Sample records for cortex mediates perceptual

  1. Attentional Modulation in Visual Cortex Is Modified during Perceptual Learning

    ERIC Educational Resources Information Center

    Bartolucci, Marco; Smith, Andrew T.

    2011-01-01

    Practicing a visual task commonly results in improved performance. Often the improvement does not transfer well to a new retinal location, suggesting that it is mediated by changes occurring in early visual cortex, and indeed neuroimaging and neurophysiological studies both demonstrate that perceptual learning is associated with altered activity…

  2. On the functional relevance of frontal cortex for passive and voluntarily controlled bistable vision.

    PubMed

    de Graaf, Tom A; de Jong, Maartje C; Goebel, Rainer; van Ee, Raymond; Sack, Alexander T

    2011-10-01

    In bistable vision, one constant ambiguous stimulus leads to 2 alternating conscious percepts. This perceptual switching occurs spontaneously but can also be influenced through voluntary control. Neuroimaging studies have reported that frontal regions are activated during spontaneous perceptual switches, leading some researchers to suggest that frontal regions causally induce perceptual switches. But the opposite also seems possible: frontal activations may themselves be caused by spontaneous switches. Classically implicated in attentional processes, these same regions are also candidates for the origins of voluntary control over bistable vision. Here too, it remains unknown whether frontal cortex is actually functionally relevant. It is even possible that spontaneous perceptual switches and voluntarily induced switches are mediated by the same top-down mechanisms. To directly address these issues, we here induced "virtual lesions," with transcranial magnetic stimulation, in frontal, parietal, and 2 lower level visual cortices using an established ambiguous structure-from-motion stimulus. We found that dorsolateral prefrontal cortex was causally relevant for voluntary control over perceptual switches. In contrast, we failed to find any evidence for an active role of frontal cortex in passive bistable vision. Thus, it seems the same pathway used for willed top-down modulation of bistable vision is not used during passive bistable viewing.

  3. The contribution of the human posterior parietal cortex to episodic memory.

    PubMed

    Sestieri, Carlo; Shulman, Gordon L; Corbetta, Maurizio

    2017-02-17

    The posterior parietal cortex (PPC) is traditionally associated with attention, perceptual decision making and sensorimotor transformations, but more recent human neuroimaging studies support an additional role in episodic memory retrieval. In this Opinion article, we present a functional-anatomical model of the involvement of the PPC in memory retrieval. Parietal regions involved in perceptual attention and episodic memory are largely segregated and often show a push-pull relationship, potentially mediated by prefrontal regions. Moreover, different PPC regions carry out specific functions during retrieval - for example, representing retrieved information, recoding this information based on task demands, or accumulating evidence for memory decisions.

  4. The contribution of the human posterior parietal cortex to episodic memory

    PubMed Central

    Sestieri, Carlo; Shulman, Gordon L.; Corbetta, Maurizio

    2017-01-01

    The posterior parietal cortex (PPC) is traditionally associated with attention, perceptual decision making and sensorimotor transformations, but more recent human neuroimaging studies support an additional role in episodic memory retrieval. In this Opinion article, we present a functional–anatomical model of the involvement of the PPC in memory retrieval. Parietal regions involved in perceptual attention and episodic memory are largely segregated and often show a push–pull relationship, potentially mediated by prefrontal regions. Moreover, different PPC regions carry out specific functions during retrieval — for example, representing retrieved information, recoding this information based on task demands, or accumulating evidence for memory decisions. PMID:28209980

  5. Vision for perception and vision for action in the primate brain.

    PubMed

    Goodale, M A

    1998-01-01

    Visual systems first evolved not to enable animals to see, but to provide distal sensory control of their movements. Vision as 'sight' is a relative newcomer to the evolutionary landscape, but its emergence has enabled animals to carry out complex cognitive operations on perceptual representations of the world. The two streams of visual processing that have been identified in the primate cerebral cortex are a reflection of these two functions of vision. The dorsal 'action' stream projecting from primary visual cortex to the posterior parietal cortex provides flexible control of more ancient subcortical visuomotor modules for the production of motor acts. The ventral 'perceptual' stream projecting from the primary visual cortex to the temporal lobe provides the rich and detailed representation of the world required for cognitive operations. Both streams process information about the structure of objects and about their spatial locations--and both are subject to the modulatory influences of attention. Each stream, however, uses visual information in different ways. Transformations carried out in the ventral stream permit the formation of perceptual representations that embody the enduring characteristics of objects and their relations; those carried out in the dorsal stream which utilize moment-to-moment information about objects within egocentric frames of reference, mediate the control of skilled actions. Both streams work together in the production of goal-directed behaviour.

  6. Decision ambiguity is mediated by a late positive potential originating from cingulate cortex.

    PubMed

    Sun, Sai; Zhen, Shanshan; Fu, Zhongzheng; Wu, Daw-An; Shimojo, Shinsuke; Adolphs, Ralph; Yu, Rongjun; Wang, Shuo

    2017-08-15

    People often make decisions in the face of ambiguous information, but it remains unclear how ambiguity is represented in the brain. We used three types of ambiguous stimuli and combined EEG and fMRI to examine the neural representation of perceptual decisions under ambiguity. We identified a late positive potential, the LPP, which differentiated levels of ambiguity, and which was specifically associated with behavioral judgments about choices that were ambiguous, rather than passive perception of ambiguous stimuli. Mediation analyses together with two further control experiments confirmed that the LPP was generated only when decisions are made (not during mere perception of ambiguous stimuli), and only when those decisions involved choices on a dimension that is ambiguous. A further control experiment showed that a stronger LPP arose in the presence of ambiguous stimuli compared to when only unambiguous stimuli were present. Source modeling suggested that the LPP originated from multiple loci in cingulate cortex, a finding we further confirmed using fMRI and fMRI-guided ERP source prediction. Taken together, our findings argue for a role of an LPP originating from cingulate cortex in encoding decisions based on task-relevant perceptual ambiguity, a process that may in turn influence confidence judgment, response conflict, and error correction. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A Neurobiological Theory of Automaticity in Perceptual Categorization

    ERIC Educational Resources Information Center

    Ashby, F. Gregory; Ennis, John M.; Spiering, Brian J.

    2007-01-01

    A biologically detailed computational model is described of how categorization judgments become automatic in tasks that depend on procedural learning. The model assumes 2 neural pathways from sensory association cortex to the premotor area that mediates response selection. A longer and slower path projects to the premotor area via the striatum,…

  8. Fluoxetine Does Not Enhance Visual Perceptual Learning and Triazolam Specifically Impairs Learning Transfer

    PubMed Central

    Lagas, Alice K.; Black, Joanna M.; Byblow, Winston D.; Fleming, Melanie K.; Goodman, Lucy K.; Kydd, Robert R.; Russell, Bruce R.; Stinear, Cathy M.; Thompson, Benjamin

    2016-01-01

    The selective serotonin reuptake inhibitor fluoxetine significantly enhances adult visual cortex plasticity within the rat. This effect is related to decreased gamma-aminobutyric acid (GABA) mediated inhibition and identifies fluoxetine as a potential agent for enhancing plasticity in the adult human brain. We tested the hypothesis that fluoxetine would enhance visual perceptual learning of a motion direction discrimination (MDD) task in humans. We also investigated (1) the effect of fluoxetine on visual and motor cortex excitability and (2) the impact of increased GABA mediated inhibition following a single dose of triazolam on post-training MDD task performance. Within a double blind, placebo controlled design, 20 healthy adult participants completed a 19-day course of fluoxetine (n = 10, 20 mg per day) or placebo (n = 10). Participants were trained on the MDD task over the final 5 days of fluoxetine administration. Accuracy for the trained MDD stimulus and an untrained MDD stimulus configuration was assessed before and after training, after triazolam and 1 week after triazolam. Motor and visual cortex excitability were measured using transcranial magnetic stimulation. Fluoxetine did not enhance the magnitude or rate of perceptual learning and full transfer of learning to the untrained stimulus was observed for both groups. After training was complete, trazolam had no effect on trained task performance but significantly impaired untrained task performance. No consistent effects of fluoxetine on cortical excitability were observed. The results do not support the hypothesis that fluoxetine can enhance learning in humans. However, the specific effect of triazolam on MDD task performance for the untrained stimulus suggests that learning and learning transfer rely on dissociable neural mechanisms. PMID:27807412

  9. Perceptual learning modifies the functional specializations of visual cortical areas.

    PubMed

    Chen, Nihong; Cai, Peng; Zhou, Tiangang; Thompson, Benjamin; Fang, Fang

    2016-05-17

    Training can improve performance of perceptual tasks. This phenomenon, known as perceptual learning, is strongest for the trained task and stimulus, leading to a widely accepted assumption that the associated neuronal plasticity is restricted to brain circuits that mediate performance of the trained task. Nevertheless, learning does transfer to other tasks and stimuli, implying the presence of more widespread plasticity. Here, we trained human subjects to discriminate the direction of coherent motion stimuli. The behavioral learning effect substantially transferred to noisy motion stimuli. We used transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) to investigate the neural mechanisms underlying the transfer of learning. The TMS experiment revealed dissociable, causal contributions of V3A (one of the visual areas in the extrastriate visual cortex) and MT+ (middle temporal/medial superior temporal cortex) to coherent and noisy motion processing. Surprisingly, the contribution of MT+ to noisy motion processing was replaced by V3A after perceptual training. The fMRI experiment complemented and corroborated the TMS finding. Multivariate pattern analysis showed that, before training, among visual cortical areas, coherent and noisy motion was decoded most accurately in V3A and MT+, respectively. After training, both kinds of motion were decoded most accurately in V3A. Our findings demonstrate that the effects of perceptual learning extend far beyond the retuning of specific neural populations for the trained stimuli. Learning could dramatically modify the inherent functional specializations of visual cortical areas and dynamically reweight their contributions to perceptual decisions based on their representational qualities. These neural changes might serve as the neural substrate for the transfer of perceptual learning.

  10. Category Learning in the Brain

    PubMed Central

    Seger, Carol A.; Miller, Earl K.

    2013-01-01

    The ability to group items and events into functional categories is a fundamental characteristic of sophisticated thought. It is subserved by plasticity in many neural systems, including neocortical regions (sensory, prefrontal, parietal, and motor cortex), the medial temporal lobe, the basal ganglia, and midbrain dopaminergic systems. These systems interact during category learning. Corticostriatal loops may mediate recursive, bootstrapping interactions between fast reward-gated plasticity in the basal ganglia and slow reward-shaded plasticity in the cortex. This can provide a balance between acquisition of details of experiences and generalization across them. Interactions between the corticostriatal loops can integrate perceptual, response, and feedback-related aspects of the task and mediate the shift from novice to skilled performance. The basal ganglia and medial temporal lobe interact competitively or cooperatively, depending on the demands of the learning task. PMID:20572771

  11. Biased and unbiased perceptual decision-making on vocal emotions.

    PubMed

    Dricu, Mihai; Ceravolo, Leonardo; Grandjean, Didier; Frühholz, Sascha

    2017-11-24

    Perceptual decision-making on emotions involves gathering sensory information about the affective state of another person and forming a decision on the likelihood of a particular state. These perceptual decisions can be of varying complexity as determined by different contexts. We used functional magnetic resonance imaging and a region of interest approach to investigate the brain activation and functional connectivity behind two forms of perceptual decision-making. More complex unbiased decisions on affective voices recruited an extended bilateral network consisting of the posterior inferior frontal cortex, the orbitofrontal cortex, the amygdala, and voice-sensitive areas in the auditory cortex. Less complex biased decisions on affective voices distinctly recruited the right mid inferior frontal cortex, pointing to a functional distinction in this region following decisional requirements. Furthermore, task-induced neural connectivity revealed stronger connections between these frontal, auditory, and limbic regions during unbiased relative to biased decision-making on affective voices. Together, the data shows that different types of perceptual decision-making on auditory emotions have distinct patterns of activations and functional coupling that follow the decisional strategies and cognitive mechanisms involved during these perceptual decisions.

  12. Confidence Leak in Perceptual Decision Making.

    PubMed

    Rahnev, Dobromir; Koizumi, Ai; McCurdy, Li Yan; D'Esposito, Mark; Lau, Hakwan

    2015-11-01

    People live in a continuous environment in which the visual scene changes on a slow timescale. It has been shown that to exploit such environmental stability, the brain creates a continuity field in which objects seen seconds ago influence the perception of current objects. What is unknown is whether a similar mechanism exists at the level of metacognitive representations. In three experiments, we demonstrated a robust intertask confidence leak-that is, confidence in one's response on a given task or trial influencing confidence on the following task or trial. This confidence leak could not be explained by response priming or attentional fluctuations. Better ability to modulate confidence leak predicted higher capacity for metacognition as well as greater gray matter volume in the prefrontal cortex. A model based on normative principles from Bayesian inference explained the results by postulating that observers subjectively estimate the perceptual signal strength in a stable environment. These results point to the existence of a novel metacognitive mechanism mediated by regions in the prefrontal cortex. © The Author(s) 2015.

  13. Interactions between attention, context and learning in primary visual cortex.

    PubMed

    Gilbert, C; Ito, M; Kapadia, M; Westheimer, G

    2000-01-01

    Attention in early visual processing engages the higher order, context dependent properties of neurons. Even at the earliest stages of visual cortical processing neurons play a role in intermediate level vision - contour integration and surface segmentation. The contextual influences mediating this process may be derived from long range connections within primary visual cortex (V1). These influences are subject to perceptual learning, and are strongly modulated by visuospatial attention, which is itself a learning dependent process. The attentional influences may involve interactions between feedback and horizontal connections in V1. V1 is therefore a dynamic and active processor, subject to top-down influences.

  14. The neural response in short-term visual recognition memory for perceptual conjunctions.

    PubMed

    Elliott, R; Dolan, R J

    1998-01-01

    Short-term visual memory has been widely studied in humans and animals using delayed matching paradigms. The present study used positron emission tomography (PET) to determine the neural substrates of delayed matching to sample for complex abstract patterns over a 5-s delay. More specifically, the study assessed any differential neural response associated with remembering individual perceptual properties (color only and shape only) compared to conjunction between these properties. Significant activations associated with short-term visual memory (all memory conditions compared to perceptuomotor control) were observed in extrastriate cortex, medial and lateral parietal cortex, anterior cingulate, inferior frontal gyrus, and the thalamus. Significant deactivations were observed throughout the temporal cortex. Although the requirement to remember color compared to shape was associated with subtly different patterns of blood flow, the requirement to remember perceptual conjunctions between these features was not associated with additional specific activations. These data suggest that visual memory over a delay of the order of 5 s is mainly dependent on posterior perceptual regions of the cortex, with the exact regions depending on the perceptual aspect of the stimuli to be remembered.

  15. Learning to Link Visual Contours

    PubMed Central

    Li, Wu; Piëch, Valentin; Gilbert, Charles D.

    2008-01-01

    SUMMARY In complex visual scenes, linking related contour elements is important for object recognition. This process, thought to be stimulus driven and hard wired, has substrates in primary visual cortex (V1). Here, however, we find contour integration in V1 to depend strongly on perceptual learning and top-down influences that are specific to contour detection. In naive monkeys the information about contours embedded in complex backgrounds is absent in V1 neuronal responses, and is independent of the locus of spatial attention. Training animals to find embedded contours induces strong contour-related responses specific to the trained retinotopic region. These responses are most robust when animals perform the contour detection task, but disappear under anesthesia. Our findings suggest that top-down influences dynamically adapt neural circuits according to specific perceptual tasks. This may serve as a general neuronal mechanism of perceptual learning, and reflect top-down mediated changes in cortical states. PMID:18255036

  16. Rhythms of Consciousness: Binocular Rivalry Reveals Large-Scale Oscillatory Network Dynamics Mediating Visual Perception

    PubMed Central

    Doesburg, Sam M.; Green, Jessica J.; McDonald, John J.; Ward, Lawrence M.

    2009-01-01

    Consciousness has been proposed to emerge from functionally integrated large-scale ensembles of gamma-synchronous neural populations that form and dissolve at a frequency in the theta band. We propose that discrete moments of perceptual experience are implemented by transient gamma-band synchronization of relevant cortical regions, and that disintegration and reintegration of these assemblies is time-locked to ongoing theta oscillations. In support of this hypothesis we provide evidence that (1) perceptual switching during binocular rivalry is time-locked to gamma-band synchronizations which recur at a theta rate, indicating that the onset of new conscious percepts coincides with the emergence of a new gamma-synchronous assembly that is locked to an ongoing theta rhythm; (2) localization of the generators of these gamma rhythms reveals recurrent prefrontal and parietal sources; (3) theta modulation of gamma-band synchronization is observed between and within the activated brain regions. These results suggest that ongoing theta-modulated-gamma mechanisms periodically reintegrate a large-scale prefrontal-parietal network critical for perceptual experience. Moreover, activation and network inclusion of inferior temporal cortex and motor cortex uniquely occurs on the cycle immediately preceding responses signaling perceptual switching. This suggests that the essential prefrontal-parietal oscillatory network is expanded to include additional cortical regions relevant to tasks and perceptions furnishing consciousness at that moment, in this case image processing and response initiation, and that these activations occur within a time frame consistent with the notion that conscious processes directly affect behaviour. PMID:19582165

  17. Parietal cortex mediates perceptual Gestalt grouping independent of stimulus size.

    PubMed

    Grassi, Pablo R; Zaretskaya, Natalia; Bartels, Andreas

    2016-06-01

    The integration of local moving elements into a unified gestalt percept has previously been linked to the posterior parietal cortex. There are two possible interpretations for the lack of involvement of other occipital regions. The first is that parietal cortex is indeed uniquely functionally specialized to perform grouping. Another possibility is that other visual regions can perform grouping as well, but that the large spatial separation of the local elements used previously exceeded their neurons' receptive field (RF) sizes, preventing their involvement. In this study we distinguished between these two alternatives. We measured whole-brain activity using fMRI in response to a bistable motion illusion that induced mutually exclusive percepts of either an illusory global Gestalt or of local elements. The stimulus was presented in two sizes, a large version known to activate IPS only, and a version sufficiently small to fit into the RFs of mid-level dorsal regions such as V5/MT. We found that none of the separately localized motion regions apart from parietal cortex showed a preference for global Gestalt perception, even for the smaller version of the stimulus. This outcome suggests that grouping-by-motion is mediated by a specialized size-invariant mechanism with parietal cortex as its anatomical substrate. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Multiple cognitive control mechanisms associated with the nature of conflict.

    PubMed

    Kim, Chobok; Chung, Chongwook; Kim, Jeounghoon

    2010-06-07

    Cognitive control is required to regulate conflict. The conflict monitoring theory suggests that the dorsal anterior cingulate cortex (dACC) is involved in detecting response conflict and the dorsolateral prefrontal cortex (DLPFC) plays a critical role in regulating conflict. Recent studies, however, have suggested that rostral dACC (rdACC) responds to response conflict whereas caudal dACC (cdACC) is associated with perceptual conflict. Moreover, DLPFC has been engaged only in regulation of response conflict. A neural network involved in perceptual conflict, however, remains unclear. In this study, we used functional magnetic resonance imaging (fMRI) in an attempt to reveal monitor-controller networks corresponding to either perceptual conflict or response conflict. A version of the Stroop color matching task was used to manipulate perceptual conflict, response conflict was manipulated by an arrow. The results demonstrated that rdACC and DLPFC were engaged in response conflict whereas cdACC and the dorsal portion of premotor cortex (pre-PMd) were involved in perceptual conflict. Interestingly, the posterior parietal cortex (PPC) was activated by both types of conflict. Correlation analyses between behavioral conflict effects and neural responses demonstrated that rdACC and DLPFC were associated with response conflict whereas cdACC and pre-PMd were associated with perceptual conflict. PPC was not correlated with either perceptual conflict or response conflict. We suggest that cdACC and pre-PMd play critical roles in perceptual conflict processing, and this network is independent from the rdACC/DLPFC network for response conflict processing. We also discussed the function of PPC in conflict processing. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  19. How the blind "see" Braille: lessons from functional magnetic resonance imaging.

    PubMed

    Sadato, Norihiro

    2005-12-01

    What does the visual cortex of the blind do during Braille reading? This process involves converting simple tactile information into meaningful patterns that have lexical and semantic properties. The perceptual processing of Braille might be mediated by the somatosensory system, whereas visual letter identity is accomplished within the visual system in sighted people. Recent advances in functional neuroimaging techniques, such as functional magnetic resonance imaging, have enabled exploration of the neural substrates of Braille reading. The primary visual cortex of early-onset blind subjects is functionally relevant to Braille reading, suggesting that the brain shows remarkable plasticity that potentially permits the additional processing of tactile information in the visual cortical areas.

  20. The neural substrates of in-group bias: a functional magnetic resonance imaging investigation.

    PubMed

    Van Bavel, Jay J; Packer, Dominic J; Cunningham, William A

    2008-11-01

    Classic minimal-group studies found that people arbitrarily assigned to a novel group quickly display a range of perceptual, affective, and behavioral in-group biases. We randomly assigned participants to a mixed-race team and used functional magnetic resonance imaging to identify brain regions involved in processing novel in-group and out-group members independently of preexisting attitudes, stereotypes, or familiarity. Whereas previous research on intergroup perception found amygdala activity--typically interpreted as negativity--in response to stigmatized social groups, we found greater activity in the amygdala, fusiform gyri, orbitofrontal cortex, and dorsal striatum when participants viewed novel in-group faces than when they viewed novel out-group faces. Moreover, activity in orbitofrontal cortex mediated the in-group bias in self-reported liking for the faces. These in-group biases in neural activity were not moderated by race or by whether participants explicitly attended to team membership or race, a finding suggesting that they may occur automatically. This study helps clarify the role of neural substrates involved in perceptual and affective in-group biases.

  1. Perceptual learning and adult cortical plasticity.

    PubMed

    Gilbert, Charles D; Li, Wu; Piech, Valentin

    2009-06-15

    The visual cortex retains the capacity for experience-dependent changes, or plasticity, of cortical function and cortical circuitry, throughout life. These changes constitute the mechanism of perceptual learning in normal visual experience and in recovery of function after CNS damage. Such plasticity can be seen at multiple stages in the visual pathway, including primary visual cortex. The manifestation of the functional changes associated with perceptual learning involve both long term modification of cortical circuits during the course of learning, and short term dynamics in the functional properties of cortical neurons. These dynamics are subject to top-down influences of attention, expectation and perceptual task. As a consequence, each cortical area is an adaptive processor, altering its function in accordance to immediate perceptual demands.

  2. Illusory Obesity Triggers Body Dissatisfaction Responses in the Insula and Anterior Cingulate Cortex

    PubMed Central

    Preston, Catherine; Ehrsson, H. Henrik

    2016-01-01

    In today's Western society, concerns regarding body size and negative feelings toward one's body are all too common. However, little is known about the neural mechanisms underlying negative feelings toward the body and how they relate to body perception and eating-disorder pathology. Here, we used multisensory illusions to elicit illusory ownership of obese and slim bodies during functional magnetic resonance imaging. The results implicate the anterior insula and the anterior cingulate cortex in the development of negative feelings toward the body through functional interactions with the posterior parietal cortex, which mediates perceived obesity. Moreover, cingulate neural responses were modulated by nonclinical eating-disorder psychopathology and were attenuated in females. These results reveal how perceptual and affective body representations interact in the human brain and may help explain the neurobiological underpinnings of eating-disorder vulnerability in women. PMID:27733537

  3. The Competitive Influences of Perceptual Load and Working Memory Guidance on Selective Attention.

    PubMed

    Tan, Jinfeng; Zhao, Yuanfang; Wang, Lijun; Tian, Xia; Cui, Yan; Yang, Qian; Pan, Weigang; Zhao, Xiaoyue; Chen, Antao

    2015-01-01

    The perceptual load theory in selective attention literature proposes that the interference from task-irrelevant distractor is eliminated when perceptual capacity is fully consumed by task-relevant information. However, the biased competition model suggests that the contents of working memory (WM) can guide attentional selection automatically, even when this guidance is detrimental to visual search. An intriguing but unsolved question is what will happen when selective attention is influenced by both perceptual load and WM guidance. To study this issue, behavioral performances and event-related potentials (ERPs) were recorded when participants were presented with a cue to either identify or hold in memory and had to perform a visual search task subsequently, under conditions of low or high perceptual load. Behavioural data showed that high perceptual load eliminated the attentional capture by WM. The ERP results revealed an obvious WM guidance effect in P1 component with invalid trials eliciting larger P1 than neutral trials, regardless of the level of perceptual load. The interaction between perceptual load and WM guidance was significant for the posterior N1 component. The memory guidance effect on N1 was eliminated by high perceptual load. Standardized Low Resolution Electrical Tomography Analysis (sLORETA) showed that the WM guidance effect and the perceptual load effect on attention can be localized into the occipital area and parietal lobe, respectively. Merely identifying the cue produced no effect on the P1 or N1 component. These results suggest that in selective attention, the information held in WM could capture attention at the early stage of visual processing in the occipital cortex. Interestingly, this initial capture of attention by WM could be modulated by the level of perceptual load and the parietal lobe mediates target selection at the discrimination stage.

  4. The Competitive Influences of Perceptual Load and Working Memory Guidance on Selective Attention

    PubMed Central

    Tan, Jinfeng; Zhao, Yuanfang; Wang, Lijun; Tian, Xia; Cui, Yan; Yang, Qian; Pan, Weigang; Zhao, Xiaoyue; Chen, Antao

    2015-01-01

    The perceptual load theory in selective attention literature proposes that the interference from task-irrelevant distractor is eliminated when perceptual capacity is fully consumed by task-relevant information. However, the biased competition model suggests that the contents of working memory (WM) can guide attentional selection automatically, even when this guidance is detrimental to visual search. An intriguing but unsolved question is what will happen when selective attention is influenced by both perceptual load and WM guidance. To study this issue, behavioral performances and event-related potentials (ERPs) were recorded when participants were presented with a cue to either identify or hold in memory and had to perform a visual search task subsequently, under conditions of low or high perceptual load. Behavioural data showed that high perceptual load eliminated the attentional capture by WM. The ERP results revealed an obvious WM guidance effect in P1 component with invalid trials eliciting larger P1 than neutral trials, regardless of the level of perceptual load. The interaction between perceptual load and WM guidance was significant for the posterior N1 component. The memory guidance effect on N1 was eliminated by high perceptual load. Standardized Low Resolution Electrical Tomography Analysis (sLORETA) showed that the WM guidance effect and the perceptual load effect on attention can be localized into the occipital area and parietal lobe, respectively. Merely identifying the cue produced no effect on the P1 or N1 component. These results suggest that in selective attention, the information held in WM could capture attention at the early stage of visual processing in the occipital cortex. Interestingly, this initial capture of attention by WM could be modulated by the level of perceptual load and the parietal lobe mediates target selection at the discrimination stage. PMID:26098079

  5. Reduction in the retinotopic early visual cortex with normal aging and magnitude of perceptual learning.

    PubMed

    Chang, Li-Hung; Yotsumoto, Yuko; Salat, David H; Andersen, George J; Watanabe, Takeo; Sasaki, Yuka

    2015-01-01

    Although normal aging is known to reduce cortical structures globally, the effects of aging on local structures and functions of early visual cortex are less understood. Here, using standard retinotopic mapping and magnetic resonance imaging morphologic analyses, we investigated whether aging affects areal size of the early visual cortex, which were retinotopically localized, and whether those morphologic measures were associated with individual performance on visual perceptual learning. First, significant age-associated reduction was found in the areal size of V1, V2, and V3. Second, individual ability of visual perceptual learning was significantly correlated with areal size of V3 in older adults. These results demonstrate that aging changes local structures of the early visual cortex, and the degree of change may be associated with individual visual plasticity. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Multiple Transient Signals in Human Visual Cortex Associated with an Elementary Decision

    PubMed Central

    Nolte, Guido

    2017-01-01

    The cerebral cortex continuously undergoes changes in its state, which are manifested in transient modulations of the cortical power spectrum. Cortical state changes also occur at full wakefulness and during rapid cognitive acts, such as perceptual decisions. Previous studies found a global modulation of beta-band (12–30 Hz) activity in human and monkey visual cortex during an elementary visual decision: reporting the appearance or disappearance of salient visual targets surrounded by a distractor. The previous studies disentangled neither the motor action associated with behavioral report nor other secondary processes, such as arousal, from perceptual decision processing per se. Here, we used magnetoencephalography in humans to pinpoint the factors underlying the beta-band modulation. We found that disappearances of a salient target were associated with beta-band suppression, and target reappearances with beta-band enhancement. This was true for both overt behavioral reports (immediate button presses) and silent counting of the perceptual events. This finding indicates that the beta-band modulation was unrelated to the execution of the motor act associated with a behavioral report of the perceptual decision. Further, changes in pupil-linked arousal, fixational eye movements, or gamma-band responses were not necessary for the beta-band modulation. Together, our results suggest that the beta-band modulation was a top-down signal associated with the process of converting graded perceptual signals into a categorical format underlying flexible behavior. This signal may have been fed back from brain regions involved in decision processing to visual cortex, thus enforcing a “decision-consistent” cortical state. SIGNIFICANCE STATEMENT Elementary visual decisions are associated with a rapid state change in visual cortex, indexed by a modulation of neural activity in the beta-frequency range. Such decisions are also followed by other events that might affect the state of visual cortex, including the motor command associated with the report of the decision, an increase in pupil-linked arousal, fixational eye movements, and fluctuations in bottom-up sensory processing. Here, we ruled out the necessity of these events for the beta-band modulation of visual cortex. We propose that the modulation reflects a decision-related state change, which is induced by the conversion of graded perceptual signals into a categorical format underlying behavior. The resulting decision signal may be fed back to visual cortex. PMID:28495972

  7. Perceptual load interacts with stimulus processing across sensory modalities.

    PubMed

    Klemen, J; Büchel, C; Rose, M

    2009-06-01

    According to perceptual load theory, processing of task-irrelevant stimuli is limited by the perceptual load of a parallel attended task if both the task and the irrelevant stimuli are presented to the same sensory modality. However, it remains a matter of debate whether the same principles apply to cross-sensory perceptual load and, more generally, what form cross-sensory attentional modulation in early perceptual areas takes in humans. Here we addressed these questions using functional magnetic resonance imaging. Participants undertook an auditory one-back working memory task of low or high perceptual load, while concurrently viewing task-irrelevant images at one of three object visibility levels. The processing of the visual and auditory stimuli was measured in the lateral occipital cortex (LOC) and auditory cortex (AC), respectively. Cross-sensory interference with sensory processing was observed in both the LOC and AC, in accordance with previous results of unisensory perceptual load studies. The present neuroimaging results therefore warrant the extension of perceptual load theory from a unisensory to a cross-sensory context: a validation of this cross-sensory interference effect through behavioural measures would consolidate the findings.

  8. Medial perirhinal cortex disambiguates confusable objects

    PubMed Central

    Tyler, Lorraine K.; Monsch, Andreas U.; Taylor, Kirsten I.

    2012-01-01

    Our brain disambiguates the objects in our cluttered visual world seemingly effortlessly, enabling us to understand their significance and to act appropriately. The role of anteromedial temporal structures in this process, particularly the perirhinal cortex, is highly controversial. In some accounts, the perirhinal cortex is necessary for differentiating between perceptually and semantically confusable objects. Other models claim that the perirhinal cortex neither disambiguates perceptually confusable objects nor plays a unique role in semantic processing. One major hurdle to resolving this central debate is the fact that brain damage in human patients typically encompasses large portions of the anteromedial temporal lobe, such that the identification of individual substructures and precise neuroanatomical locus of the functional impairments has been difficult. We tested these competing accounts in patients with Alzheimer’s disease with varying degrees of atrophy in anteromedial structures, including the perirhinal cortex. To assess the functional contribution of each anteromedial temporal region separately, we used a detailed region of interest approach. From each participant, we obtained magnetic resonance imaging scans and behavioural data from a picture naming task that contrasted naming performance with living and non-living things as a way of manipulating perceptual and semantic confusability; living things are more similar to one another than non-living things, which have more distinctive features. We manually traced neuroanatomical regions of interest on native-space cortical surface reconstructions to obtain mean thickness estimates for the lateral and medial perirhinal cortex and entorhinal cortex. Mean cortical thickness in each region of interest, and hippocampal volume, were submitted to regression analyses predicting naming performance. Importantly, atrophy of the medial perirhinal cortex, but not lateral perirhinal cortex, entorhinal cortex or hippocampus, significantly predicted naming performance on living relative to non-living things. These findings indicate that one specific anteromedial temporal lobe region—the medial perirhinal cortex—is necessary for the disambiguation of perceptually and semantically confusable objects. Taken together, these results support a hierarchical account of object processing, whereby the perirhinal cortex at the apex of the ventral object processing system is required to bind properties of not just perceptually, but also semantically confusable objects together, enabling their disambiguation from other similar objects and thus comprehension. Significantly, this model combining a hierarchical object processing architecture with a semantic feature statistic account explains why category-specific semantic impairments for living things are associated with anteromedial temporal lobe damage, and pinpoints the root of this syndrome to perirhinal cortex damage. PMID:23250887

  9. Using fNIRS to Examine Occipital and Temporal Responses to Stimulus Repetition in Young Infants: Evidence of Selective Frontal Cortex Involvement

    PubMed Central

    Emberson, Lauren L.; Cannon, Grace; Palmeri, Holly; Richards, John E.; Aslin, Richard N.

    2016-01-01

    How does the developing brain respond to recent experience? Repetition suppression (RS) is a robust and well-characterized response of to recent experience found, predominantly, in the perceptual cortices of the adult brain. We use functional near-infrared spectroscopy (fNIRS) to investigate how perceptual (temporal and occipital) and frontal cortices in the infant brain respond to auditory and visual stimulus repetitions (spoken words and faces). In Experiment 1, we find strong evidence of repetition suppression in the frontal cortex but only for auditory stimuli. In perceptual cortices, we find only suggestive evidence of auditory RS in the temporal cortex and no evidence of visual RS in any ROI. In Experiments 2 and 3, we replicate and extend these findings. Overall, we provide the first evidence that infant and adult brains respond differently to stimulus repetition. We suggest that the frontal lobe may support the development of RS in perceptual cortices. PMID:28012401

  10. Thermosensory Perceptual Learning Is Associated with Structural Brain Changes in Parietal–Opercular (SII) Cortex

    PubMed Central

    Mano, Hiroaki; Kawato, Mitsuo

    2017-01-01

    The location of a sensory cortex for temperature perception remains a topic of substantial debate. Both the parietal–opercular (SII) and posterior insula have been consistently implicated in thermosensory processing, but neither region has yet been identified as the locus of fine temperature discrimination. Using a perceptual learning paradigm in male and female humans, we show improvement in discrimination accuracy for subdegree changes in both warmth and cool detection over 5 d of repetitive training. We found that increases in discriminative accuracy were specific to the temperature (cold or warm) being trained. Using structural imaging to look for plastic changes associated with perceptual learning, we identified symmetrical increases in gray matter volume in the SII cortex. Furthermore, we observed distinct, adjacent regions for cold and warm discrimination, with cold discrimination having a more anterior locus than warm. The results suggest that thermosensory discrimination is supported by functionally and anatomically distinct temperature-specific modules in the SII cortex. SIGNIFICANCE STATEMENT We provide behavioral and neuroanatomical evidence that perceptual learning is possible within the temperature system. We show that structural plasticity localizes to parietal–opercular (SII), and not posterior insula, providing the best evidence to date resolving a longstanding debate about the location of putative “temperature cortex.” Furthermore, we show that cold and warm pathways are behaviorally and anatomically dissociable, suggesting that the temperature system has distinct temperature-dependent processing modules. PMID:28847806

  11. The hippocampus and related neocortical structures in memory transformation.

    PubMed

    Sekeres, Melanie J; Winocur, Gordon; Moscovitch, Morris

    2018-05-04

    Episodic memories are multifaceted and malleable, capable of being transformed with time and experience at both the neural level and psychological level. At the neural level, episodic memories are transformed from being dependent on the hippocampus to becoming represented in neocortical structures, such as the medial prefrontal cortex (mPFC), and back again, while at the psychological level, detailed, perceptually rich memories, are transformed to ones retaining only the gist of an experience or a schema related to it. Trace Transformation Theory (TTT) initially proposed that neural and psychological transformations are linked and proceed in tandem. Building on recent studies on the neurobiology of memory transformation in rodents and on the organization of the hippocampus and its functional cortical connectivity in humans, we present an updated version of TTT that is more precise and detailed with respect to the dynamic processes and structures implicated in memory transformation. At the heart of the updated TTT lies the long axis of the hippocampus whose functional differentiation and connectivity to neocortex make it a hub for memory formation and transformation. The posterior hippocampus, connected to perceptual and spatial representational systems in posterior neocortex, supports fine, perceptually rich, local details of memories; the anterior hippocampus, connected to conceptual systems in anterior neocortex, supports coarse, global representations that constitute the gist of a memory. Notable among the anterior structures is the medial prefrontal cortex which supports representation of schemas that code for common aspects of memories across different episodes. Linking the aHPC with mPFC is the entorhinal cortex (EC) which conveys information needed for the interaction/translation between gist and schemas. Thus, the long axis of the hippocampus, mPFC and EC provide the representational gradient, from fine to coarse and from perceptual to conceptual, that can implement processes implicated in memory transformation. Each of these representations of an episodic memory can co-exist with one another and be in dynamic flux as they interact with one another throughout the memory's lifetime, going from detailed to schematic and possibly back again, all mediated by corresponding changes in neural representation. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Topographic generalization of tactile perceptual learning.

    PubMed

    Harrar, Vanessa; Spence, Charles; Makin, Tamar R

    2014-02-01

    Perceptual learning can improve our sensory abilities. Understanding its underlying mechanisms, in particular, when perceptual learning generalizes, has become a focus of research and controversy. Specifically, there is little consensus regarding the extent to which tactile perceptual learning generalizes across fingers. We measured tactile orientation discrimination abilities on 4 fingers (index and middle fingers of both hands), using psychophysical measures, before and after 4 training sessions on 1 finger. Given the somatotopic organization of the hand representation in the somatosensory cortex, the topography of the cortical areas underlying tactile perceptual learning can be inferred from the pattern of generalization across fingers; only fingers sharing cortical representation with the trained finger ought to improve with it. Following training, performance improved not only for the trained finger but also for its adjacent and homologous fingers. Although these fingers were not exposed to training, they nevertheless demonstrated similar levels of learning as the trained finger. Conversely, the performance of the finger that was neither adjacent nor homologous to the trained finger was unaffected by training, despite the fact that our procedure was designed to enhance generalization, as described in recent visual perceptual learning research. This pattern of improved performance is compatible with previous reports of neuronal receptive fields (RFs) in the primary somatosensory cortex (SI) spanning adjacent and homologous digits. We conclude that perceptual learning rooted in low-level cortex can still generalize, and suggest potential applications for the neurorehabilitation of syndromes associated with maladaptive plasticity in SI. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  13. Improving visual perception through neurofeedback

    PubMed Central

    Scharnowski, Frank; Hutton, Chloe; Josephs, Oliver; Weiskopf, Nikolaus; Rees, Geraint

    2012-01-01

    Perception depends on the interplay of ongoing spontaneous activity and stimulus-evoked activity in sensory cortices. This raises the possibility that training ongoing spontaneous activity alone might be sufficient for enhancing perceptual sensitivity. To test this, we trained human participants to control ongoing spontaneous activity in circumscribed regions of retinotopic visual cortex using real-time functional MRI based neurofeedback. After training, we tested participants using a new and previously untrained visual detection task that was presented at the visual field location corresponding to the trained region of visual cortex. Perceptual sensitivity was significantly enhanced only when participants who had previously learned control over ongoing activity were now exercising control, and only for that region of visual cortex. Our new approach allows us to non-invasively and non-pharmacologically manipulate regionally specific brain activity, and thus provide ‘brain training’ to deliver particular perceptual enhancements. PMID:23223302

  14. Neural correlates of individual performance differences in resolving perceptual conflict.

    PubMed

    Labrenz, Franziska; Themann, Maria; Wascher, Edmund; Beste, Christian; Pfleiderer, Bettina

    2012-01-01

    Attentional mechanisms are a crucial prerequisite to organize behavior. Most situations may be characterized by a 'competition' between salient, but irrelevant stimuli and less salient, relevant stimuli. In such situations top-down and bottom-up mechanisms interact with each other. In the present fMRI study, we examined how interindividual differences in resolving situations of perceptual conflict are reflected in brain networks mediating attentional selection. Doing so, we employed a change detection task in which subjects had to detect luminance changes in the presence and absence of competing distractors. The results show that good performers presented increased activation in the orbitofrontal cortex (BA 11), anterior cingulate (BA 25), inferior parietal lobule (BA 40) and visual areas V2 and V3 but decreased activation in BA 39. This suggests that areas mediating top-down attentional control are stronger activated in this group. Increased activity in visual areas reflects distinct neuronal enhancement relating to selective attentional mechanisms in order to solve the perceptual conflict. Opposed to good performers, brain areas activated by poor performers comprised the left inferior parietal lobule (BA 39) and fronto-parietal and visual regions were continuously deactivated, suggesting that poor performers perceive stronger conflict than good performers. Moreover, the suppression of neural activation in visual areas might indicate a strategy of poor performers to inhibit the processing of the irrelevant non-target feature. These results indicate that high sensitivity in perceptual areas and increased attentional control led to less conflict in stimulus processing and consequently to higher performance in competitive attentional selection.

  15. Perceptual Load Alters Visual Excitability

    ERIC Educational Resources Information Center

    Carmel, David; Thorne, Jeremy D.; Rees, Geraint; Lavie, Nilli

    2011-01-01

    Increasing perceptual load reduces the processing of visual stimuli outside the focus of attention, but the mechanism underlying these effects remains unclear. Here we tested an account attributing the effects of perceptual load to modulations of visual cortex excitability. In contrast to stimulus competition accounts, which propose that load…

  16. Event-related fMRI studies of false memory: An Activation Likelihood Estimation meta-analysis.

    PubMed

    Kurkela, Kyle A; Dennis, Nancy A

    2016-01-29

    Over the last two decades, a wealth of research in the domain of episodic memory has focused on understanding the neural correlates mediating false memories, or memories for events that never happened. While several recent qualitative reviews have attempted to synthesize this literature, methodological differences amongst the empirical studies and a focus on only a sub-set of the findings has limited broader conclusions regarding the neural mechanisms underlying false memories. The current study performed a voxel-wise quantitative meta-analysis using activation likelihood estimation to investigate commonalities within the functional magnetic resonance imaging (fMRI) literature studying false memory. The results were broken down by memory phase (encoding, retrieval), as well as sub-analyses looking at differences in baseline (hit, correct rejection), memoranda (verbal, semantic), and experimental paradigm (e.g., semantic relatedness and perceptual relatedness) within retrieval. Concordance maps identified significant overlap across studies for each analysis. Several regions were identified in the general false retrieval analysis as well as multiple sub-analyses, indicating their ubiquitous, yet critical role in false retrieval (medial superior frontal gyrus, left precentral gyrus, left inferior parietal cortex). Additionally, several regions showed baseline- and paradigm-specific effects (hit/perceptual relatedness: inferior and middle occipital gyrus; CRs: bilateral inferior parietal cortex, precuneus, left caudate). With respect to encoding, analyses showed common activity in the left middle temporal gyrus and anterior cingulate cortex. No analysis identified a common cluster of activation in the medial temporal lobe. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A functional dissociation of conflict processing within anterior cingulate cortex.

    PubMed

    Kim, Chobok; Kroger, James K; Kim, Jeounghoon

    2011-02-01

    Goal-directed behavior requires cognitive control to regulate the occurrence of conflict. The dorsal anterior cingulate cortex (dACC) has been suggested in detecting response conflict during various conflict tasks. Recent findings, however, have indicated not only that two distinct subregions of dACC are involved in conflict processing but also that the conflict occurs at both perceptual and response levels. In this study, we sought to examine whether perceptual and response conflicts are functionally dissociated in dACC. Thirteen healthy subjects performed a version of the Stroop task during functional magnetic resonance imaging (fMRI) scanning. We identified a functional dissociation of the caudal dACC (cdACC) and the rostral dACC (rdACC) in their responses to different sources of conflict. The cdACC was selectively engaged in perceptual conflict whereas the rdACC was more active in response conflict. Further, the dorsolateral prefrontal cortex (DLPFC) was coactivated not with cdACC but with rdACC. We suggest that cdACC plays an important role in regulative processing of perceptual conflict whereas rdACC is involved in detecting response conflict. Copyright © 2010 Wiley-Liss, Inc.

  18. Effects of category-specific costs on neural systems for perceptual decision-making.

    PubMed

    Fleming, Stephen M; Whiteley, Louise; Hulme, Oliver J; Sahani, Maneesh; Dolan, Raymond J

    2010-06-01

    Perceptual judgments are often biased by prospective losses, leading to changes in decision criteria. Little is known about how and where sensory evidence and cost information interact in the brain to influence perceptual categorization. Here we show that prospective losses systematically bias the perception of noisy face-house images. Asymmetries in category-specific cost were associated with enhanced blood-oxygen-level-dependent signal in a frontoparietal network. We observed selective activation of parahippocampal gyrus for changes in category-specific cost in keeping with the hypothesis that loss functions enact a particular task set that is communicated to visual regions. Across subjects, greater shifts in decision criteria were associated with greater activation of the anterior cingulate cortex (ACC). Our results support a hypothesis that costs bias an intermediate representation between perception and action, expressed via general effects on frontal cortex, and selective effects on extrastriate cortex. These findings indicate that asymmetric costs may affect a neural implementation of perceptual decision making in a similar manner to changes in category expectation, constituting a step toward accounting for how prospective losses are flexibly integrated with sensory evidence in the brain.

  19. Neural Correlates of Auditory Perceptual Awareness and Release from Informational Masking Recorded Directly from Human Cortex: A Case Study.

    PubMed

    Dykstra, Andrew R; Halgren, Eric; Gutschalk, Alexander; Eskandar, Emad N; Cash, Sydney S

    2016-01-01

    In complex acoustic environments, even salient supra-threshold sounds sometimes go unperceived, a phenomenon known as informational masking. The neural basis of informational masking (and its release) has not been well-characterized, particularly outside auditory cortex. We combined electrocorticography in a neurosurgical patient undergoing invasive epilepsy monitoring with trial-by-trial perceptual reports of isochronous target-tone streams embedded in random multi-tone maskers. Awareness of such masker-embedded target streams was associated with a focal negativity between 100 and 200 ms and high-gamma activity (HGA) between 50 and 250 ms (both in auditory cortex on the posterolateral superior temporal gyrus) as well as a broad P3b-like potential (between ~300 and 600 ms) with generators in ventrolateral frontal and lateral temporal cortex. Unperceived target tones elicited drastically reduced versions of such responses, if at all. While it remains unclear whether these responses reflect conscious perception, itself, as opposed to pre- or post-perceptual processing, the results suggest that conscious perception of target sounds in complex listening environments may engage diverse neural mechanisms in distributed brain areas.

  20. Oscillatory activity in neocortical networks during tactile discrimination near the limit of spatial acuity.

    PubMed

    Adhikari, Bhim M; Sathian, K; Epstein, Charles M; Lamichhane, Bidhan; Dhamala, Mukesh

    2014-05-01

    Oscillatory interactions within functionally specialized but distributed brain regions are believed to be central to perceptual and cognitive functions. Here, using human scalp electroencephalography (EEG) recordings combined with source reconstruction techniques, we study how oscillatory activity functionally organizes different neocortical regions during a tactile discrimination task near the limit of spatial acuity. While undergoing EEG recordings, blindfolded participants felt a linear three-dot array presented electromechanically, under computer control, and reported whether the central dot was offset to the left or right. The average brain response differed significantly for trials with correct and incorrect perceptual responses in the timeframe approximately between 130 and 175ms. During trials with correct responses, source-level peak activity appeared in the left primary somatosensory cortex (SI) at around 45ms, in the right lateral occipital complex (LOC) at 130ms, in the right posterior intraparietal sulcus (pIPS) at 160ms, and finally in the left dorsolateral prefrontal cortex (dlPFC) at 175ms. Spectral interdependency analysis of activity in these nodes showed two distinct distributed networks, a dominantly feedforward network in the beta band (12-30Hz) that included all four nodes and a recurrent network in the gamma band (30-100Hz) that linked SI, pIPS and dlPFC. Measures of network activity in both bands were correlated with the accuracy of task performance. These findings suggest that beta and gamma band oscillatory networks coordinate activity between neocortical regions mediating sensory and cognitive processing to arrive at tactile perceptual decisions. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Prior perceptual processing enhances the effect of emotional arousal on the neural correlates of memory retrieval

    PubMed Central

    Dew, Ilana T. Z.; Ritchey, Maureen; LaBar, Kevin S.; Cabeza, Roberto

    2014-01-01

    A fundamental idea in memory research is that items are more likely to be remembered if encoded with a semantic, rather than perceptual, processing strategy. Interestingly, this effect has been shown to reverse for emotionally arousing materials, such that perceptual processing enhances memory for emotional information or events. The current fMRI study investigated the neural mechanisms of this effect by testing how neural activations during emotional memory retrieval are influenced by the prior encoding strategy. Participants incidentally encoded emotional and neutral pictures under instructions to attend to either semantic or perceptual properties of each picture. Recognition memory was tested two days later. fMRI analyses yielded three main findings. First, right amygdalar activity associated with emotional memory strength was enhanced by prior perceptual processing. Second, prior perceptual processing of emotional pictures produced a stronger effect on recollection- than familiarity-related activations in the right amygdala and left hippocampus. Finally, prior perceptual processing enhanced amygdalar connectivity with regions strongly associated with retrieval success, including hippocampal/parahippocampal regions, visual cortex, and ventral parietal cortex. Taken together, the results specify how encoding orientations yield alterations in brain systems that retrieve emotional memories. PMID:24380867

  2. Predicting perceptual learning from higher-order cortical processing.

    PubMed

    Wang, Fang; Huang, Jing; Lv, Yaping; Ma, Xiaoli; Yang, Bin; Wang, Encong; Du, Boqi; Li, Wu; Song, Yan

    2016-01-01

    Visual perceptual learning has been shown to be highly specific to the retinotopic location and attributes of the trained stimulus. Recent psychophysical studies suggest that these specificities, which have been associated with early retinotopic visual cortex, may in fact not be inherent in perceptual learning and could be related to higher-order brain functions. Here we provide direct electrophysiological evidence in support of this proposition. In a series of event-related potential (ERP) experiments, we recorded high-density electroencephalography (EEG) from human adults over the course of learning in a texture discrimination task (TDT). The results consistently showed that the earliest C1 component (68-84ms), known to reflect V1 activity driven by feedforward inputs, was not modulated by learning regardless of whether the behavioral improvement is location specific or not. In contrast, two later posterior ERP components (posterior P1 and P160-350) over the occipital cortex and one anterior ERP component (anterior P160-350) over the prefrontal cortex were progressively modified day by day. Moreover, the change of the anterior component was closely correlated with improved behavioral performance on a daily basis. Consistent with recent psychophysical and imaging observations, our results indicate that perceptual learning can mainly involve changes in higher-level visual cortex as well as in the neural networks responsible for cognitive functions such as attention and decision making. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Binocular rivalry from invisible patterns

    PubMed Central

    Zou, Jinyou; He, Sheng; Zhang, Peng

    2016-01-01

    Binocular rivalry arises when incompatible images are presented to the two eyes. If the two eyes’ conflicting features are invisible, leading to identical perceptual interpretations, does rivalry competition still occur? Here we investigated whether binocular rivalry can be induced from conflicting but invisible spatial patterns. A chromatic grating counterphase flickering at 30 Hz appeared uniform, but produced significant tilt aftereffect and orientation-selective adaptation. The invisible pattern also generated significant BOLD activities in the early visual cortex, with minimal response in the parietal and frontal cortical areas. Compared with perceptually matched uniform stimuli, a monocularly presented invisible chromatic grating enhanced the rivalry competition with a low-contrast visible grating presented to the other eye. Furthermore, switching from a uniform field to a perceptually matched invisible chromatic grating produced interocular suppression at approximately 200 ms after onset of the invisible grating. Experiments using briefly presented monocular probes revealed evidence for sustained rivalry competition between two invisible gratings during continuous dichoptic presentations. These findings indicate that even without visible interocular conflict, and with minimal engagement of frontoparietal cortex and consciousness related top-down feedback, perceptually identical patterns with invisible conflict features produce rivalry competition in the early visual cortex. PMID:27354535

  4. Effects of Category-Specific Costs on Neural Systems for Perceptual Decision-Making

    PubMed Central

    Whiteley, Louise; Hulme, Oliver J.; Sahani, Maneesh; Dolan, Raymond J.

    2010-01-01

    Perceptual judgments are often biased by prospective losses, leading to changes in decision criteria. Little is known about how and where sensory evidence and cost information interact in the brain to influence perceptual categorization. Here we show that prospective losses systematically bias the perception of noisy face-house images. Asymmetries in category-specific cost were associated with enhanced blood-oxygen-level-dependent signal in a frontoparietal network. We observed selective activation of parahippocampal gyrus for changes in category-specific cost in keeping with the hypothesis that loss functions enact a particular task set that is communicated to visual regions. Across subjects, greater shifts in decision criteria were associated with greater activation of the anterior cingulate cortex (ACC). Our results support a hypothesis that costs bias an intermediate representation between perception and action, expressed via general effects on frontal cortex, and selective effects on extrastriate cortex. These findings indicate that asymmetric costs may affect a neural implementation of perceptual decision making in a similar manner to changes in category expectation, constituting a step toward accounting for how prospective losses are flexibly integrated with sensory evidence in the brain. PMID:20357071

  5. Involvement of the Parietal Cortex in Perceptual Learning (Eureka Effect): An Interference Approach Using rTMS

    ERIC Educational Resources Information Center

    Giovannelli, Fabio; Silingardi, Davide; Borgheresi, Alessandra; Feurra, Matteo; Amati, Gianluca; Pizzorusso, Tommaso; Viggiano, Maria Pia; Zaccara, Gaetano; Berardi, Nicoletta; Cincotta, Massimo

    2010-01-01

    The neural mechanisms underlying perceptual learning are still under investigation. Eureka effect is a form of rapid, long-lasting perceptual learning by which a degraded image, which appears meaningless when first seen, becomes recognizable after a single exposure to its undegraded version. We used online interference by focal 10-Hz repetitive…

  6. The Neural Correlates of Hierarchical Predictions for Perceptual Decisions.

    PubMed

    Weilnhammer, Veith A; Stuke, Heiner; Sterzer, Philipp; Schmack, Katharina

    2018-05-23

    Sensory information is inherently noisy, sparse, and ambiguous. In contrast, visual experience is usually clear, detailed, and stable. Bayesian theories of perception resolve this discrepancy by assuming that prior knowledge about the causes underlying sensory stimulation actively shapes perceptual decisions. The CNS is believed to entertain a generative model aligned to dynamic changes in the hierarchical states of our volatile sensory environment. Here, we used model-based fMRI to study the neural correlates of the dynamic updating of hierarchically structured predictions in male and female human observers. We devised a crossmodal associative learning task with covertly interspersed ambiguous trials in which participants engaged in hierarchical learning based on changing contingencies between auditory cues and visual targets. By inverting a Bayesian model of perceptual inference, we estimated individual hierarchical predictions, which significantly biased perceptual decisions under ambiguity. Although "high-level" predictions about the cue-target contingency correlated with activity in supramodal regions such as orbitofrontal cortex and hippocampus, dynamic "low-level" predictions about the conditional target probabilities were associated with activity in retinotopic visual cortex. Our results suggest that our CNS updates distinct representations of hierarchical predictions that continuously affect perceptual decisions in a dynamically changing environment. SIGNIFICANCE STATEMENT Bayesian theories posit that our brain entertains a generative model to provide hierarchical predictions regarding the causes of sensory information. Here, we use behavioral modeling and fMRI to study the neural underpinnings of such hierarchical predictions. We show that "high-level" predictions about the strength of dynamic cue-target contingencies during crossmodal associative learning correlate with activity in orbitofrontal cortex and the hippocampus, whereas "low-level" conditional target probabilities were reflected in retinotopic visual cortex. Our findings empirically corroborate theorizations on the role of hierarchical predictions in visual perception and contribute substantially to a longstanding debate on the link between sensory predictions and orbitofrontal or hippocampal activity. Our work fundamentally advances the mechanistic understanding of perceptual inference in the human brain. Copyright © 2018 the authors 0270-6474/18/385008-14$15.00/0.

  7. Visual recovery in cortical blindness is limited by high internal noise

    PubMed Central

    Cavanaugh, Matthew R.; Zhang, Ruyuan; Melnick, Michael D.; Das, Anasuya; Roberts, Mariel; Tadin, Duje; Carrasco, Marisa; Huxlin, Krystel R.

    2015-01-01

    Damage to the primary visual cortex typically causes cortical blindness (CB) in the hemifield contralateral to the damaged hemisphere. Recent evidence indicates that visual training can partially reverse CB at trained locations. Whereas training induces near-complete recovery of coarse direction and orientation discriminations, deficits in fine motion processing remain. Here, we systematically disentangle components of the perceptual inefficiencies present in CB fields before and after coarse direction discrimination training. In seven human CB subjects, we measured threshold versus noise functions before and after coarse direction discrimination training in the blind field and at corresponding intact field locations. Threshold versus noise functions were analyzed within the framework of the linear amplifier model and the perceptual template model. Linear amplifier model analysis identified internal noise as a key factor differentiating motion processing across the tested areas, with visual training reducing internal noise in the blind field. Differences in internal noise also explained residual perceptual deficits at retrained locations. These findings were confirmed with perceptual template model analysis, which further revealed that the major residual deficits between retrained and intact field locations could be explained by differences in internal additive noise. There were no significant differences in multiplicative noise or the ability to process external noise. Together, these results highlight the critical role of altered internal noise processing in mediating training-induced visual recovery in CB fields, and may explain residual perceptual deficits relative to intact regions of the visual field. PMID:26389544

  8. Enhanced attentional gain as a mechanism for generalized perceptual learning in human visual cortex.

    PubMed

    Byers, Anna; Serences, John T

    2014-09-01

    Learning to better discriminate a specific visual feature (i.e., a specific orientation in a specific region of space) has been associated with plasticity in early visual areas (sensory modulation) and with improvements in the transmission of sensory information from early visual areas to downstream sensorimotor and decision regions (enhanced readout). However, in many real-world scenarios that require perceptual expertise, observers need to efficiently process numerous exemplars from a broad stimulus class as opposed to just a single stimulus feature. Some previous data suggest that perceptual learning leads to highly specific neural modulations that support the discrimination of specific trained features. However, the extent to which perceptual learning acts to improve the discriminability of a broad class of stimuli via the modulation of sensory responses in human visual cortex remains largely unknown. Here, we used functional MRI and a multivariate analysis method to reconstruct orientation-selective response profiles based on activation patterns in the early visual cortex before and after subjects learned to discriminate small offsets in a set of grating stimuli that were rendered in one of nine possible orientations. Behavioral performance improved across 10 training sessions, and there was a training-related increase in the amplitude of orientation-selective response profiles in V1, V2, and V3 when orientation was task relevant compared with when it was task irrelevant. These results suggest that generalized perceptual learning can lead to modified responses in the early visual cortex in a manner that is suitable for supporting improved discriminability of stimuli drawn from a large set of exemplars. Copyright © 2014 the American Physiological Society.

  9. Value generalization in human avoidance learning

    PubMed Central

    Robbins, Trevor W; Seymour, Ben

    2018-01-01

    Generalization during aversive decision-making allows us to avoid a broad range of potential threats following experience with a limited set of exemplars. However, over-generalization, resulting in excessive and inappropriate avoidance, has been implicated in a variety of psychological disorders. Here, we use reinforcement learning modelling to dissect out different contributions to the generalization of instrumental avoidance in two groups of human volunteers (N = 26, N = 482). We found that generalization of avoidance could be parsed into perceptual and value-based processes, and further, that value-based generalization could be subdivided into that relating to aversive and neutral feedback − with corresponding circuits including primary sensory cortex, anterior insula, amygdala and ventromedial prefrontal cortex. Further, generalization from aversive, but not neutral, feedback was associated with self-reported anxiety and intrusive thoughts. These results reveal a set of distinct mechanisms that mediate generalization in avoidance learning, and show how specific individual differences within them can yield anxiety. PMID:29735014

  10. Value generalization in human avoidance learning.

    PubMed

    Norbury, Agnes; Robbins, Trevor W; Seymour, Ben

    2018-05-08

    Generalization during aversive decision-making allows us to avoid a broad range of potential threats following experience with a limited set of exemplars. However, over-generalization, resulting in excessive and inappropriate avoidance, has been implicated in a variety of psychological disorders. Here, we use reinforcement learning modelling to dissect out different contributions to the generalization of instrumental avoidance in two groups of human volunteers ( N = 26, N = 482). We found that generalization of avoidance could be parsed into perceptual and value-based processes, and further, that value-based generalization could be subdivided into that relating to aversive and neutral feedback - with corresponding circuits including primary sensory cortex, anterior insula, amygdala and ventromedial prefrontal cortex. Further, generalization from aversive, but not neutral, feedback was associated with self-reported anxiety and intrusive thoughts. These results reveal a set of distinct mechanisms that mediate generalization in avoidance learning, and show how specific individual differences within them can yield anxiety. © 2018, Norbury et al.

  11. Negative symptoms in schizophrenia are associated with aberrant striato-cortical connectivity in a rewarded perceptual decision-making task.

    PubMed

    Reckless, Greg E; Andreassen, Ole A; Server, Andres; Østefjells, Tiril; Jensen, Jimmy

    2015-01-01

    Negative symptoms in schizophrenia have been associated with structural and functional changes in the prefrontal cortex. They often persist after treatment with antipsychotic medication which targets, in particular, the ventral striatum (VS). As schizophrenia has been suggested to arise from dysfunctional connectivity between neural networks, it is possible that residual aberrant striato-cortical connectivity in medicated patients plays a role in enduring negative symptomology. The present study examined the relationship between striato-cortical connectivity and negative symptoms in medicated schizophrenia patients. We manipulated motivation in a perceptual decision-making task during functional magnetic resonance imaging. Comparing healthy controls (n = 21) and medicated patients with schizophrenia (n = 18) we investigated how motivation-mediated changes in VS activation affected functional connectivity with the frontal cortex, and how changes in connectivity strength from the neutral to motivated condition related to negative symptom severity. A pattern of aberrant striato-cortical connectivity was observed in the presence of intact VS, but altered left inferior frontal gyrus (IFG) motivation-mediated activation in patients. The more severe the patient's negative symptoms, the less the connectivity strength between the right VS and left IFG changed from the neutral to the motivated condition. Despite aberrant striato-cortical connectivity and altered recruitment of the left IFG among patients, both patients and healthy controls adopted a more liberal response strategy in the motivated compared to the neutral condition. The present findings suggest that there is a link between dysfunctional striato-cortical connectivity and negative symptom severity, and offer a possible explanation as to why negative symptoms persist after treatment with antipsychotics.

  12. Semantics of the visual environment encoded in parahippocampal cortex

    PubMed Central

    Bonner, Michael F.; Price, Amy Rose; Peelle, Jonathan E.; Grossman, Murray

    2016-01-01

    Semantic representations capture the statistics of experience and store this information in memory. A fundamental component of this memory system is knowledge of the visual environment, including knowledge of objects and their associations. Visual semantic information underlies a range of behaviors, from perceptual categorization to cognitive processes such as language and reasoning. Here we examine the neuroanatomic system that encodes visual semantics. Across three experiments, we found converging evidence indicating that knowledge of verbally mediated visual concepts relies on information encoded in a region of the ventral-medial temporal lobe centered on parahippocampal cortex. In an fMRI study, this region was strongly engaged by the processing of concepts relying on visual knowledge but not by concepts relying on other sensory modalities. In a study of patients with the semantic variant of primary progressive aphasia (semantic dementia), atrophy that encompassed this region was associated with a specific impairment in verbally mediated visual semantic knowledge. Finally, in a structural study of healthy adults from the fMRI experiment, gray matter density in this region related to individual variability in the processing of visual concepts. The anatomic location of these findings aligns with recent work linking the ventral-medial temporal lobe with high-level visual representation, contextual associations, and reasoning through imagination. Together this work suggests a critical role for parahippocampal cortex in linking the visual environment with knowledge systems in the human brain. PMID:26679216

  13. Semantics of the Visual Environment Encoded in Parahippocampal Cortex.

    PubMed

    Bonner, Michael F; Price, Amy Rose; Peelle, Jonathan E; Grossman, Murray

    2016-03-01

    Semantic representations capture the statistics of experience and store this information in memory. A fundamental component of this memory system is knowledge of the visual environment, including knowledge of objects and their associations. Visual semantic information underlies a range of behaviors, from perceptual categorization to cognitive processes such as language and reasoning. Here we examine the neuroanatomic system that encodes visual semantics. Across three experiments, we found converging evidence indicating that knowledge of verbally mediated visual concepts relies on information encoded in a region of the ventral-medial temporal lobe centered on parahippocampal cortex. In an fMRI study, this region was strongly engaged by the processing of concepts relying on visual knowledge but not by concepts relying on other sensory modalities. In a study of patients with the semantic variant of primary progressive aphasia (semantic dementia), atrophy that encompassed this region was associated with a specific impairment in verbally mediated visual semantic knowledge. Finally, in a structural study of healthy adults from the fMRI experiment, gray matter density in this region related to individual variability in the processing of visual concepts. The anatomic location of these findings aligns with recent work linking the ventral-medial temporal lobe with high-level visual representation, contextual associations, and reasoning through imagination. Together, this work suggests a critical role for parahippocampal cortex in linking the visual environment with knowledge systems in the human brain.

  14. Aging Influences the Neural Correlates of Lexical Decision but Not Automatic Semantic Priming

    PubMed Central

    Andersen, Anders H.; Jicha, Greg A.; Smith, Charles D.

    2009-01-01

    Human behavioral data indicate that older adults are slower to perform lexical decisions (LDs) than young adults but show similar reaction time gains when these decisions are primed semantically. The present study explored the functional neuroanatomic bases of these frequently observed behavioral findings. Young and older groups completed unprimed and primed LD tasks while functional magnetic resonance imaging (fMRI) was recorded, using a fully randomized trial design paralleling those used in behavioral research. Results from the unprimed task found that age-related slowing of LD was associated with decreased activation in perceptual extrastriate regions and increased activation in regions associated with higher level linguistic processes, including prefrontal cortex. In contrast to these age-related changes in brain activation, the older group showed a preserved pattern of fMRI decreases in inferior temporal cortex when LD was primed semantically. These findings provide evidence that older adults’ LD abilities benefit from contexts that reduce the need for frontally mediated strategic processes and capitalize on the continued sensitivity of inferior temporal cortex to automatic semantic processes in aging. PMID:19273460

  15. The Neuroanatomical Correlates of Training-Related Perceptuo-Reflex Uncoupling in Dancers

    PubMed Central

    Nigmatullina, Yuliya; Hellyer, Peter J.; Nachev, Parashkev; Sharp, David J.; Seemungal, Barry M.

    2015-01-01

    Sensory input evokes low-order reflexes and higher-order perceptual responses. Vestibular stimulation elicits vestibular-ocular reflex (VOR) and self-motion perception (e.g., vertigo) whose response durations are normally equal. Adaptation to repeated whole-body rotations, for example, ballet training, is known to reduce vestibular responses. We investigated the neuroanatomical correlates of vestibular perceptuo-reflex adaptation in ballet dancers and controls. Dancers' vestibular-reflex and perceptual responses to whole-body yaw-plane step rotations were: (1) Briefer and (2) uncorrelated (controls' reflex and perception were correlated). Voxel-based morphometry showed a selective gray matter (GM) reduction in dancers' vestibular cerebellum correlating with ballet experience. Dancers' vestibular cerebellar GM density reduction was related to shorter perceptual responses (i.e. positively correlated) but longer VOR duration (negatively correlated). Contrastingly, controls' vestibular cerebellar GM density negatively correlated with perception and VOR. Diffusion-tensor imaging showed that cerebral cortex white matter (WM) microstructure correlated with vestibular perception but only in controls. In summary, dancers display vestibular perceptuo-reflex dissociation with the neuronatomical correlate localized to the vestibular cerebellum. Controls' robust vestibular perception correlated with a cortical WM network conspicuously absent in dancers. Since primary vestibular afferents synapse in the vestibular cerebellum, we speculate that a cerebellar gating of perceptual signals to cortical regions mediates the training-related attenuation of vestibular perception and perceptuo-reflex uncoupling. PMID:24072889

  16. Evidence for Working Memory Storage Operations in Perceptual Cortex

    PubMed Central

    Sreenivasan, Kartik K.; Gratton, Caterina; Vytlacil, Jason; D’Esposito, Mark

    2014-01-01

    Isolating the short-term storage component of working memory (WM) from the myriad of associated executive processes has been an enduring challenge. Recent efforts have identified patterns of activity in visual regions that contain information about items being held in WM. However, it remains unclear (i) whether these representations withstand intervening sensory input and (ii) how communication between multimodal association cortex and unimodal perceptual regions supporting WM representations is involved in WM storage. We present evidence that the features of a face held in WM are stored within face processing regions, that these representations persist across subsequent sensory input, and that information about the match between sensory input and memory representation is relayed forward from perceptual to prefrontal regions. Participants were presented with a series of probe faces and indicated whether each probe matched a Target face held in WM. We parametrically varied the feature similarity between probe and Target faces. Activity within face processing regions scaled linearly with the degree of feature similarity between the probe face and the features of the Target face, suggesting that the features of the Target face were stored in these regions. Furthermore, directed connectivity measures revealed that the direction of information flow that was optimal for performance was from sensory regions that stored the features of the Target face to dorsal prefrontal regions, supporting the notion that sensory input is compared to representations stored within perceptual regions and relayed forward. Together, these findings indicate that WM storage operations are carried out within perceptual cortex. PMID:24436009

  17. Dorso-Lateral Frontal Cortex of the Ferret Encodes Perceptual Difficulty during Visual Discrimination

    PubMed Central

    Zhou, Zhe Charles; Yu, Chunxiu; Sellers, Kristin K.; Fröhlich, Flavio

    2016-01-01

    Visual discrimination requires sensory processing followed by a perceptual decision. Despite a growing understanding of visual areas in this behavior, it is unclear what role top-down signals from prefrontal cortex play, in particular as a function of perceptual difficulty. To address this gap, we investigated how neurons in dorso-lateral frontal cortex (dl-FC) of freely-moving ferrets encode task variables in a two-alternative forced choice visual discrimination task with high- and low-contrast visual input. About two-thirds of all recorded neurons in dl-FC were modulated by at least one of the two task variables, task difficulty and target location. More neurons in dl-FC preferred the hard trials; no such preference bias was found for target location. In individual neurons, this preference for specific task types was limited to brief epochs. Finally, optogenetic stimulation confirmed the functional role of the activity in dl-FC before target touch; suppression of activity in pyramidal neurons with the ArchT silencing opsin resulted in a decrease in reaction time to touch the target but not to retrieve reward. In conclusion, dl-FC activity is differentially recruited for high perceptual difficulty in the freely-moving ferret and the resulting signal may provide top-down behavioral inhibition. PMID:27025995

  18. Dorso-Lateral Frontal Cortex of the Ferret Encodes Perceptual Difficulty during Visual Discrimination.

    PubMed

    Zhou, Zhe Charles; Yu, Chunxiu; Sellers, Kristin K; Fröhlich, Flavio

    2016-03-30

    Visual discrimination requires sensory processing followed by a perceptual decision. Despite a growing understanding of visual areas in this behavior, it is unclear what role top-down signals from prefrontal cortex play, in particular as a function of perceptual difficulty. To address this gap, we investigated how neurons in dorso-lateral frontal cortex (dl-FC) of freely-moving ferrets encode task variables in a two-alternative forced choice visual discrimination task with high- and low-contrast visual input. About two-thirds of all recorded neurons in dl-FC were modulated by at least one of the two task variables, task difficulty and target location. More neurons in dl-FC preferred the hard trials; no such preference bias was found for target location. In individual neurons, this preference for specific task types was limited to brief epochs. Finally, optogenetic stimulation confirmed the functional role of the activity in dl-FC before target touch; suppression of activity in pyramidal neurons with the ArchT silencing opsin resulted in a decrease in reaction time to touch the target but not to retrieve reward. In conclusion, dl-FC activity is differentially recruited for high perceptual difficulty in the freely-moving ferret and the resulting signal may provide top-down behavioral inhibition.

  19. Analyzing pitch chroma and pitch height in the human brain.

    PubMed

    Warren, Jason D; Uppenkamp, Stefan; Patterson, Roy D; Griffiths, Timothy D

    2003-11-01

    The perceptual pitch dimensions of chroma and height have distinct representations in the human brain: chroma is represented in cortical areas anterior to primary auditory cortex, whereas height is represented posterior to primary auditory cortex.

  20. Evidence for pitch chroma mapping in human auditory cortex.

    PubMed

    Briley, Paul M; Breakey, Charlotte; Krumbholz, Katrin

    2013-11-01

    Some areas in auditory cortex respond preferentially to sounds that elicit pitch, such as musical sounds or voiced speech. This study used human electroencephalography (EEG) with an adaptation paradigm to investigate how pitch is represented within these areas and, in particular, whether the representation reflects the physical or perceptual dimensions of pitch. Physically, pitch corresponds to a single monotonic dimension: the repetition rate of the stimulus waveform. Perceptually, however, pitch has to be described with 2 dimensions, a monotonic, "pitch height," and a cyclical, "pitch chroma," dimension, to account for the similarity of the cycle of notes (c, d, e, etc.) across different octaves. The EEG adaptation effect mirrored the cyclicality of the pitch chroma dimension, suggesting that auditory cortex contains a representation of pitch chroma. Source analysis indicated that the centroid of this pitch chroma representation lies somewhat anterior and lateral to primary auditory cortex.

  1. Evidence for Pitch Chroma Mapping in Human Auditory Cortex

    PubMed Central

    Briley, Paul M.; Breakey, Charlotte; Krumbholz, Katrin

    2013-01-01

    Some areas in auditory cortex respond preferentially to sounds that elicit pitch, such as musical sounds or voiced speech. This study used human electroencephalography (EEG) with an adaptation paradigm to investigate how pitch is represented within these areas and, in particular, whether the representation reflects the physical or perceptual dimensions of pitch. Physically, pitch corresponds to a single monotonic dimension: the repetition rate of the stimulus waveform. Perceptually, however, pitch has to be described with 2 dimensions, a monotonic, “pitch height,” and a cyclical, “pitch chroma,” dimension, to account for the similarity of the cycle of notes (c, d, e, etc.) across different octaves. The EEG adaptation effect mirrored the cyclicality of the pitch chroma dimension, suggesting that auditory cortex contains a representation of pitch chroma. Source analysis indicated that the centroid of this pitch chroma representation lies somewhat anterior and lateral to primary auditory cortex. PMID:22918980

  2. Top-down cortical input during NREM sleep consolidates perceptual memory.

    PubMed

    Miyamoto, D; Hirai, D; Fung, C C A; Inutsuka, A; Odagawa, M; Suzuki, T; Boehringer, R; Adaikkan, C; Matsubara, C; Matsuki, N; Fukai, T; McHugh, T J; Yamanaka, A; Murayama, M

    2016-06-10

    During tactile perception, long-range intracortical top-down axonal projections are essential for processing sensory information. Whether these projections regulate sleep-dependent long-term memory consolidation is unknown. We altered top-down inputs from higher-order cortex to sensory cortex during sleep and examined the consolidation of memories acquired earlier during awake texture perception. Mice learned novel textures and consolidated them during sleep. Within the first hour of non-rapid eye movement (NREM) sleep, optogenetic inhibition of top-down projecting axons from secondary motor cortex (M2) to primary somatosensory cortex (S1) impaired sleep-dependent reactivation of S1 neurons and memory consolidation. In NREM sleep and sleep-deprivation states, closed-loop asynchronous or synchronous M2-S1 coactivation, respectively, reduced or prolonged memory retention. Top-down cortical information flow in NREM sleep is thus required for perceptual memory consolidation. Copyright © 2016, American Association for the Advancement of Science.

  3. From perceptual to lexico-semantic analysis--cortical plasticity enabling new levels of processing.

    PubMed

    Schlaffke, Lara; Rüther, Naima N; Heba, Stefanie; Haag, Lauren M; Schultz, Thomas; Rosengarth, Katharina; Tegenthoff, Martin; Bellebaum, Christian; Schmidt-Wilcke, Tobias

    2015-11-01

    Certain kinds of stimuli can be processed on multiple levels. While the neural correlates of different levels of processing (LOPs) have been investigated to some extent, most of the studies involve skills and/or knowledge already present when performing the task. In this study we specifically sought to identify neural correlates of an evolving skill that allows the transition from perceptual to a lexico-semantic stimulus analysis. Eighteen participants were trained to decode 12 letters of Morse code that were presented acoustically inside and outside of the scanner environment. Morse code was presented in trains of three letters while brain activity was assessed with fMRI. Participants either attended to the stimulus length (perceptual analysis), or evaluated its meaning distinguishing words from nonwords (lexico-semantic analysis). Perceptual and lexico-semantic analyses shared a mutual network comprising the left premotor cortex, the supplementary motor area (SMA) and the inferior parietal lobule (IPL). Perceptual analysis was associated with a strong brain activation in the SMA and the superior temporal gyrus bilaterally (STG), which remained unaltered from pre and post training. In the lexico-semantic analysis post learning, study participants showed additional activation in the left inferior frontal cortex (IFC) and in the left occipitotemporal cortex (OTC), regions known to be critically involved in lexical processing. Our data provide evidence for cortical plasticity evolving with a learning process enabling the transition from perceptual to lexico-semantic stimulus analysis. Importantly, the activation pattern remains task-related LOP and is thus the result of a decision process as to which LOP to engage in. © 2015 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.

  4. From perceptual to lexico‐semantic analysis—cortical plasticity enabling new levels of processing

    PubMed Central

    Schlaffke, Lara; Rüther, Naima N.; Heba, Stefanie; Haag, Lauren M.; Schultz, Thomas; Rosengarth, Katharina; Tegenthoff, Martin; Bellebaum, Christian

    2015-01-01

    Abstract Certain kinds of stimuli can be processed on multiple levels. While the neural correlates of different levels of processing (LOPs) have been investigated to some extent, most of the studies involve skills and/or knowledge already present when performing the task. In this study we specifically sought to identify neural correlates of an evolving skill that allows the transition from perceptual to a lexico‐semantic stimulus analysis. Eighteen participants were trained to decode 12 letters of Morse code that were presented acoustically inside and outside of the scanner environment. Morse code was presented in trains of three letters while brain activity was assessed with fMRI. Participants either attended to the stimulus length (perceptual analysis), or evaluated its meaning distinguishing words from nonwords (lexico‐semantic analysis). Perceptual and lexico‐semantic analyses shared a mutual network comprising the left premotor cortex, the supplementary motor area (SMA) and the inferior parietal lobule (IPL). Perceptual analysis was associated with a strong brain activation in the SMA and the superior temporal gyrus bilaterally (STG), which remained unaltered from pre and post training. In the lexico‐semantic analysis post learning, study participants showed additional activation in the left inferior frontal cortex (IFC) and in the left occipitotemporal cortex (OTC), regions known to be critically involved in lexical processing. Our data provide evidence for cortical plasticity evolving with a learning process enabling the transition from perceptual to lexico‐semantic stimulus analysis. Importantly, the activation pattern remains task‐related LOP and is thus the result of a decision process as to which LOP to engage in. Hum Brain Mapp 36:4512–4528, 2015. © 2015 The Authors. Human Brain Mapping Published byWiley Periodicals, Inc. PMID:26304153

  5. Coding of cognitive magnitude: compressed scaling of numerical information in the primate prefrontal cortex.

    PubMed

    Nieder, Andreas; Miller, Earl K

    2003-01-09

    Whether cognitive representations are better conceived as language-based, symbolic representations or perceptually related, analog representations is a subject of debate. If cognitive processes parallel perceptual processes, then fundamental psychophysical laws should hold for each. To test this, we analyzed both behavioral and neuronal representations of numerosity in the prefrontal cortex of rhesus monkeys. The data were best described by a nonlinearly compressed scaling of numerical information, as postulated by the Weber-Fechner law or Stevens' law for psychophysical/sensory magnitudes. This nonlinear compression was observed on the neural level during the acquisition phase of the task and maintained through the memory phase with no further compression. These results suggest that certain cognitive and perceptual/sensory representations share the same fundamental mechanisms and neural coding schemes.

  6. Beyond perceptual expertise: revisiting the neural substrates of expert object recognition

    PubMed Central

    Harel, Assaf; Kravitz, Dwight; Baker, Chris I.

    2013-01-01

    Real-world expertise provides a valuable opportunity to understand how experience shapes human behavior and neural function. In the visual domain, the study of expert object recognition, such as in car enthusiasts or bird watchers, has produced a large, growing, and often-controversial literature. Here, we synthesize this literature, focusing primarily on results from functional brain imaging, and propose an interactive framework that incorporates the impact of high-level factors, such as attention and conceptual knowledge, in supporting expertise. This framework contrasts with the perceptual view of object expertise that has concentrated largely on stimulus-driven processing in visual cortex. One prominent version of this perceptual account has almost exclusively focused on the relation of expertise to face processing and, in terms of the neural substrates, has centered on face-selective cortical regions such as the Fusiform Face Area (FFA). We discuss the limitations of this face-centric approach as well as the more general perceptual view, and highlight that expert related activity is: (i) found throughout visual cortex, not just FFA, with a strong relationship between neural response and behavioral expertise even in the earliest stages of visual processing, (ii) found outside visual cortex in areas such as parietal and prefrontal cortices, and (iii) modulated by the attentional engagement of the observer suggesting that it is neither automatic nor driven solely by stimulus properties. These findings strongly support a framework in which object expertise emerges from extensive interactions within and between the visual system and other cognitive systems, resulting in widespread, distributed patterns of expertise-related activity across the entire cortex. PMID:24409134

  7. Dissociating neural variability related to stimulus quality and response times in perceptual decision-making.

    PubMed

    Bode, Stefan; Bennett, Daniel; Sewell, David K; Paton, Bryan; Egan, Gary F; Smith, Philip L; Murawski, Carsten

    2018-03-01

    According to sequential sampling models, perceptual decision-making is based on accumulation of noisy evidence towards a decision threshold. The speed with which a decision is reached is determined by both the quality of incoming sensory information and random trial-by-trial variability in the encoded stimulus representations. To investigate those decision dynamics at the neural level, participants made perceptual decisions while functional magnetic resonance imaging (fMRI) was conducted. On each trial, participants judged whether an image presented under conditions of high, medium, or low visual noise showed a piano or a chair. Higher stimulus quality (lower visual noise) was associated with increased activation in bilateral medial occipito-temporal cortex and ventral striatum. Lower stimulus quality was related to stronger activation in posterior parietal cortex (PPC) and dorsolateral prefrontal cortex (DLPFC). When stimulus quality was fixed, faster response times were associated with a positive parametric modulation of activation in medial prefrontal and orbitofrontal cortex, while slower response times were again related to more activation in PPC, DLPFC and insula. Our results suggest that distinct neural networks were sensitive to the quality of stimulus information, and to trial-to-trial variability in the encoded stimulus representations, but that reaching a decision was a consequence of their joint activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Limits on perceptual encoding can be predicted from known receptive field properties of human visual cortex.

    PubMed

    Cohen, Michael A; Rhee, Juliana Y; Alvarez, George A

    2016-01-01

    Human cognition has a limited capacity that is often attributed to the brain having finite cognitive resources, but the nature of these resources is usually not specified. Here, we show evidence that perceptual interference between items can be predicted by known receptive field properties of the visual cortex, suggesting that competition within representational maps is an important source of the capacity limitations of visual processing. Across the visual hierarchy, receptive fields get larger and represent more complex, high-level features. Thus, when presented simultaneously, high-level items (e.g., faces) will often land within the same receptive fields, while low-level items (e.g., color patches) will often not. Using a perceptual task, we found long-range interference between high-level items, but only short-range interference for low-level items, with both types of interference being weaker across hemifields. Finally, we show that long-range interference between items appears to occur primarily during perceptual encoding and not during working memory maintenance. These results are naturally explained by the distribution of receptive fields and establish a link between perceptual capacity limits and the underlying neural architecture. (c) 2015 APA, all rights reserved).

  9. Functional organization for musical consonance and tonal pitch hierarchy in human auditory cortex.

    PubMed

    Bidelman, Gavin M; Grall, Jeremy

    2014-11-01

    Pitch relationships in music are characterized by their degree of consonance, a hierarchical perceptual quality that distinguishes how pleasant musical chords/intervals sound to the ear. The origins of consonance have been debated since the ancient Greeks. To elucidate the neurobiological mechanisms underlying these musical fundamentals, we recorded neuroelectric brain activity while participants listened passively to various chromatic musical intervals (simultaneously sounding pitches) varying in their perceptual pleasantness (i.e., consonance/dissonance). Dichotic presentation eliminated acoustic and peripheral contributions that often confound explanations of consonance. We found that neural representations for pitch in early human auditory cortex code perceptual features of musical consonance and follow a hierarchical organization according to music-theoretic principles. These neural correlates emerge pre-attentively within ~ 150 ms after the onset of pitch, are segregated topographically in superior temporal gyrus with a rightward hemispheric bias, and closely mirror listeners' behavioral valence preferences for the chromatic tone combinations inherent to music. A perceptual-based organization implies that parallel to the phonetic code for speech, elements of music are mapped within early cerebral structures according to higher-order, perceptual principles and the rules of Western harmony rather than simple acoustic attributes. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Priming for performance: valence of emotional primes interact with dissociable prototype learning systems.

    PubMed

    Gorlick, Marissa A; Maddox, W Todd

    2013-01-01

    Arousal Biased Competition theory suggests that arousal enhances competitive attentional processes, but makes no strong claims about valence effects. Research suggests that the scope of enhanced attention depends on valence with negative arousal narrowing and positive arousal broadening attention. Attentional scope likely affects declarative-memory-mediated and perceptual-representation-mediated learning systems differently, with declarative-memory-mediated learning depending on narrow attention to develop targeted verbalizable rules, and perceptual-representation-mediated learning depending on broad attention to develop a perceptual representation. We hypothesize that negative arousal accentuates declarative-memory-mediated learning and attenuates perceptual-representation-mediated learning, while positive arousal reverses this pattern. Prototype learning provides an ideal test bed as dissociable declarative-memory and perceptual-representation systems mediate two-prototype (AB) and one-prototype (AN) prototype learning, respectively, and computational models are available that provide powerful insights on cognitive processing. As predicted, we found that negative arousal narrows attentional focus facilitating AB learning and impairing AN learning, while positive arousal broadens attentional focus facilitating AN learning and impairing AB learning.

  11. Priming for Performance: Valence of Emotional Primes Interact with Dissociable Prototype Learning Systems

    PubMed Central

    Gorlick, Marissa A.; Maddox, W. Todd

    2013-01-01

    Arousal Biased Competition theory suggests that arousal enhances competitive attentional processes, but makes no strong claims about valence effects. Research suggests that the scope of enhanced attention depends on valence with negative arousal narrowing and positive arousal broadening attention. Attentional scope likely affects declarative-memory-mediated and perceptual-representation-mediated learning systems differently, with declarative-memory-mediated learning depending on narrow attention to develop targeted verbalizable rules, and perceptual-representation-mediated learning depending on broad attention to develop a perceptual representation. We hypothesize that negative arousal accentuates declarative-memory-mediated learning and attenuates perceptual-representation-mediated learning, while positive arousal reverses this pattern. Prototype learning provides an ideal test bed as dissociable declarative-memory and perceptual-representation systems mediate two-prototype (AB) and one-prototype (AN) prototype learning, respectively, and computational models are available that provide powerful insights on cognitive processing. As predicted, we found that negative arousal narrows attentional focus facilitating AB learning and impairing AN learning, while positive arousal broadens attentional focus facilitating AN learning and impairing AB learning. PMID:23646101

  12. Information-Processing Modules and Their Relative Modality Specificity

    ERIC Educational Resources Information Center

    Anderson, John R.; Qin, Yulin; Jung, Kwan-Jin; Carter, Cameron S.

    2007-01-01

    This research uses fMRI to understand the role of eight cortical regions in a relatively complex information-processing task. Modality of input (visual versus auditory) and modality of output (manual versus vocal) are manipulated. Two perceptual regions (auditory cortex and fusiform gyrus) only reflected perceptual encoding. Two motor regions were…

  13. Visual Perceptual Learning and Models.

    PubMed

    Dosher, Barbara; Lu, Zhong-Lin

    2017-09-15

    Visual perceptual learning through practice or training can significantly improve performance on visual tasks. Originally seen as a manifestation of plasticity in the primary visual cortex, perceptual learning is more readily understood as improvements in the function of brain networks that integrate processes, including sensory representations, decision, attention, and reward, and balance plasticity with system stability. This review considers the primary phenomena of perceptual learning, theories of perceptual learning, and perceptual learning's effect on signal and noise in visual processing and decision. Models, especially computational models, play a key role in behavioral and physiological investigations of the mechanisms of perceptual learning and for understanding, predicting, and optimizing human perceptual processes, learning, and performance. Performance improvements resulting from reweighting or readout of sensory inputs to decision provide a strong theoretical framework for interpreting perceptual learning and transfer that may prove useful in optimizing learning in real-world applications.

  14. Oculomotor inhibition covaries with conscious detection

    PubMed Central

    Rolfs, Martin

    2016-01-01

    Saccadic eye movements occur frequently even during attempted fixation, but they halt momentarily when a new stimulus appears. Here, we demonstrate that this rapid, involuntary “oculomotor freezing” reflex is yoked to fluctuations in explicit visual perception. Human observers reported the presence or absence of a brief visual stimulus while we recorded microsaccades, small spontaneous eye movements. We found that microsaccades were reflexively inhibited if and only if the observer reported seeing the stimulus, even when none was present. By applying a novel Bayesian classification technique to patterns of microsaccades on individual trials, we were able to decode the reported state of perception more accurately than the state of the stimulus (present vs. absent). Moreover, explicit perceptual sensitivity and the oculomotor reflex were both susceptible to orientation-specific adaptation. The adaptation effects suggest that the freezing reflex is mediated by signals processed in the visual cortex before reaching oculomotor control centers rather than relying on a direct subcortical route, as some previous research has suggested. We conclude that the reflexive inhibition of microsaccades immediately and inadvertently reveals when the observer becomes aware of a change in the environment. By providing an objective measure of conscious perceptual detection that does not require explicit reports, this finding opens doors to clinical applications and further investigations of perceptual awareness. PMID:27385794

  15. Neurofeedback training of gamma band oscillations improves perceptual processing.

    PubMed

    Salari, Neda; Büchel, Christian; Rose, Michael

    2014-10-01

    In this study, a noninvasive electroencephalography-based neurofeedback method is applied to train volunteers to deliberately increase gamma band oscillations (40 Hz) in the visual cortex. Gamma band oscillations in the visual cortex play a functional role in perceptual processing. In a previous study, we were able to demonstrate that gamma band oscillations prior to stimulus presentation have a significant influence on perceptual processing of visual stimuli. In the present study, we aimed to investigate longer lasting effects of gamma band neurofeedback training on perceptual processing. For this purpose, a feedback group was trained to modulate oscillations in the gamma band, while a control group participated in a task with an identical design setting but without gamma band feedback. Before and after training, both groups participated in a perceptual object detection task and a spatial attention task. Our results clearly revealed that only the feedback group but not the control group exhibited a visual processing advantage and an increase in oscillatory gamma band activity in the pre-stimulus period of the processing of the visual object stimuli after the neurofeedback training. Results of the spatial attention task showed no difference between the groups, which underlines the specific role of gamma band oscillations for perceptual processing. In summary, our results show that modulation of gamma band activity selectively affects perceptual processing and therefore supports the relevant role of gamma band activity for this specific process. Furthermore, our results demonstrate the eligibility of gamma band oscillations as a valuable tool for neurofeedback applications.

  16. Overcoming perceptual features in logical reasoning: a parametric functional magnetic resonance imaging study.

    PubMed

    Prado, Jérôme; Noveck, Ira A

    2007-04-01

    Participants experience difficulty detecting that an item depicting an H-in-a-square confirms the logical rule, "If there is not a T then there is not a circle." Indeed, there is a perceptual conflict between the items mentioned in the rule (T and circle) and in the test item (H and square). Much evidence supports the claim that correct responding depends on detecting and resolving such conflicts. One aim of this study is to find more precise neurological evidence in support of this claim by using a parametric event-related functional magnetic resonance imaging (fMRI) paradigm. We scanned 20 participants while they were required to judge whether or not a conditional rule was verified (or falsified) by a corresponding target item. We found that the right middorsolateral prefrontal cortex (mid-DLPFC) was specifically engaged, together with the medial frontal (anterior cingulate and presupplementary motor area [pre-SMA]) and parietal cortices, when mismatching was present. Activity in these regions was also linearly correlated with the level of mismatch between the rule and the test item. Furthermore, a psychophysiological interaction analysis revealed that activation of the mid-DLPFC, which increases as mismatching does, was accompanied by a decrease in functional integration with the bilateral primary visual cortex and an increase in functional integration with the right parietal cortex. This indicates a need to break away from perceptual cues in order to select an appropriate logical response. These findings strongly indicate that the regions involved in inhibitory control (including the right mid-DLPFC and the medial frontal cortex) are engaged when participants have to overcome perceptual mismatches in order to provide a logical response. These findings are also consistent with neuroimaging studies investigating the belief bias, where prior beliefs similarly interfere with logical reasoning.

  17. Repetitive Transcranial Direct Current Stimulation Induced Excitability Changes of Primary Visual Cortex and Visual Learning Effects-A Pilot Study.

    PubMed

    Sczesny-Kaiser, Matthias; Beckhaus, Katharina; Dinse, Hubert R; Schwenkreis, Peter; Tegenthoff, Martin; Höffken, Oliver

    2016-01-01

    Studies on noninvasive motor cortex stimulation and motor learning demonstrated cortical excitability as a marker for a learning effect. Transcranial direct current stimulation (tDCS) is a non-invasive tool to modulate cortical excitability. It is as yet unknown how tDCS-induced excitability changes and perceptual learning in visual cortex correlate. Our study aimed to examine the influence of tDCS on visual perceptual learning in healthy humans. Additionally, we measured excitability in primary visual cortex (V1). We hypothesized that anodal tDCS would improve and cathodal tDCS would have minor or no effects on visual learning. Anodal, cathodal or sham tDCS were applied over V1 in a randomized, double-blinded design over four consecutive days (n = 30). During 20 min of tDCS, subjects had to learn a visual orientation-discrimination task (ODT). Excitability parameters were measured by analyzing paired-stimulation behavior of visual-evoked potentials (ps-VEP) and by measuring phosphene thresholds (PTs) before and after the stimulation period of 4 days. Compared with sham-tDCS, anodal tDCS led to an improvement of visual discrimination learning (p < 0.003). We found reduced PTs and increased ps-VEP ratios indicating increased cortical excitability after anodal tDCS (PT: p = 0.002, ps-VEP: p = 0.003). Correlation analysis within the anodal tDCS group revealed no significant correlation between PTs and learning effect. For cathodal tDCS, no significant effects on learning or on excitability could be seen. Our results showed that anodal tDCS over V1 resulted in improved visual perceptual learning and increased cortical excitability. tDCS is a promising tool to alter V1 excitability and, hence, perceptual visual learning.

  18. Intracranial spectral amplitude dynamics of perceptual suppression in fronto-insular, occipito-temporal, and primary visual cortex

    PubMed Central

    Vidal, Juan R.; Perrone-Bertolotti, Marcela; Kahane, Philippe; Lachaux, Jean-Philippe

    2015-01-01

    If conscious perception requires global information integration across active distant brain networks, how does the loss of conscious perception affect neural processing in these distant networks? Pioneering studies on perceptual suppression (PS) described specific local neural network responses in primary visual cortex, thalamus and lateral prefrontal cortex of the macaque brain. Yet the neural effects of PS have rarely been studied with intracerebral recordings outside these cortices and simultaneously across distant brain areas. Here, we combined (1) a novel experimental paradigm in which we produced a similar perceptual disappearance and also re-appearance by using visual adaptation with transient contrast changes, with (2) electrophysiological observations from human intracranial electrodes sampling wide brain areas. We focused on broadband high-frequency (50–150 Hz, i.e., gamma) and low-frequency (8–24 Hz) neural activity amplitude modulations related to target visibility and invisibility. We report that low-frequency amplitude modulations reflected stimulus visibility in a larger ensemble of recording sites as compared to broadband gamma responses, across distinct brain regions including occipital, temporal and frontal cortices. Moreover, the dynamics of the broadband gamma response distinguished stimulus visibility from stimulus invisibility earlier in anterior insula and inferior frontal gyrus than in temporal regions, suggesting a possible role of fronto-insular cortices in top–down processing for conscious perception. Finally, we report that in primary visual cortex only low-frequency amplitude modulations correlated directly with perceptual status. Interestingly, in this sensory area broadband gamma was not modulated during PS but became positively modulated after 300 ms when stimuli were rendered visible again, suggesting that local networks could be ignited by top–down influences during conscious perception. PMID:25642199

  19. Salient sounds activate human visual cortex automatically.

    PubMed

    McDonald, John J; Störmer, Viola S; Martinez, Antigona; Feng, Wenfeng; Hillyard, Steven A

    2013-05-22

    Sudden changes in the acoustic environment enhance perceptual processing of subsequent visual stimuli that appear in close spatial proximity. Little is known, however, about the neural mechanisms by which salient sounds affect visual processing. In particular, it is unclear whether such sounds automatically activate visual cortex. To shed light on this issue, this study examined event-related brain potentials (ERPs) that were triggered either by peripheral sounds that preceded task-relevant visual targets (Experiment 1) or were presented during purely auditory tasks (Experiments 2-4). In all experiments the sounds elicited a contralateral ERP over the occipital scalp that was localized to neural generators in extrastriate visual cortex of the ventral occipital lobe. The amplitude of this cross-modal ERP was predictive of perceptual judgments about the contrast of colocalized visual targets. These findings demonstrate that sudden, intrusive sounds reflexively activate human visual cortex in a spatially specific manner, even during purely auditory tasks when the sounds are not relevant to the ongoing task.

  20. Salient sounds activate human visual cortex automatically

    PubMed Central

    McDonald, John J.; Störmer, Viola S.; Martinez, Antigona; Feng, Wenfeng; Hillyard, Steven A.

    2013-01-01

    Sudden changes in the acoustic environment enhance perceptual processing of subsequent visual stimuli that appear in close spatial proximity. Little is known, however, about the neural mechanisms by which salient sounds affect visual processing. In particular, it is unclear whether such sounds automatically activate visual cortex. To shed light on this issue, the present study examined event-related brain potentials (ERPs) that were triggered either by peripheral sounds that preceded task-relevant visual targets (Experiment 1) or were presented during purely auditory tasks (Experiments 2, 3, and 4). In all experiments the sounds elicited a contralateral ERP over the occipital scalp that was localized to neural generators in extrastriate visual cortex of the ventral occipital lobe. The amplitude of this cross-modal ERP was predictive of perceptual judgments about the contrast of co-localized visual targets. These findings demonstrate that sudden, intrusive sounds reflexively activate human visual cortex in a spatially specific manner, even during purely auditory tasks when the sounds are not relevant to the ongoing task. PMID:23699530

  1. Visual Learning Alters the Spontaneous Activity of the Resting Human Brain: An fNIRS Study

    PubMed Central

    Niu, Haijing; Li, Hao; Sun, Li; Su, Yongming; Huang, Jing; Song, Yan

    2014-01-01

    Resting-state functional connectivity (RSFC) has been widely used to investigate spontaneous brain activity that exhibits correlated fluctuations. RSFC has been found to be changed along the developmental course and after learning. Here, we investigated whether and how visual learning modified the resting oxygenated hemoglobin (HbO) functional brain connectivity by using functional near-infrared spectroscopy (fNIRS). We demonstrate that after five days of training on an orientation discrimination task constrained to the right visual field, resting HbO functional connectivity and directed mutual interaction between high-level visual cortex and frontal/central areas involved in the top-down control were significantly modified. Moreover, these changes, which correlated with the degree of perceptual learning, were not limited to the trained left visual cortex. We conclude that the resting oxygenated hemoglobin functional connectivity could be used as a predictor of visual learning, supporting the involvement of high-level visual cortex and the involvement of frontal/central cortex during visual perceptual learning. PMID:25243168

  2. Visual learning alters the spontaneous activity of the resting human brain: an fNIRS study.

    PubMed

    Niu, Haijing; Li, Hao; Sun, Li; Su, Yongming; Huang, Jing; Song, Yan

    2014-01-01

    Resting-state functional connectivity (RSFC) has been widely used to investigate spontaneous brain activity that exhibits correlated fluctuations. RSFC has been found to be changed along the developmental course and after learning. Here, we investigated whether and how visual learning modified the resting oxygenated hemoglobin (HbO) functional brain connectivity by using functional near-infrared spectroscopy (fNIRS). We demonstrate that after five days of training on an orientation discrimination task constrained to the right visual field, resting HbO functional connectivity and directed mutual interaction between high-level visual cortex and frontal/central areas involved in the top-down control were significantly modified. Moreover, these changes, which correlated with the degree of perceptual learning, were not limited to the trained left visual cortex. We conclude that the resting oxygenated hemoglobin functional connectivity could be used as a predictor of visual learning, supporting the involvement of high-level visual cortex and the involvement of frontal/central cortex during visual perceptual learning.

  3. Perceptual learning increases the strength of the earliest signals in visual cortex.

    PubMed

    Bao, Min; Yang, Lin; Rios, Cristina; He, Bin; Engel, Stephen A

    2010-11-10

    Training improves performance on most visual tasks. Such perceptual learning can modify how information is read out from, and represented in, later visual areas, but effects on early visual cortex are controversial. In particular, it remains unknown whether learning can reshape neural response properties in early visual areas independent from feedback arising in later cortical areas. Here, we tested whether learning can modify feedforward signals in early visual cortex as measured by the human electroencephalogram. Fourteen subjects were trained for >24 d to detect a diagonal grating pattern in one quadrant of the visual field. Training improved performance, reducing the contrast needed for reliable detection, and also reliably increased the amplitude of the earliest component of the visual evoked potential, the C1. Control orientations and locations showed smaller effects of training. Because the C1 arises rapidly and has a source in early visual cortex, our results suggest that learning can increase early visual area response through local receptive field changes without feedback from later areas.

  4. Perceptual Learning Selectively Refines Orientation Representations in Early Visual Cortex

    PubMed Central

    Jehee, Janneke F.M.; Ling, Sam; Swisher, Jascha D.; van Bergen, Ruben S.; Tong, Frank

    2013-01-01

    Although practice has long been known to improve perceptual performance, the neural basis of this improvement in humans remains unclear. Using fMRI in conjunction with a novel signal detection-based analysis, we show that extensive practice selectively enhances the neural representation of trained orientations in the human visual cortex. Twelve observers practiced discriminating small changes in the orientation of a laterally presented grating over 20 or more daily one-hour training sessions. Training on average led to a two-fold improvement in discrimination sensitivity, specific to the trained orientation and the trained location, with minimal improvement found for untrained orthogonal orientations or for orientations presented in the untrained hemifield. We measured the strength of orientation-selective responses in individual voxels in early visual areas (V1–V4) using signal detection measures, both pre- and post-training. Although the overall amplitude of the BOLD response was no greater after training, practice nonetheless specifically enhanced the neural representation of the trained orientation at the trained location. This training-specific enhancement of orientation-selective responses was observed in the primary visual cortex (V1) as well as higher extrastriate visual areas V2–V4, and moreover, reliably predicted individual differences in the behavioral effects of perceptual learning. These results demonstrate that extensive training can lead to targeted functional reorganization of the human visual cortex, refining the cortical representation of behaviorally relevant information. PMID:23175828

  5. Perceptual learning selectively refines orientation representations in early visual cortex.

    PubMed

    Jehee, Janneke F M; Ling, Sam; Swisher, Jascha D; van Bergen, Ruben S; Tong, Frank

    2012-11-21

    Although practice has long been known to improve perceptual performance, the neural basis of this improvement in humans remains unclear. Using fMRI in conjunction with a novel signal detection-based analysis, we show that extensive practice selectively enhances the neural representation of trained orientations in the human visual cortex. Twelve observers practiced discriminating small changes in the orientation of a laterally presented grating over 20 or more daily 1 h training sessions. Training on average led to a twofold improvement in discrimination sensitivity, specific to the trained orientation and the trained location, with minimal improvement found for untrained orthogonal orientations or for orientations presented in the untrained hemifield. We measured the strength of orientation-selective responses in individual voxels in early visual areas (V1-V4) using signal detection measures, both before and after training. Although the overall amplitude of the BOLD response was no greater after training, practice nonetheless specifically enhanced the neural representation of the trained orientation at the trained location. This training-specific enhancement of orientation-selective responses was observed in the primary visual cortex (V1) as well as higher extrastriate visual areas V2-V4, and moreover, reliably predicted individual differences in the behavioral effects of perceptual learning. These results demonstrate that extensive training can lead to targeted functional reorganization of the human visual cortex, refining the cortical representation of behaviorally relevant information.

  6. Enhanced alpha-oscillations in visual cortex during anticipation of self-generated visual stimulation.

    PubMed

    Stenner, Max-Philipp; Bauer, Markus; Haggard, Patrick; Heinze, Hans-Jochen; Dolan, Ray

    2014-11-01

    The perceived intensity of sensory stimuli is reduced when these stimuli are caused by the observer's actions. This phenomenon is traditionally explained by forward models of sensory action-outcome, which arise from motor processing. Although these forward models critically predict anticipatory modulation of sensory neural processing, neurophysiological evidence for anticipatory modulation is sparse and has not been linked to perceptual data showing sensory attenuation. By combining a psychophysical task involving contrast discrimination with source-level time-frequency analysis of MEG data, we demonstrate that the amplitude of alpha-oscillations in visual cortex is enhanced before the onset of a visual stimulus when the identity and onset of the stimulus are controlled by participants' motor actions. Critically, this prestimulus enhancement of alpha-amplitude is paralleled by psychophysical judgments of a reduced contrast for this stimulus. We suggest that alpha-oscillations in visual cortex preceding self-generated visual stimulation are a likely neurophysiological signature of motor-induced sensory anticipation and mediate sensory attenuation. We discuss our results in relation to proposals that attribute generic inhibitory functions to alpha-oscillations in prioritizing and gating sensory information via top-down control.

  7. Cortical Plasticity and Olfactory Function in Early Blindness

    PubMed Central

    Araneda, Rodrigo; Renier, Laurent A.; Rombaux, Philippe; Cuevas, Isabel; De Volder, Anne G.

    2016-01-01

    Over the last decade, functional brain imaging has provided insight to the maturation processes and has helped elucidate the pathophysiological mechanisms involved in brain plasticity in the absence of vision. In case of congenital blindness, drastic changes occur within the deafferented “visual” cortex that starts receiving and processing non visual inputs, including olfactory stimuli. This functional reorganization of the occipital cortex gives rise to compensatory perceptual and cognitive mechanisms that help blind persons achieve perceptual tasks, leading to superior olfactory abilities in these subjects. This view receives support from psychophysical testing, volumetric measurements and functional brain imaging studies in humans, which are presented here. PMID:27625596

  8. Acquired word deafness, and the temporal grain of sound representation in the primary auditory cortex.

    PubMed

    Phillips, D P; Farmer, M E

    1990-11-15

    This paper explores the nature of the processing disorder which underlies the speech discrimination deficit in the syndrome of acquired word deafness following from pathology to the primary auditory cortex. A critical examination of the evidence on this disorder revealed the following. First, the most profound forms of the condition are expressed not only in an isolation of the cerebral linguistic processor from auditory input, but in a failure of even the perceptual elaboration of the relevant sounds. Second, in agreement with earlier studies, we conclude that the perceptual dimension disturbed in word deafness is a temporal one. We argue, however, that it is not a generalized disorder of auditory temporal processing, but one which is largely restricted to the processing of sounds with temporal content in the milliseconds to tens-of-milliseconds time frame. The perceptual elaboration of sounds with temporal content outside that range, in either direction, may survive the disorder. Third, we present neurophysiological evidence that the primary auditory cortex has a special role in the representation of auditory events in that time frame, but not in the representation of auditory events with temporal grains outside that range.

  9. Shared Neural Substrates of Emotionally Enhanced Perceptual and Mnemonic Vividness

    PubMed Central

    Todd, Rebecca M.; Schmitz, Taylor W.; Susskind, Josh; Anderson, Adam K.

    2013-01-01

    It is well-known that emotionally salient events are remembered more vividly than mundane ones. Our recent research has demonstrated that such memory vividness (Mviv) is due in part to the subjective experience of emotional events as more perceptually vivid, an effect we call emotionally enhanced vividness (EEV). The present study built on previously reported research in which fMRI data were collected while participants rated relative levels of visual noise overlaid on emotionally salient and neutral images. Ratings of greater EEV were associated with greater activation in the amygdala and visual cortex. In the present study, we measured BOLD activation that predicted recognition Mviv for these same images 1 week later. Results showed that, after controlling for differences between scenes in low-level objective features, hippocampus activation uniquely predicted subsequent Mviv. In contrast, amygdala and visual cortex regions that were sensitive to EEV were also modulated by subsequent ratings of Mviv. These findings suggest shared neural substrates for the influence of emotional salience on perceptual and mnemonic vividness, with amygdala and visual cortex activation at encoding contributing to the experience of both perception and subsequent memory. PMID:23653601

  10. The activity in the anterior insulae is modulated by perceptual decision-making difficulty.

    PubMed

    Lamichhane, Bidhan; Adhikari, Bhim M; Dhamala, Mukesh

    2016-07-07

    Previous neuroimaging studies provide evidence for the involvement of the anterior insulae (INSs) in perceptual decision-making processes. However, how the insular cortex is involved in integration of degraded sensory information to create a conscious percept of environment and to drive our behaviors still remains a mystery. In this study, using functional magnetic resonance imaging (fMRI) and four different perceptual categorization tasks in visual and audio-visual domains, we measured blood oxygen level dependent (BOLD) signals and examined the roles of INSs in easy and difficult perceptual decision-making. We created a varying degree of degraded stimuli by manipulating the task-specific stimuli in these four experiments to examine the effects of task difficulty on insular cortex response. We hypothesized that significantly higher BOLD response would be associated with the ambiguity of the sensory information and decision-making difficulty. In all of our experimental tasks, we found the INS activity consistently increased with task difficulty and participants' behavioral performance changed with the ambiguity of the presented sensory information. These findings support the hypothesis that the anterior insulae are involved in sensory-guided, goal-directed behaviors and their activities can predict perceptual load and task difficulty. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Perceptual expertise and top-down expectation of musical notation engages the primary visual cortex.

    PubMed

    Wong, Yetta Kwailing; Peng, Cynthia; Fratus, Kristyn N; Woodman, Geoffrey F; Gauthier, Isabel

    2014-08-01

    Most theories of visual processing propose that object recognition is achieved in higher visual cortex. However, we show that category selectivity for musical notation can be observed in the first ERP component called the C1 (measured 40-60 msec after stimulus onset) with music-reading expertise. Moreover, the C1 note selectivity was observed only when the stimulus category was blocked but not when the stimulus category was randomized. Under blocking, the C1 activity for notes predicted individual music-reading ability, and behavioral judgments of musical stimuli reflected music-reading skill. Our results challenge current theories of object recognition, indicating that the primary visual cortex can be selective for musical notation within the initial feedforward sweep of activity with perceptual expertise and with a testing context that is consistent with the expertise training, such as blocking the stimulus category for music reading.

  12. Category learning increases discriminability of relevant object dimensions in visual cortex.

    PubMed

    Folstein, Jonathan R; Palmeri, Thomas J; Gauthier, Isabel

    2013-04-01

    Learning to categorize objects can transform how they are perceived, causing relevant perceptual dimensions predictive of object category to become enhanced. For example, an expert mycologist might become attuned to species-specific patterns of spacing between mushroom gills but learn to ignore cap textures attributable to varying environmental conditions. These selective changes in perception can persist beyond the act of categorizing objects and influence our ability to discriminate between them. Using functional magnetic resonance imaging adaptation, we demonstrate that such category-specific perceptual enhancements are associated with changes in the neural discriminability of object representations in visual cortex. Regions within the anterior fusiform gyrus became more sensitive to small variations in shape that were relevant during prior category learning. In addition, extrastriate occipital areas showed heightened sensitivity to small variations in shape that spanned the category boundary. Visual representations in cortex, just like our perception, are sensitive to an object's history of categorization.

  13. Motor cortex guides selection of predictable movement targets

    PubMed Central

    Woodgate, Philip J.W.; Strauss, Soeren; Sami, Saber A.; Heinke, Dietmar

    2016-01-01

    The present paper asks whether the motor cortex contributes to prediction-based guidance of target selection. This question was inspired by recent evidence that suggests (i) recurrent connections from the motor system into the attentional system may extract movement-relevant perceptual information and (ii) that the motor cortex cannot only generate predictions of the sensory consequences of movements but may also operate as predictor of perceptual events in general. To test this idea we employed a choice reaching task requiring participants to rapidly reach and touch a predictable or unpredictable colour target. Motor cortex activity was modulated via transcranial direct current stimulation (tDCS). In Experiment 1 target colour repetitions were predictable. Under such conditions anodal tDCS facilitated selection versus sham and cathodal tDCS. This improvement was apparent for trajectory curvature but not movement initiation. Conversely, where no predictability of colour was embedded reach performance was unaffected by tDCS. Finally, the results of a key-press experiment suggested that motor cortex involvement is restricted to tasks where the predictable target colour is movement-relevant. The outcomes are interpreted as evidence that the motor system contributes to the top-down guidance of selective attention to movement targets. PMID:25835319

  14. Beta oscillations define discrete perceptual cycles in the somatosensory domain.

    PubMed

    Baumgarten, Thomas J; Schnitzler, Alfons; Lange, Joachim

    2015-09-29

    Whether seeing a movie, listening to a song, or feeling a breeze on the skin, we coherently experience these stimuli as continuous, seamless percepts. However, there are rare perceptual phenomena that argue against continuous perception but, instead, suggest discrete processing of sensory input. Empirical evidence supporting such a discrete mechanism, however, remains scarce and comes entirely from the visual domain. Here, we demonstrate compelling evidence for discrete perceptual sampling in the somatosensory domain. Using magnetoencephalography (MEG) and a tactile temporal discrimination task in humans, we find that oscillatory alpha- and low beta-band (8-20 Hz) cycles in primary somatosensory cortex represent neurophysiological correlates of discrete perceptual cycles. Our results agree with several theoretical concepts of discrete perceptual sampling and empirical evidence of perceptual cycles in the visual domain. Critically, these results show that discrete perceptual cycles are not domain-specific, and thus restricted to the visual domain, but extend to the somatosensory domain.

  15. High perceptual load leads to both reduced gain and broader orientation tuning

    PubMed Central

    Stolte, Moritz; Bahrami, Bahador; Lavie, Nilli

    2014-01-01

    Due to its limited capacity, visual perception depends on the allocation of attention. The resultant phenomena of inattentional blindness, accompanied by reduced sensory visual cortex response to unattended stimuli in conditions of high perceptual load in the attended task, are now well established (Lavie, 2005; Lavie, 2010, for reviews). However, the underlying mechanisms for these effects remain to be elucidated. Specifically, is reduced perceptual processing under high perceptual load a result of reduced sensory signal gain, broader tuning, or both? We examined this question with psychophysical measures of orientation tuning under different levels of perceptual load in the task performed. Our results show that increased perceptual load leads to both reduced sensory signal and broadening of tuning. These results clarify the effects of attention on elementary visual perception and suggest that high perceptual load is critical for attentional effects on sensory tuning. PMID:24610952

  16. Schizotypal Perceptual Aberrations of Time: Correlation between Score, Behavior and Brain Activity

    PubMed Central

    Arzy, Shahar; Mohr, Christine; Molnar-Szakacs, Istvan; Blanke, Olaf

    2011-01-01

    A fundamental trait of the human self is its continuum experience of space and time. Perceptual aberrations of this spatial and temporal continuity is a major characteristic of schizophrenia spectrum disturbances – including schizophrenia, schizotypal personality disorder and schizotypy. We have previously found the classical Perceptual Aberration Scale (PAS) scores, related to body and space, to be positively correlated with both behavior and temporo-parietal activation in healthy participants performing a task involving self-projection in space. However, not much is known about the relationship between temporal perceptual aberration, behavior and brain activity. To this aim, we composed a temporal Perceptual Aberration Scale (tPAS) similar to the traditional PAS. Testing on 170 participants suggested similar performance for PAS and tPAS. We then correlated tPAS and PAS scores to participants' performance and neural activity in a task of self-projection in time. tPAS scores correlated positively with reaction times across task conditions, as did PAS scores. Evoked potential mapping and electrical neuroimaging showed self-projection in time to recruit a network of brain regions at the left anterior temporal cortex, right temporo-parietal junction, and occipito-temporal cortex, and duration of activation in this network positively correlated with tPAS and PAS scores. These data demonstrate that schizotypal perceptual aberrations of both time and space, as reflected by tPAS and PAS scores, are positively correlated with performance and brain activation during self-projection in time in healthy individuals along the schizophrenia spectrum. PMID:21267456

  17. Shared sensory estimates for human motion perception and pursuit eye movements.

    PubMed

    Mukherjee, Trishna; Battifarano, Matthew; Simoncini, Claudio; Osborne, Leslie C

    2015-06-03

    Are sensory estimates formed centrally in the brain and then shared between perceptual and motor pathways or is centrally represented sensory activity decoded independently to drive awareness and action? Questions about the brain's information flow pose a challenge because systems-level estimates of environmental signals are only accessible indirectly as behavior. Assessing whether sensory estimates are shared between perceptual and motor circuits requires comparing perceptual reports with motor behavior arising from the same sensory activity. Extrastriate visual cortex both mediates the perception of visual motion and provides the visual inputs for behaviors such as smooth pursuit eye movements. Pursuit has been a valuable testing ground for theories of sensory information processing because the neural circuits and physiological response properties of motion-responsive cortical areas are well studied, sensory estimates of visual motion signals are formed quickly, and the initiation of pursuit is closely coupled to sensory estimates of target motion. Here, we analyzed variability in visually driven smooth pursuit and perceptual reports of target direction and speed in human subjects while we manipulated the signal-to-noise level of motion estimates. Comparable levels of variability throughout viewing time and across conditions provide evidence for shared noise sources in the perception and action pathways arising from a common sensory estimate. We found that conditions that create poor, low-gain pursuit create a discrepancy between the precision of perception and that of pursuit. Differences in pursuit gain arising from differences in optic flow strength in the stimulus reconcile much of the controversy on this topic. Copyright © 2015 the authors 0270-6474/15/358515-16$15.00/0.

  18. Shared Sensory Estimates for Human Motion Perception and Pursuit Eye Movements

    PubMed Central

    Mukherjee, Trishna; Battifarano, Matthew; Simoncini, Claudio

    2015-01-01

    Are sensory estimates formed centrally in the brain and then shared between perceptual and motor pathways or is centrally represented sensory activity decoded independently to drive awareness and action? Questions about the brain's information flow pose a challenge because systems-level estimates of environmental signals are only accessible indirectly as behavior. Assessing whether sensory estimates are shared between perceptual and motor circuits requires comparing perceptual reports with motor behavior arising from the same sensory activity. Extrastriate visual cortex both mediates the perception of visual motion and provides the visual inputs for behaviors such as smooth pursuit eye movements. Pursuit has been a valuable testing ground for theories of sensory information processing because the neural circuits and physiological response properties of motion-responsive cortical areas are well studied, sensory estimates of visual motion signals are formed quickly, and the initiation of pursuit is closely coupled to sensory estimates of target motion. Here, we analyzed variability in visually driven smooth pursuit and perceptual reports of target direction and speed in human subjects while we manipulated the signal-to-noise level of motion estimates. Comparable levels of variability throughout viewing time and across conditions provide evidence for shared noise sources in the perception and action pathways arising from a common sensory estimate. We found that conditions that create poor, low-gain pursuit create a discrepancy between the precision of perception and that of pursuit. Differences in pursuit gain arising from differences in optic flow strength in the stimulus reconcile much of the controversy on this topic. PMID:26041919

  19. Short-term plasticity in auditory cognition.

    PubMed

    Jääskeläinen, Iiro P; Ahveninen, Jyrki; Belliveau, John W; Raij, Tommi; Sams, Mikko

    2007-12-01

    Converging lines of evidence suggest that auditory system short-term plasticity can enable several perceptual and cognitive functions that have been previously considered as relatively distinct phenomena. Here we review recent findings suggesting that auditory stimulation, auditory selective attention and cross-modal effects of visual stimulation each cause transient excitatory and (surround) inhibitory modulations in the auditory cortex. These modulations might adaptively tune hierarchically organized sound feature maps of the auditory cortex (e.g. tonotopy), thus filtering relevant sounds during rapidly changing environmental and task demands. This could support auditory sensory memory, pre-attentive detection of sound novelty, enhanced perception during selective attention, influence of visual processing on auditory perception and longer-term plastic changes associated with perceptual learning.

  20. Visual Working Memory Is Independent of the Cortical Spacing Between Memoranda.

    PubMed

    Harrison, William J; Bays, Paul M

    2018-03-21

    The sensory recruitment hypothesis states that visual short-term memory is maintained in the same visual cortical areas that initially encode a stimulus' features. Although it is well established that the distance between features in visual cortex determines their visibility, a limitation known as crowding, it is unknown whether short-term memory is similarly constrained by the cortical spacing of memory items. Here, we investigated whether the cortical spacing between sequentially presented memoranda affects the fidelity of memory in humans (of both sexes). In a first experiment, we varied cortical spacing by taking advantage of the log-scaling of visual cortex with eccentricity, presenting memoranda in peripheral vision sequentially along either the radial or tangential visual axis with respect to the fovea. In a second experiment, we presented memoranda sequentially either within or beyond the critical spacing of visual crowding, a distance within which visual features cannot be perceptually distinguished due to their nearby cortical representations. In both experiments and across multiple measures, we found strong evidence that the ability to maintain visual features in memory is unaffected by cortical spacing. These results indicate that the neural architecture underpinning working memory has properties inconsistent with the known behavior of sensory neurons in visual cortex. Instead, the dissociation between perceptual and memory representations supports a role of higher cortical areas such as posterior parietal or prefrontal regions or may involve an as yet unspecified mechanism in visual cortex in which stimulus features are bound to their temporal order. SIGNIFICANCE STATEMENT Although much is known about the resolution with which we can remember visual objects, the cortical representation of items held in short-term memory remains contentious. A popular hypothesis suggests that memory of visual features is maintained via the recruitment of the same neural architecture in sensory cortex that encodes stimuli. We investigated this claim by manipulating the spacing in visual cortex between sequentially presented memoranda such that some items shared cortical representations more than others while preventing perceptual interference between stimuli. We found clear evidence that short-term memory is independent of the intracortical spacing of memoranda, revealing a dissociation between perceptual and memory representations. Our data indicate that working memory relies on different neural mechanisms from sensory perception. Copyright © 2018 Harrison and Bays.

  1. Exogenous attention facilitates location transfer of perceptual learning.

    PubMed

    Donovan, Ian; Szpiro, Sarit; Carrasco, Marisa

    2015-01-01

    Perceptual skills can be improved through practice on a perceptual task, even in adulthood. Visual perceptual learning is known to be mostly specific to the trained retinal location, which is considered as evidence of neural plasticity in retinotopic early visual cortex. Recent findings demonstrate that transfer of learning to untrained locations can occur under some specific training procedures. Here, we evaluated whether exogenous attention facilitates transfer of perceptual learning to untrained locations, both adjacent to the trained locations (Experiment 1) and distant from them (Experiment 2). The results reveal that attention facilitates transfer of perceptual learning to untrained locations in both experiments, and that this transfer occurs both within and across visual hemifields. These findings show that training with exogenous attention is a powerful regime that is able to overcome the major limitation of location specificity.

  2. Exogenous attention facilitates location transfer of perceptual learning

    PubMed Central

    Donovan, Ian; Szpiro, Sarit; Carrasco, Marisa

    2015-01-01

    Perceptual skills can be improved through practice on a perceptual task, even in adulthood. Visual perceptual learning is known to be mostly specific to the trained retinal location, which is considered as evidence of neural plasticity in retinotopic early visual cortex. Recent findings demonstrate that transfer of learning to untrained locations can occur under some specific training procedures. Here, we evaluated whether exogenous attention facilitates transfer of perceptual learning to untrained locations, both adjacent to the trained locations (Experiment 1) and distant from them (Experiment 2). The results reveal that attention facilitates transfer of perceptual learning to untrained locations in both experiments, and that this transfer occurs both within and across visual hemifields. These findings show that training with exogenous attention is a powerful regime that is able to overcome the major limitation of location specificity. PMID:26426818

  3. Visual priming within and across symbolic format using a tachistoscopic picture identification task: a PET study.

    PubMed

    Lebreton, K; Desgranges, B; Landeau, B; Baron, J C; Eustache, F

    2001-07-01

    The present work was aimed at characterizing picture priming effects from two complementary behavioral and functional neuroimaging (positron emission tomography, PET) studies. In two experiments, we used the same line drawings of common living/nonliving objects in a tachistoscopic identification task to contrast two forms of priming. In the within-format priming condition (picture-picture), subjects were instructed to perform a perceptual encoding task in the study phase, whereas in the cross-format priming condition (word-picture), they were instructed to perform a semantic encoding task. In Experiment 1, we showed significant priming effects in both priming conditions. However, the magnitude of priming effects in the same-format/perceptual encoding condition was higher than that in the different-format/semantic encoding condition, while the recognition performance did not differ between the two conditions. This finding supports the existence of two forms of priming that may be subserved by different systems. Consistent with these behavioral findings, the PET data for Experiment 2 revealed distinct priming-related patterns of regional cerebral blood flow (rCBF) decreases for the two priming conditions when primed items were compared to unprimed items. The same-format priming condition involved reductions in cerebral activity particularly in the right extrastriate cortex and left cerebellum, while the different-format priming condition was associated with rCBF decreases in the left inferior temporo-occipital cortex, left frontal regions, and the right cerebellum. These results suggest that the extrastriate cortex may subserve general aspects of perceptual priming, independent of the kind of stimuli, and that the right part of this cortex could underlie the same-format-specific system for pictures. These data also support the idea that the cross-format/semantic encoding priming for pictures represents a form of lexico-semantic priming subserved by a semantic neural network extending from left temporo-occipital cortex to left frontal regions. These results reinforce the distinction between perceptual and conceptual priming for pictures, indicating that different cerebral processes and systems are implicated in these two forms of picture priming.

  4. Visual Coding of Human Bodies: Perceptual Aftereffects Reveal Norm-Based, Opponent Coding of Body Identity

    ERIC Educational Resources Information Center

    Rhodes, Gillian; Jeffery, Linda; Boeing, Alexandra; Calder, Andrew J.

    2013-01-01

    Despite the discovery of body-selective neural areas in occipitotemporal cortex, little is known about how bodies are visually coded. We used perceptual adaptation to determine how body identity is coded. Brief exposure to a body (e.g., anti-Rose) biased perception toward an identity with opposite properties (Rose). Moreover, the size of this…

  5. Neural Correlates of Temporal Complexity and Synchrony during Audiovisual Correspondence Detection.

    PubMed

    Baumann, Oliver; Vromen, Joyce M G; Cheung, Allen; McFadyen, Jessica; Ren, Yudan; Guo, Christine C

    2018-01-01

    We often perceive real-life objects as multisensory cues through space and time. A key challenge for audiovisual integration is to match neural signals that not only originate from different sensory modalities but also that typically reach the observer at slightly different times. In humans, complex, unpredictable audiovisual streams lead to higher levels of perceptual coherence than predictable, rhythmic streams. In addition, perceptual coherence for complex signals seems less affected by increased asynchrony between visual and auditory modalities than for simple signals. Here, we used functional magnetic resonance imaging to determine the human neural correlates of audiovisual signals with different levels of temporal complexity and synchrony. Our study demonstrated that greater perceptual asynchrony and lower signal complexity impaired performance in an audiovisual coherence-matching task. Differences in asynchrony and complexity were also underpinned by a partially different set of brain regions. In particular, our results suggest that, while regions in the dorsolateral prefrontal cortex (DLPFC) were modulated by differences in memory load due to stimulus asynchrony, areas traditionally thought to be involved in speech production and recognition, such as the inferior frontal and superior temporal cortex, were modulated by the temporal complexity of the audiovisual signals. Our results, therefore, indicate specific processing roles for different subregions of the fronto-temporal cortex during audiovisual coherence detection.

  6. Neural Correlates of Temporal Complexity and Synchrony during Audiovisual Correspondence Detection

    PubMed Central

    Ren, Yudan

    2018-01-01

    Abstract We often perceive real-life objects as multisensory cues through space and time. A key challenge for audiovisual integration is to match neural signals that not only originate from different sensory modalities but also that typically reach the observer at slightly different times. In humans, complex, unpredictable audiovisual streams lead to higher levels of perceptual coherence than predictable, rhythmic streams. In addition, perceptual coherence for complex signals seems less affected by increased asynchrony between visual and auditory modalities than for simple signals. Here, we used functional magnetic resonance imaging to determine the human neural correlates of audiovisual signals with different levels of temporal complexity and synchrony. Our study demonstrated that greater perceptual asynchrony and lower signal complexity impaired performance in an audiovisual coherence-matching task. Differences in asynchrony and complexity were also underpinned by a partially different set of brain regions. In particular, our results suggest that, while regions in the dorsolateral prefrontal cortex (DLPFC) were modulated by differences in memory load due to stimulus asynchrony, areas traditionally thought to be involved in speech production and recognition, such as the inferior frontal and superior temporal cortex, were modulated by the temporal complexity of the audiovisual signals. Our results, therefore, indicate specific processing roles for different subregions of the fronto-temporal cortex during audiovisual coherence detection. PMID:29354682

  7. Is fear perception special? Evidence at the level of decision-making and subjective confidence.

    PubMed

    Koizumi, Ai; Mobbs, Dean; Lau, Hakwan

    2016-11-01

    Fearful faces are believed to be prioritized in visual perception. However, it is unclear whether the processing of low-level facial features alone can facilitate such prioritization or whether higher-level mechanisms also contribute. We examined potential biases for fearful face perception at the levels of perceptual decision-making and perceptual confidence. We controlled for lower-level visual processing capacity by titrating luminance contrasts of backward masks, and the emotional intensity of fearful, angry and happy faces. Under these conditions, participants showed liberal biases in perceiving a fearful face, in both detection and discrimination tasks. This effect was stronger among individuals with reduced density in dorsolateral prefrontal cortex, a region linked to perceptual decision-making. Moreover, participants reported higher confidence when they accurately perceived a fearful face, suggesting that fearful faces may have privileged access to consciousness. Together, the results suggest that mechanisms in the prefrontal cortex contribute to making fearful face perception special. © The Author (2016). Published by Oxford University Press.

  8. Uncovering Camouflage: Amygdala Activation Predicts Long-Term Memory of Induced Perceptual Insight

    PubMed Central

    Ludmer, Rachel; Dudai, Yadin; Rubin, Nava

    2012-01-01

    What brain mechanisms underlie learning of new knowledge from single events? We studied encoding in long-term memory of a unique type of one-shot experience, induced perceptual insight. While undergoing an fMRI brain scan, participants viewed degraded images of real-world pictures where the underlying objects were hard to recognize (‘camouflage’), followed by brief exposures to the original images (‘solution’), which led to induced insight (“Aha!”). A week later, participants’ memory was tested; a solution image was classified as ‘remembered’ if detailed perceptual knowledge was elicited from the camouflage image alone. During encoding, subsequently remembered images enjoyed higher activity in mid-level visual cortex and medial frontal cortex, but most pronouncedly in the amygdala, whose activity could be used to predict which solutions will remain in long-term memory. Our findings extend the known roles of amygdala in memory to include promoting of long-term memory of the sudden reorganization of internal representations. PMID:21382558

  9. Threat distractor and perceptual load modulate test-retest reliability of anterior cingulate cortex response.

    PubMed

    Bunford, Nora; Kinney, Kerry L; Michael, Jamie; Klumpp, Heide

    2017-07-03

    Accumulating data from fMRI studies implicate the rostral anterior cingulate cortex (rACC) in inhibition of attention to threat distractors that compete with task-relevant goals for processing resources. However, little data is available on the reliability of rACC activation. Our aim in the current study was to examine test-retest reliability of rACC activation over a 12-week period, in the context of a validated emotional interference paradigm that varied in perceptual load. During functional MRI, 23 healthy volunteers completed a task involving a target letter in a string of identical letters (low load) or in a string of mixed letters (high load) superimposed on angry, fearful, and neutral face distractors. Intraclass correlation coefficients (ICCs) indicated that under low, but not high perceptual load, rACC activation to fearful vs. neutral distractors was moderately reliable. Conversely, regardless of perceptual load, rACC activation to angry vs. neutral distractors was not reliable. Regarding behavioral performance, ICCs indicated that accuracy was not reliable regardless of distractor type or perceptual load. Although reaction time (RT) was similarly not reliable regardless of distractor type under low perceptual load, RT to angry vs. neutral distractors and to fearful vs. neutral distractors was reliable under high perceptual load. Together, results indicate the test-retest reliability of rACC activation and corresponding behavioral performance are context dependent; reliability of the former varies as a function of distractor type and level of cognitive demand, whereas reliability of the latter depends on behavioral index (accuracy vs. RT) and level of cognitive demand but not distractor type. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Perceptual and cognitive effects of antipsychotics in first-episode schizophrenia: the potential impact of GABA concentration in the visual cortex.

    PubMed

    Kelemen, Oguz; Kiss, Imre; Benedek, György; Kéri, Szabolcs

    2013-12-02

    Schizophrenia is characterized by anomalous perceptual experiences (e.g., sensory irritation, inundation, and flooding) and specific alterations in visual perception. We aimed to investigate the effects of short-term antipsychotic medication on these perceptual alterations. We assessed 28 drug-naïve first episode patients with schizophrenia and 20 matched healthy controls at baseline and follow-up 8 weeks later. Contrast sensitivity was measured with steady- and pulsed-pedestal tests. Participants also received a motion coherence task, the Structured Interview for Assessing Perceptual Anomalies (SIAPA), and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Proton magnetic resonance spectroscopy was used to measure gamma-aminobutyric acid (GABA) levels in the occipital cortex (GABA/total creatine [Cr] ratio). Results revealed that, comparing baseline and follow-up values, patients with schizophrenia exhibited a marked sensitivity reduction on the steady-pedestal test at low spatial frequency. Anomalous perceptual experiences were also significantly ameliorated. Antipsychotic medications had no effect on motion perception. RBANS scores showed mild improvements. At baseline, but not at follow-up, patients with schizophrenia outperformed controls on the steady-pedestal test at low spatial frequency. The dysfunction of motion perception (higher coherence threshold in patients relative to controls) was similar at both assessments. There were reduced GABA levels in schizophrenia at both assessments, which were not related to perceptual functions. These results suggest that antipsychotics dominantly affect visual contrast sensitivity and anomalous perceptual experiences. The prominent dampening effect on low spatial frequency in the steady-pedestal test might indicate the normalization of putatively overactive magnocellular retino-geniculo-cortical pathways. © 2013.

  11. Causal evidence for mnemonic metacognition in human precuneus.

    PubMed

    Ye 叶群, Qun; Zou 邹富渟, Futing; Lau 劉克頑, Hakwan; Hu 胡谊, Yi; Kwok 郭思齊, Sze Chai

    2018-06-19

    Metacognition is the capacity to introspectively monitor and control one's own cognitive processes. Previous anatomical and functional neuroimaging findings implicated the important role of the precuneus in metacognition processing, especially during mnemonic tasks. However, the issue of whether this medial parietal cortex is a domain-specific region that supports mnemonic metacognition remains controversial. Here, we focally disrupted this parietal area with repetitive transcranial magnetic stimulation in healthy human participants of both sexes, seeking to ascertain its functional necessity for metacognition in memory versus perceptual decisions. Perturbing precuneal activity selectively impaired metacognitive efficiency of temporal-order memory judgement, but not perceptual discrimination. Moreover, the correlation in individuals' metacognitive efficiency between domains disappeared when the precuneus was perturbed. Taken together, these findings provide evidence reinforcing the notion that the precuneal region plays an important role in mediating metacognition of episodic memory retrieval. SIGNIFICANCE STATEMENT Theories on the neural basis of metacognition have thus far been largely centered on the role of the prefrontal cortex. Here we refined the theoretical framework through characterizing a unique precuneal involvement in mnemonic metacognition with a noninvasive but inferentially powerful method: transcranial magnetic stimulation. By quantifying meta-cognitive efficiency across two distinct domains (memory vs. perception) that are matched for stimulus characteristics, we reveal an instrumental role of the precuneus in mnemonic metacognition. This causal evidence corroborates ample clinical reports that parietal lobe lesions often produce inaccurate self-reports of confidence in memory recollection and establish the precuneus as a nexus for the introspective ability to evaluate the success of memory judgment in humans. Copyright © 2018 the authors.

  12. Human Motion Perception and Smooth Eye Movements Show Similar Directional Biases for Elongated Apertures

    NASA Technical Reports Server (NTRS)

    Beutter, Brent R.; Stone, Leland S.

    1997-01-01

    Although numerous studies have examined the relationship between smooth-pursuit eye movements and motion perception, it remains unresolved whether a common motion-processing system subserves both perception and pursuit. To address this question, we simultaneously recorded perceptual direction judgments and the concomitant smooth eye movement response to a plaid stimulus that we have previously shown generates systematic perceptual errors. We measured the perceptual direction biases psychophysically and the smooth eye-movement direction biases using two methods (standard averaging and oculometric analysis). We found that the perceptual and oculomotor biases were nearly identical suggesting that pursuit and perception share a critical motion processing stage, perhaps in area MT or MST of extrastriate visual cortex.

  13. Neural correlates of auditory scene analysis and perception

    PubMed Central

    Cohen, Yale E.

    2014-01-01

    The auditory system is designed to transform acoustic information from low-level sensory representations into perceptual representations. These perceptual representations are the computational result of the auditory system's ability to group and segregate spectral, spatial and temporal regularities in the acoustic environment into stable perceptual units (i.e., sounds or auditory objects). Current evidence suggests that the cortex--specifically, the ventral auditory pathway--is responsible for the computations most closely related to perceptual representations. Here, we discuss how the transformations along the ventral auditory pathway relate to auditory percepts, with special attention paid to the processing of vocalizations and categorization, and explore recent models of how these areas may carry out these computations. PMID:24681354

  14. Human motion perception and smooth eye movements show similar directional biases for elongated apertures

    NASA Technical Reports Server (NTRS)

    Beutter, B. R.; Stone, L. S.

    1998-01-01

    Although numerous studies have examined the relationship between smooth-pursuit eye movements and motion perception, it remains unresolved whether a common motion-processing system subserves both perception and pursuit. To address this question, we simultaneously recorded perceptual direction judgments and the concomitant smooth eye-movement response to a plaid stimulus that we have previously shown generates systematic perceptual errors. We measured the perceptual direction biases psychophysically and the smooth eye-movement direction biases using two methods (standard averaging and oculometric analysis). We found that the perceptual and oculomotor biases were nearly identical, suggesting that pursuit and perception share a critical motion processing stage, perhaps in area MT or MST of extrastriate visual cortex.

  15. Perirhinal Cortex Resolves Feature Ambiguity in Configural Object Recognition and Perceptual Oddity Tasks

    ERIC Educational Resources Information Center

    Bartko, Susan J.; Winters, Boyer D.; Cowell, Rosemary A.; Saksida, Lisa M.; Bussey, Timothy J.

    2007-01-01

    The perirhinal cortex (PRh) has a well-established role in object recognition memory. More recent studies suggest that PRh is also important for two-choice visual discrimination tasks. Specifically, it has been suggested that PRh contains conjunctive representations that help resolve feature ambiguity, which occurs when a task cannot easily be…

  16. Intact Visual Discrimination of Complex and Feature-Ambiguous Stimuli in the Absence of Perirhinal Cortex

    ERIC Educational Resources Information Center

    Squire, Larry R.; Levy, Daniel A.; Shrager, Yael

    2005-01-01

    The perirhinal cortex is known to be important for memory, but there has recently been interest in the possibility that it might also be involved in visual perceptual functions. In four experiments, we assessed visual discrimination ability and visual discrimination learning in severely amnesic patients with large medial temporal lobe lesions that…

  17. Altered transfer of visual motion information to parietal association cortex in untreated first-episode psychosis: Implications for pursuit eye tracking

    PubMed Central

    Lencer, Rebekka; Keedy, Sarah K.; Reilly, James L.; McDonough, Bruce E.; Harris, Margret S. H.; Sprenger, Andreas; Sweeney, John A.

    2011-01-01

    Visual motion processing and its use for pursuit eye movement control represent a valuable model for studying the use of sensory input for action planning. In psychotic disorders, alterations of visual motion perception have been suggested to cause pursuit eye tracking deficits. We evaluated this system in functional neuroimaging studies of untreated first-episode schizophrenia (N=24), psychotic bipolar disorder patients (N=13) and healthy controls (N=20). During a passive visual motion processing task, both patient groups showed reduced activation in the posterior parietal projection fields of motion-sensitive extrastriate area V5, but not in V5 itself. This suggests reduced bottom-up transfer of visual motion information from extrastriate cortex to perceptual systems in parietal association cortex. During active pursuit, activation was enhanced in anterior intraparietal sulcus and insula in both patient groups, and in dorsolateral prefrontal cortex and dorsomedial thalamus in schizophrenia patients. This may result from increased demands on sensorimotor systems for pursuit control due to the limited availability of perceptual motion information about target speed and tracking error. Visual motion information transfer deficits to higher -level association cortex may contribute to well-established pursuit tracking abnormalities, and perhaps to a wider array of alterations in perception and action planning in psychotic disorders. PMID:21873035

  18. Attentional Gain Control of Ongoing Cortical Speech Representations in a “Cocktail Party”

    PubMed Central

    Kerlin, Jess R.; Shahin, Antoine J.; Miller, Lee M.

    2010-01-01

    Normal listeners possess the remarkable perceptual ability to select a single speech stream among many competing talkers. However, few studies of selective attention have addressed the unique nature of speech as a temporally extended and complex auditory object. We hypothesized that sustained selective attention to speech in a multi-talker environment would act as gain control on the early auditory cortical representations of speech. Using high-density electroencephalography and a template-matching analysis method, we found selective gain to the continuous speech content of an attended talker, greatest at a frequency of 4–8 Hz, in auditory cortex. In addition, the difference in alpha power (8–12 Hz) at parietal sites across hemispheres indicated the direction of auditory attention to speech, as has been previously found in visual tasks. The strength of this hemispheric alpha lateralization, in turn, predicted an individual’s attentional gain of the cortical speech signal. These results support a model of spatial speech stream segregation, mediated by a supramodal attention mechanism, enabling selection of the attended representation in auditory cortex. PMID:20071526

  19. Attention enhances multi-voxel representation of novel objects in frontal, parietal and visual cortices.

    PubMed

    Woolgar, Alexandra; Williams, Mark A; Rich, Anina N

    2015-04-01

    Selective attention is fundamental for human activity, but the details of its neural implementation remain elusive. One influential theory, the adaptive coding hypothesis (Duncan, 2001, An adaptive coding model of neural function in prefrontal cortex, Nature Reviews Neuroscience 2:820-829), proposes that single neurons in certain frontal and parietal regions dynamically adjust their responses to selectively encode relevant information. This selective representation may in turn support selective processing in more specialized brain regions such as the visual cortices. Here, we use multi-voxel decoding of functional magnetic resonance images to demonstrate selective representation of attended--and not distractor--objects in frontal, parietal, and visual cortices. In addition, we highlight a critical role for task demands in determining which brain regions exhibit selective coding. Strikingly, representation of attended objects in frontoparietal cortex was highest under conditions of high perceptual demand, when stimuli were hard to perceive and coding in early visual cortex was weak. Coding in early visual cortex varied as a function of attention and perceptual demand, while coding in higher visual areas was sensitive to the allocation of attention but robust to changes in perceptual difficulty. Consistent with high-profile reports, peripherally presented objects could also be decoded from activity at the occipital pole, a region which corresponds to the fovea. Our results emphasize the flexibility of frontoparietal and visual systems. They support the hypothesis that attention enhances the multi-voxel representation of information in the brain, and suggest that the engagement of this attentional mechanism depends critically on current task demands. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Task-dependent recurrent dynamics in visual cortex

    PubMed Central

    Tajima, Satohiro; Koida, Kowa; Tajima, Chihiro I; Suzuki, Hideyuki; Aihara, Kazuyuki; Komatsu, Hidehiko

    2017-01-01

    The capacity for flexible sensory-action association in animals has been related to context-dependent attractor dynamics outside the sensory cortices. Here, we report a line of evidence that flexibly modulated attractor dynamics during task switching are already present in the higher visual cortex in macaque monkeys. With a nonlinear decoding approach, we can extract the particular aspect of the neural population response that reflects the task-induced emergence of bistable attractor dynamics in a neural population, which could be obscured by standard unsupervised dimensionality reductions such as PCA. The dynamical modulation selectively increases the information relevant to task demands, indicating that such modulation is beneficial for perceptual decisions. A computational model that features nonlinear recurrent interaction among neurons with a task-dependent background input replicates the key properties observed in the experimental data. These results suggest that the context-dependent attractor dynamics involving the sensory cortex can underlie flexible perceptual abilities. DOI: http://dx.doi.org/10.7554/eLife.26868.001 PMID:28737487

  1. Theta dynamics reveal domain-specific control over stimulus and response conflict.

    PubMed

    Nigbur, Roland; Cohen, Michael X; Ridderinkhof, K Richard; Stürmer, Birgit

    2012-05-01

    Cognitive control allows us to adjust to environmental changes. The medial frontal cortex (MFC) is thought to detect conflicts and recruit additional resources from other brain areas including the lateral prefrontal cortices. Here we investigated how the MFC acts in concert with visual, motor, and lateral prefrontal cortices to support adaptations of goal-directed behavior. Physiologically, these interactions may occur through local and long-range synchronized oscillation dynamics, particularly in the theta range (4-8 Hz). A speeded flanker task allowed us to investigate conflict-type-specific control networks for perceptual and response conflicts. Theta power over MFC was sensitive to both perceptual and response conflict. Interareal theta phase synchrony, however, indicated a selective enhancement specific for response conflicts between MFC and left frontal cortex as well as between MFC and the presumed motor cortex contralateral to the response hand. These findings suggest that MFC theta-band activity is both generally involved in conflict processing and specifically involved in linking a neural network controlling response conflict.

  2. Intracortical microstimulation of human somatosensory cortex.

    PubMed

    Flesher, Sharlene N; Collinger, Jennifer L; Foldes, Stephen T; Weiss, Jeffrey M; Downey, John E; Tyler-Kabara, Elizabeth C; Bensmaia, Sliman J; Schwartz, Andrew B; Boninger, Michael L; Gaunt, Robert A

    2016-10-19

    Intracortical microstimulation of the somatosensory cortex offers the potential for creating a sensory neuroprosthesis to restore tactile sensation. Whereas animal studies have suggested that both cutaneous and proprioceptive percepts can be evoked using this approach, the perceptual quality of the stimuli cannot be measured in these experiments. We show that microstimulation within the hand area of the somatosensory cortex of a person with long-term spinal cord injury evokes tactile sensations perceived as originating from locations on the hand and that cortical stimulation sites are organized according to expected somatotopic principles. Many of these percepts exhibit naturalistic characteristics (including feelings of pressure), can be evoked at low stimulation amplitudes, and remain stable for months. Further, modulating the stimulus amplitude grades the perceptual intensity of the stimuli, suggesting that intracortical microstimulation could be used to convey information about the contact location and pressure necessary to perform dexterous hand movements associated with object manipulation. Copyright © 2016, American Association for the Advancement of Science.

  3. Adult Visual Cortical Plasticity

    PubMed Central

    Gilbert, Charles D.; Li, Wu

    2012-01-01

    The visual cortex has the capacity for experience dependent change, or cortical plasticity, that is retained throughout life. Plasticity is invoked for encoding information during perceptual learning, by internally representing the regularities of the visual environment, which is useful for facilitating intermediate level vision - contour integration and surface segmentation. The same mechanisms have adaptive value for functional recovery after CNS damage, such as that associated with stroke or neurodegenerative disease. A common feature to plasticity in primary visual cortex (V1) is an association field that links contour elements across the visual field. The circuitry underlying the association field includes a plexus of long range horizontal connections formed by cortical pyramidal cells. These connections undergo rapid and exuberant sprouting and pruning in response to removal of sensory input, which can account for the topographic reorganization following retinal lesions. Similar alterations in cortical circuitry may be involved in perceptual learning, and the changes observed in V1 may be representative of how learned information is encoded throughout the cerebral cortex. PMID:22841310

  4. Medial Prefrontal Cortex Is Selectively Involved in Response Selection Using Visual Context in the Background

    ERIC Educational Resources Information Center

    Lee, Inah; Shin, Ji Yun

    2012-01-01

    The exact roles of the medial prefrontal cortex (mPFC) in conditional choice behavior are unknown and a visual contextual response selection task was used for examining the issue. Inactivation of the mPFC severely disrupted performance in the task. mPFC inactivations, however, did not disrupt the capability of perceptual discrimination for visual…

  5. Perception and Action Selection Dissociate Human Ventral and Dorsal Cortex

    ERIC Educational Resources Information Center

    Ikkai, Akiko; Jerde, Trenton A.; Curtis, Clayton E.

    2011-01-01

    We test theories about the functional organization of the human cortex by correlating brain activity with demands on perception versus action selection. Subjects covertly searched for a target among an array of 4, 8, or 12 items (perceptual manipulation) and then, depending on the color of the array, made a saccade toward, away from, or at a right…

  6. Prefrontal control and predictors of cognitive behavioral therapy response in social anxiety disorder

    PubMed Central

    Fitzgerald, Daniel A.; Piejko, Katherine; Roberts, Julia; Kennedy, Amy E.; Phan, K. Luan

    2016-01-01

    Generalized social anxiety disorder (gSAD) is associated with aberrant anterior cingulate cortex (ACC) response to threat distractors. Perceptual load has been shown to modulate ACC activity such that under high load, when demands on processing capacity is restricted, individuals with gSAD exhibit compensatory activation to threat distractors yet under low load, there is evidence of reduced activation. It is not known if neural predictors of response to cognitive behavioral therapy (CBT), based on such emotional conflict resolution, interact with demands on controlled processes. Prior to CBT, 32 patients with gSAD completed an fMRI task involving a target letter in a string of identical targets (low perceptual load) or a target letter in a mixed letter string (high perceptual load) superimposed on fearful, angry and neutral face distractors. Whole-brain voxel-wise analyses revealed better CBT outcome was predicted by more frontopartial activity that included dorsal ACC (dACC) and insula to threat (vs neutral) distractors during high, but not low, perceptual load. Psychophysiological interaction analysis with dACC as the seed region revealed less connectivity with dorsolateral prefrontal cortex to threat distractors during high load. Results indicate patients with less regulatory capability when demands on higher-order control are great may benefit more from CBT. PMID:26634281

  7. Building Bridges between Perceptual and Economic Decision-Making: Neural and Computational Mechanisms.

    PubMed

    Summerfield, Christopher; Tsetsos, Konstantinos

    2012-01-01

    Investigation into the neural and computational bases of decision-making has proceeded in two parallel but distinct streams. Perceptual decision-making (PDM) is concerned with how observers detect, discriminate, and categorize noisy sensory information. Economic decision-making (EDM) explores how options are selected on the basis of their reinforcement history. Traditionally, the sub-fields of PDM and EDM have employed different paradigms, proposed different mechanistic models, explored different brain regions, disagreed about whether decisions approach optimality. Nevertheless, we argue that there is a common framework for understanding decisions made in both tasks, under which an agent has to combine sensory information (what is the stimulus) with value information (what is it worth). We review computational models of the decision process typically used in PDM, based around the idea that decisions involve a serial integration of evidence, and assess their applicability to decisions between good and gambles. Subsequently, we consider the contribution of three key brain regions - the parietal cortex, the basal ganglia, and the orbitofrontal cortex (OFC) - to perceptual and EDM, with a focus on the mechanisms by which sensory and reward information are integrated during choice. We find that although the parietal cortex is often implicated in the integration of sensory evidence, there is evidence for its role in encoding the expected value of a decision. Similarly, although much research has emphasized the role of the striatum and OFC in value-guided choices, they may play an important role in categorization of perceptual information. In conclusion, we consider how findings from the two fields might be brought together, in order to move toward a general framework for understanding decision-making in humans and other primates.

  8. Selective Neuronal Activation by Cochlear Implant Stimulation in Auditory Cortex of Awake Primate

    PubMed Central

    Johnson, Luke A.; Della Santina, Charles C.

    2016-01-01

    Despite the success of cochlear implants (CIs) in human populations, most users perform poorly in noisy environments and music and tonal language perception. How CI devices engage the brain at the single neuron level has remained largely unknown, in particular in the primate brain. By comparing neuronal responses with acoustic and CI stimulation in marmoset monkeys unilaterally implanted with a CI electrode array, we discovered that CI stimulation was surprisingly ineffective at activating many neurons in auditory cortex, particularly in the hemisphere ipsilateral to the CI. Further analyses revealed that the CI-nonresponsive neurons were narrowly tuned to frequency and sound level when probed with acoustic stimuli; such neurons likely play a role in perceptual behaviors requiring fine frequency and level discrimination, tasks that CI users find especially challenging. These findings suggest potential deficits in central auditory processing of CI stimulation and provide important insights into factors responsible for poor CI user performance in a wide range of perceptual tasks. SIGNIFICANCE STATEMENT The cochlear implant (CI) is the most successful neural prosthetic device to date and has restored hearing in hundreds of thousands of deaf individuals worldwide. However, despite its huge successes, CI users still face many perceptual limitations, and the brain mechanisms involved in hearing through CI devices remain poorly understood. By directly comparing single-neuron responses to acoustic and CI stimulation in auditory cortex of awake marmoset monkeys, we discovered that neurons unresponsive to CI stimulation were sharply tuned to frequency and sound level. Our results point out a major deficit in central auditory processing of CI stimulation and provide important insights into mechanisms underlying the poor CI user performance in a wide range of perceptual tasks. PMID:27927962

  9. Building Bridges between Perceptual and Economic Decision-Making: Neural and Computational Mechanisms

    PubMed Central

    Summerfield, Christopher; Tsetsos, Konstantinos

    2012-01-01

    Investigation into the neural and computational bases of decision-making has proceeded in two parallel but distinct streams. Perceptual decision-making (PDM) is concerned with how observers detect, discriminate, and categorize noisy sensory information. Economic decision-making (EDM) explores how options are selected on the basis of their reinforcement history. Traditionally, the sub-fields of PDM and EDM have employed different paradigms, proposed different mechanistic models, explored different brain regions, disagreed about whether decisions approach optimality. Nevertheless, we argue that there is a common framework for understanding decisions made in both tasks, under which an agent has to combine sensory information (what is the stimulus) with value information (what is it worth). We review computational models of the decision process typically used in PDM, based around the idea that decisions involve a serial integration of evidence, and assess their applicability to decisions between good and gambles. Subsequently, we consider the contribution of three key brain regions – the parietal cortex, the basal ganglia, and the orbitofrontal cortex (OFC) – to perceptual and EDM, with a focus on the mechanisms by which sensory and reward information are integrated during choice. We find that although the parietal cortex is often implicated in the integration of sensory evidence, there is evidence for its role in encoding the expected value of a decision. Similarly, although much research has emphasized the role of the striatum and OFC in value-guided choices, they may play an important role in categorization of perceptual information. In conclusion, we consider how findings from the two fields might be brought together, in order to move toward a general framework for understanding decision-making in humans and other primates. PMID:22654730

  10. Motivation alters response bias and neural activation patterns in a perceptual decision-making task.

    PubMed

    Reckless, G E; Bolstad, I; Nakstad, P H; Andreassen, O A; Jensen, J

    2013-05-15

    Motivation has been demonstrated to affect individuals' response strategies in economic decision-making, however, little is known about how motivation influences perceptual decision-making behavior or its related neural activity. Given the important role motivation plays in shaping our behavior, a better understanding of this relationship is needed. A block-design, continuous performance, perceptual decision-making task where participants were asked to detect a picture of an animal among distractors was used during functional magnetic resonance imaging (fMRI). The effect of positive and negative motivation on sustained activity within regions of the brain thought to underlie decision-making was examined by altering the monetary contingency associated with the task. In addition, signal detection theory was used to investigate the effect of motivation on detection sensitivity, response bias and response time. While both positive and negative motivation resulted in increased sustained activation in the ventral striatum, fusiform gyrus, left dorsolateral prefrontal cortex (DLPFC) and ventromedial prefrontal cortex, only negative motivation resulted in the adoption of a more liberal, closer to optimal response bias. This shift toward a liberal response bias correlated with increased activation in the left DLPFC, but did not result in improved task performance. The present findings suggest that motivation alters aspects of the way perceptual decisions are made. Further, this altered response behavior is reflected in a change in left DLPFC activation, a region involved in the computation of perceptual decisions. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Congenital prosopagnosia: face-blind from birth.

    PubMed

    Behrmann, Marlene; Avidan, Galia

    2005-04-01

    Congenital prosopagnosia refers to the deficit in face processing that is apparent from early childhood in the absence of any underlying neurological basis and in the presence of intact sensory and intellectual function. Several such cases have been described recently and elucidating the mechanisms giving rise to this impairment should aid our understanding of the psychological and neural mechanisms mediating face processing. Fundamental questions include: What is the nature and extent of the face-processing deficit in congenital prosopagnosia? Is the deficit related to a more general perceptual deficit such as the failure to process configural information? Are any neural alterations detectable using fMRI, ERP or structural analyses of the anatomy of the ventral visual cortex? We discuss these issues in relation to the existing literature and suggest directions for future research.

  12. Stimulus familiarity modulates functional connectivity of the perirhinal cortex and anterior hippocampus during visual discrimination of faces and objects

    PubMed Central

    McLelland, Victoria C.; Chan, David; Ferber, Susanne; Barense, Morgan D.

    2014-01-01

    Recent research suggests that the medial temporal lobe (MTL) is involved in perception as well as in declarative memory. Amnesic patients with focal MTL lesions and semantic dementia patients showed perceptual deficits when discriminating faces and objects. Interestingly, these two patient groups showed different profiles of impairment for familiar and unfamiliar stimuli. For MTL amnesics, the use of familiar relative to unfamiliar stimuli improved discrimination performance. By contrast, patients with semantic dementia—a neurodegenerative condition associated with anterolateral temporal lobe damage—showed no such facilitation from familiar stimuli. Given that the two patient groups had highly overlapping patterns of damage to the perirhinal cortex, hippocampus, and temporal pole, the neuroanatomical substrates underlying their performance discrepancy were unclear. Here, we addressed this question with a multivariate reanalysis of the data presented by Barense et al. (2011), using functional connectivity to examine how stimulus familiarity affected the broader networks with which the perirhinal cortex, hippocampus, and temporal poles interact. In this study, healthy participants were scanned while they performed an odd-one-out perceptual task involving familiar and novel faces or objects. Seed-based analyses revealed that functional connectivity of the right perirhinal cortex and right anterior hippocampus was modulated by the degree of stimulus familiarity. For familiar relative to unfamiliar faces and objects, both right perirhinal cortex and right anterior hippocampus showed enhanced functional correlations with anterior/lateral temporal cortex, temporal pole, and medial/lateral parietal cortex. These findings suggest that in order to benefit from stimulus familiarity, it is necessary to engage not only the perirhinal cortex and hippocampus, but also a network of regions known to represent semantic information. PMID:24624075

  13. Lifelong Bilingualism Maintains Neural Efficiency for Cognitive Control in Aging

    PubMed Central

    Gold, Brian T.; Kim, Chobok; Johnson, Nathan F.; Kryscio, Richard J.; Smith, Charles D.

    2013-01-01

    Recent behavioral data have shown that lifelong bilingualism can maintain youthful cognitive control abilities in aging. Here, we provide the first direct evidence of a neural basis for the bilingual cognitive control boost in aging. Two experiments were conducted, using a perceptual task switching paradigm, and including a total of 110 participants. In Experiment 1, older adult bilinguals showed better perceptual switching performance than their monolingual peers. In Experiment 2, younger and older adult monolinguals and bilinguals completed the same perceptual task switching experiment while fMRI was performed. Typical age-related performance reductions and fMRI activation increases were observed. However, like younger adults, bilingual older adults outperformed their monolingual peers while displaying decreased activation in left lateral frontal cortex and cingulate cortex. Critically, this attenuation of age-related over-recruitment associated with bilingualism was directly correlated with better task switching performance. In addition, the lower BOLD response in frontal regions accounted for 82% of the variance in the bilingual task switching reaction time advantage. These results suggest that lifelong bilingualism offsets age-related declines in the neural efficiency for cognitive control processes. PMID:23303919

  14. Magnetic stimulation of visual cortex impairs perceptual learning.

    PubMed

    Baldassarre, Antonello; Capotosto, Paolo; Committeri, Giorgia; Corbetta, Maurizio

    2016-12-01

    The ability to learn and process visual stimuli more efficiently is important for survival. Previous neuroimaging studies have shown that perceptual learning on a shape identification task differently modulates activity in both frontal-parietal cortical regions and visual cortex (Sigman et al., 2005;Lewis et al., 2009). Specifically, fronto-parietal regions (i.e. intra parietal sulcus, pIPS) became less activated for trained as compared to untrained stimuli, while visual regions (i.e. V2d/V3 and LO) exhibited higher activation for familiar shape. Here, after the intensive training, we employed transcranial magnetic stimulation over both visual occipital and parietal regions, previously shown to be modulated, to investigate their causal role in learning the shape identification task. We report that interference with V2d/V3 and LO increased reaction times to learned stimuli as compared to pIPS and Sham control condition. Moreover, the impairment observed after stimulation over the two visual regions was positive correlated. These results strongly support the causal role of the visual network in the control of the perceptual learning. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Executive functioning and processing speed in age-related differences in memory: contribution of a coding task.

    PubMed

    Baudouin, Alexia; Clarys, David; Vanneste, Sandrine; Isingrini, Michel

    2009-12-01

    The aim of the present study was to examine executive dysfunctioning and decreased processing speed as potential mediators of age-related differences in episodic memory. We compared the performances of young and elderly adults in a free-recall task. Participants were also given tests to measure executive functions and perceptual processing speed and a coding task (the Digit Symbol Substitution Test, DSST). More precisely, we tested the hypothesis that executive functions would mediate the age-related differences observed in the free-recall task better than perceptual speed. We also tested the assumption that a coding task, assumed to involve both executive processes and perceptual speed, would be the best mediator of age-related differences in memory. Findings first confirmed that the DSST combines executive processes and perceptual speed. Secondly, they showed that executive functions are a significant mediator of age-related differences in memory, and that DSST performance is the best predictor.

  16. The role of conceptual knowledge in understanding synaesthesia: Evaluating contemporary findings from a “hub-and-spokes” perspective

    PubMed Central

    Chiou, Rocco

    2014-01-01

    Synesthesia is a phenomenon in which stimulation in one sensory modality triggers involuntary experiences typically not associated with that stimulation. Inducing stimuli (inducers) and synesthetic experiences (concurrents) may occur within the same modality (e.g., seeing colors while reading achromatic text) or span across different modalities (e.g., tasting flavors while listening to music). Although there has been considerable progress over the last decade in understanding the cognitive and neural mechanisms of synesthesia, the focus of current neurocognitive models of synesthesia does not encompass many crucial psychophysical characteristics documented in behavioral research. Prominent theories of the neurophysiological basis of synesthesia construe it as a perceptual phenomenon and hence focus primarily on the modality-specific brain regions for perception. Many behavioral studies, however, suggest an essential role for conceptual-level information in synesthesia. For example, there is evidence that synesthetic experience arises subsequent to identification of an inducing stimulus, differs substantially from real perceptual events, can be akin to perceptual memory, and is susceptible to lexical/semantic contexts. These data suggest that neural mechanisms lying beyond the realm of the perceptual cortex (especially the visual system), such as regions subserving conceptual knowledge, may play pivotal roles in the neural architecture of synesthesia. Here we discuss the significance of non-perceptual mechanisms that call for a re-evaluation of the emphasis on synesthesia as a perceptual phenomenon. We also review recent studies which hint that some aspects of synesthesia resemble our general conceptual knowledge for object attributes, at both psychophysical and neural levels. We then present a conceptual-mediation model of synesthesia in which the inducer and concurrent are linked within a conceptual-level representation. This “inducer-to-concurrent” nexus is maintained within a supramodal “hub,” while the subjective (bodily) experience of its resultant concurrent (e.g., a color) may then require activation of “spokes” in the perception-related cortices. This hypothesized “hub-and-spoke” structure would engage a distributed network of cortical regions and may account for the full breadth of this intriguing phenomenon. PMID:24653707

  17. Computational model for perception of objects and motions.

    PubMed

    Yang, WenLu; Zhang, LiQing; Ma, LiBo

    2008-06-01

    Perception of objects and motions in the visual scene is one of the basic problems in the visual system. There exist 'What' and 'Where' pathways in the superior visual cortex, starting from the simple cells in the primary visual cortex. The former is able to perceive objects such as forms, color, and texture, and the latter perceives 'where', for example, velocity and direction of spatial movement of objects. This paper explores brain-like computational architectures of visual information processing. We propose a visual perceptual model and computational mechanism for training the perceptual model. The computational model is a three-layer network. The first layer is the input layer which is used to receive the stimuli from natural environments. The second layer is designed for representing the internal neural information. The connections between the first layer and the second layer, called the receptive fields of neurons, are self-adaptively learned based on principle of sparse neural representation. To this end, we introduce Kullback-Leibler divergence as the measure of independence between neural responses and derive the learning algorithm based on minimizing the cost function. The proposed algorithm is applied to train the basis functions, namely receptive fields, which are localized, oriented, and bandpassed. The resultant receptive fields of neurons in the second layer have the characteristics resembling that of simple cells in the primary visual cortex. Based on these basis functions, we further construct the third layer for perception of what and where in the superior visual cortex. The proposed model is able to perceive objects and their motions with a high accuracy and strong robustness against additive noise. Computer simulation results in the final section show the feasibility of the proposed perceptual model and high efficiency of the learning algorithm.

  18. Perceptual Decision Making in Rodents, Monkeys, and Humans.

    PubMed

    Hanks, Timothy D; Summerfield, Christopher

    2017-01-04

    Perceptual decision making is the process by which animals detect, discriminate, and categorize information from the senses. Over the past two decades, understanding how perceptual decisions are made has become a central theme in the neurosciences. Exceptional progress has been made by recording from single neurons in the cortex of the macaque monkey and using computational models from mathematical psychology to relate these neural data to behavior. More recently, however, the range of available techniques and paradigms has dramatically broadened, and researchers have begun to harness new approaches to explore how rodents and humans make perceptual decisions. The results have illustrated some striking convergences with findings from the monkey, but also raised new questions and provided new theoretical insights. In this review, we summarize key findings, and highlight open challenges, for understanding perceptual decision making in rodents, monkeys, and humans. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The “Perceptual Wedge” hypothesis as the basis for bilingual babies’ phonetic processing advantage: New insights from fNIRS brain imaging

    PubMed Central

    Petitto, L. A.; Berens, M. S.; Kovelman, I.; Dubins, M. H.; Jasinska, K.; Shalinsky, M.

    2011-01-01

    In a neuroimaging study focusing on young bilinguals, we explored the brains of bilingual and monolingual babies across two age groups (younger 4–6 months, older 10–12 months), using fNIRS in a new event-related design, as babies processed linguistic phonetic (Native English, Non-Native Hindi) and nonlinguistic Tone stimuli. We found that phonetic processing in bilingual and monolingual babies is accomplished with the same language-specific brain areas classically observed in adults, including the left superior temporal gyrus (associated with phonetic processing) and the left inferior frontal cortex (associated with the search and retrieval of information about meanings, and syntactic and phonological patterning), with intriguing developmental timing differences: left superior temporal gyrus activation was observed early and remained stably active over time, while left inferior frontal cortex showed greater increase in neural activation in older babies notably at the precise age when babies’ enter the universal first-word milestone, thus revealing a first-time focal brain correlate that may mediate a universal behavioral milestone in early human language acquisition. A difference was observed in the older bilingual babies’ resilient neural and behavioral sensitivity to Non-Native phonetic contrasts at a time when monolingual babies can no longer make such discriminations. We advance the “Perceptual Wedge Hypothesis”as one possible explanation for how exposure to greater than one language may alter neural and language processing in ways that we suggest are advantageous to language users. The brains of bilinguals and multilinguals may provide the most powerful window into the full neural “extent and variability” that our human species’ language processing brain areas could potentially achieve. PMID:21724244

  20. Central mechanisms of odour object perception

    PubMed Central

    Gottfried, Jay A.

    2013-01-01

    The stimulus complexity of naturally occurring odours presents unique challenges for central nervous systems that are aiming to internalize the external olfactory landscape. One mechanism by which the brain encodes perceptual representations of behaviourally relevant smells is through the synthesis of different olfactory inputs into a unified perceptual experience — an odour object. Recent evidence indicates that the identification, categorization and discrimination of olfactory stimuli rely on the formation and modulation of odour objects in the piriform cortex. Convergent findings from human and rodent models suggest that distributed piriform ensemble patterns of olfactory qualities and categories are crucial for maintaining the perceptual constancy of ecologically inconstant stimuli. PMID:20700142

  1. Fine-grained temporal coding of visually-similar categories in the ventral visual pathway and prefrontal cortex

    PubMed Central

    Xu, Yang; D'Lauro, Christopher; Pyles, John A.; Kass, Robert E.; Tarr, Michael J.

    2013-01-01

    Humans are remarkably proficient at categorizing visually-similar objects. To better understand the cortical basis of this categorization process, we used magnetoencephalography (MEG) to record neural activity while participants learned–with feedback–to discriminate two highly-similar, novel visual categories. We hypothesized that although prefrontal regions would mediate early category learning, this role would diminish with increasing category familiarity and that regions within the ventral visual pathway would come to play a more prominent role in encoding category-relevant information as learning progressed. Early in learning we observed some degree of categorical discriminability and predictability in both prefrontal cortex and the ventral visual pathway. Predictability improved significantly above chance in the ventral visual pathway over the course of learning with the left inferior temporal and fusiform gyri showing the greatest improvement in predictability between 150 and 250 ms (M200) during category learning. In contrast, there was no comparable increase in discriminability in prefrontal cortex with the only significant post-learning effect being a decrease in predictability in the inferior frontal gyrus between 250 and 350 ms (M300). Thus, the ventral visual pathway appears to encode learned visual categories over the long term. At the same time these results add to our understanding of the cortical origins of previously reported signature temporal components associated with perceptual learning. PMID:24146656

  2. Perceptual elements in brain mechanisms of acoustic communication in humans and nonhuman primates.

    PubMed

    Reser, David H; Rosa, Marcello

    2014-12-01

    Ackermann et al. outline a model for elaboration of subcortical motor outputs as a driving force for the development of the apparently unique behaviour of language in humans. They emphasize circuits in the striatum and midbrain, and acknowledge, but do not explore, the importance of the auditory perceptual pathway for evolution of verbal communication. We suggest that understanding the evolution of language will also require understanding of vocalization perception, especially in the auditory cortex.

  3. Perceptual inference.

    PubMed

    Aggelopoulos, Nikolaos C

    2015-08-01

    Perceptual inference refers to the ability to infer sensory stimuli from predictions that result from internal neural representations built through prior experience. Methods of Bayesian statistical inference and decision theory model cognition adequately by using error sensing either in guiding action or in "generative" models that predict the sensory information. In this framework, perception can be seen as a process qualitatively distinct from sensation, a process of information evaluation using previously acquired and stored representations (memories) that is guided by sensory feedback. The stored representations can be utilised as internal models of sensory stimuli enabling long term associations, for example in operant conditioning. Evidence for perceptual inference is contributed by such phenomena as the cortical co-localisation of object perception with object memory, the response invariance in the responses of some neurons to variations in the stimulus, as well as from situations in which perception can be dissociated from sensation. In the context of perceptual inference, sensory areas of the cerebral cortex that have been facilitated by a priming signal may be regarded as comparators in a closed feedback loop, similar to the better known motor reflexes in the sensorimotor system. The adult cerebral cortex can be regarded as similar to a servomechanism, in using sensory feedback to correct internal models, producing predictions of the outside world on the basis of past experience. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Perceptually relevant speech tracking in auditory and motor cortex reflects distinct linguistic features

    PubMed Central

    Gross, Joachim; Kayser, Christoph

    2018-01-01

    During online speech processing, our brain tracks the acoustic fluctuations in speech at different timescales. Previous research has focused on generic timescales (for example, delta or theta bands) that are assumed to map onto linguistic features such as prosody or syllables. However, given the high intersubject variability in speaking patterns, such a generic association between the timescales of brain activity and speech properties can be ambiguous. Here, we analyse speech tracking in source-localised magnetoencephalographic data by directly focusing on timescales extracted from statistical regularities in our speech material. This revealed widespread significant tracking at the timescales of phrases (0.6–1.3 Hz), words (1.8–3 Hz), syllables (2.8–4.8 Hz), and phonemes (8–12.4 Hz). Importantly, when examining its perceptual relevance, we found stronger tracking for correctly comprehended trials in the left premotor (PM) cortex at the phrasal scale as well as in left middle temporal cortex at the word scale. Control analyses using generic bands confirmed that these effects were specific to the speech regularities in our stimuli. Furthermore, we found that the phase at the phrasal timescale coupled to power at beta frequency (13–30 Hz) in motor areas. This cross-frequency coupling presumably reflects top-down temporal prediction in ongoing speech perception. Together, our results reveal specific functional and perceptually relevant roles of distinct tracking and cross-frequency processes along the auditory–motor pathway. PMID:29529019

  5. Prestimulus Network Integration of Auditory Cortex Predisposes Near-Threshold Perception Independently of Local Excitability

    PubMed Central

    Leske, Sabine; Ruhnau, Philipp; Frey, Julia; Lithari, Chrysa; Müller, Nadia; Hartmann, Thomas; Weisz, Nathan

    2015-01-01

    An ever-increasing number of studies are pointing to the importance of network properties of the brain for understanding behavior such as conscious perception. However, with regards to the influence of prestimulus brain states on perception, this network perspective has rarely been taken. Our recent framework predicts that brain regions crucial for a conscious percept are coupled prior to stimulus arrival, forming pre-established pathways of information flow and influencing perceptual awareness. Using magnetoencephalography (MEG) and graph theoretical measures, we investigated auditory conscious perception in a near-threshold (NT) task and found strong support for this framework. Relevant auditory regions showed an increased prestimulus interhemispheric connectivity. The left auditory cortex was characterized by a hub-like behavior and an enhanced integration into the brain functional network prior to perceptual awareness. Right auditory regions were decoupled from non-auditory regions, presumably forming an integrated information processing unit with the left auditory cortex. In addition, we show for the first time for the auditory modality that local excitability, measured by decreased alpha power in the auditory cortex, increases prior to conscious percepts. Importantly, we were able to show that connectivity states seem to be largely independent from local excitability states in the context of a NT paradigm. PMID:26408799

  6. Strategies for tonal and atonal musical interpretation in blind and normally sighted children: an fMRI study.

    PubMed

    Guerrero Arenas, Coral; Hidalgo Tobón, Silvia S; Dies Suarez, Pilar; Barragán Pérez, Eduardo; Castro Sierra, Eduardo; García, Julio; de Celis Alonso, Benito

    2016-04-01

    Early childhood is known to be a period when cortical plasticity phenomena are at a maximum. Music is a stimulus known to modulate these mechanisms. On the other hand, neurological impairments like blindness are also known to affect cortical plasticity. Here, we address how tonal and atonal musical stimuli are processed in control and blind young children. We aimed to understand the differences between the two groups when processing this physiological information. Atonal stimuli produced larger activations in cerebellum, fusiform, and temporal lobe structures than tonal. In contrast, tonal stimuli induced larger frontal lobe representations than atonal. Control participants presented large activations in cerebellum, fusiform, and temporal lobe. A correlation/connectivity study showed that the blind group incorporated larger amounts of perceptual information (somatosensory and motor) into tonal processing through the function of the anterior prefrontal cortex (APC). They also used the visual cortex in conjunction with the Wernicke's area to process this information. In contrast, controls processed sound with perceptual stimuli from auditory cortex structures (including Wernicke's area). In this case, information was processed through the dorsal posterior cingulate cortex and not the APC. The orbitofrontal cortex also played a key role for atonal interpretation in this group. Wernicke's area, known to be involved in speech, was heavily involved for both groups and all stimuli. The two groups presented clear differences in strategies for music processing, with very different recruitment of brain regions.

  7. Tactile Object Familiarity in the Blind Brain Reveals the Supramodal Perceptual-Mnemonic Nature of the Perirhinal Cortex

    PubMed Central

    Cacciamani, Laura; Likova, Lora T.

    2016-01-01

    This study is the first to investigate the neural underpinnings of tactile object familiarity in the blind during both perception and memory. In the sighted, the perirhinal cortex (PRC) has been implicated in the assessment of visual object familiarity—a crucial everyday task—as evidenced by reduced activation when an object becomes familiar. Here, to examine the PRC’s role in tactile object familiarity in the absence of vision, we trained blind participants on a unique memory-guided drawing technique and measured brain activity while they perceptually explored raised-line drawings, drew them from tactile memory, and scribbled (control). Functional magnetic resonance imaging (fMRI) before and after a week of training revealed a significant decrease in PRC activation from pre- to post-training (i.e., from unfamiliar to familiar) during perceptual exploration as well as memory-guided drawing, but not scribbling. This familiarity-based reduction is the first evidence that the PRC represents tactile object familiarity in the blind. Furthermore, the finding of this effect during both tactile perception and tactile memory provides the critical link in establishing the PRC as a structure whose representations are supramodal for both perception and memory. PMID:27148002

  8. The neural subjective frame: from bodily signals to perceptual consciousness

    PubMed Central

    Park, Hyeong-Dong; Tallon-Baudry, Catherine

    2014-01-01

    The report ‘I saw the stimulus’ operationally defines visual consciousness, but where does the ‘I’ come from? To account for the subjective dimension of perceptual experience, we introduce the concept of the neural subjective frame. The neural subjective frame would be based on the constantly updated neural maps of the internal state of the body and constitute a neural referential from which first person experience can be created. We propose to root the neural subjective frame in the neural representation of visceral information which is transmitted through multiple anatomical pathways to a number of target sites, including posterior insula, ventral anterior cingulate cortex, amygdala and somatosensory cortex. We review existing experimental evidence showing that the processing of external stimuli can interact with visceral function. The neural subjective frame is a low-level building block of subjective experience which is not explicitly experienced by itself which is necessary but not sufficient for perceptual experience. It could also underlie other types of subjective experiences such as self-consciousness and emotional feelings. Because the neural subjective frame is tightly linked to homeostatic regulations involved in vigilance, it could also make a link between state and content consciousness. PMID:24639580

  9. The neural subjective frame: from bodily signals to perceptual consciousness.

    PubMed

    Park, Hyeong-Dong; Tallon-Baudry, Catherine

    2014-05-05

    The report 'I saw the stimulus' operationally defines visual consciousness, but where does the 'I' come from? To account for the subjective dimension of perceptual experience, we introduce the concept of the neural subjective frame. The neural subjective frame would be based on the constantly updated neural maps of the internal state of the body and constitute a neural referential from which first person experience can be created. We propose to root the neural subjective frame in the neural representation of visceral information which is transmitted through multiple anatomical pathways to a number of target sites, including posterior insula, ventral anterior cingulate cortex, amygdala and somatosensory cortex. We review existing experimental evidence showing that the processing of external stimuli can interact with visceral function. The neural subjective frame is a low-level building block of subjective experience which is not explicitly experienced by itself which is necessary but not sufficient for perceptual experience. It could also underlie other types of subjective experiences such as self-consciousness and emotional feelings. Because the neural subjective frame is tightly linked to homeostatic regulations involved in vigilance, it could also make a link between state and content consciousness.

  10. Rapid tuning shifts in human auditory cortex enhance speech intelligibility

    PubMed Central

    Holdgraf, Christopher R.; de Heer, Wendy; Pasley, Brian; Rieger, Jochem; Crone, Nathan; Lin, Jack J.; Knight, Robert T.; Theunissen, Frédéric E.

    2016-01-01

    Experience shapes our perception of the world on a moment-to-moment basis. This robust perceptual effect of experience parallels a change in the neural representation of stimulus features, though the nature of this representation and its plasticity are not well-understood. Spectrotemporal receptive field (STRF) mapping describes the neural response to acoustic features, and has been used to study contextual effects on auditory receptive fields in animal models. We performed a STRF plasticity analysis on electrophysiological data from recordings obtained directly from the human auditory cortex. Here, we report rapid, automatic plasticity of the spectrotemporal response of recorded neural ensembles, driven by previous experience with acoustic and linguistic information, and with a neurophysiological effect in the sub-second range. This plasticity reflects increased sensitivity to spectrotemporal features, enhancing the extraction of more speech-like features from a degraded stimulus and providing the physiological basis for the observed ‘perceptual enhancement' in understanding speech. PMID:27996965

  11. Aversive learning shapes neuronal orientation tuning in human visual cortex.

    PubMed

    McTeague, Lisa M; Gruss, L Forest; Keil, Andreas

    2015-07-28

    The responses of sensory cortical neurons are shaped by experience. As a result perceptual biases evolve, selectively facilitating the detection and identification of sensory events that are relevant for adaptive behaviour. Here we examine the involvement of human visual cortex in the formation of learned perceptual biases. We use classical aversive conditioning to associate one out of a series of oriented gratings with a noxious sound stimulus. After as few as two grating-sound pairings, visual cortical responses to the sound-paired grating show selective amplification. Furthermore, as learning progresses, responses to the orientations with greatest similarity to the sound-paired grating are increasingly suppressed, suggesting inhibitory interactions between orientation-selective neuronal populations. Changes in cortical connectivity between occipital and fronto-temporal regions mirror the changes in visuo-cortical response amplitudes. These findings suggest that short-term behaviourally driven retuning of human visual cortical neurons involves distal top-down projections as well as local inhibitory interactions.

  12. The neural systems for perceptual updating.

    PubMed

    Stöttinger, Elisabeth; Aichhorn, Markus; Anderson, Britt; Danckert, James

    2018-04-01

    In a constantly changing environment we must adapt to both abrupt and gradual changes to incoming information. Previously, we demonstrated that a distributed network (including the anterior insula and anterior cingulate cortex) was active when participants updated their initial representations (e.g., it's a cat) in a gradually morphing picture task (e.g., now it's a rabbit; Stöttinger et al., 2015). To shed light on whether these activations reflect the proactive decisions to update or perceptual uncertainty, we introduced two additional conditions. By presenting picture morphs twice we controlled for uncertainty in perceptual decision making. Inducing an abrupt shift in a third condition allowed us to differentiate between a proactive decision in uncertainty-driven updating and a reactive decision in surprise-based updating. We replicated our earlier result, showing the robustness of the effect. In addition, we found activation in the anterior insula (bilaterally) and the mid frontal area/ACC in all three conditions, indicative of the importance of these areas in updating of all kinds. When participants were naïve as to the identity of the second object, we found higher activations in the mid-cingulate cortex and cuneus - areas typically associated with task difficulty, in addition to higher activations in the right TPJ most likely reflecting the shift to a new perspective. Activations associated with the proactive decision to update to a new interpretation were found in a network including the dorsal ACC known to be involved in exploration and the endogenous decision to switch to a new interpretation. These findings suggest a general network commonly engaged in all types of perceptual decision making supported by additional networks associated with perceptual uncertainty or updating provoked by either proactive or reactive decision making. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Visual perceptual training reconfigures post-task resting-state functional connectivity with a feature-representation region.

    PubMed

    Sarabi, Mitra Taghizadeh; Aoki, Ryuta; Tsumura, Kaho; Keerativittayayut, Ruedeerat; Jimura, Koji; Nakahara, Kiyoshi

    2018-01-01

    The neural mechanisms underlying visual perceptual learning (VPL) have typically been studied by examining changes in task-related brain activation after training. However, the relationship between post-task "offline" processes and VPL remains unclear. The present study examined this question by obtaining resting-state functional magnetic resonance imaging (fMRI) scans of human brains before and after a task-fMRI session involving visual perceptual training. During the task-fMRI session, participants performed a motion coherence discrimination task in which they judged the direction of moving dots with a coherence level that varied between trials (20, 40, and 80%). We found that stimulus-induced activation increased with motion coherence in the middle temporal cortex (MT+), a feature-specific region representing visual motion. On the other hand, stimulus-induced activation decreased with motion coherence in the dorsal anterior cingulate cortex (dACC) and bilateral insula, regions involved in decision making under perceptual ambiguity. Moreover, by comparing pre-task and post-task rest periods, we revealed that resting-state functional connectivity (rs-FC) with the MT+ was significantly increased after training in widespread cortical regions including the bilateral sensorimotor and temporal cortices. In contrast, rs-FC with the MT+ was significantly decreased in subcortical regions including the thalamus and putamen. Importantly, the training-induced change in rs-FC was observed only with the MT+, but not with the dACC or insula. Thus, our findings suggest that perceptual training induces plastic changes in offline functional connectivity specifically in brain regions representing the trained visual feature, emphasising the distinct roles of feature-representation regions and decision-related regions in VPL.

  14. Attention to Multiple Objects Facilitates Their Integration in Prefrontal and Parietal Cortex.

    PubMed

    Kim, Yee-Joon; Tsai, Jeffrey J; Ojemann, Jeffrey; Verghese, Preeti

    2017-05-10

    Selective attention is known to interact with perceptual organization. In visual scenes, individual objects that are distinct and discriminable may occur on their own, or in groups such as a stack of books. The main objective of this study is to probe the neural interaction that occurs between individual objects when attention is directed toward one or more objects. Here we record steady-state visual evoked potentials via electrocorticography to directly assess the responses to individual stimuli and to their interaction. When human participants attend to two adjacent stimuli, prefrontal and parietal cortex shows a selective enhancement of only the neural interaction between stimuli, but not the responses to individual stimuli. When only one stimulus is attended, the neural response to that stimulus is selectively enhanced in prefrontal and parietal cortex. In contrast, early visual areas generally manifest responses to individual stimuli and to their interaction regardless of attentional task, although a subset of the responses is modulated similarly to prefrontal and parietal cortex. Thus, the neural representation of the visual scene as one progresses up the cortical hierarchy becomes more highly task-specific and represents either individual stimuli or their interaction, depending on the behavioral goal. Attention to multiple objects facilitates an integration of objects akin to perceptual grouping. SIGNIFICANCE STATEMENT Individual objects in a visual scene are seen as distinct entities or as parts of a whole. Here we examine how attention to multiple objects affects their neural representation. Previous studies measured single-cell or fMRI responses and obtained only aggregate measures that combined the activity to individual stimuli as well as their potential interaction. Here, we directly measure electrocorticographic steady-state responses corresponding to individual objects and to their interaction using a frequency-tagging technique. Attention to two stimuli increases the interaction component that is a hallmark for perceptual integration of stimuli. Furthermore, this stimulus-specific interaction is represented in prefrontal and parietal cortex in a task-dependent manner. Copyright © 2017 the authors 0270-6474/17/374942-12$15.00/0.

  15. Perceptual load-dependent neural correlates of distractor interference inhibition.

    PubMed

    Xu, Jiansong; Monterosso, John; Kober, Hedy; Balodis, Iris M; Potenza, Marc N

    2011-01-18

    The load theory of selective attention hypothesizes that distractor interference is suppressed after perceptual processing (i.e., in the later stage of central processing) at low perceptual load of the central task, but in the early stage of perceptual processing at high perceptual load. Consistently, studies on the neural correlates of attention have found a smaller distractor-related activation in the sensory cortex at high relative to low perceptual load. However, it is not clear whether the distractor-related activation in brain regions linked to later stages of central processing (e.g., in the frontostriatal circuits) is also smaller at high rather than low perceptual load, as might be predicted based on the load theory. We studied 24 healthy participants using functional magnetic resonance imaging (fMRI) during a visual target identification task with two perceptual loads (low vs. high). Participants showed distractor-related increases in activation in the midbrain, striatum, occipital and medial and lateral prefrontal cortices at low load, but distractor-related decreases in activation in the midbrain ventral tegmental area and substantia nigra (VTA/SN), striatum, thalamus, and extensive sensory cortices at high load. Multiple levels of central processing involving midbrain and frontostriatal circuits participate in suppressing distractor interference at either low or high perceptual load. For suppressing distractor interference, the processing of sensory inputs in both early and late stages of central processing are enhanced at low load but inhibited at high load.

  16. Lesions to right posterior parietal cortex impair visual depth perception from disparity but not motion cues

    PubMed Central

    Leopold, David A.; Humphreys, Glyn W.; Welchman, Andrew E.

    2016-01-01

    The posterior parietal cortex (PPC) is understood to be active when observers perceive three-dimensional (3D) structure. However, it is not clear how central this activity is in the construction of 3D spatial representations. Here, we examine whether PPC is essential for two aspects of visual depth perception by testing patients with lesions affecting this region. First, we measured subjects' ability to discriminate depth structure in various 3D surfaces and objects using binocular disparity. Patients with lesions to right PPC (N = 3) exhibited marked perceptual deficits on these tasks, whereas those with left hemisphere lesions (N = 2) were able to reliably discriminate depth as accurately as control subjects. Second, we presented an ambiguous 3D stimulus defined by structure from motion to determine whether PPC lesions influence the rate of bistable perceptual alternations. Patients' percept durations for the 3D stimulus were generally within a normal range, although the two patients with bilateral PPC lesions showed the fastest perceptual alternation rates in our sample. Intermittent stimulus presentation reduced the reversal rate similarly across subjects. Together, the results suggest that PPC plays a causal role in both inferring and maintaining the perception of 3D structure with stereopsis supported primarily by the right hemisphere, but do not lend support to the view that PPC is a critical contributor to bistable perceptual alternations. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269606

  17. Network model of top-down influences on local gain and contextual interactions in visual cortex.

    PubMed

    Piëch, Valentin; Li, Wu; Reeke, George N; Gilbert, Charles D

    2013-10-22

    The visual system uses continuity as a cue for grouping oriented line segments that define object boundaries in complex visual scenes. Many studies support the idea that long-range intrinsic horizontal connections in early visual cortex contribute to this grouping. Top-down influences in primary visual cortex (V1) play an important role in the processes of contour integration and perceptual saliency, with contour-related responses being task dependent. This suggests an interaction between recurrent inputs to V1 and intrinsic connections within V1 that enables V1 neurons to respond differently under different conditions. We created a network model that simulates parametrically the control of local gain by hypothetical top-down modification of local recurrence. These local gain changes, as a consequence of network dynamics in our model, enable modulation of contextual interactions in a task-dependent manner. Our model displays contour-related facilitation of neuronal responses and differential foreground vs. background responses over the neuronal ensemble, accounting for the perceptual pop-out of salient contours. It quantitatively reproduces the results of single-unit recording experiments in V1, highlighting salient contours and replicating the time course of contextual influences. We show by means of phase-plane analysis that the model operates stably even in the presence of large inputs. Our model shows how a simple form of top-down modulation of the effective connectivity of intrinsic cortical connections among biophysically realistic neurons can account for some of the response changes seen in perceptual learning and task switching.

  18. Enhancing long-term memory with stimulation tunes visual attention in one trial.

    PubMed

    Reinhart, Robert M G; Woodman, Geoffrey F

    2015-01-13

    Scientists have long proposed that memory representations control the mechanisms of attention that focus processing on the task-relevant objects in our visual field. Modern theories specifically propose that we rely on working memory to store the object representations that provide top-down control over attentional selection. Here, we show that the tuning of perceptual attention can be sharply accelerated after 20 min of noninvasive brain stimulation over medial-frontal cortex. Contrary to prevailing theories of attention, these improvements did not appear to be caused by changes in the nature of the working memory representations of the search targets. Instead, improvements in attentional tuning were accompanied by changes in an electrophysiological signal hypothesized to index long-term memory. We found that this pattern of effects was reliably observed when we stimulated medial-frontal cortex, but when we stimulated posterior parietal cortex, we found that stimulation directly affected the perceptual processing of the search array elements, not the memory representations providing top-down control. Our findings appear to challenge dominant theories of attention by demonstrating that changes in the storage of target representations in long-term memory may underlie rapid changes in the efficiency with which humans can find targets in arrays of objects.

  19. Neurobiology of Schemas and Schema-Mediated Memory.

    PubMed

    Gilboa, Asaf; Marlatte, Hannah

    2017-08-01

    Schemas are superordinate knowledge structures that reflect abstracted commonalities across multiple experiences, exerting powerful influences over how events are perceived, interpreted, and remembered. Activated schema templates modulate early perceptual processing, as they get populated with specific informational instances (schema instantiation). Instantiated schemas, in turn, can enhance or distort mnemonic processing from the outset (at encoding), impact offline memory transformation and accelerate neocortical integration. Recent studies demonstrate distinctive neurobiological processes underlying schema-related learning. Interactions between the ventromedial prefrontal cortex (vmPFC), hippocampus, angular gyrus (AG), and unimodal associative cortices support context-relevant schema instantiation and schema mnemonic effects. The vmPFC and hippocampus may compete (as suggested by some models) or synchronize (as suggested by others) to optimize schema-related learning depending on the specific operationalization of schema memory. This highlights the need for more precise definitions of memory schemas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Neural Substrate of Body Size: Illusory Feeling of Shrinking of the Waist

    PubMed Central

    Kito, Tomonori; Sadato, Norihiro; Passingham, Richard E; Naito, Eiichi

    2005-01-01

    The perception of the size and shape of one's body (body image) is a fundamental aspect of how we experience ourselves. We studied the neural correlates underlying perceived changes in the relative size of body parts by using a perceptual illusion in which participants felt that their waist was shrinking. We scanned the brains of the participants using functional magnetic resonance imaging. We found that activity in the cortices lining the left postcentral sulcus and the anterior part of the intraparietal sulcus reflected the illusion of waist shrinking, and that this activity was correlated with the reported degree of shrinking. These results suggest that the perceived changes in the size and shape of body parts are mediated by hierarchically higher-order somatosensory areas in the parietal cortex. Based on this finding we suggest that relative size of body parts is computed by the integration of more elementary somatic signals from different body segments. PMID:16336049

  1. Segregating the significant from the mundane on a moment-to-moment basis via direct and indirect amygdala contributions

    PubMed Central

    Lim, Seung-Lark; Padmala, Srikanth; Pessoa, Luiz

    2009-01-01

    If the amygdala is involved in shaping perceptual experience when affectively significant visual items are encountered, responses in this structure should be correlated with both visual cortex responses and behavioral reports. Here, we investigated how affective significance shapes visual perception during an attentional blink paradigm combined with aversive conditioning. Behaviorally, following aversive learning, affectively significant scenes (CS+) were better detected than neutral (CS−) ones. In terms of mean brain responses, both amygdala and visual cortical responses were stronger during CS+ relative to CS− trials. Increased brain responses in these regions were associated with improved behavioral performance across participants and followed a mediation-like pattern. Importantly, the mediation pattern was observed in a trial-by-trial analysis, revealing that the specific pattern of trial-by-trial variability in brain responses was closely related to single-trial behavioral performance. Furthermore, the influence of the amygdala on visual cortical responses was consistent with a mediation, although partial, via frontal brain regions. Our results thus suggest that affective significance potentially determines the fate of a visual item during competitive interactions by enhancing sensory processing through both direct and indirect paths. In so doing, the amygdala helps separate the significant from the mundane. PMID:19805383

  2. Downregulation of Oligodendrocyte Transcripts is Associated with Impaired Prefrontal Cortex Function in Rats

    PubMed Central

    Gregg, Justin R.; Herring, Nicole R.; Naydenov, Alipi V.; Hanlin, Ryan P.; Konradi, Christine

    2009-01-01

    Abnormalities of brain white matter and oligodendroglia are among the most consistent findings in schizophrenia (Sz) research. Various gene expression microarray studies of postmortem Sz brains showed a downregulation of myelin transcripts, while imaging and microscopy studies demonstrated decreases in prefrontal cortical (PFC) white matter volume and oligodendroglia density. Currently, the extent to which reduced oligodendrocyte markers contribute to pathophysiological domains of Sz is unknown. We exposed adolescent rats to cuprizone (CPZ), a copper chelator known to cause demyelination in mice, and examined expression of oligodendrocyte mRNA transcripts and PFC-mediated behavior. Rats on the CPZ diet showed decreased expression of mRNA transcripts encoding oligodendroglial proteins within the medial PFC, but not in the hippocampus or the striatum. These rats also displayed a specific deficit in the ability to shift between perceptual dimensions in the attentional set-shifting task, a PFC-mediated behavioral paradigm modeled after the Wisconsin Card Sorting Test (WCST). The inability to shift strategies corresponds to the deficits exhibited by Sz patients in the WCST. The results demonstrate that a reduction in oligodendrocyte markers is associated with impaired PFC-mediated behaviors. Thus, CPZ exposure of rats can serve as a model to examine the contribution of oligodendrocyte perturbation to cognitive deficits observed in Sz. PMID:19570651

  3. Process and domain specificity in regions engaged for face processing: an fMRI study of perceptual differentiation.

    PubMed

    Collins, Heather R; Zhu, Xun; Bhatt, Ramesh S; Clark, Jonathan D; Joseph, Jane E

    2012-12-01

    The degree to which face-specific brain regions are specialized for different kinds of perceptual processing is debated. This study parametrically varied demands on featural, first-order configural, or second-order configural processing of faces and houses in a perceptual matching task to determine the extent to which the process of perceptual differentiation was selective for faces regardless of processing type (domain-specific account), specialized for specific types of perceptual processing regardless of category (process-specific account), engaged in category-optimized processing (i.e., configural face processing or featural house processing), or reflected generalized perceptual differentiation (i.e., differentiation that crosses category and processing type boundaries). ROIs were identified in a separate localizer run or with a similarity regressor in the face-matching runs. The predominant principle accounting for fMRI signal modulation in most regions was generalized perceptual differentiation. Nearly all regions showed perceptual differentiation for both faces and houses for more than one processing type, even if the region was identified as face-preferential in the localizer run. Consistent with process specificity, some regions showed perceptual differentiation for first-order processing of faces and houses (right fusiform face area and occipito-temporal cortex and right lateral occipital complex), but not for featural or second-order processing. Somewhat consistent with domain specificity, the right inferior frontal gyrus showed perceptual differentiation only for faces in the featural matching task. The present findings demonstrate that the majority of regions involved in perceptual differentiation of faces are also involved in differentiation of other visually homogenous categories.

  4. Process- and Domain-Specificity in Regions Engaged for Face Processing: An fMRI Study of Perceptual Differentiation

    PubMed Central

    Collins, Heather R.; Zhu, Xun; Bhatt, Ramesh S.; Clark, Jonathan D.; Joseph, Jane E.

    2015-01-01

    The degree to which face-specific brain regions are specialized for different kinds of perceptual processing is debated. The present study parametrically varied demands on featural, first-order configural or second-order configural processing of faces and houses in a perceptual matching task to determine the extent to which the process of perceptual differentiation was selective for faces regardless of processing type (domain-specific account), specialized for specific types of perceptual processing regardless of category (process-specific account), engaged in category-optimized processing (i.e., configural face processing or featural house processing) or reflected generalized perceptual differentiation (i.e. differentiation that crosses category and processing type boundaries). Regions of interest were identified in a separate localizer run or with a similarity regressor in the face-matching runs. The predominant principle accounting for fMRI signal modulation in most regions was generalized perceptual differentiation. Nearly all regions showed perceptual differentiation for both faces and houses for more than one processing type, even if the region was identified as face-preferential in the localizer run. Consistent with process-specificity, some regions showed perceptual differentiation for first-order processing of faces and houses (right fusiform face area and occipito-temporal cortex, and right lateral occipital complex), but not for featural or second-order processing. Somewhat consistent with domain-specificity, the right inferior frontal gyrus showed perceptual differentiation only for faces in the featural matching task. The present findings demonstrate that the majority of regions involved in perceptual differentiation of faces are also involved in differentiation of other visually homogenous categories. PMID:22849402

  5. Auditory Cortex Is Required for Fear Potentiation of Gap Detection

    PubMed Central

    Weible, Aldis P.; Liu, Christine; Niell, Cristopher M.

    2014-01-01

    Auditory cortex is necessary for the perceptual detection of brief gaps in noise, but is not necessary for many other auditory tasks such as frequency discrimination, prepulse inhibition of startle responses, or fear conditioning with pure tones. It remains unclear why auditory cortex should be necessary for some auditory tasks but not others. One possibility is that auditory cortex is causally involved in gap detection and other forms of temporal processing in order to associate meaning with temporally structured sounds. This predicts that auditory cortex should be necessary for associating meaning with gaps. To test this prediction, we developed a fear conditioning paradigm for mice based on gap detection. We found that pairing a 10 or 100 ms gap with an aversive stimulus caused a robust enhancement of gap detection measured 6 h later, which we refer to as fear potentiation of gap detection. Optogenetic suppression of auditory cortex during pairing abolished this fear potentiation, indicating that auditory cortex is critically involved in associating temporally structured sounds with emotionally salient events. PMID:25392510

  6. Audiovisual integration in hemianopia: A neurocomputational account based on cortico-collicular interaction.

    PubMed

    Magosso, Elisa; Bertini, Caterina; Cuppini, Cristiano; Ursino, Mauro

    2016-10-01

    Hemianopic patients retain some abilities to integrate audiovisual stimuli in the blind hemifield, showing both modulation of visual perception by auditory stimuli and modulation of auditory perception by visual stimuli. Indeed, conscious detection of a visual target in the blind hemifield can be improved by a spatially coincident auditory stimulus (auditory enhancement of visual detection), while a visual stimulus in the blind hemifield can improve localization of a spatially coincident auditory stimulus (visual enhancement of auditory localization). To gain more insight into the neural mechanisms underlying these two perceptual phenomena, we propose a neural network model including areas of neurons representing the retina, primary visual cortex (V1), extrastriate visual cortex, auditory cortex and the Superior Colliculus (SC). The visual and auditory modalities in the network interact via both direct cortical-cortical connections and subcortical-cortical connections involving the SC; the latter, in particular, integrates visual and auditory information and projects back to the cortices. Hemianopic patients were simulated by unilaterally lesioning V1, and preserving spared islands of V1 tissue within the lesion, to analyze the role of residual V1 neurons in mediating audiovisual integration. The network is able to reproduce the audiovisual phenomena in hemianopic patients, linking perceptions to neural activations, and disentangles the individual contribution of specific neural circuits and areas via sensitivity analyses. The study suggests i) a common key role of SC-cortical connections in mediating the two audiovisual phenomena; ii) a different role of visual cortices in the two phenomena: auditory enhancement of conscious visual detection being conditional on surviving V1 islands, while visual enhancement of auditory localization persisting even after complete V1 damage. The present study may contribute to advance understanding of the audiovisual dialogue between cortical and subcortical structures in healthy and unisensory deficit conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Central Somatosensory Networks Respond to a De Novo Innervated Penis: A Proof of Concept in Three Spina Bifida Patients.

    PubMed

    Kortekaas, Rudie; Nanetti, Luca; Overgoor, Max L E; de Jong, Bauke M; Georgiadis, Janniko R

    2015-09-01

    Spina bifida (SB) causes low spinal lesions, and patients often have absent genital sensation and a highly impaired sex life. TOMAX (TO MAX-imize sensation, sexuality and quality of life) is a surgical procedure whereby the penis is newly innervated using a sensory nerve originally targeting the inguinal area. Most TOMAX-treated SB patients initially experience penile stimulation as inguinal sensation, but eventually, the perception shifts to penis sensation with erotic feelings. The brain mechanisms mediating this perceptual shift, which are completely unknown, could hold relevance for understanding the brain's role in sexual development. The aim of this study was to study how a newly perceived penis would be mapped onto the brain after a lifelong disconnection. Three TOMAX-treated SB patients participated in a functional magnetic resonance imagery experiment while glans penis, inguinal area, and index finger were stimulated with a paint brush. Brush stimulation-induced activation of the primary somatosensory cortex (SI) and functional connectivity between SI and remote cerebral regions. Stimulation of the re-innervated side of the glans penis and the intact contralateral inguinal area activated a very similar location on SI. Yet, connectivity analysis identified distinct SI functional networks. In all three subjects, the middle cingulate cortex (MCC) and the parietal operculum-insular cortex (OIC) were functionally connected to SI activity during glans penis stimulation, but not to SI activity induced by inguinal stimulation. Investigating central somatosensory network activity to a de novo innervated penis in SB patients is feasible and informative. The consistent involvement of MCC and OIC above and beyond the brain network expected on the basis of inguinal stimulation suggests that these areas mediate the novel penis sensation in these patients. The potential role of MCC and OIC in this process is discussed, along with recommendations for further research. © 2015 International Society for Sexual Medicine.

  8. Emotion processing in the aging brain is modulated by semantic elaboration

    PubMed Central

    Ritchey, Maureen; Bessette-Symons, Brandy; Hayes, Scott M.; Cabeza, Roberto

    2010-01-01

    The neural correlates of emotion processing have been shown to vary with age: older adults (OAs) exhibit increased frontal activations and, under some circumstances, decreased amygdala activations relative to young adults (YAs) during emotion processing. Some of these differences are additionally modulated by valence, with age-related biases toward positive versus negative stimuli, and are thought to depend on OAs’ capacity for controlled elaboration. However, the role of semantic elaboration in mediating valence effects in the aging brain has not yet been explicitly tested. In the present study, YAs and OAs were scanned while they viewed negative, neutral, and positive pictures during either a deep, elaborative task or a shallow, perceptual task. FMRI results reveal that emotion-related activity in the amygdala is preserved in aging and insensitive to elaboration demands. This study provides novel evidence that differences in valence processing are modulated by elaboration: relative to YAs, OAs show enhanced activity in the medial prefrontal cortex (PFC) and ventrolateral PFC in response to positive versus negative stimuli, but only during elaborative processing. These positive valence effects are predicted by individual differences in executive function in OAs for the deep but not shallow task. Finally, psychophysiological interaction analyses reveal age effects on valence-dependent functional connectivity between medial PFC and ventral striatum, as well as age and task effects on medial PFC-retrosplenial cortex interactions. Altogether, these findings provide support for the hypothesis that valence shifts in the aging brain are mediated by controlled processes such as semantic elaboration, self-referential processing, and emotion regulation. PMID:20869375

  9. Prefrontal cholinergic mechanisms instigating shifts from monitoring for cues to cue-guided performance: Converging electrochemical and fMRI evidence from rats and humans

    PubMed Central

    Howe, William M.; Berry, Anne S.; Francois, Jennifer; Gilmour, Gary; Carp, Joshua M.; Tricklebank, Mark; Lustig, Cindy; Sarter, Martin

    2013-01-01

    We previously reported involvement of right prefrontal cholinergic activity in veridical signal detection. Here, we first recorded real-time acetylcholine release in prefrontal cortex during specific trial sequences in rats performing a task requiring signal detection as well as rejection of non-signal events. Cholinergic release events recorded with sub-second resolution (“transients”) were observed only during signal-hit trials, not during signal-miss trials or non-signal events. Moreover, cholinergic transients were not observed for consecutive hits; instead they were limited to signal-hit trials that were preceded by factual or perceived non-signal events (“incongruent hits”). This finding suggests that these transients mediate shifts from a state of perceptual attention, or monitoring for cues, to cue-evoked activation of response rules and the generation of a cue-directed response. Next, to determine the translational significance of the cognitive operations supporting incongruent hits we employed a version of the task previously validated for use in research in humans and BOLD-fMRI. Incongruent hits activated a region in the right rostral prefrontal cortex (BA 10). Furthermore, greater prefrontal activation was correlated with faster response times for incongruent hits. Finally, we measured tissue oxygen in rats, as a proxy for BOLD, and found prefrontal increases in oxygen levels solely during incongruent hits. These cross-species studies link a cholinergic response to a prefrontal BOLD activation and indicate that these interrelated mechanisms mediate the integration of external cues with internal representations to initiate and guide behavior. PMID:23678117

  10. Emotion processing in the aging brain is modulated by semantic elaboration.

    PubMed

    Ritchey, Maureen; Bessette-Symons, Brandy; Hayes, Scott M; Cabeza, Roberto

    2011-03-01

    The neural correlates of emotion processing have been shown to vary with age: older adults (OAs) exhibit increased frontal activations and, under some circumstances, decreased amygdala activations relative to young adults (YAs) during emotion processing. Some of these differences are additionally modulated by valence, with age-related biases toward positive versus negative stimuli, and are thought to depend on OAs' capacity for controlled elaboration. However, the role of semantic elaboration in mediating valence effects in the aging brain has not yet been explicitly tested. In the present study, YAs and OAs were scanned while they viewed negative, neutral, and positive pictures during either a deep, elaborative task or a shallow, perceptual task. fMRI results reveal that emotion-related activity in the amygdala is preserved in aging and insensitive to elaboration demands. This study provides novel evidence that differences in valence processing are modulated by elaboration: relative to YAs, OAs show enhanced activity in the medial prefrontal cortex (PFC) and ventrolateral PFC in response to positive versus negative stimuli, but only during elaborative processing. These positive valence effects are predicted by individual differences in executive function in OAs for the deep but not shallow task. Finally, psychophysiological interaction analyses reveal age effects on valence-dependent functional connectivity between medial PFC and ventral striatum, as well as age and task effects on medial PFC-retrosplenial cortex interactions. Altogether, these findings provide support for the hypothesis that valence shifts in the aging brain are mediated by controlled processes such as semantic elaboration, self-referential processing, and emotion regulation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Camera perspective bias in videotaped confessions: experimental evidence of its perceptual basis.

    PubMed

    Ratcliff, Jennifer J; Lassiter, G Daniel; Schmidt, Heather C; Snyder, Celeste J

    2006-12-01

    The camera perspective from which a criminal confession is videotaped influences later assessments of its voluntariness and the suspect's guilt. Previous research has suggested that this camera perspective bias is rooted in perceptual rather than conceptual processes, but these data are strictly correlational. In 3 experiments, the authors directly manipulated perceptual processing to provide stronger evidence of its mediational role. Prior to viewing a videotape of a simulated confession, participants were shown a photograph of the confessor's apparent victim. Participants in a perceptual interference condition were instructed to visualize the image of the victim in their minds while viewing the videotape; participants in a conceptual interference condition were instructed instead to rehearse an 8-digit number. Because mental imagery and actual perception draw on the same available resources, the authors anticipated that the former, but not the latter, interference task would disrupt the camera perspective bias, if indeed it were perceptually mediated. Results supported this conclusion.

  12. A neural correlate of working memory in the monkey primary visual cortex.

    PubMed

    Supèr, H; Spekreijse, H; Lamme, V A

    2001-07-06

    The brain frequently needs to store information for short periods. In vision, this means that the perceptual correlate of a stimulus has to be maintained temporally once the stimulus has been removed from the visual scene. However, it is not known how the visual system transfers sensory information into a memory component. Here, we identify a neural correlate of working memory in the monkey primary visual cortex (V1). We propose that this component may link sensory activity with memory activity.

  13. Selective attention to task-irrelevant emotional distractors is unaffected by the perceptual load associated with a foreground task.

    PubMed

    Hindi Attar, Catherine; Müller, Matthias M

    2012-01-01

    A number of studies have shown that emotionally arousing stimuli are preferentially processed in the human brain. Whether or not this preference persists under increased perceptual load associated with a task at hand remains an open question. Here we manipulated two possible determinants of the attentional selection process, perceptual load associated with a foreground task and the emotional valence of concurrently presented task-irrelevant distractors. As a direct measure of sustained attentional resource allocation in early visual cortex we used steady-state visual evoked potentials (SSVEPs) elicited by distinct flicker frequencies of task and distractor stimuli. Subjects either performed a detection (low load) or discrimination (high load) task at a centrally presented symbol stream that flickered at 8.6 Hz while task-irrelevant neutral or unpleasant pictures from the International Affective Picture System (IAPS) flickered at a frequency of 12 Hz in the background of the stream. As reflected in target detection rates and SSVEP amplitudes to both task and distractor stimuli, unpleasant relative to neutral background pictures more strongly withdrew processing resources from the foreground task. Importantly, this finding was unaffected by the factor 'load' which turned out to be a weak modulator of attentional processing in human visual cortex.

  14. The Use of Bright and Dark Types of Humour is Rooted in the Brain

    PubMed Central

    Papousek, Ilona; Ruch, Willibald; Rominger, Christian; Kindermann, Elisabeth; Scheidl, Katharina; Schulter, Günter; Fink, Andreas; Weiss, Elisabeth M.

    2017-01-01

    The ways in which humour can be used are related to the manifold interpersonal functions humour can serve, some of which are positive, and some negative. In the present study, phasic changes in the functional coupling of prefrontal and posterior cortex (EEG coherence) during other people’s auditory displays of happy and sad mood were recorded to predict people’s typical use of humour in social interactions. Greater use of benevolent humour, the intentions of which are in keeping with the characteristics of “laughing-with” humour, was associated with greater decreases of prefrontal-posterior coupling during the processing of happy laughter. More loose prefrontal-posterior coupling indicates loosening of control of the prefrontal cortex over the incoming perceptual information, thereby opening up the perceptual gate and allowing the brain to become more affected by the social-emotional signals. Greater use of humour styles linked to malicious intentions of “laughing-at” humour was associated with responses indicating a wider opened perceptual gate during the processing of other people’s crying. The findings are consistent with the idea that typical humour styles develop in line with the rewarding values of their outcomes (e.g., interaction partners are happy or hurt), which in turn are defined through the individuals’ latent interpersonal goals. PMID:28211496

  15. Similar ventral occipito-temporal cortex activations in literate and illiterate adults during the Chinese character matching task: an fMRI study.

    PubMed

    Qi, Geqi; Li, Xiujun; Yan, Tianyi; Wang, Bin; Yang, Jiajia; Wu, Jinglong; Guo, Qiyong

    2014-04-30

    Visual word expertise is typically associated with enhanced ventral occipito-temporal (vOT) cortex activation in response to written words. Previous study utilized a passive viewing task and found that vOT response to written words was significantly stronger in literate compared to the illiterate subjects. However, recent neuroimaging findings have suggested that vOT response properties are highly dependent upon the task demand. Thus, it is unknown whether literate adults would show stronger vOT response to written words compared to illiterate adults during other cognitive tasks, such as perceptual matching. We addressed this issue by comparing vOT activations between literate and illiterate adults during a Chinese character and simple figure matching task. Unlike passive viewing, a perceptual matching task requires active shape comparison, therefore minimizing automatic word processing bias. We found that although the literate group performed better at Chinese character matching task, the two subject groups showed similar strong vOT responses during this task. Overall, the findings indicate that the vOT response to written words is not affected by expertise during a perceptual matching task, suggesting that the association between visual word expertise and vOT response may depend on the task demand. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Self-Regulation of the Primary Auditory Cortex Attention Via Directed Attention Mediated By Real Time fMRI Neurofeedback

    DTIC Science & Technology

    2017-05-05

    Directed Attention Mediated by Real -Time fMRI Neurofeedback presented at/published to 2017 Radiological Society of North America Conference in...DATE Sherwood - p.1 Self-regulation of the primary auditory cortex attention via directed attention mediated by real -time fMRI neurofeedback M S...auditory cortex hyperactivity by self-regulation of the primary auditory cortex (A 1) based on real -time functional magnetic resonance imaging neurofeedback

  17. Perceptual Load-Dependent Neural Correlates of Distractor Interference Inhibition

    PubMed Central

    Xu, Jiansong; Monterosso, John; Kober, Hedy; Balodis, Iris M.; Potenza, Marc N.

    2011-01-01

    Background The load theory of selective attention hypothesizes that distractor interference is suppressed after perceptual processing (i.e., in the later stage of central processing) at low perceptual load of the central task, but in the early stage of perceptual processing at high perceptual load. Consistently, studies on the neural correlates of attention have found a smaller distractor-related activation in the sensory cortex at high relative to low perceptual load. However, it is not clear whether the distractor-related activation in brain regions linked to later stages of central processing (e.g., in the frontostriatal circuits) is also smaller at high rather than low perceptual load, as might be predicted based on the load theory. Methodology/Principal Findings We studied 24 healthy participants using functional magnetic resonance imaging (fMRI) during a visual target identification task with two perceptual loads (low vs. high). Participants showed distractor-related increases in activation in the midbrain, striatum, occipital and medial and lateral prefrontal cortices at low load, but distractor-related decreases in activation in the midbrain ventral tegmental area and substantia nigra (VTA/SN), striatum, thalamus, and extensive sensory cortices at high load. Conclusions Multiple levels of central processing involving midbrain and frontostriatal circuits participate in suppressing distractor interference at either low or high perceptual load. For suppressing distractor interference, the processing of sensory inputs in both early and late stages of central processing are enhanced at low load but inhibited at high load. PMID:21267080

  18. Evidence accumulation detected in BOLD signal using slow perceptual decision making.

    PubMed

    Krueger, Paul M; van Vugt, Marieke K; Simen, Patrick; Nystrom, Leigh; Holmes, Philip; Cohen, Jonathan D

    2017-04-01

    We assessed whether evidence accumulation could be observed in the BOLD signal during perceptual decision making. This presents a challenge since the hemodynamic response is slow, while perceptual decisions are typically fast. Guided by theoretical predictions of the drift diffusion model, we slowed down decisions by penalizing participants for incorrect responses. Second, we distinguished BOLD activity related to stimulus detection (modeled using a boxcar) from activity related to integration (modeled using a ramp) by minimizing the collinearity of GLM regressors. This was achieved by dissecting a boxcar into its two most orthogonal components: an "up-ramp" and a "down-ramp." Third, we used a control condition in which stimuli and responses were similar to the experimental condition, but that did not engage evidence accumulation of the stimuli. The results revealed an absence of areas in parietal cortex that have been proposed to drive perceptual decision making but have recently come into question; and newly identified regions that are candidates for involvement in evidence accumulation. Previous fMRI studies have either used fast perceptual decision making, which precludes the measurement of evidence accumulation, or slowed down responses by gradually revealing stimuli. The latter approach confounds perceptual detection with evidence accumulation because accumulation is constrained by perceptual input. We slowed down the decision making process itself while leaving perceptual information intact. This provided a more sensitive and selective observation of brain regions associated with the evidence accumulation processes underlying perceptual decision making than previous methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A Mechanistic Link from GABA to Cortical Architecture and Perception.

    PubMed

    Kolasinski, James; Logan, John P; Hinson, Emily L; Manners, Daniel; Divanbeighi Zand, Amir P; Makin, Tamar R; Emir, Uzay E; Stagg, Charlotte J

    2017-06-05

    Understanding both the organization of the human cortex and its relation to the performance of distinct functions is fundamental in neuroscience. The primary sensory cortices display topographic organization, whereby receptive fields follow a characteristic pattern, from tonotopy to retinotopy to somatotopy [1]. GABAergic signaling is vital to the maintenance of cortical receptive fields [2]; however, it is unclear how this fine-grain inhibition relates to measurable patterns of perception [3, 4]. Based on perceptual changes following perturbation of the GABAergic system, it is conceivable that the resting level of cortical GABAergic tone directly relates to the spatial specificity of activation in response to a given input [5-7]. The specificity of cortical activation can be considered in terms of cortical tuning: greater cortical tuning yields more localized recruitment of cortical territory in response to a given input. We applied a combination of fMRI, MR spectroscopy, and psychophysics to substantiate the link between the cortical neurochemical milieu, the tuning of cortical activity, and variability in perceptual acuity, using human somatosensory cortex as a model. We provide data that explain human perceptual acuity in terms of both the underlying cellular and metabolic processes. Specifically, higher concentrations of sensorimotor GABA are associated with more selective cortical tuning, which in turn is associated with enhanced perception. These results show anatomical and neurochemical specificity and are replicated in an independent cohort. The mechanistic link from neurochemistry to perception provides a vital step in understanding population variability in sensory behavior, informing metabolic therapeutic interventions to restore perceptual abilities clinically. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  20. Internal state of monkey primary visual cortex (V1) predicts figure-ground perception.

    PubMed

    Supèr, Hans; van der Togt, Chris; Spekreijse, Henk; Lamme, Victor A F

    2003-04-15

    When stimulus information enters the visual cortex, it is rapidly processed for identification. However, sometimes the processing of the stimulus is inadequate and the subject fails to notice the stimulus. Human psychophysical studies show that this occurs during states of inattention or absent-mindedness. At a neurophysiological level, it remains unclear what these states are. To study the role of cortical state in perception, we analyzed neural activity in the monkey primary visual cortex before the appearance of a stimulus. We show that, before the appearance of a reported stimulus, neural activity was stronger and more correlated than for a not-reported stimulus. This indicates that the strength of neural activity and the functional connectivity between neurons in the primary visual cortex participate in the perceptual processing of stimulus information. Thus, to detect a stimulus, the visual cortex needs to be in an appropriate state.

  1. Neurocognitive processing of body representations in artistic and photographic images.

    PubMed

    Lutz, Aline; Nassehi, Armin; Bao, Yan; Pöppel, Ernst; Sztrókay, Anikó; Reiser, Maximilian; Fehse, Kai; Gutyrchik, Evgeny

    2013-02-01

    Visual art because of its artistic context can be related to the general idea of providing alternative perceptual experiences. However, research examining the neural basis of art beyond the paradigm of beauty has been neglected. This study seeks to determine how the perception of a body in an artwork can be distinguished from the perception of a body in a non-artistic photography. While viewing different body representations in both artworks and photographs, subjects were required to evaluate the appeal of the portrayed persons. By using functional magnetic resonance imaging (fMRI) we show that the perception of a body within the context of art leads to a higher activation in the right parietal cortex and the extrastriate cortex bilaterally. Relating this result to concepts from previous research, we suggest that the perception of art is linked to visuo-spatial coding and also motor mapping. In contrast, the higher activity in the ventromedial prefrontal cortex and the primary visual cortex during the perception of a body in a non-artistic frame of reference, i.e. in a photograph, can be linked to processes of person evaluation. Possibly, the task to judge the appeal of a person in a photograph might be more daunting and, thus, cause emotional and even moral challenges being reflected in the ventromedial prefrontal activity. Taken together, perceptual experiences within an artistic vs. a non-artistic frame of reference are based on distinct patterns of neuronal activity. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Cross-modal orienting of visual attention.

    PubMed

    Hillyard, Steven A; Störmer, Viola S; Feng, Wenfeng; Martinez, Antigona; McDonald, John J

    2016-03-01

    This article reviews a series of experiments that combined behavioral and electrophysiological recording techniques to explore the hypothesis that salient sounds attract attention automatically and facilitate the processing of visual stimuli at the sound's location. This cross-modal capture of visual attention was found to occur even when the attracting sound was irrelevant to the ongoing task and was non-predictive of subsequent events. A slow positive component in the event-related potential (ERP) that was localized to the visual cortex was found to be closely coupled with the orienting of visual attention to a sound's location. This neural sign of visual cortex activation was predictive of enhanced perceptual processing and was paralleled by a desynchronization (blocking) of the ongoing occipital alpha rhythm. Further research is needed to determine the nature of the relationship between the slow positive ERP evoked by the sound and the alpha desynchronization and to understand how these electrophysiological processes contribute to improved visual-perceptual processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Perceptual load modulates anterior cingulate cortex response to threat distractors in generalized social anxiety disorder.

    PubMed

    Wheaton, Michael G; Fitzgerald, Daniel A; Phan, K Luan; Klumpp, Heide

    2014-09-01

    Generalized social anxiety disorder (gSAD) is associated with impoverished anterior cingulate cortex (ACC) engagement during attentional control. Attentional Control Theory proposes such deficiencies may be offset when demands on resources are increased to execute goals. To test the hypothesis attentional demands affect ACC response 23 patients with gSAD and 24 matched controls performed an fMRI task involving a target letter in a string of identical targets (low load) or a target letter in a mixed letter string (high load) superimposed on fearful, angry, and neutral face distractors. Regardless of load condition, groups were similar in accuracy and reaction time. Under low load gSAD patients showed deficient rostral ACC recruitment to fearful (vs. neutral) distractors. For high load, increased activation to fearful (vs. neutral) distractors was observed in gSAD suggesting a compensatory function. Results remained after controlling for group differences in depression level. Findings indicate perceptual demand modulates ACC in gSAD. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Prefrontal contributions to metacognition in perceptual decision-making

    PubMed Central

    Fleming, Stephen M.; Huijgen, Josefien; Dolan, Raymond J.

    2012-01-01

    Neuroscience has made considerable progress in understanding the neural substrates supporting cognitive performance in a number of domains, including memory, perception and decision-making. In contrast, how the human brain generates metacognitive awareness of task performance remains unclear. Here, we address this question by asking participants to perform perceptual decisions while providing concurrent metacognitive reports, during fMRI scanning. We show that activity in right rostrolateral prefrontal cortex (rlPFC) satisfies three constraints for a role in metacognitive aspects of decision-making. Right rlPFC showed greater activity during self-report compared to a matched control condition; activity in this region correlated with reported confidence; and the strength of the relationship between activity and confidence predicted metacognitive ability across individuals. In addition, functional connectivity between right rlPFC and both contralateral PFC and visual cortex increased during metacognitive reports. We discuss these findings in a theoretical framework where rlPFC re-represents object-level decision uncertainty to facilitate metacognitive report. PMID:22553018

  5. Neural coding strategies in auditory cortex.

    PubMed

    Wang, Xiaoqin

    2007-07-01

    In contrast to the visual system, the auditory system has longer subcortical pathways and more spiking synapses between the peripheral receptors and the cortex. This unique organization reflects the needs of the auditory system to extract behaviorally relevant information from a complex acoustic environment using strategies different from those used by other sensory systems. The neural representations of acoustic information in auditory cortex can be characterized by three types: (1) isomorphic (faithful) representations of acoustic structures; (2) non-isomorphic transformations of acoustic features and (3) transformations from acoustical to perceptual dimensions. The challenge facing auditory neurophysiologists is to understand the nature of the latter two transformations. In this article, I will review recent studies from our laboratory regarding temporal discharge patterns in auditory cortex of awake marmosets and cortical representations of time-varying signals. Findings from these studies show that (1) firing patterns of neurons in auditory cortex are dependent on stimulus optimality and context and (2) the auditory cortex forms internal representations of sounds that are no longer faithful replicas of their acoustic structures.

  6. The Olfactory Mosaic: Bringing an Olfactory Network Together for Odor Perception.

    PubMed

    Courtiol, Emmanuelle; Wilson, Donald A

    2017-01-01

    Olfactory perception and its underlying neural mechanisms are not fixed, but rather vary over time, dependent on various parameters such as state, task, or learning experience. In olfaction, one of the primary sensory areas beyond the olfactory bulb is the piriform cortex. Due to an increasing number of functions attributed to the piriform cortex, it has been argued to be an associative cortex rather than a simple primary sensory cortex. In fact, the piriform cortex plays a key role in creating olfactory percepts, helping to form configural odor objects from the molecular features extracted in the nose. Moreover, its dynamic interactions with other olfactory and nonolfactory areas are also critical in shaping the olfactory percept and resulting behavioral responses. In this brief review, we will describe the key role of the piriform cortex in the larger olfactory perceptual network, some of the many actors of this network, and the importance of the dynamic interactions among the piriform-trans-thalamic and limbic pathways.

  7. Perceptual-cognitive expertise in sport: some considerations when applying the expert performance approach.

    PubMed

    Williams, A Mark; Ericsson, K Anders

    2005-06-01

    The number of researchers studying perceptual-cognitive expertise in sport is increasing. The intention in this paper is to review the currently accepted framework for studying expert performance and to consider implications for undertaking research work in the area of perceptual-cognitive expertise in sport. The expert performance approach presents a descriptive and inductive approach for the systematic study of expert performance. The nature of expert performance is initially captured in the laboratory using representative tasks that identify reliably superior performance. Process-tracing measures are employed to determine the mechanisms that mediate expert performance on the task. Finally, the specific types of activities that lead to the acquisition and development of these mediating mechanisms are identified. General principles and mechanisms may be discovered and then validated by more traditional experimental designs. The relevance of this approach to the study of perceptual-cognitive expertise in sport is discussed and suggestions for future work highlighted.

  8. Competing streams at the cocktail party: Exploring the mechanisms of attention and temporal integration

    PubMed Central

    Xiang, Juanjuan; Simon, Jonathan; Elhilali, Mounya

    2010-01-01

    Processing of complex acoustic scenes depends critically on the temporal integration of sensory information as sounds evolve naturally over time. It has been previously speculated that this process is guided by both innate mechanisms of temporal processing in the auditory system, as well as top-down mechanisms of attention, and possibly other schema-based processes. In an effort to unravel the neural underpinnings of these processes and their role in scene analysis, we combine Magnetoencephalography (MEG) with behavioral measures in humans in the context of polyrhythmic tone sequences. While maintaining unchanged sensory input, we manipulate subjects’ attention to one of two competing rhythmic streams in the same sequence. The results reveal that the neural representation of the attended rhythm is significantly enhanced both in its steady-state power and spatial phase coherence relative to its unattended state, closely correlating with its perceptual detectability for each listener. Interestingly, the data reveals a differential efficiency of rhythmic rates of the order of few hertz during the streaming process, closely following known neural and behavioral measures of temporal modulation sensitivity in the auditory system. These findings establish a direct link between known temporal modulation tuning in the auditory system (particularly at the level of auditory cortex) and the temporal integration of perceptual features in a complex acoustic scene, while mediated by processes of attention. PMID:20826671

  9. Visual search and the aging brain: discerning the effects of age-related brain volume shrinkage on alertness, feature binding, and attentional control.

    PubMed

    Müller-Oehring, Eva M; Schulte, Tilman; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V

    2013-01-01

    Decline in visuospatial abilities with advancing age has been attributed to a demise of bottom-up and top-down functions involving sensory processing, selective attention, and executive control. These functions may be differentially affected by age-related volume shrinkage of subcortical and cortical nodes subserving the dorsal and ventral processing streams and the corpus callosum mediating interhemispheric information exchange. Fifty-five healthy adults (25-84 years) underwent structural MRI and performed a visual search task to test perceptual and attentional demands by combining feature-conjunction searches with "gestalt" grouping and attentional cueing paradigms. Poorer conjunction, but not feature, search performance was related to older age and volume shrinkage of nodes in the dorsolateral processing stream. When displays allowed perceptual grouping through distractor homogeneity, poorer conjunction-search performance correlated with smaller ventrolateral prefrontal cortical and callosal volumes. An alerting cue attenuated age effects on conjunction search, and the alertness benefit was associated with thalamic, callosal, and temporal cortex volumes. Our results indicate that older adults can capitalize on early parallel stages of visual information processing, whereas age-related limitations arise at later serial processing stages requiring self-guided selective attention and executive control. These limitations are explained in part by age-related brain volume shrinkage and can be mitigated by external cues.

  10. Visual short-term memory load reduces retinotopic cortex response to contrast.

    PubMed

    Konstantinou, Nikos; Bahrami, Bahador; Rees, Geraint; Lavie, Nilli

    2012-11-01

    Load Theory of attention suggests that high perceptual load in a task leads to reduced sensory visual cortex response to task-unrelated stimuli resulting in "load-induced blindness" [e.g., Lavie, N. Attention, distraction and cognitive control under load. Current Directions in Psychological Science, 19, 143-148, 2010; Lavie, N. Distracted and confused?: Selective attention under load. Trends in Cognitive Sciences, 9, 75-82, 2005]. Consideration of the findings that visual STM (VSTM) involves sensory recruitment [e.g., Pasternak, T., & Greenlee, M. Working memory in primate sensory systems. Nature Reviews Neuroscience, 6, 97-107, 2005] within Load Theory led us to a new hypothesis regarding the effects of VSTM load on visual processing. If VSTM load draws on sensory visual capacity, then similar to perceptual load, high VSTM load should also reduce visual cortex response to incoming stimuli leading to a failure to detect them. We tested this hypothesis with fMRI and behavioral measures of visual detection sensitivity. Participants detected the presence of a contrast increment during the maintenance delay in a VSTM task requiring maintenance of color and position. Increased VSTM load (manipulated by increased set size) led to reduced retinotopic visual cortex (V1-V3) responses to contrast as well as reduced detection sensitivity, as we predicted. Additional visual detection experiments established a clear tradeoff between the amount of information maintained in VSTM and detection sensitivity, while ruling out alternative accounts for the effects of VSTM load in terms of differential spatial allocation strategies or task difficulty. These findings extend Load Theory to demonstrate a new form of competitive interactions between early visual cortex processing and visual representations held in memory under load and provide a novel line of support for the sensory recruitment hypothesis of VSTM.

  11. The neurophysiology of figure-ground segregation in primary visual cortex.

    PubMed

    Lamme, V A

    1995-02-01

    The activity of neurons in the primary visual cortex of the awake macaque monkey was recorded while the animals were viewing full screen arrays of either oriented line segments or moving random dots. A square patch of the screen was made to perceptually pop out as a circumscribed figure by virtue of differences between the orientation or the direction of motion of the texture elements within that patch and the surround. The animals were trained to identify the figure patches by making saccadic eye movements towards their positions. Almost every cell gave a significantly larger response to elements belonging to the figure than to similar elements belonging to the background. The figure-ground response enhancement was present along the entire extent of the patch and was absent as soon as the receptive field was outside the patch. The strength of the effect had no relation with classical receptive field properties like orientation or direction selectivity or receptive field size. The response enhancement had a latency of 30-40 msec relative to the onset of the neuronal response itself. The results show that context modulation within primary visual cortex has a highly sophisticated nature, putting the image features the cells are responding to into their fully evaluated perceptual context.

  12. Speed of perceptual grouping in acquired brain injury.

    PubMed

    Kurylo, Daniel D; Larkin, Gabriella Brick; Waxman, Richard; Bukhari, Farhan

    2014-09-01

    Evidence exists that damage to white matter connections may contribute to reduced speed of information processing in traumatic brain injury and stroke. Damage to such axonal projections suggests a particular vulnerability to functions requiring integration across cortical sites. To test this prediction, measurements were made of perceptual grouping, which requires integration of stimulus components. A group of traumatic brain injury and cerebral vascular accident patients and a group of age-matched healthy control subjects viewed arrays of dots and indicated the pattern into which stimuli were perceptually grouped. Psychophysical measurements were made of perceptual grouping as well as processing speed. The patient group showed elevated grouping thresholds as well as extended processing time. In addition, most patients showed progressive slowing of processing speed across levels of difficulty, suggesting reduced resources to accommodate increased demands on grouping. These results support the prediction that brain injury results in a particular vulnerability to functions requiring integration of information across the cortex, which may result from dysfunction of long-range axonal connection.

  13. Pretraining Cortical Thickness Predicts Subsequent Perceptual Learning Rate in a Visual Search Task.

    PubMed

    Frank, Sebastian M; Reavis, Eric A; Greenlee, Mark W; Tse, Peter U

    2016-03-01

    We report that preexisting individual differences in the cortical thickness of brain areas involved in a perceptual learning task predict the subsequent perceptual learning rate. Participants trained in a motion-discrimination task involving visual search for a "V"-shaped target motion trajectory among inverted "V"-shaped distractor trajectories. Motion-sensitive area MT+ (V5) was functionally identified as critical to the task: after 3 weeks of training, activity increased in MT+ during task performance, as measured by functional magnetic resonance imaging. We computed the cortical thickness of MT+ from anatomical magnetic resonance imaging volumes collected before training started, and found that it significantly predicted subsequent perceptual learning rates in the visual search task. Participants with thicker neocortex in MT+ before training learned faster than those with thinner neocortex in that area. A similar association between cortical thickness and training success was also found in posterior parietal cortex (PPC). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. A Mouse Model of Visual Perceptual Learning Reveals Alterations in Neuronal Coding and Dendritic Spine Density in the Visual Cortex.

    PubMed

    Wang, Yan; Wu, Wei; Zhang, Xian; Hu, Xu; Li, Yue; Lou, Shihao; Ma, Xiao; An, Xu; Liu, Hui; Peng, Jing; Ma, Danyi; Zhou, Yifeng; Yang, Yupeng

    2016-01-01

    Visual perceptual learning (VPL) can improve spatial vision in normally sighted and visually impaired individuals. Although previous studies of humans and large animals have explored the neural basis of VPL, elucidation of the underlying cellular and molecular mechanisms remains a challenge. Owing to the advantages of molecular genetic and optogenetic manipulations, the mouse is a promising model for providing a mechanistic understanding of VPL. Here, we thoroughly evaluated the effects and properties of VPL on spatial vision in C57BL/6J mice using a two-alternative, forced-choice visual water task. Briefly, the mice underwent prolonged training at near the individual threshold of contrast or spatial frequency (SF) for pattern discrimination or visual detection for 35 consecutive days. Following training, the contrast-threshold trained mice showed an 87% improvement in contrast sensitivity (CS) and a 55% gain in visual acuity (VA). Similarly, the SF-threshold trained mice exhibited comparable and long-lasting improvements in VA and significant gains in CS over a wide range of SFs. Furthermore, learning largely transferred across eyes and stimulus orientations. Interestingly, learning could transfer from a pattern discrimination task to a visual detection task, but not vice versa. We validated that this VPL fully restored VA in adult amblyopic mice and old mice. Taken together, these data indicate that mice, as a species, exhibit reliable VPL. Intrinsic signal optical imaging revealed that mice with perceptual training had higher cut-off SFs in primary visual cortex (V1) than those without perceptual training. Moreover, perceptual training induced an increase in the dendritic spine density in layer 2/3 pyramidal neurons of V1. These results indicated functional and structural alterations in V1 during VPL. Overall, our VPL mouse model will provide a platform for investigating the neurobiological basis of VPL.

  15. Noisy Spiking in Visual Area V2 of Amblyopic Monkeys.

    PubMed

    Wang, Ye; Zhang, Bin; Tao, Xiaofeng; Wensveen, Janice M; Smith, Earl L; Chino, Yuzo M

    2017-01-25

    Interocular decorrelation of input signals in developing visual cortex can cause impaired binocular vision and amblyopia. Although increased intrinsic noise is thought to be responsible for a range of perceptual deficits in amblyopic humans, the neural basis for the elevated perceptual noise in amblyopic primates is not known. Here, we tested the idea that perceptual noise is linked to the neuronal spiking noise (variability) resulting from developmental alterations in cortical circuitry. To assess spiking noise, we analyzed the contrast-dependent dynamics of spike counts and spiking irregularity by calculating the square of the coefficient of variation in interspike intervals (CV 2 ) and the trial-to-trial fluctuations in spiking, or mean matched Fano factor (m-FF) in visual area V2 of monkeys reared with chronic monocular defocus. In amblyopic neurons, the contrast versus response functions and the spike count dynamics exhibited significant deviations from comparable data for normal monkeys. The CV 2 was pronounced in amblyopic neurons for high-contrast stimuli and the m-FF was abnormally high in amblyopic neurons for low-contrast gratings. The spike count, CV 2 , and m-FF of spontaneous activity were also elevated in amblyopic neurons. These contrast-dependent spiking irregularities were correlated with the level of binocular suppression in these V2 neurons and with the severity of perceptual loss for individual monkeys. Our results suggest that the developmental alterations in normalization mechanisms resulting from early binocular suppression can explain much of these contrast-dependent spiking abnormalities in V2 neurons and the perceptual performance of our amblyopic monkeys. Amblyopia is a common developmental vision disorder in humans. Despite the extensive animal studies on how amblyopia emerges, we know surprisingly little about the neural basis of amblyopia in humans and nonhuman primates. Although the vision of amblyopic humans is often described as being noisy by perceptual and modeling studies, the exact nature or origin of this elevated perceptual noise is not known. We show that elevated and noisy spontaneous activity and contrast-dependent noisy spiking (spiking irregularity and trial-to-trial fluctuations in spiking) in neurons of visual area V2 could limit the visual performance of amblyopic primates. Moreover, we discovered that the noisy spiking is linked to a high level of binocular suppression in visual cortex during development. Copyright © 2017 the authors 0270-6474/17/370922-14$15.00/0.

  16. The effect of object processing in content-dependent source memory

    PubMed Central

    2013-01-01

    Background Previous studies have suggested that the study condition of an item influences how the item is encoded. However, it is still unclear whether subsequent source memory effects are dependent upon stimulus content when the item and context are unitized. The present fMRI study investigated the effect of encoding activity sensitive to stimulus content in source memory via unitization. In the scanner, participants were instructed to integrate a study item, an object in either a word or a picture form, with perceptual context into a single image. Results Subsequent source memory effects independent of stimulus content were identified in the left lateral frontal and parietal regions, bilateral fusiform areas, and the left perirhinal cortex extending to the anterior hippocampus. Content-dependent subsequent source memory effects were found only with words in the left medial frontal lobe, the ventral visual stream, and bilateral parahippocampal regions. Further, neural activity for source memory with words extensively overlapped with the region where pictures were preferentially processed than words, including the left mid-occipital cortex and the right parahippocampal cortex. Conclusions These results indicate that words that were accurately remembered with correct contextual information were processed more like pictures mediated by integrated imagery operation, compared to words that were recognized with incorrect context. In contrast, such processing did not discriminate subsequent source memory with pictures. Taken together, these findings suggest that unitization supports source memory for both words and pictures and that the requirement of the study task interacts with the nature of stimulus content in unitized source encoding. PMID:23848969

  17. Contour Curvature As an Invariant Code for Objects in Visual Area V4

    PubMed Central

    Pasupathy, Anitha

    2016-01-01

    Size-invariant object recognition—the ability to recognize objects across transformations of scale—is a fundamental feature of biological and artificial vision. To investigate its basis in the primate cerebral cortex, we measured single neuron responses to stimuli of varying size in visual area V4, a cornerstone of the object-processing pathway, in rhesus monkeys (Macaca mulatta). Leveraging two competing models for how neuronal selectivity for the bounding contours of objects may depend on stimulus size, we show that most V4 neurons (∼70%) encode objects in a size-invariant manner, consistent with selectivity for a size-independent parameter of boundary form: for these neurons, “normalized” curvature, rather than “absolute” curvature, provided a better account of responses. Our results demonstrate the suitability of contour curvature as a basis for size-invariant object representation in the visual cortex, and posit V4 as a foundation for behaviorally relevant object codes. SIGNIFICANCE STATEMENT Size-invariant object recognition is a bedrock for many perceptual and cognitive functions. Despite growing neurophysiological evidence for invariant object representations in the primate cortex, we still lack a basic understanding of the encoding rules that govern them. Classic work in the field of visual shape theory has long postulated that a representation of objects based on information about their bounding contours is well suited to mediate such an invariant code. In this study, we provide the first empirical support for this hypothesis, and its instantiation in single neurons of visual area V4. PMID:27194333

  18. Selective Activation of the Deep Layers of the Human Primary Visual Cortex by Top-Down Feedback.

    PubMed

    Kok, Peter; Bains, Lauren J; van Mourik, Tim; Norris, David G; de Lange, Floris P

    2016-02-08

    In addition to bottom-up input, the visual cortex receives large amounts of feedback from other cortical areas [1-3]. One compelling example of feedback activation of early visual neurons in the absence of bottom-up input occurs during the famous Kanizsa illusion, where a triangular shape is perceived, even in regions of the image where there is no bottom-up visual evidence for it. This illusion increases the firing activity of neurons in the primary visual cortex with a receptive field on the illusory contour [4]. Feedback signals are largely segregated from feedforward signals within each cortical area, with feedforward signals arriving in the middle layer, while top-down feedback avoids the middle layers and predominantly targets deep and superficial layers [1, 2, 5, 6]. Therefore, the feedback-mediated activity increase in V1 during the perception of illusory shapes should lead to a specific laminar activity profile that is distinct from the activity elicited by bottom-up stimulation. Here, we used fMRI at high field (7 T) to empirically test this hypothesis, by probing the cortical response to illusory figures in human V1 at different cortical depths [7-14]. We found that, whereas bottom-up stimulation activated all cortical layers, feedback activity induced by illusory figures led to a selective activation of the deep layers of V1. These results demonstrate the potential for non-invasive recordings of neural activity with laminar specificity in humans and elucidate the role of top-down signals during perceptual processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Dynamic anticipatory processing of hierarchical sequential events: a common role for Broca's area and ventral premotor cortex across domains?

    PubMed

    Fiebach, Christian J; Schubotz, Ricarda I

    2006-05-01

    This paper proposes a domain-general model for the functional contribution of ventral premotor cortex (PMv) and adjacent Broca's area to perceptual, cognitive, and motor processing. We propose to understand this frontal region as a highly flexible sequence processor, with the PMv mapping sequential events onto stored structural templates and Broca's Area involved in more complex, hierarchical or hypersequential processing. This proposal is supported by reference to previous functional neuroimaging studies investigating abstract sequence processing and syntactic processing.

  20. Parahippocampal Cortex Mediates the Relationship between Lutein and Crystallized Intelligence in Healthy, Older Adults

    PubMed Central

    Zamroziewicz, Marta K.; Paul, Erick J.; Zwilling, Chris E.; Johnson, Elizabeth J.; Kuchan, Matthew J.; Cohen, Neal J.; Barbey, Aron K.

    2016-01-01

    Introduction: Although, diet has a substantial influence on the aging brain, the relationship between dietary nutrients and aspects of brain health remains unclear. This study examines the neural mechanisms that mediate the relationship between a carotenoid important for brain health across the lifespan, lutein, and crystallized intelligence in cognitively intact older adults. We hypothesized that higher serum levels of lutein are associated with better performance on a task of crystallized intelligence, and that this relationship is mediated by gray matter structure of regions within the temporal cortex. This investigation aims to contribute to a growing line of evidence, which suggests that particular nutrients may slow or prevent aspects of cognitive decline by targeting specific features of brain aging. Methods: We examined 76 cognitively intact adults between the ages of 65 and 75 to investigate the relationship between serum lutein, tests of crystallized intelligence (measured by the Wechsler Abbreviated Scale of Intelligence), and gray matter volume of regions within the temporal cortex. A three-step mediation analysis was implemented using multivariate linear regressions to control for age, sex, education, income, depression status, and body mass index. Results: The mediation analysis revealed that gray matter thickness of one region within the temporal cortex, the right parahippocampal cortex (Brodmann's Area 34), partially mediates the relationship between serum lutein and crystallized intelligence. Conclusion: These results suggest that the parahippocampal cortex acts as a mediator of the relationship between serum lutein and crystallized intelligence in cognitively intact older adults. Prior findings substantiate the individual relationships reported within the mediation, specifically the links between (i) serum lutein and temporal cortex structure, (ii) serum lutein and crystallized intelligence, and (iii) parahippocampal cortex structure and crystallized intelligence. This report demonstrates a novel structural mediation between lutein status and crystallized intelligence, and therefore provides further evidence that specific nutrients may slow or prevent features of cognitive decline by hindering particular aspects of brain aging. Future work should examine the potential mechanisms underlying this mediation, including the antioxidant, anti-inflammatory, and membrane modulating properties of lutein. PMID:27999541

  1. Cortical plasticity as a mechanism for storing Bayesian priors in sensory perception.

    PubMed

    Köver, Hania; Bao, Shaowen

    2010-05-05

    Human perception of ambiguous sensory signals is biased by prior experiences. It is not known how such prior information is encoded, retrieved and combined with sensory information by neurons. Previous authors have suggested dynamic encoding mechanisms for prior information, whereby top-down modulation of firing patterns on a trial-by-trial basis creates short-term representations of priors. Although such a mechanism may well account for perceptual bias arising in the short-term, it does not account for the often irreversible and robust changes in perception that result from long-term, developmental experience. Based on the finding that more frequently experienced stimuli gain greater representations in sensory cortices during development, we reasoned that prior information could be stored in the size of cortical sensory representations. For the case of auditory perception, we use a computational model to show that prior information about sound frequency distributions may be stored in the size of primary auditory cortex frequency representations, read-out by elevated baseline activity in all neurons and combined with sensory-evoked activity to generate a perception that conforms to Bayesian integration theory. Our results suggest an alternative neural mechanism for experience-induced long-term perceptual bias in the context of auditory perception. They make the testable prediction that the extent of such perceptual prior bias is modulated by both the degree of cortical reorganization and the magnitude of spontaneous activity in primary auditory cortex. Given that cortical over-representation of frequently experienced stimuli, as well as perceptual bias towards such stimuli is a common phenomenon across sensory modalities, our model may generalize to sensory perception, rather than being specific to auditory perception.

  2. Integrating mechanisms of visual guidance in naturalistic language production.

    PubMed

    Coco, Moreno I; Keller, Frank

    2015-05-01

    Situated language production requires the integration of visual attention and linguistic processing. Previous work has not conclusively disentangled the role of perceptual scene information and structural sentence information in guiding visual attention. In this paper, we present an eye-tracking study that demonstrates that three types of guidance, perceptual, conceptual, and structural, interact to control visual attention. In a cued language production experiment, we manipulate perceptual (scene clutter) and conceptual guidance (cue animacy) and measure structural guidance (syntactic complexity of the utterance). Analysis of the time course of language production, before and during speech, reveals that all three forms of guidance affect the complexity of visual responses, quantified in terms of the entropy of attentional landscapes and the turbulence of scan patterns, especially during speech. We find that perceptual and conceptual guidance mediate the distribution of attention in the scene, whereas structural guidance closely relates to scan pattern complexity. Furthermore, the eye-voice span of the cued object and its perceptual competitor are similar; its latency mediated by both perceptual and structural guidance. These results rule out a strict interpretation of structural guidance as the single dominant form of visual guidance in situated language production. Rather, the phase of the task and the associated demands of cross-modal cognitive processing determine the mechanisms that guide attention.

  3. Visual enhancing of tactile perception in the posterior parietal cortex.

    PubMed

    Ro, Tony; Wallace, Ruth; Hagedorn, Judith; Farnè, Alessandro; Pienkos, Elizabeth

    2004-01-01

    The visual modality typically dominates over our other senses. Here we show that after inducing an extreme conflict in the left hand between vision of touch (present) and the feeling of touch (absent), sensitivity to touch increases for several minutes after the conflict. Transcranial magnetic stimulation of the posterior parietal cortex after this conflict not only eliminated the enduring visual enhancement of touch, but also impaired normal tactile perception. This latter finding demonstrates a direct role of the parietal lobe in modulating tactile perception as a result of the conflict between these senses. These results provide evidence for visual-to-tactile perceptual modulation and demonstrate effects of illusory vision of touch on touch perception through a long-lasting modulatory process in the posterior parietal cortex.

  4. The effect of perceptual reasoning abilities on confrontation naming performance: An examination of three naming tests.

    PubMed

    Soble, Jason R; Marceaux, Janice C; Galindo, Juliette; Sordahl, Jeffrey A; Highsmith, Jonathan M; O'Rourke, Justin J F; González, David Andrés; Critchfield, Edan A; McCoy, Karin J M

    2016-01-01

    Confrontation naming tests are a common neuropsychological method of assessing language and a critical diagnostic tool in identifying certain neurodegenerative diseases; however, there is limited literature examining the visual-perceptual demands of these tasks. This study investigated the effect of perceptual reasoning abilities on three confrontation naming tests, the Boston Naming Test (BNT), Neuropsychological Assessment Battery (NAB) Naming Test, and Visual Naming Test (VNT) to elucidate the diverse cognitive functions underlying these tasks to assist with test selection procedures and increase diagnostic accuracy. A mixed clinical sample of 121 veterans were administered the BNT, NAB, VNT, and Wechsler Adult Intelligence Scale-4th Edition (WAIS-IV) Verbal Comprehension Index (VCI) and Perceptual Reasoning Index (PRI) as part of a comprehensive neuropsychological evaluation. Multiple regression indicated that PRI accounted for 23%, 13%, and 15% of the variance in BNT, VNT, and NAB scores, respectively, but dropped out as a significant predictor once VCI was added. Follow-up bootstrap mediation analyses revealed that PRI had a significant indirect effect on naming performance after controlling education, primary language, and severity of cognitive impairment, as well as the mediating effect of general verbal abilities for the BNT (B = 0.13; 95% confidence interval, CI [.07, .20]), VNT (B = 0.01; 95% CI [.002, .03]), and NAB (B = 0.03; 95% CI [.01, .06]). Findings revealed a complex relationship between perceptual reasoning abilities and confrontation naming that is mediated by general verbal abilities. However, when verbal abilities were statistically controlled, perceptual reasoning abilities were found to have a significant indirect effect on performance across all three confrontation naming measures with the largest effect noted with the BNT relative to the VNT and NAB Naming Test.

  5. Visual training improves perceptual grouping based on basic stimulus features.

    PubMed

    Kurylo, Daniel D; Waxman, Richard; Kidron, Rachel; Silverstein, Steven M

    2017-10-01

    Training on visual tasks improves performance on basic and higher order visual capacities. Such improvement has been linked to changes in connectivity among mediating neurons. We investigated whether training effects occur for perceptual grouping. It was hypothesized that repeated engagement of integration mechanisms would enhance grouping processes. Thirty-six participants underwent 15 sessions of training on a visual discrimination task that required perceptual grouping. Participants viewed 20 × 20 arrays of dots or Gabor patches and indicated whether the array appeared grouped as vertical or horizontal lines. Across trials stimuli became progressively disorganized, contingent upon successful discrimination. Four visual dimensions were examined, in which grouping was based on similarity in luminance, color, orientation, and motion. Psychophysical thresholds of grouping were assessed before and after training. Results indicate that performance in all four dimensions improved with training. Training on a control condition, which paralleled the discrimination task but without a grouping component, produced no improvement. In addition, training on only the luminance and orientation dimensions improved performance for those conditions as well as for grouping by color, on which training had not occurred. However, improvement from partial training did not generalize to motion. Results demonstrate that a training protocol emphasizing stimulus integration enhanced perceptual grouping. Results suggest that neural mechanisms mediating grouping by common luminance and/or orientation contribute to those mediating grouping by color but do not share resources for grouping by common motion. Results are consistent with theories of perceptual learning emphasizing plasticity in early visual processing regions.

  6. Odor identity coding by distributed ensembles of neurons in the mouse olfactory cortex

    PubMed Central

    Roland, Benjamin; Deneux, Thomas; Franks, Kevin M; Bathellier, Brice; Fleischmann, Alexander

    2017-01-01

    Olfactory perception and behaviors critically depend on the ability to identify an odor across a wide range of concentrations. Here, we use calcium imaging to determine how odor identity is encoded in olfactory cortex. We find that, despite considerable trial-to-trial variability, odor identity can accurately be decoded from ensembles of co-active neurons that are distributed across piriform cortex without any apparent spatial organization. However, piriform response patterns change substantially over a 100-fold change in odor concentration, apparently degrading the population representation of odor identity. We show that this problem can be resolved by decoding odor identity from a subpopulation of concentration-invariant piriform neurons. These concentration-invariant neurons are overrepresented in piriform cortex but not in olfactory bulb mitral and tufted cells. We therefore propose that distinct perceptual features of odors are encoded in independent subnetworks of neurons in the olfactory cortex. DOI: http://dx.doi.org/10.7554/eLife.26337.001 PMID:28489003

  7. Cognitive processing in the primary visual cortex: from perception to memory.

    PubMed

    Supèr, Hans

    2002-01-01

    The primary visual cortex is the first cortical area of the visual system that receives information from the external visual world. Based on the receptive field characteristics of the neurons in this area, it has been assumed that the primary visual cortex is a pure sensory area extracting basic elements of the visual scene. This information is then subsequently further processed upstream in the higher-order visual areas and provides us with perception and storage of the visual environment. However, recent findings show that such neural implementations are observed in the primary visual cortex. These neural correlates are expressed by the modulated activity of the late response of a neuron to a stimulus, and most likely depend on recurrent interactions between several areas of the visual system. This favors the concept of a distributed nature of visual processing in perceptual organization.

  8. From perceptive fields to Gestalt.

    PubMed

    Spillmann, Lothar

    2006-01-01

    Studies on visual psychophysics and perception conducted in the Freiburg psychophysics laboratory during the last 35 years are reviewed. Many of these were inspired by single-cell neurophysiology in cat and monkey. The aim was to correlate perceptual phenomena and their effects to possible neuronal mechanisms from retina to visual cortex and beyond. Topics discussed include perceptive field organization, figure-ground segregation and grouping, fading and filling-in, and long-range color interaction. While some of these studies succeeded in linking perception to neuronal response patterns, others require further investigation. The task of probing the human brain with perceptual phenomena continues to be a challenge for the future.

  9. Interactions between Visual Attention and Episodic Retrieval: Dissociable Contributions of Parietal Regions during Gist-Based False Recognition

    PubMed Central

    Guerin, Scott A.; Robbins, Clifford A.; Gilmore, Adrian W.; Schacter, Daniel L.

    2012-01-01

    SUMMARY The interaction between episodic retrieval and visual attention is relatively unexplored. Given that systems mediating attention and episodic memory appear to be segregated, and perhaps even in competition, it is unclear how visual attention is recruited during episodic retrieval. We investigated the recruitment of visual attention during the suppression of gist-based false recognition, the tendency to falsely recognize items that are similar to previously encountered items. Recruitment of visual attention was associated with activity in the dorsal attention network. The inferior parietal lobule, often implicated in episodic retrieval, tracked veridical retrieval of perceptual detail and showed reduced activity during the engagement of visual attention, consistent with a competitive relationship with the dorsal attention network. These findings suggest that the contribution of the parietal cortex to interactions between visual attention and episodic retrieval entails distinct systems that contribute to different components of the task while also suppressing each other. PMID:22998879

  10. A pilot study of the effects of gonadotropin-releasing hormone agonist therapy on brain activation pattern in a man with pedophilia.

    PubMed

    Moulier, Virginie; Fonteille, Véronique; Pélégrini-Issac, Mélanie; Cordier, Bernard; Baron-Laforêt, Sophie; Boriasse, Emeline; Durand, Emmanuel; Stoléru, Serge

    2012-02-01

    Gonadotropin-releasing hormone (GnRH) agonists, such as leuprorelin, are recommended in the patients with pedophilia at highest risk of offending. However, the cerebral mechanisms of the effects of these testosterone-decreasing drugs are poorly known. This study aimed to identify changes caused by leuprorelin in a pedophilic patient's brain responses to pictures representing children. Clinical, endocrine, and fMRI investigations were done of a man with pedophilia before leuprorelin therapy and 5 months into leuprorelin therapy. Patient was compared with an age-matched healthy control also assessed 5 months apart. Before therapy, pictures of boys elicited activation in the left calcarine fissure, left insula, anterior cingulate cortex, and left cerebellar vermis. Five months into therapy, all the above-mentioned activations had disappeared. No such activations and, consequently, no such decreases occurred in the healthy control. The results of this pilot study suggest that leuprorelin decreased activity in regions known to mediate the perceptual, motivational, and affective responses to visual sexual stimuli.

  11. Common and dissociable neural correlates associated with component processes of inductive reasoning.

    PubMed

    Jia, Xiuqin; Liang, Peipeng; Lu, Jie; Yang, Yanhui; Zhong, Ning; Li, Kuncheng

    2011-06-15

    The ability to draw numerical inductive reasoning requires two key cognitive processes, identification and extrapolation. This study aimed to identify the neural correlates of both component processes of numerical inductive reasoning using event-related fMRI. Three kinds of tasks: rule induction (RI), rule induction and application (RIA), and perceptual judgment (Jud) were solved by twenty right-handed adults. Our results found that the left superior parietal lobule (SPL) extending into the precuneus and left dorsolateral prefrontal cortex (DLPFC) were commonly recruited in the two components. It was also observed that the fronto-parietal network was more specific to identification, whereas the striatal-thalamic network was more specific to extrapolation. The findings suggest that numerical inductive reasoning is mediated by the coordination of multiple brain areas including the prefrontal, parietal, and subcortical regions, of which some are more specific to demands on only one of these two component processes, whereas others are sensitive to both. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Visual input enhances selective speech envelope tracking in auditory cortex at a "cocktail party".

    PubMed

    Zion Golumbic, Elana; Cogan, Gregory B; Schroeder, Charles E; Poeppel, David

    2013-01-23

    Our ability to selectively attend to one auditory signal amid competing input streams, epitomized by the "Cocktail Party" problem, continues to stimulate research from various approaches. How this demanding perceptual feat is achieved from a neural systems perspective remains unclear and controversial. It is well established that neural responses to attended stimuli are enhanced compared with responses to ignored ones, but responses to ignored stimuli are nonetheless highly significant, leading to interference in performance. We investigated whether congruent visual input of an attended speaker enhances cortical selectivity in auditory cortex, leading to diminished representation of ignored stimuli. We recorded magnetoencephalographic signals from human participants as they attended to segments of natural continuous speech. Using two complementary methods of quantifying the neural response to speech, we found that viewing a speaker's face enhances the capacity of auditory cortex to track the temporal speech envelope of that speaker. This mechanism was most effective in a Cocktail Party setting, promoting preferential tracking of the attended speaker, whereas without visual input no significant attentional modulation was observed. These neurophysiological results underscore the importance of visual input in resolving perceptual ambiguity in a noisy environment. Since visual cues in speech precede the associated auditory signals, they likely serve a predictive role in facilitating auditory processing of speech, perhaps by directing attentional resources to appropriate points in time when to-be-attended acoustic input is expected to arrive.

  13. Stepwise Connectivity of the Modal Cortex Reveals the Multimodal Organization of the Human Brain

    PubMed Central

    Sepulcre, Jorge; Sabuncu, Mert R.; Yeo, Thomas B.; Liu, Hesheng; Johnson, Keith A.

    2012-01-01

    How human beings integrate information from external sources and internal cognition to produce a coherent experience is still not well understood. During the past decades, anatomical, neurophysiological and neuroimaging research in multimodal integration have stood out in the effort to understand the perceptual binding properties of the brain. Areas in the human lateral occipito-temporal, prefrontal and posterior parietal cortices have been associated with sensory multimodal processing. Even though this, rather patchy, organization of brain regions gives us a glimpse of the perceptual convergence, the articulation of the flow of information from modality-related to the more parallel cognitive processing systems remains elusive. Using a method called Stepwise Functional Connectivity analysis, the present study analyzes the functional connectome and transitions from primary sensory cortices to higher-order brain systems. We identify the large-scale multimodal integration network and essential connectivity axes for perceptual integration in the human brain. PMID:22855814

  14. Visuomotor Binding in Older Adults

    ERIC Educational Resources Information Center

    Bloesch, Emily K.; Abrams, Richard A.

    2010-01-01

    Action integration is the process through which actions performed on a stimulus and perceptual aspects of the stimulus become bound as a unitary object. This process appears to be controlled by the dopaminergic system in the prefrontal cortex, an area that is known to decrease in volume and dopamine functioning in older adults. Although the…

  15. Neuroanatomical correlates of encoding in episodic memory: levels of processing effect.

    PubMed Central

    Kapur, S; Craik, F I; Tulving, E; Wilson, A A; Houle, S; Brown, G M

    1994-01-01

    Cognitive studies of memory processes demonstrate that memory for stimuli is a function of how they are encoded; stimuli processed semantically are better remembered than those processed in a perceptual or shallow fashion. This study investigates the neural correlates of this cognitive phenomenon. Twelve subjects performed two different cognitive tasks on a series of visually presented nouns. In one task, subjects detected the presence or absence of the letter a; in the other, subjects categorized each noun as living or nonliving. Positron emission tomography (PET) scans using 15O-labeled water were obtained during both tasks. Subjects showed substantially better recognition memory for nouns seen in the living/nonliving task, compared to nouns seen in the a-checking task. Comparison of the PET images between the two cognitive tasks revealed a significant activation in the left inferior prefrontal cortex (Brodmann's areas 45, 46, 47, and 10) in the semantic task as compared to the perceptual task. We propose that memory processes are subserved by a wide neurocognitive network and that encoding processes involve preferential activation of the structures in the left inferior prefrontal cortex. PMID:8134340

  16. Neuroanatomical correlates of encoding in episodic memory: levels of processing effect.

    PubMed

    Kapur, S; Craik, F I; Tulving, E; Wilson, A A; Houle, S; Brown, G M

    1994-03-15

    Cognitive studies of memory processes demonstrate that memory for stimuli is a function of how they are encoded; stimuli processed semantically are better remembered than those processed in a perceptual or shallow fashion. This study investigates the neural correlates of this cognitive phenomenon. Twelve subjects performed two different cognitive tasks on a series of visually presented nouns. In one task, subjects detected the presence or absence of the letter a; in the other, subjects categorized each noun as living or nonliving. Positron emission tomography (PET) scans using 15O-labeled water were obtained during both tasks. Subjects showed substantially better recognition memory for nouns seen in the living/nonliving task, compared to nouns seen in the a-checking task. Comparison of the PET images between the two cognitive tasks revealed a significant activation in the left inferior prefrontal cortex (Brodmann's areas 45, 46, 47, and 10) in the semantic task as compared to the perceptual task. We propose that memory processes are subserved by a wide neurocognitive network and that encoding processes involve preferential activation of the structures in the left inferior prefrontal cortex.

  17. Blood Oxygen Level-Dependent Activation of the Primary Visual Cortex Predicts Size Adaptation Illusion

    PubMed Central

    Pooresmaeili, Arezoo; Arrighi, Roberto; Biagi, Laura; Morrone, Maria Concetta

    2016-01-01

    In natural scenes, objects rarely occur in isolation but appear within a spatiotemporal context. Here, we show that the perceived size of a stimulus is significantly affected by the context of the scene: brief previous presentation of larger or smaller adapting stimuli at the same region of space changes the perceived size of a test stimulus, with larger adapting stimuli causing the test to appear smaller than veridical and vice versa. In a human fMRI study, we measured the blood oxygen level-dependent activation (BOLD) responses of the primary visual cortex (V1) to the contours of large-diameter stimuli and found that activation closely matched the perceptual rather than the retinal stimulus size: the activated area of V1 increased or decreased, depending on the size of the preceding stimulus. A model based on local inhibitory V1 mechanisms simulated the inward or outward shifts of the stimulus contours and hence the perceptual effects. Our findings suggest that area V1 is actively involved in reshaping our perception to match the short-term statistics of the visual scene. PMID:24089504

  18. A Tangent Bundle Theory for Visual Curve Completion.

    PubMed

    Ben-Yosef, Guy; Ben-Shahar, Ohad

    2012-07-01

    Visual curve completion is a fundamental perceptual mechanism that completes the missing parts (e.g., due to occlusion) between observed contour fragments. Previous research into the shape of completed curves has generally followed an "axiomatic" approach, where desired perceptual/geometrical properties are first defined as axioms, followed by mathematical investigation into curves that satisfy them. However, determining psychophysically such desired properties is difficult and researchers still debate what they should be in the first place. Instead, here we exploit the observation that curve completion is an early visual process to formalize the problem in the unit tangent bundle R(2) × S(1), which abstracts the primary visual cortex (V1) and facilitates exploration of basic principles from which perceptual properties are later derived rather than imposed. Exploring here the elementary principle of least action in V1, we show how the problem becomes one of finding minimum-length admissible curves in R(2) × S(1). We formalize the problem in variational terms, we analyze it theoretically, and we formulate practical algorithms for the reconstruction of these completed curves. We then explore their induced visual properties vis-à-vis popular perceptual axioms and show how our theory predicts many perceptual properties reported in the corresponding perceptual literature. Finally, we demonstrate a variety of curve completions and report comparisons to psychophysical data and other completion models.

  19. Luminance- and Texture-Defined Information Processing in School-Aged Children with Autism

    PubMed Central

    Rivest, Jessica B.; Jemel, Boutheina; Bertone, Armando; McKerral, Michelle; Mottron, Laurent

    2013-01-01

    According to the complexity-specific hypothesis, the efficacy with which individuals with autism spectrum disorder (ASD) process visual information varies according to the extensiveness of the neural network required to process stimuli. Specifically, adults with ASD are less sensitive to texture-defined (or second-order) information, which necessitates the implication of several cortical visual areas. Conversely, the sensitivity to simple, luminance-defined (or first-order) information, which mainly relies on primary visual cortex (V1) activity, has been found to be either superior (static material) or intact (dynamic material) in ASD. It is currently unknown if these autistic perceptual alterations are present in childhood. In the present study, behavioural (threshold) and electrophysiological measures were obtained for static luminance- and texture-defined gratings presented to school-aged children with ASD and compared to those of typically developing children. Our behavioural and electrophysiological (P140) results indicate that luminance processing is likely unremarkable in autistic children. With respect to texture processing, there was no significant threshold difference between groups. However, unlike typical children, autistic children did not show reliable enhancements of brain activity (N230 and P340) in response to texture-defined gratings relative to luminance-defined gratings. This suggests reduced efficiency of neuro-integrative mechanisms operating at a perceptual level in autism. These results are in line with the idea that visual atypicalities mediated by intermediate-scale neural networks emerge before or during the school-age period in autism. PMID:24205355

  20. Luminance- and texture-defined information processing in school-aged children with autism.

    PubMed

    Rivest, Jessica B; Jemel, Boutheina; Bertone, Armando; McKerral, Michelle; Mottron, Laurent

    2013-01-01

    According to the complexity-specific hypothesis, the efficacy with which individuals with autism spectrum disorder (ASD) process visual information varies according to the extensiveness of the neural network required to process stimuli. Specifically, adults with ASD are less sensitive to texture-defined (or second-order) information, which necessitates the implication of several cortical visual areas. Conversely, the sensitivity to simple, luminance-defined (or first-order) information, which mainly relies on primary visual cortex (V1) activity, has been found to be either superior (static material) or intact (dynamic material) in ASD. It is currently unknown if these autistic perceptual alterations are present in childhood. In the present study, behavioural (threshold) and electrophysiological measures were obtained for static luminance- and texture-defined gratings presented to school-aged children with ASD and compared to those of typically developing children. Our behavioural and electrophysiological (P140) results indicate that luminance processing is likely unremarkable in autistic children. With respect to texture processing, there was no significant threshold difference between groups. However, unlike typical children, autistic children did not show reliable enhancements of brain activity (N230 and P340) in response to texture-defined gratings relative to luminance-defined gratings. This suggests reduced efficiency of neuro-integrative mechanisms operating at a perceptual level in autism. These results are in line with the idea that visual atypicalities mediated by intermediate-scale neural networks emerge before or during the school-age period in autism.

  1. Technological, biological, and acoustical constraints to music perception in cochlear implant users.

    PubMed

    Limb, Charles J; Roy, Alexis T

    2014-02-01

    Despite advances in technology, the ability to perceive music remains limited for many cochlear implant users. This paper reviews the technological, biological, and acoustical constraints that make music an especially challenging stimulus for cochlear implant users, while highlighting recent research efforts to overcome these shortcomings. The limitations of cochlear implant devices, which have been optimized for speech comprehension, become evident when applied to music, particularly with regards to inadequate spectral, fine-temporal, and dynamic range representation. Beyond the impoverished information transmitted by the device itself, both peripheral and central auditory nervous system deficits are seen in the presence of sensorineural hearing loss, such as auditory nerve degeneration and abnormal auditory cortex activation. These technological and biological constraints to effective music perception are further compounded by the complexity of the acoustical features of music itself that require the perceptual integration of varying rhythmic, melodic, harmonic, and timbral elements of sound. Cochlear implant users not only have difficulty perceiving spectral components individually (leading to fundamental disruptions in perception of pitch, melody, and harmony) but also display deficits with higher perceptual integration tasks required for music perception, such as auditory stream segregation. Despite these current limitations, focused musical training programs, new assessment methods, and improvements in the representation and transmission of the complex acoustical features of music through technological innovation offer the potential for significant advancements in cochlear implant-mediated music perception. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Task-related modulation of effective connectivity during perceptual decision making: dissociation between dorsal and ventral prefrontal cortex.

    PubMed

    Akaishi, Rei; Ueda, Naoko; Sakai, Katsuyuki

    2013-01-01

    The dorsal and ventral parts of the lateral prefrontal cortex have been thought to play distinct roles in decision making. Although its dorsal part such as the frontal eye field (FEF) is shown to play roles in accumulation of sensory information during perceptual decision making, the role of the ventral prefrontal cortex (PFv) is not well-documented. Previous studies have suggested that the PFv is involved in selective attention to the task-relevant information and is associated with accuracy of the behavioral performance. It is unknown, however, whether the accumulation and selection processes are anatomically dissociated between the FEF and PFv. Here we show that, by using concurrent TMS and EEG recording, the short-latency (20-40 ms) TMS-evoked potentials after stimulation of the FEF change as a function of the time to behavioral response, whereas those after stimulation of the PFv change depending on whether the response is correct or not. The potentials after stimulation of either region did not show significant interaction between time to response and performance accuracy, suggesting dissociation between the processes subserved by the FEF and PFv networks. The results are consistent with the idea that the network involving the FEF plays a role in information accumulation, whereas the network involving the PFv plays a role in selecting task relevant information. In addition, stimulation of the FEF and PFv induced activation in common regions in the dorsolateral and medial frontal cortices, suggesting convergence of information processed in the two regions. Taken together, the results suggest dissociation between the FEF and PFv networks for their computational roles in perceptual decision making. The study also highlights the advantage of TMS-EEG technique in investigating the computational processes subserved by the neural network in the human brain with a high temporal resolution.

  3. Real-Time Strategy Video Game Experience and Visual Perceptual Learning.

    PubMed

    Kim, Yong-Hwan; Kang, Dong-Wha; Kim, Dongho; Kim, Hye-Jin; Sasaki, Yuka; Watanabe, Takeo

    2015-07-22

    Visual perceptual learning (VPL) is defined as long-term improvement in performance on a visual-perception task after visual experiences or training. Early studies have found that VPL is highly specific for the trained feature and location, suggesting that VPL is associated with changes in the early visual cortex. However, the generality of visual skills enhancement attributable to action video-game experience suggests that VPL can result from improvement in higher cognitive skills. If so, experience in real-time strategy (RTS) video-game play, which may heavily involve cognitive skills, may also facilitate VPL. To test this hypothesis, we compared VPL between RTS video-game players (VGPs) and non-VGPs (NVGPs) and elucidated underlying structural and functional neural mechanisms. Healthy young human subjects underwent six training sessions on a texture discrimination task. Diffusion-tensor and functional magnetic resonance imaging were performed before and after training. VGPs performed better than NVGPs in the early phase of training. White-matter connectivity between the right external capsule and visual cortex and neuronal activity in the right inferior frontal gyrus (IFG) and anterior cingulate cortex (ACC) were greater in VGPs than NVGPs and were significantly correlated with RTS video-game experience. In both VGPs and NVGPs, there was task-related neuronal activity in the right IFG, ACC, and striatum, which was strengthened after training. These results indicate that RTS video-game experience, associated with changes in higher-order cognitive functions and connectivity between visual and cognitive areas, facilitates VPL in early phases of training. The results support the hypothesis that VPL can occur without involvement of only visual areas. Significance statement: Although early studies found that visual perceptual learning (VPL) is associated with involvement of the visual cortex, generality of visual skills enhancement by action video-game experience suggests that higher-order cognition may be involved in VPL. If so, real-time strategy (RTS) video-game experience may facilitate VPL as a result of heavy involvement of cognitive skills. Here, we compared VPL between RTS video-game players (VGPs) and non-VGPs (NVGPs) and investigated the underlying neural mechanisms. VGPs showed better performance in the early phase of training on the texture discrimination task and greater level of neuronal activity in cognitive areas and structural connectivity between visual and cognitive areas than NVGPs. These results support the hypothesis that VPL can occur beyond the visual cortex. Copyright © 2015 the authors 0270-6474/15/3510485-08$15.00/0.

  4. Parallel perceptual enhancement and hierarchic relevance evaluation in an audio-visual conjunction task.

    PubMed

    Potts, Geoffrey F; Wood, Susan M; Kothmann, Delia; Martin, Laura E

    2008-10-21

    Attention directs limited-capacity information processing resources to a subset of available perceptual representations. The mechanisms by which attention selects task-relevant representations for preferential processing are not fully known. Triesman and Gelade's [Triesman, A., Gelade, G., 1980. A feature integration theory of attention. Cognit. Psychol. 12, 97-136.] influential attention model posits that simple features are processed preattentively, in parallel, but that attention is required to serially conjoin multiple features into an object representation. Event-related potentials have provided evidence for this model showing parallel processing of perceptual features in the posterior Selection Negativity (SN) and serial, hierarchic processing of feature conjunctions in the Frontal Selection Positivity (FSP). Most prior studies have been done on conjunctions within one sensory modality while many real-world objects have multimodal features. It is not known if the same neural systems of posterior parallel processing of simple features and frontal serial processing of feature conjunctions seen within a sensory modality also operate on conjunctions between modalities. The current study used ERPs and simultaneously presented auditory and visual stimuli in three task conditions: Attend Auditory (auditory feature determines the target, visual features are irrelevant), Attend Visual (visual features relevant, auditory irrelevant), and Attend Conjunction (target defined by the co-occurrence of an auditory and a visual feature). In the Attend Conjunction condition when the auditory but not the visual feature was a target there was an SN over auditory cortex, when the visual but not auditory stimulus was a target there was an SN over visual cortex, and when both auditory and visual stimuli were targets (i.e. conjunction target) there were SNs over both auditory and visual cortex, indicating parallel processing of the simple features within each modality. In contrast, an FSP was present when either the visual only or both auditory and visual features were targets, but not when only the auditory stimulus was a target, indicating that the conjunction target determination was evaluated serially and hierarchically with visual information taking precedence. This indicates that the detection of a target defined by audio-visual conjunction is achieved via the same mechanism as within a single perceptual modality, through separate, parallel processing of the auditory and visual features and serial processing of the feature conjunction elements, rather than by evaluation of a fused multimodal percept.

  5. Domain-General and Domain-Specific Patterns of Activity Supporting Metacognition in Human Prefrontal Cortex

    PubMed Central

    2018-01-01

    Metacognition is the capacity to evaluate the success of one's own cognitive processes in various domains; for example, memory and perception. It remains controversial whether metacognition relies on a domain-general resource that is applied to different tasks or if self-evaluative processes are domain specific. Here, we investigated this issue directly by examining the neural substrates engaged when metacognitive judgments were made by human participants of both sexes during perceptual and memory tasks matched for stimulus and performance characteristics. By comparing patterns of fMRI activity while subjects evaluated their performance, we revealed both domain-specific and domain-general metacognitive representations. Multivoxel activity patterns in anterior prefrontal cortex predicted levels of confidence in a domain-specific fashion, whereas domain-general signals predicting confidence and accuracy were found in a widespread network in the frontal and posterior midline. The demonstration of domain-specific metacognitive representations suggests the presence of a content-rich mechanism available to introspection and cognitive control. SIGNIFICANCE STATEMENT We used human neuroimaging to investigate processes supporting memory and perceptual metacognition. It remains controversial whether metacognition relies on a global resource that is applied to different tasks or if self-evaluative processes are specific to particular tasks. Using multivariate decoding methods, we provide evidence that perceptual- and memory-specific metacognitive representations coexist with generic confidence signals. Our findings reconcile previously conflicting results on the domain specificity/generality of metacognition and lay the groundwork for a mechanistic understanding of metacognitive judgments. PMID:29519851

  6. Decoding and reconstructing color from responses in human visual cortex.

    PubMed

    Brouwer, Gijs Joost; Heeger, David J

    2009-11-04

    How is color represented by spatially distributed patterns of activity in visual cortex? Functional magnetic resonance imaging responses to several stimulus colors were analyzed with multivariate techniques: conventional pattern classification, a forward model of idealized color tuning, and principal component analysis (PCA). Stimulus color was accurately decoded from activity in V1, V2, V3, V4, and VO1 but not LO1, LO2, V3A/B, or MT+. The conventional classifier and forward model yielded similar accuracies, but the forward model (unlike the classifier) also reliably reconstructed novel stimulus colors not used to train (specify parameters of) the model. The mean responses, averaged across voxels in each visual area, were not reliably distinguishable for the different stimulus colors. Hence, each stimulus color was associated with a unique spatially distributed pattern of activity, presumably reflecting the color selectivity of cortical neurons. Using PCA, a color space was derived from the covariation, across voxels, in the responses to different colors. In V4 and VO1, the first two principal component scores (main source of variation) of the responses revealed a progression through perceptual color space, with perceptually similar colors evoking the most similar responses. This was not the case for any of the other visual cortical areas, including V1, although decoding was most accurate in V1. This dissociation implies a transformation from the color representation in V1 to reflect perceptual color space in V4 and VO1.

  7. Preferential coding of eye/hand motor actions in the human ventral occipito-temporal cortex.

    PubMed

    Tosoni, Annalisa; Guidotti, Roberto; Del Gratta, Cosimo; Committeri, Giorgia; Sestieri, Carlo

    2016-12-01

    The human ventral occipito-temporal cortex (OTC) contains areas specialized for particular perceptual/semantic categories, such as faces (fusiform face area, FFA) and places (parahippocampal place area, PPA). This organization has been interpreted as reflecting the visual structure of the world, i.e. perceptual similarity and/or eccentricity biases. However, recent functional magnetic resonance imaging (fMRI) studies have shown not only that regions of the OTC are modulated by non-visual, action-related object properties but also by motor planning and execution, although the functional role and specificity of this motor-related activity are still unclear. Here, through a reanalysis of previously published data, we tested whether the selectivity for perceptual/semantic categories in the OTC corresponds to a preference for particular motor actions. The results demonstrate for the first time that face- and place-selective regions of the OTC exhibit preferential BOLD response to the execution of hand pointing and saccadic eye movements, respectively. Moreover, multivariate analyses provide novel evidence for the consistency across neural representations of stimulus category and movement effector in OTC. According to a 'spatial hypothesis', this pattern of results originates from the match between the region eccentricity bias and the typical action space of the motor effectors. Alternatively, the double dissociation may be caused by the different effect produced by hand vs. eye movements on regions coding for body representation. Overall, the present findings offer novel insights on the coupling between visual and motor cortical representations. Copyright © 2016. Published by Elsevier Ltd.

  8. Attenuating illusory binding with TMS of the right parietal cortex

    PubMed Central

    Esterman, Michael; Verstynen, Timothy; Robertson, Lynn C.

    2007-01-01

    A number of neuroimaging and neuropsychology studies have implicated various regions of parietal cortex as playing a critical role in the binding of color and form into conjunctions. The current study investigates the role of two such regions by examining how parietal transcranial magnetic stimulation (TMS) influences binding errors known as ‘illusory conjunctions.’ Participants made fewer binding errors after 1 Hz rTMS of the right intraparietal sulcus (IPS), while basic perception of features (colors and shape) was unaffected. No perceptual effects were found following left IPS stimulation, or stimulation of the right angular gyrus at the junction of the transverse occipital sulcus (IPS/TOS). These results support a role for the parietal cortex in feature binding but in ways that may require rethinking. PMID:17336097

  9. Perceptual Learning via Modification of Cortical Top-Down Signals

    PubMed Central

    Schäfer, Roland; Vasilaki, Eleni; Senn, Walter

    2007-01-01

    The primary visual cortex (V1) is pre-wired to facilitate the extraction of behaviorally important visual features. Collinear edge detectors in V1, for instance, mutually enhance each other to improve the perception of lines against a noisy background. The same pre-wiring that facilitates line extraction, however, is detrimental when subjects have to discriminate the brightness of different line segments. How is it possible to improve in one task by unsupervised practicing, without getting worse in the other task? The classical view of perceptual learning is that practicing modulates the feedforward input stream through synaptic modifications onto or within V1. However, any rewiring of V1 would deteriorate other perceptual abilities different from the trained one. We propose a general neuronal model showing that perceptual learning can modulate top-down input to V1 in a task-specific way while feedforward and lateral pathways remain intact. Consistent with biological data, the model explains how context-dependent brightness discrimination is improved by a top-down recruitment of recurrent inhibition and a top-down induced increase of the neuronal gain within V1. Both the top-down modulation of inhibition and of neuronal gain are suggested to be universal features of cortical microcircuits which enable perceptual learning. PMID:17715996

  10. The neural system of metacognition accompanying decision-making in the prefrontal cortex

    PubMed Central

    Qiu, Lirong; Su, Jie; Ni, Yinmei; Bai, Yang; Zhang, Xuesong; Li, Xiaoli

    2018-01-01

    Decision-making is usually accompanied by metacognition, through which a decision maker monitors uncertainty regarding a decision and may then consequently revise the decision. These metacognitive processes can occur prior to or in the absence of feedback. However, the neural mechanisms of metacognition remain controversial. One theory proposes an independent neural system for metacognition in the prefrontal cortex (PFC); the other, that metacognitive processes coincide and overlap with the systems used for the decision-making process per se. In this study, we devised a novel “decision–redecision” paradigm to investigate the neural metacognitive processes involved in redecision as compared to the initial decision-making process. The participants underwent a perceptual decision-making task and a rule-based decision-making task during functional magnetic resonance imaging (fMRI). We found that the anterior PFC, including the dorsal anterior cingulate cortex (dACC) and lateral frontopolar cortex (lFPC), were more extensively activated after the initial decision. The dACC activity in redecision positively scaled with decision uncertainty and correlated with individual metacognitive uncertainty monitoring abilities—commonly occurring in both tasks—indicating that the dACC was specifically involved in decision uncertainty monitoring. In contrast, the lFPC activity seen in redecision processing was scaled with decision uncertainty reduction and correlated with individual accuracy changes—positively in the rule-based decision-making task and negatively in the perceptual decision-making task. Our results show that the lFPC was specifically involved in metacognitive control of decision adjustment and was subject to different control demands of the tasks. Therefore, our findings support that a separate neural system in the PFC is essentially involved in metacognition and further, that functions of the PFC in metacognition are dissociable. PMID:29684004

  11. Selective attention in perceptual adjustments to voice.

    PubMed

    Mullennix, J W; Howe, J N

    1999-10-01

    The effects of perceptual adjustments to voice information on the perception of isolated spoken words were examined. In two experiments, spoken target words were preceded or followed within a trial by a neutral word spoken in the same voice or in a different voice as the target. Over-all, words were reproduced more accurately on trials on which the voice of the neutral word matched the voice of the spoken target word, suggesting that perceptual adjustments to voice interfere with word processing. This result, however, was mediated by selective attention to voice. The results provide further evidence of a close processing relationship between perceptual adjustments to voice and spoken word recognition.

  12. Cortical Representations of Speech in a Multitalker Auditory Scene.

    PubMed

    Puvvada, Krishna C; Simon, Jonathan Z

    2017-09-20

    The ability to parse a complex auditory scene into perceptual objects is facilitated by a hierarchical auditory system. Successive stages in the hierarchy transform an auditory scene of multiple overlapping sources, from peripheral tonotopically based representations in the auditory nerve, into perceptually distinct auditory-object-based representations in the auditory cortex. Here, using magnetoencephalography recordings from men and women, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in distinct hierarchical stages of the auditory cortex. Using systems-theoretic methods of stimulus reconstruction, we show that the primary-like areas in the auditory cortex contain dominantly spectrotemporal-based representations of the entire auditory scene. Here, both attended and ignored speech streams are represented with almost equal fidelity, and a global representation of the full auditory scene with all its streams is a better candidate neural representation than that of individual streams being represented separately. We also show that higher-order auditory cortical areas, by contrast, represent the attended stream separately and with significantly higher fidelity than unattended streams. Furthermore, the unattended background streams are more faithfully represented as a single unsegregated background object rather than as separated objects. Together, these findings demonstrate the progression of the representations and processing of a complex acoustic scene up through the hierarchy of the human auditory cortex. SIGNIFICANCE STATEMENT Using magnetoencephalography recordings from human listeners in a simulated cocktail party environment, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in separate hierarchical stages of the auditory cortex. We show that the primary-like areas in the auditory cortex use a dominantly spectrotemporal-based representation of the entire auditory scene, with both attended and unattended speech streams represented with almost equal fidelity. We also show that higher-order auditory cortical areas, by contrast, represent an attended speech stream separately from, and with significantly higher fidelity than, unattended speech streams. Furthermore, the unattended background streams are represented as a single undivided background object rather than as distinct background objects. Copyright © 2017 the authors 0270-6474/17/379189-08$15.00/0.

  13. The effects of attention on perceptual implicit memory.

    PubMed

    Rajaram, S; Srinivas, K; Travers, S

    2001-10-01

    Reports on the effects of dividing attention at study on subsequent perceptual priming suggest that perceptual priming is generally unaffected by attentional manipulations as long as word identity is processed. We tested this hypothesis in three experiments by using the implicit word fragment completion and word stem completion tasks. Division of attention was instantiated with the Stroop task in order to ensure the processing of word identity even when the participant's attention was directed to a stimulus attribute other than the word itself. Under these conditions, we found that even though perceptual priming was significant, it was significantly reduced in magnitude. A stem cued recall test in Experiment 2 confirmed a more deleterious effect of divided attention on explicit memory. Taken together, our findings delineate the relative contributions of perceptual analysis and attentional processes in mediating perceptual priming on two ubiquitously used tasks of word fragment completion and word stem completion.

  14. Associative priming in a masked perceptual identification task: evidence for automatic processes.

    PubMed

    Pecher, Diane; Zeelenberg, René; Raaijmakers, Jeroen G W

    2002-10-01

    Two experiments investigated the influence of automatic and strategic processes on associative priming effects in a perceptual identification task in which prime-target pairs are briefly presented and masked. In this paradigm, priming is defined as a higher percentage of correctly identified targets for related pairs than for unrelated pairs. In Experiment 1, priming was obtained for mediated word pairs. This mediated priming effect was affected neither by the presence of direct associations nor by the presentation time of the primes, indicating that automatic priming effects play a role in perceptual identification. Experiment 2 showed that the priming effect was not affected by the proportion (.90 vs. .10) of related pairs if primes were presented briefly to prevent their identification. However, a large proportion effect was found when primes were presented for 1000 ms so that they were clearly visible. These results indicate that priming in a masked perceptual identification task is the result of automatic processes and is not affected by strategies. The present paradigm provides a valuable alternative to more commonly used tasks such as lexical decision.

  15. Sounds Activate Visual Cortex and Improve Visual Discrimination

    PubMed Central

    Störmer, Viola S.; Martinez, Antigona; McDonald, John J.; Hillyard, Steven A.

    2014-01-01

    A recent study in humans (McDonald et al., 2013) found that peripheral, task-irrelevant sounds activated contralateral visual cortex automatically as revealed by an auditory-evoked contralateral occipital positivity (ACOP) recorded from the scalp. The present study investigated the functional significance of this cross-modal activation of visual cortex, in particular whether the sound-evoked ACOP is predictive of improved perceptual processing of a subsequent visual target. A trial-by-trial analysis showed that the ACOP amplitude was markedly larger preceding correct than incorrect pattern discriminations of visual targets that were colocalized with the preceding sound. Dipole modeling of the scalp topography of the ACOP localized its neural generators to the ventrolateral extrastriate visual cortex. These results provide direct evidence that the cross-modal activation of contralateral visual cortex by a spatially nonpredictive but salient sound facilitates the discriminative processing of a subsequent visual target event at the location of the sound. Recordings of event-related potentials to the targets support the hypothesis that the ACOP is a neural consequence of the automatic orienting of visual attention to the location of the sound. PMID:25031419

  16. Limited Cognitive Resources Explain a Trade-Off between Perceptual and Metacognitive Vigilance.

    PubMed

    Maniscalco, Brian; McCurdy, Li Yan; Odegaard, Brian; Lau, Hakwan

    2017-02-01

    Why do experimenters give subjects short breaks in long behavioral experiments? Whereas previous studies suggest it is difficult to maintain attention and vigilance over long periods of time, it is unclear precisely what mechanisms benefit from rest after short experimental blocks. Here, we evaluate decline in both perceptual performance and metacognitive sensitivity (i.e., how well confidence ratings track perceptual decision accuracy) over time and investigate whether characteristics of prefrontal cortical areas correlate with these measures. Whereas a single-process signal detection model predicts that these two forms of fatigue should be strongly positively correlated, a dual-process model predicts that rates of decline may dissociate. Here, we show that these measures consistently exhibited negative or near-zero correlations, as if engaged in a trade-off relationship, suggesting that different mechanisms contribute to perceptual and metacognitive decisions. Despite this dissociation, the two mechanisms likely depend on common resources, which could explain their trade-off relationship. Based on structural MRI brain images of individual human subjects, we assessed gray matter volume in the frontal polar area, a region that has been linked to visual metacognition. Variability of frontal polar volume correlated with individual differences in behavior, indicating the region may play a role in supplying common resources for both perceptual and metacognitive vigilance. Additional experiments revealed that reduced metacognitive demand led to superior perceptual vigilance, providing further support for this hypothesis. Overall, results indicate that during breaks between short blocks, it is the higher-level perceptual decision mechanisms, rather than lower-level sensory machinery, that benefit most from rest. Perceptual task performance declines over time (the so-called vigilance decrement), but the relationship between vigilance in perception and metacognition has not yet been explored in depth. Here, we show that patterns in perceptual and metacognitive vigilance do not follow the pattern predicted by a previously suggested single-process model of perceptual and metacognitive decision making. We account for these findings by showing that regions of anterior prefrontal cortex (aPFC) previously associated with visual metacognition are also associated with perceptual vigilance. We also show that relieving metacognitive task demand improves perceptual vigilance, suggesting that aPFC may house a limited cognitive resource that contributes to both metacognition and perceptual vigilance. These findings advance our understanding of the mechanisms and dynamics of perceptual metacognition. Copyright © 2017 the authors 0270-6474/17/371213-12$15.00/0.

  17. Fasting mediated increase in p-BAD(ser155) and p-AKT(ser473) in the prefrontal cortex of mice.

    PubMed

    Pitchaimani, Vigneshwaran; Arumugam, Somasundaram; Thandavarayan, Rajarajan Amirthalingam; Karuppagounder, Vengadeshprabhu; Sreedhar, Remya; Afrin, Rejina; Harima, Meilei; Suzuki, Hiroshi; Miyashita, Shizuka; Nomoto, Mayumi; Sone, Hirohito; Suzuki, Kenji; Watanabe, Kenichi

    2014-09-05

    BAD-deficient mice and fasting have several common functional roles in seizures, beta-hydroxybutyrate (BHB) uptake in brain and alteration in counterregulatory hormonal regulation during hypoglycemia. Neuronal specific insulin receptor knockout (NIRKO) mice display impaired counterregulatory hormonal responses during hypoglycemia. In this study we investigated the fasting mediated expression of p-BAD(ser155) and p-AKT(ser473) in different regions of brain (prefrontal cortex, hippocampus, midbrain and hypothalamus). Fasting specifically increases p-BAD(ser155) and p-AKT(ser473) in prefrontal cortex and decreases in other regions of brain. Our results suggest that fasting may increase the uptake BHB by decreasing p-BAD(ser155) in the brain during hypoglycemia except prefrontal cortex and it uncovers specific functional area of p-BAD(ser155) and p-AKT(ser473) that may regulates counter regulatory hormonal response. Overall in support with previous findings, fasting mediated hypoglycemia activates prefrontal cortex insulin signaling which influences the hypothalamic paraventricular nucleus mediated activation of sympathoadrenal hormonal responses. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Choosing the Rules: Distinct and Overlapping Frontoparietal Representations of Task Rules for Perceptual Decisions

    PubMed Central

    Kriegeskorte, Nikolaus; Carlin, Johan D.; Rowe, James B.

    2013-01-01

    Behavior is governed by rules that associate stimuli with responses and outcomes. Human and monkey studies have shown that rule-specific information is widely represented in the frontoparietal cortex. However, it is not known how establishing a rule under different contexts affects its neural representation. Here, we use event-related functional MRI (fMRI) and multivoxel pattern classification methods to investigate the human brain's mechanisms of establishing and maintaining rules for multiple perceptual decision tasks. Rules were either chosen by participants or specifically instructed to them, and the fMRI activation patterns representing rule-specific information were compared between these contexts. We show that frontoparietal regions differ in the properties of their rule representations during active maintenance before execution. First, rule-specific information maintained in the dorsolateral and medial frontal cortex depends on the context in which it was established (chosen vs specified). Second, rule representations maintained in the ventrolateral frontal and parietal cortex are independent of the context in which they were established. Furthermore, we found that the rule-specific coding maintained in anticipation of stimuli may change with execution of the rule: representations in context-independent regions remain invariant from maintenance to execution stages, whereas rule representations in context-dependent regions do not generalize to execution stage. The identification of distinct frontoparietal systems with context-independent and context-dependent task rule representations, and the distinction between anticipatory and executive rule representations, provide new insights into the functional architecture of goal-directed behavior. PMID:23864675

  19. Visual Input Enhances Selective Speech Envelope Tracking in Auditory Cortex at a ‘Cocktail Party’

    PubMed Central

    Golumbic, Elana Zion; Cogan, Gregory B.; Schroeder, Charles E.; Poeppel, David

    2013-01-01

    Our ability to selectively attend to one auditory signal amidst competing input streams, epitomized by the ‘Cocktail Party’ problem, continues to stimulate research from various approaches. How this demanding perceptual feat is achieved from a neural systems perspective remains unclear and controversial. It is well established that neural responses to attended stimuli are enhanced compared to responses to ignored ones, but responses to ignored stimuli are nonetheless highly significant, leading to interference in performance. We investigated whether congruent visual input of an attended speaker enhances cortical selectivity in auditory cortex, leading to diminished representation of ignored stimuli. We recorded magnetoencephalographic (MEG) signals from human participants as they attended to segments of natural continuous speech. Using two complementary methods of quantifying the neural response to speech, we found that viewing a speaker’s face enhances the capacity of auditory cortex to track the temporal speech envelope of that speaker. This mechanism was most effective in a ‘Cocktail Party’ setting, promoting preferential tracking of the attended speaker, whereas without visual input no significant attentional modulation was observed. These neurophysiological results underscore the importance of visual input in resolving perceptual ambiguity in a noisy environment. Since visual cues in speech precede the associated auditory signals, they likely serve a predictive role in facilitating auditory processing of speech, perhaps by directing attentional resources to appropriate points in time when to-be-attended acoustic input is expected to arrive. PMID:23345218

  20. Visual and Haptic Shape Processing in the Human Brain: Unisensory Processing, Multisensory Convergence, and Top-Down Influences.

    PubMed

    Lee Masson, Haemy; Bulthé, Jessica; Op de Beeck, Hans P; Wallraven, Christian

    2016-08-01

    Humans are highly adept at multisensory processing of object shape in both vision and touch. Previous studies have mostly focused on where visually perceived object-shape information can be decoded, with haptic shape processing receiving less attention. Here, we investigate visuo-haptic shape processing in the human brain using multivoxel correlation analyses. Importantly, we use tangible, parametrically defined novel objects as stimuli. Two groups of participants first performed either a visual or haptic similarity-judgment task. The resulting perceptual object-shape spaces were highly similar and matched the physical parameter space. In a subsequent fMRI experiment, objects were first compared within the learned modality and then in the other modality in a one-back task. When correlating neural similarity spaces with perceptual spaces, visually perceived shape was decoded well in the occipital lobe along with the ventral pathway, whereas haptically perceived shape information was mainly found in the parietal lobe, including frontal cortex. Interestingly, ventrolateral occipito-temporal cortex decoded shape in both modalities, highlighting this as an area capable of detailed visuo-haptic shape processing. Finally, we found haptic shape representations in early visual cortex (in the absence of visual input), when participants switched from visual to haptic exploration, suggesting top-down involvement of visual imagery on haptic shape processing. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Distinct medial temporal networks encode surprise during motivation by reward versus punishment

    PubMed Central

    Murty, Vishnu P.; LaBar, Kevin S.; Adcock, R. Alison

    2016-01-01

    Adaptive motivated behavior requires predictive internal representations of the environment, and surprising events are indications for encoding new representations of the environment. The medial temporal lobe memory system, including the hippocampus and surrounding cortex, encodes surprising events and is influenced by motivational state. Because behavior reflects the goals of an individual, we investigated whether motivational valence (i.e., pursuing rewards versus avoiding punishments) also impacts neural and mnemonic encoding of surprising events. During functional magnetic resonance imaging (fMRI), participants encountered perceptually unexpected events either during the pursuit of rewards or avoidance of punishments. Despite similar levels of motivation across groups, reward and punishment facilitated the processing of surprising events in different medial temporal lobe regions. Whereas during reward motivation, perceptual surprises enhanced activation in the hippocampus, during punishment motivation surprises instead enhanced activation in parahippocampal cortex. Further, we found that reward motivation facilitated hippocampal coupling with ventromedial PFC, whereas punishment motivation facilitated parahippocampal cortical coupling with orbitofrontal cortex. Behaviorally, post-scan testing revealed that reward, but not punishment, motivation resulted in greater memory selectivity for surprising events encountered during goal pursuit. Together these findings demonstrate that neuromodulatory systems engaged by anticipation of reward and punishment target separate components of the medial temporal lobe, modulating medial temporal lobe sensitivity and connectivity. Thus, reward and punishment motivation yield distinct neural contexts for learning, with distinct consequences for how surprises are incorporated into predictive mnemonic models of the environment. PMID:26854903

  2. Distinct medial temporal networks encode surprise during motivation by reward versus punishment.

    PubMed

    Murty, Vishnu P; LaBar, Kevin S; Adcock, R Alison

    2016-10-01

    Adaptive motivated behavior requires predictive internal representations of the environment, and surprising events are indications for encoding new representations of the environment. The medial temporal lobe memory system, including the hippocampus and surrounding cortex, encodes surprising events and is influenced by motivational state. Because behavior reflects the goals of an individual, we investigated whether motivational valence (i.e., pursuing rewards versus avoiding punishments) also impacts neural and mnemonic encoding of surprising events. During functional magnetic resonance imaging (fMRI), participants encountered perceptually unexpected events either during the pursuit of rewards or avoidance of punishments. Despite similar levels of motivation across groups, reward and punishment facilitated the processing of surprising events in different medial temporal lobe regions. Whereas during reward motivation, perceptual surprises enhanced activation in the hippocampus, during punishment motivation surprises instead enhanced activation in parahippocampal cortex. Further, we found that reward motivation facilitated hippocampal coupling with ventromedial PFC, whereas punishment motivation facilitated parahippocampal cortical coupling with orbitofrontal cortex. Behaviorally, post-scan testing revealed that reward, but not punishment, motivation resulted in greater memory selectivity for surprising events encountered during goal pursuit. Together these findings demonstrate that neuromodulatory systems engaged by anticipation of reward and punishment target separate components of the medial temporal lobe, modulating medial temporal lobe sensitivity and connectivity. Thus, reward and punishment motivation yield distinct neural contexts for learning, with distinct consequences for how surprises are incorporated into predictive mnemonic models of the environment. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Effects of bilateral and unilateral locus coeruleus lesions on beam-walking recovery after subsequent unilateral sensorimotor cortex suction-ablation in the rat.

    PubMed

    Goldstein, L B

    1997-01-01

    The recovery of beam-walking ability following a unilateral sensorimotor cortex lesion in the rat is hypothesized to be noradrenergically-mediated. We carried out two experiments to further test this hypothesis. In the first experiment, bilateral 6-hydroxydopamine locus coeruleus (LC) lesions or sham LC lesions were made 2 weeks prior to a right sensorimotor cortex suction-ablation lesion or sham cortex lesion. In the second experiment, unilateral left or right LC lesions or sham LC lesions were made 2 weeks prior to a right sensorimotor cortex lesion or sham cortex lesion. Beam-walking recovery was measured over the 12 days following cortex lesioning in each experiment. Bilateral, unilateral left, and unilateral right LC lesions resulted in impaired recovery. These data provide additional support for the hypothesis that beam-walking recovery after sensorimotor cortex injury is, at least in part, noradrenergically mediated.

  4. Empirical Evaluation of Visual Fatigue from Display Alignment Errors Using Cerebral Hemodynamic Responses

    PubMed Central

    Wiyor, Hanniebey D.; Ntuen, Celestine A.

    2013-01-01

    The purpose of this study was to investigate the effect of stereoscopic display alignment errors on visual fatigue and prefrontal cortical tissue hemodynamic responses. We collected hemodynamic data and perceptual ratings of visual fatigue while participants performed visual display tasks on 8 ft × 6 ft NEC LT silver screen with NEC LT 245 DLP projectors. There was statistical significant difference between subjective measures of visual fatigue before air traffic control task (BATC) and after air traffic control task (ATC 3), (P < 0.05). Statistical significance was observed between left dorsolateral prefrontal cortex oxygenated hemoglobin (l DLPFC-HbO2), left dorsolateral prefrontal cortex deoxygenated hemoglobin (l DLPFC-Hbb), and right dorsolateral prefrontal cortex deoxygenated hemoglobin (r DLPFC-Hbb) on stereoscopic alignment errors (P < 0.05). Thus, cortical tissue oxygenation requirement in the left hemisphere indicates that the effect of visual fatigue is more pronounced in the left dorsolateral prefrontal cortex. PMID:27006917

  5. Unraveling the principles of auditory cortical processing: can we learn from the visual system?

    PubMed Central

    King, Andrew J; Nelken, Israel

    2013-01-01

    Studies of auditory cortex are often driven by the assumption, derived from our better understanding of visual cortex, that basic physical properties of sounds are represented there before being used by higher-level areas for determining sound-source identity and location. However, we only have a limited appreciation of what the cortex adds to the extensive subcortical processing of auditory information, which can account for many perceptual abilities. This is partly because of the approaches that have dominated the study of auditory cortical processing to date, and future progress will unquestionably profit from the adoption of methods that have provided valuable insights into the neural basis of visual perception. At the same time, we propose that there are unique operating principles employed by the auditory cortex that relate largely to the simultaneous and sequential processing of previously derived features and that therefore need to be studied and understood in their own right. PMID:19471268

  6. A Decline in Response Variability Improves Neural Signal Detection during Auditory Task Performance.

    PubMed

    von Trapp, Gardiner; Buran, Bradley N; Sen, Kamal; Semple, Malcolm N; Sanes, Dan H

    2016-10-26

    The detection of a sensory stimulus arises from a significant change in neural activity, but a sensory neuron's response is rarely identical to successive presentations of the same stimulus. Large trial-to-trial variability would limit the central nervous system's ability to reliably detect a stimulus, presumably affecting perceptual performance. However, if response variability were to decrease while firing rate remained constant, then neural sensitivity could improve. Here, we asked whether engagement in an auditory detection task can modulate response variability, thereby increasing neural sensitivity. We recorded telemetrically from the core auditory cortex of gerbils, both while they engaged in an amplitude-modulation detection task and while they sat quietly listening to the identical stimuli. Using a signal detection theory framework, we found that neural sensitivity was improved during task performance, and this improvement was closely associated with a decrease in response variability. Moreover, units with the greatest change in response variability had absolute neural thresholds most closely aligned with simultaneously measured perceptual thresholds. Our findings suggest that the limitations imposed by response variability diminish during task performance, thereby improving the sensitivity of neural encoding and potentially leading to better perceptual sensitivity. The detection of a sensory stimulus arises from a significant change in neural activity. However, trial-to-trial variability of the neural response may limit perceptual performance. If the neural response to a stimulus is quite variable, then the response on a given trial could be confused with the pattern of neural activity generated when the stimulus is absent. Therefore, a neural mechanism that served to reduce response variability would allow for better stimulus detection. By recording from the cortex of freely moving animals engaged in an auditory detection task, we found that variability of the neural response becomes smaller during task performance, thereby improving neural detection thresholds. Copyright © 2016 the authors 0270-6474/16/3611097-10$15.00/0.

  7. A Decline in Response Variability Improves Neural Signal Detection during Auditory Task Performance

    PubMed Central

    Buran, Bradley N.; Sen, Kamal; Semple, Malcolm N.; Sanes, Dan H.

    2016-01-01

    The detection of a sensory stimulus arises from a significant change in neural activity, but a sensory neuron's response is rarely identical to successive presentations of the same stimulus. Large trial-to-trial variability would limit the central nervous system's ability to reliably detect a stimulus, presumably affecting perceptual performance. However, if response variability were to decrease while firing rate remained constant, then neural sensitivity could improve. Here, we asked whether engagement in an auditory detection task can modulate response variability, thereby increasing neural sensitivity. We recorded telemetrically from the core auditory cortex of gerbils, both while they engaged in an amplitude-modulation detection task and while they sat quietly listening to the identical stimuli. Using a signal detection theory framework, we found that neural sensitivity was improved during task performance, and this improvement was closely associated with a decrease in response variability. Moreover, units with the greatest change in response variability had absolute neural thresholds most closely aligned with simultaneously measured perceptual thresholds. Our findings suggest that the limitations imposed by response variability diminish during task performance, thereby improving the sensitivity of neural encoding and potentially leading to better perceptual sensitivity. SIGNIFICANCE STATEMENT The detection of a sensory stimulus arises from a significant change in neural activity. However, trial-to-trial variability of the neural response may limit perceptual performance. If the neural response to a stimulus is quite variable, then the response on a given trial could be confused with the pattern of neural activity generated when the stimulus is absent. Therefore, a neural mechanism that served to reduce response variability would allow for better stimulus detection. By recording from the cortex of freely moving animals engaged in an auditory detection task, we found that variability of the neural response becomes smaller during task performance, thereby improving neural detection thresholds. PMID:27798189

  8. Treatment of amblyopia in the adult: insights from a new rodent model of visual perceptual learning.

    PubMed

    Bonaccorsi, Joyce; Berardi, Nicoletta; Sale, Alessandro

    2014-01-01

    Amblyopia is the most common form of impairment of visual function affecting one eye, with a prevalence of about 1-5% of the total world population. Amblyopia usually derives from conditions of early functional imbalance between the two eyes, owing to anisometropia, strabismus, or congenital cataract, and results in a pronounced reduction of visual acuity and severe deficits in contrast sensitivity and stereopsis. It is widely accepted that, due to a lack of sufficient plasticity in the adult brain, amblyopia becomes untreatable after the closure of the critical period in the primary visual cortex. However, recent results obtained both in animal models and in clinical trials have challenged this view, unmasking a previously unsuspected potential for promoting recovery even in adulthood. In this context, non invasive procedures based on visual perceptual learning, i.e., the improvement in visual performance on a variety of simple visual tasks following practice, emerge as particularly promising to rescue discrimination abilities in adult amblyopic subjects. This review will survey recent work regarding the impact of visual perceptual learning on amblyopia, with a special focus on a new experimental model of perceptual learning in the amblyopic rat.

  9. Treatment of amblyopia in the adult: insights from a new rodent model of visual perceptual learning

    PubMed Central

    Bonaccorsi, Joyce; Berardi, Nicoletta; Sale, Alessandro

    2014-01-01

    Amblyopia is the most common form of impairment of visual function affecting one eye, with a prevalence of about 1–5% of the total world population. Amblyopia usually derives from conditions of early functional imbalance between the two eyes, owing to anisometropia, strabismus, or congenital cataract, and results in a pronounced reduction of visual acuity and severe deficits in contrast sensitivity and stereopsis. It is widely accepted that, due to a lack of sufficient plasticity in the adult brain, amblyopia becomes untreatable after the closure of the critical period in the primary visual cortex. However, recent results obtained both in animal models and in clinical trials have challenged this view, unmasking a previously unsuspected potential for promoting recovery even in adulthood. In this context, non invasive procedures based on visual perceptual learning, i.e., the improvement in visual performance on a variety of simple visual tasks following practice, emerge as particularly promising to rescue discrimination abilities in adult amblyopic subjects. This review will survey recent work regarding the impact of visual perceptual learning on amblyopia, with a special focus on a new experimental model of perceptual learning in the amblyopic rat. PMID:25076874

  10. Quantitative prediction of perceptual decisions during near-threshold fear detection

    NASA Astrophysics Data System (ADS)

    Pessoa, Luiz; Padmala, Srikanth

    2005-04-01

    A fundamental goal of cognitive neuroscience is to explain how mental decisions originate from basic neural mechanisms. The goal of the present study was to investigate the neural correlates of perceptual decisions in the context of emotional perception. To probe this question, we investigated how fluctuations in functional MRI (fMRI) signals were correlated with behavioral choice during a near-threshold fear detection task. fMRI signals predicted behavioral choice independently of stimulus properties and task accuracy in a network of brain regions linked to emotional processing: posterior cingulate cortex, medial prefrontal cortex, right inferior frontal gyrus, and left insula. We quantified the link between fMRI signals and behavioral choice in a whole-brain analysis by determining choice probabilities by means of signal-detection theory methods. Our results demonstrate that voxel-wise fMRI signals can reliably predict behavioral choice in a quantitative fashion (choice probabilities ranged from 0.63 to 0.78) at levels comparable to neuronal data. We suggest that the conscious decision that a fearful face has been seen is represented across a network of interconnected brain regions that prepare the organism to appropriately handle emotionally challenging stimuli and that regulate the associated emotional response. decision making | emotion | functional MRI

  11. Auditory stream segregation in monkey auditory cortex: effects of frequency separation, presentation rate, and tone duration

    NASA Astrophysics Data System (ADS)

    Fishman, Yonatan I.; Arezzo, Joseph C.; Steinschneider, Mitchell

    2004-09-01

    Auditory stream segregation refers to the organization of sequential sounds into ``perceptual streams'' reflecting individual environmental sound sources. In the present study, sequences of alternating high and low tones, ``...ABAB...,'' similar to those used in psychoacoustic experiments on stream segregation, were presented to awake monkeys while neural activity was recorded in primary auditory cortex (A1). Tone frequency separation (ΔF), tone presentation rate (PR), and tone duration (TD) were systematically varied to examine whether neural responses correlate with effects of these variables on perceptual stream segregation. ``A'' tones were fixed at the best frequency of the recording site, while ``B'' tones were displaced in frequency from ``A'' tones by an amount=ΔF. As PR increased, ``B'' tone responses decreased in amplitude to a greater extent than ``A'' tone responses, yielding neural response patterns dominated by ``A'' tone responses occurring at half the alternation rate. Increasing TD facilitated the differential attenuation of ``B'' tone responses. These findings parallel psychoacoustic data and suggest a physiological model of stream segregation whereby increasing ΔF, PR, or TD enhances spatial differentiation of ``A'' tone and ``B'' tone responses along the tonotopic map in A1.

  12. Effect of tDCS on task relevant and irrelevant perceptual learning of complex objects.

    PubMed

    Van Meel, Chayenne; Daniels, Nicky; de Beeck, Hans Op; Baeck, Annelies

    2016-01-01

    During perceptual learning the visual representations in the brain are altered, but these changes' causal role has not yet been fully characterized. We used transcranial direct current stimulation (tDCS) to investigate the role of higher visual regions in lateral occipital cortex (LO) in perceptual learning with complex objects. We also investigated whether object learning is dependent on the relevance of the objects for the learning task. Participants were trained in two tasks: object recognition using a backward masking paradigm and an orientation judgment task. During both tasks, an object with a red line on top of it were presented in each trial. The crucial difference between both tasks was the relevance of the object: the object was relevant for the object recognition task, but not for the orientation judgment task. During training, half of the participants received anodal tDCS stimulation targeted at the lateral occipital cortex (LO). Afterwards, participants were tested on how well they recognized the trained objects, the irrelevant objects presented during the orientation judgment task and a set of completely new objects. Participants stimulated with tDCS during training showed larger improvements of performance compared to participants in the sham condition. No learning effect was found for the objects presented during the orientation judgment task. To conclude, this study suggests a causal role of LO in relevant object learning, but given the rather low spatial resolution of tDCS, more research on the specificity of this effect is needed. Further, mere exposure is not sufficient to train object recognition in our paradigm.

  13. Content-specific evidence accumulation in inferior temporal cortex during perceptual decision-making

    PubMed Central

    Tremel, Joshua J.; Wheeler, Mark E.

    2015-01-01

    During a perceptual decision, neuronal activity can change as a function of time-integrated evidence. Such neurons may serve as decision variables, signaling a choice when activity reaches a boundary. Because the signals occur on a millisecond timescale, translating to human decision-making using functional neuroimaging has been challenging. Previous neuroimaging work in humans has identified patterns of neural activity consistent with an accumulation account. However, the degree to which the accumulating neuroimaging signals reflect specific sources of perceptual evidence is unknown. Using an extended face/house discrimination task in conjunction with cognitive modeling, we tested whether accumulation signals, as measured using functional magnetic resonance imaging (fMRI), are stimulus-specific. Accumulation signals were defined as a change in the slope of the rising edge of activation corresponding with response time (RT), with higher slopes associated with faster RTs. Consistent with an accumulation account, fMRI activity in face- and house-selective regions in the inferior temporal cortex increased at a rate proportional to decision time in favor of the preferred stimulus. This finding indicates that stimulus-specific regions perform an evidence integrative function during goal-directed behavior and that different sources of evidence accumulate separately. We also assessed the decision-related function of other regions throughout the brain and found that several regions were consistent with classifications from prior work, suggesting a degree of domain generality in decision processing. Taken together, these results provide support for an integration-to-boundary decision mechanism and highlight possible roles of both domain-specific and domain-general regions in decision evidence evaluation. PMID:25562821

  14. Response repetition biases in human perceptual decisions are explained by activity decay in competitive attractor models

    PubMed Central

    Bonaiuto, James J; de Berker, Archy; Bestmann, Sven

    2016-01-01

    Animals and humans have a tendency to repeat recent choices, a phenomenon known as choice hysteresis. The mechanism for this choice bias remains unclear. Using an established, biophysically informed model of a competitive attractor network for decision making, we found that decaying tail activity from the previous trial caused choice hysteresis, especially during difficult trials, and accurately predicted human perceptual choices. In the model, choice variability could be directionally altered through amplification or dampening of post-trial activity decay through simulated depolarizing or hyperpolarizing network stimulation. An analogous intervention using transcranial direct current stimulation (tDCS) over left dorsolateral prefrontal cortex (dlPFC) yielded a close match between model predictions and experimental results: net soma depolarizing currents increased choice hysteresis, while hyperpolarizing currents suppressed it. Residual activity in competitive attractor networks within dlPFC may thus give rise to biases in perceptual choices, which can be directionally controlled through non-invasive brain stimulation. DOI: http://dx.doi.org/10.7554/eLife.20047.001 PMID:28005007

  15. Neural correlates and neural computations in posterior parietal cortex during perceptual decision-making

    PubMed Central

    Huk, Alexander C.; Meister, Miriam L. R.

    2012-01-01

    A recent line of work has found remarkable success in relating perceptual decision-making and the spiking activity in the macaque lateral intraparietal area (LIP). In this review, we focus on questions about the neural computations in LIP that are not answered by demonstrations of neural correlates of psychological processes. We highlight three areas of limitations in our current understanding of the precise neural computations that might underlie neural correlates of decisions: (1) empirical questions not yet answered by existing data; (2) implementation issues related to how neural circuits could actually implement the mechanisms suggested by both extracellular neurophysiology and psychophysics; and (3) ecological constraints related to the use of well-controlled laboratory tasks and whether they provide an accurate window on sensorimotor computation. These issues motivate the adoption of a more general “encoding-decoding framework” that will be fruitful for more detailed contemplation of how neural computations in LIP relate to the formation of perceptual decisions. PMID:23087623

  16. What’s the Gist? The influence of schemas on the neural correlates underlying true and false memories

    PubMed Central

    Webb, Christina E.; Turney, Indira C.; Dennis, Nancy A.

    2017-01-01

    The current study used a novel scene paradigm to investigate the role of encoding schemas on memory. Specifically, the study examined the influence of a strong encoding schema on retrieval of both schematic and non-schematic information, as well as false memories for information associated with the schema. Additionally, the separate roles of recollection and familiarity in both veridical and false memory retrieval were examined. The study identified several novel results. First, while many common neural regions mediated both schematic and non-schematic retrieval success, schematic recollection exhibited greater activation in visual cortex and hippocampus, regions commonly shown to mediate detailed retrieval. More effortful cognitive control regions in the prefrontal and parietal cortices, on the other hand, supported non-schematic recollection, while lateral temporal cortices supported familiarity-based retrieval of non-schematic items. Second, both true and false recollection, as well as familiarity, were mediated by activity in left middle temporal gyrus, a region associated with semantic processing and retrieval of schematic gist. Moreover, activity in this region was greater for both false recollection and false familiarity, suggesting a greater reliance on lateral temporal cortices for retrieval of illusory memories, irrespective of memory strength. Consistent with previous false memory studies, visual cortex showed increased activity for true compared to false recollection, suggesting that visual cortices are critical for distinguishing between previously viewed targets and related lures at retrieval. Additionally, the absence of common visual activity between true and false retrieval suggests that, unlike previous studies utilizing visual stimuli, when false memories are predicated on schematic gist and not perceptual overlap, there is little reliance on visual processes during false memory retrieval. Finally, the medial temporal lobe exhibited an interesting dissociation, showing greater activity for true compared to false recollection, as well as for false compared to true familiarity. These results provided an indication as to how different types of items are retrieved when studied within a highly schematic context. Results both replicate and extend previous true and false memory findings, supporting the Fuzzy Trace Theory. PMID:27697593

  17. What's the gist? The influence of schemas on the neural correlates underlying true and false memories.

    PubMed

    Webb, Christina E; Turney, Indira C; Dennis, Nancy A

    2016-12-01

    The current study used a novel scene paradigm to investigate the role of encoding schemas on memory. Specifically, the study examined the influence of a strong encoding schema on retrieval of both schematic and non-schematic information, as well as false memories for information associated with the schema. Additionally, the separate roles of recollection and familiarity in both veridical and false memory retrieval were examined. The study identified several novel results. First, while many common neural regions mediated both schematic and non-schematic retrieval success, schematic recollection exhibited greater activation in visual cortex and hippocampus, regions commonly shown to mediate detailed retrieval. More effortful cognitive control regions in the prefrontal and parietal cortices, on the other hand, supported non-schematic recollection, while lateral temporal cortices supported familiarity-based retrieval of non-schematic items. Second, both true and false recollection, as well as familiarity, were mediated by activity in left middle temporal gyrus, a region associated with semantic processing and retrieval of schematic gist. Moreover, activity in this region was greater for both false recollection and false familiarity, suggesting a greater reliance on lateral temporal cortices for retrieval of illusory memories, irrespective of memory strength. Consistent with previous false memory studies, visual cortex showed increased activity for true compared to false recollection, suggesting that visual cortices are critical for distinguishing between previously viewed targets and related lures at retrieval. Additionally, the absence of common visual activity between true and false retrieval suggests that, unlike previous studies utilizing visual stimuli, when false memories are predicated on schematic gist and not perceptual overlap, there is little reliance on visual processes during false memory retrieval. Finally, the medial temporal lobe exhibited an interesting dissociation, showing greater activity for true compared to false recollection, as well as for false compared to true familiarity. These results provided an indication as to how different types of items are retrieved when studied within a highly schematic context. Results both replicate and extend previous true and false memory findings, supporting the Fuzzy Trace Theory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Visual integration enhances associative memory equally for young and older adults without reducing hippocampal encoding activation.

    PubMed

    Memel, Molly; Ryan, Lee

    2017-06-01

    The ability to remember associations between previously unrelated pieces of information is often impaired in older adults (Naveh-Benjamin, 2000). Unitization, the process of creating a perceptually or semantically integrated representation that includes both items in an associative pair, attenuates age-related associative deficits (Bastin et al., 2013; Ahmad et al., 2015; Zheng et al., 2015). Compared to non-unitized pairs, unitized pairs may rely less on hippocampally-mediated binding associated with recollection, and more on familiarity-based processes mediated by perirhinal cortex (PRC) and parahippocampal cortex (PHC). While unitization of verbal materials improves associative memory in older adults, less is known about the impact of visual integration. The present study determined whether visual integration improves associative memory in older adults by minimizing the need for hippocampal (HC) recruitment and shifting encoding to non-hippocampal medial temporal structures, such as the PRC and PHC. Young and older adults were presented with a series of objects paired with naturalistic scenes while undergoing fMRI scanning, and were later given an associative memory test. Visual integration was varied by presenting the object either next to the scene (Separated condition) or visually integrated within the scene (Combined condition). Visual integration improved associative memory among young and older adults to a similar degree by increasing the hit rate for intact pairs, but without increasing false alarms for recombined pairs, suggesting enhanced recollection rather than increased reliance on familiarity. Also contrary to expectations, visual integration resulted in increased hippocampal activation in both age groups, along with increases in PRC and PHC activation. Activation in all three MTL regions predicted discrimination performance during the Separated condition in young adults, while only a marginal relationship between PRC activation and performance was observed during the Combined condition. Older adults showed less overall activation in MTL regions compared to young adults, and associative memory performance was most strongly predicted by prefrontal, rather than MTL, activation. We suggest that visual integration benefits both young and older adults similarly, and provides a special case of unitization that may be mediated by recollective, rather than familiarity-based encoding processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Brain activity underlying auditory perceptual learning during short period training: simultaneous fMRI and EEG recording

    PubMed Central

    2013-01-01

    Background There is an accumulating body of evidence indicating that neuronal functional specificity to basic sensory stimulation is mutable and subject to experience. Although fMRI experiments have investigated changes in brain activity after relative to before perceptual learning, brain activity during perceptual learning has not been explored. This work investigated brain activity related to auditory frequency discrimination learning using a variational Bayesian approach for source localization, during simultaneous EEG and fMRI recording. We investigated whether the practice effects are determined solely by activity in stimulus-driven mechanisms or whether high-level attentional mechanisms, which are linked to the perceptual task, control the learning process. Results The results of fMRI analyses revealed significant attention and learning related activity in left and right superior temporal gyrus STG as well as the left inferior frontal gyrus IFG. Current source localization of simultaneously recorded EEG data was estimated using a variational Bayesian method. Analysis of current localized to the left inferior frontal gyrus and the right superior temporal gyrus revealed gamma band activity correlated with behavioral performance. Conclusions Rapid improvement in task performance is accompanied by plastic changes in the sensory cortex as well as superior areas gated by selective attention. Together the fMRI and EEG results suggest that gamma band activity in the right STG and left IFG plays an important role during perceptual learning. PMID:23316957

  20. Prolonged Perceptual Learning of Positional Acuity in Adult Amblyopia

    PubMed Central

    Li, Roger W; Klein, Stanley A; Levi, Dennis M

    2009-01-01

    Amblyopia is a developmental abnormality that results in physiological alterations in the visual cortex and impairs form vision. It is often successfully treated by patching the sound eye in infants and young children, but is generally considered to be untreatable in adults. However, a number of recent studies suggest that repetitive practice of a visual task using the amblyopic eye results in improved performance in both children and adults with amblyopia. These perceptual learning studies have used relatively brief periods of practice; however, clinical studies have shown that the time-constant for successful patching is long. The time-constant for perceptual learning in amblyopia is still unknown. Here we show that the time-constant for perceptual learning depends on the degree of amblyopia. Severe amblyopia requires more than 50 hours (≈35,000 trials) to reach plateau, yielding as much as a five-fold improvement in performance at a rate of ≈1.5% per hour. There is significant transfer of learning from the amblyopic to the dominant eye, suggesting that the learning reflects alterations in higher decision stages of processing. Using a reverse correlation technique, we document, for the first time, a dynamic retuning of the amblyopic perceptual decision template and a substantial reduction in internal spatial distortion. These results show that the mature amblyopic brain is surprisingly malleable, and point to more intensive treatment methods for amblyopia. PMID:19109504

  1. Regional Brain Differences in the Effect of Distraction During the Delay Interval of a Working Memory Task

    PubMed Central

    Dolcos, Florin; Miller, Brian; Kragel, Philip; Jha, Amishi; McCarthy, Gregory

    2012-01-01

    Working memory (WM) comprises operations whose coordinated action contributes to our ability to maintain focus on goal-relevant information in the presence of distraction. The present study investigated the nature of distraction upon the neural correlates of WM maintenance operations by presenting task-irrelevant distracters during the interval between the memoranda and probes of a delayed-response WM task. The study used a region of interest (ROIs) approach to investigate the role of anterior (e.g., lateral and medial prefrontal cortex - PFC) and posterior (e.g., parietal and fusiform cortices) brain regions that have been previously associated with WM operations. Behavioral results showed that distracters that were confusable with the memorandum impaired WM performance, compared to either the presence of non-confusable distracters or to the absence of distracters. These different levels of distraction led to differences in the regional patterns of delay interval activity measured with event-related functional magnetic resonance imaging (fMRI). In the anterior ROIs, dorsolateral PFC activation was associated with WM encoding and maintenance, and in maintaining a preparatory state, and ventrolateral PFC activation was associated with the inhibition of distraction. In the posterior ROIs, activation of the posterior parietal and fusiform cortices was associated with WM and perceptual processing, respectively. These findings provide novel evidence concerning the neural systems mediating the cognitive and behavioral responses during distraction, and places frontal cortex at the top of the hierarchy of the neural systems responsible for cognitive control. PMID:17459348

  2. Perceptual alternation in obsessive compulsive disorder--implications for a role of the cortico-striatal circuitry in mediating awareness.

    PubMed

    Li, C S; Chen, M C; Yang, Y Y; Chang, H L; Liu, C Y; Shen, S; Chen, C Y

    2000-06-15

    Mounting evidence suggests that obsessive compulsive disorder (OCD) results from functional aberrations of the fronto-striatal circuitry. However, empirical studies of the behavioral manifestations of OCD have been relatively lacking. The present study employs a behavioral task that allows a quantitative measure of how alternative percepts are formed from one moment to another, a process mimicking the brain state in which different thoughts and imageries compete for access to awareness. Eighteen patients with OCD, 12 with generalized anxiety disorder, and 18 normal subjects participated in the experiment, in which they viewed one of the three Schröder staircases and responded by pressing a key to each perceptual reversal. The results demonstrate that the patients with OCD have a higher perceptual alternation rate than the normal controls. Moreover, the frequency of perceptual alternation is significantly correlated with the Yale-Brown obsessive compulsive and the Hamilton anxiety scores. The increase in the frequency of perceptual reversals cannot easily be accounted for by learning or by different patterns of eye fixations on the task. These results provide further evidence that an impairment of the inhibitory function of the cortico-striatal circuitry might underlie the etiology of OCD. The implications of the results for a general role of the cortico-striatal circuitry in mediating awareness are discussed.

  3. The what, where and how of auditory-object perception.

    PubMed

    Bizley, Jennifer K; Cohen, Yale E

    2013-10-01

    The fundamental perceptual unit in hearing is the 'auditory object'. Similar to visual objects, auditory objects are the computational result of the auditory system's capacity to detect, extract, segregate and group spectrotemporal regularities in the acoustic environment; the multitude of acoustic stimuli around us together form the auditory scene. However, unlike the visual scene, resolving the component objects within the auditory scene crucially depends on their temporal structure. Neural correlates of auditory objects are found throughout the auditory system. However, neural responses do not become correlated with a listener's perceptual reports until the level of the cortex. The roles of different neural structures and the contribution of different cognitive states to the perception of auditory objects are not yet fully understood.

  4. The what, where and how of auditory-object perception

    PubMed Central

    Bizley, Jennifer K.; Cohen, Yale E.

    2014-01-01

    The fundamental perceptual unit in hearing is the ‘auditory object’. Similar to visual objects, auditory objects are the computational result of the auditory system's capacity to detect, extract, segregate and group spectrotemporal regularities in the acoustic environment; the multitude of acoustic stimuli around us together form the auditory scene. However, unlike the visual scene, resolving the component objects within the auditory scene crucially depends on their temporal structure. Neural correlates of auditory objects are found throughout the auditory system. However, neural responses do not become correlated with a listener's perceptual reports until the level of the cortex. The roles of different neural structures and the contribution of different cognitive states to the perception of auditory objects are not yet fully understood. PMID:24052177

  5. Mental Imagery: Functional Mechanisms and Clinical Applications

    PubMed Central

    Pearson, Joel; Naselaris, Thomas; Holmes, Emily A.; Kosslyn, Stephen M.

    2015-01-01

    Mental imagery research has weathered both disbelief of the phenomenon and inherent methodological limitations. Here we review recent behavioral, brain imaging, and clinical research that has reshaped our understanding of mental imagery. Research supports the claim that visual mental imagery is a depictive internal representation that functions like a weak form of perception. Brain imaging work has demonstrated that neural representations of mental and perceptual images resemble one another as early as the primary visual cortex (V1). Activity patterns in V1 encode mental images and perceptual images via a common set of low-level depictive visual features. Recent translational and clinical research reveals the pivotal role that imagery plays in many mental disorders and suggests how clinicians can utilize imagery in treatment. PMID:26412097

  6. The Perception and Identification of Facial Emotions in Individuals with Autism Spectrum Disorders Using the "Let's Face It!" Emotion Skills Battery

    ERIC Educational Resources Information Center

    Tanaka, James W.; Wolf, Julie M.; Klaiman, Cheryl; Koenig, Kathleen; Cockburn, Jeffrey; Herlihy, Lauren; Brown, Carla; Stahl, Sherin S.; South, Mikle; McPartland, James C.; Kaiser, Martha D.; Schultz, Robert T.

    2012-01-01

    Background: Although impaired social-emotional ability is a hallmark of autism spectrum disorder (ASD), the perceptual skills and mediating strategies contributing to the social deficits of autism are not well understood. A perceptual skill that is fundamental to effective social communication is the ability to accurately perceive and interpret…

  7. The influence of spontaneous activity on stimulus processing in primary visual cortex.

    PubMed

    Schölvinck, M L; Friston, K J; Rees, G

    2012-02-01

    Spontaneous activity in the resting human brain has been studied extensively; however, how such activity affects the local processing of a sensory stimulus is relatively unknown. Here, we examined the impact of spontaneous activity in primary visual cortex on neuronal and behavioural responses to a simple visual stimulus, using functional MRI. Stimulus-evoked responses remained essentially unchanged by spontaneous fluctuations, combining with them in a largely linear fashion (i.e., with little evidence for an interaction). However, interactions between spontaneous fluctuations and stimulus-evoked responses were evident behaviourally; high levels of spontaneous activity tended to be associated with increased stimulus detection at perceptual threshold. Our results extend those found in studies of spontaneous fluctuations in motor cortex and higher order visual areas, and suggest a fundamental role for spontaneous activity in stimulus processing. Copyright © 2011. Published by Elsevier Inc.

  8. Cortical visual prostheses: from microstimulation to functional percept

    NASA Astrophysics Data System (ADS)

    Najarpour Foroushani, Armin; Pack, Christopher C.; Sawan, Mohamad

    2018-04-01

    Cortical visual prostheses are intended to restore vision by targeted electrical stimulation of the visual cortex. The perception of spots of light, called phosphenes, resulting from microstimulation of the visual pathway, suggests the possibility of creating meaningful percept made of phosphenes. However, to date electrical stimulation of V1 has still not resulted in perception of phosphenated images that goes beyond punctate spots of light. In this review, we summarize the clinical and experimental progress that has been made in generating phosphenes and modulating their associated perceptual characteristics in human and macaque primary visual cortex (V1). We focus specifically on the effects of different microstimulation parameters on perception and we analyse key challenges facing the generation of meaningful artificial percepts. Finally, we propose solutions to these challenges based on the application of supervised learning of population codes for spatial stimulation of visual cortex.

  9. Emotional facilitation of sensory processing in the visual cortex.

    PubMed

    Schupp, Harald T; Junghöfer, Markus; Weike, Almut I; Hamm, Alfons O

    2003-01-01

    A key function of emotion is the preparation for action. However, organization of successful behavioral strategies depends on efficient stimulus encoding. The present study tested the hypothesis that perceptual encoding in the visual cortex is modulated by the emotional significance of visual stimuli. Event-related brain potentials were measured while subjects viewed pleasant, neutral, and unpleasant pictures. Early selective encoding of pleasant and unpleasant images was associated with a posterior negativity, indicating primary sources of activation in the visual cortex. The study also replicated previous findings in that affective cues also elicited enlarged late positive potentials, indexing increased stimulus relevance at higher-order stages of stimulus processing. These results support the hypothesis that sensory encoding of affective stimuli is facilitated implicitly by natural selective attention. Thus, the affect system not only modulates motor output (i.e., favoring approach or avoidance dispositions), but already operates at an early level of sensory encoding.

  10. How do emotion and motivation direct executive control?

    PubMed

    Pessoa, Luiz

    2009-04-01

    Emotion and motivation have crucial roles in determining human behavior. Yet, how they interact with cognitive control functions is less understood. Here, the basic elements of a conceptual framework for understanding how they interact are introduced. More broadly, the 'dual competition' framework proposes that emotion and motivation affect both perceptual and executive competition. In particular, the anterior cingulate cortex is hypothesized to be engaged in attentional/effortful control mechanisms and to interact with several other brain structures, including the amygdala and nucleus accumbens, in integrating affectively significant signals with control signals in prefrontal cortex. An implication of the proposal is that emotion and motivation can either enhance or impair behavioral performance depending on how they interact with control functions.

  11. Voluntary Explicit versus Involuntary Conceptual Memory Are Associated with Dissociable fMRI Responses in Hippocampus, Amygdala, and Parietal Cortex for Emotional and Neutral Word Pairs

    ERIC Educational Resources Information Center

    Ramponi, Cristina; Barnard, Philip J.; Kherif, Ferath; Henson, Richard N.

    2011-01-01

    Although functional neuroimaging studies have supported the distinction between explicit and implicit forms of memory, few have matched explicit and implicit tests closely, and most of these tested perceptual rather than conceptual implicit memory. We compared event-related fMRI responses during an intentional test, in which a group of…

  12. Going beyond LTM in the MTL: A Synthesis of Neuropsychological and Neuroimaging Findings on the Role of the Medial Temporal Lobe in Memory and Perception

    ERIC Educational Resources Information Center

    Graham, Kim S.; Barense, Morgan D.; Lee, Andy C. H.

    2010-01-01

    Studies in rats and non-human primates suggest that medial temporal lobe (MTL) structures play a role in perceptual processing, with the hippocampus necessary for spatial discrimination, and the perirhinal cortex for object discrimination. Until recently, there was little convergent evidence for analogous functional specialisation in humans, or…

  13. Forms of Memory for Representation of Visual Objects

    DTIC Science & Technology

    1991-04-15

    neuropsychological syndromes that involve disruption of perceptual representation systems should pay rich dividends for implicit memory research (Schacter et al...BLACKORDi. 1988b. Deficits in the implicit retention of new associations by alcoholic Korsakoff patients. Brain and Cognition 7: 145-156. COFER, C. C...MOREINES & N. BUTTERS. 1973. Retrieving information from Korsakoff patients: Effects of categorical cues and reference to the task. Cortex 9: 165

  14. Emotion Regulation in the Brain: Conceptual Issues and Directions for Developmental Research

    ERIC Educational Resources Information Center

    Lewis, Marc D.; Stieben, Jim

    2004-01-01

    Emotion regulation cannot be temporally distinguished from emotion in the brain, but activation patterns in prefrontal cortex appear to mediate cognitive control during emotion episodes. Frontal event-related potentials (ERPs) can tap cognitive control hypothetically mediated by the anterior cingulate cortex, and developmentalists have used these…

  15. Impairment in judgement of the moral emotion guilt following orbitofrontal cortex damage.

    PubMed

    Funayama, Michitaka; Koreki, Akihiro; Muramatsu, Taro; Mimura, Masaru; Kato, Motoichiro; Abe, Takayuki

    2018-04-19

    Although neuroimaging studies have provided evidence for an association between moral emotions and the orbitofrontal cortex, studies on patients with focal lesions using experimental probes of moral emotions are scarce. Here, we addressed this topic by presenting a moral emotion judgement task to patients with focal brain damage. Four judgement tasks in a simple pairwise choice paradigm were given to 72 patients with cerebrovascular disease. These tasks consisted of a perceptual line judgement task as a control task; the objects' preference task as a basic preference judgement task; and two types of moral emotion judgement task, an anger task and a guilt task. A multiple linear regression analysis was performed on each set of task performance scores to take into account potential confounders. Performance on the guilt emotion judgement task negatively correlated with the orbitofrontal cortex damage, but not with the other variables. Results for the other judgement tasks did not reach statistical significance. The close association between orbitofrontal cortex damage and a decrease in guilt emotion judgement consistency might suggest that the orbitofrontal cortex plays a key role in the sense of guilt, a hallmark of morality. © 2018 The British Psychological Society.

  16. Sounds activate visual cortex and improve visual discrimination.

    PubMed

    Feng, Wenfeng; Störmer, Viola S; Martinez, Antigona; McDonald, John J; Hillyard, Steven A

    2014-07-16

    A recent study in humans (McDonald et al., 2013) found that peripheral, task-irrelevant sounds activated contralateral visual cortex automatically as revealed by an auditory-evoked contralateral occipital positivity (ACOP) recorded from the scalp. The present study investigated the functional significance of this cross-modal activation of visual cortex, in particular whether the sound-evoked ACOP is predictive of improved perceptual processing of a subsequent visual target. A trial-by-trial analysis showed that the ACOP amplitude was markedly larger preceding correct than incorrect pattern discriminations of visual targets that were colocalized with the preceding sound. Dipole modeling of the scalp topography of the ACOP localized its neural generators to the ventrolateral extrastriate visual cortex. These results provide direct evidence that the cross-modal activation of contralateral visual cortex by a spatially nonpredictive but salient sound facilitates the discriminative processing of a subsequent visual target event at the location of the sound. Recordings of event-related potentials to the targets support the hypothesis that the ACOP is a neural consequence of the automatic orienting of visual attention to the location of the sound. Copyright © 2014 the authors 0270-6474/14/349817-08$15.00/0.

  17. Two-Photon Functional Imaging of the Auditory Cortex in Behaving Mice: From Neural Networks to Single Spines.

    PubMed

    Li, Ruijie; Wang, Meng; Yao, Jiwei; Liang, Shanshan; Liao, Xiang; Yang, Mengke; Zhang, Jianxiong; Yan, Junan; Jia, Hongbo; Chen, Xiaowei; Li, Xingyi

    2018-01-01

    In vivo two-photon Ca 2+ imaging is a powerful tool for recording neuronal activities during perceptual tasks and has been increasingly applied to behaving animals for acute or chronic experiments. However, the auditory cortex is not easily accessible to imaging because of the abundant temporal muscles, arteries around the ears and their lateral locations. Here, we report a protocol for two-photon Ca 2+ imaging in the auditory cortex of head-fixed behaving mice. By using a custom-made head fixation apparatus and a head-rotated fixation procedure, we achieved two-photon imaging and in combination with targeted cell-attached recordings of auditory cortical neurons in behaving mice. Using synthetic Ca 2+ indicators, we recorded the Ca 2+ transients at multiple scales, including neuronal populations, single neurons, dendrites and single spines, in auditory cortex during behavior. Furthermore, using genetically encoded Ca 2+ indicators (GECIs), we monitored the neuronal dynamics over days throughout the process of associative learning. Therefore, we achieved two-photon functional imaging at multiple scales in auditory cortex of behaving mice, which extends the tool box for investigating the neural basis of audition-related behaviors.

  18. Two-Photon Functional Imaging of the Auditory Cortex in Behaving Mice: From Neural Networks to Single Spines

    PubMed Central

    Li, Ruijie; Wang, Meng; Yao, Jiwei; Liang, Shanshan; Liao, Xiang; Yang, Mengke; Zhang, Jianxiong; Yan, Junan; Jia, Hongbo; Chen, Xiaowei; Li, Xingyi

    2018-01-01

    In vivo two-photon Ca2+ imaging is a powerful tool for recording neuronal activities during perceptual tasks and has been increasingly applied to behaving animals for acute or chronic experiments. However, the auditory cortex is not easily accessible to imaging because of the abundant temporal muscles, arteries around the ears and their lateral locations. Here, we report a protocol for two-photon Ca2+ imaging in the auditory cortex of head-fixed behaving mice. By using a custom-made head fixation apparatus and a head-rotated fixation procedure, we achieved two-photon imaging and in combination with targeted cell-attached recordings of auditory cortical neurons in behaving mice. Using synthetic Ca2+ indicators, we recorded the Ca2+ transients at multiple scales, including neuronal populations, single neurons, dendrites and single spines, in auditory cortex during behavior. Furthermore, using genetically encoded Ca2+ indicators (GECIs), we monitored the neuronal dynamics over days throughout the process of associative learning. Therefore, we achieved two-photon functional imaging at multiple scales in auditory cortex of behaving mice, which extends the tool box for investigating the neural basis of audition-related behaviors. PMID:29740289

  19. Dissociable roles of internal feelings and face recognition ability in facial expression decoding.

    PubMed

    Zhang, Lin; Song, Yiying; Liu, Ling; Liu, Jia

    2016-05-15

    The problem of emotion recognition has been tackled by researchers in both affective computing and cognitive neuroscience. While affective computing relies on analyzing visual features from facial expressions, it has been proposed that humans recognize emotions by internally simulating the emotional states conveyed by others' expressions, in addition to perceptual analysis of facial features. Here we investigated whether and how our internal feelings contributed to the ability to decode facial expressions. In two independent large samples of participants, we observed that individuals who generally experienced richer internal feelings exhibited a higher ability to decode facial expressions, and the contribution of internal feelings was independent of face recognition ability. Further, using voxel-based morphometry, we found that the gray matter volume (GMV) of bilateral superior temporal sulcus (STS) and the right inferior parietal lobule was associated with facial expression decoding through the mediating effect of internal feelings, while the GMV of bilateral STS, precuneus, and the right central opercular cortex contributed to facial expression decoding through the mediating effect of face recognition ability. In addition, the clusters in bilateral STS involved in the two components were neighboring yet separate. Our results may provide clues about the mechanism by which internal feelings, in addition to face recognition ability, serve as an important instrument for humans in facial expression decoding. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Spatial integration and cortical dynamics.

    PubMed

    Gilbert, C D; Das, A; Ito, M; Kapadia, M; Westheimer, G

    1996-01-23

    Cells in adult primary visual cortex are capable of integrating information over much larger portions of the visual field than was originally thought. Moreover, their receptive field properties can be altered by the context within which local features are presented and by changes in visual experience. The substrate for both spatial integration and cortical plasticity is likely to be found in a plexus of long-range horizontal connections, formed by cortical pyramidal cells, which link cells within each cortical area over distances of 6-8 mm. The relationship between horizontal connections and cortical functional architecture suggests a role in visual segmentation and spatial integration. The distribution of lateral interactions within striate cortex was visualized with optical recording, and their functional consequences were explored by using comparable stimuli in human psychophysical experiments and in recordings from alert monkeys. They may represent the substrate for perceptual phenomena such as illusory contours, surface fill-in, and contour saliency. The dynamic nature of receptive field properties and cortical architecture has been seen over time scales ranging from seconds to months. One can induce a remapping of the topography of visual cortex by making focal binocular retinal lesions. Shorter-term plasticity of cortical receptive fields was observed following brief periods of visual stimulation. The mechanisms involved entailed, for the short-term changes, altering the effectiveness of existing cortical connections, and for the long-term changes, sprouting of axon collaterals and synaptogenesis. The mutability of cortical function implies a continual process of calibration and normalization of the perception of visual attributes that is dependent on sensory experience throughout adulthood and might further represent the mechanism of perceptual learning.

  1. Vernier perceptual learning transfers to completely untrained retinal locations after double training: A “piggybacking” effect

    PubMed Central

    Wang, Rui; Zhang, Jun-Yun; Klein, Stanley A.; Levi, Dennis M.; Yu, Cong

    2014-01-01

    Perceptual learning, a process in which training improves visual discrimination, is often specific to the trained retinal location, and this location specificity is frequently regarded as an indication of neural plasticity in the retinotopic visual cortex. However, our previous studies have shown that “double training” enables location-specific perceptual learning, such as Vernier learning, to completely transfer to a new location where an irrelevant task is practiced. Here we show that Vernier learning can be actuated by less location-specific orientation or motion-direction learning to transfer to completely untrained retinal locations. This “piggybacking” effect occurs even if both tasks are trained at the same retinal location. However, piggybacking does not occur when the Vernier task is paired with a more location-specific contrast-discrimination task. This previously unknown complexity challenges the current understanding of perceptual learning and its specificity/transfer. Orientation and motion-direction learning, but not contrast and Vernier learning, appears to activate a global process that allows learning transfer to untrained locations. Moreover, when paired with orientation or motion-direction learning, Vernier learning may be “piggybacked” by the activated global process to transfer to other untrained retinal locations. How this task-specific global activation process is achieved is as yet unknown. PMID:25398974

  2. Neural representation of form-contingent color filling-in in the early visual cortex.

    PubMed

    Hong, Sang Wook; Tong, Frank

    2017-11-01

    Perceptual filling-in exemplifies the constructive nature of visual processing. Color, a prominent surface property of visual objects, can appear to spread to neighboring areas that lack any color. We investigated cortical responses to a color filling-in illusion that effectively dissociates perceived color from the retinal input (van Lier, Vergeer, & Anstis, 2009). Observers adapted to a star-shaped stimulus with alternating red- and cyan-colored points to elicit a complementary afterimage. By presenting an achromatic outline that enclosed one of the two afterimage colors, perceptual filling-in of that color was induced in the unadapted central region. Visual cortical activity was monitored with fMRI, and analyzed using multivariate pattern analysis. Activity patterns in early visual areas (V1-V4) reliably distinguished between the two color-induced filled-in conditions, but only higher extrastriate visual areas showed the predicted correspondence with color perception. Activity patterns allowed for reliable generalization between filled-in colors and physical presentations of perceptually matched colors in areas V3 and V4, but not in earlier visual areas. These findings suggest that the perception of filled-in surface color likely requires more extensive processing by extrastriate visual areas, in order for the neural representation of surface color to become aligned with perceptually matched real colors.

  3. Assessing the applied benefits of perceptual training: Lessons from studies of training working-memory.

    PubMed

    Jacoby, Nori; Ahissar, Merav

    2015-01-01

    In the 1980s to 1990s, studies of perceptual learning focused on the specificity of training to basic visual attributes such as retinal position and orientation. These studies were considered scientifically innovative since they suggested the existence of plasticity in the early stimulus-specific sensory cortex. Twenty years later, perceptual training has gradually shifted to potential applications, and research tends to be devoted to showing transfer. In this paper we analyze two key methodological issues related to the interpretation of transfer. The first has to do with the absence of a control group or the sole use of a test-retest group in traditional perceptual training studies. The second deals with claims of transfer based on the correlation between improvement on the trained and transfer tasks. We analyze examples from the general intelligence literature dealing with the impact on general intelligence of training on a working memory task. The re-analyses show that the reports of a significantly larger transfer of the trained group over the test-retest group fail to replicate when transfer is compared to an actively trained group. Furthermore, the correlations reported in this literature between gains on the trained and transfer tasks can be replicated even when no transfer is assumed.

  4. Late development of cue integration is linked to sensory fusion in cortex.

    PubMed

    Dekker, Tessa M; Ban, Hiroshi; van der Velde, Bauke; Sereno, Martin I; Welchman, Andrew E; Nardini, Marko

    2015-11-02

    Adults optimize perceptual judgements by integrating different types of sensory information [1, 2]. This engages specialized neural circuits that fuse signals from the same [3-5] or different [6] modalities. Whereas young children can use sensory cues independently, adult-like precision gains from cue combination only emerge around ages 10 to 11 years [7-9]. Why does it take so long to make best use of sensory information? Existing data cannot distinguish whether this (1) reflects surprisingly late changes in sensory processing (sensory integration mechanisms in the brain are still developing) or (2) depends on post-perceptual changes (integration in sensory cortex is adult-like, but higher-level decision processes do not access the information) [10]. We tested visual depth cue integration in the developing brain to distinguish these possibilities. We presented children aged 6-12 years with displays depicting depth from binocular disparity and relative motion and made measurements using psychophysics, retinotopic mapping, and pattern classification fMRI. Older children (>10.5 years) showed clear evidence for sensory fusion in V3B, a visual area thought to integrate depth cues in the adult brain [3-5]. By contrast, in younger children (<10.5 years), there was no evidence for sensory fusion in any visual area. This significant age difference was paired with a shift in perceptual performance around ages 10 to 11 years and could not be explained by motion artifacts, visual attention, or signal quality differences. Thus, whereas many basic visual processes mature early in childhood [11, 12], the brain circuits that fuse cues take a very long time to develop. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Neural Representation of Concurrent Harmonic Sounds in Monkey Primary Auditory Cortex: Implications for Models of Auditory Scene Analysis

    PubMed Central

    Steinschneider, Mitchell; Micheyl, Christophe

    2014-01-01

    The ability to attend to a particular sound in a noisy environment is an essential aspect of hearing. To accomplish this feat, the auditory system must segregate sounds that overlap in frequency and time. Many natural sounds, such as human voices, consist of harmonics of a common fundamental frequency (F0). Such harmonic complex tones (HCTs) evoke a pitch corresponding to their F0. A difference in pitch between simultaneous HCTs provides a powerful cue for their segregation. The neural mechanisms underlying concurrent sound segregation based on pitch differences are poorly understood. Here, we examined neural responses in monkey primary auditory cortex (A1) to two concurrent HCTs that differed in F0 such that they are heard as two separate “auditory objects” with distinct pitches. We found that A1 can resolve, via a rate-place code, the lower harmonics of both HCTs, a prerequisite for deriving their pitches and for their perceptual segregation. Onset asynchrony between the HCTs enhanced the neural representation of their harmonics, paralleling their improved perceptual segregation in humans. Pitches of the concurrent HCTs could also be temporally represented by neuronal phase-locking at their respective F0s. Furthermore, a model of A1 responses using harmonic templates could qualitatively reproduce psychophysical data on concurrent sound segregation in humans. Finally, we identified a possible intracortical homolog of the “object-related negativity” recorded noninvasively in humans, which correlates with the perceptual segregation of concurrent sounds. Findings indicate that A1 contains sufficient spectral and temporal information for segregating concurrent sounds based on differences in pitch. PMID:25209282

  6. Late Development of Cue Integration Is Linked to Sensory Fusion in Cortex

    PubMed Central

    Dekker, Tessa M.; Ban, Hiroshi; van der Velde, Bauke; Sereno, Martin I.; Welchman, Andrew E.; Nardini, Marko

    2015-01-01

    Summary Adults optimize perceptual judgements by integrating different types of sensory information [1, 2]. This engages specialized neural circuits that fuse signals from the same [3, 4, 5] or different [6] modalities. Whereas young children can use sensory cues independently, adult-like precision gains from cue combination only emerge around ages 10 to 11 years [7, 8, 9]. Why does it take so long to make best use of sensory information? Existing data cannot distinguish whether this (1) reflects surprisingly late changes in sensory processing (sensory integration mechanisms in the brain are still developing) or (2) depends on post-perceptual changes (integration in sensory cortex is adult-like, but higher-level decision processes do not access the information) [10]. We tested visual depth cue integration in the developing brain to distinguish these possibilities. We presented children aged 6–12 years with displays depicting depth from binocular disparity and relative motion and made measurements using psychophysics, retinotopic mapping, and pattern classification fMRI. Older children (>10.5 years) showed clear evidence for sensory fusion in V3B, a visual area thought to integrate depth cues in the adult brain [3, 4, 5]. By contrast, in younger children (<10.5 years), there was no evidence for sensory fusion in any visual area. This significant age difference was paired with a shift in perceptual performance around ages 10 to 11 years and could not be explained by motion artifacts, visual attention, or signal quality differences. Thus, whereas many basic visual processes mature early in childhood [11, 12], the brain circuits that fuse cues take a very long time to develop. PMID:26480841

  7. Representation of Perceptual Color Space in Macaque Posterior Inferior Temporal Cortex (the V4 Complex)

    PubMed Central

    Bohon, Kaitlin S.; Hermann, Katherine L.; Hansen, Thorsten

    2016-01-01

    Abstract The lateral geniculate nucleus is thought to represent color using two populations of cone-opponent neurons [L vs M; S vs (L + M)], which establish the cardinal directions in color space (reddish vs cyan; lavender vs lime). How is this representation transformed to bring about color perception? Prior work implicates populations of glob cells in posterior inferior temporal cortex (PIT; the V4 complex), but the correspondence between the neural representation of color in PIT/V4 complex and the organization of perceptual color space is unclear. We compared color-tuning data for populations of glob cells and interglob cells to predictions obtained using models that varied in the color-tuning narrowness of the cells, and the color preference distribution across the populations. Glob cells were best accounted for by simulated neurons that have nonlinear (narrow) tuning and, as a population, represent a color space designed to be perceptually uniform (CIELUV). Multidimensional scaling and representational similarity analyses showed that the color space representations in both glob and interglob populations were correlated with the organization of CIELUV space, but glob cells showed a stronger correlation. Hue could be classified invariant to luminance with high accuracy given glob responses and above-chance accuracy given interglob responses. Luminance could be read out invariant to changes in hue in both populations, but interglob cells tended to prefer stimuli having luminance contrast, regardless of hue, whereas glob cells typically retained hue tuning as luminance contrast was modulated. The combined luminance/hue sensitivity of glob cells is predicted for neurons that can distinguish two colors of the same hue at different luminance levels (orange/brown). PMID:27595132

  8. Multiple asynchronous stimulus- and task-dependent hierarchies (STDH) within the visual brain's parallel processing systems.

    PubMed

    Zeki, Semir

    2016-10-01

    Results from a variety of sources, some many years old, lead ineluctably to a re-appraisal of the twin strategies of hierarchical and parallel processing used by the brain to construct an image of the visual world. Contrary to common supposition, there are at least three 'feed-forward' anatomical hierarchies that reach the primary visual cortex (V1) and the specialized visual areas outside it, in parallel. These anatomical hierarchies do not conform to the temporal order with which visual signals reach the specialized visual areas through V1. Furthermore, neither the anatomical hierarchies nor the temporal order of activation through V1 predict the perceptual hierarchies. The latter shows that we see (and become aware of) different visual attributes at different times, with colour leading form (orientation) and directional visual motion, even though signals from fast-moving, high-contrast stimuli are among the earliest to reach the visual cortex (of area V5). Parallel processing, on the other hand, is much more ubiquitous than commonly supposed but is subject to a barely noticed but fundamental aspect of brain operations, namely that different parallel systems operate asynchronously with respect to each other and reach perceptual endpoints at different times. This re-assessment leads to the conclusion that the visual brain is constituted of multiple, parallel and asynchronously operating task- and stimulus-dependent hierarchies (STDH); which of these parallel anatomical hierarchies have temporal and perceptual precedence at any given moment is stimulus and task related, and dependent on the visual brain's ability to undertake multiple operations asynchronously. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Endogenous Delta/Theta Sound-Brain Phase Entrainment Accelerates the Buildup of Auditory Streaming.

    PubMed

    Riecke, Lars; Sack, Alexander T; Schroeder, Charles E

    2015-12-21

    In many natural listening situations, meaningful sounds (e.g., speech) fluctuate in slow rhythms among other sounds. When a slow rhythmic auditory stream is selectively attended, endogenous delta (1‒4 Hz) oscillations in auditory cortex may shift their timing so that higher-excitability neuronal phases become aligned with salient events in that stream [1, 2]. As a consequence of this stream-brain phase entrainment [3], these events are processed and perceived more readily than temporally non-overlapping events [4-11], essentially enhancing the neural segregation between the attended stream and temporally noncoherent streams [12]. Stream-brain phase entrainment is robust to acoustic interference [13-20] provided that target stream-evoked rhythmic activity can be segregated from noncoherent activity evoked by other sounds [21], a process that usually builds up over time [22-27]. However, it has remained unclear whether stream-brain phase entrainment functionally contributes to this buildup of rhythmic streams or whether it is merely an epiphenomenon of it. Here, we addressed this issue directly by experimentally manipulating endogenous stream-brain phase entrainment in human auditory cortex with non-invasive transcranial alternating current stimulation (TACS) [28-30]. We assessed the consequences of these manipulations on the perceptual buildup of the target stream (the time required to recognize its presence in a noisy background), using behavioral measures in 20 healthy listeners performing a naturalistic listening task. Experimentally induced cyclic 4-Hz variations in stream-brain phase entrainment reliably caused a cyclic 4-Hz pattern in perceptual buildup time. Our findings demonstrate that strong endogenous delta/theta stream-brain phase entrainment accelerates the perceptual emergence of task-relevant rhythmic streams in noisy environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Distinguishing the roles of dorsolateral and anterior PFC in visual metacognition.

    PubMed

    Shekhar, Medha; Rahnev, Dobromir

    2018-05-02

    Visual metacognition depends on regions within the prefrontal cortex. Two areas in particular have been repeatedly implicated: the dorsolateral prefrontal cortex (DLPFC) and the anterior prefrontal cortex (aPFC). However, it is still unclear what the function of each of these areas is and how they differ from each other. To establish the specific roles of DLPFC and aPFC in metacognition, we employed online transcranial magnetic stimulation (TMS) to causally interfere with their functioning during confidence generation. Human subjects from both sexes performed a perceptual decision-making task and provided confidence ratings. We found a clear dissociation between the two areas: DLPFC TMS lowered confidence ratings, whereas aPFC TMS increased metacognitive ability but only for the second half of the experimental blocks. These results support a functional architecture where DLPFC reads out the strength of the sensory evidence and relays it to aPFC, which makes the confidence judgement by potentially incorporating additional, non-perceptual information. Indeed, simulations from a model that incorporates these putative DLPFC and aPFC functions reproduced our behavioral results. These findings establish DLPFC and aPFC as distinct nodes in a metacognitive network and suggest specific contributions from each of these regions to confidence generation. SIGNIFICANCE STATEMENT The prefrontal cortex (PFC) is known to be critical for metacognition. Two of its sub-regions - dorsolateral PFC (DLPFC) and anterior PFC (aPFC) - have specifically been implicated in confidence generation. However, it is unclear if these regions have distinct functions related to the underlying metacognitive computation. Using a causal intervention with transcranial magnetic stimulation (TMS), we demonstrate that DLPFC and aPFC have dissociable contributions: targeting DLPFC decreased average confidence ratings, while targeting aPFC specifically affected metacognitive scores. Based on these results, we postulated specific functions for DLPFC and aPFC in metacognitive computation and corroborated them using a computational model that reproduced our results. Our causal results reveal the existence of a specialized modular organization in PFC for confidence generation. Copyright © 2018 the authors.

  11. Benefit of the doubt: a new view of the role of the prefrontal cortex in executive functioning and decision making

    PubMed Central

    Asp, Erik; Manzel, Kenneth; Koestner, Bryan; Denburg, Natalie L.; Tranel, Daniel

    2013-01-01

    The False Tagging Theory (FTT) is a neuroanatomical model of belief and doubt processes that proposes a single, unique function for the prefrontal cortex. Here, we review evidence pertaining to the FTT, the implications of the FTT regarding fractionation of the prefrontal cortex, and the potential benefits of the FTT for new neuroanatomical conceptualizations of executive functions. The FTT provides a parsimonious account that may help overcome theoretical problems with prefrontal cortex mediated executive control such as the homunculus critique. Control in the FTT is examined via the “heuristics and biases” psychological framework for human judgment. The evidence indicates that prefrontal cortex mediated doubting is at the core of executive functioning and may explain some biases of intuitive judgments. PMID:23745103

  12. Neural foundations and functional specificity of number representations.

    PubMed

    Piazza, Manuela; Eger, Evelyn

    2016-03-01

    Number is a complex category, as with the word "number" we may refer to different entities. First, it is a perceptual property that characterizes any set of individual items, namely its cardinality. The ability to extract the (approximate) cardinality of sets is almost universal in the animal domain and present in humans since birth. In primates, posterior parietal cortex seems to be a crucial site for this ability, even if the degree of selectivity of numerical representations in parietal cortex reported to date appears much lower compared to that of other semantic categories in the ventral stream. Number can also be intended as a mathematical object, which we humans use to count, measure, and order: a (verbal or visual) symbol that stands for the cardinality of a set, the intensity of a continuous quantity or the position of an item on a list. Evidence points to a convergence towards parietal cortex for the semantic coding of numerical symbols and to the bilateral occipitotemporal cortex for the shape coding of Arabic digits and other number symbols. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The parietal cortex in sensemaking: the dissociation of multiple types of spatial information.

    PubMed

    Sun, Yanlong; Wang, Hongbin

    2013-01-01

    According to the data-frame theory, sensemaking is a macrocognitive process in which people try to make sense of or explain their observations by processing a number of explanatory structures called frames until the observations and frames become congruent. During the sensemaking process, the parietal cortex has been implicated in various cognitive tasks for the functions related to spatial and temporal information processing, mathematical thinking, and spatial attention. In particular, the parietal cortex plays important roles by extracting multiple representations of magnitudes at the early stages of perceptual analysis. By a series of neural network simulations, we demonstrate that the dissociation of different types of spatial information can start early with a rather similar structure (i.e., sensitivity on a common metric), but accurate representations require specific goal-directed top-down controls due to the interference in selective attention. Our results suggest that the roles of the parietal cortex rely on the hierarchical organization of multiple spatial representations and their interactions. The dissociation and interference between different types of spatial information are essentially the result of the competition at different levels of abstraction.

  14. The Parietal Cortex in Sensemaking: The Dissociation of Multiple Types of Spatial Information

    PubMed Central

    Sun, Yanlong; Wang, Hongbin

    2013-01-01

    According to the data-frame theory, sensemaking is a macrocognitive process in which people try to make sense of or explain their observations by processing a number of explanatory structures called frames until the observations and frames become congruent. During the sensemaking process, the parietal cortex has been implicated in various cognitive tasks for the functions related to spatial and temporal information processing, mathematical thinking, and spatial attention. In particular, the parietal cortex plays important roles by extracting multiple representations of magnitudes at the early stages of perceptual analysis. By a series of neural network simulations, we demonstrate that the dissociation of different types of spatial information can start early with a rather similar structure (i.e., sensitivity on a common metric), but accurate representations require specific goal-directed top-down controls due to the interference in selective attention. Our results suggest that the roles of the parietal cortex rely on the hierarchical organization of multiple spatial representations and their interactions. The dissociation and interference between different types of spatial information are essentially the result of the competition at different levels of abstraction. PMID:23710165

  15. Visual coding of human bodies: perceptual aftereffects reveal norm-based, opponent coding of body identity.

    PubMed

    Rhodes, Gillian; Jeffery, Linda; Boeing, Alexandra; Calder, Andrew J

    2013-04-01

    Despite the discovery of body-selective neural areas in occipitotemporal cortex, little is known about how bodies are visually coded. We used perceptual adaptation to determine how body identity is coded. Brief exposure to a body (e.g., anti-Rose) biased perception toward an identity with opposite properties (Rose). Moreover, the size of this aftereffect increased with adaptor extremity, as predicted by norm-based, opponent coding of body identity. A size change between adapt and test bodies minimized the effects of low-level, retinotopic adaptation. These results demonstrate that body identity, like face identity, is opponent coded in higher-level vision. More generally, they show that a norm-based multidimensional framework, which is well established for face perception, may provide a powerful framework for understanding body perception.

  16. Functional consequences of experience-dependent plasticity on tactile perception following perceptual learning.

    PubMed

    Trzcinski, Natalie K; Gomez-Ramirez, Manuel; Hsiao, Steven S

    2016-09-01

    Continuous training enhances perceptual discrimination and promotes neural changes in areas encoding the experienced stimuli. This type of experience-dependent plasticity has been demonstrated in several sensory and motor systems. Particularly, non-human primates trained to detect consecutive tactile bar indentations across multiple digits showed expanded excitatory receptive fields (RFs) in somatosensory cortex. However, the perceptual implications of these anatomical changes remain undetermined. Here, we trained human participants for 9 days on a tactile task that promoted expansion of multi-digit RFs. Participants were required to detect consecutive indentations of bar stimuli spanning multiple digits. Throughout the training regime we tracked participants' discrimination thresholds on spatial (grating orientation) and temporal tasks on the trained and untrained hands in separate sessions. We hypothesized that training on the multi-digit task would decrease perceptual thresholds on tasks that require stimulus processing across multiple digits, while also increasing thresholds on tasks requiring discrimination on single digits. We observed an increase in orientation thresholds on a single digit. Importantly, this effect was selective for the stimulus orientation and hand used during multi-digit training. We also found that temporal acuity between digits improved across trained digits, suggesting that discriminating the temporal order of multi-digit stimuli can transfer to temporal discrimination of other tactile stimuli. These results suggest that experience-dependent plasticity following perceptual learning improves and interferes with tactile abilities in manners predictive of the task and stimulus features used during training. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. Functional consequences of experience-dependent plasticity on tactile perception following perceptual learning

    PubMed Central

    Trzcinski, Natalie K; Gomez-Ramirez, Manuel; Hsiao, Steven S.

    2016-01-01

    Continuous training enhances perceptual discrimination and promotes neural changes in areas encoding the experienced stimuli. This type of experience-dependent plasticity has been demonstrated in several sensory and motor systems. Particularly, non-human primates trained to detect consecutive tactile bar indentations across multiple digits showed expanded excitatory receptive fields (RFs) in somatosensory cortex. However, the perceptual implications of these anatomical changes remain undetermined. Here, we trained human participants for nine days on a tactile task that promoted expansion of multi-digit RFs. Participants were required to detect consecutive indentations of bar stimuli spanning multiple digits. Throughout the training regime we tracked participants’ discrimination thresholds on spatial (grating orientation) and temporal tasks on the trained and untrained hands in separate sessions. We hypothesized that training on the multi-digit task would decrease perceptual thresholds on tasks that require stimulus processing across multiple digits, while also increasing thresholds on tasks requiring discrimination on single digits. We observed an increase in orientation thresholds on a single-digit. Importantly, this effect was selective for the stimulus orientation and hand used during multi-digit training. We also found that temporal acuity between digits improved across trained digits, suggesting that discriminating the temporal order of multi-digit stimuli can transfer to temporal discrimination of other tactile stimuli. These results suggest that experience-dependent plasticity following perceptual learning improves and interferes with tactile abilities in manners predictive of the task and stimulus features used during training. PMID:27422224

  18. Perceptual conflict during sensorimotor integration processes - a neurophysiological study in response inhibition.

    PubMed

    Chmielewski, Witold X; Beste, Christian

    2016-05-25

    A multitude of sensory inputs needs to be processed during sensorimotor integration. A crucial factor for detecting relevant information is its complexity, since information content can be conflicting at a perceptual level. This may be central to executive control processes, such as response inhibition. This EEG study aims to investigate the system neurophysiological mechanisms behind effects of perceptual conflict on response inhibition. We systematically modulated perceptual conflict by integrating a Global-local task with a Go/Nogo paradigm. The results show that conflicting perceptual information, in comparison to non-conflicting perceptual information, impairs response inhibition performance. This effect was evident regardless of whether the relevant information for response inhibition is displayed on the global, or local perceptual level. The neurophysiological data suggests that early perceptual/ attentional processing stages do not underlie these modulations. Rather, processes at the response selection level (P3), play a role in changed response inhibition performance. This conflict-related impairment of inhibitory processes is associated with activation differences in (inferior) parietal areas (BA7 and BA40) and not as commonly found in the medial prefrontal areas. This suggests that various functional neuroanatomical structures may mediate response inhibition and that the functional neuroanatomical structures involved depend on the complexity of sensory integration processes.

  19. Transient human auditory cortex activation during volitional attention shifting

    PubMed Central

    Uhlig, Christian Harm; Gutschalk, Alexander

    2017-01-01

    While strong activation of auditory cortex is generally found for exogenous orienting of attention, endogenous, intra-modal shifting of auditory attention has not yet been demonstrated to evoke transient activation of the auditory cortex. Here, we used fMRI to test if endogenous shifting of attention is also associated with transient activation of the auditory cortex. In contrast to previous studies, attention shifts were completely self-initiated and not cued by transient auditory or visual stimuli. Stimuli were two dichotic, continuous streams of tones, whose perceptual grouping was not ambiguous. Participants were instructed to continuously focus on one of the streams and switch between the two after a while, indicating the time and direction of each attentional shift by pressing one of two response buttons. The BOLD response around the time of the button presses revealed robust activation of the auditory cortex, along with activation of a distributed task network. To test if the transient auditory cortex activation was specifically related to auditory orienting, a self-paced motor task was added, where participants were instructed to ignore the auditory stimulation while they pressed the response buttons in alternation and at a similar pace. Results showed that attentional orienting produced stronger activity in auditory cortex, but auditory cortex activation was also observed for button presses without focused attention to the auditory stimulus. The response related to attention shifting was stronger contralateral to the side where attention was shifted to. Contralateral-dominant activation was also observed in dorsal parietal cortex areas, confirming previous observations for auditory attention shifting in studies that used auditory cues. PMID:28273110

  20. Representation of pitch chroma by multi-peak spectral tuning in human auditory cortex

    PubMed Central

    Moerel, Michelle; De Martino, Federico; Santoro, Roberta; Yacoub, Essa; Formisano, Elia

    2015-01-01

    Musical notes played at octave intervals (i.e., having the same pitch chroma) are perceived as similar. This well-known perceptual phenomenon lays at the foundation of melody recognition and music perception, yet its neural underpinnings remain largely unknown to date. Using fMRI with high sensitivity and spatial resolution, we examined the contribution of multi-peak spectral tuning to the neural representation of pitch chroma in human auditory cortex in two experiments. In experiment 1, our estimation of population spectral tuning curves from the responses to natural sounds confirmed—with new data—our recent results on the existence of cortical ensemble responses finely tuned to multiple frequencies at one octave distance (Moerel et al., 2013). In experiment 2, we fitted a mathematical model consisting of a pitch chroma and height component to explain the measured fMRI responses to piano notes. This analysis revealed that the octave-tuned populations—but not other cortical populations—harbored a neural representation of musical notes according to their pitch chroma. These results indicate that responses of auditory cortical populations selectively tuned to multiple frequencies at one octave distance predict well the perceptual similarity of musical notes with the same chroma, beyond the physical (frequency) distance of notes. PMID:25479020

  1. Representation of pitch chroma by multi-peak spectral tuning in human auditory cortex.

    PubMed

    Moerel, Michelle; De Martino, Federico; Santoro, Roberta; Yacoub, Essa; Formisano, Elia

    2015-02-01

    Musical notes played at octave intervals (i.e., having the same pitch chroma) are perceived as similar. This well-known perceptual phenomenon lays at the foundation of melody recognition and music perception, yet its neural underpinnings remain largely unknown to date. Using fMRI with high sensitivity and spatial resolution, we examined the contribution of multi-peak spectral tuning to the neural representation of pitch chroma in human auditory cortex in two experiments. In experiment 1, our estimation of population spectral tuning curves from the responses to natural sounds confirmed--with new data--our recent results on the existence of cortical ensemble responses finely tuned to multiple frequencies at one octave distance (Moerel et al., 2013). In experiment 2, we fitted a mathematical model consisting of a pitch chroma and height component to explain the measured fMRI responses to piano notes. This analysis revealed that the octave-tuned populations-but not other cortical populations-harbored a neural representation of musical notes according to their pitch chroma. These results indicate that responses of auditory cortical populations selectively tuned to multiple frequencies at one octave distance predict well the perceptual similarity of musical notes with the same chroma, beyond the physical (frequency) distance of notes. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Neural evidence for reduced apprehensiveness of familiarized stimuli in a mere exposure paradigm.

    PubMed

    Zebrowitz, Leslie A; Zhang, Yi

    2012-07-01

    Mere familiarization with a stimulus increases liking for it or similar stimuli ("mere exposure" effects) as well as perceptual fluency, indexed by the speed and accuracy of categorizing it or similar stimuli ("priming" effects). Candidate mechanisms proposed to explain mere exposure effects include both increased positive affect associated with greater perceptual fluency, and reduced negative affect associated with diminished apprehensiveness of novel stimuli. Although these two mechanisms are not mutually exclusive, it is difficult for behavioral measures to disentangle them, since increased liking or other indices of greater positive affect toward exposed stimuli could result from increases in positive feelings or decreases in negative feelings or both. The present study sought to clarify this issue by building on research showing a dissociation at the neural level in which the lateral orbitofrontal cortex (LOFC) is activated more by negatively valenced than by neutral or positively valenced stimuli, with the reverse effect for medial orbitofrontal cortex (MOFC). Supporting the reduced apprehensiveness hypothesis, we found lower LOFC activation to familiarized faces and objects (repetition suppression). We did not find evidence to support the positive affect hypothesis in increased activation to familiarized stimuli in MOFC or in other parts of the reward circuit that respond more to positively valenced stimuli (repetition enhancement), although enhancement effects were shown in some regions.

  3. Perceptual Learning as a potential treatment for amblyopia: a mini-review

    PubMed Central

    Levi, Dennis M.; Li, Roger W.

    2009-01-01

    Amblyopia is a developmental abnormality that results from physiological alterations in the visual cortex and impairs form vision. It is a consequence of abnormal binocular visual experience during the “sensitive period” early in life. While amblyopia can often be reversed when treated early, conventional treatment is generally not undertaken in older children and adults. A number of studies over the last twelve years or so suggest that Perceptual Learning (PL) may provide an important new method for treating amblyopia. The aim of this mini-review is to provide a critical review and “meta-analysis” of perceptual learning in adults and children with amblyopia, with a view to extracting principles that might make PL more effective and efficient. Specifically we evaluate: What factors influence the outcome of perceptual learning?Specificity and generalization – two sides of the coin.Do the improvements last?How does PL improve visual function?Should PL be part of the treatment armamentarium? A review of the extant studies makes it clear that practicing a visual task results in a long-lasting improvement in performance in an amblyopic eye. The improvement is generally strongest for the trained eye, task, stimulus and orientation, but appears to have a broader spatial frequency bandwidth than in normal vision. Importantly, practicing on a variety of different tasks and stimuli seems to transfer to improved visual acuity. Perceptual learning operates via a reduction of internal neural noise and/or through more efficient use of the stimulus information by retuning the weighting of the information. The success of PL raises the question of whether it should become a standard part of the armamentarium for the clinical treatment of amblyopia, and suggests several important principles for effective perceptual learning in amblyopia. PMID:19250947

  4. Immersive audiomotor game play enhances neural and perceptual salience of weak signals in noise

    PubMed Central

    Whitton, Jonathon P.; Hancock, Kenneth E.; Polley, Daniel B.

    2014-01-01

    All sensory systems face the fundamental challenge of encoding weak signals in noisy backgrounds. Although discrimination abilities can improve with practice, these benefits rarely generalize to untrained stimulus dimensions. Inspired by recent findings that action video game training can impart a broader spectrum of benefits than traditional perceptual learning paradigms, we trained adult humans and mice in an immersive audio game that challenged them to forage for hidden auditory targets in a 2D soundscape. Both species learned to modulate their angular search vectors and target approach velocities based on real-time changes in the level of a weak tone embedded in broadband noise. In humans, mastery of this tone in noise task generalized to an improved ability to comprehend spoken sentences in speech babble noise. Neural plasticity in the auditory cortex of trained mice supported improved decoding of low-intensity sounds at the training frequency and an enhanced resistance to interference from background masking noise. These findings highlight the potential to improve the neural and perceptual salience of degraded sensory stimuli through immersive computerized games. PMID:24927596

  5. Immersive audiomotor game play enhances neural and perceptual salience of weak signals in noise.

    PubMed

    Whitton, Jonathon P; Hancock, Kenneth E; Polley, Daniel B

    2014-06-24

    All sensory systems face the fundamental challenge of encoding weak signals in noisy backgrounds. Although discrimination abilities can improve with practice, these benefits rarely generalize to untrained stimulus dimensions. Inspired by recent findings that action video game training can impart a broader spectrum of benefits than traditional perceptual learning paradigms, we trained adult humans and mice in an immersive audio game that challenged them to forage for hidden auditory targets in a 2D soundscape. Both species learned to modulate their angular search vectors and target approach velocities based on real-time changes in the level of a weak tone embedded in broadband noise. In humans, mastery of this tone in noise task generalized to an improved ability to comprehend spoken sentences in speech babble noise. Neural plasticity in the auditory cortex of trained mice supported improved decoding of low-intensity sounds at the training frequency and an enhanced resistance to interference from background masking noise. These findings highlight the potential to improve the neural and perceptual salience of degraded sensory stimuli through immersive computerized games.

  6. Feature-Selective Attention Adaptively Shifts Noise Correlations in Primary Auditory Cortex.

    PubMed

    Downer, Joshua D; Rapone, Brittany; Verhein, Jessica; O'Connor, Kevin N; Sutter, Mitchell L

    2017-05-24

    Sensory environments often contain an overwhelming amount of information, with both relevant and irrelevant information competing for neural resources. Feature attention mediates this competition by selecting the sensory features needed to form a coherent percept. How attention affects the activity of populations of neurons to support this process is poorly understood because population coding is typically studied through simulations in which one sensory feature is encoded without competition. Therefore, to study the effects of feature attention on population-based neural coding, investigations must be extended to include stimuli with both relevant and irrelevant features. We measured noise correlations ( r noise ) within small neural populations in primary auditory cortex while rhesus macaques performed a novel feature-selective attention task. We found that the effect of feature-selective attention on r noise depended not only on the population tuning to the attended feature, but also on the tuning to the distractor feature. To attempt to explain how these observed effects might support enhanced perceptual performance, we propose an extension of a simple and influential model in which shifts in r noise can simultaneously enhance the representation of the attended feature while suppressing the distractor. These findings present a novel mechanism by which attention modulates neural populations to support sensory processing in cluttered environments. SIGNIFICANCE STATEMENT Although feature-selective attention constitutes one of the building blocks of listening in natural environments, its neural bases remain obscure. To address this, we developed a novel auditory feature-selective attention task and measured noise correlations ( r noise ) in rhesus macaque A1 during task performance. Unlike previous studies showing that the effect of attention on r noise depends on population tuning to the attended feature, we show that the effect of attention depends on the tuning to the distractor feature as well. We suggest that these effects represent an efficient process by which sensory cortex simultaneously enhances relevant information and suppresses irrelevant information. Copyright © 2017 the authors 0270-6474/17/375378-15$15.00/0.

  7. Feature-Selective Attention Adaptively Shifts Noise Correlations in Primary Auditory Cortex

    PubMed Central

    2017-01-01

    Sensory environments often contain an overwhelming amount of information, with both relevant and irrelevant information competing for neural resources. Feature attention mediates this competition by selecting the sensory features needed to form a coherent percept. How attention affects the activity of populations of neurons to support this process is poorly understood because population coding is typically studied through simulations in which one sensory feature is encoded without competition. Therefore, to study the effects of feature attention on population-based neural coding, investigations must be extended to include stimuli with both relevant and irrelevant features. We measured noise correlations (rnoise) within small neural populations in primary auditory cortex while rhesus macaques performed a novel feature-selective attention task. We found that the effect of feature-selective attention on rnoise depended not only on the population tuning to the attended feature, but also on the tuning to the distractor feature. To attempt to explain how these observed effects might support enhanced perceptual performance, we propose an extension of a simple and influential model in which shifts in rnoise can simultaneously enhance the representation of the attended feature while suppressing the distractor. These findings present a novel mechanism by which attention modulates neural populations to support sensory processing in cluttered environments. SIGNIFICANCE STATEMENT Although feature-selective attention constitutes one of the building blocks of listening in natural environments, its neural bases remain obscure. To address this, we developed a novel auditory feature-selective attention task and measured noise correlations (rnoise) in rhesus macaque A1 during task performance. Unlike previous studies showing that the effect of attention on rnoise depends on population tuning to the attended feature, we show that the effect of attention depends on the tuning to the distractor feature as well. We suggest that these effects represent an efficient process by which sensory cortex simultaneously enhances relevant information and suppresses irrelevant information. PMID:28432139

  8. How do emotion and motivation direct executive control?

    PubMed Central

    Pessoa, Luiz

    2009-01-01

    Emotion and motivation have crucial roles in determining human behavior. Yet, how they interact with cognitive control functions is less understood. Here, the basic elements of a conceptual framework for understanding how they interact are introduced. More broadly, the `dual competition' framework proposes that emotion and motivation affect both perceptual and executive competition. In particular, the anterior cingulate cortex is hypothesized to be engaged in attentional/effortful control mechanisms and to interact with several other brain structures, including the amygdala and nucleus accumbens, in integrating affectively significant signals with control signals in prefrontal cortex. An implication of the proposal is that emotion and motivation can either enhance or impair behavioral performance depending on how they interact with control functions. PMID:19285913

  9. Perceptual grouping in the human brain: common processing of different cues.

    PubMed

    Seymour, Kiley; Karnath, Hans-Otto; Himmelbach, Marc

    2008-12-03

    The perception of global scenes and objects consisting of multiple constituents is based on the integration of local elements or features. Gestalt grouping cues, such as proximity or similarity, can aid this process. Using functional MRI we investigated whether grouping guided by different gestalt cues rely on distinct networks in the brain or share a common network. Our study revealed that gestalt grouping involved the inferior parietal cortex, middle temporal gyrus and prefrontal cortex irrespective of the specific cue used. These findings agree with observations in neurological patients, which suggest that inferior parietal regions may aid the integration of local features into a global gestalt. Damage to this region results in simultanagnosia, a deficit in perceiving multiple objects and global scenes.

  10. Overlapping Parietal Activity in Memory and Perception: Evidence for the Attention to Memory Model

    ERIC Educational Resources Information Center

    Cabeza, Roberto; Mazuz, Yonatan S.; Stokes, Jared; Kragel, James E.; Woldorff, Marty G.; Ciaramelli, Elisa; Olson, Ingrid R.; Moscovitch, Morris

    2011-01-01

    The specific role of different parietal regions to episodic retrieval is a topic of intense debate. According to the Attention to Memory (AtoM) model, dorsal parietal cortex (DPC) mediates top-down attention processes guided by retrieval goals, whereas ventral parietal cortex (VPC) mediates bottom-up attention processes captured by the retrieval…

  11. Blockade of IP[subscript 3]-Mediated SK Channel Signaling in the Rat Medial Prefrontal Cortex Improves Spatial Working Memory

    ERIC Educational Resources Information Center

    Brennan, Avis R.; Dolinsky, Beth; Vu, Mai-Anh T.; Stanley, Marion; Yeckel, Mark F.; Arnsten, Amy F. T.

    2008-01-01

    Planning and directing thought and behavior require the working memory (WM) functions of prefrontal cortex. WM is compromised by stress, which activates phosphatidylinositol (PI)-mediated IP[subscript 3]-PKC intracellular signaling. PKC overactivation impairs WM operations and in vitro studies indicate that IP[subscript 3] receptor (IP[subscript…

  12. fMRI studies of successful emotional memory encoding: a quantitative meta-analysis

    PubMed Central

    Murty, Vishnu P.; Ritchey, Maureen; Adcock, R. Alison; LaBar, Kevin S.

    2010-01-01

    Over the past decade, fMRI techniques have been increasingly used to interrogate the neural correlates of successful emotional memory encoding. These investigations have typically aimed to either characterize the contributions of the amygdala and medial temporal lobe (MTL) memory system, replicating results in animals, or delineate the neural correlates of specific behavioral phenomena. It has remained difficult, however, to synthesize these findings into a systems neuroscience account of how networks across the whole brain support the enhancing effects of emotion on memory encoding. To this end, the present study employed a meta-analytic approach using activation likelihood estimates to assess the anatomical specificity and reliability of event-related fMRI activations related to successful memory encoding for emotional versus neutral information. The meta-analysis revealed consistent clusters within bilateral amygdala, anterior hippocampus, anterior and posterior parahippocampal gyrus, the ventral visual stream, left lateral prefrontal cortex and right ventral parietal cortex. The results within the amygdala and MTL support a wealth of findings from the animal literature linking these regions to arousal-mediated memory effects. The consistency of findings in cortical targets, including the visual, prefrontal, and parietal cortices, underscores the importance of generating hypotheses regarding their participation in emotional memory formation. In particular, we propose that the amygdala interacts with these structures to promote enhancements in perceptual processing, semantic elaboration, and attention, which serve to benefit subsequent memory for emotional material. These findings may motivate future research on emotional modulation of widespread neural systems and the implications of this modulation for cognition. PMID:20688087

  13. The role of prestimulus activity in visual extinction☆

    PubMed Central

    Urner, Maren; Sarri, Margarita; Grahn, Jessica; Manly, Tom; Rees, Geraint; Friston, Karl

    2013-01-01

    Patients with visual extinction following right-hemisphere damage sometimes see and sometimes miss stimuli in the left visual field, particularly when stimuli are presented simultaneously to both visual fields. Awareness of left visual field stimuli is associated with increased activity in bilateral parietal and frontal cortex. However, it is unknown why patients see or miss these stimuli. Previous neuroimaging studies in healthy adults show that prestimulus activity biases perceptual decisions, and biases in visual perception can be attributed to fluctuations in prestimulus activity in task relevant brain regions. Here, we used functional MRI to investigate whether prestimulus activity affected perception in the context of visual extinction following stroke. We measured prestimulus activity in stimulus-responsive cortical areas during an extinction paradigm in a patient with unilateral right parietal damage and visual extinction. This allowed us to compare prestimulus activity on physically identical bilateral trials that either did or did not lead to visual extinction. We found significantly increased activity prior to stimulus presentation in two areas that were also activated by visual stimulation: the left calcarine sulcus and right occipital inferior cortex. Using dynamic causal modelling (DCM) we found that both these differences in prestimulus activity and stimulus evoked responses could be explained by enhanced effective connectivity within and between visual areas, prior to stimulus presentation. Thus, we provide evidence for the idea that differences in ongoing neural activity in visually responsive areas prior to stimulus onset affect awareness in visual extinction, and that these differences are mediated by fluctuations in extrinsic and intrinsic connectivity. PMID:23680398

  14. Auditory Temporal Acuity Probed With Cochlear Implant Stimulation and Cortical Recording

    PubMed Central

    Kirby, Alana E.

    2010-01-01

    Cochlear implants stimulate the auditory nerve with amplitude-modulated (AM) electric pulse trains. Pulse rates >2,000 pulses per second (pps) have been hypothesized to enhance transmission of temporal information. Recent studies, however, have shown that higher pulse rates impair phase locking to sinusoidal AM in the auditory cortex and impair perceptual modulation detection. Here, we investigated the effects of high pulse rates on the temporal acuity of transmission of pulse trains to the auditory cortex. In anesthetized guinea pigs, signal-detection analysis was used to measure the thresholds for detection of gaps in pulse trains at rates of 254, 1,017, and 4,069 pps and in acoustic noise. Gap-detection thresholds decreased by an order of magnitude with increases in pulse rate from 254 to 4,069 pps. Such a pulse-rate dependence would likely influence speech reception through clinical speech processors. To elucidate the neural mechanisms of gap detection, we measured recovery from forward masking after a 196.6-ms pulse train. Recovery from masking was faster at higher carrier pulse rates and masking increased linearly with current level. We fit the data with a dual-exponential recovery function, consistent with a peripheral and a more central process. High-rate pulse trains evoked less central masking, possibly due to adaptation of the response in the auditory nerve. Neither gap detection nor forward masking varied with cortical depth, indicating that these processes are likely subcortical. These results indicate that gap detection and modulation detection are mediated by two separate neural mechanisms. PMID:19923242

  15. The role of prestimulus activity in visual extinction.

    PubMed

    Urner, Maren; Sarri, Margarita; Grahn, Jessica; Manly, Tom; Rees, Geraint; Friston, Karl

    2013-07-01

    Patients with visual extinction following right-hemisphere damage sometimes see and sometimes miss stimuli in the left visual field, particularly when stimuli are presented simultaneously to both visual fields. Awareness of left visual field stimuli is associated with increased activity in bilateral parietal and frontal cortex. However, it is unknown why patients see or miss these stimuli. Previous neuroimaging studies in healthy adults show that prestimulus activity biases perceptual decisions, and biases in visual perception can be attributed to fluctuations in prestimulus activity in task relevant brain regions. Here, we used functional MRI to investigate whether prestimulus activity affected perception in the context of visual extinction following stroke. We measured prestimulus activity in stimulus-responsive cortical areas during an extinction paradigm in a patient with unilateral right parietal damage and visual extinction. This allowed us to compare prestimulus activity on physically identical bilateral trials that either did or did not lead to visual extinction. We found significantly increased activity prior to stimulus presentation in two areas that were also activated by visual stimulation: the left calcarine sulcus and right occipital inferior cortex. Using dynamic causal modelling (DCM) we found that both these differences in prestimulus activity and stimulus evoked responses could be explained by enhanced effective connectivity within and between visual areas, prior to stimulus presentation. Thus, we provide evidence for the idea that differences in ongoing neural activity in visually responsive areas prior to stimulus onset affect awareness in visual extinction, and that these differences are mediated by fluctuations in extrinsic and intrinsic connectivity. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Functional Organization of the Parahippocampal Cortex: Dissociable Roles for Context Representations and the Perception of Visual Scenes.

    PubMed

    Baumann, Oliver; Mattingley, Jason B

    2016-02-24

    The human parahippocampal cortex has been ascribed central roles in both visuospatial and mnemonic processes. More specifically, evidence suggests that the parahippocampal cortex subserves both the perceptual analysis of scene layouts as well as the retrieval of associative contextual memories. It remains unclear, however, whether these two functional roles can be dissociated within the parahippocampal cortex anatomically. Here, we provide evidence for a dissociation between neural activation patterns associated with visuospatial analysis of scenes and contextual mnemonic processing along the parahippocampal longitudinal axis. We used fMRI to measure parahippocampal responses while participants engaged in a task that required them to judge the contextual relatedness of scene and object pairs, which were presented either as words or pictures. Results from combined factorial and conjunction analyses indicated that the posterior section of parahippocampal cortex is driven predominantly by judgments associated with pictorial scene analysis, whereas its anterior section is more active during contextual judgments regardless of stimulus category (scenes vs objects) or modality (word vs picture). Activation maxima associated with visuospatial and mnemonic processes were spatially segregated, providing support for the existence of functionally distinct subregions along the parahippocampal longitudinal axis and suggesting that, in humans, the parahippocampal cortex serves as a functional interface between perception and memory systems. Copyright © 2016 the authors 0270-6474/16/362536-07$15.00/0.

  17. Perceptual suppression revealed by adaptive multi-scale entropy analysis of local field potential in monkey visual cortex.

    PubMed

    Hu, Meng; Liang, Hualou

    2013-04-01

    Generalized flash suppression (GFS), in which a salient visual stimulus can be rendered invisible despite continuous retinal input, provides a rare opportunity to directly study the neural mechanism of visual perception. Previous work based on linear methods, such as spectral analysis, on local field potential (LFP) during GFS has shown that the LFP power at distinctive frequency bands are differentially modulated by perceptual suppression. Yet, the linear method alone may be insufficient for the full assessment of neural dynamic due to the fundamentally nonlinear nature of neural signals. In this study, we set forth to analyze the LFP data collected from multiple visual areas in V1, V2 and V4 of macaque monkeys while performing the GFS task using a nonlinear method - adaptive multi-scale entropy (AME) - to reveal the neural dynamic of perceptual suppression. In addition, we propose a new cross-entropy measure at multiple scales, namely adaptive multi-scale cross-entropy (AMCE), to assess the nonlinear functional connectivity between two cortical areas. We show that: (1) multi-scale entropy exhibits percept-related changes in all three areas, with higher entropy observed during perceptual suppression; (2) the magnitude of the perception-related entropy changes increases systematically over successive hierarchical stages (i.e. from lower areas V1 to V2, up to higher area V4); and (3) cross-entropy between any two cortical areas reveals higher degree of asynchrony or dissimilarity during perceptual suppression, indicating a decreased functional connectivity between cortical areas. These results, taken together, suggest that perceptual suppression is related to a reduced functional connectivity and increased uncertainty of neural responses, and the modulation of perceptual suppression is more effective at higher visual cortical areas. AME is demonstrated to be a useful technique in revealing the underlying dynamic of nonlinear/nonstationary neural signal.

  18. Prototype learning and dissociable categorization systems in Alzheimer's disease.

    PubMed

    Heindel, William C; Festa, Elena K; Ott, Brian R; Landy, Kelly M; Salmon, David P

    2013-08-01

    Recent neuroimaging studies suggest that prototype learning may be mediated by at least two dissociable memory systems depending on the mode of acquisition, with A/Not-A prototype learning dependent upon a perceptual representation system located within posterior visual cortex and A/B prototype learning dependent upon a declarative memory system associated with medial temporal and frontal regions. The degree to which patients with Alzheimer's disease (AD) can acquire new categorical information may therefore critically depend upon the mode of acquisition. The present study examined A/Not-A and A/B prototype learning in AD patients using procedures that allowed direct comparison of learning across tasks. Despite impaired explicit recall of category features in all tasks, patients showed differential patterns of category acquisition across tasks. First, AD patients demonstrated impaired prototype induction along with intact exemplar classification under incidental A/Not-A conditions, suggesting that the loss of functional connectivity within visual cortical areas disrupted the integration processes supporting prototype induction within the perceptual representation system. Second, AD patients demonstrated intact prototype induction but impaired exemplar classification during A/B learning under observational conditions, suggesting that this form of prototype learning is dependent on a declarative memory system that is disrupted in AD. Third, the surprisingly intact classification of both prototypes and exemplars during A/B learning under trial-and-error feedback conditions suggests that AD patients shifted control from their deficient declarative memory system to a feedback-dependent procedural memory system when training conditions allowed. Taken together, these findings serve to not only increase our understanding of category learning in AD, but to also provide new insights into the ways in which different memory systems interact to support the acquisition of categorical knowledge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Prototype Learning and Dissociable Categorization Systems in Alzheimer’s Disease

    PubMed Central

    Heindel, William C.; Festa, Elena K.; Ott, Brian R.; Landy, Kelly M.; Salmon, David P.

    2015-01-01

    Recent neuroimaging studies suggest that prototype learning may be mediated by at least two dissociable memory systems depending on the mode of acquisition, with A/Not-A prototype learning dependent upon a perceptual representation system located within posterior visual cortex and A/B prototype learning dependent upon a declarative memory system associated with medial temporal and frontal regions. The degree to which patients with Alzheimer’s disease (AD) can acquire new categorical information may therefore critically depend upon the mode of acquisition. The present study examined A/Not-A and A/B prototype learning in AD patients using procedures that allowed direct comparison of learning across tasks. Despite impaired explicit recall of category features in all tasks, patients showed differential patterns of category acquisition across tasks. First, AD patients demonstrated impaired prototype induction along with intact exemplar classification under incidental A/Not-A conditions, suggesting that the loss of functional connectivity within visual cortical areas disrupted the integration processes supporting prototype induction within the perceptual representation system. Second, AD patients demonstrated intact prototype induction but impaired exemplar classification during A/B learning under observational conditions, suggesting that this form of prototype learning is dependent on a declarative memory system that is disrupted in AD. Third, the surprisingly intact classification of both prototypes and exemplars during A/B learning under trial-and-error feedback conditions suggests that AD patients shifted control from their deficient declarative memory system to a feedback-dependent procedural memory system when training conditions allowed. Taken together, these findings serve to not only increase our understanding of category learning in AD, but to also provide new insights into the ways in which different memory systems interact to support the acquisition of categorical knowledge. PMID:23751172

  20. Cortico-limbic morphology separates tinnitus from tinnitus distress

    PubMed Central

    Leaver, Amber M.; Seydell-Greenwald, Anna; Turesky, Ted K.; Morgan, Susan; Kim, Hung J.; Rauschecker, Josef P.

    2012-01-01

    Tinnitus is a common auditory disorder characterized by a chronic ringing or buzzing “in the ear.”Despite the auditory-perceptual nature of this disorder, a growing number of studies have reported neuroanatomical differences in tinnitus patients outside the auditory-perceptual system. Some have used this evidence to characterize chronic tinnitus as dysregulation of the auditory system, either resulting from inefficient inhibitory control or through the formation of aversive associations with tinnitus. It remains unclear, however, whether these “non-auditory” anatomical markers of tinnitus are related to the tinnitus signal itself, or merely to negative emotional reactions to tinnitus (i.e., tinnitus distress). In the current study, we used anatomical MRI to identify neural markers of tinnitus, and measured their relationship to a variety of tinnitus characteristics and other factors often linked to tinnitus, such as hearing loss, depression, anxiety, and noise sensitivity. In a new cohort of participants, we confirmed that people with chronic tinnitus exhibit reduced gray matter in ventromedial prefrontal cortex (vmPFC) compared to controls matched for age and hearing loss. This effect was driven by reduced cortical surface area, and was not related to tinnitus distress, symptoms of depression or anxiety, noise sensitivity, or other factors. Instead, tinnitus distress was positively correlated with cortical thickness in the anterior insula in tinnitus patients, while symptoms of anxiety and depression were negatively correlated with cortical thickness in subcallosal anterior cingulate cortex (scACC) across all groups. Tinnitus patients also exhibited increased gyrification of dorsomedial prefrontal cortex (dmPFC), which was more severe in those patients with constant (vs. intermittent) tinnitus awareness. Our data suggest that the neural systems associated with chronic tinnitus are different from those involved in aversive or distressed reactions to tinnitus. PMID:22493571

  1. Color-tuned neurons are spatially clustered according to color preference within alert macaque posterior inferior temporal cortex

    PubMed Central

    Conway, Bevil R.; Tsao, Doris Y.

    2009-01-01

    Large islands of extrastriate cortex that are enriched for color-tuned neurons have recently been described in alert macaque using a combination of functional magnetic resonance imaging (fMRI) and single-unit recording. These millimeter-sized islands, dubbed “globs,” are scattered throughout the posterior inferior temporal cortex (PIT), a swath of brain anterior to area V3, including areas V4, PITd, and posterior TEO. We investigated the micro-organization of neurons within the globs. We used fMRI to identify the globs and then used MRI-guided microelectrodes to test the color properties of single glob cells. We used color stimuli that sample the CIELUV perceptual color space at regular intervals to test the color tuning of single units, and make two observations. First, color-tuned neurons of various color preferences were found within single globs. Second, adjacent glob cells tended to have the same color tuning, demonstrating that glob cells are clustered by color preference and suggesting that they are arranged in color columns. Neurons separated by 50 μm, measured parallel to the cortical sheet, had more similar color tuning than neurons separated by 100 μm, suggesting that the scale of the color columns is <100 μm. These results show that color-tuned neurons in PIT are organized by color preference on a finer scale than the scale of single globs. Moreover, the color preferences of neurons recorded sequentially along a given electrode penetration shifted gradually in many penetrations, suggesting that the color columns are arranged according to a chromotopic map reflecting perceptual color space. PMID:19805195

  2. Is race erased? Decoding race from patterns of neural activity when skin color is not diagnostic of group boundaries.

    PubMed

    Ratner, Kyle G; Kaul, Christian; Van Bavel, Jay J

    2013-10-01

    Several theories suggest that people do not represent race when it does not signify group boundaries. However, race is often associated with visually salient differences in skin tone and facial features. In this study, we investigated whether race could be decoded from distributed patterns of neural activity in the fusiform gyri and early visual cortex when visual features that often covary with race were orthogonal to group membership. To this end, we used multivariate pattern analysis to examine an fMRI dataset that was collected while participants assigned to mixed-race groups categorized own-race and other-race faces as belonging to their newly assigned group. Whereas conventional univariate analyses provided no evidence of race-based responses in the fusiform gyri or early visual cortex, multivariate pattern analysis suggested that race was represented within these regions. Moreover, race was represented in the fusiform gyri to a greater extent than early visual cortex, suggesting that the fusiform gyri results do not merely reflect low-level perceptual information (e.g. color, contrast) from early visual cortex. These findings indicate that patterns of activation within specific regions of the visual cortex may represent race even when overall activation in these regions is not driven by racial information.

  3. Face processing pattern under top-down perception: a functional MRI study

    NASA Astrophysics Data System (ADS)

    Li, Jun; Liang, Jimin; Tian, Jie; Liu, Jiangang; Zhao, Jizheng; Zhang, Hui; Shi, Guangming

    2009-02-01

    Although top-down perceptual process plays an important role in face processing, its neural substrate is still puzzling because the top-down stream is extracted difficultly from the activation pattern associated with contamination caused by bottom-up face perception input. In the present study, a novel paradigm of instructing participants to detect faces from pure noise images is employed, which could efficiently eliminate the interference of bottom-up face perception in topdown face processing. Analyzing the map of functional connectivity with right FFA analyzed by conventional Pearson's correlation, a possible face processing pattern induced by top-down perception can be obtained. Apart from the brain areas of bilateral fusiform gyrus (FG), left inferior occipital gyrus (IOG) and left superior temporal sulcus (STS), which are consistent with a core system in the distributed cortical network for face perception, activation induced by top-down face processing is also found in these regions that include the anterior cingulate gyrus (ACC), right oribitofrontal cortex (OFC), left precuneus, right parahippocampal cortex, left dorsolateral prefrontal cortex (DLPFC), right frontal pole, bilateral premotor cortex, left inferior parietal cortex and bilateral thalamus. The results indicate that making-decision, attention, episodic memory retrieving and contextual associative processing network cooperate with general face processing regions to process face information under top-down perception.

  4. The Neural Basis of Event Simulation: An fMRI Study

    PubMed Central

    Yomogida, Yukihito; Sugiura, Motoaki; Akimoto, Yoritaka; Miyauchi, Carlos Makoto; Kawashima, Ryuta

    2014-01-01

    Event simulation (ES) is the situational inference process in which perceived event features such as objects, agents, and actions are associated in the brain to represent the whole situation. ES provides a common basis for various cognitive processes, such as perceptual prediction, situational understanding/prediction, and social cognition (such as mentalizing/trait inference). Here, functional magnetic resonance imaging was used to elucidate the neural substrates underlying important subdivisions within ES. First, the study investigated whether ES depends on different neural substrates when it is conducted explicitly and implicitly. Second, the existence of neural substrates specific to the future-prediction component of ES was assessed. Subjects were shown contextually related object pictures implying a situation and performed several picture–word-matching tasks. By varying task goals, subjects were made to infer the implied situation implicitly/explicitly or predict the future consequence of that situation. The results indicate that, whereas implicit ES activated the lateral prefrontal cortex and medial/lateral parietal cortex, explicit ES activated the medial prefrontal cortex, posterior cingulate cortex, and medial/lateral temporal cortex. Additionally, the left temporoparietal junction plays an important role in the future-prediction component of ES. These findings enrich our understanding of the neural substrates of the implicit/explicit/predictive aspects of ES-related cognitive processes. PMID:24789353

  5. Action video game play facilitates the development of better perceptual templates.

    PubMed

    Bejjanki, Vikranth R; Zhang, Ruyuan; Li, Renjie; Pouget, Alexandre; Green, C Shawn; Lu, Zhong-Lin; Bavelier, Daphne

    2014-11-25

    The field of perceptual learning has identified changes in perceptual templates as a powerful mechanism mediating the learning of statistical regularities in our environment. By measuring threshold-vs.-contrast curves using an orientation identification task under varying levels of external noise, the perceptual template model (PTM) allows one to disentangle various sources of signal-to-noise changes that can alter performance. We use the PTM approach to elucidate the mechanism that underlies the wide range of improvements noted after action video game play. We show that action video game players make use of improved perceptual templates compared with nonvideo game players, and we confirm a causal role for action video game play in inducing such improvements through a 50-h training study. Then, by adapting a recent neural model to this task, we demonstrate how such improved perceptual templates can arise from reweighting the connectivity between visual areas. Finally, we establish that action gamers do not enter the perceptual task with improved perceptual templates. Instead, although performance in action gamers is initially indistinguishable from that of nongamers, action gamers more rapidly learn the proper template as they experience the task. Taken together, our results establish for the first time to our knowledge the development of enhanced perceptual templates following action game play. Because such an improvement can facilitate the inference of the proper generative model for the task at hand, unlike perceptual learning that is quite specific, it thus elucidates a general learning mechanism that can account for the various behavioral benefits noted after action game play.

  6. Action video game play facilitates the development of better perceptual templates

    PubMed Central

    Bejjanki, Vikranth R.; Zhang, Ruyuan; Li, Renjie; Pouget, Alexandre; Green, C. Shawn; Lu, Zhong-Lin; Bavelier, Daphne

    2014-01-01

    The field of perceptual learning has identified changes in perceptual templates as a powerful mechanism mediating the learning of statistical regularities in our environment. By measuring threshold-vs.-contrast curves using an orientation identification task under varying levels of external noise, the perceptual template model (PTM) allows one to disentangle various sources of signal-to-noise changes that can alter performance. We use the PTM approach to elucidate the mechanism that underlies the wide range of improvements noted after action video game play. We show that action video game players make use of improved perceptual templates compared with nonvideo game players, and we confirm a causal role for action video game play in inducing such improvements through a 50-h training study. Then, by adapting a recent neural model to this task, we demonstrate how such improved perceptual templates can arise from reweighting the connectivity between visual areas. Finally, we establish that action gamers do not enter the perceptual task with improved perceptual templates. Instead, although performance in action gamers is initially indistinguishable from that of nongamers, action gamers more rapidly learn the proper template as they experience the task. Taken together, our results establish for the first time to our knowledge the development of enhanced perceptual templates following action game play. Because such an improvement can facilitate the inference of the proper generative model for the task at hand, unlike perceptual learning that is quite specific, it thus elucidates a general learning mechanism that can account for the various behavioral benefits noted after action game play. PMID:25385590

  7. Translating novel findings of perceptual-motor codes into the neuro-rehabilitation of movement disorders.

    PubMed

    Pazzaglia, Mariella; Galli, Giulia

    2015-01-01

    The bidirectional flow of perceptual and motor information has recently proven useful as rehabilitative tool for re-building motor memories. We analyzed how the visual-motor approach has been successfully applied in neurorehabilitation, leading to surprisingly rapid and effective improvements in action execution. We proposed that the contribution of multiple sensory channels during treatment enables individuals to predict and optimize motor behavior, having a greater effect than visual input alone. We explored how the state-of-the-art neuroscience techniques show direct evidence that employment of visual-motor approach leads to increased motor cortex excitability and synaptic and cortical map plasticity. This super-additive response to multimodal stimulation may maximize neural plasticity, potentiating the effect of conventional treatment, and will be a valuable approach when it comes to advances in innovative methodologies.

  8. Top-down enhancement and suppression of activity in category-selective extrastriate cortex from an act of reflective attention.

    PubMed

    Johnson, Matthew R; Johnson, Marcia K

    2009-12-01

    Recent research has demonstrated top-down attentional modulation of activity in extrastriate category-selective visual areas while stimuli are in view (perceptual attention) and after they are removed from view (reflective attention). Perceptual attention is capable of both enhancing and suppressing activity in category-selective areas relative to a passive viewing baseline. In this study, we demonstrate that a brief, simple act of reflective attention ("refreshing") is also capable of both enhancing and suppressing activity in some scene-selective areas (the parahippocampal place area [PPA]) but not others (refreshing resulted in enhancement but not in suppression in the middle occipital gyrus [MOG]). This suggests that different category-selective extrastriate areas preferring the same class of stimuli may contribute differentially to reflective processing of one's internal representations of such stimuli.

  9. Training Humans to Categorize Monkey Calls: Auditory Feature- and Category-Selective Neural Tuning Changes.

    PubMed

    Jiang, Xiong; Chevillet, Mark A; Rauschecker, Josef P; Riesenhuber, Maximilian

    2018-04-18

    Grouping auditory stimuli into common categories is essential for a variety of auditory tasks, including speech recognition. We trained human participants to categorize auditory stimuli from a large novel set of morphed monkey vocalizations. Using fMRI-rapid adaptation (fMRI-RA) and multi-voxel pattern analysis (MVPA) techniques, we gained evidence that categorization training results in two distinct sets of changes: sharpened tuning to monkey call features (without explicit category representation) in left auditory cortex and category selectivity for different types of calls in lateral prefrontal cortex. In addition, the sharpness of neural selectivity in left auditory cortex, as estimated with both fMRI-RA and MVPA, predicted the steepness of the categorical boundary, whereas categorical judgment correlated with release from adaptation in the left inferior frontal gyrus. These results support the theory that auditory category learning follows a two-stage model analogous to the visual domain, suggesting general principles of perceptual category learning in the human brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Lateral orbitofrontal cortex anticipates choices and integrates prior with current information

    PubMed Central

    Nogueira, Ramon; Abolafia, Juan M.; Drugowitsch, Jan; Balaguer-Ballester, Emili; Sanchez-Vives, Maria V.; Moreno-Bote, Rubén

    2017-01-01

    Adaptive behavior requires integrating prior with current information to anticipate upcoming events. Brain structures related to this computation should bring relevant signals from the recent past into the present. Here we report that rats can integrate the most recent prior information with sensory information, thereby improving behavior on a perceptual decision-making task with outcome-dependent past trial history. We find that anticipatory signals in the orbitofrontal cortex about upcoming choice increase over time and are even present before stimulus onset. These neuronal signals also represent the stimulus and relevant second-order combinations of past state variables. The encoding of choice, stimulus and second-order past state variables resides, up to movement onset, in overlapping populations. The neuronal representation of choice before stimulus onset and its build-up once the stimulus is presented suggest that orbitofrontal cortex plays a role in transforming immediate prior and stimulus information into choices using a compact state-space representation. PMID:28337990

  11. Cortical Surround Interactions and Perceptual Salience via Natural Scene Statistics

    PubMed Central

    Coen-Cagli, Ruben; Dayan, Peter; Schwartz, Odelia

    2012-01-01

    Spatial context in images induces perceptual phenomena associated with salience and modulates the responses of neurons in primary visual cortex (V1). However, the computational and ecological principles underlying contextual effects are incompletely understood. We introduce a model of natural images that includes grouping and segmentation of neighboring features based on their joint statistics, and we interpret the firing rates of V1 neurons as performing optimal recognition in this model. We show that this leads to a substantial generalization of divisive normalization, a computation that is ubiquitous in many neural areas and systems. A main novelty in our model is that the influence of the context on a target stimulus is determined by their degree of statistical dependence. We optimized the parameters of the model on natural image patches, and then simulated neural and perceptual responses on stimuli used in classical experiments. The model reproduces some rich and complex response patterns observed in V1, such as the contrast dependence, orientation tuning and spatial asymmetry of surround suppression, while also allowing for surround facilitation under conditions of weak stimulation. It also mimics the perceptual salience produced by simple displays, and leads to readily testable predictions. Our results provide a principled account of orientation-based contextual modulation in early vision and its sensitivity to the homogeneity and spatial arrangement of inputs, and lends statistical support to the theory that V1 computes visual salience. PMID:22396635

  12. Visuomotor 'immunity' to perceptual illusion: a mismatch of attentional demands cannot explain the perception-action dissociation.

    PubMed

    Dewar, Michaela T; Carey, David P

    2006-01-01

    Recent findings of visuomotor immunity to perceptual illusions have been attributed to a perception-action division of labour within two anatomically segregated streams in the visual cortex. However, critics argue that such experimental findings are not valid and have suggested that the perception-action dissociations can be explained away by differential attentional/processing demands, rather than a functional dissociation in the neurologically intact brain: perceptual tasks require processing of the entire illusion display while visuomotor tasks only require processing the target that is acted upon. The present study examined whether grasping of the Müller-Lyer display would remain immune to the illusion when the task required the direction of attention or a related resource towards both Müller-Lyer shafts. Twelve participants were required to match and grasp two Müller-Lyer shafts bimanually (i.e. one with each hand). It was found that bimanual grasping was not significantly affected by the illusion, while there was a highly significant illusion effect on perceptual estimation by matching. Furthermore, it was established that this dissociation did not result from a differing baseline rate of change in manual estimation and grasping aperture to a change in physical object size. These findings provide further support for the postulated perception-action dissociation and fail to uphold the idea that grasping 'immunity' to the Müller-Lyer illusions merely represents an experimental artefact.

  13. Importance of perceptual representation in the visual control of action

    NASA Astrophysics Data System (ADS)

    Loomis, Jack M.; Beall, Andrew C.; Kelly, Jonathan W.; Macuga, Kristen L.

    2005-03-01

    In recent years, many experiments have demonstrated that optic flow is sufficient for visually controlled action, with the suggestion that perceptual representations of 3-D space are superfluous. In contrast, recent research in our lab indicates that some visually controlled actions, including some thought to be based on optic flow, are indeed mediated by perceptual representations. For example, we have demonstrated that people are able to perform complex spatial behaviors, like walking, driving, and object interception, in virtual environments which are rendered visible solely by cyclopean stimulation (random-dot cinematograms). In such situations, the absence of any retinal optic flow that is correlated with the objects and surfaces within the virtual environment means that people are using stereo-based perceptual representations to perform the behavior. The fact that people can perform such behaviors without training suggests that the perceptual representations are likely the same as those used when retinal optic flow is present. Other research indicates that optic flow, whether retinal or a more abstract property of the perceptual representation, is not the basis for postural control, because postural instability is related to perceived relative motion between self and the visual surroundings rather than to optic flow, even in the abstract sense.

  14. Functional dissociation between action and perception of object shape in developmental visual object agnosia.

    PubMed

    Freud, Erez; Ganel, Tzvi; Avidan, Galia; Gilaie-Dotan, Sharon

    2016-03-01

    According to the two visual systems model, the cortical visual system is segregated into a ventral pathway mediating object recognition, and a dorsal pathway mediating visuomotor control. In the present study we examined whether the visual control of action could develop normally even when visual perceptual abilities are compromised from early childhood onward. Using his fingers, LG, an individual with a rare developmental visual object agnosia, manually estimated (perceptual condition) the width of blocks that varied in width and length (but not in overall size), or simply picked them up across their width (grasping condition). LG's perceptual sensitivity to target width was profoundly impaired in the manual estimation task compared to matched controls. In contrast, the sensitivity to object shape during grasping, as measured by maximum grip aperture (MGA), the time to reach the MGA, the reaction time and the total movement time were all normal in LG. Further analysis, however, revealed that LG's sensitivity to object shape during grasping emerged at a later time stage during the movement compared to controls. Taken together, these results demonstrate a dissociation between action and perception of object shape, and also point to a distinction between different stages of the grasping movement, namely planning versus online control. Moreover, the present study implies that visuomotor abilities can develop normally even when perceptual abilities developed in a profoundly impaired fashion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Dopaminergic stimulation in unilateral neglect

    PubMed Central

    Geminiani, G.; Bottini, G.; Sterzi, R.

    1998-01-01

    OBJECTIVE—To explore the hypothesis that dopaminergic circuits play a part in the premotor components of the unilateral neglect syndrome, the effects of acute dopaminergic stimulation in patients with neglect were studied.
METHODS—Two tasks were evaluated before and after subcutaneous administration of apomorphine and placebo: a circle crossing test and a test of target exploration (a modified version of the bell test), performed both in perceptual (counting) and in perceptual-motor (pointing) conditions.
SUBJECTS—Four patients with left neglect.
RESULTS—After dopaminergic stimulation, a significant improvement was found compared with placebo administration and baseline evaluation, in the performance of the two tests. Three of the patients had a more marked improvement in the perceptual-motor condition (pointing) of the task than the perceptual condition (counting).
CONCLUSIONS—The findings suggest that dopaminergic neuronal networks may mediate, in different ways, both perceptive and premotor components of the unilateral neglect syndrome. 

 PMID:9728946

  16. Exogenous and endogenous attention during perceptual learning differentially affect post-training target thresholds

    PubMed Central

    Mukai, Ikuko; Bahadur, Kandy; Kesavabhotla, Kartik; Ungerleider, Leslie G.

    2012-01-01

    There is conflicting evidence in the literature regarding the role played by attention in perceptual learning. To further examine this issue, we independently manipulated exogenous and endogenous attention and measured the rate of perceptual learning of oriented Gabor patches presented in different quadrants of the visual field. In this way, we could track learning at attended, divided-attended, and unattended locations. We also measured contrast thresholds of the Gabor patches before and after training. Our results showed that, for both exogenous and endogenous attention, accuracy in performing the orientation discrimination improved to a greater extent at attended than at unattended locations. Importantly, however, only exogenous attention resulted in improved contrast thresholds. These findings suggest that both exogenous and endogenous attention facilitate perceptual learning, but that these two types of attention may be mediated by different neural mechanisms. PMID:21282340

  17. Multiple systems of category learning.

    PubMed

    Smith, Edward E; Grossman, Murray

    2008-01-01

    We review neuropsychological and neuroimaging evidence for the existence of three qualitatively different categorization systems. These categorization systems are themselves based on three distinct memory systems: working memory (WM), explicit long-term memory (explicit LTM), and implicit long-term memory (implicit LTM). We first contrast categorization based on WM with that based on explicit LTM, where the former typically involves applying rules to a test item and the latter involves determining the similarity between stored exemplars or prototypes and a test item. Neuroimaging studies show differences between brain activity in normal participants as a function of whether they are instructed to categorize novel test items by rule or by similarity to known category members. Rule instructions typically lead to more activation in frontal or parietal areas, associated with WM and selective attention, whereas similarity instructions may activate parietal areas associated with the integration of perceptual features. Studies with neurological patients in the same paradigms provide converging evidence, e.g., patients with Alzheimer's disease, who have damage in prefrontal regions, are more impaired with rule than similarity instructions. Our second contrast is between categorization based on explicit LTM with that based on implicit LTM. Neuropsychological studies with patients with medial-temporal lobe damage show that patients are impaired on tasks requiring explicit LTM, but perform relatively normally on an implicit categorization task. Neuroimaging studies provide converging evidence: whereas explicit categorization is mediated by activation in numerous frontal and parietal areas, implicit categorization is mediated by a deactivation in posterior cortex.

  18. The auditory cortex hosts network nodes influential for emotion processing: An fMRI study on music-evoked fear and joy

    PubMed Central

    Skouras, Stavros; Lohmann, Gabriele

    2018-01-01

    Sound is a potent elicitor of emotions. Auditory core, belt and parabelt regions have anatomical connections to a large array of limbic and paralimbic structures which are involved in the generation of affective activity. However, little is known about the functional role of auditory cortical regions in emotion processing. Using functional magnetic resonance imaging and music stimuli that evoke joy or fear, our study reveals that anterior and posterior regions of auditory association cortex have emotion-characteristic functional connectivity with limbic/paralimbic (insula, cingulate cortex, and striatum), somatosensory, visual, motor-related, and attentional structures. We found that these regions have remarkably high emotion-characteristic eigenvector centrality, revealing that they have influential positions within emotion-processing brain networks with “small-world” properties. By contrast, primary auditory fields showed surprisingly strong emotion-characteristic functional connectivity with intra-auditory regions. Our findings demonstrate that the auditory cortex hosts regions that are influential within networks underlying the affective processing of auditory information. We anticipate our results to incite research specifying the role of the auditory cortex—and sensory systems in general—in emotion processing, beyond the traditional view that sensory cortices have merely perceptual functions. PMID:29385142

  19. Cognitive Contributions of the Ventral Parietal Cortex: An Integrative Theoretical Account

    PubMed Central

    Cabeza, Roberto; Ciaramelli, Elisa; Moscovitch, Morris

    2012-01-01

    Although ventral parietal cortex (VPC) activations can be found in a variety of cognitive domains, these activations have been typically attributed to cognitive operations specific to each domain. In this article, we propose a hypothesis that can account for VPC activations across all the cognitive domains reviewed. We first review VPC activations in the domains of perceptual and motor reorienting, episodic memory retrieval, language and number processing, theory of mind, and episodic memory encoding. Then, we consider the localization of VPC activations across domains, and conclude that they are largely overlapping with some differences around the edges. Finally, we assess how well four different hypotheses of VPC function can explain findings in various domains, and conclude that a bottom-up attention hypothesis provides the most complete and parsimonious account. PMID:22609315

  20. Resting state glutamate predicts elevated pre-stimulus alpha during self-relatedness: A combined EEG-MRS study on "rest-self overlap".

    PubMed

    Bai, Yu; Nakao, Takashi; Xu, Jiameng; Qin, Pengmin; Chaves, Pedro; Heinzel, Alexander; Duncan, Niall; Lane, Timothy; Yen, Nai-Shing; Tsai, Shang-Yueh; Northoff, Georg

    2016-01-01

    Recent studies have demonstrated neural overlap between resting state activity and self-referential processing. This "rest-self" overlap occurs especially in anterior cortical midline structures like the perigenual anterior cingulate cortex (PACC). However, the exact neurotemporal and biochemical mechanisms remain to be identified. Therefore, we conducted a combined electroencephalography (EEG)-magnetic resonance spectroscopy (MRS) study. EEG focused on pre-stimulus (e.g., prior to stimulus presentation or perception) power changes to assess the degree to which those changes can predict subjects' perception (and judgment) of subsequent stimuli as high or low self-related. MRS measured resting state concentration of glutamate, focusing on PACC. High pre-stimulus (e.g., prior to stimulus presentation or perception) alpha power significantly correlated with both perception of stimuli judged to be highly self-related and with resting state glutamate concentrations in the PACC. In sum, our results show (i) pre-stimulus (e.g., prior to stimulus presentation or perception) alpha power and resting state glutamate concentration to mediate rest-self overlap that (ii) dispose or incline subjects to assign high degrees of self-relatedness to perceptual stimuli.

  1. Domain general mechanisms of perceptual decision making in human cortex

    PubMed Central

    Ho, Tiffany C.; Brown, Scott; Serences, John T.

    2009-01-01

    To successfully interact with objects in the environment, sensory evidence must be continuously acquired, interpreted, and used to guide appropriate motor responses. For example, when driving, a red light should motivate a motor command to depress the brake pedal. Single-unit recording studies have established that simple sensorimotor transformations are mediated by the same neurons that ultimately guide the behavioral response. However, it is also possible that these sensorimotor regions are the recipients of a modality independent decision signal that is computed elsewhere. Here, we used fMRI and human observers to show that the timecourse of activation in a subregion of the right insula is consistent with a role in accumulating sensory evidence independently from the required motor response modality (saccade vs. manual). Furthermore, a combination of computational modeling and simulations of the BOLD response suggests that this region is not simply recruited by general arousal or by the tonic maintenance of attention during the decision process. Our data thus raise the possibility that a modality-independent representation of sensory evidence may guide activity in effector-specific cortical areas prior to the initiation of a behavioral response. PMID:19587274

  2. Evidence Accumulator or Decision Threshold – Which Cortical Mechanism are We Observing?

    PubMed Central

    Simen, Patrick

    2012-01-01

    Most psychological models of perceptual decision making are of the accumulation-to-threshold variety. The neural basis of accumulation in parietal and prefrontal cortex is therefore a topic of great interest in neuroscience. In contrast, threshold mechanisms have received less attention, and their neural basis has usually been sought in subcortical structures. Here I analyze a model of a decision threshold that can be implemented in the same cortical areas as evidence accumulators, and whose behavior bears on two open questions in decision neuroscience: (1) When ramping activity is observed in a brain region during decision making, does it reflect evidence accumulation? (2) Are changes in speed-accuracy tradeoffs and response biases more likely to be achieved by changes in thresholds, or in accumulation rates and starting points? The analysis suggests that task-modulated ramping activity, by itself, is weak evidence that a brain area mediates evidence accumulation as opposed to threshold readout; and that signs of modulated accumulation are as likely to indicate threshold adaptation as adaptation of starting points and accumulation rates. These conclusions imply that how thresholds are modeled can dramatically impact accumulator-based interpretations of this data. PMID:22737136

  3. Anthocyanins protect against LPS-induced oxidative stress-mediated neuroinflammation and neurodegeneration in the adult mouse cortex.

    PubMed

    Khan, Muhammad Sohail; Ali, Tahir; Kim, Min Woo; Jo, Myeung Hoon; Jo, Min Gi; Badshah, Haroon; Kim, Myeong Ok

    2016-11-01

    Several studies provide evidence that reactive oxygen species (ROS) are key mediators of various neurological disorders. Anthocyanins are polyphenolic compounds and are well known for their anti-oxidant and neuroprotective effects. In this study, we investigated the neuroprotective effects of anthocyanins (extracted from black soybean) against lipopolysaccharide (LPS)-induced ROS-mediated neuroinflammation and neurodegeneration in the adult mouse cortex. Intraperitoneal injection of LPS (250 μg/kg) for 7 days triggers elevated ROS and oxidative stress, which induces neuroinflammation and neurodegeneration in the adult mouse cortex. Treatment with 24 mg/kg/day of anthocyanins for 14 days in LPS-injected mice (7 days before and 7 days co-treated with LPS) attenuated elevated ROS and oxidative stress compared to mice that received LPS-injection alone. The immunoblotting results showed that anthocyanins reduced the level of the oxidative stress kinase phospho-c-Jun N-terminal Kinase 1 (p-JNK). The immunoblotting and morphological results showed that anthocyanins treatment significantly reduced LPS-induced-ROS-mediated neuroinflammation through inhibition of various inflammatory mediators, such as IL-1β, TNF-α and the transcription factor NF- k B. Anthocyanins treatment also reduced activated astrocytes and microglia in the cortex of LPS-injected mice, as indicated by reductions in GFAP and Iba-1, respectively. Anthocyanins also prevent overexpression of various apoptotic markers, i.e., Bax, cytosolic cytochrome C, cleaved caspase-3 and PARP-1. Immunohistochemical fluoro-jade B (FJB) and Nissl staining indicated that anthocyanins prevent LPS-induced neurodegeneration in the mouse cortex. Our results suggest that dietary flavonoids, such as anthocyanins, have antioxidant and neuroprotective activities that could be beneficial to various neurological disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Orientation dependent modulation of apparent speed: a model based on the dynamics of feed-forward and horizontal connectivity in V1 cortex.

    PubMed

    Seriès, Peggy; Georges, Sébastien; Lorenceau, Jean; Frégnac, Yves

    2002-11-01

    Psychophysical and physiological studies suggest that long-range horizontal connections in primary visual cortex participate in spatial integration and contour processing. Until recently, little attention has been paid to their intrinsic temporal properties. Recent physiological studies indicate, however, that the propagation of activity through long-range horizontal connections is slow, with time scales comparable to the perceptual scales involved in motion processing. Using a simple model of V1 connectivity, we explore some of the implications of this slow dynamics. The model predicts that V1 responses to a stimulus in the receptive field can be modulated by a previous stimulation, a few milliseconds to a few tens of milliseconds before, in the surround. We analyze this phenomenon and its possible consequences on speed perception, as a function of the spatio-temporal configuration of the visual inputs (relative orientation, spatial separation, temporal interval between the elements, sequence speed). We show that the dynamical interactions between feed-forward and horizontal signals in V1 can explain why the perceived speed of fast apparent motion sequences strongly depends on the orientation of their elements relative to the motion axis and can account for the range of speed for which this perceptual effect occurs (Georges, Seriès, Frégnac and Lorenceau, this issue).

  5. Top-down control of visual perception: attention in natural vision.

    PubMed

    Rolls, Edmund T

    2008-01-01

    Top-down perceptual influences can bias (or pre-empt) perception. In natural scenes, the receptive fields of neurons in the inferior temporal visual cortex (IT) shrink to become close to the size of objects. This facilitates the read-out of information from the ventral visual system, because the information is primarily about the object at the fovea. Top-down attentional influences are much less evident in natural scenes than when objects are shown against blank backgrounds, though are still present. It is suggested that the reduced receptive-field size in natural scenes, and the effects of top-down attention contribute to change blindness. The receptive fields of IT neurons in complex scenes, though including the fovea, are frequently asymmetric around the fovea, and it is proposed that this is the solution the IT uses to represent multiple objects and their relative spatial positions in a scene. Networks that implement probabilistic decision-making are described, and it is suggested that, when in perceptual systems they take decisions (or 'test hypotheses'), they influence lower-level networks to bias visual perception. Finally, it is shown that similar processes extend to systems involved in the processing of emotion-provoking sensory stimuli, in that word-level cognitive states provide top-down biasing that reaches as far down as the orbitofrontal cortex, where, at the first stage of affective representations, olfactory, taste, flavour, and touch processing is biased (or pre-empted) in humans.

  6. Activity in Face-Responsive Brain Regions is Modulated by Invisible, Attended Faces: Evidence from Masked Priming

    PubMed Central

    Eger, Evelyn; Dolan, Raymond; Henson, Richard N.

    2009-01-01

    It is often assumed that neural activity in face-responsive regions of primate cortex correlates with conscious perception of faces. However, whether such activity occurs without awareness is still debated. Using functional magnetic resonance imaging (fMRI) in conjunction with a novel masked face priming paradigm, we observed neural modulations that could not be attributed to perceptual awareness. More specifically, we found reduced activity in several classic face-processing regions, including the “fusiform face area,” “occipital face area,” and superior temporal sulcus, when a face was preceded by a briefly flashed image of the same face, relative to a different face, even when 2 images of the same face differed. Importantly, unlike most previous studies, which have minimized awareness by using conditions of inattention, the present results occurred when the stimuli (the primes) were attended. By contrast, when primes were perceived consciously, in a long-lag priming paradigm, we found repetition-related activity increases in additional frontal and parietal regions. These data not only demonstrate that fMRI activity in face-responsive regions can be modulated independently of perceptual awareness, but also document where such subliminal face-processing occurs (i.e., restricted to face-responsive regions of occipital and temporal cortex) and to what extent (i.e., independent of the specific image). PMID:18400791

  7. Neural Evidence for Reduced Apprehensiveness of Familiarized Stimuli in a Mere Exposure Paradigm

    PubMed Central

    Zebrowitz, Leslie A.; Zhang, Yi

    2012-01-01

    Mere familiarization with a stimulus increases liking for it or similar stimuli (‘mere exposure’ effects) as well as perceptual fluency, indexed by the speed and accuracy of categorizing it or similar stimuli (‘priming’ effects). Candidate mechanisms proposed to explain mere exposure effects include both increased positive affect associated with greater perceptual fluency, and also reduced negative affect associated with diminished apprehensiveness of novel stimuli. Although these two mechanisms are not mutually exclusive, it is difficult for behavioral measures to disentangle them, since increased liking or other indices of greater positive affect toward exposed stimuli could result from increases in positive feelings or decreases in negative feelings or both. The present study sought to clarify this issue by building on research showing a dissociation at the neural level in which the lateral orbital frontal cortex (LOFC) is activated more by negatively valenced than by neutral or positively valenced stimuli, with the reverse effect for medial orbital frontal cortex (MOFC). Supporting the reduced apprehensiveness hypothesis, we found lower LOFC activation to familiarized faces and objects (repetition suppression). We did not find evidence to support the positive affect hypothesis in increased activation to familiarized stimuli in MOFC or in other parts of the reward circuit that respond more to positively valenced stimuli (repetiton enhancement), although enhancement effects were shown in some regions. PMID:22017290

  8. Anterior insular cortex mediates bodily sensibility and social anxiety

    PubMed Central

    Shibata, Midori; Moriguchi, Yoshiya; Umeda, Satoshi

    2013-01-01

    Studies in psychiatry and cognitive neuroscience have reported an important relationship between individual interoceptive accuracy and anxiety level. This indicates that greater attention to one’s bodily state may contribute to the development of intense negative emotions and anxiety disorders. We hypothesized that reactivity in the anterior insular cortex underlies the intensity of interoceptive awareness and anxiety. To elucidate this triadic mechanism, we conducted functional magnetic resonance imaging (fMRI) and mediation analyses to examine the relationship between emotional disposition and activation in the anterior insular cortex while participants evaluated their own emotional and bodily states. Our results indicated that right anterior insular activation was positively correlated with individual levels of social anxiety and neuroticism and negatively correlated with agreeableness and extraversion. The results of the mediation analyses revealed that activity in the right anterior insula mediated the activity of neural correlates of interoceptive sensibility and social fear. Our findings suggest that attention to interoceptive sensation affects personality traits through how we feel emotion subjectively in various situations. PMID:22977199

  9. The fate of task-irrelevant visual motion: perceptual load versus feature-based attention.

    PubMed

    Taya, Shuichiro; Adams, Wendy J; Graf, Erich W; Lavie, Nilli

    2009-11-18

    We tested contrasting predictions derived from perceptual load theory and from recent feature-based selection accounts. Observers viewed moving, colored stimuli and performed low or high load tasks associated with one stimulus feature, either color or motion. The resultant motion aftereffect (MAE) was used to evaluate attentional allocation. We found that task-irrelevant visual features received less attention than co-localized task-relevant features of the same objects. Moreover, when color and motion features were co-localized yet perceived to belong to two distinct surfaces, feature-based selection was further increased at the expense of object-based co-selection. Load theory predicts that the MAE for task-irrelevant motion would be reduced with a higher load color task. However, this was not seen for co-localized features; perceptual load only modulated the MAE for task-irrelevant motion when this was spatially separated from the attended color location. Our results suggest that perceptual load effects are mediated by spatial selection and do not generalize to the feature domain. Feature-based selection operates to suppress processing of task-irrelevant, co-localized features, irrespective of perceptual load.

  10. Decision-Making in the Ventral Premotor Cortex Harbinger of Action

    PubMed Central

    Pardo-Vazquez, Jose L.; Padron, Isabel; Fernandez-Rey, Jose; Acuña, Carlos

    2011-01-01

    Although the premotor (PM) cortex was once viewed as the substrate of pure motor functions, soon it was realized that it was involved in higher brain functions. By this it is meant that the PM cortex functions would better be explained as motor set, preparation for limb movement, or sensory guidance of movement rather than solely by a fixed link to motor performance. These findings, together with a better knowledge of the PM cortex histology and hodology in human and non-human primates prompted quantitative studies of this area combining behavioral tasks with electrophysiological recordings. In addition, the exploration of the PM cortex neurons with qualitative methods also suggested its participation in higher functions. Behavioral choices frequently depend on temporal cues, which together with knowledge of previous outcomes and expectancies are combined to decide and choose a behavioral action. In decision-making the knowledge about the consequences of decisions, either correct or incorrect, is fundamental because they can be used to adapt future behavior. The neuronal correlates of a decision process have been described in several cortical areas of primates. Among them, there is evidence that the monkey ventral premotor (PMv) cortex, an anatomical and physiological well-differentiated area of the PM cortex, supports both perceptual decisions and performance monitoring. Here we review the evidence that the steps in a decision-making process are encoded in the firing rate of the PMv neurons. This provides compelling evidence suggesting that the PMv is involved in the use of recent and long-term sensory memory to decide, execute, and evaluate the outcomes of the subjects’ choices. PMID:21991249

  11. Stimulus and response conflict processing during perceptual decision making.

    PubMed

    Wendelken, Carter; Ditterich, Jochen; Bunge, Silvia A; Carter, Cameron S

    2009-12-01

    Encoding and dealing with conflicting information is essential for successful decision making in a complex environment. In the present fMRI study, stimulus conflict and response conflict are contrasted in the context of a perceptual decision-making dot-motion discrimination task. Stimulus conflict was manipulated by varying dot-motion coherence along task-relevant and task-irrelevant dimensions. Response conflict was manipulated by varying whether or not competing stimulus dimensions provided evidence for the same or different responses. The right inferior frontal gyrus was involved specifically in the resolution of stimulus conflict, whereas the dorsal anterior cingulate cortex was shown to be sensitive to response conflict. Additionally, two regions that have been linked to perceptual decision making with dot-motion stimuli in monkey physiology studies were differentially engaged by stimulus conflict and response conflict. The middle temporal area, previously linked to processing of motion, was strongly affected by the presence of stimulus conflict. On the other hand, the superior parietal lobe, previously associated with accumulation of evidence for a response, was affected by the presence of response conflict. These results shed light on the neural mechanisms that support decision making in the presence of conflict, a cognitive operation fundamental to both basic survival and high-level cognition.

  12. Predictive Coding or Evidence Accumulation? False Inference and Neuronal Fluctuations

    PubMed Central

    Friston, Karl J.; Kleinschmidt, Andreas

    2010-01-01

    Perceptual decisions can be made when sensory input affords an inference about what generated that input. Here, we report findings from two independent perceptual experiments conducted during functional magnetic resonance imaging (fMRI) with a sparse event-related design. The first experiment, in the visual modality, involved forced-choice discrimination of coherence in random dot kinematograms that contained either subliminal or periliminal motion coherence. The second experiment, in the auditory domain, involved free response detection of (non-semantic) near-threshold acoustic stimuli. We analysed fluctuations in ongoing neural activity, as indexed by fMRI, and found that neuronal activity in sensory areas (extrastriate visual and early auditory cortex) biases perceptual decisions towards correct inference and not towards a specific percept. Hits (detection of near-threshold stimuli) were preceded by significantly higher activity than both misses of identical stimuli or false alarms, in which percepts arise in the absence of appropriate sensory input. In accord with predictive coding models and the free-energy principle, this observation suggests that cortical activity in sensory brain areas reflects the precision of prediction errors and not just the sensory evidence or prediction errors per se. PMID:20369004

  13. Effects of Spatial and Feature Attention on Disparity-Rendered Structure-From-Motion Stimuli in the Human Visual Cortex

    PubMed Central

    Ip, Ifan Betina; Bridge, Holly; Parker, Andrew J.

    2014-01-01

    An important advance in the study of visual attention has been the identification of a non-spatial component of attention that enhances the response to similar features or objects across the visual field. Here we test whether this non-spatial component can co-select individual features that are perceptually bound into a coherent object. We combined human psychophysics and functional magnetic resonance imaging (fMRI) to demonstrate the ability to co-select individual features from perceptually coherent objects. Our study used binocular disparity and visual motion to define disparity structure-from-motion (dSFM) stimuli. Although the spatial attention system induced strong modulations of the fMRI response in visual regions, the non-spatial system’s ability to co-select features of the dSFM stimulus was less pronounced and variable across subjects. Our results demonstrate that feature and global feature attention effects are variable across participants, suggesting that the feature attention system may be limited in its ability to automatically select features within the attended object. Careful comparison of the task design suggests that even minor differences in the perceptual task may be critical in revealing the presence of global feature attention. PMID:24936974

  14. The brain dynamics of rapid perceptual adaptation to adverse listening conditions.

    PubMed

    Erb, Julia; Henry, Molly J; Eisner, Frank; Obleser, Jonas

    2013-06-26

    Listeners show a remarkable ability to quickly adjust to degraded speech input. Here, we aimed to identify the neural mechanisms of such short-term perceptual adaptation. In a sparse-sampling, cardiac-gated functional magnetic resonance imaging (fMRI) acquisition, human listeners heard and repeated back 4-band-vocoded sentences (in which the temporal envelope of the acoustic signal is preserved, while spectral information is highly degraded). Clear-speech trials were included as baseline. An additional fMRI experiment on amplitude modulation rate discrimination quantified the convergence of neural mechanisms that subserve coping with challenging listening conditions for speech and non-speech. First, the degraded speech task revealed an "executive" network (comprising the anterior insula and anterior cingulate cortex), parts of which were also activated in the non-speech discrimination task. Second, trial-by-trial fluctuations in successful comprehension of degraded speech drove hemodynamic signal change in classic "language" areas (bilateral temporal cortices). Third, as listeners perceptually adapted to degraded speech, downregulation in a cortico-striato-thalamo-cortical circuit was observable. The present data highlight differential upregulation and downregulation in auditory-language and executive networks, respectively, with important subcortical contributions when successfully adapting to a challenging listening situation.

  15. Analgesia and hyperalgesia from GABA-mediated modulation of the cerebral cortex.

    PubMed

    Jasmin, Luc; Rabkin, Samuel D; Granato, Alberto; Boudah, Abdennacer; Ohara, Peter T

    2003-07-17

    It is known that pain perception can be altered by mood, attention and cognition, or by direct stimulation of the cerebral cortex, but we know little of the neural mechanisms underlying the cortical modulation of pain. One of the few cortical areas consistently activated by painful stimuli is the rostral agranular insular cortex (RAIC) where, as in other parts of the cortex, the neurotransmitter gamma-aminobutyric acid (GABA) robustly inhibits neuronal activity. Here we show that changes in GABA neurotransmission in the RAIC can raise or lower the pain threshold--producing analgesia or hyperalgesia, respectively--in freely moving rats. Locally increasing GABA, by using an enzyme inhibitor or gene transfer mediated by a viral vector, produces lasting analgesia by enhancing the descending inhibition of spinal nociceptive neurons. Selectively activating GABA(B)-receptor-bearing RAIC neurons produces hyperalgesia through projections to the amygdala, an area involved in pain and fear. Whereas most studies focus on the role of the cerebral cortex as the end point of nociceptive processing, we suggest that cerebral cortex activity can change the set-point of pain threshold in a top-down manner.

  16. Adaptation, perceptual learning, and plasticity of brain functions.

    PubMed

    Horton, Jonathan C; Fahle, Manfred; Mulder, Theo; Trauzettel-Klosinski, Susanne

    2017-03-01

    The capacity for functional restitution after brain damage is quite different in the sensory and motor systems. This series of presentations highlights the potential for adaptation, plasticity, and perceptual learning from an interdisciplinary perspective. The chances for restitution in the primary visual cortex are limited. Some patterns of visual field loss and recovery after stroke are common, whereas others are impossible, which can be explained by the arrangement and plasticity of the cortical map. On the other hand, compensatory mechanisms are effective, can occur spontaneously, and can be enhanced by training. In contrast to the human visual system, the motor system is highly flexible. This is based on special relationships between perception and action and between cognition and action. In addition, the healthy adult brain can learn new functions, e.g. increasing resolution above the retinal one. The significance of these studies for rehabilitation after brain damage will be discussed.

  17. Functional imaging of decision conflict.

    PubMed

    Pochon, Jean-Baptiste; Riis, Jason; Sanfey, Alan G; Nystrom, Leigh E; Cohen, Jonathan D

    2008-03-26

    Decision conflict occurs when people feel uncertain as to which option to choose from a set of similarly attractive (or unattractive) options, with many studies demonstrating that this conflict can lead to suboptimal decision making. In this article, we investigate the neurobiological underpinnings of decision conflict, in particular, the involvement of the anterior cingulate cortex (ACC). Previous studies have implicated the ACC in conflict monitoring during perceptual tasks, but there is considerable controversy as to whether the ACC actually indexes conflict related to choice, or merely conflict related to selection of competing motor responses. In a functional magnetic resonance imaging study, we dissociate the decision and response phases of a decision task, and show that the ACC does indeed index conflict at the decision stage. Furthermore, we show that it does so for a complex decision task, one that requires the integration of beliefs and preferences and not just perceptual judgments.

  18. Differential temporal dynamics during visual imagery and perception.

    PubMed

    Dijkstra, Nadine; Mostert, Pim; Lange, Floris P de; Bosch, Sander; van Gerven, Marcel Aj

    2018-05-29

    Visual perception and imagery rely on similar representations in the visual cortex. During perception, visual activity is characterized by distinct processing stages, but the temporal dynamics underlying imagery remain unclear. Here, we investigated the dynamics of visual imagery in human participants using magnetoencephalography. Firstly, we show that, compared to perception, imagery decoding becomes significant later and representations at the start of imagery already overlap with later time points. This suggests that during imagery, the entire visual representation is activated at once or that there are large differences in the timing of imagery between trials. Secondly, we found consistent overlap between imagery and perceptual processing around 160 ms and from 300 ms after stimulus onset. This indicates that the N170 gets reactivated during imagery and that imagery does not rely on early perceptual representations. Together, these results provide important insights for our understanding of the neural mechanisms of visual imagery. © 2018, Dijkstra et al.

  19. Contribution of correlated noise and selective decoding to choice probability measurements in extrastriate visual cortex.

    PubMed

    Gu, Yong; Angelaki, Dora E; DeAngelis, Gregory C

    2014-07-01

    Trial by trial covariations between neural activity and perceptual decisions (quantified by choice Probability, CP) have been used to probe the contribution of sensory neurons to perceptual decisions. CPs are thought to be determined by both selective decoding of neural activity and by the structure of correlated noise among neurons, but the respective roles of these factors in creating CPs have been controversial. We used biologically-constrained simulations to explore this issue, taking advantage of a peculiar pattern of CPs exhibited by multisensory neurons in area MSTd that represent self-motion. Although models that relied on correlated noise or selective decoding could both account for the peculiar pattern of CPs, predictions of the selective decoding model were substantially more consistent with various features of the neural and behavioral data. While correlated noise is essential to observe CPs, our findings suggest that selective decoding of neuronal signals also plays important roles.

  20. Mild Perceptual Categorization Deficits Follow Bilateral Removal of Anterior Inferior Temporal Cortex in Rhesus Monkeys.

    PubMed

    Matsumoto, Narihisa; Eldridge, Mark A G; Saunders, Richard C; Reoli, Rachel; Richmond, Barry J

    2016-01-06

    In primates, visual recognition of complex objects depends on the inferior temporal lobe. By extension, categorizing visual stimuli based on similarity ought to depend on the integrity of the same area. We tested three monkeys before and after bilateral anterior inferior temporal cortex (area TE) removal. Although mildly impaired after the removals, they retained the ability to assign stimuli to previously learned categories, e.g., cats versus dogs, and human versus monkey faces, even with trial-unique exemplars. After the TE removals, they learned in one session to classify members from a new pair of categories, cars versus trucks, as quickly as they had learned the cats versus dogs before the removals. As with the dogs and cats, they generalized across trial-unique exemplars of cars and trucks. However, as seen in earlier studies, these monkeys with TE removals had difficulty learning to discriminate between two simple black and white stimuli. These results raise the possibility that TE is needed for memory of simple conjunctions of basic features, but that it plays only a small role in generalizing overall configural similarity across a large set of stimuli, such as would be needed for perceptual categorical assignment. The process of seeing and recognizing objects is attributed to a set of sequentially connected brain regions stretching forward from the primary visual cortex through the temporal lobe to the anterior inferior temporal cortex, a region designated area TE. Area TE is considered the final stage for recognizing complex visual objects, e.g., faces. It has been assumed, but not tested directly, that this area would be critical for visual generalization, i.e., the ability to place objects such as cats and dogs into their correct categories. Here, we demonstrate that monkeys rapidly and seemingly effortlessly categorize large sets of complex images (cats vs dogs, cars vs trucks), surprisingly, even after removal of area TE, leaving a puzzle about how this generalization is done. Copyright © 2016 the authors 0270-6474/16/360043-11$15.00/0.

  1. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex.

    PubMed

    Self, Matthew W; Peters, Judith C; Possel, Jessy K; Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C; Roelfsema, Pieter R

    2016-03-01

    Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons' receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex.

  2. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex

    PubMed Central

    Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C.; Roelfsema, Pieter R.

    2016-01-01

    Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons’ receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex. PMID:27015604

  3. Different Cortical Dynamics in Face and Body Perception: An MEG study

    PubMed Central

    Meeren, Hanneke K. M.; de Gelder, Beatrice; Ahlfors, Seppo P.; Hämäläinen, Matti S.; Hadjikhani, Nouchine

    2013-01-01

    Evidence from functional neuroimaging indicates that visual perception of human faces and bodies is carried out by distributed networks of face and body-sensitive areas in the occipito-temporal cortex. However, the dynamics of activity in these areas, needed to understand their respective functional roles, are still largely unknown. We monitored brain activity with millisecond time resolution by recording magnetoencephalographic (MEG) responses while participants viewed photographs of faces, bodies, and control stimuli. The cortical activity underlying the evoked responses was estimated with anatomically-constrained noise-normalised minimum-norm estimate and statistically analysed with spatiotemporal cluster analysis. Our findings point to distinct spatiotemporal organization of the neural systems for face and body perception. Face-selective cortical currents were found at early latencies (120–200 ms) in a widespread occipito-temporal network including the ventral temporal cortex (VTC). In contrast, early body-related responses were confined to the lateral occipito-temporal cortex (LOTC). These were followed by strong sustained body-selective responses in the orbitofrontal cortex from 200–700 ms, and in the lateral temporal cortex and VTC after 500 ms latency. Our data suggest that the VTC region has a key role in the early processing of faces, but not of bodies. Instead, the LOTC, which includes the extra-striate body area (EBA), appears the dominant area for early body perception, whereas the VTC contributes to late and post-perceptual processing. PMID:24039712

  4. Neuroimaging self-esteem: a fMRI study of individual differences in women

    PubMed Central

    Lundberg, Erica; Brimson-Théberge, Melanie; Théberge, Jean

    2013-01-01

    Although neuroimaging studies strongly implicate the medial prefrontal cortex (ventral and dorsal), cingulate gyrus (anterior and posterior), precuneus and temporoparietal cortex in mediating self-referential processing (SRP), little is known about the neural bases mediating individual differences in valenced SRP, that is, processes intrinsic to self-esteem. This study investigated the neural correlates of experimentally engendered valenced SRP via the Visual–Verbal Self-Other Referential Processing Task in 20 women with fMRI. Participants viewed pictures of themselves or unknown other women during separate trials while covertly rehearsing ‘I am’ or ‘She is’, followed by reading valenced trait adjectives, thus variably associating the self/other with positivity/negativity. Response within dorsal and ventral medial prefrontal cortex, cingulate cortex and left temporoparietal cortex varied with individual differences in both pre-task rated self-descriptiveness of the words, as well as task-induced affective responses. Results are discussed as they relate to a social cognitive and affective neuroscience view of self-esteem. PMID:22403154

  5. A computational relationship between thalamic sensory neural responses and contrast perception.

    PubMed

    Jiang, Yaoguang; Purushothaman, Gopathy; Casagrande, Vivien A

    2015-01-01

    Uncovering the relationship between sensory neural responses and perceptual decisions remains a fundamental problem in neuroscience. Decades of experimental and modeling work in the sensory cortex have demonstrated that a perceptual decision pool is usually composed of tens to hundreds of neurons, the responses of which are significantly correlated not only with each other, but also with the behavioral choices of an animal. Few studies, however, have measured neural activity in the sensory thalamus of awake, behaving animals. Therefore, it remains unclear how many thalamic neurons are recruited and how the information from these neurons is pooled at subsequent cortical stages to form a perceptual decision. In a previous study we measured neural activity in the macaque lateral geniculate nucleus (LGN) during a two alternative forced choice (2AFC) contrast detection task, and found that single LGN neurons were significantly correlated with the monkeys' behavioral choices, despite their relatively poor contrast sensitivity and a lack of overall interneuronal correlations. We have now computationally tested a number of specific hypotheses relating these measured LGN neural responses to the contrast detection behavior of the animals. We modeled the perceptual decisions with different numbers of neurons and using a variety of pooling/readout strategies, and found that the most successful model consisted of about 50-200 LGN neurons, with individual neurons weighted differentially according to their signal-to-noise ratios (quantified as d-primes). These results supported the hypothesis that in contrast detection the perceptual decision pool consists of multiple thalamic neurons, and that the response fluctuations in these neurons can influence contrast perception, with the more sensitive thalamic neurons likely to exert a greater influence.

  6. The mere exposure effect is sensitive to color information: evidence for color effects in a perceptual implicit memory test.

    PubMed

    Hupbach, Almut; Melzer, André; Hardt, Oliver

    2006-01-01

    Priming effects in perceptual tests of implicit memory are assumed to be perceptually specific. Surprisingly, changing object colors from study to test did not diminish priming in most previous studies. However, these studies used implicit tests that are based on object identification, which mainly depends on the analysis of the object shape and therefore operates color-independently. The present study shows that color effects can be found in perceptual implicit tests when the test task requires the processing of color information. In Experiment 1, reliable color priming was found in a mere exposure design (preference test). In Experiment 2, the preference test was contrasted with a conceptually driven color-choice test. Altering the shape of object from study to test resulted in significant priming in the color-choice test but eliminated priming in the preference test. Preference judgments thus largely depend on perceptual processes. In Experiment 3, the preference and the color-choice test were studied under explicit test instructions. Differences in reaction times between the implicit and the explicit test suggest that the implicit test results were not an artifact of explicit retrieval attempts. In contrast with previous assumptions, it is therefore concluded that color is part of the representation that mediates perceptual priming.

  7. Effective connectivity within the frontoparietal control network differentiates cognitive control and working memory.

    PubMed

    Harding, Ian H; Yücel, Murat; Harrison, Ben J; Pantelis, Christos; Breakspear, Michael

    2015-02-01

    Cognitive control and working memory rely upon a common fronto-parietal network that includes the inferior frontal junction (IFJ), dorsolateral prefrontal cortex (dlPFC), pre-supplementary motor area/dorsal anterior cingulate cortex (pSMA/dACC), and intraparietal sulcus (IPS). This network is able to flexibly adapt its function in response to changing behavioral goals, mediating a wide range of cognitive demands. Here we apply dynamic causal modeling to functional magnetic resonance imaging data to characterize task-related alterations in the strength of network interactions across distinct cognitive processes. Evidence in favor of task-related connectivity dynamics was accrued across a very large space of possible network structures. Cognitive control and working memory demands were manipulated using a factorial combination of the multi-source interference task and a verbal 2-back working memory task, respectively. Both were found to alter the sensitivity of the IFJ to perceptual information, and to increase IFJ-to-pSMA/dACC connectivity. In contrast, increased connectivity from the pSMA/dACC to the IPS, as well as from the dlPFC to the IFJ, was uniquely driven by cognitive control demands; a task-induced negative influence of the dlPFC on the pSMA/dACC was specific to working memory demands. These results reflect a system of both shared and unique context-dependent dynamics within the fronto-parietal network. Mechanisms supporting cognitive engagement, response selection, and action evaluation may be shared across cognitive domains, while dynamic updating of task and context representations within this network are potentially specific to changing demands on cognitive control. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Anxiety Evokes Hypofrontality and Disrupts Rule-Relevant Encoding by Dorsomedial Prefrontal Cortex Neurons.

    PubMed

    Park, Junchol; Wood, Jesse; Bondi, Corina; Del Arco, Alberto; Moghaddam, Bita

    2016-03-16

    Anxiety is a debilitating symptom of most psychiatric disorders, including major depression, post-traumatic stress disorder, schizophrenia, and addiction. A detrimental aspect of anxiety is disruption of prefrontal cortex (PFC)-mediated executive functions, such as flexible decision making. Here we sought to understand how anxiety modulates PFC neuronal encoding of flexible shifting between behavioral strategies. We used a clinically substantiated anxiogenic treatment to induce sustained anxiety in rats and recorded from dorsomedial PFC (dmPFC) and orbitofrontal cortex (OFC) neurons while they were freely moving in a home cage and while they performed a PFC-dependent task that required flexible switches between rules in two distinct perceptual dimensions. Anxiety elicited a sustained background "hypofrontality" in dmPFC and OFC by reducing the firing rate of spontaneously active neuronal subpopulations. During task performance, the impact of anxiety was subtle, but, consistent with human data, behavior was selectively impaired when previously correct conditions were presented as conflicting choices. This impairment was associated with reduced recruitment of dmPFC neurons that selectively represented task rules at the time of action. OFC rule representation was not affected by anxiety. These data indicate that a neural substrate of the decision-making deficits in anxiety is diminished dmPFC neuronal encoding of task rules during conflict-related actions. Given the translational relevance of the model used here, the data provide a neuronal encoding mechanism for how anxiety biases decision making when the choice involves overcoming a conflict. They also demonstrate that PFC encoding of actions, as opposed to cues or outcome, is especially vulnerable to anxiety. A debilitating aspect of anxiety is its impact on decision making and flexible control of behavior. These cognitive constructs depend on proper functioning of the prefrontal cortex (PFC). Understanding how anxiety affects PFC encoding of cognitive events is of great clinical and evolutionary significance. Using a clinically valid experimental model, we find that, under anxiety, decision making may be skewed by salient and conflicting environmental stimuli at the expense of flexible top-down guided choices. We also find that anxiety suppresses spontaneous activity of PFC neurons, and weakens encoding of task rules by dorsomedial PFC neurons. These data provide a neuronal encoding scheme for how anxiety disengages PFC during decision making. Copyright © 2016 the authors 0270-6474/16/363322-14$15.00/0.

  9. An integrated reweighting theory of perceptual learning

    PubMed Central

    Dosher, Barbara Anne; Jeter, Pamela; Liu, Jiajuan; Lu, Zhong-Lin

    2013-01-01

    Improvements in performance on visual tasks due to practice are often specific to a retinal position or stimulus feature. Many researchers suggest that specific perceptual learning alters selective retinotopic representations in early visual analysis. However, transfer is almost always practically advantageous, and it does occur. If perceptual learning alters location-specific representations, how does it transfer to new locations? An integrated reweighting theory explains transfer over retinal locations by incorporating higher level location-independent representations into a multilevel learning system. Location transfer is mediated through location-independent representations, whereas stimulus feature transfer is determined by stimulus similarity at both location-specific and location-independent levels. Transfer to new locations/positions differs fundamentally from transfer to new stimuli. After substantial initial training on an orientation discrimination task, switches to a new location or position are compared with switches to new orientations in the same position, or switches of both. Position switches led to the highest degree of transfer, whereas orientation switches led to the highest levels of specificity. A computational model of integrated reweighting is developed and tested that incorporates the details of the stimuli and the experiment. Transfer to an identical orientation task in a new position is mediated via more broadly tuned location-invariant representations, whereas changing orientation in the same position invokes interference or independent learning of the new orientations at both levels, reflecting stimulus dissimilarity. Consistent with single-cell recording studies, perceptual learning alters the weighting of both early and midlevel representations of the visual system. PMID:23898204

  10. Dissociation between Neural Signatures of Stimulus and Choice in Population Activity of Human V1 during Perceptual Decision-Making

    PubMed Central

    Choe, Kyoung Whan; Blake, Randolph

    2014-01-01

    Primary visual cortex (V1) forms the initial cortical representation of objects and events in our visual environment, and it distributes information about that representation to higher cortical areas within the visual hierarchy. Decades of work have established tight linkages between neural activity occurring in V1 and features comprising the retinal image, but it remains debatable how that activity relates to perceptual decisions. An actively debated question is the extent to which V1 responses determine, on a trial-by-trial basis, perceptual choices made by observers. By inspecting the population activity of V1 from human observers engaged in a difficult visual discrimination task, we tested one essential prediction of the deterministic view: choice-related activity, if it exists in V1, and stimulus-related activity should occur in the same neural ensemble of neurons at the same time. Our findings do not support this prediction: while cortical activity signifying the variability in choice behavior was indeed found in V1, that activity was dissociated from activity representing stimulus differences relevant to the task, being advanced in time and carried by a different neural ensemble. The spatiotemporal dynamics of population responses suggest that short-term priors, perhaps formed in higher cortical areas involved in perceptual inference, act to modulate V1 activity prior to stimulus onset without modifying subsequent activity that actually represents stimulus features within V1. PMID:24523561

  11. Decoding stimulus features in primate somatosensory cortex during perceptual categorization

    PubMed Central

    Alvarez, Manuel; Zainos, Antonio; Romo, Ranulfo

    2015-01-01

    Neurons of the primary somatosensory cortex (S1) respond as functions of frequency or amplitude of a vibrotactile stimulus. However, whether S1 neurons encode both frequency and amplitude of the vibrotactile stimulus or whether each sensory feature is encoded by separate populations of S1 neurons is not known, To further address these questions, we recorded S1 neurons while trained monkeys categorized only one sensory feature of the vibrotactile stimulus: frequency, amplitude, or duration. The results suggest a hierarchical encoding scheme in S1: from neurons that encode all sensory features of the vibrotactile stimulus to neurons that encode only one sensory feature. We hypothesize that the dynamic representation of each sensory feature in S1 might serve for further downstream processing that leads to the monkey’s psychophysical behavior observed in these tasks. PMID:25825711

  12. Degraded perceptual and affective processing of racial out-groups: An electrophysiological approach.

    PubMed

    Sheng, Feng; Du, Na; Han, Shihui

    2017-08-01

    Human beings process perceptual and affective information of racial out-groups in a degraded manner. Relative to racial in-group members, we lack perceptual individuation of racial out-group members and empathize their pain to a less degree. To date, however, the relationship between the deficiency of individuation and the impairment of empathy in responding to racial out-groups remains elusive. By recording event-related brain potentials in response to racial in-group and out-group faces portraying pain and neutral expressions, we simultaneously measured neural activity that underpinned individuation and empathy. Deficiency in individuating members of racial out-groups, manifesting as reduced reactivity of face-sensitive N170 in the occipitotemporal region of the brain, predicted attenuation of fronto-central empathic response to the suffering of racial out-groups. Further, the individuation bias mediated the influence of racial prejudice on racial in-group bias in empathic neural responses. These findings suggest an interplay between degraded perceptual and affective processing of racial out-groups.

  13. Drawing from Memory: Hand-Eye Coordination at Multiple Scales

    PubMed Central

    Spivey, Michael J.

    2013-01-01

    Eyes move to gather visual information for the purpose of guiding behavior. This guidance takes the form of perceptual-motor interactions on short timescales for behaviors like locomotion and hand-eye coordination. More complex behaviors require perceptual-motor interactions on longer timescales mediated by memory, such as navigation, or designing and building artifacts. In the present study, the task of sketching images of natural scenes from memory was used to examine and compare perceptual-motor interactions on shorter and longer timescales. Eye and pen trajectories were found to be coordinated in time on shorter timescales during drawing, and also on longer timescales spanning study and drawing periods. The latter type of coordination was found by developing a purely spatial analysis that yielded measures of similarity between images, eye trajectories, and pen trajectories. These results challenge the notion that coordination only unfolds on short timescales. Rather, the task of drawing from memory evokes perceptual-motor encodings of visual images that preserve coarse-grained spatial information over relatively long timescales as well. PMID:23554894

  14. Region-Specific Slowing of Alpha Oscillations is Associated with Visual-Perceptual Abilities in Children Born Very Preterm

    PubMed Central

    Doesburg, Sam M.; Moiseev, Alexander; Herdman, Anthony T.; Ribary, Urs; Grunau, Ruth E.

    2013-01-01

    Children born very preterm (≤32 weeks gestational age) without major intellectual or neurological impairments often express selective deficits in visual-perceptual abilities. The alterations in neurophysiological development underlying these problems, however, remain poorly understood. Recent research has indicated that spontaneous alpha oscillations are slowed in children born very preterm, and that atypical alpha-mediated functional network connectivity may underlie selective developmental difficulties in visual-perceptual ability in this group. The present study provides the first source-resolved analysis of slowing of spontaneous alpha oscillations in very preterm children, indicating alterations in a distributed set of brain regions concentrated in areas of posterior parietal and inferior temporal regions associated with visual perception, as well as prefrontal cortical regions and thalamus. We also uniquely demonstrate that slowing of alpha oscillations is associated with selective difficulties in visual-perceptual ability in very preterm children. These results indicate that region-specific slowing of alpha oscillations contribute to selective developmental difficulties prevalent in this population. PMID:24298250

  15. Habituation of self-motion perception following unidirectional angular velocity steps.

    PubMed

    Clément, Gilles; Terlevic, Robert

    2016-09-07

    We investigated whether the perceived angular velocity following velocity steps of 80°/s in the dark decreased with the repetition of the stimulation in the same direction. The perceptual response to velocity steps in the opposite direction was also compared before and after this unidirectional habituation training. Participants indicated their perceived angular velocity by clicking on a wireless mouse every time they felt that they had rotated by 90°. The prehabituation perceptual response decayed exponentially with a time constant of 23.9 s. After 100 velocity steps in the same direction, this time constant was 12.9 s. The time constant after velocity steps in the opposite direction was 13.4 s, indicating that the habituation of the sensation of rotation is not direction specific. The peak velocity of the perceptual response was not affected by the habituation training. The differences between the habituation characteristics of self-motion perception and eye movements confirm that different velocity storage mechanisms mediate ocular and perceptual responses.

  16. Attention and perceptual implicit memory: effects of selective versus divided attention and number of visual objects.

    PubMed

    Mulligan, Neil W

    2002-08-01

    Extant research presents conflicting results on whether manipulations of attention during encoding affect perceptual priming. Two suggested mediating factors are type of manipulation (selective vs divided) and whether attention is manipulated across multiple objects or within a single object. Words printed in different colors (Experiment 1) or flanked by colored blocks (Experiment 2) were presented at encoding. In the full-attention condition, participants always read the word, in the unattended condition they always identified the color, and in the divided-attention conditions, participants attended to both word identity and color. Perceptual priming was assessed with perceptual identification and explicit memory with recognition. Relative to the full-attention condition, attending to color always reduced priming. Dividing attention between word identity and color, however, only disrupted priming when these attributes were presented as multiple objects (Experiment 2) but not when they were dimensions of a common object (Experiment 1). On the explicit test, manipulations of attention always affected recognition accuracy.

  17. Reversing pathological neural activity using targeted plasticity.

    PubMed

    Engineer, Navzer D; Riley, Jonathan R; Seale, Jonathan D; Vrana, Will A; Shetake, Jai A; Sudanagunta, Sindhu P; Borland, Michael S; Kilgard, Michael P

    2011-02-03

    Brain changes in response to nerve damage or cochlear trauma can generate pathological neural activity that is believed to be responsible for many types of chronic pain and tinnitus. Several studies have reported that the severity of chronic pain and tinnitus is correlated with the degree of map reorganization in somatosensory and auditory cortex, respectively. Direct electrical or transcranial magnetic stimulation of sensory cortex can temporarily disrupt these phantom sensations. However, there is as yet no direct evidence for a causal role of plasticity in the generation of pain or tinnitus. Here we report evidence that reversing the brain changes responsible can eliminate the perceptual impairment in an animal model of noise-induced tinnitus. Exposure to intense noise degrades the frequency tuning of auditory cortex neurons and increases cortical synchronization. Repeatedly pairing tones with brief pulses of vagus nerve stimulation completely eliminated the physiological and behavioural correlates of tinnitus in noise-exposed rats. These improvements persisted for weeks after the end of therapy. This method for restoring neural activity to normal may be applicable to a variety of neurological disorders.

  18. Reversing pathological neural activity using targeted plasticity

    PubMed Central

    Engineer, Navzer D.; Riley, Jonathan R.; Seale, Jonathan D.; Vrana, Will A.; Shetake, Jai A.; Sudanagunta, Sindhu P.; Borland, Michael S.; Kilgard, Michael P.

    2012-01-01

    Brain changes in response to nerve damage or cochlear trauma can generate pathological neural activity that is believed to be responsible for many types of chronic pain and tinnitus1–3. Several studies have reported that the severity of chronic pain and tinnitus is correlated with the degree of map reorganization in somatosensory and auditory cortex, respectively1,4. Direct electrical or transcranial magnetic stimulation of sensory cortex can temporarily disrupt these phantom sensations5. However, there is as yet no direct evidence for a causal role of plasticity in the generation of pain or tinnitus. Here we report evidence that reversing the brain changes responsible can eliminate the perceptual impairment in an animal model of noise-induced tinnitus. Exposure to intense noise degrades the frequency tuning of auditory cortex neurons and increases cortical synchronization. Repeatedly pairing tones with brief pulses of vagus nerve stimulation completely eliminated the physiological and behavioural correlates of tinnitus in noise-exposed rats. These improvements persisted for weeks after the end of therapy. This method for restoring neural activity to normal may be applicable to a variety of neurological disorders. PMID:21228773

  19. From rule to response: neuronal processes in the premotor and prefrontal cortex.

    PubMed

    Wallis, Jonathan D; Miller, Earl K

    2003-09-01

    The ability to use abstract rules or principles allows behavior to generalize from specific circumstances (e.g., rules learned in a specific restaurant can subsequently be applied to any dining experience). Neurons in the prefrontal cortex (PFC) encode such rules. However, to guide behavior, rules must be linked to motor responses. We investigated the neuronal mechanisms underlying this process by recording from the PFC and the premotor cortex (PMC) of monkeys trained to use two abstract rules: "same" or "different." The monkeys had to either hold or release a lever, depending on whether two successively presented pictures were the same or different, and depending on which rule was in effect. The abstract rules were represented in both regions, although they were more prevalent and were encoded earlier and more strongly in the PMC. There was a perceptual bias in the PFC, relative to the PMC, with more PFC neurons encoding the presented pictures. In contrast, neurons encoding the behavioral response were more prevalent in the PMC, and the selectivity was stronger and appeared earlier in the PMC than in the PFC.

  20. Optogenetic and pharmacological suppression of spatial clusters of face neurons reveal their causal role in face gender discrimination.

    PubMed

    Afraz, Arash; Boyden, Edward S; DiCarlo, James J

    2015-05-26

    Neurons that respond more to images of faces over nonface objects were identified in the inferior temporal (IT) cortex of primates three decades ago. Although it is hypothesized that perceptual discrimination between faces depends on the neural activity of IT subregions enriched with "face neurons," such a causal link has not been directly established. Here, using optogenetic and pharmacological methods, we reversibly suppressed the neural activity in small subregions of IT cortex of macaque monkeys performing a facial gender-discrimination task. Each type of intervention independently demonstrated that suppression of IT subregions enriched in face neurons induced a contralateral deficit in face gender-discrimination behavior. The same neural suppression of other IT subregions produced no detectable change in behavior. These results establish a causal link between the neural activity in IT face neuron subregions and face gender-discrimination behavior. Also, the demonstration that brief neural suppression of specific spatial subregions of IT induces behavioral effects opens the door for applying the technical advantages of optogenetics to a systematic attack on the causal relationship between IT cortex and high-level visual perception.

  1. Convection-enhanced delivery of AAV2 in white matter--a novel method for gene delivery to cerebral cortex.

    PubMed

    Barua, N U; Woolley, M; Bienemann, A S; Johnson, D; Wyatt, M J; Irving, C; Lewis, O; Castrique, E; Gill, S S

    2013-10-30

    Convection-enhanced delivery (CED) is currently under investigation for delivering therapeutic agents to subcortical targets in the brain. Direct delivery of therapies to the cerebral cortex, however, remains a significant challenge. We describe a novel method of targeting adeno-associated viral vector (AAV) mediated gene therapies to specific cerebral cortical regions by performing high volume, high flow rate infusions into underlying white matter in a large animal (porcine) model. Infusion volumes of up to 700 μl at flow rates as high as 10 μl/min were successfully performed in white matter without adverse neurological sequelae. Co-infusion of AAV2/5-GFP with 0.2% Gadolinium in artificial CSF confirmed transgene expression in the deep layers of cerebral cortex overlying the infused areas of white matter. AAV-mediated gene therapies have been previously targeted to the cerebral cortex by performing intrathalamic CED and exploiting axonal transport. The novel method described in this study facilitates delivery of gene therapies to specific regions of the cerebral cortex without targeting deep brain structures. AAV-mediated gene therapies can be targeted to specific cortical regions by performing CED into underlying white matter. This technique could be applied to the treatment of neurological disorders characterised by cerebral cortical degeneration. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Attention induced neural response trade-off in retinotopic cortex under load.

    PubMed

    Torralbo, Ana; Kelley, Todd A; Rees, Geraint; Lavie, Nilli

    2016-09-14

    The effects of perceptual load on visual cortex response to distractors are well established and various phenomena of 'inattentional blindness' associated with elimination of visual cortex response to unattended distractors, have been documented in tasks of high load. Here we tested an account for these effects in terms of a load-induced trade-off between target and distractor processing in retinotopic visual cortex. Participants were scanned using fMRI while performing a visual-search task and ignoring distractor checkerboards in the periphery. Retinotopic responses to target and distractors were assessed as a function of search load (comparing search set-sizes two, three and five). We found that increased load not only increased activity in frontoparietal network, but also had opposite effects on retinotopic responses to target and distractors. Target-related signals in areas V2-V3 linearly increased, while distractor response linearly decreased, with increased load. Critically, the slopes were equivalent for both load functions, thus demonstrating resource trade-off. Load effects were also found in displays with the same item number in the distractor hemisphere across different set sizes, thus ruling out local intrahemispheric interactions as the cause. Our findings provide new evidence for load theory proposals of attention resource sharing between target and distractor leading to inattentional blindness.

  3. Attention induced neural response trade-off in retinotopic cortex under load

    PubMed Central

    Torralbo, Ana; Kelley, Todd A.; Rees, Geraint; Lavie, Nilli

    2016-01-01

    The effects of perceptual load on visual cortex response to distractors are well established and various phenomena of ‘inattentional blindness’ associated with elimination of visual cortex response to unattended distractors, have been documented in tasks of high load. Here we tested an account for these effects in terms of a load-induced trade-off between target and distractor processing in retinotopic visual cortex. Participants were scanned using fMRI while performing a visual-search task and ignoring distractor checkerboards in the periphery. Retinotopic responses to target and distractors were assessed as a function of search load (comparing search set-sizes two, three and five). We found that increased load not only increased activity in frontoparietal network, but also had opposite effects on retinotopic responses to target and distractors. Target-related signals in areas V2–V3 linearly increased, while distractor response linearly decreased, with increased load. Critically, the slopes were equivalent for both load functions, thus demonstrating resource trade-off. Load effects were also found in displays with the same item number in the distractor hemisphere across different set sizes, thus ruling out local intrahemispheric interactions as the cause. Our findings provide new evidence for load theory proposals of attention resource sharing between target and distractor leading to inattentional blindness. PMID:27625311

  4. Anodal tDCS to V1 blocks visual perceptual learning consolidation.

    PubMed

    Peters, Megan A K; Thompson, Benjamin; Merabet, Lotfi B; Wu, Allan D; Shams, Ladan

    2013-06-01

    This study examined the effects of visual cortex transcranial direct current stimulation (tDCS) on visual processing and learning. Participants performed a contrast detection task on two consecutive days. Each session consisted of a baseline measurement followed by measurements made during active or sham stimulation. On the first day, one group received anodal stimulation to primary visual cortex (V1), while another received cathodal stimulation. Stimulation polarity was reversed for these groups on the second day. The third (control) group of subjects received sham stimulation on both days. No improvements or decrements in contrast sensitivity relative to the same-day baseline were observed during real tDCS, nor was any within-session learning trend observed. However, task performance improved significantly from Day 1 to Day 2 for the participants who received cathodal tDCS on Day 1 and for the sham group. No such improvement was found for the participants who received anodal stimulation on Day 1, indicating that anodal tDCS blocked overnight consolidation of visual learning, perhaps through engagement of inhibitory homeostatic plasticity mechanisms or alteration of the signal-to-noise ratio within stimulated cortex. These results show that applying tDCS to the visual cortex can modify consolidation of visual learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Perceptual market orientation gap and its impact on relationship quality and patient loyalty: the role of internal marketing.

    PubMed

    Huang, Jin-An; Weng, Rhay-Hung; Lai, Chi-Shiun; Hu, Jer-San

    2013-06-01

    The purpose of this study was to explore the perceptual market orientation gaps between physician and patients and its impact on relationship quality and patient loyalty, and to verify the critical role of internal marketing on developing market orientation. Self-administered questionnaires were then employed to collect the data. We used a convenience sample of physicians and patients at a medical center in central Taiwan, and 90 usable questionnaires from physicians and 450 usable questionnaires from patients were returned. Hierarchical multiple regression analyses were used to validate the research hypotheses. Physicians' perceptual market orientation had a positive influence on physician-patient relationship quality, hospital-patient relationship quality, and patient loyalty, but the perceptual market orientation gap between physicians and their patients had a direct negative impact on these constructs. Finally, internal marketing was found to have an influence on relationship quality and patient loyalty through the mediation of market orientation. In order to enhance relationship quality and patient loyalty, hospital managers should focus their efforts on improving employees' market orientation and reducing patients' perceptual market orientation gap. In addition, internal marketing was found to be a useful pathway in developing market orientation.

  6. Acquisition and production of skilled behavior in dynamic decision-making tasks

    NASA Technical Reports Server (NTRS)

    Kirlik, Alex

    1990-01-01

    Ongoing research investigating perceptual and contextual influences on skilled human performance in dynamic decision making environments is discussed. The research is motivated by two general classes of findings in recent decision making research. First, many studies suggest that the concrete context in which a task is presented has strong influences on the psychological processes used to perform the task and on subsequent performance. Second, studies of skilled behavior in a wide variety of task environments typically implicate the perceptual system as an important contributor to decision-making performance, either in its role as a mediator between the current decision context and stored knowledge, or as a mechanism capable of directly initiating activity through the development of a 'trained eye.' Both contextual and perceptual influences place limits on the ability of traditional utility-theoretic accounts of decision-making to guide display design, as variance in behavior due to contextual factors or the development of a perceptual skill is left unexplained. The author outlines a framework in which to view questions of perceptual and contextual influences on behavior and describe an experimental task and analysis technique which will be used to diagnose the possible role of perception in skilled decision making performance.

  7. Mediation by neurotensin-receptors of effects of neurotensin on self-stimulation of the medial prefrontal cortex.

    PubMed Central

    Fernández, R.; Sabater, R.; Sáez, J. A.; Montes, R.; Alba, F.; Ferrer, J. M.

    1996-01-01

    1 Intracortical microinjections of neurotensin (NT) selectively decreased intracranial self-stimulation (ICSS) of the medial prefrontal cortex in the rat. 2 To elucidate whether this effect is mediated by NT receptors or by the formation of NT-dopamine complexes, we investigated the effects on ICSS of intracortical microinjections of neurotensin (1-11), an NT fragment that forms extracellular complexes with dopamine but does not bind to NT receptors. 3 We also studied the effects of the peripheral administration of SR 48692, a selective antagonist of NT receptors, on the inhibition of ICSS produced by the intracortical administration of NT. 4 Unilateral microinjections of neurotensin (1-11) at doses of 10, 20 and 40 nmol into the medial prefrontal cortex did not change the basal ICSS rate of this area. 5 The intraperitoneal administration of SR 48692 at doses of 0.08 and 0.16 mg kg-1 30 min before microinjection of 10 nmol of NT into the medial prefrontal cortex, antagonized the inhibition of ICSS produced by the neuropeptide. 6 These results demonstrate that the inhibitory effect of NT on ICSS is mediated by NT receptors. PMID:8886412

  8. Muscarinic acetylcholine receptor in cerebellar cortex participates in acetylcholine-mediated blood depressor response in rats.

    PubMed

    Zhou, Peiling; Zhu, Qingfeng; Liu, Ming; Li, Jing; Wang, Yong; Zhang, Changzheng; Hua, Tianmiao

    2015-04-23

    Our previous investigations have revealed that cerebellar cholinergic innervation is involved in cardiovascular regulation. This study was performed to examine the effects of the muscarinic cholinergic receptor (mAChR) in the cerebellar cortex on blood pressure (BP) modulation in rats. Acetylcholine (ACh, 100mM), nonselective mAChR agonist (oxotremorine M; Oxo-M, 10, 30 and 100mM) and 100mM ACh mixed with nonselective mAChR antagonist atropine (1, 3 and 10mM) were microinjected into the cerebellar cortex of anesthetized rats. Mean arterial pressure (MAP), maximal decreased MAP (MDMAP), and reaction time (duration required for BP to return to basal values) were measured and analyzed. The results showed that Oxo-M dose-dependently decreased MAP, increased MDMAP, and prolonged reaction time, which displayed a homodromous effect of ACh-mediated blood depressor response; meanwhile, atropine concentration-dependently blocked the effect of ACh on the BP regulation. In conclusion, the present study showed for the first time that mAChRs in cerebellar cortex could modulate somatic BP by participation in ACh-mediated depressor response. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Selective involvement of superior frontal cortex during working memory for shapes.

    PubMed

    Yee, Lydia T S; Roe, Katherine; Courtney, Susan M

    2010-01-01

    A spatial/nonspatial functional dissociation between the dorsal and ventral visual pathways is well established and has formed the basis of domain-specific theories of prefrontal cortex (PFC). Inconsistencies in the literature regarding prefrontal organization, however, have led to questions regarding whether the nature of the dissociations observed in PFC during working memory are equivalent to those observed in the visual pathways for perception. In particular, the dissociation between dorsal and ventral PFC during working memory for locations versus object identities has been clearly present in some studies but not in others, seemingly in part due to the type of objects used. The current study compared functional MRI activation during delayed-recognition tasks for shape or color, two object features considered to be processed by the ventral pathway for perceptual recognition. Activation for the shape-delayed recognition task was greater than that for the color task in the lateral occipital cortex, in agreement with studies of visual perception. Greater memory-delay activity was also observed, however, in the parietal and superior frontal cortices for the shape than for the color task. Activity in superior frontal cortex was associated with better performance on the shape task. Conversely, greater delay activity for color than for shape was observed in the left anterior insula and this activity was associated with better performance on the color task. These results suggest that superior frontal cortex contributes to performance on tasks requiring working memory for object identities, but it represents different information about those objects than does the ventral frontal cortex.

  10. The lateral prefrontal cortex mediates the hyperalgesic effects of negative cognitions in chronic pain patients.

    PubMed

    Loggia, Marco L; Berna, Chantal; Kim, Jieun; Cahalan, Christine M; Martel, Marc-Olivier; Gollub, Randy L; Wasan, Ajay D; Napadow, Vitaly; Edwards, Robert R

    2015-08-01

    Although high levels of negative affect and cognitions have been associated with greater pain sensitivity in chronic pain conditions, the neural mechanisms mediating the hyperalgesic effect of psychological factors in patients with pain disorders are largely unknown. In this cross-sectional study, we hypothesized that 1) catastrophizing modulates brain responses to pain anticipation and 2) anticipatory brain activity mediates the hyperalgesic effect of different levels of catastrophizing in fibromyalgia (FM) patients. Using functional magnetic resonance imaging, we scanned the brains of 31 FM patients exposed to visual cues anticipating the onset of moderately intense deep-tissue pain stimuli. Our results indicated the existence of a negative association between catastrophizing and pain-anticipatory brain activity, including in the right lateral prefrontal cortex. A bootstrapped mediation analysis revealed that pain-anticipatory activity in the lateral prefrontal cortex mediates the association between catastrophizing and pain sensitivity. These findings highlight the role of the lateral prefrontal cortex in the pathophysiology of FM-related hyperalgesia and suggest that deficits in the recruitment of pain-inhibitory brain circuitry during pain-anticipatory periods may play an important contributory role in the association between various degrees of widespread hyperalgesia in FM and levels of catastrophizing, a well-validated measure of negative cognitions and psychological distress. This article highlights the presence of alterations in pain-anticipatory brain activity in FM. These findings provide the rationale for the development of psychological or neurofeedback-based techniques aimed at modifying patients' negative affect and cognitions toward pain. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.

  11. Social Information Is Integrated into Value and Confidence Judgments According to Its Reliability.

    PubMed

    De Martino, Benedetto; Bobadilla-Suarez, Sebastian; Nouguchi, Takao; Sharot, Tali; Love, Bradley C

    2017-06-21

    How much we like something, whether it be a bottle of wine or a new film, is affected by the opinions of others. However, the social information that we receive can be contradictory and vary in its reliability. Here, we tested whether the brain incorporates these statistics when judging value and confidence. Participants provided value judgments about consumer goods in the presence of online reviews. We found that participants updated their initial value and confidence judgments in a Bayesian fashion, taking into account both the uncertainty of their initial beliefs and the reliability of the social information. Activity in dorsomedial prefrontal cortex tracked the degree of belief update. Analogous to how lower-level perceptual information is integrated, we found that the human brain integrates social information according to its reliability when judging value and confidence. SIGNIFICANCE STATEMENT The field of perceptual decision making has shown that the sensory system integrates different sources of information according to their respective reliability, as predicted by a Bayesian inference scheme. In this work, we hypothesized that a similar coding scheme is implemented by the human brain to process social signals and guide complex, value-based decisions. We provide experimental evidence that the human prefrontal cortex's activity is consistent with a Bayesian computation that integrates social information that differs in reliability and that this integration affects the neural representation of value and confidence. Copyright © 2017 De Martino et al.

  12. Electrocortical N400 Effects of Semantic Satiation

    PubMed Central

    Ströberg, Kim; Andersen, Lau M.; Wiens, Stefan

    2017-01-01

    Semantic satiation is characterised by the subjective and temporary loss of meaning after high repetition of a prime word. To study the nature of this effect, previous electroencephalography (EEG) research recorded the N400, an ERP component that is sensitive to violations of semantic context. The N400 is characterised by a relative negativity to words that are unrelated vs. related to the semantic context. The semantic satiation hypothesis predicts that the N400 should decrease with high repetition. However, previous findings have been inconsistent. Because of these inconsistent findings and the shortcomings of previous research, we used a modified design that minimises confounding effects from non-semantic processes. We recorded 64-channel EEG and analysed the N400 in a semantic priming task in which the primes were repeated 3 or 30 times. Critically, we separated low and high repetition trials and excluded response trials. Further, we varied the physical features (letter case and format) of consecutive primes to minimise confounding effects from perceptual habituation. For centrofrontal electrodes, the N400 was reduced after 30 repetitions (vs. 3 repetitions). Explorative source reconstructions suggested that activity decreased after 30 repetitions in bilateral inferior temporal gyrus, the right posterior section of the superior and middle temporal gyrus, right supramarginal gyrus, bilateral lateral occipital cortex, and bilateral lateral orbitofrontal cortex. These areas overlap broadly with those typically involved in the N400, namely middle temporal gyrus and inferior frontal gyrus. The results support the semantic rather than the perceptual nature of the satiation effect. PMID:29375411

  13. Reinforcement Learning of Linking and Tracing Contours in Recurrent Neural Networks

    PubMed Central

    Brosch, Tobias; Neumann, Heiko; Roelfsema, Pieter R.

    2015-01-01

    The processing of a visual stimulus can be subdivided into a number of stages. Upon stimulus presentation there is an early phase of feedforward processing where the visual information is propagated from lower to higher visual areas for the extraction of basic and complex stimulus features. This is followed by a later phase where horizontal connections within areas and feedback connections from higher areas back to lower areas come into play. In this later phase, image elements that are behaviorally relevant are grouped by Gestalt grouping rules and are labeled in the cortex with enhanced neuronal activity (object-based attention in psychology). Recent neurophysiological studies revealed that reward-based learning influences these recurrent grouping processes, but it is not well understood how rewards train recurrent circuits for perceptual organization. This paper examines the mechanisms for reward-based learning of new grouping rules. We derive a learning rule that can explain how rewards influence the information flow through feedforward, horizontal and feedback connections. We illustrate the efficiency with two tasks that have been used to study the neuronal correlates of perceptual organization in early visual cortex. The first task is called contour-integration and demands the integration of collinear contour elements into an elongated curve. We show how reward-based learning causes an enhancement of the representation of the to-be-grouped elements at early levels of a recurrent neural network, just as is observed in the visual cortex of monkeys. The second task is curve-tracing where the aim is to determine the endpoint of an elongated curve composed of connected image elements. If trained with the new learning rule, neural networks learn to propagate enhanced activity over the curve, in accordance with neurophysiological data. We close the paper with a number of model predictions that can be tested in future neurophysiological and computational studies. PMID:26496502

  14. Transient global amnesia: implicit/explicit memory dissociation and PET assessment of brain perfusion and oxygen metabolism in the acute stage.

    PubMed

    Eustache, F; Desgranges, B; Petit-Taboué, M C; de la Sayette, V; Piot, V; Sablé, C; Marchal, G; Baron, J C

    1997-09-01

    To assess explicit memory and two components of implicit memory--that is, perceptual-verbal skill learning and lexical-semantic priming effects--as well as resting cerebral blood flow (CBF) and oxygen metabolism (CMRO2) during the acute phase of transient global amnesia. In a 59 year old woman, whose amnestic episode fulfilled all current criteria for transient global amnesia, a neuropsychological protocol was administered, including word learning, story recall, categorical fluency, mirror reading, and word stem completion tasks. PET was performed using the (15)O steady state inhalation method, while the patient still exhibited severe anterograde amnesia and was interleaved with the cognitive tests. There was a clear cut dissociation between impaired long term episodic memory and preserved implicit memory for its two components. Categorical fluency was significantly altered, suggesting word retrieval strategy--rather than semantic memory--impairment. The PET study disclosed a reduced CMRO2 with relatively or fully preserved CBF in the left prefrontotemporal cortex and lentiform nucleus, and the reverse pattern over the left occipital cortex. The PET alterations with patchy CBF-CMRO2 uncoupling would be compatible with a migraine-like phenomenon and indicate that the isolated assessment of perfusion in transient global amnesia may be misleading. The pattern of metabolic depression, with sparing of the hippocampal area, is one among the distinct patterns of brain dysfunction that underlie the (apparently) uniform clinical presentation of transient global amnesia. The finding of a left prefrontal hypometabolism in the face of impaired episodic memory and altered verbal fluency would fit present day concepts from PET activation studies about the role of this area in episodic and semantic memory encoding/retrieval. Likewise, the changes affecting the lenticular nucleus but sparing the caudate would be consistent with the normal performance in perceptual-verbal skill learning. Finally, unaltered lexical-semantic priming effects, despite left temporal cortex hypometabolism, suggest that these processes are subserved by a more distributed neocortical network.

  15. Decoding Multiple Sound Categories in the Human Temporal Cortex Using High Resolution fMRI

    PubMed Central

    Zhang, Fengqing; Wang, Ji-Ping; Kim, Jieun; Parrish, Todd; Wong, Patrick C. M.

    2015-01-01

    Perception of sound categories is an important aspect of auditory perception. The extent to which the brain’s representation of sound categories is encoded in specialized subregions or distributed across the auditory cortex remains unclear. Recent studies using multivariate pattern analysis (MVPA) of brain activations have provided important insights into how the brain decodes perceptual information. In the large existing literature on brain decoding using MVPA methods, relatively few studies have been conducted on multi-class categorization in the auditory domain. Here, we investigated the representation and processing of auditory categories within the human temporal cortex using high resolution fMRI and MVPA methods. More importantly, we considered decoding multiple sound categories simultaneously through multi-class support vector machine-recursive feature elimination (MSVM-RFE) as our MVPA tool. Results show that for all classifications the model MSVM-RFE was able to learn the functional relation between the multiple sound categories and the corresponding evoked spatial patterns and classify the unlabeled sound-evoked patterns significantly above chance. This indicates the feasibility of decoding multiple sound categories not only within but across subjects. However, the across-subject variation affects classification performance more than the within-subject variation, as the across-subject analysis has significantly lower classification accuracies. Sound category-selective brain maps were identified based on multi-class classification and revealed distributed patterns of brain activity in the superior temporal gyrus and the middle temporal gyrus. This is in accordance with previous studies, indicating that information in the spatially distributed patterns may reflect a more abstract perceptual level of representation of sound categories. Further, we show that the across-subject classification performance can be significantly improved by averaging the fMRI images over items, because the irrelevant variations between different items of the same sound category are reduced and in turn the proportion of signals relevant to sound categorization increases. PMID:25692885

  16. Decoding multiple sound categories in the human temporal cortex using high resolution fMRI.

    PubMed

    Zhang, Fengqing; Wang, Ji-Ping; Kim, Jieun; Parrish, Todd; Wong, Patrick C M

    2015-01-01

    Perception of sound categories is an important aspect of auditory perception. The extent to which the brain's representation of sound categories is encoded in specialized subregions or distributed across the auditory cortex remains unclear. Recent studies using multivariate pattern analysis (MVPA) of brain activations have provided important insights into how the brain decodes perceptual information. In the large existing literature on brain decoding using MVPA methods, relatively few studies have been conducted on multi-class categorization in the auditory domain. Here, we investigated the representation and processing of auditory categories within the human temporal cortex using high resolution fMRI and MVPA methods. More importantly, we considered decoding multiple sound categories simultaneously through multi-class support vector machine-recursive feature elimination (MSVM-RFE) as our MVPA tool. Results show that for all classifications the model MSVM-RFE was able to learn the functional relation between the multiple sound categories and the corresponding evoked spatial patterns and classify the unlabeled sound-evoked patterns significantly above chance. This indicates the feasibility of decoding multiple sound categories not only within but across subjects. However, the across-subject variation affects classification performance more than the within-subject variation, as the across-subject analysis has significantly lower classification accuracies. Sound category-selective brain maps were identified based on multi-class classification and revealed distributed patterns of brain activity in the superior temporal gyrus and the middle temporal gyrus. This is in accordance with previous studies, indicating that information in the spatially distributed patterns may reflect a more abstract perceptual level of representation of sound categories. Further, we show that the across-subject classification performance can be significantly improved by averaging the fMRI images over items, because the irrelevant variations between different items of the same sound category are reduced and in turn the proportion of signals relevant to sound categorization increases.

  17. Cross-Hemispheric Collaboration and Segregation Associated with Task Difficulty as Revealed by Structural and Functional Connectivity

    PubMed Central

    Cabeza, Roberto

    2015-01-01

    Although it is known that brain regions in one hemisphere may interact very closely with their corresponding contralateral regions (collaboration) or operate relatively independent of them (segregation), the specific brain regions (where) and conditions (how) associated with collaboration or segregation are largely unknown. We investigated these issues using a split field-matching task in which participants matched the meaning of words or the visual features of faces presented to the same (unilateral) or to different (bilateral) visual fields. Matching difficulty was manipulated by varying the semantic similarity of words or the visual similarity of faces. We assessed the white matter using the fractional anisotropy (FA) measure provided by diffusion tensor imaging (DTI) and cross-hemispheric communication in terms of fMRI-based connectivity between homotopic pairs of cortical regions. For both perceptual and semantic matching, bilateral trials became faster than unilateral trials as difficulty increased (bilateral processing advantage, BPA). The study yielded three novel findings. First, whereas FA in anterior corpus callosum (genu) correlated with word-matching BPA, FA in posterior corpus callosum (splenium-occipital) correlated with face-matching BPA. Second, as matching difficulty intensified, cross-hemispheric functional connectivity (CFC) increased in domain-general frontopolar cortex (for both word and face matching) but decreased in domain-specific ventral temporal lobe regions (temporal pole for word matching and fusiform gyrus for face matching). Last, a mediation analysis linking DTI and fMRI data showed that CFC mediated the effect of callosal FA on BPA. These findings clarify the mechanisms by which the hemispheres interact to perform complex cognitive tasks. PMID:26019335

  18. Brain region and epilepsy-associated differences in inflammatory mediator levels in medically refractory mesial temporal lobe epilepsy.

    PubMed

    Strauss, Kenneth I; Elisevich, Kost V

    2016-10-13

    Epilepsy patients have distinct immune/inflammatory cell profiles and inflammatory mediator levels in the blood. Although the neural origin of inflammatory cells and mediators has been implied, few studies have measured these inflammatory components in the human brain itself. This study examines the brain levels of chemokines (8), cytokines (14), and vascular injury mediators (3) suspected of being altered in epilepsy. Soluble protein extracts of fresh frozen resected hippocampus, entorhinal cortex, and temporal cortex from 58 medically refractory mesial temporal lobe epilepsy subjects and 4 nonepileptic neurosurgical subjects were assayed for 25 inflammation-related mediators using ultrasensitive low-density arrays. Brain mediator levels were compared between regions and between epileptic and nonepileptic cases, showing a number of regional and possible epilepsy-associated differences. Eotaxin, interferon-γ, interleukin (IL)-2, IL-4, IL-12 p70, IL-17A, tumor necrosis factor-α, and intercellular adhesion molecule (ICAM)-1 levels were highest in the hippocampus, the presumptive site of epileptogenesis. Surprisingly, IL-1β and IL-1α were lowest in the hippocampus, compared to cortical regions. In the temporal cortex, IL-1β, IL-8, and MIP-1α levels were highest, compared to the entorhinal cortex and the hippocampus. The most pronounced epilepsy-associated differences were decreased levels of eotaxin, IL-1β, C-reactive protein, and vascular cell adhesion molecule (VCAM)-1 and increased IL-12 p70 levels. Caution must be used in interpreting these results, however, because nonepileptic subjects were emergent neurosurgical cases, not a control group. Correlation analyses of each mediator in each brain region yielded valuable insights into the regulation of these mediator levels in the brain. Over 70 % of the associations identified were between different mediators in a single brain region, providing support for local control of mediator levels. Correlations of different mediators in different brain regions suggested more distributed control mechanisms, particularly in the hippocampus. Interestingly, only four mediators showed robust correlations between the brain regions, yet levels in three of these were significantly different between regions, indicating both global and local controls for these mediators. Both brain region-specific and epilepsy-associated changes in inflammation-related mediators were detected. Correlations in mediator levels within and between brain regions indicated local and global regulation, respectively. The hippocampus showed the majority of interregional associations, suggesting a focus of inflammatory control between these regions.

  19. Eye movements and attention: The role of pre-saccadic shifts of attention in perception, memory and the control of saccades

    PubMed Central

    Gersch, Timothy M.; Schnitzer, Brian S.; Dosher, Barbara A.; Kowler, Eileen

    2012-01-01

    Saccadic eye movements and perceptual attention work in a coordinated fashion to allow selection of the objects, features or regions with the greatest momentary need for limited visual processing resources. This study investigates perceptual characteristics of pre-saccadic shifts of attention during a sequence of saccades using the visual manipulations employed to study mechanisms of attention during maintained fixation. The first part of this paper reviews studies of the connections between saccades and attention, and their significance for both saccadic control and perception. The second part presents three experiments that examine the effects of pre-saccadic shifts of attention on vision during sequences of saccades. Perceptual enhancements at the saccadic goal location relative to non-goal locations were found across a range of stimulus contrasts, with either perceptual discrimination or detection tasks, with either single or multiple perceptual targets, and regardless of the presence of external noise. The results show that the preparation of saccades can evoke a variety of attentional effects, including attentionally-mediated changes in the strength of perceptual representations, selection of targets for encoding in visual memory, exclusion of external noise, or changes in the levels of internal visual noise. The visual changes evoked by saccadic planning make it possible for the visual system to effectively use saccadic eye movements to explore the visual environment. PMID:22809798

  20. Cortical Double-Opponent Cells in Color Perception: Perceptual Scaling and Chromatic Visual Evoked Potentials.

    PubMed

    Nunez, Valerie; Shapley, Robert M; Gordon, James

    2018-01-01

    In the early visual cortex V1, there are currently only two known neural substrates for color perception: single-opponent and double-opponent cells. Our aim was to explore the relative contributions of these neurons to color perception. We measured the perceptual scaling of color saturation for equiluminant color checkerboard patterns (designed to stimulate double-opponent neurons preferentially) and uniformly colored squares (designed to stimulate only single-opponent neurons) at several cone contrasts. The spatially integrative responses of single-opponent neurons would produce the same response magnitude for checkerboards as for uniform squares of the same space-averaged cone contrast. However, perceived saturation of color checkerboards was higher than for the corresponding squares. The perceptual results therefore imply that double-opponent cells are involved in color perception of patterns. We also measured the chromatic visual evoked potential (cVEP) produced by the same stimuli; checkerboard cVEPs were much larger than those for corresponding squares, implying that double-opponent cells also contribute to the cVEP response. The total Fourier power of the cVEP grew sublinearly with cone contrast. However, the 6-Hz Fourier component's power grew linearly with contrast-like saturation perception. This may also indicate that cortical coding of color depends on response dynamics.

  1. The benefits of cholinergic enhancement during perceptual learning are long-lasting

    PubMed Central

    Rokem, Ariel; Silver, Michael A.

    2013-01-01

    The neurotransmitter acetylcholine (ACh) regulates many aspects of cognition, including attention and memory. Previous research in animal models has shown that plasticity in sensory systems often depends on the behavioral relevance of a stimulus and/or task. However, experimentally increasing ACh release in the cortex can result in experience-dependent plasticity, even in the absence of behavioral relevance. In humans, the pharmacological enhancement of ACh transmission by administration of the cholinesterase inhibitor donepezil during performance of a perceptual task increases the magnitude of perceptual learning (PL) and its specificity to physical parameters of the stimuli used for training. Behavioral effects of PL have previously been shown to persist for many months. In the present study, we tested whether enhancement of PL by donepezil is also long-lasting. Healthy human subjects were trained on a motion direction discrimination task during cholinergic enhancement, and follow-up testing was performed 5–15 months after the end of training and without additional drug administration. Increases in performance associated with training under donepezil were evident in follow-up retesting, indicating that cholinergic enhancement has beneficial long-term effects on PL. These findings suggest that cholinergic enhancement of training procedures used to treat clinical disorders should improve long-term outcomes of these procedures. PMID:23755006

  2. Greater magnocellular saccadic suppression in high versus low autistic tendency suggests a causal path to local perceptual style.

    PubMed

    Crewther, David P; Crewther, Daniel; Bevan, Stephanie; Goodale, Melvyn A; Crewther, Sheila G

    2015-12-01

    Saccadic suppression-the reduction of visual sensitivity during rapid eye movements-has previously been proposed to reflect a specific suppression of the magnocellular visual system, with the initial neural site of that suppression at or prior to afferent visual information reaching striate cortex. Dysfunction in the magnocellular visual pathway has also been associated with perceptual and physiological anomalies in individuals with autism spectrum disorder or high autistic tendency, leading us to question whether saccadic suppression is altered in the broader autism phenotype. Here we show that individuals with high autistic tendency show greater saccadic suppression of low versus high spatial frequency gratings while those with low autistic tendency do not. In addition, those with high but not low autism spectrum quotient (AQ) demonstrated pre-cortical (35-45 ms) evoked potential differences (saccade versus fixation) to a large, low contrast, pseudo-randomly flashing bar. Both AQ groups showed similar differential visual evoked potential effects in later epochs (80-160 ms) at high contrast. Thus, the magnocellular theory of saccadic suppression appears untenable as a general description for the typically developing population. Our results also suggest that the bias towards local perceptual style reported in autism may be due to selective suppression of low spatial frequency information accompanying every saccadic eye movement.

  3. Cortical Double-Opponent Cells in Color Perception: Perceptual Scaling and Chromatic Visual Evoked Potentials

    PubMed Central

    Shapley, Robert M.; Gordon, James

    2018-01-01

    In the early visual cortex V1, there are currently only two known neural substrates for color perception: single-opponent and double-opponent cells. Our aim was to explore the relative contributions of these neurons to color perception. We measured the perceptual scaling of color saturation for equiluminant color checkerboard patterns (designed to stimulate double-opponent neurons preferentially) and uniformly colored squares (designed to stimulate only single-opponent neurons) at several cone contrasts. The spatially integrative responses of single-opponent neurons would produce the same response magnitude for checkerboards as for uniform squares of the same space-averaged cone contrast. However, perceived saturation of color checkerboards was higher than for the corresponding squares. The perceptual results therefore imply that double-opponent cells are involved in color perception of patterns. We also measured the chromatic visual evoked potential (cVEP) produced by the same stimuli; checkerboard cVEPs were much larger than those for corresponding squares, implying that double-opponent cells also contribute to the cVEP response. The total Fourier power of the cVEP grew sublinearly with cone contrast. However, the 6-Hz Fourier component’s power grew linearly with contrast-like saturation perception. This may also indicate that cortical coding of color depends on response dynamics. PMID:29375753

  4. Clinically Anxious Individuals Show Disrupted Feedback between Inferior Frontal Gyrus and Prefrontal-Limbic Control Circuit.

    PubMed

    Cha, Jiook; DeDora, Daniel; Nedic, Sanja; Ide, Jaime; Greenberg, Tsafrir; Hajcak, Greg; Mujica-Parodi, Lilianne Rivka

    2016-04-27

    Clinical anxiety is associated with generalization of conditioned fear, in which innocuous stimuli elicit alarm. Using Pavlovian fear conditioning (electric shock), we quantify generalization as the degree to which subjects' neurobiological responses track perceptual similarity gradients to a conditioned stimulus. Previous studies show that the ventromedial prefrontal cortex (vmPFC) inversely and ventral tegmental area directly track the gradient of perceptual similarity to the conditioned stimulus in healthy individuals, whereas clinically anxious individuals fail to discriminate. Here, we extend this work by identifying specific functional roles within the prefrontal-limbic circuit. We analyzed fMRI time-series acquired from 57 human subjects during a fear generalization task using entropic measures of circuit-wide regulation and feedback (power spectrum scale invariance/autocorrelation), in combination with structural (diffusion MRI-probabilistic tractography) and functional (stochastic dynamic causal modeling) measures of prefrontal-limbic connectivity within the circuit. Group comparison and correlations with anxiety severity across 57 subjects revealed dysregulatory dynamic signatures within the inferior frontal gyrus (IFG), which our prior work has linked to impaired feedback within the circuit. Bayesian model selection then identified a fully connected prefrontal-limbic model comprising the IFG, vmPFC, and amygdala. Dysregulatory IFG dynamics were associated with weaker reciprocal excitatory connectivity between the IFG and the vmPFC. The vmPFC exhibited inhibitory influence on the amygdala. Our current results, combined with our previous work across a threat-perception spectrum of 137 subjects and a meta-analysis of 366 fMRI studies, dissociate distinct roles for three prefrontal-limbic regions, wherein the IFG provides evaluation of stimulus meaning, which then informs the vmPFC in inhibiting the amygdala. Affective neuroscience has generally treated prefrontal regions (orbitofrontal cortex, dorsolateral prefrontal cortex, inferior frontal gyrus, ventromedial prefrontal cortex) equivalently as inhibitory components of the prefrontal-limbic system. Yet research across the anxiety spectrum suggests that the inferior frontal gyrus may have a more complex role in emotion regulation, as this region shows abnormal function in disorders of both hyperarousal and hypoarousal. Using entropic measures of circuit-wide regulation and feedback, in combination with measures of structural and functional connectivity, we dissociate distinct roles for three prefrontal-limbic regions, wherein the inferior frontal gyrus provides evaluation of stimulus meaning, which then informs the ventromedial prefrontal cortex in inhibiting the amygdala. This reconfiguration coheres with studies of conceptual disambiguation also implicating the inferior frontal gyrus. Copyright © 2016 the authors 0270-6474/16/364708-11$15.00/0.

  5. Cortical pitch regions in humans respond primarily to resolved harmonics and are located in specific tonotopic regions of anterior auditory cortex.

    PubMed

    Norman-Haignere, Sam; Kanwisher, Nancy; McDermott, Josh H

    2013-12-11

    Pitch is a defining perceptual property of many real-world sounds, including music and speech. Classically, theories of pitch perception have differentiated between temporal and spectral cues. These cues are rendered distinct by the frequency resolution of the ear, such that some frequencies produce "resolved" peaks of excitation in the cochlea, whereas others are "unresolved," providing a pitch cue only via their temporal fluctuations. Despite longstanding interest, the neural structures that process pitch, and their relationship to these cues, have remained controversial. Here, using fMRI in humans, we report the following: (1) consistent with previous reports, all subjects exhibited pitch-sensitive cortical regions that responded substantially more to harmonic tones than frequency-matched noise; (2) the response of these regions was mainly driven by spectrally resolved harmonics, although they also exhibited a weak but consistent response to unresolved harmonics relative to noise; (3) the response of pitch-sensitive regions to a parametric manipulation of resolvability tracked psychophysical discrimination thresholds for the same stimuli; and (4) pitch-sensitive regions were localized to specific tonotopic regions of anterior auditory cortex, extending from a low-frequency region of primary auditory cortex into a more anterior and less frequency-selective region of nonprimary auditory cortex. These results demonstrate that cortical pitch responses are located in a stereotyped region of anterior auditory cortex and are predominantly driven by resolved frequency components in a way that mirrors behavior.

  6. Cortical Pitch Regions in Humans Respond Primarily to Resolved Harmonics and Are Located in Specific Tonotopic Regions of Anterior Auditory Cortex

    PubMed Central

    Kanwisher, Nancy; McDermott, Josh H.

    2013-01-01

    Pitch is a defining perceptual property of many real-world sounds, including music and speech. Classically, theories of pitch perception have differentiated between temporal and spectral cues. These cues are rendered distinct by the frequency resolution of the ear, such that some frequencies produce “resolved” peaks of excitation in the cochlea, whereas others are “unresolved,” providing a pitch cue only via their temporal fluctuations. Despite longstanding interest, the neural structures that process pitch, and their relationship to these cues, have remained controversial. Here, using fMRI in humans, we report the following: (1) consistent with previous reports, all subjects exhibited pitch-sensitive cortical regions that responded substantially more to harmonic tones than frequency-matched noise; (2) the response of these regions was mainly driven by spectrally resolved harmonics, although they also exhibited a weak but consistent response to unresolved harmonics relative to noise; (3) the response of pitch-sensitive regions to a parametric manipulation of resolvability tracked psychophysical discrimination thresholds for the same stimuli; and (4) pitch-sensitive regions were localized to specific tonotopic regions of anterior auditory cortex, extending from a low-frequency region of primary auditory cortex into a more anterior and less frequency-selective region of nonprimary auditory cortex. These results demonstrate that cortical pitch responses are located in a stereotyped region of anterior auditory cortex and are predominantly driven by resolved frequency components in a way that mirrors behavior. PMID:24336712

  7. Stereotactically-guided Ablation of the Rat Auditory Cortex, and Localization of the Lesion in the Brain.

    PubMed

    Lamas, Verónica; Estévez, Sheila; Pernía, Marianni; Plaza, Ignacio; Merchán, Miguel A

    2017-10-11

    The rat auditory cortex (AC) is becoming popular among auditory neuroscience investigators who are interested in experience-dependence plasticity, auditory perceptual processes, and cortical control of sound processing in the subcortical auditory nuclei. To address new challenges, a procedure to accurately locate and surgically expose the auditory cortex would expedite this research effort. Stereotactic neurosurgery is routinely used in pre-clinical research in animal models to engraft a needle or electrode at a pre-defined location within the auditory cortex. In the following protocol, we use stereotactic methods in a novel way. We identify four coordinate points over the surface of the temporal bone of the rat to define a window that, once opened, accurately exposes both the primary (A1) and secondary (Dorsal and Ventral) cortices of the AC. Using this method, we then perform a surgical ablation of the AC. After such a manipulation is performed, it is necessary to assess the localization, size, and extension of the lesions made in the cortex. Thus, we also describe a method to easily locate the AC ablation postmortem using a coordinate map constructed by transferring the cytoarchitectural limits of the AC to the surface of the brain.The combination of the stereotactically-guided location and ablation of the AC with the localization of the injured area in a coordinate map postmortem facilitates the validation of information obtained from the animal, and leads to a better analysis and comprehension of the data.

  8. A longitudinal study of cannabis use initiation among high school students: Effects of social anxiety, expectancies, peers and alcohol.

    PubMed

    Schmits, Emilie; Mathys, Cécile; Quertemont, Etienne

    2015-06-01

    This study identified protective and risk factors of cannabis use initiation, including expectancies and social anxiety. A questionnaire was completed twice by 877 teenagers. Logistic regressions, mediation and moderation analyses were performed. Significant risk factors were alcohol use, peer users, perceptual enhancement, and craving expectancies. Protective factors were negative behavior expectancies and social anxiety. Social anxiety protected from initiation through the mediating role of perceptual enhancement and craving expectancies, whatever the role of peer users and alcohol use. Findings are discussed in terms of risk and protection, in an overall approach including internalizing factors. Results support the identification of an internalizing profile of adolescents for prevention or treatment and the importance of social anxiety and expectancies in intervention. Copyright © 2015 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  9. Global processing in amblyopia: a review

    PubMed Central

    Hamm, Lisa M.; Black, Joanna; Dai, Shuan; Thompson, Benjamin

    2014-01-01

    Amblyopia is a neurodevelopmental disorder of the visual system that is associated with disrupted binocular vision during early childhood. There is evidence that the effects of amblyopia extend beyond the primary visual cortex to regions of the dorsal and ventral extra-striate visual cortex involved in visual integration. Here, we review the current literature on global processing deficits in observers with either strabismic, anisometropic, or deprivation amblyopia. A range of global processing tasks have been used to investigate the extent of the cortical deficit in amblyopia including: global motion perception, global form perception, face perception, and biological motion. These tasks appear to be differentially affected by amblyopia. In general, observers with unilateral amblyopia appear to show deficits for local spatial processing and global tasks that require the segregation of signal from noise. In bilateral cases, the global processing deficits are exaggerated, and appear to extend to specialized perceptual systems such as those involved in face processing. PMID:24987383

  10. The large-scale organization of shape processing in the ventral and dorsal pathways

    PubMed Central

    Culham, Jody C; Plaut, David C; Behrmann, Marlene

    2017-01-01

    Although shape perception is considered a function of the ventral visual pathway, evidence suggests that the dorsal pathway also derives shape-based representations. In two psychophysics and neuroimaging experiments, we characterized the response properties, topographical organization and perceptual relevance of these representations. In both pathways, shape sensitivity increased from early visual cortex to extrastriate cortex but then decreased in anterior regions. Moreover, the lateral aspect of the ventral pathway and posterior regions of the dorsal pathway were sensitive to the availability of fundamental shape properties, even for unrecognizable images. This apparent representational similarity between the posterior-dorsal and lateral-ventral regions was corroborated by a multivariate analysis. Finally, as with ventral pathway, the activation profile of posterior dorsal regions was correlated with recognition performance, suggesting a possible contribution to perception. These findings challenge a strict functional dichotomy between the pathways and suggest a more distributed model of shape processing. PMID:28980938

  11. Behavioral assessment of sensitivity to intracortical microstimulation of primate somatosensory cortex.

    PubMed

    Kim, Sungshin; Callier, Thierri; Tabot, Gregg A; Gaunt, Robert A; Tenore, Francesco V; Bensmaia, Sliman J

    2015-12-08

    Intracortical microstimulation (ICMS) is a powerful tool to investigate the functional role of neural circuits and may provide a means to restore sensation for patients for whom peripheral stimulation is not an option. In a series of psychophysical experiments with nonhuman primates, we investigate how stimulation parameters affect behavioral sensitivity to ICMS. Specifically, we deliver ICMS to primary somatosensory cortex through chronically implanted electrode arrays across a wide range of stimulation regimes. First, we investigate how the detectability of ICMS depends on stimulation parameters, including pulse width, frequency, amplitude, and pulse train duration. Then, we characterize the degree to which ICMS pulse trains that differ in amplitude lead to discriminable percepts across the range of perceptible and safe amplitudes. We also investigate how discriminability of pulse amplitude is modulated by other stimulation parameters-namely, frequency and duration. Perceptual judgments obtained across these various conditions will inform the design of stimulation regimes for neuroscience and neuroengineering applications.

  12. Cross-modal cueing of attention alters appearance and early cortical processing of visual stimuli

    PubMed Central

    Störmer, Viola S.; McDonald, John J.; Hillyard, Steven A.

    2009-01-01

    The question of whether attention makes sensory impressions appear more intense has been a matter of debate for over a century. Recent psychophysical studies have reported that attention increases apparent contrast of visual stimuli, but the issue continues to be debated. We obtained converging neurophysiological evidence from human observers as they judged the relative contrast of visual stimuli presented to the left and right visual fields following a lateralized auditory cue. Cross-modal cueing of attention boosted the apparent contrast of the visual target in association with an enlarged neural response in the contralateral visual cortex that began within 100 ms after target onset. The magnitude of the enhanced neural response was positively correlated with perceptual reports of the cued target being higher in contrast. The results suggest that attention increases the perceived contrast of visual stimuli by boosting early sensory processing in the visual cortex. PMID:20007778

  13. Cross-modal cueing of attention alters appearance and early cortical processing of visual stimuli.

    PubMed

    Störmer, Viola S; McDonald, John J; Hillyard, Steven A

    2009-12-29

    The question of whether attention makes sensory impressions appear more intense has been a matter of debate for over a century. Recent psychophysical studies have reported that attention increases apparent contrast of visual stimuli, but the issue continues to be debated. We obtained converging neurophysiological evidence from human observers as they judged the relative contrast of visual stimuli presented to the left and right visual fields following a lateralized auditory cue. Cross-modal cueing of attention boosted the apparent contrast of the visual target in association with an enlarged neural response in the contralateral visual cortex that began within 100 ms after target onset. The magnitude of the enhanced neural response was positively correlated with perceptual reports of the cued target being higher in contrast. The results suggest that attention increases the perceived contrast of visual stimuli by boosting early sensory processing in the visual cortex.

  14. Dynamic Integration of Task-Relevant Visual Features in Posterior Parietal Cortex

    PubMed Central

    Freedman, David J.

    2014-01-01

    Summary The primate visual system consists of multiple hierarchically organized cortical areas, each specialized for processing distinct aspects of the visual scene. For example, color and form are encoded in ventral pathway areas such as V4 and inferior temporal cortex, while motion is preferentially processed in dorsal pathway areas such as the middle temporal area. Such representations often need to be integrated perceptually to solve tasks which depend on multiple features. We tested the hypothesis that the lateral intraparietal area (LIP) integrates disparate task-relevant visual features by recording from LIP neurons in monkeys trained to identify target stimuli composed of conjunctions of color and motion features. We show that LIP neurons exhibit integrative representations of both color and motion features when they are task relevant, and task-dependent shifts of both direction and color tuning. This suggests that LIP plays a role in flexibly integrating task-relevant sensory signals. PMID:25199703

  15. Emergent processes in cognitive-emotional interactions

    PubMed Central

    Pessoa, Luiz

    2010-01-01

    Emotion and cognition have been viewed as largely separate entities in the brain. Within this framework, significant progress has been made in understanding specific aspects of behavior. Research in the past two decades, however, has started to paint a different picture of brain organization, one in which network interactions are key to understanding complex behaviors. From both basic and clinical perspectives, the characterization of cognitive-emotional interactions constitutes a fundamental issue in the investigation of the mind and brain. This review will highlight the interactive and integrative potential that exists in the brain to bring together the cognitive and emotional domains. First, anatomical evidence will be provided, focusing on structures such as hypothalamus, basal forebrain, amygdala, cingulate cortex, orbitofrontal cortex, and insula. Data on functional interactions will then be discussed, followed by a discussion of a dual competition framework, which describes cognitive-emotional interactions in terms of perceptual and cognitive competition mechanisms. PMID:21319489

  16. Individual musical tempo preference correlates with EEG beta rhythm.

    PubMed

    Bauer, Anna-Katharina R; Kreutz, Gunter; Herrmann, Christoph S

    2015-04-01

    Every individual has a preferred musical tempo, which peaks slightly above 120 beats per minute and is subject to interindividual variation. The preferred tempo is believed to be associated with rhythmic body movements as well as motor cortex activity. However, a long-standing question is whether preferred tempo is determined biologically. To uncover the neural correlates of preferred tempo, we first determined an individual's preferred tempo using a multistep procedure. Subsequently, we correlated the preferred tempo with a general EEG timing parameter as well as perceptual and motor EEG correlates-namely, individual alpha frequency, auditory evoked gamma band response, and motor beta activity. Results showed a significant relation between preferred tempo and the frequency of motor beta activity. These findings suggest that individual tempo preferences result from neural activity in the motor cortex, explaining the interindividual variation. Copyright © 2014 Society for Psychophysiological Research.

  17. Plasticity in the Human Visual Cortex: An Ophthalmology-Based Perspective

    PubMed Central

    Rosa, Andreia Martins; Silva, Maria Fátima; Murta, Joaquim

    2013-01-01

    Neuroplasticity refers to the ability of the brain to reorganize the function and structure of its connections in response to changes in the environment. Adult human visual cortex shows several manifestations of plasticity, such as perceptual learning and adaptation, working under the top-down influence of attention. Plasticity results from the interplay of several mechanisms, including the GABAergic system, epigenetic factors, mitochondrial activity, and structural remodeling of synaptic connectivity. There is also a downside of plasticity, that is, maladaptive plasticity, in which there are behavioral losses resulting from plasticity changes in the human brain. Understanding plasticity mechanisms could have major implications in the diagnosis and treatment of ocular diseases, such as retinal disorders, cataract and refractive surgery, amblyopia, and in the evaluation of surgical materials and techniques. Furthermore, eliciting plasticity could open new perspectives in the development of strategies that trigger plasticity for better medical and surgical outcomes. PMID:24205505

  18. The thalamus as a monitor of motor outputs.

    PubMed Central

    Guillery, R W; Sherman, S M

    2002-01-01

    Many of the ascending pathways to the thalamus have branches involved in movement control. In addition, the recently defined, rich innervation of 'higher' thalamic nuclei (such as the pulvinar) from pyramidal cells in layer five of the neocortex also comes from branches of long descending axons that supply motor structures. For many higher thalamic nuclei the clue to understanding the messages that are relayed to the cortex will depend on knowing the nature of these layer five motor outputs and on defining how messages from groups of functionally distinct output types are combined as inputs to higher cortical areas. Current evidence indicates that many and possibly all thalamic relays to the neocortex are about instructions that cortical and subcortical neurons are contributing to movement control. The perceptual functions of the cortex can thus be seen to represent abstractions from ongoing motor instructions. PMID:12626014

  19. Prefrontal and parietal activity is modulated by the rule complexity of inductive reasoning and can be predicted by a cognitive model.

    PubMed

    Jia, Xiuqin; Liang, Peipeng; Shi, Lin; Wang, Defeng; Li, Kuncheng

    2015-01-01

    In neuroimaging studies, increased task complexity can lead to increased activation in task-specific regions or to activation of additional regions. How the brain adapts to increased rule complexity during inductive reasoning remains unclear. In the current study, three types of problems were created: simple rule induction (i.e., SI, with rule complexity of 1), complex rule induction (i.e., CI, with rule complexity of 2), and perceptual control. Our findings revealed that increased activations accompany increased rule complexity in the right dorsal lateral prefrontal cortex (DLPFC) and medial posterior parietal cortex (precuneus). A cognitive model predicted both the behavioral and brain imaging results. The current findings suggest that neural activity in frontal and parietal regions is modulated by rule complexity, which may shed light on the neural mechanisms of inductive reasoning. Copyright © 2014. Published by Elsevier Ltd.

  20. When visual perception causes feeling: enhanced cross-modal processing in grapheme-color synesthesia.

    PubMed

    Weiss, Peter H; Zilles, Karl; Fink, Gereon R

    2005-12-01

    In synesthesia, stimulation of one sensory modality (e.g., hearing) triggers a percept in another, non-stimulated sensory modality (e.g., vision). Likewise, perception of a form (e.g., a letter) may induce a color percept (i.e., grapheme-color synesthesia). To date, the neural mechanisms underlying synesthesia remain to be elucidated. We disclosed by fMRI, while controlling for surface color processing, enhanced activity in the left intraparietal cortex during the experience of grapheme-color synesthesia (n = 9). In contrast, the perception of surface color per se activated the color centers in the fusiform gyrus bilaterally. The data support theoretical accounts that grapheme-color synesthesia may originate from enhanced cross-modal binding of form and color. A mismatch of surface color and grapheme induced synesthetically felt color additionally activated the left dorsolateral prefrontal cortex (DLPFC). This suggests that cognitive control processes become active to resolve the perceptual conflict resulting from synesthesia.

  1. Neuronal population coding of perceived and memorized visual features in the lateral prefrontal cortex

    PubMed Central

    Mendoza-Halliday, Diego; Martinez-Trujillo, Julio C.

    2017-01-01

    The primate lateral prefrontal cortex (LPFC) encodes visual stimulus features while they are perceived and while they are maintained in working memory. However, it remains unclear whether perceived and memorized features are encoded by the same or different neurons and population activity patterns. Here we record LPFC neuronal activity while monkeys perceive the motion direction of a stimulus that remains visually available, or memorize the direction if the stimulus disappears. We find neurons with a wide variety of combinations of coding strength for perceived and memorized directions: some neurons encode both to similar degrees while others preferentially or exclusively encode either one. Reading out the combined activity of all neurons, a machine-learning algorithm reliably decode the motion direction and determine whether it is perceived or memorized. Our results indicate that a functionally diverse population of LPFC neurons provides a substrate for discriminating between perceptual and mnemonic representations of visual features. PMID:28569756

  2. Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing

    PubMed Central

    Rauschecker, Josef P; Scott, Sophie K

    2010-01-01

    Speech and language are considered uniquely human abilities: animals have communication systems, but they do not match human linguistic skills in terms of recursive structure and combinatorial power. Yet, in evolution, spoken language must have emerged from neural mechanisms at least partially available in animals. In this paper, we will demonstrate how our understanding of speech perception, one important facet of language, has profited from findings and theory in nonhuman primate studies. Chief among these are physiological and anatomical studies showing that primate auditory cortex, across species, shows patterns of hierarchical structure, topographic mapping and streams of functional processing. We will identify roles for different cortical areas in the perceptual processing of speech and review functional imaging work in humans that bears on our understanding of how the brain decodes and monitors speech. A new model connects structures in the temporal, frontal and parietal lobes linking speech perception and production. PMID:19471271

  3. Selection, integration, and conflict monitoring; assessing the nature and generality of prefrontal cognitive control mechanisms.

    PubMed

    Badre, David; Wagner, Anthony D

    2004-02-05

    Prefrontal cortex (PFC) supports flexible behavior by mediating cognitive control, though the elemental forms of control supported by PFC remain a central debate. Dorsolateral PFC (DLPFC) is thought to guide response selection under conditions of response conflict or, alternatively, may refresh recently active representations within working memory. Lateral frontopolar cortex (FPC) may also adjudicate response conflict, though others propose that FPC supports higher order control processes such as subgoaling and integration. Anterior cingulate cortex (ACC) is hypothesized to upregulate response selection by detecting response conflict; it remains unclear whether ACC functions generalize beyond monitoring response conflict. The present fMRI experiment directly tested these competing theories regarding the functional roles of DLPFC, FPC, and ACC. Results reveal dissociable control processes in PFC, with mid-DLPFC selectively mediating resolution of response conflict and FPC further mediating subgoaling/integration. ACC demonstrated a broad sensitivity to control demands, suggesting a generalized role in modulating cognitive control.

  4. Intracortical pathways mediate nonlinear fast oscillation (>200 Hz) interactions within rat barrel cortex.

    PubMed

    Staba, Richard J; Ard, Tyler D; Benison, Alexander M; Barth, Daniel S

    2005-05-01

    Whisker evoked fast oscillations (FOs; >200 Hz) within the rodent posteromedial barrel subfield are thought to reflect very rapid integration of multiwhisker stimuli, yet the pathways mediating FO interactions remain unclear and may involve interactions within thalamus and/or cortex. In the present study using anesthetized rats, a cortical incision was made between sites representing the stimulated whiskers to determine how intracortical networks contributed to patterns of FOs. With cortex intact, simultaneous stimulation of a pair of whiskers aligned in a row evoked supralinear responses between sites separated by several millimeters. In contrast, stimulation of a nonadjacent pair of whiskers within an arc evoked FOs with no evidence for nonlinear interactions. However, stimulation of an adjacent pair of whiskers in an arc did evoke supralinear responses. After a cortical cut, supralinear interactions associated with FOs within a row were lost. These data indicate a distinct bias for stronger long-range connectivity that extends along barrel rows and that horizontal intracortical pathways exclusively mediate FO-related integration of tactile information.

  5. Hippocampus-driven feed-forward inhibition of the prefrontal cortex mediates relapse of extinguished fear.

    PubMed

    Marek, Roger; Jin, Jingji; Goode, Travis D; Giustino, Thomas F; Wang, Qian; Acca, Gillian M; Holehonnur, Roopashri; Ploski, Jonathan E; Fitzgerald, Paul J; Lynagh, Timothy; Lynch, Joseph W; Maren, Stephen; Sah, Pankaj

    2018-03-01

    The medial prefrontal cortex (mPFC) has been implicated in the extinction of emotional memories, including conditioned fear. We found that ventral hippocampal (vHPC) projections to the infralimbic (IL) cortex recruited parvalbumin-expressing interneurons to counter the expression of extinguished fear and promote fear relapse. Whole-cell recordings ex vivo revealed that optogenetic activation of vHPC input to amygdala-projecting pyramidal neurons in the IL was dominated by feed-forward inhibition. Selectively silencing parvalbumin-expressing, but not somatostatin-expressing, interneurons in the IL eliminated vHPC-mediated inhibition. In behaving rats, pharmacogenetic activation of vHPC→IL projections impaired extinction recall, whereas silencing IL projectors diminished fear renewal. Intra-IL infusion of GABA receptor agonists or antagonists, respectively, reproduced these effects. Together, our findings describe a previously unknown circuit mechanism for the contextual control of fear, and indicate that vHPC-mediated inhibition of IL is an essential neural substrate for fear relapse.

  6. Neural substrates of perceptual integration during bistable object perception

    PubMed Central

    Flevaris, Anastasia V.; Martínez, Antigona; Hillyard, Steven A.

    2013-01-01

    The way we perceive an object depends both on feedforward, bottom-up processing of its physical stimulus properties and on top-down factors such as attention, context, expectation, and task relevance. Here we compared neural activity elicited by varying perceptions of the same physical image—a bistable moving image in which perception spontaneously alternates between dissociated fragments and a single, unified object. A time-frequency analysis of EEG changes associated with the perceptual switch from object to fragment and vice versa revealed a greater decrease in alpha (8–12 Hz) accompanying the switch to object percept than to fragment percept. Recordings of event-related potentials elicited by irrelevant probes superimposed on the moving image revealed an enhanced positivity between 184 and 212 ms when the probes were contained within the boundaries of the perceived unitary object. The topography of the positivity (P2) in this latency range elicited by probes during object perception was distinct from the topography elicited by probes during fragment perception, suggesting that the neural processing of probes differed as a function of perceptual state. Two source localization algorithms estimated the neural generator of this object-related difference to lie in the lateral occipital cortex, a region long associated with object perception. These data suggest that perceived objects attract attention, incorporate visual elements occurring within their boundaries into unified object representations, and enhance the visual processing of elements occurring within their boundaries. Importantly, the perceived object in this case emerged as a function of the fluctuating perceptual state of the viewer. PMID:24246467

  7. Perceptual similarity and the neural correlates of geometrical illusions in human brain structure.

    PubMed

    Axelrod, Vadim; Schwarzkopf, D Samuel; Gilaie-Dotan, Sharon; Rees, Geraint

    2017-01-09

    Geometrical visual illusions are an intriguing phenomenon, in which subjective perception consistently misjudges the objective, physical properties of the visual stimulus. Prominent theoretical proposals have been advanced attempting to find common mechanisms across illusions. But empirically testing the similarity between illusions has been notoriously difficult because illusions have very different visual appearances. Here we overcome this difficulty by capitalizing on the variability of the illusory magnitude across participants. Fifty-nine healthy volunteers participated in the study that included measurement of individual illusion magnitude and structural MRI scanning. We tested the Muller-Lyer, Ebbinghaus, Ponzo, and vertical-horizontal geometrical illusions as well as a non-geometrical, contrast illusion. We found some degree of similarity in behavioral judgments of all tested geometrical illusions, but not between geometrical illusions and non-geometrical, contrast illusion. The highest similarity was found between Ebbinghaus and Muller-Lyer geometrical illusions. Furthermore, the magnitude of all geometrical illusions, and particularly the Ebbinghaus and Muller-Lyer illusions, correlated with local gray matter density in the parahippocampal cortex, but not in other brain areas. Our findings suggest that visuospatial integration and scene construction processes might partly mediate individual differences in geometric illusory perception. Overall, these findings contribute to a better understanding of the mechanisms behind geometrical illusions.

  8. Individual differences in decision making competence revealed by multivariate fMRI.

    PubMed

    Talukdar, Tanveer; Román, Francisco J; Operskalski, Joachim T; Zwilling, Christopher E; Barbey, Aron K

    2018-06-01

    While an extensive literature in decision neuroscience has elucidated the neurobiological foundations of decision making, prior research has focused primarily on group-level effects in a sample population. Due to the presence of inherent differences between individuals' cognitive abilities, it is also important to examine the neural correlates of decision making that explain interindividual variability in cognitive performance. This study therefore investigated how individual differences in decision making competence, as measured by the Adult Decision Making Competence (A-DMC) battery, are related to functional brain connectivity patterns derived from resting-state fMRI data in a sample of 304 healthy participants. We examined connectome-wide associations, identifying regions within frontal, parietal, temporal, and occipital cortex that demonstrated significant associations with decision making competence. We then assessed whether the functional interactions between brain regions sensitive to decision making competence and seven intrinsic connectivity networks (ICNs) were predictive of specific facets of decision making assessed by subtests of the A-DMC battery. Our findings suggest that individual differences in specific facets of decision making competence are mediated by ICNs that support executive, social, and perceptual processes, and motivate an integrative framework for understanding the neural basis of individual differences in decision making competence. © 2018 Wiley Periodicals, Inc.

  9. The Encoding of Sound Source Elevation in the Human Auditory Cortex.

    PubMed

    Trapeau, Régis; Schönwiesner, Marc

    2018-03-28

    Spatial hearing is a crucial capacity of the auditory system. While the encoding of horizontal sound direction has been extensively studied, very little is known about the representation of vertical sound direction in the auditory cortex. Using high-resolution fMRI, we measured voxelwise sound elevation tuning curves in human auditory cortex and show that sound elevation is represented by broad tuning functions preferring lower elevations as well as secondary narrow tuning functions preferring individual elevation directions. We changed the ear shape of participants (male and female) with silicone molds for several days. This manipulation reduced or abolished the ability to discriminate sound elevation and flattened cortical tuning curves. Tuning curves recovered their original shape as participants adapted to the modified ears and regained elevation perception over time. These findings suggest that the elevation tuning observed in low-level auditory cortex did not arise from the physical features of the stimuli but is contingent on experience with spectral cues and covaries with the change in perception. One explanation for this observation may be that the tuning in low-level auditory cortex underlies the subjective perception of sound elevation. SIGNIFICANCE STATEMENT This study addresses two fundamental questions about the brain representation of sensory stimuli: how the vertical spatial axis of auditory space is represented in the auditory cortex and whether low-level sensory cortex represents physical stimulus features or subjective perceptual attributes. Using high-resolution fMRI, we show that vertical sound direction is represented by broad tuning functions preferring lower elevations as well as secondary narrow tuning functions preferring individual elevation directions. In addition, we demonstrate that the shape of these tuning functions is contingent on experience with spectral cues and covaries with the change in perception, which may indicate that the tuning functions in low-level auditory cortex underlie the perceived elevation of a sound source. Copyright © 2018 the authors 0270-6474/18/383252-13$15.00/0.

  10. Optimization of visual training for full recovery from severe amblyopia in adults

    PubMed Central

    Eaton, Nicolette C.; Sheehan, Hanna Marie

    2016-01-01

    The severe amblyopia induced by chronic monocular deprivation is highly resistant to reversal in adulthood. Here we use a rodent model to show that recovery from deprivation amblyopia can be achieved in adults by a two-step sequence, involving enhancement of synaptic plasticity in the visual cortex by dark exposure followed immediately by visual training. The perceptual learning induced by visual training contributes to the recovery of vision and can be optimized to drive full recovery of visual acuity in severely amblyopic adults. PMID:26787781

  11. Supramodal processing optimizes visual perceptual learning and plasticity.

    PubMed

    Zilber, Nicolas; Ciuciu, Philippe; Gramfort, Alexandre; Azizi, Leila; van Wassenhove, Virginie

    2014-06-01

    Multisensory interactions are ubiquitous in cortex and it has been suggested that sensory cortices may be supramodal i.e. capable of functional selectivity irrespective of the sensory modality of inputs (Pascual-Leone and Hamilton, 2001; Renier et al., 2013; Ricciardi and Pietrini, 2011; Voss and Zatorre, 2012). Here, we asked whether learning to discriminate visual coherence could benefit from supramodal processing. To this end, three groups of participants were briefly trained to discriminate which of a red or green intermixed population of random-dot-kinematograms (RDKs) was most coherent in a visual display while being recorded with magnetoencephalography (MEG). During training, participants heard no sound (V), congruent acoustic textures (AV) or auditory noise (AVn); importantly, congruent acoustic textures shared the temporal statistics - i.e. coherence - of visual RDKs. After training, the AV group significantly outperformed participants trained in V and AVn although they were not aware of their progress. In pre- and post-training blocks, all participants were tested without sound and with the same set of RDKs. When contrasting MEG data collected in these experimental blocks, selective differences were observed in the dynamic pattern and the cortical loci responsive to visual RDKs. First and common to all three groups, vlPFC showed selectivity to the learned coherence levels whereas selectivity in visual motion area hMT+ was only seen for the AV group. Second and solely for the AV group, activity in multisensory cortices (mSTS, pSTS) correlated with post-training performances; additionally, the latencies of these effects suggested feedback from vlPFC to hMT+ possibly mediated by temporal cortices in AV and AVn groups. Altogether, we interpret our results in the context of the Reverse Hierarchy Theory of learning (Ahissar and Hochstein, 2004) in which supramodal processing optimizes visual perceptual learning by capitalizing on sensory-invariant representations - here, global coherence levels across sensory modalities. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Evolution and Optimality of Similar Neural Mechanisms for Perception and Action during Search

    PubMed Central

    Zhang, Sheng; Eckstein, Miguel P.

    2010-01-01

    A prevailing theory proposes that the brain's two visual pathways, the ventral and dorsal, lead to differing visual processing and world representations for conscious perception than those for action. Others have claimed that perception and action share much of their visual processing. But which of these two neural architectures is favored by evolution? Successful visual search is life-critical and here we investigate the evolution and optimality of neural mechanisms mediating perception and eye movement actions for visual search in natural images. We implement an approximation to the ideal Bayesian searcher with two separate processing streams, one controlling the eye movements and the other stream determining the perceptual search decisions. We virtually evolved the neural mechanisms of the searchers' two separate pathways built from linear combinations of primary visual cortex receptive fields (V1) by making the simulated individuals' probability of survival depend on the perceptual accuracy finding targets in cluttered backgrounds. We find that for a variety of targets, backgrounds, and dependence of target detectability on retinal eccentricity, the mechanisms of the searchers' two processing streams converge to similar representations showing that mismatches in the mechanisms for perception and eye movements lead to suboptimal search. Three exceptions which resulted in partial or no convergence were a case of an organism for which the targets are equally detectable across the retina, an organism with sufficient time to foveate all possible target locations, and a strict two-pathway model with no interconnections and differential pre-filtering based on parvocellular and magnocellular lateral geniculate cell properties. Thus, similar neural mechanisms for perception and eye movement actions during search are optimal and should be expected from the effects of natural selection on an organism with limited time to search for food that is not equi-detectable across its retina and interconnected perception and action neural pathways. PMID:20838589

  13. The Impact of Anxiety-Inducing Distraction on Cognitive Performance: A Combined Brain Imaging and Personality Investigation

    PubMed Central

    Denkova, Ekaterina; Wong, Gloria; Dolcos, Sanda; Sung, Keen; Wang, Lihong; Coupland, Nicholas; Dolcos, Florin

    2010-01-01

    Background Previous investigations revealed that the impact of task-irrelevant emotional distraction on ongoing goal-oriented cognitive processing is linked to opposite patterns of activation in emotional and perceptual vs. cognitive control/executive brain regions. However, little is known about the role of individual variations in these responses. The present study investigated the effect of trait anxiety on the neural responses mediating the impact of transient anxiety-inducing task-irrelevant distraction on cognitive performance, and on the neural correlates of coping with such distraction. We investigated whether activity in the brain regions sensitive to emotional distraction would show dissociable patterns of co-variation with measures indexing individual variations in trait anxiety and cognitive performance. Methodology/Principal Findings Event-related fMRI data, recorded while healthy female participants performed a delayed-response working memory (WM) task with distraction, were investigated in conjunction with behavioural measures that assessed individual variations in both trait anxiety and WM performance. Consistent with increased sensitivity to emotional cues in high anxiety, specific perceptual areas (fusiform gyrus - FG) exhibited increased activity that was positively correlated with trait anxiety and negatively correlated with WM performance, whereas specific executive regions (right lateral prefrontal cortex - PFC) exhibited decreased activity that was negatively correlated with trait anxiety. The study also identified a role of the medial and left lateral PFC in coping with distraction, as opposed to reflecting a detrimental impact of emotional distraction. Conclusions These findings provide initial evidence concerning the neural mechanisms sensitive to individual variations in trait anxiety and WM performance, which dissociate the detrimental impact of emotion distraction and the engagement of mechanisms to cope with distracting emotions. Our study sheds light on the neural correlates of emotion-cognition interactions in normal behaviour, which has implications for understanding factors that may influence susceptibility to affective disorders, in general, and to anxiety disorders, in particular. PMID:21152391

  14. Social re-orientation and brain development: An expanded and updated view.

    PubMed

    Nelson, Eric E; Jarcho, Johanna M; Guyer, Amanda E

    2016-02-01

    Social development has been the focus of a great deal of neuroscience based research over the past decade. In this review, we focus on providing a framework for understanding how changes in facets of social development may correspond with changes in brain function. We argue that (1) distinct phases of social behavior emerge based on whether the organizing social force is the mother, peer play, peer integration, or romantic intimacy; (2) each phase is marked by a high degree of affect-driven motivation that elicits a distinct response in subcortical structures; (3) activity generated by these structures interacts with circuits in prefrontal cortex that guide executive functions, and occipital and temporal lobe circuits, which generate specific sensory and perceptual social representations. We propose that the direction, magnitude and duration of interaction among these affective, executive, and perceptual systems may relate to distinct sensitive periods across development that contribute to establishing long-term patterns of brain function and behavior. Published by Elsevier Ltd.

  15. Negative BOLD response and serotonin concentration within rostral subgenual portion of the anterior cingulate cortex for long-allele carriers during perceptual processing of emotional tasks

    NASA Astrophysics Data System (ADS)

    Hadi, Shamil M.; Siadat, Mohamad R.; Babajani-Feremi, Abbas

    2012-03-01

    We investigated the effect of synaptic serotonin concentration on hemodynamic responses. The stimuli paradigm involved the presentation of fearful and threatening facial expressions to a set of 24 subjects who were either5HTTLPR long- or short-allele carriers (12 of each type in each group). The BOLD signals of the rACC from subjects of each group were averaged to increase the signal-to-noise ratio. We used a Bayesian approach to estimate the parameters of the underlying hemodynamic model. Our results, during this perceptual processing of emotional task, showed a negative BOLD signal in the rACC in the subjects with long-alleles. In contrast, the subjects with short-alleles showed positive BOLD signals in the rACC. These results suggest that high synaptic serotonin concentration in the rACC inhibits neuronal activity in a fashion similar to GABA, and a consequent negative BOLD signal ensues.

  16. Flexible establishment of functional brain networks supports attentional modulation of unconscious cognition.

    PubMed

    Ulrich, Martin; Adams, Sarah C; Kiefer, Markus

    2014-11-01

    In classical theories of attention, unconscious automatic processes are thought to be independent of higher-level attentional influences. Here, we propose that unconscious processing depends on attentional enhancement of task-congruent processing pathways implemented by a dynamic modulation of the functional communication between brain regions. Using functional magnetic resonance imaging, we tested our model with a subliminally primed lexical decision task preceded by an induction task preparing either a semantic or a perceptual task set. Subliminal semantic priming was significantly greater after semantic compared to perceptual induction in ventral occipito-temporal (vOT) and inferior frontal cortex, brain areas known to be involved in semantic processing. The functional connectivity pattern of vOT varied depending on the induction task and successfully predicted the magnitude of behavioral and neural priming. Together, these findings support the proposal that dynamic establishment of functional networks by task sets is an important mechanism in the attentional control of unconscious processing. © 2014 Wiley Periodicals, Inc.

  17. Emergence of an abstract categorical code enabling the discrimination of temporally structured tactile stimuli

    PubMed Central

    Rossi-Pool, Román; Salinas, Emilio; Zainos, Antonio; Alvarez, Manuel; Vergara, José; Parga, Néstor; Romo, Ranulfo

    2016-01-01

    The problem of neural coding in perceptual decision making revolves around two fundamental questions: (i) How are the neural representations of sensory stimuli related to perception, and (ii) what attributes of these neural responses are relevant for downstream networks, and how do they influence decision making? We studied these two questions by recording neurons in primary somatosensory (S1) and dorsal premotor (DPC) cortex while trained monkeys reported whether the temporal pattern structure of two sequential vibrotactile stimuli (of equal mean frequency) was the same or different. We found that S1 neurons coded the temporal patterns in a literal way and only during the stimulation periods and did not reflect the monkeys’ decisions. In contrast, DPC neurons coded the stimulus patterns as broader categories and signaled them during the working memory, comparison, and decision periods. These results show that the initial sensory representation is transformed into an intermediate, more abstract categorical code that combines past and present information to ultimately generate a perceptually informed choice. PMID:27872293

  18. Repetition priming influences distinct brain systems: evidence from task-evoked data and resting-state correlations.

    PubMed

    Wig, Gagan S; Buckner, Randy L; Schacter, Daniel L

    2009-05-01

    Behavioral dissociations suggest that a single experience can separately influence multiple processing components. Here we used a repetition priming functional magnetic resonance imaging paradigm that directly contrasted the effects of stimulus and decision changes to identify the underlying brain systems. Direct repetition of stimulus features caused marked reductions in posterior regions of the inferior temporal lobe that were insensitive to whether the decision was held constant or changed between study and test. By contrast, prefrontal cortex showed repetition effects that were sensitive to the exact stimulus-to-decision mapping. Analysis of resting-state functional connectivity revealed that the dissociated repetition effects are embedded within distinct brain systems. Regions that were sensitive to changes in the stimulus correlated with perceptual cortices, whereas the decision changes attenuated activity in regions correlated with middle-temporal regions and a frontoparietal control system. These results thus explain the long-known dissociation between perceptual and conceptual components of priming by revealing how a single experience can separately influence distinct, concurrently active brain systems.

  19. Fornix and medial temporal lobe lesions lead to comparable deficits in complex visual perception.

    PubMed

    Lech, Robert K; Koch, Benno; Schwarz, Michael; Suchan, Boris

    2016-05-04

    Recent research dealing with the structures of the medial temporal lobe (MTL) has shifted away from exclusively investigating memory-related processes and has repeatedly incorporated the investigation of complex visual perception. Several studies have demonstrated that higher level visual tasks can recruit structures like the hippocampus and perirhinal cortex in order to successfully perform complex visual discriminations, leading to a perceptual-mnemonic or representational view of the medial temporal lobe. The current study employed a complex visual discrimination paradigm in two patients suffering from brain lesions with differing locations and origin. Both patients, one with extensive medial temporal lobe lesions (VG) and one with a small lesion of the anterior fornix (HJK), were impaired in complex discriminations while showing otherwise mostly intact cognitive functions. The current data confirmed previous results while also extending the perceptual-mnemonic theory of the MTL to the main output structure of the hippocampus, the fornix. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Evidence Accumulation and Choice Maintenance Are Dissociated in Human Perceptual Decision Making

    PubMed Central

    Pedersen, Mads Lund; Endestad, Tor; Biele, Guido

    2015-01-01

    Perceptual decision making in monkeys relies on decision neurons, which accumulate evidence and maintain choices until a response is given. In humans, several brain regions have been proposed to accumulate evidence, but it is unknown if these regions also maintain choices. To test if accumulator regions in humans also maintain decisions we compared delayed and self-paced responses during a face/house discrimination decision making task. Computational modeling and fMRI results revealed dissociated processes of evidence accumulation and decision maintenance, with potential accumulator activations found in the dorsomedial prefrontal cortex, right inferior frontal gyrus and bilateral insula. Potential maintenance activation spanned the frontal pole, temporal gyri, precuneus and the lateral occipital and frontal orbital cortices. Results of a quantitative reverse inference meta-analysis performed to differentiate the functions associated with the identified regions did not narrow down potential accumulation regions, but suggested that response-maintenance might rely on a verbalization of the response. PMID:26510176

  1. Contribution of correlated noise and selective decoding to choice probability measurements in extrastriate visual cortex

    PubMed Central

    Gu, Yong; Angelaki, Dora E; DeAngelis, Gregory C

    2014-01-01

    Trial by trial covariations between neural activity and perceptual decisions (quantified by choice Probability, CP) have been used to probe the contribution of sensory neurons to perceptual decisions. CPs are thought to be determined by both selective decoding of neural activity and by the structure of correlated noise among neurons, but the respective roles of these factors in creating CPs have been controversial. We used biologically-constrained simulations to explore this issue, taking advantage of a peculiar pattern of CPs exhibited by multisensory neurons in area MSTd that represent self-motion. Although models that relied on correlated noise or selective decoding could both account for the peculiar pattern of CPs, predictions of the selective decoding model were substantially more consistent with various features of the neural and behavioral data. While correlated noise is essential to observe CPs, our findings suggest that selective decoding of neuronal signals also plays important roles. DOI: http://dx.doi.org/10.7554/eLife.02670.001 PMID:24986734

  2. The cerebellum and visual perceptual learning: evidence from a motion extrapolation task.

    PubMed

    Deluca, Cristina; Golzar, Ashkan; Santandrea, Elisa; Lo Gerfo, Emanuele; Eštočinová, Jana; Moretto, Giuseppe; Fiaschi, Antonio; Panzeri, Marta; Mariotti, Caterina; Tinazzi, Michele; Chelazzi, Leonardo

    2014-09-01

    Visual perceptual learning is widely assumed to reflect plastic changes occurring along the cerebro-cortical visual pathways, including at the earliest stages of processing, though increasing evidence indicates that higher-level brain areas are also involved. Here we addressed the possibility that the cerebellum plays an important role in visual perceptual learning. Within the realm of motor control, the cerebellum supports learning of new skills and recalibration of motor commands when movement execution is consistently perturbed (adaptation). Growing evidence indicates that the cerebellum is also involved in cognition and mediates forms of cognitive learning. Therefore, the obvious question arises whether the cerebellum might play a similar role in learning and adaptation within the perceptual domain. We explored a possible deficit in visual perceptual learning (and adaptation) in patients with cerebellar damage using variants of a novel motion extrapolation, psychophysical paradigm. Compared to their age- and gender-matched controls, patients with focal damage to the posterior (but not the anterior) cerebellum showed strongly diminished learning, in terms of both rate and amount of improvement over time. Consistent with a double-dissociation pattern, patients with focal damage to the anterior cerebellum instead showed more severe clinical motor deficits, indicative of a distinct role of the anterior cerebellum in the motor domain. The collected evidence demonstrates that a pure form of slow-incremental visual perceptual learning is crucially dependent on the intact cerebellum, bearing the notion that the human cerebellum acts as a learning device for motor, cognitive and perceptual functions. We interpret the deficit in terms of an inability to fine-tune predictive models of the incoming flow of visual perceptual input over time. Moreover, our results suggest a strong dissociation between the role of different portions of the cerebellum in motor versus non-motor functions, with only the posterior lobe being responsible for learning in the perceptual domain. Copyright © 2014. Published by Elsevier Ltd.

  3. Temporal resolution for the perception of features and conjunctions.

    PubMed

    Bodelón, Clara; Fallah, Mazyar; Reynolds, John H

    2007-01-24

    The visual system decomposes stimuli into their constituent features, represented by neurons with different feature selectivities. How the signals carried by these feature-selective neurons are integrated into coherent object representations is unknown. To constrain the set of possible integrative mechanisms, we quantified the temporal resolution of perception for color, orientation, and conjunctions of these two features. We find that temporal resolution is measurably higher for each feature than for their conjunction, indicating that time is required to integrate features into a perceptual whole. This finding places temporal limits on the mechanisms that could mediate this form of perceptual integration.

  4. Orbitofrontal cortex mediates pain inhibition by monetary reward.

    PubMed

    Becker, Susanne; Gandhi, Wiebke; Pomares, Florence; Wager, Tor D; Schweinhardt, Petra

    2017-04-01

    Pleasurable stimuli, including reward, inhibit pain, but the level of the neuraxis at which they do so and the cerebral processes involved are unknown. Here, we characterized a brain circuitry mediating pain inhibition by reward. Twenty-four healthy participants underwent functional magnetic resonance imaging while playing a wheel of fortune game with simultaneous thermal pain stimuli and monetary wins or losses. As expected, winning decreased pain perception compared to losing. Inter-individual differences in pain modulation by monetary wins relative to losses correlated with activation in the medial orbitofrontal cortex (mOFC). When pain and reward occured simultaneously, mOFCs functional connectivity changed: the signal time course in the mOFC condition-dependent correlated negatively with the signal time courses in the rostral anterior insula, anterior-dorsal cingulate cortex and primary somatosensory cortex, which might signify moment-to-moment down-regulation of these regions by the mOFC. Monetary wins and losses did not change the magnitude of pain-related activation, including in regions that code perceived pain intensity when nociceptive input varies and/or receive direct nociceptive input. Pain inhibition by reward appears to involve brain regions not typically involved in nociceptive intensity coding but likely mediate changes in the significance and/or value of pain. © The Author (2017). Published by Oxford University Press.

  5. The effect of regulatory mode on procrastination: Bi-stable parahippocampus connectivity with dorsal anterior cingulate and anterior prefrontal cortex.

    PubMed

    Zhang, Chenyan; Ni, Yan; Feng, Tingyong

    2017-06-30

    Previous research has elucidated that procrastination can be influenced by regulatory mode orientations. However, the neural mechanism of regulatory modes affecting procrastination is not well understood. To address this question, we employed resting-state functional magnetic resonance imaging (RS-fMRI) to test the influence of two regulatory modes (assessment and locomotion) on procrastination. The behavioral results showed that procrastination was positively correlated with assessment orientation but negatively correlated with locomotion orientation. Neuroimaging results indicated that the functional connectivity between parahippocampal cortex (PHC) and dorsal anterior cingulate (dACC) was negatively correlated with assessment scores, while the functional connectivity between anterior prefrontal cortex (aPFC) and parahippocampal cortex (PHC) was negatively correlated with locomotion scores. Critically, mediation analysis showed that the different effects of two distinct regulatory modes on procrastination were mediated by PHC-dACC and aPFC-PHC functional connectivity respectively. These results suggested that people's procrastination could be predicted by regulatory mode orientations, which is mediated by PHC connectivity with dACC and aPFC respectively. The present study extends our knowledge on procrastination and provides neural mechanism for understanding the link between regulatory mode orientations and procrastination. Copyright © 2017. Published by Elsevier B.V.

  6. Perceptual Learning in the Absence of Task or Stimulus Specificity

    PubMed Central

    Webb, Ben S.; Roach, Neil W.; McGraw, Paul V.

    2007-01-01

    Performance on most sensory tasks improves with practice. When making particularly challenging sensory judgments, perceptual improvements in performance are tightly coupled to the trained task and stimulus configuration. The form of this specificity is believed to provide a strong indication of which neurons are solving the task or encoding the learned stimulus. Here we systematically decouple task- and stimulus-mediated components of trained improvements in perceptual performance and show that neither provides an adequate description of the learning process. Twenty-four human subjects trained on a unique combination of task (three-element alignment or bisection) and stimulus configuration (vertical or horizontal orientation). Before and after training, we measured subjects' performance on all four task-configuration combinations. What we demonstrate for the first time is that learning does actually transfer across both task and configuration provided there is a common spatial axis to the judgment. The critical factor underlying the transfer of learning effects is not the task or stimulus arrangements themselves, but rather the recruitment of commons sets of neurons most informative for making each perceptual judgment. PMID:18094748

  7. Where do we store the memory representations that guide attention?

    PubMed Central

    Woodman, Geoffrey F.; Carlisle, Nancy B.; Reinhart, Robert M. G.

    2013-01-01

    During the last decade one of the most contentious and heavily studied topics in the attention literature has been the role that working memory representations play in controlling perceptual selection. The hypothesis has been advanced that to have attention select a certain perceptual input from the environment, we only need to represent that item in working memory. Here we summarize the work indicating that the relationship between what representations are maintained in working memory and what perceptual inputs are selected is not so simple. First, it appears that attentional selection is also determined by high-level task goals that mediate the relationship between working memory storage and attentional selection. Second, much of the recent work from our laboratory has focused on the role of long-term memory in controlling attentional selection. We review recent evidence supporting the proposal that working memory representations are critical during the initial configuration of attentional control settings, but that after those settings are established long-term memory representations play an important role in controlling which perceptual inputs are selected by mechanisms of attention. PMID:23444390

  8. Visual Aversive Learning Compromises Sensory Discrimination.

    PubMed

    Shalev, Lee; Paz, Rony; Avidan, Galia

    2018-03-14

    Aversive learning is thought to modulate perceptual thresholds, which can lead to overgeneralization. However, it remains undetermined whether this modulation is domain specific or a general effect. Moreover, despite the unique role of the visual modality in human perception, it is unclear whether this aspect of aversive learning exists in this modality. The current study was designed to examine the effect of visual aversive outcomes on the perception of basic visual and auditory features. We tested the ability of healthy participants, both males and females, to discriminate between neutral stimuli, before and after visual learning. In each experiment, neutral stimuli were associated with aversive images in an experimental group and with neutral images in a control group. Participants demonstrated a deterioration in discrimination (higher discrimination thresholds) only after aversive learning. This deterioration was measured for both auditory (tone frequency) and visual (orientation and contrast) features. The effect was replicated in five different experiments and lasted for at least 24 h. fMRI neural responses and pupil size were also measured during learning. We showed an increase in neural activations in the anterior cingulate cortex, insula, and amygdala during aversive compared with neutral learning. Interestingly, the early visual cortex showed increased brain activity during aversive compared with neutral context trials, with identical visual information. Our findings imply the existence of a central multimodal mechanism, which modulates early perceptual properties, following exposure to negative situations. Such a mechanism could contribute to abnormal responses that underlie anxiety states, even in new and safe environments. SIGNIFICANCE STATEMENT Using a visual aversive-learning paradigm, we found deteriorated discrimination abilities for visual and auditory stimuli that were associated with visual aversive stimuli. We showed increased neural activations in the anterior cingulate cortex, insula, and amygdala during aversive learning, compared with neutral learning. Importantly, similar findings were also evident in the early visual cortex during trials with aversive/neutral context, but with identical visual information. The demonstration of this phenomenon in the visual modality is important, as it provides support to the notion that aversive learning can influence perception via a central mechanism, independent of input modality. Given the dominance of the visual system in human perception, our findings hold relevance to daily life, as well as imply a potential etiology for anxiety disorders. Copyright © 2018 the authors 0270-6474/18/382766-14$15.00/0.

  9. A neural mediator of human anxiety sensitivity.

    PubMed

    Harrison, Ben J; Fullana, Miquel A; Soriano-Mas, Carles; Via, Esther; Pujol, Jesus; Martínez-Zalacaín, Ignacio; Tinoco-Gonzalez, Daniella; Davey, Christopher G; López-Solà, Marina; Pérez Sola, Victor; Menchón, José M; Cardoner, Narcís

    2015-10-01

    Advances in the neuroscientific understanding of bodily autonomic awareness, or interoception, have led to the hypothesis that human trait anxiety sensitivity (AS)-the fear of bodily autonomic arousal-is primarily mediated by the anterior insular cortex. Despite broad appeal, few experimental studies have comprehensively addressed this hypothesis. We recruited 55 individuals exhibiting a range of AS and assessed them with functional magnetic resonance imaging (fMRI) during aversive fear conditioning. For each participant, three primary measures of interest were derived: a trait Anxiety Sensitivity Index score; an in-scanner rating of elevated bodily anxiety sensations during fear conditioning; and a corresponding estimate of whole-brain functional activation to the conditioned versus nonconditioned stimuli. Using a voxel-wise mediation analysis framework, we formally tested for 'neural mediators' of the predicted association between trait AS score and in-scanner anxiety sensations during fear conditioning. Contrary to the anterior insular hypothesis, no evidence of significant mediation was observed for this brain region, which was instead linked to perceived anxiety sensations independently from AS. Evidence for significant mediation was obtained for the dorsal anterior cingulate cortex-a finding that we argue is more consistent with the hypothesized role of human cingulofrontal cortex in conscious threat appraisal processes, including threat-overestimation. This study offers an important neurobiological validation of the AS construct and identifies a specific neural substrate that may underlie high AS clinical phenotypes, including but not limited to panic disorder. © 2015 Wiley Periodicals, Inc.

  10. Representation of Dynamic Interaural Phase Difference in Auditory Cortex of Awake Rhesus Macaques

    PubMed Central

    Scott, Brian H.; Malone, Brian J.; Semple, Malcolm N.

    2009-01-01

    Neurons in auditory cortex of awake primates are selective for the spatial location of a sound source, yet the neural representation of the binaural cues that underlie this tuning remains undefined. We examined this representation in 283 single neurons across the low-frequency auditory core in alert macaques, trained to discriminate binaural cues for sound azimuth. In response to binaural beat stimuli, which mimic acoustic motion by modulating the relative phase of a tone at the two ears, these neurons robustly modulate their discharge rate in response to this directional cue. In accordance with prior studies, the preferred interaural phase difference (IPD) of these neurons typically corresponds to azimuthal locations contralateral to the recorded hemisphere. Whereas binaural beats evoke only transient discharges in anesthetized cortex, neurons in awake cortex respond throughout the IPD cycle. In this regard, responses are consistent with observations at earlier stations of the auditory pathway. Discharge rate is a band-pass function of the frequency of IPD modulation in most neurons (73%), but both discharge rate and temporal synchrony are independent of the direction of phase modulation. When subjected to a receiver operator characteristic analysis, the responses of individual neurons are insufficient to account for the perceptual acuity of these macaques in an IPD discrimination task, suggesting the need for neural pooling at the cortical level. PMID:19164111

  11. Representation of dynamic interaural phase difference in auditory cortex of awake rhesus macaques.

    PubMed

    Scott, Brian H; Malone, Brian J; Semple, Malcolm N

    2009-04-01

    Neurons in auditory cortex of awake primates are selective for the spatial location of a sound source, yet the neural representation of the binaural cues that underlie this tuning remains undefined. We examined this representation in 283 single neurons across the low-frequency auditory core in alert macaques, trained to discriminate binaural cues for sound azimuth. In response to binaural beat stimuli, which mimic acoustic motion by modulating the relative phase of a tone at the two ears, these neurons robustly modulate their discharge rate in response to this directional cue. In accordance with prior studies, the preferred interaural phase difference (IPD) of these neurons typically corresponds to azimuthal locations contralateral to the recorded hemisphere. Whereas binaural beats evoke only transient discharges in anesthetized cortex, neurons in awake cortex respond throughout the IPD cycle. In this regard, responses are consistent with observations at earlier stations of the auditory pathway. Discharge rate is a band-pass function of the frequency of IPD modulation in most neurons (73%), but both discharge rate and temporal synchrony are independent of the direction of phase modulation. When subjected to a receiver operator characteristic analysis, the responses of individual neurons are insufficient to account for the perceptual acuity of these macaques in an IPD discrimination task, suggesting the need for neural pooling at the cortical level.

  12. Hurt but still alive: Residual activity in the parahippocampal cortex conditions the recognition of familiar places in a patient with topographic agnosia.

    PubMed

    van Assche, Mitsouko; Kebets, Valeria; Lopez, Ursula; Saj, Arnaud; Goldstein, Rachel; Bernasconi, Françoise; Vuilleumier, Patrik; Assal, Frédéric

    2016-01-01

    The parahippocampal cortex (PHC) participates in both perception and memory. However, the way perceptual and memory processes cooperate when we navigate in our everyday life environment remains poorly understood. We studied a stroke patient presenting a brain lesion in the right PHC, which resulted in a mild and quantifiable topographic agnosia, and allowed us to investigate the role of this structure in overt place recognition. Photographs of personally familiar and unfamiliar places were displayed during functional magnetic resonance imaging (fMRI). Familiar places were either recognized or unrecognized by the patient and 6 age- and education-matched controls in a visual post-scan recognition test. In fMRI, recognized places were associated with a network comprising the fusiform gyrus in the intact side, but also the right anterior PHC, which included the lesion site. Moreover, this right PHC showed increased connectivity with the left homologous PHC in the intact hemisphere. By contrasting recognized with unrecognized familiar places, we replicate the finding of the joint involvement of the retrosplenial cortex, occipito-temporal areas, and posterior parietal cortex in place recognition. This study shows that the ability for left and right anterior PHC to communicate despite the neurological damage conditioned place recognition success in this patient. It further highlights a hemispheric asymmetry in this process, by showing the fundamental role of the right PHC in topographic agnosia.

  13. Posterior Parietal Cortex Drives Inferotemporal Activations During Three-Dimensional Object Vision.

    PubMed

    Van Dromme, Ilse C; Premereur, Elsie; Verhoef, Bram-Ernst; Vanduffel, Wim; Janssen, Peter

    2016-04-01

    The primate visual system consists of a ventral stream, specialized for object recognition, and a dorsal visual stream, which is crucial for spatial vision and actions. However, little is known about the interactions and information flow between these two streams. We investigated these interactions within the network processing three-dimensional (3D) object information, comprising both the dorsal and ventral stream. Reversible inactivation of the macaque caudal intraparietal area (CIP) during functional magnetic resonance imaging (fMRI) reduced fMRI activations in posterior parietal cortex in the dorsal stream and, surprisingly, also in the inferotemporal cortex (ITC) in the ventral visual stream. Moreover, CIP inactivation caused a perceptual deficit in a depth-structure categorization task. CIP-microstimulation during fMRI further suggests that CIP projects via posterior parietal areas to the ITC in the ventral stream. To our knowledge, these results provide the first causal evidence for the flow of visual 3D information from the dorsal stream to the ventral stream, and identify CIP as a key area for depth-structure processing. Thus, combining reversible inactivation and electrical microstimulation during fMRI provides a detailed view of the functional interactions between the two visual processing streams.

  14. Learning to attend: modeling the shaping of selectivity in infero-temporal cortex in a categorization task.

    PubMed

    Szabo, Miruna; Deco, Gustavo; Fusi, Stefano; Del Giudice, Paolo; Mattia, Maurizio; Stetter, Martin

    2006-05-01

    Recent experiments on behaving monkeys have shown that learning a visual categorization task makes the neurons in infero-temporal cortex (ITC) more selective to the task-relevant features of the stimuli (Sigala and Logothetis in Nature 415 318-320, 2002). We hypothesize that such a selectivity modulation emerges from the interaction between ITC and other cortical area, presumably the prefrontal cortex (PFC), where the previously learned stimulus categories are encoded. We propose a biologically inspired model of excitatory and inhibitory spiking neurons with plastic synapses, modified according to a reward based Hebbian learning rule, to explain the experimental results and test the validity of our hypothesis. We assume that the ITC neurons, receiving feature selective inputs, form stronger connections with the category specific neurons to which they are consistently associated in rewarded trials. After learning, the top-down influence of PFC neurons enhances the selectivity of the ITC neurons encoding the behaviorally relevant features of the stimuli, as observed in the experiments. We conclude that the perceptual representation in visual areas like ITC can be strongly affected by the interaction with other areas which are devoted to higher cognitive functions.

  15. Posterior Parietal Cortex Drives Inferotemporal Activations During Three-Dimensional Object Vision

    PubMed Central

    Van Dromme, Ilse C.; Premereur, Elsie; Verhoef, Bram-Ernst; Vanduffel, Wim; Janssen, Peter

    2016-01-01

    The primate visual system consists of a ventral stream, specialized for object recognition, and a dorsal visual stream, which is crucial for spatial vision and actions. However, little is known about the interactions and information flow between these two streams. We investigated these interactions within the network processing three-dimensional (3D) object information, comprising both the dorsal and ventral stream. Reversible inactivation of the macaque caudal intraparietal area (CIP) during functional magnetic resonance imaging (fMRI) reduced fMRI activations in posterior parietal cortex in the dorsal stream and, surprisingly, also in the inferotemporal cortex (ITC) in the ventral visual stream. Moreover, CIP inactivation caused a perceptual deficit in a depth-structure categorization task. CIP-microstimulation during fMRI further suggests that CIP projects via posterior parietal areas to the ITC in the ventral stream. To our knowledge, these results provide the first causal evidence for the flow of visual 3D information from the dorsal stream to the ventral stream, and identify CIP as a key area for depth-structure processing. Thus, combining reversible inactivation and electrical microstimulation during fMRI provides a detailed view of the functional interactions between the two visual processing streams. PMID:27082854

  16. Activation of color-selective areas of the visual cortex in a blind synesthete.

    PubMed

    Steven, Megan S; Hansen, Peter C; Blakemore, Colin

    2006-02-01

    Many areas of the visual cortex are activated when blind people are stimulated naturally through other sensory modalities (e.g., haptically; Sadato et al., 1996). While this extraneous activation of visual areas via other senses in normal blind people might have functional value (Kauffman et al., 2002; Lessard et al., 1998), it does not lead to conscious visual experiences. On the other hand, electrical stimulation of the primary visual cortex in the blind does produce illusory visual phosphenes (Brindley and Lewin, 1968). Here we provide the first evidence that high-level visual areas not only retain their specificity for particular visual characteristics in people who have been blind for long periods, but that activation of these areas can lead to visual sensations. We used fMRI to demonstrate activity in visual cortical areas specifically related to illusory colored and spatially located visual percepts in a synesthetic man who has been completely blind for 10 years. No such differential activations were seen in late-blind or sighted non-synesthetic controls; neither were these areas activated during color-imagery in the late-blind synesthete, implying that this subject's synesthesia is truly a perceptual experience.

  17. Optogenetic and pharmacological suppression of spatial clusters of face neurons reveal their causal role in face gender discrimination

    PubMed Central

    Afraz, Arash; Boyden, Edward S.; DiCarlo, James J.

    2015-01-01

    Neurons that respond more to images of faces over nonface objects were identified in the inferior temporal (IT) cortex of primates three decades ago. Although it is hypothesized that perceptual discrimination between faces depends on the neural activity of IT subregions enriched with “face neurons,” such a causal link has not been directly established. Here, using optogenetic and pharmacological methods, we reversibly suppressed the neural activity in small subregions of IT cortex of macaque monkeys performing a facial gender-discrimination task. Each type of intervention independently demonstrated that suppression of IT subregions enriched in face neurons induced a contralateral deficit in face gender-discrimination behavior. The same neural suppression of other IT subregions produced no detectable change in behavior. These results establish a causal link between the neural activity in IT face neuron subregions and face gender-discrimination behavior. Also, the demonstration that brief neural suppression of specific spatial subregions of IT induces behavioral effects opens the door for applying the technical advantages of optogenetics to a systematic attack on the causal relationship between IT cortex and high-level visual perception. PMID:25953336

  18. If it's hard to read, it changes how long you do it: reading time as an explanation for perceptual fluency effects on judgment.

    PubMed

    Sanchez, Christopher A; Jaeger, Allison J

    2015-02-01

    Perceptual manipulations, such as changes in font type or figure-ground contrast, have been shown to increase judgments of difficulty or effort related to the presented material. Previous theory has suggested that this is the result of changes in online processing or perhaps the post-hoc influence of perceived difficulty recalled at the time of judgment. These two experiments seek to examine by which mechanism (or both) the fluency effect is produced. Results indicate that disfluency does in fact change in situ reading behavior, and this change significantly mediates judgments. Eye movement analyses corroborate this suggestion and observe a difference in how people read a disfluent presentation. These findings support the notion that readers are using perceptual cues in their reading experiences to change how they interact with the material, which in turn produces the observed biases.

  19. Time Within:. the Perceptual Rivalry Switch as a Neural Clock

    NASA Astrophysics Data System (ADS)

    Pettigrew, John D.; Tilden, Jan D.

    2005-10-01

    Attention is drawn to weaknesses in the case for an external, physical basis for time's perceptual phenomena, raising the possibility of a Darwinian evolutionary explanation for the apparent flow, structure and arrow of time. We develop the hypothesis that, of all arrows of time identified by physicists and philosophers, the most fundamental is the psychological arrow. Based on findings of an on-going program of empirical research, we suggest a neural basis for time phenomena in the rhythmicity and plasticity of one of the brainstem dopaminergic nuclei, the venetral tegmental area (VTA). We examine links between neural time-keeping and perceptual rivalry and discuss evidence that rivalry is mediated by the VTA which functions as an ultradian oscillator. Further research is suggested, which could challenge or support the hypothesis of the VTA as an important neural time-keeper and the subjective basis of the asymmetric phenomena of time.

  20. Taste quality decoding parallels taste sensations.

    PubMed

    Crouzet, Sébastien M; Busch, Niko A; Ohla, Kathrin

    2015-03-30

    In most species, the sense of taste is key in the distinction of potentially nutritious and harmful food constituents and thereby in the acceptance (or rejection) of food. Taste quality is encoded by specialized receptors on the tongue, which detect chemicals corresponding to each of the basic tastes (sweet, salty, sour, bitter, and savory [1]), before taste quality information is transmitted via segregated neuronal fibers [2], distributed coding across neuronal fibers [3], or dynamic firing patterns [4] to the gustatory cortex in the insula. In rodents, both hardwired coding by labeled lines [2] and flexible, learning-dependent representations [5] and broadly tuned neurons [6] seem to coexist. It is currently unknown how, when, and where taste quality representations are established in the cortex and whether these representations are used for perceptual decisions. Here, we show that neuronal response patterns allow to decode which of four tastants (salty, sweet, sour, and bitter) participants tasted in a given trial by using time-resolved multivariate pattern analyses of large-scale electrophysiological brain responses. The onset of this prediction coincided with the earliest taste-evoked responses originating from the insula and opercular cortices, indicating that quality is among the first attributes of a taste represented in the central gustatory system. These response patterns correlated with perceptual decisions of taste quality: tastes that participants discriminated less accurately also evoked less discriminated brain response patterns. The results therefore provide the first evidence for a link between taste-related decision-making and the predictive value of these brain response patterns. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Distinct effects of brief and prolonged adaptation on orientation tuning in primary visual cortex

    PubMed Central

    Patterson, Carlyn A.; Wissig, Stephanie C.; Kohn, Adam

    2013-01-01

    Recent stimulus history–adaptation–alters neuronal responses and perception. Previous electrophysiological and perceptual studies suggest that prolonged adaptation strengthens and makes more persistent the effects seen after briefer exposures. However, no systematic comparison has been made between the effects of adaptation lasting hundreds of milliseconds, which might arise during a single fixation, and the more prolonged adaptation typically used in imaging and perceptual studies. Here we determine how 0.4 s, 4 s, and 40 s of adaptation alters orientation tuning in primary visual cortex of anesthetized macaque monkeys, and how quickly responses recover after adapter offset. We measured responses to small (1.3 deg) and large (7.4 deg) gratings because previous work has shown that adaptation effects can depend on stimulus size. Adaptation with small gratings reduced responsivity and caused tuning to shift away from the adapter. These effects strengthened with more prolonged adaptation. For responses to large gratings, brief and prolonged adaptation produced indistinguishable effects on responsivity but caused opposite shifts in tuning preference. Recovery from adaptation was notably slower after prolonged adaptation, even when this did not induce stronger effects. We show that our results can be explained by an adaptation-induced weakening of surround suppression, the dynamics of this suppression, and differential effects of brief and prolonged adaptation across response epochs. Our findings show that effects do not simply scale with adaptation duration, and suggest that distinct strategies exist for adjusting to moment-to-moment fluctuations in input and to more persistent visual stimuli. PMID:23303933

  2. Increased Reliance on Value-based Decision Processes Following Motor Cortex Disruption.

    PubMed

    Zénon, Alexandre; Klein, Pierre-Alexandre; Alamia, Andrea; Boursoit, François; Wilhelm, Emmanuelle; Duque, Julie

    2015-01-01

    During motor decision making, the neural activity in primary motor cortex (M1) encodes dynamically the competition occurring between potential action plans. A common view is that M1 represents the unfolding of the outcome of a decision process taking place upstream. Yet, M1 could also be directly involved in the decision process. Here we tested this hypothesis by assessing the effect of M1 disruption on a motor decision-making task. We applied continuous theta burst stimulation (cTBS) to inhibit either left or right M1 in different groups of subjects and included a third control group with no stimulation. Following cTBS, participants performed a task that required them to choose between two finger key-presses with the right hand according to both perceptual and value-based information. Effects were assessed by means of generalized linear mixed models and computational simulations. In all three groups, subjects relied both on perceptual (P < 0.0001) and value-based information (P = 0.003) to reach a decision. Yet, left M1 disruption led to an increased reliance on value-based information (P = 0.03). This result was confirmed by a computational model showing an increased weight of the valued-based process on the right hand finger choices following left M1 cTBS (P < 0.01). These results indicate that M1 is involved in motor decision making, possibly by weighting the final integration of multiple sources of evidence driving motor behaviors. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Representational Account of Memory: Insights from Aging and Synesthesia.

    PubMed

    Pfeifer, Gaby; Ward, Jamie; Chan, Dennis; Sigala, Natasha

    2016-12-01

    The representational account of memory envisages perception and memory to be on a continuum rather than in discretely divided brain systems [Bussey, T. J., & Saksida, L. M. Memory, perception, and the ventral visual-perirhinal-hippocampal stream: Thinking outside of the boxes. Hippocampus, 17, 898-908, 2007]. We tested this account using a novel between-group design with young grapheme-color synesthetes, older adults, and young controls. We investigated how the disparate sensory-perceptual abilities between these groups translated into associative memory performance for visual stimuli that do not induce synesthesia. ROI analyses of the entire ventral visual stream showed that associative retrieval (a pair-associate retrieved in the absence of a visual stimulus) yielded enhanced activity in young and older adults' visual regions relative to synesthetes, whereas associative recognition (deciding whether a visual stimulus was the correct pair-associate) was characterized by enhanced activity in synesthetes' visual regions relative to older adults. Whole-brain analyses at associative retrieval revealed an effect of age in early visual cortex, with older adults showing enhanced activity relative to synesthetes and young adults. At associative recognition, the group effect was reversed: Synesthetes showed significantly enhanced activity relative to young and older adults in early visual regions. The inverted group effects observed between retrieval and recognition indicate that reduced sensitivity in visual cortex (as in aging) comes with increased activity during top-down retrieval and decreased activity during bottom-up recognition, whereas enhanced sensitivity (as in synesthesia) shows the opposite pattern. Our results provide novel evidence for the direct contribution of perceptual mechanisms to visual associative memory based on the examples of synesthesia and aging.

  4. Why people see things that are not there: a novel Perception and Attention Deficit model for recurrent complex visual hallucinations.

    PubMed

    Collerton, Daniel; Perry, Elaine; McKeith, Ian

    2005-12-01

    As many as two million people in the United Kingdom repeatedly see people, animals, and objects that have no objective reality. Hallucinations on the border of sleep, dementing illnesses, delirium, eye disease, and schizophrenia account for 90% of these. The remainder have rarer disorders. We review existing models of recurrent complex visual hallucinations (RCVH) in the awake person, including cortical irritation, cortical hyperexcitability and cortical release, top-down activation, misperception, dream intrusion, and interactive models. We provide evidence that these can neither fully account for the phenomenology of RCVH, nor for variations in the frequency of RCVH in different disorders. We propose a novel Perception and Attention Deficit (PAD) model for RCVH. A combination of impaired attentional binding and poor sensory activation of a correct proto-object, in conjunction with a relatively intact scene representation, bias perception to allow the intrusion of a hallucinatory proto-object into a scene perception. Incorporation of this image into a context-specific hallucinatory scene representation accounts for repetitive hallucinations. We suggest that these impairments are underpinned by disturbances in a lateral frontal cortex-ventral visual stream system. We show how the frequency of RCVH in different diseases is related to the coexistence of attentional and visual perceptual impairments; how attentional and perceptual processes can account for their phenomenology; and that diseases and other states with high rates of RCVH have cholinergic dysfunction in both frontal cortex and the ventral visual stream. Several tests of the model are indicated, together with a number of treatment options that it generates.

  5. Eyes wide shut: amygdala mediates eyes-closed effect on emotional experience with music.

    PubMed

    Lerner, Yulia; Papo, David; Zhdanov, Andrey; Belozersky, Libi; Hendler, Talma

    2009-07-15

    The perceived emotional value of stimuli and, as a consequence the subjective emotional experience with them, can be affected by context-dependent styles of processing. Therefore, the investigation of the neural correlates of emotional experience requires accounting for such a variable, a matter of an experimental challenge. Closing the eyes affects the style of attending to auditory stimuli by modifying the perceptual relationship with the environment without changing the stimulus itself. In the current study, we used fMRI to characterize the neural mediators of such modification on the experience of emotionality in music. We assumed that closed eyes position will reveal interplay between different levels of neural processing of emotions. More specifically, we focused on the amygdala as a central node of the limbic system and on its co-activation with the Locus Ceruleus (LC) and Ventral Prefrontal Cortex (VPFC); regions involved in processing of, respectively, 'low', visceral-, and 'high', cognitive-related, values of emotional stimuli. Fifteen healthy subjects listened to negative and neutral music excerpts with eyes closed or open. As expected, behavioral results showed that closing the eyes while listening to emotional music resulted in enhanced rating of emotionality, specifically of negative music. In correspondence, fMRI results showed greater activation in the amygdala when subjects listened to the emotional music with eyes closed relative to eyes open. More so, by using voxel-based correlation and a dynamic causal model analyses we demonstrated that increased amygdala activation to negative music with eyes closed led to increased activations in the LC and VPFC. This finding supports a system-based model of perceived emotionality in which the amygdala has a central role in mediating the effect of context-based processing style by recruiting neural operations involved in both visceral (i.e. 'low') and cognitive (i.e. 'high') related processes of emotions.

  6. The role of DSM-5 borderline personality symptomatology and traits in the link between childhood trauma and suicidal risk in psychiatric patients.

    PubMed

    Bach, Bo; Fjeldsted, Rita

    2017-01-01

    Childhood traumas appear to be linked to suicidal behavior. However, the factors that mediate between these two phenomena are not sufficiently understood. Recent findings suggest that borderline personality disorder (BPD) may explain some of the association. The present study investigated the potential mediating role of BPD symptomatology and traits between reported childhood trauma and suicidal risk in adult psychiatric outpatients ( N  = 124). BPD symptomatology was measured with DSM-5 Section II criterion-counts (SCID-II; Structured Clinical Interview for DSM-IV Axis II), whereas BPD traits were measured with specified DSM-5 Section III traits (PID-5; Personality Inventory for DSM-5). Childhood traumas were self-reported (CTQ; Childhood Trauma Questionnaire), whereas level of suicidal risk was measured with a structured interview (MINI Suicidality Module; Mini International Neuropsychiatric Interview). Mediation effects were tested by bias-corrected (10.000 boot-strapped samples) confidence intervals. BPD features account for a considerable part of the cross-sectional association between childhood trauma and level of suicidal risk, even when controlling for the influence of gender, age, and educational level. This finding remained stable when testing the model without the suicidality-related BPD criterion and PID-5 items. DSM-5 Section II BPD criterion-counts explained 67% of the total effect, whereas DSM-5 Section III BPD traits accounted for 82% of the total effect. The specific DSM-5 Section III trait facets of "Depressivity" (52%) and "Perceptual Dysregulation" (37%) accounted for most of this effect. The findings provide preliminary support for the proposed mediation model indicating that BPD features may help explain relations between childhood trauma and elevated suicidal risk in adult life, in particular for DSM-5 Section III personality traits of depressivity (e.g., pessimism, guilt, and shame) and perceptual dysregulation (e.g., dissociation). To reduce the suicidal risk among those with a history of childhood trauma, BPD features (including "Depressivity" and "Perceptual Dysregulation") might be an important target of assessment, risk management, and treatment. However, other factors are likely to be involved, and a longitudinal and more large-scale design is warranted for a conclusive test of mediation.

  7. Disruption of hippocampal–prefrontal cortex activity by dopamine D2R-dependent LTD of NMDAR transmission

    PubMed Central

    Banks, Paul James; Burroughs, Amelia Caroline; Barker, Gareth Robert Isaac; Brown, Jon Thomas; Warburton, Elizabeth Clea; Bashir, Zafar Iqbal

    2015-01-01

    Functional connectivity between the hippocampus and prefrontal cortex (PFC) is essential for associative recognition memory and working memory. Disruption of hippocampal–PFC synchrony occurs in schizophrenia, which is characterized by hypofunction of NMDA receptor (NMDAR)-mediated transmission. We demonstrate that activity of dopamine D2-like receptors (D2Rs) leads selectively to long-term depression (LTD) of hippocampal–PFC NMDAR-mediated synaptic transmission. We show that dopamine-dependent LTD of NMDAR-mediated transmission profoundly disrupts normal synaptic transmission between hippocampus and PFC. These results show how dopaminergic activation induces long-term hypofunction of NMDARs, which can contribute to disordered functional connectivity, a characteristic that is a hallmark of psychiatric disorders such as schizophrenia. PMID:26286993

  8. TMS-Induced Modulation of Action Sentence Priming in the Ventral Premotor Cortex

    ERIC Educational Resources Information Center

    Tremblay, Pascale; Sato, Marc; Small, Steven L.

    2012-01-01

    Despite accumulating evidence that cortical motor areas, particularly the lateral premotor cortex, are activated during language comprehension, the question of whether motor processes help mediate the semantic encoding of language remains controversial. To address this issue, we examined whether low frequency (1 Hz) repetitive transcranial…

  9. Frontotemporal neural systems supporting semantic processing in Alzheimer's disease.

    PubMed

    Peelle, Jonathan E; Powers, John; Cook, Philip A; Smith, Edward E; Grossman, Murray

    2014-03-01

    We hypothesized that semantic memory for object concepts involves both representations of visual feature knowledge in modality-specific association cortex and heteromodal regions that are important for integrating and organizing this semantic knowledge so that it can be used in a flexible, contextually appropriate manner. We examined this hypothesis in an fMRI study of mild Alzheimer's disease (AD). Participants were presented with pairs of printed words and asked whether the words matched on a given visual-perceptual feature (e.g., guitar, violin: SHAPE). The stimuli probed natural kinds and manufactured objects, and the judgments involved shape or color. We found activation of bilateral ventral temporal cortex and left dorsolateral prefrontal cortex during semantic judgments, with AD patients showing less activation of these regions than healthy seniors. Moreover, AD patients showed less ventral temporal activation than did healthy seniors for manufactured objects, but not for natural kinds. We also used diffusion-weighted MRI of white matter to examine fractional anisotropy (FA). Patients with AD showed significantly reduced FA in the superior longitudinal fasciculus and inferior frontal-occipital fasciculus, which carry projections linking temporal and frontal regions of this semantic network. Our results are consistent with the hypothesis that semantic memory is supported in part by a large-scale neural network involving modality-specific association cortex, heteromodal association cortex, and projections between these regions. The semantic deficit in AD thus arises from gray matter disease that affects the representation of feature knowledge and processing its content, as well as white matter disease that interrupts the integrated functioning of this large-scale network.

  10. Dual coding: a cognitive model for psychoanalytic research.

    PubMed

    Bucci, W

    1985-01-01

    Four theories of mental representation derived from current experimental work in cognitive psychology have been discussed in relation to psychoanalytic theory. These are: verbal mediation theory, in which language determines or mediates thought; perceptual dominance theory, in which imagistic structures are dominant; common code or propositional models, in which all information, perceptual or linguistic, is represented in an abstract, amodal code; and dual coding, in which nonverbal and verbal information are each encoded, in symbolic form, in separate systems specialized for such representation, and connected by a complex system of referential relations. The weight of current empirical evidence supports the dual code theory. However, psychoanalysis has implicitly accepted a mixed model-perceptual dominance theory applying to unconscious representation, and verbal mediation characterizing mature conscious waking thought. The characterization of psychoanalysis, by Schafer, Spence, and others, as a domain in which reality is constructed rather than discovered, reflects the application of this incomplete mixed model. The representations of experience in the patient's mind are seen as without structure of their own, needing to be organized by words, thus vulnerable to distortion or dissolution by the language of the analyst or the patient himself. In these terms, hypothesis testing becomes a meaningless pursuit; the propositions of the theory are no longer falsifiable; the analyst is always more or less "right." This paper suggests that the integrated dual code formulation provides a more coherent theoretical framework for psychoanalysis than the mixed model, with important implications for theory and technique. In terms of dual coding, the problem is not that the nonverbal representations are vulnerable to distortion by words, but that the words that pass back and forth between analyst and patient will not affect the nonverbal schemata at all. Using the dual code formulation, and applying an investigative methodology derived from experimental cognitive psychology, a new approach to the verification of interpretations is possible. Some constructions of a patient's story may be seen as more accurate than others, by virtue of their linkage to stored perceptual representations in long-term memory. We can demonstrate that such linking has occurred in functional or operational terms--through evaluating the representation of imagistic content in the patient's speech.

  11. Cell-Specific Cholinergic Modulation of Excitability of Layer 5B Principal Neurons in Mouse Auditory Cortex

    PubMed Central

    Joshi, Ankur; Kalappa, Bopanna I.; Anderson, Charles T.

    2016-01-01

    The neuromodulator acetylcholine (ACh) is crucial for several cognitive functions, such as perception, attention, and learning and memory. Whereas, in most cases, the cellular circuits or the specific neurons via which ACh exerts its cognitive effects remain unknown, it is known that auditory cortex (AC) neurons projecting from layer 5B (L5B) to the inferior colliculus, corticocollicular neurons, are required for cholinergic-mediated relearning of sound localization after occlusion of one ear. Therefore, elucidation of the effects of ACh on the excitability of corticocollicular neurons will bridge the cell-specific and cognitive properties of ACh. Because AC L5B contains another class of neurons that project to the contralateral cortex, corticocallosal neurons, to identify the cell-specific mechanisms that enable corticocollicular neurons to participate in sound localization relearning, we investigated the effects of ACh release on both L5B corticocallosal and corticocollicular neurons. Using in vitro electrophysiology and optogenetics in mouse brain slices, we found that ACh generated nicotinic ACh receptor (nAChR)-mediated depolarizing potentials and muscarinic ACh receptor (mAChR)-mediated hyperpolarizing potentials in AC L5B corticocallosal neurons. In corticocollicular neurons, ACh release also generated nAChR-mediated depolarizing potentials. However, in contrast to the mAChR-mediated hyperpolarizing potentials in corticocallosal neurons, ACh generated prolonged mAChR-mediated depolarizing potentials in corticocollicular neurons. These prolonged depolarizing potentials generated persistent firing in corticocollicular neurons, whereas corticocallosal neurons lacking mAChR-mediated depolarizing potentials did not show persistent firing. We propose that ACh-mediated persistent firing in corticocollicular neurons may represent a critical mechanism required for learning-induced plasticity in AC. SIGNIFICANCE STATEMENT Acetylcholine (ACh) is crucial for cognitive functions. Whereas in most cases the cellular circuits or the specific neurons via which ACh exerts its cognitive effects remain unknown, it is known that auditory cortex (AC) corticocollicular neurons projecting from layer 5B to the inferior colliculus are required for cholinergic-mediated relearning of sound localization after occlusion of one ear. Therefore, elucidation of the effects of ACh on the excitability of corticocollicular neurons will bridge the cell-specific and cognitive properties of ACh. Our results suggest that cell-specific ACh-mediated persistent firing in corticocollicular neurons may represent a critical mechanism required for learning-induced plasticity in AC. Moreover, our results provide synaptic mechanisms via which ACh may mediate its effects on AC receptive fields. PMID:27511019

  12. Simulating the role of visual selective attention during the development of perceptual completion

    PubMed Central

    Schlesinger, Matthew; Amso, Dima; Johnson, Scott P.

    2014-01-01

    We recently proposed a multi-channel, image-filtering model for simulating the development of visual selective attention in young infants (Schlesinger, Amso & Johnson, 2007). The model not only captures the performance of 3-month-olds on a visual search task, but also implicates two cortical regions that may play a role in the development of visual selective attention. In the current simulation study, we used the same model to simulate 3-month-olds’ performance on a second measure, the perceptual unity task. Two parameters in the model – corresponding to areas in the occipital and parietal cortices – were systematically varied while the gaze patterns produced by the model were recorded and subsequently analyzed. Three key findings emerged from the simulation study. First, the model successfully replicated the performance of 3-month-olds on the unity perception task. Second, the model also helps to explain the improved performance of 2-month-olds when the size of the occluder in the unity perception task is reduced. Third, in contrast to our previous simulation results, variation in only one of the two cortical regions simulated (i.e. recurrent activity in posterior parietal cortex) resulted in a performance pattern that matched 3-month-olds. These findings provide additional support for our hypothesis that the development of perceptual completion in early infancy is promoted by progressive improvements in visual selective attention and oculomotor skill. PMID:23106728

  13. Simulating the role of visual selective attention during the development of perceptual completion.

    PubMed

    Schlesinger, Matthew; Amso, Dima; Johnson, Scott P

    2012-11-01

    We recently proposed a multi-channel, image-filtering model for simulating the development of visual selective attention in young infants (Schlesinger, Amso & Johnson, 2007). The model not only captures the performance of 3-month-olds on a visual search task, but also implicates two cortical regions that may play a role in the development of visual selective attention. In the current simulation study, we used the same model to simulate 3-month-olds' performance on a second measure, the perceptual unity task. Two parameters in the model - corresponding to areas in the occipital and parietal cortices - were systematically varied while the gaze patterns produced by the model were recorded and subsequently analyzed. Three key findings emerged from the simulation study. First, the model successfully replicated the performance of 3-month-olds on the unity perception task. Second, the model also helps to explain the improved performance of 2-month-olds when the size of the occluder in the unity perception task is reduced. Third, in contrast to our previous simulation results, variation in only one of the two cortical regions simulated (i.e. recurrent activity in posterior parietal cortex) resulted in a performance pattern that matched 3-month-olds. These findings provide additional support for our hypothesis that the development of perceptual completion in early infancy is promoted by progressive improvements in visual selective attention and oculomotor skill. © 2012 Blackwell Publishing Ltd.

  14. Greater magnocellular saccadic suppression in high versus low autistic tendency suggests a causal path to local perceptual style

    PubMed Central

    Crewther, David P.; Crewther, Daniel; Bevan, Stephanie; Goodale, Melvyn A.; Crewther, Sheila G.

    2015-01-01

    Saccadic suppression—the reduction of visual sensitivity during rapid eye movements—has previously been proposed to reflect a specific suppression of the magnocellular visual system, with the initial neural site of that suppression at or prior to afferent visual information reaching striate cortex. Dysfunction in the magnocellular visual pathway has also been associated with perceptual and physiological anomalies in individuals with autism spectrum disorder or high autistic tendency, leading us to question whether saccadic suppression is altered in the broader autism phenotype. Here we show that individuals with high autistic tendency show greater saccadic suppression of low versus high spatial frequency gratings while those with low autistic tendency do not. In addition, those with high but not low autism spectrum quotient (AQ) demonstrated pre-cortical (35–45 ms) evoked potential differences (saccade versus fixation) to a large, low contrast, pseudo-randomly flashing bar. Both AQ groups showed similar differential visual evoked potential effects in later epochs (80–160 ms) at high contrast. Thus, the magnocellular theory of saccadic suppression appears untenable as a general description for the typically developing population. Our results also suggest that the bias towards local perceptual style reported in autism may be due to selective suppression of low spatial frequency information accompanying every saccadic eye movement. PMID:27019719

  15. Aging does not affect brain patterns of repetition effects associated with perceptual priming of novel objects.

    PubMed

    Soldan, Anja; Gazes, Yunglin; Hilton, H John; Stern, Yaakov

    2008-10-01

    This study examined how aging affects the spatial patterns of repetition effects associated with perceptual priming of unfamiliar visual objects. Healthy young (n = 14) and elderly adults (n = 13) viewed four repetitions of structurally possible and impossible figures while being scanned with blood oxygenation level-dependent functional magnetic resonance imaging. Although explicit recognition memory for the figures was reduced in the elder subjects, repetition priming did not differ across the two age groups. Using multivariate linear modeling, we found that the spatial networks of regions that demonstrated repetition-related increases and decreases in activity were identical in both age groups, although there was a trend for smaller magnitude repetition effects in these networks in the elder adults for objects that had been repeated thrice. Furthermore, repetition-related reductions in activity in the left inferior frontal cortex for possible objects correlated with repetition-related facilitation in reaction time across both young and elder subjects. Repetition-related increases of an initially negative response were observed for both object types in both age groups in parts of the default network, suggesting that less attention was required for processing repeated stimuli. These findings extend prior studies using verbal and semantic picture priming tasks and support the view that perceptual repetition priming remains intact in later adulthood because the same spatial networks of regions continue to show repetition-related neural plasticity across the adult life span.

  16. Beta oscillations reflect supramodal information during perceptual judgment.

    PubMed

    Haegens, Saskia; Vergara, José; Rossi-Pool, Román; Lemus, Luis; Romo, Ranulfo

    2017-12-26

    Previous work on perceptual decision making in the sensorimotor system has shown population dynamics in the beta band, corresponding to the encoding of stimulus properties and the final decision outcome. Here, we asked how oscillatory dynamics in the medial premotor cortex (MPC) contribute to supramodal perceptual decision making. We recorded local field potentials (LFPs) and spikes in two monkeys trained to perform a tactile-acoustic frequency discrimination task, including both unimodal and crossmodal conditions. We studied the role of oscillatory activity as a function of stimulus properties (frequency and sensory modality), as well as decision outcome. We found that beta-band power correlated with relevant stimulus properties: there was a significant modulation by stimulus frequency during the working-memory (WM) retention interval, as well as modulation by stimulus modality-the latter was observed only in the case of a purely unimodal task, where modality information was relevant to prepare for the upcoming second stimulus. Furthermore, we found a significant modulation of beta power during the comparison and decision period, which was predictive of decision outcome. Finally, beta-band spike-field coherence (SFC) matched these LFP observations. In conclusion, we demonstrate that beta power in MPC is reflective of stimulus features in a supramodal, context-dependent manner, and additionally reflects the decision outcome. We propose that these beta modulations are a signature of the recruitment of functional neuronal ensembles, which encode task-relevant information.

  17. Neural mechanisms mediating degrees of strategic uncertainty.

    PubMed

    Nagel, Rosemarie; Brovelli, Andrea; Heinemann, Frank; Coricelli, Giorgio

    2018-01-01

    In social interactions, strategic uncertainty arises when the outcome of one's choice depends on the choices of others. An important question is whether strategic uncertainty can be resolved by assessing subjective probabilities to the counterparts' behavior, as if playing against nature, and thus transforming the strategic interaction into a risky (individual) situation. By means of functional magnetic resonance imaging with human participants we tested the hypothesis that choices under strategic uncertainty are supported by the neural circuits mediating choices under individual risk and deliberation in social settings (i.e. strategic thinking). Participants were confronted with risky lotteries and two types of coordination games requiring different degrees of strategic thinking of the kind 'I think that you think that I think etc.' We found that the brain network mediating risk during lotteries (anterior insula, dorsomedial prefrontal cortex and parietal cortex) is also engaged in the processing of strategic uncertainty in games. In social settings, activity in this network is modulated by the level of strategic thinking that is reflected in the activity of the dorsomedial and dorsolateral prefrontal cortex. These results suggest that strategic uncertainty is resolved by the interplay between the neural circuits mediating risk and higher order beliefs (i.e. beliefs about others' beliefs). © The Author(s) (2017). Published by Oxford University Press.

  18. Neural mechanisms mediating degrees of strategic uncertainty

    PubMed Central

    Nagel, Rosemarie; Brovelli, Andrea; Heinemann, Frank

    2018-01-01

    Abstract In social interactions, strategic uncertainty arises when the outcome of one’s choice depends on the choices of others. An important question is whether strategic uncertainty can be resolved by assessing subjective probabilities to the counterparts’ behavior, as if playing against nature, and thus transforming the strategic interaction into a risky (individual) situation. By means of functional magnetic resonance imaging with human participants we tested the hypothesis that choices under strategic uncertainty are supported by the neural circuits mediating choices under individual risk and deliberation in social settings (i.e. strategic thinking). Participants were confronted with risky lotteries and two types of coordination games requiring different degrees of strategic thinking of the kind ‘I think that you think that I think etc.’ We found that the brain network mediating risk during lotteries (anterior insula, dorsomedial prefrontal cortex and parietal cortex) is also engaged in the processing of strategic uncertainty in games. In social settings, activity in this network is modulated by the level of strategic thinking that is reflected in the activity of the dorsomedial and dorsolateral prefrontal cortex. These results suggest that strategic uncertainty is resolved by the interplay between the neural circuits mediating risk and higher order beliefs (i.e. beliefs about others’ beliefs). PMID:29228378

  19. Development of a vocabulary of object shapes in a child with a very-early-acquired visual agnosia: a unique case.

    PubMed

    Funnell, Elaine; Wilding, John

    2011-02-01

    We report a longitudinal study of an exceptional child (S.R.) whose early-acquired visual agnosia, following encephalitis at 8 weeks of age, did not prevent her from learning to construct an increasing vocabulary of visual object forms (drawn from different categories), albeit slowly. S.R. had problems perceiving subtle differences in shape; she was unable to segment local letters within global displays; and she would bring complex scenes close to her eyes: a symptom suggestive of an attempt to reduce visual crowding. Investigations revealed a robust ability to use the gestalt grouping factors of proximity and collinearity to detect fragmented forms in noisy backgrounds, compared with a very weak ability to segment fragmented forms on the basis of contrasts of shape. When contrasts in spatial grouping and shape were pitted against each other, shape made little contribution, consistent with problems in perceiving complex scenes, but when shape contrast was varied, and spatial grouping was held constant, S.R. showed the same hierarchy of difficulty as the controls, although her responses were slowed. This is the first report of a child's visual-perceptual development following very early neurological impairments to the visual cortex. Her ability to learn to perceive visual shape following damage at a rudimentary stage of perceptual development contrasts starkly with the loss of such ability in childhood cases of acquired visual agnosia that follow damage to the established perceptual system. Clearly, there is a critical period during which neurological damage to the highly active, early developing visual-perceptual system does not prevent but only impairs further learning.

  20. Nicotine facilitates memory consolidation in perceptual learning.

    PubMed

    Beer, Anton L; Vartak, Devavrat; Greenlee, Mark W

    2013-01-01

    Perceptual learning is a special type of non-declarative learning that involves experience-dependent plasticity in sensory cortices. The cholinergic system is known to modulate declarative learning. In particular, reduced levels or efficacy of the neurotransmitter acetylcholine were found to facilitate declarative memory consolidation. However, little is known about the role of the cholinergic system in memory consolidation of non-declarative learning. Here we compared two groups of non-smoking men who learned a visual texture discrimination task (TDT). One group received chewing tobacco containing nicotine for 1 h directly following the TDT training. The other group received a similar tasting control substance without nicotine. Electroencephalographic recordings during substance consumption showed reduced alpha activity and P300 latencies in the nicotine group compared to the control group. When re-tested on the TDT the following day, both groups responded more accurately and more rapidly than during training. These improvements were specific to the retinal location and orientation of the texture elements of the TDT suggesting that learning involved early visual cortex. A group comparison showed that learning effects were more pronounced in the nicotine group than in the control group. These findings suggest that oral consumption of nicotine enhances the efficacy of nicotinic acetylcholine receptors. Our findings further suggest that enhanced efficacy of the cholinergic system facilitates memory consolidation in perceptual learning (and possibly other types of non-declarative learning). In that regard acetylcholine seems to affect consolidation processes in perceptual learning in a different manner than in declarative learning. Alternatively, our findings might reflect dose-dependent cholinergic modulation of memory consolidation. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Deficient GABAergic gliotransmission may cause broader sensory tuning in schizophrenia.

    PubMed

    Hoshino, Osamu

    2013-12-01

    We examined how the depression of intracortical inhibition due to a reduction in ambient GABA concentration impairs perceptual information processing in schizophrenia. A neural network model with a gliotransmission-mediated ambient GABA regulatory mechanism was simulated. In the network, interneuron-to-glial-cell and principal-cell-to-glial-cell synaptic contacts were made. The former hyperpolarized glial cells and let their transporters import (remove) GABA from the extracellular space, thereby lowering ambient GABA concentration, reducing extrasynaptic GABAa receptor-mediated tonic inhibitory current, and thus exciting principal cells. In contrast, the latter depolarized the glial cells and let the transporters export GABA into the extracellular space, thereby elevating the ambient GABA concentration and thus inhibiting the principal cells. A reduction in ambient GABA concentration was assumed for a schizophrenia network. Multiple dynamic cell assemblies were organized as sensory feature columns. Each cell assembly responded to one specific feature stimulus. The tuning performance of the network to an applied feature stimulus was evaluated in relation to the level of ambient GABA. Transporter-deficient glial cells caused a deficit in GABAergic gliotransmission and reduced ambient GABA concentration, which markedly deteriorated the tuning performance of the network, broadening the sensory tuning. Interestingly, the GABAergic gliotransmission mechanism could regulate local ambient GABA levels: it augmented ambient GABA around stimulus-irrelevant principal cells, while reducing ambient GABA around stimulus-relevant principal cells, thereby ensuring their selective responsiveness to the applied stimulus. We suggest that a deficit in GABAergic gliotransmission may cause a reduction in ambient GABA concentration, leading to a broadening of sensory tuning in schizophrenia. The GABAergic gliotransmission mechanism proposed here may have an important role in the regulation of local ambient GABA levels, thereby improving the sensory tuning performance of the cortex.

  2. Synaesthetic colour in the brain: beyond colour areas. A functional magnetic resonance imaging study of synaesthetes and matched controls.

    PubMed

    van Leeuwen, Tessa M; Petersson, Karl Magnus; Hagoort, Peter

    2010-08-10

    In synaesthesia, sensations in a particular modality cause additional experiences in a second, unstimulated modality (e.g., letters elicit colour). Understanding how synaesthesia is mediated in the brain can help to understand normal processes of perceptual awareness and multisensory integration. In several neuroimaging studies, enhanced brain activity for grapheme-colour synaesthesia has been found in ventral-occipital areas that are also involved in real colour processing. Our question was whether the neural correlates of synaesthetically induced colour and real colour experience are truly shared. First, in a free viewing functional magnetic resonance imaging (fMRI) experiment, we located main effects of synaesthesia in left superior parietal lobule and in colour related areas. In the left superior parietal lobe, individual differences between synaesthetes (projector-associator distinction) also influenced brain activity, confirming the importance of the left superior parietal lobe for synaesthesia. Next, we applied a repetition suppression paradigm in fMRI, in which a decrease in the BOLD (blood-oxygenated-level-dependent) response is generally observed for repeated stimuli. We hypothesized that synaesthetically induced colours would lead to a reduction in BOLD response for subsequently presented real colours, if the neural correlates were overlapping. We did find BOLD suppression effects induced by synaesthesia, but not within the colour areas. Because synaesthetically induced colours were not able to suppress BOLD effects for real colour, we conclude that the neural correlates of synaesthetic colour experience and real colour experience are not fully shared. We propose that synaesthetic colour experiences are mediated by higher-order visual pathways that lie beyond the scope of classical, ventral-occipital visual areas. Feedback from these areas, in which the left parietal cortex is likely to play an important role, may induce V4 activation and the percept of synaesthetic colour.

  3. Regional gray matter volume mediates the relationship between maternal emotional warmth and gratitude.

    PubMed

    Yang, Junyi; Wei, Dongtao; Wang, Kangcheng; Yi, Zili; Qiu, Jiang

    2018-01-31

    Researchers have examined how parenting behavior influences individuals' brain structure and behavioral development, primarily among people who have experienced maltreatment. However, information relating to the anatomical structure associated with the parenting behavior in young healthy individuals who have not experienced maltreatment is scant. Gratitude is an important aspect of human sociality. Both the extent to which parenting behavior influences gratitude and the neural basis of the relationship between parenting behavior and gratitude are unclear. Thus, in the present study, the primary aim was to use voxel-based morphometry (VBM) to investigate the neuroanatomical basis of parenting behavior in young healthy participants. The results showed a significant negative correlation between the maternal emotional warmth and both the dorsal medial prefrontal cortex (dmPFC) and the lateral rostral prefrontal cortex. Then, we used mediation analysis to investigate the neural basis of the relationship between parenting behavior and gratitude. The results revealed that the volume of the lateral rostral prefrontal cortex mediates the relationship between the maternal emotional warmth and gratitude. Together, these findings suggest that the family environment, specifically parenting behavior, might be associated with the gray matter volume of brain structure. Further, the lateral rostral prefrontal cortex might have an important role in the relationship between the maternal emotional warmth and gratitude. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Intentionality of Perception in Early Infancy.

    ERIC Educational Resources Information Center

    Breuer, Karl-Heinz

    1985-01-01

    Analyzes the intentionality of conceptually mediated perception and explicates a conception of immediate perception and its intentionality. The model of immediate perception is applied to studies of infant perceptual capacities in the first months of life. Prefigurations of the categories of object, identity, existence, permanence, and…

  5. Brain Oscillations during Semantic Evaluation of Speech

    ERIC Educational Resources Information Center

    Shahin, Antoine J.; Picton, Terence W.; Miller, Lee M.

    2009-01-01

    Changes in oscillatory brain activity have been related to perceptual and cognitive processes such as selective attention and memory matching. Here we examined brain oscillations, measured with electroencephalography (EEG), during a semantic speech processing task that required both lexically mediated memory matching and selective attention.…

  6. Influence of dorsolateral prefrontal cortex and ventral striatum on risk avoidance in addiction: a mediation analysis.

    PubMed

    Yamamoto, Dorothy J; Woo, Choong-Wan; Wager, Tor D; Regner, Michael F; Tanabe, Jody

    2015-04-01

    Alterations in frontal and striatal function are hypothesized to underlie risky decision making in drug users, but how these regions interact to affect behavior is incompletely understood. We used mediation analysis to investigate how prefrontal cortex and ventral striatum together influence risk avoidance in abstinent drug users. Thirty-seven abstinent substance-dependent individuals (SDI) and 43 controls underwent fMRI while performing a decision-making task involving risk and reward. Analyses of a priori regions-of-interest tested whether activity in dorsolateral prefrontal cortex (DLPFC) and ventral striatum (VST) explained group differences in risk avoidance. Whole-brain analysis was conducted to identify brain regions influencing the negative VST-risk avoidance relationship. Right DLPFC (RDLPFC) positively mediated the group-risk avoidance relationship (p < 0.05); RDLPFC activity was higher in SDI and predicted higher risk avoidance across groups, controlling for SDI vs. Conversely, VST activity negatively influenced risk avoidance (p < 0.05); it was higher in SDI, and predicted lower risk avoidance. Whole-brain analysis revealed that, across group, RDLPFC and left temporal-parietal junction positively (p ≤ 0.001) while right thalamus and left middle frontal gyrus negatively (p < 0.005) mediated the VST activity-risk avoidance relationship. RDLPFC activity mediated less risky decision making while VST mediated more risky decision making across drug users and controls. These results suggest a dual pathway underlying decision making, which, if imbalanced, may adversely influence choices involving risk. Modeling contributions of multiple brain systems to behavior through mediation analysis could lead to a better understanding of mechanisms of behavior and suggest neuromodulatory treatments for addiction. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Influence of dorsolateral prefrontal cortex and ventral striatum on risk avoidance in addiction: a mediation analysis*

    PubMed Central

    Yamamoto, Dorothy J.; Woo, Choong-Wan; Wager, Tor D.; Regner, Michael F.; Tanabe, Jody

    2015-01-01

    Background Alterations in frontal and striatal function are hypothesized to underlie risky decision-making in drug users, but how these regions interact to affect behavior is incompletely understood. We used mediation analysis to investigate how prefrontal cortex and ventral striatum together influence risk avoidance in abstinent drug users. Method Thirty-seven abstinent substance-dependent individuals (SDI) and 43 controls underwent fMRI while performing a decision-making task involving risk and reward. Analyses of a priori regions-of-interest tested whether activity in dorsolateral prefrontal cortex (DLPFC) and ventral striatum (VST) explained group differences in risk avoidance. Whole-brain analysis was conducted to identify brain regions influencing the negative VST-risk avoidance relationship. Results Right DLPFC (RDLPFC) positively mediated the group-risk avoidance relationship (p < 0.05); RDLPFC activity was higher in SDI and predicted higher risk avoidance across groups, controlling for SDI vs. controls. Conversely, VST activity negatively influenced risk avoidance (p < 0.05); it was higher in SDI, and predicted lower risk avoidance. Whole-brain analysis revealed that, across group, RDLPFC and left temporal-parietal junction positively (p ≤ 0.001) while right thalamus and left middle frontal gyrus negatively (p < 0.005) mediated the VST activity-risk avoidance relationship. Conclusion RDLPFC activity mediated less risky decision-making while VST mediated more risky decision-making across drug users and controls. These results suggest a dual pathway underlying decision-making, which, if imbalanced, may adversely influence choices involving risk. Modeling contributions of multiple brain systems to behavior through mediation analysis could lead to a better understanding of mechanisms of behavior and suggest neuromodulatory treatments for addiction. PMID:25736619

  8. Lysergic acid diethylamide-induced Fos expression in rat brain: role of serotonin-2A receptors.

    PubMed

    Gresch, P J; Strickland, L V; Sanders-Bush, E

    2002-01-01

    Lysergic acid diethylamide (LSD) produces altered mood and hallucinations in humans and binds with high affinity to serotonin-2A (5-HT(2A)) receptors. Although LSD interacts with other receptors, the activation of 5-HT(2A) receptors is thought to mediate the hallucinogenic properties of LSD. The goal of this study was to identify the brain sites activated by LSD and to determine the influence of 5-HT(2A) receptors in this activation. Rats were pretreated with the 5-HT(2A) receptor antagonist MDL 100907 (0.3 mg/kg, i.p.) or vehicle 30 min prior to LSD (500 microg/kg, i.p.) administration and killed 3 h later. Brain tissue was examined for Fos protein expression by immunohistochemistry. LSD administration produced a five- to eight-fold increase in Fos-like immunoreactivity in medial prefrontal cortex, anterior cingulate cortex, and central nucleus of amygdala. However, in dorsal striatum and nucleus accumbens no increase in Fos-like immunoreactivity was observed. Pretreatment with MDL 100907 completely blocked LSD-induced Fos-like immunoreactivity in medial prefrontal cortex and anterior cingulate cortex, but only partially blocked LSD-induced Fos-like immunoreactivity in amygdala. Double-labeled immunohistochemistry revealed that LSD did not induce Fos-like immunoreactivity in cortical cells expressing 5-HT(2A) receptors, suggesting an indirect activation of cortical neurons. These results indicate that the LSD activation of medial prefrontal cortex and anterior cingulate cortex is mediated by 5-HT(2A) receptors, whereas in amygdala 5-HT(2A) receptor activation is a component of the response. These findings support the hypothesis that the medial prefrontal cortex, anterior cingulate cortex, and perhaps the amygdala, are important regions involved in the production of hallucinations. Copyright 2002 IBRO

  9. Infralimbic cortex controls core body temperature in a histamine dependent manner.

    PubMed

    Riveros, M E; Perdomo, G; Torrealba, F

    2014-04-10

    An increase in body temperature accelerates biochemical reactions and behavioral and physiological responses. A mechanism to actively increase body temperature would be beneficial during motivated behaviors. The prefrontal cortex is implicated in organizing motivated behavior; the infralimbic cortex, a subregion of the medial prefrontal cortex, has the necessary connectivity to serve the role of initiating such thermogenic mechanism at the beginning of the appetitive phase of motivated behavior; further, this cortex is active during motivated behavior and its disinhibition produces a marked behavioral and vegetative arousal increase, together with increases in histamine levels. We wanted to explore if this arousal was related to histaminergic activation after pharmacological infralimbic disinhibition and during the appetitive phase of motivated behavior. We measured core temperature and motor activity in response to picrotoxin injection in the infralimbic cortex, as well as during food-related appetitive behavior, evoked by enticing hungry rats with food. Pretreatment with the H1 receptor antagonist pyrilamine decreased thermal response to picrotoxin and enticement and completely blunted motor response to enticement. Motor and temperature responses to enticement were also completely abolished by infralimbic cortex inhibition with muscimol. To assess if this histamine dependent temperature increase was produced by an active sympathetic mediated thermogenic mechanism or was just a consequence of increased locomotor activity, we injected propranolol (i.p.), a β adrenergic receptor blocker, before picrotoxin injection into the infralimbic cortex. Propranolol reduced the temperature increase without affecting locomotor activity. Altogether, these results suggest that infralimbic activation is necessary for appetitive behavior by inducing a motor and a vegetative arousal increase mediated by central histamine. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Dynamics of infant cortical auditory evoked potentials (CAEPs) for tone and speech tokens.

    PubMed

    Cone, Barbara; Whitaker, Richard

    2013-07-01

    Cortical auditory evoked potentials (CAEPs) to tones and speech sounds were obtained in infants to: (1) further knowledge of auditory development above the level of the brainstem during the first year of life; (2) establish CAEP input-output functions for tonal and speech stimuli as a function of stimulus level and (3) elaborate the data-base that establishes CAEP in infants tested while awake using clinically relevant stimuli, thus providing methodology that would have translation to pediatric audiological assessment. Hypotheses concerning CAEP development were that the latency and amplitude input-output functions would reflect immaturity in encoding stimulus level. In a second experiment, infants were tested with the same stimuli used to evoke the CAEPs. Thresholds for these stimuli were determined using observer-based psychophysical techniques. The hypothesis was that the behavioral thresholds would be correlated with CAEP input-output functions because of shared cortical response areas known to be active in sound detection. 36 infants, between the ages of 4 and 12 months (mean=8 months, s.d.=1.8 months) and 9 young adults (mean age 21 years) with normal hearing were tested. First, CAEPs amplitude and latency input-output functions were obtained for 4 tone bursts and 7 speech tokens. The tone bursts stimuli were 50 ms tokens of pure tones at 0.5, 1.0, 2.0 and 4.0 kHz. The speech sound tokens, /a/, /i/, /o/, /u/, /m/, /s/, and /∫/, were created from natural speech samples and were also 50 ms in duration. CAEPs were obtained for tone burst and speech token stimuli at 10 dB level decrements in descending order from 70 dB SPL. All CAEP tests were completed while the infants were awake and engaged in quiet play. For the second experiment, observer-based psychophysical methods were used to establish perceptual threshold for the same speech sound and tone tokens. Infant CAEP component latencies were prolonged by 100-150 ms in comparison to adults. CAEP latency-intensity input output functions were steeper in infants compared to adults. CAEP amplitude growth functions with respect to stimulus SPL are adult-like at this age, particularly for the earliest component, P1-N1. Infant perceptual thresholds were elevated with respect to those found in adults. Furthermore, perceptual thresholds were higher, on average, than levels at which CAEPs could be obtained. When CAEP amplitudes were plotted with respect to perceptual threshold (dB SL), the infant CAEP amplitude growth slopes were steeper than in adults. Although CAEP latencies indicate immaturity in neural transmission at the level of the cortex, amplitude growth with respect to stimulus SPL is adult-like at this age, particularly for the earliest component, P1-N1. The latency and amplitude input-output functions may provide additional information as to how infants perceive stimulus level. The reasons for the discrepancy between electrophysiologic and perceptual threshold may be due to immaturity in perceptual temporal resolution abilities and the broad-band listening strategy employed by infants. The findings from the current study can be translated to the clinical setting. It is possible to use tonal or speech sound tokens to evoke CAEPs in an awake, passively alert infant, and thus determine whether these sounds activate the auditory cortex. This could be beneficial in the verification of hearing aid or cochlear implant benefit. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. A Mediating Role of the Premotor Cortex in Phoneme Segmentation

    ERIC Educational Resources Information Center

    Sato, Marc; Tremblay, Pascale; Gracco, Vincent L.

    2009-01-01

    Consistent with a functional role of the motor system in speech perception, disturbing the activity of the left ventral premotor cortex by means of repetitive transcranial magnetic stimulation (rTMS) has been shown to impair auditory identification of syllables that were masked with white noise. However, whether this region is crucial for speech…

  12. The Role of the Orbitofrontal Cortex in Normally Developing Compulsive-Like Behaviors and Obsessive-Compulsive Disorder

    ERIC Educational Resources Information Center

    Evans, David W.; Lewis, Marc D.; Iobst, Emily

    2004-01-01

    Mounting evidence concerning obsessive-compulsive disorders points to abnormal functioning of the orbitofrontal cortices. First, patients with obsessive-compulsive disorder (OCD) perform poorly on tasks that rely on response suppression/motor inhibition functions mediated by the orbitofrontal cortex relative to both normal and clinical controls.…

  13. Semantic Memory Recognition Is Supported by Intrinsic Recollection-Like Processes: "The Butcher on the Bus" Revisited

    ERIC Educational Resources Information Center

    Waidergoren, Shani; Segalowicz, Judith; Gilboa, Asaf

    2012-01-01

    Dual-process models suggest that recognition memory is independently supported by recollection and familiarity. Current theories attribute recollection solely to hippocampally mediated episodic memory (EM), and familiarity to both episodic and semantic memory (SM) supported by medial temporal lobe cortex (MTLC) and prefrontal cortex. We tested…

  14. Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults

    PubMed Central

    Wong, Chelsea N.; Chaddock-Heyman, Laura; Voss, Michelle W.; Burzynska, Agnieszka Z.; Basak, Chandramallika; Erickson, Kirk I.; Prakash, Ruchika S.; Szabo-Reed, Amanda N.; Phillips, Siobhan M.; Wojcicki, Thomas; Mailey, Emily L.; McAuley, Edward; Kramer, Arthur F.

    2015-01-01

    Higher cardiorespiratory fitness is associated with better cognitive performance and enhanced brain activation. Yet, the extent to which cardiorespiratory fitness-related brain activation is associated with better cognitive performance is not well understood. In this cross-sectional study, we examined whether the association between cardiorespiratory fitness and executive function was mediated by greater prefrontal cortex activation in healthy older adults. Brain activation was measured during dual-task performance with functional magnetic resonance imaging in a sample of 128 healthy older adults (59–80 years). Higher cardiorespiratory fitness was associated with greater activation during dual-task processing in several brain areas including the anterior cingulate and supplementary motor cortex (ACC/SMA), thalamus and basal ganglia, right motor/somatosensory cortex and middle frontal gyrus, and left somatosensory cortex, controlling for age, sex, education, and gray matter volume. Of these regions, greater ACC/SMA activation mediated the association between cardiorespiratory fitness and dual-task performance. We provide novel evidence that cardiorespiratory fitness may support cognitive performance by facilitating brain activation in a core region critical for executive function. PMID:26321949

  15. Recognition Memory for Realistic Synthetic Faces

    PubMed Central

    Yotsumoto, Yuko; Kahana, Michael J.; Wilson, Hugh R.; Sekuler, Robert

    2006-01-01

    A series of experiments examined short-term recognition memory for trios of briefly-presented, synthetic human faces derived from three real human faces. The stimuli were graded series of faces, which differed by varying known amounts from the face of the average female. Faces based on each of the three real faces were transformed so as to lie along orthogonal axes in a 3-D face space. Experiment 1 showed that the synthetic faces' perceptual similarity stucture strongly influenced recognition memory. Results were fit by NEMo, a noisy exemplar model of perceptual recognition memory. The fits revealed that recognition memory was influenced both by the similarity of the probe to series items, and by the similarities among the series items themselves. Non-metric multi-dimensional scaling (MDS) showed that faces' perceptual representations largely preserved the 3-D space in which the face stimuli were arrayed. NEMo gave a better account of the results when similarity was defined as perceptual, MDS similarity rather than physical proximity of one face to another. Experiment 2 confirmed the importance of within-list homogeneity directly, without mediation of a model. We discuss the affinities and differences between visual memory for synthetic faces and memory for simpler stimuli. PMID:17948069

  16. Induction of plasticity in the human motor cortex by pairing an auditory stimulus with TMS.

    PubMed

    Sowman, Paul F; Dueholm, Søren S; Rasmussen, Jesper H; Mrachacz-Kersting, Natalie

    2014-01-01

    Acoustic stimuli can cause a transient increase in the excitability of the motor cortex. The current study leverages this phenomenon to develop a method for testing the integrity of auditorimotor integration and the capacity for auditorimotor plasticity. We demonstrate that appropriately timed transcranial magnetic stimulation (TMS) of the hand area, paired with auditorily mediated excitation of the motor cortex, induces an enhancement of motor cortex excitability that lasts beyond the time of stimulation. This result demonstrates for the first time that paired associative stimulation (PAS)-induced plasticity within the motor cortex is applicable with auditory stimuli. We propose that the method developed here might provide a useful tool for future studies that measure auditory-motor connectivity in communication disorders.

  17. Cortico-fugal output from visual cortex promotes plasticity of innate motor behaviour.

    PubMed

    Liu, Bao-Hua; Huberman, Andrew D; Scanziani, Massimo

    2016-10-20

    The mammalian visual cortex massively innervates the brainstem, a phylogenetically older structure, via cortico-fugal axonal projections. Many cortico-fugal projections target brainstem nuclei that mediate innate motor behaviours, but the function of these projections remains poorly understood. A prime example of such behaviours is the optokinetic reflex (OKR), an innate eye movement mediated by the brainstem accessory optic system, that stabilizes images on the retina as the animal moves through the environment and is thus crucial for vision. The OKR is plastic, allowing the amplitude of this reflex to be adaptively adjusted relative to other oculomotor reflexes and thereby ensuring image stability throughout life. Although the plasticity of the OKR is thought to involve subcortical structures such as the cerebellum and vestibular nuclei, cortical lesions have suggested that the visual cortex might also be involved. Here we show that projections from the mouse visual cortex to the accessory optic system promote the adaptive plasticity of the OKR. OKR potentiation, a compensatory plastic increase in the amplitude of the OKR in response to vestibular impairment, is diminished by silencing visual cortex. Furthermore, targeted ablation of a sparse population of cortico-fugal neurons that specifically project to the accessory optic system severely impairs OKR potentiation. Finally, OKR potentiation results from an enhanced drive exerted by the visual cortex onto the accessory optic system. Thus, cortico-fugal projections to the brainstem enable the visual cortex, an area that has been principally studied for its sensory processing function, to plastically adapt the execution of innate motor behaviours.

  18. Fornix and retrosplenial contribution to a hippocampo-thalamic circuit underlying conditional learning.

    PubMed

    Dumont, Julie R; Petrides, Michael; Sziklas, Viviane

    2010-05-01

    Rats with combined bilateral lesions of the retrosplenial cortex and the fornix or rats with unilateral lesions to the anterior thalamus and the hippocampus, made in opposite hemispheres (disconnection preparation), and combined with unilateral damage of the retrosplenial cortex in either hemisphere, were tested on a spatial-visual conditional learning task in which they learned arbitrary associations between stimuli and the scene in which they were embedded. All experimental groups were impaired in comparison with normal animals. The more severe deficits occurred when (1) both the fornix and the retrosplenial cortex were damaged bilaterally thus depriving the hippocampus both from subcortical interactions via the fornix and retrosplenial-mediated interactions and (2) when, in the crossed lesion preparation, the unilateral retrosplenial lesion was made in the hemisphere with the intact hippocampus, again because this lesion would be maximally disconnecting the hippocampus from functional interaction with the anterior thalamic nucleus and retrosplenial-mediated input.

  19. MicroRNA-132 regulates recognition memory and synaptic plasticity in the perirhinal cortex

    PubMed Central

    Scott, Helen L; Tamagnini, Francesco; Narduzzo, Katherine E; Howarth, Joanna L; Lee, Youn-Bok; Wong, Liang-Fong; Brown, Malcolm W; Warburton, Elizabeth C; Bashir, Zafar I; Uney, James B

    2012-01-01

    Evidence suggests that the acquisition of recognition memory depends upon CREB-dependent long-lasting changes in synaptic plasticity in the perirhinal cortex. The CREB-responsive microRNA miR-132 has been shown to regulate synaptic transmission and we set out to investigate a role for this microRNA in recognition memory and its underlying plasticity mechanisms. To this end we mediated the specific overexpression of miR-132 selectively in the rat perirhinal cortex and demonstrated impairment in short-term recognition memory. This functional deficit was associated with a reduction in both long-term depression and long-term potentiation. These results confirm that microRNAs are key coordinators of the intracellular pathways that mediate experience-dependent changes in the brain. In addition, these results demonstrate a role for miR-132 in the neuronal mechanisms underlying the formation of short-term recognition memory. PMID:22845676

  20. TrpM8-mediated somatosensation in mouse neocortex.

    PubMed

    Beukema, Patrick; Cecil, Katherine L; Peterson, Elena; Mann, Victor R; Matsushita, Megumi; Takashima, Yoshio; Navlakha, Saket; Barth, Alison L

    2018-06-15

    Somatosensation is a complex sense mediated by more than a dozen distinct neural subtypes in the periphery. Although pressure and touch sensation have been mapped to primary somatosensory cortex in rodents, it has been controversial whether pain and temperature inputs are also directed to this area. Here we use a well-defined somatosensory modality, cool sensation mediated by peripheral TrpM8-receptors, to investigate the neural substrate for cool perception in the mouse neocortex. Using activation of cutaneous TrpM8 receptor-expressing neurons, we identify candidate neocortical areas responsive for cool sensation. Initially, we optimized TrpM8 stimulation and determined that menthol, a selective TrpM8 agonist, was more effective than cool stimulation at inducing expression of the immediate-early gene c-fos in the spinal cord. We developed a broad-scale brain survey method for identification of activated brain areas, using automated methods to quantify c-fos immunoreactivity (fos-IR) across animals. Brain areas corresponding to the posterior insular cortex and secondary somatosensory (S2) show elevated fos-IR after menthol stimulation, in contrast to weaker activation in primary somatosensory cortex (S1). In addition, menthol exposure triggered fos-IR in piriform cortex, the amygdala, and the hypothalamus. Menthol-mediated activation was absent in TrpM8-knock-out animals. Our results indicate that cool somatosensory input broadly drives neural activity across the mouse brain, with neocortical signal most elevated in the posterior insula, as well as S2 and S1. These findings are consistent with data from humans indicating that the posterior insula is specialized for somatosensory information encoding temperature, pain, and gentle touch. © 2018 Wiley Periodicals, Inc.

Top