliday, David M; Davies, Ceri H; Traub, Roger D; Buhl, Eberhard H; Whittington, Miles A
2004-01-01
High frequency oscillations (> 80–90 Hz) occur in neocortex and hippocampus in vivo where they are associated with specific behavioural states and more classical EEG frequency bands. In the hippocampus in vitro these oscillations can occur in the absence of pyramidal neuronal somatodendritic compartments and are temporally correlated with on-going, persistent gamma frequency oscillations. Their occurrence in the hippocampus is dependent on gap-junctional communication and it has been suggested that these high frequency oscillations originate as collective behaviour in populations of electrically coupled principal cell axonal compartments. Here we demonstrate that the superficial layers of medial entorhinal cortex can also generate high frequency oscillations associated with gamma rhythms. During persistent gamma frequency oscillations high frequency oscillations occur with a high bispectral coherence with the field gamma activity. Bursts of high frequency oscillations are temporally correlated with both the onset of compound excitatory postsynaptic potentials in fast-spiking interneurones and spikelet potentials in both pyramidal and stellate principal neurones. Both the gamma frequency and high frequency oscillations were attenuated by the gap junction blocker carbenoxolone. These data suggest that high frequency oscillations may represent the substrate for phasic drive to interneurones during persistent gamma oscillations in the medial entorhinal cortex. PMID:15254156
Khalsa, Sahib S.; Damasio, Antonio; Tranel, Daniel; Landini, Gregory; Williford, Kenneth
2012-01-01
It has been proposed that self-awareness (SA), a multifaceted phenomenon central to human consciousness, depends critically on specific brain regions, namely the insular cortex, the anterior cingulate cortex (ACC), and the medial prefrontal cortex (mPFC). Such a proposal predicts that damage to these regions should disrupt or even abolish SA. We tested this prediction in a rare neurological patient with extensive bilateral brain damage encompassing the insula, ACC, mPFC, and the medial temporal lobes. In spite of severe amnesia, which partially affected his “autobiographical self”, the patient's SA remained fundamentally intact. His Core SA, including basic self-recognition and sense of self-agency, was preserved. His Extended SA and Introspective SA were also largely intact, as he has a stable self-concept and intact higher-order metacognitive abilities. The results suggest that the insular cortex, ACC and mPFC are not required for most aspects of SA. Our findings are compatible with the hypothesis that SA is likely to emerge from more distributed interactions among brain networks including those in the brainstem, thalamus, and posteromedial cortices. PMID:22927899
Consolidation of visual associative long-term memory in the temporal cortex of primates.
Miyashita, Y; Kameyama, M; Hasegawa, I; Fukushima, T
1998-01-01
Neuropsychological theories have proposed a critical role for the interaction between the medial temporal lobe and the neocortex in the formation of long-term memory for facts and events, which has often been tested by learning of a series of paired words or figures in humans. We have examined neural mechanisms underlying the memory "consolidation" process by single-unit recording and molecular biological methods in an animal model of a visual pair-association task in monkeys. In our previous studies, we found that long-term associative representations of visual objects are acquired through learning in the neural network of the anterior inferior temporal (IT) cortex. In this article, we propose the hypothesis that limbic neurons undergo rapid modification of synaptic connectivity and provide backward signals that guide the reorganization of neocortical neural circuits. Two experiments tested this hypothesis: (1) we examined the role of the backward connections from the medial temporal lobe to the IT cortex by injecting ibotenic acid into the entorhinal and perirhinal cortices, which provided massive backward projections ipsilaterally to the IT cortex. We found that the limbic lesion disrupted the associative code of the IT neurons between the paired associates, without impairing the visual response to each stimulus. (2) We then tested the first half of this hypothesis by detecting the expression of immediate-early genes in the monkey temporal cortex. We found specific expression of zif268 during the learning of a new set of paired associates in the pair-association task, most intensively in area 36 of the perirhinal cortex. All these results with the visual pair-association task support our hypothesis and demonstrate that the consolidation process, which was first proposed on the basis of clinico-psychological evidence, can now be examined in primates using neurophysiolocical and molecular biological approaches. Copyright 1998 Academic Press.
Ekstrom, Arne D; Bookheimer, Susan Y
2007-10-01
Imaging, electrophysiological studies, and lesion work have shown that the medial temporal lobe (MTL) is important for episodic memory; however, it is unclear whether different MTL regions support the spatial, temporal, and item elements of episodic memory. In this study we used fMRI to examine retrieval performance emphasizing different aspects of episodic memory in the context of a spatial navigation paradigm. Subjects played a taxi-driver game ("yellowcab"), in which they freely searched for passengers and delivered them to specific landmark stores. Subjects then underwent fMRI scanning as they retrieved landmarks, spatial, and temporal associations from their navigational experience in three separate runs. Consistent with previous findings on item memory, perirhinal cortex activated most strongly during landmark retrieval compared with spatial or temporal source information retrieval. Both hippocampus and parahippocampal cortex activated significantly during retrieval of landmarks, spatial associations, and temporal order. We found, however, a significant dissociation between hippocampal and parahippocampal cortex activations, with spatial retrieval leading to greater parahippocampal activation compared with hippocampus and temporal order retrieval leading to greater hippocampal activation compared with parahippocampal cortex. Our results, coupled with previous findings, demonstrate that the hippocampus and parahippocampal cortex are preferentially recruited during temporal order and spatial association retrieval--key components of episodic "source" memory.
The Extended Language Network: A Meta-Analysis of Neuroimaging Studies on Text Comprehension
Ferstl, Evelyn C.; Neumann, Jane; Bogler, Carsten; von Cramon, D. Yves
2010-01-01
Language processing in context requires more than merely comprehending words and sentences. Important subprocesses are inferences for bridging successive utterances, the use of background knowledge and discourse context, and pragmatic interpretations. The functional neuroanatomy of these text comprehension processes has only recently been investigated. Although there is evidence for right-hemisphere contributions, reviews have implicated the left lateral prefrontal cortex, left temporal regions beyond Wernicke’s area, and the left dorso-medial prefrontal cortex (dmPFC) for text comprehension. To objectively confirm this extended language network and to evaluate the respective contribution of right hemisphere regions, meta-analyses of 23 neuroimaging studies are reported here. The analyses used replicator dynamics based on activation likelihood estimates. Independent of the baseline, the anterior temporal lobes (aTL) were active bilaterally. In addition, processing of coherent compared with incoherent text engaged the dmPFC and the posterior cingulate cortex. Right hemisphere activations were seen most notably in the analysis of contrasts testing specific subprocesses, such as metaphor comprehension. These results suggest task dependent contributions for the lateral PFC and the right hemisphere. Most importantly, they confirm the role of the aTL and the fronto-medial cortex for language processing in context. PMID:17557297
Kessler, Robert M; Woodward, Neil D; Riccardi, Patrizia; Li, Rui; Ansari, M Sib; Anderson, Sharlett; Dawant, Benoit; Zald, David; Meltzer, Herbert Y
2009-01-01
Background Studies in schizophrenics have reported dopaminergic abnormalities in striatum, substantia nigra, thalamus, anterior cingulate, hippocampus and cortex which have been related to positive symptoms and cognitive impairments. Methods [18F]fallypride PET studies were performed in off medication or never medicated schizophrenic subjects [N = 11, 6 M, 5 F; mean age of 30.5 ± 8.0 (S.D.); 4 drug naive] and age matched healthy subjects [N = 11, 5M, 6F, mean age of 31.6 ± 9.2 (S.D.)] to examine dopamine D2 receptor (DA D2r) levels in the caudate, putamen, ventral striatum, medial thalamus, posterior thalamus, substantia nigra, amygdala, temporal cortex, anterior cingulate, and hippocampus. Results In schizophrenic subjects increased DA D2r levels were seen in the substantia nigra bilaterally; decreased levels were seen in the left medial thalamus. Correlations of symptoms with region of interest data demonstrated a significant correlation of disorganized thinking/nonparanoid delusions with the right temporal cortex region of interest (r = 0.94, P = 0.0001) which remained significant after correction for multiple comparisons (P<0.03). Correlations of symptoms with parametric images of DA D2r levels revealed no significant clusters of correlations with negative symptoms, but significant clusters of positive correlations of total positive symptoms, delusions and bizarre behavior with the lateral and anterior temporal cortex, and hallucinations with the left ventral striatum. Conclusions The results of this study demonstrate abnormal DA D2r mediated neurotransmission in the substantia nigra consistent with nigral dysfunction in schizophrenia and suggest that both temporal cortical and ventral striatal DA D2r mediate positive symptoms. PMID:19251247
Hales, J. B.
2011-01-01
The process of associating items encountered over time and across variable time delays is fundamental for creating memories in daily life, such as for stories and episodes. Forming associative memory for temporally discontiguous items involves medial temporal lobe structures and additional neocortical processing regions, including prefrontal cortex, parietal lobe, and lateral occipital regions. However, most prior memory studies, using concurrently presented stimuli, have failed to examine the temporal aspect of successful associative memory formation to identify when activity in these brain regions is predictive of associative memory formation. In the current study, functional MRI data were acquired while subjects were shown pairs of sequentially presented visual images with a fixed interitem delay within pairs. This design allowed the entire time course of the trial to be analyzed, starting from onset of the first item, across the 5.5-s delay period, and through offset of the second item. Subjects then completed a postscan recognition test for the items and associations they encoded during the scan and their confidence for each. After controlling for item-memory strength, we isolated brain regions selectively involved in associative encoding. Consistent with prior findings, increased regional activity predicting subsequent associative memory success was found in anterior medial temporal lobe regions of left perirhinal and entorhinal cortices and in left prefrontal cortex and lateral occipital regions. The temporal separation within each pair, however, allowed extension of these findings by isolating the timing of regional involvement, showing that increased response in these regions occurs during binding but not during maintenance. PMID:21248058
Krumm, Sabine; Kivisaari, Sasa L; Monsch, Andreas U; Reinhardt, Julia; Ulmer, Stephan; Stippich, Christoph; Kressig, Reto W; Taylor, Kirsten I
2017-05-01
The parietal lobe is important for successful recognition memory, but its role is not yet fully understood. We investigated the parietal lobes' contribution to immediate paired-associate memory and delayed item-recognition memory separately for hits (targets) and correct rejections (distractors). We compared the behavioral performance of 56 patients with known parietal and medial temporal lobe dysfunction (i.e. early Alzheimer's Disease) to 56 healthy control participants in an immediate paired and delayed single item object memory task. Additionally, we performed voxel-based morphometry analyses to investigate the functional-neuroanatomic relationships between performance and voxel-based estimates of atrophy in whole-brain analyses. Behaviorally, all participants performed better identifying targets than rejecting distractors. The voxel-based morphometry analyses associated atrophy in the right ventral parietal cortex with fewer correct responses to familiar items (i.e. hits) in the immediate and delayed conditions. Additionally, medial temporal lobe integrity correlated with better performance in rejecting distractors, but not in identifying targets, in the immediate paired-associate task. Our findings suggest that the parietal lobe critically supports successful immediate and delayed target recognition memory, and that the ventral aspect of the parietal cortex and the medial temporal lobe may have complementary preferences for identifying targets and rejecting distractors, respectively, during recognition memory. Copyright © 2017. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Martin, Chris B.; Bowles, Ben; Mirsattari, Seyed M.; Kohler, Stefan
2011-01-01
Research has firmly established a link between recognition memory and the functional integrity of the medial temporal lobes (MTL). Dual-process models of MTL organization maintain that there is a division of labour within the MTL, with the hippocampus (HC) supporting recollective processes and perirhinal cortex (PRc) supporting familiarity…
Functional specialization of medial auditory belt cortex in the alert rhesus monkey.
Kusmierek, Pawel; Rauschecker, Josef P
2009-09-01
Responses of neural units in two areas of the medial auditory belt (middle medial area [MM] and rostral medial area [RM]) were tested with tones, noise bursts, monkey calls (MC), and environmental sounds (ES) in microelectrode recordings from two alert rhesus monkeys. For comparison, recordings were also performed from two core areas (primary auditory area [A1] and rostral area [R]) of the auditory cortex. All four fields showed cochleotopic organization, with best (center) frequency [BF(c)] gradients running in opposite directions in A1 and MM than in R and RM. The medial belt was characterized by a stronger preference for band-pass noise than for pure tones found medially to the core areas. Response latencies were shorter for the two more posterior (middle) areas MM and A1 than for the two rostral areas R and RM, reaching values as low as 6 ms for high BF(c) in MM and A1, and strongly depended on BF(c). The medial belt areas exhibited a higher selectivity to all stimuli, in particular to noise bursts, than the core areas. An increased selectivity to tones and noise bursts was also found in the anterior fields; the opposite was true for highly temporally modulated ES. Analysis of the structure of neural responses revealed that neurons were driven by low-level acoustic features in all fields. Thus medial belt areas RM and MM have to be considered early stages of auditory cortical processing. The anteroposterior difference in temporal processing indices suggests that R and RM may belong to a different hierarchical level or a different computational network than A1 and MM.
Multisensory connections of monkey auditory cerebral cortex
Smiley, John F.; Falchier, Arnaud
2009-01-01
Functional studies have demonstrated multisensory responses in auditory cortex, even in the primary and early auditory association areas. The features of somatosensory and visual responses in auditory cortex suggest that they are involved in multiple processes including spatial, temporal and object-related perception. Tract tracing studies in monkeys have demonstrated several potential sources of somatosensory and visual inputs to auditory cortex. These include potential somatosensory inputs from the retroinsular (RI) and granular insula (Ig) cortical areas, and from the thalamic posterior (PO) nucleus. Potential sources of visual responses include peripheral field representations of areas V2 and prostriata, as well as the superior temporal polysensory area (STP) in the superior temporal sulcus, and the magnocellular medial geniculate thalamic nucleus (MGm). Besides these sources, there are several other thalamic, limbic and cortical association structures that have multisensory responses and may contribute cross-modal inputs to auditory cortex. These connections demonstrated by tract tracing provide a list of potential inputs, but in most cases their significance has not been confirmed by functional experiments. It is possible that the somatosensory and visual modulation of auditory cortex are each mediated by multiple extrinsic sources. PMID:19619628
NASA Astrophysics Data System (ADS)
Magyar, Andrew
The recent discovery of cells that respond to purely conceptual features of the environment (particular people, landmarks, objects, etc) in the human medial temporal lobe (MTL), has raised many questions about the nature of the neural code in humans. The goal of this dissertation is to develop a novel statistical method based upon maximum likelihood regression which will then be applied to these experiments in order to produce a quantitative description of the coding properties of the human MTL. In general, the method is applicable to any experiments in which a sequence of stimuli are presented to an organism while the binary responses of a large number of cells are recorded in parallel. The central concept underlying the approach is the total probability that a neuron responds to a random stimulus, called the neuronal sparsity. The model then estimates the distribution of response probabilities across the population of cells. Applying the method to single-unit recordings from the human medial temporal lobe, estimates of the sparsity distributions are acquired in four regions: the hippocampus, the entorhinal cortex, the amygdala, and the parahippocampal cortex. The resulting distributions are found to be sparse (large fraction of cells with a low response probability) and highly non-uniform, with a large proportion of ultra-sparse neurons that possess a very low response probability, and a smaller population of cells which respond much more frequently. Rammifications of the results are discussed in relation to the sparse coding hypothesis, and comparisons are made between the statistics of the human medial temporal lobe cells and place cells observed in the rodent hippocampus.
The Neural Basis of Event Simulation: An fMRI Study
Yomogida, Yukihito; Sugiura, Motoaki; Akimoto, Yoritaka; Miyauchi, Carlos Makoto; Kawashima, Ryuta
2014-01-01
Event simulation (ES) is the situational inference process in which perceived event features such as objects, agents, and actions are associated in the brain to represent the whole situation. ES provides a common basis for various cognitive processes, such as perceptual prediction, situational understanding/prediction, and social cognition (such as mentalizing/trait inference). Here, functional magnetic resonance imaging was used to elucidate the neural substrates underlying important subdivisions within ES. First, the study investigated whether ES depends on different neural substrates when it is conducted explicitly and implicitly. Second, the existence of neural substrates specific to the future-prediction component of ES was assessed. Subjects were shown contextually related object pictures implying a situation and performed several picture–word-matching tasks. By varying task goals, subjects were made to infer the implied situation implicitly/explicitly or predict the future consequence of that situation. The results indicate that, whereas implicit ES activated the lateral prefrontal cortex and medial/lateral parietal cortex, explicit ES activated the medial prefrontal cortex, posterior cingulate cortex, and medial/lateral temporal cortex. Additionally, the left temporoparietal junction plays an important role in the future-prediction component of ES. These findings enrich our understanding of the neural substrates of the implicit/explicit/predictive aspects of ES-related cognitive processes. PMID:24789353
Segarra, Nuria; Metastasio, Antonio; Ziauddeen, Hisham; Spencer, Jennifer; Reinders, Niels R; Dudas, Robert B; Arrondo, Gonzalo; Robbins, Trevor W; Clark, Luke; Fletcher, Paul C; Murray, Graham K
2016-07-01
Alterations in reward processes may underlie motivational and anhedonic symptoms in depression and schizophrenia. However it remains unclear whether these alterations are disorder-specific or shared, and whether they clearly relate to symptom generation or not. We studied brain responses to unexpected rewards during a simulated slot-machine game in 24 patients with depression, 21 patients with schizophrenia, and 21 healthy controls using functional magnetic resonance imaging. We investigated relationships between brain activation, task-related motivation, and questionnaire rated anhedonia. There was reduced activation in the orbitofrontal cortex, ventral striatum, inferior temporal gyrus, and occipital cortex in both depression and schizophrenia in comparison with healthy participants during receipt of unexpected reward. In the medial prefrontal cortex both patient groups showed reduced activation, with activation significantly more abnormal in schizophrenia than depression. Anterior cingulate and medial frontal cortical activation predicted task-related motivation, which in turn predicted anhedonia severity in schizophrenia. Our findings provide evidence for overlapping hypofunction in ventral striatal and orbitofrontal regions in depression and schizophrenia during unexpected reward receipt, and for a relationship between unexpected reward processing in the medial prefrontal cortex and the generation of motivational states.
Segarra, Nuria; Metastasio, Antonio; Ziauddeen, Hisham; Spencer, Jennifer; Reinders, Niels R; Dudas, Robert B; Arrondo, Gonzalo; Robbins, Trevor W; Clark, Luke; Fletcher, Paul C; Murray, Graham K
2016-01-01
Alterations in reward processes may underlie motivational and anhedonic symptoms in depression and schizophrenia. However it remains unclear whether these alterations are disorder-specific or shared, and whether they clearly relate to symptom generation or not. We studied brain responses to unexpected rewards during a simulated slot-machine game in 24 patients with depression, 21 patients with schizophrenia, and 21 healthy controls using functional magnetic resonance imaging. We investigated relationships between brain activation, task-related motivation, and questionnaire rated anhedonia. There was reduced activation in the orbitofrontal cortex, ventral striatum, inferior temporal gyrus, and occipital cortex in both depression and schizophrenia in comparison with healthy participants during receipt of unexpected reward. In the medial prefrontal cortex both patient groups showed reduced activation, with activation significantly more abnormal in schizophrenia than depression. Anterior cingulate and medial frontal cortical activation predicted task-related motivation, which in turn predicted anhedonia severity in schizophrenia. Our findings provide evidence for overlapping hypofunction in ventral striatal and orbitofrontal regions in depression and schizophrenia during unexpected reward receipt, and for a relationship between unexpected reward processing in the medial prefrontal cortex and the generation of motivational states. PMID:26708106
Decreased prefrontal cortical dopamine transmission in alcoholism.
Narendran, Rajesh; Mason, Neale Scott; Paris, Jennifer; Himes, Michael L; Douaihy, Antoine B; Frankle, W Gordon
2014-08-01
Basic studies have demonstrated that optimal levels of prefrontal cortical dopamine are critical to various executive functions such as working memory, attention, inhibitory control, and risk/reward decisions, all of which are impaired in addictive disorders such as alcoholism. Based on this and imaging studies of alcoholism that have demonstrated less dopamine in the striatum, the authors hypothesized decreased dopamine transmission in the prefrontal cortex in persons with alcohol dependence. To test this hypothesis, amphetamine and [11C]FLB 457 positron emission tomography were used to measure cortical dopamine transmission in 21 recently abstinent persons with alcohol dependence and 21 matched healthy comparison subjects. [11C]FLB 457 binding potential, specific compared to nondisplaceable uptake (BPND), was measured in subjects with kinetic analysis using the arterial input function both before and after 0.5 mg kg-1 of d-amphetamine. Amphetamine-induced displacement of [11C]FLB 457 binding potential (ΔBPND) was significantly smaller in the cortical regions in the alcohol-dependent group compared with the healthy comparison group. Cortical regions that demonstrated lower dopamine transmission in the alcohol-dependent group included the dorsolateral prefrontal cortex, medial prefrontal cortex, orbital frontal cortex, temporal cortex, and medial temporal lobe. The results of this study, for the first time, unambiguously demonstrate decreased dopamine transmission in the cortex in alcoholism. Further research is necessary to understand the clinical relevance of decreased cortical dopamine as to whether it is related to impaired executive function, relapse, and outcome in alcoholism.
‘Inner voices’: the cerebral representation of emotional voice cues described in literary texts
Kreifelts, Benjamin; Gößling-Arnold, Christina; Wertheimer, Jürgen; Wildgruber, Dirk
2014-01-01
While non-verbal affective voice cues are generally recognized as a crucial behavioral guide in any day-to-day conversation their role as a powerful source of information may extend well beyond close-up personal interactions and include other modes of communication such as written discourse or literature as well. Building on the assumption that similarities between the different ‘modes’ of voice cues may not only be limited to their functional role but may also include cerebral mechanisms engaged in the decoding process, the present functional magnetic resonance imaging study aimed at exploring brain responses associated with processing emotional voice signals described in literary texts. Emphasis was placed on evaluating ‘voice’ sensitive as well as task- and emotion-related modulations of brain activation frequently associated with the decoding of acoustic vocal cues. Obtained findings suggest that several similarities emerge with respect to the perception of acoustic voice signals: results identify the superior temporal, lateral and medial frontal cortex as well as the posterior cingulate cortex and cerebellum to contribute to the decoding process, with similarities to acoustic voice perception reflected in a ‘voice’-cue preference of temporal voice areas as well as an emotion-related modulation of the medial frontal cortex and a task-modulated response of the lateral frontal cortex. PMID:24396008
Ahmedov, Merdin Lyutviev; Kemerdere, Rahsan; Baran, Oguz; Inal, Berrin Bercik; Gumus, Alper; Coskun, Cihan; Yeni, Seher Naz; Eren, Bulent; Uzan, Mustafa; Tanriverdi, Taner
2017-10-01
We sought to simply demonstrate how levels of soluble human epoxide hydrolase-2 show changes in both temporal the cortex and hippocampal complex in patients with temporal lobe epilepsy. A total of 20 patients underwent anterior temporal lobe resection due to temporal lobe epilepsy. The control group comprised 15 people who died in traffic accidents or by falling from a height, and their autopsy findings were included. Adequately sized temporal cortex and hippocampal samples were removed from each patient during surgery, and the same anatomic structures were removed from the control subjects during the autopsy procedures. Each sample was stored at -80°C as rapidly as possible until the enzyme assay. The temporal cortex in the epilepsy patients had a significantly higher enzyme level than did the temporal cortex of the control group (P = 0.03). Correlation analysis showed that as the enzyme level increases in the temporal cortex, it also increases in the hippocampal complex (r 2 = 0.06, P = 0.00001). More important, enzyme tissue levels showed positive correlations with seizure frequency in both the temporal cortex and hippocampal complex in patients (r 2 = 0.7, P = 0.00001 and r 2 = 0.4, P = 0.003, respectively). The duration of epilepsy was also positively correlated with the hippocampal enzyme level (r 2 = 0.06, P = 0.00001). Soluble human epoxy hydrolase enzyme-2 is increased in both lateral and medial temporal tissues in temporal lobe epilepsy. Further studies should be conducted as inhibition of this enzyme has resulted in a significant decrease in or stopping of seizures and attenuated neuroinflammation in experimental epilepsy models in the current literature. Copyright © 2017 Elsevier Inc. All rights reserved.
Relative hyperperfusion by SPECT in a family with a presenilin 1 (T245P) mutation.
Edwards-Lee, Terri; Wen, Johnny; Chung, Julia A; Vasinrapee, Panukorn; Mishkin, Frederick S
2008-01-01
Clinical characteristics of autosomal dominant Alzheimer's disease often differ clinically from sporadic disease with the onset of seizures, spasticity and myoclonus early in the disease course. Similarly imaging characteristics may also differ. We report the findings of relative hyperperfusion by Tc-99m HMPAO SPECT in the medial orbitofrontal cortex and anterior temporal lobe in four affected family members carrying a presenilin 1 mutation. SPECT of the four individuals was compared to an age-matched normal database. We speculate that the findings of relative medial orbitofrontal and anterior temporal lobe hyperperfusion may be a marker of early onset Alzheimer's disease in this family.
Huang, Zirui; Obara, Natsuho; Davis, Henry Hap; Pokorny, Johanna; Northoff, Georg
2016-02-01
Recent studies have demonstrated an overlap between the neural substrate of resting-state activity and self-related processing in the cortical midline structures (CMS). However, the neural and psychological mechanisms mediating this so-called "rest-self overlap" remain unclear. To investigate the neural mechanisms, we estimated the temporal structure of spontaneous/resting-state activity, e.g. its long-range temporal correlations or self-affinity across time as indexed by the power-law exponent (PLE). The PLE was obtained in resting-state activity in the medial prefrontal cortex (MPFC) and the posterior cingulate cortex (PCC) in 47 healthy subjects by functional magnetic resonance imaging (fMRI). We performed correlation analyses of the PLE and Revised Self-Consciousness Scale (SCSR) scores, which enabled us to access different dimensions of self-consciousness and specified rest-self overlap in a psychological regard. The PLE in the MPFC's resting-state activity correlated with private self-consciousness scores from the SCSR. Conversely, we found no correlation between the PLE and the other subscales of the SCSR (public, social) or between other resting-state measures, including functional connectivity, and the SCSR subscales. This is the first evidence for the association between the scale-free dynamics of resting-state activity in the CMS and the private dimension of self-consciousness. This finding implies the relationship of especially the private dimension of self with the temporal structure of resting-state activity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Petersson, Karl Magnus; Sandblom, Johan; Elfgren, Christina; Ingvar, Martin
2003-11-01
In a within-subject design we investigated the levels-of-processing (LOP) effect using visual material in a behavioral and a corresponding PET study. In the behavioral study we characterize a generalized LOP effect, using pleasantness and graphical quality judgments in the encoding situation, with two types of visual material, figurative and nonfigurative line drawings. In the PET study we investigate the related pattern of brain activations along these two dimensions. The behavioral results indicate that instruction and material contribute independently to the level of recognition performance. Therefore the LOP effect appears to stem both from the relative relevance of the stimuli (encoding opportunity) and an altered processing of stimuli brought about by the explicit instruction (encoding mode). In the PET study, encoding of visual material under the pleasantness (deep) instruction yielded left lateralized frontoparietal and anterior temporal activations while surface-based perceptually oriented processing (shallow instruction) yielded right lateralized frontoparietal, posterior temporal, and occipitotemporal activations. The result that deep encoding was related to the left prefrontal cortex while shallow encoding was related to the right prefrontal cortex, holding the material constant, is not consistent with the HERA model. In addition, we suggest that the anterior medial superior frontal region is related to aspects of self-referential semantic processing and that the inferior parts of the anterior cingulate as well as the medial orbitofrontal cortex is related to affective processing, in this case pleasantness evaluation of the stimuli regardless of explicit semantic content. Finally, the left medial temporal lobe appears more actively engaged by elaborate meaning-based processing and the complex response pattern observed in different subregions of the MTL lends support to the suggestion that this region is functionally segregated.
Emotional expressions in voice and music: same code, same effect?
Escoffier, Nicolas; Zhong, Jidan; Schirmer, Annett; Qiu, Anqi
2013-08-01
Scholars have documented similarities in the way voice and music convey emotions. By using functional magnetic resonance imaging (fMRI) we explored whether these similarities imply overlapping processing substrates. We asked participants to trace changes in either the emotion or pitch of vocalizations and music using a joystick. Compared to music, vocalizations more strongly activated superior and middle temporal cortex, cuneus, and precuneus. However, despite these differences, overlapping rather than differing regions emerged when comparing emotion with pitch tracing for music and vocalizations, respectively. Relative to pitch tracing, emotion tracing activated medial superior frontal and anterior cingulate cortex regardless of stimulus type. Additionally, we observed emotion specific effects in primary and secondary auditory cortex as well as in medial frontal cortex that were comparable for voice and music. Together these results indicate that similar mechanisms support emotional inferences from vocalizations and music and that these mechanisms tap on a general system involved in social cognition. Copyright © 2011 Wiley Periodicals, Inc.
Neural correlates of mirth and laughter: a direct electrical cortical stimulation study.
Yamao, Yukihiro; Matsumoto, Riki; Kunieda, Takeharu; Shibata, Sumiya; Shimotake, Akihiro; Kikuchi, Takayuki; Satow, Takeshi; Mikuni, Nobuhiro; Fukuyama, Hidenao; Ikeda, Akio; Miyamoto, Susumu
2015-05-01
Laughter consists of both motor and emotional aspects. The emotional component, known as mirth, is usually associated with the motor component, namely, bilateral facial movements. Previous electrical cortical stimulation (ES) studies revealed that mirth was associated with the basal temporal cortex, inferior frontal cortex, and medial frontal cortex. Functional neuroimaging implicated a role for the left inferior frontal and bilateral temporal cortices in humor processing. However, the neural origins and pathways linking mirth with facial movements are still unclear. We hereby report two cases with temporal lobe epilepsy undergoing subdural electrode implantation in whom ES of the left basal temporal cortex elicited both mirth and laughter-related facial muscle movements. In one case with normal hippocampus, high-frequency ES consistently caused contralateral facial movement, followed by bilateral facial movements with mirth. In contrast, in another case with hippocampal sclerosis (HS), ES elicited only mirth at low intensity and short duration, and eventually laughter at higher intensity and longer duration. In both cases, the basal temporal language area (BTLA) was located within or adjacent to the cortex where ES produced mirth. In conclusion, the present direct ES study demonstrated that 1) mirth had a close relationship with language function, 2) intact mesial temporal structures were actively engaged in the beginning of facial movements associated with mirth, and 3) these emotion-related facial movements had contralateral dominance. Copyright © 2014 Elsevier Ltd. All rights reserved.
Domain-specific impairment of source memory following a right posterior medial temporal lobe lesion.
Peters, Jan; Koch, Benno; Schwarz, Michael; Daum, Irene
2007-01-01
This single case analysis of memory performance in a patient with an ischemic lesion affecting posterior but not anterior right medial temporal lobe (MTL) indicates that source memory can be disrupted in a domain-specific manner. The patient showed normal recognition memory for gray-scale photos of objects (visual condition) and spoken words (auditory condition). While memory for visual source (texture/color of the background against which pictures appeared) was within the normal range, auditory source memory (male/female speaker voice) was at chance level, a performance pattern significantly different from the control group. This dissociation is consistent with recent fMRI evidence of anterior/posterior MTL dissociations depending upon the nature of source information (visual texture/color vs. auditory speaker voice). The findings are in good agreement with the view of dissociable memory processing by the perirhinal cortex (anterior MTL) and parahippocampal cortex (posterior MTL), depending upon the neocortical input that these regions receive. (c) 2007 Wiley-Liss, Inc.
Chao, Owen Y; Huston, Joseph P; Li, Jay-Shake; Wang, An-Li; de Souza Silva, Maria A
2016-05-01
The prefrontal cortex directly projects to the lateral entorhinal cortex (LEC), an important substrate for engaging item-associated information and relaying the information to the hippocampus. Here we ask to what extent the communication between the prefrontal cortex and LEC is critically involved in the processing of episodic-like memory. We applied a disconnection procedure to test whether the interaction between the medial prefrontal cortex (mPFC) and LEC is essential for the expression of recognition memory. It was found that male rats that received unilateral NMDA lesions of the mPFC and LEC in the same hemisphere, exhibited intact episodic-like (what-where-when) and object-recognition memories. When these lesions were placed in the opposite hemispheres (disconnection), episodic-like and associative memories for object identity, location and context were impaired. However, the disconnection did not impair the components of episodic memory, namely memory for novel object (what), object place (where) and temporal order (when), per se. Thus, the present findings suggest that the mPFC and LEC are a critical part of a neural circuit that underlies episodic-like and associative object-recognition memory. © 2015 Wiley Periodicals, Inc.
Scott, Brian H; Saleem, Kadharbatcha S; Kikuchi, Yukiko; Fukushima, Makoto; Mishkin, Mortimer; Saunders, Richard C
2017-11-01
In the primate auditory cortex, information flows serially in the mediolateral dimension from core, to belt, to parabelt. In the caudorostral dimension, stepwise serial projections convey information through the primary, rostral, and rostrotemporal (AI, R, and RT) core areas on the supratemporal plane, continuing to the rostrotemporal polar area (RTp) and adjacent auditory-related areas of the rostral superior temporal gyrus (STGr) and temporal pole. In addition to this cascade of corticocortical connections, the auditory cortex receives parallel thalamocortical projections from the medial geniculate nucleus (MGN). Previous studies have examined the projections from MGN to auditory cortex, but most have focused on the caudal core areas AI and R. In this study, we investigated the full extent of connections between MGN and AI, R, RT, RTp, and STGr using retrograde and anterograde anatomical tracers. Both AI and R received nearly 90% of their thalamic inputs from the ventral subdivision of the MGN (MGv; the primary/lemniscal auditory pathway). By contrast, RT received only ∼45% from MGv, and an equal share from the dorsal subdivision (MGd). Area RTp received ∼25% of its inputs from MGv, but received additional inputs from multisensory areas outside the MGN (30% in RTp vs. 1-5% in core areas). The MGN input to RTp distinguished this rostral extension of auditory cortex from the adjacent auditory-related cortex of the STGr, which received 80% of its thalamic input from multisensory nuclei (primarily medial pulvinar). Anterograde tracers identified complementary descending connections by which highly processed auditory information may modulate thalamocortical inputs. © 2017 Wiley Periodicals, Inc.
Van Overwalle, Frank; Heleven, Elien; Ma, Ning; Mariën, Peter
2017-01-01
This multi-study analysis (6 fMRI studies; 142 participants) explores the functional activation and connectivity of the cerebellum with the cerebrum during repeated behavioral information uptake informing about personality traits of different persons. The results suggest that trait repetition recruits activity in areas belonging to the mentalizing and executive control networks in the cerebrum, and the executive control areas in the cerebellum. Cerebral activation was observed in the executive control network including the posterior medial frontal cortex (pmFC), the bilateral prefrontal cortex (PFC) and bilateral inferior parietal cortex (IPC), in the mentalizing network including the bilateral middle temporal cortex (MTC) extending to the right superior temporal cortex (STC), as well as in the visual network including the left cuneus (Cun) and the left inferior occipital cortex. Moreover, cerebellar activation was found bilaterally in lobules VI and VII belonging to the executive control network. Importantly, significant patterns of functional connectivity were found linking these cerebellar executive areas with cerebral executive areas in the medial pmFC, the left PFC and the left IPC, and mentalizing areas in the left MTC. In addition, connectivity was found between the cerebral areas in the left hemisphere involved in the executive and mentalizing networks, as well as with their homolog areas in the right hemisphere. The discussion centers on the role of these cerebello-cerebral connections in matching internal predictions generated by the cerebellum with external information from the cerebrum, presumably involving the sequencing of behaviors. Copyright © 2016 Elsevier Inc. All rights reserved.
The Representation of Object-Directed Action and Function Knowledge in the Human Brain
Chen, Quanjing; Garcea, Frank E.; Mahon, Bradford Z.
2016-01-01
The appropriate use of everyday objects requires the integration of action and function knowledge. Previous research suggests that action knowledge is represented in frontoparietal areas while function knowledge is represented in temporal lobe regions. Here we used multivoxel pattern analysis to investigate the representation of object-directed action and function knowledge while participants executed pantomimes of familiar tool actions. A novel approach for decoding object knowledge was used in which classifiers were trained on one pair of objects and then tested on a distinct pair; this permitted a measurement of classification accuracy over and above object-specific information. Region of interest (ROI) analyses showed that object-directed actions could be decoded in tool-preferring regions of both parietal and temporal cortex, while no independently defined tool-preferring ROI showed successful decoding of object function. However, a whole-brain searchlight analysis revealed that while frontoparietal motor and peri-motor regions are engaged in the representation of object-directed actions, medial temporal lobe areas in the left hemisphere are involved in the representation of function knowledge. These results indicate that both action and function knowledge are represented in a topographically coherent manner that is amenable to study with multivariate approaches, and that the left medial temporal cortex represents knowledge of object function. PMID:25595179
Stephen, Julia M; Ranken, Doug M; Aine, Cheryl J; Weisend, Michael P; Shih, Jerry J
2005-12-01
Previous studies have shown that magnetoencephalography (MEG) can measure hippocampal activity, despite the cylindrical shape and deep location in the brain. The current study extended this work by examining the ability to differentiate the hippocampal subfields, parahippocampal cortex, and neocortical temporal sources using simulated interictal epileptic activity. A model of the hippocampus was generated on the MRIs of five subjects. CA1, CA3, and dentate gyrus of the hippocampus were activated as well as entorhinal cortex, presubiculum, and neocortical temporal cortex. In addition, pairs of sources were activated sequentially to emulate various hypotheses of mesial temporal lobe seizure generation. The simulated MEG activity was added to real background brain activity from the five subjects and modeled using a multidipole spatiotemporal modeling technique. The waveforms and source locations/orientations for hippocampal and parahippocampal sources were differentiable from neocortical temporal sources. In addition, hippocampal and parahippocampal sources were differentiated to varying degrees depending on source. The sequential activation of hippocampal and parahippocampal sources was adequately modeled by a single source; however, these sources were not resolvable when they overlapped in time. These results suggest that MEG has the sensitivity to distinguish parahippocampal and hippocampal spike generators in mesial temporal lobe epilepsy.
Frequency–specific network connectivity increases underlie accurate spatiotemporal memory retrieval
Watrous, Andrew J.; Tandon, Nitin; Connor, Chris; Pieters, Thomas; Ekstrom, Arne D.
2013-01-01
The medial temporal lobes, prefrontal cortex, and parts of parietal cortex form the neural underpinnings of episodic memory, which includes remembering both where and when an event occurred. Yet how these three key regions interact during retrieval of spatial and temporal context remains largely untested. Here, we employed simultaneous electrocorticographical recordings across multiple lobular regions, employing phase synchronization as a measure of network functional connectivity, while patients retrieved spatial and temporal context associated with an episode. Successful memory retrieval was characterized by greater global connectivity compared to incorrect retrieval, with the MTL acting as a convergence hub for these interactions. Spatial vs. temporal context retrieval resulted in prominent differences in both the spectral and temporal patterns of network interactions. These results emphasize dynamic network interactions as central to episodic memory retrieval, providing novel insight into how multiple contexts underlying a single event can be recreated within the same network. PMID:23354333
Thakral, Preston P.; Benoit, Roland G.; Schacter, Daniel L.
2017-01-01
Neuroimaging data indicate that episodic memory (i.e., remembering specific past experiences) and episodic simulation (i.e., imagining specific future experiences) are associated with enhanced activity in a common set of neural regions, often referred to as the core network. This network comprises the hippocampus, parahippocampal cortex, lateral and medial parietal cortex, lateral temporal cortex, and medial prefrontal cortex. Evidence for a core network has been taken as support for the idea that episodic memory and episodic simulation are supported by common processes. Much remains to be learned about how specific core network regions contribute to specific aspects of episodic simulation. Prior neuroimaging studies of episodic memory indicate that certain regions within the core network are differentially sensitive to the amount of information recollected (e.g., the left lateral parietal cortex). In addition, certain core network regions dissociate as a function of their timecourse of engagement during episodic memory (e.g., transient activity in the posterior hippocampus and sustained activity in the left lateral parietal cortex). In the current study, we assessed whether similar dissociations could be observed during episodic simulation. We found that the left lateral parietal cortex modulates as a function of the amount of simulated details. Of particular interest, while the hippocampus was insensitive to the amount of simulated details, we observed a temporal dissociation within the hippocampus: transient activity occurred in relatively posterior portions of the hippocampus and sustained activity occurred in anterior portions. Because the posterior hippocampal and lateral parietal findings parallel those observed previously during episodic memory, the present results add to the evidence that episodic memory and episodic simulation are supported by common processes. Critically, the present study also provides evidence that regions within the core network support dissociable processes. PMID:28324695
Völlm, Birgit A; Taylor, Alexander N W; Richardson, Paul; Corcoran, Rhiannon; Stirling, John; McKie, Shane; Deakin, John F W; Elliott, Rebecca
2006-01-01
Theory of Mind (ToM), the ability to attribute mental states to others, and empathy, the ability to infer emotional experiences, are important processes in social cognition. Brain imaging studies in healthy subjects have described a brain system involving medial prefrontal cortex, superior temporal sulcus and temporal pole in ToM processing. Studies investigating networks associated with empathic responding also suggest involvement of temporal and frontal lobe regions. In this fMRI study, we used a cartoon task derived from Sarfati et al. (1997) [Sarfati, Y., Hardy-Bayle, M.C., Besche, C., Widlocher, D. 1997. Attribution of intentions to others in people with schizophrenia: a non-verbal exploration with comic strips. Schizophrenia Research 25, 199-209.]with both ToM and empathy stimuli in order to allow comparison of brain activations in these two processes. Results of 13 right-handed, healthy, male volunteers were included. Functional images were acquired using a 1.5 T Phillips Gyroscan. Our results confirmed that ToM and empathy stimuli are associated with overlapping but distinct neuronal networks. Common areas of activation included the medial prefrontal cortex, temporoparietal junction and temporal poles. Compared to the empathy condition, ToM stimuli revealed increased activations in lateral orbitofrontal cortex, middle frontal gyrus, cuneus and superior temporal gyrus. Empathy, on the other hand, was associated with enhanced activations of paracingulate, anterior and posterior cingulate and amygdala. We therefore suggest that ToM and empathy both rely on networks associated with making inferences about mental states of others. However, empathic responding requires the additional recruitment of networks involved in emotional processing. These results have implications for our understanding of disorders characterized by impairments of social cognition, such as autism and psychopathy.
ERIC Educational Resources Information Center
Heroux, Nicholas A.; Robinson-Drummer, Patrese A.; Sanders, Hollie R.; Rosen, Jeffrey B.; Stanton, Mark E.
2017-01-01
The context preexposure facilitation effect (CPFE) is a contextual fear conditioning paradigm in which learning about the context, acquiring the context-shock association, and retrieving/expressing contextual fear are temporally dissociated into three distinct phases. In contrast, learning about the context and the context-shock association…
Schiller, P H; Chou, I
2000-01-01
This study examined the effects of anterior arcuate and dorsomedial frontal cortex lesions on the execution of saccadic eye movements made to paired and multiple targets in rhesus monkeys. Identical paired targets were presented with various temporal asynchronies to determine the temporal offset required to yield equal probability choices to either target. In the intact animal equal probability choices were typically obtained when the targets appeared simultaneously. After unilateral anterior arcuate lesions a major shift arose in the temporal offset required to obtain equal probability choices for paired targets that necessitated presenting the target in the hemifield contralateral to the lesion more than 100 ms prior to the target in the ipsilateral hemifield. This deficit was still pronounced 1 year after the lesion. Dorsomedial frontal cortex lesions produced much smaller but significant shifts in target selection that recovered more rapidly. Paired lesions produced deficits similar to those observed with anterior arcuate lesions alone. Major deficits were also observed on a multiple target temporal discrimination task after anterior arcuate but not after dorsomedial frontal cortex lesions. These results suggest that the frontal eye fields that reside in anterior bank of the arcuate sulcus play an important role in temporal processing and in target selection. Dorsomedial frontal cortex, that contains the medial eye fields, plays a much less important role in the execution of these tasks.
Jackson, Rebecca L; Hoffman, Paul; Pobric, Gorana; Lambon Ralph, Matthew A
2016-02-03
The anterior temporal lobe (ATL) makes a critical contribution to semantic cognition. However, the functional connectivity of the ATL and the functional network underlying semantic cognition has not been elucidated. In addition, subregions of the ATL have distinct functional properties and thus the potential differential connectivity between these subregions requires investigation. We explored these aims using both resting-state and active semantic task data in humans in combination with a dual-echo gradient echo planar imaging (EPI) paradigm designed to ensure signal throughout the ATL. In the resting-state analysis, the ventral ATL (vATL) and anterior middle temporal gyrus (MTG) were shown to connect to areas responsible for multimodal semantic cognition, including bilateral ATL, inferior frontal gyrus, medial prefrontal cortex, angular gyrus, posterior MTG, and medial temporal lobes. In contrast, the anterior superior temporal gyrus (STG)/superior temporal sulcus was connected to a distinct set of auditory and language-related areas, including bilateral STG, precentral and postcentral gyri, supplementary motor area, supramarginal gyrus, posterior temporal cortex, and inferior and middle frontal gyri. Complementary analyses of functional connectivity during an active semantic task were performed using a psychophysiological interaction (PPI) analysis. The PPI analysis highlighted the same semantic regions suggesting a core semantic network active during rest and task states. This supports the necessity for semantic cognition in internal processes occurring during rest. The PPI analysis showed additional connectivity of the vATL to regions of occipital and frontal cortex. These areas strongly overlap with regions found to be sensitive to executively demanding, controlled semantic processing. Previous studies have shown that semantic cognition depends on subregions of the anterior temporal lobe (ATL). However, the network of regions functionally connected to these subregions has not been demarcated. Here, we show that these ventrolateral anterior temporal subregions form part of a network responsible for semantic processing during both rest and an explicit semantic task. This demonstrates the existence of a core functional network responsible for multimodal semantic cognition regardless of state. Distinct connectivity is identified in the superior ATL, which is connected to auditory and language areas. Understanding the functional connectivity of semantic cognition allows greater understanding of how this complex process may be performed and the role of distinct subregions of the anterior temporal cortex. Copyright © 2016 Jackson et al.
Jackson, Rebecca L.; Hoffman, Paul; Pobric, Gorana
2016-01-01
The anterior temporal lobe (ATL) makes a critical contribution to semantic cognition. However, the functional connectivity of the ATL and the functional network underlying semantic cognition has not been elucidated. In addition, subregions of the ATL have distinct functional properties and thus the potential differential connectivity between these subregions requires investigation. We explored these aims using both resting-state and active semantic task data in humans in combination with a dual-echo gradient echo planar imaging (EPI) paradigm designed to ensure signal throughout the ATL. In the resting-state analysis, the ventral ATL (vATL) and anterior middle temporal gyrus (MTG) were shown to connect to areas responsible for multimodal semantic cognition, including bilateral ATL, inferior frontal gyrus, medial prefrontal cortex, angular gyrus, posterior MTG, and medial temporal lobes. In contrast, the anterior superior temporal gyrus (STG)/superior temporal sulcus was connected to a distinct set of auditory and language-related areas, including bilateral STG, precentral and postcentral gyri, supplementary motor area, supramarginal gyrus, posterior temporal cortex, and inferior and middle frontal gyri. Complementary analyses of functional connectivity during an active semantic task were performed using a psychophysiological interaction (PPI) analysis. The PPI analysis highlighted the same semantic regions suggesting a core semantic network active during rest and task states. This supports the necessity for semantic cognition in internal processes occurring during rest. The PPI analysis showed additional connectivity of the vATL to regions of occipital and frontal cortex. These areas strongly overlap with regions found to be sensitive to executively demanding, controlled semantic processing. SIGNIFICANCE STATEMENT Previous studies have shown that semantic cognition depends on subregions of the anterior temporal lobe (ATL). However, the network of regions functionally connected to these subregions has not been demarcated. Here, we show that these ventrolateral anterior temporal subregions form part of a network responsible for semantic processing during both rest and an explicit semantic task. This demonstrates the existence of a core functional network responsible for multimodal semantic cognition regardless of state. Distinct connectivity is identified in the superior ATL, which is connected to auditory and language areas. Understanding the functional connectivity of semantic cognition allows greater understanding of how this complex process may be performed and the role of distinct subregions of the anterior temporal cortex. PMID:26843633
Wang, Wei-Chun; Giovanello, Kelly S
2016-06-01
Considerable neuropsychological and neuroimaging work indicates that the medial temporal lobes are critical for both item and relational memory retrieval. However, there remain outstanding issues in the literature, namely the extent to which medial temporal lobe regions are differentially recruited during incidental and intentional retrieval of item and relational information, and the extent to which aging may affect these neural substrates. The current fMRI study sought to address these questions; participants incidentally encoded word pairs embedded in sentences and incidental item and relational retrieval were assessed through speeded reading of intact, rearranged, and new word-pair sentences, while intentional item and relational retrieval were assessed through old/new associative recognition of a separate set of intact, rearranged, and new word pairs. Results indicated that, in both younger and older adults, anterior hippocampus and perirhinal cortex indexed incidental and intentional item retrieval in the same manner. In contrast, posterior hippocampus supported incidental and intentional relational retrieval in both age groups and an adjacent cluster in posterior hippocampus was recruited during both forms of relational retrieval for older, but not younger, adults. Our findings suggest that while medial temporal lobe regions do not differentiate between incidental and intentional forms of retrieval, there are distinct roles for anterior and posterior medial temporal lobe regions during retrieval of item and relational information, respectively, and further indicate that posterior regions may, under certain conditions, be over-recruited in healthy aging. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Functional Topography of Human Auditory Cortex
Rauschecker, Josef P.
2016-01-01
Functional and anatomical studies have clearly demonstrated that auditory cortex is populated by multiple subfields. However, functional characterization of those fields has been largely the domain of animal electrophysiology, limiting the extent to which human and animal research can inform each other. In this study, we used high-resolution functional magnetic resonance imaging to characterize human auditory cortical subfields using a variety of low-level acoustic features in the spectral and temporal domains. Specifically, we show that topographic gradients of frequency preference, or tonotopy, extend along two axes in human auditory cortex, thus reconciling historical accounts of a tonotopic axis oriented medial to lateral along Heschl's gyrus and more recent findings emphasizing tonotopic organization along the anterior–posterior axis. Contradictory findings regarding topographic organization according to temporal modulation rate in acoustic stimuli, or “periodotopy,” are also addressed. Although isolated subregions show a preference for high rates of amplitude-modulated white noise (AMWN) in our data, large-scale “periodotopic” organization was not found. Organization by AM rate was correlated with dominant pitch percepts in AMWN in many regions. In short, our data expose early auditory cortex chiefly as a frequency analyzer, and spectral frequency, as imposed by the sensory receptor surface in the cochlea, seems to be the dominant feature governing large-scale topographic organization across human auditory cortex. SIGNIFICANCE STATEMENT In this study, we examine the nature of topographic organization in human auditory cortex with fMRI. Topographic organization by spectral frequency (tonotopy) extended in two directions: medial to lateral, consistent with early neuroimaging studies, and anterior to posterior, consistent with more recent reports. Large-scale organization by rates of temporal modulation (periodotopy) was correlated with confounding spectral content of amplitude-modulated white-noise stimuli. Together, our results suggest that the organization of human auditory cortex is driven primarily by its response to spectral acoustic features, and large-scale periodotopy spanning across multiple regions is not supported. This fundamental information regarding the functional organization of early auditory cortex will inform our growing understanding of speech perception and the processing of other complex sounds. PMID:26818527
Joshi, Abhilasha; Viney, Tim J.; Kis, Viktor
2015-01-01
Temporal coordination of neuronal assemblies among cortical areas is essential for behavioral performance. GABAergic projections from the medial septum and diagonal band complex exclusively innervate GABAergic interneurons in the rat hippocampus, contributing to the coordination of neuronal activity, including the generation of theta oscillations. Much less is known about the synaptic target neurons outside the hippocampus. To reveal the contribution of synaptic circuits involving the medial septum of mice, we have identified postsynaptic cortical neurons in wild-type and parvalbumin-Cre knock-in mice. Anterograde axonal tracing from the septum revealed extensive innervation of the hippocampus as well as the subiculum, presubiculum, parasubiculum, the medial and lateral entorhinal cortices, and the retrosplenial cortex. In all examined cortical regions, many septal GABAergic boutons were in close apposition to somata or dendrites immunopositive for interneuron cell-type molecular markers, such as parvalbumin, calbindin, calretinin, N-terminal EF-hand calcium-binding protein 1, cholecystokinin, reelin, or a combination of these molecules. Electron microscopic observations revealed septal boutons forming axosomatic or axodendritic type II synapses. In the CA1 region of hippocampus, septal GABAergic projections exclusively targeted interneurons. In the retrosplenial cortex, 93% of identified postsynaptic targets belonged to interneurons and the rest to pyramidal cells. These results suggest that the GABAergic innervation from the medial septum and diagonal band complex contributes to temporal coordination of neuronal activity via several types of cortical GABAergic interneurons in both hippocampal and extrahippocampal cortices. Oscillatory septal neuronal firing at delta, theta, and gamma frequencies may phase interneuron activity. SIGNIFICANCE STATEMENT Diverse types of GABAergic interneurons coordinate the firing of cortical principal cells required for memory processes. During wakefulness and rapid eye movement sleep, the rhythmic firing of cortical GABAergic neurons plays a key role in governing network activity. We investigated subcortical GABAergic projections in the mouse that extend from the medial septum/diagonal band nuclei to GABAergic neurons in the hippocampus and related extrahippocampal cortical areas, including the medial entorhinal cortex. These areas contribute to navigation and show theta rhythmic activity. We found selective GABAergic targeting of different groups of cortical GABAergic neurons, immunoreactive for combinations of cell-type markers. As septal GABAergic neurons also fire rhythmically, their selective innervation of cortical GABAergic neurons suggests an oscillatory synchronization of neuronal activity across functionally related areas. PMID:26631464
Dunkley, Benjamin T; Pang, Elizabeth W; Sedge, Paul A; Jetly, Rakesh; Doesburg, Sam M; Taylor, Margot J
2016-01-01
Post-traumatic stress disorder (PTSD) is associated with atypical responses to emotional face stimuli with preferential processing given to threat-related facial expressions via hyperactive amygdalae disengaged from medial prefrontal modulation. We examined implicit emotional face perception in soldiers with (n = 20) and without (n = 25) PTSD using magnetoencephalography to define spatiotemporal network interactions, and a subsequent region-of-interest analysis to characterize the network role of the right amygdala and medial prefrontal cortex in threatening face perception. Contrasts of network interactions revealed the PTSD group were hyperconnected compared to controls in the phase-locking response in the 2-24 Hz range for angry faces, but not for happy faces when contrasting groups. Hyperconnectivity in PTSD was greatest in the posterior cingulate, right ventromedial prefrontal cortex, right parietal regions and the right temporal pole, as well as the right amygdala. Graph measures of right amygdala and medial prefrontal connectivity revealed increases in node strength and clustering in PTSD, but not inter-node connectivity. Additionally, these measures were found to correlate with anxiety and depression. In line with prior studies, amygdala hyperconnectivity was observed in PTSD in relation to threatening faces, but the medial prefrontal cortex also displayed enhanced connectivity in our network-based approach. Overall, these results support preferential neurophysiological encoding of threat-related facial expressions in those with PTSD.
Kaboodvand, Neda; Bäckman, Lars; Nyberg, Lars; Salami, Alireza
2018-05-01
The default mode network (DMN) involves interacting cortical areas, including the posterior cingulate cortex (PCC) and the retrosplenial cortex (RSC), and subcortical areas, including the medial temporal lobe (MTL). The degree of functional connectivity (FC) within the DMN, particularly between MTL and medial-parietal subsystems, relates to episodic memory (EM) processes. However, past resting-state studies investigating the link between posterior DMN-MTL FC and EM performance yielded inconsistent results, possibly reflecting heterogeneity in the degree of connectivity between MTL and specific cortical DMN regions. Animal work suggests that RSC has structural connections to both cortical DMN regions and MTL, and may thus serve as an intermediate layer that facilitates information transfer between cortical and subcortical DMNs. We studied 180 healthy old adults (aged 64-68 years), who underwent comprehensive assessment of EM, along with resting-state fMRI. We found greater FC between MTL and RSC than between MTL and the other cortical DMN regions (e.g., PCC), with the only significant association with EM observed for MTL-RSC FC. Mediational analysis showed that MTL-cortical DMN connectivity increased with RSC as a mediator. Further analysis using a graph-theoretical approach on DMN nodes revealed the highest betweenness centrality for RSC, confirming that a high proportion of short paths among DMN regions pass through RSC. Importantly, the degree of RSC mediation was associated with EM performance, suggesting that individuals with greater mediation have an EM advantage. These findings suggest that RSC forms a critical gateway between MTL and cortical DMN to support EM in older adults. © 2018 Wiley Periodicals, Inc.
Fronto-temporal white matter connectivity predicts reversal learning errors
Alm, Kylie H.; Rolheiser, Tyler; Mohamed, Feroze B.; Olson, Ingrid R.
2015-01-01
Each day, we make hundreds of decisions. In some instances, these decisions are guided by our innate needs; in other instances they are guided by memory. Probabilistic reversal learning tasks exemplify the close relationship between decision making and memory, as subjects are exposed to repeated pairings of a stimulus choice with a reward or punishment outcome. After stimulus–outcome associations have been learned, the associated reward contingencies are reversed, and participants are not immediately aware of this reversal. Individual differences in the tendency to choose the previously rewarded stimulus reveal differences in the tendency to make poorly considered, inflexible choices. Lesion studies have strongly linked reversal learning performance to the functioning of the orbitofrontal cortex, the hippocampus, and in some instances, the amygdala. Here, we asked whether individual differences in the microstructure of the uncinate fasciculus, a white matter tract that connects anterior and medial temporal lobe regions to the orbitofrontal cortex, predict reversal learning performance. Diffusion tensor imaging and behavioral paradigms were used to examine this relationship in 33 healthy young adults. The results of tractography revealed a significant negative relationship between reversal learning performance and uncinate axial diffusivity, but no such relationship was demonstrated in a control tract, the inferior longitudinal fasciculus. Our findings suggest that the uncinate might serve to integrate associations stored in the anterior and medial temporal lobes with expectations about expected value based on feedback history, computed in the orbitofrontal cortex. PMID:26150776
Cascade of neural processing orchestrates cognitive control in human frontal cortex
Tang, Hanlin; Yu, Hsiang-Yu; Chou, Chien-Chen; Crone, Nathan E; Madsen, Joseph R; Anderson, William S; Kreiman, Gabriel
2016-01-01
Rapid and flexible interpretation of conflicting sensory inputs in the context of current goals is a critical component of cognitive control that is orchestrated by frontal cortex. The relative roles of distinct subregions within frontal cortex are poorly understood. To examine the dynamics underlying cognitive control across frontal regions, we took advantage of the spatiotemporal resolution of intracranial recordings in epilepsy patients while subjects resolved color-word conflict. We observed differential activity preceding the behavioral responses to conflict trials throughout frontal cortex; this activity was correlated with behavioral reaction times. These signals emerged first in anterior cingulate cortex (ACC) before dorsolateral prefrontal cortex (dlPFC), followed by medial frontal cortex (mFC) and then by orbitofrontal cortex (OFC). These results disassociate the frontal subregions based on their dynamics, and suggest a temporal hierarchy for cognitive control in human cortex. DOI: http://dx.doi.org/10.7554/eLife.12352.001 PMID:26888070
Malone, Patrick S; Glezer, Laurie S; Kim, Judy; Jiang, Xiong; Riesenhuber, Maximilian
2016-09-28
The neural substrates of semantic representation have been the subject of much controversy. The study of semantic representations is complicated by difficulty in disentangling perceptual and semantic influences on neural activity, as well as in identifying stimulus-driven, "bottom-up" semantic selectivity unconfounded by top-down task-related modulations. To address these challenges, we trained human subjects to associate pseudowords (TPWs) with various animal and tool categories. To decode semantic representations of these TPWs, we used multivariate pattern classification of fMRI data acquired while subjects performed a semantic oddball detection task. Crucially, the classifier was trained and tested on disjoint sets of TPWs, so that the classifier had to use the semantic information from the training set to correctly classify the test set. Animal and tool TPWs were successfully decoded based on fMRI activity in spatially distinct subregions of the left medial anterior temporal lobe (LATL). In addition, tools (but not animals) were successfully decoded from activity in the left inferior parietal lobule. The tool-selective LATL subregion showed greater functional connectivity with left inferior parietal lobule and ventral premotor cortex, indicating that each LATL subregion exhibits distinct patterns of connectivity. Our findings demonstrate category-selective organization of semantic representations in LATL into spatially distinct subregions, continuing the lateral-medial segregation of activation in posterior temporal cortex previously observed in response to images of animals and tools, respectively. Together, our results provide evidence for segregation of processing hierarchies for different classes of objects and the existence of multiple, category-specific semantic networks in the brain. The location and specificity of semantic representations in the brain are still widely debated. We trained human participants to associate specific pseudowords with various animal and tool categories, and used multivariate pattern classification of fMRI data to decode the semantic representations of the trained pseudowords. We found that: (1) animal and tool information was organized in category-selective subregions of medial left anterior temporal lobe (LATL); (2) tools, but not animals, were encoded in left inferior parietal lobe; and (3) LATL subregions exhibited distinct patterns of functional connectivity with category-related regions across cortex. Our findings suggest that semantic knowledge in LATL is organized in category-related subregions, providing evidence for the existence of multiple, category-specific semantic representations in the brain. Copyright © 2016 the authors 0270-6474/16/3610089-08$15.00/0.
Decision-making performance in Parkinson's disease correlates with lateral orbitofrontal volume.
Kobayakawa, Mutsutaka; Tsuruya, Natsuko; Kawamura, Mitsuru
2017-01-15
Patients with Parkinson's disease (PD) exhibit poor decision-making, and the underlying neural correlates are unclear. We used voxel-based morphometry with Diffeomorphic Anatomical Registration through Exponentiated Lie algebra to examine this issue. The decision-making abilities of 20 patients with PD and 37 healthy controls (HCs) were measured with a computerized Iowa Gambling Task (IGT). We assessed the local gray matter volumes of the patients and HCs and their correlations with decision-making performance, disease duration, disease severity, and anti-Parkinsonism medication dose. Compared with the HCs, the patients with PD exhibited poor IGT performances. The gray matter volumes in the medial orbitofrontal cortex, left inferior temporal cortex, and right middle frontal gyrus were decreased in the patients. Results in the regression analysis showed that lateral orbitofrontal volume correlated with performance in the IGT in PD. Regions that correlated with disease duration, severity, and medication dose did not overlap with orbitofrontal regions. Our results indicate that the lateral and medial orbitofrontal cortex are related to decision-making in PD patients. Since the medial orbitofrontal cortex is shown to be involved in monitoring reward, reward monitoring seems to be impaired as a whole in PD patients. Meanwhile, the lateral region is related to evaluation of punishment, which is considered to have an influence on individual differences in decision-making performance in PD patients. Copyright © 2016 Elsevier B.V. All rights reserved.
True and False Memories, Parietal Cortex, and Confidence Judgments
ERIC Educational Resources Information Center
Urgolites, Zhisen J.; Smith, Christine N.; Squire, Larry R.
2015-01-01
Recent studies have asked whether activity in the medial temporal lobe (MTL) and the neocortex can distinguish true memory from false memory. A frequent complication has been that the confidence associated with correct memory judgments (true memory) is typically higher than the confidence associated with incorrect memory judgments (false memory).…
ERIC Educational Resources Information Center
Jeneson, Annette; Kirwan, C. Brock; Hopkins, Ramona O.; Wixted, John T.; Squire, Larry R.
2010-01-01
It has been suggested that the hippocampus selectively supports recollection and that adjacent cortex in the medial temporal lobe can support familiarity. Alternatively, it has been suggested that the hippocampus supports both recollection and familiarity. We tested these suggestions by assessing the performance of patients with hippocampal…
Reinhart, Robert M G; Zhu, Julia; Park, Sohee; Woodman, Geoffrey F
2015-07-28
Executive control and flexible adjustment of behavior following errors are essential to adaptive functioning. Loss of adaptive control may be a biomarker of a wide range of neuropsychiatric disorders, particularly in the schizophrenia spectrum. Here, we provide support for the view that oscillatory activity in the frontal cortex underlies adaptive adjustments in cognitive processing following errors. Compared with healthy subjects, patients with schizophrenia exhibited low frequency oscillations with abnormal temporal structure and an absence of synchrony over medial-frontal and lateral-prefrontal cortex following errors. To demonstrate that these abnormal oscillations were the origin of the impaired adaptive control in patients with schizophrenia, we applied noninvasive dc electrical stimulation over the medial-frontal cortex. This noninvasive stimulation descrambled the phase of the low-frequency neural oscillations that synchronize activity across cortical regions. Following stimulation, the behavioral index of adaptive control was improved such that patients were indistinguishable from healthy control subjects. These results provide unique causal evidence for theories of executive control and cortical dysconnectivity in schizophrenia.
Patterns of brain atrophy associated with episodic memory and semantic fluency decline in aging.
Pelletier, Amandine; Bernard, Charlotte; Dilharreguy, Bixente; Helmer, Catherine; Le Goff, Melanie; Chanraud, Sandra; Dartigues, Jean-François; Allard, Michèle; Amieva, Hélène; Catheline, Gwénaëlle
2017-03-09
The cerebral substratum of age-related cognitive decline was evaluated in an elderly-cohort followed for 12 years (n=306). Participants, free of dementia, received neuropsychological assessments every two years and an MRI exam at baseline and four years later. Cognitive decline was evaluated on two broadly used tests to detect dementia: the Free and Cued Selective Reminding Test (FCSRT), a verbal episodic memory task, and the Isaacs Set Test (IST), a semantic fluency task. Using voxel-based approach, the relationship between cognitive decline with 1/ baseline grey matter volumes and 2/ grey matter volume loss between the two scans was explored. Baseline volumes analysis revealed that FCSRT and IST declines were both associated with lower volumes of the medial temporal region. Volumes loss analysis confirmed that both declines are related to medial temporal lobe atrophy and revealed that FCSRT decline was specifically associated with atrophy of the posterior cingulate cortex whereas IST decline was specifically related to temporal pole atrophy. These results suggest that cognitive decline across aging is firstly related to structural modifications of the medial temporal lobe, followed by an atrophy in the posterior midline structures for episodic memory and an atrophy of the temporal pole for semantic fluency.
Differential neural responses to food images in women with bulimia versus anorexia nervosa.
Brooks, Samantha J; O'Daly, Owen G; Uher, Rudolf; Friederich, Hans-Christoph; Giampietro, Vincent; Brammer, Michael; Williams, Steven C R; Schiöth, Helgi B; Treasure, Janet; Campbell, Iain C
2011-01-01
Previous fMRI studies show that women with eating disorders (ED) have differential neural activation to viewing food images. However, despite clinical differences in their responses to food, differential neural activation to thinking about eating food, between women with anorexia nervosa (AN) and bulimia nervosa (BN) is not known. We compare 50 women (8 with BN, 18 with AN and 24 age-matched healthy controls [HC]) while they view food images during functional Magnetic Resonance Imaging (fMRI). In response to food (vs non-food) images, women with BN showed greater neural activation in the visual cortex, right dorsolateral prefrontal cortex, right insular cortex and precentral gyrus, women with AN showed greater activation in the right dorsolateral prefrontal cortex, cerebellum and right precuneus. HC women activated the cerebellum, right insular cortex, right medial temporal lobe and left caudate. Direct comparisons revealed that compared to HC, the BN group showed relative deactivation in the bilateral superior temporal gyrus/insula, and visual cortex, and compared to AN had relative deactivation in the parietal lobe and dorsal posterior cingulate cortex, but greater activation in the caudate, superior temporal gyrus, right insula and supplementary motor area. Women with AN and BN activate top-down cognitive control in response to food images, yet women with BN have increased activation in reward and somatosensory regions, which might impinge on cognitive control over food consumption and binge eating.
The Representation of Object-Directed Action and Function Knowledge in the Human Brain.
Chen, Quanjing; Garcea, Frank E; Mahon, Bradford Z
2016-04-01
The appropriate use of everyday objects requires the integration of action and function knowledge. Previous research suggests that action knowledge is represented in frontoparietal areas while function knowledge is represented in temporal lobe regions. Here we used multivoxel pattern analysis to investigate the representation of object-directed action and function knowledge while participants executed pantomimes of familiar tool actions. A novel approach for decoding object knowledge was used in which classifiers were trained on one pair of objects and then tested on a distinct pair; this permitted a measurement of classification accuracy over and above object-specific information. Region of interest (ROI) analyses showed that object-directed actions could be decoded in tool-preferring regions of both parietal and temporal cortex, while no independently defined tool-preferring ROI showed successful decoding of object function. However, a whole-brain searchlight analysis revealed that while frontoparietal motor and peri-motor regions are engaged in the representation of object-directed actions, medial temporal lobe areas in the left hemisphere are involved in the representation of function knowledge. These results indicate that both action and function knowledge are represented in a topographically coherent manner that is amenable to study with multivariate approaches, and that the left medial temporal cortex represents knowledge of object function. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
The Role of Medial Frontal Cortex in Action Anticipation in Professional Badminton Players.
Xu, Huan; Wang, Pin; Ye, Zhuo'er; Di, Xin; Xu, Guiping; Mo, Lei; Lin, Huiyan; Rao, Hengyi; Jin, Hua
2016-01-01
Some studies show that the medial frontal cortex is associated with more skilled action anticipation, while similar findings are not observed in some other studies, possibly due to the stimuli employed and the participants used as the control group. In addition, no studies have investigated whether there is any functional connectivity between the medial frontal cortex and other brain regions in more skilled action anticipation. Therefore, the present study aimed to re-investigate how the medial frontal cortex is involved in more skilled action anticipation by circumventing the limitations of previous research and to investigate that the medial frontal cortex functionally connected with other brain regions involved in action processing in more skilled action anticipation. To this end, professional badminton players and novices were asked to anticipate the landing position of the shuttlecock while watching badminton match videos or to judge the gender of the players in the matches. The video clips ended right at the point that the shuttlecock and the racket came into contact to reduce the effect of information about the trajectory of the shuttlecock. Novices who lacked training and watching experience were recruited for the control group to reduce the effect of sport-related experience on the medial frontal cortex. Blood oxygenation level-dependent activation was assessed by means of functional magnetic resonance imaging. Compared to novices, badminton players exhibited stronger activation in the left medial frontal cortex during action anticipation and greater functional connectivity between left medial frontal cortex and some other brain regions (e.g., right posterior cingulate cortex). Therefore, the present study supports the position that the medial frontal cortex plays a role in more skilled action anticipation and that there is a specific brain network for more skilled action anticipation that involves right posterior cingulate cortex, right fusiform gyrus, right inferior parietal lobule, left insula and particularly, and left medial frontal cortex.
The Role of Medial Frontal Cortex in Action Anticipation in Professional Badminton Players
Xu, Huan; Wang, Pin; Ye, Zhuo’er; Di, Xin; Xu, Guiping; Mo, Lei; Lin, Huiyan; Rao, Hengyi; Jin, Hua
2016-01-01
Some studies show that the medial frontal cortex is associated with more skilled action anticipation, while similar findings are not observed in some other studies, possibly due to the stimuli employed and the participants used as the control group. In addition, no studies have investigated whether there is any functional connectivity between the medial frontal cortex and other brain regions in more skilled action anticipation. Therefore, the present study aimed to re-investigate how the medial frontal cortex is involved in more skilled action anticipation by circumventing the limitations of previous research and to investigate that the medial frontal cortex functionally connected with other brain regions involved in action processing in more skilled action anticipation. To this end, professional badminton players and novices were asked to anticipate the landing position of the shuttlecock while watching badminton match videos or to judge the gender of the players in the matches. The video clips ended right at the point that the shuttlecock and the racket came into contact to reduce the effect of information about the trajectory of the shuttlecock. Novices who lacked training and watching experience were recruited for the control group to reduce the effect of sport-related experience on the medial frontal cortex. Blood oxygenation level-dependent activation was assessed by means of functional magnetic resonance imaging. Compared to novices, badminton players exhibited stronger activation in the left medial frontal cortex during action anticipation and greater functional connectivity between left medial frontal cortex and some other brain regions (e.g., right posterior cingulate cortex). Therefore, the present study supports the position that the medial frontal cortex plays a role in more skilled action anticipation and that there is a specific brain network for more skilled action anticipation that involves right posterior cingulate cortex, right fusiform gyrus, right inferior parietal lobule, left insula and particularly, and left medial frontal cortex. PMID:27909422
Brown, Thackery I.; Stern, Chantal E.
2014-01-01
Many life experiences share information with other memories. In order to make decisions based on overlapping memories, we need to distinguish between experiences to determine the appropriate behavior for the current situation. Previous work suggests that the medial temporal lobe (MTL) and medial caudate interact to support the retrieval of overlapping navigational memories in different contexts. The present study used functional magnetic resonance imaging (fMRI) in humans to test the prediction that the MTL and medial caudate play complementary roles in learning novel mazes that cross paths with, and must be distinguished from, previously learned routes. During fMRI scanning, participants navigated virtual routes that were well learned from prior training while also learning new mazes. Critically, some routes learned during scanning shared hallways with those learned during pre-scan training. Overlap between mazes required participants to use contextual cues to select between alternative behaviors. Results demonstrated parahippocampal cortex activity specific for novel spatial cues that distinguish between overlapping routes. The hippocampus and medial caudate were active for learning overlapping spatial memories, and increased their activity for previously learned routes when they became context dependent. Our findings provide novel evidence that the MTL and medial caudate play complementary roles in the learning, updating, and execution of context-dependent navigational behaviors. PMID:23448868
Müller, Nadia; Keil, Julian; Obleser, Jonas; Schulz, Hannah; Grunwald, Thomas; Bernays, René-Ludwig; Huppertz, Hans-Jürgen; Weisz, Nathan
2013-10-01
Our brain has the capacity of providing an experience of hearing even in the absence of auditory stimulation. This can be seen as illusory conscious perception. While increasing evidence postulates that conscious perception requires specific brain states that systematically relate to specific patterns of oscillatory activity, the relationship between auditory illusions and oscillatory activity remains mostly unexplained. To investigate this we recorded brain activity with magnetoencephalography and collected intracranial data from epilepsy patients while participants listened to familiar as well as unknown music that was partly replaced by sections of pink noise. We hypothesized that participants have a stronger experience of hearing music throughout noise when the noise sections are embedded in familiar compared to unfamiliar music. This was supported by the behavioral results showing that participants rated the perception of music during noise as stronger when noise was presented in a familiar context. Time-frequency data show that the illusory perception of music is associated with a decrease in auditory alpha power pointing to increased auditory cortex excitability. Furthermore, the right auditory cortex is concurrently synchronized with the medial temporal lobe, putatively mediating memory aspects associated with the music illusion. We thus assume that neuronal activity in the highly excitable auditory cortex is shaped through extensive communication between the auditory cortex and the medial temporal lobe, thereby generating the illusion of hearing music during noise. Copyright © 2013 Elsevier Inc. All rights reserved.
Spatio-temporal brain dynamics in a combined stimulus-stimulus and stimulus-response conflict task.
Frühholz, Sascha; Godde, Ben; Finke, Mareike; Herrmann, Manfred
2011-01-01
It is yet not well known whether different types of conflicts share common or rely on distinct brain mechanisms of conflict processing. We used a combined Flanker (stimulus-stimulus; S-S) and Simon (stimulus-response; S-R) conflict paradigm both in an fMRI and an EEG study. S-S conflicts induced stronger behavioral interference effects compared to S-R conflicts and the latter decayed with increasing response latencies. Besides some similar medial frontal activity across all conflict trials, which was, however, not statically consistent across trials, we especially found distinct activations depending on the type of conflict. S-S conflicts activated the anterior cingulate cortex and modulated the N2 and early P3 component with underlying source activity in inferior frontal cortex. S-R conflicts produced distinct activations in the posterior cingulate cortex and modulated the late P3b component with underlying source activity in superior parietal cortex. Double conflict trials containing both S-S and S-R conflicts revealed, first, distinct anterior frontal activity representing a meta-processing unit and, second, a sequential modulation of the N2 and the P3b component. The N2 modulation during double conflict trials was accompanied by increased source activity in the medial frontal gyrus (MeFG). In summary, S-S and S-R conflict processing mostly rely on distinct mechanisms of conflict processing and these conflicts differentially modulate the temporal stages of stimulus processing. Copyright © 2010 Elsevier Inc. All rights reserved.
Neural activity in the medial temporal lobe reveals the fidelity of mental time travel.
Kragel, James E; Morton, Neal W; Polyn, Sean M
2015-02-18
Neural circuitry in the medial temporal lobe (MTL) is critically involved in mental time travel, which involves the vivid retrieval of the details of past experience. Neuroscientific theories propose that the MTL supports memory of the past by retrieving previously encoded episodic information, as well as by reactivating a temporal code specifying the position of a particular event within an episode. However, the neural computations supporting these abilities are underspecified. To test hypotheses regarding the computational mechanisms supported by different MTL subregions during mental time travel, we developed a computational model that linked a blood oxygenation level-dependent signal to cognitive operations, allowing us to predict human performance in a memory search task. Activity in the posterior MTL, including parahippocampal cortex, reflected how strongly one reactivates the temporal context of a retrieved memory, allowing the model to predict whether the next memory will correspond to a nearby moment in the study episode. A signal in the anterior MTL, including perirhinal cortex, indicated the successful retrieval of list items, without providing information regarding temporal organization. A hippocampal signal reflected both processes, consistent with theories that this region binds item and context information together to form episodic memories. These findings provide evidence for modern theories that describe complementary roles of the hippocampus and surrounding parahippocampal and perirhinal cortices during the retrieval of episodic memories, shaping how humans revisit the past. Copyright © 2015 the authors 0270-6474/15/352914-13$15.00/0.
Karnik-Henry, Meghana S; Wang, Lei; Barch, Deanna M; Harms, Michael P; Campanella, Carolina; Csernansky, John G
2012-07-01
Medial temporal lobe (MTL) structures play a central role in episodic memory. Prior studies suggest that individuals with schizophrenia have deficits in episodic memory as well as structural abnormalities of the medial temporal lobe (MTL). While correlations have been reported between MTL volume loss and episodic memory deficits in such individuals, it is not clear whether such correlations reflect the influence of the disease state or of underlying genetic influences that might contribute to risk. We used high resolution magnetic resonance imaging and probabilistic algorithms for image analysis to determine whether MTL structure, episodic memory performance and the relationship between the two differed among groups of 47 healthy control subjects, 50 control siblings, 39 schizophrenia subjects, and 33 siblings of schizophrenia subjects. High-dimensional large deformation brain mapping was used to obtain volume measures of the hippocampus. Cortical distance mapping was used to obtain volume and thickness measures of the parahippocampal gyrus (PHG) and its substructures: the entorhinal cortex (ERC), the perirhinal cortex (PRC), and the parahippocampal cortex (PHC). Neuropsychological data was used to establish an episodic memory domain score for each subject. Both schizophrenia subjects and their siblings displayed abnormalities in episodic memory performance. Siblings of individuals with schizophrenia, and to a lesser extent, individuals with schizophrenia themselves, displayed abnormalities in measures of MTL structure (volume loss or cortical thinning) as compared to control groups. Further, we observed correlations between structural measures and memory performance in both schizophrenia subjects and their siblings, but not in their respective control groups. These findings suggest that disease-specific genetic factors present in both patients and their relatives may be responsible for correlated abnormalities of MTL structure and memory impairment. The observed attenuated effect of such factors on MTL structure in individuals with schizophrenia may be due to non-genetic influences related to the development and progression of the disease on global brain structure and cognitive processing. Copyright © 2012 Elsevier B.V. All rights reserved.
Balodis, Iris M; Lacadie, Cheryl M; Potenza, Marc N
2012-09-01
Although self-reported gambling urge intensities have clinical utility in the treatment of pathological gambling (PG), prior studies have not investigated their neural correlates. Functional magnetic resonance imaging (fMRI) was conducted while 10 men with PG and 11 control comparison (CON) men viewed videotaped scenarios of gambling, happy or sad content. Participants rated the intensity of their emotions and motivations and reported the qualities of their responses. Relative to the CON group, the PG group reported similar responses to sad and happy scenarios, but stronger emotional responses and gambling urges when viewing the gambling scenarios. Correlations between self-reported responses and brain activations were typically strongest during the period of reported onset of emotional/motivational response and more robust in PG than in CON subjects for all conditions. During this epoch, corresponding with conscious awareness of an emotional/motivational response, subjective ratings of gambling urges in the PG group were negatively correlated with medial prefrontal cortex activation and positively correlated with middle temporal gyrus and temporal pole activations. Sadness ratings in the PG group correlated positively with activation of the medial orbitofrontal cortex, middle temporal gyrus, and retrosplenial cortex, while self-reported happiness during the happy videos demonstrated largely inverse correlations with activations in the temporal poles. Brain areas identified in the PG subjects have been implicated in explicit, self-referential processing and episodic memory. The findings demonstrate different patterns of correlations between subjective measures of emotions and motivations in PG and CON subjects when viewing material of corresponding content, suggesting in PG alterations in the neural correlates underlying experiential aspects of affective processing.
Lacadie, Cheryl M.; Potenza, Marc N.
2011-01-01
Although self-reported gambling urge intensities have clinical utility in the treatment of pathological gambling (PG), prior studies have not investigated their neural correlates. Functional magnetic resonance imaging (fMRI) was conducted while 10 men with PG and 11 control comparison (CON) men viewed videotaped scenarios of gambling, happy or sad content. Participants rated the intensity of their emotions and motivations and reported the qualities of their responses. Relative to the CON group, the PG group reported similar responses to sad and happy scenarios, but stronger emotional responses and gambling urges when viewing the gambling scenarios. Correlations between self-reported responses and brain activations were typically strongest during the period of reported onset of emotional/motivational response and more robust in PG than in CON subjects for all conditions. During this epoch, corresponding with conscious awareness of an emotional/motivational response, subjective ratings of gambling urges in the PG group were negatively correlated with medial prefrontal cortex activation and positively correlated with middle temporal gyrus and temporal pole activations. Sadness ratings in the PG group correlated positively with activation of the medial orbitofrontal cortex, middle temporal gyrus, and retrosplenial cortex, while self-reported happiness during the happy videos demonstrated largely inverse correlations with activations in the temporal poles. Brain areas identified in the PG subjects have been implicated in explicit, self-referential processing and episodic memory. The findings demonstrate different patterns of correlations between subjective measures of emotions and motivations in PG and CON subjects when viewing material of corresponding content, suggesting in PG alterations in the neural correlates underlying experiential aspects of affective processing. PMID:21811809
fMRI during natural sleep as a method to study brain function during early childhood.
Redcay, Elizabeth; Kennedy, Daniel P; Courchesne, Eric
2007-12-01
Many techniques to study early functional brain development lack the whole-brain spatial resolution that is available with fMRI. We utilized a relatively novel method in which fMRI data were collected from children during natural sleep. Stimulus-evoked responses to auditory and visual stimuli as well as stimulus-independent functional networks were examined in typically developing 2-4-year-old children. Reliable fMRI data were collected from 13 children during presentation of auditory stimuli (tones, vocal sounds, and nonvocal sounds) in a block design. Twelve children were presented with visual flashing lights at 2.5 Hz. When analyses combined all three types of auditory stimulus conditions as compared to rest, activation included bilateral superior temporal gyri/sulci (STG/S) and right cerebellum. Direct comparisons between conditions revealed significantly greater responses to nonvocal sounds and tones than to vocal sounds in a number of brain regions including superior temporal gyrus/sulcus, medial frontal cortex and right lateral cerebellum. The response to visual stimuli was localized to occipital cortex. Furthermore, stimulus-independent functional connectivity MRI analyses (fcMRI) revealed functional connectivity between STG and other temporal regions (including contralateral STG) and medial and lateral prefrontal regions. Functional connectivity with an occipital seed was localized to occipital and parietal cortex. In sum, 2-4 year olds showed a differential fMRI response both between stimulus modalities and between stimuli in the auditory modality. Furthermore, superior temporal regions showed functional connectivity with numerous higher-order regions during sleep. We conclude that the use of sleep fMRI may be a valuable tool for examining functional brain organization in young children.
The brain map of gait variability in aging, cognitive impairment and dementia. A systematic review
Tian, Qu; Chastan, Nathalie; Bair, Woei-Nan; Resnick, Susan M.; Ferrucci, Luigi; Studenski, Stephanie A.
2017-01-01
While gait variability may reflect subtle changes due to aging or cognitive impairment (CI), associated brain characteristics remain unclear. We summarize structural and functional neuroimaging findings associated with gait variability in older adults with and without CI and dementia. We identified 17 eligible studies; all were cross-sectional; few examined multiple brain areas. In older adults, temporal gait variability was associated with structural differences in medial areas important for lower limb coordination and balance. Both temporal and spatial gait variability were associated with structural and functional differences in hippocampus and primary sensorimotor cortex and structural differences in anterior cingulate cortex, basal ganglia, association tracts, and posterior thalamic radiation. In CI or dementia, some associations were found in primary motor cortex, hippocampus, prefrontal cortex and basal ganglia. In older adults, gait variability may be associated with areas important for sensorimotor integration and coordination. To comprehend the neural basis of gait variability with aging and CI, longitudinal studies of multiple brain areas are needed. PMID:28115194
Oxytocin enhances brain function in children with autism.
Gordon, Ilanit; Vander Wyk, Brent C; Bennett, Randi H; Cordeaux, Cara; Lucas, Molly V; Eilbott, Jeffrey A; Zagoory-Sharon, Orna; Leckman, James F; Feldman, Ruth; Pelphrey, Kevin A
2013-12-24
Following intranasal administration of oxytocin (OT), we measured, via functional MRI, changes in brain activity during judgments of socially (Eyes) and nonsocially (Vehicles) meaningful pictures in 17 children with high-functioning autism spectrum disorder (ASD). OT increased activity in the striatum, the middle frontal gyrus, the medial prefrontal cortex, the right orbitofrontal cortex, and the left superior temporal sulcus. In the striatum, nucleus accumbens, left posterior superior temporal sulcus, and left premotor cortex, OT increased activity during social judgments and decreased activity during nonsocial judgments. Changes in salivary OT concentrations from baseline to 30 min postadministration were positively associated with increased activity in the right amygdala and orbitofrontal cortex during social vs. nonsocial judgments. OT may thus selectively have an impact on salience and hedonic evaluations of socially meaningful stimuli in children with ASD, and thereby facilitate social attunement. These findings further the development of a neurophysiological systems-level understanding of mechanisms by which OT may enhance social functioning in children with ASD.
Increased premotor cortex activation in high functioning autism during action observation.
Perkins, Tom J; Bittar, Richard G; McGillivray, Jane A; Cox, Ivanna I; Stokes, Mark A
2015-04-01
The mirror neuron (MN) hypothesis of autism has received considerable attention, but to date has produced inconsistent findings. Using functional MRI, participants with high functioning autism or Asperger's syndrome were compared to typically developing individuals (n=12 in each group). Participants passively observed hand gestures that included waving, pointing, and grasping. Concerning the MN network, both groups activated similar regions including prefrontal, inferior parietal and superior temporal regions, with the autism group demonstrating significantly greater activation in the dorsal premotor cortex. Concerning other regions, participants with autism demonstrated increased activity in the anterior cingulate and medial frontal gyrus, and reduced activation in calcarine, cuneus, and middle temporal gyrus. These results suggest that during observation of hand gestures, frontal cortex activation is affected in autism, which we suggest may be linked to abnormal functioning of the MN system. Copyright © 2014 Elsevier Ltd. All rights reserved.
Distinct hippocampal functional networks revealed by tractography-based parcellation.
Adnan, Areeba; Barnett, Alexander; Moayedi, Massieh; McCormick, Cornelia; Cohn, Melanie; McAndrews, Mary Pat
2016-07-01
Recent research suggests the anterior and posterior hippocampus form part of two distinct functional neural networks. Here we investigate the structural underpinnings of this functional connectivity difference using diffusion-weighted imaging-based parcellation. Using this technique, we substantiated that the hippocampus can be parcellated into distinct anterior and posterior segments. These structurally defined segments did indeed show different patterns of resting state functional connectivity, in that the anterior segment showed greater connectivity with temporal and orbitofrontal cortex, whereas the posterior segment was more highly connected to medial and lateral parietal cortex. Furthermore, we showed that the posterior hippocampal connectivity to memory processing regions, including the dorsolateral prefrontal cortex, parahippocampal, inferior temporal and fusiform gyri and the precuneus, predicted interindividual relational memory performance. These findings provide important support for the integration of structural and functional connectivity in understanding the brain networks underlying episodic memory.
Yosida, Shigeto; Okanoya, Kazuo
2012-02-01
Generation of the motor patterns of emotional sounds in mammals occurs in the periaqueductal gray matter of the midbrain and is not directly controlled by the cortex. The medial frontal cortex indirectly controls vocalizations, based on the recognition of social context. We examined whether the medial frontal cortex was responsible for antiphonal vocalization, or turn-taking, in naked mole-rats. In normal turn-taking, naked mole-rats vocalize more frequently to dominant individuals than to subordinate ones. Bilateral lesions of the medial frontal cortex disrupted differentiation of call rates to the stimulus animals, which had varied social relationships to the subject. However, medial frontal cortex lesions did not affect either the acoustic properties of the vocalizations or the timing of the vocal exchanges. This suggests that the medial frontal cortex may be involved in social cognition or decision making during turn-taking, while other regions of the brain regulate when animals vocalize and the vocalizations themselves.
Chang, Chun-Hui
2017-07-01
The basolateral complex of the amygdala receives inputs from neocortical areas, including the medial prefrontal cortex and lateral orbitofrontal cortex. Earlier studies have shown that lateral orbitofrontal cortex activation exerts an inhibitory gating on medial prefrontal cortex-amygdala information flow. Here we examined the individual role of GABAA and GABAB receptors in this process. In vivo extracellular single-unit recordings were done in anesthetized rats. We searched amygdala neurons that fire in response to medial prefrontal cortex activation, tested lateral orbitofrontal cortex gating at different delays (lateral orbitofrontal cortex-medial prefrontal cortex delays: 25, 50, 100, 250, 500, and 1000 milliseconds), and examined differential contribution of GABAA and GABAB receptors with iontophoresis. Relative to baseline, lateral orbitofrontal cortex stimulation exerted an inhibitory modulatory gating on the medial prefrontal cortex-amygdala pathway and was effective up to a long delay of 500 ms (long-delay latencies at 100, 250, and 500 milliseconds). Moreover, blockade of intra-amygdala GABAA receptors with bicuculline abolished the lateral orbitofrontal cortex inhibitory gating at both short- (25 milliseconds) and long-delay (100 milliseconds) intervals, while blockade of GABAB receptors with saclofen reversed the inhibitory gating at long delay (100 milliseconds) only. Among the majority of the neurons examined (8 of 9), inactivation of either GABAA or GABAB receptors during baseline did not change evoked probability per se, suggesting that local feed-forward inhibitory mechanism is pathway specific. Our results suggest that the effect of lateral orbitofrontal cortex inhibitory modulatory gating was effective up to 500 milliseconds and that intra-amygdala GABAA and GABAB receptors differentially modulate the short- and long-delay lateral orbitofrontal cortex inhibitory gating on the medial prefrontal cortex-amygdala pathway. © The Author 2017. Published by Oxford University Press on behalf of CINP.
Gaser, Christian; Nenadic, Igor; Buchsbaum, Bradley R; Hazlett, Erin A; Buchsbaum, Monte S
2004-01-01
Enlargement of the lateral ventricles is among the most frequently reported macroscopic brain structural changes in schizophrenia, although variable in extent and localization. The authors investigated whether ventricular enlargement is related to regionally specific volume loss. High-resolution magnetic resonance imaging scans from 39 patients with schizophrenia were analyzed with deformation-based morphometry, a voxel-wise whole brain morphometric technique. Significant negative correlations with the ventricle-brain ratio were found for voxels in the left and right thalamus and posterior putamen and in the left superior temporal gyrus and insula. Thalamic shrinkage, especially of medial nuclei and the adjacent striatum and insular cortex, appear to be important contributors to ventricular enlargement in schizophrenia.
ERIC Educational Resources Information Center
Ramos, Juan M. J.
2008-01-01
Several lines of evidence in humans and experimental animals suggest that the hippocampus is critical for the formation and retrieval of spatial memory. However, although the hippocampus is reciprocally connected to adjacent cortices within the medial temporal lobe and they, in turn, are connected to the neocortex, little is known regarding the…
Medial cortex activity, self-reflection and depression.
Johnson, Marcia K; Nolen-Hoeksema, Susan; Mitchell, Karen J; Levin, Yael
2009-12-01
Using functional magnetic resonance imaging, we investigated neural activity associated with self-reflection in depressed [current major depressive episode (MDE)] and healthy control participants, focusing on medial cortex areas previously shown to be associated with self-reflection. Both the MDE and healthy control groups showed greater activity in anterior medial cortex (medial frontal gyrus, anterior cingulate gyrus) when cued to think about hopes and aspirations compared with duties and obligations, and greater activity in posterior medial cortex (precuneus, posterior cingulate) when cued to think about duties and obligations (Experiment 1). However, the MDE group showed less activity than controls in the same area of medial frontal cortex when self-referential cues were more ambiguous with respect to valence (Experiment 2), and less deactivation in a non-self-referential condition in both experiments. Furthermore, individual differences in rumination were positively correlated with activity in both anterior and posterior medial cortex during non-self-referential conditions. These results provide converging evidence for a dissociation of anterior and posterior medial cortex depending on the focus of self-relevant thought. They also provide neural evidence consistent with behavioral findings that depression is associated with disruption of positively valenced thoughts in response to ambiguous cues, and difficulty disengaging from self-reflection when it is appropriate to do so.
Medial cortex activity, self-reflection and depression
Nolen-Hoeksema, Susan; Mitchell, Karen J.; Levin, Yael
2009-01-01
Using functional magnetic resonance imaging, we investigated neural activity associated with self-reflection in depressed [current major depressive episode (MDE)] and healthy control participants, focusing on medial cortex areas previously shown to be associated with self-reflection. Both the MDE and healthy control groups showed greater activity in anterior medial cortex (medial frontal gyrus, anterior cingulate gyrus) when cued to think about hopes and aspirations compared with duties and obligations, and greater activity in posterior medial cortex (precuneus, posterior cingulate) when cued to think about duties and obligations (Experiment 1). However, the MDE group showed less activity than controls in the same area of medial frontal cortex when self-referential cues were more ambiguous with respect to valence (Experiment 2), and less deactivation in a non-self-referential condition in both experiments. Furthermore, individual differences in rumination were positively correlated with activity in both anterior and posterior medial cortex during non-self-referential conditions. These results provide converging evidence for a dissociation of anterior and posterior medial cortex depending on the focus of self-relevant thought. They also provide neural evidence consistent with behavioral findings that depression is associated with disruption of positively valenced thoughts in response to ambiguous cues, and difficulty disengaging from self-reflection when it is appropriate to do so. PMID:19620180
Electrical Stimulation in Hippocampus and Entorhinal Cortex Impairs Spatial and Temporal Memory.
Goyal, Abhinav; Miller, Jonathan; Watrous, Andrew J; Lee, Sang Ah; Coffey, Tom; Sperling, Michael R; Sharan, Ashwini; Worrell, Gregory; Berry, Brent; Lega, Bradley; Jobst, Barbara C; Davis, Kathryn A; Inman, Cory; Sheth, Sameer A; Wanda, Paul A; Ezzyat, Youssef; Das, Sandhitsu R; Stein, Joel; Gorniak, Richard; Jacobs, Joshua
2018-05-09
The medial temporal lobe (MTL) is widely implicated in supporting episodic memory and navigation, but its precise functional role in organizing memory across time and space remains elusive. Here we examine the specific cognitive processes implemented by MTL structures (hippocampus and entorhinal cortex) to organize memory by using electrical brain stimulation, leveraging its ability to establish causal links between brain regions and features of behavior. We studied neurosurgical patients of both sexes who performed spatial-navigation and verbal-episodic memory tasks while brain stimulation was applied in various regions during learning. During the verbal memory task, stimulation in the MTL disrupted the temporal organization of encoded memories such that items learned with stimulation tended to be recalled in a more randomized order. During the spatial task, MTL stimulation impaired subjects' abilities to remember items located far away from boundaries. These stimulation effects were specific to the MTL. Our findings thus provide the first causal demonstration in humans of the specific memory processes that are performed by the MTL to encode when and where events occurred. SIGNIFICANCE STATEMENT Numerous studies have implicated the medial temporal lobe (MTL) in encoding spatial and temporal memories, but they have not been able to causally demonstrate the nature of the cognitive processes by which this occurs in real-time. Electrical brain stimulation is able to demonstrate causal links between a brain region and a given function with high temporal precision. By examining behavior in a memory task as subjects received MTL stimulation, we provide the first causal evidence demonstrating the role of the MTL in organizing the spatial and temporal aspects of episodic memory. Copyright © 2018 the authors 0270-6474/18/384471-11$15.00/0.
Directional connectivity of resting state human fMRI data using cascaded ICA-PDC analysis.
Silfverhuth, Minna J; Remes, Jukka; Starck, Tuomo; Nikkinen, Juha; Veijola, Juha; Tervonen, Osmo; Kiviniemi, Vesa
2011-11-01
Directional connectivity measures, such as partial directed coherence (PDC), give us means to explore effective connectivity in the human brain. By utilizing independent component analysis (ICA), the original data-set reduction was performed for further PDC analysis. To test this cascaded ICA-PDC approach in causality studies of human functional magnetic resonance imaging (fMRI) data. Resting state group data was imaged from 55 subjects using a 1.5 T scanner (TR 1800 ms, 250 volumes). Temporal concatenation group ICA in a probabilistic ICA and further repeatability runs (n = 200) were overtaken. The reduced data-set included the time series presentation of the following nine ICA components: secondary somatosensory cortex, inferior temporal gyrus, intracalcarine cortex, primary auditory cortex, amygdala, putamen and the frontal medial cortex, posterior cingulate cortex and precuneus, comprising the default mode network components. Re-normalized PDC (rPDC) values were computed to determine directional connectivity at the group level at each frequency. The integrative role was suggested for precuneus while the role of major divergence region may be proposed to primary auditory cortex and amygdala. This study demonstrates the potential of the cascaded ICA-PDC approach in directional connectivity studies of human fMRI.
P300 and LORETA: comparison of normal subjects and schizophrenic patients.
Winterer, G; Mulert, C; Mientus, S; Gallinat, J; Schlattmann, P; Dorn, H; Herrmann, W M
2001-01-01
It was the aim of the present study 1) to investigate how many cortical activity maxima of scalp-recorded P300 are detected by Low Resolution Electromagentic Tomography (LORETA) when analyses are performed with high time-resolution, 2) to see if the resulting LORETA-solution is in accordance with intracortical recordings as reported by others and 3) to compare the given pattern of cortical activation maxima in the P300-timeframe between schizophrenic patients and normal controls. Current density analysis was performed in 3-D Talairach space with high time resolution i.e. in 6 ms steps. This was done during an auditory choice reaction paradigm separately for normal subjects and schizophrenic patients with subsequent group comparisons. In normal subjects, a sequence of at least seven cortical activation maxima was found between 240-420ms poststimulus: the prefrontal cortex, anterior or medial cingulum, posterior cingulum, parietal cortex, temporal lobe, prefrontal cortex, medial or anterior cingulum. Within the given limits of spatial resolution, this sequential maxima distribution largely met the expectations from reports on intracranial recordings and functional neuroimaging studies. However, localization accuracy was higher near the central midline than at lateral aspects of the brain. Schizophrenic patients less activated their cortex in a widespread area mainly in the left hemisphere including the prefrontal cortex, posterior cingulum and the temporal lobe. From these analyses and comparsions with intracranial recordings as reported by others, it is concluded that LORETA correctly localizes P300-related cortical activity maxima on the basis of 19 electrodes except for lateral cortical aspects which is most likely an edge-phenomenon. The data further suggest that the P300-deficit in schizophrenics involves an extended cortical network of the left hemisphere at several steps in time during the information processing stream.
Yushkevich, Paul A.; Pluta, John B.; Wang, Hongzhi; Xie, Long; Ding, Song-Lin; Gertje, E. C.; Mancuso, Lauren; Kliot, Daria; Das, Sandhitsu R.; Wolk, David A.
2014-01-01
We evaluate a fully automatic technique for labeling hippocampal subfields and cortical subregions in the medial temporal lobe (MTL) in in vivo 3 Tesla MRI. The method performs segmentation on a T2-weighted MRI scan with 0.4 × 0.4 × 2.0 mm3 resolution, partial brain coverage, and oblique orientation. Hippocampal subfields, entorhinal cortex, and perirhinal cortex are labeled using a pipeline that combines multi-atlas label fusion and learning-based error correction. In contrast to earlier work on automatic subfield segmentation in T2-weighted MRI (Yushkevich et al., 2010), our approach requires no manual initialization, labels hippocampal subfields over a greater anterior-posterior extent, and labels the perirhinal cortex, which is further subdivided into Brodmann areas 35 and 36. The accuracy of the automatic segmentation relative to manual segmentation is measured using cross-validation in 29 subjects from a study of amnestic Mild Cognitive Impairment (aMCI), and is highest for the dentate gyrus (Dice coefficient is 0.823), CA1 (0.803), perirhinal cortex (0.797) and entorhinal cortex (0.786) labels. A larger cohort of 83 subjects is used to examine the effects of aMCI in the hippocampal region using both subfield volume and regional subfield thickness maps. Most significant differences between aMCI and healthy aging are observed bilaterally in the CA1 subfield and in the left Brodmann area 35. Thickness analysis results are consistent with volumetry, but provide additional regional specificity and suggest non-uniformity in the effects of aMCI on hippocampal subfields and MTL cortical subregions. PMID:25181316
Liu, Xiaolin; Lauer, Kathryn K; Douglas Ward, B; Roberts, Christopher; Liu, Suyan; Gollapudy, Suneeta; Rohloff, Robert; Gross, William; Chen, Guangyu; Xu, Zhan; Binder, Jeffrey R; Li, Shi-Jiang; Hudetz, Anthony G
2017-02-15
Recent studies indicate that spontaneous low-frequency fluctuations (LFFs) of resting-state functional magnetic resonance imaging (rs-fMRI) blood oxygen level-dependent (BOLD) signals are driven by the slow (<0.1Hz) modulation of ongoing neuronal activity synchronized locally and across remote brain regions. How regional LFFs of the BOLD fMRI signal are altered during anesthetic-induced alteration of consciousness is not well understood. Using rs-fMRI in 15 healthy participants, we show that during administration of propofol to achieve loss of behavioral responsiveness indexing unconsciousness, the fractional amplitude of LFF (fALFF index) was reduced in comparison to wakeful baseline in the anterior frontal regions, temporal pole, hippocampus, parahippocampal gyrus, and amygdala. Such changes were absent in large areas of the motor, parietal, and sensory cortices. During light sedation characterized by the preservation of overt responsiveness and therefore consciousness, fALFF was reduced in the subcortical areas, temporal pole, medial orbital frontal cortex, cingulate cortex, and cerebellum. Between light sedation and deep sedation, fALFF was reduced primarily in the medial and dorsolateral frontal areas. The preferential reduction of LFFs in the anterior frontal regions is consistent with frontal to sensory-motor cortical disconnection and may contribute to the suppression of consciousness during general anesthesia. Copyright © 2016 Elsevier Inc. All rights reserved.
Liu, Xiaolin; Lauer, Kathryn K.; Ward, B. Douglas; Roberts, Christopher; Liu, Suyan; Gollapudy, Suneeta; Rohloff, Robert; Gross, William; Chen, Guangyu; Xu, Zhan; Binder, Jeffrey R.; Li, Shi-Jiang; Hudetz, Anthony G.
2017-01-01
Recent studies indicate that spontaneous low-frequency fluctuations (LFFs) of resting-state functional magnetic resonance imaging (rs-fMRI) blood oxygen level-dependent (BOLD) signals are driven by the slow (<0.1 Hz) modulation of ongoing neuronal activity synchronized locally and across remote brain regions. How regional LFFs of the BOLD fMRI signal are altered during anesthetic-induced alteration of consciousness is not well understood. Using rs-fMRI in 15 healthy participants, we show that during administration of propofol to achieve loss of behavioral responsiveness indexing unconsciousness, the fractional amplitude of LFF (fALFF index) was reduced in comparison to wakeful baseline in the anterior frontal regions, temporal pole, hippocampus, parahippocampal gyrus, and amygdala. Such changes were absent in large areas of the motor, parietal, and sensory cortices. During light sedation characterized by the preservation of overt responsiveness and therefore consciousness, fALFF was reduced in the subcortical areas, temporal pole, medial orbital frontal cortex, cingulate cortex, and cerebellum. Between light sedation and deep sedation, fALFF was reduced primarily in the medial and dorsolateral frontal areas. The preferential reduction of LFFs in the anterior frontal regions is consistent with frontal to sensory-motor cortical disconnection and may contribute to the suppression of consciousness during general anesthesia. PMID:27993673
Benoit, Roland G.; Schacter, Daniel L.
2015-01-01
It has been suggested that the simulation of hypothetical episodes and the recollection of past episodes are supported by fundamentally the same set of brain regions. The present article specifies this core network via Activation Likelihood Estimation (ALE). Specifically, a first meta-analysis revealed joint engagement of core network regions during episodic memory and episodic simulation. These include parts of the medial surface, the hippocampus and parahippocampal cortex within the medial temporal lobes, and the lateral temporal and inferior posterior parietal cortices on the lateral surface. Both capacities also jointly recruited additional regions such as parts of the bilateral dorsolateral prefrontal cortex. All of these core regions overlapped with the default network. Moreover, it has further been suggested that episodic simulation may require a stronger engagement of some of the core network’s nodes as wells as the recruitment of additional brain regions supporting control functions. A second ALE meta-analysis indeed identified such regions that were consistently more strongly engaged during episodic simulation than episodic memory. These comprised the core-network clusters located in the left dorsolateral prefrontal cortex and posterior inferior parietal lobe and other structures distributed broadly across the default and fronto-parietal control networks. Together, the analyses determine the set of brain regions that allow us to experience past and hypothetical episodes, thus providing an important foundation for studying the regions’ specialized contributions and interactions. PMID:26142352
Semantics of the visual environment encoded in parahippocampal cortex
Bonner, Michael F.; Price, Amy Rose; Peelle, Jonathan E.; Grossman, Murray
2016-01-01
Semantic representations capture the statistics of experience and store this information in memory. A fundamental component of this memory system is knowledge of the visual environment, including knowledge of objects and their associations. Visual semantic information underlies a range of behaviors, from perceptual categorization to cognitive processes such as language and reasoning. Here we examine the neuroanatomic system that encodes visual semantics. Across three experiments, we found converging evidence indicating that knowledge of verbally mediated visual concepts relies on information encoded in a region of the ventral-medial temporal lobe centered on parahippocampal cortex. In an fMRI study, this region was strongly engaged by the processing of concepts relying on visual knowledge but not by concepts relying on other sensory modalities. In a study of patients with the semantic variant of primary progressive aphasia (semantic dementia), atrophy that encompassed this region was associated with a specific impairment in verbally mediated visual semantic knowledge. Finally, in a structural study of healthy adults from the fMRI experiment, gray matter density in this region related to individual variability in the processing of visual concepts. The anatomic location of these findings aligns with recent work linking the ventral-medial temporal lobe with high-level visual representation, contextual associations, and reasoning through imagination. Together this work suggests a critical role for parahippocampal cortex in linking the visual environment with knowledge systems in the human brain. PMID:26679216
Semantics of the Visual Environment Encoded in Parahippocampal Cortex.
Bonner, Michael F; Price, Amy Rose; Peelle, Jonathan E; Grossman, Murray
2016-03-01
Semantic representations capture the statistics of experience and store this information in memory. A fundamental component of this memory system is knowledge of the visual environment, including knowledge of objects and their associations. Visual semantic information underlies a range of behaviors, from perceptual categorization to cognitive processes such as language and reasoning. Here we examine the neuroanatomic system that encodes visual semantics. Across three experiments, we found converging evidence indicating that knowledge of verbally mediated visual concepts relies on information encoded in a region of the ventral-medial temporal lobe centered on parahippocampal cortex. In an fMRI study, this region was strongly engaged by the processing of concepts relying on visual knowledge but not by concepts relying on other sensory modalities. In a study of patients with the semantic variant of primary progressive aphasia (semantic dementia), atrophy that encompassed this region was associated with a specific impairment in verbally mediated visual semantic knowledge. Finally, in a structural study of healthy adults from the fMRI experiment, gray matter density in this region related to individual variability in the processing of visual concepts. The anatomic location of these findings aligns with recent work linking the ventral-medial temporal lobe with high-level visual representation, contextual associations, and reasoning through imagination. Together, this work suggests a critical role for parahippocampal cortex in linking the visual environment with knowledge systems in the human brain.
In-vivo animation of midazolam-induced electrocorticographic changes in humans.
Nishida, Masaaki; Sood, Sandeep; Asano, Eishi
2009-12-15
Previous human studies have demonstrated that midazolam-induced signal changes on scalp EEG recording include widespread augmentation of sigma-oscillations and that the amplitude of such oscillations is correlated to the severity of midazolam-induced amnesia. Still unanswered questions include whether midazolam-induced sigma-augmentation also involves the medial temporal region, which plays a role in memory encoding. Taking advantage of rare and unique opportunities to monitor neuronal activities using intracranial electrocorticography (ECoG) recording, we determined how intravenous administration of midazolam elicited spectral frequency changes in the human cerebral cortex, including the medial temporal region. We studied three children with focal epilepsy who underwent subdural electrode placement and extraoperative ECoG recording for subsequent resection of the seizure focus; an intravenous bolus of midazolam was given to abort an ongoing simple partial seizure or to provide sedation prior to induction of general anesthesia. 'Midazolam-induced ECoG frequency alteration' in sites distant from the seizure focus was sequentially animated on their individual three-dimensional MR images. The common ECoG changes induced by midazolam included gradual augmentation of sigma-oscillations (12-16 Hz) in the widespread non-epileptic regions, including the medial temporal region. The spatial and temporal alteration of ECoG spectral frequency pattern can be appreciated via animation movies. Midazolam-induced sigma-augmentation was observed in the medial temporal region in our relatively small cohort of human subjects. In-vivo animation of ECoG spectral measures provided a unique situation to study the effect of midazolam on neuronal processing in the deep brain regions.
In-vivo animation of midazolam-induced electrocorticographic changes in humans
Nishida, Masaaki; Sood, Sandeep; Asano, Eishi
2009-01-01
Previous human studies have demonstrated that midazolam-induced signal changes on scalp EEG recording include widespread augmentation of sigma-oscillations and that the amplitude of such oscillations is correlated to the severity of midazolam-induced amnesia. Still unanswered questions include whether midazolam-induced sigma-augmentation also involves the medial temporal region, which plays a role in memory encoding. Taking advantage of rare and unique opportunities to monitor neuronal activities using intracranial electrocorticography (ECoG) recording, we determined how intravenous administration of midazolam induced spectral frequency changes in the human cerebral cortex, including the medial temporal region. We studied three children with focal epilepsy who underwent subdural electrode placement and extraoperative ECoG recording for subsequent resection of the seizure focus; an intravenous bolus of midazolam was given to abort an ongoing simple-partial seizure or to provide sedation prior to induction of general anesthesia. ‘Midazolam-induced ECoG frequency alteration’ in sites distant from the seizure focus was sequentially animated on their individual three-dimensional MR images. The common ECoG changes induced by midazolam included gradual augmentation of sigma-oscillations (12-16 Hz) in the widespread non-epileptic regions, including the medial temporal region. The spatial and temporal alteration of ECoG spectral frequency pattern can be appreciated via animation movies. Midazolam-induced sigma-augmentation was observed in the medial temporal region in our relatively small cohort of human subjects. In-vivo animation of ECoG spectral measures provided a unique situation to study the effect of midazolam on neuronal processing in the deep brain regions. PMID:19733366
Carlson, Joshua M; Depetro, Emily; Maxwell, Joshua; Harmon-Jones, Eddie; Hajcak, Greg
2015-08-30
Major depressive disorder is associated with lower medial prefrontal cortex volumes. The role that gender might play in moderating this relationship and what particular medial prefrontal cortex subregion(s) might be implicated is unclear. Magnetic resonance imaging was used to assess dorsal, ventral, and anterior cingulate regions of the medial prefrontal cortex in a normative sample of male and female adults. The Depression, Anxiety, and Stress Scale (DASS) was used to measure these three variables. Voxel-based morphometry was used to test for correlations between medial prefrontal gray matter volume and depressive traits. The dorsal medial frontal cortex was correlated with greater levels of depression, but not anxiety and stress. Gender moderates this effect: in males greater levels of depression were associated with lower dorsal medial prefrontal volumes, but in females no relationship was observed. The results indicate that even within a non-clinical sample, male participants with higher levels of depressive traits tend to have lower levels of gray matter volume in the dorsal medial prefrontal cortex. Our finding is consistent with low dorsal medial prefrontal volume contributing to the development of depression in males. Future longitudinal work is needed to substantiate this possibility. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Banaj, Nerisa; Piras, Federica; Piras, Fabrizio; Ciullo, Valentina; Iorio, Mariangela; Battaglia, Claudia; Pantoli, Donatella; Ducci, Giuseppe; Spalletta, Gianfranco
2018-06-01
The brain structural correlates of cognitive and psychopathological symptoms within the active phase in severely psychotic schizophrenic inpatients have been rarely investigated. Twenty-eight inpatients with a DSM-5 diagnosis of Schizophrenia (SZ), admitted for acute psychotic decompensation, were assessed through a comprehensive neuropsychological and psychopathological battery. All patients underwent a high-resolution T1-weighted magnetic resonance imaging investigation. Increased psychotic severity was related to reduced grey matter volumes in the medial portion of the right superior frontal cortex, the superior orbitofrontal cortex bilaterally and to white matter volume reduction in the medial portion of the left superior frontal area. Immediate verbal memory performance was related to left insula and inferior parietal cortex volume, while long-term visuo-spatial memory was related to grey matter volume of the right middle temporal cortex, and the right (lobule VII, CRUS1) and left (lobule VI) cerebellum. Moreover, psychotic severity correlated with cognitive inflexibility and negative symptom severity was related to visuo-spatial processing and reasoning disturbances. These findings indicate that a disruption of the cortical-subcortical-cerebellar circuit, and distorted memory function contribute to the development and maintenance of psychotic exacerbation.
MacKillop, James; Amlung, Michael T; Wier, Lauren M; David, Sean P; Ray, Lara A; Bickel, Warren K; Sweet, Lawrence H
2012-04-30
Neuroeconomics integrates behavioral economics and cognitive neuroscience to understand the neurobiological basis for normative and maladaptive decision making. Delay discounting is a behavioral economic index of impulsivity that reflects capacity to delay gratification and has been consistently associated with nicotine dependence. This preliminary study used functional magnetic resonance imaging to examine delay discounting for money and cigarette rewards in 13 nicotine dependent adults. Significant differences between preferences for smaller immediate rewards and larger delayed rewards were evident in a number of regions of interest (ROIs), including the medial prefrontal cortex, anterior insular cortex, middle temporal gyrus, middle frontal gyrus, and cingulate gyrus. Significant differences between money and cigarette rewards were generally lateralized, with cigarette choices associated with left hemisphere activation and money choices associated with right hemisphere activation. Specific ROI differences included the posterior parietal cortex, medial and middle frontal gyrus, ventral striatum, temporoparietal cortex, and angular gyrus. Impulsivity as measured by behavioral choices was significantly associated with both individual ROIs and a combined ROI model. These findings provide initial evidence in support of applying a neuroeconomic approach to understanding nicotine dependence. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Visioning in the brain: an fMRI study of inspirational coaching and mentoring.
Jack, Anthony I; Boyatzis, Richard E; Khawaja, Masud S; Passarelli, Angela M; Leckie, Regina L
2013-01-01
Effective coaching and mentoring is crucial to the success of individuals and organizations, yet relatively little is known about its neural underpinnings. Coaching and mentoring to the Positive Emotional Attractor (PEA) emphasizes compassion for the individual's hopes and dreams and has been shown to enhance a behavioral change. In contrast, coaching to the Negative Emotional Attractor (NEA), by focusing on externally defined criteria for success and the individual's weaknesses in relation to them, does not show sustained change. We used fMRI to measure BOLD responses associated with these two coaching styles. We hypothesized that PEA coaching would be associated with increased global visual processing and with engagement of the parasympathetic nervous system (PNS), while the NEA coaching would involve greater engagement of the sympathetic nervous system (SNS). Regions showing more activity in PEA conditions included the lateral occipital cortex, superior temporal cortex, medial parietal, subgenual cingulate, nucleus accumbens, and left lateral prefrontal cortex. We relate these activations to visioning, PNS activity, and positive affect. Regions showing more activity in NEA conditions included medial prefrontal regions and right lateral prefrontal cortex. We relate these activations to SNS activity, self-trait attribution and negative affect.
Shared neural processes support semantic control and action understanding
Davey, James; Rueschemeyer, Shirley-Ann; Costigan, Alison; Murphy, Nik; Krieger-Redwood, Katya; Hallam, Glyn; Jefferies, Elizabeth
2015-01-01
Executive–semantic control and action understanding appear to recruit overlapping brain regions but existing evidence from neuroimaging meta-analyses and neuropsychology lacks spatial precision; we therefore manipulated difficulty and feature type (visual vs. action) in a single fMRI study. Harder judgements recruited an executive–semantic network encompassing medial and inferior frontal regions (including LIFG) and posterior temporal cortex (including pMTG). These regions partially overlapped with brain areas involved in action but not visual judgements. In LIFG, the peak responses to action and difficulty were spatially identical across participants, while these responses were overlapping yet spatially distinct in posterior temporal cortex. We propose that the co-activation of LIFG and pMTG allows the flexible retrieval of semantic information, appropriate to the current context; this might be necessary both for semantic control and understanding actions. Feature selection in difficult trials also recruited ventral occipital–temporal areas, not implicated in action understanding. PMID:25658631
Differential Neural Responses to Food Images in Women with Bulimia versus Anorexia Nervosa
Brooks, Samantha J.; O′Daly, Owen G.; Uher, Rudolf; Friederich, Hans-Christoph; Giampietro, Vincent; Brammer, Michael; Williams, Steven C. R.; Schiöth, Helgi B.; Treasure, Janet; Campbell, Iain C.
2011-01-01
Background Previous fMRI studies show that women with eating disorders (ED) have differential neural activation to viewing food images. However, despite clinical differences in their responses to food, differential neural activation to thinking about eating food, between women with anorexia nervosa (AN) and bulimia nervosa (BN) is not known. Methods We compare 50 women (8 with BN, 18 with AN and 24 age-matched healthy controls [HC]) while they view food images during functional Magnetic Resonance Imaging (fMRI). Results In response to food (vs non-food) images, women with BN showed greater neural activation in the visual cortex, right dorsolateral prefrontal cortex, right insular cortex and precentral gyrus, women with AN showed greater activation in the right dorsolateral prefrontal cortex, cerebellum and right precuneus. HC women activated the cerebellum, right insular cortex, right medial temporal lobe and left caudate. Direct comparisons revealed that compared to HC, the BN group showed relative deactivation in the bilateral superior temporal gyrus/insula, and visual cortex, and compared to AN had relative deactivation in the parietal lobe and dorsal posterior cingulate cortex, but greater activation in the caudate, superior temporal gyrus, right insula and supplementary motor area. Conclusions Women with AN and BN activate top-down cognitive control in response to food images, yet women with BN have increased activation in reward and somatosensory regions, which might impinge on cognitive control over food consumption and binge eating. PMID:21799807
Navigation ability dependent neural activation in the human brain: an fMRI study.
Ohnishi, Takashi; Matsuda, Hiroshi; Hirakata, Makiko; Ugawa, Yoshikazu
2006-08-01
Visual-spatial navigation in familiar and unfamiliar environments is an essential requirement of daily life. Animal studies indicated the importance of the hippocampus for navigation. Neuroimaging studies demonstrated gender difference or strategies dependent difference of neural substrates for navigation. Using functional magnetic resonance imaging, we measured brain activity related to navigation in four groups of normal volunteers: good navigators (males and females) and poor navigators (males and females). In a whole group analysis, task related activity was noted in the hippocampus, parahippocampal gyrus, posterior cingulate cortex, precuneus, parietal association areas, and the visual association areas. In group comparisons, good navigators showed a stronger activation in the medial temporal area and precuneus than poor navigators. There was neither sex effect nor interaction effect between sex and navigation ability. The activity in the left medial temporal areas was positively correlated with task performance, whereas activity in the right parietal area was negatively correlated with task performance. Furthermore, the activity in the bilateral medial temporal areas was positively correlated with scores reflecting preferred navigation strategies, whereas activity in the bilateral superior parietal lobules was negatively correlated with them. Our data suggest that different brain activities related to navigation should reflect navigation skill and strategies.
Common medial frontal mechanisms of adaptive control in humans and rodents
Frank, Michael J.; Laubach, Mark
2013-01-01
In this report, we describe how common brain networks within the medial frontal cortex facilitate adaptive behavioral control in rodents and humans. We demonstrate that low frequency oscillations below 12 Hz are dramatically modulated after errors in humans over mid-frontal cortex and in rats within prelimbic and anterior cingulate regions of medial frontal cortex. These oscillations were phase-locked between medial frontal cortex and motor areas in both rats and humans. In rats, single neurons that encoded prior behavioral outcomes were phase-coherent with low-frequency field oscillations particularly after errors. Inactivating medial frontal regions in rats led to impaired behavioral adjustments after errors, eliminated the differential expression of low frequency oscillations after errors, and increased low-frequency spike-field coupling within motor cortex. Our results describe a novel mechanism for behavioral adaptation via low-frequency oscillations and elucidate how medial frontal networks synchronize brain activity to guide performance. PMID:24141310
Emotional modulation of experimental pain: a source imaging study of laser evoked potentials
Stancak, Andrej; Fallon, Nicholas
2013-01-01
Negative emotions have been shown to augment experimental pain. As induced emotions alter brain activity, it is not clear whether pain augmentation during noxious stimulation would be related to neural activation existing prior to onset of a noxious stimulus or alternatively, whether emotional stimuli would only alter neural activity during the period of nociceptive processing. We analyzed the spatio-temporal patterns of laser evoked potentials (LEPs) occurring prior to and during the period of cortical processing of noxious laser stimuli during passive viewing of negative, positive, or neutral emotional pictures. Independent component analysis (ICA) was applied to series of source activation volumes, reconstructed using local autoregressive average model (LAURA). Pain was the strongest when laser stimuli were associated with negative emotional pictures. Prior to laser stimulus and during the first 100 ms after onset of laser stimulus, activations were seen in the left and right medial temporal cortex, cerebellum, posterior cingulate, and rostral cingulate/prefrontal cortex. In all these regions, positive or neutral pictures showed stronger activations than negative pictures. During laser stimulation, activations in the right and left anterior insula, temporal cortex and right anterior and posterior parietal cortex were stronger during negative than neutral or positive emotional pictures. Results suggest that negative emotional stimuli increase activation in the left and right anterior insula and temporal cortex, and right posterior and anterior parietal cortex only during the period of nociceptive processing. The role of background brain activation in emotional modulation of pain appears to be only permissive, and consisting in attenuation of activation in structures maintaining the resting state of the brain. PMID:24062659
Neural correlates of observing pretend play in which one object is represented as another
Whitehead, Charles; Marchant, Jennifer L.; Craik, David
2009-01-01
Observers were scanned while they watched a video of an actor using an object. Three conditions were contrasted in which the same object was used: (i) normally (e.g. using a tennis racket to hit a ball), (ii) in an unusual way (e.g. using a tennis racket to strain spaghetti), (iii) in a pretend play (e.g. playing a tennis racket like a banjo). Observing real and unusual uses of objects activated areas previously seen in studies of tool use including areas associated with a mirror system for action. Observing pretend play activated additional areas previously associated with theory of mind tasks and listening to narrative, including medial prefrontal cortex, posterior superior temporal sulcus and temporal poles. After presentation of each video, observers were asked to name the object as used in the preceding action video (e.g. racket, sieve or banjo). Naming the pretend object elicited activity in medial prefrontal cortex. These results are consistent with proposals that pretend play is a form of communicative narrative, associated with the ability to mentalize. However, this leaves open the question as to whether pretence or mentalizing is the more basic process. PMID:19535615
The Medial Temporal Lobe and Recognition Memory
Eichenbaum, H.; Yonelinas, A.R.; Ranganath, C.
2007-01-01
The ability to recognize a previously experienced stimulus is supported by two processes: recollection of the stimulus in the context of other information associated with the experience, and a sense of familiarity with the features of the stimulus. Although familiarity and recollection are functionally distinct, there is considerable debate about how these kinds of memory are supported by regions in the medial temporal lobes (MTL). Here, we review evidence for the distinction between recollection and familiarity and then consider the evidence regarding the neural mechanisms of these processes. Evidence from neuropsychological, neuroimaging, and neurophysiological studies of humans, monkeys, and rats indicates that different subregions of the MTL make distinct contributions to recollection and familiarity. The data suggest that the hippocampus is critical for recollection but not familiarity. The parahippocampal cortex also contributes to recollection, possibly via the representation and retrieval of contextual (especially spatial) information, whereas perirhinal cortex contributes to and is necessary for familiarity-based recognition. The findings are consistent with an anatomically guided hypothesis about the functional organization of the MTL and suggest mechanisms by which the anatomical components of the MTL interact to support of the phenomenology of recollection and familiarity. PMID:17417939
Kuhn, T; Gullett, J M; Nguyen, P; Boutzoukas, A E; Ford, A; Colon-Perez, L M; Triplett, W; Carney, P R; Mareci, T H; Price, C C; Bauer, R M
2016-06-01
This study examined the reliability of high angular resolution diffusion tensor imaging (HARDI) data collected on a single individual across several sessions using the same scanner. HARDI data was acquired for one healthy adult male at the same time of day on ten separate days across a one-month period. Environmental factors (e.g. temperature) were controlled across scanning sessions. Tract Based Spatial Statistics (TBSS) was used to assess session-to-session variability in measures of diffusion, fractional anisotropy (FA) and mean diffusivity (MD). To address reliability within specific structures of the medial temporal lobe (MTL; the focus of an ongoing investigation), probabilistic tractography segmented the Entorhinal cortex (ERc) based on connections with Hippocampus (HC), Perirhinal (PRc) and Parahippocampal (PHc) cortices. Streamline tractography generated edge weight (EW) metrics for the aforementioned ERc connections and, as comparison regions, connections between left and right rostral and caudal anterior cingulate cortex (ACC). Coefficients of variation (CoV) were derived for the surface area and volumes of these ERc connectivity-defined regions (CDR) and for EW across all ten scans, expecting that scan-to-scan reliability would yield low CoVs. TBSS revealed no significant variation in FA or MD across scanning sessions. Probabilistic tractography successfully reproduced histologically-verified adjacent medial temporal lobe circuits. Tractography-derived metrics displayed larger ranges of scanner-to-scanner variability. Connections involving HC displayed greater variability than metrics of connection between other investigated regions. By confirming the test retest reliability of HARDI data acquisition, support for the validity of significant results derived from diffusion data can be obtained.
Deng, Z; Wei, D; Xue, S; Du, X; Hitchman, G; Qiu, J
2014-09-05
Successful emotion regulation is a fundamental prerequisite for well-being and dysregulation may lead to psychopathology. The ability to inhibit spontaneous emotions while behaving in accordance with desired goals is an important dimension of emotion regulation and can be measured using emotional conflict resolution tasks. Few studies have investigated the gray matter correlates underlying successful emotional conflict resolution at the whole-brain level. We had 190 adults complete an emotional conflict resolution task (face-word task) and examined the brain regions significantly correlated with successful emotional conflict resolution using voxel-based morphometry. We found successful emotional conflict resolution was associated with increased regional gray matter density in widely distributed brain regions. These regions included the dorsal anterior cingulate/dorsal medial prefrontal cortex, ventral medial prefrontal cortex, supplementary motor area, amygdala, ventral striatum, precuneus, posterior cingulate cortex, inferior parietal lobule, superior temporal gyrus and fusiform face area. Together, our results indicate that individual differences in emotional conflict resolution ability may be attributed to regional structural differences across widely distributed brain regions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Hartwich, Katja; Borhegyi, Zsolt; Somogyi, Peter; Klausberger, Thomas
2015-01-01
Axo-axonic interneurons, innervating exclusively axon initial segments, and parvalbumin-expressing basket interneurons, targeting somata, dendrites, and spines of pyramidal cells, have been proposed to control neuronal activity in prefrontal circuits. We recorded the spike-timing of identified neurons in the prelimbic cortex of anesthetized rats, and show that axo-axonic cells increase their firing during tail pinch-induced brain state-activation. In addition, axo-axonic cells differ from other GABAergic parvalbumin-expressing cells in their spike timing during DOWN- to UP-state transitions of slow oscillations and in their coupling to gamma and spindle oscillations. The distinct firing dynamics and synaptic targets of axo-axonic and other parvalbumin-expressing cells provide differential contributions to the temporal organization of prefrontal networks. PMID:23152631
Sidhu, Meneka K.; Stretton, Jason; Winston, Gavin P.; Bonelli, Silvia; Centeno, Maria; Vollmar, Christian; Symms, Mark; Thompson, Pamela J.; Koepp, Matthias J.
2013-01-01
Functional magnetic resonance imaging has demonstrated reorganization of memory encoding networks within the temporal lobe in temporal lobe epilepsy, but little is known of the extra-temporal networks in these patients. We investigated the temporal and extra-temporal reorganization of memory encoding networks in refractory temporal lobe epilepsy and the neural correlates of successful subsequent memory formation. We studied 44 patients with unilateral temporal lobe epilepsy and hippocampal sclerosis (24 left) and 26 healthy control subjects. All participants performed a functional magnetic resonance imaging memory encoding paradigm of faces and words with subsequent out-of-scanner recognition assessments. A blocked analysis was used to investigate activations during encoding and neural correlates of subsequent memory were investigated using an event-related analysis. Event-related activations were then correlated with out-of-scanner verbal and visual memory scores. During word encoding, control subjects activated the left prefrontal cortex and left hippocampus whereas patients with left hippocampal sclerosis showed significant additional right temporal and extra-temporal activations. Control subjects displayed subsequent verbal memory effects within left parahippocampal gyrus, left orbitofrontal cortex and fusiform gyrus whereas patients with left hippocampal sclerosis activated only right posterior hippocampus, parahippocampus and fusiform gyrus. Correlational analysis showed that patients with left hippocampal sclerosis with better verbal memory additionally activated left orbitofrontal cortex, anterior cingulate cortex and left posterior hippocampus. During face encoding, control subjects showed right lateralized prefrontal cortex and bilateral hippocampal activations. Patients with right hippocampal sclerosis showed increased temporal activations within the superior temporal gyri bilaterally and no increased extra-temporal areas of activation compared with control subjects. Control subjects showed subsequent visual memory effects within right amygdala, hippocampus, fusiform gyrus and orbitofrontal cortex. Patients with right hippocampal sclerosis showed subsequent visual memory effects within right posterior hippocampus, parahippocampal and fusiform gyri, and predominantly left hemisphere extra-temporal activations within the insula and orbitofrontal cortex. Correlational analysis showed that patients with right hippocampal sclerosis with better visual memory activated the amygdala bilaterally, right anterior parahippocampal gyrus and left insula. Right sided extra-temporal areas of reorganization observed in patients with left hippocampal sclerosis during word encoding and bilateral lateral temporal reorganization in patients with right hippocampal sclerosis during face encoding were not associated with subsequent memory formation. Reorganization within the medial temporal lobe, however, is an efficient process. The orbitofrontal cortex is critical to subsequent memory formation in control subjects and patients. Activations within anterior cingulum and insula correlated with better verbal and visual subsequent memory in patients with left and right hippocampal sclerosis, respectively, representing effective extra-temporal recruitment. PMID:23674488
Pfeifer, Jennifer H; Masten, Carrie L; Borofsky, Larissa A; Dapretto, Mirella; Fuligni, Andrew J; Lieberman, Matthew D
2009-01-01
Classic theories of self-development suggest people define themselves in part through internalized perceptions of other people's beliefs about them, known as reflected self-appraisals. This study uses functional magnetic resonance imaging to compare the neural correlates of direct and reflected self-appraisals in adolescence (N = 12, ages 11-14 years) and adulthood (N = 12, ages 23-30 years). During direct self-reflection, adolescents demonstrated greater activity than adults in networks relevant to self-perception (medial prefrontal and parietal cortices) and social-cognition (dorsomedial prefrontal cortex, temporal-parietal junction, and posterior superior temporal sulcus), suggesting adolescent self-construals may rely more heavily on others' perspectives about the self. Activity in the medial fronto-parietal network was also enhanced when adolescents took the perspective of someone more relevant to a given domain.
Sheldon, Signy; Levine, Brian
2015-12-01
During autobiographical memory retrieval, the medial temporal lobes (MTL) relate together multiple event elements, including object (within-item relations) and context (item-context relations) information, to create a cohesive memory. There is consistent support for a functional specialization within the MTL according to these relational processes, much of which comes from recognition memory experiments. In this study, we compared brain activation patterns associated with retrieving within-item relations (i.e., associating conceptual and sensory-perceptual object features) and item-context relations (i.e., spatial relations among objects) with respect to naturalistic autobiographical retrieval. We developed a novel paradigm that cued participants to retrieve information about past autobiographical events, non-episodic within-item relations, and non-episodic item-context relations with the perceptuomotor aspects of retrieval equated across these conditions. We used multivariate analysis techniques to extract common and distinct patterns of activity among these conditions within the MTL and across the whole brain, both in terms of spatial and temporal patterns of activity. The anterior MTL (perirhinal cortex and anterior hippocampus) was preferentially recruited for generating within-item relations later in retrieval whereas the posterior MTL (posterior parahippocampal cortex and posterior hippocampus) was preferentially recruited for generating item-context relations across the retrieval phase. These findings provide novel evidence for functional specialization within the MTL with respect to naturalistic memory retrieval. © 2015 Wiley Periodicals, Inc.
Spontaneous mentalizing during an interactive real world task: an fMRI study.
Spiers, Hugo J; Maguire, Eleanor A
2006-01-01
There are moments in everyday life when we need to consider the thoughts and intentions of other individuals in order to act in a socially appropriate manner. Most of this mentalizing occurs spontaneously as we go about our business in the complexity of the real world. As such, studying the neural basis of spontaneous mentalizing has been virtually impossible. Here we devised a means to achieve this by employing a unique combination of functional magnetic resonance imaging (fMRI), a detailed and interactive virtual reality simulation of a bustling familiar city, and a retrospective verbal report protocol. We were able to provide insights into the content of spontaneous mentalizing events and identify the brain regions that underlie them. We found increased activity in a number of regions, namely the right posterior superior temporal sulcus, the medial prefrontal cortex and the right temporal pole associated with spontaneous mentalizing. Furthermore, we observed the right posterior superior temporal sulcus to be consistently active during several different subtypes of mentalizing events. By contrast, medial prefrontal cortex seemed to be particularly involved in thinking about agents that were visible in the environment. Our findings show that it is possible to investigate the neural basis of mentalizing in a manner closer to its true context, the real world, opening up intriguing possibilities for making comparisons with those who have mentalizing problems.
Theta frequency decreases throughout the hippocampal formation in a focal epilepsy model.
Kilias, Antje; Häussler, Ute; Heining, Katharina; Froriep, Ulrich P; Haas, Carola A; Egert, Ulrich
2018-06-01
Mesial temporal lobe epilepsy is characterized by focal, recurrent spontaneous seizures, sclerosis and granule cell dispersion (GCD) in the hippocampal formation. Changes in theta rhythm properties have been correlated with the severity of hippocampal restructuring and were suggested as a cause of memory deficits accompanying epilepsy. For severe sclerosis, it has even been questioned whether theta band oscillations persist. We asked how theta oscillations change with graded restructuring along the longitudinal hippocampal axis and whether these changes correlate with the overall severity of temporal lobe epilepsy. We recorded local field potentials in the medial entorhinal cortex and along the septo-temporal axis of the dentate gyrus at sites with different degrees of GCD in freely behaving epileptic mice. Theta frequency was decreased at all recording positions throughout the dentate gyrus and in the medial entorhinal cortex, irrespective of the extent of GCD or the rate of severe epileptic events. The frequency reduction by up to 1.7 Hz, corresponding to 1/3 octaves within the theta range, was present during rest, exploration and running. Despite the frequency reduction, theta oscillations remained coherent across the hippocampal formation and were modulated by running speed as in controls. The reduction in theta frequency thus is likely not a consequence of the local restructuring but rather a global phenomenon affecting the hippocampal formation as a whole. © 2018 Wiley Periodicals, Inc.
Age-Group Differences in Medial Cortex Activity Associated with Thinking About Self-Relevant Agendas
Mitchell, Karen J.; Raye, Carol L.; Ebner, Natalie C.; Tubridy, Shannon M.; Frankel, Hillary; Johnson, Marcia K.
2009-01-01
This functional magnetic resonance imaging (fMRI) study compared young and older adults’ brain activity as they thought about motivationally self-relevant agendas (hopes and aspirations, duties and obligations) and concrete control items (e.g., shape of USA). Young adults’ activity replicated a double dissociation (Johnson et al., 2006): an area of medial frontal gyrus/anterior cingulate cortex was most active during hopes and aspirations trials and an area of medial posterior cortex, primarily posterior cingulate, was most active during duties and obligations trials. Compared to young adults, older adults showed attenuated responses in medial cortex, especially in medial prefrontal cortex, with both less activity during self-relevant trials and less deactivation during control trials. The fMRI data, together with post-scan reports and the behavioral literature on age-group differences in motivational orientation, suggest that the differences in medial cortex seen in this study reflect young and older adults’ focus on different information during motivationally self-relevant thought. Differences also may be related to an age-associated deficit in controlled cognitive processes that are engaged by complex self-reflection and mediated by prefrontal cortex. PMID:19485660
Weiner, Kevin S; Barnett, Michael A; Witthoft, Nathan; Golarai, Golijeh; Stigliani, Anthony; Kay, Kendrick N; Gomez, Jesse; Natu, Vaidehi S; Amunts, Katrin; Zilles, Karl; Grill-Spector, Kalanit
2018-04-15
The parahippocampal place area (PPA) is a widely studied high-level visual region in the human brain involved in place and scene processing. The goal of the present study was to identify the most probable location of place-selective voxels in medial ventral temporal cortex. To achieve this goal, we first used cortex-based alignment (CBA) to create a probabilistic place-selective region of interest (ROI) from one group of 12 participants. We then tested how well this ROI could predict place selectivity in each hemisphere within a new group of 12 participants. Our results reveal that a probabilistic ROI (pROI) generated from one group of 12 participants accurately predicts the location and functional selectivity in individual brains from a new group of 12 participants, despite between subject variability in the exact location of place-selective voxels relative to the folding of parahippocampal cortex. Additionally, the prediction accuracy of our pROI is significantly higher than that achieved by volume-based Talairach alignment. Comparing the location of the pROI of the PPA relative to published data from over 500 participants, including data from the Human Connectome Project, shows a striking convergence of the predicted location of the PPA and the cortical location of voxels exhibiting the highest place selectivity across studies using various methods and stimuli. Specifically, the most predictive anatomical location of voxels exhibiting the highest place selectivity in medial ventral temporal cortex is the junction of the collateral and anterior lingual sulci. Methodologically, we make this pROI freely available (vpnl.stanford.edu/PlaceSelectivity), which provides a means to accurately identify a functional region from anatomical MRI data when fMRI data are not available (for example, in patient populations). Theoretically, we consider different anatomical and functional factors that may contribute to the consistent anatomical location of place selectivity relative to the folding of high-level visual cortex. Copyright © 2017 Elsevier Inc. All rights reserved.
Repetition-related reductions in neural activity reveal component processes of mental simulation.
Szpunar, Karl K; St Jacques, Peggy L; Robbins, Clifford A; Wig, Gagan S; Schacter, Daniel L
2014-05-01
In everyday life, people adaptively prepare for the future by simulating dynamic events about impending interactions with people, objects and locations. Previous research has consistently demonstrated that a distributed network of frontal-parietal-temporal brain regions supports this ubiquitous mental activity. Nonetheless, little is known about the manner in which specific regions of this network contribute to component features of future simulation. In two experiments, we used a functional magnetic resonance (fMR)-repetition suppression paradigm to demonstrate that distinct frontal-parietal-temporal regions are sensitive to processing the scenarios or what participants imagined was happening in an event (e.g., medial prefrontal, posterior cingulate, temporal-parietal and middle temporal cortices are sensitive to the scenarios associated with future social events), people (medial prefrontal cortex), objects (inferior frontal and premotor cortices) and locations (posterior cingulate/retrosplenial, parahippocampal and posterior parietal cortices) that typically constitute simulations of personal future events. This pattern of results demonstrates that the neural substrates of these component features of event simulations can be reliably identified in the context of a task that requires participants to simulate complex, everyday future experiences.
ERIC Educational Resources Information Center
Hayes, Scott M.; Buchler, Norbou; Stokes, Jared; Kragel, James; Cabeza, Roberto
2011-01-01
Although the medial-temporal lobes (MTL), PFC, and parietal cortex are considered primary nodes in the episodic memory network, there is much debate regarding the contributions of MTL, PFC, and parietal subregions to recollection versus familiarity (dual-process theory) and the feasibility of accounts on the basis of a single memory strength…
Orbitofrontal cortex function and structure in depression.
Drevets, Wayne C
2007-12-01
The orbitofrontal cortex (OFC) has been implicated in the pathophysiology of major depression by evidence obtained using neuroimaging, neuropathologic, and lesion analysis techniques. The abnormalities revealed by these techniques show a regional specificity, and suggest that some OFC regions which appear cytoarchitectonically distinct also are functionally distinct with respect to mood regulation. For example, the severity of depression correlates inversely with physiological activity in parts of the posterior lateral and medial OFC, consistent with evidence that dysfunction of the OFC associated with cerebrovascular lesions increases the vulnerability for developing the major depressive syndrome. The posterior lateral and medial OFC function may also be impaired in individuals who develop primary mood disorders, as these patients show grey-matter volumetric reductions, histopathologic abnormalities, and altered hemodynamic responses to emotionally valenced stimuli, probabilistic reversal learning, and reward processing. In contrast, physiological activity in the anteromedial OFC situated in the ventromedial frontal polar cortex increases during the depressed versus the remitted phases of major depressive disorder to an extent that is positively correlated with the severity of depression. Effective antidepressant treatment is associated with a reduction in activity in this region. Taken together these data are compatible with evidence from studies in experimental animals indicating that some orbitofrontal and medial prefrontal cortex regions function to inhibit, while others function to enhance, emotional expression. Alterations in the functional balance between these regions and the circuits they form with anatomically related areas of the temporal lobe, striatum, thalamus, and brain stem thus may underlie the pathophysiology of mood disorders, such as major depression.
EEG-LORETA endophenotypes of the common idiopathic generalized epilepsy syndromes.
Clemens, B; Puskás, S; Besenyei, M; Emri, M; Opposits, G; Kis, S A; Hollódy, K; Fogarasi, A; Kondákor, I; Füle, K; Bense, K; Fekete, I
2012-05-01
We tested the hypothesis that the cortical areas with abnormal local EEG synchronization are dissimilar in the three common idiopathic generalized epilepsy (IGE) phenotypes: IGE patients with absence seizures (ABS), juvenile myoclonic epilepsy (JME) and epilepsy with generalized tonic-clonic seizures exclusively (EGTCS). Groups of unmedicated ABS, JME and EGTCS patients were investigated. Waking EEG background activity (without any epileptiform potentials) was analyzed by a source localization method, LORETA (Low Resolution Electromagnetic Tomography). Each patient group was compared to a separate, age-matched group of healthy control persons. Voxel-based, normalized broad-band (delta, theta, alpha, and beta) and very narrow band (VNB, 1Hz bandwidth, from 1 to 25Hz) LORETA activity (=current source density, A/m(2)) were computed for each person. Group comparison included subtraction (average patient data minus average control data) and group statistics (multiple t-tests, where Bonferroni-corrected p<0.05 values were accepted as statistically significant). Statistically not significant main findings were: overall increased delta and theta broad band activity in the ABS and JME groups; decrease of alpha and beta activity in the EGTCS group. Statistically significant main findings were as follows. JME group: bilaterally increased theta activity in posterior (temporal, parietal, and occipital) cortical areas; bilaterally increased activity in the medial and basal prefrontal area in the 8Hz VNB; bilaterally decreased activity in the precuneus, posterior cingulate and superior parietal lobule in the 11Hz and 21-22Hz VNBs. ABS group: bilaterally increased theta activity emerged in the basal prefrontal and medial temporal limbic areas. Decreased activity was found at 19-21Hz in the right postcentral gyrus and parts of the right superior and medial temporal gyri. EGTCS group: decreased activity was found in the frontal cortex and the postcentral gyrus at 10-11Hz, increased activity in the right parahippocampal gyrus at 16-18Hz. Increased theta activity in the posterior parts of the cortex is the endophenotype for JME. Increased theta activity in the fronto-temporal limbic areas is the endophenotype for ABS. Statistically not significant findings might indicate diffuse biochemical abnormality of the cortex in JME and ABS. EEG-LORETA endophenotypes may correspond to the selective propensity to generate absence and myoclonic seizures in the ABS and JME syndromes. Copyright © 2011 Elsevier B.V. All rights reserved.
Benoit, Roland G; Schacter, Daniel L
2015-08-01
It has been suggested that the simulation of hypothetical episodes and the recollection of past episodes are supported by fundamentally the same set of brain regions. The present article specifies this core network via Activation Likelihood Estimation (ALE). Specifically, a first meta-analysis revealed joint engagement of expected core-network regions during episodic memory and episodic simulation. These include parts of the medial surface, the hippocampus and parahippocampal cortex within the medial temporal lobes, and the temporal and inferior posterior parietal cortices on the lateral surface. Both capacities also jointly recruited additional regions such as parts of the bilateral dorsolateral prefrontal cortex. All of these core regions overlapped with the default network. Moreover, it has further been suggested that episodic simulation may require a stronger engagement of some of the core network's nodes as well as the recruitment of additional brain regions supporting control functions. A second ALE meta-analysis indeed identified such regions that were consistently more strongly engaged during episodic simulation than episodic memory. These comprised the core-network clusters located in the left dorsolateral prefrontal cortex and posterior inferior parietal lobe and other structures distributed broadly across the default and fronto-parietal control networks. Together, the analyses determine the set of brain regions that allow us to experience past and hypothetical episodes, thus providing an important foundation for studying the regions' specialized contributions and interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Event-related fMRI studies of false memory: An Activation Likelihood Estimation meta-analysis.
Kurkela, Kyle A; Dennis, Nancy A
2016-01-29
Over the last two decades, a wealth of research in the domain of episodic memory has focused on understanding the neural correlates mediating false memories, or memories for events that never happened. While several recent qualitative reviews have attempted to synthesize this literature, methodological differences amongst the empirical studies and a focus on only a sub-set of the findings has limited broader conclusions regarding the neural mechanisms underlying false memories. The current study performed a voxel-wise quantitative meta-analysis using activation likelihood estimation to investigate commonalities within the functional magnetic resonance imaging (fMRI) literature studying false memory. The results were broken down by memory phase (encoding, retrieval), as well as sub-analyses looking at differences in baseline (hit, correct rejection), memoranda (verbal, semantic), and experimental paradigm (e.g., semantic relatedness and perceptual relatedness) within retrieval. Concordance maps identified significant overlap across studies for each analysis. Several regions were identified in the general false retrieval analysis as well as multiple sub-analyses, indicating their ubiquitous, yet critical role in false retrieval (medial superior frontal gyrus, left precentral gyrus, left inferior parietal cortex). Additionally, several regions showed baseline- and paradigm-specific effects (hit/perceptual relatedness: inferior and middle occipital gyrus; CRs: bilateral inferior parietal cortex, precuneus, left caudate). With respect to encoding, analyses showed common activity in the left middle temporal gyrus and anterior cingulate cortex. No analysis identified a common cluster of activation in the medial temporal lobe. Copyright © 2015 Elsevier Ltd. All rights reserved.
Intrusive Images in Psychological Disorders
Brewin, Chris R.; Gregory, James D.; Lipton, Michelle; Burgess, Neil
2010-01-01
Involuntary images and visual memories are prominent in many types of psychopathology. Patients with posttraumatic stress disorder, other anxiety disorders, depression, eating disorders, and psychosis frequently report repeated visual intrusions corresponding to a small number of real or imaginary events, usually extremely vivid, detailed, and with highly distressing content. Both memory and imagery appear to rely on common networks involving medial prefrontal regions, posterior regions in the medial and lateral parietal cortices, the lateral temporal cortex, and the medial temporal lobe. Evidence from cognitive psychology and neuroscience implies distinct neural bases to abstract, flexible, contextualized representations (C-reps) and to inflexible, sensory-bound representations (S-reps). We revise our previous dual representation theory of posttraumatic stress disorder to place it within a neural systems model of healthy memory and imagery. The revised model is used to explain how the different types of distressing visual intrusions associated with clinical disorders arise, in terms of the need for correct interaction between the neural systems supporting S-reps and C-reps via visuospatial working memory. Finally, we discuss the treatment implications of the new model and relate it to existing forms of psychological therapy. PMID:20063969
Liu, Shuai; Wang, Yinyan; Xu, Kaibin; Ping, Fan; Li, Fang; Wang, Renzhi; Cheng, Xin
2018-01-01
Cognitive impairment and psychiatric symptoms are common in patients with Cushing's disease (CD) owing to elevated levels of glucocorticoids. Molecular neuroimaging methods may help to detect changes in the brain of patients with CD. The aim of this study was to investigate the characteristics of brain metabolism and its association with serum cortisol level in CD. We compared brain metabolism, as measured using [ 18 F]-fluorodeoxyglucose positron emission tomography (FDG PET), between 92 patients with CD and 118 normal subjects on a voxel-wise basis. Pearson correlation was performed to evaluate the association between cerebral FDG uptake and serum cortisol level in patients with CD. We demonstrated that certain brain regions in patients with CD showed significantly increased FDG uptake, including the basal ganglia, anteromedial temporal lobe, thalamus, precentral cortex, and cerebellum. The clusters that demonstrated significantly decreased uptake were mainly located in the medial and lateral frontal cortex, superior and inferior parietal lobule, medial occipital cortex, and insular cortex. The metabolic rate of the majority of these regions was found to be significantly correlated with the serum cortisol level. Our findings may help to explain the underlying mechanisms of cognitive impairment and psychiatric symptoms in patients exposed to excessive glucocorticoids and evaluate the efficacy of treatments during follow-up.
Bode, Stefan; Bennett, Daniel; Sewell, David K; Paton, Bryan; Egan, Gary F; Smith, Philip L; Murawski, Carsten
2018-03-01
According to sequential sampling models, perceptual decision-making is based on accumulation of noisy evidence towards a decision threshold. The speed with which a decision is reached is determined by both the quality of incoming sensory information and random trial-by-trial variability in the encoded stimulus representations. To investigate those decision dynamics at the neural level, participants made perceptual decisions while functional magnetic resonance imaging (fMRI) was conducted. On each trial, participants judged whether an image presented under conditions of high, medium, or low visual noise showed a piano or a chair. Higher stimulus quality (lower visual noise) was associated with increased activation in bilateral medial occipito-temporal cortex and ventral striatum. Lower stimulus quality was related to stronger activation in posterior parietal cortex (PPC) and dorsolateral prefrontal cortex (DLPFC). When stimulus quality was fixed, faster response times were associated with a positive parametric modulation of activation in medial prefrontal and orbitofrontal cortex, while slower response times were again related to more activation in PPC, DLPFC and insula. Our results suggest that distinct neural networks were sensitive to the quality of stimulus information, and to trial-to-trial variability in the encoded stimulus representations, but that reaching a decision was a consequence of their joint activity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dissociating medial frontal and posterior cingulate activity during self-reflection.
Johnson, Marcia K; Raye, Carol L; Mitchell, Karen J; Touryan, Sharon R; Greene, Erich J; Nolen-Hoeksema, Susan
2006-06-01
Motivationally significant agendas guide perception, thought and behaviour, helping one to define a 'self' and to regulate interactions with the environment. To investigate neural correlates of thinking about such agendas, we asked participants to think about their hopes and aspirations (promotion focus) or their duties and obligations (prevention focus) during functional magnetic resonance imaging and compared these self-reflection conditions with a distraction condition in which participants thought about non-self-relevant items. Self-reflection resulted in greater activity than distraction in dorsomedial frontal/anterior cingulate cortex and posterior cingulate cortex/precuneus, consistent with previous findings of activity in these areas during self-relevant thought. For additional medial areas, we report new evidence of a double dissociation of function between medial prefrontal/anterior cingulate cortex, which showed relatively greater activity to thinking about hopes and aspirations, and posterior cingulate cortex/precuneus, which showed relatively greater activity to thinking about duties and obligations. One possibility is that activity in medial prefrontal cortex is associated with instrumental or agentic self-reflection, whereas posterior medial cortex is associated with experiential self-reflection. Another, not necessarily mutually exclusive, possibility is that medial prefrontal cortex is associated with a more inward-directed focus, while posterior cingulate is associated with a more outward-directed, social or contextual focus.
Dissociating medial frontal and posterior cingulate activity during self-reflection
Johnson, Marcia K.; Raye, Carol L.; Mitchell, Karen J.; Touryan, Sharon R.; Greene, Erich J.; Nolen-Hoeksema, Susan
2006-01-01
Motivationally significant agendas guide perception, thought and behaviour, helping one to define a ‘self’ and to regulate interactions with the environment. To investigate neural correlates of thinking about such agendas, we asked participants to think about their hopes and aspirations (promotion focus) or their duties and obligations (prevention focus) during functional magnetic resonance imaging and compared these self-reflection conditions with a distraction condition in which participants thought about non-self-relevant items. Self-reflection resulted in greater activity than distraction in dorsomedial frontal/anterior cingulate cortex and posterior cingulate cortex/precuneus, consistent with previous findings of activity in these areas during self-relevant thought. For additional medial areas, we report new evidence of a double dissociation of function between medial prefrontal/anterior cingulate cortex, which showed relatively greater activity to thinking about hopes and aspirations, and posterior cingulate cortex/precuneus, which showed relatively greater activity to thinking about duties and obligations. One possibility is that activity in medial prefrontal cortex is associated with instrumental or agentic self-reflection, whereas posterior medial cortex is associated with experiential self-reflection. Another, not necessarily mutually exclusive, possibility is that medial prefrontal cortex is associated with a more inward-directed focus, while posterior cingulate is associated with a more outward-directed, social or contextual focus. PMID:18574518
Medial temporal lobe reinstatement of content-specific details predicts source memory
Liang, Jackson C.; Preston, Alison R.
2016-01-01
Leading theories propose that when remembering past events, medial temporal lobe (MTL) structures reinstate the neural patterns that were active when those events were initially encoded. Accurate reinstatement is hypothesized to support detailed recollection of memories, including their source. While several studies have linked cortical reinstatement to successful retrieval, indexing reinstatement within the MTL network and its relationship to memory performance has proved challenging. Here, we addressed this gap in knowledge by having participants perform an incidental encoding task, during which they visualized people, places, and objects in response to adjective cues. During a surprise memory test, participants saw studied and novel adjectives and indicated the imagery task they performed for each adjective. A multivariate pattern classifier was trained to discriminate the imagery tasks based on functional magnetic resonance imaging (fMRI) responses from hippocampus and MTL cortex at encoding. The classifier was then tested on MTL patterns during the source memory task. We found that MTL encoding patterns were reinstated during successful source retrieval. Moreover, when participants made source misattributions, errors were predicted by reinstatement of incorrect source content in MTL cortex. We further observed a gradient of content-specific reinstatement along the anterior-posterior axis of hippocampus and MTL cortex. Within anterior hippocampus, we found that reinstatement of person content was related to source memory accuracy, whereas reinstatement of place information across the entire hippocampal axis predicted correct source judgments. Content-specific reinstatement was also graded across MTL cortex, with PRc patterns evincing reactivation of people and more posterior regions, including PHc, showing evidence for reinstatement of places and objects. Collectively, these findings provide key evidence that source recollection relies on reinstatement of past experience within the MTL network. PMID:28029355
Dynamic oscillatory processes governing cued orienting and allocation of auditory attention
Ahveninen, Jyrki; Huang, Samantha; Belliveau, John W.; Chang, Wei-Tang; Hämäläinen, Matti
2013-01-01
In everyday listening situations, we need to constantly switch between alternative sound sources and engage attention according to cues that match our goals and expectations. The exact neuronal bases of these processes are poorly understood. We investigated oscillatory brain networks controlling auditory attention using cortically constrained fMRI-weighted magnetoencephalography/ electroencephalography (MEG/EEG) source estimates. During consecutive trials, subjects were instructed to shift attention based on a cue, presented in the ear where a target was likely to follow. To promote audiospatial attention effects, the targets were embedded in streams of dichotically presented standard tones. Occasionally, an unexpected novel sound occurred opposite to the cued ear, to trigger involuntary orienting. According to our cortical power correlation analyses, increased frontoparietal/temporal 30–100 Hz gamma activity at 200–1400 ms after cued orienting predicted fast and accurate discrimination of subsequent targets. This sustained correlation effect, possibly reflecting voluntary engagement of attention after the initial cue-driven orienting, spread from the temporoparietal junction, anterior insula, and inferior frontal (IFC) cortices to the right frontal eye fields. Engagement of attention to one ear resulted in a significantly stronger increase of 7.5–15 Hz alpha in the ipsilateral than contralateral parieto-occipital cortices 200–600 ms after the cue onset, possibly reflecting crossmodal modulation of the dorsal visual pathway during audiospatial attention. Comparisons of cortical power patterns also revealed significant increases of sustained right medial frontal cortex theta power, right dorsolateral prefrontal cortex and anterior insula/IFC beta power, and medial parietal cortex and posterior cingulate cortex gamma activity after cued vs. novelty-triggered orienting (600–1400 ms). Our results reveal sustained oscillatory patterns associated with voluntary engagement of auditory spatial attention, with the frontoparietal and temporal gamma increases being best predictors of subsequent behavioral performance. PMID:23915050
Medial temporal lobe reinstatement of content-specific details predicts source memory.
Liang, Jackson C; Preston, Alison R
2017-06-01
Leading theories propose that when remembering past events, medial temporal lobe (MTL) structures reinstate the neural patterns that were active when those events were initially encoded. Accurate reinstatement is hypothesized to support detailed recollection of memories, including their source. While several studies have linked cortical reinstatement to successful retrieval, indexing reinstatement within the MTL network and its relationship to memory performance has proved challenging. Here, we addressed this gap in knowledge by having participants perform an incidental encoding task, during which they visualized people, places, and objects in response to adjective cues. During a surprise memory test, participants saw studied and novel adjectives and indicated the imagery task they performed for each adjective. A multivariate pattern classifier was trained to discriminate the imagery tasks based on functional magnetic resonance imaging (fMRI) responses from hippocampus and MTL cortex at encoding. The classifier was then tested on MTL patterns during the source memory task. We found that MTL encoding patterns were reinstated during successful source retrieval. Moreover, when participants made source misattributions, errors were predicted by reinstatement of incorrect source content in MTL cortex. We further observed a gradient of content-specific reinstatement along the anterior-posterior axis of hippocampus and MTL cortex. Within anterior hippocampus, we found that reinstatement of person content was related to source memory accuracy, whereas reinstatement of place information across the entire hippocampal axis predicted correct source judgments. Content-specific reinstatement was also graded across MTL cortex, with PRc patterns evincing reactivation of people and more posterior regions, including PHc, showing evidence for reinstatement of places and objects. Collectively, these findings provide key evidence that source recollection relies on reinstatement of past experience within the MTL network. Copyright © 2016 Elsevier Ltd. All rights reserved.
Verbal creativity in semantic variant primary progressive aphasia.
Wu, Teresa Q; Miller, Zachary A; Adhimoolam, Babu; Zackey, Diana D; Khan, Baber K; Ketelle, Robin; Rankin, Katherine P; Miller, Bruce L
2015-02-01
Emergence of visual and musical creativity in the setting of neurologic disease has been reported in patients with semantic variant primary progressive aphasia (svPPA), also called semantic dementia (SD). It is hypothesized that loss of left anterior frontotemporal function facilitates activity of the right posterior hemispheric structures, leading to de novo creativity observed in visual artistic representation. We describe creativity in the verbal domain, for the first time, in three patients with svPPA. Clinical presentations are carefully described in three svPPA patients exhibiting verbal creativity, including neuropsychology, neurologic exam, and structural magnetic resonance imaging (MRI). Voxel-based morphometry (VBM) was performed to quantify brain atrophy patterns in these patients against age-matched healthy controls. All three patients displayed new-onset creative writing behavior and produced extensive original work during the course of disease. Patient A developed interest in wordplay and generated a large volume of poetry. Patient B became fascinated with rhyming and punning. Patient C wrote and published a lifestyle guidebook. An overlap of their structural MR scans showed uniform sparing in the lateral portions of the language-dominant temporal lobe (superior and middle gyri) and atrophy in the medial temporal cortex (amygdala, limbic cortex). New-onset creativity in svPPA may represent a paradoxical functional facilitation. A similar drive for production is found in visually artistic and verbally creative patients. Mirroring the imaging findings in visually artistic patients, verbal preoccupation and creativity may be associated with medial atrophy in the language-dominant temporal lobe, but sparing of lateral dominant temporal and non-dominant posterior cortices.
Cultural differences in human brain activity: a quantitative meta-analysis.
Han, Shihui; Ma, Yina
2014-10-01
Psychologists have been trying to understand differences in cognition and behavior between East Asian and Western cultures within a single cognitive framework such as holistic versus analytic or interdependent versus independent processes. However, it remains unclear whether cultural differences in multiple psychological processes correspond to the same or different neural networks. We conducted a quantitative meta-analysis of 35 functional MRI studies to examine cultural differences in brain activity engaged in social and non-social processes. We showed that social cognitive processes are characterized by stronger activity in the dorsal medial prefrontal cortex, lateral frontal cortex and temporoparietal junction in East Asians but stronger activity in the anterior cingulate, ventral medial prefrontal cortex and bilateral insula in Westerners. Social affective processes are associated with stronger activity in the right dorsal lateral frontal cortex in East Asians but greater activity in the left insula and right temporal pole in Westerners. Non-social processes induce stronger activity in the left inferior parietal cortex, left middle occipital and left superior parietal cortex in East Asians but greater activations in the right lingual gyrus, right inferior parietal cortex and precuneus in Westerners. The results suggest that cultural differences in social and non-social processes are mediated by distinct neural networks. Moreover, East Asian cultures are associated with increased neural activity in the brain regions related to inference of others' mind and emotion regulation whereas Western cultures are associated with enhanced neural activity in the brain areas related to self-relevance encoding and emotional responses during social cognitive/affective processes. Copyright © 2014 Elsevier Inc. All rights reserved.
Persistent déjà vu associated with hyperperfusion in the entorhinal cortex.
Takeda, Youji; Kurita, Tsugiko; Sakurai, Kotaro; Shiga, Tohru; Tamaki, Nagara; Koyama, Tsukasa
2011-06-01
Déjà vu is a common experience among the normal population. However, in individuals with temporal lobe epilepsy, it often occurs as a seizure manifestation. The specific cause of such déjà vu is not yet known. Here, we report a case of epilepsy with persistent déjà vu. The patient described the state as if he were living the same life he had lived before. Blood perfusion single-photon-emission computed tomography (SPECT) performed during the persistent déjà vu showed hyperperfusion in the left medial temporal area; discontinuation of déjà vu was accompanied by disappearance of the hyperperfused area on SPECT. Analysis with three-dimensional co-registration of SPECT and MRI revealed that the hyperperfused area during the persistent déjà vu was in the entorhinal cortex of the left temporal lobe. According to recent theories of recognition memory, malfunction of the parahippocampal area may cause déjà vu. It is also suggested that epileptic activity in the parahippocampal area, especially the entorhinal cortex, may elicit déjà vu. Copyright © 2011 Elsevier Inc. All rights reserved.
Wang, A Ting; Lee, Susan S; Sigman, Marian; Dapretto, Mirella
2007-06-01
Understanding a speaker's communicative intent in everyday interactions is likely to draw on cues such as facial expression and tone of voice. Prior research has shown that individuals with autism spectrum disorders (ASD) show reduced activity in brain regions that respond selectively to the face and voice. However, there is also evidence that activity in key regions can be increased if task demands allow for explicit processing of emotion. To examine the neural circuitry underlying impairments in interpreting communicative intentions in ASD using irony comprehension as a test case, and to determine whether explicit instructions to attend to facial expression and tone of voice will elicit more normative patterns of brain activity. Eighteen boys with ASD (aged 7-17 years, full-scale IQ >70) and 18 typically developing (TD) boys underwent functional magnetic resonance imaging at the Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles. Blood oxygenation level-dependent brain activity during the presentation of short scenarios involving irony. Behavioral performance (accuracy and response time) was also recorded. Reduced activity in the medial prefrontal cortex and right superior temporal gyrus was observed in children with ASD relative to TD children during the perception of potentially ironic vs control scenarios. Importantly, a significant group x condition interaction in the medial prefrontal cortex showed that activity was modulated by explicit instructions to attend to facial expression and tone of voice only in the ASD group. Finally, medial prefrontal cortex activity was inversely related to symptom severity in children with ASD such that children with greater social impairment showed less activity in this region. Explicit instructions to attend to facial expression and tone of voice can elicit increased activity in the medial prefrontal cortex, part of a network important for understanding the intentions of others, in children with ASD. These findings suggest a strategy for future intervention research.
Onisawa, Naomi; Manabe, Hiroyuki; Mori, Kensaku
2017-01-01
During slow-wave sleep, interareal communications via coordinated, slow oscillatory activities occur in the large-scale networks of the mammalian neocortex. Because olfactory cortex (OC) areas, which belong to paleocortex, show characteristic sharp-wave (SPW) activity during slow-wave sleep, we examined whether OC SPWs in freely behaving rats occur in temporal coordination with up- and downstates of the orbitofrontal cortex (OFC) slow oscillation. Simultaneous recordings of local field potentials and spike activities in the OC and OFC showed that during the downstate in the OFC, the OC also exhibited downstate with greatly reduced neuronal activity and suppression of SPW generation. OC SPWs occurred during two distinct phases of the upstate of the OFC: early-phase SPWs occurred at the start of upstate shortly after the down-to-up transition in the OFC, whereas late-phase SPWs were generated at the end of upstate shortly before the up-to-down transition. Such temporal coordination between neocortical up- and downstates and olfactory system SPWs was observed between the prefrontal cortex areas (OFC and medial prefrontal cortex) and the OC areas (anterior piriform cortex and posterior piriform cortex). These results suggest that during slow-wave sleep, OC and OFC areas communicate preferentially in specific time windows shortly after the down-to-up transition and shortly before the up-to-down transition. Simultaneous recordings of local field potentials and spike activities in the anterior piriform cortex (APC) and orbitofrontal cortex (OFC) during slow-wave sleep showed that APC sharp waves tended to occur during two distinct phases of OFC upstate: early phase, shortly after the down-to-up transition, and late phase, shortly before the up-to-down transition, suggesting that during slow-wave sleep, olfactory cortex and OFC areas communicate preferentially in the specific time windows. Copyright © 2017 the American Physiological Society.
Onisawa, Naomi; Mori, Kensaku
2016-01-01
During slow-wave sleep, interareal communications via coordinated, slow oscillatory activities occur in the large-scale networks of the mammalian neocortex. Because olfactory cortex (OC) areas, which belong to paleocortex, show characteristic sharp-wave (SPW) activity during slow-wave sleep, we examined whether OC SPWs in freely behaving rats occur in temporal coordination with up- and downstates of the orbitofrontal cortex (OFC) slow oscillation. Simultaneous recordings of local field potentials and spike activities in the OC and OFC showed that during the downstate in the OFC, the OC also exhibited downstate with greatly reduced neuronal activity and suppression of SPW generation. OC SPWs occurred during two distinct phases of the upstate of the OFC: early-phase SPWs occurred at the start of upstate shortly after the down-to-up transition in the OFC, whereas late-phase SPWs were generated at the end of upstate shortly before the up-to-down transition. Such temporal coordination between neocortical up- and downstates and olfactory system SPWs was observed between the prefrontal cortex areas (OFC and medial prefrontal cortex) and the OC areas (anterior piriform cortex and posterior piriform cortex). These results suggest that during slow-wave sleep, OC and OFC areas communicate preferentially in specific time windows shortly after the down-to-up transition and shortly before the up-to-down transition. NEW & NOTEWORTHY Simultaneous recordings of local field potentials and spike activities in the anterior piriform cortex (APC) and orbitofrontal cortex (OFC) during slow-wave sleep showed that APC sharp waves tended to occur during two distinct phases of OFC upstate: early phase, shortly after the down-to-up transition, and late phase, shortly before the up-to-down transition, suggesting that during slow-wave sleep, olfactory cortex and OFC areas communicate preferentially in the specific time windows. PMID:27733591
Developmental changes in the structure of the social brain in late childhood and adolescence.
Mills, Kathryn L; Lalonde, François; Clasen, Liv S; Giedd, Jay N; Blakemore, Sarah-Jayne
2014-01-01
Social cognition provides humans with the necessary skills to understand and interact with one another. One aspect of social cognition, mentalizing, is associated with a network of brain regions often referred to as the 'social brain.' These consist of medial prefrontal cortex [medial Brodmann Area 10 (mBA10)], temporoparietal junction (TPJ), posterior superior temporal sulcus (pSTS) and anterior temporal cortex (ATC). How these specific regions develop structurally across late childhood and adolescence is not well established. This study examined the structural developmental trajectories of social brain regions in the longest ongoing longitudinal neuroimaging study of human brain maturation. Structural trajectories of grey matter volume, cortical thickness and surface area were analyzed using surface-based cortical reconstruction software and mixed modeling in a longitudinal sample of 288 participants (ages 7-30 years, 857 total scans). Grey matter volume and cortical thickness in mBA10, TPJ and pSTS decreased from childhood into the early twenties. The ATC increased in grey matter volume until adolescence and in cortical thickness until early adulthood. Surface area for each region followed a cubic trajectory, peaking in early or pre-adolescence before decreasing into the early twenties. These results are discussed in the context of developmental changes in social cognition across adolescence.
Afonso, Veronica M; Sison, Margarette; Lovic, Vedran; Fleming, Alison S
2007-06-01
Temporal sequences of sexual and maternal behaviors in female rats and their correlation with each other and with performance on a sensory-motor gating response inhibition task assessed by prepulse inhibition (PPI) were investigated following medial prefrontal cortex (mPFC) lesions. Following excitotoxic mPFC (n = 10) or sham (n = 9) lesions, sexual behaviors across the ovarian cycle were scored. After mating and parturition, maternal interactions were scored until pups reached postnatal Day 10. After resumption of the ovarian cycle, the female rats were tested for PPI. Compared with sham lesions, mPFC lesions impaired proceptive behaviors and some maternal behaviors (e.g., pup retrieval, pup licking) but did not affect others (e.g., nest building, pup mouthing). Lesions disrupted temporal sequences of solicitations (number of male orientations followed, within 4 s, by a level change) and pup retrievals (number of pup retrievals followed, within 5 s, by another retrieval). These sequential behavior patterns were significantly correlated with each other and with PPI. However, when PPI effects were partialled out, group differences were less strong, but persisted. This study demonstrated that mPFC manipulations affect actions rich in sequential structure in response to biologically relevant stimuli. Copyright (c) 2007 APA, all rights reserved.
Furl, N; van Rijsbergen, N J; Treves, A; Dolan, R J
2007-08-01
Previous studies have shown reductions of the functional magnetic resonance imaging (fMRI) signal in response to repetition of specific visual stimuli. We examined how adaptation affects the neural responses associated with categorization behavior, using face adaptation aftereffects. Adaptation to a given facial category biases categorization towards non-adapted facial categories in response to presentation of ambiguous morphs. We explored a hypothesis, posed by recent psychophysical studies, that these adaptation-induced categorizations are mediated by activity in relatively advanced stages within the occipitotemporal visual processing stream. Replicating these studies, we find that adaptation to a facial expression heightens perception of non-adapted expressions. Using comparable behavioral methods, we also show that adaptation to a specific identity heightens perception of a second identity in morph faces. We show both expression and identity effects to be associated with heightened anterior medial temporal lobe activity, specifically when perceiving the non-adapted category. These regions, incorporating bilateral anterior ventral rhinal cortices, perirhinal cortex and left anterior hippocampus are regions previously implicated in high-level visual perception. These categorization effects were not evident in fusiform or occipital gyri, although activity in these regions was reduced to repeated faces. The findings suggest that adaptation-induced perception is mediated by activity in regions downstream to those showing reductions due to stimulus repetition.
Content Representation in the Human Medial Temporal Lobe
Liang, Jackson C.; Wagner, Anthony D.
2013-01-01
Current theories of medial temporal lobe (MTL) function focus on event content as an important organizational principle that differentiates MTL subregions. Perirhinal and parahippocampal cortices may play content-specific roles in memory, whereas hippocampal processing is alternately hypothesized to be content specific or content general. Despite anatomical evidence for content-specific MTL pathways, empirical data for content-based MTL subregional dissociations are mixed. Here, we combined functional magnetic resonance imaging with multiple statistical approaches to characterize MTL subregional responses to different classes of novel event content (faces, scenes, spoken words, sounds, visual words). Univariate analyses revealed that responses to novel faces and scenes were distributed across the anterior–posterior axis of MTL cortex, with face responses distributed more anteriorly than scene responses. Moreover, multivariate pattern analyses of perirhinal and parahippocampal data revealed spatially organized representational codes for multiple content classes, including nonpreferred visual and auditory stimuli. In contrast, anterior hippocampal responses were content general, with less accurate overall pattern classification relative to MTL cortex. Finally, posterior hippocampal activation patterns consistently discriminated scenes more accurately than other forms of content. Collectively, our findings indicate differential contributions of MTL subregions to event representation via a distributed code along the anterior–posterior axis of MTL that depends on the nature of event content. PMID:22275474
Abnormal regional cerebral blood flow in childhood autism.
Ohnishi, T; Matsuda, H; Hashimoto, T; Kunihiro, T; Nishikawa, M; Uema, T; Sasaki, M
2000-09-01
Neuroimaging studies of autism have shown abnormalities in the limbic system and cerebellar circuits and additional sites. These findings are not, however, specific or consistent enough to build up a coherent theory of the origin and nature of the brain abnormality in autistic patients. Twenty-three children with infantile autism and 26 non-autistic controls matched for IQ and age were examined using brain-perfusion single photon emission computed tomography with technetium-99m ethyl cysteinate dimer. In autistic subjects, we assessed the relationship between regional cerebral blood flow (rCBF) and symptom profiles. Images were anatomically normalized, and voxel-by-voxel analyses were performed. Decreases in rCBF in autistic patients compared with the control group were identified in the bilateral insula, superior temporal gyri and left prefrontal cortices. Analysis of the correlations between syndrome scores and rCBF revealed that each syndrome was associated with a specific pattern of perfusion in the limbic system and the medial prefrontal cortex. The results confirmed the associations of (i) impairments in communication and social interaction that are thought to be related to deficits in the theory of mind (ToM) with altered perfusion in the medial prefrontal cortex and anterior cingulate gyrus, and (ii) the obsessive desire for sameness with altered perfusion in the right medial temporal lobe. The perfusion abnormalities seem to be related to the cognitive dysfunction observed in autism, such as deficits in ToM, abnormal responses to sensory stimuli, and the obsessive desire for sameness. The perfusion patterns suggest possible locations of abnormalities of brain function underlying abnormal behaviour patterns in autistic individuals.
Different macaque models of cognitive aging exhibit task-dependent behavioral disparities.
Comrie, Alison E; Gray, Daniel T; Smith, Anne C; Barnes, Carol A
2018-05-15
Deficits in cognitive functions that rely on the integrity of the frontal and temporal lobes are characteristic of normative human aging. Due to similar aging phenotypes and homologous cortical organization between nonhuman primates and humans, several species of macaque monkeys are used as models to explore brain senescence. These macaque species are typically regarded as equivalent models of cognitive aging, yet no direct comparisons have been made to support this assumption. Here we used adult and aged rhesus and bonnet macaques (Macaca mulatta and Macaca radiata) to characterize the effect of age on acquisition and retention of information across delays in a battery of behavioral tasks that rely on prefrontal cortex and medial temporal lobe networks. The cognitive functions that were tested include visuospatial short-term memory, object recognition memory, and object-reward association memory. In general, bonnet macaques at all ages outperformed rhesus macaques on tasks thought to rely primarily on the prefrontal cortex, and were more resilient to age-related deficits in these behaviors. On the other hand, both species were comparably impaired by age on tasks thought to preferentially engage the medial temporal lobe. Together, these results suggest that rhesus and bonnet macaques are not equivalent models of cognitive aging and highlight the value of cross-species comparisons. These observations should enable improved design and interpretation of future experiments aimed at understanding changes in cognition across the lifespan. Copyright © 2018 Elsevier B.V. All rights reserved.
Functional Neuroimaging of Self-Referential Encoding with Age
Gutchess, Angela H.; Kensinger, Elizabeth A.; Schacter, Daniel L.
2009-01-01
Aging impacts memory formation and the engagement of frontal and medial temporal regions. However, much of the research to date has focused on the encoding of neutral verbal and visual information. The present fMRI study investigated age differences in a social encoding task while participants made judgments about the self or another person. Although previous studies identified an intact self-reference effect with age, subserved by robust engagement of medial prefrontal cortex (mPFC) by both young and older adults, we identified a number of age differences. In regions including superior mPFC, inferior prefrontal cortex, and anterior and posterior cingulate cortex, young and older adults exhibited reversals in the pattern of activity for self and other conditions. Whereas young primarily evidenced subsequent forgetting effects in the self-reference condition, older adults demonstrated subsequent memory effects in the other-reference condition. These results indicate fundamental differences across the age groups in the engagement of elaborative encoding processes. We suggest that older adults may encode information about the self in a more normative manner, whereas young adults focus on encoding the unique aspects of the self and distinguishing the self from others. PMID:19765600
Perfusion network shift during seizures in medial temporal lobe epilepsy.
Sequeira, Karen M; Tabesh, Ali; Sainju, Rup K; DeSantis, Stacia M; Naselaris, Thomas; Joseph, Jane E; Ahlman, Mark A; Spicer, Kenneth M; Glazier, Steve S; Edwards, Jonathan C; Bonilha, Leonardo
2013-01-01
Medial temporal lobe epilepsy (MTLE) is associated with limbic atrophy involving the hippocampus, peri-hippocampal and extra-temporal structures. While MTLE is related to static structural limbic compromise, it is unknown whether the limbic system undergoes dynamic regional perfusion network alterations during seizures. In this study, we aimed to investigate state specific (i.e. ictal versus interictal) perfusional limbic networks in patients with MTLE. We studied clinical information and single photon emission computed tomography (SPECT) images obtained with intravenous infusion of the radioactive tracer Technetium- Tc 99 m Hexamethylpropyleneamine Oxime (Tc-99 m HMPAO) during ictal and interictal state confirmed by video-electroencephalography (VEEG) in 20 patients with unilateral MTLE (12 left and 8 right MTLE). Pair-wise voxel-based analyses were used to define global changes in tracer between states. Regional tracer uptake was calculated and state specific adjacency matrices were constructed based on regional correlation of uptake across subjects. Graph theoretical measures were applied to investigate global and regional state specific network reconfigurations. A significant increase in tracer uptake was observed during the ictal state in the medial temporal region, cerebellum, thalamus, insula and putamen. From network analyses, we observed a relative decreased correlation between the epileptogenic temporal region and remaining cortex during the interictal state, followed by a surge of cross-correlated perfusion in epileptogenic temporal-limbic structures during a seizure, corresponding to local network integration. These results suggest that MTLE is associated with a state specific perfusion and possibly functional organization consisting of a surge of limbic cross-correlated tracer uptake during a seizure, with a relative disconnection of the epileptogenic temporal lobe in the interictal period. This pattern of state specific shift in metabolic networks in MTLE may improve the understanding of epileptogenesis and neuropsychological impairments associated with MTLE.
Le Merre, Pierre; Esmaeili, Vahid; Charrière, Eloïse; Galan, Katia; Salin, Paul-A; Petersen, Carl C H; Crochet, Sylvain
2018-01-03
The neural circuits underlying learning and execution of goal-directed behaviors remain to be determined. Here, through electrophysiological recordings, we investigated fast sensory processing across multiple cortical areas as mice learned to lick a reward spout in response to a brief deflection of a single whisker. Sensory-evoked signals were absent from medial prefrontal cortex and dorsal hippocampus in naive mice, but developed with task learning and correlated with behavioral performance in mice trained in the detection task. The sensory responses in medial prefrontal cortex and dorsal hippocampus occurred with short latencies of less than 50 ms after whisker deflection. Pharmacological and optogenetic inactivation of medial prefrontal cortex or dorsal hippocampus impaired behavioral performance. Neuronal activity in medial prefrontal cortex and dorsal hippocampus thus appears to contribute directly to task performance, perhaps providing top-down control of learned, context-dependent transformation of sensory input into goal-directed motor output. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Medial prefrontal cortex supports source memory accuracy for self-referenced items
Leshikar, Eric D.; Duarte, Audrey
2013-01-01
Previous behavioral work suggests that processing information in relation to the self enhances subsequent item recognition. Neuroimaging evidence further suggests that regions along the cortical midline, particularly those of the medial prefrontal cortex, underlie this benefit. There has been little work to date, however, on the effects of self-referential encoding on source memory accuracy or whether the medial prefrontal cortex might contribute to source memory for self-referenced materials. In the current study, we used fMRI to measure neural activity while participants studied and subsequently retrieved pictures of common objects superimposed on one of two background scenes (sources) under either self-reference or self-external encoding instructions. Both item recognition and source recognition were better for objects encoded self-referentially than self-externally. Neural activity predictive of source accuracy was observed in the medial prefrontal cortex (BA 10) at the time of study for self-referentially but not self-externally encoded objects. The results of this experiment suggest that processing information in relation to the self leads to a mnemonic benefit for source level features, and that activity in the medial prefrontal cortex contributes to this source memory benefit. This evidence expands the purported role that the medial prefrontal cortex plays in self-referencing. PMID:21936739
Increased GABA Levels in Medial Prefrontal Cortex of Young Adults with Narcolepsy
Kim, Seog Ju; Lyoo, In Kyoon; Lee, Yujin S.; Sung, Young Hoon; Kim, Hengjun J.; Kim, Jihyun H.; Kim, Kye Hyun; Jeong, Do-Un
2008-01-01
Study Objectives: To explore absolute concentrations of brain metabolites including gamma amino-butyric acid (GABA) in the medial prefrontal cortex and basal ganglia of young adults with narcolepsy. Design: Proton magnetic resonance (MR) spectroscopy centered on the medial prefrontal cortex and the basal ganglia was acquired. The absolute concentrations of brain metabolites including GABA and glutamate were assessed and compared between narcoleptic patients and healthy comparison subjects. Setting: Sleep and Chronobiology Center at Seoul National University Hospital; A high strength 3.0 Tesla MR scanner in the Department of Radiology at Seoul National University Hospital. Patients or Participants: Seventeen young adults with a sole diagnosis of HLA DQB1 0602 positive narcolepsy with cataplexy (25.1 ± 4.6 years old) and 17 healthy comparison subjects (26.8 ± 4.8 years old). Interventions: N/A. Measurements and Results: Relative to comparison subjects, narcoleptic patients had higher GABA concentration in the medial prefrontal cortex (t = 4.10, P <0.001). Narcoleptic patients with nocturnal sleep disturbance had higher GABA concentration in the medial prefrontal cortex than those without nocturnal sleep disturbance (t = 2.45, P= 0.03), but had lower GABA concentration than comparison subjects (t = 2.30, P = 0.03). Conclusions: The current study reports that young adults with narcolepsy had a higher GABA concentration in the medial prefrontal cortex, which was more prominent in patients without nocturnal sleep disturbance. Our findings suggest that the medial prefrontal GABA level may be increased in narcolepsy, and the increased medial prefrontal GABA might be a compensatory mechanism to reduce nocturnal sleep disturbances in narcolepsy. Citation: Kim SJ; Lyoo IK; Lee YS; Sung YH; Kim HJ; Kim JH; Kim KH; Jeong DU. Increased GABA levels in medial prefrontal cortex of young adults with narcolepsy. SLEEP 2008;31(3):342-347. PMID:18363310
False memory for context activates the parahippocampal cortex.
Karanian, Jessica M; Slotnick, Scott D
2014-01-01
Previous studies have reported greater activity in the parahippocampal cortex during true memory than false memory, which has been interpreted as reflecting greater sensory processing during true memory. However, in these studies, sensory detail and contextual information were confounded. In the present fMRI study, we employed a novel paradigm to dissociate these factors. During encoding, abstract shapes were presented in one of two contexts (i.e., moving or stationary). During retrieval, participants classified shapes as previously "moving" or "stationary." Critically, contextual processing was relatively greater during false memory ("moving" responses to stationary items), while sensory processing was relatively greater during true memory ("moving" responses to moving items). Within the medial temporal lobe, false memory versus true memory produced greater activity in the parahippocampal cortex, whereas true memory versus false memory produced greater activity in the hippocampus. The present results indicate that the parahippocampal cortex mediates contextual processing rather than sensory processing.
Smith, Kyle S.; Virkud, Arti; Deisseroth, Karl; Graybiel, Ann M.
2012-01-01
Habits tend to form slowly but, once formed, can have great stability. We probed these temporal characteristics of habitual behaviors by intervening optogenetically in forebrain habit circuits as rats performed well-ingrained habitual runs in a T-maze. We trained rats to perform a maze habit, confirmed the habitual behavior by devaluation tests, and then, during the maze runs (ca. 3 s), we disrupted population activity in a small region in the medial prefrontal cortex, the infralimbic cortex. In accordance with evidence that this region is necessary for the expression of habits, we found that this cortical disruption blocked habitual behavior. Notably, however, this blockade of habitual performance occurred on line, within an average of three trials (ca. 9 s of inhibition), and as soon as during the first trial (<3 s). During subsequent weeks of training, the rats acquired a new behavioral pattern. When we again imposed the same cortical perturbation, the rats regained the suppressed maze-running that typified the original habit, and, simultaneously, the more recently acquired habit was blocked. These online changes occurred within an average of two trials (ca. 6 s of infralimbic inhibition). Measured changes in generalized performance ability and motivation to consume reward were unaffected. This immediate toggling between breaking old habits and returning to them demonstrates that even semiautomatic behaviors are under cortical control and that this control occurs online, second by second. These temporal characteristics define a framework for uncovering cellular transitions between fixed and flexible behaviors, and corresponding disturbances in pathologies. PMID:23112197
Salience Network and Parahippocampal Dopamine Dysfunction in Memory-Impaired Parkinson Disease
Christopher, Leigh; Duff-Canning, Sarah; Koshimori, Yuko; Segura, Barbara; Boileau, Isabelle; Chen, Robert; Lang, Anthony E.; Houle, Sylvain; Rusjan, Pablo; Strafella, Antonio P.
2016-01-01
Objective Patients with Parkinson disease (PD) and mild cognitive impairment (MCI) are vulnerable to dementia and frequently experience memory deficits. This could be the result of dopamine dysfunction in corticostriatal networks (salience, central executive networks, and striatum) and/or the medial temporal lobe. Our aim was to investigate whether dopamine dysfunction in these regions contributes to memory impairment in PD. Methods We used positron emission tomography imaging to compare D2 receptor availability in the cortex and striatal (limbic and associative) dopamine neuron integrity in 4 groups: memory-impaired PD (amnestic MCI; n=9), PD with nonamnestic MCI (n=10), PD without MCI (n=11), and healthy controls (n=14). Subjects were administered a full neuropsychological test battery for cognitive performance. Results Memory-impaired patients demonstrated more significant reductions in D2 receptor binding in the salience network (insular cortex and anterior cingulate cortex [ACC] and the right parahippocampal gyrus [PHG]) compared to healthy controls and patients with no MCI. They also presented reductions in the right insula and right ACC compared to nonamnestic MCI patients. D2 levels were correlated with memory performance in the right PHG and left insula of amnestic patients and with executive performance in the bilateral insula and left ACC of all MCI patients. Associative striatal dopamine denervation was significant in all PD patients. Interpretation Dopaminergic differences in the salience network and the medial temporal lobe contribute to memory impairment in PD. Furthermore, these findings indicate the vulnerability of the salience network in PD and its potential role in memory and executive dysfunction. PMID:25448687
Functional anatomy of temporal organisation and domain-specificity of episodic memory retrieval.
Kwok, Sze Chai; Shallice, Tim; Macaluso, Emiliano
2012-10-01
Episodic memory provides information about the "when" of events as well as "what" and "where" they happened. Using functional imaging, we investigated the domain specificity of retrieval-related processes following encoding of complex, naturalistic events. Subjects watched a 42-min TV episode, and 24h later, made discriminative choices of scenes from the clip during fMRI. Subjects were presented with two scenes and required to either choose the scene that happened earlier in the film (Temporal), or the scene with a correct spatial arrangement (Spatial), or the scene that had been shown (Object). We identified a retrieval network comprising the precuneus, lateral and dorsal parietal cortex, middle frontal and medial temporal areas. The precuneus and angular gyrus are associated with temporal retrieval, with precuneal activity correlating negatively with temporal distance between two happenings at encoding. A dorsal fronto-parietal network engages during spatial retrieval, while antero-medial temporal regions activate during object-related retrieval. We propose that access to episodic memory traces involves different processes depending on task requirements. These include memory-searching within an organised knowledge structure in the precuneus (Temporal task), online maintenance of spatial information in dorsal fronto-parietal cortices (Spatial task) and combining scene-related spatial and non-spatial information in the hippocampus (Object task). Our findings support the proposal of process-specific dissociations of retrieval. Copyright © 2012 Elsevier Ltd. All rights reserved.
Functional anatomy of temporal organisation and domain-specificity of episodic memory retrieval
Kwok, Sze Chai; Shallice, Tim; Macaluso, Emiliano
2013-01-01
Episodic memory provides information about the “when” of events as well as “what” and “where” they happened. Using functional imaging, we investigated the domain specificity of retrieval-related processes following encoding of complex, naturalistic events. Subjects watched a 42-min TV episode, and 24 h later, made discriminative choices of scenes from the clip during fMRI. Subjects were presented with two scenes and required to either choose the scene that happened earlier in the film (Temporal), or the scene with a correct spatial arrangement (Spatial), or the scene that had been shown (Object). We identified a retrieval network comprising the precuneus, lateral and dorsal parietal cortex, middle frontal and medial temporal areas. The precuneus and angular gyrus are associated with temporal retrieval, with precuneal activity correlating negatively with temporal distance between two happenings at encoding. A dorsal fronto-parietal network engages during spatial retrieval, while antero-medial temporal regions activate during object-related retrieval. We propose that access to episodic memory traces involves different processes depending on task requirements. These include memory-searching within an organised knowledge structure in the precuneus (Temporal task), online maintenance of spatial information in dorsal fronto-parietal cortices (Spatial task) and combining scene-related spatial and non-spatial information in the hippocampus (Object task). Our findings support the proposal of process-specific dissociations of retrieval. PMID:22877840
The default mode network in chimpanzees (Pan troglodytes) is similar to that of humans.
Barks, Sarah K; Parr, Lisa A; Rilling, James K
2015-02-01
The human default mode network (DMN), comprising medial prefrontal cortex, precuneus, posterior cingulate cortex, lateral parietal cortex, and medial temporal cortex, is highly metabolically active at rest but deactivates during most focused cognitive tasks. The DMN and social cognitive networks overlap significantly in humans. We previously demonstrated that chimpanzees (Pan troglodytes) show highest resting metabolic brain activity in the cortical midline areas of the human DMN. Human DMN is defined by task-induced deactivations, not absolute resting metabolic levels; ergo, resting activity is insufficient to define a DMN in chimpanzees. Here, we assessed the chimpanzee DMN's deactivations relative to rest during cognitive tasks and the effect of social content on these areas' activity. Chimpanzees performed a match-to-sample task with conspecific behavioral stimuli of varying sociality. Using [(18)F]-FDG PET, brain activity during these tasks was compared with activity during a nonsocial task and at rest. Cortical midline areas in chimpanzees deactivated in these tasks relative to rest, suggesting a chimpanzee DMN anatomically and functionally similar to humans. Furthermore, when chimpanzees make social discriminations, these same areas (particularly precuneus) are highly active relative to nonsocial tasks, suggesting that, as in humans, the chimpanzee DMN may play a role in social cognition. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Nakamura, Koyo; Kawabata, Hideaki
2015-01-01
Neuroaesthetics has been searching for the neural bases of the subjective experience of beauty. It has been demonstrated that neural activities in the medial prefrontal cortex (mPFC) and the left primary motor cortex (lPMC) correlate with the subjective experience of beauty. Although beauty and ugliness seem to be semantically and conceptually opposite, it is still unknown whether these two evaluations represent extreme opposites in unitary or bivariate dimensions. In this study, we applied transcranial direct current stimulation (tDCS) to examine whether non-invasive brain stimulation modulates two types of esthetic evaluation; evaluating beauty and ugliness. Participants rated the subjective beauty and ugliness of abstract paintings before and after the application of tDCS. Application of cathodal tDCS over the mPFC with anode electrode over the lPMC, which induced temporal inhibition of neural excitability of the mPFC, led to a decrease in beauty ratings but not ugliness ratings. There were no changes in ratings of both beauty and ugliness when applying anodal tDCS or sham stimulation over the mPFC. Results from our experiment indicate that the mPFC and the lPMC have a causal role in generating the subjective experience of beauty, with beauty and ugliness evaluations constituting two distinct dimensions. PMID:26696865
Bremner, J. Douglas; Narayan, Meena; Staib, Lawrence H.; Southwick, Steven M.; McGlashan, Thomas; Charney, Dennis S.
2011-01-01
Objective Childhood sexual abuse is very common in our society, but little is known about the long-term effects of abuse on brain function. The purpose of this study was to measure neural correlates of memories of childhood abuse in sexually abused women with and without the diagnosis of posttraumatic stress disorder (PTSD). Method Twenty-two women with a history of childhood sexual abuse underwent injection of [15O]H2O, followed by positron emission tomography imaging of the brain while they listened to neutral and traumatic (personalized childhood sexual abuse events) scripts. Brain blood flow during exposure to traumatic and neutral scripts was compared for sexually abused women with and without PTSD. Results Memories of childhood sexual abuse were associated with greater increases in blood flow in portions of anterior prefrontal cortex (superior and middle frontal gyri—areas 6 and 9), posterior cingulate (area 31), and motor cortex in sexually abused women with PTSD than in sexually abused women without PTSD. Abuse memories were associated with alterations in blood flow in medial prefrontal cortex, with decreased blood flow in subcallosal gyrus (area 25), and a failure of activation in anterior cingulate (area 32). There was also decreased blood flow in right hippocampus, fusiform/inferior temporal gyrus, supramarginal gyrus, and visual association cortex in women with PTSD relative to women without PTSD. Conclusions These findings implicate dysfunction of medial prefrontal cortex (subcallosal gyrus and anterior cingulate), hippocampus, and visual association cortex in pathological memories of childhood abuse in women with PTSD. Increased activation in posterior cingulate and motor cortex was seen in women with PTSD. Dysfunction in these brain areas may underlie PTSD symptoms provoked by traumatic reminders in subjects with PTSD. PMID:10553744
Haptic perception and body representation in lateral and medial occipito-temporal cortices.
Costantini, Marcello; Urgesi, Cosimo; Galati, Gaspare; Romani, Gian Luca; Aglioti, Salvatore M
2011-04-01
Although vision is the primary sensory modality that humans and other primates use to identify objects in the environment, we can recognize crucial object features (e.g., shape, size) using the somatic modality. Previous studies have shown that the occipito-temporal areas dedicated to the visual processing of object forms, faces and bodies also show category-selective responses when the preferred stimuli are haptically explored out of view. Visual processing of human bodies engages specific areas in lateral (extrastriate body area, EBA) and medial (fusiform body area, FBA) occipito-temporal cortex. This study aimed at exploring the relative involvement of EBA and FBA in the haptic exploration of body parts. During fMRI scanning, participants were asked to haptically explore either real-size fake body parts or objects. We found a selective activation of right and left EBA, but not of right FBA, while participants haptically explored body parts as compared to real objects. This suggests that EBA may integrate visual body representations with somatosensory information regarding body parts and form a multimodal representation of the body. Furthermore, both left and right EBA showed a comparable level of body selectivity during haptic perception and visual imagery. However, right but not left EBA was more activated during haptic exploration than visual imagery of body parts, ruling out that the response to haptic body exploration was entirely due to the use of visual imagery. Overall, the results point to the existence of different multimodal body representations in the occipito-temporal cortex which are activated during perception and imagery of human body parts. Copyright © 2011 Elsevier Ltd. All rights reserved.
The neural basis for category-specific knowledge: an fMRI study.
Grossman, Murray; Koenig, Phyllis; DeVita, Chris; Glosser, Guila; Alsop, David; Detre, John; Gee, James
2002-04-01
Functional neuroimaging studies of healthy adults have associated different categories of knowledge with distinct activation patterns. The basis for these recruitment patterns has been controversial, due in part to the limited range of categories that has been studied. We used fMRI to monitor regional cortical recruitment patterns while subjects were exposed to printed names of Animals, Implements, and Abstract nouns. Both Implements and Abstract nouns were related to recruitment of left posterolateral temporal cortex and left prefrontal cortex, and Abstract nouns additionally recruited posterolateral temporal and prefrontal regions of the right hemisphere. Animals were associated with activation of ventral-medial occipital cortex in the left hemisphere at a level that approaches significance. These findings are not consistent with the "sensory-motor" model proposed to explain the neural representation of word knowledge. We suggest instead a neural model of semantic memory that reflects the processes common to understanding Implements and Abstract nouns and a selective sensitivity, possibly evolving from adaptive pressures, to the overlapping, intercorrelated visual characteristics of Animals. (C)2002 Elsevier Science (USA).
Zhu, Xueling; Wang, Xiang; Xiao, Jin; Liao, Jian; Zhong, Mingtian; Wang, Wei; Yao, Shuqiao
2012-04-01
Imaging studies have shown that major depressive disorder (MDD) is associated with altered activity patterns of the default mode network (DMN). However, the neural correlates of the resting-state DMN and MDD-related pathopsychological characteristics, such as depressive rumination and overgeneral autobiographical memory (OGM) phenomena, still remain unclear. Using independent component analysis, we analyzed resting-state functional magnetic resonance imaging data obtained from 35 first-episode, treatment-naive young adults with MDD and from 35 matched healthy control subjects. Patients with MDD exhibited higher levels of rumination and OGM than did the control subjects. We observed increased functional connectivity in the anterior medial cortex regions (especially the medial prefrontal cortex and anterior cingulate cortex) and decreased functional connectivity in the posterior medial cortex regions (especially the posterior cingulate cortex/precuneus) in MDD patients compared with control subjects. In the depressed group, the increased functional connectivity in the anterior medial cortex correlated positively with rumination score, while the decreased functional connectivity in the posterior medial cortex correlated negatively with OGM score. We report dissociation between anterior and posterior functional connectivity in resting-state DMNs of first-episode, treatment-naive young adults with MDD. Increased functional connectivity in anterior medial regions of the resting-state DMN was associated with rumination, whereas decreased functional connectivity in posterior medial regions was associated with OGM. These results provide new evidence for the importance of the DMN in the pathophysiology of MDD and suggest that abnormal DMN activity may be an MDD trait. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Abnormalities of Intrinsic Functional Connectivity in Autism Spectrum Disorders
Monk, Christopher S.; Peltier, Scott J.; Wiggins, Jillian Lee; Weng, Shih-Jen; Carrasco, Melisa; Risi, Susan; Lord, Catherine
2009-01-01
Autism spectrum disorders (ASD) impact social functioning and communication, and individuals with these disorders often have restrictive and repetitive behaviors. Accumulating data indicate that ASD is associated with alterations of neural circuitry. Functional MRI (FMRI) studies have focused on connectivity in the context of psychological tasks. However, even in the absence of a task, the brain exhibits a high degree of functional connectivity, known as intrinsic or resting connectivity. Notably, the default network, which includes the posterior cingulate cortex, retro-splenial, lateral parietal cortex/angular gyrus, medial prefrontal cortex, superior frontal gyrus, temporal lobe, and parahippocampal gyrus, is strongly active when there is no task. Altered intrinsic connectivity within the default network may underlie offline processing that may actuate ASD impairments. Using FMRI, we sought to evaluate intrinsic connectivity within the default network in ASD. Relative to controls, the ASD group showed weaker connectivity between the posterior cingulate cortex and superior frontal gyrus and stronger connectivity between the posterior cingulate cortex and both the right temporal lobe and right parahippocampal gyrus. Moreover, poorer social functioning in the ASD group was correlated with weaker connectivity between the posterior cingulate cortex and the superior frontal gyrus. In addition, more severe restricted and repetitive behaviors in ASD were correlated with stronger connectivity between the posterior cingulate cortex and right parahippocampal gyrus. These findings indicate that ASD subjects show altered intrinsic connectivity within the default network, and connectivity between these structures is associated with specific ASD symptoms. PMID:19409498
Age-related changes in the functional neuroanatomy of overt speech production.
Sörös, Peter; Bose, Arpita; Sokoloff, Lisa Guttman; Graham, Simon J; Stuss, Donald T
2011-08-01
Alterations of existing neural networks during healthy aging, resulting in behavioral deficits and changes in brain activity, have been described for cognitive, motor, and sensory functions. To investigate age-related changes in the neural circuitry underlying overt non-lexical speech production, functional MRI was performed in 14 healthy younger (21-32 years) and 14 healthy older individuals (62-84 years). The experimental task involved the acoustically cued overt production of the vowel /a/ and the polysyllabic utterance /pataka/. In younger and older individuals, overt speech production was associated with the activation of a widespread articulo-phonological network, including the primary motor cortex, the supplementary motor area, the cingulate motor areas, and the posterior superior temporal cortex, similar in the /a/ and /pataka/ condition. An analysis of variance with the factors age and condition revealed a significant main effect of age. Irrespective of the experimental condition, significantly greater activation was found in the bilateral posterior superior temporal cortex, the posterior temporal plane, and the transverse temporal gyri in younger compared to older individuals. Significantly greater activation was found in the bilateral middle temporal gyri, medial frontal gyri, middle frontal gyri, and inferior frontal gyri in older vs. younger individuals. The analysis of variance did not reveal a significant main effect of condition and no significant interaction of age and condition. These results suggest a complex reorganization of neural networks dedicated to the production of speech during healthy aging. Copyright © 2009 Elsevier Inc. All rights reserved.
Childhood abuse and reduced cortical thickness in brain regions involved in emotional processing.
Gold, Andrea L; Sheridan, Margaret A; Peverill, Matthew; Busso, Daniel S; Lambert, Hilary K; Alves, Sonia; Pine, Daniel S; McLaughlin, Katie A
2016-10-01
Alterations in gray matter development represent a potential pathway through which childhood abuse is associated with psychopathology. Several prior studies find reduced volume and thickness of prefrontal (PFC) and temporal cortex regions in abused compared with nonabused adolescents, although most prior research is based on adults and volume-based measures. This study tests the hypothesis that child abuse, independent of parental education, predicts reduced cortical thickness in prefrontal and temporal cortices as well as reduced gray mater volume (GMV) in subcortical regions during adolescence. Structural MRI scans were obtained from 21 adolescents exposed to physical and/or sexual abuse and 37 nonabused adolescents (ages 13-20). Abuse was operationalized using dichotomous and continuous measures. We examined associations between abuse and brain structure in several a priori-defined regions, controlling for parental education, age, sex, race, and total brain volume for subcortical GMV. Significance was evaluated at p < .05 with a false discovery rate correction. Child abuse exposure and severity were associated with reduced thickness in ventromedial prefrontal cortex (PFC), right lateral orbitofrontal cortex, right inferior frontal gyrus, bilateral parahippocampal gyrus (PHG), left temporal pole, and bilateral inferior, right middle, and right superior temporal gyri. Neither abuse measure predicted cortical surface area or subcortical GMV. Bilateral PHG thickness was inversely related to externalizing symptoms. Child abuse, an experience characterized by a high degree of threat, is associated with reduced cortical thickness in ventromedial and ventrolateral PFC and medial and lateral temporal cortex in adolescence. Reduced PHG thickness may be a mediator linking abuse with externalizing psychopathology, although prospective research is needed to evaluate this possibility. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
An fMRI Study of Episodic Memory: Retrieval of Object, Spatial, and Temporal Information
Hayes, Scott M.; Ryan, Lee; Schnyer, David M.; Nadel, Lynn
2011-01-01
Sixteen participants viewed a videotaped tour of 4 houses, highlighting a series of objects and their spatial locations. Participants were tested for memory of object, spatial, and temporal order information while undergoing functional Magnetic Resonance Imaging. Preferential activation was observed in right parahippocampal gyrus during the retrieval of spatial location information. Retrieval of contextual information (spatial location and temporal order) was associated with activation in right dorsolateral prefrontal cortex. In bilateral posterior parietal regions, greater activation was associated with processing of visual scenes, regardless of the memory judgment. These findings support current theories positing roles for frontal and medial temporal regions during episodic retrieval and suggest a specific role for the hippocampal complex in the retrieval of spatial location information PMID:15506871
Neural signatures of lexical tone reading.
Kwok, Veronica P Y; Wang, Tianfu; Chen, Siping; Yakpo, Kofi; Zhu, Linlin; Fox, Peter T; Tan, Li Hai
2015-01-01
Research on how lexical tone is neuroanatomically represented in the human brain is central to our understanding of cortical regions subserving language. Past studies have exclusively focused on tone perception of the spoken language, and little is known as to the lexical tone processing in reading visual words and its associated brain mechanisms. In this study, we performed two experiments to identify neural substrates in Chinese tone reading. First, we used a tone judgment paradigm to investigate tone processing of visually presented Chinese characters. We found that, relative to baseline, tone perception of printed Chinese characters were mediated by strong brain activation in bilateral frontal regions, left inferior parietal lobule, left posterior middle/medial temporal gyrus, left inferior temporal region, bilateral visual systems, and cerebellum. Surprisingly, no activation was found in superior temporal regions, brain sites well known for speech tone processing. In activation likelihood estimation (ALE) meta-analysis to combine results of relevant published studies, we attempted to elucidate whether the left temporal cortex activities identified in Experiment one is consistent with those found in previous studies of auditory lexical tone perception. ALE results showed that only the left superior temporal gyrus and putamen were critical in auditory lexical tone processing. These findings suggest that activation in the superior temporal cortex associated with lexical tone perception is modality-dependent. © 2014 Wiley Periodicals, Inc.
Entorhinal Tau Pathology, Episodic Memory Decline, and Neurodegeneration in Aging.
Maass, Anne; Lockhart, Samuel N; Harrison, Theresa M; Bell, Rachel K; Mellinger, Taylor; Swinnerton, Kaitlin; Baker, Suzanne L; Rabinovici, Gil D; Jagust, William J
2018-01-17
The medial temporal lobe (MTL) is an early site of tau accumulation and MTL dysfunction may underlie episodic-memory decline in aging and dementia. Postmortem data indicate that tau pathology in the transentorhinal cortex is common by age 60, whereas spread to neocortical regions and worsening of cognition is associated with β-amyloid (Aβ). We used [ 18 F]AV-1451 and [ 11 C]PiB positron emission tomography, structural MRI, and neuropsychological assessment to investigate how in vivo tau accumulation in temporal lobe regions, Aβ, and MTL atrophy contribute to episodic memory in cognitively normal older adults ( n = 83; age, 77 ± 6 years; 58% female). Stepwise regressions identified tau in MTL regions known to be affected in old age as the best predictor of episodic-memory performance independent of Aβ status. There was no interactive effect of MTL tau with Aβ on memory. Higher MTL tau was related to higher age in the subjects without evidence of Aβ. Among temporal lobe subregions, episodic memory was most strongly related to tau-tracer uptake in the parahippocampal gyrus, particularly the posterior entorhinal cortex, which in our parcellation includes the transentorhinal cortex. In subjects with longitudinal MRI and cognitive data ( n = 57), entorhinal atrophy mirrored patterns of tau pathology and their relationship with memory decline. Our data are consistent with neuropathological studies and further suggest that entorhinal tau pathology underlies memory decline in old age even without Aβ. SIGNIFICANCE STATEMENT Tau tangles and β-amyloid (Aβ) plaques are key lesions in Alzheimer's disease (AD) but both pathologies also occur in cognitively normal older people. Neuropathological data indicate that tau tangles in the medial temporal lobe (MTL) underlie episodic-memory impairments in AD dementia. However, it remains unclear whether MTL tau pathology also accounts for memory impairments often seen in elderly people and how Aβ affects this relationship. Using tau-specific and Aβ-specific positron emission tomography tracers, we show that in vivo MTL tau pathology is associated with episodic-memory performance and MTL atrophy in cognitively normal adults, independent of Aβ. Our data point to MTL tau pathology, particularly in the entorhinal cortex, as a substrate of age-related episodic-memory loss. Copyright © 2018 the authors 0270-6474/18/380530-14$15.00/0.
Manning, Katherine E; Tait, Roger; Suckling, John; Holland, Anthony J
2018-01-01
Prader-Willi syndrome (PWS) is a neurodevelopmental disorder of genomic imprinting, presenting with a characteristic overeating disorder, mild to moderate intellectual disability, and a variable range of social and behavioral difficulties. Consequently, widespread alterations in neural structure and developmental and maturational trajectory would be expected. To date, there have been few quantitative and systematic studies of brain morphology in PWS, although alterations of volume and of cortical organisation have been reported. This study aimed to investigate, in detail, the structure of grey matter and cortex in the brain in a sample of young adults with PWS in a well-matched case-controlled analysis. 20 young adults with PWS, aged 19-27 years, underwent multiparameter mapping magnetic resonance imaging sequences, from which measures of grey matter volume, cortical thickness and magnetisation transfer saturation, as a proxy measure of myelination, were examined. These variables were investigated in comparison to a control group of 40 typically developing young adults, matched for age and sex. A voxel-based morphometry analysis identified large and widespread bilateral clusters of both increased and decreased grey matter volume in the brain in PWS. In particular, widespread areas of increased volume encompassed parts of the prefrontal cortex, especially medially, the majority of the cingulate cortices, from anterior to posterior aspects, insula cortices, and areas of the parietal and temporal cortices. Increased volume was also reported in the caudate, putamen and thalamus. The most ventromedial prefrontal areas, in contrast, showed reduced volume, as did the parts of the medial temporal lobe, bilateral temporal poles, and a small cluster in the right lateral prefrontal cortex. Analysis of cortical structure revealed that areas of increased volume in the PWS group were largely driven by greater cortical thickness. Conversely, analysis of myelin content using magnetisation transfer saturation indicated that myelination of the cortex was broadly similar in the PWS and control groups, with the exception of highly localised areas, including the insula. The bilateral nature of these abnormalities suggests a systemic biological cause, with possible developmental and maturational mechanisms discussed, and may offer insight into the contribution of imprinted genes to neural development.
Cumulative Adversity Sensitizes Neural Response to Acute Stress: Association with Health Symptoms
Seo, Dongju; Tsou, Kristen A; Ansell, Emily B; Potenza, Marc N; Sinha, Rajita
2014-01-01
Cumulative adversity (CA) increases stress sensitivity and risk of adverse health outcomes. However, neural mechanisms underlying these associations in humans remain unclear. To understand neural responses underlying the link between CA and adverse health symptoms, the current study assessed brain activity during stress and neutral-relaxing states in 75 demographically matched, healthy individuals with high, mid, and low CA (25 in each group), and their health symptoms using the Cornell Medical Index. CA was significantly associated with greater adverse health symptoms (P=0.01) in all participants. Functional magnetic resonance imaging results indicated significant associations between CA scores and increased stress-induced activity in the lateral prefrontal cortex, insula, striatum, right amygdala, hippocampus, and temporal regions in all 75 participants (p<0.05, whole-brain corrected). In addition to these regions, the high vs low CA group comparison revealed decreased stress-induced activity in the medial orbitofrontal cortex (OFC) in the high CA group (p<0.01, whole-brain corrected). Specifically, hypoactive medial OFC and hyperactive right hippocampus responses to stress were each significantly associated with greater adverse health symptoms (p<0.01). Furthermore, an inverse correlation was found between activity in the medial OFC and right hippocampus (p=0.01). These results indicate that high CA sensitizes limbic–striatal responses to acute stress and also identifies an important role for stress-related medial OFC and hippocampus responses in the effects of CA on increasing vulnerability to adverse health consequences. PMID:24051900
Cumulative adversity sensitizes neural response to acute stress: association with health symptoms.
Seo, Dongju; Tsou, Kristen A; Ansell, Emily B; Potenza, Marc N; Sinha, Rajita
2014-02-01
Cumulative adversity (CA) increases stress sensitivity and risk of adverse health outcomes. However, neural mechanisms underlying these associations in humans remain unclear. To understand neural responses underlying the link between CA and adverse health symptoms, the current study assessed brain activity during stress and neutral-relaxing states in 75 demographically matched, healthy individuals with high, mid, and low CA (25 in each group), and their health symptoms using the Cornell Medical Index. CA was significantly associated with greater adverse health symptoms (P=0.01) in all participants. Functional magnetic resonance imaging results indicated significant associations between CA scores and increased stress-induced activity in the lateral prefrontal cortex, insula, striatum, right amygdala, hippocampus, and temporal regions in all 75 participants (p<0.05, whole-brain corrected). In addition to these regions, the high vs low CA group comparison revealed decreased stress-induced activity in the medial orbitofrontal cortex (OFC) in the high CA group (p<0.01, whole-brain corrected). Specifically, hypoactive medial OFC and hyperactive right hippocampus responses to stress were each significantly associated with greater adverse health symptoms (p<0.01). Furthermore, an inverse correlation was found between activity in the medial OFC and right hippocampus (p=0.01). These results indicate that high CA sensitizes limbic-striatal responses to acute stress and also identifies an important role for stress-related medial OFC and hippocampus responses in the effects of CA on increasing vulnerability to adverse health consequences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, K.A.; Mueller, S.T.; Walshe, T.M.
1987-02-01
We used single photon emission computed tomography (SPECT) to study 15 patients with Alzheimer's disease and nine controls. Iofetamine hydrochloride I 123 uptake data were recorded from the entire brain using a rotating gamma camera. Activity ratios were measured for the frontal, posterior parietal, posterior, medial, and lateral cortical temporal regions and striate cortex and were normalized by the activity in the cerebellum. Abnormalities in iofetamine hydrochloride I 123 activity were similar to the abnormalities in glucose metabolism observed with positron emission tomography. Cortical tracer activity was globally depressed in patients with Alzheimer's disease, with the greatest reduction in themore » posterior parietal cortex.« less
Brown, M.W.; Barker, G.R.I.; Aggleton, J.P.; Warburton, E.C.
2012-01-01
Findings of pharmacological studies that have investigated the involvement of specific regions of the brain in recognition memory are reviewed. The particular emphasis of the review concerns what such studies indicate concerning the role of the perirhinal cortex in recognition memory. Most of the studies involve rats and most have investigated recognition memory for objects. Pharmacological studies provide a large body of evidence supporting the essential role of the perirhinal cortex in the acquisition, consolidation and retrieval of object recognition memory. Such studies provide increasingly detailed evidence concerning both the neurotransmitter systems and the underlying intracellular mechanisms involved in recognition memory processes. They have provided evidence in support of synaptic weakening as a major synaptic plastic process within perirhinal cortex underlying object recognition memory. They have also supplied confirmatory evidence that that there is more than one synaptic plastic process involved. The demonstrated necessity to long-term recognition memory of intracellular signalling mechanisms related to synaptic modification within perirhinal cortex establishes a central role for the region in the information storage underlying such memory. Perirhinal cortex is thereby established as an information storage site rather than solely a processing station. Pharmacological studies have also supplied new evidence concerning the detailed roles of other regions, including the hippocampus and the medial prefrontal cortex in different types of recognition memory tasks that include a spatial or temporal component. In so doing, they have also further defined the contribution of perirhinal cortex to such tasks. To date it appears that the contribution of perirhinal cortex to associative and temporal order memory reflects that in simple object recognition memory, namely that perirhinal cortex provides information concerning objects and their prior occurrence (novelty/familiarity). PMID:22841990
High prevalence of brain pathology in violent prisoners: a qualitative CT and MRI scan study.
Schiltz, Kolja; Witzel, Joachim G; Bausch-Hölterhoff, Josef; Bogerts, Bernhard
2013-10-01
The aim of this study was to determine the frequency and extent of brain anomalies in a large sample of incarcerated violent offenders not previously considered neuropsychiatrically ill, in comparison with non-violent offenders and non-offending controls. MRI and CT brain scans from 287 male prison inmates (162 violent and 125 non-violent) not diagnosed as mentally ill before that were obtained due to headache, vertigo or psychological complaints during imprisonment were assessed and compared to 52 non-criminal controls. Brain scans were rated qualitatively with respect to evidence of structural brain damage. Each case received a semiquantitative rating of "normal" (=0), "questionably abnormal" (=1) or "definitely abnormal" (=2) for the lateral ventricles, frontal/parietal cortex and medial temporal structures bilaterally as well as third ventricle. Overall, offenders displayed a significantly higher rate of morphological abnormality, with the violent offenders scoring significantly higher than non-violent offenders and controls. This difference was statistically detectable for frontal/parietal cortex, medial temporal structures, third ventricle and the left but not the right lateral ventricle. The remarkable prevalence of brain pathology in convicted violent prisoners detectable by neuroradiological routine assessment not only highlights the importance of frontal and temporal structures in the control of social, and specifically of violent behaviour, but also raises questions on the legal culpability of violent offenders with brain abnormalities. The high proportion of undetected presence of structural brain damage emphasizes the need that in violent criminals, the comprehensive routine neuropsychiatric assessment usually performed in routine forensic psychiatric expertises should be complemented with brain imaging.
Ford, Jaclyn Hennessey; Addis, Donna Rose; Giovanello, Kelly S.
2011-01-01
Previous neuroimaging studies that have examined autobiographical memory specificity have utilized retrieval cues associated with prior searches of the event, potentially changing the retrieval processes being investigated. In the current study, musical cues were used to naturally elicit memories from multiple levels of specificity (i.e., lifetime period, general event, and event-specific). Sixteen young adults participated in a neuroimaging study in which they retrieved autobiographical memories associated with musical cues. These musical cues led to the retrieval of highly emotional memories that had low levels of prior retrieval. Retrieval of all autobiographical memory levels was associated with activity in regions in the autobiographical memory network, specifically the ventromedial prefrontal cortex, posterior cingulate, and right medial temporal lobe. Owing to the use of music, memories from varying levels of specificity were retrieved, allowing for comparison of event memory and abstract personal knowledge, as well as comparison of specific and general event memory. Dorsolateral and dorsomedial prefrontal regions were engaged during event retrieval relative to personal knowledge retrieval, and retrieval of specific event memories was associated with increased activity in the bilateral medial temporal lobe and dorsomedial prefrontal cortex relative to retrieval of general event memories. These results suggest that the initial search processes for memories of different specificity levels preferentially engage different components of the autobiographical memory network. The potential underlying causes of these neural differences are discussed. PMID:21600227
Hattingh, Coenraad J.; Ipser, J.; Tromp, S. A.; Syal, S.; Lochner, C.; Brooks, S. J.; Stein, D. J.
2012-01-01
Background: Social anxiety disorder (SAD) is characterized by abnormal fear and anxiety in social situations. Functional magnetic resonance imaging (fMRI) is a brain imaging technique that can be used to demonstrate neural activation to emotionally salient stimuli. However, no attempt has yet been made to statistically collate fMRI studies of brain activation, using the activation likelihood-estimate (ALE) technique, in response to emotion recognition tasks in individuals with SAD. Methods: A systematic search of fMRI studies of neural responses to socially emotive cues in SAD was undertaken. ALE meta-analysis, a voxel-based meta-analytic technique, was used to estimate the most significant activations during emotional recognition. Results: Seven studies were eligible for inclusion in the meta-analysis, constituting a total of 91 subjects with SAD, and 93 healthy controls. The most significant areas of activation during emotional vs. neutral stimuli in individuals with SAD compared to controls were: bilateral amygdala, left medial temporal lobe encompassing the entorhinal cortex, left medial aspect of the inferior temporal lobe encompassing perirhinal cortex and parahippocampus, right anterior cingulate, right globus pallidus, and distal tip of right postcentral gyrus. Conclusion: The results are consistent with neuroanatomic models of the role of the amygdala in fear conditioning, and the importance of the limbic circuitry in mediating anxiety symptoms. PMID:23335892
Similar patterns of neural activity predict memory function during encoding and retrieval.
Kragel, James E; Ezzyat, Youssef; Sperling, Michael R; Gorniak, Richard; Worrell, Gregory A; Berry, Brent M; Inman, Cory; Lin, Jui-Jui; Davis, Kathryn A; Das, Sandhitsu R; Stein, Joel M; Jobst, Barbara C; Zaghloul, Kareem A; Sheth, Sameer A; Rizzuto, Daniel S; Kahana, Michael J
2017-07-15
Neural networks that span the medial temporal lobe (MTL), prefrontal cortex, and posterior cortical regions are essential to episodic memory function in humans. Encoding and retrieval are supported by the engagement of both distinct neural pathways across the cortex and common structures within the medial temporal lobes. However, the degree to which memory performance can be determined by neural processing that is common to encoding and retrieval remains to be determined. To identify neural signatures of successful memory function, we administered a delayed free-recall task to 187 neurosurgical patients implanted with subdural or intraparenchymal depth electrodes. We developed multivariate classifiers to identify patterns of spectral power across the brain that independently predicted successful episodic encoding and retrieval. During encoding and retrieval, patterns of increased high frequency activity in prefrontal, MTL, and inferior parietal cortices, accompanied by widespread decreases in low frequency power across the brain predicted successful memory function. Using a cross-decoding approach, we demonstrate the ability to predict memory function across distinct phases of the free-recall task. Furthermore, we demonstrate that classifiers that combine information from both encoding and retrieval states can outperform task-independent models. These findings suggest that the engagement of a core memory network during either encoding or retrieval shapes the ability to remember the past, despite distinct neural interactions that facilitate encoding and retrieval. Copyright © 2017 Elsevier Inc. All rights reserved.
Cooper, Elisa; Henson, Richard N.
2013-01-01
A simple cue can be sufficient to elicit vivid recollection of a past episode. Theoretical models suggest that upon perceiving such a cue, disparate episodic elements held in neocortex are retrieved through hippocampal pattern completion. We tested this fundamental assumption by applying functional magnetic resonance imaging (fMRI) while objects or scenes were used to cue participants' recall of previously paired scenes or objects, respectively. We first demonstrate functional segregation within the medial temporal lobe (MTL), showing domain specificity in perirhinal and parahippocampal cortices (for object-processing vs scene-processing, respectively), but domain generality in the hippocampus (retrieval of both stimulus types). Critically, using fMRI latency analysis and dynamic causal modeling, we go on to demonstrate functional integration between these MTL regions during successful memory retrieval, with reversible signal flow from the cue region to the target region via the hippocampus. This supports the claim that the human hippocampus provides the vital associative link that integrates information held in different parts of cortex. PMID:23986252
Du, Yuhui; Pearlson, Godfrey D; Yu, Qingbao; He, Hao; Lin, Dongdong; Sui, Jing; Wu, Lei; Calhoun, Vince D.
2015-01-01
Default mode network (DMN) has been reported altered in schizophrenia (SZ) using static connectivity analysis. However, the studies on dynamic characteristics of DMN in SZ are still limited. In this work, we compare dynamic connectivity within DMN between 82 healthy controls (HC) and 82 SZ patients using resting-state fMRI. Firstly, dynamic DMN was computed using a sliding time window method for each subject. Then, the overall connectivity strengths were compared between two groups. Furthermore, we estimated functional connectivity states using K-means clustering, and then investigated group differences with respect to the connectivity strengths in states, the dwell time in each state, and the transition times between states. Finally, graph metrics of time-varying connectivity patterns and connectivity states were assessed. Results suggest that measured by the overall connectivity, HC showed stronger inter-subsystem interaction than patients. Compared to HC, patients spent less time in the states with nodes tightly connected. For each state, SZ patients presented relatively weaker connectivity strengths mainly in inter-subsystem. Patients also exhibited lower values in averaged node strength, clustering coefficient, global efficiency, and local efficiency than HC. In summary, our findings indicate that SZ showed impaired interaction among DMN subsystems, with a reduced central role for posterior cingulate cortex (PCC) and anterior medial prefrontal cortex (aMPFC) hubs as well as weaker interaction between dorsal medial prefrontal cortex (dMPFC) subsystem and medial temporal lobe (MTL) subsystem. For SZ, decreased integration of DMN may be associated with impaired ability in making self-other distinctions and coordinating present mental states with episodic decisions about future. PMID:26654933
The Role of the Rat Medial Prefrontal Cortex in Adapting to Changes in Instrumental Contingency
Coutureau, Etienne; Esclassan, Frederic; Di Scala, Georges; Marchand, Alain R.
2012-01-01
In order to select actions appropriate to current needs, a subject must identify relationships between actions and events. Control over the environment is determined by the degree to which action consequences can be predicted, as described by action-outcome contingencies – i.e. performing an action should affect the probability of the outcome. We evaluated in a first experiment adaptation to contingency changes in rats with neurotoxic lesions of the medial prefrontal cortex. Results indicate that this brain region is not critical to adjust instrumental responding to a negative contingency where the rats must refrain from pressing a lever, as this action prevents reward delivery. By contrast, this brain region is required to reduce responding in a non-contingent situation where the same number of rewards is freely delivered and actions do not affect the outcome any more. In a second experiment, we determined that this effect does not result from a different perception of temporal relationships between actions and outcomes since lesioned rats adapted normally to gradually increasing delays in reward delivery. These data indicate that the medial prefrontal cortex is not directly involved in evaluating the correlation between action-and reward-rates or in the perception of reward delays. The deficit in lesioned rats appears to consist of an abnormal response to the balance between contingent and non-contingent rewards. By highlighting the role of prefrontal regions in adapting to the causal status of actions, these data contribute to our understanding of the neural basis of choice tasks. PMID:22496747
Cwik, Jan C; Sartory, Gudrun; Nuyken, Malte; Schürholt, Benjamin; Seitz, Rüdiger J
2017-09-01
Acute stress disorder (ASD) is predictive of the development of posttraumatic stress disorder (PTSD). In response to symptom provocation, the exposure to trauma-related pictures, ASD patients showed increased activation of the medial posterior areas of precuneus and posterior cingulate cortex as well as of superior prefrontal cortex in a previous study. The current study aimed at investigating which activated areas are predictive of the development of PTSD. Nineteen ASD patients took part in an fMRI study in which they were shown personalized trauma-related and neutral pictures within 4 weeks of the traumatic event. They were assessed for severity of PTSD 4 weeks later. Activation contrasts between trauma-related and neutral pictures were correlated with subsequent PTSD symptom severity. Greater activation in, among others, right medial precuneus, left retrosplenial cortex, precentral and right superior temporal gyrus as well as less activation in lateral, superior prefrontal and left fusiform gyrus was related to subsequently increased PTSD severity. The results are broadly in line with neural areas related to etiological models of PTSD, namely multisensory associative learning recruiting posterior regions on the one hand and failure to reappraise maladaptive cognitions, thought to involve prefrontal areas, on the other.
Counterfactual thinking: an fMRI study on changing the past for a better future
Ma, Ning; Ampe, Lisa; Baetens, Kris; Van Overwalle, Frank
2013-01-01
Recent studies suggest that a brain network mainly associated with episodic memory has a more general function in imagining oneself in another time, place or perspective (e.g. episodic future thought, theory of mind, default mode). If this is true, counterfactual thinking (e.g. ‘If I had left the office earlier, I wouldn’t have missed my train.’) should also activate this network. Present functional magnetic resonance imaging (fMRI) study explores the common and distinct neural activity of counterfactual and episodic thinking by directly comparing the imagining of upward counterfactuals (creating better outcomes for negative past events) with the re-experiencing of negative past events and the imagining of positive future events. Results confirm that episodic and counterfactual thinking share a common brain network, involving a core memory network (hippocampal area, temporal lobes, midline, and lateral parietal lobes) and prefrontal areas that might be related to mentalizing (medial prefrontal cortex) and performance monitoring (right prefrontal cortex). In contrast to episodic past and future thinking, counterfactual thinking recruits some of these areas more strongly and extensively, and additionally activates the bilateral inferior parietal lobe and posterior medial frontal cortex. We discuss these findings in view of recent fMRI evidence on the working of episodic memory and theory of mind. PMID:22403155
A Perfusion MRI Study of Emotional Valence and Arousal in Parkinson's Disease
Limsoontarakul, Sunsern; Campbell, Meghan C.; Black, Kevin J.
2011-01-01
Background. Brain regions subserving emotion have mostly been studied using functional magnetic resonance imaging (fMRI) during emotion provocation procedures in healthy participants. Objective. To identify neuroanatomical regions associated with spontaneous changes in emotional state over time. Methods. Self-rated emotional valence and arousal scores, and regional cerebral blood flow (rCBF) measured by perfusion MRI, were measured 4 or 8 times spanning at least 2 weeks in each of 21 subjects with Parkinson's disease (PD). A random-effects SPM analysis, corrected for multiple comparisons, identified significant clusters of contiguous voxels in which rCBF varied with valence or arousal. Results. Emotional valence correlated positively with rCBF in several brain regions, including medial globus pallidus, orbital prefrontal cortex (PFC), and white matter near putamen, thalamus, insula, and medial PFC. Valence correlated negatively with rCBF in striatum, subgenual cingulate cortex, ventrolateral PFC, and precuneus—posterior cingulate cortex (PCC). Arousal correlated positively with rCBF in clusters including claustrum-thalamus-ventral striatum and inferior parietal lobule and correlated negatively in clusters including posterior insula—mediodorsal thalamus and midbrain. Conclusion. This study demonstrates that the temporal stability of perfusion MRI allows within-subject investigations of spontaneous fluctuations in mental state, such as mood, over relatively long-time intervals. PMID:21969917
Meyer, Meghan L.; Masten, Carrie L.; Ma, Yina; Wang, Chenbo; Shi, Zhenhao; Eisenberger, Naomi I.; Han, Shihui
2013-01-01
Humans observe various peoples’ social suffering throughout their lives, but it is unknown whether the same brain mechanisms respond to people we are close to and strangers’ social suffering. To address this question, we had participant’s complete functional magnetic resonance imaging (fMRI) while observing a friend and stranger experience social exclusion. Observing a friend’s exclusion activated affective pain regions associated with the direct (i.e. firsthand) experience of exclusion [dorsal anterior cingulate cortex (dACC) and insula], and this activation correlated with self-reported self-other overlap with the friend. Alternatively, observing a stranger’s exclusion activated regions associated with thinking about the traits, mental states and intentions of others [‘mentalizing’; dorsal medial prefrontal cortex (DMPFC), precuneus, and temporal pole]. Comparing activation from observing friend’s vs stranger’s exclusion showed increased activation in brain regions associated with the firsthand experience of exclusion (dACC and anterior insula) and with thinking about the self [medial prefrontal cortex (MPFC)]. Finally, functional connectivity analyses demonstrated that MPFC and affective pain regions activated in concert during empathy for friends, but not strangers. These results suggest empathy for friends’ social suffering relies on emotion sharing and self-processing mechanisms, whereas empathy for strangers’ social suffering may rely more heavily on mentalizing systems. PMID:22355182
Category-Selectivity in Human Visual Cortex Follows Cortical Topology: A Grouped icEEG Study
Conner, Christopher Richard; Whaley, Meagan Lee; Baboyan, Vatche George; Tandon, Nitin
2016-01-01
Neuroimaging studies suggest that category-selective regions in higher-order visual cortex are topologically organized around specific anatomical landmarks: the mid-fusiform sulcus (MFS) in the ventral temporal cortex (VTC) and lateral occipital sulcus (LOS) in the lateral occipital cortex (LOC). To derive precise structure-function maps from direct neural signals, we collected intracranial EEG (icEEG) recordings in a large human cohort (n = 26) undergoing implantation of subdural electrodes. A surface-based approach to grouped icEEG analysis was used to overcome challenges from sparse electrode coverage within subjects and variable cortical anatomy across subjects. The topology of category-selectivity in bilateral VTC and LOC was assessed for five classes of visual stimuli—faces, animate non-face (animals/body-parts), places, tools, and words—using correlational and linear mixed effects analyses. In the LOC, selectivity for living (faces and animate non-face) and non-living (places and tools) classes was arranged in a ventral-to-dorsal axis along the LOS. In the VTC, selectivity for living and non-living stimuli was arranged in a latero-medial axis along the MFS. Written word-selectivity was reliably localized to the intersection of the left MFS and the occipito-temporal sulcus. These findings provide direct electrophysiological evidence for topological information structuring of functional representations within higher-order visual cortex. PMID:27272936
Abnormalities in cortical gray matter density in borderline personality disorder
Rossi, Roberta; Lanfredi, Mariangela; Pievani, Michela; Boccardi, Marina; Rasser, Paul E; Thompson, Paul M; Cavedo, Enrica; Cotelli, Maria; Rosini, Sandra; Beneduce, Rossella; Bignotti, Stefano; Magni, Laura R; Rillosi, Luciana; Magnaldi, Silvia; Cobelli, Milena; Rossi, Giuseppe; Frisoni, Giovanni B
2015-01-01
Background Borderline personality disorder (BPD) is a chronic condition with a strong impact on patients‘ affective,cognitive and social functioning. Neuroimaging techniques offer invaluable tools to understand the biological substrate of the disease. We aimed to investigate gray matter alterations over the whole cortex in a group of Borderline Personality Disorder (BPD) patients compared to healthy controls (HC). Methods Magnetic resonance-based cortical pattern matching was used to assess cortical gray matter density (GMD) in 26 BPD patients and in their age- and sex-matched HC (age: 38±11; females: 16, 61%). Results BPD patients showed widespread lower cortical GMD compared to HC (4% difference) with peaks of lower density located in the dorsal frontal cortex, in the orbitofrontal cortex, the anterior and posterior cingulate, the right parietal lobe, the temporal lobe (medial temporal cortex and fusiform gyrus) and in the visual cortex (p<0.005). Our BPD subjects displayed a symmetric distribution of anomalies in the dorsal aspect of the cortical mantle, but a wider involvement of the left hemisphere in the mesial aspect in terms of lower density. A few restricted regions of higher density were detected in the right hemisphere. All regions remained significant after correction for multiple comparisons via permutation testing. Conclusions BPD patients feature specific morphology of the cerebral structures involved in cognitive and emotional processing and social cognition/mentalization, consistent with clinical and functional data. PMID:25561291
Barks, Sarah K.; Bauernfeind, Amy L.; Bonar, Christopher J.; Cranfield, Michael R.; de Sousa, Alexandra A.; Erwin, Joseph M.; Hopkins, William D.; Lewandowski, Albert H.; Mudakikwa, Antoine; Phillips, Kimberley A.; Raghanti, Mary Ann; Stimpson, Cheryl D.; Hof, Patrick R.; Zilles, Karl; Sherwood, Chet C.
2013-01-01
In this study, we describe an atypical neuroanatomical feature present in several primate species that involves a fusion between the temporal lobe (often including Heschl’s gyrus in great apes) and the posterior dorsal insula, such that a portion of insular cortex forms an isolated pocket medial to the Sylvian fissure. We assessed the frequency of this fusion in 56 primate species (including apes, Old World monkeys, New World monkeys, and strepsirrhines) using either magnetic resonance images or histological sections. A fusion between temporal cortex and posterior insula was present in 22 species (7 apes, 2 Old World monkeys, 4 New World monkeys, and 9 strepsirrhines). The temporo-insular fusion was observed in most eastern gorilla (Gorilla beringei beringei and G. b. graueri) specimens (62% and 100% of cases, respectively) but less frequently in other great apes and was never found in humans. We further explored the histology of this fusion in eastern gorillas by examining the cyto- and myeloarchitecture within this region, and observed that the degree to which deep cortical layers and white matter are incorporated into the fusion varies among individuals within a species. We suggest that fusion between temporal and insular cortex is an example of a relatively rare neuroanatomical feature that has become more common in eastern gorillas, possibly as the result of a population bottleneck effect. Characterizing the phylogenetic distribution of this morphology highlights a derived feature of these great apes. PMID:23939630
Luo, Xiao; Li, Kaicheng; Jia, Y L; Zeng, Qingze; Jiaerken, Yeerfan; Qiu, Tiantian; Huang, Peiyu; Xu, Xiaojun; Shen, Zhujing; Guan, Xiaojun; Zhou, Jiong; Wang, Chao; Xu, J J; Zhang, Minming
2018-03-17
The APOE ε4 allele is associated with impaired intrinsic functional connectivity in neural networks, especially in the default mode network (DMN). However, effective connectivity (EC) reflects the direct causal effects of one brain region to another, which has rarely been investigated. Recently, Granger causality analysis (GCA) proved suitable for the study of directionality in neuronal interactions. Using GCA, we examined the differences in the EC between the anterior medial prefrontal cortex/posterior cingulate cortex (aMPFC/PCC) and the whole brain in 17 ε4 carrying and 32 non-carrying cognitively intact elderly individuals. Furthermore, correlation analyses were performed between the abnormal EC and cognition/neuropathological indices. Compared with the non-carriers, the results showed that the ε4 carriers exhibited decreased EC from the PCC to the whole brain in the middle temporal gyrus (MTG), the anterior cingulate cortex (ACC), and the precuneus (PCu). Meanwhile, the ε4 carriers demonstrated increased EC from the whole brain to the aMPFC in the inferior parietal lobe (IPL) and the postcentral gyrus (PCG). The correlation analyses suggested that the EC from the IPL/PCG to the aMPFC was related to episodic memory in non-carriers, while the decreased EC from the PCC to the ACC was associated with increased levels of t-tau in the ε4 carriers. In ε4 carriers, a negative influence can be traced from the PCC to both the anterior and posterior DMN subsystems; meanwhile, the anterior DMN subsystem receives compensatory effects from the parietal cortex. Early increases in AD-related pathologies in the PCC may act as first factors during this pathological process.
Ghahremani, Dara G; Faulkner, Paul; M Cox, Chelsea; London, Edythe D
2018-06-01
Cigarette craving contributes substantially to the maintenance of tobacco use disorder. Behavioral strategies to regulate craving may facilitate smoking cessation but remain underexplored. We adapted an emotion-regulation strategy, using proximal/distal self-positioning, to the context of cigarette craving to examine craving regulation in 42, daily smokers (18-25 years old). After overnight abstinence from smoking, before and after smoking their first cigarette of the day, participants viewed videos of natural scenes presenting young adults who were either smoking cigarettes ("smoke") or not ("non-smoke"). Before each video, participants were instructed to imagine themselves either immersed in the scene ("close") or distanced from it ("far"). They rated their craving after each video. Task-based fMRI data are presented for a subsample of participants (N = 21). We found main effects of smoking, instruction, and video type on craving-lower ratings after smoking than before, following the "far" vs. "close" instructions, and when viewing non-smoke vs. smoke videos. Before smoking, "smoke" vs. "non-smoke" videos elicited activation in, orbitofrontal cortex, anterior cingulate, lateral parietal cortex, mid-occipital cortex, ventral striatum, dorsal caudate, and midbrain. Smoking reduced activation in anterior cingulate, left inferior frontal gyrus, and bilateral temporal poles. Activation was reduced in the ventral striatum and medial prefrontal cortex after the "far" vs. the "close" instruction, suggesting less engagement with the stimuli during distancing. The results indicate that proximal/distal regulation strategies impact cue-elicited craving, potentially via downregulation of the ventral striatum and medial prefrontal cortex, and that smoking during abstinence may increase cognitive control capacity during craving regulation.
Qi, Shun; Mu, Yun-Feng; Cui, Long-Biao; Li, Rong; Shi, Mei; Liu, Ying; Xu, Jun-Qing; Zhang, Jian; Yang, Jian; Yin, Hong
2016-02-01
Previous studies have indicated regional abnormalities of both gray and white matter in amblyopia. However, alterations of cortical thickness associated with changes in white matter integrity have rarely been reported. In this study, structural magnetic resonance imaging and diffusion tensor imaging (DTI) data were obtained from 15 children with anisometropic amblyopia and 15 age- and gender-matched children with normal sight. Combining DTI and surface-based morphometry, we examined a potential linkage between disrupted white matter integrity and altered cortical thickness. The fractional anisotropy (FA) values in the optic radiations (ORs) of children with anisometropic amblyopia were lower than in controls (P < 0.05). The cortical thickness in amblyopic children was lower than controls in the following subregions: lingual cortex, lateral occipitotemporal gyrus, cuneus, occipital lobe, inferior parietal lobe, and temporal lobe (P < 0.05, corrected), but was higher in the calcarine gyrus (P < 0.05, corrected). Node-by-node correlation analysis of changes in cortical thickness revealed a significant association between a lower FA value in the OR and diminished cortical thickness in the following subregions: medial lingual cortex, lateral occipitotemporal gyrus, lateral, superior, and medial occipital cortex, and lunate cortex. We also found a relationship between changes of cortical thickness and white matter OR integrity in amblyopia. These findings indicate that developmental changes occur simultaneously in the OR and visual cortex in amblyopia, and provide key information on complex damage of brain networks in anisometropic amblyopia. Our results also support the hypothesis that the pathogenesis of anisometropic amblyopia is neurodevelopmental.
Chang, Yu-Cherng C; Khan, Sheraz; Taulu, Samu; Kuperberg, Gina; Brown, Emery N; Hämäläinen, Matti S; Temereanca, Simona
2018-01-01
Saccadic eye movements are an inherent component of natural reading, yet their contribution to information processing at subsequent fixation remains elusive. Here we use anatomically-constrained magnetoencephalography (MEG) to examine cortical activity following saccades as healthy human subjects engaged in a one-back word recognition task. This activity was compared with activity following external visual stimulation that mimicked saccades. A combination of procedures was employed to eliminate saccadic ocular artifacts from the MEG signal. Both saccades and saccade-like external visual stimulation produced early-latency responses beginning ~70 ms after onset in occipital cortex and spreading through the ventral and dorsal visual streams to temporal, parietal and frontal cortices. Robust differential activity following the onset of saccades vs. similar external visual stimulation emerged during 150-350 ms in a left-lateralized cortical network. This network included: (i) left lateral occipitotemporal (LOT) and nearby inferotemporal (IT) cortex; (ii) left posterior Sylvian fissure (PSF) and nearby multimodal cortex; and (iii) medial parietooccipital (PO), posterior cingulate and retrosplenial cortices. Moreover, this left-lateralized network colocalized with word repetition priming effects. Together, results suggest that central saccadic mechanisms influence a left-lateralized language network in occipitotemporal and temporal cortex above and beyond saccadic influences at preceding stages of information processing during visual word recognition.
Chang, Yu-Cherng C.; Khan, Sheraz; Taulu, Samu; Kuperberg, Gina; Brown, Emery N.; Hämäläinen, Matti S.; Temereanca, Simona
2018-01-01
Saccadic eye movements are an inherent component of natural reading, yet their contribution to information processing at subsequent fixation remains elusive. Here we use anatomically-constrained magnetoencephalography (MEG) to examine cortical activity following saccades as healthy human subjects engaged in a one-back word recognition task. This activity was compared with activity following external visual stimulation that mimicked saccades. A combination of procedures was employed to eliminate saccadic ocular artifacts from the MEG signal. Both saccades and saccade-like external visual stimulation produced early-latency responses beginning ~70 ms after onset in occipital cortex and spreading through the ventral and dorsal visual streams to temporal, parietal and frontal cortices. Robust differential activity following the onset of saccades vs. similar external visual stimulation emerged during 150–350 ms in a left-lateralized cortical network. This network included: (i) left lateral occipitotemporal (LOT) and nearby inferotemporal (IT) cortex; (ii) left posterior Sylvian fissure (PSF) and nearby multimodal cortex; and (iii) medial parietooccipital (PO), posterior cingulate and retrosplenial cortices. Moreover, this left-lateralized network colocalized with word repetition priming effects. Together, results suggest that central saccadic mechanisms influence a left-lateralized language network in occipitotemporal and temporal cortex above and beyond saccadic influences at preceding stages of information processing during visual word recognition. PMID:29867372
Optogenetic dissection of medial prefrontal cortex circuitry
Riga, Danai; Matos, Mariana R.; Glas, Annet; Smit, August B.; Spijker, Sabine; Van den Oever, Michel C.
2014-01-01
The medial prefrontal cortex (mPFC) is critically involved in numerous cognitive functions, including attention, inhibitory control, habit formation, working memory and long-term memory. Moreover, through its dense interconnectivity with subcortical regions (e.g., thalamus, striatum, amygdala and hippocampus), the mPFC is thought to exert top-down executive control over the processing of aversive and appetitive stimuli. Because the mPFC has been implicated in the processing of a wide range of cognitive and emotional stimuli, it is thought to function as a central hub in the brain circuitry mediating symptoms of psychiatric disorders. New optogenetics technology enables anatomical and functional dissection of mPFC circuitry with unprecedented spatial and temporal resolution. This provides important novel insights in the contribution of specific neuronal subpopulations and their connectivity to mPFC function in health and disease states. In this review, we present the current knowledge obtained with optogenetic methods concerning mPFC function and dysfunction and integrate this with findings from traditional intervention approaches used to investigate the mPFC circuitry in animal models of cognitive processing and psychiatric disorders. PMID:25538574
Optogenetic dissection of medial prefrontal cortex circuitry.
Riga, Danai; Matos, Mariana R; Glas, Annet; Smit, August B; Spijker, Sabine; Van den Oever, Michel C
2014-01-01
The medial prefrontal cortex (mPFC) is critically involved in numerous cognitive functions, including attention, inhibitory control, habit formation, working memory and long-term memory. Moreover, through its dense interconnectivity with subcortical regions (e.g., thalamus, striatum, amygdala and hippocampus), the mPFC is thought to exert top-down executive control over the processing of aversive and appetitive stimuli. Because the mPFC has been implicated in the processing of a wide range of cognitive and emotional stimuli, it is thought to function as a central hub in the brain circuitry mediating symptoms of psychiatric disorders. New optogenetics technology enables anatomical and functional dissection of mPFC circuitry with unprecedented spatial and temporal resolution. This provides important novel insights in the contribution of specific neuronal subpopulations and their connectivity to mPFC function in health and disease states. In this review, we present the current knowledge obtained with optogenetic methods concerning mPFC function and dysfunction and integrate this with findings from traditional intervention approaches used to investigate the mPFC circuitry in animal models of cognitive processing and psychiatric disorders.
McGettigan, C.; Walsh, E.; Jessop, R.; Agnew, Z. K.; Sauter, D. A.; Warren, J. E.; Scott, S. K.
2015-01-01
Humans express laughter differently depending on the context: polite titters of agreement are very different from explosions of mirth. Using functional MRI, we explored the neural responses during passive listening to authentic amusement laughter and controlled, voluntary laughter. We found greater activity in anterior medial prefrontal cortex (amPFC) to the deliberate, Emitted Laughs, suggesting an obligatory attempt to determine others' mental states when laughter is perceived as less genuine. In contrast, passive perception of authentic Evoked Laughs was associated with greater activity in bilateral superior temporal gyri. An individual differences analysis found that greater accuracy on a post hoc test of authenticity judgments of laughter predicted the magnitude of passive listening responses to laughter in amPFC, as well as several regions in sensorimotor cortex (in line with simulation accounts of emotion perception). These medial prefrontal and sensorimotor sites showed enhanced positive connectivity with cortical and subcortical regions during listening to involuntary laughter, indicating a complex set of interacting systems supporting the automatic emotional evaluation of heard vocalizations. PMID:23968840
McGettigan, C; Walsh, E; Jessop, R; Agnew, Z K; Sauter, D A; Warren, J E; Scott, S K
2015-01-01
Humans express laughter differently depending on the context: polite titters of agreement are very different from explosions of mirth. Using functional MRI, we explored the neural responses during passive listening to authentic amusement laughter and controlled, voluntary laughter. We found greater activity in anterior medial prefrontal cortex (amPFC) to the deliberate, Emitted Laughs, suggesting an obligatory attempt to determine others' mental states when laughter is perceived as less genuine. In contrast, passive perception of authentic Evoked Laughs was associated with greater activity in bilateral superior temporal gyri. An individual differences analysis found that greater accuracy on a post hoc test of authenticity judgments of laughter predicted the magnitude of passive listening responses to laughter in amPFC, as well as several regions in sensorimotor cortex (in line with simulation accounts of emotion perception). These medial prefrontal and sensorimotor sites showed enhanced positive connectivity with cortical and subcortical regions during listening to involuntary laughter, indicating a complex set of interacting systems supporting the automatic emotional evaluation of heard vocalizations. © The Author 2013. Published by Oxford University Press.
Getting the word out: neural correlates of enthusiastic message propagation.
Falk, Emily B; O'Donnell, Matthew Brook; Lieberman, Matthew D
2012-01-01
What happens in the mind of a person who first hears a potentially exciting idea?We examined the neural precursors of spreading ideas with enthusiasm, and dissected enthusiasm into component processes that can be identified through automated linguistic analysis, gestalt human ratings of combined linguistic and non-verbal cues, and points of convergence/divergence between the two. We combined tools from natural language processing (NLP) with data gathered using fMRI to link the neurocognitive mechanisms that are set in motion during initial exposure to ideas and subsequent behaviors of these message communicators outside of the scanner. Participants' neural activity was recorded as they reviewed ideas for potential television show pilots. Participants' language from video-taped interviews collected post-scan was transcribed and given to an automated linguistic sentiment analysis (SA) classifier, which returned ratings for evaluative language (evaluative vs. descriptive) and valence (positive vs. negative). Separately, human coders rated the enthusiasm with which participants transmitted each idea. More positive sentiment ratings by the automated classifier were associated with activation in neural regions including medial prefrontal cortex; MPFC, precuneus/posterior cingulate cortex; PC/PCC, and medial temporal lobe; MTL. More evaluative, positive, descriptions were associated exclusively with neural activity in temporal-parietal junction (TPJ). Finally, human ratings indicative of more enthusiastic sentiment were associated with activation across these regions (MPFC, PC/PCC, DMPFC, TPJ, and MTL) as well as in ventral striatum (VS), inferior parietal lobule and premotor cortex. Taken together, these data demonstrate novel links between neural activity during initial idea encoding and the enthusiasm with which the ideas are subsequently delivered. This research lays the groundwork to use machine learning and neuroimaging data to study word of mouth communication and the spread of ideas in both traditional and new media environments.
Getting the word out: neural correlates of enthusiastic message propagation
Falk, Emily B.; O'Donnell, Matthew Brook; Lieberman, Matthew D.
2012-01-01
What happens in the mind of a person who first hears a potentially exciting idea?We examined the neural precursors of spreading ideas with enthusiasm, and dissected enthusiasm into component processes that can be identified through automated linguistic analysis, gestalt human ratings of combined linguistic and non-verbal cues, and points of convergence/divergence between the two. We combined tools from natural language processing (NLP) with data gathered using fMRI to link the neurocognitive mechanisms that are set in motion during initial exposure to ideas and subsequent behaviors of these message communicators outside of the scanner. Participants' neural activity was recorded as they reviewed ideas for potential television show pilots. Participants' language from video-taped interviews collected post-scan was transcribed and given to an automated linguistic sentiment analysis (SA) classifier, which returned ratings for evaluative language (evaluative vs. descriptive) and valence (positive vs. negative). Separately, human coders rated the enthusiasm with which participants transmitted each idea. More positive sentiment ratings by the automated classifier were associated with activation in neural regions including medial prefrontal cortex; MPFC, precuneus/posterior cingulate cortex; PC/PCC, and medial temporal lobe; MTL. More evaluative, positive, descriptions were associated exclusively with neural activity in temporal-parietal junction (TPJ). Finally, human ratings indicative of more enthusiastic sentiment were associated with activation across these regions (MPFC, PC/PCC, DMPFC, TPJ, and MTL) as well as in ventral striatum (VS), inferior parietal lobule and premotor cortex. Taken together, these data demonstrate novel links between neural activity during initial idea encoding and the enthusiasm with which the ideas are subsequently delivered. This research lays the groundwork to use machine learning and neuroimaging data to study word of mouth communication and the spread of ideas in both traditional and new media environments. PMID:23189049
Pierce, Jordan E; McDowell, Jennifer E
2016-02-01
Cognitive control supports flexible behavior adapted to meet current goals and can be modeled through investigation of saccade tasks with varying cognitive demands. Basic prosaccades (rapid glances toward a newly appearing stimulus) are supported by neural circuitry, including occipital and posterior parietal cortex, frontal and supplementary eye fields, and basal ganglia. These trials can be contrasted with complex antisaccades (glances toward the mirror image location of a stimulus), which are characterized by greater functional magnetic resonance imaging (MRI) blood oxygenation level-dependent (BOLD) signal in the aforementioned regions and recruitment of additional regions such as dorsolateral prefrontal cortex. The current study manipulated the cognitive demands of these saccade tasks by presenting three rapid event-related runs of mixed saccades with a varying probability of antisaccade vs. prosaccade trials (25, 50, or 75%). Behavioral results showed an effect of trial-type probability on reaction time, with slower responses in runs with a high antisaccade probability. Imaging results exhibited an effect of probability in bilateral pre- and postcentral gyrus, bilateral superior temporal gyrus, and medial frontal gyrus. Additionally, the interaction between saccade trial type and probability revealed a strong probability effect for prosaccade trials, showing a linear increase in activation parallel to antisaccade probability in bilateral temporal/occipital, posterior parietal, medial frontal, and lateral prefrontal cortex. In contrast, antisaccade trials showed elevated activation across all runs. Overall, this study demonstrated that improbable performance of a typically simple prosaccade task led to augmented BOLD signal to support changing cognitive control demands, resulting in activation levels similar to the more complex antisaccade task. Copyright © 2016 the American Physiological Society.
The neural correlates of affect reading: an fMRI study on faces and gestures.
Prochnow, D; Höing, B; Kleiser, R; Lindenberg, R; Wittsack, H-J; Schäfer, R; Franz, M; Seitz, R J
2013-01-15
As complex social beings, people communicate, in addition to spoken language, also via nonverbal behavior. In social face-to-face situations, people readily read the affect and intentions of others in their face expressions and gestures recognizing their meaning. Importantly, the addressee further has to discriminate the meanings of the seen communicative motor acts in order to be able to react upon them appropriately. In this functional magnetic resonance imaging study 15 healthy non-alexithymic right-handers observed video-clips that showed the dynamic evolution of emotional face expressions and gestures evolving from a neutral to a fully developed expression. We aimed at disentangling the cerebral circuits related to the observation of the incomplete and the subsequent discrimination of the evolved bodily expressions of emotion which are typical for everyday social situations. We show that the inferior temporal gyrus and the inferior and dorsal medial frontal cortex in both cerebral hemispheres were activated early in recognizing faces and gestures, while their subsequent discrimination involved the right dorsolateral frontal cortex. Interregional correlations showed that the involved regions constituted a widespread circuit allowing for a formal analysis of the seen expressions, their empathic processing and the subjective interpretation of their contextual meanings. Right-left comparisons revealed a greater activation of the right dorsal medial frontal cortex and the inferior temporal gyrus which supports the notion of a right hemispheric dominance for processing affective body expressions. These novel data provide a neurobiological basis for the intuitive understanding of other people which is relevant for socially appropriate decisions and intact social functioning. Copyright © 2012 Elsevier B.V. All rights reserved.
Wang, Xiaoying; Peelen, Marius V; Han, Zaizhu; He, Chenxi; Caramazza, Alfonso; Bi, Yanchao
2015-09-09
Classical animal visual deprivation studies and human neuroimaging studies have shown that visual experience plays a critical role in shaping the functionality and connectivity of the visual cortex. Interestingly, recent studies have additionally reported circumscribed regions in the visual cortex in which functional selectivity was remarkably similar in individuals with and without visual experience. Here, by directly comparing resting-state and task-based fMRI data in congenitally blind and sighted human subjects, we obtained large-scale continuous maps of the degree to which connectional and functional "fingerprints" of ventral visual cortex depend on visual experience. We found a close agreement between connectional and functional maps, pointing to a strong interdependence of connectivity and function. Visual experience (or the absence thereof) had a pronounced effect on the resting-state connectivity and functional response profile of occipital cortex and the posterior lateral fusiform gyrus. By contrast, connectional and functional fingerprints in the anterior medial and posterior lateral parts of the ventral visual cortex were statistically indistinguishable between blind and sighted individuals. These results provide a large-scale mapping of the influence of visual experience on the development of both functional and connectivity properties of visual cortex, which serves as a basis for the formulation of new hypotheses regarding the functionality and plasticity of specific subregions. Significance statement: How is the functionality and connectivity of the visual cortex shaped by visual experience? By directly comparing resting-state and task-based fMRI data in congenitally blind and sighted subjects, we obtained large-scale continuous maps of the degree to which connectional and functional "fingerprints" of ventral visual cortex depend on visual experience. In addition to revealing regions that are strongly dependent on visual experience (early visual cortex and posterior fusiform gyrus), our results showed regions in which connectional and functional patterns are highly similar in blind and sighted individuals (anterior medial and posterior lateral ventral occipital temporal cortex). These results serve as a basis for the formulation of new hypotheses regarding the functionality and plasticity of specific subregions of the visual cortex. Copyright © 2015 the authors 0270-6474/15/3512545-15$15.00/0.
Stretton, Jason; Sidhu, Meneka K.; Winston, Gavin P.; Bartlett, Philippa; McEvoy, Andrew W.; Symms, Mark R.; Koepp, Matthias J.; Thompson, Pamela J.
2014-01-01
Working memory is a crucial cognitive function that is disrupted in temporal lobe epilepsy. It is unclear whether this impairment is a consequence of temporal lobe involvement in working memory processes or due to seizure spread to extratemporal eloquent cortex. Anterior temporal lobe resection controls seizures in 50–80% of patients with drug-resistant temporal lobe epilepsy and the effect of surgery on working memory are poorly understood both at a behavioural and neural level. We investigated the impact of temporal lobe resection on the efficiency and functional anatomy of working memory networks. We studied 33 patients with unilateral medial temporal lobe epilepsy (16 left) before, 3 and 12 months after anterior temporal lobe resection. Fifteen healthy control subjects were also assessed in parallel. All subjects had neuropsychological testing and performed a visuospatial working memory functional magnetic resonance imaging paradigm on these three separate occasions. Changes in activation and deactivation patterns were modelled individually and compared between groups. Changes in task performance were included as regressors of interest to assess the efficiency of changes in the networks. Left and right temporal lobe epilepsy patients were impaired on preoperative measures of working memory compared to controls. Working memory performance did not decline following left or right temporal lobe resection, but improved at 3 and 12 months following left and, to a lesser extent, following right anterior temporal lobe resection. After left anterior temporal lobe resection, improved performance correlated with greater deactivation of the left hippocampal remnant and the contralateral right hippocampus. There was a failure of increased deactivation of the left hippocampal remnant at 3 months after left temporal lobe resection compared to control subjects, which had normalized 12 months after surgery. Following right anterior temporal lobe resection there was a progressive increase of activation in the right superior parietal lobe at 3 and 12 months after surgery. There was greater deactivation of the right hippocampal remnant compared to controls between 3 and 12 months after right anterior temporal lobe resection that was associated with lesser improvement in task performance. Working memory improved after anterior temporal lobe resection, particularly following left-sided resections. Postoperative working memory was reliant on the functional capacity of the hippocampal remnant and, following left resections, the functional reserve of the right hippocampus. These data suggest that working memory following temporal lobe resection is dependent on the engagement of the posterior medial temporal lobes and eloquent cortex. PMID:24691395
McCarthy, Deirdre M; Bhide, Pradeep G
2012-01-01
Cocaine abuse during pregnancy produces harmful effects not only on the mother but also on the unborn child. The neurotransmitters dopamine and serotonin are known as the principal targets of the action of cocaine in the fetal and postnatal brain. However, recent evidence suggests that cocaine can impair cerebral cortical GABA neuron development and function. We sought to analyze the effects of prenatal cocaine exposure on the number and distribution of GABA and projection neurons (inhibitory interneurons and excitatory output neurons, respectively) in the mouse cerebral cortex. We found that the prenatal cocaine exposure decreased GABA neuron numbers and GABA-to-projection neuron ratio in the medial prefrontal cortex of 60-day-old mice. The neighboring prefrontal cortex did not show significant changes in either of these measures. However, there was a significant increase in projection neuron numbers in the prefrontal cortex but not in the medial prefrontal cortex. Thus, the effects of cocaine on GABA and projection neurons appear to be cortical region specific. The population of parvalbumin-immunoreactive GABA neurons was decreased in the medial prefrontal cortex following the prenatal cocaine exposure. The cocaine exposure also delayed the developmental decline in the volume of the medial prefrontal cortex. Thus, prenatal cocaine exposure produced persisting and region-specific effects on cortical cytoarchitecture and impaired the physiological balance between excitatory and inhibitory neurotransmission. These structural changes may underlie the electrophysiological and behavioral effects of prenatal cocaine exposure observed in animal models and human subjects. Copyright © 2012 S. Karger AG, Basel.
Verfaellie, Mieke; Bousquet, Kathryn; Keane, Margaret M
2014-08-01
Studies of remote memory for semantic facts and concepts suggest that hippocampal lesions lead to a temporally graded impairment that extends no more than ten years prior to the onset of amnesia. Such findings have led to the notion that once consolidated, semantic memories are represented neocortically and are no longer dependent on the hippocampus. Here, we examined the fate of well-established semantic narratives following medial temporal lobe (MTL) lesions. Seven amnesic patients, five with lesions restricted to the MTL and two with lesions extending into lateral temporal cortex (MTL+), were asked to recount fairy tales and bible stories that they rated as familiar. Narratives were scored for number and type of details, number of main thematic elements, and order in which the main thematic elements were recounted. In comparison to controls, patients with MTL lesions produced fewer details, but the number and order of main thematic elements generated was intact. By contrast, patients with MTL+ lesions showed a pervasive impairment, affecting not only the generation of details, but also the generation and ordering of main steps. These findings challenge the notion that, once consolidated, semantic memories are no longer dependent on the hippocampus for retrieval. Possible hippocampal contributions to the retrieval of detailed semantic narratives are discussed. Published by Elsevier Ltd.
Alonso-Solís, Anna; Corripio, Iluminada; de Castro-Manglano, Pilar; Duran-Sindreu, Santiago; Garcia-Garcia, Manuel; Proal, Erika; Nuñez-Marín, Fidel; Soutullo, Cesar; Alvarez, Enric; Gómez-Ansón, Beatriz; Kelly, Clare; Castellanos, F Xavier
2012-08-01
Default network (DN) abnormalities have been identified in patients with chronic schizophrenia using "resting state" functional magnetic resonance imaging (R-fMRI). Here, we examined the integrity of the DN in patients experiencing their first episode of psychosis (FEP) compared with sex- and age-matched healthy controls. We collected R-fMRI data from 19 FEP patients (mean age 24.9 ± 4.8 yrs, 14 males) and 19 healthy controls (26.1 ± 4.8 yrs, 14 males) at 3T. Following standard preprocessing, we examined the functional connectivity (FC) of two DN subsystems and the two DN hubs (P<0.0045, corrected). Patients with FEP exhibited abnormal FC that appeared largely restricted to the dorsomedial prefrontal cortex (dMPFC) DN subsystem. Relative to controls, FEP patients exhibited weaker positive FC between dMPFC and posterior cingulate cortex (PCC) and precuneus, extending laterally through the parietal lobe to the posterior angular gyrus. Patients with FEP exhibited weaker negative FC between the lateral temporal cortex and the intracalcarine cortex, bilaterally. The PCC and temporo-parietal junction also exhibited weaker negative FC with the right fusiform gyrus extending to the lingual gyrus and lateral occipital cortex, in FEP patients, compared to controls. By contrast, patients with FEP showed stronger negative FC between the temporal pole and medial motor cortex, anterior precuneus and posterior mid-cingulate cortex. Abnormalities in the dMPFC DN subsystem in patients with a FEP suggest that FC patterns are altered even in the early stages of psychosis. Copyright © 2012 Elsevier B.V. All rights reserved.
Alonso-Solís, Anna; Corripio, Iluminada; de Castro-Manglano, Pilar; Duran-Sindreu, Santiago; Garcia-Garcia, Manuel; Proal, Erika; Nuñez-Marín, Fidel; Soutullo, Cesar; Alvarez, Enric; Gómez-Ansón, Beatriz; Kelly, Clare; Castellanos, F. Xavier
2012-01-01
Background Default network (DN) abnormalities have been identified in patients with chronic schizophrenia using “resting state” functional magnetic resonance imaging (R-fMRI). Here, we examined the integrity of the DN in patients experiencing their first episode of psychosis (FEP) compared with sex- and age-matched healthy controls. Methods We collected R-fMRI data from 19 FEP patients (mean age 24.9±4.8 yrs, 14 males) and 19 healthy controls (26.1±4.8 yrs, 14 males) at 3 Tesla. Following standard preprocessing, we examined the functional connectivity (FC) of two DN subsystems and the two DN hubs (P<0.0045, corrected). Results Patients with FEP exhibited abnormal FC that appeared largely restricted to the dorsomedial prefrontal cortex (dMPFC) DN subsystem. Relative to controls, FEP patients exhibited weaker positive FC between dMPFC and posterior cingulate cortex (PCC) and precuneus, extending laterally through the parietal lobe to the posterior angular gyrus. Patients with FEP exhibited weaker negative FC between the lateral temporal cortex and the intracalcarine cortex, bilaterally. The PCC and temporo-parietal junction also exhibited weaker negative FC with the right fusiform gyrus extending to the lingual gyrus and lateral occipital cortex, in FEP patients, compared to controls. By contrast, patients with FEP showed stronger negative FC between the temporal pole and medial motor cortex, anterior precuneus and posterior mid-cingulate cortex. Conclusions Abnormalities in the dMPFC DN subsystem in patients with a FEP suggest that FC patterns are altered even in the early stages of psychosis. PMID:22633527
Attention, Imagery and Memory: A Neuromagnetic Investigation
1991-10-14
The full complexity of memory processes suggested by the distinctions between short-term and long-term memory , episodic , semantic and declarative...the ;canning of short-term memory . This fol- lows from the fact that bilateral damage to medial temporal cortex results in anterograde amnesia , which...Neural Science AD-A243 859 r FINAL TECHNICAL REPORTC Attention, Imagery and Memory 1 March 1988 -30 September 1991 , Q6’i iQ’ UA Dr.~~~~C A..Fel
[Prosopagnosia and facial expression recognition].
Koyama, Shinichi
2014-04-01
This paper reviews clinical neuropsychological studies that have indicated that the recognition of a person's identity and the recognition of facial expressions are processed by different cortical and subcortical areas of the brain. The fusiform gyrus, especially the right fusiform gyrus, plays an important role in the recognition of identity. The superior temporal sulcus, amygdala, and medial frontal cortex play important roles in facial-expression recognition. Both facial recognition and facial-expression recognition are highly intellectual processes that involve several regions of the brain.
Bowles, Ben; Crupi, Carina; Mirsattari, Seyed M; Pigott, Susan E; Parrent, Andrew G; Pruessner, Jens C; Yonelinas, Andrew P; Köhler, Stefan
2007-10-09
It is well established that the medial-temporal lobe (MTL) is critical for recognition memory. The MTL is known to be composed of distinct structures that are organized in a hierarchical manner. At present, it remains controversial whether lower structures in this hierarchy, such as perirhinal cortex, support memory functions that are distinct from those of higher structures, in particular the hippocampus. Perirhinal cortex has been proposed to play a specific role in the assessment of familiarity during recognition, which can be distinguished from the selective contributions of the hippocampus to the recollection of episodic detail. Some researchers have argued, however, that the distinction between familiarity and recollection cannot capture functional specialization within the MTL and have proposed single-process accounts. Evidence supporting the dual-process view comes from demonstrations that selective hippocampal damage can produce isolated recollection impairments. It is unclear, however, whether temporal-lobe lesions that spare the hippocampus can produce selective familiarity impairments. Without this demonstration, single-process accounts cannot be ruled out. We examined recognition memory in NB, an individual who underwent surgical resection of left anterior temporal-lobe structures for treatment of intractable epilepsy. Her resection included a large portion of perirhinal cortex but spared the hippocampus. The results of four experiments based on three different experimental procedures (remember-know paradigm, receiver operating characteristics, and response-deadline procedure) indicate that NB exhibits impaired familiarity with preserved recollection. The present findings thus provide a crucial missing piece of support for functional specialization in the MTL.
Tanner, Jared J; Mareci, Thomas H; Okun, Michael S; Bowers, Dawn; Libon, David J; Price, Catherine C
2015-01-01
The current investigation examined verbal memory in idiopathic non-dementia Parkinson's disease and the significance of the left entorhinal cortex and left entorhinal-retrosplenial region connections (via temporal cingulum) on memory impairment in Parkinson's disease. Forty non-demented Parkinson's disease patients and forty non-Parkinson's disease controls completed two verbal memory tests--a wordlist measure (Philadelphia repeatable Verbal Memory Test) and a story measure (Logical Memory). All participants received T1-weighted and diffusion magnetic resonance imaging (3T; Siemens) sequences. Left entorhinal volume and left entorhinal-retrosplenial connectivity (temporal cingulum edge weight) were the primary imaging variables of interest with frontal lobe thickness and subcortical structure volumes as dissociating variables. Individuals with Parkinson's disease showed worse verbal memory, smaller entorhinal volumes, but did not differ in entorhinal-retrosplenial connectivity. For Parkinson's disease entorhinal-retrosplenial edge weight had the strongest associations with verbal memory. A subset of Parkinson's disease patients (23%) had deficits (z-scores < -1.5) across both memory measures. Relative to non-impaired Parkinson's peers, this memory-impaired group had smaller entorhinal volumes. Although entorhinal cortex volume was significantly reduced in Parkinson's disease patients relative to non-Parkinson's peers, only white matter connections associated with the entorhinal cortex were significantly associated with verbal memory performance in our sample. There was also no suggestion of contribution from frontal-subcortical gray or frontal white matter regions. These findings argue for additional investigation into medial temporal lobe gray and white matter connectivity for understanding memory in Parkinson's disease.
Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Bini, Valentina; Gessa, Gian Luigi
2014-07-01
The dopamine-beta-hydroxylase inhibitor nepicastat has been shown to reproduce disulfiram ability to suppress the reinstatement of cocaine seeking after extinction in rats. To clarify its mechanism of action, we examined the effect of nepicastat, given alone or in association with cocaine or amphetamine, on catecholamine release in the medial prefrontal cortex and the nucleus accumbens, two key regions involved in the reinforcing and motivational effects of cocaine and in the reinstatement of cocaine seeking. Nepicastat effect on catecholamines was evaluated by microdialysis in freely moving rats. Nepicastat reduced noradrenaline release both in the medial prefrontal cortex and in the nucleus accumbens, and increased dopamine release in the medial prefrontal cortex but not in the nucleus accumbens. Moreover, nepicastat markedly potentiated cocaine- and amphetamine-induced extracellular dopamine accumulation in the medial prefrontal cortex but not in the nucleus accumbens. Extracellular dopamine accumulation produced by nepicastat alone or by its combination with cocaine or amphetamine was suppressed by the α2 -adrenoceptor agonist clonidine. It is suggested that nepicastat, by suppressing noradrenaline synthesis and release, eliminated the α2 -adrenoceptor mediated inhibitory mechanism that constrains dopamine release and cocaine- and amphetamine-induced dopamine release from noradrenaline or dopamine terminals in the medial prefrontal cortex. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.
Examining Neural Correlates of Psychopathology Using a Lesion-Based Approach.
Calamia, Matthew; Markon, Kristian E; Sutterer, Matthew J; Tranel, Daniel
2018-06-22
Studies of individuals with focal brain damage have long been used to expand understanding of the neural basis of psychopathology. However, most previous studies were conducted using small sample sizes and relatively coarse methods for measuring psychopathology or mapping brain-behavior relationships. Here, we examined the factor structure and neural correlates of psychopathology in 232 individuals with focal brain damage, using their responses to the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF). Factor analysis and voxel-based lesion symptom mapping were used to examine the structure and neural correlates of psychopathology in this sample. Consistent with existing MMPI-2-RF literature, separate internalizing, externalizing, and psychotic symptom dimensions were found. In addition, a somatic dimension likely reflecting neurological symptoms was identified. Damage to the medial temporal lobe, including the hippocampus, was associated with scales related to both internalizing problems and psychoticism. Damage to the medial temporal lobe and orbitofrontal cortex was associated with both a general distrust of others and beliefs that one is being personally targeted by others. These findings provide evidence for the critical role of dysfunction in specific frontal and temporal regions in the development of psychopathology. Copyright © 2018. Published by Elsevier Ltd.
ERIC Educational Resources Information Center
Aarts, Esther; Roelofs, Ardi; van Turennout, Miranda
2009-01-01
It is unclear whether task conflict is reflected in the anterior cingulate cortex (ACC) or in more dorsal regions of the medial frontal cortex (MFC). When participants switch between tasks involving incongruent, congruent, and neutral stimuli, it is possible to examine both response conflict (incongruent vs. congruent) and task conflict (congruent…
Separate elements of episodic memory subserved by distinct hippocampal-prefrontal connections.
Barker, Gareth R I; Banks, Paul J; Scott, Hannah; Ralph, G Scott; Mitrophanous, Kyriacos A; Wong, Liang-Fong; Bashir, Zafar I; Uney, James B; Warburton, E Clea
2017-02-01
Episodic memory formation depends on information about a stimulus being integrated within a precise spatial and temporal context, a process dependent on the hippocampus and prefrontal cortex. Investigations of putative functional interactions between these regions are complicated by multiple direct and indirect hippocampal-prefrontal connections. Here application of a pharmacogenetic deactivation technique enabled us to investigate the mnemonic contributions of two direct hippocampal-medial prefrontal cortex (mPFC) pathways, one arising in the dorsal CA1 (dCA1) and the other in the intermediate CA1 (iCA1). While deactivation of either pathway impaired episodic memory, the resulting pattern of mnemonic deficits was different: deactivation of the dCA1→mPFC pathway selectively disrupted temporal order judgments while iCA1→mPFC pathway deactivation disrupted spatial memory. These findings reveal a previously unsuspected division of function among CA1 neurons that project directly to the mPFC. Such subnetworks may enable the distinctiveness of contextual information to be maintained in an episodic memory circuit.
Neural pattern change during encoding of a narrative predicts retrospective duration estimates
Lositsky, Olga; Chen, Janice; Toker, Daniel; Honey, Christopher J; Shvartsman, Michael; Poppenk, Jordan L; Hasson, Uri; Norman, Kenneth A
2016-01-01
What mechanisms support our ability to estimate durations on the order of minutes? Behavioral studies in humans have shown that changes in contextual features lead to overestimation of past durations. Based on evidence that the medial temporal lobes and prefrontal cortex represent contextual features, we related the degree of fMRI pattern change in these regions with people’s subsequent duration estimates. After listening to a radio story in the scanner, participants were asked how much time had elapsed between pairs of clips from the story. Our ROI analyses found that duration estimates were correlated with the neural pattern distance between two clips at encoding in the right entorhinal cortex. Moreover, whole-brain searchlight analyses revealed a cluster spanning the right anterior temporal lobe. Our findings provide convergent support for the hypothesis that retrospective time judgments are driven by 'drift' in contextual representations supported by these regions. DOI: http://dx.doi.org/10.7554/eLife.16070.001 PMID:27801645
Response-related fMRI of veridical and false recognition of words.
Heun, Reinhard; Jessen, Frank; Klose, Uwe; Erb, Michael; Granath, Dirk-Oliver; Grodd, Wolfgang
2004-02-01
Studies on the relation between local cerebral activation and retrieval success usually compared high and low performance conditions, and thus showed performance-related activation of different brain areas. Only a few studies directly compared signal intensities of different response categories during retrieval. During verbal recognition, we recently observed increased parieto-occipital activation related to false alarms. The present study intends to replicate and extend this observation by investigating common and differential activation by veridical and false recognition. Fifteen healthy volunteers performed a verbal recognition paradigm using 160 learned target and 160 new distractor words. The subjects had to indicate whether they had learned the word before or not. Echo-planar MRI of blood-oxygen-level-dependent signal changes was performed during this recognition task. Words were classified post hoc according to the subjects' responses, i.e. hits, false alarms, correct rejections and misses. Response-related fMRI-analysis was used to compare activation associated with the subjects' recognition success, i.e. signal intensities related to the presentation of words were compared by the above-mentioned four response types. During recognition, all word categories showed increased bilateral activation of the inferior frontal gyrus, the inferior temporal gyrus, the occipital lobe and the brainstem in comparison with the control condition. Hits and false alarms activated several areas including the left medial and lateral parieto-occipital cortex in comparison with subjectively unknown items, i.e. correct rejections and misses. Hits showed more pronounced activation in the medial, false alarms in the lateral parts of the left parieto-occipital cortex. Veridical and false recognition show common as well as different areas of cerebral activation in the left parieto-occipital lobe: increased activation of the medial parietal cortex by hits may correspond to true recognition, increased activation of the parieto-occipital cortex by false alarms may correspond to familiarity decisions. Further studies are needed to investigate the reasons for false decisions in healthy subjects and patients with memory problems.
Entorhinal Cortical Ocean Cells Encode Specific Contexts and Drive Context-Specific Fear Memory
Kitamura, Takashi; Sun, Chen; Martin, Jared; Kitch, Lacey J; Schnitzer, Mark J; Tonegawa, Susumu
2016-01-01
Summary Forming distinct representations and memories of multiple contexts and episodes is thought to be a crucial function of the hippocampal-entorhinal cortical network. The hippocampal dentate gyrus (DG) and CA3 are known to contribute to these functions but the role of the entorhinal cortex (EC) is poorly understood. Here, we show that Ocean cells, excitatory stellate neurons in the medial EC layer II projecting into DG and CA3, rapidly form a distinct representation of a novel context and drive context-specific activation of downstream CA3 cells as well as context-specific fear memory. In contrast, Island cells, excitatory pyramidal neurons in the medial EC layer II projecting into CA1, are indifferent to context-specific encoding or memory. On the other hand, Ocean cells are dispensable for temporal association learning, for which Island cells are crucial. Together, the two excitatory medial EC layer II inputs to the hippocampus have complementary roles in episodic memory. PMID:26402611
Mayer, Jutta S; Roebroeck, Alard; Maurer, Konrad; Linden, David E J
2010-01-01
The idea of an organized mode of brain function that is present as default state and suspended during goal-directed behaviors has recently gained much interest in the study of human brain function. The default mode hypothesis is based on the repeated observation that certain brain areas show task-induced deactivations across a wide range of cognitive tasks. In this event-related functional resonance imaging study we tested the default mode hypothesis by comparing common and selective patterns of BOLD deactivation in response to the demands on visual attention and working memory (WM) that were independently modulated within one task. The results revealed task-induced deactivations within regions of the default mode network (DMN) with a segregation of areas that were additively deactivated by an increase in the demands on both attention and WM, and areas that were selectively deactivated by either high attentional demand or WM load. Attention-selective deactivations appeared in the left ventrolateral and medial prefrontal cortex and the left lateral temporal cortex. Conversely, WM-selective deactivations were found predominantly in the right hemisphere including the medial-parietal, the lateral temporo-parietal, and the medial prefrontal cortex. Moreover, during WM encoding deactivated regions showed task-specific functional connectivity. These findings demonstrate that task-induced deactivations within parts of the DMN depend on the specific characteristics of the attention and WM components of the task. The DMN can thus be subdivided into a set of brain regions that deactivate indiscriminately in response to cognitive demand ("the core DMN") and a part whose deactivation depends on the specific task. 2009 Wiley-Liss, Inc.
Gender differences in the functional neuroanatomy of emotional episodic autobiographical memory.
Piefke, Martina; Weiss, Peter H; Markowitsch, Hans J; Fink, Gereon R
2005-04-01
Autobiographical memory is based on interactions between episodic memory contents, associated emotions, and a sense of self-continuity along the time axis of one's life. The functional neuroanatomy subserving autobiographical memory is known to include prefrontal, medial and lateral temporal, as well as retrosplenial brain areas; however, whether gender differences exist in neural correlates of autobiographical memory remains to be clarified. We reanalyzed data from a previous functional magnetic resonance imaging (fMRI) experiment to investigate gender-related differences in the neural bases of autobiographical memories with differential remoteness and emotional valence. On the behavioral level, there were no significant gender differences in memory performance or emotional intensity of memories. Activations common to males and females during autobiographical memory retrieval were observed in a bilateral network of brain areas comprising medial and lateral temporal regions, including hippocampal and parahippocampal structures, posterior cingulate, as well as prefrontal cortex. In males (relative to females), all types of autobiographical memories investigated were associated with differential activation of the left parahippocampal gyrus. By contrast, right dorsolateral prefrontal cortex was activated differentially by females. In addition, the right insula was activated differentially in females during remote and negative memory retrieval. The data show gender-related differential neural activations within the network subserving autobiographical memory in both genders. We suggest that the differential activations may reflect gender-specific cognitive strategies during access to autobiographical memories that do not necessarily affect the behavioral level of memory performance and emotionality. (c) 2005 Wiley-Liss, Inc.
Activation of Neural Pathways Associated with Sexual Arousal in Non-Human Primates
Ferris, Craig F.; Snowdon, Charles T.; King, Jean A.; Sullivan, John M.; Ziegler, Toni E.; Olson, David P.; Schultz-Darken, Nancy J.; Tannenbaum, Pamela L.; Ludwig, Reinhold; Wu, Ziji; Einspanier, Almuth; Vaughan, J. Thomas; Duong, Timothy Q.
2006-01-01
Purpose To evaluate brain activity associated with sexual arousal, fully conscious male marmoset monkeys were imaged during presentation of odors that naturally elicit high levels of sexual activity and sexual motivation. Material and Methods Male monkeys were lightly anesthetized, secured in a head and body restrainer with a built-in birdcage resonator and positioned in a 9.4-Tesla spectrometer. When fully conscious, monkeys were presented with the odors of a novel receptive female or an ovariectomized monkey. Both odors were presented during an imaging trial and the presentation of odors was counterbalanced. Significant changes in both positive and negative BOLD signal were mapped and averaged. Results Periovulatory odors significantly increased positive BOLD signal in several cortical areas: the striatum, hippocampus, septum, periaqueductal gray, and cerebellum, in comparison with odors from ovariectomized monkeys. Conversely, negative BOLD signal was significantly increased in the temporal cortex, cingulate cortex, putamen, hippocampus, substantia nigra, medial preoptic area, and cerebellum with presentation of odors from ovariectomized marmosets as compared to periovulatory odors. A common neural circuit comprising the temporal and cingulate cortices, putamen, hippocampus, medial preoptic area, and cerebellum shared both the positive BOLD response to periovulatory odors and the negative BOLD response to odors of ovariectomized females. Conclusion These data suggest the odor-driven enhancement and suppression of sexual arousal affect neuronal activity in many of the same general brain areas. These areas included not only those associated with sexual activity, but also areas involved in emotional processing and reward. PMID:14745749
A case-control study of brain structure and behavioral characteristics in 47,XXX Syndrome
Lenroot, Rhoshel K.; Blumenthal, Jonathan D.; Wallace, Gregory L.; Clasen, Liv S.; Lee, Nancy Raitano; Giedd, Jay N.
2014-01-01
Trisomy X, the presence of an extra X chromosome in females (47,XXX), is a relatively common but under-recognized chromosomal disorder associated with characteristic cognitive and behavioral features of varying severity. The objective of this study was to determine whether there were neuroanatomical differences in girls with Trisomy X that could relate to cognitive and behavioral differences characteristic of the disorder during childhood and adolescence. MRI scans were obtained on 35 girls with Trisomy X (mean age 11.4, s.d. 5.5) and 70 age- and sex- matched healthy controls. Cognitive and behavioral testing was also performed. Trisomy X girls underwent a semi-structured psychiatric interview. Regional brain volumes and cortical thickness were compared between the two groups. Total brain volume was significantly decreased in subjects with Trisomy X, as were all regional volumes with the exception of parietal gray matter. Differences in cortical thickness had a mixed pattern. The subjects with Trisomy X had thicker cortex in bilateral medial prefrontal cortex and right medial temporal lobe, but decreased cortical thickness in both lateral temporal lobes. The most common psychiatric disorders present in this sample of Trisomy X girls included anxiety disorders, (40%), Attention-Deficit Disorder (17%), and depressive disorders (11%). The most strongly affected brain regions are consistent with phenotypic characteristics such as language delay, poor executive function, and heightened anxiety previously described in population-based studies of Trisomy X and also found in our sample. PMID:25287572
Ding, Wei-na; Sun, Jin-hua; Sun, Ya-Wen; Chen, Xue; Zhou, Yan; Zhuang, Zhi-guo; Li, Lei; Zhang, Yong; Xu, Jian-rong; Du, Ya-song
2014-05-30
Recent studies suggest that Internet gaming addiction (IGA) is an impulse disorder, or is at least related to impulse control disorders. In the present study, we hypothesized that different facets of trait impulsivity may be specifically linked to the brain regions with impaired impulse inhibition function in IGA adolescents. Seventeen adolescents with IGA and seventeen healthy controls were scanned during performance of a response-inhibition Go/No-Go task using a 3.0 T MRI scanner. The Barratt Impulsiveness Scale (BIS)-11 was used to assess impulsivity. There were no differences in the behavioral performance on the Go/No-Go task between the groups. However, the IGA group was significantly hyperactive during No-Go trials in the left superior medial frontal gyrus, right anterior cingulate cortex, right superior/middle frontal gyrus, left inferior parietal lobule, left precentral gyrus, and left precuneus and cuneus. Further, the bilateral middle temporal gyrus, bilateral inferior temporal gyrus, and right superior parietal lobule were significantly hypoactive during No-Go trials. Activation of the left superior medial frontal gyrus was positively associated with BIS-11 and Chen Internet Addiction Scale (CIAS) total score across IGA participants. Our data suggest that the prefrontal cortex may be involved in the circuit modulating impulsivity, while its impaired function may relate to high impulsivity in adolescents with IGA, which may contribute directly to the Internet addiction process.
2014-01-01
Background Recent studies suggest that Internet gaming addiction (IGA) is an impulse disorder, or is at least related to impulse control disorders. In the present study, we hypothesized that different facets of trait impulsivity may be specifically linked to the brain regions with impaired impulse inhibition function in IGA adolescents. Methods Seventeen adolescents with IGA and seventeen healthy controls were scanned during performance of a response-inhibition Go/No-Go task using a 3.0 T MRI scanner. The Barratt Impulsiveness Scale (BIS)-11 was used to assess impulsivity. Results There were no differences in the behavioral performance on the Go/No-Go task between the groups. However, the IGA group was significantly hyperactive during No-Go trials in the left superior medial frontal gyrus, right anterior cingulate cortex, right superior/middle frontal gyrus, left inferior parietal lobule, left precentral gyrus, and left precuneus and cuneus. Further, the bilateral middle temporal gyrus, bilateral inferior temporal gyrus, and right superior parietal lobule were significantly hypoactive during No-Go trials. Activation of the left superior medial frontal gyrus was positively associated with BIS-11 and Chen Internet Addiction Scale (CIAS) total score across IGA participants. Conclusions Our data suggest that the prefrontal cortex may be involved in the circuit modulating impulsivity, while its impaired function may relate to high impulsivity in adolescents with IGA, which may contribute directly to the Internet addiction process. PMID:24885073
Further dissociating the processes involved in recognition memory: an FMRI study.
Henson, Richard N A; Hornberger, Michael; Rugg, Michael D
2005-07-01
Based on an event-related potential study by Rugg et al. [Dissociation of the neural correlates of implicit and explicit memory. Nature, 392, 595-598, 1998], we attempted to isolate the hemodynamic correlates of recollection, familiarity, and implicit memory within a single verbal recognition memory task using event-related fMRI. Words were randomly cued for either deep or shallow processing, and then intermixed with new words for yes/no recognition. The number of studied words was such that, whereas most were recognized ("hits"), an appreciable number of shallow-studied words were not ("misses"). Comparison of deep hits versus shallow hits at test revealed activations in regions including the left inferior parietal gyrus. Comparison of shallow hits versus shallow misses revealed activations in regions including the bilateral intraparietal sulci, the left posterior middle frontal gyrus, and the left frontopolar cortex. Comparison of hits versus correct rejections revealed a relative deactivation in an anterior left medial-temporal region (most likely the perirhinal cortex). Comparison of shallow misses versus correct rejections did not reveal response decreases in any regions expected on the basis of previous imaging studies of priming. Given these and previous data, we associate the left inferior parietal activation with recollection, the left anterior medial-temporal deactivation with familiarity, and the intraparietal and prefrontal responses with target detection. The absence of differences between shallow misses and correct rejections means that the hemodynamic correlates of implicit memory remain unclear.
Levels of word processing and incidental memory: dissociable mechanisms in the temporal lobe.
Castillo, E M; Simos, P G; Davis, R N; Breier, J; Fitzgerald, M E; Papanicolaou, A C
2001-11-16
Word recall is facilitated when deep (e.g. semantic) processing is applied during encoding. This fact raises the question of the existence of specific brain mechanisms supporting different levels of information processing that can modulate incidental memory performance. In this study we obtained spatiotemporal brain activation profiles, using magnetic source imaging, from 10 adult volunteers as they performed a shallow (phonological) processing task and a deep (semantic) processing task. When phonological analysis of the word stimuli into their constituent phonemes was required, activation was largely restricted to the posterior portion of the left superior temporal gyrus (area 22). Conversely, when access to lexical/semantic representations was required, activation was found predominantly in the left middle temporal gyrus and medial temporal cortex. The differential engagement of each mechanism during word encoding was associated with dramatic changes in subsequent incidental memory performance.
Tapias-Espinosa, Carles; Kádár, Elisabet; Segura-Torres, Pilar
2018-01-15
Extinction-based therapies (EBT) are the psychological treatments of choice for certain anxiety disorders, such as post-traumatic stress disorder. However, some patients relapse and suffer spontaneous recovery (SR) of anxiety symptoms and persistence of avoidance behaviour, which underlines the need for improving EBT. In rats, recent evidence has highlighted the relevance of the temporal distribution of extinction sessions in reducing SR of auditory fear conditioning, although it has seldom been studied in procedures involving proactive avoidance responses, such as two-way active avoidance conditioning (TWAA). We examined whether the temporal distribution of two extinction sessions separated by 24h or 7days (contiguous versus spaced extinction paradigms, respectively), influences SR after 28days of a TWAA task. c-Fos expression, as a marker of neuronal activation, was also measured by immunohistochemistry 90min after the SR test in the amygdala and the medial prefrontal cortex. The temporal distribution of extinction sessions did not affect the degree of extinction learning. However, only the rats that underwent the 7-day spaced extinction paradigm maintained the level of extinction in the long term, showing no SR in TWAA. This behavioural finding was consistent with a greater number of c-Fos-labelled neurons in the infralimbic cortex in the 7-day group, and in the Lateral and Central nuclei of the amygdala in the 24-hour group. These findings show that a time-spaced extinction paradigm reduces the spontaneous recovery of active avoidance behaviour, and that this behavioural advantage appears to be related to the activation of the infralimbic cortex. Copyright © 2017 Elsevier B.V. All rights reserved.
Gutschalk, Alexander; Uppenkamp, Stefan; Riedel, Bernhard; Bartsch, Andreas; Brandt, Tobias; Vogt-Schaden, Marlies
2015-12-01
Based on results from functional imaging, cortex along the superior temporal sulcus (STS) has been suggested to subserve phoneme and pre-lexical speech perception. For vowel classification, both superior temporal plane (STP) and STS areas have been suggested relevant. Lesion of bilateral STS may conversely be expected to cause pure word deafness and possibly also impaired vowel classification. Here we studied a patient with bilateral STS lesions caused by ischemic strokes and relatively intact medial STPs to characterize the behavioral consequences of STS loss. The patient showed severe deficits in auditory speech perception, whereas his speech production was fluent and communication by written speech was grossly intact. Auditory-evoked fields in the STP were within normal limits on both sides, suggesting that major parts of the auditory cortex were functionally intact. Further studies showed that the patient had normal hearing thresholds and only mild disability in tests for telencephalic hearing disorder. Prominent deficits were discovered in an auditory-object classification task, where the patient performed four standard deviations below the control group. In marked contrast, performance in a vowel-classification task was intact. Auditory evoked fields showed enhanced responses for vowels compared to matched non-vowels within normal limits. Our results are consistent with the notion that cortex along STS is important for auditory speech perception, although it does not appear to be entirely speech specific. Formant analysis and single vowel classification, however, appear to be already implemented in auditory cortex on the STP. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cortical metabolic activity matches the pattern of visual suppression in strabismus.
Adams, Daniel L; Economides, John R; Sincich, Lawrence C; Horton, Jonathan C
2013-02-27
When an eye becomes deviated in early childhood, a person does not experience double vision, although the globes are aimed at different targets. The extra image is prevented from reaching perception in subjects with alternating exotropia by suppression of each eye's peripheral temporal retina. To test the impact of visual suppression on neuronal activity in primary (striate) visual cortex, the pattern of cytochrome oxidase (CO) staining was examined in four macaques raised with exotropia by disinserting the medial rectus muscles shortly following birth. No ocular dominance columns were visible in opercular cortex, where the central visual field is represented, indicating that signals coming from the central retina in each eye were perceived. However, the border strips at the edges of ocular dominance columns appeared pale, reflecting a loss of activity in binocular cells from disruption of fusion. In calcarine cortex, where the peripheral visual field is represented, there were alternating pale and dark bands resembling ocular dominance columns. To interpret the CO staining pattern, [(3)H]proline was injected into the right eye in two monkeys. In the right calcarine cortex, the pale CO columns matched the labeled proline columns of the right eye. In the left calcarine cortex, the pale CO columns overlapped the unlabeled columns of the left eye in the autoradiograph. Therefore, metabolic activity was reduced in the ipsilateral eye's ocular dominance columns which serve peripheral temporal retina, in a fashion consistent with the topographic organization of suppression scotomas in humans with exotropia.
Lins, Brittney R; Ballendine, Stephanie A; Howland, John G
2014-02-07
Temporal order memory refers to the ability to distinguish past experiences in the order that they occurred. Temporal order memory for objects is often tested in rodents using spontaneous object recognition paradigms. The circuitry mediating memory in these tests is distributed and involves ionotropic glutamate receptors in the perirhinal cortex and medial prefrontal cortex. It is unknown what role, if any, metabotropic glutamate receptors have in temporal order memory for objects. The present experiment examined the role of metabotropic glutamate receptors in temporal memory retrieval using the group II metabotropic glutamate receptor selective agonist LY379268. Rats were trained on a temporal memory test with three phases: two sample phases (60 min between them) in which rats explored two novel objects and a test phase (60 min after the second sample phase) which included a copy of each object previously encountered. Under these conditions, we confirmed that rats showed a significant exploratory preference for the object presented during the first sample phase. In a second experiment, we found that LY379268 (0.3, 1.0, or 3.0mg/kg; i.p.; 30 min before the test phase) had no effect on temporal memory retrieval but dose-dependently reduced time spent exploring the objects. Our results show that enhancing mGluR2 activity under conditions when TM is intact does not influence memory retrieval. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Wetherill, Reagan R.; Fang, Zhuo; Jagannathan, Kanchana; Childress, Anna Rose; Rao, Hengyi; Franklin, Teresa R.
2015-01-01
Background Resting-state functional connectivity is a noninvasive, neuroimaging method for assessing neural network function. Altered functional connectivity among regions of the default-mode network have been associated with both nicotine and cannabis use; however, less is known about co-occurring cannabis and tobacco use. Methods We used posterior cingulate cortex (PCC) seed-based resting-state functional connectivity analyses to examine default mode network (DMN) connectivity strength differences between four groups: 1) individuals diagnosed with cannabis dependence who do not smoke tobacco (n=19; ages 20–50), 2) cannabis-dependent individuals who smoke tobacco (n=23, ages 21–52), 3) cannabis-naïve, nicotine-dependent individuals who smoke tobacco (n=24, ages 21–57), and 4) cannabis- and tobacco-naïve healthy controls (n=21, ages 21–50), controlling for age, sex, and alcohol use. We also explored associations between connectivity strength and measures of cannabis and tobacco use. Results PCC seed-based analyses identified the core nodes of the DMN (i.e., PCC, medial prefrontal cortex, inferior parietal cortex, and temporal cortex). In general, the cannabis-dependent, nicotine-dependent, and co-occurring use groups showed lower DMN connectivity strengths than controls, with unique group differences in connectivity strength between the PCC and the cerebellum, medial prefrontal cortex, parahippocampus, and anterior insula. In cannabis-dependent individuals, PCC-right anterior insula connectivity strength correlated with duration of cannabis use. Conclusions This study extends previous research that independently examined the differences in resting-state functional connectivity among individuals who smoke cannabis and tobacco by including an examination of co-occurring cannabis and tobacco use and provides further evidence that cannabis and tobacco exposure is associated with alterations in DMN connectivity. PMID:26094186
Ebisch, Sjoerd J H; Mantini, Dante; Romanelli, Roberta; Tommasi, Marco; Perrucci, Mauro G; Romani, Gian Luca; Colom, Roberto; Saggino, Aristide
2013-09-01
The brain is organized into functionally specific networks as characterized by intrinsic functional relationships within discrete sets of brain regions. However, it is poorly understood whether such functional networks are dynamically organized according to specific task-states. The anterior insular cortex (aIC)-dorsal anterior cingulate cortex (dACC)/medial frontal cortex (mFC) network has been proposed to play a central role in human cognitive abilities. The present functional magnetic resonance imaging (fMRI) study aimed at testing whether functional interactions of the aIC-dACC/mFC network in terms of temporally correlated patterns of neural activity across brain regions are dynamically modulated by transitory, ongoing task demands. For this purpose, functional interactions of the aIC-dACC/mFC network are compared during two distinguishable fluid reasoning tasks, Visualization and Induction. The results show an increased functional coupling of bilateral aIC with visual cortices in the occipital lobe during the Visualization task, whereas coupling of mFC with right anterior frontal cortex was enhanced during the Induction task. These task-specific modulations of functional interactions likely reflect ability related neural processing. Furthermore, functional connectivity strength between right aIC and right dACC/mFC reliably predicts general task performance. The findings suggest that the analysis of long-range functional interactions may provide complementary information about brain-behavior relationships. On the basis of our results, it is proposed that the aIC-dACC/mFC network contributes to the integration of task-common and task-specific information based on its within-network as well as its between-network dynamic functional interactions. Copyright © 2013 Elsevier Inc. All rights reserved.
Liu, Haihong; Kaneko, Yoshio; Ouyang, Xuan; Li, Li; Hao, Yihui; Chen, Eric Y H; Jiang, Tianzi; Zhou, Yuan; Liu, Zhening
2012-03-01
Abnormal connectivity of the anticorrelated intrinsic networks, the task-negative network (TNN), and the task-positive network (TPN) is implicated in schizophrenia. Comparisons between schizophrenic patients and their unaffected siblings enable further understanding of illness susceptibility and pathophysiology. We examined the resting-state connectivity differences in the intrinsic networks between schizophrenic patients, their unaffected siblings, and healthy controls. Resting-state functional magnetic resonance images were obtained from 25 individuals in each subject group. The posterior cingulate cortex/precuneus and right dorsolateral prefrontal cortex were used as seed regions to identify the TNN and TPN through functional connectivity analysis. Interregional connectivity strengths were analyzed using overlapped intrinsic networks composed of regions common to all subject groups. Schizophrenic patients and their unaffected siblings showed increased connectivity in the TNN between the bilateral inferior temporal gyri. By contrast, schizophrenic patients alone demonstrated increased connectivity between the posterior cingulate cortex/precuneus and left inferior temporal gyrus and between the ventral medial prefrontal cortex and right lateral parietal cortex in the TNN. Schizophrenic patients exhibited increased connectivity between the left dorsolateral prefrontal cortex and right inferior frontal gyrus in the TPN relative to their unaffected siblings, though this trend only approached statistical significance in comparison to healthy controls. Resting-state hyperconnectivity of the intrinsic networks may disrupt network coordination and thereby contribute to the pathophysiology of schizophrenia. Similar, though milder, hyperconnectivity of the TNN in unaffected siblings of schizophrenic patients may contribute to the identification of schizophrenia endophenotypes and ultimately to the determination of schizophrenia risk genes.
Boccia, M; Dacquino, C; Piccardi, L; Cordellieri, P; Guariglia, C; Ferlazzo, F; Ferracuti, S; Giannini, A M
2017-02-01
Moral sense is defined as a feeling of the rightness or wrongness of an action that knowingly causes harm to people other than the agent. The large amount of data collected over the past decade allows drawing some definite conclusions about the neurobiological foundations of moral reasoning as well as a systematic investigation of methodological variables during fMRI studies. Here, we verified the existence of converging and consistent evidence in the current literature by means of a meta-analysis of fMRI studies of moral reasoning, using activation likelihood estimation meta-analysis. We also tested for a possible neural segregation as function of the perspective used during moral reasoning i.e., first or third person perspectives. Results demonstrate the existence of a wide network of areas underpinning moral reasoning, including orbitofrontal cortex, insula, amygdala, anterior cingulate cortex as well as precuneus and posterior cingulate cortex. Within this network we found a neural segregation as a function of the personal perspective, with 1PP eliciting higher activation in the bilateral insula and superior temporal gyrus as well as in the anterior cingulate cortex, lingual and fusiform gyri, middle temporal gyrus and precentral gyrus in the left hemisphere, and 3PP eliciting higher activation in the bilateral amygdala, the posterior cingulate cortex, insula and supramarginal gyrus in the left hemisphere as well as the medial and ventromedial prefrontal cortex in the right hemisphere. These results shed some more light on the contribution of these areas to moral reasoning, strongly supporting a functional specialization as a function of the perspective used during moral reasoning.
Category-dependent and category-independent goal-value codes in human ventromedial prefrontal cortex
McNamee, Daniel; Rangel, Antonio; O’Doherty, John P
2013-01-01
To choose between manifestly distinct options, it is suggested that the brain assigns values to goals using a common currency. Although previous studies have reported activity in ventromedial prefrontal cortex (vmPFC) correlating with the value of different goal stimuli, it remains unclear whether such goal-value representations are independent of the associated stimulus categorization, as required by a common currency. Using multivoxel pattern analyses on functional magnetic resonance imaging (fMRI) data, we found a region of medial prefrontal cortex to contain a distributed goal-value code that is independent of stimulus category. More ventrally in the vmPFC, we found spatially distinct areas of the medial orbitofrontal cortex to contain unique category-dependent distributed value codes for food and consumer items. These results implicate the medial prefrontal cortex in the implementation of a common currency and suggest a ventral versus dorsal topographical organization of value signals in the vmPFC. PMID:23416449
Sex differences in the neural bases of social appraisals.
Veroude, Kim; Jolles, Jelle; Croiset, Gerda; Krabbendam, Lydia
2014-04-01
Behavioral research has demonstrated an advantage for females compared with males in social information processing. However, little is known about sex-related differences in brain activation during understanding of self and others. In the current functional magnetic resonance imaging study, this was assessed in late adolescents (aged 18-19) and young adults (aged 23-25) when making appraisals of self and other as well as reflected self-appraisals. Across all groups and for all appraisal conditions, activation was observed in the medial prefrontal cortex, medial posterior parietal cortex, left and right dorsolateral prefrontal cortex and left posterior parietal cortex. Males activated the medial posterior parietal cortex and bilateral temporoparietal junction more than females. The precuneus showed stronger activation in males compared with females specifically during appraisals of others. No differences between late adolescents and young adults were found. These results indicate that sex differences exist in the neural bases of social understanding.
Ninomiya, Taihei; Noritake, Atsushi; Ullsperger, Markus; Isoda, Masaki
2018-04-27
Action is a key channel for interacting with the outer world. As such, the ability to monitor actions and their consequences - regardless as to whether they are self-generated or other-generated - is of crucial importance for adaptive behavior. The medial frontal cortex (MFC) has long been studied as a critical node for performance monitoring in nonsocial contexts. Accumulating evidence suggests that the MFC is involved in a wide range of functions necessary for one's own performance monitoring, including error detection, and monitoring and resolving response conflicts. Recent studies, however, have also pointed to the importance of the MFC in performance monitoring under social conditions, ranging from monitoring and understanding others' actions to reading others' mental states, such as their beliefs and intentions (i.e., mentalizing). Here we review the functional roles of the MFC and related neural networks in performance monitoring in both nonsocial and social contexts, with an emphasis on the emerging field of a social systems neuroscience approach using macaque monkeys as a model system. Future work should determine the way in which the MFC exerts its monitoring function via interactions with other brain regions, such as the superior temporal sulcus in the mentalizing system and the ventral premotor cortex in the mirror system. Copyright © 2018. Published by Elsevier B.V.
Volition and conflict in human medial frontal cortex.
Nachev, Parashkev; Rees, Geraint; Parton, Andrew; Kennard, Christopher; Husain, Masud
2005-01-26
Controversy surrounds the role of human medial frontal cortex in controlling actions. Although damage to this area leads to severe difficulties in spontaneously initiating actions, the precise mechanisms underlying such "volitional" deficits remain to be established. Previous studies have implicated the medial frontal cortex in conflict monitoring and the control of voluntary action, suggesting that these key processes are functionally related or share neural substrates. Here, we combine a novel behavioral paradigm with functional imaging of the oculomotor system to reveal, for the first time, a functional subdivision of the pre-supplementary motor area (pre-SMA) into anatomically distinct areas that respond exclusively to either volition or conflict. We also demonstrate that activity in the supplementary eye field (SEF) distinguishes between success and failure in changing voluntary action plans during conflict, suggesting a role for the SEF in implementing the resolution of conflicting actions. We propose a functional architecture of human medial frontal cortex that incorporates the generation of action plans and the resolution of conflict.
Valli, Isabel; Stone, James; Mechelli, Andrea; Bhattacharyya, Sagnik; Raffin, Marie; Allen, Paul; Fusar-Poli, Paolo; Lythgoe, David; O'Gorman, Ruth; Seal, Marc; McGuire, Philip
2011-01-01
Both medial temporal cortical dysfunction and perturbed glutamatergic neurotransmission are regarded as fundamental pathophysiological features of psychosis. However, although animal models of psychosis suggest that these two abnormalities are interrelated, their relationship in humans has yet to be investigated. We used a combination of functional magnetic resonance imaging and magnetic resonance spectroscopy to investigate the relationship between medial temporal activation during an episodic memory task and local glutamate levels in 22 individuals with an at-risk mental state for psychosis and 14 healthy volunteers. We observed a significant between-group difference in the coupling of medial temporal activation with local glutamate levels. In control subjects, medial temporal activation during episodic encoding was positively associated with medial temporal glutamate. However, in the clinical population, medial temporal activation was reduced, and the relationship with glutamate was absent. In individuals at high risk of psychosis, medial temporal dysfunction seemed related to a loss of the normal relationship with local glutamate levels. This study provides the first evidence that links medial temporal dysfunction with the central glutamate system in humans and is consistent with evidence that drugs that modulate glutamatergic transmission might be useful in the treatment of psychosis. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Relation of obesity to neural activation in response to food commercials
Yokum, Sonja; Stice, Eric; Harris, Jennifer L.; Brownell, Kelly D.
2014-01-01
Adolescents view thousands of food commercials annually, but the neural response to food advertising and its association with obesity is largely unknown. This study is the first to examine how neural response to food commercials differs from other stimuli (e.g. non-food commercials and television show) and to explore how this response may differ by weight status. The blood oxygen level-dependent functional magnetic resonance imaging activation was measured in 30 adolescents ranging from lean to obese in response to food and non-food commercials imbedded in a television show. Adolescents exhibited greater activation in regions implicated in visual processing (e.g. occipital gyrus), attention (e.g. parietal lobes), cognition (e.g. temporal gyrus and posterior cerebellar lobe), movement (e.g. anterior cerebellar cortex), somatosensory response (e.g. postcentral gyrus) and reward [e.g. orbitofrontal cortex and anterior cingulate cortex (ACC)] during food commercials. Obese participants exhibited less activation during food relative to non-food commercials in neural regions implicated in visual processing (e.g. cuneus), attention (e.g. posterior cerebellar lobe), reward (e.g. ventromedial prefrontal cortex and ACC) and salience detection (e.g. precuneus). Obese participants did exhibit greater activation in a region implicated in semantic control (e.g. medial temporal gyrus). These findings may inform current policy debates regarding the impact of food advertising to minors. PMID:23576811
ERIC Educational Resources Information Center
Savalli, Giorgia; Bashir, Zafar I.; Warburton, E. Clea
2015-01-01
Object-in-place (OiP) memory is critical for remembering the location in which an object was last encountered and depends conjointly on the medial prefrontal cortex, perirhinal cortex, and hippocampus. Here we examined the role of dopamine D[subscript 1]/D[subscript 5] receptor neurotransmission within these brain regions for OiP memory. Bilateral…
Pre-dementia memory impairment is associated with white matter tract affection.
Grambaite, Ramune; Reinvang, Ivar; Selnes, Per; Fjell, Anders M; Walhovd, Kristine B; Stenset, Vidar; Fladby, Tormod
2011-01-01
Mild cognitive impairment (MCI), especially amnestic, often represents pre-dementia Alzheimer's disease, characterized by medial temporal lobe atrophy, while white matter (WM) alterations are insufficiently described. We analyze both cortical morphometric and WM diffusivity differences in amnestic versus non-amnestic subtypes and ask if memory and WM tract affection are related independently of cortical atrophy. Forty-nine patients from a university-hospital based memory clinic with a score of 3 on the Global Deterioration Scale aged 43-77 years (45% female) were included. Two neuropsychologists have classified cases as amnestic (aMCI), non-amnestic (naMCI), or less advanced (laMCI), not satisfying criteria for aMCI/naMCI. Diffusion tensor imaging (DTI) WM tract and morphometric data of the temporal-parietal memory network were compared among patient subtypes and related to story, word list, and visual memory. WM radial and mean diffusivity (DR and MD), underlying the entorhinal cortex, were higher in aMCI compared with laMCI. WM DR and MD, underlying the entorhinal, parahippocampal, and middle temporal cortex, explained unique variance in word list and story memory, and this was not due to secondary effects of cortical thinning. DTI may thus potentially aid diagnosis in early disease stages. ).
Aging, self-referencing, and medial prefrontal cortex.
Gutchess, Angela H; Kensinger, Elizabeth A; Schacter, Daniel L
2007-01-01
The lateral prefrontal cortex undergoes both structural and functional changes with healthy aging. In contrast, there is little structural change in the medial prefrontal cortex, but relatively little is known about the functional changes to this region with age. Using an event-related fMRI design, we investigated the response of medial prefrontal cortex during self-referencing in order to compare age groups on a task that young and elderly perform similarly and that is known to actively engage the region in young adults. Nineteen young (M age = 23) and seventeen elderly (M age = 72) judged whether adjectives described themselves, another person, or were presented in upper case. We assessed the overlap in activations between young and elderly for the self-reference effect (self vs. other person), and found that both groups engage medial prefrontal cortex and mid-cingulate during self-referencing. The only cerebral differences between the groups in self versus other personality assessment were found in somatosensory and motor-related areas. In contrast, age-related modulations were found in the cerebral network recruited for emotional valence processing. Elderly (but not young) showed increased activity in the dorsal prefrontal cortex for positive relative to negative items, which could reflect an increase in controlled processing of positive information for elderly adults.
The medial frontal cortex contributes to but does not organize rat exploratory behavior.
Blankenship, Philip A; Stuebing, Sarah L; Winter, Shawn S; Cheatwood, Joseph L; Benson, James D; Whishaw, Ian Q; Wallace, Douglas G
2016-11-12
Animals use multiple strategies to maintain spatial orientation. Dead reckoning is a form of spatial navigation that depends on self-movement cue processing. During dead reckoning, the generation of self-movement cues from a starting position to an animal's current position allow for the estimation of direction and distance to the position movement originated. A network of brain structures has been implicated in dead reckoning. Recent work has provided evidence that the medial frontal cortex may contribute to dead reckoning in this network of brain structures. The current study investigated the organization of rat exploratory behavior subsequent to medial frontal cortex aspiration lesions under light and dark conditions. Disruptions in exploratory behavior associated with medial frontal lesions were consistent with impaired motor coordination, response inhibition, or egocentric reference frame. These processes are necessary for spatial orientation; however, they are not sufficient for self-movement cue processing. Therefore it is possible that the medial frontal cortex provides processing resources that support dead reckoning in other brain structures but does not of itself compute the kinematic details of dead reckoning. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
The Necessity of the Hippocampus for Statistical Learning
Covington, Natalie V.; Brown-Schmidt, Sarah; Duff, Melissa C.
2018-01-01
Converging evidence points to a role for the hippocampus in statistical learning, but open questions about its necessity remain. Evidence for necessity comes from Schapiro and colleagues who report that a single patient with damage to hippocampus and broader medial temporal lobe cortex was unable to discriminate new from old sequences in several statistical learning tasks. The aim of the current study was to replicate these methods in a larger group of patients who have either damage localized to hippocampus or a broader medial temporal lobe damage, to ascertain the necessity of the hippocampus in statistical learning. Patients with hippocampal damage consistently showed less learning overall compared with healthy comparison participants, consistent with an emerging consensus for hippocampal contributions to statistical learning. Interestingly, lesion size did not reliably predict performance. However, patients with hippocampal damage were not uniformly at chance and demonstrated above-chance performance in some task variants. These results suggest that hippocampus is necessary for statistical learning levels achieved by most healthy comparison participants but significant hippocampal pathology alone does not abolish such learning. PMID:29308986
Wada testing reveals frontal lateralization for the memorization of words and faces.
Kelley, W M; Ojemann, J G; Wetzel, R D; Derdeyn, C P; Moran, C J; Cross, D T; Dowling, J L; Miller, J W; Petersen, S E
2002-01-01
Neuroimaging studies have suggested that specific regions of the frontal and medial temporal cortex are engaged during memory formation. Further, there is specialization across these regions such that verbal materials appear to preferentially engage the left regions while nonverbal materials primarily engage the right regions. An open question, however, has been to what extent frontal regions contribute to successful memory formation. The present study investigates this question using a reversible lesion technique known as the Wada test. Patients memorized words and unfamiliar faces while portions of their left and right hemispheres were temporarily anesthetized with sodium amytal. Subsequent memory tests revealed that faces were remembered better than words following left-hemisphere anesthesia, whereas words were remembered better than faces following right-hemisphere anesthesia. Importantly, inspection of the circulation affected by the amytal further suggests that these memory impairments did not result from direct anesthetization of the medial temporal regions. Taken in the context of the imaging findings, these results suggest that frontal regions may also contribute to memory formation in normal performance.
Multimodal Imaging of Alzheimer Pathophysiology in the Brain's Default Mode Network
Shin, Jonghan; Kepe, Vladimir; Small, Gary W.; ...
2011-01-01
The spatial correlations between the brain's default mode network (DMN) and the brain regions known to develop pathophysiology in Alzheimer's disease (AD) have recently attracted much attention. In this paper, we compare results of different functional and structural imaging modalities, including MRI and PET, and highlight different patterns of anomalies observed within the DMN. Multitracer PET imaging in subjects with and without dementia has demonstrated that [C-11]PIB- and [F-18]FDDNP-binding patterns in patients with AD overlap within nodes of the brain's default network including the prefrontal, lateral parietal, lateral temporal, and posterior cingulate cortices, with the exception of the medial temporalmore » cortex (especially, the hippocampus) where significant discrepancy between increased [F-18]FDDNP binding and negligible [C-11]PIB-binding was observed. [F-18]FDDNP binding in the medial temporal cortex—a key constituent of the DMN—coincides with both the presence of amyloid and tau pathology, and also with cortical areas with maximal atrophy as demonstrated by T1-weighted MR imaging of AD patients.« less
Besteher, Bianca; Wagner, Gerd; Koch, Kathrin; Schachtzabel, Claudia; Reichenbach, Jürgen R; Schlösser, Ralf; Sauer, Heinrich; Schultz, C Christoph
2016-10-01
Schizophrenia is characterized by increased mortality for which suicidality is the decisive factor. An analysis of cortical thickness and folding to further elucidate neuroanatomical correlates of suicidality in schizophrenia has not yet been performed. We searched for relevant brain regions with such differences between patients with suicide-attempts, patients without any suicidal thoughts and healthy controls. 37 schizophrenia patients (14 suicide-attempters and 23 non-suicidal) and 50 age- and gender-matched healthy controls were included. Suicidality was documented through clinical interview and chart review. All participants underwent T1-weighted MRI scans. Whole brain node-by-node cortical thickness and folding were estimated (FreeSurfer Software) and compared. Additionally a three group comparison for prefrontal regions-of-interest was performed in SPSS using a multifactorial GLM. Compared with the healthy controls patients showed a typical pattern of cortical thinning in prefronto-temporal regions and altered cortical folding in the right medial temporal cortex. Patients with suicidal behavior compared with non-suicidal patients demonstrated pronounced (p<0.05) cortical thinning in the right DLPFC and the superior temporal cortex. Comparing cortical thickness in suicidal patients with non-suicidal patients significant (p<0.05) cortical thinning was additionally found in the right superior and middle temporal, temporopolar and insular cortex. Our findings extend the evidence for neuroanatomical underpinnings of suicidal behaviour in schizophrenia. We identified cortical thinning in a network strongly involved in regulation of impulsivity, emotions and planning of behaviour in suicide attempters, which might lead to neuronal dysregulation in this network and consequently to a higher risk of suicidal behavior. Copyright © 2016 Elsevier B.V. All rights reserved.
Dunn, Joel T; Choudhary, Pratik; Teh, Ming Ming; Macdonald, Ian; Hunt, Katharine F; Marsden, Paul K; Amiel, Stephanie A
2018-05-12
Impaired awareness of hypoglycaemia (IAH) in type 1 diabetes increases the risk of severe hypoglycaemia sixfold and can be resistant to intervention. We explored the impact of IAH on central responses to hypoglycaemia to investigate the mechanisms underlying barriers to therapeutic intervention. We conducted [ 15 O]water positron emission tomography studies of regional brain perfusion during euglycaemia (target 5 mmol/l), hypoglycaemia (achieved level, 2.4 mmol/l) and recovery (target 5 mmol/l) in 17 men with type 1 diabetes: eight with IAH, and nine with intact hypoglycaemia awareness (HA). Hypoglycaemia with HA was associated with increased activation in brain regions including the thalamus, insula, globus pallidus (GP), anterior cingulate cortex (ACC), orbital cortex, dorsolateral frontal (DLF) cortex, angular gyrus and amygdala; deactivation occurred in the temporal and parahippocampal regions. IAH was associated with reduced catecholamine and symptom responses to hypoglycaemia vs HA (incremental AUC: autonomic scores, 26.2 ± 35.5 vs 422.7 ± 237.1; neuroglycopenic scores, 34.8 ± 88.8 vs 478.9 ± 311.1; both p < 0.002). There were subtle differences (p < 0.005, k ≥ 50 voxels) in brain activation at hypoglycaemia, including early differences in the right central operculum, bilateral medial orbital (MO) cortex, and left posterior DLF cortex, with additional differences in the ACC, right GP and post- and pre-central gyri in established hypoglycaemia, and lack of deactivation in temporal regions in established hypoglycaemia. Differences in activation in the post- and pre-central gyri may be expected in people with reduced subjective responses to hypoglycaemia. Alterations in the activity of regions involved in the drive to eat (operculum), emotional salience (MO cortex), aversion (GP) and recall (temporal) suggest differences in the perceived importance and urgency of responses to hypoglycaemia in IAH compared with HA, which may be key to the persistence of the condition.
Emotion regulation in the brain: conceptual issues and directions for developmental research.
Lewis, Marc D; Stieben, Jim
2004-01-01
Emotion regulation cannot be temporally distinguished from emotion in the brain, but activation patterns in prefrontal cortex appear to mediate cognitive control during emotion episodes. Frontal event-related potentials (ERPs) can tap cognitive control hypothetically mediated by the anterior cingulate cortex, and developmentalists have used these to differentiate age, individual, and emotion-valence factors. Extending this approach, the present article outlines a research strategy for studying emotion regulation in children by combining emotion induction with a go/no-go task known to produce frontal ERPs. Preliminary results indicate that medial-frontal ERP amplitudes diminish with age but become more sensitive to anxiety, and internalizing children show higher amplitudes than noninternalizing children, especially when anxious. These results may reflect age and individual differences in the effortful regulation of negative emotion.
Chao, Owen Y; Nikolaus, Susanne; Lira Brandão, Marcus; Huston, Joseph P; de Souza Silva, Maria A
2017-05-01
The interplay between medial prefrontal cortex (mPFC) and hippocampus, particularly the hippocampal CA3 area, is critical for episodic memory. To what extent the mPFC also interacts with the hippocampus CA1 subregion still requires elucidation. To investigate this issue, male rats received unilateral N-methyl- D -aspartate lesions of the mPFC together with unilateral lesions of the hippocampal CA1 area, either in the same (control) or in the opposite hemispheres (disconnection). They underwent an episodic-like memory test, combining what-where-when information, and separate tests for novel object preference (what), object place preference (where) and temporal order memory (when). Compared to controls, the disconnected mPFC-CA1 rats exhibited disrupted episodic-like memory with an impaired integration of the what-where-when elements. Both groups showed intact memories for what and when, while only the control group showed intact memory for where. These findings suggest that the functional interaction of the mPFC-CA1 circuit is crucial for the processing of episodic memory and, in particular, for the integration of the spatial memory component. Copyright © 2017 Elsevier Inc. All rights reserved.
Serotonin and dopamine transporter binding in children with autism determined by SPECT.
Makkonen, Ismo; Riikonen, Raili; Kokki, Hannu; Airaksinen, Mauno M; Kuikka, Jyrki T
2008-08-01
Disturbances in the serotonergic system have been recognized in autism. To investigate the association between serotonin and dopamine transporters and autism, we studied 15 children (14 males, one female; mean age 8 y 8 mo [SD 3 y 10 mo]) with autism and 10 non-autistic comparison children (five males, five females; mean age 9 y 10 mo [SD 2 y 8 mo]) using single-photon emission computed tomography (SPECT) with [123 I] nor-beta-CIT. The children, with autism were studied during light sedation. They showed reduced serotonin transporter (SERT) binding capacity in the medial frontal cortex, midbrain, and temporal lobe areas. However, after correction due to the estimated effect of sedation, the difference remained significant only in the medial frontal cortex area (p=0.002). In the individuals with autism dopamine transporter (DAT) binding did not differ from that of the comparison group. The results indicate that SERT binding capacity is disturbed in autism. The reduction is more evident in adolescence than in earlier childhood. The low SERT binding reported here and the low serotonin synthesis capacity shown elsewhere may indicate maturation of a lesser number of serotonergic nerve terminals in individuals with autism.
Burkhouse, Katie L; Jacobs, Rachel H; Peters, Amy T; Ajilore, Olu; Watkins, Edward R; Langenecker, Scott A
2017-04-01
The aim of the present study was to use fMRI to examine the neural correlates of engaging in rumination among a sample of remitted depressed adolescents, a population at high risk for future depressive relapse. A rumination induction task was used to assess differences in the patterns of neural activation during rumination versus a distraction condition among 26 adolescents in remission from major depressive disorder (rMDD) and in 15 healthy control adolescents. Self-report depression and rumination, as well as clinician-rated depression, were also assessed among all participants. All of the participants recruited regions in the default mode network (DMN), including the posterior cingulate cortex, medial prefrontal cortex, inferior parietal lobe, and medial temporal gyrus, during rumination. Increased activation in these regions during rumination was correlated with increased self-report rumination and symptoms of depression across all participants. Adolescents with rMDD also exhibited greater activation in regions involved in visual, somatosensory, and emotion processing than did healthy peers. The present findings suggest that during ruminative thought, adolescents with rMDD are characterized by increased recruitment of regions within the DMN and in areas involved in visual, somatosensory, and emotion processing.
Theory of mind network activity is altered in subjects with familial liability for schizophrenia
Mohnke, Sebastian; Erk, Susanne; Schnell, Knut; Romanczuk-Seiferth, Nina; Schmierer, Phöbe; Romund, Lydia; Garbusow, Maria; Wackerhagen, Carolin; Ripke, Stephan; Grimm, Oliver; Haller, Leila; Witt, Stephanie H.; Degenhardt, Franziska; Tost, Heike; Heinz, Andreas; Meyer-Lindenberg, Andreas; Walter, Henrik
2016-01-01
As evidenced by a multitude of studies, abnormalities in Theory of Mind (ToM) and its neural processing might constitute an intermediate phenotype of schizophrenia. If so, neural alterations during ToM should be observable in unaffected relatives of patients as well, since they share a considerable amount of genetic risk. While behaviorally, impaired ToM function is confirmed meta-analytically in relatives, evidence on aberrant function of the neural ToM network is sparse and inconclusive. The present study therefore aimed to further explore the neural correlates of ToM in relatives of schizophrenia. About 297 controls and 63 unaffected first-degree relatives of patients with schizophrenia performed a ToM task during functional magnetic resonance imaging. Consistent with the literature relatives exhibited decreased activity of the medial prefrontal cortex. Additionally, increased recruitment of the right middle temporal gyrus and posterior cingulate cortex was found, which was related to subclinical paranoid symptoms in relatives. These results further support decreased medial prefrontal activation during ToM as an intermediate phenotype of genetic risk for schizophrenia. Enhanced recruitment of posterior ToM areas in relatives might indicate inefficiency mechanisms in the presence of genetic risk. PMID:26341902
Hendrickson, Phillip J.; Yu, Gene J.; Song, Dong; Berger, Theodore W.
2016-01-01
Goal This manuscript describes a million-plus granule cell compartmental model of the rat hippocampal dentate gyrus, including excitatory, perforant path input from the entorhinal cortex, and feedforward and feedback inhibitory input from dentate interneurons. Methods The model includes experimentally determined morphological and biophysical properties of granule cells, together with glutamatergic AMPA-like EPSP and GABAergic GABAA-like IPSP synaptic excitatory and inhibitory inputs, respectively. Each granule cell was composed of approximately 200 compartments having passive and active conductances distributed throughout the somatic and dendritic regions. Modeling excitatory input from the entorhinal cortex was guided by axonal transport studies documenting the topographical organization of projections from subregions of the medial and lateral entorhinal cortex, plus other important details of the distribution of glutamatergic inputs to the dentate gyrus. Information contained within previously published maps of this major hippocampal afferent were systematically converted to scales that allowed the topographical distribution and relative synaptic densities of perforant path inputs to be quantitatively estimated for inclusion in the current model. Results Results showed that when medial and lateral entorhinal cortical neurons maintained Poisson random firing, dentate granule cells expressed, throughout the million-cell network, a robust, non-random pattern of spiking best described as spatio-temporal “clustering”. To identify the network property or properties responsible for generating such firing “clusters”, we progressively eliminated from the model key mechanisms such as feedforward and feedback inhibition, intrinsic membrane properties underlying rhythmic burst firing, and/or topographical organization of entorhinal afferents. Conclusion Findings conclusively identified topographical organization of inputs as the key element responsible for generating a spatio-temporal distribution of clustered firing. These results uncover a functional organization of perforant path afferents to the dentate gyrus not previously recognized: topography-dependent clusters of granule cell activity as “functional units” or “channels” that organize the processing of entorhinal signals. This modeling study also reveals for the first time how a global signal processing feature of a neural network can evolve from one of its underlying structural characteristics. PMID:26087482
Hippocampal Spike-Timing Correlations Lead to Hexagonal Grid Fields
NASA Astrophysics Data System (ADS)
Monsalve-Mercado, Mauro M.; Leibold, Christian
2017-07-01
Space is represented in the mammalian brain by the activity of hippocampal place cells, as well as in their spike-timing correlations. Here, we propose a theory for how this temporal code is transformed to spatial firing rate patterns via spike-timing-dependent synaptic plasticity. The resulting dynamics of synaptic weights resembles well-known pattern formation models in which a lateral inhibition mechanism gives rise to a Turing instability. We identify parameter regimes in which hexagonal firing patterns develop as they have been found in medial entorhinal cortex.
D'Amico, Davide; Gener, Thomas; de Lagrán, Maria Martínez; Sanchez-Vives, Maria V; Santos, Mónica; Dierssen, Mara
2017-01-01
The inability to properly extinguish fear memories constitutes the foundation of several anxiety disorders, including panic disorder. Recent findings show that boosting prefrontal cortex synaptic plasticity potentiates fear extinction, suggesting that therapies that augment synaptic plasticity could prove useful in rescue of fear extinction impairments in this group of disorders. Previously, we reported that mice with selective deregulation of neurotrophic tyrosine kinase receptor, type 3 expression (TgNTRK3) exhibit increased fear memories accompanied by impaired extinction, congruent with an altered activation pattern of the amygdala-hippocampus-medial prefrontal cortex fear circuit. Here we explore the specific role of neurotrophin 3 and its cognate receptor in the medial prefrontal cortex, and its involvement in fear extinction in a pathological context. In this study we combined molecular, behavioral, in vivo pharmacology and ex vivo electrophysiological recordings in TgNTRK3 animals during contextual fear extinction processes. We show that neurotrophin 3 protein levels are increased upon contextual fear extinction in wild-type animals but not in TgNTRK3 mice, which present deficits in infralimbic long-term potentiation. Importantly, infusion of neurotrophin 3 to the medial prefrontal cortex of TgNTRK3 mice rescues contextual fear extinction and ex vivo local application improves medial prefrontal cortex synaptic plasticity. This effect is blocked by inhibition of extracellular signal-regulated kinase phosphorylation through peripheral administration of SL327, suggesting that rescue occurs via this pathway. Our results suggest that stimulating neurotrophin 3-dependent medial prefrontal cortex plasticity could restore contextual fear extinction deficit in pathological fear and could constitute an effective treatment for fear-related disorders.
Behaviors induced or disrupted by complex partial seizures.
Leung, L S; Ma, J; McLachlan, R S
2000-09-01
We reviewed the neural mechanisms underlying some postictal behaviors that are induced or disrupted by temporal lobe seizures in humans and animals. It is proposed that the psychomotor behaviors and automatisms induced by temporal lobe seizures are mediated by the nucleus accumbens. A non-convulsive hippocampal afterdischarge in rats induced an increase in locomotor activity, which was suppressed by the injection of dopamine D(2) receptor antagonist in the nucleus accumbens, and blocked by inactivation of the medial septum. In contrast, a convulsive hippocampal or amygdala seizure induced behavioral hypoactivity, perhaps by the spread of the seizure into the frontal cortex and opiate-mediated postictal depression. Mechanisms underlying postictal psychosis, memory disruption and other long-term behavioral alterations after temporal lobe seizures, are discussed. In conclusion, many of the changes of postictal behaviors observed after temporal lobe seizures in humans may be found in animals, and the basis of the behavioral change may be explained as a change in neural processing in the temporal lobe and the connecting subcortical structures.
The role of the human hippocampus in familiarity-based and recollection-based recognition memory
Wixted, John T.; Squire, Larry R.
2010-01-01
The ability to recognize a previously encountered stimulus is dependent on the structures of the medial temporal lobe and is thought to be supported by two processes, recollection and familiarity. A focus of research in recent years concerns the extent to which these two processes depend on the hippocampus and on the other structures of the medial temporal lobe. One view holds that the hippocampus is important for both processes, whereas a different view holds that the hippocampus supports only the recollection process and the perirhinal cortex supports the familiarity process. One approach has been to study patients with hippocampal lesions and to contrast old/new recognition (which can be supported by familiarity) to free recall (which is supported by recollection). Despite some early case studies suggesting otherwise, several group studies have now shown that hippocampal patients exhibit comparable impairments on old/new recognition and free recall. These findings suggest that the hippocampus is important for both recollection and familiarity. Neuroimaging studies and Receiver Operating Characteristic analyses also initially suggested that the hippocampus was specialized for recollection, but these studies involved a strength confound (strong memories have been compared to weak memories). When steps are taken to compare strong recollection-based memories with strong familiarity-based memories, or otherwise control for memory strength, evidence for a familiarity signal (as well as a recollection signal) is evident in the hippocampus. These findings suggest that the functional organization of the medial temporal lobe is probably best understood in terms unrelated to the distinction between recollection and familiarity. PMID:20412819
Soto, David; Greene, Ciara M; Kiyonaga, Anastasia; Rosenthal, Clive R; Egner, Tobias
2012-12-05
The contents of working memory (WM) can both aid and disrupt the goal-directed allocation of visual attention. WM benefits attention when its contents overlap with goal-relevant stimulus features, but WM leads attention astray when its contents match features of currently irrelevant stimuli. Recent behavioral data have documented that WM biases of attention may be subject to strategic cognitive control processes whereby subjects are able to either enhance or inhibit the influence of WM contents on attention. However, the neural mechanisms supporting cognitive control over WM biases on attention are presently unknown. Here, we characterize these mechanisms by combining human functional magnetic resonance imaging with a task that independently manipulates the relationship between WM cues and attention targets during visual search (with WM contents matching either search targets or distracters), as well as the predictability of this relationship (100 vs 50% predictability) to assess participants' ability to strategically enhance or inhibit WM biases on attention when WM contents reliably matched targets or distracter stimuli, respectively. We show that cues signaling predictable (> unpredictable) WM-attention relations reliably enhanced search performance, and that this strategic modulation of the interplay between WM contents and visual attention was mediated by a neuroanatomical network involving the posterior parietal cortex, the posterior cingulate, and medial temporal lobe structures, with responses in the hippocampus proper correlating with behavioral measures of strategic control of WM biases. Thus, we delineate a novel parieto-medial temporal pathway implementing cognitive control over WM biases to optimize goal-directed selection.
Zhou, You-long; Su, Cheng-guo; Liu, Shou-fang; Jin, Xiang-yu; Duan, Yan-li; Chen, Xiao-yan; Zhao, Shu-hua; Wang, Quan-liang; Dang, Chang-lin
2016-05-01
To observe amplitude changes of low frequency fluctuation in brain spontaneous nervous activities induced by needling at Hand Taiyin Lung Channel, and to preliminarily explore the possible brain function network of Hand Taiyin Lung Channel. By using functional magnetic resonance imaging (fMRI), 16 healthy volunteers underwent resting-state scanning (R1) and scanning with retained acupuncture at Hand Taiyin Lung Channel (acupuncture, AP). Data of fMRI collected were statistically calculated using amplitude of low frequency fluctuations (ALFF). Under R1 significantly enhanced ALFF occurred in right precuneus, left inferior parietal lobule, bilateral superior temporal gyrus, bilateral middle frontal gyrus, left superior frontal gyrus, left inferior frontal gyrus, left medial frontal gyrus. Under AP significantly enhanced ALFF occurred in right precuneus, bilateral superior frontal gyrus, cerebellum, bilateral middle frontal gyrus, right medial frontal gyrus, and so on. Compared with R1, needing at Hand Taiyin Lung Channel could significantly enhance ALFF in right gyrus subcallosum and right inferior frontal gyrus. Significant decreased ALFF appeared in right postcentral gyrus, left precuneus, left superior temporal gyrus, left middle temporal gyrus, and so on. Needing at Hand Taiyin Lung Channel could significantly change fixed activities of cerebral cortex, especially in right subcallosal gyrus, right inferior frontal gyrus, and so on.
The effects of age on the neural correlates of episodic encoding.
Grady, C L; McIntosh, A R; Rajah, M N; Beig, S; Craik, F I
1999-12-01
Young and old adults underwent positron emission tomographic scans while encoding pictures of objects and words using three encoding strategies: deep processing (a semantic living/nonliving judgement), shallow processing (size judgement) and intentional learning. Picture memory exceeded word memory in both young and old groups, and there was an age-related decrement only in word recognition. During the encoding tasks three brain activity patterns were found that differentiated stimulus type and the different encoding strategies. The stimulus-specific pattern was characterized by greater activity in extrastriate and medial temporal cortices during picture encoding, and greater activity in left prefrontal and temporal cortices during encoding of words. The older adults showed this pattern to a significantly lesser degree. A pattern distinguishing deep processing from intentional learning of words and pictures was identified, characterized mainly by differences in prefrontal cortex, and this pattern also was of significantly lesser magnitude in the old group. A final pattern identified areas with increased activity during deep processing and intentional learning of pictures, including left prefrontal and bilateral medial temporal regions. There was no group difference in this pattern. These results indicate age-related dysfunction in several encoding networks, with sparing of one specifically involved in more elaborate encoding of pictures. These age-related changes appear to affect verbal memory more than picture memory.
Altered Medial Frontal and Superior Temporal Response to Implicit Processing of Emotions in Autism.
Kana, Rajesh K; Patriquin, Michelle A; Black, Briley S; Channell, Marie M; Wicker, Bruno
2016-01-01
Interpreting emotional expressions appropriately poses a challenge for individuals with autism spectrum disorder (ASD). In particular, difficulties with emotional processing in ASD are more pronounced in contexts where emotional expressions are subtle, automatic, and reflexive-that is, implicit. In contrast, explicit emotional processing, which requires the cognitive evaluation of an emotional experience, appears to be relatively intact in individuals with ASD. In the present study, we examined the brain activation and functional connectivity differences underlying explicit and implicit emotional processing in age- and IQ-matched adults with (n = 17) and without (n = 15) ASD. Results indicated: (1) significantly reduced levels of brain activation in participants with ASD in medial prefrontal cortex (MPFC) and superior temporal gyrus (STG) during implicit emotion processing; (2) significantly weaker functional connectivity in the ASD group in connections of the MPFC with the amygdala, temporal lobe, parietal lobe, and fusiform gyrus; (3) No group difference in performance accuracy or reaction time; and (4) Significant positive relationship between empathizing ability and STG activity in ASD but not in typically developing participants. These findings suggest that the neural mechanisms underlying implicit, but not explicit, emotion processing may be altered at multiple levels in individuals with ASD. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
Abellán, Antonio; Desfilis, Ester; Medina, Loreta
2014-01-01
We carried out a study of the expression patterns of seven developmental regulatory genes (Lef1, Lhx2, Lhx9, Lhx5, Lmo3, Lmo4, and Prox1), in combination with topological position, to identify the medial pallial derivatives, define its major subdivisions, and compare them between mouse and chicken. In both species, the medial pallium is defined as a pallial sector adjacent to the cortical hem and roof plate/choroid tela, showing moderate to strong ventricular zone expression of Lef1, Lhx2, and Lhx9, but not Lhx5. Based on this, the hippocampal formation (indusium griseum, dentate gyrus, Ammon's horn fields, and subiculum), the medial entorhinal cortex, and part of the amygdalo-hippocampal transition area of mouse appeared to derive from the medial pallium. In the chicken, based on the same position and gene expression profile, we propose that the hippocampus (including the V-shaped area), the parahippocampal area (including its caudolateral part), the entorhinal cortex, and the amygdalo-hippocampal transition area are medial pallial derivatives. Moreover, the combinatorial expression of Lef1, Prox1, Lmo4, and Lmo3 allowed the identification of dentate gyrus/CA3-like, CA1/subicular-like, and medial entorhinal-like comparable sectors in mouse and chicken, and point to the existence of mostly conserved molecular networks involved in hippocampal complex development. Notably, while the mouse medial entorhinal cortex derives from the medial pallium (similarly to the hippocampal formation, both being involved in spatial navigation and spatial memory), the lateral entorhinal cortex (involved in processing non-spatial, contextual information) appears to derive from a distinct dorsolateral caudal pallial sector. PMID:25071464
Vuilleumier, Patrik; Richardson, Mark P; Armony, Jorge L; Driver, Jon; Dolan, Raymond J
2004-11-01
Emotional visual stimuli evoke enhanced responses in the visual cortex. To test whether this reflects modulatory influences from the amygdala on sensory processing, we used event-related functional magnetic resonance imaging (fMRI) in human patients with medial temporal lobe sclerosis. Twenty-six patients with lesions in the amygdala, the hippocampus or both, plus 13 matched healthy controls, were shown pictures of fearful or neutral faces in task-releant or task-irrelevant positions on the display. All subjects showed increased fusiform cortex activation when the faces were in task-relevant positions. Both healthy individuals and those with hippocampal damage showed increased activation in the fusiform and occipital cortex when they were shown fearful faces, but this was not the case for individuals with damage to the amygdala, even though visual areas were structurally intact. The distant influence of the amygdala was also evidenced by the parametric relationship between amygdala damage and the level of emotional activation in the fusiform cortex. Our data show that combining the fMRI and lesion approaches can help reveal the source of functional modulatory influences between distant but interconnected brain regions.
The neural response in short-term visual recognition memory for perceptual conjunctions.
Elliott, R; Dolan, R J
1998-01-01
Short-term visual memory has been widely studied in humans and animals using delayed matching paradigms. The present study used positron emission tomography (PET) to determine the neural substrates of delayed matching to sample for complex abstract patterns over a 5-s delay. More specifically, the study assessed any differential neural response associated with remembering individual perceptual properties (color only and shape only) compared to conjunction between these properties. Significant activations associated with short-term visual memory (all memory conditions compared to perceptuomotor control) were observed in extrastriate cortex, medial and lateral parietal cortex, anterior cingulate, inferior frontal gyrus, and the thalamus. Significant deactivations were observed throughout the temporal cortex. Although the requirement to remember color compared to shape was associated with subtly different patterns of blood flow, the requirement to remember perceptual conjunctions between these features was not associated with additional specific activations. These data suggest that visual memory over a delay of the order of 5 s is mainly dependent on posterior perceptual regions of the cortex, with the exact regions depending on the perceptual aspect of the stimuli to be remembered.
Gu, Yue; Miao, Shuo; Han, Junxia; Liang, Zhenhu; Ouyang, Gaoxiang; Yang, Jian; Li, Xiaoli
2018-06-01
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder affecting children and adults. Previous studies found that functional near-infrared spectroscopy (fNIRS) can reveal significant group differences in several brain regions between ADHD children and healthy controls during working memory tasks. This study aimed to use fNIRS activation patterns to identify ADHD children from healthy controls. FNIRS signals from 25 ADHD children and 25 healthy controls performing the n-back task were recorded; then, multivariate pattern analysis was used to discriminate ADHD individuals from healthy controls, and classification performance was evaluated for significance by the permutation test. The results showed that 86.0% ([Formula: see text]) of participants can be correctly classified in leave-one-out cross-validation. The most discriminative brain regions included the bilateral dorsolateral prefrontal cortex, inferior medial prefrontal cortex, right posterior prefrontal cortex, and right temporal cortex. This study demonstrated that, in a small sample, multivariate pattern analysis can effectively identify ADHD children from healthy controls based on fNIRS signals, which argues for the potential utility of fNIRS in future assessments.
Fornito, A; Yücel, M; Patti, J; Wood, S J; Pantelis, C
2009-03-01
Voxel-based morphometry (VBM) is a popular tool for mapping neuroanatomical changes in schizophrenia patients. Several recent meta-analyses have identified the brain regions in which patients most consistently show grey matter reductions, although they have not examined whether such changes reflect differences in grey matter concentration (GMC) or grey matter volume (GMV). These measures assess different aspects of grey matter integrity, and may therefore reflect different pathological processes. In this study, we used the Anatomical Likelihood Estimation procedure to analyse significant differences reported in 37 VBM studies of schizophrenia patients, incorporating data from 1646 patients and 1690 controls, and compared the findings of studies using either GMC or GMV to index grey matter differences. Analysis of all studies combined indicated that grey matter reductions in a network of frontal, temporal, thalamic and striatal regions are among the most frequently reported in literature. GMC reductions were generally larger and more consistent than GMV reductions, and were more frequent in the insula, medial prefrontal, medial temporal and striatal regions. GMV reductions were more frequent in dorso-medial frontal cortex, and lateral and orbital frontal areas. These findings support the primacy of frontal, limbic, and subcortical dysfunction in the pathophysiology of schizophrenia, and suggest that the grey matter changes observed with MRI may not necessarily result from a unitary pathological process.
Robin, Jessica; Hirshhorn, Marnie; Rosenbaum, R Shayna; Winocur, Gordon; Moscovitch, Morris; Grady, Cheryl L
2015-01-01
Several recent studies have compared episodic and spatial memory in neuroimaging paradigms in order to understand better the contribution of the hippocampus to each of these tasks. In the present study, we build on previous findings showing common neural activation in default network areas during episodic and spatial memory tasks based on familiar, real-world environments (Hirshhorn et al. (2012) Neuropsychologia 50:3094-3106). Following previous demonstrations of the presence of functionally connected sub-networks within the default network, we performed seed-based functional connectivity analyses to determine how, depending on the task, the hippocampus and prefrontal cortex differentially couple with one another and with distinct whole-brain networks. We found evidence for a medial prefrontal-parietal network and a medial temporal lobe network, which were functionally connected to the prefrontal and hippocampal seeds, respectively, regardless of the nature of the memory task. However, these two networks were functionally connected with one another during the episodic memory task, but not during spatial memory tasks. Replicating previous reports of fractionation of the default network into stable sub-networks, this study also shows how these sub-networks may flexibly couple and uncouple with one another based on task demands. These findings support the hypothesis that episodic memory and spatial memory share a common medial temporal lobe-based neural substrate, with episodic memory recruiting additional prefrontal sub-networks. © 2014 Wiley Periodicals, Inc.
Spatial attention increases high-frequency gamma synchronisation in human medial visual cortex.
Koelewijn, Loes; Rich, Anina N; Muthukumaraswamy, Suresh D; Singh, Krish D
2013-10-01
Visual information processing involves the integration of stimulus and goal-driven information, requiring neuronal communication. Gamma synchronisation is linked to neuronal communication, and is known to be modulated in visual cortex both by stimulus properties and voluntarily-directed attention. Stimulus-driven modulations of gamma activity are particularly associated with early visual areas such as V1, whereas attentional effects are generally localised to higher visual areas such as V4. The absence of a gamma increase in early visual cortex is at odds with robust attentional enhancements found with other measures of neuronal activity in this area. Here we used magnetoencephalography (MEG) to explore the effect of spatial attention on gamma activity in human early visual cortex using a highly effective gamma-inducing stimulus and strong attentional manipulation. In separate blocks, subjects tracked either a parafoveal grating patch that induced gamma activity in contralateral medial visual cortex, or a small line at fixation, effectively attending away from the gamma-inducing grating. Both items were always present, but rotated unpredictably and independently of each other. The rotating grating induced gamma synchronisation in medial visual cortex at 30-70 Hz, and in lateral visual cortex at 60-90 Hz, regardless of whether it was attended. Directing spatial attention to the grating increased gamma synchronisation in medial visual cortex, but only at 60-90 Hz. These results suggest that the generally found increase in gamma activity by spatial attention can be localised to early visual cortex in humans, and that stimulus and goal-driven modulations may be mediated at different frequencies within the gamma range. Copyright © 2013 Elsevier Inc. All rights reserved.
A General Role for Medial Prefrontal Cortex in Event Prediction
2014-07-11
anterior cingulate cortex modulates attentional response: combined fMRI and ERP evidence. J. Cogn . Neurosci . 18, 766–780. doi: 10.1162/jocn.2006.18.5.766...losses in the anterior cingulate cortex. Cogn . Affect. Behav. Neurosci . 7, 327–336. doi: 10.3758/cabn.7.4.327 Shima, K., and Tanji, J. (1998). Role of...COMPUTATIONAL NEUROSCIENCE ORIGINAL RESEARCH ARTICLE published: 11 July 2014 doi: 10.3389/fncom.2014.00069 A general role for medial prefrontal
van Veluw, Susanne J; Chance, Steven A
2014-03-01
The perception of self and others is a key aspect of social cognition. In order to investigate the neurobiological basis of this distinction we reviewed two classes of task that study self-awareness and awareness of others (theory of mind, ToM). A reliable task to measure self-awareness is the recognition of one's own face in contrast to the recognition of others' faces. False-belief tasks are widely used to identify neural correlates of ToM as a measure of awareness of others. We performed an activation likelihood estimation meta-analysis, using the fMRI literature on self-face recognition and false-belief tasks. The brain areas involved in performing false-belief tasks were the medial prefrontal cortex (MPFC), bilateral temporo-parietal junction, precuneus, and the bilateral middle temporal gyrus. Distinct self-face recognition regions were the right superior temporal gyrus, the right parahippocampal gyrus, the right inferior frontal gyrus/anterior cingulate cortex, and the left inferior parietal lobe. Overlapping brain areas were the superior temporal gyrus, and the more ventral parts of the MPFC. We confirmed that self-recognition in contrast to recognition of others' faces, and awareness of others involves a network that consists of separate, distinct neural pathways, but also includes overlapping regions of higher order prefrontal cortex where these processes may be combined. Insights derived from the neurobiology of disorders such as autism and schizophrenia are consistent with this notion.
Volition and conflict in human medial frontal cortex
Nachev, Parashkev; Rees, Geraint; Parton, Andrew; Kennard, Christopher; Husain, Masud
2009-01-01
Summary Controversy surrounds the role of human medial frontal cortex in controlling actions[1-5]. Although damage to this area leads to severe difficulties in spontaneously initiating actions[6], the precise mechanisms underlying such ‘volitional’ deficits remain to be established. Previous studies have implicated the medial frontal cortex in conflict monitoring[7-10] and the control of voluntary action[11, 12], suggesting that these key processes are functionally related or share neural substrates. Here we combine a novel behavioural paradigm with functional imaging of the oculomotor system to reveal for the first time a functional subdivision of the pre-supplementary motor area (pre-SMA) into anatomically distinct areas responding exclusively to volition or to conflict. We also demonstrate that activity in the supplementary eye field (SEF) distinguishes between success and failure in changing voluntary action plans during conflict, suggesting a role for the SEF in implementing the resolution of conflicting actions. We propose a functional architecture of human medial frontal cortex that incorporates the generation of action plans and the resolution of conflict. PMID:15668167
Dahlgren, M K; Laifer, L M; VanElzakker, M B; Offringa, R; Hughes, K C; Staples-Bradley, L K; Dubois, S J; Lasko, N B; Hinojosa, C A; Orr, S P; Pitman, R K; Shin, L M
2018-05-01
Previous research has shown relatively diminished medial prefrontal cortex activation and heightened psychophysiological responses during the recollection of personal events in post-traumatic stress disorder (PTSD), but the origin of these abnormalities is unknown. Twin studies provide the opportunity to determine whether such abnormalities reflect familial vulnerabilities, result from trauma exposure, or are acquired characteristics of PTSD. In this case-control twin study, 26 male identical twin pairs (12 PTSD; 14 non-PTSD) discordant for PTSD and combat exposure recalled and imagined trauma-unrelated stressful and neutral life events using a standard script-driven imagery paradigm during functional magnetic resonance imaging and concurrent skin conductance measurement. Diminished activation in the medial prefrontal cortex during Stressful v. Neutral script-driven imagery was observed in the individuals with PTSD, relative to other groups. Diminished medial prefrontal cortex activation during Stressful v. Neutral script-driven imagery may be an acquired characteristic of PTSD. If replicated, this finding could be used prospectively to inform diagnosis and the assessment of treatment response.
Pressman, Peter S; Noniyeva, Yuliana; Bott, Nick; Dutt, Shubir; Sturm, Virginia; Miller, Bruce L; Kramer, Joel H
2016-01-01
Many emotional functions are relatively preserved in aging despite declines in several cognitive domains and physical health. High levels of happiness exist even among centenarians. To address the hypothesis of whether preservation of emotional function in healthy aging may relate to different rates of age-related volume loss across brain structures, we performed two volumetric analyses on structural magnetic resonance neuroimaging of a group of healthy aging research participants using Freesurfer version 5.1. Volumes selected as supporting cognition included bilateral midfrontal and lateral frontal gyri, lateral parietal and temporal cortex, and medial temporal lobes. Volumes supporting emotion included bilateral amygdala, rostral anterior cingulate, insula, orbitofrontal cortex, and nucleus accumbens. A cross-sectional analysis was performed using structural MRI scans from 258 subjects. We found no difference in proportional change between groups. A longitudinal mixed effects model was used to compare regional changes over time in a subset of 84 subjects. Again, there was no difference in proportional change over time. While our results suggest that aging does not collectively target cognitive brain regions more than emotional regions, subgroup analysis suggests relative preservation of the anterior cingulate cortex, with greater volume loss in the nucleus accumbens. Implications of these relative rates of age-related volume loss in healthy aging are discussed and merit further research.
Dos Santos, Rafael G; Osório, Flávia L; Crippa, José Alexandre S; Hallak, Jaime E C
2016-12-01
Serotonergic hallucinogens produce alterations of perceptions, mood, and cognition, and have anxiolytic, antidepressant, and antiaddictive properties. These drugs act as agonists of frontocortical 5-HT 2A receptors, but the neural basis of their effects are not well understood. Thus, we conducted a systematic review of neuroimaging studies analyzing the effects of serotonergic hallucinogens in man. Studies published in the PubMed, Lilacs, and SciELO databases until 12 April 2016 were included using the following keywords: "ayahuasca", "DMT", "psilocybin", "LSD", "mescaline" crossed one by one with the terms "mri", "fmri", "pet", "spect", "imaging" and "neuroimaging". Of 279 studies identified, 25 were included. Acute effects included excitation of frontolateral/frontomedial cortex, medial temporal lobe, and occipital cortex, and inhibition of the default mode network. Long-term use was associated with thinning of the posterior cingulate cortex, thickening of the anterior cingulate cortex, and decreased neocortical 5-HT 2A receptor binding. Despite the high methodological heterogeneity and the small sample sizes, the results suggest that hallucinogens increase introspection and positive mood by modulating brain activity in the fronto-temporo-parieto-occipital cortex. Copyright © 2016 Elsevier Ltd. All rights reserved.
Brown, Thackery I.; Hasselmo, Michael E.; Stern, Chantal E.
2015-01-01
When navigating our world we often first plan or retrieve an ideal route to our goal, avoiding alternative paths that lead to other destinations. The medial temporal lobe (MTL) has been implicated in processing contextual information, sequence memory, and uniquely retrieving routes that overlap or “cross paths.” However, the identity of subregions of the hippocampus and neighboring cortex that support these functions in humans remains unclear. The present study used high-resolution functional magnetic resonance imaging (hr-fMRI) in humans to test whether the CA3/DG hippocampal subfield and para-hippocampal cortex are important for processing spatial context and route retrieval, and whether the CA1 subfield facilitates prospective planning of mazes that must be distinguished from alternative overlapping routes. During hr-fMRI scanning, participants navigated virtual mazes that were well-learned from prior training while also learning new mazes. Some routes learned during scanning shared hallways with those learned during pre-scan training, requiring participants to select between alternative paths. Critically, each maze began with a distinct spatial contextual Cue period. Our analysis targeted activity from the Cue period, during which participants identified the current navigational episode, facilitating retrieval of upcoming route components and distinguishing mazes that overlap. Results demonstrated that multiple MTL regions were predominantly active for the contextual Cue period of the task, with specific regions of CA3/DG, parahippocampal cortex, and perirhinal cortex being consistently recruited across trials for Cue periods of both novel and familiar mazes. During early trials of the task, both CA3/DG and CA1 were more active for overlapping than non-overlapping Cue periods. Trial-by-trial Cue period responses in CA1 tracked subsequent overlapping maze performance across runs. Together, our findings provide novel insight into the contributions of MTL subfields to processing spatial context and route retrieval, and support a prominent role for CA1 in distinguishing overlapping episodes during navigational “look-ahead” periods. PMID:24659134
Xie, Long; Pluta, John B.; Das, Sandhitsu R.; Wisse, Laura E.M.; Wang, Hongzhi; Mancuso, Lauren; Kliot, Dasha; Avants, Brian B.; Ding, Song-Lin; Manjón, José V.; Wolk, David A.; Yushkevich, Paul A.
2016-01-01
Rational The human perirhinal cortex (PRC) plays critical roles in episodic and semantic memory and visual perception. The PRC consists of Brodmann areas 35 and 36 (BA35, BA36). In Alzheimer's disease (AD), BA35 is the first cortical site affected by neurofibrillary tangle pathology, which is closely linked to neural injury in AD. Large anatomical variability, manifested in the form of different cortical folding and branching patterns, makes it difficult to segment the PRC in MRI scans. Pathology studies have found that in ~97% of specimens, the PRC falls into one of three discrete anatomical variants. However, current methods for PRC segmentation and morphometry in MRI are based on single-template approaches, which may not be able to accurately model these discrete variants Methods A multi-template analysis pipeline that explicitly accounts for anatomical variability is used to automatically label the PRC and measure its thickness in T2-weighted MRI scans. The pipeline uses multi-atlas segmentation to automatically label medial temporal lobe cortices including entorhinal cortex, PRC and the parahippocampal cortex. Pairwise registration between label maps and clustering based on residual dissimilarity after registration are used to construct separate templates for the anatomical variants of the PRC. An optimal path of deformations linking these templates is used to establish correspondences between all the subjects. Experimental evaluation focuses on the ability of single-template and multi-template analyses to detect differences in the thickness of medial temporal lobe cortices between patients with amnestic mild cognitive impairment (aMCI, n=41) and age-matched controls (n=44). Results The proposed technique is able to generate templates that recover the three dominant discrete variants of PRC and establish more meaningful correspondences between subjects than a single-template approach. The largest reduction in thickness associated with aMCI, in absolute terms, was found in left BA35 using both regional and summary thickness measures. Further, statistical maps of regional thickness difference between aMCI and controls revealed different patterns for the three anatomical variants. PMID:27702610
Functional neuroimaging of recovery from motor conversion disorder: A case report.
Dogonowski, Anne-Marie; Andersen, Kasper W; Sellebjerg, Finn; Schreiber, Karen; Madsen, Kristoffer H; Siebner, Hartwig R
2018-03-27
A patient with motor conversion disorder presented with a functional paresis of the left hand. After exclusion of structural brain damage, she was repeatedly examined with whole-brain functional magnetic resonance imaging, while she performed visually paced finger-tapping tasks. The dorsal premotor cortex showed a bilateral deactivation in the acute-subacute phase. Recovery from unilateral hand paresis was associated with a gradual increase in task-based activation of the dorsal premotor cortex bilaterally. The right medial prefrontal cortex displayed the opposite pattern, showing initial task-based activation that gradually diminished with recovery. The inverse dynamics of premotor and medial prefrontal activity over time were found during unimanual finger-tapping with the affected and non-affected hand as well as during bimanual finger-tapping. These observations suggest that reduced premotor and increased medial prefrontal activity reflect an effector-independent cortical dysfunction in conversion paresis which gradually disappears in parallel with clinical remission of paresis. The results link the medial prefrontal and dorsal premotor areas to the generation of intentional actions. We hypothesise that an excessive 'veto' signal generated in medial prefrontal cortex along with decreased premotor activity might constitute the functional substrate of conversion disorder. This notion warrants further examination in a larger group of affected patients. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Li, S Y; Zhu, Y; Wang, Y L; Lü, P P; Zuo, W B; Li, F Y
2017-12-05
Objective: To study resting-state functional connectivity (FC) of default mode network (DMN) in adolescent patients with first-episode drug-naive major depressive disorder (MDD). Methods: We enrolled thirty first-episode and drug-naive adolescent MDD patients and twenty-nine adolescent healthy control (HC) participants in the First Affiliated Hospital of Zhengzhou University. There were no differences in age, sex, and education between the MDD and HC group. Resting-state functional magnetic resonance images (fMRI) was performed. We selected posterior cingulate cortex (PCC) and medial prefrontal cortex (MPFC) of DMN as regions of interests (ROI). The differences of these regions from the whole brain functional connectivity were analyzed. The relations between abnormalities in FCs of DMN and clinical variables were further investigated. Results: Compared to the HCs, the MDD patients had congruently reduced FCs between the PCC and cerebellum, temporal cortices, occipital cortices, fusiform, dorsolateral prefrontal cortex. MPFC not only had reduced FCs with fusiform, temporal cortices, anterior cingulate cortex, but also had enhanced FCs with occipital cortices, parietal cortices, and precentral gyrus. In addition, the increased FC between the right MPFC and right precentral gyrus was positive correlated with Hamilton Rating Scale for Depression (HAMD) scores ( r =0.38, P =0.04). The reduced FC between the left middle temporal gyrus and left PCC as well as the enhanced FC between the right middle cingulum and right MPFC were positive correlated with the duration of depression since onset ( r =0.39, P =0.03; r =0.38, P =0.04). Conclusions: These findings show dysfunctional DMN connectivity of adolescent MDD patients. Neurodevelopmental abnormalities in DMN may present in adolescent MDD.
Khaligh-Razavi, Seyed-Mahdi; Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude
2018-06-07
Animacy and real-world size are properties that describe any object and thus bring basic order into our perception of the visual world. Here, we investigated how the human brain processes real-world size and animacy. For this, we applied representational similarity to fMRI and MEG data to yield a view of brain activity with high spatial and temporal resolutions, respectively. Analysis of fMRI data revealed that a distributed and partly overlapping set of cortical regions extending from occipital to ventral and medial temporal cortex represented animacy and real-world size. Within this set, parahippocampal cortex stood out as the region representing animacy and size stronger than most other regions. Further analysis of the detailed representational format revealed differences among regions involved in processing animacy. Analysis of MEG data revealed overlapping temporal dynamics of animacy and real-world size processing starting at around 150 msec and provided the first neuromagnetic signature of real-world object size processing. Finally, to investigate the neural dynamics of size and animacy processing simultaneously in space and time, we combined MEG and fMRI with a novel extension of MEG-fMRI fusion by representational similarity. This analysis revealed partly overlapping and distributed spatiotemporal dynamics, with parahippocampal cortex singled out as a region that represented size and animacy persistently when other regions did not. Furthermore, the analysis highlighted the role of early visual cortex in representing real-world size. A control analysis revealed that the neural dynamics of processing animacy and size were distinct from the neural dynamics of processing low-level visual features. Together, our results provide a detailed spatiotemporal view of animacy and size processing in the human brain.
Shen, Mark D; Li, Deana D; Keown, Christopher L; Lee, Aaron; Johnson, Ryan T; Angkustsiri, Kathleen; Rogers, Sally J; Müller, Ralph-Axel; Amaral, David G; Nordahl, Christine Wu
2016-09-01
The objective of this study was to determine whether functional connectivity of the amygdala is altered in preschool-age children with autism spectrum disorder (ASD) and to assess the clinical relevance of observed alterations in amygdala connectivity. A resting-state functional connectivity magnetic resonance imaging study of the amygdala (and a parallel study of primary visual cortex) was conducted in 72 boys (mean age 3.5 years; n = 43 with ASD; n = 29 age-matched controls). The ASD group showed significantly weaker connectivity between the amygdala and several brain regions involved in social communication and repetitive behaviors, including bilateral medial prefrontal cortex, temporal lobes, and striatum (p < .05, corrected). Weaker connectivity between the amygdala and frontal and temporal lobes was significantly correlated with increased autism severity in the ASD group (p < .05). In a parallel analysis examining the functional connectivity of primary visual cortex, the ASD group showed significantly weaker connectivity between visual cortex and sensorimotor regions (p < .05, corrected). Weaker connectivity between visual cortex and sensorimotor regions was not correlated with core autism symptoms, but instead was correlated with increased sensory hypersensitivity in the visual/auditory domain (p < .05). These findings indicate that preschool-age children with ASD have disrupted functional connectivity between the amygdala and regions of the brain important for social communication and language, which might be clinically relevant because weaker connectivity was associated with increased autism severity. Moreover, although amygdala connectivity was associated with behavioral domains that are diagnostic of ASD, altered connectivity of primary visual cortex was related to sensory hypersensitivity. Copyright © 2016 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
The human brain representation of odor identification.
Kjelvik, Grete; Evensmoen, Hallvard R; Brezova, Veronika; Håberg, Asta K
2012-07-01
Odor identification (OI) tests are increasingly used clinically as biomarkers for Alzheimer's disease and schizophrenia. The aim of this study was to directly compare the neuronal correlates to identified odors vs. nonidentified odors. Seventeen females with normal olfactory function underwent a functional magnetic resonance imaging (fMRI) experiment with postscanning assessment of spontaneous uncued OI. An event-related analysis was performed to compare within-subject activity to spontaneously identified vs. nonidentified odors at the whole brain level, and in anatomic and functional regions of interest (ROIs) in the medial temporal lobe (MTL). Parameter estimate values and blood oxygenated level-dependent (BOLD) signal curves for correctly identified and nonidentified odors were derived from functional ROIs in hippocampus, entorhinal, piriform, and orbitofrontal cortices. Number of activated voxels and max parameter estimate values were obtained from anatomic ROIs in the hippocampus and the entorhinal cortex. At the whole brain level the correct OI gave rise to increased activity in the left entorhinal cortex and secondary olfactory structures, including the orbitofrontal cortex. Increased activation was also observed in fusiform, primary visual, and auditory cortices, inferior frontal plus inferior temporal gyri. The anatomic MTL ROI analysis showed increased activation in the left entorhinal cortex, right hippocampus, and posterior parahippocampal gyri in correct OI. In the entorhinal cortex and hippocampus the BOLD signal increased specifically in response to identified odors and decreased for nonidentified odors. In orbitofrontal and piriform cortices both identified and nonidentified odors gave rise to an increased BOLD signal, but the response to identified odors was significantly greater than that for nonidentified odors. These results support a specific role for entorhinal cortex and hippocampus in OI, whereas piriform and orbitofrontal cortices are active in both smelling and OI. Moreover, episodic as well as semantic memory systems appeared to support OI.
Concentric scheme of monkey auditory cortex
NASA Astrophysics Data System (ADS)
Kosaki, Hiroko; Saunders, Richard C.; Mishkin, Mortimer
2003-04-01
The cytoarchitecture of the rhesus monkey's auditory cortex was examined using immunocytochemical staining with parvalbumin, calbindin-D28K, and SMI32, as well as staining for cytochrome oxidase (CO). The results suggest that Kaas and Hackett's scheme of the auditory cortices can be extended to include five concentric rings surrounding an inner core. The inner core, containing areas A1 and R, is the most densely stained with parvalbumin and CO and can be separated on the basis of laminar patterns of SMI32 staining into lateral and medial subdivisions. From the inner core to the fifth (outermost) ring, parvalbumin staining gradually decreases and calbindin staining gradually increases. The first ring corresponds to Kaas and Hackett's auditory belt, and the second, to their parabelt. SMI32 staining revealed a clear border between these two. Rings 2 through 5 extend laterally into the dorsal bank of the superior temporal sulcus. The results also suggest that the rostral tip of the outermost ring adjoins the rostroventral part of the insula (area Pro) and the temporal pole, while the caudal tip adjoins the ventral part of area 7a.
Liu, Sheng; Angelaki, Dora E.
2009-01-01
Visual and vestibular signals converge onto the dorsal medial superior temporal area (MSTd) of the macaque extrastriate visual cortex, which is thought to be involved in multisensory heading perception for spatial navigation. Peripheral otolith information, however, is ambiguous and cannot distinguish linear accelerations experienced during self-motion from those due to changes in spatial orientation relative to gravity. Here we show that, unlike peripheral vestibular sensors but similar to lobules 9 and 10 of the cerebellar vermis (nodulus and uvula), MSTd neurons respond selectively to heading and not to changes in orientation relative to gravity. In support of a role in heading perception, MSTd vestibular responses are also dominated by velocity-like temporal dynamics, which might optimize sensory integration with visual motion information. Unlike the cerebellar vermis, however, MSTd neurons also carry a spatial orientation-independent rotation signal from the semicircular canals, which could be useful in compensating for the effects of head rotation on the processing of optic flow. These findings show that vestibular signals in MSTd are appropriately processed to support a functional role in multisensory heading perception. PMID:19605631
Brauer, Jens; Xiao, Yaqiong; Poulain, Tanja; Friederici, Angela D; Schirmer, Annett
2016-08-01
Previous behavioral research points to a positive relationship between maternal touch and early social development. Here, we explored the brain correlates of this relationship. The frequency of maternal touch was recorded for 43 five-year-old children during a 10 min standardized play session. Additionally, all children completed a resting-state functional magnetic resonance imaging session. Investigating the default mode network revealed a positive relation between the frequency of maternal touch and activity in the right posterior superior temporal sulcus (pSTS) extending into the temporo-parietal junction. Using this effect as a seed in a functional connectivity analysis identified a network including extended bilateral regions along the temporal lobe, bilateral frontal cortex, and left insula. Compared with children with low maternal touch, children with high maternal touch showed additional connectivity with the right dorso-medial prefrontal cortex. Together these results support the notion that childhood tactile experiences shape the developing "social brain" with a particular emphasis on a network involved in mentalizing. © The Author 2016. Published by Oxford University Press.
Hu, Shiyan; Pruessner, Jens C; Coupé, Pierrick; Collins, D Louis
2013-07-01
Puberty is an important stage of development as a child's sexual and physical characteristics mature because of hormonal changes. To better understand puberty-related effects on brain development, we investigated the magnetic resonance imaging (MRI) data of 306 subjects from 4 to 18 years of age. Subjects were grouped into before and during puberty groups according to their sexual maturity levels measured by the puberty scores. An appearance model-based automatic segmentation method with patch-based local refinement was employed to segment the MRI data and extract the volumes of medial temporal lobe (MTL) structures including the amygdala (AG), the hippocampus (HC), the entorhinal/perirhinal cortex (EPC), and the parahippocampal cortex (PHC). Our analysis showed age-related volumetric changes for the AG, HC, right EPC, and left PHC but only before puberty. After onset of puberty, these volumetric changes then correlate more with sexual maturity level, as measured by the puberty score. When normalized for brain volume, the volumes of the right HC decrease for boys; the volumes of the left HC increase for girls; and the volumes of the left and right PHC decrease for boys. These findings suggest that the rising levels of testosterone in boys and estrogen in girls might have opposite effects, especially for the HC and the PHC. Our findings on sex-specific and sexual maturity-related volumes may be useful in better understanding the MTL developmental differences and related learning, memory, and emotion differences between boys and girls during puberty. Copyright © 2013 Elsevier Inc. All rights reserved.
Animacy and real-world size shape object representations in the human medial temporal lobes.
Blumenthal, Anna; Stojanoski, Bobby; Martin, Chris B; Cusack, Rhodri; Köhler, Stefan
2018-06-26
Identifying what an object is, and whether an object has been encountered before, is a crucial aspect of human behavior. Despite this importance, we do not yet have a complete understanding of the neural basis of these abilities. Investigations into the neural organization of human object representations have revealed category specific organization in the ventral visual stream in perceptual tasks. Interestingly, these categories fall within broader domains of organization, with reported distinctions between animate, inanimate large, and inanimate small objects. While there is some evidence for category specific effects in the medial temporal lobe (MTL), in particular in perirhinal and parahippocampal cortex, it is currently unclear whether domain level organization is also present across these structures. To this end, we used fMRI with a continuous recognition memory task. Stimuli were images of objects from several different categories, which were either animate or inanimate, or large or small within the inanimate domain. We employed representational similarity analysis (RSA) to test the hypothesis that object-evoked responses in MTL structures during recognition-memory judgments also show evidence for domain-level organization along both dimensions. Our data support this hypothesis. Specifically, object representations were shaped by either animacy, real-world size, or both, in perirhinal and parahippocampal cortex, and the hippocampus. While sensitivity to these dimensions differed across structures when probed individually, hinting at interesting links to functional differentiation, similarities in organization across MTL structures were more prominent overall. These results argue for continuity in the organization of object representations in the ventral visual stream and the MTL. © 2018 Wiley Periodicals, Inc.
A case-control study of brain structure and behavioral characteristics in 47,XXX syndrome.
Lenroot, R K; Blumenthal, J D; Wallace, G L; Clasen, L S; Lee, N R; Giedd, J N
2014-11-01
Trisomy X, the presence of an extra X chromosome in females (47,XXX), is a relatively common but under-recognized chromosomal disorder associated with characteristic cognitive and behavioral features of varying severity. The objective of this study was to determine whether there were neuroanatomical differences in girls with Trisomy X that could relate to cognitive and behavioral differences characteristic of the disorder during childhood and adolescence. MRI scans were obtained on 35 girls with Trisomy X (mean age 11.4, SD 5.5) and 70 age- and sex-matched healthy controls. Cognitive and behavioral testing was also performed. Trisomy X girls underwent a semi-structured psychiatric interview. Regional brain volumes and cortical thickness were compared between the two groups. Total brain volume was significantly decreased in subjects with Trisomy X, as were all regional volumes with the exception of parietal gray matter. Differences in cortical thickness had a mixed pattern. The subjects with Trisomy X had thicker cortex in bilateral medial prefrontal cortex and right medial temporal lobe, but decreased cortical thickness in both lateral temporal lobes. The most common psychiatric disorders present in this sample of Trisomy X girls included anxiety disorders (40%), attention-deficit disorder (17%) and depressive disorders (11%). The most strongly affected brain regions are consistent with phenotypic characteristics such as language delay, poor executive function and heightened anxiety previously described in population-based studies of Trisomy X and also found in our sample. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Mentalising music in frontotemporal dementia
Downey, Laura E.; Blezat, Alice; Nicholas, Jennifer; Omar, Rohani; Golden, Hannah L.; Mahoney, Colin J.; Crutch, Sebastian J.; Warren, Jason D.
2013-01-01
Despite considerable recent interest, the biological basis and clinical diagnosis of behavioural variant frontotemporal dementia (bvFTD) pose unresolved problems. Mentalising (the cognitive capacity to interpret the behaviour of oneself and others in terms of mental states) is impaired as a prominent feature of bvFTD, consistent with involvement of brain regions including ventro-medial prefrontal cortex (PFC), orbitofrontal cortex and anterior temporal lobes. Here, we investigated mentalising ability in a cohort of patients with bvFTD using a novel modality: music. We constructed a novel neuropsychological battery requiring attribution of affective mental or non-mental associations to musical stimuli. Mentalising performance of patients with bvFTD (n = 20) was assessed in relation to matched healthy control subjects (n = 20); patients also had a comprehensive assessment of behaviour and general neuropsychological functions. Neuroanatomical correlates of performance on the experimental tasks were investigated using voxel-based morphometry of patients' brain magnetic resonance imaging (MRI) scans. Compared to healthy control subjects, patients showed impaired ability to attribute mental states but not non-mental characteristics to music, and this deficit correlated with performance on a standard test of social inference and with carer ratings of patients' empathic capacity, but not with other potentially relevant measures of general neuropsychological function. Mentalising performance in the bvFTD group was associated with grey matter changes in anterior temporal lobe and ventro-medial PFC. These findings suggest that music can represent surrogate mental states and the ability to construct such mental representations is impaired in bvFTD, with potential implications for our understanding of the biology of bvFTD and human social cognition more broadly. PMID:23107380
Hippocampal Network Modularity Is Associated With Relational Memory Dysfunction in Schizophrenia.
Avery, Suzanne N; Rogers, Baxter P; Heckers, Stephan
2018-05-01
Functional dysconnectivity has been proposed as a major pathophysiological mechanism for cognitive dysfunction in schizophrenia. The hippocampus is a focal point of dysconnectivity in schizophrenia, with decreased hippocampal functional connectivity contributing to the marked memory deficits observed in patients. Normal memory function relies on the interaction of complex corticohippocampal networks. However, only recent technological advances have enabled the large-scale exploration of functional networks with accuracy and precision. We investigated the modularity of hippocampal resting-state functional networks in a sample of 45 patients with schizophrenia spectrum disorders and 38 healthy control subjects. Modularity was calculated for two distinct functional networks: a core hippocampal-medial temporal lobe cortex network and an extended hippocampal-cortical network. As hippocampal function differs along its longitudinal axis, follow-up analyses examined anterior and posterior networks separately. To explore effects of resting network function on behavior, we tested associations between modularity and relational memory ability. Age, sex, handedness, and parental education were similar between groups. Network modularity was lower in schizophrenia patients, especially in the posterior hippocampal network. Schizophrenia patients also showed markedly lower relational memory ability compared with control subjects. We found a distinct brain-behavior relationship in schizophrenia that differed from control subjects by network and anterior/posterior division-while relational memory in control subjects was associated with anterior hippocampal-cortical modularity, schizophrenia patients showed an association with posterior hippocampal-medial temporal lobe cortex network modularity. Our findings support a model of abnormal resting-state corticohippocampal network coherence in schizophrenia, which may contribute to relational memory deficits. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
de Souza Silva, Maria A; Huston, Joseph P; Wang, An-Li; Petri, David; Chao, Owen Yuan-Hsin
2016-07-01
We asked whether episodic-like memory requires neural mechanisms independent of those that mediate its component memories for "what," "when," and "where," and if neuronal connectivity between the medial prefrontal cortex (mPFC) and the hippocampus (HPC) CA3 subregion is essential for episodic-like memory. Unilateral lesion of the mPFC was combined with unilateral lesion of the CA3 in the ipsi- or contralateral hemispheres in rats. Episodic-like memory was tested using a task, which assesses the integration of memories for "what, where, and when" concomitantly. Tests for novel object recognition (what), object place (where), and temporal order memory (when) were also applied. Bilateral disconnection of the mPFC-CA3 circuit by N-methyl-d-aspartate (NMDA) lesions disrupted episodic-like memory, but left the component memories for object, place, and temporal order, per se, intact. Furthermore, unilateral NMDA lesion of the CA3 plus injection of (6-cyano-7-nitroquinoxaline-2,3-dione) (CNQX) (AMPA/kainate receptor antagonist), but not AP-5 (NMDA receptor antagonist), into the contralateral mPFC also disrupted episodic-like memory, indicating the mPFC AMPA/kainate receptors as critical for this circuit. These results argue for a selective neural system that specifically subserves episodic memory, as it is not critically involved in the control of its component memories for object, place, and time. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Caldwell, Kevin K.; Sheema, S.; Paz, Rodrigo D; Samudio-Ruiz, Sabrina L.; Laughlin, Mary H.; Spence, Nathan E.; Roehlk, Michael J; Alcon, Sara N.; Allan, Andrea M.
2009-01-01
Prenatal ethanol exposure is associated with an increased incidence of depressive disorders in patient populations. However, the mechanisms that link prenatal ethanol exposure and depression are unknown. Several recent studies have implicated reduced brain-derived neurotrophic factor (BDNF) levels in the hippocampal formation and frontal cortex as important contributors to the etiology of depression. In the present studies, we sought to determine whether prenatal ethanol exposure is associated with behaviors that model depression, as well as with reduced BDNF levels in the hippocampal formation and/or medial frontal cortex, in a mouse model of fetal alcohol spectrum disorder (FASD). Compared to control adult mice, prenatal ethanol-exposed adult mice displayed increased learned helplessness behavior and increased immobility in the Porsolt forced swim test. Prenatal ethanol exposure was associated with decreased BDNF protein levels in the medial frontal cortex, but not the hippocampal formation, while total BDNF mRNA and BDNF transcripts containing exon III, IV or VI were reduced in both the medial frontal cortex and the hippocampal formation of prenatal ethanol-exposed mice. These results identify reduced BDNF levels in the medial frontal cortex and hippocampal formation as potential mediators of depressive disorders associated with FASD. PMID:18558427
D'Amico, Davide; Gener, Thomas; de Lagrán, Maria Martínez; Sanchez-Vives, Maria V; Santos, Mónica; Dierssen, Mara
2017-01-01
The inability to properly extinguish fear memories constitutes the foundation of several anxiety disorders, including panic disorder. Recent findings show that boosting prefrontal cortex synaptic plasticity potentiates fear extinction, suggesting that therapies that augment synaptic plasticity could prove useful in rescue of fear extinction impairments in this group of disorders. Previously, we reported that mice with selective deregulation of neurotrophic tyrosine kinase receptor, type 3 expression (TgNTRK3) exhibit increased fear memories accompanied by impaired extinction, congruent with an altered activation pattern of the amygdala—hippocampus—medial prefrontal cortex fear circuit. Here we explore the specific role of neurotrophin 3 and its cognate receptor in the medial prefrontal cortex, and its involvement in fear extinction in a pathological context. In this study we combined molecular, behavioral, in vivo pharmacology and ex vivo electrophysiological recordings in TgNTRK3 animals during contextual fear extinction processes. We show that neurotrophin 3 protein levels are increased upon contextual fear extinction in wild-type animals but not in TgNTRK3 mice, which present deficits in infralimbic long-term potentiation. Importantly, infusion of neurotrophin 3 to the medial prefrontal cortex of TgNTRK3 mice rescues contextual fear extinction and ex vivo local application improves medial prefrontal cortex synaptic plasticity. This effect is blocked by inhibition of extracellular signal-regulated kinase phosphorylation through peripheral administration of SL327, suggesting that rescue occurs via this pathway. Our results suggest that stimulating neurotrophin 3-dependent medial prefrontal cortex plasticity could restore contextual fear extinction deficit in pathological fear and could constitute an effective treatment for fear-related disorders. PMID:27534266
Inoue, Shinji; Akagi, Masao; Asada, Shigeki; Mori, Shigeshi; Zaima, Hironori; Hashida, Masahiko
2016-09-01
Medial tibial condylar fractures (MTCFs) are a rare but serious complication after unicompartmental knee arthroplasty. Although some surgical pitfalls have been reported for MTCFs, it is not clear whether the varus/valgus tibial inclination contributes to the risk of MTCFs. We constructed a 3-dimensional finite elemental method model of the tibia with a medial component and assessed stress concentrations by changing the inclination from 6° varus to 6° valgus. Subsequently, we repeated the same procedure adding extended sagittal bone cuts of 2° and 10° in the posterior tibial cortex. Furthermore, we calculated the bone volume that supported the tibial component, which is considered to affect stress distribution in the medial tibial condyle. Stress concentrations were observed on the medial tibial metaphyseal cortices and on the anterior and posterior tibial cortices in the corner of cut surfaces in all models; moreover, the maximum principal stresses on the posterior cortex were larger than those on the anterior cortex. The extended sagittal bone cuts in the posterior tibial cortex increased the stresses further at these 3 sites. In the models with a 10° extended sagittal bone cut, the maximum principal stress on the posterior cortex increased as the tibial inclination changed from 6° varus to 6° valgus. The bone volume decreased as the inclination changed from varus to valgus. In this finite element method, the risk of MTCFs increases with increasing valgus inclination of the tibial component and with increased extension of the sagittal cut in the posterior tibial cortex. Copyright © 2016 Elsevier Inc. All rights reserved.
Information flow in the auditory cortical network
Hackett, Troy A.
2011-01-01
Auditory processing in the cerebral cortex is comprised of an interconnected network of auditory and auditory-related areas distributed throughout the forebrain. The nexus of auditory activity is located in temporal cortex among several specialized areas, or fields, that receive dense inputs from the medial geniculate complex. These areas are collectively referred to as auditory cortex. Auditory activity is extended beyond auditory cortex via connections with auditory-related areas elsewhere in the cortex. Within this network, information flows between areas to and from countless targets, but in a manner that is characterized by orderly regional, areal and laminar patterns. These patterns reflect some of the structural constraints that passively govern the flow of information at all levels of the network. In addition, the exchange of information within these circuits is dynamically regulated by intrinsic neurochemical properties of projecting neurons and their targets. This article begins with an overview of the principal circuits and how each is related to information flow along major axes of the network. The discussion then turns to a description of neurochemical gradients along these axes, highlighting recent work on glutamate transporters in the thalamocortical projections to auditory cortex. The article concludes with a brief discussion of relevant neurophysiological findings as they relate to structural gradients in the network. PMID:20116421
Ahmed, Mohamed; Cannon, Dara M; Scanlon, Cathy; Holleran, Laurena; Schmidt, Heike; McFarland, John; Langan, Camilla; McCarthy, Peter; Barker, Gareth J; Hallahan, Brian; McDonald, Colm
2015-09-01
Despite evidence that clozapine may be neuroprotective, there are few longitudinal magnetic resonance imaging (MRI) studies that have specifically explored an association between commencement of clozapine treatment for schizophrenia and changes in regional brain volume or cortical thickness. A total of 33 patients with treatment-resistant schizophrenia and 31 healthy controls matched for age and gender underwent structural MRI brain scans at baseline and 6-9 months after commencing clozapine. MRI images were analyzed using SIENA (Structural Image Evaluation, using Normalization, of Atrophy) and FreeSurfer to investigate changes over time in brain volume and cortical thickness respectively. Significantly greater reductions in volume were detected in the right and left medial prefrontal cortex and in the periventricular area in the patient group regardless of treatment response. Widespread further cortical thinning was observed in patients compared with healthy controls. The majority of patients improved symptomatically and functionally over the study period, and patients who improved were more likely to have less cortical thinning of the left medial frontal cortex and the right middle temporal cortex. These findings demonstrate on-going reductions in brain volume and progressive cortical thinning in patients with schizophrenia who are switched to clozapine treatment. It is possible that this gray matter loss reflects a progressive disease process irrespective of medication use or that it is contributed to by switching to clozapine treatment. The clinical improvement of most patients indicates that antipsychotic-related gray matter volume loss may not necessarily be harmful or reflect neurotoxicity.
ERIC Educational Resources Information Center
Beeman, Christopher L.; Bauer, Philip S.; Pierson, Jamie L.; Quinn, Jennifer J.
2013-01-01
Previous work has shown that damage to the dorsal hippocampus (DH) occurring at recent, but not remote, timepoints following acquisition produces a deficit in trace conditioned fear memory expression. The opposite pattern has been observed with lesions to the medial prefrontal cortex (mPFC). The present studies address: (1) whether these lesion…
ERIC Educational Resources Information Center
Garcia, Rene; Chang, Chun-hui; Maren, Stephen
2006-01-01
Lesion studies indicate that rats without the medial prefrontal cortex (mPFC) have difficulty recalling fear extinction acquired the previous day. Several electrophysiological studies have also supported this observation by demonstrating that extinction-related increases in neuronal activity in the mPFC participate in expression of fear…
Role of Medial Prefrontal Cortex Narp in the Extinction of Morphine Conditioned Place Preference
ERIC Educational Resources Information Center
Blouin, Ashley M.; Han, Sungho; Pearce, Anne M.; Cheng, KaiLun; Lee, JongAh J.; Johnson, Alexander W.; Wang, Chuansong; During, Matthew J.; Holland, Peter C.; Shaham, Yavin; Baraban, Jay M.; Reti, Irving M.
2013-01-01
Narp knockout (KO) mice demonstrate an impaired extinction of morphine conditioned place preference (CPP). Because the medial prefrontal cortex (mPFC) has been implicated in extinction learning, we tested whether Narp cells in this region play a role in the extinction of morphine CPP. We found that intracranial injections of adenoassociated virus…
Attention, Emotion, and Deactivation of Default Activity in Inferior Medial Prefrontal Cortex
ERIC Educational Resources Information Center
Geday, Jacob; Gjedde, Albert
2009-01-01
Attention deactivates the inferior medial prefrontal cortex (IMPC), but it is uncertain if emotions can attenuate this deactivation. To test the extent to which common emotions interfere with attention, we measured changes of a blood flow index of brain activity in key areas of the IMPC with positron emission tomography (PET) of labeled water…
ERIC Educational Resources Information Center
Baird, Amee; Dewar, Bonnie-Kate; Critchley, Hugo; Gilbert, Sam J.; Dolan, Raymond J.; Cipolotti, Lisa
2006-01-01
Two patients with medial frontal lobe damage involving the anterior cingulate cortex (ACC) performed a range of cognitive tasks, including tests of executive function and anterior attention. Both patients lesions extended beyond the ACC, therefore caution needs to be exerted in ascribing observed deficits to the ACC alone. Patient performance was…
Downregulation of the posterior medial frontal cortex prevents social conformity.
Klucharev, Vasily; Munneke, Moniek A M; Smidts, Ale; Fernández, Guillén
2011-08-17
We often change our behavior to conform to real or imagined group pressure. Social influence on our behavior has been extensively studied in social psychology, but its neural mechanisms have remained largely unknown. Here we demonstrate that the transient downregulation of the posterior medial frontal cortex by theta-burst transcranial magnetic stimulation reduces conformity, as indicated by reduced conformal adjustments in line with group opinion. Both the extent and probability of conformal behavioral adjustments decreased significantly relative to a sham and a control stimulation over another brain area. The posterior part of the medial frontal cortex has previously been implicated in behavioral and attitudinal adjustments. Here, we provide the first interventional evidence of its critical role in social influence on human behavior.
Dynamic brain glucose metabolism identifies anti-correlated cortical-cerebellar networks at rest.
Tomasi, Dardo G; Shokri-Kojori, Ehsan; Wiers, Corinde E; Kim, Sunny W; Demiral, Şukru B; Cabrera, Elizabeth A; Lindgren, Elsa; Miller, Gregg; Wang, Gene-Jack; Volkow, Nora D
2017-12-01
It remains unclear whether resting state functional magnetic resonance imaging (rfMRI) networks are associated with underlying synchrony in energy demand, as measured by dynamic 2-deoxy-2-[ 18 F]fluoroglucose (FDG) positron emission tomography (PET). We measured absolute glucose metabolism, temporal metabolic connectivity (t-MC) and rfMRI patterns in 53 healthy participants at rest. Twenty-two rfMRI networks emerged from group independent component analysis (gICA). In contrast, only two anti-correlated t-MC emerged from FDG-PET time series using gICA or seed-voxel correlations; one included frontal, parietal and temporal cortices, the other included the cerebellum and medial temporal regions. Whereas cerebellum, thalamus, globus pallidus and calcarine cortex arose as the strongest t-MC hubs, the precuneus and visual cortex arose as the strongest rfMRI hubs. The strength of the t-MC linearly increased with the metabolic rate of glucose suggesting that t-MC measures are strongly associated with the energy demand of the brain tissue, and could reflect regional differences in glucose metabolism, counterbalanced metabolic network demand, and/or differential time-varying delivery of FDG. The mismatch between metabolic and functional connectivity patterns computed as a function of time could reflect differences in the temporal characteristics of glucose metabolism as measured with PET-FDG and brain activation as measured with rfMRI.
Reduced Global Functional Connectivity of the Medial Prefrontal Cortex in Major Depressive Disorder
Murrough, James W.; Abdallah, Chadi G.; Anticevic, Alan; Collins, Katherine A.; Geha, Paul; Averill, Lynnette A.; Schwartz, Jaclyn; DeWilde, Kaitlin E.; Averill, Christopher; Yang, Genevieve Jia-wei; Wong, Edmund; Tang, Cheuk Y.; Krystal, John H.; Iosifescu, Dan V.; Charney, Dennis S.
2016-01-01
Background Major depressive disorder is a disabling neuropsychiatric condition that is associated with disrupted functional connectivity across brain networks. The precise nature of altered connectivity, however, remains incompletely understood. The current study was designed to examine the coherence of large-scale connectivity in depression using a recently developed technique termed global brain connectivity. Methods A total of 82 subjects, including medication-free patients with major depression (n=57) and healthy volunteers (n=25) underwent functional magnetic resonance imaging with resting data acquisition for functional connectivity analysis. Global brain connectivity was computed as the mean of each voxel’s time series correlation with every other voxel and compared between study groups. Relationships between global connectivity and depressive symptom severity measured using the Montgomery-Åsberg Depression Rating Scale were examined by means of linear correlation. Results Relative to the healthy group, patients with depression evidenced reduced global connectivity bilaterally within multiple regions of medial and lateral prefrontal cortex. The largest between-group difference was observed within the right subgenual anterior cingulate cortex, extending into ventromedial prefrontal cortex bilaterally (Hedges’ g = −1.48, p<0.000001). Within the depressed group, patients with the lowest connectivity evidenced the highest symptom severity within ventromedial prefrontal cortex (r = −0.47, p=0.0005). Conclusions Patients with major depressive evidenced abnormal large-scale functional coherence in the brain that was centered within the subgenual cingulate cortex, and medial prefrontal cortex more broadly. These data extend prior studies of connectivity in depression and demonstrate that functional disconnection of the medial prefrontal cortex is a key pathological feature of the disorder. PMID:27144347
Lysergic acid diethylamide-induced Fos expression in rat brain: role of serotonin-2A receptors.
Gresch, P J; Strickland, L V; Sanders-Bush, E
2002-01-01
Lysergic acid diethylamide (LSD) produces altered mood and hallucinations in humans and binds with high affinity to serotonin-2A (5-HT(2A)) receptors. Although LSD interacts with other receptors, the activation of 5-HT(2A) receptors is thought to mediate the hallucinogenic properties of LSD. The goal of this study was to identify the brain sites activated by LSD and to determine the influence of 5-HT(2A) receptors in this activation. Rats were pretreated with the 5-HT(2A) receptor antagonist MDL 100907 (0.3 mg/kg, i.p.) or vehicle 30 min prior to LSD (500 microg/kg, i.p.) administration and killed 3 h later. Brain tissue was examined for Fos protein expression by immunohistochemistry. LSD administration produced a five- to eight-fold increase in Fos-like immunoreactivity in medial prefrontal cortex, anterior cingulate cortex, and central nucleus of amygdala. However, in dorsal striatum and nucleus accumbens no increase in Fos-like immunoreactivity was observed. Pretreatment with MDL 100907 completely blocked LSD-induced Fos-like immunoreactivity in medial prefrontal cortex and anterior cingulate cortex, but only partially blocked LSD-induced Fos-like immunoreactivity in amygdala. Double-labeled immunohistochemistry revealed that LSD did not induce Fos-like immunoreactivity in cortical cells expressing 5-HT(2A) receptors, suggesting an indirect activation of cortical neurons. These results indicate that the LSD activation of medial prefrontal cortex and anterior cingulate cortex is mediated by 5-HT(2A) receptors, whereas in amygdala 5-HT(2A) receptor activation is a component of the response. These findings support the hypothesis that the medial prefrontal cortex, anterior cingulate cortex, and perhaps the amygdala, are important regions involved in the production of hallucinations. Copyright 2002 IBRO
Relation of obesity to neural activation in response to food commercials.
Gearhardt, Ashley N; Yokum, Sonja; Stice, Eric; Harris, Jennifer L; Brownell, Kelly D
2014-07-01
Adolescents view thousands of food commercials annually, but the neural response to food advertising and its association with obesity is largely unknown. This study is the first to examine how neural response to food commercials differs from other stimuli (e.g. non-food commercials and television show) and to explore how this response may differ by weight status. The blood oxygen level-dependent functional magnetic resonance imaging activation was measured in 30 adolescents ranging from lean to obese in response to food and non-food commercials imbedded in a television show. Adolescents exhibited greater activation in regions implicated in visual processing (e.g. occipital gyrus), attention (e.g. parietal lobes), cognition (e.g. temporal gyrus and posterior cerebellar lobe), movement (e.g. anterior cerebellar cortex), somatosensory response (e.g. postcentral gyrus) and reward [e.g. orbitofrontal cortex and anterior cingulate cortex (ACC)] during food commercials. Obese participants exhibited less activation during food relative to non-food commercials in neural regions implicated in visual processing (e.g. cuneus), attention (e.g. posterior cerebellar lobe), reward (e.g. ventromedial prefrontal cortex and ACC) and salience detection (e.g. precuneus). Obese participants did exhibit greater activation in a region implicated in semantic control (e.g. medial temporal gyrus). These findings may inform current policy debates regarding the impact of food advertising to minors. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Rzepa, Ewelina; Dean, Zola; McCabe, Ciara
2017-06-01
Patients on the selective serotonergic reuptake inhibitors like citalopram report emotional blunting. We showed previously that citalopram reduces resting-state functional connectivity in healthy volunteers in a number of brain regions, including the dorso-medial prefrontal cortex, which may be related to its clinical effects. Bupropion is a dopaminergic and noradrenergic reuptake inhibitor and is not reported to cause emotional blunting. However, how bupropion affects resting-state functional connectivity in healthy controls remains unknown. Using a within-subjects, repeated-measures, double-blind, crossover design, we examined 17 healthy volunteers (9 female, 8 male). Volunteers received 7 days of bupropion (150 mg/d) and 7 days of placebo treatment and underwent resting-state functional Magnetic Resonance Imaging. We selected seed regions in the salience network (amygdala and pregenual anterior cingulate cortex) and the central executive network (dorsal medial prefrontal cortex). Mood and anhedonia measures were also recorded and examined in relation to resting-state functional connectivity. Relative to placebo, bupropion increased resting-state functional connectivity in healthy volunteers between the dorsal medial prefrontal cortex seed region and the posterior cingulate cortex and the precuneus cortex, key parts of the default mode network. These results are opposite to that which we found with 7 days treatment of citalopram in healthy volunteers. These results reflect a different mechanism of action of bupropion compared with selective serotonergic reuptake inhibitors. These results help explain the apparent lack of emotional blunting caused by bupropion in depressed patients. © The Author 2017. Published by Oxford University Press on behalf of CINP.
Karrenbauer, B D; Müller, C P; Ho, Y J; Spanagel, R; Huston, J P; Schwarting, R K W; Pawlak, C R
2011-08-15
We investigated the impact of systemically injected IL-2 (2.5 μg/kg, i.p.) on serotonergic and dopaminergic neurotransmission in various cortical areas by in-vivo microdialysis. IL-2 lastingly reduced extracellular 5-HT levels in the medial prefrontal (-75%), occipital (-70%), and temporal cortices (-45%), whereas dopamine was only moderately reduced in the medial prefrontal cortex. Based on the serotonergic time profile, we conducted further experiments to test for acute and delayed (2 h post injection) depressive-related effects of systemic IL-2 (0-5.0 μg/kg) in a forced swim test and delayed effects on anxiety-like behaviour in the elevated plus-maze. IL-2 had dose-dependent effects on depressive-related behaviour after delayed but not acute testing, but no effects on anxiety-like behaviour. Copyright © 2011 Elsevier B.V. All rights reserved.
Regional Slow Waves and Spindles in Human Sleep
Nir, Yuval; Staba, Richard J.; Andrillon, Thomas; Vyazovskiy, Vladyslav V.; Cirelli, Chiara; Fried, Itzhak; Tononi, Giulio
2011-01-01
SUMMARY The most prominent EEG events in sleep are slow waves, reflecting a slow (<1 Hz) oscillation between up and down states in cortical neurons. It is unknown whether slow oscillations are synchronous across the majority or the minority of brain regions—are they a global or local phenomenon? To examine this, we recorded simultaneously scalp EEG, intracerebral EEG, and unit firing in multiple brain regions of neurosurgical patients. We find that most sleep slow waves and the underlying active and inactive neuronal states occur locally. Thus, especially in late sleep, some regions can be active while others are silent. We also find that slow waves can propagate, usually from medial prefrontal cortex to the medial temporal lobe and hippocampus. Sleep spindles, the other hallmark of NREM sleep EEG, are likewise predominantly local. Thus, intracerebral communication during sleep is constrained because slow and spindle oscillations often occur out-of-phase in different brain regions. PMID:21482364
Pfeifer, Jennifer H.; Masten, Carrie L.; Borofsky, Larissa A.; Dapretto, Mirella; Fuligni, Andrew J.; Lieberman, Matthew D.
2011-01-01
Classic theories of self-development suggest people define themselves in part through internalized perceptions of other people’s beliefs about them, known as reflected self-appraisals. This study uses functional magnetic resonance imaging to compare the neural correlates of direct and reflected self-appraisals in adolescence (N = 12, ages 11–14 years) and adulthood (N = 12, ages 23–30 years). During direct self-reflection, adolescents demonstrated greater activity than adults in networks relevant to self-perception (medial prefrontal and parietal cortices) and social-cognition (dorsomedial prefrontal cortex, temporal–parietal junction, and posterior superior temporal sulcus), suggesting adolescent self-construals may rely more heavily on others’ perspectives about the self. Activity in the medial fronto-parietal network was also enhanced when adolescents took the perspective of someone more relevant to a given domain. PMID:19630891
Xu, Ling-Zhi; Xu, De-Feng; Han, Ying; Liu, Li-Jing; Sun, Cheng-Yu; Deng, Jia-Hui; Zhang, Ruo-Xi; Yuan, Ming; Zhang, Su-Zhen; Li, Zhi-Meng; Xu, Yi; Li, Jin-Sheng; Xie, Su-Hua; Li, Su-Xia; Zhang, Hong-Yan; Lu, Lin
2017-01-01
Morinda officinalis oligosaccharides have been reported to exert neuroprotective and antidepressant-like effects in the forced swim test in mice. However, the mechanisms that underlie the antidepressant-like effects of Morinda officinalis oligosaccharides are unclear. Chronic unpredictable stress and forced swim test were used to explore the antidepressant-like effects of Morinda officinalis oligosaccharides and resilience to stress in rats. The phosphoinositide-3 kinase inhibitor LY294002 was microinjected in the medial prefrontal cortex to explore the role of glycogen synthase kinase-3β in the antidepressant-like effects of Morinda officinalis oligosaccharides. The expression of brain-derived neurotrophic factor, phosphorylated-Ser9-glycogen synthase kinase 3β, β-catenin, and synaptic proteins was determined in the medial prefrontal cortex and the orbitofrontal cortex by western blot. We found that Morinda officinalis oligosaccharides effectively ameliorated chronic unpredictable stress-induced depression-like behaviors in the sucrose preference test and forced swim test. The Morinda officinalis oligosaccharides also significantly rescued chronic unpredictable stress-induced abnormalities in the brain-derived neurotrophic factor-glycogen synthase kinase-3β-β-catenin pathway and synaptic protein deficits in the medial prefrontal cortex but not orbitofrontal cortex. The activation of glycogen synthase kinase-3β by the phosphoinositide-3 kinase inhibitor LY294002 abolished the antidepressant-like effects of Morinda officinalis oligosaccharides in the forced swim test. Naïve rats that were treated with Morinda officinalis oligosaccharides exhibited resilience to chronic unpredictable stress, accompanied by increases in the expression of brain-derived neurotrophic factor, phosphorylated-Ser9-glycogen synthase kinase-3β, and β-catenin in the medial prefrontal cortex. Our findings indicate that the brain-derived neurotrophic factor-glycogen synthase kinase-3β-β-catenin pathway in the medial prefrontal cortex may underlie the antidepressant-like effect of Morinda officinalis oligosaccharides and resilience to stress. © The Author 2016. Published by Oxford University Press on behalf of CINP.
Li, Wanqing; Mai, Xiaoqin; Liu, Chao
2014-01-01
The Default Mode Network (DMN) has been found to be involved in various domains of cognitive and social processing. The present article will review brain connectivity results related to the DMN in the fields of social understanding of others: emotion perception, empathy, theory of mind, and morality. Most of the reviewed studies focused on healthy subjects with no neurological and psychiatric disease, but some studies on patients with autism and psychopathy will also be discussed. Common results show that the medial prefrontal cortex (MPFC) plays a key role in the social understanding of others, and the subregions of the MPFC contribute differently to this function according to their roles in different subsystems of the DMN. At the bottom, the ventral MPFC in the medial temporal lobe (MTL) subsystem and its connections with emotion regions are mainly associated with emotion engagement during social interactions. Above, the anterior MPFC (aMPFC) in the cortical midline structures (CMS) and its connections with posterior and anterior cingulate cortex contribute mostly to making self-other distinctions. At the top, the dorsal MPFC (dMPFC) in the dMPFC subsystem and its connection with the temporo-parietal junction (TPJ) are primarily related to the understanding of other's mental states. As behaviors become more complex, the related regions in frontal cortex are located higher. This reflects the transfer of information processing from automatic to cognitive processes with the increase of the complexity of social interaction. Besides the MPFC and TPJ, the connectivities of posterior cingulate cortex (PCC) also show some changes during tasks from the four social fields. These results indicate that the DMN is indispensable in the social understanding of others.
Gender, personality, and serotonin-2A receptor binding in healthy subjects
Soloff, Paul H.; Price, Julie C.; Mason, Neale Scott; Becker, Carl; Meltzer, Carolyn C.
2009-01-01
The vulnerability to mood disorders, impulsive-aggression, eating disorders, and suicidal behavior varies greatly with gender, and may reflect gender differences in central serotonergic function. We investigated the relationships of gender, mood, impulsivity, aggression and temperament to 5HT2A receptor binding in 21 healthy subjects using [18F]altanserin and PET neuro-imaging. Binding potentials in pre-defined Regions of Interest (ROI) were calculated using the Logan graphical method, corrected for partial volume effects, and compared by gender with age co-varied. SPM analysis was used for voxel level comparisons. Altanserin binding (BPp) was greater in male than female subjects in 9 ROIs: hippocampus (HIP) and Lt. HIP, lateral orbital frontal cortex (LOF) and Lt.LOF, left medial frontal cortex (Lt.MFC), left medial temporal cortex (Lt. MTC), left occipital cortex (Lt. OCC), thalamus (THL) and Lt. THL. Differences in Lt. HIP and Lt. MTL remained significant after Bonferroni correction. Gender differences were noted in the co-variation of psychological traits with BPp values in specific ROIs. Among males alone, aggression was negatively correlated with BPp values in Lt. LOF and Lt. MFC, and Suspiciousness positively correlated in LOF, Lt. LOF and Lt. MFC. Among female subjects alone, Negativism was positively correlated with BPp values in HIP, and Verbal Hostility in Lt. HIP. Altanserin binding in Lt. MTC was positively correlated with Persistence, with no significant gender effect. Gender differences in 5HT2A receptor function in specific ROIs may mediate expression of psychological characteristics such as aggression, suspiciousness and negativism. Future studies of 5HT2A receptor function and its relationship to behavior should control for gender. PMID:19959344
Rosenbaum, R Shayna; Ziegler, Marilyne; Winocur, Gordon; Grady, Cheryl L; Moscovitch, Morris
2004-01-01
The role of the hippocampus in recent spatial memory has been well documented in patients with damage to this structure, but there is now evidence that the hippocampus may not be needed for the storage and recovery of a spatial layout that was experienced long before injury. Such preservation may rely, instead, on a network of dissociable, extra-hippocampal regions implicated in topographical orientation. Using functional magnetic resonance imaging (fMRI), we investigated this hypothesis in healthy individuals with extensive experience navigating in a large-scale urban environment (downtown Toronto). Participants were scanned as they performed mental navigation tasks that emphasized different types of spatial representations. Tasks included proximity judgments, distance judgments, landmark sequencing, and blocked-route problem-solving. The following regions were engaged to varying degrees depending on the processing demands of each task: retrosplenial cortex, believed to be involved in assigning directional significance to locales within a relatively allocentric framework; medial and posterior parietal cortex, concerned with processing space within egocentric coordinates during imagined movement; and regions of prefrontal cortex, present in tasks heavily dependent on working memory. In a second, event-related experiment, a distinct area of inferotemporal cortex was revealed during identification of familiar landmarks relative to unknown buildings in addition to activation of many of those regions identified in the navigation tasks. This result suggests that familiar landmarks are strongly integrated with the spatial context in which they were experienced. Importantly, right medial temporal lobe activity was observed, its magnitude equivalent across all tasks, though the core of the activated region was in the parahippocampal gyrus, barely touching the hippocampus proper. Copyright 2004 Wiley-Liss, Inc.
Li, Wanqing; Mai, Xiaoqin; Liu, Chao
2014-01-01
The Default Mode Network (DMN) has been found to be involved in various domains of cognitive and social processing. The present article will review brain connectivity results related to the DMN in the fields of social understanding of others: emotion perception, empathy, theory of mind, and morality. Most of the reviewed studies focused on healthy subjects with no neurological and psychiatric disease, but some studies on patients with autism and psychopathy will also be discussed. Common results show that the medial prefrontal cortex (MPFC) plays a key role in the social understanding of others, and the subregions of the MPFC contribute differently to this function according to their roles in different subsystems of the DMN. At the bottom, the ventral MPFC in the medial temporal lobe (MTL) subsystem and its connections with emotion regions are mainly associated with emotion engagement during social interactions. Above, the anterior MPFC (aMPFC) in the cortical midline structures (CMS) and its connections with posterior and anterior cingulate cortex contribute mostly to making self-other distinctions. At the top, the dorsal MPFC (dMPFC) in the dMPFC subsystem and its connection with the temporo-parietal junction (TPJ) are primarily related to the understanding of other's mental states. As behaviors become more complex, the related regions in frontal cortex are located higher. This reflects the transfer of information processing from automatic to cognitive processes with the increase of the complexity of social interaction. Besides the MPFC and TPJ, the connectivities of posterior cingulate cortex (PCC) also show some changes during tasks from the four social fields. These results indicate that the DMN is indispensable in the social understanding of others. PMID:24605094
Van Someren, Eus J W; Oosterman, J M; Van Harten, B; Vogels, R L; Gouw, A A; Weinstein, H C; Poggesi, A; Scheltens, Ph; Scherder, E J A
2018-06-01
Atrophy of the medial temporal lobe of the brain is key to memory function and memory complaints in old age. While age and some morbidities are major risk factors for medial temporal lobe atrophy, individual differences remain, and mechanisms are insufficiently known. The largest combined neuroimaging and whole genome study to date indicates that medial temporal lobe volume is most associated with common polymorphisms in the GRIN2B gene that encodes for the 2B subunit (NR2B) of the NMDA receptor. Because sleep disruption induces a selective loss of NR2B from hippocampal synaptic membranes in rodents, and because of several other reports on medial temporal lobe sensitivity to sleep disruption, we hypothesized a contribution of the typical age-related increase in sleep-wake rhythm fragmentation to medial temporal lobe atrophy. Magnetic resonance imaging and actigraphy in 138 aged individuals showed that individual differences in sleep-wake rhythm fragmentation accounted for more (19%) of the variance in medial temporal lobe atrophy than age did (15%), or any of a list of health and brain structural indicators. The findings suggest a role of sleep-wake rhythm fragmentation in age-related medial temporal lobe atrophy, that might in part be prevented or reversible. Copyright © 2018. Published by Elsevier Inc.
"God has sent me to you": Right temporal epilepsy, left prefrontal psychosis.
Arzy, Shahar; Schurr, Roey
2016-07-01
Religious experiences have long been documented in patients with epilepsy, though their exact underlying neural mechanisms are still unclear. Here, we had the rare opportunity to record a delusional religious conversion in real time in a patient with right temporal lobe epilepsy undergoing continuous video-EEG. In this patient, a messianic revelation experience occurred several hours after a complex partial seizure of temporal origin, compatible with postictal psychosis (PIP). We analyzed the recorded resting-state EEG epochs separately for each of the conventional frequency bands. Topographical analysis of the bandpass filtered EEG epochs revealed increased activity in the low-gamma range (30-40Hz) during religious conversion compared with activity during the patient's habitual state. The brain generator underlying this activity was localized to the left prefrontal cortex. This suggests that religious conversion in PIP is related to control mechanisms in the prefrontal lobe-related processes rather than medial temporal lobe-related processes. Copyright © 2016 Elsevier Inc. All rights reserved.
Greenwood, Benjamin N.; Spence, Katie G.; Crevling, Danielle M.; Clark, Peter J.; Craig, Wendy C.; Fleshner, Monika
2014-01-01
Exercise increases resistance against stress-related disorders such as anxiety and depression. Similarly, the perception of control is a powerful predictor of neurochemical and behavioral responses to stress, but whether the experience of choosing to exercise, and exerting control over that exercise, is a critical factor in producing exercise-induced stress resistance is unknown. The current studies investigated whether the protective effects of exercise against the anxiety- and depression-like consequences of stress are dependent on exercise controllability and a brain region implicated in the protective effects of controllable experiences, the medial prefrontal cortex. Adult male Fischer 344 rats remained sedentary, were forced to run on treadmills or motorised running wheels, or had voluntary access to wheels for 6 weeks. Three weeks after exercise onset, rats received sham surgery or excitotoxic lesions of the medial prefrontal cortex. Rats were exposed to home cage or uncontrollable tail shock treatment three weeks later. Shock-elicited fear conditioning and shuttle box escape testing occurred the next day. Both forced and voluntary wheel running, but not treadmill training, prevented the exaggerated fear conditioning and interference with escape learning produced by uncontrollable stress. Lesions of the medial prefrontal cortex failed to eliminate the protective effects of forced or voluntary wheel running. These data suggest that exercise controllability and the medial prefrontal cortex are not critical factors in conferring the protective effects of exercise against the affective consequences of stressor exposure, and imply that exercise perceived as forced may still benefit affect and mental health. PMID:23121339
Helbing, Cornelia; Brocka, Marta; Scherf, Thomas; Lippert, Michael T; Angenstein, Frank
2016-12-01
Several human functional magnetic resonance imaging studies point to an activation of the mesolimbic dopamine system during reward, addiction and learning. We previously found activation of the mesolimbic system in response to continuous but not to discontinuous perforant pathway stimulation in an experimental model that we now used to investigate the role of dopamine release for the formation of functional magnetic resonance imaging responses. The two stimulation protocols elicited blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex and nucleus accumbens. Inhibition of dopamine D 1/5 receptors abolished the formation of functional magnetic resonance imaging responses in the medial prefrontal/anterior cingulate cortex during continuous but not during discontinuous pulse stimulations, i.e. only when the mesolimbic system was activated. Direct electrical or optogenetic stimulation of the ventral tegmental area caused strong dopamine release but only electrical stimulation triggered significant blood-oxygen level-dependent responses in the medial prefrontal/anterior cingulate cortex and nucleus accumbens. These functional magnetic resonance imaging responses were not affected by the D 1/5 receptor antagonist SCH23390 but reduced by the N-methyl-D-aspartate receptor antagonist MK801. Therefore, glutamatergic ventral tegmental area neurons are already sufficient to trigger blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex and nucleus accumbens. Although dopamine release alone does not affect blood-oxygen-level dependent responses it can act as a switch, permitting the formation of blood-oxygen-level dependent responses. © The Author(s) 2015.
ERIC Educational Resources Information Center
Hylin, Michael J.; Orsi, Sara A.; Moore, Anthony N.; Dash, Pramod K.
2013-01-01
The perineuronal net (PNN) surrounds neurons in the central nervous system and is thought to regulate developmental plasticity. A few studies have shown an involvement of the PNN in hippocampal plasticity and memory storage in adult animals. In addition to the hippocampus, plasticity in the medial prefrontal cortex (mPFC) has been demonstrated to…
ERIC Educational Resources Information Center
Laurent, Vincent; Westbrook, R. Frederick
2008-01-01
We studied the roles of the basolateral amygdala (BLA) and the medial prefrontal cortex (mPFC) in learning and relearning to inhibit context conditioned fear (freezing) in extinction. In Experiment 1, pre-extinction BLA infusion of the NMDA receptor (NMDAr) antagonist, ifenprodil, impaired the development and retention of inhibition but…
ERIC Educational Resources Information Center
Lee, Inah; Shin, Ji Yun
2012-01-01
The exact roles of the medial prefrontal cortex (mPFC) in conditional choice behavior are unknown and a visual contextual response selection task was used for examining the issue. Inactivation of the mPFC severely disrupted performance in the task. mPFC inactivations, however, did not disrupt the capability of perceptual discrimination for visual…
Fernández, R.; Sabater, R.; Sáez, J. A.; Montes, R.; Alba, F.; Ferrer, J. M.
1996-01-01
1 Intracortical microinjections of neurotensin (NT) selectively decreased intracranial self-stimulation (ICSS) of the medial prefrontal cortex in the rat. 2 To elucidate whether this effect is mediated by NT receptors or by the formation of NT-dopamine complexes, we investigated the effects on ICSS of intracortical microinjections of neurotensin (1-11), an NT fragment that forms extracellular complexes with dopamine but does not bind to NT receptors. 3 We also studied the effects of the peripheral administration of SR 48692, a selective antagonist of NT receptors, on the inhibition of ICSS produced by the intracortical administration of NT. 4 Unilateral microinjections of neurotensin (1-11) at doses of 10, 20 and 40 nmol into the medial prefrontal cortex did not change the basal ICSS rate of this area. 5 The intraperitoneal administration of SR 48692 at doses of 0.08 and 0.16 mg kg-1 30 min before microinjection of 10 nmol of NT into the medial prefrontal cortex, antagonized the inhibition of ICSS produced by the neuropeptide. 6 These results demonstrate that the inhibitory effect of NT on ICSS is mediated by NT receptors. PMID:8886412
Casaletto, Kaitlin B.; Ward, Michael E.; Baker, Nicholas S.; Bettcher, Brianne M.; Gelfand, Jeffrey M.; Li, Yaqiao; Chen, Robert; Dutt, Shubir; Miller, Bruce; Kramer, Joel H.; Green, Ari J.
2017-01-01
Given the converging pathologic and epidemiologic data indicating a relationship between retinal integrity and neurodegeneration, including Alzheimer’s disease (AD), we aimed to determine if retinal structure correlates with medial temporal lobe (MTL) structure and function in neurologically normal older adults. Spectral-domain optical coherence tomography, verbal and visual memory testing, and 3T-magnetic resonance imaging of the brain were performed in 79 neurologically normal adults enrolled in a healthy aging cohort study. Retinal nerve fiber thinning and reduced total macular and macular ganglion cell volumes were each associated with smaller MTL volumes (ps < 0.04). Notably, these markers of retinal structure were not associated with primary motor cortex or basal ganglia volumes (regions relatively unaffected in AD) (ps > 0.70), or frontal, precuneus, or temporoparietal volumes (regions affected in later AD Braak staging ps > 0.20). Retinal structure was not significantly associated with verbal or visual memory consolidation performances (ps > 0.14). Retinal structure was associated with MTL volumes, but not memory performances, in otherwise neurologically normal older adults. Given that MTL atrophy is a neuropathological hallmark of AD, retinal integrity may be an early marker of ongoing AD-related brain health. PMID:28068565
Spaniol, Julia; Davidson, Patrick S R; Kim, Alice S N; Han, Hua; Moscovitch, Morris; Grady, Cheryl L
2009-07-01
The recent surge in event-related fMRI studies of episodic memory has generated a wealth of information about the neural correlates of encoding and retrieval processes. However, interpretation of individual studies is hampered by methodological differences, and by the fact that sample sizes are typically small. We submitted results from studies of episodic memory in healthy young adults, published between 1998 and 2007, to a voxel-wise quantitative meta-analysis using activation likelihood estimation [Laird, A. R., McMillan, K. M., Lancaster, J. L., Kochunov, P., Turkeltaub, P. E., & Pardo, J. V., et al. (2005). A comparison of label-based review and ALE meta-analysis in the stroop task. Human Brain Mapping, 25, 6-21]. We conducted separate meta-analyses for four contrasts of interest: episodic encoding success as measured in the subsequent-memory paradigm (subsequent Hit vs. Miss), episodic retrieval success (Hit vs. Correct Rejection), objective recollection (e.g., Source Hit vs. Item Hit), and subjective recollection (e.g., Remember vs. Know). Concordance maps revealed significant cross-study overlap for each contrast. In each case, the left hemisphere showed greater concordance than the right hemisphere. Both encoding and retrieval success were associated with activation in medial-temporal, prefrontal, and parietal regions. Left ventrolateral prefrontal cortex (PFC) and medial-temporal regions were more strongly involved in encoding, whereas left superior parietal and dorsolateral and anterior PFC regions were more strongly involved in retrieval. Objective recollection was associated with activation in multiple PFC regions, as well as multiple posterior parietal and medial-temporal areas, but not hippocampus. Subjective recollection, in contrast, showed left hippocampal involvement. In summary, these results identify broadly consistent activation patterns associated with episodic encoding and retrieval, and subjective and objective recollection, but also subtle differences among these processes.
Fernandez-Miranda, Juan C
2018-06-07
The medial temporal lobe can be divided in anterior, middle, and posterior segments. The anterior segment is formed by the uncus and hippocampal head, and it has extra and intraventricular structures. There are 2 main approaches to the uncohippocampal region, the anteromedial temporal lobectomy (Spencer's technique) and the transsylvian selective amygdalohippocampectomy (Yasargil's technique).In this video, we present the case of a 29-yr-old man with new onset of generalized seizures and a contrast-enhancing lesion in the left anterior segment of the medial temporal lobe compatible with high-grade glioma. He had a medical history of cervical astrocytoma at age 8 requiring craniospinal radiation therapy and ventriculoperitoneal shunt placement.The tumor was approached using a combined transsylvian transcisternal and transinferior insular sulcus approach to the extra and intraventricular aspects of the uncohippocampal region. It was resected completely, and the patient was neurologically intact after resection with no further seizures at 6-mo follow-up. The diagnosis was glioblastoma IDH-wild type, for which he underwent adjuvant therapy.Surgical anatomy and technical nuances of this approach are illustrated using a 3-dimensional video and anatomic dissections. The selective approach, when compared to an anteromedial temporal lobectomy, has the advantage of preserving the anterolateral temporal cortex, which is particularly relevant in dominant-hemisphere lesions, and the related fiber tracts, including the inferior fronto-occipital and inferior longitudinal fascicles, and most of the optic radiation fibers. The transsylvian approach, however, is technically and anatomically more challenging and potentially carries a higher risk of vascular injury and vasospasm.Page 1 and figures from Fernández-Miranda JC et al, Microvascular Anatomy of the Medial Temporal Region: Part 1: Its Application to Arteriovenous Malformation Surgery, Operative Neurosurgery, 2010, Volume 67, issue 3, ons237-ons276, by permission of the Congress of Neurological Surgeons (1:26-1:37 in video).Page 1 from Fernández-Miranda JC et al, Three-Dimensio-nal Microsurgical and Tractographic Anatomy of the White Matter of the Human Brain, Neurosurgery, 2008, Volume 62, issue suppl_3, SHC989-SHC1028, by permission of the Congress of Neurological Surgeons (1:54-1:56 in video).
3D Shape Perception in Posterior Cortical Atrophy: A Visual Neuroscience Perspective
Gillebert, Céline R.; Schaeverbeke, Jolien; Bastin, Christine; Neyens, Veerle; Bruffaerts, Rose; De Weer, An-Sofie; Seghers, Alexandra; Sunaert, Stefan; Van Laere, Koen; Versijpt, Jan; Vandenbulcke, Mathieu; Salmon, Eric; Todd, James T.; Orban, Guy A.
2015-01-01
Posterior cortical atrophy (PCA) is a rare focal neurodegenerative syndrome characterized by progressive visuoperceptual and visuospatial deficits, most often due to atypical Alzheimer's disease (AD). We applied insights from basic visual neuroscience to analyze 3D shape perception in humans affected by PCA. Thirteen PCA patients and 30 matched healthy controls participated, together with two patient control groups with diffuse Lewy body dementia (DLBD) and an amnestic-dominant phenotype of AD, respectively. The hierarchical study design consisted of 3D shape processing for 4 cues (shading, motion, texture, and binocular disparity) with corresponding 2D and elementary feature extraction control conditions. PCA and DLBD exhibited severe 3D shape-processing deficits and AD to a lesser degree. In PCA, deficient 3D shape-from-shading was associated with volume loss in the right posterior inferior temporal cortex. This region coincided with a region of functional activation during 3D shape-from-shading in healthy controls. In PCA patients who performed the same fMRI paradigm, response amplitude during 3D shape-from-shading was reduced in this region. Gray matter volume in this region also correlated with 3D shape-from-shading in AD. 3D shape-from-disparity in PCA was associated with volume loss slightly more anteriorly in posterior inferior temporal cortex as well as in ventral premotor cortex. The findings in right posterior inferior temporal cortex and right premotor cortex are consistent with neurophysiologically based models of the functional anatomy of 3D shape processing. However, in DLBD, 3D shape deficits rely on mechanisms distinct from inferior temporal structural integrity. SIGNIFICANCE STATEMENT Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by progressive visuoperceptual dysfunction and most often an atypical presentation of Alzheimer's disease (AD) affecting the ventral and dorsal visual streams rather than the medial temporal system. We applied insights from fundamental visual neuroscience to analyze 3D shape perception in PCA. 3D shape-processing deficits were affected beyond what could be accounted for by lower-order processing deficits. For shading and disparity, this was related to volume loss in regions previously implicated in 3D shape processing in the intact human and nonhuman primate brain. Typical amnestic-dominant AD patients also exhibited 3D shape deficits. Advanced visual neuroscience provides insight into the pathogenesis of PCA that also bears relevance for vision in typical AD. PMID:26377458
Hou, Yu; Yao, Qi; Zhang, Gen'ai; Ding, Lixiang
2018-03-01
To explore the difference of the proximal femoral shortening (PFS) between the third generation of Gamma nail (TGN) and the proximal femoral nail anti-rotation (PFNA) in treating intertrochanteric fracture of femur. The clinical data of 158 patients with intertrochanteric fracture of femur who were treated with TGN internal fixation or PFNA internal fixation between January 2014 and December 2015 were retrospectively analysed. The patients were divided into TGN group (69 cases) and PFNA group (89 cases) according to surgical operation. There was no significant difference in gender, age, bone mineral density, causes of injury, AO/Association for the Study of Internal Fixation (AO/ASIF) classification, accompanied disease, and the time from injury to operation between 2 groups ( P >0.05). The result of fracture reduction was divided into 3 types: positive medial cortex support, neutral position cortex support, and negative medial cortex support according to the method of Chang et al . At 18 months postoperatively, bilateral hip anteroposterior X-ray films were taken to measure horizontal PFS values (marked as X), vertical PFS values (marked as Y), and calculate the total PFS values (marked as Z). The PFS values were divided into 4 grades according to the criteria (≤1.0 mm, 1.0-4.9 mm, 5.0-9.9 mm, and ≥10.0 mm), and the constituent ratio was calculated and compared between 2 groups. The X, Y, and Z values and the collodiaphyseal angles of 2 groups at 18 months postoperatively were compared. The X, Y, and Z values of 2 groups of patients with failed fixation and normal healing within 18 months after operation were recorded and compared. The X, Y, and Z values of 2 groups of the patients with different cortex support types were also compared. There were 34 cases of positive medial cortex support, 30 cases of neutral position cortex support, and 5 cases of negative medial cortex support in TGN group, and there were 45, 33, and 11 cases in PFNA group respectively, showing no significant difference between 2 groups ( Z =-1.06, P =0.29). All patients were followed up 18 months after operation. At 18 months after operation, the constituent ratios of PFS values (X, Y, Z) had significant differences between 2 groups ( P <0.05). The patients of shortening of 1.0-4.9 mm and 5.0-9.9 mm were obviously more in TGN group than in PFNA group; the patients of shortening of ≥10.0 mm were obviously more in PFNA group than in TGN group. There were significant differences in X, Y, and Z values between 2 groups ( P <0.05), but no significant difference of the collodiaphysial angle was found between 2 groups ( t =0.47, P =0.64). Six cases of internal fixation failed in TGN group and PFNA group respectively within 3 months after operation, and there was no significant difference of X, Y, and Z values between failed fixation and normal healing patients within 2 groups ( P >0.05). When the reposition effect was the positive medial cortex support, the X, Y, and Z values were significantly lower in TGN group than in PFNA group ( P <0.05); but no significant difference was found between 2 groups when the reposition effect was the neutral position cortex support or negative medial cortex support ( P >0.05). At 18 months after operation, the X, Y, and Z values of the negative medial cortex support patients were significantly higher than those of the positive medial cortex support or the neutral position cortex support patients within 2 groups ( P <0.05). PFS is a common complication of the intertrochanteric fracture of the femur after internal fixation. During operation, the selection of internal fixation should be based on the results of intraoperative reduction. TGN should be applied to reduce PFS if positive medial cortex support happened.
McKlveen, J M; Myers, B; Herman, J P
2015-06-01
Responding to real or potential threats in the environment requires the coordination of autonomic, neuroendocrine and behavioural processes to promote adaptation and survival. These diverging systems necessitate input from the limbic forebrain to integrate and modulate functional output in accordance with contextual demand. In the present review, we discuss the potential role of the medial prefrontal cortex (mPFC) as a coordinator of behavioural and physiological stress responses across multiple temporal and contextual domains. Furthermore, we highlight converging evidence from rodent and human research indicating the necessity of the mPFC for modulating physiological energetic systems to mobilise or limit energetic resources as needed to ultimately promote behavioural adaptation in the face of stress. We review the literature indicating that glucocorticoids act as one of the primary messengers in the reallocation of energetic resources having profound effects locally within the mPFC, as well as shaping how the mPFC acts within a network of brain structures to modulate responses to stress. Finally, we discuss how both rodent and human studies point toward a critical role of the mPFC in the coordination of anticipatory responses to stress and why this distinction is an important one to make in stress neurobiology. © 2015 British Society for Neuroendocrinology.
The impact of cognitive load on reward evaluation.
Krigolson, Olave E; Hassall, Cameron D; Satel, Jason; Klein, Raymond M
2015-11-19
The neural systems that afford our ability to evaluate rewards and punishments are impacted by a variety of external factors. Here, we demonstrate that increased cognitive load reduces the functional efficacy of a reward processing system within the human medial-frontal cortex. In our paradigm, two groups of participants used performance feedback to estimate the exact duration of one second while electroencephalographic (EEG) data was recorded. Prior to performing the time estimation task, both groups were instructed to keep their eyes still and avoid blinking in line with well established EEG protocol. However, during performance of the time-estimation task, one of the two groups was provided with trial-to-trial-feedback about their performance on the time-estimation task and their eye movements to induce a higher level of cognitive load relative to participants in the other group who were solely provided with feedback about the accuracy of their temporal estimates. In line with previous work, we found that the higher level of cognitive load reduced the amplitude of the feedback-related negativity, a component of the human event-related brain potential associated with reward evaluation within the medial-frontal cortex. Importantly, our results provide further support that increased cognitive load reduces the functional efficacy of a neural system associated with reward processing. Copyright © 2015 Elsevier B.V. All rights reserved.
Scheibel, Randall S; Newsome, Mary R; Wilde, Elisabeth A; McClelland, Michelle M; Hanten, Gerri; Krawczyk, Daniel C; Cook, Lori G; Chu, Zili D; Vásquez, Ana C; Yallampalli, Ragini; Lin, Xiaodi; Hunter, Jill V; Levin, Harvey S
2011-01-01
The ability to make accurate judgments about the mental states of others, sometimes referred to as theory of mind (ToM), is often impaired following traumatic brain injury (TBI), and this deficit may contribute to problems with interpersonal relationships. The present study used an animated social attribution task (SAT) with functional magnetic resonance imaging (fMRI) to examine structures mediating ToM in adolescents with moderate to severe TBI. The study design also included a comparison group of matched, typically developing (TD) adolescents. The TD group exhibited activation within a number of areas that are thought to be relevant to ToM, including the medial prefrontal and anterior cingulate cortex, fusiform gyrus, and posterior temporal and parietal areas. The TBI subjects had significant activation within many of these same areas, but their activation was generally more intense and excluded the medial prefrontal cortex. Exploratory regression analyses indicated a negative relation between ToM-related activation and measures of white matter integrity derived from diffusion tensor imaging, while there was also a positive relation between activation and lesion volume. These findings are consistent with alterations in the level and pattern of brain activation that may be due to the combined influence of diffuse axonal injury and focal lesions.
Pérez-Díaz, Francisco; Díaz, Estrella; Sánchez, Natividad; Vargas, Juan Pedro; Pearce, John M; López, Juan Carlos
2017-01-01
Recent studies support the idea that stimulus processing in latent inhibition can vary during the course of preexposure. Controlled attentional mechanisms are said to be important in the early stages of preexposure, while in later stages animals adopt automatic processing of the stimulus to be used for conditioning. Given this distinction, it is possible that both types of processing are governed by different neural systems, affecting differentially the retrieval of information about the stimulus. In the present study we tested if a lesion to the dorso-lateral striatum or to the medial prefrontal cortex has a selective effect on exposure to the future conditioned stimulus (CS). With this aim, animals received different amounts of exposure to the future CS. The results showed that a lesion to the medial prefrontal cortex enhanced latent inhibition in animals receiving limited preexposure to the CS, but had no effect in animals receiving extended preexposure to the CS. The lesion of the dorso-lateral striatum produced a decrease in latent inhibition, but only in animals with an extended exposure to the future conditioned stimulus. These results suggest that the dorsal striatum and medial prefrontal cortex play essential roles in controlled and automatic processes. Automatic attentional processes appear to be impaired by a lesion to the dorso-lateral striatum and facilitated by a lesion to the prefrontal cortex.
Pérez-Díaz, Francisco; Díaz, Estrella; Sánchez, Natividad; Vargas, Juan Pedro; Pearce, John M.
2017-01-01
Recent studies support the idea that stimulus processing in latent inhibition can vary during the course of preexposure. Controlled attentional mechanisms are said to be important in the early stages of preexposure, while in later stages animals adopt automatic processing of the stimulus to be used for conditioning. Given this distinction, it is possible that both types of processing are governed by different neural systems, affecting differentially the retrieval of information about the stimulus. In the present study we tested if a lesion to the dorso-lateral striatum or to the medial prefrontal cortex has a selective effect on exposure to the future conditioned stimulus (CS). With this aim, animals received different amounts of exposure to the future CS. The results showed that a lesion to the medial prefrontal cortex enhanced latent inhibition in animals receiving limited preexposure to the CS, but had no effect in animals receiving extended preexposure to the CS. The lesion of the dorso-lateral striatum produced a decrease in latent inhibition, but only in animals with an extended exposure to the future conditioned stimulus. These results suggest that the dorsal striatum and medial prefrontal cortex play essential roles in controlled and automatic processes. Automatic attentional processes appear to be impaired by a lesion to the dorso-lateral striatum and facilitated by a lesion to the prefrontal cortex. PMID:29240804
Of Brain and Bone: The Unusual Case of Dr. A
Narvid, J; Gorno-Tempini, ML; Slavotinek, A; DeArmond, SJ; Cha, YH; Miller, BL; Rankin, K.P
2009-01-01
Frontotemporal dementia (FTD) is a clinical syndrome characterized by progressive decline in social conduct and a focal pattern of frontal and temporal lobe damage. Its biological basis is still poorly understood but the focality of the brain degeneration provides a powerful model to study the cognitive and anatomical basis of social cognition. Here, we present Dr. A, a patient with a rare hereditary bone disease (hereditary multiple exostoses) and FTD (pathologically characterized as Pick’s disease), who presented with a profound behavioral disturbance characterized by acquired sociopathy. We conducted a detailed genetic, pathological, neuroimaging and cognitive study, including a battery of tests designed to investigate Dr. A’s abilities to understand emotional cues and to infer mental states and intentions to others (theory of mind). Dr. A’s genetic profile suggests the possibility that a mutation causing hereditary multiple exostoses, Ext2, may play a role in the pattern of neurodegeneration in frontotemporal dementia since knockout mice deficient in the Ext gene family member, Ext1, show severe CNS defects including loss of olfactory bulbs and abnormally small cerebral cortex. Dr. A showed significant impairment in emotion comprehension, second order theory of mind, attribution of intentions, and empathy despite preserved general cognitive abilities. Voxel-based morphometry on structural MRI images showed significant atrophy in the medial and right orbital frontal and anterior temporal regions with sparing of dorsolateral frontal cortex. This case demonstrates that social and emotional dysfunction in FTD can dissociate from preserved performance on classic executive functioning tasks. The specific pattern of anatomical damage shown by VBM emphasizes the importance of the network including the superior medial frontal gyrus as well as temporal polar areas, in regulation of social cognition and theory of mind. This case provides new evidence regarding the neural basis of social cognition and suggests a possible genetic link between bone disease and FTD. PMID:20183548
Xiao, Yaqiong; Zhai, Hongchang; Friederici, Angela D; Jia, Fucang
2016-03-01
In recent years, research on human functional brain imaging using resting-state fMRI techniques has been increasingly prevalent. The term "default mode" was proposed to describe a baseline or default state of the brain during rest. Recent studies suggested that the default mode network (DMN) is comprised of two functionally distinct subsystems: a dorsal-medial prefrontal cortex (DMPFC) subsystem involved in self-oriented cognition (i.e., theory of mind) and a medial temporal lobe (MTL) subsystem engaged in memory and scene construction; both subsystems interact with the anterior medial prefrontal cortex (aMPFC) and posterior cingulate (PCC) as the core regions of DMN. The present study explored the development of DMN core regions and these two subsystems in both hemispheres from 3- to 5-year-old children. The analysis of the intrinsic activity showed strong developmental changes in both subsystems, and significant changes were specifically found in MTL subsystem, but not in DMPFC subsystem, implying distinct developmental trajectories for DMN subsystems. We found stronger interactions between the DMPFC and MTL subsystems in 5-year-olds, particularly in the left subsystems that support the development of environmental adaptation and relatively complex mental activities. These results also indicate that there is stronger right hemispheric lateralization at age 3, which then changes as bilateral development gradually increases through to age 5, suggesting in turn the hemispheric dominance in DMN subsystems changing with age. The present results provide primary evidence for the development of DMN subsystems in early life, which might be closely related to the development of social cognition in childhood.
Volberg, Gregor; Goldhacker, Markus; Hanslmayr, Simon
2016-01-01
Abstract The method of loci is one, if not the most, efficient mnemonic encoding strategy. This spatial mnemonic combines the core cognitive processes commonly linked to medial temporal lobe (MTL) activity: spatial and associative memory processes. During such processes, fMRI studies consistently demonstrate MTL activity, while electrophysiological studies have emphasized the important role of theta oscillations (3–8 Hz) in the MTL. However, it is still unknown whether increases or decreases in theta power co-occur with increased BOLD signal in the MTL during memory encoding. To investigate this question, we recorded EEG and fMRI separately, while human participants used the spatial method of loci or the pegword method, a similarly associative but nonspatial mnemonic. The more effective spatial mnemonic induced a pronounced theta power decrease source localized to the left MTL compared with the nonspatial associative mnemonic strategy. This effect was mirrored by BOLD signal increases in the MTL. Successful encoding, irrespective of the strategy used, elicited decreases in left temporal theta power and increases in MTL BOLD activity. This pattern of results suggests a negative relationship between theta power and BOLD signal changes in the MTL during memory encoding and spatial processing. The findings extend the well known negative relation of alpha/beta oscillations and BOLD signals in the cortex to theta oscillations in the MTL. PMID:28101523
Age-related functional changes in domain-specific medial temporal lobe pathways.
Berron, David; Neumann, Katja; Maass, Anne; Schütze, Hartmut; Fliessbach, Klaus; Kiven, Verena; Jessen, Frank; Sauvage, Magdalena; Kumaran, Dharshan; Düzel, Emrah
2018-05-01
There is now converging evidence from studies in animals and humans that the medial temporal lobes (MTLs) harbor anatomically distinct processing pathways for object and scene information. Recent functional magnetic resonance imaging studies in humans suggest that this domain-specific organization may be associated with a functional preference of the anterior-lateral part of the entorhinal cortex (alErC) for objects and the posterior-medial entorhinal cortex (pmErC) for scenes. As MTL subregions are differentially affected by aging and neurodegenerative diseases, the question was raised whether aging may affect the 2 pathways differentially. To address this possibility, we developed a paradigm that allows the investigation of object memory and scene memory in a mnemonic discrimination task. A group of young (n = 43) and healthy older subjects (n = 44) underwent functional magnetic resonance imaging recordings during this novel task, while they were asked to discriminate exact repetitions of object and scene stimuli from novel stimuli that were similar but modified versions of the original stimuli ("lures"). We used structural magnetic resonance images to manually segment anatomical components of the MTL including alErC and pmErC and used these segmented regions to analyze domain specificity of functional activity. Across the entire sample, object processing was associated with activation of the perirhinal cortex (PrC) and alErC, whereas for scene processing, activation was more predominant in the parahippocampal cortex and pmErC. Functional activity related to mnemonic discrimination of object and scene lures from exact repetitions was found to overlap between processing pathways and suggests that while the PrC-alErC pathway was more involved in object discrimination, both pathways were involved in the discrimination of similar scenes. Older adults were behaviorally less accurate than young adults in discriminating similar lures from exact repetitions, but this reduction was equivalent in both domains. However, this was accompanied by significantly reduced domain-specific activity in PrC in older adults compared to what was observed in the young. Furthermore, this reduced domain-specific activity was associated to worse performance in object mnemonic discrimination in older adults. Taken together, we show the fine-grained functional organization of the MTL into domain-specific pathways for objects and scenes and their mnemonic discrimination and further provide evidence that aging might affect these pathways in a differential fashion. Future experiments will elucidate whether the 2 pathways are differentially affected in early stages of Alzheimer's disease in relation to amyloid or tau pathology. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Gilmartin, Marieke R.; Helmstetter, Fred J.
2010-01-01
The contribution of the medial prefrontal cortex (mPFC) to the formation of memory is a subject of considerable recent interest. Notably, the mechanisms supporting memory acquisition in this structure are poorly understood. The mPFC has been implicated in the acquisition of trace fear conditioning, a task that requires the association of a…
Broyd, Samantha J.; Helps, Suzannah K.; Sonuga-Barke, Edmund J. S.
2011-01-01
Background The default-mode network (DMN) is characterised by coherent very low frequency (VLF) brain oscillations. The cognitive significance of this VLF profile remains unclear, partly because of the temporally constrained nature of the blood oxygen-level dependent (BOLD) signal. Previously we have identified a VLF EEG network of scalp locations that shares many features of the DMN. Here we explore the intracranial sources of VLF EEG and examine their overlap with the DMN in adults with high and low ADHD ratings. Methodology/Principal Findings DC-EEG was recorded using an equidistant 66 channel electrode montage in 25 adult participants with high- and 25 participants with low-ratings of ADHD symptoms during a rest condition and an attention demanding Eriksen task. VLF EEG power was calculated in the VLF band (0.02 to 0.2 Hz) for the rest and task condition and compared for high and low ADHD participants. sLORETA was used to identify brain sources associated with the attention-induced deactivation of VLF EEG power, and to examine these sources in relation to ADHD symptoms. There was significant deactivation of VLF EEG power between the rest and task condition for the whole sample. Using s-LORETA the sources of this deactivation were localised to medial prefrontal regions, posterior cingulate cortex/precuneus and temporal regions. However, deactivation sources were different for high and low ADHD groups: In the low ADHD group attention-induced VLF EEG deactivation was most significant in medial prefrontal regions while for the high ADHD group this deactivation was predominantly localised to the temporal lobes. Conclusions/Significance Attention-induced VLF EEG deactivations have intracranial sources that appear to overlap with those of the DMN. Furthermore, these seem to be related to ADHD symptom status, with high ADHD adults failing to significantly deactivate medial prefrontal regions while at the same time showing significant attenuation of VLF EEG power in temporal lobes. PMID:21408092
Goel, Vinod; Dolan, Raymond J
2003-12-01
Logic is widely considered the basis of rationality. Logical choices, however, are often influenced by emotional responses, sometimes to our detriment, sometimes to our advantage. To understand the neural basis of emotionally neutral ("cold") and emotionally salient ("hot") reasoning we studied 19 volunteers using event-related fMRI, as they made logical judgments about arguments that varied in emotional saliency. Despite identical logical form and content categories across "hot" and "cold" reasoning conditions, lateral and ventral medial prefrontal cortex showed reciprocal response patterns as a function of emotional saliency of content. "Cold" reasoning trials resulted in enhanced activity in lateral/dorsal lateral prefrontal cortex (L/DLPFC) and suppression of activity in ventral medial prefrontal cortex (VMPFC). By contrast, "hot" reasoning trials resulted in enhanced activation in VMPFC and suppression of activation in L/DLPFC. This reciprocal engagement of L/DLPFC and VMPFC provides evidence for a dynamic neural system for reasoning, the configuration of which is strongly influenced by emotional saliency.
Neural mechanisms of economic commitment in the human medial prefrontal cortex
Tsetsos, Konstantinos; Wyart, Valentin; Shorkey, S Paul; Summerfield, Christopher
2014-01-01
Neurobiologists have studied decisions by offering successive, independent choices between goods or gambles. However, choices often have lasting consequences, as when investing in a house or choosing a partner. Here, humans decided whether to commit (by acceptance or rejection) to prospects that provided sustained financial return. BOLD signals in the rostral medial prefrontal cortex (rmPFC) encoded stimulus value only when acceptance or rejection was deferred into the future, suggesting a role in integrating value signals over time. By contrast, the dorsal anterior cingulate cortex (dACC) encoded stimulus value only when participants rejected (or deferred accepting) a prospect. dACC BOLD signals reflected two decision biases–to defer commitments to later, and to weight potential losses more heavily than gains–that (paradoxically) maximised reward in this task. These findings offer fresh insights into the pressures that shape economic decisions, and the computation of value in the medial prefrontal cortex. DOI: http://dx.doi.org/10.7554/eLife.03701.001 PMID:25333687
Bussey, T J; Everitt, B J; Robbins, T W
1997-10-01
The effects of quinolinic acid-induced lesions of the anterior cingulate, posterior cingulate, and medial frontal cortices on stimulus-reward learning were investigated with a novel Pavlovian autoshaping procedure in an apparatus allowing the automated presentation of computer-graphic stimuli to rats (T. J. Bussey, J. L. Muir, & T. W. Robbins, 1994). White vertical rectangles were presented on the left or the right of a computer screen. One of these conditioned stimuli (the CS+) was always followed by the presentation of a sucrose pellet; the other, the CS-, was never followed by reward. With training, rats came to approach the CS+ more often than the CS-. Anterior cingulate cortex-lesioned rats failed to demonstrate normal discriminated approach, making significantly more approaches to the CS- than did sham-operated controls. Medial frontal cortex-lesioned rats acquired the task normally but had longer overall approach latencies. Posterior cingulate cortex lesions did not affect acquisition.
Bosch, Oliver G.; Wagner, Michael; Jessen, Frank; Kühn, Kai-Uwe; Joe, Alexius; Seifritz, Erich; Maier, Wolfgang; Biersack, Hans-Jürgen; Quednow, Boris B.
2013-01-01
Introduction 3,4-Methylenedioxymethamphetamine (MDMA, “ecstasy”) is a recreational club drug with supposed neurotoxic effects selectively on the serotonin system. MDMA users consistently exhibit memory dysfunction but there is an ongoing debate if these deficits are induced mainly by alterations in the prefrontal or mediotemporal cortex, especially the hippocampus. Thus, we investigated the relation of verbal memory deficits with alterations of regional cerebral brain glucose metabolism (rMRGlu) in recreational MDMA users. Methods Brain glucose metabolism in rest was assessed using 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography (18FDG PET) in 19 male recreational users of MDMA and 19 male drug-naïve controls. 18FDG PET data were correlated with memory performance assessed with a German version of the Rey Auditory Verbal Learning Test. Results As previously shown, MDMA users showed significant impairment in verbal declarative memory performance. PET scans revealed significantly decreased rMRGlu in the bilateral dorsolateral prefrontal and inferior parietal cortex, bilateral thalamus, right hippocampus, right precuneus, right cerebellum, and pons (at the level of raphe nuclei) of MDMA users. Among MDMA users, learning and recall were positively correlated with rMRGlu predominantly in bilateral frontal and parietal brain regions, while recognition was additionally related to rMRGlu in the right mediotemporal and bihemispheric lateral temporal cortex. Moreover, cumulative lifetime dose of MDMA was negatively correlated with rMRGlu in the left dorsolateral and bilateral orbital and medial PFC, left inferior parietal and right lateral temporal cortex. Conclusions Verbal learning and recall deficits of recreational MDMA users are correlated with glucose hypometabolism in prefrontal and parietal cortex, while word recognition was additionally correlated with mediotemporal hypometabolism. We conclude that memory deficits of MDMA users arise from combined fronto-parieto-mediotemporal dysfunction. PMID:23585882
Disrupted functional connectivity of the pain network in fibromyalgia.
Cifre, Ignacio; Sitges, Carolina; Fraiman, Daniel; Muñoz, Miguel Ángel; Balenzuela, Pablo; González-Roldán, Ana; Martínez-Jauand, Mercedes; Birbaumer, Niels; Chialvo, Dante R; Montoya, Pedro
2012-01-01
To investigate the impact of chronic pain on brain dynamics at rest. Functional connectivity was examined in patients with fibromyalgia (FM) (n = 9) and healthy controls (n = 11) by calculating partial correlations between low-frequency blood oxygen level-dependent fluctuations extracted from 15 brain regions. Patients with FM had more positive and negative correlations within the pain network than healthy controls. Patients with FM displayed enhanced functional connectivity of the anterior cingulate cortex (ACC) with the insula (INS) and basal ganglia (p values between .01 and .05), the secondary somatosensory area with the caudate (CAU) (p = .012), the primary motor cortex with the supplementary motor area (p = .007), the globus pallidus with the amygdala and superior temporal sulcus (both p values < .05), and the medial prefrontal cortex with the posterior cingulate cortex (PCC) and CAU (both p values < .05). Functional connectivity of the ACC with the amygdala and periaqueductal gray (PAG) matter (p values between .001 and .05), the thalamus with the INS and PAG (both p values < .01), the INS with the putamen (p = .038), the PAG with the CAU (p = .038), the secondary somatosensory area with the motor cortex and PCC (both p values < .05), and the PCC with the superior temporal sulcus (p = .002) was also reduced in FM. In addition, significant negative correlations were observed between depression and PAG connectivity strength with the thalamus (r = -0.64, p = .003) and ACC (r = -0.60, p = .004). These findings demonstrate that patients with FM display a substantial imbalance of the connectivity within the pain network during rest, suggesting that chronic pain may also lead to changes in brain activity during internally generated thought processes such as occur at rest.
Wang, Quanxin; Sporns, Olaf; Burkhalter, Andreas
2012-01-01
Much of the information used for visual perception and visually guided actions is processed in complex networks of connections within the cortex. To understand how this works in the normal brain and to determine the impact of disease, mice are promising models. In primate visual cortex, information is processed in a dorsal stream specialized for visuospatial processing and guided action and a ventral stream for object recognition. Here, we traced the outputs of 10 visual areas and used quantitative graph analytic tools of modern network science to determine, from the projection strengths in 39 cortical targets, the community structure of the network. We found a high density of the cortical graph that exceeded that previously shown in monkey. Each source area showed a unique distribution of projection weights across its targets (i.e. connectivity profile) that was well-fit by a lognormal function. Importantly, the community structure was strongly dependent on the location of the source area: outputs from medial/anterior extrastriate areas were more strongly linked to parietal, motor and limbic cortex, whereas lateral extrastriate areas were preferentially connected to temporal and parahippocampal cortex. These two subnetworks resemble dorsal and ventral cortical streams in primates, demonstrating that the basic layout of cortical networks is conserved across species. PMID:22457489
Iidaka, Tetsuya; Harada, Tokiko; Sadato, Norihiro
2011-09-01
Neural correlates involved in the formation of negative impression from face were investigated using event-related functional magnetic resonance imaging and a partial conditioning paradigm. Eighteen normal volunteers underwent imaging while they viewed the faces of two unfamiliar individuals: one individual's face was partially accompanied by negative emotion but the other's was not. After the volunteers learned the relationship between the faces and the emotion, they formed a more negative impression of the person's face when the emotion was presented. Subtraction analysis of the individuals' neutral faces revealed activation in the dorsal anterior cingulate cortex and superior temporal sulcus, but this activity did not correlate with the change of impression from face. On the other hand, the response in the left amygdala negatively correlated with the change of impression from face in the first run. Time modulation analysis revealed that activity in the dorsomedial prefrontal cortex associated with negative emotion was the largest in the initial part of the acquisition. These results suggest that a negative impression from face may be formed by orchestrated activity in the dorsomedial prefrontal cortex, dorsal anterior cingulate cortex and amygdala, and that the activity has a prominent role in the initial acquisition of negative emotion.
A multi-pathway hypothesis for human visual fear signaling
Silverstein, David N.; Ingvar, Martin
2015-01-01
A hypothesis is proposed for five visual fear signaling pathways in humans, based on an analysis of anatomical connectivity from primate studies and human functional connectvity and tractography from brain imaging studies. Earlier work has identified possible subcortical and cortical fear pathways known as the “low road” and “high road,” which arrive at the amygdala independently. In addition to a subcortical pathway, we propose four cortical signaling pathways in humans along the visual ventral stream. All four of these traverse through the LGN to the visual cortex (VC) and branching off at the inferior temporal area, with one projection directly to the amygdala; another traversing the orbitofrontal cortex; and two others passing through the parietal and then prefrontal cortex, one excitatory pathway via the ventral-medial area and one regulatory pathway via the ventral-lateral area. These pathways have progressively longer propagation latencies and may have progressively evolved with brain development to take advantage of higher-level processing. Using the anatomical path lengths and latency estimates for each of these five pathways, predictions are made for the relative processing times at selective ROIs and arrival at the amygdala, based on the presentation of a fear-relevant visual stimulus. Partial verification of the temporal dynamics of this hypothesis might be accomplished using experimental MEG analysis. Possible experimental protocols are suggested. PMID:26379513
Libero, Lauren E; Stevens, Carl E; Kana, Rajesh K
2014-10-01
The ability to interpret others' body language is a vital skill that helps us infer their thoughts and emotions. However, individuals with autism spectrum disorder (ASD) have been found to have difficulty in understanding the meaning of people's body language, perhaps leading to an overarching deficit in processing emotions. The current fMRI study investigates the functional connectivity underlying emotion and action judgment in the context of processing body language in high-functioning adolescents and young adults with autism, using an independent components analysis (ICA) of the fMRI time series. While there were no reliable group differences in brain activity, the ICA revealed significant involvement of occipital and parietal regions in processing body actions; and inferior frontal gyrus, superior medial prefrontal cortex, and occipital cortex in body expressions of emotions. In a between-group analysis, participants with autism, relative to typical controls, demonstrated significantly reduced temporal coherence in left ventral premotor cortex and right superior parietal lobule while processing emotions. Participants with ASD, on the other hand, showed increased temporal coherence in left fusiform gyrus while inferring emotions from body postures. Finally, a positive predictive relationship was found between empathizing ability and the brain areas underlying emotion processing in ASD participants. These results underscore the differential role of frontal and parietal brain regions in processing emotional body language in autism. Copyright © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Gu, Yue; Miao, Shuo; Han, Junxia; Liang, Zhenhu; Ouyang, Gaoxiang; Yang, Jian; Li, Xiaoli
2018-06-01
Objective. Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder affecting children and adults. Previous studies found that functional near-infrared spectroscopy (fNIRS) can reveal significant group differences in several brain regions between ADHD children and healthy controls during working memory tasks. This study aimed to use fNIRS activation patterns to identify ADHD children from healthy controls. Approach. FNIRS signals from 25 ADHD children and 25 healthy controls performing the n-back task were recorded; then, multivariate pattern analysis was used to discriminate ADHD individuals from healthy controls, and classification performance was evaluated for significance by the permutation test. Main results. The results showed that 86.0% (p<0.001 ) of participants can be correctly classified in leave-one-out cross-validation. The most discriminative brain regions included the bilateral dorsolateral prefrontal cortex, inferior medial prefrontal cortex, right posterior prefrontal cortex, and right temporal cortex. Significance. This study demonstrated that, in a small sample, multivariate pattern analysis can effectively identify ADHD children from healthy controls based on fNIRS signals, which argues for the potential utility of fNIRS in future assessments.
Maffei, Chiara; Capasso, Rita; Cazzolli, Giulia; Colosimo, Cesare; Dell'Acqua, Flavio; Piludu, Francesca; Catani, Marco; Miceli, Gabriele
2017-12-01
Pure Word Deafness (PWD) is a rare disorder, characterized by selective loss of speech input processing. Its most common cause is temporal damage to the primary auditory cortex of both hemispheres, but it has been reported also following unilateral lesions. In unilateral cases, PWD has been attributed to the disconnection of Wernicke's area from both right and left primary auditory cortex. Here we report behavioral and neuroimaging evidence from a new case of left unilateral PWD with both cortical and white matter damage due to a relatively small stroke lesion in the left temporal gyrus. Selective impairment in auditory language processing was accompanied by intact processing of nonspeech sounds and normal speech, reading and writing. Performance on dichotic listening was characterized by a reversal of the right-ear advantage typically observed in healthy subjects. Cortical thickness and gyral volume were severely reduced in the left superior temporal gyrus (STG), although abnormalities were not uniformly distributed and residual intact cortical areas were detected, for example in the medial portion of the Heschl's gyrus. Diffusion tractography documented partial damage to the acoustic radiations (AR), callosal temporal connections and intralobar tracts dedicated to single words comprehension. Behavioral and neuroimaging results in this case are difficult to integrate in a pure cortical or disconnection framework, as damage to primary auditory cortex in the left STG was only partial and Wernicke's area was not completely isolated from left or right-hemisphere input. On the basis of our findings we suggest that in this case of PWD, concurrent partial topological (cortical) and disconnection mechanisms have contributed to a selective impairment of speech sounds. The discrepancy between speech and non-speech sounds suggests selective damage to a language-specific left lateralized network involved in phoneme processing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Estrogen modifies arousal but not memory for emotional events in older women
Pruis, T.A.; Neiss, M.B.; Leigland, L.A.; Janowsky, J.S.
2009-01-01
Emotional arousal and the affective content of events influence memory. These effects shift with age such that older people find negative information less arousing and remember proportionately more positive events compared to the young. The emotional enhancement of memory is mediated by medial temporal lobe limbic structures and the prefrontal cortex, which are both affected by sex hormones. We examined whether hormone use (estrogen or estrogen and progesterone) in older women modulated perceptions of valence and arousal, and subsequent memory for emotional images or stories. Their performance was compared to younger women. Hormone use in older women resulted in higher arousal for negative images and stories but memory was not affected. We hypothesize that estrogen modifies the influence of the amygdala and the prefrontal cortex on emotion, but that age-related changes in the hippocampus prevent the enhancement of emotional memory in older women. PMID:18160182
Lehne, Moritz; Engel, Philipp; Rohrmeier, Martin; Menninghaus, Winfried; Jacobs, Arthur M.; Koelsch, Stefan
2015-01-01
Stories can elicit powerful emotions. A key emotional response to narrative plots (e.g., novels, movies, etc.) is suspense. Suspense appears to build on basic aspects of human cognition such as processes of expectation, anticipation, and prediction. However, the neural processes underlying emotional experiences of suspense have not been previously investigated. We acquired functional magnetic resonance imaging (fMRI) data while participants read a suspenseful literary text (E.T.A. Hoffmann's “The Sandman”) subdivided into short text passages. Individual ratings of experienced suspense obtained after each text passage were found to be related to activation in the medial frontal cortex, bilateral frontal regions (along the inferior frontal sulcus), lateral premotor cortex, as well as posterior temporal and temporo-parietal areas. The results indicate that the emotional experience of suspense depends on brain areas associated with social cognition and predictive inference. PMID:25946306
Anatomical connections of the functionally-defined “face patches” in the macaque monkey
Saleem, Kadharbatcha S.
2017-01-01
The neural circuits underlying face recognition provide a model for understanding visual object representation, social cognition, and hierarchical information processing. A fundamental piece of information lacking to date is the detailed anatomical connections of the face patches. Here, we injected retrograde tracers into four different face patches (PL, ML, AL, AM) to characterize their anatomical connectivity. We found that the patches are strongly and specifically connected to each other, and individual patches receive inputs from extrastriate cortex, the medial temporal lobe, and three subcortical structures (the pulvinar, claustrum, and amygdala). Inputs from prefrontal cortex were surprisingly weak. Patches were densely interconnected to one another in both feedforward and feedback directions, inconsistent with a serial hierarchy. These results provide the first direct anatomical evidence that the face patches constitute a highly specialized system, and suggest that subcortical regions may play a vital role in routing face-related information to subsequent processing stages. PMID:27263973
Spike-Timing of Orbitofrontal Neurons Is Synchronized With Breathing.
Kőszeghy, Áron; Lasztóczi, Bálint; Forro, Thomas; Klausberger, Thomas
2018-01-01
The orbitofrontal cortex (OFC) has been implicated in a multiplicity of complex brain functions, including representations of expected outcome properties, post-decision confidence, momentary food-reward values, complex flavors and odors. As breathing rhythm has an influence on odor processing at primary olfactory areas, we tested the hypothesis that it may also influence neuronal activity in the OFC, a prefrontal area involved also in higher order processing of odors. We recorded spike timing of orbitofrontal neurons as well as local field potentials (LFPs) in awake, head-fixed mice, together with the breathing rhythm. We observed that a large majority of orbitofrontal neurons showed robust phase-coupling to breathing during immobility and running. The phase coupling of action potentials to breathing was significantly stronger in orbitofrontal neurons compared to cells in the medial prefrontal cortex. The characteristic synchronization of orbitofrontal neurons with breathing might provide a temporal framework for multi-variable processing of olfactory, gustatory and reward-value relationships.
Mentalising music in frontotemporal dementia.
Downey, Laura E; Blezat, Alice; Nicholas, Jennifer; Omar, Rohani; Golden, Hannah L; Mahoney, Colin J; Crutch, Sebastian J; Warren, Jason D
2013-01-01
Despite considerable recent interest, the biological basis and clinical diagnosis of behavioural variant frontotemporal dementia (bvFTD) pose unresolved problems. Mentalising (the cognitive capacity to interpret the behaviour of oneself and others in terms of mental states) is impaired as a prominent feature of bvFTD, consistent with involvement of brain regions including ventro-medial prefrontal cortex (PFC), orbitofrontal cortex and anterior temporal lobes. Here, we investigated mentalising ability in a cohort of patients with bvFTD using a novel modality: music. We constructed a novel neuropsychological battery requiring attribution of affective mental or non-mental associations to musical stimuli. Mentalising performance of patients with bvFTD (n = 20) was assessed in relation to matched healthy control subjects (n = 20); patients also had a comprehensive assessment of behaviour and general neuropsychological functions. Neuroanatomical correlates of performance on the experimental tasks were investigated using voxel-based morphometry of patients' brain magnetic resonance imaging (MRI) scans. Compared to healthy control subjects, patients showed impaired ability to attribute mental states but not non-mental characteristics to music, and this deficit correlated with performance on a standard test of social inference and with carer ratings of patients' empathic capacity, but not with other potentially relevant measures of general neuropsychological function. Mentalising performance in the bvFTD group was associated with grey matter changes in anterior temporal lobe and ventro-medial PFC. These findings suggest that music can represent surrogate mental states and the ability to construct such mental representations is impaired in bvFTD, with potential implications for our understanding of the biology of bvFTD and human social cognition more broadly. Copyright © 2012 Elsevier Ltd. All rights reserved.
Occupancy of striatal and extrastriatal dopamine D2/D3 receptors by olanzapine and haloperidol.
Kessler, Robert M; Ansari, Mohammad Sib; Riccardi, Patrizia; Li, Rui; Jayathilake, Karuna; Dawant, Benoit; Meltzer, Herbert Y
2005-12-01
There have been conflicting reports as to whether olanzapine produces lower occupancy of striatal dopamine D(2)/D(3) receptor than typical antipsychotic drugs and preferential occupancy of extrastriatal dopamine D(2)/D(3) receptors. We performed [(18)F] fallypride PET studies in six schizophrenic subjects treated with olanzapine and six schizophrenic subjects treated with haloperidol to examine the occupancy of striatal and extrastriatal dopamine receptors by these antipsychotic drugs. [(18)F] setoperone PET studies were performed in seven olanzapine-treated subjects to determine 5-HT(2A) receptor occupancy. Occupancy of dopamine D(2)/D(3) receptors by olanzapine was not significantly different from that seen with haloperidol in the putamen, ventral striatum, medial thalamus, amygdala, or temporal cortex, that is, 67.5-78.2% occupancy; olanzapine produced no preferential occupancy of dopamine D(2)/D(3) receptors in the ventral striatum, medial thalamus, amygdala, or temporal cortex. There was, however, significantly lower occupancy of substantia nigra/VTA dopamine D(2)/D(3) receptors in olanzapine-treated compared to haloperidol-treated subjects, that is, 40.2 vs 59.3% (p=0.0014, corrected for multiple comparisons); in olanzapine-treated subjects, the substantia nigra/VTA was the only region with significantly lower dopamine D(2)/D(3) receptor occupancy than the putamen, that is, 40.2 vs 69.2% (p<0.001, corrected for multiple comparison). Occupancy of 5-HT(2A) receptors was 85-93% in the olanzapine- treated subjects. The results of this study demonstrated that olanzapine does not produce preferential occupancy of extrastriatal dopamine D(2)/D(3) receptors but does spare substantia nigra/VTA receptors. Sparing of substantia nigra/VTA dopamine D(2)/D(3) receptor occupancy may contribute to the low incidence of extrapyramidal side effects in olanzapine-treated patients.
Kirino, Eiji; Tanaka, Shoji; Fukuta, Mayuko; Inami, Rie; Arai, Heii; Inoue, Reiichi; Aoki, Shigeki
2017-04-01
It remains unclear how functional connectivity (FC) may be related to specific cognitive domains in neuropsychiatric disorders. Here we used simultaneous resting-state functional magnetic resonance imaging (rsfMRI) and electroencephalography (EEG) recording in patients with schizophrenia, to evaluate FC within and outside the default mode network (DMN). Our study population included 14 patients with schizophrenia and 15 healthy control participants. From all participants, we acquired rsfMRI data, and simultaneously recorded EEG data using an MR-compatible amplifier. We analyzed the rsfMRI-EEG data, and used the CONN toolbox to calculate the FC between regions of interest. We also performed between-group comparisons of standardized low-resolution electromagnetic tomography-based intracortical lagged coherence for each EEG frequency band. FC within the DMN, as measured by rsfMRI and EEG, did not significantly differ between groups. Analysis of rsfMRI data showed that FC between the right posterior inferior temporal gyrus and medial prefrontal cortex was stronger among patients with schizophrenia compared to control participants. Analysis of FC within the DMN using rsfMRI and EEG data revealed no significant differences between patients with schizophrenia and control participants. However, rsfMRI data revealed over-modulated FC between the medial prefrontal cortex and right posterior inferior temporal gyrus in patients with schizophrenia compared to control participants, suggesting that the patients had altered FC, with higher correlations across nodes within and outside of the DMN. Further studies using simultaneous rsfMRI and EEG are required to determine whether altered FC within the DMN is associated with schizophrenia. © 2016 The Authors. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology.
Yang, Linglin; Li, Hong; Zhu, Lujia; Yu, Xinfeng; Jin, Bo; Chen, Cong; Wang, Shan; Ding, Meiping; Zhang, Minming; Chen, Zhong; Wang, Shuang
2017-05-01
Mesial temporal lobe epilepsy (mTLE) is a common type of drug-resistant epilepsy and secondarily generalized tonic-clonic seizures (sGTCS) have devastating consequences for patients' safety and quality of life. To probe the mechanism underlying the genesis of sGTCS, we investigated the structural differences between patients with and without sGTCS in a cohort of mTLE with radiologically defined unilateral hippocampal sclerosis. We performed voxel-based morphometric analysis of cortex and vertex-wise shape analysis of subcortical structures (the basal ganglia and thalamus) on MRI of 39 patients (21 with and 18 without sGTCS). Comparisons were initially made between sGTCS and non-sGTCS groups, and subsequently made between uncontrolled-sGTCS and controlled-sGTCS subgroups. Regional atrophy of the ipsilateral ventral pallidum (cluster size=450 voxels, corrected p=0.047, Max voxel coordinate=107, 120, 65), medial thalamus (cluster size=1128 voxels, corrected p=0.049, Max voxel coordinate=107, 93, 67), middle frontal gyrus (cluster size=60 voxels, corrected p<0.05, Max voxel coordinate=-30, 49.5, 6), and contralateral posterior cingulate cortex (cluster size=130 voxels, corrected p<0.05, Max voxel coordinate=16.5, -57, 27) was found in the sGTCS group relative to the non-sGTCS group. Furthermore, the uncontrolled-sGTCS subgroup showed more pronounced atrophy of the ipsilateral medial thalamus (cluster size=1240 voxels, corrected p=0.014, Max voxel coordinate=107, 93, 67) than the controlled-sGTCS subgroup. These findings indicate a central role of thalamus and pallidum in the pathophysiology of sGTCS in mTLE. Copyright © 2017 Elsevier Inc. All rights reserved.
Patterns of Gray Matter Abnormalities in Schizophrenia Based on an International Mega-analysis.
Gupta, Cota Navin; Calhoun, Vince D; Rachakonda, Srinivas; Chen, Jiayu; Patel, Veena; Liu, Jingyu; Segall, Judith; Franke, Barbara; Zwiers, Marcel P; Arias-Vasquez, Alejandro; Buitelaar, Jan; Fisher, Simon E; Fernandez, Guillen; van Erp, Theo G M; Potkin, Steven; Ford, Judith; Mathalon, Daniel; McEwen, Sarah; Lee, Hyo Jong; Mueller, Bryon A; Greve, Douglas N; Andreassen, Ole; Agartz, Ingrid; Gollub, Randy L; Sponheim, Scott R; Ehrlich, Stefan; Wang, Lei; Pearlson, Godfrey; Glahn, David C; Sprooten, Emma; Mayer, Andrew R; Stephen, Julia; Jung, Rex E; Canive, Jose; Bustillo, Juan; Turner, Jessica A
2015-09-01
Analyses of gray matter concentration (GMC) deficits in patients with schizophrenia (Sz) have identified robust changes throughout the cortex. We assessed the relationships between diagnosis, overall symptom severity, and patterns of gray matter in the largest aggregated structural imaging dataset to date. We performed both source-based morphometry (SBM) and voxel-based morphometry (VBM) analyses on GMC images from 784 Sz and 936 controls (Ct) across 23 scanning sites in Europe and the United States. After correcting for age, gender, site, and diagnosis by site interactions, SBM analyses showed 9 patterns of diagnostic differences. They comprised separate cortical, subcortical, and cerebellar regions. Seven patterns showed greater GMC in Ct than Sz, while 2 (brainstem and cerebellum) showed greater GMC for Sz. The greatest GMC deficit was in a single pattern comprising regions in the superior temporal gyrus, inferior frontal gyrus, and medial frontal cortex, which replicated over analyses of data subsets. VBM analyses identified overall cortical GMC loss and one small cluster of increased GMC in Sz, which overlapped with the SBM brainstem component. We found no significant association between the component loadings and symptom severity in either analysis. This mega-analysis confirms that the commonly found GMC loss in Sz in the anterior temporal lobe, insula, and medial frontal lobe form a single, consistent spatial pattern even in such a diverse dataset. The separation of GMC loss into robust, repeatable spatial patterns across multiple datasets paves the way for the application of these methods to identify subtle genetic and clinical cohort effects. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Edmiston, E. Kale; McHugo, Maureen; Dukic, Mildred S.; Smith, Stephen D.; Abou-Khalil, Bassel; Eggers, Erica
2013-01-01
Emotionally arousing pictures induce increased activation of visual pathways relative to emotionally neutral images. A predominant model for the preferential processing and attention to emotional stimuli posits that the amygdala modulates sensory pathways through its projections to visual cortices. However, recent behavioral studies have found intact perceptual facilitation of emotional stimuli in individuals with amygdala damage. To determine the importance of the amygdala to modulations in visual processing, we used functional magnetic resonance imaging to examine visual cortical blood oxygenation level-dependent (BOLD) signal in response to emotionally salient and neutral images in a sample of human patients with unilateral medial temporal lobe resection that included the amygdala. Adults with right (n = 13) or left (n = 5) medial temporal lobe resections were compared with demographically matched healthy control participants (n = 16). In the control participants, both aversive and erotic images produced robust BOLD signal increases in bilateral primary and secondary visual cortices relative to neutral images. Similarly, all patients with amygdala resections showed enhanced visual cortical activations to erotic images both ipsilateral and contralateral to the lesion site. All but one of the amygdala resection patients showed similar enhancements to aversive stimuli and there were no significant group differences in visual cortex BOLD responses in patients compared with controls for either aversive or erotic images. Our results indicate that neither the right nor left amygdala is necessary for the heightened visual cortex BOLD responses observed during emotional stimulus presentation. These data challenge an amygdalo-centric model of emotional modulation and suggest that non-amygdalar processes contribute to the emotional modulation of sensory pathways. PMID:23825407
Otten, L J; Henson, R N; Rugg, M D
2001-02-01
Neuroimaging studies have implicated the prefrontal cortex and medial temporal areas in the successful encoding of verbal material into episodic memory. The present study used event-related functional MRI to investigate whether the brain areas associated with successful episodic encoding of words in a semantic study task are a subset of those demonstrating depth of processing effects. In addition, we tested whether the brain areas associated with successful episodic encoding differ depending on the nature of the study task. At study, 15 volunteers were cued to make either animacy or alphabetical decisions about words. A recognition memory test including confidence judgements followed after a delay of 15 min. Prefrontal and medial temporal regions showed greater functional MRI activations for semantically encoded words relative to alphabetically encoded words. Two of these regions (left anterior hippocampus and left ventral inferior frontal gyrus) showed greater activation for semantically encoded words that were subsequently recognized confidently. However, other regions (left posterior hippocampus and right inferior frontal cortex) demonstrated subsequent memory effects, but not effects of depth of processing. Successful memory for alphabetically encoded words was also associated with greater activation in the left anterior hippocampus and left ventral inferior frontal gyrus. The findings suggest that episodic encoding for words in a semantic study task involves a subset of the regions activated by deep relative to shallow processing. The data provide little evidence that successful episodic encoding during a shallow study task depends upon regions different from those that support the encoding of deeply studied words. Instead, the findings suggest that successful episodic encoding during a shallow study task relies on a subset of the regions engaged during successful encoding in a deep task.
Ranganath, Charan
2010-11-01
There is currently an intense debate about the nature of recognition memory and about the roles of medial temporal lobe subregions in recognition memory processes. At a larger level, this debate has been about whether it is appropriate to propose unified theories to explain memory at neural, functional, and phenomenological levels of analysis. Here, I review findings from physiology, functional imaging, and lesion studies in humans, monkeys, and rodents relevant to the roles of medial temporal lobe subregions in recognition memory, as well as in short-term memory and perception. The results from these studies are consistent with the idea that there is functional heterogeneity in the medial temporal lobes, although the differences among medial temporal lobe subregions do not precisely correspond to different types of memory tasks, cognitive processes, or states of awareness. Instead, the evidence is consistent with the idea that medial temporal lobe subregions differ in terms of the kind of information they process and represent, and that these regions collectively support episodic memory by binding item and context information. © 2010 Wiley-Liss, Inc.
Default Mode Network Subsystems are Differentially Disrupted in Posttraumatic Stress Disorder
Miller, Danielle R.; Hayes, Scott M.; Hayes, Jasmeet P.; Spielberg, Jeffrey M.; Lafleche, Ginette; Verfaellie, Mieke
2017-01-01
Background Posttraumatic stress disorder (PTSD) is a psychiatric disorder characterized by debilitating re-experiencing, avoidance, and hyperarousal symptoms following trauma exposure. Recent evidence suggests that individuals with PTSD show disrupted functional connectivity in the default mode network, an intrinsic network that consists of a midline core, a medial temporal lobe (MTL) subsystem, and a dorsomedial prefrontal cortex (dMPFC) subsystem. The present study examined whether functional connectivity in these subsystems is differentially disrupted in PTSD. Methods Sixty-nine returning war Veterans with PTSD and 44 trauma-exposed Veterans without PTSD underwent resting state functional MRI (rs-fMRI). To examine functional connectivity, seeds were placed in the core hubs of the default mode network, namely the posterior cingulate cortex (PCC) and anterior medial PFC (aMPFC), and in each subsystem. Results Compared to controls, individuals with PTSD had reduced functional connectivity between the PCC and the hippocampus, a region of the MTL subsystem. Groups did not differ in connectivity between the PCC and dMPFC subsystem or between the aMPFC and any region within either subsystem. In the PTSD group, connectivity between the PCC and hippocampus was negatively associated with avoidance/numbing symptoms. Examination of the MTL and dMPFC subsystems revealed reduced anticorrelation between the ventromedial PFC (vMPFC) seed of the MTL subsystem and the dorsal anterior cingulate cortex in the PTSD group. Conclusions Our results suggest that selective alterations in functional connectivity in the MTL subsystem of the default mode network in PTSD may be an important factor in PTSD pathology and symptomatology. PMID:28435932
Default Mode Network Subsystems are Differentially Disrupted in Posttraumatic Stress Disorder.
Miller, Danielle R; Hayes, Scott M; Hayes, Jasmeet P; Spielberg, Jeffrey M; Lafleche, Ginette; Verfaellie, Mieke
2017-05-01
Posttraumatic stress disorder (PTSD) is a psychiatric disorder characterized by debilitating re-experiencing, avoidance, and hyperarousal symptoms following trauma exposure. Recent evidence suggests that individuals with PTSD show disrupted functional connectivity in the default mode network, an intrinsic network that consists of a midline core, a medial temporal lobe (MTL) subsystem, and a dorsomedial prefrontal cortex (dMPFC) subsystem. The present study examined whether functional connectivity in these subsystems is differentially disrupted in PTSD. Sixty-nine returning war Veterans with PTSD and 44 trauma-exposed Veterans without PTSD underwent resting state functional MRI (rs-fMRI). To examine functional connectivity, seeds were placed in the core hubs of the default mode network, namely the posterior cingulate cortex (PCC) and anterior medial PFC (aMPFC), and in each subsystem. Compared to controls, individuals with PTSD had reduced functional connectivity between the PCC and the hippocampus, a region of the MTL subsystem. Groups did not differ in connectivity between the PCC and dMPFC subsystem or between the aMPFC and any region within either subsystem. In the PTSD group, connectivity between the PCC and hippocampus was negatively associated with avoidance/numbing symptoms. Examination of the MTL and dMPFC subsystems revealed reduced anticorrelation between the ventromedial PFC (vMPFC) seed of the MTL subsystem and the dorsal anterior cingulate cortex in the PTSD group. Our results suggest that selective alterations in functional connectivity in the MTL subsystem of the default mode network in PTSD may be an important factor in PTSD pathology and symptomatology.
Carhart-Harris, Robin L.; Murphy, Kevin; Leech, Robert; Erritzoe, David; Wall, Matthew B.; Ferguson, Bart; Williams, Luke T.J.; Roseman, Leor; Brugger, Stefan; De Meer, Ineke; Tanner, Mark; Tyacke, Robin; Wolff, Kim; Sethi, Ajun; Bloomfield, Michael A.P.; Williams, Tim M.; Bolstridge, Mark; Stewart, Lorna; Morgan, Celia; Newbould, Rexford D.; Feilding, Amanda; Curran, H. Val; Nutt, David J.
2015-01-01
Background The compound 3,4-methylenedioxymethamphetamine (MDMA) is a potent monoamine releaser that produces an acute euphoria in most individuals. Methods In a double-blind, placebo-controlled, balanced-order study, MDMA was orally administered to 25 physically and mentally healthy individuals. Arterial spin labeling and seed-based resting state functional connectivity (RSFC) were used to produce spatial maps displaying changes in cerebral blood flow (CBF) and RSFC after MDMA administration. Participants underwent two arterial spin labeling and two blood oxygen level–dependent scans in a 90-minute scan session; MDMA and placebo study days were separated by 1 week. Results Marked increases in positive mood were produced by MDMA. Decreased CBF only was observed after MDMA, and this was localized to the right medial temporal lobe (MTL), thalamus, inferior visual cortex, and the somatosensory cortex. Decreased CBF in the right amygdala and hippocampus correlated with ratings of the intensity of global subjective effects of MDMA. The RSFC results complemented the CBF results, with decreases in RSFC between midline cortical regions, the medial prefrontal cortex, and MTL regions, and increases between the amygdala and hippocampus. There were trend-level correlations between these effects and ratings of intense and positive subjective effects. Conclusions The MTLs appear to be specifically implicated in the mechanism of action of MDMA, but further work is required to elucidate how the drug’s characteristic subjective effects arise from its modulation of spontaneous brain activity. PMID:24495461
Dynamic Repertoire of Intrinsic Brain States Is Reduced in Propofol-Induced Unconsciousness
Liu, Xiping; Pillay, Siveshigan
2015-01-01
Abstract The richness of conscious experience is thought to scale with the size of the repertoire of causal brain states, and it may be diminished in anesthesia. We estimated the state repertoire from dynamic analysis of intrinsic functional brain networks in conscious sedated and unconscious anesthetized rats. Functional resonance images were obtained from 30-min whole-brain resting-state blood oxygen level-dependent (BOLD) signals at propofol infusion rates of 20 and 40 mg/kg/h, intravenously. Dynamic brain networks were defined at the voxel level by sliding window analysis of regional homogeneity (ReHo) or coincident threshold crossings (CTC) of the BOLD signal acquired in nine sagittal slices. The state repertoire was characterized by the temporal variance of the number of voxels with significant ReHo or positive CTC. From low to high propofol dose, the temporal variances of ReHo and CTC were reduced by 78%±20% and 76%±20%, respectively. Both baseline and propofol-induced reduction of CTC temporal variance increased from lateral to medial position. Group analysis showed a 20% reduction in the number of unique states at the higher propofol dose. Analysis of temporal variance in 12 anatomically defined regions of interest predicted that the largest changes occurred in visual cortex, parietal cortex, and caudate-putamen. The results suggest that the repertoire of large-scale brain states derived from the spatiotemporal dynamics of intrinsic networks is substantially reduced at an anesthetic dose associated with loss of consciousness. PMID:24702200
Diminution of context association memory structure in subjects with subjective cognitive decline.
Fan, Ling-Yun; Lai, Ya-Mei; Chen, Ta-Fu; Hsu, Yung-Chin; Chen, Pin-Yu; Huang, Kuo-Zhou; Cheng, Ting-Wen; Tseng, Wen-Yi Isaac; Hua, Mau-Sun; Chen, Ya-Fang; Chiu, Ming-Jang
2018-06-01
Alzheimer's disease (AD) progresses insidiously from the preclinical stage to dementia. While people with subjective cognitive decline (SCD) have normal cognitive performance, some may be in the preclinical stage of AD. Neurofibrillary tangles appear first in the transentorhinal cortex, followed by the entorhinal cortex in the clinically silent stage of AD. We expected the earliest changes in subjects with SCD to occur in medial temporal subfields other than the hippocampal proper. These selective structural changes would affect specific memory subcomponents. We used the Family Picture subtest of the Wechsler Memory Scale-III, which was modified to separately compute character, activity, and location subscores for episodic memory subcomponents. We recruited 43 subjects with SCD, 44 subjects with amnesic mild cognitive impairment, and 34 normal controls. MRI was used to assess cortical thickness, subcortical gray matter volume, and fractional anisotropy. The results demonstrated that SCD subjects showed significant cortical atrophy in their bilateral parahippocampus and perirhinal and the left entorhinal cortices but not in their hippocampal regions. SCD subjects also exhibited significantly decreased mean fractional anisotropy in their bilateral uncinate fasciculi. The diminution of cortical thickness over the mesial temporal subfields corresponded to brain areas with early tangle deposition, and early degradation of the uncinate fasciculus was in accordance with the retrogenesis hypothesis. The parahippocampus and perirhinal cortex contribute mainly to context association memory while the entorhinal cortex, along with the uncinate fasciculus, contributes to content-related contextual memory. We proposed that context association and related memory structures are vulnerable in the SCD stage. © 2018 Wiley Periodicals, Inc.
Network reconfiguration and working memory impairment in mesial temporal lobe epilepsy.
Campo, Pablo; Garrido, Marta I; Moran, Rosalyn J; García-Morales, Irene; Poch, Claudia; Toledano, Rafael; Gil-Nagel, Antonio; Dolan, Raymond J; Friston, Karl J
2013-05-15
Mesial temporal lobe epilepsy (mTLE) is the most prevalent form of focal epilepsy, and hippocampal sclerosis (HS) is considered the most frequent associated pathological finding. Recent connectivity studies have shown that abnormalities, either structural or functional, are not confined to the affected hippocampus, but can be found in other connected structures within the same hemisphere, or even in the contralesional hemisphere. Despite the role of hippocampus in memory functions, most of these studies have explored network properties at resting state, and in some cases compared connectivity values with neuropsychological memory scores. Here, we measured magnetoencephalographic responses during verbal working memory (WM) encoding in left mTLE patients and controls, and compared their effective connectivity within a frontotemporal network using dynamic causal modelling. Bayesian model comparison indicated that the best model included bilateral, forward and backward connections, linking inferior temporal cortex (ITC), inferior frontal cortex (IFC), and the medial temporal lobe (MTL). Test for differences in effective connectivity revealed that patients exhibited decreased ipsilesional MTL-ITC backward connectivity, and increased bidirectional IFC-MTL connectivity in the contralesional hemisphere. Critically, a negative correlation was observed between these changes in patients, with decreases in ipsilesional coupling among temporal sources associated with increases contralesional frontotemporal interactions. Furthermore, contralesional frontotemporal interactions were inversely related to task performance and level of education. The results demonstrate that unilateral sclerosis induced local and remote changes in the dynamic organization of a distributed network supporting verbal WM. Crucially, pre-(peri) morbid factors (educational level) were reflected in both cognitive performance and (putative) compensatory changes in physiological coupling. Copyright © 2013 Elsevier Inc. All rights reserved.
Vorobyev, Victor A; Alho, Kimmo; Medvedev, Svyatoslav V; Pakhomov, Sergey V; Roudas, Marina S; Rutkovskaya, Julia M; Tervaniemi, Mari; Van Zuijen, Titia L; Näätänen, Risto
2004-07-01
Positron emission tomography (PET) was used to investigate the neural basis of selective processing of linguistic material during concurrent presentation of multiple stimulus streams ("cocktail-party effect"). Fifteen healthy right-handed adult males were to attend to one of three simultaneously presented messages: one presented visually, one to the left ear, and one to the right ear. During the control condition, subjects attended to visually presented consonant letter strings and ignored auditory messages. This paper reports the modality-nonspecific language processing and visual word-form processing, whereas the auditory attention effects have been reported elsewhere [Cogn. Brain Res. 17 (2003) 201]. The left-hemisphere areas activated by both the selective processing of text and speech were as follows: the inferior prefrontal (Brodmann's area, BA 45, 47), anterior temporal (BA 38), posterior insular (BA 13), inferior (BA 20) and middle temporal (BA 21), occipital (BA 18/30) cortices, the caudate nucleus, and the amygdala. In addition, bilateral activations were observed in the medial occipito-temporal cortex and the cerebellum. Decreases of activation during both text and speech processing were found in the parietal (BA 7, 40), frontal (BA 6, 8, 44) and occipito-temporal (BA 37) regions of the right hemisphere. Furthermore, the present data suggest that the left occipito-temporal cortex (BA 18, 20, 37, 21) can be subdivided into three functionally distinct regions in the posterior-anterior direction on the basis of their activation during attentive processing of sublexical orthography, visual word form, and supramodal higher-level aspects of language.
Lynch, Charles J; Uddin, Lucina Q; Supekar, Kaustubh; Khouzam, Amirah; Phillips, Jennifer; Menon, Vinod
2013-08-01
The default mode network (DMN), a brain system anchored in the posteromedial cortex, has been identified as underconnected in adults with autism spectrum disorder (ASD). However, to date there have been no attempts to characterize this network and its involvement in mediating social deficits in children with ASD. Furthermore, the functionally heterogeneous profile of the posteromedial cortex raises questions regarding how altered connectivity manifests in specific functional modules within this brain region in children with ASD. Resting-state functional magnetic resonance imaging and an anatomically informed approach were used to investigate the functional connectivity of the DMN in 20 children with ASD and 19 age-, gender-, and IQ-matched typically developing (TD) children. Multivariate regression analyses were used to test whether altered patterns of connectivity are predictive of social impairment severity. Compared with TD children, children with ASD demonstrated hyperconnectivity of the posterior cingulate and retrosplenial cortices with predominately medial and anterolateral temporal cortex. In contrast, the precuneus in ASD children demonstrated hypoconnectivity with visual cortex, basal ganglia, and locally within the posteromedial cortex. Aberrant posterior cingulate cortex hyperconnectivity was linked with severity of social impairments in ASD, whereas precuneus hypoconnectivity was unrelated to social deficits. Consistent with previous work in healthy adults, a functionally heterogeneous profile of connectivity within the posteromedial cortex in both TD and ASD children was observed. This work links hyperconnectivity of DMN-related circuits to the core social deficits in young children with ASD and highlights fundamental aspects of posteromedial cortex heterogeneity. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
A voxel-based lesion study on facial emotion recognition after penetrating brain injury
Dal Monte, Olga; Solomon, Jeffrey M.; Schintu, Selene; Knutson, Kristine M.; Strenziok, Maren; Pardini, Matteo; Leopold, Anne; Raymont, Vanessa; Grafman, Jordan
2013-01-01
The ability to read emotions in the face of another person is an important social skill that can be impaired in subjects with traumatic brain injury (TBI). To determine the brain regions that modulate facial emotion recognition, we conducted a whole-brain analysis using a well-validated facial emotion recognition task and voxel-based lesion symptom mapping (VLSM) in a large sample of patients with focal penetrating TBIs (pTBIs). Our results revealed that individuals with pTBI performed significantly worse than normal controls in recognizing unpleasant emotions. VLSM mapping results showed that impairment in facial emotion recognition was due to damage in a bilateral fronto-temporo-limbic network, including medial prefrontal cortex (PFC), anterior cingulate cortex, left insula and temporal areas. Beside those common areas, damage to the bilateral and anterior regions of PFC led to impairment in recognizing unpleasant emotions, whereas bilateral posterior PFC and left temporal areas led to impairment in recognizing pleasant emotions. Our findings add empirical evidence that the ability to read pleasant and unpleasant emotions in other people's faces is a complex process involving not only a common network that includes bilateral fronto-temporo-limbic lobes, but also other regions depending on emotional valence. PMID:22496440
In search of an auditory engram.
Fritz, Jonathan; Mishkin, Mortimer; Saunders, Richard C
2005-06-28
Monkeys trained preoperatively on a task designed to assess auditory recognition memory were impaired after removal of either the rostral superior temporal gyrus or the medial temporal lobe but were unaffected by lesions of the rhinal cortex. Behavioral analysis indicated that this result occurred because the monkeys did not or could not use long-term auditory recognition, and so depended instead on short-term working memory, which is unaffected by rhinal lesions. The findings suggest that monkeys may be unable to place representations of auditory stimuli into a long-term store and thus question whether the monkey's cerebral memory mechanisms in audition are intrinsically different from those in other sensory modalities. Furthermore, it raises the possibility that language is unique to humans not only because it depends on speech but also because it requires long-term auditory memory.
Dynamic Neural Networks Supporting Memory Retrieval
St. Jacques, Peggy L.; Kragel, Philip A.; Rubin, David C.
2011-01-01
How do separate neural networks interact to support complex cognitive processes such as remembrance of the personal past? Autobiographical memory (AM) retrieval recruits a consistent pattern of activation that potentially comprises multiple neural networks. However, it is unclear how such large-scale neural networks interact and are modulated by properties of the memory retrieval process. In the present functional MRI (fMRI) study, we combined independent component analysis (ICA) and dynamic causal modeling (DCM) to understand the neural networks supporting AM retrieval. ICA revealed four task-related components consistent with the previous literature: 1) Medial Prefrontal Cortex (PFC) Network, associated with self-referential processes, 2) Medial Temporal Lobe (MTL) Network, associated with memory, 3) Frontoparietal Network, associated with strategic search, and 4) Cingulooperculum Network, associated with goal maintenance. DCM analysis revealed that the medial PFC network drove activation within the system, consistent with the importance of this network to AM retrieval. Additionally, memory accessibility and recollection uniquely altered connectivity between these neural networks. Recollection modulated the influence of the medial PFC on the MTL network during elaboration, suggesting that greater connectivity among subsystems of the default network supports greater re-experience. In contrast, memory accessibility modulated the influence of frontoparietal and MTL networks on the medial PFC network, suggesting that ease of retrieval involves greater fluency among the multiple networks contributing to AM. These results show the integration between neural networks supporting AM retrieval and the modulation of network connectivity by behavior. PMID:21550407
Burles, Ford; Slone, Edward; Iaria, Giuseppe
2017-04-01
The retrosplenial complex is a region within the posterior cingulate cortex implicated in spatial navigation. Here, we investigated the functional specialization of this large and anatomically heterogeneous region using fMRI and resting-state functional connectivity combined with a spatial task with distinct phases of spatial 'updating' (i.e., integrating and maintaining object locations in memory during spatial displacement) and 'orienting' (i.e., recalling unseen locations from current position in space). Both spatial 'updating' and 'orienting' produced bilateral activity in the retrosplenial complex, among other areas. However, spatial 'updating' produced slightly greater activity in ventro-lateral portions, of the retrosplenial complex, whereas spatial 'orienting' produced greater activity in a more dorsal and medial portion of it (both regions localized along the parieto-occipital fissure). At rest, both ventro-lateral and dorso-medial subregions of the retrosplenial complex were functionally connected to the hippocampus and parahippocampus, regions both involved in spatial orientation and navigation. However, the ventro-lateral subregion of the retrosplenial complex displayed more positive functional connectivity with ventral occipital and temporal object recognition regions, whereas the dorso-medial subregion activity was more correlated to dorsal activity and frontal activity, as well as negatively correlated with more ventral parietal structures. These findings provide evidence for a dorso-medial to ventro-lateral functional specialization within the human retrosplenial complex that may shed more light on the complex neural mechanisms underlying spatial orientation and navigation in humans.
Yeo, B T Thomas; Krienen, Fenna M; Chee, Michael W L; Buckner, Randy L
2014-03-01
The organization of the human cerebral cortex has recently been explored using techniques for parcellating the cortex into distinct functionally coupled networks. The divergent and convergent nature of cortico-cortical anatomic connections suggests the need to consider the possibility of regions belonging to multiple networks and hierarchies among networks. Here we applied the Latent Dirichlet Allocation (LDA) model and spatial independent component analysis (ICA) to solve for functionally coupled cerebral networks without assuming that cortical regions belong to a single network. Data analyzed included 1000 subjects from the Brain Genomics Superstruct Project (GSP) and 12 high quality individual subjects from the Human Connectome Project (HCP). The organization of the cerebral cortex was similar regardless of whether a winner-take-all approach or the more relaxed constraints of LDA (or ICA) were imposed. This suggests that large-scale networks may function as partially isolated modules. Several notable interactions among networks were uncovered by the LDA analysis. Many association regions belong to at least two networks, while somatomotor and early visual cortices are especially isolated. As examples of interaction, the precuneus, lateral temporal cortex, medial prefrontal cortex and posterior parietal cortex participate in multiple paralimbic networks that together comprise subsystems of the default network. In addition, regions at or near the frontal eye field and human lateral intraparietal area homologue participate in multiple hierarchically organized networks. These observations were replicated in both datasets and could be detected (and replicated) in individual subjects from the HCP. © 2013.
Yeo, BT Thomas; Krienen, Fenna M; Chee, Michael WL; Buckner, Randy L
2014-01-01
The organization of the human cerebral cortex has recently been explored using techniques for parcellating the cortex into distinct functionally coupled networks. The divergent and convergent nature of cortico-cortical anatomic connections suggests the need to consider the possibility of regions belonging to multiple networks and hierarchies among networks. Here we applied the Latent Dirichlet Allocation (LDA) model and spatial independent component analysis (ICA) to solve for functionally coupled cerebral networks without assuming that cortical regions belong to a single network. Data analyzed included 1,000 subjects from the Brain Genomics Superstruct Project (GSP) and 12 high quality individual subjects from the Human Connectome Project (HCP). The organization of the cerebral cortex was similar regardless of whether a winner-take-all approach or the more relaxed constraints of LDA (or ICA) were imposed. This suggests that large-scale networks may function as partially isolated modules. Several notable interactions among networks were uncovered by the LDA analysis. Many association regions belong to at least two networks, while somatomotor and early visual cortices are especially isolated. As examples of interaction, the precuneus, lateral temporal cortex, medial prefrontal cortex and posterior parietal cortex participate in multiple paralimbic networks that together comprise subsystems of the default network. In addition, regions at or near the frontal eye field and human lateral intraparietal area homologue participate in multiple hierarchically organized networks. These observations were replicated in both datasets and could be detected (and replicated) in individual subjects from the HCP. PMID:24185018
c-Fos expression predicts long-term social memory retrieval in mice.
Lüscher Dias, Thomaz; Fernandes Golino, Hudson; Moura de Oliveira, Vinícius Elias; Dutra Moraes, Márcio Flávio; Schenatto Pereira, Grace
2016-10-15
The way the rodent brain generally processes socially relevant information is rather well understood. How social information is stored into long-term social memory, however, is still under debate. Here, brain c-Fos expression was measured after adult mice were exposed to familiar or novel juveniles and expression was compared in several memory and socially relevant brain areas. Machine Learning algorithm Random Forest was then used to predict the social interaction category of adult mice based on c-Fos expression in these areas. Interaction with a familiar co-specific altered brain activation in the olfactory bulb, amygdala, hippocampus, lateral septum and medial prefrontal cortex. Remarkably, Random Forest was able to predict interaction with a familiar juvenile with 100% accuracy. Activity in the olfactory bulb, amygdala, hippocampus and the medial prefrontal cortex were crucial to this prediction. From our results, we suggest long-term social memory depends on initial social olfactory processing in the medial amygdala and its output connections synergistically with non-social contextual integration by the hippocampus and medial prefrontal cortex top-down modulation of primary olfactory structures. Copyright © 2016 Elsevier B.V. All rights reserved.
Trautmann-Lengsfeld, Sina Alexa; Domínguez-Borràs, Judith; Escera, Carles; Herrmann, Manfred; Fehr, Thorsten
2013-01-01
A recent functional magnetic resonance imaging (fMRI) study by our group demonstrated that dynamic emotional faces are more accurately recognized and evoked more widespread patterns of hemodynamic brain responses than static emotional faces. Based on this experimental design, the present study aimed at investigating the spatio-temporal processing of static and dynamic emotional facial expressions in 19 healthy women by means of multi-channel electroencephalography (EEG), event-related potentials (ERP) and fMRI-constrained regional source analyses. ERP analysis showed an increased amplitude of the LPP (late posterior positivity) over centro-parietal regions for static facial expressions of disgust compared to neutral faces. In addition, the LPP was more widespread and temporally prolonged for dynamic compared to static faces of disgust and happiness. fMRI constrained source analysis on static emotional face stimuli indicated the spatio-temporal modulation of predominantly posterior regional brain activation related to the visual processing stream for both emotional valences when compared to the neutral condition in the fusiform gyrus. The spatio-temporal processing of dynamic stimuli yielded enhanced source activity for emotional compared to neutral conditions in temporal (e.g., fusiform gyrus), and frontal regions (e.g., ventromedial prefrontal cortex, medial and inferior frontal cortex) in early and again in later time windows. The present data support the view that dynamic facial displays trigger more information reflected in complex neural networks, in particular because of their changing features potentially triggering sustained activation related to a continuing evaluation of those faces. A combined fMRI and EEG approach thus provides an advanced insight to the spatio-temporal characteristics of emotional face processing, by also revealing additional neural generators, not identifiable by the only use of an fMRI approach. PMID:23818974
Ventral and dorsal streams processing visual motion perception (FDG-PET study)
2012-01-01
Background Earlier functional imaging studies on visually induced self-motion perception (vection) disclosed a bilateral network of activations within primary and secondary visual cortex areas which was combined with signal decreases, i.e., deactivations, in multisensory vestibular cortex areas. This finding led to the concept of a reciprocal inhibitory interaction between the visual and vestibular systems. In order to define areas involved in special aspects of self-motion perception such as intensity and duration of the perceived circular vection (CV) or the amount of head tilt, correlation analyses of the regional cerebral glucose metabolism, rCGM (measured by fluorodeoxyglucose positron-emission tomography, FDG-PET) and these perceptual covariates were performed in 14 healthy volunteers. For analyses of the visual-vestibular interaction, the CV data were compared to a random dot motion stimulation condition (not inducing vection) and a control group at rest (no stimulation at all). Results Group subtraction analyses showed that the visual-vestibular interaction was modified during CV, i.e., the activations within the cerebellar vermis and parieto-occipital areas were enhanced. The correlation analysis between the rCGM and the intensity of visually induced vection, experienced as body tilt, showed a relationship for areas of the multisensory vestibular cortical network (inferior parietal lobule bilaterally, anterior cingulate gyrus), the medial parieto-occipital cortex, the frontal eye fields and the cerebellar vermis. The “earlier” multisensory vestibular areas like the parieto-insular vestibular cortex and the superior temporal gyrus did not appear in the latter analysis. The duration of perceived vection after stimulus stop was positively correlated with rCGM in medial temporal lobe areas bilaterally, which included the (para-)hippocampus, known to be involved in various aspects of memory processing. The amount of head tilt was found to be positively correlated with the rCGM of bilateral basal ganglia regions responsible for the control of motor function of the head. Conclusions Our data gave further insights into subfunctions within the complex cortical network involved in the processing of visual-vestibular interaction during CV. Specific areas of this cortical network could be attributed to the ventral stream (“what” pathway) responsible for the duration after stimulus stop and to the dorsal stream (“where/how” pathway) responsible for intensity aspects. PMID:22800430
Chen, H Isaac; Bohman, Leif-Erik; Emery, Lyndsey; Martinez-Lage, Maria; Richardson, Andrew G; Davis, Kathryn A; Pollard, John R; Litt, Brian; Gausas, Roberta E; Lucas, Timothy H
2015-01-01
Transorbital approaches traditionally have focused on skull base and cavernous sinus lesions medial to the globe. Lateral orbital approaches to the temporal lobe have not been widely explored despite several theoretical advantages compared to open craniotomy. Recently, we demonstrated the feasibility of the lateral transorbital technique in cadaveric specimens with endoscopic visualization. We describe our initial clinical experience with the endoscope-assisted lateral transorbital approach to lesions in the temporal lobe. Two patients with mesial temporal lobe pathology presenting with seizures underwent surgery. The use of a transpalpebral or Stallard-Wright eyebrow incision enabled access to the intraorbital compartment, and a lateral orbital wall 'keyhole' opening permitted visualization of the anterior temporal pole. This approach afforded adequate access to the surgical target and surrounding structures and was well tolerated by the patients. To the best of our knowledge, this report constitutes the first case series describing the endoscope-assisted lateral transorbital approach to the temporal lobe. We discuss the limits of exposure, the nuances of opening and closing, and comparisons to open craniotomy. Further prospective investigation of this approach is warranted for comparison to traditional approaches to the mesial temporal lobe. © 2015 S. Karger AG, Basel.
Lesion network localization of criminal behavior
Darby, R. Ryan; Horn, Andreas; Fox, Michael D.
2018-01-01
Following brain lesions, previously normal patients sometimes exhibit criminal behavior. Although rare, these cases can lend unique insight into the neurobiological substrate of criminality. Here we present a systematic mapping of lesions with known temporal association to criminal behavior, identifying 17 lesion cases. The lesion sites were spatially heterogeneous, including the medial prefrontal cortex, orbitofrontal cortex, and different locations within the bilateral temporal lobes. No single brain region was damaged in all cases. Because lesion-induced symptoms can come from sites connected to the lesion location and not just the lesion location itself, we also identified brain regions functionally connected to each lesion location. This technique, termed lesion network mapping, has recently identified regions involved in symptom generation across a variety of lesion-induced disorders. All lesions were functionally connected to the same network of brain regions. This criminality-associated connectivity pattern was unique compared with lesions causing four other neuropsychiatric syndromes. This network includes regions involved in morality, value-based decision making, and theory of mind, but not regions involved in cognitive control or empathy. Finally, we replicated our results in a separate cohort of 23 cases in which a temporal relationship between brain lesions and criminal behavior was implied but not definitive. Our results suggest that lesions in criminals occur in different brain locations but localize to a unique resting state network, providing insight into the neurobiology of criminal behavior. PMID:29255017
Castelli, Fulvia; Frith, Chris; Happé, Francesca; Frith, Uta
2002-08-01
Ten able adults with autism or Asperger syndrome and 10 normal volunteers were PET scanned while watching animated sequences. The animations depicted two triangles moving about on a screen in three different conditions: moving randomly, moving in a goal-directed fashion (chasing, fighting), and moving interactively with implied intentions (coaxing, tricking). The last condition frequently elicited descriptions in terms of mental states that viewers attributed to the triangles (mentalizing). The autism group gave fewer and less accurate descriptions of these latter animations, but equally accurate descriptions of the other animations compared with controls. While viewing animations that elicited mentalizing, in contrast to randomly moving shapes, the normal group showed increased activation in a previously identified mentalizing network (medial prefrontal cortex, superior temporal sulcus at the temporo-parietal junction and temporal poles). The autism group showed less activation than the normal group in all these regions. However, one additional region, extrastriate cortex, which was highly active when watching animations that elicited mentalizing, showed the same amount of increased activation in both groups. In the autism group this extrastriate region showed reduced functional connectivity with the superior temporal sulcus at the temporo-parietal junction, an area associated with the processing of biological motion as well as with mentalizing. This finding suggests a physiological cause for the mentalizing dysfunction in autism: a bottleneck in the interaction between higher order and lower order perceptual processes.
Dissociation between melodic and rhythmic processing during piano performance from musical scores.
Bengtsson, Sara L; Ullén, Fredrik
2006-03-01
When performing or perceiving music, we experience the melodic (spatial) and rhythmic aspects as a unified whole. Moreover, the motor program theory stipulates that the relative timing and the serial order of the movement are invariant features of a motor program. Still, clinical and psychophysical observations suggest independent processing of these two aspects, in both production and perception. Here, we used functional magnetic resonance imaging to dissociate between brain areas processing the melodic and the rhythmic aspects during piano playing from musical scores. This behavior requires that the pianist decodes two types of information from the score in order to produce the desired piece of music. The spatial location of a note head determines which piano key to strike, and the various features of the note, such as the stem and flags determine the timing of each key stroke. We found that the medial occipital lobe, the superior temporal lobe, the rostral cingulate cortex, the putamen and the cerebellum process the melodic information, whereas the lateral occipital and the inferior temporal cortex, the left supramarginal gyrus, the left inferior and ventral frontal gyri, the caudate nucleus, and the cerebellum process the rhythmic information. Thus, we suggest a dissociate involvement of the dorsal visual stream in the spatial pitch processing and the ventral visual stream in temporal movement preparation. We propose that this dissociate organization may be important for fast learning and flexibility in motor control.
The Neuroanatomy of Genetic Subtype Differences in Prader-Willi Syndrome
Honea, Robyn A.; Holsen, Laura M.; Lepping, Rebecca J.; Perea, Rodrigo; Butler, Merlin G.; Brooks, William M.; Savage, Cary R.
2012-01-01
Objective Despite behavioral differences between genetic subtypes of Prader-Willi syndrome, no studies have been published characterizing brain structure in these subgroups. Our goal was to examine differences in the brain structure phenotype of common subtypes of Prader-Willi syndrome (PWS) [chromosome 15q deletions and maternal uniparental disomy 15 (UPD)]. Methods Fifteen individuals with PWS due to a typical deletion ((DEL) Type I; n=5, Type II; n=10), 8 with PWS due to UPD, and 25 age-matched healthy-weight individuals (HWC) participated in structural magnetic resonance imaging (MRI) scans. A custom voxel-based morphometry processing stream was used to examine regional differences in gray and white matter volume between groups, covarying for age, sex, and body mass index (BMI). Results Overall, compared to HWC, PWS individuals had lower gray matter volumes that encompassed the prefrontal, orbitofrontal and temporal cortices, hippocampus and parahippocampal gyrus, and lower white matter volumes in the brain stem, cerebellum, medial temporal and frontal cortex. Compared to UPD, the DEL subtypes had lower gray matter volume primarily in the prefrontal and temporal cortices, and lower white matter in the parietal cortex. The UPD subtype had more extensive lower gray and white matter volumes in the orbitofrontal and limbic cortices compared to HWC. Conclusions These preliminary findings are the first structural neuroimaging findings to support potentially separate neural mechanisms mediating the behavioral differences seen in these genetic subtypes. PMID:22241551
The neuroanatomy of genetic subtype differences in Prader-Willi syndrome.
Honea, Robyn A; Holsen, Laura M; Lepping, Rebecca J; Perea, Rodrigo; Butler, Merlin G; Brooks, William M; Savage, Cary R
2012-03-01
Despite behavioral differences between genetic subtypes of Prader-Willi syndrome (PWS), no studies have been published characterizing brain structure in these subgroups. Our goal was to examine differences in the brain structure phenotype of common subtypes of PWS [chromosome 15q deletions and maternal uniparental disomy 15 (UPD)]. Fifteen individuals with PWS due to a typical deletion [(DEL) type I; n = 5, type II; n = 10], eight with PWS due to UPD, and 25 age-matched healthy-weight individuals (HWC) participated in structural magnetic resonance imaging (MRI) scans. A custom voxel-based morphometry processing stream was used to examine regional differences in gray and white matter volume (WMV) between groups, covarying for age, sex, and body mass index (BMI). Overall, compared to HWC, PWS individuals had lower gray matter volumes (GMV) that encompassed the prefrontal, orbitofrontal and temporal cortices, hippocampus and parahippocampal gyrus, and lower WMVs in the brain stem, cerebellum, medial temporal, and frontal cortex. Compared to UPD, the DEL subtypes had lower GMV primarily in the prefrontal and temporal cortices, and lower white matter in the parietal cortex. The UPD subtype had more extensive lower gray and WMVs in the orbitofrontal and limbic cortices compared to HWC. These preliminary findings are the first structural neuroimaging findings to support potentially separate neural mechanisms mediating the behavioral differences seen in these genetic subtypes. Copyright © 2012 Wiley Periodicals, Inc.
Tompkins, Connie A.; Meigh, Kimberly M.; Prat, Chantel S.
2015-01-01
Purpose This study examined right hemisphere (RH) neuroanatomical correlates of lexical–semantic deficits that predict narrative comprehension in adults with RH brain damage. Coarse semantic coding and suppression deficits were related to lesions by voxel-based lesion symptom mapping. Method Participants were 20 adults with RH cerebrovascular accidents. Measures of coarse coding and suppression deficits were computed from lexical decision reaction times at short (175 ms) and long (1000 ms) prime-target intervals. Lesions were drawn on magnetic resonance imaging images and through normalization were registered on an age-matched brain template. Voxel-based lesion symptom mapping analysis was applied to build a general linear model at each voxel. Z score maps were generated for each deficit, and results were interpreted using automated anatomical labeling procedures. Results A deficit in coarse semantic activation was associated with lesions to the RH posterior middle temporal gyrus, dorsolateral prefrontal cortex, and lenticular nuclei. A maintenance deficit for coarsely coded representations involved the RH temporal pole and dorsolateral prefrontal cortex more medially. Ineffective suppression implicated lesions to the RH inferior frontal gyrus and subcortical regions, as hypothesized, along with the rostral temporal pole. Conclusion Beyond their scientific implications, these lesion–deficit correspondences may help inform the clinical diagnosis and enhance decisions about candidacy for deficit-focused treatment to improve narrative comprehension in individuals with RH damage. PMID:26425785
Yang, Ying; Tompkins, Connie A; Meigh, Kimberly M; Prat, Chantel S
2015-11-01
This study examined right hemisphere (RH) neuroanatomical correlates of lexical-semantic deficits that predict narrative comprehension in adults with RH brain damage. Coarse semantic coding and suppression deficits were related to lesions by voxel-based lesion symptom mapping. Participants were 20 adults with RH cerebrovascular accidents. Measures of coarse coding and suppression deficits were computed from lexical decision reaction times at short (175 ms) and long (1000 ms) prime-target intervals. Lesions were drawn on magnetic resonance imaging images and through normalization were registered on an age-matched brain template. Voxel-based lesion symptom mapping analysis was applied to build a general linear model at each voxel. Z score maps were generated for each deficit, and results were interpreted using automated anatomical labeling procedures. A deficit in coarse semantic activation was associated with lesions to the RH posterior middle temporal gyrus, dorsolateral prefrontal cortex, and lenticular nuclei. A maintenance deficit for coarsely coded representations involved the RH temporal pole and dorsolateral prefrontal cortex more medially. Ineffective suppression implicated lesions to the RH inferior frontal gyrus and subcortical regions, as hypothesized, along with the rostral temporal pole. Beyond their scientific implications, these lesion-deficit correspondences may help inform the clinical diagnosis and enhance decisions about candidacy for deficit-focused treatment to improve narrative comprehension in individuals with RH damage.
Alzu'bi, Ayman; Lindsay, Susan; Kerwin, Janet; Looi, Shi Jie; Khalil, Fareha; Clowry, Gavin J
2017-07-01
The extent of similarities and differences between cortical GABAergic interneuron generation in rodent and primate telencephalon remains contentious. We examined expression of three interneuron precursor transcription factors, alongside other markers, using immunohistochemistry on 8-12 post-conceptional weeks (PCW) human telencephalon sections. NKX2.1, OLIG2, and COUP-TFII expression occupied distinct (although overlapping) neurogenic domains which extended into the cortex and revealed three CGE compartments: lateral, medial, and ventral. NKX2.1 expression was very largely confined to the MGE, medial CGE, and ventral septum confirming that, at this developmental stage, interneuron generation from NKX2.1+ precursors closely resembles the process observed in rodents. OLIG2 immunoreactivity was observed in GABAergic cells of the proliferative zones of the MGE and septum, but not necessarily co-expressed with NKX2.1, and OLIG2 expression was also extensively seen in the LGE, CGE, and cortex. At 8 PCW, OLIG2+ cells were only present in the medial and anterior cortical wall suggesting a migratory pathway for interneuron precursors via the septum into the medial cortex. By 12 PCW, OLIG2+ cells were present throughout the cortex and many were actively dividing but without co-expressing cortical progenitor markers. Dividing COUP-TFII+ progenitor cells were localized to ventral CGE as previously described but were also numerous in adjacent ventral cortex; in both the cases, COUP-TFII was co-expressed with PAX6 in proliferative zones and TBR1 or calretinin in post-mitotic cortical neurons. Thus COUP-TFII+ progenitors gave rise to pyramidal cells, but also interneurons which not only migrated posteriorly into the cortex from ventral CGE but also anteriorly via the LGE.
ERIC Educational Resources Information Center
Takehara-Nishiuchi, Kaori; Kawahara, Shigenori; Kirino, Yutaka
2005-01-01
Permanent lesions in the medial prefrontal cortex (mPFC) affect acquisition of conditioned responses (CRs) during trace eyeblink conditioning and retention of remotely acquired CRs. To clarify further roles of the mPFC in this type of learning, we investigated the participation of the mPFC in mnemonic processes both during and after daily…
ERIC Educational Resources Information Center
Gilmartin, Marieke R.; Kwapis, Janine L.; Helmstetter, Fred J.
2013-01-01
Activation of "N"-methyl-D-aspartate receptors (NMDAR) in the prelimbic medial prefrontal cortex (PL mPFC) is necessary for the acquisition of both trace and contextual fear memories, but it is not known how specific NR2 subunits support each association. The NR2B subunit confers unique properties to the NMDAR and may differentially…
Regret and its avoidance: a neuroimaging study of choice behavior.
Coricelli, Giorgio; Critchley, Hugo D; Joffily, Mateus; O'Doherty, John P; Sirigu, Angela; Dolan, Raymond J
2005-09-01
Human decisions can be shaped by predictions of emotions that ensue after choosing advantageously or disadvantageously. Indeed, anticipating regret is a powerful predictor of future choices. We measured brain activity using functional magnetic resonance imaging (fMRI) while subjects selected between two gambles wherein regret was induced by providing information about the outcome of the unchosen gamble. Increasing regret enhanced activity in the medial orbitofrontal region, the anterior cingulate cortex and the hippocampus. Notably, across the experiment, subjects became increasingly regret-aversive, a cumulative effect reflected in enhanced activity within medial orbitofrontal cortex and amygdala. This pattern of activity reoccurred just before making a choice, suggesting that the same neural circuitry mediates direct experience of regret and its anticipation. These results demonstrate that medial orbitofrontal cortex modulates the gain of adaptive emotions in a manner that may provide a substrate for the influence of high-level emotions on decision making.
Neural Basis of Strategic Decision Making
Lee, Daeyeol; Seo, Hyojung
2015-01-01
Human choice behaviors during social interactions often deviate from the predictions of game theory. This might arise partly from the limitations in cognitive abilities necessary for recursive reasoning about the behaviors of others. In addition, during iterative social interactions, choices might change dynamically, as knowledge about the intentions of others and estimates for choice outcomes are incrementally updated via reinforcement learning. Some of the brain circuits utilized during social decision making might be general-purpose and contribute to isomorphic individual and social decision making. By contrast, regions in the medial prefrontal cortex and temporal parietal junction might be recruited for cognitive processes unique to social decision making. PMID:26688301
Bufkin, Jana L; Luttrell, Vickie R
2005-04-01
With the availability of new functional and structural neuroimaging techniques, researchers have begun to localize brain areas that may be dysfunctional in offenders who are aggressive and violent. Our review of 17 neuroimaging studies reveals that the areas associated with aggressive and/or violent behavioral histories, particularly impulsive acts, are located in the prefrontal cortex and the medial temporal regions. These findings are explained in the context of negative emotion regulation, and suggestions are provided concerning how such findings may affect future theoretical frameworks in criminology, crime prevention efforts, and the functioning of the criminal justice system.
Usami, Kiyohide; Matsumoto, Riki; Kunieda, Takeharu; Shimotake, Akihiro; Matsuhashi, Masao; Miyamoto, Susumu; Fukuyama, Hidenao; Takahashi, Ryosuke; Ikeda, Akio
2013-04-01
Previous non-invasive studies have proposed that the deeply seated region of the medial frontal cortex engages in conflict processing in humans, but its core region has remained to be elucidated. By means of direct cortical stimulation, which excels other techniques in temporal and spatial resolutions and in the capacity of producing transient, functional impairment even in the deeply located cortices, we attempted to obtain direct evidence that the pre-supplementary motor area (pre-SMA) actively engages in conflict processing. Subject was a patient with right frontal lobe epilepsy who underwent invasive presurgical evaluation with subdural electrodes placed on the medial and lateral frontal cortices. During a conflict task--modified Eriksen flanker task, direct cortical stimulation was delivered time-locked to the task at the inferior part of the medial superior frontal gyrus (inferior medial SFG), the superior part of the medial SFG, and the middle frontal gyrus. By adopting the session of sham stimulation that was employed as a within-block control, event-related potentials (ERPs) were recorded from the medial and lateral frontal cortices. The inferior medial SFG showed a significant ERP difference between trials with more and less conflict, while the other frontal cortices did not. Among the three stimulus sites, only stimulation of the inferior medial SFG significantly prolonged reaction time in trials with more conflict. Anatomically, the inferior medial SFG corresponded with the pre-SMA (Brodmann area 8). It was located 1-2 cm rostral to the vertical anterior commissure line where cortical stimulation elicited arrest of motion (the supplementary negative motor area). Functionally, this area corresponded to the dorso-rostral portion of the activation loci in previous neuroimaging studies focusing on conflict processing. By combining epicortical ERP recording and direct cortical stimulation in a human brain, this study, for the first time, presented one direct piece of evidence that the pre-SMA actively participates in conflict processing. Copyright © 2013 Elsevier Ltd. All rights reserved.
Neuronal chronometry of target detection: fusion of hemodynamic and event-related potential data.
Calhoun, V D; Adali, T; Pearlson, G D; Kiehl, K A
2006-04-01
Event-related potential (ERP) studies of the brain's response to infrequent, target (oddball) stimuli elicit a sequence of physiological events, the most prominent and well studied being a complex, the P300 (or P3) peaking approximately 300 ms post-stimulus for simple stimuli and slightly later for more complex stimuli. Localization of the neural generators of the human oddball response remains challenging due to the lack of a single imaging technique with good spatial and temporal resolution. Here, we use independent component analyses to fuse ERP and fMRI modalities in order to examine the dynamics of the auditory oddball response with high spatiotemporal resolution across the entire brain. Initial activations in auditory and motor planning regions are followed by auditory association cortex and motor execution regions. The P3 response is associated with brainstem, temporal lobe, and medial frontal activity and finally a late temporal lobe "evaluative" response. We show that fusing imaging modalities with different advantages can provide new information about the brain.
Rodrigo, María José; Padrón, Iván; de Vega, Manuel; Ferstl, Evelyn C.
2014-01-01
This study examines by means of functional magnetic resonance imaging the neural mechanisms underlying adolescents’ risk decision-making in social contexts. We hypothesize that the social context could engage brain regions associated with social cognition processes and developmental changes are also expected. Sixty participants (adolescents: 17–18, and young adults: 21–22 years old) read narratives describing typical situations of decision-making in the presence of peers. They were asked to make choices in risky situations (e.g., taking or refusing a drug) or ambiguous situations (e.g., eating a hamburger or a hotdog). Risky as compared to ambiguous scenarios activated bilateral temporoparietal junction (TPJ), bilateral middle temporal gyrus (MTG), right medial prefrontal cortex, and the precuneus bilaterally; i.e., brain regions related to social cognition processes, such as self-reflection and theory of mind (ToM). In addition, brain structures related to cognitive control were active [right anterior cingulate cortex (ACC), bilateral dorsolateral prefrontal cortex (DLPFC), bilateral orbitofrontal cortex], whereas no significant clusters were obtained in the reward system (ventral striatum). Choosing the dangerous option involved a further activation of control areas (ACC) and emotional and social cognition areas (temporal pole). Adolescents employed more neural resources than young adults in the right DLPFC and the right TPJ in risk situations. When choosing the dangerous option, young adults showed a further engagement in ToM related regions (bilateral MTG) and in motor control regions related to the planning of actions (pre-supplementary motor area). Finally, the right insula and the right superior temporal gyrus were more activated in women than in men, suggesting more emotional involvement and more intensive modeling of the others’ perspective in the risky conditions. These findings call for more comprehensive developmental accounts of decision-making in social contexts that incorporate the role of emotional and social cognition processes. PMID:24592227
Functional anatomic studies of memory retrieval for auditory words and visual pictures.
Buckner, R L; Raichle, M E; Miezin, F M; Petersen, S E
1996-10-01
Functional neuroimaging with positron emission tomography was used to study brain areas activated during memory retrieval. Subjects (n = 15) recalled items from a recent study episode (episodic memory) during two paired-associate recall tasks. The tasks differed in that PICTURE RECALL required pictorial retrieval, whereas AUDITORY WORD RECALL required word retrieval. Word REPETITION and REST served as two reference tasks. Comparing recall with repetition revealed the following observations. (1) Right anterior prefrontal activation (similar to that seen in several previous experiments), in addition to bilateral frontal-opercular and anterior cingulate activations. (2) An anterior subdivision of medial frontal cortex [pre-supplementary motor area (SMA)] was activated, which could be dissociated from a more posterior area (SMA proper). (3) Parietal areas were activated, including a posterior medial area near precuneus, that could be dissociated from an anterior parietal area that was deactivated. (4) Multiple medial and lateral cerebellar areas were activated. Comparing recall with rest revealed similar activations, except right prefrontal activation was minimal and activations related to motor and auditory demands became apparent (e.g., bilateral motor and temporal cortex). Directly comparing picture recall with auditory word recall revealed few notable activations. Taken together, these findings suggest a pathway that is commonly used during the episodic retrieval of picture and word stimuli under these conditions. Many areas in this pathway overlap with areas previously activated by a different set of retrieval tasks using stem-cued recall, demonstrating their generality. Examination of activations within individual subjects in relation to structural magnetic resonance images provided an-atomic information about the location of these activations. Such data, when combined with the dissociations between functional areas, provide an increasingly detailed picture of the brain pathways involved in episodic retrieval tasks.
Roth, Fabian C; Beyer, Katinka M; Both, Martin; Draguhn, Andreas; Egorov, Alexei V
2016-12-01
The entorhinal cortex (EC) is a critical component of the medial temporal lobe (MTL) memory system. Local networks within the MTL express a variety of state-dependent network oscillations that are believed to organize neuronal activity during memory formation. The peculiar pattern of sharp wave-ripple complexes (SPW-R) entrains neurons by a very fast oscillation at ∼200 Hz in the hippocampal areas CA3 and CA1 and then propagates through the "output loop" into the EC. The precise mechanisms of SPW-R propagation and the resulting cellular input patterns in the mEC are, however, largely unknown. We therefore investigated the activity of layer V (LV) principal neurons of the medial EC (mEC) during SPW-R oscillations in horizontal mouse brain slices. Intracellular recordings in the mEC were combined with extracellular monitoring of propagating network activity. SPW-R in CA1 were regularly followed by negative field potential deflections in the mEC. Propagation of SPW-R activity from CA1 to the mEC was mostly monosynaptic and excitatory, such that synaptic input to mEC LV neurons directly reflected unit activity in CA1. Comparison with propagating network activity from CA3 to CA1 revealed a similar role of excitatory long-range connections for both regions. However, SPW-R-induced activity in CA1 involved strong recruitment of rhythmic synaptic inhibition and corresponding fast field oscillations, in contrast to the mEC. These differences between features of propagating SPW-R emphasize the differential processing of network activity by each local network of the hippocampal output loop. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Structural covariance mapping delineates medial and medio-lateral temporal networks in déjà vu.
Shaw, Daniel Joel; Mareček, Radek; Brázdil, Milan
2016-12-01
Déjà vu (DV) is an eerie phenomenon experienced frequently as an aura of temporal lobe epilepsy, but also reported commonly by healthy individuals. The former pathological manifestation appears to result from aberrant neural activity among brain structures within the medial temporal lobes. Recent studies also implicate medial temporal brain structures in the non-pathological experience of DV, but as one element of a diffuse neuroanatomical correlate; it remains to be seen if neural activity among the medial temporal lobes also underlies this benign manifestation. The present study set out to investigate this. Due to its unpredictable and infrequent occurrence, however, non-pathological DV does not lend itself easily to functional neuroimaging. Instead, we draw on research showing that brain structure covaries among regions that interact frequently as nodes of functional networks. Specifically, we assessed whether grey-matter covariance among structures implicated in non-pathological DV differs according to the frequency with which the phenomenon is experienced. This revealed two diverging patterns of structural covariation: Among the first, comprised primarily of medial temporal structures and the caudate, grey-matter volume becomes more positively correlated with higher frequency of DV experience. The second pattern encompasses medial and lateral temporal structures, among which greater DV frequency is associated with more negatively correlated grey matter. Using a meta-analytic method of co-activation mapping, we demonstrate a higher probability of functional interactions among brain structures constituting the former pattern, particularly during memory-related processes. Our findings suggest that altered neural signalling within memory-related medial temporal brain structures underlies both pathological and non-pathological DV.
Enhanced affective brain representations of chocolate in cravers vs. non-cravers.
Rolls, Edmund T; McCabe, Ciara
2007-08-01
To examine the neural circuitry involved in food craving, in making food particularly appetitive and thus in driving wanting and eating, we used fMRI to measure the response to the flavour of chocolate, the sight of chocolate and their combination in cravers vs. non-cravers. Statistical parametric mapping (SPM) analyses showed that the sight of chocolate produced more activation in chocolate cravers than non-cravers in the medial orbitofrontal cortex and ventral striatum. For cravers vs. non-cravers, a combination of a picture of chocolate with chocolate in the mouth produced a greater effect than the sum of the components (i.e. supralinearity) in the medial orbitofrontal cortex and pregenual cingulate cortex. Furthermore, the pleasantness ratings of the chocolate and chocolate-related stimuli had higher positive correlations with the fMRI blood oxygenation level-dependent signals in the pregenual cingulate cortex and medial orbitofrontal cortex in the cravers than in the non-cravers. To our knowledge, this is the first study to show that there are differences between cravers and non-cravers in their responses to the sensory components of a craved food in the orbitofrontal cortex, ventral striatum and pregenual cingulate cortex, and that in some of these regions the differences are related to the subjective pleasantness of the craved foods. Understanding individual differences in brain responses to very pleasant foods helps in the understanding of the mechanisms that drive the liking for specific foods and thus intake of those foods.
LoPresti, Matthew L; Schon, Karin; Tricarico, Marisa D; Swisher, Jascha D; Celone, Kim A; Stern, Chantal E
2008-04-02
During everyday interactions, we continuously monitor and maintain information about different individuals and their changing emotions in memory. Yet to date, working memory (WM) studies have primarily focused on mechanisms for maintaining face identity, but not emotional expression, and studies investigating the neural basis of emotion have focused on transient activity, not delay related activity. The goal of this functional magnetic resonance imaging study was to investigate WM for two critical social cues: identity and emotion. Subjects performed a delayed match-to-sample task that required them to match either the emotional expression or the identity of a face after a 10 s delay. Neuroanatomically, our predictions focused on the orbitofrontal cortex (OFC) and the amygdala, as these regions have previously been implicated in emotional processing and long-term memory, and studies have demonstrated sustained OFC and medial temporal lobe activity during visual WM. Consistent with previous studies, transient activity during the sample period representing emotion and identity was found in the superior temporal sulcus and inferior occipital cortex, respectively. Sustained delay-period activity was evident in OFC, amygdala, and hippocampus, for both emotion and identity trials. These results suggest that, although initial processing of emotion and identity is accomplished in anatomically segregated temporal and occipital regions, sustained delay related memory for these two critical features is held by the OFC, amygdala and hippocampus. These regions share rich connections, and have been shown previously to be necessary for binding features together in long-term memory. Our results suggest a role for these regions in active maintenance as well.
Brown, Thackery I; Rissman, Jesse; Chow, Tiffany E; Uncapher, Melina R; Wagner, Anthony D
2018-04-18
Autobiographical remembering can depend on two forms of memory: episodic (event) memory and autobiographical semantic memory (remembering personally relevant semantic knowledge, independent of recalling a specific experience). There is debate about the degree to which the neural signals that support episodic recollection relate to or build upon autobiographical semantic remembering. Pooling data from two fMRI studies of memory for real-world personal events, we investigated whether medial temporal lobe (MTL) and parietal subregions contribute to autobiographical episodic and semantic remembering. During scanning, participants made memory judgments about photograph sequences depicting past events from their life or from others' lives, and indicated whether memory was based on episodic or semantic knowledge. Results revealed several distinct functional patterns: activity in most MTL subregions was selectively associated with autobiographical episodic memory; the hippocampal tail, superior parietal lobule, and intraparietal sulcus were similarly engaged when memory was based on retrieval of an autobiographical episode or autobiographical semantic knowledge; and angular gyrus demonstrated a graded pattern, with activity declining from autobiographical recollection to autobiographical semantic remembering to correct rejections of novel events. Collectively, our data offer insights into MTL and parietal cortex functional organization, and elucidate circuitry that supports different forms of real-world autobiographical memory.
Brain mechanisms of successful recognition through retrieval of semantic context.
Flegal, Kristin E; Marín-Gutiérrez, Alejandro; Ragland, J Daniel; Ranganath, Charan
2014-08-01
Episodic memory is associated with the encoding and retrieval of context information and with a subjective sense of reexperiencing past events. The neural correlates of episodic retrieval have been extensively studied using fMRI, leading to the identification of a "general recollection network" including medial temporal, parietal, and prefrontal regions. However, in these studies, it is difficult to disentangle the effects of context retrieval from recollection. In this study, we used fMRI to determine the extent to which the recruitment of regions in the recollection network is contingent on context reinstatement. Participants were scanned during a cued recognition test for target words from encoded sentences. Studied target words were preceded by either a cue word studied in the same sentence (thus congruent with encoding context) or a cue word studied in a different sentence (thus incongruent with encoding context). Converging fMRI results from independently defined ROIs and whole-brain analysis showed regional specificity in the recollection network. Activity in hippocampus and parahippocampal cortex was specifically increased during successful retrieval following congruent context cues, whereas parietal and prefrontal components of the general recollection network were associated with confident retrieval irrespective of contextual congruency. Our findings implicate medial temporal regions in the retrieval of semantic context, contributing to, but dissociable from, recollective experience.
Greater Working Memory Load Results in Greater Medial Temporal Activity at Retrieval
Quiroz, Yakeel T.; Hasselmo, Michael E.; Stern, Chantal E.
2009-01-01
Most functional magnetic resonance imaging (fMRI) studies examining working memory (WM) load have focused on the prefrontal cortex (PFC) and have demonstrated increased prefrontal activity with increased load. Here we examined WM load effects in the medial temporal lobe (MTL) using an fMRI Sternberg task with novel complex visual scenes. Trials consisted of 3 sequential events: 1) sample presentation (encoding), 2) delay period (maintenance), and 3) probe period (retrieval). During sample encoding, subjects saw either 2 or 4 pictures consecutively. During retrieval, subjects indicated whether the probe picture matched one of the sample pictures. Results revealed that activity in the left anterior hippocampal formation, bilateral retrosplenial area, and left amygdala was greater at retrieval for trials with larger memory load, whereas activity in the PFC was greater at encoding for trials with larger memory load. There was no load effect during the delay. When encoding, maintenance, and retrieval periods were compared with fixation, activity was present in the hippocampal body/tail and fusiform gyrus bilaterally during encoding and retrieval, but not maintenance. Bilateral dorsolateral prefrontal activity was present during maintenance, but not during encoding or retrieval. The results support models of WM predicting that activity in the MTL should be modulated by WM load. PMID:19224975
Keller, Johannes; Grön, Georg
2016-01-01
Previously, experimentally induced flow experiences have been demonstrated with perfusion imaging during activation blocks of 3 min length to accommodate with the putatively slowly evolving “mood” characteristics of flow. Here, we used functional magnetic resonance imaging (fMRI) in a sample of 23 healthy, male participants to investigate flow in the context of a typical fMRI block design with block lengths as short as 30 s. To induce flow, demands of arithmetic tasks were automatically and continuously adjusted to the individual skill level. Compared against conditions of boredom and overload, experience of flow was evident from individuals’ reported subjective experiences and changes in electrodermal activity. Neural activation was relatively increased during flow, particularly in the anterior insula, inferior frontal gyri, basal ganglia and midbrain. Relative activation decreases during flow were observed in medial prefrontal and posterior cingulate cortex, and in the medial temporal lobe including the amygdala. Present findings suggest that even in the context of comparably short activation blocks flow can be reliably experienced and is associated with changes in neural activation of brain regions previously described. Possible mechanisms of interacting brain regions are outlined, awaiting further investigation which should now be possible given the greater temporal resolution compared with previous perfusion imaging. PMID:26508774
Geyer, Thomas; Baumgartner, Florian; Müller, Hermann J.; Pollmann, Stefan
2012-01-01
Using visual search, functional magnetic resonance imaging (fMRI) and patient studies have demonstrated that medial temporal lobe (MTL) structures differentiate repeated from novel displays—even when observers are unaware of display repetitions. This suggests a role for MTL in both explicit and, importantly, implicit learning of repeated sensory information (Greene et al., 2007). However, recent behavioral studies suggest, by examining visual search and recognition performance concurrently, that observers have explicit knowledge of at least some of the repeated displays (Geyer et al., 2010). The aim of the present fMRI study was thus to contribute new evidence regarding the contribution of MTL structures to explicit vs. implicit learning in visual search. It was found that MTL activation was increased for explicit and, respectively, decreased for implicit relative to baseline displays. These activation differences were most pronounced in left anterior parahippocampal cortex (aPHC), especially when observers were highly trained on the repeated displays. The data are taken to suggest that explicit and implicit memory processes are linked within MTL structures, but expressed via functionally separable mechanisms (repetition-enhancement vs. -suppression). They further show that repetition effects in visual search would have to be investigated at the display level. PMID:23060776
Mason, Emily J; Hussey, Erin P; Molitor, Robert J; Ko, Philip C; Donahue, Manus J; Ally, Brandon A
2017-01-01
Early detection may be the key to developing therapies that will combat Alzheimer's disease (AD). It has been consistently demonstrated that one of the main pathologies of AD, tau, is present in the brain decades before a clinical diagnosis. Tau pathology follows a stereotypical route through the medial temporal lobe beginning in the entorhinal and perirhinal cortices. If early pathology leads to very subtle changes in behavior, it may be possible to detect these changes in subjects years before a clinical diagnosis can currently be made. We aimed to discover if cognitively normal middle-aged adults (40-60 years old) at increased risk for AD due to family history would have impaired performance on a cognitive task known to challenge the perirhinal cortex. Using an oddity detection task, we found that subjects with a family history of AD had lowered accuracy without demonstrating differences in rate of acquisition. There were no differences between subjects' medial temporal lobe volume or cortical thickness, indicating that the changes in behavior were not due to significant atrophy. These results demonstrate that subtle changes in perceptual processing are detectable years before a typical diagnosis even when there are no differences detectable in structural imaging data. Anatomically-targeted cognitive testing may be useful in identifying subjects in the earliest stages of AD.
Greene, Ciara M.; Soto, David
2012-01-01
It remains an intriguing question why the medial temporal lobe (MTL) can display either attenuation or enhancement of neural activity following repetition of previously studied items. To isolate the role of encoding experience itself, we assessed neural repetition effects in the absence of any ongoing task demand or intentional orientation to retrieve. Experiment 1 showed that the hippocampus and surrounding MTL regions displayed neural repetition suppression (RS) upon repetition of past items that were merely attended during an earlier study phase but this was not the case following re-occurrence of items that had been encoded into working memory (WM). In this latter case a trend toward neural repetition enhancement (RE) was observed, though this was highly variable across individuals. Interestingly, participants with a higher degree of neural RE in the MTL complex displayed higher memory sensitivity in a later, surprise recognition test. Experiment 2 showed that massive exposure at encoding effected a change in the neural architecture supporting incidental repetition effects, with regions of the posterior parietal and ventral-frontal cortex in addition to the hippocampus displaying neural RE, while no neural RS was observed. The nature of encoding experience therefore modulates the expression of neural repetition effects in the MTL and the neocortex in the absence of memory goals. PMID:22829892
Guedj, Eric; Aubert, Sandrine; McGonigal, Aileen; Mundler, Olivier; Bartolomei, Fabrice
2010-06-01
To contribute to the identification of brain regions involved in déjà-vu, we studied the metabolic pattern of cortical involvement in patients with seizures of temporal lobe origin presenting with or without déjà-vu. Using voxel-based analysis of 18FDG-PET brain scans, we compared glucose metabolic rate of 8 patients with déjà-vu, 8 patients without déjà-vu, and 20 age-matched healthy subjects. Patients were selected after comprehensive non-invasive presurgical evaluation, including normal brain MRI and surface electroclinical features compatible with unilateral temporal lobe epilepsy (TLE). Patients with and without déjà-vu did not differ in terms of age, gender, epilepsy lateralization, epilepsy onset, epilepsy duration, and other subjective ictal manifestations. TLE patients with déjà-vu exhibited ipsilateral hypometabolism of superior temporal gyrus and of parahippocampal region, in the vicinity of perirhinal/entorhinal cortex, in comparison either to healthy subjects or to TLE patients without déjà-vu (p<0.05 FDR-corrected). By contrast, no difference was found between patient subgroups for hypometabolism of hippocampus and amygdala. At an individual-level, in comparison to healthy subjects, hypometabolism of both parahippocampal region and superior temporal gyrus was present in 7/8 patients with déjà-vu. Hippocampal metabolism was spared in 3 of these 7 patients. These findings argue for metabolic dysfunction of a medial-lateral temporal network in patients with déjà-vu and normal brain MRI. Within the medial temporal lobe, specific involvement of the parahippocampal region, often in the absence of hippocampal impairment, suggests that the feeling of familiarity during seizures greatly depends on alteration of the recognition memory system. Copyright 2010 Elsevier Ltd. All rights reserved.
Tanei, Takafumi; Kajita, Yasukazu; Nihashi, Takashi; Kaneoke, Yoshiki; Takebayashi, Shigenori; Nakatsubo, Daisuke; Wakabayashi, Toshihiko
2009-11-01
Changes in regional cerebral blood flow (rCBF) induced by unilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) were investigated in 7 consecutive patients with Parkinson's disease, 4 men and 3 women (mean age 62.3 +/- 8.1 years), who underwent rCBF measurement by N-isopropyl-p-(iodine-123)-iodoamphetamine single photon emission computed tomography at rest before and after unilateral STN DBS preoperatively in the on-drug condition, and postoperatively in the on-drug and on-stimulation condition. Statistical parametric mapping was used to identify significant changes in rCBF from the preoperative to the postoperative conditions. rCBF was increased in the bilateral cingulate cortices and bilateral cerebellar hemispheres. rCBF was decreased in the bilateral medial frontal cortices and left superior temporal cortex. Unilateral STN DBS produced rCBF changes in the bilateral cingulate cortices, cerebellar hemispheres, and medial frontal cortices. These findings indicate that unilateral STN DBS affects rCBF in both hemispheres.
Hill, Paul F; Yi, Richard; Spreng, R Nathan; Diana, Rachel A
2017-11-15
Behavioral studies using delay and social discounting as indices of self-control and altruism, respectively, have revealed functional similarities between farsighted and social decisions. However, neural evidence for this functional link is lacking. Twenty-five young adults completed a delay and social discounting task during fMRI scanning. A spatiotemporal partial least squares analysis revealed that both forms of discounting were well characterized by a pattern of brain activity in areas comprising frontoparietal control, default, and mesolimbic reward networks. Both forms of discounting appear to draw on common neurocognitive mechanisms, regardless of whether choices involve intertemporal or interpersonal outcomes. We also observed neural profiles differentiating between high and low discounters. High discounters were well characterized by increased medial temporal lobe and limbic activity. In contrast, low discount rates were associated with activity in the medial prefrontal cortex and right temporoparietal junction. This pattern may reflect biological mechanisms underlying behavioral heterogeneity in discount rates. Copyright © 2017 Elsevier Inc. All rights reserved.
Imaging Phenotypes of Major Depressive Disorder: Genetic Correlates
Savitz, Jonathan B; Drevets, Wayne C
2009-01-01
Imaging techniques are a potentially powerful method of identifying phenotypes that are associated with, or are indicative of a vulnerability to developing major depressive disorder (MDD). Here we identify seven promising MDD-associated traits identified by magnetic resonance imaging (MRI) or positron emission tomography (PET). We evaluate whether these traits are state-independent, heritable endophenotypes, or state-dependent phenotypes that may be useful markers of treatment efficacy. In MDD, increased activity of the amygdala in response to negative stimuli appears to be a mood-congruent phenomenon, and is likely moderated by the serotonin transporter gene (SLC6A4) promoter polymorphism (5-HTTLPR). Hippocampal volume loss is characteristic of elderly or chronically-ill samples and may be impacted by the val66met brain-derived neurotrophic factor (BDNF) gene variant and the 5-HTTLPR SLC6A4 polymorphism. White matter pathology is salient in elderly MDD cohorts but is associated with cerebrovascular disease, and is unlikely to be a useful marker of a latent MDD diathesis. Increased blood flow or metabolism of the subgenual anterior cingulate cortex (sgACC), together with gray matter volume loss in this region, is a well-replicated finding in MDD. An attenuation of the usual pattern of fronto-limbic connectivity, particularly a decreased temporal correlation in amygdala-anterior cingulate cortex (ACC) activity, is another MDD-associated trait. Concerning neuroreceptor PET imaging, decreased 5-HT1A binding potential in the raphe, medial temporal lobe, and medial prefrontal cortex (mPFC) has been strongly associated with MDD, and may be impacted by a functional single nucleotide polymorphism in the promoter region of the 5-HT1A gene (HTR1A: –1019C/G; rs6295). Potentially indicative of inter-study variation in MDD etiology or mood state, both increased and decreased binding potential of the serotonin transporter has been reported. Challenges facing the field include the problem of phenotypic and etiological heterogeneity, technological limitations, the confounding effects of medication, and non-disease related inter-individual variation in brain morphology and function. Further advances are likely as epigenetic, copy-number variant, gene-gene interaction, and genome-wide association (GWA) approaches are brought to bear on imaging data. PMID:19358877
Prior cocaine exposure disrupts extinction of fear conditioning
Burke, Kathryn A.; Franz, Theresa M.; Gugsa, Nishan; Schoenbaum, Geoffrey
2008-01-01
Psychostimulant exposure has been shown to cause molecular and cellular changes in prefrontal cortex. It has been hypothesized that these drug-induced changes might affect the operation of prefrontal-limbic circuits, disrupting their normal role in controlling behavior and thereby leading to compulsive drug-seeking. To test this hypothesis, we tested cocaine-treated rats in a fear conditioning, inflation, and extinction task, known to depend on medial prefrontal cortex and amygdala. Cocaine-treated rats conditioned and inflated similar to saline controls but displayed slower extinction learning. These results support the hypothesis that control processes in the medial prefrontal cortex are impaired by cocaine exposure. PMID:16847305
Prior cocaine exposure disrupts extinction of fear conditioning.
Burke, Kathryn A; Franz, Theresa M; Gugsa, Nishan; Schoenbaum, Geoffrey
2006-01-01
Psychostimulant exposure has been shown to cause molecular and cellular changes in prefrontal cortex. It has been hypothesized that these drug-induced changes might affect the operation of prefrontal-limbic circuits, disrupting their normal role in controlling behavior and thereby leading to compulsive drug-seeking. To test this hypothesis, we tested cocaine-treated rats in a fear conditioning, inflation, and extinction task, known to depend on medial prefrontal cortex and amygdala. Cocaine-treated rats conditioned and inflated similar to saline controls but displayed slower extinction learning. These results support the hypothesis that control processes in the medial prefrontal cortex are impaired by cocaine exposure.
Reliability Correction for Functional Connectivity: Theory and Implementation
Mueller, Sophia; Wang, Danhong; Fox, Michael D.; Pan, Ruiqi; Lu, Jie; Li, Kuncheng; Sun, Wei; Buckner, Randy L.; Liu, Hesheng
2016-01-01
Network properties can be estimated using functional connectivity MRI (fcMRI). However, regional variation of the fMRI signal causes systematic biases in network estimates including correlation attenuation in regions of low measurement reliability. Here we computed the spatial distribution of fcMRI reliability using longitudinal fcMRI datasets and demonstrated how pre-estimated reliability maps can correct for correlation attenuation. As a test case of reliability-based attenuation correction we estimated properties of the default network, where reliability was significantly lower than average in the medial temporal lobe and higher in the posterior medial cortex, heterogeneity that impacts estimation of the network. Accounting for this bias using attenuation correction revealed that the medial temporal lobe’s contribution to the default network is typically underestimated. To render this approach useful to a greater number of datasets, we demonstrate that test-retest reliability maps derived from repeated runs within a single scanning session can be used as a surrogate for multi-session reliability mapping. Using data segments with different scan lengths between 1 and 30 min, we found that test-retest reliability of connectivity estimates increases with scan length while the spatial distribution of reliability is relatively stable even at short scan lengths. Finally, analyses of tertiary data revealed that reliability distribution is influenced by age, neuropsychiatric status and scanner type, suggesting that reliability correction may be especially important when studying between-group differences. Collectively, these results illustrate that reliability-based attenuation correction is an easily implemented strategy that mitigates certain features of fMRI signal nonuniformity. PMID:26493163
Effect of satiety on brain activation during chocolate tasting in men and women.
Smeets, Paul A M; de Graaf, Cees; Stafleu, Annette; van Osch, Matthias J P; Nievelstein, Rutger A J; van der Grond, Jeroen
2006-06-01
The brain plays a crucial role in the decision to eat, integrating multiple hormonal and neural signals. A key factor controlling food intake is selective satiety, ie, the phenomenon that the motivation to eat more of a food decreases more than does the motivation to eat foods not eaten. We investigated the effect of satiation with chocolate on the brain activation associated with chocolate taste in men and women. Twelve men and 12 women participated. Subjects fasted overnight and were scanned by use of functional magnetic resonance imaging while tasting chocolate milk, before and after eating chocolate until they were satiated. In men, chocolate satiation was associated with increased taste activation in the ventral striatum, insula, and orbitofrontal and medial orbitofrontal cortex and with decreased taste activation in somatosensory areas. Women showed increased taste activation in the precentral gyrus, superior temporal gyrus, and putamen and decreased taste activation in the hypothalamus and amygdala. Sex differences in the effect of chocolate satiation were found in the hypothalamus, ventral striatum, and medial prefrontal cortex (all P < 0.005). Our results indicate that men and women differ in their response to satiation and suggest that the regulation of food intake by the brain may vary between the sexes. Therefore, sex differences are a covariate of interest in studies of the brain's responses to food.
Multiple faces of pain: effects of chronic pain on the brain regulation of facial expression
Vachon-Presseau, Etienne; Roy, Mathieu; Woo, Choong-Wan; Kunz, Miriam; Martel, Marc-Olivier; Sullivan, Michael J.; Jackson, Philip L.; Wager, Tor D.; Rainville, Pierre
2018-01-01
Pain behaviors are shaped by social demands and learning processes, and chronic pain has been previously suggested to affect their meaning. In this study, we combined functional magnetic resonance imaging with in-scanner video recording during thermal pain stimulations and use multilevel mediation analyses to study the brain mediators of pain facial expressions and the perception of pain intensity (self-reports) in healthy individuals and patients with chronic back pain (CBP). Behavioral data showed that the relation between pain expression and pain report was disrupted in CBP. In both patients with CBP and healthy controls, brain activity varying on a trial-by-trial basis with pain facial expressions was mainly located in the primary motor cortex and completely dissociated from the pattern of brain activity varying with pain intensity ratings. Stronger activity was observed in CBP specifically during pain facial expressions in several nonmotor brain regions such as the medial prefrontal cortex, the precuneus, and the medial temporal lobe. In sharp contrast, no moderating effect of chronic pain was observed on brain activity associated with pain intensity ratings. Our results demonstrate that pain facial expressions and pain intensity ratings reflect different aspects of pain processing and support psychosocial models of pain suggesting that distinctive mechanisms are involved in the regulation of pain behaviors in chronic pain. PMID:27411160
Gilmartin, Marieke R.; Helmstetter, Fred J.
2010-01-01
The contribution of the medial prefrontal cortex (mPFC) to the formation of memory is a subject of considerable recent interest. Notably, the mechanisms supporting memory acquisition in this structure are poorly understood. The mPFC has been implicated in the acquisition of trace fear conditioning, a task that requires the association of a conditional stimulus (CS) and an aversive unconditional stimulus (UCS) across a temporal gap. In both rat and human subjects, frontal regions show increased activity during the trace interval separating the CS and UCS. We investigated the contribution of prefrontal neural activity in the rat to the acquisition of trace fear conditioning using microinfusions of the γ-aminobutyric acid type A (GABAA) receptor agonist muscimol. We also investigated the role of prefrontal N-methyl-d-aspartate (NMDA) receptor-mediated signaling in trace fear conditioning using the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (APV). Temporary inactivation of prefrontal activity with muscimol or blockade of NMDA receptor-dependent transmission in mPFC impaired the acquisition of trace, but not delay, conditional fear responses. Simultaneously acquired contextual fear responses were also impaired in drug-treated rats exposed to trace or delay, but not unpaired, training protocols. Our results support the idea that synaptic plasticity within the mPFC is critical for the long-term storage of memory in trace fear conditioning. PMID:20504949
Brain structure in schizophrenia vs. psychotic bipolar I disorder: A VBM study.
Nenadic, Igor; Maitra, Raka; Langbein, Kerstin; Dietzek, Maren; Lorenz, Carsten; Smesny, Stefan; Reichenbach, Jürgen R; Sauer, Heinrich; Gaser, Christian
2015-07-01
While schizophrenia and bipolar disorder have been assumed to share phenotypic and genotypic features, there is also evidence for overlapping brain structural correlates, although it is unclear whether these relate to shared psychotic features. In this study, we used voxel-based morphometry (VBM8) in 34 schizophrenia patients, 17 euthymic bipolar I disorder patients (with a history of psychotic symptoms), and 34 healthy controls. Our results indicate that compared to healthy controls schizophrenia patients show grey matter deficits (p<0.05, FDR corrected) in medial and right dorsolateral prefrontal, as well as bilaterally in ventrolateral prefrontal and insular cortical areas, thalamus (bilaterally), left superior temporal cortex, and minor medial parietal and parietooccipital areas. Comparing schizophrenia vs. bipolar I patients (p<0.05, FDR corrected) yielded a similar pattern, however, there was an additional significant reduction in schizophrenia patients in the (posterior) hippocampus bilaterally, left dorsolateral prefrontal cortex, and left cerebellum. Compared to healthy controls, the deficits in bipolar I patients only reached significance at p<0.001 (uncorr.) for a minor parietal cluster, but not for prefrontal areas. Our results suggest that the more extensive prefrontal, thalamic, and hippocampal deficits that might set apart schizophrenia and bipolar disorder might not be related to mere appearance of psychotic symptoms at some stage of the disorders. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Xianjun; Di, Qian; Li, Yao; Zhao, Xiaojie
2009-02-01
Recently, evidences from fMRI studies have shown that there was decreased activity among the default-mode network in Alzheimer's disease (AD), and DTI researches also demonstrated that demyelinations exist in white matter of AD patients. Therefore, combining these two MRI methods may help to reveal the relationship between white matter damages and alterations of the resting state functional connectivity network. In the present study, we tried to address this issue by means of correlation analysis between DTI and resting state fMRI images. The default-mode networks of AD and normal control groups were compared to find the areas with significantly declined activity firstly. Then, the white matter regions whose fractional anisotropy (FA) value correlated with this decline were located through multiple regressions between the FA values and the BOLD response of the default networks. Among these correlating white matter regions, those whose FA values also declined were found by a group comparison between AD patients and healthy elderly control subjects. Our results showed that the areas with decreased activity among default-mode network included left posterior cingulated cortex (PCC), left medial temporal gyrus et al. And the damaged white matter areas correlated with the default-mode network alterations were located around left sub-gyral temporal lobe. These changes may relate to the decreased connectivity between PCC and medial temporal lobe (MTL), and thus correlate with the deficiency of default-mode network activity.
van Kerkhof, Linda WM; Damsteegt, Ruth; Trezza, Viviana; Voorn, Pieter; Vanderschuren, Louk JMJ
2013-01-01
Social play behavior is a characteristic, vigorous form of social interaction in young mammals. It is highly rewarding and thought to be of major importance for social and cognitive development. The neural substrates of social play are incompletely understood, but there is evidence to support a role for the prefrontal cortex (PFC) and striatum in this behavior. Using pharmacological inactivation methods, ie, infusions of GABA receptor agonists (baclofen and muscimol; B&M) or the AMPA/kainate receptor antagonist 6,7-dinitroquinoxaline-2,3(1H,4H)-dione (DNQX), we investigated the involvement of several subregions of the medial PFC and striatum in social play. Inactivation of the prelimbic cortex, infralimbic cortex, and medial/ventral orbitofrontal cortex using B&M markedly reduced frequency and duration of social play behavior. Local administration of DNQX into the dorsomedial striatum increased the frequency and duration of social play, whereas infusion of B&M tended to have the same effect. Inactivation of the nucleus accumbens (NAcc) core using B&M increased duration but not frequency of social play, whereas B&M infusion into the NAcc shell did not influence social play behavior. Thus, functional integrity of the medial PFC is important for the expression of social play behavior. Glutamatergic inputs into the dorsomedial striatum exert an inhibitory influence on social play, and functional activity in the NAcc core acts to limit the length of playful interactions. These results highlight the importance of prefrontal and striatal circuits implicated in cognitive control, decision making, behavioral inhibition, and reward-associated processes in social play behavior. PMID:23568326
Wada, Akihiko; Shizukuishi, Takashi; Kikuta, Junko; Yamada, Haruyasu; Watanabe, Yusuke; Imamura, Yoshiki; Shinozaki, Takahiro; Dezawa, Ko; Haradome, Hiroki; Abe, Osamu
2017-05-01
Burning mouth syndrome (BMS) is a chronic intraoral pain syndrome featuring idiopathic oral pain and burning discomfort despite clinically normal oral mucosa. The etiology of chronic pain syndrome is unclear, but preliminary neuroimaging research has suggested the alteration of volume, metabolism, blood flow, and diffusion at multiple brain regions. According to the neuromatrix theory of Melzack, pain sense is generated in the brain by the network of multiple pain-related brain regions. Therefore, the alteration of pain-related network is also assumed as an etiology of chronic pain. In this study, we investigated the brain network of BMS brain by using probabilistic tractography and graph analysis. Fourteen BMS patients and 14 age-matched healthy controls underwent 1.5T MRI. Structural connectivity was calculated in 83 anatomically defined regions with probabilistic tractography of 60-axis diffusion tensor imaging and 3D T1-weighted imaging. Graph theory network analysis was used to evaluate the brain network at local and global connectivity. In BMS brain, a significant difference of local brain connectivity was recognized at the bilateral rostral anterior cingulate cortex, right medial orbitofrontal cortex, and left pars orbitalis which belong to the medial pain system; however, no significant difference was recognized at the lateral system including the somatic sensory cortex. A strengthened connection of the anterior cingulate cortex and medial prefrontal cortex with the basal ganglia, thalamus, and brain stem was revealed. Structural brain network analysis revealed the alteration of the medial system of the pain-related brain network in chronic pain syndrome.
Anticipatory activity in primary motor cortex codes memorized movement sequences.
Lu, Xiaofeng; Ashe, James
2005-03-24
Movement sequences, defined both by the component movements and by the serial order in which they are produced, are fundamental building blocks of motor behavior. The serial order of sequence production is strongly encoded in medial motor areas. It is not known to what extent sequences are further elaborated or encoded in primary motor cortex. Here, we describe cells in the primary motor cortex of the monkey that show anticipatory activity exclusively related to a specific memorized sequence of upcoming movements. In addition, the injection of muscimol, a GABA agonist, into motor cortex resulted in an increase in the error rate during sequence production, without concomitant effects on nonsequenced motor performance. Our results challenge the role of medial motor areas in the control of well-practiced movement sequences and suggest that motor cortex contains a complete apparatus for the planning and production of this complex behavior.
3D Shape Perception in Posterior Cortical Atrophy: A Visual Neuroscience Perspective.
Gillebert, Céline R; Schaeverbeke, Jolien; Bastin, Christine; Neyens, Veerle; Bruffaerts, Rose; De Weer, An-Sofie; Seghers, Alexandra; Sunaert, Stefan; Van Laere, Koen; Versijpt, Jan; Vandenbulcke, Mathieu; Salmon, Eric; Todd, James T; Orban, Guy A; Vandenberghe, Rik
2015-09-16
Posterior cortical atrophy (PCA) is a rare focal neurodegenerative syndrome characterized by progressive visuoperceptual and visuospatial deficits, most often due to atypical Alzheimer's disease (AD). We applied insights from basic visual neuroscience to analyze 3D shape perception in humans affected by PCA. Thirteen PCA patients and 30 matched healthy controls participated, together with two patient control groups with diffuse Lewy body dementia (DLBD) and an amnestic-dominant phenotype of AD, respectively. The hierarchical study design consisted of 3D shape processing for 4 cues (shading, motion, texture, and binocular disparity) with corresponding 2D and elementary feature extraction control conditions. PCA and DLBD exhibited severe 3D shape-processing deficits and AD to a lesser degree. In PCA, deficient 3D shape-from-shading was associated with volume loss in the right posterior inferior temporal cortex. This region coincided with a region of functional activation during 3D shape-from-shading in healthy controls. In PCA patients who performed the same fMRI paradigm, response amplitude during 3D shape-from-shading was reduced in this region. Gray matter volume in this region also correlated with 3D shape-from-shading in AD. 3D shape-from-disparity in PCA was associated with volume loss slightly more anteriorly in posterior inferior temporal cortex as well as in ventral premotor cortex. The findings in right posterior inferior temporal cortex and right premotor cortex are consistent with neurophysiologically based models of the functional anatomy of 3D shape processing. However, in DLBD, 3D shape deficits rely on mechanisms distinct from inferior temporal structural integrity. Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by progressive visuoperceptual dysfunction and most often an atypical presentation of Alzheimer's disease (AD) affecting the ventral and dorsal visual streams rather than the medial temporal system. We applied insights from fundamental visual neuroscience to analyze 3D shape perception in PCA. 3D shape-processing deficits were affected beyond what could be accounted for by lower-order processing deficits. For shading and disparity, this was related to volume loss in regions previously implicated in 3D shape processing in the intact human and nonhuman primate brain. Typical amnestic-dominant AD patients also exhibited 3D shape deficits. Advanced visual neuroscience provides insight into the pathogenesis of PCA that also bears relevance for vision in typical AD. Copyright © 2015 Gillebert, Schaeverbeke et al.
Christie, Lori-Ann; Saunders, Richard C.; Kowalska, Danuta, M.; MacKay, William A.; Head, Elizabeth; Cotman, Carl W.; Milgram, Norton W.
2014-01-01
To examine the effects of rhinal and dorsolateral prefrontal cortex lesions on object and spatial recognition memory in canines, we used a protocol in which both an object (delayed non-matching to sample, or DNMS) and a spatial (delayed non-matching to position or DNMP) recognition task were administered daily. The tasks used similar procedures such that only the type of stimulus information to be remembered differed. Rhinal cortex (RC) lesions produced a selective deficit on the DNMS task, both in retention of the task rules at short delays and in object recognition memory. By contrast, performance on the DNMP task remained intact at both short and long delay intervals in RC animals. Subjects who received dorsolateral prefrontal cortex (dlPFC) lesions were impaired on a spatial task at a short, 5-sec delay, suggesting disrupted retention of the general task rules, however, this impairment was transient; long-term spatial memory performance was unaffected in dlPFC subjects. The present results provide support for the involvement of the RC in object, but not visuospatial, processing and recognition memory, whereas the dlPFC appears to mediate retention of a non-matching rule. These findings support theories of functional specialization within the medial temporal lobe and frontal cortex and suggest that rhinal and dorsolateral prefrontal cortices in canines are functionally similar to analogous regions in other mammals. PMID:18792072
Neural substrate of the late positive potential in emotional processing
Liu, Yuelu; Huang, Haiqing; McGinnis, Menton; Keil, Andreas; Ding, Mingzhou
2012-01-01
The late positive potential (LPP) is a reliable electrophysiological index of emotional perception in humans. Despite years of research the brain structures that contribute to the generation and modulation of LPP are not well understood. Recording EEG and fMRI simultaneously, and applying a recently proposed single-trial ERP analysis method, we addressed the problem by correlating the single-trial LPP amplitude evoked by affective pictures with the blood-oxygen-level-dependent (BOLD) activity. Three results were found. First, relative to neutral pictures, pleasant and unpleasant pictures elicited enhanced LPP, as well as heightened BOLD activity in both visual cortices and emotion-processing structures such as amygdala and prefrontal cortex, consistent with previous findings. Second, the LPP amplitude across three picture categories was significantly correlated with BOLD activity in visual cortices, temporal cortices, amygdala, orbitofrontal cortex, and insula. Third, within each picture category, LPP-BOLD coupling revealed category-specific differences. For pleasant pictures, the LPP amplitude was coupled with BOLD in occipitotemporal junction, medial prefrontal cortex, amygdala, and precuneus, whereas for unpleasant pictures, significant LPP-BOLD correlation was observed in ventrolateral prefrontal cortex, insula, and posterior cingulate cortex. These results suggest that LPP is generated and modulated by an extensive brain network comprised of both cortical and subcortical structures associated with visual and emotional processing and the degree of contribution by each of these structures to the LPP modulation is valence-specific. PMID:23077042
Resting-state functional connectivity of the default mode network associated with happiness
Luo, Yangmei; Kong, Feng; Qi, Senqing; You, Xuqun
2016-01-01
Happiness refers to people’s cognitive and affective evaluation of their life. Why are some people happier than others? One reason might be that unhappy people are prone to ruminate more than happy people. The default mode network (DMN) is normally active during rest and is implicated in rumination. We hypothesized that unhappiness may be associated with increased default-mode functional connectivity during rest, including the medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC) and inferior parietal lobule (IPL). The hyperconnectivity of these areas may be associated with higher levels of rumination. One hundred forty-eight healthy participants underwent a resting-state fMRI scan. A group-independent component analysis identified the DMNs. Results indicated increased functional connectivity in the DMN was associated with lower levels of happiness. Specifically, relative to happy people, unhappy people exhibited greater functional connectivity in the anterior medial cortex (bilateral MPFC), posterior medial cortex regions (bilateral PCC) and posterior parietal cortex (left IPL). Moreover, the increased functional connectivity of the MPFC, PCC and IPL, correlated positively with the inclination to ruminate. These results highlight the important role of the DMN in the neural correlates of happiness, and suggest that rumination may play an important role in people’s perceived happiness. PMID:26500289
Functional neuroimaging of sex differences in autobiographical memory recall.
Young, Kymberly D; Bellgowan, Patrick S F; Bodurka, Jerzy; Drevets, Wayne C
2013-12-01
Autobiographical memory (AM) is episodic memory for personally experienced events. The brain areas underlying AM retrieval are known to include several prefrontal cortical and medial temporal lobe regions. Sex differences in AM recall have been reported in several behavioral studies, but the functional anatomical correlates underlying such differences remain unclear. This study used fMRI to compare the neural correlates of AM recall between healthy male and female participants (n = 20 per group). AM recall in response to positive, negative, and neutral cue words was compared to a semantic memory task involving the generation of examples from a category using emotionally valenced cues. Behaviorally, females recalled more negative and fewer positive AMs compared with males, while ratings of arousal, vividness, and memory age did not differ significantly between sexes. Males and females also did not differ significantly in their performance on control tasks. Neurophysiologically, females showed increased hemodynamic activity compared to males in the dorsolateral prefrontal cortex (DLPFC), dorsal anterior insula, and precuneus while recalling specific AMs (all valences combined); increased activity in the DLPFC, transverse temporal gyrus, and precuneus while recalling positive AMs; and increased activity in the anterior cingulate cortex, precuneus, amygdala, and temporopolar cortex when recalling negative AMs. When comparing positive to negative AMs directly, males and females differed in their BOLD responses in the hippocampus and DLPFC. We propose that the differential hemodynamic changes may reflect sex-specific cognitive strategies during recall of AMs irrespective of the phenomenological properties of those memories. Copyright © 2012 Wiley Periodicals, Inc.
Mears, R P; Klein, A C; Cromwell, H C
2006-08-11
Medial prefrontal cortex is a crucial region involved in inhibitory processes. Damage to the medial prefrontal cortex can lead to loss of normal inhibitory control over motor, sensory, emotional and cognitive functions. The goal of the present study was to examine the basic properties of inhibitory gating in this brain region in rats. Inhibitory gating has recently been proposed as a neurophysiological assay for sensory filters in higher brain regions that potentially enable or disable information throughput. This perspective has important clinical relevance due to the findings that gating is dramatically impaired in individuals with emotional and cognitive impairments (i.e. schizophrenia). We used the standard inhibitory gating two-tone paradigm with a 500 ms interval between tones and a 10 s interval between tone pairs. We recorded both single unit and local field potentials from chronic microwire arrays implanted in the medial prefrontal cortex. We investigated short-term (within session) and long-term (between session) variability of auditory gating and additionally examined how altering the interval between the tones influenced the potency of the inhibition. The local field potentials displayed greater variability with a reduction in the amplitudes of the tone responses over both the short and long-term time windows. The decrease across sessions was most intense for the second tone response (test tone) leading to a more robust gating (lower T/C ratio). Surprisingly, single unit responses of different varieties retained similar levels of auditory responsiveness and inhibition in both the short and long-term analysis. Neural inhibition decreased monotonically related to the increase in intertone interval. This change in gating was most consistent in the local field potentials. Subsets of single unit responses did not show the lack of inhibition even for the longer intertone intervals tested (4 s interval). These findings support the idea that the medial prefrontal cortex is an important site where early inhibitory functions reside and potentially mediate psychological processes.
Structural and functional correlates of hypnotic depth and suggestibility.
McGeown, William Jonathan; Mazzoni, Giuliana; Vannucci, Manila; Venneri, Annalena
2015-02-28
This study explores whether self-reported depth of hypnosis and hypnotic suggestibility are associated with individual differences in neuroanatomy and/or levels of functional connectivity. Twenty-nine people varying in suggestibility were recruited and underwent structural, and after a hypnotic induction, functional magnetic resonance imaging at rest. We used voxel-based morphometry to assess the correlation of grey matter (GM) and white matter (WM) against the independent variables: depth of hypnosis, level of relaxation and hypnotic suggestibility. Functional networks identified with independent components analysis were regressed with the independent variables. Hypnotic depth ratings were positively correlated with GM volume in the frontal cortex and the anterior cingulate cortex (ACC). Hypnotic suggestibility was positively correlated with GM volume in the left temporal-occipital cortex. Relaxation ratings did not correlate significantly with GM volume and none of the independent variables correlated with regional WM volume measures. Self-reported deeper levels of hypnosis were associated with less connectivity within the anterior default mode network. Taken together, the results suggest that the greater GM volume in the medial frontal cortex and ACC, and lower connectivity in the DMN during hypnosis facilitate experiences of greater hypnotic depth. The patterns of results suggest that hypnotic depth and hypnotic suggestibility should not be considered synonyms. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Desai, Rutvik H.; Graves, William W.; Conant, Lisa L.
2009-01-01
Semantic memory refers to knowledge about people, objects, actions, relations, self, and culture acquired through experience. The neural systems that store and retrieve this information have been studied for many years, but a consensus regarding their identity has not been reached. Using strict inclusion criteria, we analyzed 120 functional neuroimaging studies focusing on semantic processing. Reliable areas of activation in these studies were identified using the activation likelihood estimate (ALE) technique. These activations formed a distinct, left-lateralized network comprised of 7 regions: posterior inferior parietal lobe, middle temporal gyrus, fusiform and parahippocampal gyri, dorsomedial prefrontal cortex, inferior frontal gyrus, ventromedial prefrontal cortex, and posterior cingulate gyrus. Secondary analyses showed specific subregions of this network associated with knowledge of actions, manipulable artifacts, abstract concepts, and concrete concepts. The cortical regions involved in semantic processing can be grouped into 3 broad categories: posterior multimodal and heteromodal association cortex, heteromodal prefrontal cortex, and medial limbic regions. The expansion of these regions in the human relative to the nonhuman primate brain may explain uniquely human capacities to use language productively, plan, solve problems, and create cultural and technological artifacts, all of which depend on the fluid and efficient retrieval and manipulation of semantic knowledge. PMID:19329570
Meshi, Dar; Mamerow, Loreen; Kirilina, Evgeniya; Morawetz, Carmen; Margulies, Daniel S.; Heekeren, Hauke R.
2016-01-01
Human beings are social animals and they vary in the degree to which they share information about themselves with others. Although brain networks involved in self-related cognition have been identified, especially via the use of resting-state experiments, the neural circuitry underlying individual differences in the sharing of self-related information is currently unknown. Therefore, we investigated the intrinsic functional organization of the brain with respect to participants’ degree of self-related information sharing using resting state functional magnetic resonance imaging and self-reported social media use. We conducted seed-based correlation analyses in cortical midline regions previously shown in meta-analyses to be involved in self-referential cognition: the medial prefrontal cortex (MPFC), central precuneus (CP), and caudal anterior cingulate cortex (CACC). We examined whether and how functional connectivity between these regions and the rest of the brain was associated with participants’ degree of self-related information sharing. Analyses revealed associations between the MPFC and right dorsolateral prefrontal cortex (DLPFC), as well as the CP with the right DLPFC, the left lateral orbitofrontal cortex and left anterior temporal pole. These findings extend our present knowledge of functional brain connectivity, specifically demonstrating how the brain’s intrinsic functional organization relates to individual differences in the sharing of self-related information. PMID:26948055
Delevich, Kristen; Tucciarone, Jason; Huang, Z. Josh
2015-01-01
Although the medial prefrontal cortex (mPFC) is classically defined by its reciprocal connections with the mediodorsal thalamic nucleus (MD), the nature of information transfer between MD and mPFC is poorly understood. In sensory thalamocortical pathways, thalamic recruitment of feedforward inhibition mediated by fast-spiking, putative parvalbumin-expressing (PV) interneurons is a key feature that enables cortical neurons to represent sensory stimuli with high temporal fidelity. Whether a similar circuit mechanism is in place for the projection from the MD (a higher-order thalamic nucleus that does not receive direct input from the periphery) to the mPFC is unknown. Here we show in mice that inputs from the MD drive disynaptic feedforward inhibition in the dorsal anterior cingulate cortex (dACC) subregion of the mPFC. In particular, we demonstrate that axons arising from MD neurons directly synapse onto and excite PV interneurons that in turn mediate feedforward inhibition of pyramidal neurons in layer 3 of the dACC. This feedforward inhibition in the dACC limits the time window during which pyramidal neurons integrate excitatory synaptic inputs and fire action potentials, but in a manner that allows for greater flexibility than in sensory cortex. These findings provide a foundation for understanding the role of MD-PFC circuit function in cognition. PMID:25855185
Feng, Chunliang; DeMarco, Ashley C; Haroon, Ebrahim; Rilling, James K
2015-07-01
Neuroticism is a fundamental personality trait associated with proneness to feel negative affect. Here we ask how Neuroticism influences the neural response to positive and negative social interactions and how Neuroticism modulates the effect of intranasal oxytocin (OT) and vasopressin (AVP) on the neural response to social interactions. In a double-blind, placebo-controlled study, 153 male participants were randomized to receive 24 IU intranasal OT, 20 IU AVP or placebo. Afterwards, they were imaged with fMRI while playing an iterated Prisoner's Dilemma Game. On a different day, subjects completed the NEO personality inventory to measure Neuroticism. Neuroticism was positively correlated with the neural response to negative social interactions in the anterior cingulate cortex/medial prefrontal cortex and with the neural response to positive social interactions in the insula, indicating that Neuroticism modulates neuropsychological processing of both negative and positive social interactions. Neuroticism did not modulate the effect of intranasal OT treatment on the neural response to either positive or negative social interactions. On the other hand, AVP treatment significantly interacted with Neuroticism to modulate the BOLD response to both positive and negative social interactions. Specifically, AVP increased anterior cingulate cortex/medial prefrontal cortex and lateral temporal lobe responses to negative social interactions to a greater extent in participants scoring high rather than low on Neuroticism. AVP also increased the insula response to positive social interactions to a greater extent in participants scoring high rather than low on Neuroticism. These results imply that AVP may increase emotion regulation in response to negative social interactions and the salience of positive social interactions to a greater extent in individuals high compared to low in Neuroticism. The current findings urge caution against uniform clinical application of nonapeptides and suggest that their efficacy may vary as a function of personality. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evidence That Default Network Connectivity During Rest Consolidates Social Information.
Meyer, Meghan L; Davachi, Lila; Ochsner, Kevin N; Lieberman, Matthew D
2018-04-13
Brain regions engaged during social inference, medial prefrontal cortex (MPFC) and tempoparietal junction (TPJ), are also known to spontaneously engage during rest. While this overlap is well known, the social cognitive function of engaging these regions during rest remains unclear. Building on past research suggesting that new information is committed to memory during rest, we explored whether one function of MPFC and TPJ engagement during rest may be to consolidate new social information. MPFC and TPJ regions significantly increased connectivity during rest after encoding new social information (relative to baseline and post nonsocial encoding rest periods). Moreover, greater connectivity between rTPJ and MPFC, as well as other portions of the default network (vMPFC, anterior temporal lobe, and middle temporal gyrus) during post social encoding rest corresponded with superior social recognition and social associative memory. The tendency to engage MPFC and TPJ during rest may tune people towards social learning.
A dedicated network for social interaction processing in the primate brain.
Sliwa, J; Freiwald, W A
2017-05-19
Primate cognition requires interaction processing. Interactions can reveal otherwise hidden properties of intentional agents, such as thoughts and feelings, and of inanimate objects, such as mass and material. Where and how interaction analyses are implemented in the brain is unknown. Using whole-brain functional magnetic resonance imaging in macaque monkeys, we discovered a network centered in the medial and ventrolateral prefrontal cortex that is exclusively engaged in social interaction analysis. Exclusivity of specialization was found for no other function anywhere in the brain. Two additional networks, a parieto-premotor and a temporal one, exhibited both social and physical interaction preference, which, in the temporal lobe, mapped onto a fine-grain pattern of object, body, and face selectivity. Extent and location of a dedicated system for social interaction analysis suggest that this function is an evolutionary forerunner of human mind-reading capabilities. Copyright © 2017, American Association for the Advancement of Science.
Bonelli, Silvia B.; Thompson, Pamela J.; Yogarajah, Mahinda; Powell, Robert H. W.; Samson, Rebecca S.; McEvoy, Andrew W.; Symms, Mark R.; Koepp, Matthias J.
2013-01-01
Anterior temporal lobe resection controls seizures in 50–60% of patients with intractable temporal lobe epilepsy but may impair memory function, typically verbal memory following left, and visual memory following right anterior temporal lobe resection. Functional reorganization can occur within the ipsilateral and contralateral hemispheres. We investigated the reorganization of memory function in patients with temporal lobe epilepsy before and after left or right anterior temporal lobe resection and the efficiency of postoperative memory networks. We studied 46 patients with unilateral medial temporal lobe epilepsy (25/26 left hippocampal sclerosis, 16/20 right hippocampal sclerosis) before and after anterior temporal lobe resection on a 3 T General Electric magnetic resonance imaging scanner. All subjects had neuropsychological testing and performed a functional magnetic resonance imaging memory encoding paradigm for words, pictures and faces, testing verbal and visual memory in a single scanning session, preoperatively and again 4 months after surgery. Event-related analysis revealed that patients with left temporal lobe epilepsy had greater activation in the left posterior medial temporal lobe when successfully encoding words postoperatively than preoperatively. Greater pre- than postoperative activation in the ipsilateral posterior medial temporal lobe for encoding words correlated with better verbal memory outcome after left anterior temporal lobe resection. In contrast, greater postoperative than preoperative activation in the ipsilateral posterior medial temporal lobe correlated with worse postoperative verbal memory performance. These postoperative effects were not observed for visual memory function after right anterior temporal lobe resection. Our findings provide evidence for effective preoperative reorganization of verbal memory function to the ipsilateral posterior medial temporal lobe due to the underlying disease, suggesting that it is the capacity of the posterior remnant of the ipsilateral hippocampus rather than the functional reserve of the contralateral hippocampus that is important for maintaining verbal memory function after anterior temporal lobe resection. Early postoperative reorganization to ipsilateral posterior or contralateral medial temporal lobe structures does not underpin better performance. Additionally our results suggest that visual memory function in right temporal lobe epilepsy is affected differently by right anterior temporal lobe resection than verbal memory in left temporal lobe epilepsy. PMID:23715092
Karstens, Aimee J; Ajilore, Olusola; Rubin, Leah H; Yang, Shaolin; Zhang, Aifeng; Leow, Alex; Kumar, Anand; Lamar, Melissa
2017-11-01
Trauma and depression are associated with brain structural alterations; their combined effects on these outcomes are unclear. We previously reported a negative effect of trauma, independent of depression, on verbal learning and memory; less is known about underlying structural associates. We investigated separate and interactive associations of trauma and depression on brain structure. Adults aged 30-89 (N = 203) evaluated for depression (D+) and trauma history (T+) using structured clinical interviews were divided into 53 D+T+, 42 D+T-, 50 D-T+, and 58 D-T-. Multivariable linear regressions examined the separate and interactive associations of depression and trauma with prefrontal and temporal lobe cortical thickness composites and hippocampal volumes adjusting for age, sex, predicted verbal IQ, comorbid anxiety, and vascular risk. Significant results informed analyses of tract-based structural connectomic measures of efficiency and centrality. Trauma, independent of depression, was associated with greater left prefrontal cortex (PFC) thickness, in particular the medial orbitofrontal cortex and pars orbitalis. A trauma × depression interaction was observed for the right PFC in age-stratified analyses: Older D + T+ had reduced PFC thickness compared with older D - T+ individuals. Regardless of age, trauma was associated with more left medial orbitofrontal cortex efficiency and less pars orbitalis centrality. In the T+ group, left pars orbitalis cortical thickness and centrality negatively correlated with verbal learning. Trauma, independent of depression, associated with altered PFC characteristics, morphologically and in terms of structural network communication and influence. Additionally, findings suggest that there may be a combined effect of trauma and depression in older adults. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Retinal lesions induce fast intrinsic cortical plasticity in adult mouse visual system.
Smolders, Katrien; Vreysen, Samme; Laramée, Marie-Eve; Cuyvers, Annemie; Hu, Tjing-Tjing; Van Brussel, Leen; Eysel, Ulf T; Nys, Julie; Arckens, Lutgarde
2016-09-01
Neuronal activity plays an important role in the development and structural-functional maintenance of the brain as well as in its life-long plastic response to changes in sensory stimulation. We characterized the impact of unilateral 15° laser lesions in the temporal lower visual field of the retina, on visually driven neuronal activity in the afferent visual pathway of adult mice using in situ hybridization for the activity reporter gene zif268. In the first days post-lesion, we detected a discrete zone of reduced zif268 expression in the contralateral hemisphere, spanning the border between the monocular segment of the primary visual cortex (V1) with extrastriate visual area V2M. We could not detect a clear lesion projection zone (LPZ) in areas lateral to V1 whereas medial to V2M, agranular and granular retrosplenial cortex showed decreased zif268 levels over their full extent. All affected areas displayed a return to normal zif268 levels, and this was faster in higher order visual areas than in V1. The lesion did, however, induce a permanent LPZ in the retinorecipient layers of the superior colliculus. We identified a retinotopy-based intrinsic capacity of adult mouse visual cortex to recover from restricted vision loss, with recovery speed reflecting the areal cortical magnification factor. Our observations predict incomplete visual field representations for areas lateral to V1 vs. lack of retinotopic organization for areas medial to V2M. The validation of this mouse model paves the way for future interrogations of cortical region- and cell-type-specific contributions to functional recovery, up to microcircuit level. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Cortical thickness, cortico-amygdalar networks, and externalizing behaviors in healthy children.
Ameis, Stephanie H; Ducharme, Simon; Albaugh, Matthew D; Hudziak, James J; Botteron, Kelly N; Lepage, Claude; Zhao, Lu; Khundrakpam, Budhachandra; Collins, D Louis; Lerch, Jason P; Wheeler, Anne; Schachar, Russell; Evans, Alan C; Karama, Sherif
2014-01-01
Fronto-amygdalar networks are implicated in childhood psychiatric disorders characterized by high rates of externalizing (aggressive, noncompliant, oppositional) behavior. Although externalizing behaviors are distributed continuously across clinical and nonclinical samples, little is known about how brain variations may confer risk for problematic behavior. Here, we studied cortical thickness, amygdala volume, and cortico-amygdalar network correlates of externalizing behavior in a large sample of healthy children. Two hundred ninety-seven healthy children (6-18 years; mean = 12 ± 3 years), with 517 magnetic resonance imaging scans, from the National Institutes of Health Magnetic Resonance Imaging Study of Normal Brain Development, were studied. Relationships between externalizing behaviors (measured with the Child Behavior Checklist) and cortical thickness, amygdala volume, and cortico-amygdalar structural networks were examined using first-order linear mixed-effects models, after controlling for age, sex, scanner, and total brain volume. Results significant at p ≤ .05, following multiple comparison correction, are reported. Left orbitofrontal, right retrosplenial cingulate, and medial temporal cortex thickness were negatively correlated with externalizing behaviors. Although amygdala volume alone was not correlated with externalizing behaviors, an orbitofrontal cortex-amygdala network predicted rates of externalizing behavior. Children with lower levels of externalizing behaviors exhibited positive correlations between orbitofrontal cortex and amygdala structure, while these regions were not correlated in children with higher levels of externalizing behavior. Our findings identify key cortical nodes in frontal, cingulate, and temporal cortex associated with externalizing behaviors in children; and indicate that orbitofrontal-amygdala network properties may influence externalizing behaviors, along a continuum and across healthy and clinical samples. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Abbott, Christopher C.; Lemke, Nicholas T.; Gopal, Shruti; Thoma, Robert J.; Bustillo, Juan; Calhoun, Vince D.; Turner, Jessica A.
2013-01-01
Major depressive disorder (MDD) is associated with increased functional connectivity in specific neural networks. Electroconvulsive therapy (ECT), the gold-standard treatment for acute, treatment-resistant MDD, but temporal dependencies between networks associated with ECT response have yet to be investigated. In the present longitudinal, case–control investigation, we used independent component analysis to identify distinct networks of brain regions with temporally coherent hemodynamic signal change and functional network connectivity (FNC) to assess component time course correlations across these networks. MDD subjects completed imaging and clinical assessments immediately prior to the ECT series and a minimum of 5 days after the last ECT treatment. We focused our analysis on four networks affected in MDD: the subcallosal cingulate gyrus, default mode, dorsal lateral prefrontal cortex, and dorsal medial prefrontal cortex (DMPFC). In an older sample of ECT subjects (n = 12) with MDD, remission associated with the ECT series reverses the relationship from negative to positive between the posterior default mode (p_DM) and two other networks: the DMPFC and left dorsal lateral prefrontal cortex (l_DLPFC). Relative to demographically healthy subjects (n = 12), the FNC between the p_DM areas and the DMPFC normalizes with ECT response. The FNC changes following treatment did not correlate with symptom improvement; however, a direct comparison between ECT remitters and non-remitters showed the pattern of increased FNC between the p_DM and l_DLPFC following ECT to be specific to those who responded to the treatment. The differences between ECT remitters and non-remitters suggest that this increased FNC between p_DM areas and the left dorsolateral prefrontal cortex is a neural correlate and potential biomarker of recovery from a depressed episode. PMID:23459749
Abbott, Christopher C; Lemke, Nicholas T; Gopal, Shruti; Thoma, Robert J; Bustillo, Juan; Calhoun, Vince D; Turner, Jessica A
2013-01-01
Major depressive disorder (MDD) is associated with increased functional connectivity in specific neural networks. Electroconvulsive therapy (ECT), the gold-standard treatment for acute, treatment-resistant MDD, but temporal dependencies between networks associated with ECT response have yet to be investigated. In the present longitudinal, case-control investigation, we used independent component analysis to identify distinct networks of brain regions with temporally coherent hemodynamic signal change and functional network connectivity (FNC) to assess component time course correlations across these networks. MDD subjects completed imaging and clinical assessments immediately prior to the ECT series and a minimum of 5 days after the last ECT treatment. We focused our analysis on four networks affected in MDD: the subcallosal cingulate gyrus, default mode, dorsal lateral prefrontal cortex, and dorsal medial prefrontal cortex (DMPFC). In an older sample of ECT subjects (n = 12) with MDD, remission associated with the ECT series reverses the relationship from negative to positive between the posterior default mode (p_DM) and two other networks: the DMPFC and left dorsal lateral prefrontal cortex (l_DLPFC). Relative to demographically healthy subjects (n = 12), the FNC between the p_DM areas and the DMPFC normalizes with ECT response. The FNC changes following treatment did not correlate with symptom improvement; however, a direct comparison between ECT remitters and non-remitters showed the pattern of increased FNC between the p_DM and l_DLPFC following ECT to be specific to those who responded to the treatment. The differences between ECT remitters and non-remitters suggest that this increased FNC between p_DM areas and the left dorsolateral prefrontal cortex is a neural correlate and potential biomarker of recovery from a depressed episode.
Goddard, Marcia N; Swaab, Hanna; Rombouts, Serge A R B; van Rijn, Sophie
2016-09-01
Klinefelter syndrome (47, XXY) is associated with several physical, cognitive, and behavioral consequences. In terms of social development, there is an increased risk of autism symptomatology. However, it remains unclear how social deficits are related to abnormal brain development and to what degree underlying mechanisms of social dysfunction in 47, XXY are similar to, or different from, those in idiopathic autism (ASD). This study was aimed at investigating the neural architecture of brain structures related to social information processing in boys with 47, XXY, also in comparison with boys with idiopathic ASD. MRI scans of 16 boys with 47, XXY, 16 with ASD, and 16 nonclinical, male controls were analyzed using voxel-based morphometry (VBM). A region of interest mask containing the superior temporal cortex, amygdala, orbitofrontal cortex (OFC), insular cortex, and medial frontal cortex was used. The Social Responsiveness Scale (SRS) was used to assess degree of autism spectrum symptoms. The 47, XXY group could not be distinguished from the ASD group on mean SRS scores, and their scores were significantly higher than in controls. VBM showed that boys with 47, XXY have significant gray matter volume reductions in the left and right insula, and the left OFC, compared with controls and boys with ASD. Additionally, boys with 47, XXY had significantly less gray matter in the right superior temporal gyrus than controls. These results imply social challenges associated with 47, XXY may be rooted in neural anatomy, and autism symptoms in boys with 47, XXY and boys with ASD might have, at least partially, different underlying etiologies.
Subtle Alterations in Brain Anatomy May Change an Individual’s Personality in Chronic Pain
Gustin, Sylvia M.; McKay, Jamie G.; Petersen, Esben T.; Peck, Chris C.; Murray, Greg M.; Henderson, Luke A.
2014-01-01
It is well established that gross prefrontal cortex damage can affect an individual’s personality. It is also possible that subtle prefrontal cortex changes associated with conditions such as chronic pain, and not detectable until recent advances in human brain imaging, may also result in subtle changes in an individual’s personality. In an animal model of chronic neuropathic pain, subtle prefrontal cortex changes including altered basal dendritic length, resulted in altered decision making ability. Using multiple magnetic resonance imaging techniques, we found in humans, although gray matter volume and on-going activity were unaltered, chronic neuropathic pain was associated with reduced free and bound proton movement, indicators of subtle anatomical changes, in the medial prefrontal cortex, anterior cingulate cortex and mediodorsal thalamus. Furthermore, proton spectroscopy revealed an increase in neural integrity in the medial prefrontal cortex in neuropathic pain patients, the degree of which was significantly correlated to the personality temperament of novelty seeking. These data reveal that even subtle changes in prefrontal cortex anatomy may result in a significant change in an individual’s personality. PMID:25291361
Neural activity associated with self, other, and object-based counterfactual thinking.
De Brigard, Felipe; Nathan Spreng, R; Mitchell, Jason P; Schacter, Daniel L
2015-04-01
Previous research has shown that autobiographical episodic counterfactual thinking-i.e., mental simulations about alternative ways in which one's life experiences could have occurred-engages the brain's default network (DN). However, it remains unknown whether or not the DN is also engaged during impersonal counterfactual thoughts, specifically those involving other people or objects. The current study compares brain activity during counterfactual simulations involving the self, others and objects. In addition, counterfactual thoughts involving others were manipulated in terms of similarity and familiarity with the simulated characters. The results indicate greater involvement of DN during person-based (i.e., self and other) as opposed to object-based counterfactual simulations. However, the involvement of different regions of the DN during other-based counterfactual simulations was modulated by how close and/or similar the simulated character was perceived to be by the participant. Simulations involving unfamiliar characters preferentially recruited dorsomedial prefrontal cortex. Simulations involving unfamiliar similar characters, characters with whom participants identified personality traits, recruited lateral temporal gyrus. Finally, our results also revealed differential coupling of right hippocampus with lateral prefrontal and temporal cortex during counterfactual simulations involving familiar similar others, but with left transverse temporal gyrus and medial frontal and inferior temporal gyri during counterfactual simulations involving either oneself or unfamiliar dissimilar others. These results suggest that different brain mechanisms are involved in the simulation of personal and impersonal counterfactual thoughts, and that the extent to which regions associated with autobiographical memory are recruited during the simulation of counterfactuals involving others depends on the perceived similarity and familiarity with the simulated individuals. Copyright © 2015 Elsevier Inc. All rights reserved.
Neural activity associated with self, other, and object-based counterfactual thinking
De Brigard, Felipe; Spreng, R. Nathan; Mitchell, Jason P.; Schacter, Daniel L.
2016-01-01
Previous research has shown that autobiographical episodic counterfactual thinking—i.e., mental simulations about alternative ways in which one’s life experiences could have occurred—engages the brain’s default network (DN). However, it remains unknown whether or not the DN is also engaged during impersonal counterfactual thoughts, specifically those involving other people or objects. The current study compares brain activity during counterfactual simulations involving the self, others and objects. In addition, counterfactual thoughts involving others were manipulated in terms of similarity and familiarity with the simulated characters. The results indicate greater involvement of DN during person-based (i.e., self and other) as opposed to object-based counterfactual simulations. However, the involvement of different regions of the DN during other-based counterfactual simulations was modulated by how close and/or similar the simulated character was perceived to be by the participant. Simulations involving unfamiliar characters preferentially recruited dorsomedial prefrontal cortex. Simulations involving unfamiliar similar characters, characters with whom participants identified personality traits, recruited lateral temporal gyrus. Finally, our results also revealed differential coupling of right hippocampus with lateral prefrontal and temporal cortex during counterfactual simulations involving familiar similar others, but with left transverse temporal gyrus and medial frontal and inferior temporal gyri during counterfactual simulations involving either oneself or unfamiliar dissimilar others. These results suggest that different brain mechanisms are involved in the simulation of personal and impersonal counterfactual thoughts, and that the extent to which regions associated with autobiographical memory are recruited during the simulation of counterfactuals involving others depends on the perceived similarity and familiarity with the simulated individuals. PMID:25579447
Pereira, Mariana; Morrell, Joan I.
2011-01-01
The present review focuses on recent studies from our laboratory examining the neural circuitry subserving rat maternal motivation across postpartum. We employed a site-specific neural inactivation method by infusion of bupivacaine to map the maternal motivation circuitry using two complementary behavioral approaches: unconditioned maternal responsiveness and choice of pup- over cocaine-conditioned incentives in a concurrent pup/cocaine choice conditioned place preference task. Our findings revealed that during the early postpartum period, distinct brain structures, including the medial preoptic area, ventral tegmental area and medial prefrontal cortex infralimbic and anterior cingulate subregions, contribute a pup-specific bias to the motivational circuitry. As the postpartum period progresses and the pups grow older, our findings further revealed that maternal responsiveness becomes progressively less dependent on medial preoptic area and medial prefrontal cortex infralimbic activity, and more distributed in the maternal circuitry, such that additional network components, including the medial prefrontal cortex prelimbic subregion, are recruited with maternal experience, and contribute to the expression of late postpartum maternal behavior. Collectively, our findings provide strong evidence that the remarkable ability of postpartum females to successfully care for their developing infants is subserved by a distributed neural network that carries out efficient and dynamic processing of complex, constantly changing incoming environmental and pup-related stimuli, ultimately allowing the progression of appropriate expression and waning of maternal responsiveness across the postpartum period. PMID:21815954
Li, Zhihui; Chen, Xingjun; Wang, Tao; Gao, Ying; Li, Fei; Chen, Long; Xue, Jin; He, Yan; Li, Yan; Guo, Wei; Zheng, Wu; Zhang, Liping; Ye, Fenfen; Ren, Xiangpeng; Feng, Yue; Chan, Piu; Chen, Jiang-Fan
2018-03-15
Working memory (WM) taps into multiple executive processes including encoding, maintenance, and retrieval of information, but the molecular and circuit modulation of these WM processes remains undefined due to the lack of methods to control G protein-coupled receptor signaling with temporal resolution of seconds. By coupling optogenetic control of the adenosine A 2A receptor (A 2A R) signaling, the Cre-loxP-mediated focal A 2A R knockdown with a delayed non-match-to-place (DNMTP) task, we investigated the effect of optogenetic activation and focal knockdown of A 2A Rs in the dorsomedial striatum (n = 8 to 14 per group) and medial prefrontal cortex (n = 16 to 22 per group) on distinct executive processes of spatial WM. We also evaluated the therapeutic effect of the A 2A R antagonist KW6002 on delayed match-to-sample/place tasks in 6 normal and 6 MPTP-treated cynomolgus monkeys. Optogenetic activation of striatopallidal A 2A Rs in the dorsomedial striatum selectively at the delay and choice (not sample) phases impaired DNMTP performance. Optogenetic activation of A 2A Rs in the medial prefrontal cortex selectively at the delay (not sample or choice) phase improved DNMTP performance. The corticostriatal A 2A R control of spatial WM was specific for a novel but not well-trained DNMTP task. Focal dorsomedial striatum A 2A R knockdown or KW6002 improved DNMTP performance in mice. Last, KW6002 improved spatial WM in delayed match-to-sample and delayed match-to-place tasks of normal and dopamine-depleted cynomolgus monkeys. The A 2A Rs in striatopallidal and medial prefrontal cortex neurons exert distinctive control of WM maintenance and retrieval to achieve cognitive stability and flexibility. The procognitive effect of KW6002 in nonhuman primates provides the preclinical data to translate A 2A R antagonists for improving cognitive impairments in Parkinson's disease. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
A Functional Imaging Study of Self-Regulatory Capacities in Persons Who Stutter
Liu, Jie; Wang, Zhishun; Huo, Yuankai; Davidson, Stephanie M.; Klahr, Kristin; Herder, Carl L.; Sikora, Chamonix O.; Peterson, Bradley S.
2014-01-01
Developmental stuttering is a disorder of speech fluency with an unknown pathogenesis. The similarity of its phenotype and natural history with other childhood neuropsychiatric disorders of frontostriatal pathology suggests that stuttering may have a closely related pathogenesis. We investigated in this study the potential involvement of frontostriatal circuits in developmental stuttering. We collected functional magnetic resonance imaging data from 46 persons with stuttering and 52 fluent controls during performance of the Simon Spatial Incompatibility Task. We examined differences between the two groups of blood-oxygen-level-dependent activation associated with two neural processes, the resolution of cognitive conflict and the context-dependent adaptation to changes in conflict. Stuttering speakers and controls did not differ on behavioral performance on the task. In the presence of conflict-laden stimuli, however, stuttering speakers activated more strongly the cingulate cortex, left anterior prefrontal cortex, right medial frontal cortex, left supplementary motor area, right caudate nucleus, and left parietal cortex. The magnitude of activation in the anterior cingulate cortex correlated inversely in stuttering speakers with symptom severity. Stuttering speakers also showed blunted activation during context-dependent adaptation in the left dorsolateral prefrontal cortex, a brain region that mediates cross-temporal contingencies. Frontostriatal hyper-responsivity to conflict resembles prior findings in other disorders of frontostriatal pathology, and therefore likely represents a general mechanism supporting functional compensation for an underlying inefficiency of neural processing in these circuits. The reduced activation of dorsolateral prefrontal cortex likely represents the inadequate readiness of stuttering speakers to execute a sequence of motor responses. PMID:24587104
The Organization of Dorsal Frontal Cortex in Humans and Macaques
Mars, Rogier B.; Noonan, MaryAnn P.; Neubert, Franz-Xaver; Jbabdi, Saad; O'Reilly, Jill X.; Filippini, Nicola; Thomas, Adam G.; Rushworth, Matthew F.
2013-01-01
The human dorsal frontal cortex has been associated with the most sophisticated aspects of cognition, including those that are thought to be especially refined in humans. Here we used diffusion-weighted magnetic resonance imaging (DW-MRI) and functional MRI (fMRI) in humans and macaques to infer and compare the organization of dorsal frontal cortex in the two species. Using DW-MRI tractography-based parcellation, we identified 10 dorsal frontal regions lying between the human inferior frontal sulcus and cingulate cortex. Patterns of functional coupling between each area and the rest of the brain were then estimated with fMRI and compared with functional coupling patterns in macaques. Areas in human medial frontal cortex, including areas associated with high-level social cognitive processes such as theory of mind, showed a surprising degree of similarity in their functional coupling patterns with the frontal pole, medial prefrontal, and dorsal prefrontal convexity in the macaque. We failed to find evidence for “new” regions in human medial frontal cortex. On the lateral surface, comparison of functional coupling patterns suggested correspondences in anatomical organization distinct from those that are widely assumed. A human region sometimes referred to as lateral frontal pole more closely resembled area 46, rather than the frontal pole, of the macaque. Overall the pattern of results suggest important similarities in frontal cortex organization in humans and other primates, even in the case of regions thought to carry out uniquely human functions. The patterns of interspecies correspondences are not, however, always those that are widely assumed. PMID:23884933
Pralus, Agathe; Nelson, Andrew J. D.; Hornberger, Michael
2016-01-01
Abstract It is widely assumed that incipient protein pathology in the medial temporal lobe instigates the loss of episodic memory in Alzheimer’s disease, one of the earliest cognitive deficits in this type of dementia. Within this region, the hippocampus is seen as the most vital for episodic memory. Consequently, research into the causes of memory loss in Alzheimer’s disease continues to centre on hippocampal dysfunction and how disease-modifying therapies in this region can potentially alleviate memory symptomology. The present review questions this entrenched notion by bringing together findings from post-mortem studies, non-invasive imaging (including studies of presymptomatic, at-risk cases) and genetically modified animal models. The combined evidence indicates that the loss of episodic memory in early Alzheimer’s disease reflects much wider neurodegeneration in an extended mnemonic system (Papez circuit), which critically involves the limbic thalamus. Within this system, the anterior thalamic nuclei are prominent, both for their vital contributions to episodic memory and for how these same nuclei appear vulnerable in prodromal Alzheimer’s disease. As thalamic abnormalities occur in some of the earliest stages of the disease, the idea that such changes are merely secondary to medial temporal lobe dysfunctions is challenged. This alternate view is further strengthened by the interdependent relationship between the anterior thalamic nuclei and retrosplenial cortex, given how dysfunctions in the latter cortical area provide some of the earliest in vivo imaging evidence of prodromal Alzheimer’s disease. Appreciating the importance of the anterior thalamic nuclei for memory and attention provides a more balanced understanding of Alzheimer’s disease. Furthermore, this refocus on the limbic thalamus, as well as the rest of Papez circuit, would have significant implications for the diagnostics, modelling, and experimental treatment of cognitive symptoms in Alzheimer’s disease. PMID:27190025
Staffaroni, Adam M; Melrose, Rebecca J; Leskin, Lorraine P; Riskin-Jones, Hannah; Harwood, Dylan; Mandelkern, Mark; Sultzer, David L
2017-09-01
The objective of this study was to distinguish the functional neuroanatomy of verbal learning and recognition in Alzheimer's disease (AD) using the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) Word Learning task. In 81 Veterans diagnosed with dementia due to AD, we conducted a cluster-based correlation analysis to assess the relationships between recency and recognition memory scores from the CERAD Word Learning Task and cortical metabolic activity measured using [ 18 F]-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET). AD patients (Mini-Mental State Examination, MMSE mean = 20.2) performed significantly better on the recall of recency items during learning trials than of primacy and middle items. Recency memory was associated with cerebral metabolism in the left middle and inferior temporal gyri and left fusiform gyrus (p < .05 at the corrected cluster level). In contrast, recognition memory was correlated with metabolic activity in two clusters: (a) a large cluster that included the left hippocampus, parahippocampal gyrus, entorhinal cortex, anterior temporal lobe, and inferior and middle temporal gyri; (b) the bilateral orbitofrontal cortices (OFC). The present study further informs our understanding of the disparate functional neuroanatomy of recency memory and recognition memory in AD. We anticipated that the recency effect would be relatively preserved and associated with temporoparietal brain regions implicated in short-term verbal memory, while recognition memory would be associated with the medial temporal lobe and possibly the OFC. Consistent with our a priori hypotheses, list learning in our AD sample was characterized by a reduced primacy effect and a relatively spared recency effect; however, recency memory was associated with cerebral metabolism in inferior and lateral temporal regions associated with the semantic memory network, rather than regions associated with short-term verbal memory. The correlates of recognition memory included the medial temporal lobe and OFC, replicating prior studies.
Boucher, Olivier; Dagenais, Emmanuelle; Bouthillier, Alain; Nguyen, Dang Khoa; Rouleau, Isabelle
2015-11-01
The advantage of selective amygdalohippocampectomy (SAH) over anterior temporal lobectomy (ATL) for the treatment of temporal lobe epilepsy (TLE) remains controversial. Because ATL is more extensive and involves the lateral and medial parts of the temporal lobe, it may be predicted that its impact on memory is more important than SAH, which involves resection of medial temporal structures only. However, several studies do not support this assumption. Possible explanations include task-specific factors such as the extent of semantic and syntactic information to be memorized and failure to control for main confounders. We compared preoperative vs. postoperative memory performance in 13 patients with SAH with 26 patients who underwent ATL matched on side of surgery, IQ, age at seizure onset, and age at surgery. Memory function was assessed using the Logical Memory subtest from the Wechsler Memory Scales - 3rd edition (LM-WMS), the Rey Auditory Verbal Learning Test (RAVLT), the Digit Span subtest from the Wechsler Adult Intelligence Scale, and the Rey-Osterrieth Complex Figure Test. Repeated measures analyses of variance revealed opposite effects of SAH and ATL on the two verbal learning memory tests. On the immediate recall trial of the LM-WMS, performance deteriorated after ATL in comparison with that after SAH. By contrast, on the delayed recognition trial of the RAVLT, performance deteriorated after SAH compared with that after ATL. However, additional analyses revealed that the latter finding was only observed when surgery was conducted in the right hemisphere. No interaction effects were found on other memory outcomes. The results are congruent with the view that tasks involving rich semantic content and syntactical structure are more sensitive to the effects of lateral temporal cortex resection as compared with mesiotemporal resection. The findings highlight the importance of task selection in the assessment of memory in patients undergoing TLE surgery. Copyright © 2015 Elsevier Inc. All rights reserved.
Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst
NASA Technical Reports Server (NTRS)
Noohi, Fatemeh; Kinnaird, Catherine; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael
2014-01-01
The aim of the current study was to characterize the brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit saccular Vestibular Evoked Myogenic Potentials (VEMP) (Colebatch & Halmagyi 1992; Colebatch et al. 1994). Some researchers have reported that airconducted skull tap elicits both saccular and utricle VEMPs, while being faster and less irritating for the subjects (Curthoys et al. 2009, Wackym et al., 2012). However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying the vestibular disorders related to otolith deficits. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, pre and post central gyri, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation (Bottini et al., 1994; Dieterich et al., 2003; Emri et al., 2003; Schlindwein et al., 2008; Janzen et al., 2008). Here we hypothesized that the skull tap elicits the similar pattern of cortical activity as the auditory tone burst. Subjects put on a set of MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in supine position, with eyes closed. All subjects received both forms of the stimulation, however, the order of stimulation with auditory tone burst and air-conducted skull tap was counterbalanced across subjects. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular cortex, resulting in vestibular response (Halmagyi et al., 1995). Auditory tone bursts were also delivered for comparison. To validate our stimulation method, we measured the ocular VEMP outside of the scanner. This measurement showed that both skull tap and auditory tone burst elicited vestibular evoked activation, indicated by eye muscle response. Our preliminary analyses showed that the skull tap elicited activation in medial frontal gyrus, superior temporal gyrus, postcentral gyrus, transverse temporal gyrus, anterior cingulate, and putamen. The auditory tone bursts elicited activation in medial frontal gyrus, superior temporal gyrus, superior frontal gyrus, precentral gyrus, inferior and superior parietal lobules. In line with our hypothesis, skull taps elicited a pattern of cortical activity closely similar to one elicited by auditory tone bursts. Further analysis will determine the extent to which the skull taps can replace the auditory tone stimulation in clinical and basic science vestibular assessments.
Online mentalising investigated with functional MRI.
Kircher, Tilo; Blümel, Isabelle; Marjoram, Dominic; Lataster, Tineke; Krabbendam, Lydia; Weber, Jochen; van Os, Jim; Krach, Sören
2009-05-01
For successful interpersonal communication, inferring intentions, goals or desires of others is highly advantageous. Increasingly, humans also interact with computers or robots. In this study, we sought to determine to what degree an interactive task, which involves receiving feedback from social partners that can be used to infer intent, engaged the medial prefrontal cortex, a region previously associated with Theory of Mind processes among others. Participants were scanned using fMRI as they played an adapted version of the Prisoner's Dilemma Game with alleged human and computer partners who were outside the scanner. The medial frontal cortex was activated when both human and computer partner were played, while the direct contrast revealed significantly stronger signal change during the human-human interaction. The results suggest a link between activity in the medial prefrontal cortex and the partner played in a mentalising task. This signal change was also present for to the computers partner. Implying agency or a will to non-human actors might be an innate human resource that could lead to an evolutionary advantage.