Mars, Rogier B.; Jbabdi, Saad; Sallet, Jérôme; O’Reilly, Jill X.; Croxson, Paula L.; Olivier, Etienne; Noonan, MaryAnn P.; Bergmann, Caroline; Mitchell, Anna S.; Baxter, Mark G.; Behrens, Timothy E.J.; Johansen-Berg, Heidi; Tomassini, Valentina; Miller, Karla L.; Rushworth, Matthew F.S.
2011-01-01
Despite the prominence of parietal activity in human neuromaging investigations of sensorimotor and cognitive processes there remains uncertainty about basic aspects of parietal cortical anatomical organization. Descriptions of human parietal cortex draw heavily on anatomical schemes developed in other primate species but the validity of such comparisons has been questioned by claims that there are fundamental differences between the parietal cortex in humans and other primates. A scheme is presented for parcellation of human lateral parietal cortex into component regions on the basis of anatomical connectivity and the functional interactions of the resulting clusters with other brain regions. Anatomical connectivity was estimated using diffusion-weighted magnetic resonance image (MRI) based tractography and functional interactions were assessed by correlations in activity measured with functional MRI (fMRI) at rest. Resting state functional connectivity was also assessed directly in the rhesus macaque lateral parietal cortex in an additional experiment and the patterns found reflected known neuroanatomical connections. Cross-correlation in the tractography-based connectivity patterns of parietal voxels reliably parcellated human lateral parietal cortex into ten component clusters. The resting state functional connectivity of human superior parietal and intraparietal clusters with frontal and extrastriate cortex suggested correspondences with areas in macaque superior and intraparietal sulcus. Functional connectivity patterns with parahippocampal cortex and premotor cortex again suggested fundamental correspondences between inferior parietal cortex in humans and macaques. In contrast, the human parietal cortex differs in the strength of its interactions between the central inferior parietal lobule region and the anterior prefrontal cortex. PMID:21411650
Peyrin, C; Démonet, J F; N'Guyen-Morel, M A; Le Bas, J F; Valdois, S
2011-09-01
A visual attention (VA) span disorder has been reported in dyslexic children as potentially responsible for their poor reading outcome. The purpose of the current paper was to identify the cerebral correlates of this VA span disorder. For this purpose, 12 French dyslexic children with severe reading and VA span disorders and 12 age-matched control children were engaged in a categorisation task under fMRI. Two flanked and isolated conditions were designed which both involved multiple-element simultaneous visual processing but taxed visual attention differently. For skilled readers, flanked stimuli processing activated a large bilateral cortical network comprising the superior and inferior parietal cortex, the inferior temporal cortex, the striate and extrastriate visual cortex, the middle frontal cortex and the anterior cingulate cortex while the less attention-demanding task of isolated stimuli only activated the inferior occipito-temporal cortex bilaterally. With respect to controls, the dyslexic children showed significantly reduced activation within bilateral parietal and temporal areas during flanked processing, but no difference during the isolated condition. The neural correlates of the processes involved in attention-demanding multi-element processing tasks were more specifically addressed by contrasting the flanked and the isolated conditions. This contrast elicited activation of the left precuneus/superior parietal lobule in the controls, but not in the dyslexic children. These findings provide new insights on the role of parietal regions, in particular the left superior parietal lobule, in the visual attention span and in developmental dyslexia. Copyright © 2010 Elsevier Inc. All rights reserved.
Cognitive functions of the posterior parietal cortex: top-down and bottom-up attentional control
Shomstein, Sarah
2012-01-01
Although much less is known about human parietal cortex than that of homologous monkey cortex, recent studies, employing neuroimaging, and neuropsychological methods, have begun to elucidate increasingly fine-grained functional and structural distinctions. This review is focused on recent neuroimaging and neuropsychological studies elucidating the cognitive roles of dorsal and ventral regions of parietal cortex in top-down and bottom-up attentional orienting, and on the interaction between the two attentional allocation mechanisms. Evidence is reviewed arguing that regions along the dorsal areas of the parietal cortex, including the superior parietal lobule (SPL) are involved in top-down attentional orienting, while ventral regions including the temporo-parietal junction (TPJ) are involved in bottom-up attentional orienting. PMID:22783174
Technetium-99m HMPAO brain SPECT in autistic children and their families.
Degirmenci, Berna; Miral, Süha; Kaya, Gamze Capa; Iyilikçi, Leyla; Arslan, Gulhan; Baykara, Ayşen; Evren, Ismail; Durak, Hatice
2008-04-15
The purpose of the study was to investigate perfusion patterns in autistic children (AC) and their families. Ten AC (9 boys, 1 girl; mean age: 6.9+/-1.7 years) with autistic disorder defined by DSM-III-R criteria, five age-matched children (3 boys, 2 girls) as a control group, and the immediate family members of eight AC (8 mothers, 8 fathers, 7 siblings; mean ages: 39+/-4 years, 36+/-5 years and 13+/-5 years, respectively) were included in the study. Age- and sex-matched control groups for both the parents and the siblings were also included in the study. Brain perfusion images were obtained 1 h after the intravenous injection of an adjusted dose of Tc-99m HMPAO to children and the adults. Visual and semiquantitative evaluations were performed. Hypoperfusion was seen in the right posterior parietal cortex in three AC, in bilateral parietal cortex in one AC, bilateral frontal cortex in two AC, left parietal and temporal cortex in one AC, and right parietal and temporal cortex in one AC. Asymmetric perfusion was observed in the caudate nucleus in four AC. In semiquantitative analyses, statistically significant hypoperfusion was found in the right inferior and superior frontal, left superior frontal, right parietal, right mesial temporal and right caudate nucleus. In parents of AC, significant hypoperfusion was noted in the right parietal and bilateral inferior frontal cortex. In siblings of AC, perfusion in the right frontal cortex, right nucleus caudate and left parietal cortex was significantly decreased. This preliminary study suggests the existence of regional brain perfusion alterations in frontal, temporal, and parietal cortex and in caudate nucleus in AC and in their first-degree family members.
Jeong, Su Keun; Xu, Yaoda
2016-01-01
The human parietal cortex exhibits a preference to contralaterally presented visual stimuli (i.e., laterality) as well as an asymmetry between the two hemispheres with the left parietal cortex showing greater laterality than the right. Using visual short-term memory and perceptual tasks and varying target location predictability, this study examined whether hemispheric laterality and asymmetry are fixed characteristics of the human parietal cortex or whether they are dynamic and modulated by the deployment of top-down attention to the target present hemifield. Two parietal regions were examined here that have previously been shown to be involved in visual object individuation and identification and are located in the inferior and superior intraparietal sulcus (IPS), respectively. Across three experiments, significant laterality was found in both parietal regions regardless of attentional modulation with laterality being greater in the inferior than superior IPS, consistent with their roles in object individuation and identification, respectively. Although the deployment of top-down attention had no effect on the superior IPS, it significantly increased laterality in the inferior IPS. The deployment of top-down spatial attention can thus amplify the strength of laterality in the inferior IPS. Hemispheric asymmetry, on the other hand, was absent in both brain regions and only emerged in the inferior but not the superior IPS with the deployment of top-down attention. Interestingly, the strength of hemispheric asymmetry significantly correlated with the strength of laterality in the inferior IPS. Hemispheric asymmetry thus seems to only emerge when there is a sufficient amount of laterality present in a brain region. PMID:27494544
Jeong, Su Keun; Xu, Yaoda
2016-08-01
The human parietal cortex exhibits a preference to contralaterally presented visual stimuli (i.e., laterality) as well as an asymmetry between the two hemispheres with the left parietal cortex showing greater laterality than the right. Using visual short-term memory and perceptual tasks and varying target location predictability, this study examined whether hemispheric laterality and asymmetry are fixed characteristics of the human parietal cortex or whether they are dynamic and modulated by the deployment of top-down attention to the target present hemifield. Two parietal regions were examined here that have previously been shown to be involved in visual object individuation and identification and are located in the inferior and superior intraparietal sulcus (IPS), respectively. Across three experiments, significant laterality was found in both parietal regions regardless of attentional modulation with laterality being greater in the inferior than superior IPS, consistent with their roles in object individuation and identification, respectively. Although the deployment of top-down attention had no effect on the superior IPS, it significantly increased laterality in the inferior IPS. The deployment of top-down spatial attention can thus amplify the strength of laterality in the inferior IPS. Hemispheric asymmetry, on the other hand, was absent in both brain regions and only emerged in the inferior but not the superior IPS with the deployment of top-down attention. Interestingly, the strength of hemispheric asymmetry significantly correlated with the strength of laterality in the inferior IPS. Hemispheric asymmetry thus seems to only emerge when there is a sufficient amount of laterality present in a brain region.
Mismatch Negativity in Recent-Onset and Chronic Schizophrenia: A Current Source Density Analysis
Fulham, W. Ross; Michie, Patricia T.; Ward, Philip B.; Rasser, Paul E.; Todd, Juanita; Johnston, Patrick J.; Thompson, Paul M.; Schall, Ulrich
2014-01-01
Mismatch negativity (MMN) is a component of the event-related potential elicited by deviant auditory stimuli. It is presumed to index pre-attentive monitoring of changes in the auditory environment. MMN amplitude is smaller in groups of individuals with schizophrenia compared to healthy controls. We compared duration-deviant MMN in 16 recent-onset and 19 chronic schizophrenia patients versus age- and sex-matched controls. Reduced frontal MMN was found in both patient groups, involved reduced hemispheric asymmetry, and was correlated with Global Assessment of Functioning (GAF) and negative symptom ratings. A cortically-constrained LORETA analysis, incorporating anatomical data from each individual's MRI, was performed to generate a current source density model of the MMN response over time. This model suggested MMN generation within a temporal, parietal and frontal network, which was right hemisphere dominant only in controls. An exploratory analysis revealed reduced CSD in patients in superior and middle temporal cortex, inferior and superior parietal cortex, precuneus, anterior cingulate, and superior and middle frontal cortex. A region of interest (ROI) analysis was performed. For the early phase of the MMN, patients had reduced bilateral temporal and parietal response and no lateralisation in frontal ROIs. For late MMN, patients had reduced bilateral parietal response and no lateralisation in temporal ROIs. In patients, correlations revealed a link between GAF and the MMN response in parietal cortex. In controls, the frontal response onset was 17 ms later than the temporal and parietal response. In patients, onset latency of the MMN response was delayed in secondary, but not primary, auditory cortex. However amplitude reductions were observed in both primary and secondary auditory cortex. These latency delays may indicate relatively intact information processing upstream of the primary auditory cortex, but impaired primary auditory cortex or cortico-cortical or thalamo-cortical communication with higher auditory cortices as a core deficit in schizophrenia. PMID:24949859
Impairments in Tactile Search Following Superior Parietal Damage
ERIC Educational Resources Information Center
Skakoon-Sparling, Shayna P.; Vasquez, Brandon P.; Hano, Kate; Danckert, James
2011-01-01
The superior parietal cortex is critical for the control of visually guided actions. Research suggests that visual stimuli relevant to actions are preferentially processed when they are in peripersonal space. One recent study demonstrated that visually guided movements towards the body were more impaired in a patient with damage to superior…
Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandya, D.N.; Seltzer, B.
1982-01-10
By means of autoradiographic and ablation-degeneration techniques, the intrinsic cortical connections of the posterior parietal cortex in the rhesus monkey were traced and correlated with a reappraisal of cerebral architectonics. Two major rostral-to-caudal connectional sequences exist. One begins in the dorsal postcentral gyrus (area 2) and proceeds, through architectonic divisions of the superior parietal lobule (areas PE and PEc), to a cortical region on the medial surface of the parietal lobe (area PGm). This area has architectonic features similar to those of the caudal inferior parietal lobule (area PG). The second sequence begins in the ventral post/central gyrus (area 2)more » and passes through the rostral inferior parietal lobule (areas PG and PFG) to reach the caudal inferior parietal lobule (area PG). Both the superior parietal lobule and the rostral inferior parietal lobule also send projections to various other zones located in the parietal opercular region, the intraparietal sulcus, and the caudalmost portion of the cingulate sulcus. Areas PGm and PG, on the other hand, project to each other, to the cingulate region, to the caudalmost portion of the superior temporal gyrus, and to the upper bank of the superior temporal sulcus. Finally, a reciprocal sequence of connections, directed from caudal to rostral, links together many of the above-mentioned parietal zones. With regard to the laminar pattern of termination, the rostral-to-caudal connections are primarily distributed in the form of cortical ''columns'' while the caudal-to-rostral connections are found mainly over the first cortical cell layer.« less
Atrophy of the Parietal Lobe in Preclinical Dementia
ERIC Educational Resources Information Center
Jacobs, Heidi I. L.; Van Boxtel, Martin P. J.; Uylings, Harry B. M.; Gronenschild, Ed H. B. M.; Verhey, Frans R.; Jolles, Jelle
2011-01-01
Cortical grey matter atrophy patterns have been reported in healthy ageing and Alzheimer disease (AD), but less consistently in the parietal regions of the brain. We investigated cortical grey matter volume patterns in parietal areas. The grey matter of the somatosensory cortex, superior and inferior parietal lobule was measured in 75 older adults…
Morton, J Bruce; Bosma, Rachael; Ansari, Daniel
2009-05-15
Brain activation associated with dimensional shifts of attention was measured in 14 children and 13 adults using 4 T fMRI. Across all participants, dimensional shifting was associated with activity in a distributed frontoparietal network, including superior parietal cortex, dorsolateral prefrontal cortex, inferior frontal junction, and the pre-supplementary motor region. There were also age-related differences in brain activity, with children but not adults showing an effect of dimension shifting in the right superior frontal sulcus, and adults but not children showing an effect of dimension shifting in the left superior parietal cortex and the right thalamus. These differences were likely not attributable to behavioral differences as children and adults performed comparably. Implications for neurodevelopmental accounts of shifting are discussed.
Bueichekú, Elisenda; Ventura-Campos, Noelia; Palomar-García, María-Ángeles; Miró-Padilla, Anna; Parcet, María-Antonia; Ávila, César
2015-10-01
Spatiotemporal activity that emerges spontaneously "at rest" has been proposed to reflect individual a priori biases in cognitive processing. This research focused on testing neurocognitive models of visual attention by studying the functional connectivity (FC) of the superior parietal lobule (SPL), given its central role in establishing priority maps during visual search tasks. Twenty-three human participants completed a functional magnetic resonance imaging session that featured a resting-state scan, followed by a visual search task based on the alphanumeric category effect. As expected, the behavioral results showed longer reaction times and more errors for the within-category (i.e., searching a target letter among letters) than the between-category search (i.e., searching a target letter among numbers). The within-category condition was related to greater activation of the superior and inferior parietal lobules, occipital cortex, inferior frontal cortex, dorsal anterior cingulate cortex, and the superior colliculus than the between-category search. The resting-state FC analysis of the SPL revealed a broad network that included connections with the inferotemporal cortex, dorsolateral prefrontal cortex, and dorsal frontal areas like the supplementary motor area and frontal eye field. Noteworthy, the regression analysis revealed that the more efficient participants in the visual search showed stronger FC between the SPL and areas of primary visual cortex (V1) related to the search task. We shed some light on how the SPL establishes a priority map of the environment during visual attention tasks and how FC is a valuable tool for assessing individual differences while performing cognitive tasks.
Neurocognitive development of the ability to manipulate information in working memory.
Crone, Eveline A; Wendelken, Carter; Donohue, Sarah; van Leijenhorst, Linda; Bunge, Silvia A
2006-06-13
The ability to manipulate information in working memory is a key factor in cognitive development. Here, we used event-related functional MRI to test the hypothesis that developmental improvements in manipulation, relative to pure maintenance, are associated with increased recruitment of dorsolateral (DL) prefrontal cortex (PFC) and superior parietal cortex. Three age groups (8-12 years old, 13-17 years old, and 18-25 years old) performed an object-working memory task with separate maintenance and manipulation conditions. We found that 8- to 12-year-olds did not perform the task as well as adolescents or adults, particularly on trials requiring manipulation in addition to maintenance. In this study, no age differences were observed in the activation profile of ventrolateral PFC, a region associated with online maintenance. In contrast, unlike the older participants, 8- to 12-year-olds failed to recruit right DL PFC and bilateral superior parietal cortex during the delay period for manipulation relative to maintenance. This group difference was observed specifically during the delay period, while participants reordered items in working memory, and could not be accounted for by group differences in performance. Across participants, activation levels in right DL PFC and superior parietal cortex, but not ventrolateral PFC, were positively correlated with performance on manipulation trials. These results indicate that increased recruitment of right DL PFC and bilateral parietal cortex during adolescence is associated with improvements in the ability to work with object representations.
Behaviorally Relevant Abstract Object Identity Representation in the Human Parietal Cortex
Jeong, Su Keun
2016-01-01
The representation of object identity is fundamental to human vision. Using fMRI and multivoxel pattern analysis, here we report the representation of highly abstract object identity information in human parietal cortex. Specifically, in superior intraparietal sulcus (IPS), a region previously shown to track visual short-term memory capacity, we found object identity representations for famous faces varying freely in viewpoint, hairstyle, facial expression, and age; and for well known cars embedded in different scenes, and shown from different viewpoints and sizes. Critically, these parietal identity representations were behaviorally relevant as they closely tracked the perceived face-identity similarity obtained in a behavioral task. Meanwhile, the task-activated regions in prefrontal and parietal cortices (excluding superior IPS) did not exhibit such abstract object identity representations. Unlike previous studies, we also failed to observe identity representations in posterior ventral and lateral visual object-processing regions, likely due to the greater amount of identity abstraction demanded by our stimulus manipulation here. Our MRI slice coverage precluded us from examining identity representation in anterior temporal lobe, a likely region for the computing of identity information in the ventral region. Overall, we show that human parietal cortex, part of the dorsal visual processing pathway, is capable of holding abstract and complex visual representations that are behaviorally relevant. These results argue against a “content-poor” view of the role of parietal cortex in attention. Instead, the human parietal cortex seems to be “content rich” and capable of directly participating in goal-driven visual information representation in the brain. SIGNIFICANCE STATEMENT The representation of object identity (including faces) is fundamental to human vision and shapes how we interact with the world. Although object representation has traditionally been associated with human occipital and temporal cortices, here we show, by measuring fMRI response patterns, that a region in the human parietal cortex can robustly represent task-relevant object identities. These representations are invariant to changes in a host of visual features, such as viewpoint, and reflect an abstract level of representation that has not previously been reported in the human parietal cortex. Critically, these neural representations are behaviorally relevant as they closely track the perceived object identities. Human parietal cortex thus participates in the moment-to-moment goal-directed visual information representation in the brain. PMID:26843642
Parcellation of left parietal tool representations by functional connectivity
Garcea, Frank E.; Z. Mahon, Bradford
2014-01-01
Manipulating a tool according to its function requires the integration of visual, conceptual, and motor information, a process subserved in part by left parietal cortex. How these different types of information are integrated and how their integration is reflected in neural responses in the parietal lobule remains an open question. Here, participants viewed images of tools and animals during functional magnetic resonance imaging (fMRI). K-means clustering over time series data was used to parcellate left parietal cortex into subregions based on functional connectivity to a whole brain network of regions involved in tool processing. One cluster, in the inferior parietal cortex, expressed privileged functional connectivity to the left ventral premotor cortex. A second cluster, in the vicinity of the anterior intraparietal sulcus, expressed privileged functional connectivity with the left medial fusiform gyrus. A third cluster in the superior parietal lobe expressed privileged functional connectivity with dorsal occipital cortex. Control analyses using Monte Carlo style permutation tests demonstrated that the clustering solutions were outside the range of what would be observed based on chance ‘lumpiness’ in random data, or mere anatomical proximity. Finally, hierarchical clustering analyses were used to formally relate the resulting parcellation scheme of left parietal tool representations to previous work that has parcellated the left parietal lobule on purely anatomical grounds. These findings demonstrate significant heterogeneity in the functional organization of manipulable object representations in left parietal cortex, and outline a framework that generates novel predictions about the causes of some forms of upper limb apraxia. PMID:24892224
Magrassi, Lorenzo; Bongetta, Daniele; Bianchini, Simonetta; Berardesca, Marta; Arienta, Cesare
2010-07-30
Classical neuropsychological models of writing separate central (linguistic) processes common to oral spelling, writing and typing from peripheral (motor) processes that are modality specific. Damage to the left superior parietal gyrus, an area of the cortex involved in peripheral processes specific to handwriting, should generate distorted graphemes but not misspelled words, while damage to other areas of the cortex like the frontal lobe should produce alterations in written and oral spelling without distorted graphemes. We describe the clinical and neuropsychological features of a patient with combined agraphia for handwriting and typewriting bearing a small glioblastoma in the left parietal lobe. His agraphia resolved after antiedema therapy and we tested by bipolar cortical stimulation his handwriting abilities during an awake neurosurgical procedure. We found that we could reversibly re-induce the same defects of writing by stimulating during surgery a limited area of the superior parietal gyrus in the same patient and in an independent patient that was never agraphic before the operation. In those patients stimulation caused spelling errors, poorly formed letters and in some cases a complete cessation of writing with minimal or no effects on oral spelling. Our results suggest that stimulating a specific area in the superior parietal gyrus we can generate different patterns of agraphia. Moreover, our findings also suggest that some of the central processes specific for typing and handwriting converge with motor processes at least in the limited portion of the superior parietal gyrus we mapped in our patients. Copyright 2010 Elsevier B.V. All rights reserved.
Memory retrieval and the parietal cortex: a review of evidence from a dual-process perspective.
Vilberg, Kaia L; Rugg, Michael D
2008-01-01
Although regions of the parietal cortex have been consistently implicated in episodic memory retrieval, the functional roles of these regions remain poorly understood. The present review presents a meta-analysis of findings from event-related fMRI studies reporting the loci of retrieval effects associated with familiarity- and recollection-related recognition judgments. The results of this analysis support previous suggestions that retrieval-related activity in lateral parietal cortex dissociates between superior regions, where activity likely reflects the task relevance of different classes of recognition test items, and more inferior regions where retrieval-related activity appears closely linked to successful recollection. It is proposed that inferior lateral parietal cortex forms part of a neural network supporting the 'episodic buffer' [Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4, 417-423].
NASA Technical Reports Server (NTRS)
Astafiev, Serguei V.; Shulman, Gordon L.; Stanley, Christine M.; Snyder, Abraham Z.; Van Essen, David C.; Corbetta, Maurizio
2003-01-01
We studied the functional organization of human posterior parietal and frontal cortex using functional magnetic resonance imaging (fMRI) to map preparatory signals for attending, looking, and pointing to a peripheral visual location. The human frontal eye field and two separate regions in the intraparietal sulcus were similarly recruited in all conditions, suggesting an attentional role that generalizes across response effectors. However, the preparation of a pointing movement selectively activated a different group of regions, suggesting a stronger role in motor planning. These regions were lateralized to the left hemisphere, activated by preparation of movements of either hand, and included the inferior and superior parietal lobule, precuneus, and posterior superior temporal sulcus, plus the dorsal premotor and anterior cingulate cortex anteriorly. Surface-based registration of macaque cortical areas onto the map of fMRI responses suggests a relatively good spatial correspondence between human and macaque parietal areas. In contrast, large interspecies differences were noted in the topography of frontal areas.
[Parietal Cortices and Body Information].
Naito, Eiichi; Amemiya, Kaoru; Morita, Tomoyo
2016-11-01
Proprioceptive signals originating from skeletal muscles and joints contribute to the formation of both the human body schema and the body image. In this chapter, we introduce various types of bodily illusions that are elicited by proprioceptive inputs, and we discuss distinct functions implemented by different parietal cortices. First, we illustrate the primary importance of the motor network in the processing of proprioceptive (kinesthetic) signals originating from muscle spindles. Next, we argue that the right inferior parietal cortex, in concert with the inferior frontal cortex (both regions connected by the inferior branch of the superior longitudinal fasciculus-SLF III), may be involved in the conscious experience of body image. Further, we hypothesize other functions of distinct parietal regions: the association between internal hand motor representation with external object representation in the left inferior parietal cortex, visuo-kinesthetic processing in the bilateral posterior parietal cortices, and the integration of somatic signals from different body parts in the higher-order somatosensory parietal cortices. Our results indicate that a distinct parietal region, in concert with its anatomically and functionally connected frontal regions, probably plays specialized roles in the processing of body-related information.
ERIC Educational Resources Information Center
Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Rustan, Oyvind G.; Rooney, Robert J.; Thuras, Paul D.
2014-01-01
We measured protein and mRNA levels for nine gamma-aminobutyric acid A (GABA[subscript A]) receptor subunits in three brain regions (cerebellum, superior frontal cortex, and parietal cortex) in subjects with autism versus matched controls. We observed changes in mRNA for a number of GABA[subscript A] and GABA[subscript B] subunits and overall…
Parietal and superior frontal visuospatial maps activated by pointing and saccades
Hagler, D.J.; Riecke, L.; Sereno, M.I.
2009-01-01
A recent study from our laboratory demonstrated that parietal cortex contains a map of visual space related to saccades and spatial attention and identified this area as the likely human homologue of the lateral intraparietal (LIP). A human homologue for the parietal reach region (PRR), thought to preferentially encode planned hand movements, has also been recently proposed. Both of these areas, originally identified in the macaque monkey, have been shown to encode space with eye-centered coordinates. Functional magnetic resonance imaging (fMRI) of humans was used to test the hypothesis that the putative human PRR contains a retinotopic map recruited by finger pointing but not saccades and to test more generally for differences in the visuospatial maps recruited by pointing and saccades. We identified multiple maps in both posterior parietal cortex and superior frontal cortex recruited for eye and hand movements, including maps not observed in previous mapping studies. Pointing and saccade maps were generally consistent within single subjects. We have developed new group analysis methods for phase-encoded data, which revealed subtle differences between pointing and saccades, including hemispheric asymmetries, but we did not find evidence of pointing-specific maps of visual space. PMID:17376706
Cognitive Strategy Use as an Index of Developmental Differences in Neural Responses to Feedback
ERIC Educational Resources Information Center
Andersen, Lau M.; Visser, Ingmar; Crone, Eveline A.; Koolschijn, P. Cédric M. P.; Raijmakers, Maartje E. J.
2014-01-01
Developmental differences in dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), and superior parietal cortex (SPC) activation are associated with differences in how children, adolescents, and adults learn from performance feedback in rule-learning tasks (Crone, Zanolie, Leijenhorst, Westenberg, & Rombouts, 2008). Both…
Jayarajan, Rajan Nishanth; Agarwal, Sri Mahavir; Viswanath, Biju; Kalmady, Sunil V; Venkatasubramanian, Ganesan; Srinath, Shoba; Chandrashekar, C R; Janardhan Reddy, Y C
2015-01-01
Adult patients with Obsessive Compulsive Disorder (OCD) have been shown to have gray matter (GM) volume differences from healthy controls in multiple regions - the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), medial frontal gyri (MFG), striatum, thalamus, and superior parietal lobule. However, there is paucity of data with regard to juvenile OCD. Hence, we examined GM volume differences between juvenile OCD patients and matched healthy controls using voxel based morphometry (VBM) with the above apriori regions of interest. Fifteen right handed juvenile patients with OCD and age- sex- handedness- matched healthy controls were recruited after administering the Mini International Neuropsychiatric Interview-KID and the Children's Yale-Brown Obsessive Compulsive Scale, and scanned using a 3 Tesla magnetic resonance imaging scanner. VBM methodology was followed. In comparison with healthy controls, patients had significantly smaller GM volumes in left ACC. YBOCS total score (current) showed significant negative correlation with GM volumes in bilateral OFC, and left superior parietal lobule. These findings while reiterating the important role of the orbito-fronto-striatal circuitry, also implicate in the parietal lobe - especially the superior parietal lobule as an important structure involved in the pathogenesis of OCD.
Poon, Cynthia; Coombes, Stephen A.; Corcos, Daniel M.; Christou, Evangelos A.
2013-01-01
When subjects perform a learned motor task with increased visual gain, error and variability are reduced. Neuroimaging studies have identified a corresponding increase in activity in parietal cortex, premotor cortex, primary motor cortex, and extrastriate visual cortex. Much less is understood about the neural processes that underlie the immediate transition from low to high visual gain within a trial. This study used 128-channel electroencephalography to measure cortical activity during a visually guided precision grip task, in which the gain of the visual display was changed during the task. Force variability during the transition from low to high visual gain was characterized by an inverted U-shape, whereas force error decreased from low to high gain. Source analysis identified cortical activity in the same structures previously identified using functional magnetic resonance imaging. Source analysis also identified a time-varying shift in the strongest source activity. Superior regions of the motor and parietal cortex had stronger source activity from 300 to 600 ms after the transition, whereas inferior regions of the extrastriate visual cortex had stronger source activity from 500 to 700 ms after the transition. Force variability and electrical activity were linearly related, with a positive relation in the parietal cortex and a negative relation in the frontal cortex. Force error was nonlinearly related to electrical activity in the parietal cortex and frontal cortex by a quadratic function. This is the first evidence that force variability and force error are systematically related to a time-varying shift in cortical activity in frontal and parietal cortex in response to enhanced visual gain. PMID:23365186
Baker, Chris I.
2015-01-01
Observing touch has been reported to elicit activation in human primary and secondary somatosensory cortices and is suggested to underlie our ability to interpret other's behavior and potentially empathy. However, despite these reports, there are a large number of inconsistencies in terms of the precise topography of activation, the extent of hemispheric lateralization, and what aspects of the stimulus are necessary to drive responses. To address these issues, we investigated the localization and functional properties of regions responsive to observed touch in a large group of participants (n = 40). Surprisingly, even with a lenient contrast of hand brushing versus brushing alone, we did not find any selective activation for observed touch in the hand regions of somatosensory cortex but rather in superior and inferior portions of neighboring posterior parietal cortex, predominantly in the left hemisphere. These regions in the posterior parietal cortex required the presence of both brush and hand to elicit strong responses and showed some selectivity for the form of the object or agent of touch. Furthermore, the inferior parietal region showed nonspecific tactile and motor responses, suggesting some similarity to area PFG in the monkey. Collectively, our findings challenge the automatic engagement of somatosensory cortex when observing touch, suggest mislocalization in previous studies, and instead highlight the role of posterior parietal cortex. PMID:25632124
Emmorey, Karen; McCullough, Stephen; Mehta, Sonya; Grabowski, Thomas J.
2014-01-01
To investigate the impact of sensory-motor systems on the neural organization for language, we conducted an H215O-PET study of sign and spoken word production (picture-naming) and an fMRI study of sign and audio-visual spoken language comprehension (detection of a semantically anomalous sentence) with hearing bilinguals who are native users of American Sign Language (ASL) and English. Directly contrasting speech and sign production revealed greater activation in bilateral parietal cortex for signing, while speaking resulted in greater activation in bilateral superior temporal cortex (STC) and right frontal cortex, likely reflecting auditory feedback control. Surprisingly, the language production contrast revealed a relative increase in activation in bilateral occipital cortex for speaking. We speculate that greater activation in visual cortex for speaking may actually reflect cortical attenuation when signing, which functions to distinguish self-produced from externally generated visual input. Directly contrasting speech and sign comprehension revealed greater activation in bilateral STC for speech and greater activation in bilateral occipital-temporal cortex for sign. Sign comprehension, like sign production, engaged bilateral parietal cortex to a greater extent than spoken language. We hypothesize that posterior parietal activation in part reflects processing related to spatial classifier constructions in ASL and that anterior parietal activation may reflect covert imitation that functions as a predictive model during sign comprehension. The conjunction analysis for comprehension revealed that both speech and sign bilaterally engaged the inferior frontal gyrus (with more extensive activation on the left) and the superior temporal sulcus, suggesting an invariant bilateral perisylvian language system. We conclude that surface level differences between sign and spoken languages should not be dismissed and are critical for understanding the neurobiology of language. PMID:24904497
ERIC Educational Resources Information Center
Jolles, Dietsje D.; Kleibeuker, Sietske W.; Rombouts, Serge A. R. B.; Crone, Eveline A.
2011-01-01
The ability to keep information active in working memory is one of the cornerstones of cognitive development. Prior studies have demonstrated that regions which are important for working memory performance in adults, such as dorsolateral prefrontal cortex (DLPFC), ventrolateral prefrontal cortex (VLPFC), and superior parietal cortex, become…
Li, Qi; Yang, Guochun; Li, Zhenghan; Qi, Yanyan; Cole, Michael W; Liu, Xun
2017-12-01
Cognitive control can be activated by stimulus-stimulus (S-S) and stimulus-response (S-R) conflicts. However, whether cognitive control is domain-general or domain-specific remains unclear. To deepen the understanding of the functional organization of cognitive control networks, we conducted activation likelihood estimation (ALE) from 111 neuroimaging studies to examine brain activation in conflict-related tasks. We observed that fronto-parietal and cingulo-opercular networks were commonly engaged by S-S and S-R conflicts, showing a domain-general pattern. In addition, S-S conflicts specifically activated distinct brain regions to a greater degree. These regions were implicated in the processing of the semantic-relevant attribute, including the inferior frontal cortex (IFC), superior parietal cortex (SPC), superior occipital cortex (SOC), and right anterior cingulate cortex (ACC). By contrast, S-R conflicts specifically activated the left thalamus, middle frontal cortex (MFC), and right SPC, which were associated with detecting response conflict and orienting spatial attention. These findings suggest that conflict detection and resolution involve a combination of domain-general and domain-specific cognitive control mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Eyre, Harris A; Acevedo, Bianca; Yang, Hongyu; Siddarth, Prabha; Van Dyk, Kathleen; Ercoli, Linda; Leaver, Amber M; Cyr, Natalie St; Narr, Katherine; Baune, Bernhard T; Khalsa, Dharma S; Lavretsky, Helen
2016-01-01
No study has explored the effect of yoga on cognitive decline and resting-state functional connectivity. This study explored the relationship between performance on memory tests and resting-state functional connectivity before and after a yoga intervention versus active control for subjects with mild cognitive impairment (MCI). Participants ( ≥ 55 y) with MCI were randomized to receive a yoga intervention or active "gold-standard" control (i.e., memory enhancement training (MET)) for 12 weeks. Resting-state functional magnetic resonance imaging was used to map correlations between brain networks and memory performance changes over time. Default mode networks (DMN), language and superior parietal networks were chosen as networks of interest to analyze the association with changes in verbal and visuospatial memory performance. Fourteen yoga and 11 MET participants completed the study. The yoga group demonstrated a statistically significant improvement in depression and visuospatial memory. We observed improved verbal memory performance correlated with increased connectivity between the DMN and frontal medial cortex, pregenual anterior cingulate cortex, right middle frontal cortex, posterior cingulate cortex, and left lateral occipital cortex. Improved verbal memory performance positively correlated with increased connectivity between the language processing network and the left inferior frontal gyrus. Improved visuospatial memory performance correlated inversely with connectivity between the superior parietal network and the medial parietal cortex. Yoga may be as effective as MET in improving functional connectivity in relation to verbal memory performance. These findings should be confirmed in larger prospective studies.
Disentangling neural representations of value and salience in the human brain
Kahnt, Thorsten; Park, Soyoung Q; Haynes, John-Dylan; Tobler, Philippe N.
2014-01-01
A large body of evidence has implicated the posterior parietal and orbitofrontal cortex in the processing of value. However, value correlates perfectly with salience when appetitive stimuli are investigated in isolation. Accordingly, considerable uncertainty has remained about the precise nature of the previously identified signals. In particular, recent evidence suggests that neurons in the primate parietal cortex signal salience instead of value. To investigate neural signatures of value and salience, here we apply multivariate (pattern-based) analyses to human functional MRI data acquired during a noninstrumental outcome-prediction task involving appetitive and aversive outcomes. Reaction time data indicated additive and independent effects of value and salience. Critically, we show that multivoxel ensemble activity in the posterior parietal cortex encodes predicted value and salience in superior and inferior compartments, respectively. These findings reinforce the earlier reports of parietal value signals and reconcile them with the recent salience report. Moreover, we find that multivoxel patterns in the orbitofrontal cortex correlate with value. Importantly, the patterns coding for the predicted value of appetitive and aversive outcomes are similar, indicating a common neural scale for appetite and aversive values in the orbitofrontal cortex. Thus orbitofrontal activity patterns satisfy a basic requirement for a neural value signal. PMID:24639493
The sexually dimorphic impact of maltreatment on cortical thickness, surface area and gyrification.
Kelly, Philip A; Viding, Essi; Puetz, Vanessa B; Palmer, Amy L; Samuel, Sophie; McCrory, Eamon J
2016-09-01
An extensive literature has detailed how maltreatment experience impacts brain structure in children and adolescents. However, there is a dearth of studies on the influence of maltreatment on surface based indices, and to date no study has investigated how sex influences the impact of maltreatment on cortical thickness, surface area and local gyrification. We investigated sex differences in these measures of cortical structure in a large community sample of children aged 10-14 years (n = 122) comprising 62 children with verified maltreatment experience and 60 matched non-maltreated controls. The maltreated group relative to the controls presented with a pattern of decreased cortical thickness within a region of right anterior cingulate, orbitofrontal cortex and superior frontal gyrus; decreased surface area within the right inferior parietal cortex; and increased local gyrification within left superior parietal cortex. This atypical pattern of cortical structure was similar across males and females. An interaction between maltreatment exposure and sex was found only in local gyrification, within two clusters: the right tempo-parietal junction and the left precentral gyrus. These findings suggest that maltreatment impacts cortical structure in brain areas associated with emotional regulation and theory of mind, with few differences between the sexes.
Hecht, Erin E.; Gutman, David A.; Preuss, Todd M.; Sanchez, Mar M.; Parr, Lisa A.; Rilling, James K.
2013-01-01
Social learning varies among primate species. Macaques only copy the product of observed actions, or emulate, while humans and chimpanzees also copy the process, or imitate. In humans, imitation is linked to the mirror system. Here we compare mirror system connectivity across these species using diffusion tensor imaging. In macaques and chimpanzees, the preponderance of this circuitry consists of frontal–temporal connections via the extreme/external capsules. In contrast, humans have more substantial temporal–parietal and frontal–parietal connections via the middle/inferior longitudinal fasciculi and the third branch of the superior longitudinal fasciculus. In chimpanzees and humans, but not in macaques, this circuitry includes connections with inferior temporal cortex. In humans alone, connections with superior parietal cortex were also detected. We suggest a model linking species differences in mirror system connectivity and responsivity with species differences in behavior, including adaptations for imitation and social learning of tool use. PMID:22539611
Pratt, Hillel; Bleich, Naomi; Mittelman, Nomi
2015-11-01
Spatio-temporal distributions of cortical activity to audio-visual presentations of meaningless vowel-consonant-vowels and the effects of audio-visual congruence/incongruence, with emphasis on the McGurk effect, were studied. The McGurk effect occurs when a clearly audible syllable with one consonant, is presented simultaneously with a visual presentation of a face articulating a syllable with a different consonant and the resulting percept is a syllable with a consonant other than the auditorily presented one. Twenty subjects listened to pairs of audio-visually congruent or incongruent utterances and indicated whether pair members were the same or not. Source current densities of event-related potentials to the first utterance in the pair were estimated and effects of stimulus-response combinations, brain area, hemisphere, and clarity of visual articulation were assessed. Auditory cortex, superior parietal cortex, and middle temporal cortex were the most consistently involved areas across experimental conditions. Early (<200 msec) processing of the consonant was overall prominent in the left hemisphere, except right hemisphere prominence in superior parietal cortex and secondary visual cortex. Clarity of visual articulation impacted activity in secondary visual cortex and Wernicke's area. McGurk perception was associated with decreased activity in primary and secondary auditory cortices and Wernicke's area before 100 msec, increased activity around 100 msec which decreased again around 180 msec. Activity in Broca's area was unaffected by McGurk perception and was only increased to congruent audio-visual stimuli 30-70 msec following consonant onset. The results suggest left hemisphere prominence in the effects of stimulus and response conditions on eight brain areas involved in dynamically distributed parallel processing of audio-visual integration. Initially (30-70 msec) subcortical contributions to auditory cortex, superior parietal cortex, and middle temporal cortex occur. During 100-140 msec, peristriate visual influences and Wernicke's area join in the processing. Resolution of incongruent audio-visual inputs is then attempted, and if successful, McGurk perception occurs and cortical activity in left hemisphere further increases between 170 and 260 msec.
Eyre, Harris A.; Acevedo, Bianca; Yang, Hongyu; Siddarth, Prabha; Van Dyk, Kathleen; Ercoli, Linda; Leaver, Amber M.; Cyr, Natalie St.; Narr, Katherine; Baune, Bernhard T.; Khalsa, Dharma S.; Lavretsky, Helen
2016-01-01
Background: No study has explored the effect of yoga on cognitive decline and resting-state functional connectivity. Objectives: This study explored the relationship between performance on memory tests and resting-state functional connectivity before and after a yoga intervention versus active control for subjects with mild cognitive impairment (MCI). Methods: Participants ( ≥ 55 y) with MCI were randomized to receive a yoga intervention or active “gold-standard” control (i.e., memory enhancement training (MET)) for 12 weeks. Resting-state functional magnetic resonance imaging was used to map correlations between brain networks and memory performance changes over time. Default mode networks (DMN), language and superior parietal networks were chosen as networks of interest to analyze the association with changes in verbal and visuospatial memory performance. Results: Fourteen yoga and 11 MET participants completed the study. The yoga group demonstrated a statistically significant improvement in depression and visuospatial memory. We observed improved verbal memory performance correlated with increased connectivity between the DMN and frontal medial cortex, pregenual anterior cingulate cortex, right middle frontal cortex, posterior cingulate cortex, and left lateral occipital cortex. Improved verbal memory performance positively correlated with increased connectivity between the language processing network and the left inferior frontal gyrus. Improved visuospatial memory performance correlated inversely with connectivity between the superior parietal network and the medial parietal cortex. Conclusion:Yoga may be as effective as MET in improving functional connectivity in relation to verbal memory performance. These findings should be confirmed in larger prospective studies. PMID:27060939
[Asperger syndrome with highly exceptional calendar memory: a case report].
Sevik, Ali Emre; Cengel Kültür, Ebru; Demirel, Hilal; Karlı Oğuz, Kader; Akça, Onur; Lay Ergün, Eser; Demir, Başaran
2010-01-01
Some patients with pervasive developmental disorders develop unusual talents, which are characterized as savant syndrome. Herein we present neuropsychological examination and brain imaging (fMRI and brain SPECT) findings of an 18-year-old male with Asperger syndrome and highly unusual calendar memory. Neuropsychological evaluation of the case indicated mild attention, memory, and problem solving deficits, and severe executive function deficits that included conceptualization, category formation, and abstraction. Functional MRI findings showed activation above the baseline level (P<0.05) in the bilateral inferior parietal lobule, precuneus, superior and middle frontal gyri, and medial frontal cortex. Brain SPECT findings, in comparison to rest-SPECT findings, showed that there was hypoperfusion in some brain regions, including the right frontal cortex and right parietal cortex. Baseline blood perfusion in the left frontal cortex was also observed, as well as hypoperfusion in the right parietal-occipital cortex and in the right basal ganglion (compared to the left side). The results of the present study and further research will contribute to our understanding of calendar memory and savant syndrome.
Zou, Qihong; Ross, Thomas J; Gu, Hong; Geng, Xiujuan; Zuo, Xi-Nian; Hong, L Elliot; Gao, Jia-Hong; Stein, Elliot A; Zang, Yu-Feng; Yang, Yihong
2013-12-01
Although resting-state brain activity has been demonstrated to correspond with task-evoked brain activation, the relationship between intrinsic and evoked brain activity has not been fully characterized. For example, it is unclear whether intrinsic activity can also predict task-evoked deactivation and whether the rest-task relationship is dependent on task load. In this study, we addressed these issues on 40 healthy control subjects using resting-state and task-driven [N-back working memory (WM) task] functional magnetic resonance imaging data collected in the same session. Using amplitude of low-frequency fluctuation (ALFF) as an index of intrinsic resting-state activity, we found that ALFF in the middle frontal gyrus and inferior/superior parietal lobules was positively correlated with WM task-evoked activation, while ALFF in the medial prefrontal cortex, posterior cingulate cortex, superior frontal gyrus, superior temporal gyrus, and fusiform gyrus was negatively correlated with WM task-evoked deactivation. Further, the relationship between the intrinsic resting-state activity and task-evoked activation in lateral/superior frontal gyri, inferior/superior parietal lobules, superior temporal gyrus, and midline regions was stronger at higher WM task loads. In addition, both resting-state activity and the task-evoked activation in the superior parietal lobule/precuneus were significantly correlated with the WM task behavioral performance, explaining similar portions of intersubject performance variance. Together, these findings suggest that intrinsic resting-state activity facilitates or is permissive of specific brain circuit engagement to perform a cognitive task, and that resting activity can predict subsequent task-evoked brain responses and behavioral performance. Copyright © 2012 Wiley Periodicals, Inc.
Oh, Hyuk; Gentili, Rodolphe J; Reggia, James A; Contreras-Vidal, José L
2011-01-01
It has been suggested that the human mirror neuron system can facilitate learning by imitation through coupling of observation and action execution. During imitation of observed actions, the functional relationship between and within the inferior frontal cortex, the posterior parietal cortex, and the superior temporal sulcus can be modeled within the internal model framework. The proposed biologically plausible mirror neuron system model extends currently available models by explicitly modeling the intraparietal sulcus and the superior parietal lobule in implementing the function of a frame of reference transformation during imitation. Moreover, the model posits the ventral premotor cortex as performing an inverse computation. The simulations reveal that: i) the transformation system can learn and represent the changes in extrinsic to intrinsic coordinates when an imitator observes a demonstrator; ii) the inverse model of the imitator's frontal mirror neuron system can be trained to provide the motor plans for the imitated actions.
Cortical thickness and prosocial behavior in school-age children: A population-based MRI study.
Thijssen, Sandra; Wildeboer, Andrea; Muetzel, Ryan L; Bakermans-Kranenburg, Marian J; El Marroun, Hanan; Hofman, Albert; Jaddoe, Vincent W V; van der Lugt, Aad; Verhulst, Frank C; Tiemeier, Henning; van IJzendoorn, Marinus H; White, Tonya
2015-01-01
Prosocial behavior plays an important role in establishing and maintaining relationships with others and thus may have important developmental implications. This study examines the association between cortical thickness and prosocial behavior in a population-based sample of 6- to 9-year-old children. The present study was embedded within the Generation R Study. Magnetic resonance scans were acquired from 464 children whose parents had completed the prosocial scale of the Strengths and Difficulties Questionnaire. To study the association between cortical thickness and prosocial behavior, we performed whole-brain surface-based analyses. Prosocial behavior was related to a thicker cortex in a cluster that covers part of the left superior frontal and rostral middle frontal cortex (p < .001). Gender moderated the association between prosocial behavior and cortical thickness in a cluster including the right rostral middle frontal and superior frontal cortex (p < .001) as well as in a cluster covering the right superior parietal cortex, cuneus, and precuneus (p < .001). Our results suggest that prosocial behavior is associated with cortical thickness in regions related to theory of mind (superior frontal cortex, rostral middle frontal cortex cuneus, and precuneus) and inhibitory control (superior frontal and rostral middle frontal cortex).
Configural processing of biological motion in human superior temporal sulcus.
Thompson, James C; Clarke, Michele; Stewart, Tennille; Puce, Aina
2005-09-28
Observers recognize subtle changes in the movements of others with relative ease. However, tracking a walking human is computationally difficult, because the degree of articulation is high and scene changes can temporarily occlude parts of the moving figure. Here, we used functional magnetic resonance imaging to test the hypothesis that the superior temporal sulcus (STS) uses form cues to aid biological movement tracking. The same 10 healthy subjects detected human gait changes in a walking mannequin in two experiments. In experiment 1, we tested the effects of configural change and occlusion. The walking mannequin was presented intact or with the limbs and torso apart in visual space and either unoccluded or occluded by a set of vertical white bars. In experiment 2, the effects of inversion and occlusion were investigated, using an intact walking mannequin. Subjects reliably detected gait changes under all stimulus conditions. The intact walker produced significantly greater activation in the STS, inferior temporal sulcus (ITS), and inferior parietal cortex relative to the apart walker, regardless of occlusion. Interestingly, STS and ITS activation to the upright versus inverted walker was not significantly different. In contrast, superior parietal lobule and parieto-occipital cortex showed greater activation to the apart relative to intact walker. In the absence of an intact body configuration, parietal cortex activity increased to the independent movements of the limbs and torso. Our data suggest that the STS may use a body configuration-based model to process biological movement, thus forming a representation that survives partial occlusion.
ERIC Educational Resources Information Center
Hildebrandt, Helmut; Fink, Frauke; Eling, Paul; Stuke, Heiner; Klein, Jan; Lentschig, Markus; Kastrup, Andreas; Thiel, Christiane; Breckel, Thomas
2013-01-01
Introduction: Adaptation to changing situations can be mediated by two strategies: (1) Evaluation of a "response" and (2) Evaluation of "outcome" values in relation to objects. Previous studies indicate that response shifting is associated with a network comprising the left frontal cortex and parietal cortex connected by the superior longitudinal…
Lobier, Muriel; Peyrin, Carole; Le Bas, Jean-François; Valdois, Sylviane
2012-07-01
The visual front-end of reading is most often associated with orthographic processing. The left ventral occipito-temporal cortex seems to be preferentially tuned for letter string and word processing. In contrast, little is known of the mechanisms responsible for pre-orthographic processing: the processing of character strings regardless of character type. While the superior parietal lobule has been shown to be involved in multiple letter processing, further data is necessary to extend these results to non-letter characters. The purpose of this study is to identify the neural correlates of pre-orthographic character string processing independently of character type. Fourteen skilled adult readers carried out multiple and single element visual categorization tasks with alphanumeric (AN) and non-alphanumeric (nAN) characters under fMRI. The role of parietal cortex in multiple element processing was further probed with a priori defined anatomical regions of interest (ROIs). Participants activated posterior parietal cortex more strongly for multiple than single element processing. ROI analyses showed that bilateral SPL/BA7 was more strongly activated for multiple than single element processing, regardless of character type. In contrast, no multiple element specific activity was found in inferior parietal lobules. These results suggests that parietal mechanisms are involved in pre-orthographic character string processing. We argue that in general, attentional mechanisms are involved in visual word recognition, as an early step of word visual analysis. Copyright © 2012 Elsevier Ltd. All rights reserved.
Macuga, Kristen L; Frey, Scott H
2014-05-15
Damage to the superior and/or inferior parietal lobules (SPL, IPL) (Sirigu et al., 1996) or cerebellum (Grealy and Lee, 2011) can selectively disrupt motor imagery, motivating the hypothesis that these regions participate in predictive (i.e., feedforward) control. If so, then the SPL, IPL, and cerebellum should show greater activity as the demands on feedforward control increase from visually-guided execution (closed-loop) to execution without visual feedback (open-loop) to motor imagery. Using fMRI and a Fitts' reciprocal aiming task with tools directed at targets in far space, we found that the SPL and cerebellum exhibited greater activity during closed-loop control. Conversely, open-loop and imagery conditions were associated with increased activity within the IPL and prefrontal areas. These results are consistent with a superior-to-inferior gradient in the representation of feedback-to-feedforward control within the posterior parietal cortex. Additionally, the anterior SPL displayed greater activity when aiming movements were performed with a stick vs. laser pointer. This may suggest that it is involved in the remapping of far into near (reachable) space (Maravita and Iriki, 2004), or in distalization of the end-effector from hand to stick (Arbib et al., 2009). Copyright © 2014 Elsevier Inc. All rights reserved.
fMRI characterization of visual working memory recognition.
Rahm, Benjamin; Kaiser, Jochen; Unterrainer, Josef M; Simon, Juliane; Bledowski, Christoph
2014-04-15
Encoding and maintenance of information in visual working memory have been extensively studied, highlighting the crucial and capacity-limiting role of fronto-parietal regions. In contrast, the neural basis of recognition in visual working memory has remained largely unspecified. Cognitive models suggest that recognition relies on a matching process that compares sensory information with the mental representations held in memory. To characterize the neural basis of recognition we varied both the need for recognition and the degree of similarity between the probe item and the memory contents, while independently manipulating memory load to produce load-related fronto-parietal activations. fMRI revealed a fractionation of working memory functions across four distributed networks. First, fronto-parietal regions were activated independent of the need for recognition. Second, anterior parts of load-related parietal regions contributed to recognition but their activations were independent of the difficulty of matching in terms of sample-probe similarity. These results argue against a key role of the fronto-parietal attention network in recognition. Rather the third group of regions including bilateral temporo-parietal junction, posterior cingulate cortex and superior frontal sulcus reflected demands on matching both in terms of sample-probe-similarity and the number of items to be compared. Also, fourth, bilateral motor regions and right superior parietal cortex showed higher activation when matching provided clear evidence for a decision. Together, the segregation between the well-known fronto-parietal activations attributed to attentional operations in working memory from those regions involved in matching supports the theoretical view of separable attentional and mnemonic contributions to working memory. Yet, the close theoretical and empirical correspondence to perceptual decision making may call for an explicit consideration of decision making mechanisms in conceptions of working memory. Copyright © 2013 Elsevier Inc. All rights reserved.
Yoo, Jae Hyun; Kim, Dohyun; Choi, Jeewook; Jeong, Bumseok
2018-04-01
Methylphenidate is a first-line therapeutic option for treating attention-deficit/hyperactivity disorder (ADHD); however, elicited changes on resting-state functional networks (RSFNs) are not well understood. This study investigated the treatment effect of methylphenidate using a variety of RSFN analyses and explored the collaborative influences of treatment-relevant RSFN changes in children with ADHD. Resting-state functional magnetic resonance imaging was acquired from 20 medication-naïve ADHD children before methylphenidate treatment and twelve weeks later. Changes in large-scale functional connectivity were defined using independent component analysis with dual regression and graph theoretical analysis. The amplitude of low frequency fluctuation (ALFF) was measured to investigate local spontaneous activity alteration. Finally, significant findings were recruited to random forest regression to identify the feature subset that best explains symptom improvement. After twelve weeks of methylphenidate administration, large-scale connectivity was increased between the left fronto-parietal RSFN and the left insula cortex and the right fronto-parietal and the brainstem, while the clustering coefficient (CC) of the global network and nodes, the left fronto-parietal, cerebellum, and occipital pole-visual network, were decreased. ALFF was increased in the bilateral superior parietal cortex and decreased in the right inferior fronto-temporal area. The subset of the local and large-scale RSFN changes, including widespread ALFF changes, the CC of the global network and the cerebellum, could explain the 27.1% variance of the ADHD Rating Scale and 13.72% of the Conner's Parent Rating Scale. Our multivariate approach suggests that the neural mechanism of methylphenidate treatment could be associated with alteration of spontaneous activity in the superior parietal cortex or widespread brain regions as well as functional segregation of the large-scale intrinsic functional network.
Delli Pizzi, Stefano; Franciotti, Raffaella; Tartaro, Armando; Caulo, Massimo; Thomas, Astrid; Onofrj, Marco; Bonanni, Laura
2014-01-01
Visual hallucinations (VH) represent one of the core features in discriminating dementia with Lewy bodies (DLB) from Alzheimer’s Disease (AD). Previous studies reported that in DLB patients functional alterations of the parieto-occipital regions were correlated with the presence of VH. The aim of our study was to assess whether morphological changes in specific cortical regions of DLB could be related to the presence and severity of VH. We performed a cortical thickness analysis on magnetic resonance imaging data in a cohort including 18 DLB patients, 15 AD patients and 14 healthy control subjects. Relatively to DLB group, correlation analysis between the cortical thickness and the Neuropsychiatric Inventory (NPI) hallucination item scores was also performed. Cortical thickness was reduced bilaterally in DLB compared to controls in the pericalcarine and lingual gyri, cuneus, precuneus, superior parietal gyrus. Cortical thinning was found bilaterally in AD compared to controls in temporal cortex including the superior and middle temporal gyrus, part of inferior temporal cortex, temporal pole and insula. Inferior parietal and supramarginal gyri were also affected bilaterally in AD as compared to controls. The comparison between DLB and AD evidenced cortical thinning in DLB group in the right posterior regions including superior parietal gyrus, precuneus, cuneus, pericalcarine and lingual gyri. Furthermore, the correlation analysis between cortical thickness and NPI hallucination item scores showed that the structural alteration in the dorsal visual regions including superior parietal gyrus and precuneus closely correlated with the occurrence and severity of VH. We suggest that structural changes in key regions of the dorsal visual network may play a crucial role in the physiopathology of VH in DLB patients. PMID:24466177
Xiu, Daiming; Geiger, Maximilian J; Klaver, Peter
2015-01-01
This study investigated the role of bottom-up and top-down neural mechanisms in the processing of emotional face expression during memory formation. Functional brain imaging data was acquired during incidental learning of positive ("happy"), neutral and negative ("angry" or "fearful") faces. Dynamic Causal Modeling (DCM) was applied on the functional magnetic resonance imaging (fMRI) data to characterize effective connectivity within a brain network involving face perception (inferior occipital gyrus and fusiform gyrus) and successful memory formation related areas (hippocampus, superior parietal lobule, amygdala, and orbitofrontal cortex). The bottom-up models assumed processing of emotional face expression along feed forward pathways to the orbitofrontal cortex. The top-down models assumed that the orbitofrontal cortex processed emotional valence and mediated connections to the hippocampus. A subsequent recognition memory test showed an effect of negative emotion on the response bias, but not on memory performance. Our DCM findings showed that the bottom-up model family of effective connectivity best explained the data across all subjects and specified that emotion affected most bottom-up connections to the orbitofrontal cortex, especially from the occipital visual cortex and superior parietal lobule. Of those pathways to the orbitofrontal cortex the connection from the inferior occipital gyrus correlated with memory performance independently of valence. We suggest that bottom-up neural mechanisms support effects of emotional face expression and memory formation in a parallel and partially overlapping fashion.
Qian, Shaowen; Li, Min; Li, Guoying; Liu, Kai; Li, Bo; Jiang, Qingjun; Li, Li; Yang, Zhen; Sun, Gang
2015-03-01
This study was to investigate the potential enhancing effect of heat stress on mental fatigue progression during sustained attention task using arterial spin labeling (ASL) imaging. Twenty participants underwent two thermal exposures in an environmental chamber: normothermic (NT) condition (25°C, 1h) and hyperthermic (HT) condition (50°C, 1h). After thermal exposure, they performed a twenty-minute psychomotor vigilance test (PVT) in the scanner. Behavioral analysis revealed progressively increasing subjective fatigue ratings and reaction time as PVT progressed. Moreover, heat stress caused worse performance. Perfusion imaging analyses showed significant resting-state cerebral blood flow (CBF) alterations after heat exposure. Specifically, increased CBF mainly gathered in thalamic-brainstem area while decreased CBF predominantly located in fronto-parietal areas, anterior cingulate cortex, posterior cingulate cortex, and medial frontal cortex. More importantly, diverse CBF distributions and trend of changes between both conditions were observed as the fatigue level progressed during subsequent PVT task. Specifically, higher CBF and enhanced rising trend were presented in superior parietal lobe, precuneus, posterior cingulate cortex and anterior cingulate cortex, while lower CBF or inhibited rising trend was found in dorsolateral frontal cortex, medial frontal cortex, inferior parietal lobe and thalamic-brainstem areas. Furthermore, the decrease of post-heat resting-state CBF in fronto-parietal cortex was correlated with subsequent slower reaction time, suggesting prior disturbed resting-state CBF might be indicator of performance potential and fatigue level in following task. These findings may provide proof for such a view: heat stress has a potential fatigue-enhancing effect when individual is performing highly cognition-demanding attention task. Copyright © 2014 Elsevier B.V. All rights reserved.
Libero, Lauren E; Stevens, Carl E; Kana, Rajesh K
2014-10-01
The ability to interpret others' body language is a vital skill that helps us infer their thoughts and emotions. However, individuals with autism spectrum disorder (ASD) have been found to have difficulty in understanding the meaning of people's body language, perhaps leading to an overarching deficit in processing emotions. The current fMRI study investigates the functional connectivity underlying emotion and action judgment in the context of processing body language in high-functioning adolescents and young adults with autism, using an independent components analysis (ICA) of the fMRI time series. While there were no reliable group differences in brain activity, the ICA revealed significant involvement of occipital and parietal regions in processing body actions; and inferior frontal gyrus, superior medial prefrontal cortex, and occipital cortex in body expressions of emotions. In a between-group analysis, participants with autism, relative to typical controls, demonstrated significantly reduced temporal coherence in left ventral premotor cortex and right superior parietal lobule while processing emotions. Participants with ASD, on the other hand, showed increased temporal coherence in left fusiform gyrus while inferring emotions from body postures. Finally, a positive predictive relationship was found between empathizing ability and the brain areas underlying emotion processing in ASD participants. These results underscore the differential role of frontal and parietal brain regions in processing emotional body language in autism. Copyright © 2014 Wiley Periodicals, Inc.
Lateral Prefrontal Cortex Subregions Make Dissociable Contributions during Fluid Reasoning
Thompson, Russell; Duncan, John; Owen, Adrian M.
2011-01-01
Reasoning is a key component of adaptable “executive” behavior and is known to depend on a network of frontal and parietal brain regions. However, the mechanisms by which this network supports reasoning and adaptable behavior remain poorly defined. Here, we examine the relationship between reasoning, executive control, and frontoparietal function in a series of nonverbal reasoning experiments. Our results demonstrate that, in accordance with previous studies, a network of frontal and parietal brain regions is recruited during reasoning. Our results also reveal that this network can be fractionated according to how different subregions respond when distinct reasoning demands are manipulated. While increased rule complexity modulates activity within a right lateralized network including the middle frontal gyrus and the superior parietal cortex, analogical reasoning demand—or the requirement to remap rules on to novel features—recruits the left inferior rostrolateral prefrontal cortex and the lateral occipital complex. In contrast, the posterior extent of the inferior frontal gyrus, associated with simpler executive demands, is not differentially sensitive to rule complexity or analogical demand. These findings accord well with the hypothesis that different reasoning demands are supported by different frontal and parietal subregions. PMID:20483908
Dissociation and Convergence of the Dorsal and Ventral Visual Streams in the Human Prefrontal Cortex
Takahashi, Emi; Ohki, Kenichi; Kim, Dae-Shik
2012-01-01
Visual information is largely processed through two pathways in the primate brain: an object pathway from the primary visual cortex to the temporal cortex (ventral stream) and a spatial pathway to the parietal cortex (dorsal stream). Whether and to what extent dissociation exists in the human prefrontal cortex (PFC) has long been debated. We examined anatomical connections from functionally defined areas in the temporal and parietal cortices to the PFC, using noninvasive functional and diffusion-weighted magnetic resonance imaging. The right inferior frontal gyrus (IFG) received converging input from both streams, while the right superior frontal gyrus received input only from the dorsal stream. Interstream functional connectivity to the IFG was dynamically recruited only when both object and spatial information were processed. These results suggest that the human PFC receives dissociated and converging visual pathways, and that the right IFG region serves as an integrator of the two types of information. PMID:23063444
Neural substrates of visuomotor learning based on improved feedback control and prediction
Grafton, Scott T.; Schmitt, Paul; Horn, John Van; Diedrichsen, Jörn
2008-01-01
Motor skills emerge from learning feedforward commands as well as improvements in feedback control. These two components of learning were investigated in a compensatory visuomotor tracking task on a trial-by-trial basis. Between trial learning was characterized with a state-space model to provide smoothed estimates of feedforward and feedback learning, separable from random fluctuations in motor performance and error. The resultant parameters were correlated with brain activity using magnetic resonance imaging. Learning related to the generation of a feedforward command correlated with activity in dorsal premotor cortex, inferior parietal lobule, supplementary motor area and cingulate motor area, supporting a role of these areas in retrieving and executing a predictive motor command. Modulation of feedback control was associated with activity in bilateral posterior superior parietal lobule as well as right ventral premotor cortex. Performance error correlated with activity in a widespread cortical and subcortical network including bilateral parietal, premotor and rostral anterior cingulate cortex as well as the cerebellar cortex. Finally, trial-by-trial changes of kinematics, as measured by mean absolute hand acceleration, correlated with activity in motor cortex and anterior cerebellum. The results demonstrate that incremental, learning dependent changes can be modeled on a trial-by-trial basis and neural substrates for feedforward control of novel motor programs are localized to secondary motor areas. PMID:18032069
Mapping multisensory parietal face and body areas in humans.
Huang, Ruey-Song; Chen, Ching-fu; Tran, Alyssa T; Holstein, Katie L; Sereno, Martin I
2012-10-30
Detection and avoidance of impending obstacles is crucial to preventing head and body injuries in daily life. To safely avoid obstacles, locations of objects approaching the body surface are usually detected via the visual system and then used by the motor system to guide defensive movements. Mediating between visual input and motor output, the posterior parietal cortex plays an important role in integrating multisensory information in peripersonal space. We used functional MRI to map parietal areas that see and feel multisensory stimuli near or on the face and body. Tactile experiments using full-body air-puff stimulation suits revealed somatotopic areas of the face and multiple body parts forming a higher-level homunculus in the superior posterior parietal cortex. Visual experiments using wide-field looming stimuli revealed retinotopic maps that overlap with the parietal face and body areas in the postcentral sulcus at the most anterior border of the dorsal visual pathway. Starting at the parietal face area and moving medially and posteriorly into the lower-body areas, the median of visual polar-angle representations in these somatotopic areas gradually shifts from near the horizontal meridian into the lower visual field. These results suggest the parietal face and body areas fuse multisensory information in peripersonal space to guard an individual from head to toe.
Ciaramelli, Elisa; Grady, Cheryl L; Moscovitch, Morris
2008-01-01
Recent neuroimaging studies have implicated the posterior parietal cortex in episodic memory retrieval, but there is uncertainty about its specific role. Research in the attentional domain has shown that superior parietal lobe (SPL) regions along the intraparietal sulcus are implicated in the voluntary orienting of attention to relevant aspects of the environment, whereas inferior parietal lobe (IPL) regions at the temporo-parietal junction mediate the automatic allocation of attention to task-relevant information. Here we propose that the SPL and the IPL play conceptually similar roles in episodic memory retrieval. We hypothesize that the SPL allocates top-down attention to memory retrieval, whereas the IPL mediates the automatic, bottom-up attentional capture by retrieved memory contents. By reviewing the existing fMRI literature, we show that the posterior intraparietal sulcus of SPL is consistently active when the need for top-down assistance to memory retrieval is supposedly maximal, e.g., for memories retrieved with low vs. high confidence, for familiar vs. recollected memories, for recognition of high vs. low frequency words. On the other hand, the supramarginal gyrus of IPL is consistently active when the attentional capture by memory contents is supposedly maximal, i.e., for strong vs. weak memories, for vividly recollected vs. familiar memories, for memories retrieved with high vs. low confidence. We introduce a model of episodic memory retrieval that characterizes contributions of posterior parietal cortex.
Jorge, João; Figueiredo, Patrícia; Gruetter, Rolf; van der Zwaag, Wietske
2018-06-01
External stimuli and tasks often elicit negative BOLD responses in various brain regions, and growing experimental evidence supports that these phenomena are functionally meaningful. In this work, the high sensitivity available at 7T was explored to map and characterize both positive (PBRs) and negative BOLD responses (NBRs) to visual checkerboard stimulation, occurring in various brain regions within and beyond the visual cortex. Recently-proposed accelerated fMRI techniques were employed for data acquisition, and procedures for exclusion of large draining vein contributions, together with ICA-assisted denoising, were included in the analysis to improve response estimation. Besides the visual cortex, significant PBRs were found in the lateral geniculate nucleus and superior colliculus, as well as the pre-central sulcus; in these regions, response durations increased monotonically with stimulus duration, in tight covariation with the visual PBR duration. Significant NBRs were found in the visual cortex, auditory cortex, default-mode network (DMN) and superior parietal lobule; NBR durations also tended to increase with stimulus duration, but were significantly less sustained than the visual PBR, especially for the DMN and superior parietal lobule. Responses in visual and auditory cortex were further studied for checkerboard contrast dependence, and their amplitudes were found to increase monotonically with contrast, linearly correlated with the visual PBR amplitude. Overall, these findings suggest the presence of dynamic neuronal interactions across multiple brain regions, sensitive to stimulus intensity and duration, and demonstrate the richness of information obtainable when jointly mapping positive and negative BOLD responses at a whole-brain scale, with ultra-high field fMRI. © 2018 Wiley Periodicals, Inc.
Neural correlates of hemispheric dominance and ipsilaterality within the vestibular system.
Janzen, J; Schlindwein, P; Bense, S; Bauermann, T; Vucurevic, G; Stoeter, P; Dieterich, M
2008-10-01
Earlier functional imaging studies on the processing of vestibular information mainly focused on cortical activations due to stimulation of the horizontal semicircular canals in right-handers. Two factors were found to determine its processing in the temporo-parietal cortex: a dominance of the non-dominant hemisphere and an ipsilaterality of the neural pathways. In an investigation of the role of these factors in the vestibular otoliths, we used vestibular evoked myogenic potentials (VEMPs) in a fMRI study of monaural saccular-otolith stimulation. Our aim was to (1) analyze the hemispheric dominance for saccular-otolith information in healthy left-handers, (2) determine if there is a predominance of the ipsilateral saccular-otolith projection, and (3) evaluate the impact of both factors on the temporo-parieto-insular activation pattern. A block design with three stimulation and rest conditions was applied: (1) 102 dB-VEMP stimulation; (2) 65 dB-control-acoustic stimulation, (3) 102 dB-white-noise-control stimulation. After subtraction of acoustic side effects, bilateral activations were found in the posterior insula, the superior/middle/transverse temporal gyri, and the inferior parietal lobule. The distribution of the saccular-otolith activations was influenced by the two factors but with topographic disparity: whereas the inferior parts of the temporo-parietal cortex were mainly influenced by the ipsilaterality of the pathways, the upper parts reflected the dominance of the non-dominant hemisphere. This is in contrast to the processing of acoustic stimulation, which showed a predominance of the contralateral pathways. Our study proves the importance of the hemispheric preponderance also in left-handers, which is of relevance in the superior parts of the insula gyrus V, the inferior parietal lobule, and the superior temporal gyri.
Gooijers, Jolien; Beets, Iseult A M; Albouy, Genevieve; Beeckmans, Kurt; Michiels, Karla; Sunaert, Stefan; Swinnen, Stephan P
2016-09-01
Years following the insult, patients with traumatic brain injury often experience persistent motor control problems, including bimanual coordination deficits. Previous studies revealed that such deficits are related to brain structural white and grey matter abnormalities. Here, we assessed, for the first time, cerebral functional activation patterns during bimanual movement preparation and performance in patients with traumatic brain injury, using functional magnetic resonance imaging. Eighteen patients with moderate-to-severe traumatic brain injury (10 females; aged 26.3 years, standard deviation = 5.2; age range: 18.4-34.6 years) and 26 healthy young adults (15 females; aged 23.6 years, standard deviation = 3.8; age range: 19.5-33 years) performed a complex bimanual tracking task, divided into a preparation (2 s) and execution (9 s) phase, and executed either in the presence or absence of augmented visual feedback. Performance on the bimanual tracking task, expressed as the average target error, was impaired for patients as compared to controls (P < 0.001) and for trials in the absence as compared to the presence of augmented visual feedback (P < 0.001). At the cerebral level, movement preparation was characterized by reduced neural activation in the patient group relative to the control group in frontal (bilateral superior frontal gyrus, right dorsolateral prefrontal cortex), parietal (left inferior parietal lobe) and occipital (right striate and extrastriate visual cortex) areas (P's < 0.05). During the execution phase, however, the opposite pattern emerged, i.e. traumatic brain injury patients showed enhanced activations compared with controls in frontal (left dorsolateral prefrontal cortex, left lateral anterior prefrontal cortex, and left orbitofrontal cortex), parietal (bilateral inferior parietal lobe, bilateral superior parietal lobe, right precuneus, right primary somatosensory cortex), occipital (right striate and extrastriate visual cortices), and subcortical (left cerebellum crus II) areas (P's < 0.05). Moreover, a significant interaction effect between Feedback Condition and Group in the primary motor area (bilaterally) (P < 0.001), the cerebellum (left) (P < 0.001) and caudate (left) (P < 0.05), revealed that controls showed less overlap of activation patterns accompanying the two feedback conditions than patients with traumatic brain injury (i.e. decreased neural differentiation). In sum, our findings point towards poorer predictive control in traumatic brain injury patients in comparison to controls. Moreover, irrespective of the feedback condition, overactivations were observed in traumatically brain injured patients during movement execution, pointing to more controlled processing of motor task performance. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Cortical thickness and folding deficits in conduct-disordered adolescents
Hyatt, Christopher J.; Haney-Caron, Emily; Stevens, Michael C.
2012-01-01
Background Studies of pediatric conduct disorder (CD) have described frontal and temporal lobe structural abnormalities that parallel findings in antisocial adults. The purpose of this study was to examine previously unexplored cortical thickness and folding as markers for brain abnormalities in “pure CD”-diagnosed adolescents. Based on current fronto-temporal theories, we hypothesized that CD youth would have thinner cortex or less cortical folding in temporal and frontal lobes than control subjects. Methods We obtained T1-weighted brain structure images from n=24 control and n=19 CD participants aged 12–18 years, matched by overall gender and age. We measured group differences in cortical thickness and local gyrification index (regional cortical folding measure) using surface-based morphometry with clusterwise correction for multiple comparisons. Results CD participants, when compared with controls, showed both reduced cortical thickness and folding. Thinner cortex was located primarily in posterior brain regions, including left superior temporal and parietal lobes, temporoparietal junction and paracentral lobule, right superior temporal and parietal lobes, temporoparietal junction and precuneus. Folding deficits were located mainly in anterior brain regions and included left insula, ventro- and dorsomedial prefrontal, anterior cingulate and orbitofrontal cortices, temporal lobe, right superior frontal and parietal lobes and paracentral lobule. Conclusions Our findings generally agree with previous CD volumetric studies, but here show the unique contributions of cortical thickness and folding to gray matter reductions in pure CD in different brain regions. PMID:22209639
Self-development: integrating cognitive, socioemotional, and neuroimaging perspectives.
Pfeifer, Jennifer H; Peake, Shannon J
2012-01-01
This review integrates cognitive, socioemotional, and neuroimaging perspectives on self-development. Neural correlates of key processes implicated in personal and social identity are reported from studies of children, adolescents, and adults, including autobiographical memory, direct and reflected self-appraisals, and social exclusion. While cortical midline structures of medial prefrontal cortex and medial posterior parietal cortex are consistently identified in neuroimaging studies considering personal identity from a primarily cognitive perspective ("who am I?"), additional regions are implicated by studies considering personal and social identity from a more socioemotional perspective ("what do others think about me, where do I fit in?"), especially in child or adolescent samples. The involvement of these additional regions (including tempo-parietal junction and posterior superior temporal sulcus, temporal poles, anterior insula, ventral striatum, anterior cingulate cortex, middle cingulate cortex, and ventrolateral prefrontal cortex) suggests mentalizing, emotion, and emotion regulation are central to self-development. In addition, these regions appear to function atypically during personal and social identity tasks in autism and depression, exhibiting a broad pattern of hypoactivation and hyperactivation, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.
Modality Specific Cerebro-Cerebellar Activations in Verbal Working Memory: An fMRI Study
Kirschen, Matthew P.; Chen, S. H. Annabel; Desmond, John E.
2010-01-01
Verbal working memory (VWM) engages frontal and temporal/parietal circuits subserving the phonological loop, as well as, superior and inferior cerebellar regions which have projections from these neocortical areas. Different cerebro-cerebellar circuits may be engaged for integrating aurally- and visually-presented information for VWM. The present fMRI study investigated load (2, 4, or 6 letters) and modality (auditory and visual) dependent cerebro-cerebellar VWM activation using a Sternberg task. FMRI revealed modality-independent activations in left frontal (BA 6/9/44), insular, cingulate (BA 32), and bilateral inferior parietal/supramarginal (BA 40) regions, as well as in bilateral superior (HVI) and right inferior (HVIII) cerebellar regions. Visual presentation evoked prominent activations in right superior (HVI/CrusI) cerebellum, bilateral occipital (BA19) and left parietal (BA7/40) cortex while auditory presentation showed robust activations predominately in bilateral temporal regions (BA21/22). In the cerebellum, we noted a visual to auditory emphasis of function progressing from superior to inferior and from lateral to medial regions. These results extend our previous findings of fMRI activation in cerebro-cerebellar networks during VWM, and demonstrate both modality dependent commonalities and differences in activations with increasing memory load. PMID:20714061
Modality specific cerebro-cerebellar activations in verbal working memory: an fMRI study.
Kirschen, Matthew P; Chen, S H Annabel; Desmond, John E
2010-01-01
Verbal working memory (VWM) engages frontal and temporal/parietal circuits subserving the phonological loop, as well as, superior and inferior cerebellar regions which have projections from these neocortical areas. Different cerebro-cerebellar circuits may be engaged for integrating aurally- and visually-presented information for VWM. The present fMRI study investigated load (2, 4, or 6 letters) and modality (auditory and visual) dependent cerebro-cerebellar VWM activation using a Sternberg task. FMRI revealed modality-independent activations in left frontal (BA 6/9/44), insular, cingulate (BA 32), and bilateral inferior parietal/supramarginal (BA 40) regions, as well as in bilateral superior (HVI) and right inferior (HVIII) cerebellar regions. Visual presentation evoked prominent activations in right superior (HVI/CrusI) cerebellum, bilateral occipital (BA19) and left parietal (BA7/40) cortex while auditory presentation showed robust activations predominantly in bilateral temporal regions (BA21/22). In the cerebellum, we noted a visual to auditory emphasis of function progressing from superior to inferior and from lateral to medial regions. These results extend our previous findings of fMRI activation in cerebro-cerebellar networks during VWM, and demonstrate both modality dependent commonalities and differences in activations with increasing memory load.
A review on functional and structural brain connectivity in numerical cognition
Moeller, Korbinian; Willmes, Klaus; Klein, Elise
2015-01-01
Only recently has the complex anatomo-functional system underlying numerical cognition become accessible to evaluation in the living brain. We identified 27 studies investigating brain connectivity in numerical cognition. Despite considerable heterogeneity regarding methodological approaches, populations investigated, and assessment procedures implemented, the results provided largely converging evidence regarding the underlying brain connectivity involved in numerical cognition. Analyses of both functional/effective as well as structural connectivity have consistently corroborated the assumption that numerical cognition is subserved by a fronto-parietal network including (intra)parietal as well as (pre)frontal cortex sites. Evaluation of structural connectivity has indicated the involvement of fronto-parietal association fibers encompassing the superior longitudinal fasciculus dorsally and the external capsule/extreme capsule system ventrally. Additionally, commissural fibers seem to connect the bilateral intraparietal sulci when number magnitude information is processed. Finally, the identification of projection fibers such as the superior corona radiata indicates connections between cortex and basal ganglia as well as the thalamus in numerical cognition. Studies on functional/effective connectivity further indicated a specific role of the hippocampus. These specifications of brain connectivity augment the triple-code model of number processing and calculation with respect to how gray matter areas associated with specific number-related representations may work together. PMID:26029075
Increased Cortical Thickness in Professional On-Line Gamers
Hyun, Gi Jung; Shin, Yong Wook; Kim, Bung-Nyun; Cheong, Jae Hoon; Jin, Seong Nam
2013-01-01
Objective The bulk of recent studies have tested whether video games change the brain in terms of activity and cortical volume. However, such studies are limited by several factors including cross-sectional comparisons, co-morbidity, and short-term follow-up periods. In the present study, we hypothesized that cognitive flexibility and the volume of brain cortex would be correlated with the career length of on-line pro-gamers. Methods High-resolution magnetic resonance scans were acquired in twenty-three pro-gamers recruited from StarCraft pro-game teams. We measured cortical thickness in each individual using FreeSurfer and the cortical thickness was correlated with the career length and the performance of the pro-gamers. Results Career length was positively correlated with cortical thickness in three brain regions: right superior frontal gyrus, right superior parietal gyrus, and right precentral gyrus. Additionally, increased cortical thickness in the prefrontal cortex was correlated with winning rates of the pro-game league. Increased cortical thickness in the prefrontal and parietal cortices was also associated with higher performance of Wisconsin Card Sorting Test. Conclusion Our results suggest that in individuals without pathologic conditions, regular, long-term playing of on-line games is associated with volume changes in the prefrontal and parietal cortices, which are associated with cognitive flexibility. PMID:24474988
Wright, Hazel; Li, Xiaoyun; Fallon, Nicholas B; Crookall, Rebecca; Giesbrecht, Timo; Thomas, Anna; Halford, Jason C G; Harrold, Joanne; Stancak, Andrej
2016-05-01
The insula cortex and hypothalamus are implicated in eating behaviour, and contain receptor sites for peptides and hormones controlling energy balance. The insula encompasses multi-functional subregions, which display differential anatomical and functional connectivities with the rest of the brain. This study aimed to analyse the effect of fasting and satiation on the functional connectivity profiles of left and right anterior, middle, and posterior insula, and left and right hypothalamus. It was hypothesized that the profiles would be altered alongside changes in homeostatic energy balance. Nineteen healthy participants underwent two 7-min resting state functional magnetic resonance imaging scans, one when fasted and one when satiated. Functional connectivity between the left posterior insula and cerebellum/superior frontal gyrus, and between left hypothalamus and inferior frontal gyrus was stronger during fasting. Functional connectivity between the right middle insula and default mode structures (left and right posterior parietal cortex, cingulate cortex), and between right hypothalamus and superior parietal cortex was stronger during satiation. Differences in blood glucose levels between the scans accounted for several of the altered functional connectivities. The insula and hypothalamus appear to form a homeostatic energy balance network related to cognitive control of eating; prompting eating and preventing overeating when energy is depleted, and ending feeding or transferring attention away from food upon satiation. This study provides evidence of a lateralized dissociation of neural responses to energy modulations. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
2012-10-01
system, which includes the retina, lateral geniculate nucleus, striate cortex, superior colliculus, parietal cortex, frontal eye fields... body penetrating the brain, forces generated from events such as a blast or explosion, or other forces yet to be defined. Consistent with the...and loss of productivity (47-57%; Tanielian & Jaycox, 2008). With advances in modern medicine and neuroimaging, more Service Members and civilians
Lomber, Stephen G; Payne, Bertram R; Hilgetag, Claus C; Rushmore, JarrettR
2002-02-01
A contralateral hemineglect of the visual field can be induced by unilateral cooling deactivation of posterior middle suprasylvian (pMS) sulcal cortex of the posterior parietal region, and this neglect can be reversed by additional cooling deactivation of pMS cortex in the opposite hemisphere. The purpose of the present study was to test whether an enduring hemianopia induced by removal of all contiguous visual cortical areas of one hemisphere could be reversed by local cooling of pMS cortex in the opposite hemisphere. Two cats sustained large unilateral ablations of the contiguous visual areas, and cooling loops were placed in the pMS sulcus, and in contact with adjacent area 7 or posterior ectosylvian (PE) cortex of the opposite hemisphere. In both instances cooling of pMS cortex, but neither area 7 nor PE, restored a virtually normal level of orienting performance to stimuli presented anywhere in the previously hemianopic field. The reversal was highly sensitive to the extent of cooling deactivation. In a third cat, cooling deactivation of the superficial layers of the contralateral superior colliculus also restored orienting performance to a cortical ablation-induced hemianopia. This reversal was graded from center-to-periphery in a temperature-dependent manner. Neither the cortical ablation nor any of the cooling deactivations had any impact on an auditory detection and orienting task. The deactivations were localized and confirmed by reduced uptake of radiolabeled 2-deoxyglucose to be limited to the immediate vicinity of each cooling loop. The results are discussed in terms of excitation and disinhibition of visual circuits.
NASA Technical Reports Server (NTRS)
Seidler, R. D.; Mulavara, A. P.; Koppelmans, V.; Cassady, K.; Yuan, P.; Kofman, I. S.; De Dios, Y. E.; Riascos-Castaneda, R. F.; Wood, S. J.; Bloomberg, J. J.
2017-01-01
We have recently completed a long duration head down tilt bed rest (HDBR) study in which we performed structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations in a spaceflight analog environment. We are also collecting the same measures in crewmembers prior to and following a six month International Space Station mission. We will present data demonstrating that bed rest resulted in functional mobility and balance deterioration with recovery post-HDBR. We observed numerous changes in brain structure, function, and connectivity relative to a control group which were associated with pre to post bed rest changes in sensorimotor function. For example, gray matter volume (GMv) increased in posterior parietal areas and decreased in frontal regions. GMv increases largely overlapped with fluid decreases and vice versa. Larger increases in precentral gyrus (M1)/ postcentral gyrus (S1+2) GMv and fluid decreases were associated with smaller balance decrements. Vestibular activation in the bilateral insular cortex increased with bed rest and subsequently recovered. Larger increases in vestibular activation in multiple brain regions were associated with greater decrements in balance and mobility. We found connectivity increases between left M1 with right S1+2 and the superior parietal lobule, and right vestibular cortex with the cerebellum. Decreases were observed between right Lobule VIII with right S1+2 and the supramarginal gyrus, right posterior parietal cortex (PPC) with occipital regions, and the right superior posterior fissure with right Crus I and II. Connectivity strength between left M1 and right S1+2/superior parietal lobule increased the most in individuals that exhibited the least balance impairments. In sum, we observed HDBR-related changes in measures of brain structure, function, and network connectivity, which correlated with indices of sensorimotor function. Recovery was observed post HDBR but remained incomplete at 12 days post-HDBR. Preliminary findings from our parallel ongoing flight study will be compared and contrasted with bed rest results during this presentation.
Cultural differences in human brain activity: a quantitative meta-analysis.
Han, Shihui; Ma, Yina
2014-10-01
Psychologists have been trying to understand differences in cognition and behavior between East Asian and Western cultures within a single cognitive framework such as holistic versus analytic or interdependent versus independent processes. However, it remains unclear whether cultural differences in multiple psychological processes correspond to the same or different neural networks. We conducted a quantitative meta-analysis of 35 functional MRI studies to examine cultural differences in brain activity engaged in social and non-social processes. We showed that social cognitive processes are characterized by stronger activity in the dorsal medial prefrontal cortex, lateral frontal cortex and temporoparietal junction in East Asians but stronger activity in the anterior cingulate, ventral medial prefrontal cortex and bilateral insula in Westerners. Social affective processes are associated with stronger activity in the right dorsal lateral frontal cortex in East Asians but greater activity in the left insula and right temporal pole in Westerners. Non-social processes induce stronger activity in the left inferior parietal cortex, left middle occipital and left superior parietal cortex in East Asians but greater activations in the right lingual gyrus, right inferior parietal cortex and precuneus in Westerners. The results suggest that cultural differences in social and non-social processes are mediated by distinct neural networks. Moreover, East Asian cultures are associated with increased neural activity in the brain regions related to inference of others' mind and emotion regulation whereas Western cultures are associated with enhanced neural activity in the brain areas related to self-relevance encoding and emotional responses during social cognitive/affective processes. Copyright © 2014 Elsevier Inc. All rights reserved.
Yang, Jiajia; Kitada, Ryo; Kochiyama, Takanori; Yu, Yinghua; Makita, Kai; Araki, Yuta; Wu, Jinglong; Sadato, Norihiro
2017-01-01
Humans are able to judge the speed of an object’s motion by touch. Research has suggested that tactile judgment of speed is influenced by physical properties of the moving object, though the neural mechanisms underlying this process remain poorly understood. In the present study, functional magnetic resonance imaging was used to investigate brain networks that may be involved in tactile speed classification and how such networks may be affected by an object’s texture. Participants were asked to classify the speed of 2-D raised dot patterns passing under their right middle finger. Activity in the parietal operculum, insula, and inferior and superior frontal gyri was positively related to the motion speed of dot patterns. Activity in the postcentral gyrus and superior parietal lobule was sensitive to dot periodicity. Psycho-physiological interaction (PPI) analysis revealed that dot periodicity modulated functional connectivity between the parietal operculum (related to speed) and postcentral gyrus (related to dot periodicity). These results suggest that texture-sensitive activity in the primary somatosensory cortex and superior parietal lobule influences brain networks associated with tactually-extracted motion speed. Such effects may be related to the influence of surface texture on tactile speed judgment. PMID:28145505
Voxel-based lesion-symptom mapping of stroke lesions underlying somatosensory deficits
Meyer, Sarah; Kessner, Simon S.; Cheng, Bastian; Bönstrup, Marlene; Schulz, Robert; Hummel, Friedhelm C.; De Bruyn, Nele; Peeters, Andre; Van Pesch, Vincent; Duprez, Thierry; Sunaert, Stefan; Schrooten, Maarten; Feys, Hilde; Gerloff, Christian; Thomalla, Götz; Thijs, Vincent; Verheyden, Geert
2015-01-01
The aim of this study was to investigate the relationship between stroke lesion location and the resulting somatosensory deficit. We studied exteroceptive and proprioceptive somatosensory symptoms and stroke lesions in 38 patients with first-ever acute stroke. The Erasmus modified Nottingham Sensory Assessment was used to clinically evaluate somatosensory functioning in the arm and hand within the first week after stroke onset. Additionally, more objective measures such as the perceptual threshold of touch and somatosensory evoked potentials were recorded. Non-parametric voxel-based lesion-symptom mapping was performed to investigate lesion contribution to different somatosensory deficits in the upper limb. Additionally, structural connectivity of brain areas that demonstrated the strongest association with somatosensory symptoms was determined, using probabilistic fiber tracking based on diffusion tensor imaging data from a healthy age-matched sample. Voxels with a significant association to somatosensory deficits were clustered in two core brain regions: the central parietal white matter, also referred to as the sensory component of the superior thalamic radiation, and the parietal operculum close to the insular cortex, representing the secondary somatosensory cortex. Our objective recordings confirmed findings from clinical assessments. Probabilistic tracking connected the first region to thalamus, internal capsule, brain stem, postcentral gyrus, cerebellum, and frontal pathways, while the second region demonstrated structural connections to thalamus, insular and primary somatosensory cortex. This study reveals that stroke lesions in the sensory fibers of the superior thalamocortical radiation and the parietal operculum are significantly associated with multiple exteroceptive and proprioceptive deficits in the arm and hand. PMID:26900565
Cerebellar-Induced Apraxic Agraphia: A Review and Three New Cases
ERIC Educational Resources Information Center
De Smet, Hyo Jung; Engelborghs, Sebastiaan; Paquier, Philippe F.; De Deyn, Peter P.; Marien, Peter
2011-01-01
Apraxic agraphia is a writing disorder due to a loss or lack of access to motor engrams that program the movements necessary to produce letters. Clinical and functional neuroimaging studies have demonstrated that the neural network responsible for writing includes the superior parietal region and the dorsolateral and medial premotor cortex. Recent…
Tanaka, Satoshi; Seki, Keiko; Hanakawa, Takashi; Harada, Madoka; Sugawara, Sho K; Sadato, Norihiro; Watanabe, Katsumi; Honda, Manabu
2012-01-01
The abacus, a traditional physical calculation device, is still widely used in Asian countries. Previous behavioral work has shown that skilled abacus users perform rapid and precise mental arithmetic by manipulating a mental representation of an abacus, which is based on visual imagery. However, its neurophysiological basis remains unclear. Here, we report the case of a patient who was a good abacus user, but transiently lost her "mental abacus" and superior arithmetic performance after a stroke owing to a right hemispheric lesion including the dorsal premotor cortex (PMd) and inferior parietal lobule (IPL). Functional magnetic resonance imaging experiments were conducted 6 and 13 months after her stroke. In the mental calculation task, her brain activity was shifted from the language-related areas, including Broca's area and the left dorsolateral prefrontal and IPLs, to the visuospatial-related brain areas including the left superior parietal lobule (SPL), according to the recovery of her arithmetic abilities. In the digit memory task, activities in the bilateral SPL, and right visual association cortex were also observed after recovery. The shift of brain activities was consistent with her subjective report that she was able to shift the calculation strategy from linguistic to visuospatial as her mental abacus became stable again. In a behavioral experiment using an interference paradigm, a visual presentation of an abacus picture, but not a human face picture, interfered with the performance of her digit memory, confirming her use of the mental abacus after recovery. This is the first case report on the impairment of the mental abacus by a brain lesion and on recovery-related brain activity. We named this rare case "abacus-based acalculia." Together with previous neuroimaging studies, the present result suggests an important role for the PMd and parietal cortex in the superior arithmetic ability of abacus users.
NASA Astrophysics Data System (ADS)
Grosse-Wentrup, Moritz; Schölkopf, Bernhard
2014-10-01
Objective. Brain-computer interface (BCI) systems are often based on motor- and/or sensory processes that are known to be impaired in late stages of amyotrophic lateral sclerosis (ALS). We propose a novel BCI designed for patients in late stages of ALS that only requires high-level cognitive processes to transmit information from the user to the BCI. Approach. We trained subjects via EEG-based neurofeedback to self-regulate the amplitude of gamma-oscillations in the superior parietal cortex (SPC). We argue that parietal gamma-oscillations are likely to be associated with high-level attentional processes, thereby providing a communication channel that does not rely on the integrity of sensory- and/or motor-pathways impaired in late stages of ALS. Main results. Healthy subjects quickly learned to self-regulate gamma-power in the SPC by alternating between states of focused attention and relaxed wakefulness, resulting in an average decoding accuracy of 70.2%. One locked-in ALS patient (ALS-FRS-R score of zero) achieved an average decoding accuracy significantly above chance-level though insufficient for communication (55.8%). Significance. Self-regulation of gamma-power in the SPC is a feasible paradigm for brain-computer interfacing and may be preserved in late stages of ALS. This provides a novel approach to testing whether completely locked-in ALS patients retain the capacity for goal-directed thinking.
Early sensitivity of left perisylvian cortex to relationality in nouns and verbs.
Williams, Adina; Reddigari, Samir; Pylkkänen, Liina
2017-06-01
The ability to track the relationality of concepts, i.e., their capacity to encode a relationship between entities, is one of the core semantic abilities humans possess. In language processing, we systematically leverage this ability when computing verbal argument structure, in order to link participants to the events they participate in. Previous work has converged on a large region of left posterior perisylvian cortex as a locus for such processing, but the wide range of experimental stimuli and manipulations has yielded an unclear picture of the region's exact role(s). Importantly, there is a tendency for effects of relationality in single-word studies to localize to posterior temporo-parietal cortex, while argument structure effects in sentences appear in left superior temporal cortex. To characterize these sensitivities, we designed two MEG experiments that cross the factors relationality and eventivity. The first used minimal noun phrases and tested for an effect of semantic composition, while the second employed full sentences and a manipulation of grammatical category. The former identified a region of the left inferior parietal lobe sensitive to relationality, but not eventivity or combination, beginning at 170ms. The latter revealed a similarly-timed effect of relationality in left mid-superior temporal cortex, independent of eventivity and category. The results suggest that i) multiple sub-regions of perisylvian cortex are sensitive to the relationality carried by concepts even in the absence of arguments, ii) linguistic context modulates the locus of this sensitivity, consistent with prior studies, and iii) relationality information is accessed early - before 200ms - regardless of the concept's event status or syntactic category. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rosenberg-Lee, Miriam; Ashkenazi, Sarit; Chen, Tianwen; Young, Christina B.; Geary, David C.; Menon, Vinod
2014-01-01
Developmental dyscalculia (DD) is marked by specific deficits in processing numerical and mathematical information despite normal intelligence (IQ) and reading ability. We examined how brain circuits used by young children with DD to solve simple addition and subtraction problems differ from those used by typically developing (TD) children who were matched on age, IQ, reading ability, and working memory. Children with DD were slower and less accurate during problem solving than TD children, and were especially impaired on their ability to solve subtraction problems. Children with DD showed significantly greater activity in multiple parietal, occipito-temporal and prefrontal cortex regions while solving addition and subtraction problems. Despite poorer performance during subtraction, children with DD showed greater activity in multiple intra-parietal sulcus (IPS) and superior parietal lobule subdivisions in the dorsal posterior parietal cortex as well as fusiform gyrus in the ventral occipito-temporal cortex. Critically, effective connectivity analyses revealed hyper-connectivity, rather than reduced connectivity, between the IPS and multiple brain systems including the lateral fronto-parietal and default mode networks in children with DD during both addition and subtraction. These findings suggest the IPS and its functional circuits are a major locus of dysfunction during both addition and subtraction problem solving in DD, and that inappropriate task modulation and hyper-connectivity, rather than under-engagement and under-connectivity, are the neural mechanisms underlying problem solving difficulties in children with DD. We discuss our findings in the broader context of multiple levels of analysis and performance issues inherent in neuroimaging studies of typical and atypical development. PMID:25098903
Rosenberg-Lee, Miriam; Ashkenazi, Sarit; Chen, Tianwen; Young, Christina B; Geary, David C; Menon, Vinod
2015-05-01
Developmental dyscalculia (DD) is marked by specific deficits in processing numerical and mathematical information despite normal intelligence (IQ) and reading ability. We examined how brain circuits used by young children with DD to solve simple addition and subtraction problems differ from those used by typically developing (TD) children who were matched on age, IQ, reading ability, and working memory. Children with DD were slower and less accurate during problem solving than TD children, and were especially impaired on their ability to solve subtraction problems. Children with DD showed significantly greater activity in multiple parietal, occipito-temporal and prefrontal cortex regions while solving addition and subtraction problems. Despite poorer performance during subtraction, children with DD showed greater activity in multiple intra-parietal sulcus (IPS) and superior parietal lobule subdivisions in the dorsal posterior parietal cortex as well as fusiform gyrus in the ventral occipito-temporal cortex. Critically, effective connectivity analyses revealed hyper-connectivity, rather than reduced connectivity, between the IPS and multiple brain systems including the lateral fronto-parietal and default mode networks in children with DD during both addition and subtraction. These findings suggest the IPS and its functional circuits are a major locus of dysfunction during both addition and subtraction problem solving in DD, and that inappropriate task modulation and hyper-connectivity, rather than under-engagement and under-connectivity, are the neural mechanisms underlying problem solving difficulties in children with DD. We discuss our findings in the broader context of multiple levels of analysis and performance issues inherent in neuroimaging studies of typical and atypical development. © 2014 John Wiley & Sons Ltd.
Structural and functional evaluation of cortical motor areas in Amyotrophic Lateral Sclerosis.
Cosottini, Mirco; Pesaresi, Ilaria; Piazza, Selina; Diciotti, Stefano; Cecchi, Paolo; Fabbri, Serena; Carlesi, Cecilia; Mascalchi, Mario; Siciliano, Gabriele
2012-03-01
The structural and functional data gathered with Magnetic Resonance Imaging (MRI) techniques about the brain cortical motor damage in Amyotrophic Lateral Sclerosis (ALS) are controversial. In fact some structural MRI studies showed foci of gray matter (GM) atrophy in the precentral gyrus, even in the early stage, while others did not. Most functional MRI (fMRI) studies in ALS reported hyperactivation of extra-primary motor cortices, while contradictory results were obtained on the activation of the primary motor cortex. We aimed to investigate the cortical motor circuitries in ALS patients by a combined structural and functional approach. Twenty patients with definite ALS and 16 healthy subjects underwent a structural examination with acquisition of a 3D T1-weighted sequence and fMRI examination during a maximal force handgrip task executed with the right-hand, the left-hand and with both hands simultaneously. The T1-weighted images were analyzed with Voxel-Based Morphometry (VBM) that showed several clusters of reduced cortical GM in ALS patients compared to controls including the pre and postcentral gyri, the superior, middle and inferior frontal gyri, the supplementary motor area, the superior and inferior parietal cortices and the temporal lobe, bilaterally but more extensive on the right side. In ALS patients a significant hypoactivation of the primary sensory motor cortex and frontal dorsal premotor areas as compared to controls was observed. The hypoactivated areas matched with foci of cortical atrophy demonstrated by VBM. The fMRI analysis also showed an enhanced activation in the ventral premotor frontal areas and in the parietal cortex pertaining to the fronto-parietal motor circuit which paralleled with disease progression rate and matched with cortical regions of atrophy. The hyperactivation of the fronto-parietal circuit was asymmetric and prevalent in the left hemisphere. VBM and fMRI identified structural and functional markers of an extended cortical damage within the motor circuit of ALS patients. The functional changes in non-primary motor cortices pertaining to fronto-parietal circuit suggest an over-recruitment of a pre-existing physiological sensory-motor network. However, the concomitant fronto-parietal cortical atrophy arises the possibility that such a hyper-activation reflects cortical hyper-excitability due to loss of inhibitory inter-neurons. Copyright © 2011 Elsevier Inc. All rights reserved.
Brain activation for response inhibition under gaming cue distraction in internet gaming disorder.
Liu, Gin-Chung; Yen, Ju-Yu; Chen, Chiao-Yun; Yen, Cheng-Fang; Chen, Cheng-Sheng; Lin, Wei-Chen; Ko, Chih-Hung
2014-01-01
We evaluated neural substrates related to the loss of control in college students with internet gaming disorder (IGD). We hypothesized that deficit in response inhibition under gaming cue distraction was the possible mechanism for the loss of control internet use. Eleven cases of IGD and 11 controls performed Go/NoGo tasks with/without gaming distraction in the functional magnetic resonance imaging scanner. When the gaming picture was shown as background while individuals were performing Go/NoGo tasks, the IGD group committed more commission errors. The control group increased their brain activations more over the right dorsolateral prefrontal cortex (DLPFC) and superior parietal lobe under gaming cue distraction in comparison with the IGD group. Furthermore, brain activation of the right DLPFC and superior parietal lobe were negatively associated with performance of response inhibition among the IGD group. The results suggest that the function of response inhibition was impaired under gaming distraction among the IGD group, and individuals with IGD could not activate right DLPFC and superior parietal lobe to keep cognitive control and attention allocation for response inhibition under gaming cue distraction. This mechanism should be addressed in any intervention for IGD. Copyright © 2013. Published by Elsevier B.V.
Chechlacz, Magdalena; Rotshtein, Pia; Humphreys, Glyn W
2014-11-01
Spatial working memory problems are frequently reported following brain damage within both left and right hemispheres but with the severity often being grater in individuals with right hemisphere lesions. Clinically, deficits in spatial working memory have also been noted in patients with visuospatial disorders such as unilateral neglect. Here, we examined neural substrates of short-term memory for spatial locations based on the Corsi Block tapping task and the relationship with the visuospatial deficits of neglect and extinction in a group of chronic neuropsychological patients. Principal Component Analysis (PCA) was used to distinguish shared and dissociate functional components. The neural substrates of spatial short-term memory deficits and the components identified by PCA were examined using whole brain voxel-based morphometry and tract-wise lesion deficits analyses. We found that bilateral lesions within occipital cortex (middle occipital gyrus) and right posterior parietal cortex, along with disconnection of the right parieto-temporal segment of arcuate fasciculus, were associated with low spatial memory span. A single component revealed by PCA accounted for over half of the variance and was linked to damage to right posterior brain regions (temporo-parietal junction, the inferior parietal lobule and middle temporal gyrus extending into middle occipital gyrus). We also found link to disconnections within several association pathways including the superior longitudinal fasciculus, arcuate fasciculus, inferior fronto-occipital fasciculus and inferior longitudinal fasciculus. These results indicate that different visuospatial deficits converge into a single component mapped within posterior parietal areas and fronto-parietal white matter pathways. Furthermore, the data presented here fit with the role of posterior parietal cortex/temporo-parietal junction in maintaining a map of salient locations in space, with Corsi Block performance being impaired when the spatial map is damaged. Copyright © 2014 Elsevier Ltd. All rights reserved.
Planton, Samuel; Jucla, Mélanie; Roux, Franck-Emmanuel; Démonet, Jean-François
2013-01-01
Handwriting is a modality of language production whose cerebral substrates remain poorly known although the existence of specific regions is postulated. The description of brain damaged patients with agraphia and, more recently, several neuroimaging studies suggest the involvement of different brain regions. However, results vary with the methodological choices made and may not always discriminate between "writing-specific" and motor or linguistic processes shared with other abilities. We used the "Activation Likelihood Estimate" (ALE) meta-analytical method to identify the cerebral network of areas commonly activated during handwriting in 18 neuroimaging studies published in the literature. Included contrasts were also classified according to the control tasks used, whether non-specific motor/output-control or linguistic/input-control. These data were included in two secondary meta-analyses in order to reveal the functional role of the different areas of this network. An extensive, mainly left-hemisphere network of 12 cortical and sub-cortical areas was obtained; three of which were considered as primarily writing-specific (left superior frontal sulcus/middle frontal gyrus area, left intraparietal sulcus/superior parietal area, right cerebellum) while others related rather to non-specific motor (primary motor and sensorimotor cortex, supplementary motor area, thalamus and putamen) or linguistic processes (ventral premotor cortex, posterior/inferior temporal cortex). This meta-analysis provides a description of the cerebral network of handwriting as revealed by various types of neuroimaging experiments and confirms the crucial involvement of the left frontal and superior parietal regions. These findings provide new insights into cognitive processes involved in handwriting and their cerebral substrates. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ding, Wei-na; Sun, Jin-hua; Sun, Ya-Wen; Chen, Xue; Zhou, Yan; Zhuang, Zhi-guo; Li, Lei; Zhang, Yong; Xu, Jian-rong; Du, Ya-song
2014-05-30
Recent studies suggest that Internet gaming addiction (IGA) is an impulse disorder, or is at least related to impulse control disorders. In the present study, we hypothesized that different facets of trait impulsivity may be specifically linked to the brain regions with impaired impulse inhibition function in IGA adolescents. Seventeen adolescents with IGA and seventeen healthy controls were scanned during performance of a response-inhibition Go/No-Go task using a 3.0 T MRI scanner. The Barratt Impulsiveness Scale (BIS)-11 was used to assess impulsivity. There were no differences in the behavioral performance on the Go/No-Go task between the groups. However, the IGA group was significantly hyperactive during No-Go trials in the left superior medial frontal gyrus, right anterior cingulate cortex, right superior/middle frontal gyrus, left inferior parietal lobule, left precentral gyrus, and left precuneus and cuneus. Further, the bilateral middle temporal gyrus, bilateral inferior temporal gyrus, and right superior parietal lobule were significantly hypoactive during No-Go trials. Activation of the left superior medial frontal gyrus was positively associated with BIS-11 and Chen Internet Addiction Scale (CIAS) total score across IGA participants. Our data suggest that the prefrontal cortex may be involved in the circuit modulating impulsivity, while its impaired function may relate to high impulsivity in adolescents with IGA, which may contribute directly to the Internet addiction process.
2014-01-01
Background Recent studies suggest that Internet gaming addiction (IGA) is an impulse disorder, or is at least related to impulse control disorders. In the present study, we hypothesized that different facets of trait impulsivity may be specifically linked to the brain regions with impaired impulse inhibition function in IGA adolescents. Methods Seventeen adolescents with IGA and seventeen healthy controls were scanned during performance of a response-inhibition Go/No-Go task using a 3.0 T MRI scanner. The Barratt Impulsiveness Scale (BIS)-11 was used to assess impulsivity. Results There were no differences in the behavioral performance on the Go/No-Go task between the groups. However, the IGA group was significantly hyperactive during No-Go trials in the left superior medial frontal gyrus, right anterior cingulate cortex, right superior/middle frontal gyrus, left inferior parietal lobule, left precentral gyrus, and left precuneus and cuneus. Further, the bilateral middle temporal gyrus, bilateral inferior temporal gyrus, and right superior parietal lobule were significantly hypoactive during No-Go trials. Activation of the left superior medial frontal gyrus was positively associated with BIS-11 and Chen Internet Addiction Scale (CIAS) total score across IGA participants. Conclusions Our data suggest that the prefrontal cortex may be involved in the circuit modulating impulsivity, while its impaired function may relate to high impulsivity in adolescents with IGA, which may contribute directly to the Internet addiction process. PMID:24885073
Banaj, Nerisa; Piras, Federica; Piras, Fabrizio; Ciullo, Valentina; Iorio, Mariangela; Battaglia, Claudia; Pantoli, Donatella; Ducci, Giuseppe; Spalletta, Gianfranco
2018-06-01
The brain structural correlates of cognitive and psychopathological symptoms within the active phase in severely psychotic schizophrenic inpatients have been rarely investigated. Twenty-eight inpatients with a DSM-5 diagnosis of Schizophrenia (SZ), admitted for acute psychotic decompensation, were assessed through a comprehensive neuropsychological and psychopathological battery. All patients underwent a high-resolution T1-weighted magnetic resonance imaging investigation. Increased psychotic severity was related to reduced grey matter volumes in the medial portion of the right superior frontal cortex, the superior orbitofrontal cortex bilaterally and to white matter volume reduction in the medial portion of the left superior frontal area. Immediate verbal memory performance was related to left insula and inferior parietal cortex volume, while long-term visuo-spatial memory was related to grey matter volume of the right middle temporal cortex, and the right (lobule VII, CRUS1) and left (lobule VI) cerebellum. Moreover, psychotic severity correlated with cognitive inflexibility and negative symptom severity was related to visuo-spatial processing and reasoning disturbances. These findings indicate that a disruption of the cortical-subcortical-cerebellar circuit, and distorted memory function contribute to the development and maintenance of psychotic exacerbation.
On the Origin of Cortical Dopamine: Is it a Co-Transmitter in Noradrenergic Neurons?
Devoto, Paola; Flore, Giovanna
2006-01-01
Dopamine (DA) and noradrenaline (NA) in the prefrontal cortex (PFC) modulate superior cognitive functions, and are involved in the aetiology of depressive and psychotic symptoms. Moreover, microdialysis studies in rats have shown how pharmacological treatments that induce modifications of extracellular NA in the medial PFC (mPFC), also produce parallel changes in extracellular DA. To explain the coupling of NA and DA changes, this article reviews the evidence supporting the hypothesis that extracellular DA in the cerebral cortex originates not only from dopaminergic terminals but also from noradrenergic ones, where it acts both as precursor for NA and as a co-transmitter. Accordingly, extracellular DA concentration in the occipital, parietal and cerebellar cortex was found to be much higher than expected in view of the scarce dopaminergic innervation in these areas. Systemic administration or intra-cortical perfusion of α2-adrenoceptor agonists and antagonists, consistent with their action on noradrenergic neuronal activity, produced concomitant changes not only in extracellular NA but also in DA in the mPFC, occipital and parietal cortex. Chemical modulation of the locus coeruleus by locally applied carbachol, kainate, NMDA or clonidine modified both NA and DA in the mPFC. Electrical stimulation of the locus coeruleus led to an increased efflux of both NA and DA in mPFC, parietal and occipital cortex, while in the striatum, NA efflux alone was enhanced. Atypical antipsychotics, such as clozapine and olanzapine, or antidepressants, including mirtazapine and mianserine, have been found to increase both NA and DA throughout the cerebral cortex, likely through blockade of α2-adrenoceptors. On the other hand, drugs selectively acting on dopaminergic transmission produced modest changes in extracellular DA in mPFC, and had no effect on the occipital or parietal cortex. Acute administration of morphine did not increase DA levels in the PFC (where NA is diminished), in contrast with augmented dopaminergic neuronal activity; moreover, during morphine withdrawal both DA and NA levels increased, in spite of a diminished dopaminergic activity, both increases being antagonised by clonidine but not quinpirole administration. Extensive 6-hydroxy dopamine lesion of the ventral tegmental area (VTA) decreases below 95% of control both intra- and extracellular DA and DOPAC in the nucleus accumbens, but only partially or not significantly in the mPFC and parietal cortex. The above evidence points to a common origin for NA and DA in the cerebral cortex and suggests the possible utility of noradrenergic system modulation as a target for drugs with potential clinical efficacy on cognitive functions. PMID:18615131
On the origin of cortical dopamine: is it a co-transmitter in noradrenergic neurons?
Devoto, Paola; Flore, Giovanna
2006-04-01
Dopamine (DA) and noradrenaline (NA) in the prefrontal cortex (PFC) modulate superior cognitive functions, and are involved in the aetiology of depressive and psychotic symptoms. Moreover, microdialysis studies in rats have shown how pharmacological treatments that induce modifications of extracellular NA in the medial PFC (mPFC), also produce parallel changes in extracellular DA.To explain the coupling of NA and DA changes, this article reviews the evidence supporting the hypothesis that extracellular DA in the cerebral cortex originates not only from dopaminergic terminals but also from noradrenergic ones, where it acts both as precursor for NA and as a co-transmitter.Accordingly, extracellular DA concentration in the occipital, parietal and cerebellar cortex was found to be much higher than expected in view of the scarce dopaminergic innervation in these areas.Systemic administration or intra-cortical perfusion of alpha(2)-adrenoceptor agonists and antagonists, consistent with their action on noradrenergic neuronal activity, produced concomitant changes not only in extracellular NA but also in DA in the mPFC, occipital and parietal cortex.Chemical modulation of the locus coeruleus by locally applied carbachol, kainate, NMDA or clonidine modified both NA and DA in the mPFC.Electrical stimulation of the locus coeruleus led to an increased efflux of both NA and DA in mPFC, parietal and occipital cortex, while in the striatum, NA efflux alone was enhanced.Atypical antipsychotics, such as clozapine and olanzapine, or antidepressants, including mirtazapine and mianserine, have been found to increase both NA and DA throughout the cerebral cortex, likely through blockade of alpha(2)-adrenoceptors. On the other hand, drugs selectively acting on dopaminergic transmission produced modest changes in extracellular DA in mPFC, and had no effect on the occipital or parietal cortex.Acute administration of morphine did not increase DA levels in the PFC (where NA is diminished), in contrast with augmented dopaminergic neuronal activity; moreover, during morphine withdrawal both DA and NA levels increased, in spite of a diminished dopaminergic activity, both increases being antagonised by clonidine but not quinpirole administration.Extensive 6-hydroxy dopamine lesion of the ventral tegmental area (VTA) decreases below 95% of control both intra- and extracellular DA and DOPAC in the nucleus accumbens, but only partially or not significantly in the mPFC and parietal cortex.The above evidence points to a common origin for NA and DA in the cerebral cortex and suggests the possible utility of noradrenergic system modulation as a target for drugs with potential clinical efficacy on cognitive functions.
The calculating brain: an fMRI study.
Rickard, T C; Romero, S G; Basso, G; Wharton, C; Flitman, S; Grafman, J
2000-01-01
To explore brain areas involved in basic numerical computation, functional magnetic imaging (fMRI) scanning was performed on college students during performance of three tasks; simple arithmetic, numerical magnitude judgment, and a perceptual-motor control task. For the arithmetic relative to the other tasks, results for all eight subjects revealed bilateral activation in Brodmann's area 44, in dorsolateral prefrontal cortex (areas 9 and 10), in inferior and superior parietal areas, and in lingual and fusiform gyri. Activation was stronger on the left for all subjects, but only at Brodmann's area 44 and the parietal cortices. No activation was observed in the arithmetic task in several other areas previously implicated for arithmetic, including the angular and supramarginal gyri and the basal ganglia. In fact, angular and supramarginal gyri were significantly deactivated by the verification task relative to both the magnitude judgment and control tasks for every subject. Areas activated by the magnitude task relative to the control were more variable, but in five subjects included bilateral inferior parietal cortex. These results confirm some existing hypotheses regarding the neural basis of numerical processes, invite revision of others, and suggest productive lines for future investigation.
The right parietal cortex and time perception: back to Critchley and the Zeitraffer phenomenon.
Alexander, Iona; Cowey, Alan; Walsh, Vincent
2005-05-01
We investigated the involvement of the posterior parietal cortex in time perception by temporarily disrupting normal functioning in this region, in subjects making prospective judgements of time or pitch. Disruption of the right posterior parietal cortex significantly slowed reaction times when making time, but not pitch, judgements. Similar interference with the left parietal cortex and control stimulation over the vertex did not significantly change performance on either pitch or time tasks. The results show that the information processing necessary for temporal judgements involves the parietal cortex, probably to optimise spatiotemporal accuracy in voluntary action. The results are in agreement with a recent neuroimaging study and are discussed with regard to a psychological model of temporal processing and a recent proposal that time is part of a parietal cortex system for encoding magnitude information relevant for action.
Burianová, Hana; Ciaramelli, Elisa; Grady, Cheryl L; Moscovitch, Morris
2012-11-15
The objective of this study was to examine the functional connectivity of brain regions active during cued and uncued recognition memory to test the idea that distinct networks would underlie these memory processes, as predicted by the attention-to-memory (AtoM) hypothesis. The AtoM hypothesis suggests that dorsal parietal cortex (DPC) allocates effortful top-down attention to memory retrieval during cued retrieval, whereas ventral parietal cortex (VPC) mediates spontaneous bottom-up capture of attention by memory during uncued retrieval. To identify networks associated with these two processes, we conducted a functional connectivity analysis of a left DPC and a left VPC region, both identified by a previous analysis of task-related regional activations. We hypothesized that the two parietal regions would be functionally connected with distinct neural networks, reflecting their engagement in the differential mnemonic processes. We found two spatially dissociated networks that overlapped only in the precuneus. During cued trials, DPC was functionally connected with dorsal attention areas, including the superior parietal lobules, right precuneus, and premotor cortex, as well as relevant memory areas, such as the left hippocampus and the middle frontal gyri. During uncued trials, VPC was functionally connected with ventral attention areas, including the supramarginal gyrus, cuneus, and right fusiform gyrus, as well as the parahippocampal gyrus. In addition, activity in the DPC network was associated with faster response times for cued retrieval. This is the first study to show a dissociation of the functional connectivity of posterior parietal regions during episodic memory retrieval, characterized by a top-down AtoM network involving DPC and a bottom-up AtoM network involving VPC. Copyright © 2012 Elsevier Inc. All rights reserved.
Kinesthetic working memory and action control within the dorsal stream.
Fiehler, Katja; Burke, Michael; Engel, Annerose; Bien, Siegfried; Rösler, Frank
2008-02-01
There is wide agreement that the "dorsal (action) stream" processes visual information for movement control. However, movements depend not only on vision but also on tactile and kinesthetic information (=haptics). Using functional magnetic resonance imaging, the present study investigates to what extent networks within the dorsal stream are also utilized for kinesthetic action control and whether they are also involved in kinesthetic working memory. Fourteen blindfolded participants performed a delayed-recognition task in which right-handed movements had to be encoded, maintained, and later recognized without any visual feedback. Encoding of hand movements activated somatosensory areas, superior parietal lobe (dorsodorsal stream), anterior intraparietal sulcus (aIPS) and adjoining areas (ventrodorsal stream), premotor cortex, and occipitotemporal cortex (ventral stream). Short-term maintenance of kinesthetic information elicited load-dependent activity in the aIPS and adjacent anterior portion of the superior parietal lobe (ventrodorsal stream) of the left hemisphere. We propose that the action representation system of the dorsodorsal and ventrodorsal stream is utilized not only for visual but also for kinesthetic action control. Moreover, the present findings demonstrate that networks within the ventrodorsal stream, in particular the left aIPS and closely adjacent areas, are also engaged in working memory maintenance of kinesthetic information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takaya, Shigetoshi; Kuperberg, Gina R.; Tufts Univ., Medford, MA
The arcuate fasciculus (AF) in the human brain has asymmetric structural properties. However, the topographic organization of the asymmetric AF projections to the cortex and its relevance to cortical function remain unclear. Here we mapped the posterior projections of the human AF in the inferior parietal and lateral temporal cortices using surface-based structural connectivity analysis based on diffusion MRI and investigated their hemispheric differences. We then performed the cross-modal comparison with functional connectivity based on resting-state functional MRI (fMRI) and task-related cortical activation based on fMRI using a semantic classification task of single words. Structural connectivity analysis showed that themore » left AF connecting to Broca's area predominantly projected in the lateral temporal cortex extending from the posterior superior temporal gyrus to the mid part of the superior temporal sulcus and the middle temporal gyrus, whereas the right AF connecting to the right homolog of Broca's area predominantly projected to the inferior parietal cortex extending from the mid part of the supramarginal gyrus to the anterior part of the angular gyrus. The left-lateralized projection regions of the AF in the left temporal cortex had asymmetric functional connectivity with Broca's area, indicating structure-function concordance through the AF. During the language task, left-lateralized cortical activation was observed. Among them, the brain responses in the temporal cortex and Broca's area that were connected through the left-lateralized AF pathway were specifically correlated across subjects. These results suggest that the human left AF, which structurally and functionally connects the mid temporal cortex and Broca's area in asymmetrical fashion, coordinates the cortical activity in these remote cortices during a semantic decision task. As a result, the unique feature of the left AF is discussed in the context of the human capacity for language.« less
Takaya, Shigetoshi; Kuperberg, Gina R.; Tufts Univ., Medford, MA; ...
2015-09-15
The arcuate fasciculus (AF) in the human brain has asymmetric structural properties. However, the topographic organization of the asymmetric AF projections to the cortex and its relevance to cortical function remain unclear. Here we mapped the posterior projections of the human AF in the inferior parietal and lateral temporal cortices using surface-based structural connectivity analysis based on diffusion MRI and investigated their hemispheric differences. We then performed the cross-modal comparison with functional connectivity based on resting-state functional MRI (fMRI) and task-related cortical activation based on fMRI using a semantic classification task of single words. Structural connectivity analysis showed that themore » left AF connecting to Broca's area predominantly projected in the lateral temporal cortex extending from the posterior superior temporal gyrus to the mid part of the superior temporal sulcus and the middle temporal gyrus, whereas the right AF connecting to the right homolog of Broca's area predominantly projected to the inferior parietal cortex extending from the mid part of the supramarginal gyrus to the anterior part of the angular gyrus. The left-lateralized projection regions of the AF in the left temporal cortex had asymmetric functional connectivity with Broca's area, indicating structure-function concordance through the AF. During the language task, left-lateralized cortical activation was observed. Among them, the brain responses in the temporal cortex and Broca's area that were connected through the left-lateralized AF pathway were specifically correlated across subjects. These results suggest that the human left AF, which structurally and functionally connects the mid temporal cortex and Broca's area in asymmetrical fashion, coordinates the cortical activity in these remote cortices during a semantic decision task. As a result, the unique feature of the left AF is discussed in the context of the human capacity for language.« less
A Shared Neural Substrate for Mentalizing and the Affective Component of Sentence Comprehension
Hervé, Pierre-Yves; Razafimandimby, Annick; Jobard, Gaël; Tzourio-Mazoyer, Nathalie
2013-01-01
Using event-related fMRI in a sample of 42 healthy participants, we compared the cerebral activity maps obtained when classifying spoken sentences based on the mental content of the main character (belief, deception or empathy) or on the emotional tonality of the sentence (happiness, anger or sadness). To control for the effects of different syntactic constructions (such as embedded clauses in belief sentences), we subtracted from each map the BOLD activations obtained during plausibility judgments on structurally matching sentences, devoid of emotions or ToM. The obtained theory of mind (ToM) and emotional speech comprehension networks overlapped in the bilateral temporo-parietal junction, posterior cingulate cortex, right anterior temporal lobe, dorsomedial prefrontal cortex and in the left inferior frontal sulcus. These regions form a ToM network, which contributes to the emotional component of spoken sentence comprehension. Compared with the ToM task, in which the sentences were enounced on a neutral tone, the emotional sentence classification task, in which the sentences were play-acted, was associated with a greater activity in the bilateral superior temporal sulcus, in line with the presence of emotional prosody. Besides, the ventromedial prefrontal cortex was more active during emotional than ToM sentence processing. This region may link mental state representations with verbal and prosodic emotional cues. Compared with emotional sentence classification, ToM was associated with greater activity in the caudate nucleus, paracingulate cortex, and superior frontal and parietal regions, in line with behavioral data showing that ToM sentence comprehension was a more demanding task. PMID:23342148
Pastura, Giuseppe; Kubo, Tadeu Takao Almodovar; Gasparetto, Emerson Leandro; Figueiredo, Otavio; Mattos, Paulo; Prüfer Araújo, Alexandra
2017-12-01
Currently, the diagnosis of attention deficit hyperactivity disorder (ADHD) rests on clinical criteria. Nonetheless, neuroimaging studies have demonstrated that children with ADHD have different cortical thickness and volume measures to typically developing children (TDC). In general, studies do not evaluate the influence of clinical presentation in the brain morphometry of ADHD children. Our objective was to perform a pilot study in order to evaluate cortical thickness and brain volume in a sample of Brazilian ADHD children and compare these to those of TDC, taking into account the influence of clinical presentation. We performed an analytic study comparing 17 drug-naïve ADHD children of both genders, aged between 7 and 10, and 16 TDC. ADHD subjects were first considered as one group and further separated based on clinical presentation. The brain volume did not differ between patients and TDC. Smaller cortical thicknesses were identified on the left superior, medium and inferior temporal cortex, as well as in the left inferior parietal cortex. When compared to TDC, combined and inattentive ADHD presentations depicted smaller cortical thickness with high significance and power. The same magnitude of results was not observed when comparing inattentive ADHD and TDC. In this pilot study, ADHD is associated with abnormalities involving the cortical thickness of the posterior attentional system. The cortical thickness in the left superior, medium and inferior temporal cortex, as well as in the left inferior parietal cortex may differ according to ADHD presentations.
Abnormalities of Intrinsic Functional Connectivity in Autism Spectrum Disorders
Monk, Christopher S.; Peltier, Scott J.; Wiggins, Jillian Lee; Weng, Shih-Jen; Carrasco, Melisa; Risi, Susan; Lord, Catherine
2009-01-01
Autism spectrum disorders (ASD) impact social functioning and communication, and individuals with these disorders often have restrictive and repetitive behaviors. Accumulating data indicate that ASD is associated with alterations of neural circuitry. Functional MRI (FMRI) studies have focused on connectivity in the context of psychological tasks. However, even in the absence of a task, the brain exhibits a high degree of functional connectivity, known as intrinsic or resting connectivity. Notably, the default network, which includes the posterior cingulate cortex, retro-splenial, lateral parietal cortex/angular gyrus, medial prefrontal cortex, superior frontal gyrus, temporal lobe, and parahippocampal gyrus, is strongly active when there is no task. Altered intrinsic connectivity within the default network may underlie offline processing that may actuate ASD impairments. Using FMRI, we sought to evaluate intrinsic connectivity within the default network in ASD. Relative to controls, the ASD group showed weaker connectivity between the posterior cingulate cortex and superior frontal gyrus and stronger connectivity between the posterior cingulate cortex and both the right temporal lobe and right parahippocampal gyrus. Moreover, poorer social functioning in the ASD group was correlated with weaker connectivity between the posterior cingulate cortex and the superior frontal gyrus. In addition, more severe restricted and repetitive behaviors in ASD were correlated with stronger connectivity between the posterior cingulate cortex and right parahippocampal gyrus. These findings indicate that ASD subjects show altered intrinsic connectivity within the default network, and connectivity between these structures is associated with specific ASD symptoms. PMID:19409498
ERIC Educational Resources Information Center
Yu, Xiaodan; Chen, Chuansheng; Pu, Song; Wu, Chenxing; Li, Yongnian; Jiang, Tao; Zhou, Xinlin
2011-01-01
Previous research has consistently shown that the left parietal cortex is critical for numerical processing, but the role of the right parietal lobe has been much less clear. This study used the intraoperative cortical electrical stimulation approach to investigate neural dissociation in the right parietal cortex for subtraction and…
Selective involvement of superior frontal cortex during working memory for shapes.
Yee, Lydia T S; Roe, Katherine; Courtney, Susan M
2010-01-01
A spatial/nonspatial functional dissociation between the dorsal and ventral visual pathways is well established and has formed the basis of domain-specific theories of prefrontal cortex (PFC). Inconsistencies in the literature regarding prefrontal organization, however, have led to questions regarding whether the nature of the dissociations observed in PFC during working memory are equivalent to those observed in the visual pathways for perception. In particular, the dissociation between dorsal and ventral PFC during working memory for locations versus object identities has been clearly present in some studies but not in others, seemingly in part due to the type of objects used. The current study compared functional MRI activation during delayed-recognition tasks for shape or color, two object features considered to be processed by the ventral pathway for perceptual recognition. Activation for the shape-delayed recognition task was greater than that for the color task in the lateral occipital cortex, in agreement with studies of visual perception. Greater memory-delay activity was also observed, however, in the parietal and superior frontal cortices for the shape than for the color task. Activity in superior frontal cortex was associated with better performance on the shape task. Conversely, greater delay activity for color than for shape was observed in the left anterior insula and this activity was associated with better performance on the color task. These results suggest that superior frontal cortex contributes to performance on tasks requiring working memory for object identities, but it represents different information about those objects than does the ventral frontal cortex.
Functional versus effector-specific organization of the human posterior parietal cortex: revisited
Leone, Frank T. M.; Medendorp, W. Pieter
2016-01-01
It has been proposed that the posterior parietal cortex (PPC) is characterized by an effector-specific organization. However, strikingly similar functional MRI (fMRI) activation patterns have been found in the PPC for hand and foot movements. Because the fMRI signal is related to average neuronal activity, similar activation levels may result either from effector-unspecific neurons or from intermingled subsets of effector-specific neurons within a voxel. We distinguished between these possibilities using fMRI repetition suppression (RS). Participants made delayed, goal-directed eye, hand, and foot movements to visual targets. In each trial, the instructed effector was identical or different to that of the previous trial. RS effects indicated an attenuation of the fMRI signal in repeat trials. The caudal PPC was active during the delay but did not show RS, suggesting that its planning activity was effector independent. Hand and foot-specific RS effects were evident in the anterior superior parietal lobule (SPL), extending to the premotor cortex, with limb overlap in the anterior SPL. Connectivity analysis suggested information flow between the caudal PPC to limb-specific anterior SPL regions and between the limb-unspecific anterior SPL toward limb-specific motor regions. These results underline that both function and effector specificity should be integrated into a concept of PPC action representation not only on a regional but also on a fine-grained, subvoxel level. PMID:27466132
Inman, Cory S.; James, G. Andrew; Hamann, Stephan; Rajendra, Justin K.; Pagnoni, Giuseppe; Butler, Andrew J.
2011-01-01
Previous brain imaging work suggests that stroke alters the effective connectivity (the influence neural regions exert upon each other) of motor execution networks. The present study examines the intrinsic effective connectivity of top-down motor control in stroke survivors (n=13) relative to healthy participants (n=12). Stroke survivors exhibited significant deficits in motor function, as assessed by the Fugl-Meyer Motor Assessment. We used structural equation modeling (SEM) of resting-state fMRI data to investigate the relationship between motor deficits and the intrinsic effective connectivity between brain regions involved in motor control and motor execution. An exploratory adaptation of SEM determined the optimal model of motor execution effective connectivity in healthy participants, and confirmatory SEM assessed stroke survivors’ fit to that model. We observed alterations in spontaneous resting-state effective connectivity from fronto-parietal guidance systems to the motor network in stroke survivors. More specifically, diminished connectivity was found in connections from the superior parietal cortex to primary motor cortex and supplementary motor cortex. Furthermore, the paths demonstrated large individual variance in stroke survivors but less variance in healthy participants. These findings suggest that characterizing the deficits in resting-state connectivity of top-down processes in stroke survivors may help optimize cognitive and physical rehabilitation therapies by individually targeting specific neural pathway. PMID:21839174
Yang, Xuejuan; Xu, Ziliang; Liu, Lin; Liu, Peng; Sun, Jinbo; Jin, Lingmin; Zhu, Yuanqiang; Fei, Ningbo; Qin, Wei
2017-07-28
Cognitive processes involve input from multiple sensory modalities and obvious differences in the level of cognitive function can be observed between individuals. Evidence to date understanding the biological basis of tactile cognitive variability, however, is limited compared with other forms of sensory cognition. Data from auditory and visual cognition research suggest that variations in both genetics and intrinsic brain function might contribute to individual differences in tactile cognitive performance. In the present study, by using the tactual performance test (TPT), a widely used neuropsychological assessment tool, we investigated the effects of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and resting-state brain functional connectivity (FC) on interindividual variability in TPT performance in healthy, young Chinese adults. Our results showed that the BDNF genotypes and resting-state FC had significant effects on the variability in TPT performance, together accounting for 32.5% and 19.1% of the variance on TPT total score and Memory subitem score respectively. Having fewer Met alleles, stronger anticorrelations between left posterior superior temporal gyrus and somatosensory areas (right postcentral gyrus and right parietal operculum cortex), and greater positive correlation between left parietal operculum cortex and left central opercular cortex, all correspond with better performance of TPT task. And FC between left parietal operculum cortex and left central opercular cortex might be a mediator of the relationship between BDNF genotypes and Memory subitem score. These data demonstrate a novel contribution of intrinsic brain function to tactile cognitive capacity, and further confirm the genetic basis of tactile cognition. Our findings might also explain the interindividual differences in cognitive ability observed in those who are blind and/or deaf from a new perspective. Copyright © 2017. Published by Elsevier Ltd.
van Veluw, Susanne J; Chance, Steven A
2014-03-01
The perception of self and others is a key aspect of social cognition. In order to investigate the neurobiological basis of this distinction we reviewed two classes of task that study self-awareness and awareness of others (theory of mind, ToM). A reliable task to measure self-awareness is the recognition of one's own face in contrast to the recognition of others' faces. False-belief tasks are widely used to identify neural correlates of ToM as a measure of awareness of others. We performed an activation likelihood estimation meta-analysis, using the fMRI literature on self-face recognition and false-belief tasks. The brain areas involved in performing false-belief tasks were the medial prefrontal cortex (MPFC), bilateral temporo-parietal junction, precuneus, and the bilateral middle temporal gyrus. Distinct self-face recognition regions were the right superior temporal gyrus, the right parahippocampal gyrus, the right inferior frontal gyrus/anterior cingulate cortex, and the left inferior parietal lobe. Overlapping brain areas were the superior temporal gyrus, and the more ventral parts of the MPFC. We confirmed that self-recognition in contrast to recognition of others' faces, and awareness of others involves a network that consists of separate, distinct neural pathways, but also includes overlapping regions of higher order prefrontal cortex where these processes may be combined. Insights derived from the neurobiology of disorders such as autism and schizophrenia are consistent with this notion.
Neural networks for Braille reading by the blind.
Sadato, N; Pascual-Leone, A; Grafman, J; Deiber, M P; Ibañez, V; Hallett, M
1998-07-01
To explore the neural networks used for Braille reading, we measured regional cerebral blood flow with PET during tactile tasks performed both by Braille readers blinded early in life and by sighted subjects. Eight proficient Braille readers were studied during Braille reading with both right and left index fingers. Eight-character, non-contracted Braille-letter strings were used, and subjects were asked to discriminate between words and non-words. To compare the behaviour of the brain of the blind and the sighted directly, non-Braille tactile tasks were performed by six different blind subjects and 10 sighted control subjects using the right index finger. The tasks included a non-discrimination task and three discrimination tasks (angle, width and character). Irrespective of reading finger (right or left), Braille reading by the blind activated the inferior parietal lobule, primary visual cortex, superior occipital gyri, fusiform gyri, ventral premotor area, superior parietal lobule, cerebellum and primary sensorimotor area bilaterally, also the right dorsal premotor cortex, right middle occipital gyrus and right prefrontal area. During non-Braille discrimination tasks, in blind subjects, the ventral occipital regions, including the primary visual cortex and fusiform gyri bilaterally were activated while the secondary somatosensory area was deactivated. The reverse pattern was found in sighted subjects where the secondary somatosensory area was activated while the ventral occipital regions were suppressed. These findings suggest that the tactile processing pathways usually linked in the secondary somatosensory area are rerouted in blind subjects to the ventral occipital cortical regions originally reserved for visual shape discrimination.
Pfeifer, Jennifer H; Masten, Carrie L; Borofsky, Larissa A; Dapretto, Mirella; Fuligni, Andrew J; Lieberman, Matthew D
2009-01-01
Classic theories of self-development suggest people define themselves in part through internalized perceptions of other people's beliefs about them, known as reflected self-appraisals. This study uses functional magnetic resonance imaging to compare the neural correlates of direct and reflected self-appraisals in adolescence (N = 12, ages 11-14 years) and adulthood (N = 12, ages 23-30 years). During direct self-reflection, adolescents demonstrated greater activity than adults in networks relevant to self-perception (medial prefrontal and parietal cortices) and social-cognition (dorsomedial prefrontal cortex, temporal-parietal junction, and posterior superior temporal sulcus), suggesting adolescent self-construals may rely more heavily on others' perspectives about the self. Activity in the medial fronto-parietal network was also enhanced when adolescents took the perspective of someone more relevant to a given domain.
Decoding the content of visual short-term memory under distraction in occipital and parietal areas.
Bettencourt, Katherine C; Xu, Yaoda
2016-01-01
Recent studies have provided conflicting accounts regarding where in the human brain visual short-term memory (VSTM) content is stored, with strong univariate fMRI responses being reported in superior intraparietal sulcus (IPS), but robust multivariate decoding being reported in occipital cortex. Given the continuous influx of information in everyday vision, VSTM storage under distraction is often required. We found that neither distractor presence nor predictability during the memory delay affected behavioral performance. Similarly, superior IPS exhibited consistent decoding of VSTM content across all distractor manipulations and had multivariate responses that closely tracked behavioral VSTM performance. However, occipital decoding of VSTM content was substantially modulated by distractor presence and predictability. Furthermore, we found no effect of target-distractor similarity on VSTM behavioral performance, further challenging the role of sensory regions in VSTM storage. Overall, consistent with previous univariate findings, our results indicate that superior IPS, but not occipital cortex, has a central role in VSTM storage.
Beneventi, Harald; Tønnessen, Finn Egil; Ersland, Lars
2009-01-01
Dyslexia is primarily associated with a phonological processing deficit. However, the clinical manifestation also includes a reduced verbal working memory (WM) span. It is unclear whether this WM impairment is caused by the phonological deficit or a distinct WM deficit. The main aim of this study was to investigate neuronal activation related to phonological storage and rehearsal of serial order in WM in a sample of 13-year-old dyslexic children compared with age-matched nondyslexic children. A sequential verbal WM task with two tasks was used. In the Letter Probe task, the probe consisted of a single letter and the judgment was for the presence or absence of that letter in the prior sequence of six letters. In the Sequence Probe (SP) task, the probe consisted of all six letters and the judgment was for a match of their serial order with the temporal order in the prior sequence. Group analyses as well as single-subject analysis were performed with the statistical parametric mapping software SPM2. In the Letter Probe task, the dyslexic readers showed reduced activation in the left precentral gyrus (BA6) compared to control group. In the Sequence Probe task, the dyslexic readers showed reduced activation in the prefrontal cortex and the superior parietal cortex (BA7) compared to the control subjects. Our findings suggest that a verbal WM impairment in dyslexia involves an extended neural network including the prefrontal cortex and the superior parietal cortex. Reduced activation in the left BA6 in both the Letter Probe and Sequence Probe tasks may be caused by a deficit in phonological processing. However, reduced bilateral activation in the BA7 in the Sequence Probe task only could indicate a distinct working memory deficit in dyslexia associated with temporal order processing.
How embarrassing! The behavioral and neural correlates of processing social norm violations
van Steenbergen, Henk; Kreuk, Tanja; van der Wee, Nic J. A.; Westenberg, P. Michiel
2017-01-01
Social norms are important for human social interactions, and violations of these norms are evaluated partly on the intention of the actor. Here, we describe the revised Social Norm Processing Task (SNPT-R), a paradigm enabling the study of behavioral and neural responses to intended and unintended social norm violations among both adults and adolescents. We investigated how participants (adolescents and adults, n = 87) rate intentional and unintentional social norm violations with respect to inappropriateness and embarrassment, and we examined the brain activation patterns underlying the processing of these transgressions in an independent sample of 21 adults using functional Magnetic Resonance Imaging (fMRI). We hypothesized to find activation within the medial prefrontal cortex, temporo-parietal cortex and orbitofrontal cortex in response to both intentional and unintentional social norm violations, with more pronounced activation for the intentional social norm violations in these regions and in the amygdala. Participants’ ratings confirmed the hypothesis that the three types of stories are evaluated differently with respect to intentionality: intentional social norm violations were rated as the most inappropriate and most embarrassing. Furthermore, fMRI results showed that reading stories on intentional and unintentional social norm violations evoked activation within the frontal pole, the paracingulate gyrus and the superior frontal gyrus. In addition, processing unintentional social norm violations was associated with activation in, among others, the orbitofrontal cortex, middle frontal gyrus and superior parietal lobule, while reading intentional social norm violations was related to activation in the left amygdala. These regions have been previously implicated in thinking about one’s self, thinking about others and moral reasoning. Together, these findings indicate that the SNPT-R could serve as a useful paradigm for examining social norm processing, both at the behavioral and the neural level. PMID:28441460
Neural bases of a specific strategy for visuospatial processing in rugby players.
Sekiguchi, Atsushi; Yokoyama, Satoru; Kasahara, Satoshi; Yomogida, Yukihito; Takeuchi, Hikaru; Ogawa, Takeshi; Taki, Yasuyuki; Niwa, Shin-Ichi; Kawashima, Ryuta
2011-10-01
Rugby is one of the most tactically complex sports. Rugby coaching theory suggests that rugby players need to possess various cognitive abilities. A previous study claimed that rugby players have high visuospatial awareness, which is induced by a strategy described as taking a "bird's eye view." To examine if there were differential cortical networks related to visuospatial processing tasks among top-level rugby players and control novices, we compared brain activities during a visuospatial processing task between 20 male top-level rugby players (Top) and 20 control novice males (Novice) using functional magnetic resonance imaging (fMRI). To avoid the effect of differential behavioral performances on brain activation, we recruited novices whose visuospatial ability was expected to match that of the rugby players. We adopted a 3-D mental rotation task during fMRI scanning as a visuospatial processing task. Significantly greater activations from baseline were observed for the Top group than for the Novice group in the right superior parietal lobe and lateral occipital cortex. Significantly greater deactivations from baseline were observed for the Top group than for the Novice group in the right medial prefrontal cortex. The discrepancy between psychobehavioral outputs and the fMRI results suggested the existence of a cognitive strategy among top-level rugby players that differs from that among control novices. The greater activation of the right superior parietal lobe and lateral occipital cortex in top-level rugby players suggested a strategy involving visuospatial cognitive processing with respect to the bird's eye view. In addition, the right medial prefrontal cortex is known to be a part of the default mode networks, suggesting an additional cognitive load for the Top group when using the bird's-eye-view strategy. This further supported the existence of a specific cognitive strategy among top-level rugby players.
Callan, Daniel E; Terzibas, Cengiz; Cassel, Daniel B; Callan, Akiko; Kawato, Mitsuo; Sato, Masa-Aki
2013-05-15
In this fMRI study we investigate neural processes related to the action observation network using a complex perceptual-motor task in pilots and non-pilots. The task involved landing a glider (using aileron, elevator, rudder, and dive brake) as close to a target as possible, passively observing a replay of one's own previous trial, passively observing a replay of an expert's trial, and a baseline do nothing condition. The objective of this study is to investigate two types of motor simulation processes used during observation of action: imitation based motor simulation and error-feedback based motor simulation. It has been proposed that the computational neurocircuitry of the cortex is well suited for unsupervised imitation based learning, whereas, the cerebellum is well suited for error-feedback based learning. Consistent with predictions, pilots (to a greater extent than non-pilots) showed significant differential activity when observing an expert landing the glider in brain regions involved with imitation based motor simulation (including premotor cortex PMC, inferior frontal gyrus IFG, anterior insula, parietal cortex, superior temporal gyrus, and middle temporal MT area) than when observing one's own previous trial which showed significant differential activity in the cerebellum (only for pilots) thought to be concerned with error-feedback based motor simulation. While there was some differential brain activity for pilots in regions involved with both Execution and Observation of the flying task (potential Mirror System sites including IFG, PMC, superior parietal lobule) the majority was adjacent to these areas (Observation Only Sites) (predominantly in PMC, IFG, and inferior parietal loblule). These regions showing greater activity for observation than for action may be involved with processes related to motor-based representational transforms that are not necessary when actually carrying out the task. Copyright © 2013 Elsevier Inc. All rights reserved.
Role of the right inferior parietal cortex in auditory selective attention: An rTMS study.
Bareham, Corinne A; Georgieva, Stanimira D; Kamke, Marc R; Lloyd, David; Bekinschtein, Tristan A; Mattingley, Jason B
2018-02-01
Selective attention is the process of directing limited capacity resources to behaviourally relevant stimuli while ignoring competing stimuli that are currently irrelevant. Studies in healthy human participants and in individuals with focal brain lesions have suggested that the right parietal cortex is crucial for resolving competition for attention. Following right-hemisphere damage, for example, patients may have difficulty reporting a brief, left-sided stimulus if it occurs with a competitor on the right, even though the same left stimulus is reported normally when it occurs alone. Such "extinction" of contralesional stimuli has been documented for all the major sense modalities, but it remains unclear whether its occurrence reflects involvement of one or more specific subregions of the temporo-parietal cortex. Here we employed repetitive transcranial magnetic stimulation (rTMS) over the right hemisphere to examine the effect of disruption of two candidate regions - the supramarginal gyrus (SMG) and the superior temporal gyrus (STG) - on auditory selective attention. Eighteen neurologically normal, right-handed participants performed an auditory task, in which they had to detect target digits presented within simultaneous dichotic streams of spoken distractor letters in the left and right channels, both before and after 20 min of 1 Hz rTMS over the SMG, STG or a somatosensory control site (S1). Across blocks, participants were asked to report on auditory streams in the left, right, or both channels, which yielded focused and divided attention conditions. Performance was unchanged for the two focused attention conditions, regardless of stimulation site, but was selectively impaired for contralateral left-sided targets in the divided attention condition following stimulation of the right SMG, but not the STG or S1. Our findings suggest a causal role for the right inferior parietal cortex in auditory selective attention. Copyright © 2017 Elsevier Ltd. All rights reserved.
Baird, Abigail A; Colvin, Mary K; Vanhorn, John D; Inati, Souheil; Gazzaniga, Michael S
2005-04-01
In the present study, we combined 2 types of magnetic resonance technology to explore individual differences on a task that required the recognition of objects presented from unusual viewpoints. This task was chosen based on previous work that has established the necessity of information transfer from the right parietal cortex to the left inferior cortex for its successful completion. We used reaction times (RTs) to localize regions of cortical activity in the superior parietal and inferior frontal regions (blood oxygen level-dependent [BOLD] response) that were more active with longer response times. These regions were then sampled, and their signal change used to predict individual differences in structural integrity of white matter in the corpus callosum (using diffusion tensor imaging). Results show that shorter RTs (and associated increases in BOLD response) are associated with increased organization in the splenium of the corpus callosum, whereas longer RTs are associated with increased organization in the genu.
The iconography of mourning and its neural correlates: a functional neuroimaging study
Labek, Karin; Berger, Samantha; Buchheim, Anna; Bosch, Julia; Spohrs, Jennifer; Dommes, Lisa; Beschoner, Petra; Stingl, Julia C.
2017-01-01
Abstract The present functional neuroimaging study focuses on the iconography of mourning. A culture-specific pattern of body postures of mourning individuals, mostly suggesting withdrawal, emerged from a survey of visual material. When used in different combinations in stylized drawings in our neuroimaging study, this material activated cortical areas commonly seen in studies of social cognition (temporo-parietal junction, superior temporal gyrus, and inferior temporal lobe), empathy for pain (somatosensory cortex), and loss (precuneus, middle/posterior cingular gyrus). This pattern of activation developed over time. While in the early phases of exposure lower association areas, such as the extrastriate body area, were active, in the late phases activation in parietal and temporal association areas and the prefrontal cortex was more prominent. These findings are consistent with the conventional and contextual character of iconographic material, and further differentiate it from emotionally negatively valenced and high-arousing stimuli. In future studies, this neuroimaging assay may be useful in characterizing interpretive appraisal of material of negative emotional valence. PMID:28449116
Functional MRI of the vocalization-processing network in the macaque brain
Ortiz-Rios, Michael; Kuśmierek, Paweł; DeWitt, Iain; Archakov, Denis; Azevedo, Frederico A. C.; Sams, Mikko; Jääskeläinen, Iiro P.; Keliris, Georgios A.; Rauschecker, Josef P.
2015-01-01
Using functional magnetic resonance imaging in awake behaving monkeys we investigated how species-specific vocalizations are represented in auditory and auditory-related regions of the macaque brain. We found clusters of active voxels along the ascending auditory pathway that responded to various types of complex sounds: inferior colliculus (IC), medial geniculate nucleus (MGN), auditory core, belt, and parabelt cortex, and other parts of the superior temporal gyrus (STG) and sulcus (STS). Regions sensitive to monkey calls were most prevalent in the anterior STG, but some clusters were also found in frontal and parietal cortex on the basis of comparisons between responses to calls and environmental sounds. Surprisingly, we found that spectrotemporal control sounds derived from the monkey calls (“scrambled calls”) also activated the parietal and frontal regions. Taken together, our results demonstrate that species-specific vocalizations in rhesus monkeys activate preferentially the auditory ventral stream, and in particular areas of the antero-lateral belt and parabelt. PMID:25883546
Brain mechanisms associated with internally directed attention and self-generated thought.
Benedek, Mathias; Jauk, Emanuel; Beaty, Roger E; Fink, Andreas; Koschutnig, Karl; Neubauer, Aljoscha C
2016-03-10
Internal cognition like imagination and prospection require sustained internally directed attention and involve self-generated thought. This fMRI study aimed to disentangle the brain mechanisms associated with attention-specific and task-specific processes during internally directed cognition. The direction of attention was manipulated by either keeping a relevant stimulus visible throughout the task, or by masking it, so that the task had to be performed "in the mind's eye". The level of self-directed thought was additionally varied between a convergent and a divergent thinking task. Internally directed attention was associated with increased activation in the right anterior inferior parietal lobe (aIPL), bilateral lingual gyrus and the cuneus, as well as with extended deactivations of superior parietal and occipital regions representing parts of the dorsal attention network. The right aIPL further showed increased connectivity with occipital regions suggesting an active top-down mechanism for shielding ongoing internal processes from potentially distracting sensory stimulation in terms of perceptual decoupling. Activation of the default network was not related to internally directed attention per se, but rather to a higher level of self-generated thought. The findings hence shed further light on the roles of inferior and superior parietal cortex for internally directed cognition.
Degnan, Andrew J; Wisnowski, Jessica L; Choi, SoYoung; Ceschin, Rafael; Bhushan, Chitresh; Leahy, Richard M; Corby, Patricia; Schmithorst, Vincent J; Panigrahy, Ashok
2015-01-01
Late preterm birth confers increased risk of developmental delay, academic difficulties and social deficits. The late third trimester may represent a critical period of development of neural networks including the default mode network (DMN), which is essential to normal cognition. Our objective is to identify functional and structural connectivity differences in the posteromedial cortex related to late preterm birth. Thirty-eight preadolescents (ages 9-13; 19 born in the late preterm period (≥32 weeks gestational age) and 19 at term) without access to advanced neonatal care were recruited from a low socioeconomic status community in Brazil. Participants underwent neurocognitive testing, 3-dimensional T1-weighted imaging, diffusion-weighted imaging and resting state functional MRI (RS-fMRI). Seed-based probabilistic diffusion tractography and RS-fMRI analyses were performed using unilateral seeds within the posterior DMN (posterior cingulate cortex, precuneus) and lateral parietal DMN (superior marginal and angular gyri). Late preterm children demonstrated increased functional connectivity within the posterior default mode networks and increased anti-correlation with the central-executive network when seeded from the posteromedial cortex (PMC). Key differences were demonstrated between PMC components with increased anti-correlation with the salience network seen only with posterior cingulate cortex seeding but not with precuneus seeding. Probabilistic tractography showed increased streamlines within the right inferior longitudinal fasciculus and inferior fronto-occipital fasciculus within late preterm children while decreased intrahemispheric streamlines were also observed. No significant differences in neurocognitive testing were demonstrated between groups. Late preterm preadolescence is associated with altered functional connectivity from the PMC and lateral parietal cortex to known distributed functional cortical networks despite no significant executive neurocognitive differences. Selective increased structural connectivity was observed in the setting of decreased posterior interhemispheric connections. Future work is needed to determine if these findings represent a compensatory adaptation employing alternate neural circuitry or could reflect subtle pathology resulting in emotional processing deficits not seen with neurocognitive testing.
Differential neural responses to food images in women with bulimia versus anorexia nervosa.
Brooks, Samantha J; O'Daly, Owen G; Uher, Rudolf; Friederich, Hans-Christoph; Giampietro, Vincent; Brammer, Michael; Williams, Steven C R; Schiöth, Helgi B; Treasure, Janet; Campbell, Iain C
2011-01-01
Previous fMRI studies show that women with eating disorders (ED) have differential neural activation to viewing food images. However, despite clinical differences in their responses to food, differential neural activation to thinking about eating food, between women with anorexia nervosa (AN) and bulimia nervosa (BN) is not known. We compare 50 women (8 with BN, 18 with AN and 24 age-matched healthy controls [HC]) while they view food images during functional Magnetic Resonance Imaging (fMRI). In response to food (vs non-food) images, women with BN showed greater neural activation in the visual cortex, right dorsolateral prefrontal cortex, right insular cortex and precentral gyrus, women with AN showed greater activation in the right dorsolateral prefrontal cortex, cerebellum and right precuneus. HC women activated the cerebellum, right insular cortex, right medial temporal lobe and left caudate. Direct comparisons revealed that compared to HC, the BN group showed relative deactivation in the bilateral superior temporal gyrus/insula, and visual cortex, and compared to AN had relative deactivation in the parietal lobe and dorsal posterior cingulate cortex, but greater activation in the caudate, superior temporal gyrus, right insula and supplementary motor area. Women with AN and BN activate top-down cognitive control in response to food images, yet women with BN have increased activation in reward and somatosensory regions, which might impinge on cognitive control over food consumption and binge eating.
Hou, Zhongyu; Zhang, Zhonghe; Meng, Haiwei; Lin, Xiangtao; Sun, Bo; Lei, Hao; Fang, Ke; Fang, Fang; Liu, Maili; Liu, Shuwei
2014-02-01
This study aims to investigate metabolic changes in frontal and parietal cortices in the 6-OHDA induced Parkinson's rats. Ratios of N-acetyl-aspartic acid/creatine (NAA/Cr), choline/creatine (Cho/Cr), and glumatic acid and glutamine glutaminic acid/creatine (Glx/Cr) of regions of interests (ROIs) in the frontal and parietal cortices, and the substantia nigra were analyzed. NAA/Cr, Cho/Cr and Glx/Cr in the frontal and parietal cortices in the lesion side did not show any significant differences two weeks after operation compared with the contralateral side (p > 0.05). NAA/Cr in the frontal cortex in the lesion side was significantly lower in the five weeks after operation; Cho/Cr remained normal; Glx/Cr increased (p < 0.05), and all ratios of parietal cortex were normal. In the eight weeks after operation, NAA/Cr in the frontal cortex in the lesion side was lower than that of the five weeks (p < 0.01), Cho/Cr still remained normal while Glx/Cr was higher than before (p < 0.01). Regarding the parietal cortex, NAA/Cr increased significantly, while Cho/Cr and Glx/Cr remained normal. In the 12 weeks after operation, NAA/Cr, Cho/Cr and Glx/Cr in frontal cortex were consistent with that of the eight weeks, while they remained at the normal level in parietal cortex. The NAA/Cr in the substantia nigra decreased and Cho/Cr increased significantly during 2-8 weeks, and remained at the same level during 8-12 weeks. There are metabolic disturbances in PD rats. The transient hyperfunction in the parietal cortex can be considered as a compensation for the dysfunction of the frontal cortex and substantia nigra.
Pfeifer, Jennifer H.; Masten, Carrie L.; Borofsky, Larissa A.; Dapretto, Mirella; Fuligni, Andrew J.; Lieberman, Matthew D.
2011-01-01
Classic theories of self-development suggest people define themselves in part through internalized perceptions of other people’s beliefs about them, known as reflected self-appraisals. This study uses functional magnetic resonance imaging to compare the neural correlates of direct and reflected self-appraisals in adolescence (N = 12, ages 11–14 years) and adulthood (N = 12, ages 23–30 years). During direct self-reflection, adolescents demonstrated greater activity than adults in networks relevant to self-perception (medial prefrontal and parietal cortices) and social-cognition (dorsomedial prefrontal cortex, temporal–parietal junction, and posterior superior temporal sulcus), suggesting adolescent self-construals may rely more heavily on others’ perspectives about the self. Activity in the medial fronto-parietal network was also enhanced when adolescents took the perspective of someone more relevant to a given domain. PMID:19630891
Chung, Jae W; Ofori, Edward; Misra, Gaurav; Hess, Christopher W; Vaillancourt, David E
2017-01-01
Accurate motor performance may depend on the scaling of distinct oscillatory activity within the motor cortex and effective neural communication between the motor cortex and other brain areas. Oscillatory activity within the beta-band (13-30Hz) has been suggested to provide distinct functional roles for attention and sensorimotor control, yet it remains unclear how beta-band and other oscillatory activity within and between cortical regions is coordinated to enhance motor performance. We explore this open issue by simultaneously measuring high-density cortical activity and elbow flexor and extensor neuromuscular activity during ballistic movements, and manipulating error using high and low visual gain across three target distances. Compared with low visual gain, high visual gain decreased movement errors at each distance. Group analyses in 3D source-space revealed increased theta-, alpha-, and beta-band desynchronization of the contralateral motor cortex and medial parietal cortex in high visual gain conditions and this corresponded to reduced movement error. Dynamic causal modeling was used to compute connectivity between motor cortex and parietal cortex. Analyses revealed that gain affected the directionally-specific connectivity across broadband frequencies from parietal to sensorimotor cortex but not from sensorimotor cortex to parietal cortex. These new findings provide support for the interpretation that broad-band oscillations in theta, alpha, and beta frequency bands within sensorimotor and parietal cortex coordinate to facilitate accurate upper limb movement. Our findings establish a link between sensorimotor oscillations in the context of online motor performance in common source space across subjects. Specifically, the extent and distinct role of medial parietal cortex to sensorimotor beta connectivity and local domain broadband activity combine in a time and frequency manner to assist ballistic movements. These findings can serve as a model to examine whether similar source space EEG dynamics exhibit different time-frequency changes in individuals with neurological disorders that cause movement errors. Copyright © 2016 Elsevier Inc. All rights reserved.
Increased Executive Functioning, Attention, and Cortical Thickness in White-Collar Criminals
Raine, Adrian; Laufer, William S.; Yang, Yaling; Narr, Katherine L.; Thompson, Paul; Toga, Arthur W.
2011-01-01
Very little is known on white collar crime and how it differs to other forms of offending. This study tests the hypothesis that white collar criminals have better executive functioning, enhanced information processing, and structural brain superiorities compared to offender controls. Using a case-control design, executive functioning, orienting, and cortical thickness was assessed in 21 white collar criminals matched with 21 controls on age, gender, ethnicity, and general level of criminal offending. White collar criminals had significantly better executive functioning, increased electrodermal orienting, increased arousal, and increased cortical gray matter thickness in the ventromedial prefrontal cortex, inferior frontal gyrus, somatosensory cortex, and the temporal-parietal junction compared to controls. Results, while initial, constitute the first findings on neurobiological characteristics of white-collar criminals It is hypothesized that white collar criminals have information-processing and brain superiorities that give them an advantage in perpetrating criminal offenses in occupational settings. PMID:22002326
Increased executive functioning, attention, and cortical thickness in white-collar criminals.
Raine, Adrian; Laufer, William S; Yang, Yaling; Narr, Katherine L; Thompson, Paul; Toga, Arthur W
2012-12-01
Very little is known on white-collar crime and how it differs to other forms of offending. This study tests the hypothesis that white-collar criminals have better executive functioning, enhanced information processing, and structural brain superiorities compared with offender controls. Using a case-control design, executive functioning, orienting, and cortical thickness was assessed in 21 white-collar criminals matched with 21 controls on age, gender, ethnicity, and general level of criminal offending. White-collar criminals had significantly better executive functioning, increased electrodermal orienting, increased arousal, and increased cortical gray matter thickness in the ventromedial prefrontal cortex, inferior frontal gyrus, somatosensory cortex, and the temporal-parietal junction compared with controls. Results, while initial, constitute the first findings on neurobiological characteristics of white-collar criminals. It is hypothesized that white-collar criminals have information-processing and brain superiorities that give them an advantage in perpetrating criminal offenses in occupational settings. Copyright © 2011 Wiley Periodicals, Inc.
Kim, Woojong; Chang, Yongmin; Kim, Jingu; Seo, Jeehye; Ryu, Kwangmin; Lee, Eunkyung; Woo, Minjung; Janelle, Christopher M
2014-12-01
We investigated brain activity in elite, expert, and novice archers during a simulated archery aiming task to determine whether neural correlates of performance differ by skill level. Success in shooting sports depends on complex mental routines just before the shot, when the brain prepares to execute the movement. During functional magnetic resonance imaging, 40 elite, expert, or novice archers aimed at a simulated 70-meter-distant target and pushed a button when they mentally released the bowstring. At the moment of optimal aiming, the elite and expert archers relied primarily on a dorsal pathway, with greatest activity in the occipital lobe, temporoparietal lobe, and dorsolateral pre-motor cortex. The elites showed activity in the supplementary motor area, temporoparietal area, and cerebellar dentate, while the experts showed activity only in the superior frontal area. The novices showed concurrent activity in not only the dorsolateral pre-motor cortex but also the ventral pathways linked to the ventrolateral pre-motor cortex. The novices exhibited broad activity in the superior frontal area, inferior frontal area, ventral prefrontal cortex, primary motor cortex, superior parietal lobule, and primary somatosensory cortex. The more localized neural activity of elite and expert archers than novices permits greater efficiency in the complex processes subserved by these regions. The elite group's high activity in the cerebellar dentate indicates that the cerebellum is involved in automating simultaneous movements by integrating the sensorimotor memory enabled by greater expertise in self-paced aiming tasks. A companion article comments on and generalizes our findings.
Scheperjans, Filip; Palomero-Gallagher, Nicola; Grefkes, Christian; Schleicher, Axel; Zilles, Karl
2005-11-01
Regional distributions of ligand binding sites of 12 different neurotransmitter receptors (glutamatergic: AMPA, kainate, NMDA; GABAergic: GABA(A), GABA(B); cholinergic: muscarinic M2, nicotinic; adrenergic: alpha1, alpha2; serotonergic: 5-HT1A, 5-HT2; dopaminergic: D1) were studied in human postmortem brains by means of quantitative receptor autoradiography. Binding site densities were measured in the superior parietal lobule (SPL) (areas 5L, 5M, 5Ci, and different locations within Brodmann's area (BA) 7), somatosensory (BA 2), and visual cortical areas (BA 17, and different locations within BAs 18 and 19). Similarities of receptor distribution between cortical areas were analyzed by cluster analysis, uni- and multivariate statistics of mean receptor densities (averaged over all cortical layers), and profiles representing the laminar distribution patterns of receptors. A considerable heterogeneity of regional receptor densities and laminar patterns between the sites was found in the SPL and the visual cortex. The most prominent regional differences were found for M2 receptors. In the SPL, rostrocaudally oriented changes of receptor densities were more pronounced than those in mediolateral direction. The receptor distribution in the rostral SPL was more similar to that of the somatosensory cortex, whereas caudal SPL resembled the receptor patterns of the dorsolateral extrastriate visual areas. These results suggest a segregation of the different SPL areas based on receptor distribution features typical for somatosensory or visual areas, which fits to the dual functional role of this cortical region, i.e., the involvement of the human SPL in visuomotor and somatosensory motor transformations.
Sensitivity to perception level differentiates two subnetworks within the mirror neuron system.
Simon, Shiri; Mukamel, Roy
2017-05-01
Mirror neurons are a subset of brain cells that discharge during action execution and passive observation of similar actions. An open question concerns the functional role of their ability to match observed and executed actions. Since understanding of goals requires conscious perception of actions, we expect that mirror neurons potentially involved in action goal coding, will be modulated by changes in action perception level. Here, we manipulated perception level of action videos depicting short hand movements and measured the corresponding fMRI BOLD responses in mirror regions. Our results show that activity levels within a network of regions, including the sensorimotor cortex, primary motor cortex, dorsal premotor cortex and posterior superior temporal sulcus, are sensitive to changes in action perception level, whereas activity levels in the inferior frontal gyrus, ventral premotor cortex, supplementary motor area and superior parietal lobule are invariant to such changes. In addition, this parcellation to two sub-networks manifest as smaller functional distances within each group of regions during task and resting state. Our results point to functional differences between regions within the mirror neurons system which may have implications with respect to their possible role in action understanding. © The Author (2017). Published by Oxford University Press.
Lee, Philip S; Foss-Feig, Jennifer; Henderson, Joshua G; Kenworthy, Lauren E; Gilotty, Lisa; Gaillard, William D; Vaidya, Chandan J
2007-10-15
Superior performance on the Embedded Figures Task (EFT) has been attributed to weak central coherence in perceptual processing in Autism Spectrum Disorder (ASD). The present study used functional magnetic resonance imaging to examine the neural basis of EFT performance in 7- to 12-year-old ASD children and age- and IQ-matched controls. ASD children activated only a subset of the distributed network of regions activated in controls. In frontal cortex, control children activated left dorsolateral, medial and dorsal premotor regions whereas ASD children only activated the dorsal premotor region. In parietal and occipital cortices, activation was bilateral in control children but unilateral (left superior parietal and right occipital) in ASD children. Further, extensive bilateral ventral temporal activation was observed in control, but not ASD children. ASD children performed the EFT at the same level as controls but with reduced cortical involvement, suggesting that disembedded visual processing is accomplished parsimoniously by ASD relative to typically developing brains.
Overlapping Parietal Activity in Memory and Perception: Evidence for the Attention to Memory Model
ERIC Educational Resources Information Center
Cabeza, Roberto; Mazuz, Yonatan S.; Stokes, Jared; Kragel, James E.; Woldorff, Marty G.; Ciaramelli, Elisa; Olson, Ingrid R.; Moscovitch, Morris
2011-01-01
The specific role of different parietal regions to episodic retrieval is a topic of intense debate. According to the Attention to Memory (AtoM) model, dorsal parietal cortex (DPC) mediates top-down attention processes guided by retrieval goals, whereas ventral parietal cortex (VPC) mediates bottom-up attention processes captured by the retrieval…
Residual number processing in dyscalculia☆
Cappelletti, Marinella; Price, Cathy J.
2013-01-01
Developmental dyscalculia – a congenital learning disability in understanding numerical concepts – is typically associated with parietal lobe abnormality. However, people with dyscalculia often retain some residual numerical abilities, reported in studies that otherwise focused on abnormalities in the dyscalculic brain. Here we took a different perspective by focusing on brain regions that support residual number processing in dyscalculia. All participants accurately performed semantic and categorical colour-decision tasks with numerical and non-numerical stimuli, with adults with dyscalculia performing slower than controls in the number semantic tasks only. Structural imaging showed less grey-matter volume in the right parietal cortex in people with dyscalculia relative to controls. Functional MRI showed that accurate number semantic judgements were maintained by parietal and inferior frontal activations that were common to adults with dyscalculia and controls, with higher activation for participants with dyscalculia than controls in the right superior frontal cortex and the left inferior frontal sulcus. Enhanced activation in these frontal areas was driven by people with dyscalculia who made faster rather than slower numerical decisions; however, activation could not be accounted for by response times per se, because it was greater for fast relative to slow dyscalculics but not greater for fast controls relative to slow dyscalculics. In conclusion, our results reveal two frontal brain regions that support efficient number processing in dyscalculia. PMID:24266008
Functional Heterogeneity in Posterior Parietal Cortex Across Attention and Episodic Memory Retrieval
Hutchinson, J. Benjamin; Uncapher, Melina R.; Weiner, Kevin S.; Bressler, David W.; Silver, Michael A.; Preston, Alison R.; Wagner, Anthony D.
2014-01-01
While attention is critical for event memory, debate has arisen regarding the extent to which posterior parietal cortex (PPC) activation during episodic retrieval reflects engagement of PPC-mediated mechanisms of attention. Here, we directly examined the relationship between attention and memory, within and across subjects, using functional magnetic resonance imaging attention-mapping and episodic retrieval paradigms. During retrieval, 4 functionally dissociable PPC regions were identified. Specifically, 2 PPC regions positively tracked retrieval outcomes: lateral intraparietal sulcus (latIPS) indexed graded item memory strength, whereas angular gyrus (AnG) tracked recollection. By contrast, 2 other PPC regions demonstrated nonmonotonic relationships with retrieval: superior parietal lobule (SPL) tracked retrieval reaction time, consistent with a graded engagement of top-down attention, whereas temporoparietal junction displayed a complex pattern of below-baseline retrieval activity, perhaps reflecting disengagement of bottom-up attention. Analyses of retrieval effects in PPC topographic spatial attention maps (IPS0-IPS5; SPL1) revealed that IPS5 and SPL1 exhibited a nonmonotonic relationship with retrieval outcomes resembling that in the SPL region, further suggesting that SPL activation during retrieval reflects top-down attention. While demands on PPC attention mechanisms vary during retrieval attempts, the present functional parcellation of PPC indicates that 2 additional mechanisms (mediated by latIPS and AnG) positively track retrieval outcomes. PMID:23019246
Residual number processing in dyscalculia.
Cappelletti, Marinella; Price, Cathy J
2014-01-01
Developmental dyscalculia - a congenital learning disability in understanding numerical concepts - is typically associated with parietal lobe abnormality. However, people with dyscalculia often retain some residual numerical abilities, reported in studies that otherwise focused on abnormalities in the dyscalculic brain. Here we took a different perspective by focusing on brain regions that support residual number processing in dyscalculia. All participants accurately performed semantic and categorical colour-decision tasks with numerical and non-numerical stimuli, with adults with dyscalculia performing slower than controls in the number semantic tasks only. Structural imaging showed less grey-matter volume in the right parietal cortex in people with dyscalculia relative to controls. Functional MRI showed that accurate number semantic judgements were maintained by parietal and inferior frontal activations that were common to adults with dyscalculia and controls, with higher activation for participants with dyscalculia than controls in the right superior frontal cortex and the left inferior frontal sulcus. Enhanced activation in these frontal areas was driven by people with dyscalculia who made faster rather than slower numerical decisions; however, activation could not be accounted for by response times per se, because it was greater for fast relative to slow dyscalculics but not greater for fast controls relative to slow dyscalculics. In conclusion, our results reveal two frontal brain regions that support efficient number processing in dyscalculia.
Van Vugt, Dean A; Krzemien, Alicja; Alsaadi, Hanin; Frank, Tamar C; Reid, Robert L
2014-04-16
We postulate that insulin regulation of food intake is compromised when insulin resistance is present. In order to investigate the effect of insulin sensitivity on appetitive brain responses, we conducted functional magnetic resonance imaging studies in a group of women diagnosed with polycystic ovary syndrome (PCOS) in which insulin sensitivity ranged from normal to resistant. Subjects (n=19) were imaged while viewing pictures of high calorie (HC) foods and low calorie (LC) foods after ingesting either 75 g glucose or an equivalent volume of water. The insulin sensitive group showed reduced blood oxygen level dependent (BOLD) signal in response to food pictures following glucose ingestion in numerous corticolimbic brain regions, whereas the insulin resistant group did not. There was a significant interaction between insulin sensitivity (sensitive vs resistant) and condition (water vs glucose). The largest clusters identified included the left insula, bilateral limbic/parahippocampal gyrus/culmen/midbrain, bilateral limbic lobe/precuneus, and left superior/mid temporal gyrus/parietal for HC and LC stimuli combined, the left parahippocampal gyrus/fusiform/pulvinar/midbrain for HC pictures, and the left superior/mid temporal gyrus/parietal and middle/inferior frontal gyrus/orbitofrontal cortex for LC pictures. Furthermore, BOLD signal in the anterior cingulate, medial frontal gyrus, posterior cingulate/precuneus, and parietal cortex during a glucose challenge correlated negatively with insulin sensitivity. We conclude the PCOS women with insulin resistance have an impaired brain response to a glucose challenge. The inability of postprandial hyperinsulinemia to inhibit brain responsiveness to food cues in insulin resistant subjects may lead to greater non-homeostatic eating. Copyright © 2014 Elsevier B.V. All rights reserved.
Wood, Daniel K; Chouinard, Philippe A; Major, Alex J; Goodale, Melvyn A
2017-12-01
Most object-directed limb movements can be carried out with a comfortable grasp posture. However, the orientation of an object relative to our bodies can sometimes lead us to select an uncomfortable or awkward grasp posture due to limitations imposed by the biomechanics of the arm. In a series of experiments, we identified a network of cortical areas that are engaged during the selection of movement strategies. Neurologically intact participants and two brain-damaged patients with overlapping lesions in the right posterior superior parietal lobule (pSPL) performed a grasp posture selection task in which biomechanical constraints were the primary consideration for selecting an action. The task induced states of bistable actions whereby the same stimulus gave rise to categorically different grasp postures. In a behavioral experiment, the two patients displayed a large range of manual bistability with the contralesional hand, resulting in a higher incidence of awkward grasping postures. In neurologically intact participants, a separate functional magnetic resonance imaging (fMRI) experiment revealed activation of a parieto-frontal network, which included the posterior intraparietal sulcus (pIPS) along the banks of the pSPL that was parametrically modulated by the degree of bistability in grasp posture selection. Superimposing this activation over the patients' structural MRIs revealed that the pIPS/pSPL activation in the neurologically intact participants overlapped with lesioned cortical tissue in both patients; all other areas of activation overlapped with intact cortical tissue in the patients. These results provide converging evidence that the posterior parietal cortex plays a critical role in selecting biomechanically appropriate postures during reach-to-grasp behaviors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Default network connectivity as a vulnerability marker for obsessive compulsive disorder.
Peng, Z W; Xu, T; He, Q H; Shi, C Z; Wei, Z; Miao, G D; Jing, J; Lim, K O; Zuo, X N; Chan, R C K
2014-05-01
Aberrant functional connectivity within the default network is generally assumed to be involved in the pathophysiology of obsessive compulsive disorder (OCD); however, the genetic risk of default network connectivity in OCD remains largely unknown. Here, we systematically investigated default network connectivity in 15 OCD patients, 15 paired unaffected siblings and 28 healthy controls. We sought to examine the profiles of default network connectivity in OCD patients and their siblings, exploring the correlation between abnormal default network connectivity and genetic risk for this population. Compared with healthy controls, OCD patients exhibited reduced strength of default network functional connectivity with the posterior cingulate cortex (PCC), and increased functional connectivity in the right inferior frontal lobe, insula, superior parietal cortex and superior temporal cortex, while their unaffected first-degree siblings only showed reduced local connectivity in the PCC. These findings suggest that the disruptions of default network functional connectivity might be associated with family history of OCD. The decreased default network connectivity in both OCD patients and their unaffected siblings may serve as a potential marker of OCD.
Spatial updating in human parietal cortex
NASA Technical Reports Server (NTRS)
Merriam, Elisha P.; Genovese, Christopher R.; Colby, Carol L.
2003-01-01
Single neurons in monkey parietal cortex update visual information in conjunction with eye movements. This remapping of stimulus representations is thought to contribute to spatial constancy. We hypothesized that a similar process occurs in human parietal cortex and that we could visualize it with functional MRI. We scanned subjects during a task that involved remapping of visual signals across hemifields. We observed an initial response in the hemisphere contralateral to the visual stimulus, followed by a remapped response in the hemisphere ipsilateral to the stimulus. We ruled out the possibility that this remapped response resulted from either eye movements or visual stimuli alone. Our results demonstrate that updating of visual information occurs in human parietal cortex.
Brain representations for acquiring and recalling visual-motor adaptations
Bédard, Patrick; Sanes, Jerome N.
2014-01-01
Humans readily learn and remember new motor skills, a process that likely underlies adaptation to changing environments. During adaptation, the brain develops new sensory-motor relationships, and if consolidation occurs, a memory of the adaptation can be retained for extended periods. Considerable evidence exists that multiple brain circuits participate in acquiring new sensory-motor memories, though the networks engaged in recalling these and whether the same brain circuits participate in their formation and recall has less clarity. To address these issues, we assessed brain activation with functional MRI while young healthy adults learned and recalled new sensory-motor skills by adapting to world-view rotations of visual feedback that guided hand movements. We found cerebellar activation related to adaptation rate, likely reflecting changes related to overall adjustments to the visual rotation. A set of parietal and frontal regions, including inferior and superior parietal lobules, premotor area, supplementary motor area and primary somatosensory cortex, exhibited non-linear learning-related activation that peaked in the middle of the adaptation phase. Activation in some of these areas, including the inferior parietal lobule, intra-parietal sulcus and somatosensory cortex, likely reflected actual learning, since the activation correlated with learning after-effects. Lastly, we identified several structures having recall-related activation, including the anterior cingulate and the posterior putamen, since the activation correlated with recall efficacy. These findings demonstrate dynamic aspects of brain activation patterns related to formation and recall of a sensory-motor skill, such that non-overlapping brain regions participate in distinctive behavioral events. PMID:25019676
Sex differences in cortical thickness and their possible genetic and sex hormonal underpinnings.
Savic, I; Arver, S
2014-12-01
Although it has been shown that cortical thickness (Cth) differs between sexes, the underlying mechanisms are unknown. Seeing as XXY males have 1 extra X chromosome, we investigated the possible effects of X- and sex-chromosome dosage on Cth by comparing data from 31 XXY males with 39 XY and 47 XX controls. Plasma testosterone and estrogen were also measured in an effort to differentiate between possible sex-hormone and sex-chromosome gene effects. Cth was calculated with FreeSurfer software. Parietal and occipital Cth was greater in XX females than XY males. In these regions Cth was inversely correlated with z-normalized testosterone. In the motor strip, the cortex was thinner in XY males compared with both XX females and XXY males, indicating the possibility of an X-chromosome gene-dosage effect. XXY males had thinner right superior temporal and left middle temporal cortex, and a thicker right orbitofrontal cortex and lingual cortex than both control groups. Based on these data and previous reports from women with XO monosomy, it is hypothesized that programming of the motor cortex is influenced by processes linked to X-escapee genes, which do not have Y-chromosome homologs, and that programming of the superior temporal cortex is mediated by X-chromosome escapee genes with Y-homologs. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Sestieri, Carlo; Capotosto, Paolo; Tosoni, Annalisa; Luca Romani, Gian; Corbetta, Maurizio
2013-04-01
Although posterior parietal cortex (PPC) has been traditionally associated with spatial attention and sensorimotor functions, recent neuroimaging evidence has suggested the involvement of regions of left PCC (LPPC) in memory retrieval. Yet, the role of the parietal lobe in memory-related functions is still controversial. Here we investigated the causal involvement of different LPPC regions in episodic memory retrieval using repetitive transcranial magnetic stimulation (rTMS) during a task that provided both objective and subjective measures of item recognition and source memory. Stimulation sites were identified on the basis of a recent fMRI study showing the involvement of regions of the default mode network (DMN), such as the angular gyrus (AG) in the inferior parietal lobule (IPL), during search for relevant information in episodic memory, and regions of the dorsal attention network (DAN), such as the superior parietal lobule (SPL), during perceptual search. We predicted a selective disruption of memory performance following rTMS stimulation of the left AG relative to a sham condition or stimulation of the left SPL. We found a modest but significant decrease of sensitivity for item recognition when AG was directly compared to SPL, but not to sham stimulation. A stronger effect was however observed for the criterion of source memory judgments when comparing AG with both SPL and sham stimulation, suggesting that the rTMS over AG affects subjective aspects of source monitoring associated with the weighing of relevant retrieved information for source attribution. Copyright © 2013 Elsevier Ltd. All rights reserved.
van Leeuwen, Tessa M; Petersson, Karl Magnus; Hagoort, Peter
2010-08-10
In synaesthesia, sensations in a particular modality cause additional experiences in a second, unstimulated modality (e.g., letters elicit colour). Understanding how synaesthesia is mediated in the brain can help to understand normal processes of perceptual awareness and multisensory integration. In several neuroimaging studies, enhanced brain activity for grapheme-colour synaesthesia has been found in ventral-occipital areas that are also involved in real colour processing. Our question was whether the neural correlates of synaesthetically induced colour and real colour experience are truly shared. First, in a free viewing functional magnetic resonance imaging (fMRI) experiment, we located main effects of synaesthesia in left superior parietal lobule and in colour related areas. In the left superior parietal lobe, individual differences between synaesthetes (projector-associator distinction) also influenced brain activity, confirming the importance of the left superior parietal lobe for synaesthesia. Next, we applied a repetition suppression paradigm in fMRI, in which a decrease in the BOLD (blood-oxygenated-level-dependent) response is generally observed for repeated stimuli. We hypothesized that synaesthetically induced colours would lead to a reduction in BOLD response for subsequently presented real colours, if the neural correlates were overlapping. We did find BOLD suppression effects induced by synaesthesia, but not within the colour areas. Because synaesthetically induced colours were not able to suppress BOLD effects for real colour, we conclude that the neural correlates of synaesthetic colour experience and real colour experience are not fully shared. We propose that synaesthetic colour experiences are mediated by higher-order visual pathways that lie beyond the scope of classical, ventral-occipital visual areas. Feedback from these areas, in which the left parietal cortex is likely to play an important role, may induce V4 activation and the percept of synaesthetic colour.
Castelli, Fulvia; Frith, Chris; Happé, Francesca; Frith, Uta
2002-08-01
Ten able adults with autism or Asperger syndrome and 10 normal volunteers were PET scanned while watching animated sequences. The animations depicted two triangles moving about on a screen in three different conditions: moving randomly, moving in a goal-directed fashion (chasing, fighting), and moving interactively with implied intentions (coaxing, tricking). The last condition frequently elicited descriptions in terms of mental states that viewers attributed to the triangles (mentalizing). The autism group gave fewer and less accurate descriptions of these latter animations, but equally accurate descriptions of the other animations compared with controls. While viewing animations that elicited mentalizing, in contrast to randomly moving shapes, the normal group showed increased activation in a previously identified mentalizing network (medial prefrontal cortex, superior temporal sulcus at the temporo-parietal junction and temporal poles). The autism group showed less activation than the normal group in all these regions. However, one additional region, extrastriate cortex, which was highly active when watching animations that elicited mentalizing, showed the same amount of increased activation in both groups. In the autism group this extrastriate region showed reduced functional connectivity with the superior temporal sulcus at the temporo-parietal junction, an area associated with the processing of biological motion as well as with mentalizing. This finding suggests a physiological cause for the mentalizing dysfunction in autism: a bottleneck in the interaction between higher order and lower order perceptual processes.
The neural circuitry of visual artistic production and appreciation: A proposition.
Chakravarty, Ambar
2012-04-01
The nondominant inferior parietal lobule is probably a major "store house" of artistic creativity. The ventromedial prefrontal lobe (VMPFL) is supposed to be involved in creative cognition and the dorsolateral prefrontal lobe (DLPFL) in creative output. The conceptual ventral and dorsal visual system pathways likely represent the inferior and superior longitudinal fasciculi. During artistic production, conceptualization is conceived in the VMPFL and the executive part is operated through the DLFPL. The latter transfers the concept to the visual brain through the superior longitudinal fasciculus (SLF), relaying on its path to the parietal cortex. The conceptualization at VMPFL is influenced by activity from the anterior temporal lobe through the uncinate fasciculus and limbic system pathways. The final visual image formed in the visual brain is subsequently transferred back to the DLPFL through the SLF and then handed over to the motor cortex for execution. During art appreciation, the image at the visual brain is transferred to the frontal lobe through the SLF and there it is matched with emotional and memory inputs from the anterior temporal lobe transmitted through the uncinate fasiculus. Beauty is perceived at the VMPFL and transferred through the uncinate fasciculus to the hippocampo-amygdaloid complex in the anterior temporal lobe. The limbic system (Papez circuit) is activated and emotion of appreciation is evoked. It is postulated that in practice the entire circuitry is activated simultaneously.
The neural circuitry of visual artistic production and appreciation: A proposition
Chakravarty, Ambar
2012-01-01
The nondominant inferior parietal lobule is probably a major “store house” of artistic creativity. The ventromedial prefrontal lobe (VMPFL) is supposed to be involved in creative cognition and the dorsolateral prefrontal lobe (DLPFL) in creative output. The conceptual ventral and dorsal visual system pathways likely represent the inferior and superior longitudinal fasciculi. During artistic production, conceptualization is conceived in the VMPFL and the executive part is operated through the DLFPL. The latter transfers the concept to the visual brain through the superior longitudinal fasciculus (SLF), relaying on its path to the parietal cortex. The conceptualization at VMPFL is influenced by activity from the anterior temporal lobe through the uncinate fasciculus and limbic system pathways. The final visual image formed in the visual brain is subsequently transferred back to the DLPFL through the SLF and then handed over to the motor cortex for execution. During art appreciation, the image at the visual brain is transferred to the frontal lobe through the SLF and there it is matched with emotional and memory inputs from the anterior temporal lobe transmitted through the uncinate fasiculus. Beauty is perceived at the VMPFL and transferred through the uncinate fasciculus to the hippocampo–amygdaloid complex in the anterior temporal lobe. The limbic system (Papez circuit) is activated and emotion of appreciation is evoked. It is postulated that in practice the entire circuitry is activated simultaneously. PMID:22566716
Striem-Amit, Ella; Amedi, Amir
2014-03-17
Vision is by far the most prevalent sense for experiencing others' body shapes, postures, actions, and intentions, and its congenital absence may dramatically hamper body-shape representation in the brain. We investigated whether the absence of visual experience and limited exposure to others' body shapes could still lead to body-shape selectivity. We taught congenitally fully-blind adults to perceive full-body shapes conveyed through a sensory-substitution algorithm topographically translating images into soundscapes [1]. Despite the limited experience of the congenitally blind with external body shapes (via touch of close-by bodies and for ~10 hr via soundscapes), once the blind could retrieve body shapes via soundscapes, they robustly activated the visual cortex, specifically the extrastriate body area (EBA; [2]). Furthermore, body selectivity versus textures, objects, and faces in both the blind and sighted control groups was not found in the temporal (auditory) or parietal (somatosensory) cortex but only in the visual EBA. Finally, resting-state data showed that the blind EBA is functionally connected to the temporal cortex temporal-parietal junction/superior temporal sulcus Theory-of-Mind areas [3]. Thus, the EBA preference is present without visual experience and with little exposure to external body-shape information, supporting the view that the brain has a sensory-independent, task-selective supramodal organization rather than a sensory-specific organization. Copyright © 2014 Elsevier Ltd. All rights reserved.
Occipital GABA correlates with cognitive failures in daily life.
Sandberg, Kristian; Blicher, Jakob Udby; Dong, Mia Yuan; Rees, Geraint; Near, Jamie; Kanai, Ryota
2014-02-15
The brain has limited capacity, and so selective attention enhances relevant incoming information while suppressing irrelevant information. This process is not always successful, and the frequency of such cognitive failures varies to a large extent between individuals. Here we hypothesised that individual differences in cognitive failures might be reflected in inhibitory processing in the sensory cortex. To test this hypothesis, we measured GABA in human visual cortex using MR spectroscopy and found a negative correlation between occipital GABA (GABA+/Cr ratio) and cognitive failures as measured by an established cognitive failures questionnaire (CFQ). For a second site in parietal cortex, no correlation between CFQ score and GABA+/Cr ratio was found, thus establishing the regional specificity of the link between occipital GABA and cognitive failures. We further found that grey matter volume in the left superior parietal lobule (SPL) correlated with cognitive failures independently from the impact of occipital GABA and together, occipital GABA and SPL grey matter volume statistically explained around 50% of the individual variability in daily cognitive failures. We speculate that the amount of GABA in sensory areas may reflect the potential capacity to selectively suppress irrelevant information already at the sensory level, or alternatively that GABA influences the specificity of neural representations in visual cortex thus improving the effectiveness of successful attentional modulation. © 2013. Published by Elsevier Inc. All rights reserved.
Lateralization of the human mirror neuron system.
Aziz-Zadeh, Lisa; Koski, Lisa; Zaidel, Eran; Mazziotta, John; Iacoboni, Marco
2006-03-15
A cortical network consisting of the inferior frontal, rostral inferior parietal, and posterior superior temporal cortices has been implicated in representing actions in the primate brain and is critical to imitation in humans. This neural circuitry may be an evolutionary precursor of neural systems associated with language. However, language is predominantly lateralized to the left hemisphere, whereas the degree of lateralization of the imitation circuitry in humans is unclear. We conducted a functional magnetic resonance imaging study of imitation of finger movements with lateralized stimuli and responses. During imitation, activity in the inferior frontal and rostral inferior parietal cortex, although fairly bilateral, was stronger in the hemisphere ipsilateral to the visual stimulus and response hand. This ipsilateral pattern is at variance with the typical contralateral activity of primary visual and motor areas. Reliably increased signal in the right superior temporal sulcus (STS) was observed for both left-sided and right-sided imitation tasks, although subthreshold activity was also observed in the left STS. Overall, the data indicate that visual and motor components of the human mirror system are not left-lateralized. The left hemisphere superiority for language, then, must be have been favored by other types of language precursors, perhaps auditory or multimodal action representations.
Murakami, Nobuya; Morioka, Takato; Suzuki, Satoshi O; Mukae, Nobutaka; Hashiguchi, Kimiaki; Iihara, Koji
2017-02-01
Parietal atretic cephalocele (AC) and its associated intracranial venous anomalies, such as vertical embryonic positioning of the straight sinus (VEP of SS), have, in previous reports, been exclusively restricted to the midline. We report a patient with lateralized parietal AC on the right side. The AC was in the shape of a tadpole, with a large head and a long tail, extending to the proximity of the right external canthus, where a lacrimal gland fistula was observed. The superior sagittal sinus and VEP of SS were also displaced to the right side, although the sagittal suture was located at the midline. Schizencephalic clefts in the right posterior cortex were also observed. The parietal AC, which was initially located in the midline, could conceivably have been displaced to the right side by other developmental processes. However, the relationship between lateralized AC and associated multiple anomalies on the ipsilateral side is difficult to explain monogenetically. Our case study indicates that AC might have a broader spectrum of clinical symptoms than was once thought to be the case.
García-Casares, Natalia; Bernal-López, María R; Roé-Vellvé, Nuria; Gutiérrez-Bedmar, Mario; Fernández-García, Jose C; García-Arnés, Juan A; Ramos-Rodriguez, José R; Alfaro, Francisco; Santamaria-Fernández, Sonia; Steward, Trevor; Jiménez-Murcia, Susana; Garcia-Garcia, Isabel; Valdivielso, Pedro; Fernández-Aranda, Fernando; Tinahones, Francisco J; Gómez-Huelgas, Ricardo
2017-07-01
Functional magnetic resonance imaging (fMRI) in the resting state has shown altered brain connectivity networks in obese individuals. However, the impact of a Mediterranean diet on cerebral connectivity in obese patients when losing weight has not been previously explored. The aim of this study was to examine the connectivity between brain structures before and six months after following a hypocaloric Mediterranean diet and physical activity program in a group of sixteen obese women aged 46.31 ± 4.07 years. Before and after the intervention program, the body mass index (BMI) (kg/m²) was 38.15 ± 4.7 vs. 34.18 ± 4.5 ( p < 0.02), and body weight (kg) was 98.5 ± 13.1 vs. 88.28 ± 12.2 ( p < 0.03). All subjects underwent a pre- and post-intervention fMRI under fasting conditions. Functional connectivity was assessed using seed-based correlations. After the intervention, we found decreased connectivity between the left inferior parietal cortex and the right temporal cortex ( p < 0.001), left posterior cingulate ( p < 0.001), and right posterior cingulate ( p < 0.03); decreased connectivity between the left superior frontal gyrus and the right temporal cortex ( p < 0.01); decreased connectivity between the prefrontal cortex and the somatosensory cortex ( p < 0.025); and decreased connectivity between the left and right posterior cingulate ( p < 0.04). Results were considered significant at a voxel-wise threshold of p ≤ 0.05, and a cluster-level family-wise error correction for multiple comparisons of p ≤ 0.05. In conclusion, functional connectivity between brain structures involved in the pathophysiology of obesity (the inferior parietal lobe, posterior cingulate, temporo-insular cortex, prefrontal cortex) may be modified by a weight loss program including a Mediterranean diet and physical exercise.
Differential Neural Responses to Food Images in Women with Bulimia versus Anorexia Nervosa
Brooks, Samantha J.; O′Daly, Owen G.; Uher, Rudolf; Friederich, Hans-Christoph; Giampietro, Vincent; Brammer, Michael; Williams, Steven C. R.; Schiöth, Helgi B.; Treasure, Janet; Campbell, Iain C.
2011-01-01
Background Previous fMRI studies show that women with eating disorders (ED) have differential neural activation to viewing food images. However, despite clinical differences in their responses to food, differential neural activation to thinking about eating food, between women with anorexia nervosa (AN) and bulimia nervosa (BN) is not known. Methods We compare 50 women (8 with BN, 18 with AN and 24 age-matched healthy controls [HC]) while they view food images during functional Magnetic Resonance Imaging (fMRI). Results In response to food (vs non-food) images, women with BN showed greater neural activation in the visual cortex, right dorsolateral prefrontal cortex, right insular cortex and precentral gyrus, women with AN showed greater activation in the right dorsolateral prefrontal cortex, cerebellum and right precuneus. HC women activated the cerebellum, right insular cortex, right medial temporal lobe and left caudate. Direct comparisons revealed that compared to HC, the BN group showed relative deactivation in the bilateral superior temporal gyrus/insula, and visual cortex, and compared to AN had relative deactivation in the parietal lobe and dorsal posterior cingulate cortex, but greater activation in the caudate, superior temporal gyrus, right insula and supplementary motor area. Conclusions Women with AN and BN activate top-down cognitive control in response to food images, yet women with BN have increased activation in reward and somatosensory regions, which might impinge on cognitive control over food consumption and binge eating. PMID:21799807
Kagawa, Tomonori; Narita, Noriyuki; Iwaki, Sunao; Kawasaki, Shingo; Kamiya, Kazunobu; Minakuchi, Shunsuke
2014-01-01
A cross-modal association between somatosensory tactile sensation and parietal and occipital activities during Braille reading was initially discovered in tests with blind subjects, with sighted and blindfolded healthy subjects used as controls. However, the neural background of oral stereognosis remains unclear. In the present study, we investigated whether the parietal and occipital cortices are activated during shape discrimination by the mouth using functional near-infrared spectroscopy (fNIRS). Following presentation of the test piece shape, a sham discrimination trial without the test pieces induced posterior parietal lobe (BA7), extrastriate cortex (BA18, BA19), and striate cortex (BA17) activation as compared with the rest session, while shape discrimination of the test pieces markedly activated those areas as compared with the rest session. Furthermore, shape discrimination of the test pieces specifically activated the posterior parietal cortex (precuneus/BA7), extrastriate cortex (BA18, 19), and striate cortex (BA17), as compared with sham sessions without a test piece. We concluded that oral tactile sensation is recognized through tactile/visual cross-modal substrates in the parietal and occipital cortices during shape discrimination by the mouth. PMID:25299397
Kagawa, Tomonori; Narita, Noriyuki; Iwaki, Sunao; Kawasaki, Shingo; Kamiya, Kazunobu; Minakuchi, Shunsuke
2014-01-01
A cross-modal association between somatosensory tactile sensation and parietal and occipital activities during Braille reading was initially discovered in tests with blind subjects, with sighted and blindfolded healthy subjects used as controls. However, the neural background of oral stereognosis remains unclear. In the present study, we investigated whether the parietal and occipital cortices are activated during shape discrimination by the mouth using functional near-infrared spectroscopy (fNIRS). Following presentation of the test piece shape, a sham discrimination trial without the test pieces induced posterior parietal lobe (BA7), extrastriate cortex (BA18, BA19), and striate cortex (BA17) activation as compared with the rest session, while shape discrimination of the test pieces markedly activated those areas as compared with the rest session. Furthermore, shape discrimination of the test pieces specifically activated the posterior parietal cortex (precuneus/BA7), extrastriate cortex (BA18, 19), and striate cortex (BA17), as compared with sham sessions without a test piece. We concluded that oral tactile sensation is recognized through tactile/visual cross-modal substrates in the parietal and occipital cortices during shape discrimination by the mouth.
Structural and functional cerebral correlates of hypnotic suggestibility.
Huber, Alexa; Lui, Fausta; Duzzi, Davide; Pagnoni, Giuseppe; Porro, Carlo Adolfo
2014-01-01
Little is known about the neural bases of hypnotic suggestibility, a cognitive trait referring to the tendency to respond to hypnotic suggestions. In the present magnetic resonance imaging study, we performed regression analyses to assess hypnotic suggestibility-related differences in local gray matter volume, using voxel-based morphometry, and in waking resting state functional connectivity of 10 resting state networks, in 37 healthy women. Hypnotic suggestibility was positively correlated with gray matter volume in portions of the left superior and medial frontal gyri, roughly overlapping with the supplementary and pre-supplementary motor area, and negatively correlated with gray matter volume in the left superior temporal gyrus and insula. In the functional connectivity analysis, hypnotic suggestibility was positively correlated with functional connectivity between medial posterior areas, including bilateral posterior cingulate cortex and precuneus, and both the lateral visual network and the left fronto-parietal network; a positive correlation was also found with functional connectivity between the executive-control network and a right postcentral/parietal area. In contrast, hypnotic suggestibility was negatively correlated with functional connectivity between the right fronto-parietal network and the right lateral thalamus. These findings demonstrate for the first time a correlation between hypnotic suggestibility, the structural features of specific cortical regions, and the functional connectivity during the normal resting state of brain structures involved in imagery and self-monitoring activity.
Hemispheric involvement in the processing of Chinese idioms: An fMRI study.
Yang, Jie; Li, Ping; Fang, Xiaoping; Shu, Hua; Liu, Youyi; Chen, Lang
2016-07-01
Although the left hemisphere is believed to handle major language functions, the role of the right hemisphere in language comprehension remains controversial. Recently researchers have investigated hemispheric language processing with figurative language materials (e.g., metaphors, jokes, and idioms). The current study capitalizes on the pervasiveness and distinct features of Chinese idioms to examine the brain mechanism of figurative language processing. Native Chinese speakers performed a non-semantic task while reading opaque idioms, transparent idioms, and non-idiomatic literal phrases. Whole-brain analyses indicated strong activations for all three conditions in an overlapping brain network that includes the bilateral inferior/middle frontal gyrus and the temporo-parietal and occipital-temporal regions. The two idiom conditions elicited additional activations in the right superior parietal lobule and right precuneus. Item-based modulation analyses further demonstrated that activation amplitudes in the right angular gyrus, right superior parietal lobule and right precuneus, as well as left inferior temporo-occipital cortex, are negatively correlated with the semantic transparency of the idioms. These results suggest that both hemispheres are involved in idiom processing but they play different roles. Implications of the findings are discussed in light of theories of figurative language processing and hemispheric functions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Spreng, R Nathan; Mar, Raymond A
2012-01-05
Remembering events from the personal past (autobiographical memory) and inferring the thoughts and feelings of other people (mentalizing) share a neural substrate. The shared functional neuroanatomy of these processes has been demonstrated in a meta-analysis of independent task domains (Spreng, Mar & Kim, 2009) and within subjects performing both tasks (Rabin, Gilboa, Stuss, Mar, & Rosenbaum, 2010; Spreng & Grady, 2010). Here, we examine spontaneous low-frequency fluctuations in fMRI BOLD signal during rest from two separate regions key to memory and mentalizing, the left hippocampus and right temporal parietal junction, respectively. Activity in these two regions was then correlated with the entire brain in a resting-state functional connectivity analysis. Although the left hippocampus and right temporal parietal junction were not correlated with each other, both were correlated with a distributed network of brain regions. These regions were consistent with the previously observed overlap between autobiographical memory and mentalizing evoked brain activity found in past studies. Reliable patterns of overlap included the superior temporal sulcus, anterior temporal lobe, lateral inferior parietal cortex (angular gyrus), posterior cingulate cortex, dorsomedial and ventral prefrontal cortex, inferior frontal gyrus, and the amygdala. We propose that the functional overlap facilitates the integration of personal and interpersonal information and provides a means for personal experiences to become social conceptual knowledge. This knowledge, in turn, informs strategic social behavior in support of personal goals. In closing, we argue for a new perspective within social cognitive neuroscience, emphasizing the importance of memory in social cognition. Copyright © 2010 Elsevier B.V. All rights reserved.
Spreng, R. Nathan; Mar, Raymond A.
2011-01-01
Remembering events from the personal past (autobiographical memory) and inferring the thoughts and feelings of other people (mentalizing) share a neural substrate. The shared functional neuroanatomy of these processes has been demonstrated in a meta-analysis of independent task domains (Spreng, Mar & Kim, 2009) and within subjects performing both tasks (Rabin, Gilboa, Stuss, Mar, & Rosenbaum, 2010; Spreng & Grady, 2010). Here, we examine spontaneous low-frequency fluctuations in fMRI BOLD signal during rest from two separate regions key to memory and mentalizing, the left hippocampus and right temporal parietal junction, respectively. Activity in these two regions was then correlated with the entire brain in a resting-state functional connectivity analysis. Although the left hippocampus and right temporal parietal junction were not correlated with each other, both were correlated with a distributed network of brain regions. These regions were consistent with the previously observed overlap between autobiographical memory and mentalizing evoked brain activity found in past studies. Reliable patterns of overlap included the superior temporal sulcus, anterior temporal lobe, lateral inferior parietal cortex (angular gyrus), posterior cingulate cortex, dorsomedial and ventral prefrontal cortex, inferior frontal gyrus, and the amygdala. We propose that the functional overlap facilitates the integration of personal and interpersonal information and provides a means for personal experiences to become social conceptual knowledge. This knowledge, in turn, informs strategic social behavior in support of personal goals. In closing, we argue for a new perspective within social cognitive neuroscience, emphasizing the importance of memory in social cognition. PMID:21172325
Boedhoe, Premika S W; Schmaal, Lianne; Abe, Yoshinari; Alonso, Pino; Ameis, Stephanie H; Anticevic, Alan; Arnold, Paul D; Batistuzzo, Marcelo C; Benedetti, Francesco; Beucke, Jan C; Bollettini, Irene; Bose, Anushree; Brem, Silvia; Calvo, Anna; Calvo, Rosa; Cheng, Yuqi; Cho, Kang Ik K; Ciullo, Valentina; Dallaspezia, Sara; Denys, Damiaan; Feusner, Jamie D; Fitzgerald, Kate D; Fouche, Jean-Paul; Fridgeirsson, Egill A; Gruner, Patricia; Hanna, Gregory L; Hibar, Derrek P; Hoexter, Marcelo Q; Hu, Hao; Huyser, Chaim; Jahanshad, Neda; James, Anthony; Kathmann, Norbert; Kaufmann, Christian; Koch, Kathrin; Kwon, Jun Soo; Lazaro, Luisa; Lochner, Christine; Marsh, Rachel; Martínez-Zalacaín, Ignacio; Mataix-Cols, David; Menchón, José M; Minuzzi, Luciano; Morer, Astrid; Nakamae, Takashi; Nakao, Tomohiro; Narayanaswamy, Janardhanan C; Nishida, Seiji; Nurmi, Erika; O'Neill, Joseph; Piacentini, John; Piras, Fabrizio; Piras, Federica; Reddy, Y C Janardhan; Reess, Tim J; Sakai, Yuki; Sato, Joao R; Simpson, H Blair; Soreni, Noam; Soriano-Mas, Carles; Spalletta, Gianfranco; Stevens, Michael C; Szeszko, Philip R; Tolin, David F; van Wingen, Guido A; Venkatasubramanian, Ganesan; Walitza, Susanne; Wang, Zhen; Yun, Je-Yeon; Thompson, Paul M; Stein, Dan J; van den Heuvel, Odile A
2018-05-01
Brain imaging studies of structural abnormalities in OCD have yielded inconsistent results, partly because of limited statistical power, clinical heterogeneity, and methodological differences. The authors conducted meta- and mega-analyses comprising the largest study of cortical morphometry in OCD ever undertaken. T 1 -weighted MRI scans of 1,905 OCD patients and 1,760 healthy controls from 27 sites worldwide were processed locally using FreeSurfer to assess cortical thickness and surface area. Effect sizes for differences between patients and controls, and associations with clinical characteristics, were calculated using linear regression models controlling for age, sex, site, and intracranial volume. In adult OCD patients versus controls, we found a significantly lower surface area for the transverse temporal cortex and a thinner inferior parietal cortex. Medicated adult OCD patients also showed thinner cortices throughout the brain. In pediatric OCD patients compared with controls, we found significantly thinner inferior and superior parietal cortices, but none of the regions analyzed showed significant differences in surface area. However, medicated pediatric OCD patients had lower surface area in frontal regions. Cohen's d effect sizes varied from -0.10 to -0.33. The parietal cortex was consistently implicated in both adults and children with OCD. More widespread cortical thickness abnormalities were found in medicated adult OCD patients, and more pronounced surface area deficits (mainly in frontal regions) were found in medicated pediatric OCD patients. These cortical measures represent distinct morphological features and may be differentially affected during different stages of development and illness, and possibly moderated by disease profile and medication.
Karlsson Wirebring, Linnea; Wiklund-Hörnqvist, Carola; Eriksson, Johan; Andersson, Micael; Jonsson, Bert; Nyberg, Lars
2015-07-01
Encoding and retrieval processes enhance long-term memory performance. The efficiency of encoding processes has recently been linked to representational consistency: the reactivation of a representation that gets more specific each time an item is further studied. Here we examined the complementary hypothesis of whether the efficiency of retrieval processes also is linked to representational consistency. Alternatively, recurrent retrieval might foster representational variability--the altering or adding of underlying memory representations. Human participants studied 60 Swahili-Swedish word pairs before being scanned with fMRI the same day and 1 week later. On Day 1, participants were tested three times on each word pair, and on Day 7 each pair was tested once. A BOLD signal change in right superior parietal cortex was associated with subsequent memory on Day 1 and with successful long-term retention on Day 7. A representational similarity analysis in this parietal region revealed that beneficial recurrent retrieval was associated with representational variability, such that the pattern similarity on Day 1 was lower for retrieved words subsequently remembered compared with those subsequently forgotten. This was mirrored by a monotonically decreased BOLD signal change in dorsolateral prefrontal cortex on Day 1 as a function of repeated successful retrieval for words subsequently remembered, but not for words subsequently forgotten. This reduction in prefrontal response could reflect reduced demands on cognitive control. Collectively, the results offer novel insights into why memory retention benefits from repeated retrieval, and they suggest fundamental differences between repeated study and repeated testing. Repeated testing is known to produce superior long-term retention of the to-be-learned material compared with repeated encoding and other learning techniques, much because it fosters repeated memory retrieval. This study demonstrates that repeated memory retrieval might strengthen memory by inducing more differentiated or elaborated memory representations in the parietal cortex, and at the same time reducing demands on prefrontal-cortex-mediated cognitive control processes during retrieval. The findings contrast with recent demonstrations that repeated encoding induces less differentiated or elaborated memory representations. Together, this study suggests a potential neurocognitive explanation of why repeated retrieval is more beneficial for long-term retention than repeated encoding, a phenomenon known as the testing effect. Copyright © 2015 the authors 0270-6474/15/359595-08$15.00/0.
Buchy, Lisa; Barbato, Mariapaola; Makowski, Carolina; Bray, Signe; MacMaster, Frank P; Deighton, Stephanie; Addington, Jean
2017-11-01
People with psychosis show deficits recognizing facial emotions and disrupted activation in the underlying neural circuitry. We evaluated associations between facial emotion recognition and cortical thickness using a correlation-based approach to map structural covariance networks across the brain. Fifteen people with an early psychosis provided magnetic resonance scans and completed the Penn Emotion Recognition and Differentiation tasks. Fifteen historical controls provided magnetic resonance scans. Cortical thickness was computed using CIVET and analyzed with linear models. Seed-based structural covariance analysis was done using the mapping anatomical correlations across the cerebral cortex methodology. To map structural covariance networks involved in facial emotion recognition, the right somatosensory cortex and bilateral fusiform face areas were selected as seeds. Statistics were run in SurfStat. Findings showed increased cortical covariance between the right fusiform face region seed and right orbitofrontal cortex in controls than early psychosis subjects. Facial emotion recognition scores were not significantly associated with thickness in any region. A negative effect of Penn Differentiation scores on cortical covariance was seen between the left fusiform face area seed and right superior parietal lobule in early psychosis subjects. Results suggest that facial emotion recognition ability is related to covariance in a temporal-parietal network in early psychosis. Copyright © 2017 Elsevier B.V. All rights reserved.
The iconography of mourning and its neural correlates: a functional neuroimaging study.
Labek, Karin; Berger, Samantha; Buchheim, Anna; Bosch, Julia; Spohrs, Jennifer; Dommes, Lisa; Beschoner, Petra; Stingl, Julia C; Viviani, Roberto
2017-08-01
The present functional neuroimaging study focuses on the iconography of mourning. A culture-specific pattern of body postures of mourning individuals, mostly suggesting withdrawal, emerged from a survey of visual material. When used in different combinations in stylized drawings in our neuroimaging study, this material activated cortical areas commonly seen in studies of social cognition (temporo-parietal junction, superior temporal gyrus, and inferior temporal lobe), empathy for pain (somatosensory cortex), and loss (precuneus, middle/posterior cingular gyrus). This pattern of activation developed over time. While in the early phases of exposure lower association areas, such as the extrastriate body area, were active, in the late phases activation in parietal and temporal association areas and the prefrontal cortex was more prominent. These findings are consistent with the conventional and contextual character of iconographic material, and further differentiate it from emotionally negatively valenced and high-arousing stimuli. In future studies, this neuroimaging assay may be useful in characterizing interpretive appraisal of material of negative emotional valence. © The Author (2017). Published by Oxford University Press.
Eger, E; Pinel, P; Dehaene, S; Kleinschmidt, A
2015-05-01
Macaque electrophysiology has revealed neurons responsive to number in lateral (LIP) and ventral (VIP) intraparietal areas. Recently, fMRI pattern recognition revealed information discriminative of individual numbers in human parietal cortex but without precisely localizing the relevant sites or testing for subregions with different response profiles. Here, we defined the human functional equivalents of LIP (feLIP) and VIP (feVIP) using neurophysiologically motivated localizers. We applied multivariate pattern recognition to investigate whether both regions represent numerical information and whether number codes are position specific or invariant. In a delayed number comparison paradigm with laterally presented numerosities, parietal cortex discriminated between numerosities better than early visual cortex, and discrimination generalized across hemifields in parietal, but not early visual cortex. Activation patterns in the 2 parietal regions of interest did not differ in the coding of position-specific or position-independent number information, but in the expression of a numerical distance effect which was more pronounced in feLIP. Thus, the representation of number in parietal cortex is at least partially position invariant. Both feLIP and feVIP contain information about individual numerosities in humans, but feLIP hosts a coarser representation of numerosity than feVIP, compatible with either broader tuning or a summation code. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Klaver, Peter; Latal, Beatrice; Martin, Ernst
2015-01-01
Very low birth weight (VLBW) premature born infants have a high risk to develop visual perceptual and learning deficits as well as widespread functional and structural brain abnormalities during infancy and childhood. Whether and how prematurity alters neural specialization within visual neural networks is still unknown. We used functional and structural brain imaging to examine the visual semantic system of VLBW born (<1250 g, gestational age 25-32 weeks) adolescents (13-15 years, n = 11, 3 males) and matched term born control participants (13-15 years, n = 11, 3 males). Neurocognitive assessment revealed no group differences except for lower scores on an adaptive visuomotor integration test. All adolescents were scanned while viewing pictures of animals and tools and scrambled versions of these pictures. Both groups demonstrated animal and tool category related neural networks. Term born adolescents showed tool category related neural activity, i.e. tool pictures elicited more activity than animal pictures, in temporal and parietal brain areas. Animal category related activity was found in the occipital, temporal and frontal cortex. VLBW born adolescents showed reduced tool category related activity in the dorsal visual stream compared with controls, specifically the left anterior intraparietal sulcus, and enhanced animal category related activity in the left middle occipital gyrus and right lingual gyrus. Lower birth weight of VLBW adolescents correlated with larger thickness of the pericalcarine gyrus in the occipital cortex and smaller surface area of the superior temporal gyrus in the lateral temporal cortex. Moreover, larger thickness of the pericalcarine gyrus and smaller surface area of the superior temporal gyrus correlated with reduced tool category related activity in the parietal cortex. Together, our data suggest that very low birth weight predicts alterations of higher order visual semantic networks, particularly in the dorsal stream. The differences in neural specialization may be associated with aberrant cortical development of areas in the visual system that develop early in childhood. Copyright © 2014 Elsevier Ltd. All rights reserved.
Degnan, Andrew J.; Wisnowski, Jessica L.; Choi, SoYoung; Ceschin, Rafael; Bhushan, Chitresh; Leahy, Richard M.; Corby, Patricia; Schmithorst, Vincent J.; Panigrahy, Ashok
2015-01-01
Objective Late preterm birth confers increased risk of developmental delay, academic difficulties and social deficits. The late third trimester may represent a critical period of development of neural networks including the default mode network (DMN), which is essential to normal cognition. Our objective is to identify functional and structural connectivity differences in the posteromedial cortex related to late preterm birth. Methods Thirty-eight preadolescents (ages 9–13; 19 born in the late preterm period (≥32 weeks gestational age) and 19 at term) without access to advanced neonatal care were recruited from a low socioeconomic status community in Brazil. Participants underwent neurocognitive testing, 3-dimensional T1-weighted imaging, diffusion-weighted imaging and resting state functional MRI (RS-fMRI). Seed-based probabilistic diffusion tractography and RS-fMRI analyses were performed using unilateral seeds within the posterior DMN (posterior cingulate cortex, precuneus) and lateral parietal DMN (superior marginal and angular gyri). Results Late preterm children demonstrated increased functional connectivity within the posterior default mode networks and increased anti-correlation with the central-executive network when seeded from the posteromedial cortex (PMC). Key differences were demonstrated between PMC components with increased anti-correlation with the salience network seen only with posterior cingulate cortex seeding but not with precuneus seeding. Probabilistic tractography showed increased streamlines within the right inferior longitudinal fasciculus and inferior fronto-occipital fasciculus within late preterm children while decreased intrahemispheric streamlines were also observed. No significant differences in neurocognitive testing were demonstrated between groups. Conclusion Late preterm preadolescence is associated with altered functional connectivity from the PMC and lateral parietal cortex to known distributed functional cortical networks despite no significant executive neurocognitive differences. Selective increased structural connectivity was observed in the setting of decreased posterior interhemispheric connections. Future work is needed to determine if these findings represent a compensatory adaptation employing alternate neural circuitry or could reflect subtle pathology resulting in emotional processing deficits not seen with neurocognitive testing. PMID:26098888
Common and dissociable neural correlates associated with component processes of inductive reasoning.
Jia, Xiuqin; Liang, Peipeng; Lu, Jie; Yang, Yanhui; Zhong, Ning; Li, Kuncheng
2011-06-15
The ability to draw numerical inductive reasoning requires two key cognitive processes, identification and extrapolation. This study aimed to identify the neural correlates of both component processes of numerical inductive reasoning using event-related fMRI. Three kinds of tasks: rule induction (RI), rule induction and application (RIA), and perceptual judgment (Jud) were solved by twenty right-handed adults. Our results found that the left superior parietal lobule (SPL) extending into the precuneus and left dorsolateral prefrontal cortex (DLPFC) were commonly recruited in the two components. It was also observed that the fronto-parietal network was more specific to identification, whereas the striatal-thalamic network was more specific to extrapolation. The findings suggest that numerical inductive reasoning is mediated by the coordination of multiple brain areas including the prefrontal, parietal, and subcortical regions, of which some are more specific to demands on only one of these two component processes, whereas others are sensitive to both. Copyright © 2011 Elsevier Inc. All rights reserved.
Role of parietal regions in episodic memory retrieval: the dual attentional processes hypothesis.
Cabeza, Roberto
2008-01-01
Although parietal cortex is frequently activated during episodic memory retrieval, damage to this region does not markedly impair episodic memory. To account for these and other findings, a new dual attentional processes (DAP) hypothesis is proposed. According to this hypothesis, dorsal parietal cortex (DPC) contributes top-down attentional processes guided by retrieval goals, whereas ventral parietal cortex (VPC) contributes bottom-up attentional processes captured by the retrieval output. Consistent with this hypothesis, DPC activity increases with retrieval effort whereas VPC activity increases with confidence in old and new responses. The DAP hypothesis can also account for the overlap of parietal activations across different cognitive domains and for opposing effects of parietal activity on encoding vs. retrieval. Finally, the DAP hypothesis explains why VPC lesions yield a memory neglect syndrome: a deficit in spontaneously reporting relevant memory details but not in accessing the same details when guided by specific questions.
Chen, Hui Juan; Wang, Yun Fei; Qi, Rongfeng; Schoepf, U Joseph; Varga-Szemes, Akos; Ball, B Devon; Zhang, Zhe; Kong, Xiang; Wen, Jiqiu; Li, Xue; Lu, Guang Ming; Zhang, Long Jiang
2017-04-01
The purpose of this study was to investigate patterns in the amygdala-based emotional processing circuit of hemodialysis patients using resting-state functional MR imaging (rs-fMRI). Fifty hemodialysis patients (25 with depressed mood and 25 without depressed mood) and 26 healthy controls were included. All subjects underwent neuropsychological tests and rs-fMRI, and patients also underwent laboratory tests. Functional connectivity of the bilateral amygdala was compared among the three groups. The relationship between functional connectivity and clinical markers was investigated. Depressed patients showed increased positive functional connectivity of the left amygdala with the left superior temporal gyrus and right parahippocampal gyrus (PHG) but decreased amygdala functional connectivity with the left precuneus, angular gyrus, posterior cingulate cortex (PCC), and left inferior parietal lobule compared with non-depressed patients (P < 0.05, AlphaSim corrected). Depressed patients had increased positive functional connectivity of the right amygdala with bilateral supplementary motor areas and PHG but decreased amygdala functional connectivity with the right superior frontal gyrus, superior parietal lobule, bilateral precuneus, and PCC (P < 0.05, AlphaSim corrected). After including anxiety as a covariate, we discovered additional decreased functional connectivity with anterior cingulate cortex (ACC) for bilateral amygdala (P < 0.05, AlphaSim corrected). For the depressed, neuropsychological test scores were correlated with functional connectivity of multiple regions (P < 0.05, AlphaSim corrected). In conclusion, functional connectivity in the amygdala-prefrontal-PCC-limbic circuits was impaired in depressive hemodialysis patients, with a gradual decrease in ACC between controls, non-depressed, and depressed patients for the right amygdala. This indicates that ACC plays a role in amygdala-based emotional regulatory circuits in these patients.
Choi, Hi-Jae; Zilles, Karl; Mohlberg, Hartmut; Schleicher, Axel; Fink, Gereon R.; Armstrong, Este; Amunts, Katrin
2008-01-01
Anatomical studies in the macaque cortex and functional imaging studies in humans have demonstrated the existence of different cortical areas within the IntraParietal Sulcus (IPS). Such functional segregation, however, does not correlate with presently available architectonic maps of the human brain. This is particularly true for the classical Brodmann map, which is still widely used as an anatomical reference in functional imaging studies. The aim of this cytoarchitectonic mapping study was to use previously defined algorithms to determine whether consistent regions and borders can be found within the cortex of the anterior IPS in a population of ten postmortem human brains. Two areas, the human IntraParietal area 1 (hIP1) and the human IntraParietal area 2 (hIP2), were delineated in serial histological sections of the anterior, lateral bank of the human IPS. The region hIP1 is located posterior and medial to hIP2, and the former is always within the depths of the IPS. The latter, on the other hand, sometimes reaches the free surface of the superior parietal lobule. The delineations were registered to standard reference space, and probabilistic maps were calculated, thereby quantifying the intersubject variability in location and extent of both areas. In the future, they can be a tool in analyzing structure – function relationships and a basis for determining degrees of homology in the IPS among anthropoid primates. We conclude that the human intraparietal sulcus has a finer grained parcellation than shown in Brodmann’s map. PMID:16432904
Giraud, Anne Lise; Truy, Eric
2002-01-01
Early visual cortex can be recruited by meaningful sounds in the absence of visual information. This occurs in particular in cochlear implant (CI) patients whose dependency on visual cues in speech comprehension is increased. Such cross-modal interaction mirrors the response of early auditory cortex to mouth movements (speech reading) and may reflect the natural expectancy of the visual counterpart of sounds, lip movements. Here we pursue the hypothesis that visual activations occur specifically in response to meaningful sounds. We performed PET in both CI patients and controls, while subjects listened either to their native language or to a completely unknown language. A recruitment of early visual cortex, the left posterior inferior temporal gyrus (ITG) and the left superior parietal cortex was observed in both groups. While no further activation occurred in the group of normal-hearing subjects, CI patients additionally recruited the right perirhinal/fusiform and mid-fusiform, the right temporo-occipito-parietal (TOP) junction and the left inferior prefrontal cortex (LIPF, Broca's area). This study confirms a participation of visual cortical areas in semantic processing of speech sounds. Observation of early visual activation in normal-hearing subjects shows that auditory-to-visual cross-modal effects can also be recruited under natural hearing conditions. In cochlear implant patients, speech activates the mid-fusiform gyrus in the vicinity of the so-called face area. This suggests that specific cross-modal interaction involving advanced stages in the visual processing hierarchy develops after cochlear implantation and may be the correlate of increased usage of lip-reading.
Common and distinct networks for self-referential and social stimulus processing in the human brain.
Herold, Dorrit; Spengler, Stephanie; Sajonz, Bastian; Usnich, Tatiana; Bermpohl, Felix
2016-09-01
Self-referential processing is a complex cognitive function, involving a set of implicit and explicit processes, complicating investigation of its distinct neural signature. The present study explores the functional overlap and dissociability of self-referential and social stimulus processing. We combined an established paradigm for explicit self-referential processing with an implicit social stimulus processing paradigm in one fMRI experiment to determine the neural effects of self-relatedness and social processing within one study. Overlapping activations were found in the orbitofrontal cortex and in the intermediate part of the precuneus. Stimuli judged as self-referential specifically activated the posterior cingulate cortex, the ventral medial prefrontal cortex, extending into anterior cingulate cortex and orbitofrontal cortex, the dorsal medial prefrontal cortex, the ventral and dorsal lateral prefrontal cortex, the left inferior temporal gyrus, and occipital cortex. Social processing specifically involved the posterior precuneus and bilateral temporo-parietal junction. Taken together, our data show, not only, first, common networks for both processes in the medial prefrontal and the medial parietal cortex, but also, second, functional differentiations for self-referential processing versus social processing: an anterior-posterior gradient for social processing and self-referential processing within the medial parietal cortex and specific activations for self-referential processing in the medial and lateral prefrontal cortex and for social processing in the temporo-parietal junction.
Functional Anatomy of Writing with the Dominant Hand
Najee-ullah, Muslimah ‘Ali; Hallett, Mark
2013-01-01
While writing performed by any body part is similar in style, indicating a common program, writing with the dominant hand is particularly skilled. We hypothesized that this skill utilizes a special motor network supplementing the motor equivalence areas. Using functional magnetic resonance imaging in 13 normal subjects, we studied nine conditions: writing, zigzagging and tapping, each with the right hand, left hand and right foot. We identified brain regions activated with the right (dominant) hand writing task, exceeding the activation common to right-hand use and the writing program, both identified without right-hand writing itself. Right-hand writing significantly differed from the other tasks. First, we observed stronger activations in the left dorsal prefrontal cortex, left intraparietal sulcus and right cerebellum. Second, the left anterior putamen was required to initiate all the tested tasks, but only showed sustained activation during the right-hand writing condition. Lastly, an exploratory analysis showed clusters in the left ventral premotor cortex and inferior and superior parietal cortices were only significantly active for right-hand writing. The increased activation with right-hand writing cannot be ascribed to increased effort, since this is a well-practiced task much easier to perform than some of the other tasks studied. Because parietal-premotor connections code for particular skills, it would seem that the parietal and premotor regions, together with basal ganglia-sustained activation likely underlie the special skill of handwriting with the dominant hand. PMID:23844132
Functional anatomy of writing with the dominant hand.
Horovitz, Silvina G; Gallea, Cecile; Najee-Ullah, Muslimah 'ali; Hallett, Mark
2013-01-01
While writing performed by any body part is similar in style, indicating a common program, writing with the dominant hand is particularly skilled. We hypothesized that this skill utilizes a special motor network supplementing the motor equivalence areas. Using functional magnetic resonance imaging in 13 normal subjects, we studied nine conditions: writing, zigzagging and tapping, each with the right hand, left hand and right foot. We identified brain regions activated with the right (dominant) hand writing task, exceeding the activation common to right-hand use and the writing program, both identified without right-hand writing itself. Right-hand writing significantly differed from the other tasks. First, we observed stronger activations in the left dorsal prefrontal cortex, left intraparietal sulcus and right cerebellum. Second, the left anterior putamen was required to initiate all the tested tasks, but only showed sustained activation during the right-hand writing condition. Lastly, an exploratory analysis showed clusters in the left ventral premotor cortex and inferior and superior parietal cortices were only significantly active for right-hand writing. The increased activation with right-hand writing cannot be ascribed to increased effort, since this is a well-practiced task much easier to perform than some of the other tasks studied. Because parietal-premotor connections code for particular skills, it would seem that the parietal and premotor regions, together with basal ganglia-sustained activation likely underlie the special skill of handwriting with the dominant hand.
The Contribution of the Inferior Parietal Cortex to Spoken Language Production
ERIC Educational Resources Information Center
Geranmayeh, Fatemeh; Brownsett, Sonia L. E.; Leech, Robert; Beckmann, Christian F.; Woodhead, Zoe; Wise, Richard J. S.
2012-01-01
This functional MRI study investigated the involvement of the left inferior parietal cortex (IPC) in spoken language production (Speech). Its role has been apparent in some studies but not others, and is not convincingly supported by clinical studies as they rarely include cases with lesions confined to the parietal lobe. We compared Speech with…
Harris, Robert; de Jong, Bauke M
2015-10-22
Using fMRI, cerebral activations were studied in 24 classically-trained keyboard performers and 12 musically unskilled control subjects. Two groups of musicians were recruited: improvising (n=12) and score-dependent (non-improvising) musicians (n=12). While listening to both familiar and unfamiliar music, subjects either (covertly) appraised the presented music performance or imagined they were playing the music themselves. We hypothesized that improvising musicians would exhibit enhanced efficiency of audiomotor transformation reflected by stronger ventral premotor activation. Statistical Parametric Mapping revealed that, while virtually 'playing along׳ with the music, improvising musicians exhibited activation of a right-hemisphere distribution of cerebral areas including posterior-superior parietal and dorsal premotor cortex. Involvement of these right-hemisphere dorsal stream areas suggests that improvising musicians recruited an amodal spatial processing system subserving pitch-to-space transformations to facilitate their virtual motor performance. Score-dependent musicians recruited a primarily left-hemisphere pattern of motor areas together with the posterior part of the right superior temporal sulcus, suggesting a relationship between aural discrimination and symbolic representation. Activations in bilateral auditory cortex were significantly larger for improvising musicians than for score-dependent musicians, suggesting enhanced top-down effects on aural perception. Our results suggest that learning to play a music instrument primarily from notation predisposes musicians toward aural identification and discrimination, while learning by improvisation involves audio-spatial-motor transformations, not only during performance, but also perception. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Long-term effects of frequent cannabis use on working memory and attention: an fMRI study.
Jager, Gerry; Kahn, Rene S; Van Den Brink, Wim; Van Ree, Jan M; Ramsey, Nick F
2006-04-01
Excessive use of cannabis may have long-term effects on cognitive abilities. Mild impairments have been found in several cognitive domains, particularly in memory and attention. It is not clear, however, whether these effects also occur with moderate, recreational use of cannabis. Furthermore, little is known about underlying brain correlates. The aim of this study is to assess brain function in frequent but relatively moderate cannabis users in the domains of working memory and selective attention. Functional magnetic resonance imaging was used to examine verbal working memory and visuo-auditory selective attention in ten frequent cannabis users (after 1 week of abstinence) and ten non-using healthy controls. Groups were similar in age, gender and estimated IQ. Cannabis users and controls performed equally well during the working memory task and the selective attention task. Furthermore, cannabis users did not differ from controls in terms of overall patterns of brain activity in the regions involved in these cognitive functions. However, for working memory, a more specific region-of-interest analysis showed that, in comparison to the controls, cannabis users displayed a significant alteration in brain activity in the left superior parietal cortex. No evidence was found for long-term deficits in working memory and selective attention in frequent cannabis users after 1 week of abstinence. Nonetheless, frequent cannabis use may affect brain function, as indicated by altered neurophysiological dynamics in the left superior parietal cortex during working memory processing.
Roman Catholic beliefs produce characteristic neural responses to moral dilemmas
Flexas, Albert; de Miguel, Pedro; Cela-Conde, Camilo J.; Munar, Enric
2014-01-01
This study provides exploratory evidence about how behavioral and neural responses to standard moral dilemmas are influenced by religious belief. Eleven Catholics and 13 Atheists (all female) judged 48 moral dilemmas. Differential neural activity between the two groups was found in precuneus and in prefrontal, frontal and temporal regions. Furthermore, a double dissociation showed that Catholics recruited different areas for deontological (precuneus; temporoparietal junction) and utilitarian moral judgments [dorsolateral prefrontal cortex (DLPFC); temporal poles], whereas Atheists did not (superior parietal gyrus for both types of judgment). Finally, we tested how both groups responded to personal and impersonal moral dilemmas: Catholics showed enhanced activity in DLPFC and posterior cingulate cortex during utilitarian moral judgments to impersonal moral dilemmas and enhanced responses in anterior cingulate cortex and superior temporal sulcus during deontological moral judgments to personal moral dilemmas. Our results indicate that moral judgment can be influenced by an acquired set of norms and conventions transmitted through religious indoctrination and practice. Catholic individuals may hold enhanced awareness of the incommensurability between two unequivocal doctrines of the Catholic belief set, triggered explicitly in a moral dilemma: help and care in all circumstances—but thou shalt not kill. PMID:23160812
Roman Catholic beliefs produce characteristic neural responses to moral dilemmas.
Christensen, Julia F; Flexas, Albert; de Miguel, Pedro; Cela-Conde, Camilo J; Munar, Enric
2014-02-01
This study provides exploratory evidence about how behavioral and neural responses to standard moral dilemmas are influenced by religious belief. Eleven Catholics and 13 Atheists (all female) judged 48 moral dilemmas. Differential neural activity between the two groups was found in precuneus and in prefrontal, frontal and temporal regions. Furthermore, a double dissociation showed that Catholics recruited different areas for deontological (precuneus; temporoparietal junction) and utilitarian moral judgments [dorsolateral prefrontal cortex (DLPFC); temporal poles], whereas Atheists did not (superior parietal gyrus for both types of judgment). Finally, we tested how both groups responded to personal and impersonal moral dilemmas: Catholics showed enhanced activity in DLPFC and posterior cingulate cortex during utilitarian moral judgments to impersonal moral dilemmas and enhanced responses in anterior cingulate cortex and superior temporal sulcus during deontological moral judgments to personal moral dilemmas. Our results indicate that moral judgment can be influenced by an acquired set of norms and conventions transmitted through religious indoctrination and practice. Catholic individuals may hold enhanced awareness of the incommensurability between two unequivocal doctrines of the Catholic belief set, triggered explicitly in a moral dilemma: help and care in all circumstances-but thou shalt not kill.
Park, Ga Young; Kim, Taekyung; Park, Jinsick; Lee, Eun Mi; Ryu, Han Uk; Kim, Sun I.; Kim, In Young; Husain, Masud
2016-01-01
Abstract Few studies have directly compared the neural correlates of spatial attention (i.e., attention to a particular location) and nonspatial attention (i.e., attention to a feature in the visual scene) using well‐controlled tasks. Here, we investigated the neural correlates of spatial and nonspatial attention in humans using intracranial electroencephalography. The topography and number of electrodes showing significant event‐related desynchronization (ERD) or event‐related synchronization (ERS) in different frequency bands were studied in 13 epileptic patients. Performance was not significantly different between the two conditions. In both conditions, ERD in the low‐frequency bands and ERS in the high‐frequency bands were present bilaterally in the parietal cortex (prominently on the right hemisphere) and frontal regions. In addition to these common changes, spatial attention involved right‐lateralized activity that was maximal in the right superior parietal lobule (SPL), whereas nonspatial attention involved wider brain networks including the bilateral parietal, frontal, and temporal regions, but still had maximal activity in the right parietal lobe. Within the parietal lobe, spatial attention involved ERD or ERS in the right SPL, whereas nonspatial attention involved ERD or ERS in the right inferior parietal lobule. These findings reveal that common as well as different brain networks are engaged in spatial and nonspatial attention. Hum Brain Mapp 37:3041–3054, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:27125904
Differential processing of melodic, rhythmic and simple tone deviations in musicians--an MEG study.
Lappe, Claudia; Lappe, Markus; Pantev, Christo
2016-01-01
Rhythm and melody are two basic characteristics of music. Performing musicians have to pay attention to both, and avoid errors in either aspect of their performance. To investigate the neural processes involved in detecting melodic and rhythmic errors from auditory input we tested musicians on both kinds of deviations in a mismatch negativity (MMN) design. We found that MMN responses to a rhythmic deviation occurred at shorter latencies than MMN responses to a melodic deviation. Beamformer source analysis showed that the melodic deviation activated superior temporal, inferior frontal and superior frontal areas whereas the activation pattern of the rhythmic deviation focused more strongly on inferior and superior parietal areas, in addition to superior temporal cortex. Activation in the supplementary motor area occurred for both types of deviations. We also recorded responses to similar pitch and tempo deviations in a simple, non-musical repetitive tone pattern. In this case, there was no latency difference between the MMNs and cortical activation was smaller and mostly limited to auditory cortex. The results suggest that prediction and error detection of musical stimuli in trained musicians involve a broad cortical network and that rhythmic and melodic errors are processed in partially different cortical streams. Copyright © 2015 Elsevier Inc. All rights reserved.
Neural activity in superior parietal cortex during rule-based visual-motor transformations.
Hawkins, Kara M; Sayegh, Patricia; Yan, Xiaogang; Crawford, J Douglas; Sergio, Lauren E
2013-03-01
Cognition allows for the use of different rule-based sensorimotor strategies, but the neural underpinnings of such strategies are poorly understood. The purpose of this study was to compare neural activity in the superior parietal lobule during a standard (direct interaction) reaching task, with two nonstandard (gaze and reach spatially incongruent) reaching tasks requiring the integration of rule-based information. Specifically, these nonstandard tasks involved dissociating the planes of reach and vision or rotating visual feedback by 180°. Single unit activity, gaze, and reach trajectories were recorded from two female Macaca mulattas. In all three conditions, we observed a temporal discharge pattern at the population level reflecting early reach planning and on-line reach monitoring. In the plane-dissociated task, we found a significant overall attenuation in the discharge rate of cells from deep recording sites, relative to standard reaching. We also found that cells modulated by reach direction tended to be significantly tuned either during the standard or the plane-dissociated task but rarely during both. In the standard versus feedback reversal comparison, we observed some cells that shifted their preferred direction by 180° between conditions, reflecting maintenance of directional tuning with respect to the reach goal. Our findings suggest that the superior parietal lobule plays an important role in processing information about the nonstandard nature of a task, which, through reciprocal connections with precentral motor areas, contributes to the accurate transformation of incongruent sensory inputs into an appropriate motor output. Such processing is crucial for the integration of rule-based information into a motor act.
Thivard, Lionel; Pradat, Pierre‐François; Lehéricy, Stéphane; Lacomblez, Lucette; Dormont, Didier; Chiras, Jacques; Benali, Habib; Meininger, Vincent
2007-01-01
The aim of this study was to investigate the extent of cortical and subcortical lesions in amyotrophic lateral sclerosis (ALS) using, in combination, voxel based diffusion tensor imaging (DTI) and voxel based morphometry (VBM). We included 15 patients with definite or probable ALS and 25 healthy volunteers. Patients were assessed using the revised ALS Functional Rating Scale (ALSFRS‐R). In patients, reduced fractional anisotropy was found in bilateral corticospinal tracts, the left insula/ventrolateral premotor cortex, the right parietal cortex and the thalamus, which correlated with the ALSFRS‐R. Increased mean diffusivity (MD) was found bilaterally in the motor cortex, the ventrolateral premotor cortex/insula, the hippocampal formations and the right superior temporal gyrus, which did not correlate with the ALSFRS‐R. VBM analysis showed no changes in white matter but widespread volume decreases in grey matter in several regions exhibiting MD abnormalities. In ALS patients, our results show that subcortical lesions extend beyond the corticospinal tract and are clinically relevant. PMID:17635981
Thivard, Lionel; Pradat, Pierre-François; Lehéricy, Stéphane; Lacomblez, Lucette; Dormont, Didier; Chiras, Jacques; Benali, Habib; Meininger, Vincent
2007-08-01
The aim of this study was to investigate the extent of cortical and subcortical lesions in amyotrophic lateral sclerosis (ALS) using, in combination, voxel based diffusion tensor imaging (DTI) and voxel based morphometry (VBM). We included 15 patients with definite or probable ALS and 25 healthy volunteers. Patients were assessed using the revised ALS Functional Rating Scale (ALSFRS-R). In patients, reduced fractional anisotropy was found in bilateral corticospinal tracts, the left insula/ventrolateral premotor cortex, the right parietal cortex and the thalamus, which correlated with the ALSFRS-R. Increased mean diffusivity (MD) was found bilaterally in the motor cortex, the ventrolateral premotor cortex/insula, the hippocampal formations and the right superior temporal gyrus, which did not correlate with the ALSFRS-R. VBM analysis showed no changes in white matter but widespread volume decreases in grey matter in several regions exhibiting MD abnormalities. In ALS patients, our results show that subcortical lesions extend beyond the corticospinal tract and are clinically relevant.
Farahani, Ehsan Shahrabi; Choudhury, Samiul H; Cortese, Filomeno; Costello, Fiona; Goodyear, Bradley; Smith, Michael R
2017-07-01
Resting-state fMRI (rs-fMRI) measures the temporal synchrony between different brain regions while the subject is at rest. We present an investigation using visual information propagation transfer functions as potential optic neuritis (ON) markers for the pathways between the lateral geniculate nuclei, the primary visual cortex, the lateral occipital cortex and the superior parietal cortex. We investigate marker reliability in differentiating between healthy controls and ON patients with clinically isolated syndrome (CIS), and relapsing-remitting multiple sclerosis (RRMS) using a three-way receiver operating characteristics analysis. We identify useful and reliable three-way ON related metrics in the rs-fMRI low-frequency band 0.0 Hz to 0.1 Hz, with potential markers associated with the higher frequency harmonics of these signals in the 0.1 Hz to 0.2 Hz and 0.2 Hz to 0.3 Hz bands.
Increased premotor cortex activation in high functioning autism during action observation.
Perkins, Tom J; Bittar, Richard G; McGillivray, Jane A; Cox, Ivanna I; Stokes, Mark A
2015-04-01
The mirror neuron (MN) hypothesis of autism has received considerable attention, but to date has produced inconsistent findings. Using functional MRI, participants with high functioning autism or Asperger's syndrome were compared to typically developing individuals (n=12 in each group). Participants passively observed hand gestures that included waving, pointing, and grasping. Concerning the MN network, both groups activated similar regions including prefrontal, inferior parietal and superior temporal regions, with the autism group demonstrating significantly greater activation in the dorsal premotor cortex. Concerning other regions, participants with autism demonstrated increased activity in the anterior cingulate and medial frontal gyrus, and reduced activation in calcarine, cuneus, and middle temporal gyrus. These results suggest that during observation of hand gestures, frontal cortex activation is affected in autism, which we suggest may be linked to abnormal functioning of the MN system. Copyright © 2014 Elsevier Ltd. All rights reserved.
Differential involvement of the posterior temporal cortex in mentalizing but not perspective taking
Aumann, Carolin; Santos, Natacha S.; Bewernick, Bettina H.; Eickhoff, Simon B.; Newen, Albert; Shah, N. Jon; Fink, Gereon R.; Vogeley, Kai
2008-01-01
Understanding and predicting other people's mental states and behavior are important prerequisites for social interactions. The capacity to attribute mental states such as desires, thoughts or intentions to oneself or others is referred to as mentalizing. The right posterior temporal cortex at the temporal–parietal junction has been associated with mentalizing but also with taking someone else's spatial perspective onto the world—possibly an important prerequisite for mentalizing. Here, we directly compared the neural correlates of mentalizing and perspective taking using the same stimulus material. We found significantly increased neural activity in the right posterior segment of the superior temporal sulcus only during mentalizing but not perspective taking. Our data further clarify the role of the posterior temporal cortex in social cognition by showing that it is involved in processing information from socially salient visual cues in situations that require the inference about other people's mental states. PMID:19015120
Bohon, Kaitlin S; Wiest, Michael C
2014-01-01
To further characterize the role of frontal and parietal cortices in rat cognition, we recorded action potentials simultaneously from multiple sites in the medio-dorsal frontal cortex and posterior parietal cortex of rats while they performed a two-choice auditory detection task. We quantified neural correlates of task performance, including response movements, perception of a target tone, and the differentiation between stimuli with distinct features (different pitches or durations). A minority of units--15% in frontal cortex, 23% in parietal cortex--significantly distinguished hit trials (successful detections, response movement to the right) from correct rejection trials (correct leftward response to the absence of the target tone). Estimating the contribution of movement-related activity to these responses suggested that more than half of these units were likely signaling correct perception of the auditory target, rather than merely movement direction. In addition, we found a smaller and mostly not overlapping population of units that differentiated stimuli based on task-irrelevant details. The detection-related spiking responses we observed suggest that correlates of perception in the rat are sparsely represented among neurons in the rat's frontal-parietal network, without being concentrated preferentially in frontal or parietal areas.
Tan, Gang; Dan, Zeng-Renqing; Zhang, Ying; Huang, Xin; Zhong, Yu-Lin; Ye, Lin-Hong; Rong, Rong; Ye, Lei; Zhou, Qiong; Shao, Yi
2017-01-01
Objective To investigate the underlying functional network brain-activity changes in patients with adult comitant exotropia strabismus (CES) and the relationship with clinical features using the voxel-wise degree centrality (DC) method. Methods A total of 30 patients with CES (17 men, 13 women), and 30 healthy controls (HCs; 17 men, 13 women) matched in age, sex, and education level participated in the study. DC was used to evaluate spontaneous brain activity. Receiver operating characteristic (ROC) curve analysis was conducted to distinguish CESs from HCs. The relationship between mean DC values in various brain regions and behavioral performance was examined with correlation analysis. Results Compared with HCs, CES patients exhibited decreased DC values in the right cerebellum posterior lobe, right inferior frontal gyrus, right middle frontal gyrus and right superior parietal lobule/primary somatosensory cortex (S1), and increased DC values in the right superior temporal gyrus, bilateral anterior cingulate, right superior temporal gyrus, and left inferior parietal lobule. However, there was no correlation between mean DC values and behavioral performance in any brain regions. Conclusions Adult comitant exotropia strabismus is associated with abnormal brain network activity in various brain regions, possibly reflecting the pathological mechanisms of ocular motility disorders in CES. PMID:28679330
Falk, Dean; Lepore, Frederick E; Noe, Adrianne
2013-04-01
Upon his death in 1955, Albert Einstein's brain was removed, fixed and photographed from multiple angles. It was then sectioned into 240 blocks, and histological slides were prepared. At the time, a roadmap was drawn that illustrates the location within the brain of each block and its associated slides. Here we describe the external gross neuroanatomy of Einstein's entire cerebral cortex from 14 recently discovered photographs, most of which were taken from unconventional angles. Two of the photographs reveal sulcal patterns of the medial surfaces of the hemispheres, and another shows the neuroanatomy of the right (exposed) insula. Most of Einstein's sulci are identified, and sulcal patterns in various parts of the brain are compared with those of 85 human brains that have been described in the literature. To the extent currently possible, unusual features of Einstein's brain are tentatively interpreted in light of what is known about the evolution of higher cognitive processes in humans. As an aid to future investigators, these (and other) features are correlated with blocks on the roadmap (and therefore histological slides). Einstein's brain has an extraordinary prefrontal cortex, which may have contributed to the neurological substrates for some of his remarkable cognitive abilities. The primary somatosensory and motor cortices near the regions that typically represent face and tongue are greatly expanded in the left hemisphere. Einstein's parietal lobes are also unusual and may have provided some of the neurological underpinnings for his visuospatial and mathematical skills, as others have hypothesized. Einstein's brain has typical frontal and occipital shape asymmetries (petalias) and grossly asymmetrical inferior and superior parietal lobules. Contrary to the literature, Einstein's brain is not spherical, does not lack parietal opercula and has non-confluent Sylvian and inferior postcentral sulci.
Urgesi, Cosimo; Candidi, Matteo; Avenanti, Alessio
2014-01-01
Several neurophysiologic and neuroimaging studies suggested that motor and perceptual systems are tightly linked along a continuum rather than providing segregated mechanisms supporting different functions. Using correlational approaches, these studies demonstrated that action observation activates not only visual but also motor brain regions. On the other hand, brain stimulation and brain lesion evidence allows tackling the critical question of whether our action representations are necessary to perceive and understand others’ actions. In particular, recent neuropsychological studies have shown that patients with temporal, parietal, and frontal lesions exhibit a number of possible deficits in the visual perception and the understanding of others’ actions. The specific anatomical substrates of such neuropsychological deficits however, are still a matter of debate. Here we review the existing literature on this issue and perform an anatomic likelihood estimation meta-analysis of studies using lesion-symptom mapping methods on the causal relation between brain lesions and non-linguistic action perception and understanding deficits. The meta-analysis encompassed data from 361 patients tested in 11 studies and identified regions in the inferior frontal cortex, the inferior parietal cortex and the middle/superior temporal cortex, whose damage is consistently associated with poor performance in action perception and understanding tasks across studies. Interestingly, these areas correspond to the three nodes of the action observation network that are strongly activated in response to visual action perception in neuroimaging research and that have been targeted in previous brain stimulation studies. Thus, brain lesion mapping research provides converging causal evidence that premotor, parietal and temporal regions play a crucial role in action recognition and understanding. PMID:24910603
Lepore, Frederick E.; Noe, Adrianne
2013-01-01
Upon his death in 1955, Albert Einstein’s brain was removed, fixed and photographed from multiple angles. It was then sectioned into 240 blocks, and histological slides were prepared. At the time, a roadmap was drawn that illustrates the location within the brain of each block and its associated slides. Here we describe the external gross neuroanatomy of Einstein’s entire cerebral cortex from 14 recently discovered photographs, most of which were taken from unconventional angles. Two of the photographs reveal sulcal patterns of the medial surfaces of the hemispheres, and another shows the neuroanatomy of the right (exposed) insula. Most of Einstein’s sulci are identified, and sulcal patterns in various parts of the brain are compared with those of 85 human brains that have been described in the literature. To the extent currently possible, unusual features of Einstein’s brain are tentatively interpreted in light of what is known about the evolution of higher cognitive processes in humans. As an aid to future investigators, these (and other) features are correlated with blocks on the roadmap (and therefore histological slides). Einstein’s brain has an extraordinary prefrontal cortex, which may have contributed to the neurological substrates for some of his remarkable cognitive abilities. The primary somatosensory and motor cortices near the regions that typically represent face and tongue are greatly expanded in the left hemisphere. Einstein’s parietal lobes are also unusual and may have provided some of the neurological underpinnings for his visuospatial and mathematical skills, as others have hypothesized. Einstein’s brain has typical frontal and occipital shape asymmetries (petalias) and grossly asymmetrical inferior and superior parietal lobules. Contrary to the literature, Einstein’s brain is not spherical, does not lack parietal opercula and has non-confluent Sylvian and inferior postcentral sulci. PMID:23161163
Rosenberg-Lee, Miriam; Chang, Ting Ting; Young, Christina B; Wu, Sarah; Menon, Vinod
2011-01-01
Although lesion studies over the past several decades have focused on functional dissociations in posterior parietal cortex (PPC) during arithmetic, no consistent view has emerged of its differential involvement in addition, subtraction, multiplication, and division. To circumvent problems with poor anatomical localization, we examined functional overlap and dissociations in cytoarchitectonically-defined subdivisions of the intraparietal sulcus (IPS), superior parietal lobule (SPL) and angular gyrus (AG), across these four operations. Compared to a number identification control task, all operations except addition, showed a consistent profile of left posterior IPS activation and deactivation in the right posterior AG. Multiplication and subtraction differed significantly in right, but not left, IPS and AG activity, challenging the view that the left AG differentially subserves retrieval during multiplication. Although addition and multiplication both rely on retrieval, multiplication evoked significantly greater activation in right posterior IPS, as well as the prefrontal cortex, lingual and fusiform gyri, demonstrating that addition and multiplication engage different brain processes. Comparison of PPC responses to the two pairs of inverse operations: division vs. multiplication and subtraction vs. addition revealed greater activation of left lateral SPL during division, suggesting that processing inverse relations is operation specific. Our findings demonstrate that individual IPS, SPL and AG subdivisions are differentially modulated by the four arithmetic operations and they point to significant functional heterogeneity and individual differences in activation and deactivation within the PPC. Critically, these effects are related to retrieval, calculation and inversion, the three key cognitive processes that are differentially engaged by arithmetic operations. Our findings point to distributed representation of these processes in the human PPC and also help explain why lesion and previous imaging studies have yielded inconsistent findings. PMID:21616086
Rosenberg-Lee, Miriam; Chang, Ting Ting; Young, Christina B; Wu, Sarah; Menon, Vinod
2011-07-01
Although lesion studies over the past several decades have focused on functional dissociations in posterior parietal cortex (PPC) during arithmetic, no consistent view has emerged of its differential involvement in addition, subtraction, multiplication, and division. To circumvent problems with poor anatomical localization, we examined functional overlap and dissociations in cytoarchitectonically defined subdivisions of the intraparietal sulcus (IPS), superior parietal lobule (SPL) and angular gyrus (AG), across these four operations. Compared to a number identification control task, all operations except addition, showed a consistent profile of left posterior IPS activation and deactivation in the right posterior AG. Multiplication and subtraction differed significantly in right, but not left, IPS and AG activity, challenging the view that the left AG differentially subserves retrieval during multiplication. Although addition and multiplication both rely on retrieval, multiplication evoked significantly greater activation in right posterior IPS, as well as the prefrontal cortex, lingual and fusiform gyri, demonstrating that addition and multiplication engage different brain processes. Comparison of PPC responses to the two pairs of inverse operations: division versus multiplication and subtraction versus addition revealed greater activation of left lateral SPL during division, suggesting that processing inverse relations is operation specific. Our findings demonstrate that individual IPS, SPL and AG subdivisions are differentially modulated by the four arithmetic operations and they point to significant functional heterogeneity and individual differences in activation and deactivation within the PPC. Critically, these effects are related to retrieval, calculation and inversion, the three key cognitive processes that are differentially engaged by arithmetic operations. Our findings point to distribute representation of these processes in the human PPC and also help explain why lesion and previous imaging studies have yielded inconsistent findings. Copyright © 2011 Elsevier Ltd. All rights reserved.
Thomas, Monzy; George, Nysia I; Saini, Upasana T; Patterson, Tucker A; Hanig, Joseph P; Bowyer, John F
2010-08-01
Amphetamine (AMPH) is used to treat attention deficit and hyperactivity disorders, but it can produce neurotoxicity and adverse vascular effects at high doses. The endoplasmic reticulum (ER) stress response (ERSR) entails the unfolded protein response, which helps to avoid or minimize ER dysfunction. ERSR is often associated with toxicities resulting from the accumulation of unfolded or misfolded proteins and has been associated with methamphetamine toxicity in the striatum. The present study evaluates the effect of AMPH on several ERSR elements in meninges and associated vasculature (MAV), parietal cortex, and striatum. Adult, male Sprague-Dawley rats were exposed to saline, environmentally induced hyperthermia (EIH) or four consecutive doses of AMPH that produce hyperthermia. Expression changes (mRNA and protein levels) of key ERSR-related genes in MAV, striatum, and parietal cortex at 3 h or 1 day postdosing were monitored. AMPH increased the expression of some ERSR-related genes in all tissues. Atf4 (activating transcription factor 4, an indicator of Perk pathway activation), Hspa5/Grp78 (Glucose regulated protein 78, master regulator of ERSR), Pdia4 (protein disulfide isomerase, protein-folding enzyme), and Nfkb1 (nuclear factor of kappa b, ERSR sensor) mRNA increased significantly in MAV and parietal cortex 3 h after AMPH. In striatum, Atf4 and Hspa5/Grp78 mRNA significantly increased 3 h after AMPH, but Pdia4 and Nfkb11 did not. Thus, AMPH caused a robust activation of the Perk pathway in all tissues, but significant Ire1 pathway activation occurred only after AMPH treatment in the parietal cortex and striatum. Ddit3/Chop, a downstream effector of the ERSR pathway related to the neurotoxicity, was only increased in striatum and parietal cortex. Conversely, Pdia4, an enzyme protective in the ERSR, was only increased in MAV. The overall ERSR manifestation varied significantly between MAV, striatum, and parietal cortex after a neurotoxic exposure to AMPH.
Structural and Functional Cerebral Correlates of Hypnotic Suggestibility
Huber, Alexa; Lui, Fausta; Duzzi, Davide; Pagnoni, Giuseppe; Porro, Carlo Adolfo
2014-01-01
Little is known about the neural bases of hypnotic suggestibility, a cognitive trait referring to the tendency to respond to hypnotic suggestions. In the present magnetic resonance imaging study, we performed regression analyses to assess hypnotic suggestibility-related differences in local gray matter volume, using voxel-based morphometry, and in waking resting state functional connectivity of 10 resting state networks, in 37 healthy women. Hypnotic suggestibility was positively correlated with gray matter volume in portions of the left superior and medial frontal gyri, roughly overlapping with the supplementary and pre-supplementary motor area, and negatively correlated with gray matter volume in the left superior temporal gyrus and insula. In the functional connectivity analysis, hypnotic suggestibility was positively correlated with functional connectivity between medial posterior areas, including bilateral posterior cingulate cortex and precuneus, and both the lateral visual network and the left fronto-parietal network; a positive correlation was also found with functional connectivity between the executive-control network and a right postcentral/parietal area. In contrast, hypnotic suggestibility was negatively correlated with functional connectivity between the right fronto-parietal network and the right lateral thalamus. These findings demonstrate for the first time a correlation between hypnotic suggestibility, the structural features of specific cortical regions, and the functional connectivity during the normal resting state of brain structures involved in imagery and self-monitoring activity. PMID:24671130
Berryhill, Marian E.; Picasso, Lauren; Arnold, Robert; Drowos, David; Olson, Ingrid R.
2010-01-01
Recent findings suggest that constructed experience, the ability to envision future events, activates the same cortical network as recollection of past events. For example, damage to one key area, the hippocampus, impairs patients' ability to remember the past and to imagine novel experiences (Hassabis, Kumaran, Vann & Maguire, 2007). Here, we investigated whether damage to two other areas, posterior parietal cortex and prefrontal cortex, also impairs this ability. Patients with bilateral posterior parietal lesions or unilateral prefrontal lesions were tested in their ability to describe imaginary future events. Only parietal patients were impaired at freely describing autobiographical memories, but both patient groups were impaired when elaborating constructed experiences. This dissociation suggests that parietal and prefrontal structures are differentially involved in constructed experience. Current tasks may impose overly broad cognitive demands making it impossible to specify the deficient cognitive component in any patient group. These findings provide additional constraints regarding the mechanistic role of the parietal cortex in memory. PMID:20096710
Visual enhancing of tactile perception in the posterior parietal cortex.
Ro, Tony; Wallace, Ruth; Hagedorn, Judith; Farnè, Alessandro; Pienkos, Elizabeth
2004-01-01
The visual modality typically dominates over our other senses. Here we show that after inducing an extreme conflict in the left hand between vision of touch (present) and the feeling of touch (absent), sensitivity to touch increases for several minutes after the conflict. Transcranial magnetic stimulation of the posterior parietal cortex after this conflict not only eliminated the enduring visual enhancement of touch, but also impaired normal tactile perception. This latter finding demonstrates a direct role of the parietal lobe in modulating tactile perception as a result of the conflict between these senses. These results provide evidence for visual-to-tactile perceptual modulation and demonstrate effects of illusory vision of touch on touch perception through a long-lasting modulatory process in the posterior parietal cortex.
The role of parietal cortex in the formation of color and motion based concepts
Cheadle, Samuel W.; Zeki, Semir
2014-01-01
Imaging evidence shows that separate subdivisions of parietal cortex, in and around the intraparietal sulcus (IPS), are engaged when stimuli are grouped according to color and to motion (Zeki and Stutters, 2013). Since grouping is an essential step in the formation of concepts, we wanted to learn whether parietal cortex is also engaged in the formation of concepts according to these two attributes. Using functional magnetic resonance imaging (fMRI), and choosing the recognition of concept-based color or motion stimuli as our paradigm, we found that there was strong concept-related activity in and around the IPS, a region whose homolog in the macaque monkey is known to receive direct but segregated anatomical inputs from V4 and V5. Parietal activity related to color concepts was juxtaposed but did not overlap with activity related to motion concepts, thus emphasizing the continuation of the segregation of color and motion into the conceptual system. Concurrent retinotopic mapping experiments showed that within the parietal cortex, concept-related activity increases within later stage IPS areas. PMID:25120447
Buchsbaum, Bradley R; Padmanabhan, Aarthi; Berman, Karen Faith
2011-04-01
One of the classic categorical divisions in the history of memory research is that between short-term and long-term memory. Indeed, because memory for the immediate past (a few seconds) and memory for the relatively more remote past (several seconds and beyond) are assumed to rely on distinct neural systems, more often than not, memory research has focused either on short- (or "working memory") or on long-term memory. Using an auditory-verbal continuous recognition paradigm designed for fMRI, we examined how the neural signatures of recognition memory change across an interval of time (from 2.5 to 30 sec) that spans this hypothetical division between short- and long-term memory. The results revealed that activity during successful auditory-verbal item recognition in inferior parietal cortex and the posterior superior temporal lobe was maximal for early lags, whereas, conversely, activity in the left inferior frontal gyrus increased as a function of lag. Taken together, the results reveal that as the interval between item repetitions increases, there is a shift in the distribution of memory-related activity that moves from posterior temporo-parietal cortex (lags 1-4) to inferior frontal regions (lags 5-10), indicating that as time advances, the burden of recognition memory is increasingly placed on top-down retrieval mechanisms that are mediated by structures in inferior frontal cortex.
Possin, Katherine L; Chester, Serana K; Laluz, Victor; Bostrom, Alan; Rosen, Howard J; Miller, Bruce L; Kramer, Joel H
2012-09-01
On tests of design fluency, an examinee draws as many different designs as possible in a specified time limit while avoiding repetition. The neuroanatomical substrates and diagnostic group differences of design fluency repetition errors and total correct scores were examined in 110 individuals diagnosed with dementia, 53 with mild cognitive impairment (MCI), and 37 neurologically healthy controls. The errors correlated significantly with volumes in the right and left orbitofrontal cortex (OFC), the right and left superior frontal gyrus, the right inferior frontal gyrus, and the right striatum, but did not correlate with volumes in any parietal or temporal lobe regions. Regression analyses indicated that the lateral OFC may be particularly crucial for preventing these errors, even after excluding patients with behavioral variant frontotemporal dementia (bvFTD) from the analysis. Total correct correlated more diffusely with volumes in the right and left frontal and parietal cortex, the right temporal cortex, and the right striatum and thalamus. Patients diagnosed with bvFTD made significantly more repetition errors than patients diagnosed with MCI, Alzheimer's disease, semantic dementia, progressive supranuclear palsy, or corticobasal syndrome. In contrast, total correct design scores did not differentiate the dementia patients. These results highlight the frontal-anatomic specificity of design fluency repetitions. In addition, the results indicate that the propensity to make these errors supports the diagnosis of bvFTD. (JINS, 2012, 18, 1-11).
Control over Conflict during Movement Preparation: Role of Posterior Parietal Cortex
Coulthard, Elizabeth J.; Nachev, Parashkev; Husain, Masud
2008-01-01
Summary Flexible behavior in humans often requires that rapid choices be made between conflicting action plans. Although much attention has focused on prefrontal regions, little is understood about the contribution of parietal cortex under situations of response conflict. Here we show that right parietal damage associated with spatial neglect leads to paradoxical facilitation (speeding) of rightward movements in the presence of conflicting leftward response plans. These findings indicate a critical role for parietal regions in action planning when there is response competition. In contrast, patients with prefrontal damage have an augmented cost of conflict for both leftward and rightward movements. The results suggest involvement of two independent systems in situations of response conflict, with right parietal cortex being a crucial site for automatic activation of competing motor plans and prefrontal regions acting independently to inhibit action plans irrelevant to current task goals. PMID:18400170
Fusion and Fission of Cognitive Functions in the Human Parietal Cortex
Humphreys, Gina F.; Lambon Ralph, Matthew A.
2015-01-01
How is higher cognitive function organized in the human parietal cortex? A century of neuropsychology and 30 years of functional neuroimaging has implicated the parietal lobe in many different verbal and nonverbal cognitive domains. There is little clarity, however, on how these functions are organized, that is, where do these functions coalesce (implying a shared, underpinning neurocomputation) and where do they divide (indicating different underlying neural functions). Until now, there has been no multi-domain synthesis in order to reveal where there is fusion or fission of functions in the parietal cortex. This aim was achieved through a large-scale activation likelihood estimation (ALE) analysis of 386 studies (3952 activation peaks) covering 8 cognitive domains. A tripartite, domain-general neuroanatomical division and 5 principles of cognitive organization were established, and these are discussed with respect to a unified theory of parietal functional organization. PMID:25205661
Chen, Yiping; Fu, Shimin; Iversen, Susan D; Smith, Steve M; Matthews, Paul M
2002-10-01
Chinese offers a unique tool for testing the effects of word form on language processing during reading. The processes of letter-mediated grapheme-to-phoneme translation and phonemic assembly (assembled phonology) critical for reading and spelling in any alphabetic orthography are largely absent when reading nonalphabetic Chinese characters. In contrast, script-to-sound translation based on the script as a whole (addressed phonology) is absent when reading the Chinese alphabetic sound symbols known as pinyin, for which the script-to-sound translation is based exclusively on assembled phonology. The present study aims to contrast patterns of brain activity associated with the different cognitive mechanisms needed for reading the two scripts. fMRI was used with a block design involving a phonological and lexical task in which subjects were asked to decide whether visually presented, paired Chinese characters or pinyin "sounded like" a word. Results demonstrate that reading Chinese characters and pinyin activate a common brain network including the inferior frontal, middle, and inferior temporal gyri, the inferior and superior parietal lobules, and the extrastriate areas. However, some regions show relatively greater activation for either pinyin or Chinese reading. Reading pinyin led to a greater activation in the inferior parietal cortex bilaterally, the precuneus, and the anterior middle temporal gyrus. In contrast, activation in the left fusiform gyrus, the bilateral cuneus, the posterior middle temporal, the right inferior frontal gyrus, and the bilateral superior frontal gyrus were greater for nonalphabetic Chinese reading. We conclude that both alphabetic and nonalphabetic scripts activate a common brain network for reading. Overall, there are no differences in terms of hemispheric specialization between alphabetic and nonalphabetic scripts. However, differences in language surface form appear to determine relative activation in other regions. Some of these regions (e.g., the inferior parietal cortex for pinyin and fusiform gyrus for Chinese characters) are candidate regions for specialized processes associated with reading via predominantly assembled (pinyin) or addressed (Chinese character) procedures.
NASA Astrophysics Data System (ADS)
Iwahashi, Masakuni; Koyama, Yohei; Hyodo, Akira; Hayami, Takehito; Ueno, Shoogo; Iramina, Keiji
2009-04-01
To investigate the functional connectivity, the evoked potentials by stimulating at the motor cortex, the posterior parietal cortex, and the cerebellum by transcranial magnetic stimulation (TMS) were measured. It is difficult to measure the evoked electroencephalograph (EEG) by the magnetic stimulation because of the large artifact induced by the magnetic pulse. We used an EEG measurement system with sample-and-hold circuit and an independent component analysis to eliminate the electromagnetic interaction emitted from TMS. It was possible to measure EEG signals from all electrodes over the head within 10 ms after applying the TMS. When the motor area was stimulated by TMS, the spread of evoked electrical activity to the contralateral hemisphere was observed at 20 ms after stimulation. However, when the posterior parietal cortex was stimulated, the evoked electrical activity to the contralateral hemisphere was not observed. When the cerebellum was stimulated, the cortical activity propagated from the stimulated point to the frontal area and the contralateral hemisphere at around 20 ms after stimulation. These results suggest that the motor area has a strong interhemispheric connection and the posterior parietal cortex has no interhemispheric connection.
Neural activation and memory for natural scenes: Explicit and spontaneous retrieval.
Weymar, Mathias; Bradley, Margaret M; Sege, Christopher T; Lang, Peter J
2018-05-06
Stimulus repetition elicits either enhancement or suppression in neural activity, and a recent fMRI meta-analysis of repetition effects for visual stimuli (Kim, 2017) reported cross-stimulus repetition enhancement in medial and lateral parietal cortex, as well as regions of prefrontal, temporal, and posterior cingulate cortex. Repetition enhancement was assessed here for repeated and novel scenes presented in the context of either an explicit episodic recognition task or an implicit judgment task, in order to study the role of spontaneous retrieval of episodic memories. Regardless of whether episodic memory was explicitly probed or not, repetition enhancement was found in medial posterior parietal (precuneus/cuneus), lateral parietal cortex (angular gyrus), as well as in medial prefrontal cortex (frontopolar), which did not differ by task. Enhancement effects in the posterior cingulate cortex were significantly larger during explicit compared to implicit task, primarily due to a lack of functional activity for new scenes. Taken together, the data are consistent with an interpretation that medial and (ventral) lateral parietal cortex are associated with spontaneous episodic retrieval, whereas posterior cingulate cortical regions may reflect task or decision processes. © 2018 Society for Psychophysiological Research.
Rivera, S M; Reiss, A L; Eckert, M A; Menon, V
2005-11-01
Arithmetic reasoning is arguably one of the most important cognitive skills a child must master. Here we examine neurodevelopmental changes in mental arithmetic. Subjects (ages 8-19 years) viewed arithmetic equations and were asked to judge whether the results were correct or incorrect. During two-operand addition or subtraction trials, for which accuracy was comparable across age, older subjects showed greater activation in the left parietal cortex, along the supramarginal gyrus and adjoining anterior intra-parietal sulcus as well as the left lateral occipital temporal cortex. These age-related changes were not associated with alterations in gray matter density, and provide novel evidence for increased functional maturation with age. By contrast, younger subjects showed greater activation in the prefrontal cortex, including the dorsolateral and ventrolateral prefrontal cortex and the anterior cingulate cortex, suggesting that they require comparatively more working memory and attentional resources to achieve similar levels of mental arithmetic performance. Younger subjects also showed greater activation of the hippocampus and dorsal basal ganglia, reflecting the greater demands placed on both declarative and procedural memory systems. Our findings provide evidence for a process of increased functional specialization of the left inferior parietal cortex in mental arithmetic, a process that is accompanied by decreased dependence on memory and attentional resources with development.
Park, Mona; Gutyrchik, Evgeny; Bao, Yan; Zaytseva, Yuliya; Carl, Petra; Welker, Lorenz; Pöppel, Ernst; Reiser, Maximilian; Blautzik, Janusch; Meindl, Thomas
2014-04-30
Music is known to convey and evoke emotional states. Musical training has been argued to lead to changes in neural architecture and enhanced processing of emotions. It is not clear, however, whether musical training is also associated with changes in behavioral and neural responses to musically conveyed discrete emotions. Using functional magnetic resonance imaging, we investigated the responses to three musically conveyed emotions (happiness, sadness, fear) in a group of musicians and a group of non-musicians. We find that musicians rate sadness and fear as significantly more arousing than non-musicians, and that musical training is associated with specific neural activations: In response to sadness expressed in music, musicians show activation increases in the right prefrontal cortex, specifically in the superior and middle frontal gyri. In response to fear, musicians show activation increases in the right parietal cortex, specifically in the supramarginal and inferior parietal gyri. No specific activations were observed in response to happiness. Our results highlight the strong association between musical training and altered processing of "negative" emotions on both the behavioral and on the neural level. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Rana computatrix to human language: towards a computational neuroethology of language evolution.
Arbib, Michael A
2003-10-15
Walter's Machina speculatrix inspired the name Rana computatrix for a family of models of visuomotor coordination in the frog, which contributed to the development of computational neuroethology. We offer here an 'evolutionary' perspective on models in the same tradition for rat, monkey and human. For rat, we show how the frog-like taxon affordance model provides a basis for the spatial navigation mechanisms that involve the hippocampus and other brain regions. For monkey, we recall two models of neural mechanisms for visuomotor coordination. The first, for saccades, shows how interactions between the parietal and frontal cortex augment superior colliculus seen as the homologue of frog tectum. The second, for grasping, continues the theme of parieto-frontal interactions, linking parietal affordances to motor schemas in premotor cortex. It further emphasizes the mirror system for grasping, in which neurons are active both when the monkey executes a specific grasp and when it observes a similar grasp executed by others. The model of human-brain mechanisms is based on the mirror-system hypothesis of the evolution of the language-ready brain, which sees the human Broca's area as an evolved extension of the mirror system for grasping.
Neural activation during response competition
NASA Technical Reports Server (NTRS)
Hazeltine, E.; Poldrack, R.; Gabrieli, J. D.
2000-01-01
The flanker task, introduced by Eriksen and Eriksen [Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16, 143--149], provides a means to selectively manipulate the presence or absence of response competition while keeping other task demands constant. We measured brain activity using functional magnetic resonance imaging (fMRI) during performance of the flanker task. In accordance with previous behavioral studies, trials in which the flanking stimuli indicated a different response than the central stimulus were performed significantly more slowly than trials in which all the stimuli indicated the same response. This reaction time effect was accompanied by increases in activity in four regions: the right ventrolateral prefrontal cortex, the supplementary motor area, the left superior parietal lobe, and the left anterior parietal cortex. The increases were not due to changes in stimulus complexity or the need to overcome previously learned associations between stimuli and responses. Correspondences between this study and other experiments manipulating response interference suggest that the frontal foci may be related to response inhibition processes whereas the posterior foci may be related to the activation of representations of the inappropriate responses.
Meyler, Ann; Keller, Timothy A; Cherkassky, Vladimir L; Gabrieli, John D E; Just, Marcel Adam
2008-08-01
This study used fMRI to longitudinally assess the impact of intensive remedial instruction on cortical activation among 5th grade poor readers during a sentence comprehension task. The children were tested at three time points: prior to remediation, after 100 h of intensive instruction, and 1 year after the instruction had ended. Changes in brain activation were also measured among 5th grade good readers at the same time points for comparison. The central finding was that prior to instruction, the poor readers had significantly less activation than good readers bilaterally in the parietal cortex. Immediately after instruction, poor readers made substantial gains in reading ability, and demonstrated significantly increased activation in the left angular gyrus and the left superior parietal lobule. Activation in these regions continued to increase among poor readers 1 year post-remediation, resulting in a normalization of the activation. These results are interpreted as reflecting changes in the processes involved in word-level and sentence-level assembly. Areas of overactivation were also found among poor readers in the medial frontal cortex, possibly indicating a more effortful and attentive guided reading strategy.
Meyler, Ann; Keller, Timothy A.; Cherkassky, Vladimir L.; Gabrieli, John D. E.; Just, Marcel Adam
2008-01-01
This study used fMRI to longitudinally assess the impact of intensive remedial instruction on cortical activation among 5th grade poor readers during a sentence comprehension task. The children were tested at 3 time points: prior to remediation, after 100 hours of intensive instruction, and 1 year after the instruction had ended. Changes in brain activation were also measured among 5th grade good readers at the same time points for comparison. The central finding was that prior to instruction, the poor readers had significantly less activation than good readers bilaterally in the parietal cortex. Immediately after instruction, poor readers made substantial gains in reading ability, and demonstrated significantly increased activation in the left angular gyrus and the left superior parietal lobule. Activation in these regions continued to increase among poor readers 1 year post-remediation, resulting in a normalization of the activation. These results are interpreted as reflecting changes in the processes involved in word-level and sentence-level assembly. Areas of overactivation were also found among poor readers in the medial frontal cortex, possibly indicating a more effortful and attentionally-guided reading strategy. PMID:18495180
Roth, Jennifer K.; Johnson, Marcia K.; Tokoglu, Fuyuze; Murphy, Isabella; Constable, R. Todd
2014-01-01
Supplementary motor area (SMA), the inferior frontal junction (IFJ), superior frontal junction (SFJ) and parietal cortex are active in many cognitive tasks. In a previous study, we found that subregions of each of these major areas were differentially active in component processes of executive function during working memory tasks. In the present study, each of these subregions was used as a seed in a whole brain functional connectivity analysis of working memory and resting state data. These regions show functional connectivity to different networks, thus supporting the parcellation of these major regions into functional subregions. Many regions showing significant connectivity during the working memory residual data (with task events regressed from the data) were also significantly connected during rest suggesting that these network connections to subregions within major regions of cortex are intrinsic. For some of these connections, task demands modulate activity in these intrinsic networks. Approximately half of the connections significant during task were significant during rest, indicating that some of the connections are intrinsic while others are recruited only in the service of the task. Furthermore, the network connections to traditional ‘task positive’ and ‘task negative’ (a.k.a ‘default mode’) regions shift from positive connectivity to negative connectivity depending on task demands. These findings demonstrate that such task-identified subregions are part of distinct networks, and that these networks have different patterns of connectivity for task as they do during rest, engaging connections both to task positive and task negative regions. These results have implications for understanding the parcellation of commonly active regions into more specific functional networks. PMID:24637793
Yang, Haichen; Li, Linling; Peng, Hongjun; Liu, Tiebang; Young, Allan H; Angst, Jules; Ye, Rong; Rong, Han; Ji, Erni; Qiu, Yunhai; Li, Lingjiang
2016-10-01
Bipolar disorder (BD) is difficult to diagnose in the early stages of the illness, with the most frequent misdiagnosis being major depressive disorder (MDD). We aimed to use a regional homogeneity (ReHo) approach with resting-state functional magnetic resonance imaging (rs-fMRI) to investigate the features of spontaneous brain activity in MDD patients screening positive on the 32-item Hypomania Checklist (HCL-32). Nineteen MDD patients screening positive (HCL-32(+); 9 males; 24.9±5.7 years) and 18 patients screening negative (HCL-32(-); 9 males; 27.1±6.7 years), together with 24 healthy controls (HC; 11 males; 26.4±3.9 years) were studied. ReHo maps were compared and an receiver operating characteristic (ROC) analysis was conducted to confirm the utility of the identified ReHo differences in classifying the patients. The MDD versus HC showed different ReHo in many brain areas, especially in the frontal and parietal cortex. The HCL-32(+) versus HCL-32(-) showed significant increase of ReHo in the right medial superior frontal cortex, left inferior parietal cortex and middle/inferior temporal cortex, and decrease of ReHo in the left postcentral cortex and cerebellum. ROC analysis showed good sensitivity and specificity for distinguishing these two subgroups of MDD. Recruited patients were all on antidepressants and standard mania rating scales were not performed to assess their hypomanic symptoms. The rs-fMRI measurement of ReHo in distributed brain regions may be putative biomarkers which could differentiate subthreshold BD from MDD. Copyright © 2016 Elsevier B.V. All rights reserved.
Martucci, Katherine T.; Shirer, William R.; Bagarinao, Epifanio; Johnson, Kevin A.; Farmer, Melissa A.; Labus, Jennifer S.; Apkarian, A. Vania; Deutsch, Georg; Harris, Richard E.; Mayer, Emeran A.; Clauw, Daniel J.; Greicius, Michael D.; Mackey, Sean C.
2015-01-01
Altered resting-state brain activity, as a measure of functional connectivity, is commonly observed in chronic pain. Identifying a reliable signature pattern of altered resting-state activity for chronic pain could provide strong mechanistic insights and serve as a highly beneficial neuroimaging-based diagnostic tool. We collected and analyzed resting-state fMRI data from female patients with urologic chronic pelvic pain syndrome (UCPPS, N = 45) and matched healthy participants (N = 45) as part of a NIDDK funded multicenter project (www.mappnetwork.org). Using dual regression and seed-based analyses, we observed significantly decreased functional connectivity of the default mode network (DMN) to two regions in the posterior medial cortex (PMC): the posterior cingulate cortex (PCC) and left precuneus (TFCE, FWE corrected p<0.05). Further investigation revealed that patients demonstrated increased functional connectivity between the PCC and several brain regions implicated in pain, sensory, motor, and emotion regulation processes (e.g., insular cortex, dorsolateral prefrontal cortex, thalamus, globus pallidus, putamen, amygdala, hippocampus). The left precuneus demonstrated decreased functional connectivity to several regions of pain processing, reward, and higher executive functioning within the prefrontal (orbitofrontal, anterior cingulate, ventromedial prefrontal) and parietal cortices (angular gyrus, superior and inferior parietal lobules). The altered PMC connectivity was associated with several phenotype measures, including pain and urologic symptom intensity, depression, anxiety, quality of relationships and self-esteem levels in patients. Collectively, these findings indicate that in UCPPS patients, regions of the PMC are detached from the DMN, while neurological processes of self-referential thought and introspection may be joined to pain and emotion regulatory processes. PMID:26010458
Parietal cortex mediates perceptual Gestalt grouping independent of stimulus size.
Grassi, Pablo R; Zaretskaya, Natalia; Bartels, Andreas
2016-06-01
The integration of local moving elements into a unified gestalt percept has previously been linked to the posterior parietal cortex. There are two possible interpretations for the lack of involvement of other occipital regions. The first is that parietal cortex is indeed uniquely functionally specialized to perform grouping. Another possibility is that other visual regions can perform grouping as well, but that the large spatial separation of the local elements used previously exceeded their neurons' receptive field (RF) sizes, preventing their involvement. In this study we distinguished between these two alternatives. We measured whole-brain activity using fMRI in response to a bistable motion illusion that induced mutually exclusive percepts of either an illusory global Gestalt or of local elements. The stimulus was presented in two sizes, a large version known to activate IPS only, and a version sufficiently small to fit into the RFs of mid-level dorsal regions such as V5/MT. We found that none of the separately localized motion regions apart from parietal cortex showed a preference for global Gestalt perception, even for the smaller version of the stimulus. This outcome suggests that grouping-by-motion is mediated by a specialized size-invariant mechanism with parietal cortex as its anatomical substrate. Copyright © 2016 Elsevier Inc. All rights reserved.
Sheremata, Summer L; Somers, David C; Shomstein, Sarah
2018-02-07
Visual short-term memory (VSTM) and attention are distinct yet interrelated processes. While both require selection of information across the visual field, memory additionally requires the maintenance of information across time and distraction. VSTM recruits areas within human (male and female) dorsal and ventral parietal cortex that are also implicated in spatial selection; therefore, it is important to determine whether overlapping activation might reflect shared attentional demands. Here, identical stimuli and controlled sustained attention across both tasks were used to ask whether fMRI signal amplitude, functional connectivity, and contralateral visual field bias reflect memory-specific task demands. While attention and VSTM activated similar cortical areas, BOLD amplitude and functional connectivity in parietal cortex differentiated the two tasks. Relative to attention, VSTM increased BOLD amplitude in dorsal parietal cortex and decreased BOLD amplitude in the angular gyrus. Additionally, the tasks differentially modulated parietal functional connectivity. Contrasting VSTM and attention, intraparietal sulcus (IPS) 1-2 were more strongly connected with anterior frontoparietal areas and more weakly connected with posterior regions. This divergence between tasks demonstrates that parietal activation reflects memory-specific functions and consequently modulates functional connectivity across the cortex. In contrast, both tasks demonstrated hemispheric asymmetries for spatial processing, exhibiting a stronger contralateral visual field bias in the left versus the right hemisphere across tasks, suggesting that asymmetries are characteristic of a shared selection process in IPS. These results demonstrate that parietal activity and patterns of functional connectivity distinguish VSTM from more general attention processes, establishing a central role of the parietal cortex in maintaining visual information. SIGNIFICANCE STATEMENT Visual short-term memory (VSTM) and attention are distinct yet interrelated processes. Cognitive mechanisms and neural activity underlying these tasks show a large degree of overlap. To examine whether activity within the posterior parietal cortex (PPC) reflects object maintenance across distraction or sustained attention per se, it is necessary to control for attentional demands inherent in VSTM tasks. We demonstrate that activity in PPC reflects VSTM demands even after controlling for attention; remembering items across distraction modulates relationships between parietal and other areas differently than during periods of sustained attention. Our study fills a gap in the literature by directly comparing and controlling for overlap between visual attention and VSTM tasks. Copyright © 2018 the authors 0270-6474/18/381511-09$15.00/0.
García-Casares, Natalia; Bernal-López, María R.; Roé-Vellvé, Nuria; Gutiérrez-Bedmar, Mario; García-Arnés, Juan A.; Ramos-Rodriguez, José R.; Alfaro, Francisco; Santamaria-Fernández, Sonia; Jiménez-Murcia, Susana; Garcia-Garcia, Isabel; Valdivielso, Pedro; Fernández-Aranda, Fernando; Tinahones, Francisco J.; Gómez-Huelgas, Ricardo
2017-01-01
Functional magnetic resonance imaging (fMRI) in the resting state has shown altered brain connectivity networks in obese individuals. However, the impact of a Mediterranean diet on cerebral connectivity in obese patients when losing weight has not been previously explored. The aim of this study was to examine the connectivity between brain structures before and six months after following a hypocaloric Mediterranean diet and physical activity program in a group of sixteen obese women aged 46.31 ± 4.07 years. Before and after the intervention program, the body mass index (BMI) (kg/m2) was 38.15 ± 4.7 vs. 34.18 ± 4.5 (p < 0.02), and body weight (kg) was 98.5 ± 13.1 vs. 88.28 ± 12.2 (p < 0.03). All subjects underwent a pre- and post-intervention fMRI under fasting conditions. Functional connectivity was assessed using seed-based correlations. After the intervention, we found decreased connectivity between the left inferior parietal cortex and the right temporal cortex (p < 0.001), left posterior cingulate (p < 0.001), and right posterior cingulate (p < 0.03); decreased connectivity between the left superior frontal gyrus and the right temporal cortex (p < 0.01); decreased connectivity between the prefrontal cortex and the somatosensory cortex (p < 0.025); and decreased connectivity between the left and right posterior cingulate (p < 0.04). Results were considered significant at a voxel-wise threshold of p ≤ 0.05, and a cluster-level family-wise error correction for multiple comparisons of p ≤ 0.05. In conclusion, functional connectivity between brain structures involved in the pathophysiology of obesity (the inferior parietal lobe, posterior cingulate, temporo-insular cortex, prefrontal cortex) may be modified by a weight loss program including a Mediterranean diet and physical exercise. PMID:28671558
Kim, Ji-Woong; Kim, Jae-Jin; Jeong, Bumseok; Kim, Sung-Eun; Ki, Seon Wan
2010-03-01
The goal of the present study was to identify the brain mechanism involved in the attribution of person's attitude toward another person, using facial affective pictures and pictures displaying an affectively-loaded situation. Twenty four right-handed healthy subjects volunteered for our study. We used functional magnetic resonance imaging (MRI) to examine brain activation during attitude attribution task as compared to gender matching tasks. We identified activation in the left inferior frontal cortex, left superior temporal sulcus, and left inferior parietal lobule during the attitude attribution task, compared to the gender matching task. This study suggests that mirror neuron system and ventrolateral inferior frontal cortex play a critical role in the attribution of a person's inner attitude towards another person in an emotional situation.
Auditory and visual connectivity gradients in frontoparietal cortex
Hellyer, Peter J.; Wise, Richard J. S.; Leech, Robert
2016-01-01
Abstract A frontoparietal network of brain regions is often implicated in both auditory and visual information processing. Although it is possible that the same set of multimodal regions subserves both modalities, there is increasing evidence that there is a differentiation of sensory function within frontoparietal cortex. Magnetic resonance imaging (MRI) in humans was used to investigate whether different frontoparietal regions showed intrinsic biases in connectivity with visual or auditory modalities. Structural connectivity was assessed with diffusion tractography and functional connectivity was tested using functional MRI. A dorsal–ventral gradient of function was observed, where connectivity with visual cortex dominates dorsal frontal and parietal connections, while connectivity with auditory cortex dominates ventral frontal and parietal regions. A gradient was also observed along the posterior–anterior axis, although in opposite directions in prefrontal and parietal cortices. The results suggest that the location of neural activity within frontoparietal cortex may be influenced by these intrinsic biases toward visual and auditory processing. Thus, the location of activity in frontoparietal cortex may be influenced as much by stimulus modality as the cognitive demands of a task. It was concluded that stimulus modality was spatially encoded throughout frontal and parietal cortices, and was speculated that such an arrangement allows for top–down modulation of modality‐specific information to occur within higher‐order cortex. This could provide a potentially faster and more efficient pathway by which top–down selection between sensory modalities could occur, by constraining modulations to within frontal and parietal regions, rather than long‐range connections to sensory cortices. Hum Brain Mapp 38:255–270, 2017. © 2016 Wiley Periodicals, Inc. PMID:27571304
Neural substrates of driving behaviour
Spiers, Hugo J.; Maguire, Eleanor A.
2007-01-01
Driving a vehicle is an indispensable daily behaviour for many people, yet we know little about how it is supported by the brain. Given that driving in the real world involves the engagement of many cognitive systems that rapidly change to meet varying environmental demands, identifying its neural basis presents substantial problems. By employing a unique combination of functional magnetic resonance imaging (fMRI), an accurate interactive virtual simulation of a bustling central London (UK) and a retrospective verbal report protocol, we surmounted these difficulties. We identified different events that characterise the driving process on a second by second basis and the brain regions that underlie them. Prepared actions such as starting, turning, reversing and stopping were associated with a common network comprised of premotor, parietal and cerebellar regions. Each prepared action also recruited additional brain areas. We also observed unexpected hazardous events such as swerving and avoiding collisions that were associated with activation of lateral occipital and parietal regions, insula, as well as a more posterior region in the medial premotor cortex than prepared actions. By contrast, planning future actions and monitoring fellow road users were associated with activity in superior parietal, lateral occipital cortices and the cerebellum. The anterior pre-SMA was also recruited during action planning. The right lateral prefrontal cortex was specifically engaged during the processing of road traffic rules. By systematically characterising the brain dynamics underlying naturalistic driving behaviour in a real city, our findings may have implications for how driving competence is considered in the context of neurological damage. PMID:17412611
Multimodal representation of limb endpoint position in the posterior parietal cortex.
Shi, Ying; Apker, Gregory; Buneo, Christopher A
2013-04-01
Understanding the neural representation of limb position is important for comprehending the control of limb movements and the maintenance of body schema, as well as for the development of neuroprosthetic systems designed to replace lost limb function. Multiple subcortical and cortical areas contribute to this representation, but its multimodal basis has largely been ignored. Regarding the parietal cortex, previous results suggest that visual information about arm position is not strongly represented in area 5, although these results were obtained under conditions in which animals were not using their arms to interact with objects in their environment, which could have affected the relative weighting of relevant sensory signals. Here we examined the multimodal basis of limb position in the superior parietal lobule (SPL) as monkeys reached to and actively maintained their arm position at multiple locations in a frontal plane. On half of the trials both visual and nonvisual feedback of the endpoint of the arm were available, while on the other trials visual feedback was withheld. Many neurons were tuned to arm position, while a smaller number were modulated by the presence/absence of visual feedback. Visual modulation generally took the form of a decrease in both firing rate and variability with limb vision and was associated with more accurate decoding of position at the population level under these conditions. These findings support a multimodal representation of limb endpoint position in the SPL but suggest that visual signals are relatively weakly represented in this area, and only at the population level.
Jackson, Margaret C; Morgan, Helen M; Shapiro, Kimron L; Mohr, Harald; Linden, David EJ
2011-01-01
The ability to integrate different types of information (e.g., object identity and spatial orientation) and maintain or manipulate them concurrently in working memory (WM) facilitates the flow of ongoing tasks and is essential for normal human cognition. Research shows that object and spatial information is maintained and manipulated in WM via separate pathways in the brain (object/ventral versus spatial/dorsal). How does the human brain coordinate the activity of different specialized systems to conjoin different types of information? Here we used functional magnetic resonance imaging to investigate conjunction- versus single-task manipulation of object (compute average color blend) and spatial (compute intermediate angle) information in WM. Object WM was associated with ventral (inferior frontal gyrus, occipital cortex), and spatial WM with dorsal (parietal cortex, superior frontal, and temporal sulci) regions. Conjoined object/spatial WM resulted in intermediate activity in these specialized areas, but greater activity in different prefrontal and parietal areas. Unique to our study, we found lower temporo-occipital activity and greater deactivation in temporal and medial prefrontal cortices for conjunction- versus single-tasks. Using structural equation modeling, we derived a conjunction-task connectivity model that comprises a frontoparietal network with a bidirectional DLPFC-VLPFC connection, and a direct parietal-extrastriate pathway. We suggest that these activation/deactivation patterns reflect efficient resource allocation throughout the brain and propose a new extended version of the biased competition model of WM. Hum Brain Mapp, 2011. © 2010 Wiley-Liss, Inc. PMID:20715083
Pergolizzi, Denise; Chua, Elizabeth F
2016-10-01
Neuroimaging data have shown that activity in the lateral posterior parietal cortex (PPC) correlates with item recognition and source recollection, but there is considerable debate about its specific contributions. Performance on both item and source memory tasks were compared between participants who were given bilateral transcranial direct current stimulation (tDCS) over the parietal cortex to those given prefrontal or sham tDCS. The parietal tDCS group, but not the prefrontal group, showed decreased false recognition, and less bias in item and source discrimination tasks compared to sham stimulation. These results are consistent with a causal role of the PPC in item and source memory retrieval, likely based on attentional and decision-making biases. Copyright © 2016 Elsevier Inc. All rights reserved.
Attenuating illusory binding with TMS of the right parietal cortex
Esterman, Michael; Verstynen, Timothy; Robertson, Lynn C.
2007-01-01
A number of neuroimaging and neuropsychology studies have implicated various regions of parietal cortex as playing a critical role in the binding of color and form into conjunctions. The current study investigates the role of two such regions by examining how parietal transcranial magnetic stimulation (TMS) influences binding errors known as ‘illusory conjunctions.’ Participants made fewer binding errors after 1 Hz rTMS of the right intraparietal sulcus (IPS), while basic perception of features (colors and shape) was unaffected. No perceptual effects were found following left IPS stimulation, or stimulation of the right angular gyrus at the junction of the transverse occipital sulcus (IPS/TOS). These results support a role for the parietal cortex in feature binding but in ways that may require rethinking. PMID:17336097
Qiu, Anqi; Tuan, Ta Anh; Ong, Mei Lyn; Li, Yue; Chen, Helen; Rifkin-Graboi, Anne; Broekman, Birit F P; Kwek, Kenneth; Saw, Seang-Mei; Chong, Yap-Seng; Gluckman, Peter D; Fortier, Marielle V; Holbrook, Joanna Dawn; Meaney, Michael J
2015-02-01
Exposure to antenatal maternal anxiety and complex genetic variations may shape fetal brain development. In particular, the catechol-O-methyltransferase (COMT) gene, located on chromosome 22q11.2, regulates catecholamine signaling in the prefrontal cortex and is implicated in anxiety, pain, and stress responsivity. This study examined whether individual single-nucleotide polymorphisms (SNPs) of the COMT gene and their haplotypes moderate the association between antenatal maternal anxiety and in utero cortical development. A total of 146 neonates were genotyped and underwent MRI shortly after birth. Neonatal cortical morphology was characterized using cortical thickness. Antenatal maternal anxiety was assessed using the State-Trait Anxiety Inventory at week 26 of pregnancy. Individual COMT SNPs (val158met, rs737865, and rs165599) modulated the association between antenatal maternal anxiety and the prefrontal and parietal cortical thickness in neonates. Based on haplotype trend regression analysis, findings also showed that among rs737865-val158met-rs165599 haplotypes, the A-val-G (AGG) haplotype probabilities modulated positive associations of antenatal maternal anxiety with cortical thickness in the right ventrolateral prefrontal cortex and the right superior parietal cortex and precuneus. In contrast, the G-met-A (GAA) haplotype probabilities modulated negative associations of antenatal maternal anxiety with cortical thickness in bilateral precentral gyrus and the dorsolateral prefrontal cortex. These results suggest that the association between maternal anxiety and in utero neurodevelopment is modified through complex genetic variation in COMT. Such genetic moderation may explain, in part, the variation in phenotypic outcomes in offspring associated with maternal emotional well-being.
Hinkley, Leighton B.N.; Vinogradov, Sophia; Guggisberg, Adrian G.; Fisher, Melissa; Findlay, Anne M.; Nagarajan, Srikantan S.
2011-01-01
Background Schizophrenia is associated with functional decoupling between cortical regions, but we do not know whether and where this occurs in low-frequency electromagnetic oscillations. The goal of this study was to use magnetoencephalography (MEG) to identify brain regions that exhibit abnormal resting-state connectivity in the alpha frequency range in patients with schizophrenia and investigate associations between functional connectivity and clinical symptoms in stable outpatient participants. Method Thirty patients with schizophrenia and fifteen healthy comparison participants were scanned in resting-state MEG (eyes closed). Functional connectivity MEGI (fcMEGI) data were reconstructed globally in the alpha range, quantified by the mean imaginary coherence between a voxel and the rest of the brain. Results In patients, decreased connectivity was observed in left pre-frontal cortex (PFC) and right superior temporal cortex while increased connectivity was observed in left extrastriate cortex and the right inferior PFC. Functional connectivity of left inferior parietal cortex was negatively related to positive symptoms. Low left PFC connectivity was associated with negative symptoms. Functional connectivity of midline PFC was negatively correlated with depressed symptoms. Functional connectivity of right PFC was associated with other (cognitive) symptoms. Conclusions This study demonstrates direct functional disconnection in schizophrenia between specific cortical fields within low-frequency resting-state oscillations. Impaired alpha coupling in frontal, parietal, and temporal regions is associated with clinical symptoms in these stable outpatients. Our findings indicate that this level of functional disconnection between cortical regions is an important treatment target in schizophrenia. PMID:21861988
Brain activity in hunger and satiety: an exploratory visually stimulated FMRI study.
Führer, Dagmar; Zysset, Stefan; Stumvoll, Michael
2008-05-01
To explore neuroanatomical sites of eating behavior, we have developed a simple functional magnetic resonance imaging (fMRI) paradigm to image hunger vs. satiety using visual stimulation. Twelve healthy, lean, nonsmoking male subjects participated in this study. Pairs of food-neutral and food-related pictures were presented in a block design, after a 14-h fast and 1 h after ad libitum ingestion of a mixed meal. Statistically, a general linear model for serially autocorrelated observations with a P level<0.001 was used. During the hunger condition, significantly enhanced brain activity was found in the left striate and extrastriate cortex, the inferior parietal lobe, and the orbitofrontal cortices. Stimulation with food images was associated with increased activity in both insulae, the left striate and extrastriate cortex, and the anterior midprefrontal cortex. Nonfood images were associated with enhanced activity in the right parietal lobe and the left and right middle temporal gyrus. A significant interaction in activation pattern between the states of hunger and satiety and stimulation with food and nonfood images was found for the left anterior cingulate cortex, the superior occipital sulcus, and in the vicinity of the right amygdala. These preliminary data from a homogenous healthy male cohort suggest that central nervous system (CNS) activation is not only altered with hunger and satiety but that food and nonfood images have also specific effects on regional brain activity if exposure takes place in different states of satiety. Wider use of our or a similar approach would help to establish a uniform paradigm to map hunger and satiety to be used for further experiments.
Modi, Shilpi; Bhattacharya, Manisha; Singh, Namita; Tripathi, Rajendra Prasad; Khushu, Subash
2012-10-01
To investigate structural reorganization in the brain with differential visual experience using Voxel-Based Morphometry with Diffeomorphic Anatomic Registration Through Exponentiated Lie algebra algorithm (DARTEL) approach. High resolution structural MR images were taken in fifteen normal sighted healthy controls, thirteen totally blind subjects and six partial blind subjects. The analysis was carried out using SPM8 software on MATLAB 7.6.0 platform. VBM study revealed gray matter volume atrophy in the cerebellum and left inferior parietal cortex in total blind subjects and in left inferior parietal cortex, right caudate nucleus, and left primary visual cortex in partial blind subjects as compared to controls. White matter volume loss was found in calcarine gyrus in total blind subjects and Thlamus-somatosensory region in partially blind subjects as compared to controls. Besides, an increase in Gray Matter volume was also found in left middle occipital and middle frontal gyrus and right entorhinal cortex, and an increase in White Matter volume was found in superior frontal gyrus, left middle temporal gyrus and right Heschl's gyrus in totally blind subjects as compared to controls. Comparison between total and partial blind subjects revealed a greater Gray Matter volume in left cerebellum of partial blinds and left Brodmann area 18 of total blind subjects. Results suggest that, loss of vision at an early age can induce significant structural reorganization on account of the loss of visual input. These plastic changes are different in early onset of total blindness as compared to partial blindness. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fukami, Tadanori; Shimada, Takamasa; Akatsuka, Takao; Saito, Yoichi
In audiometry, ABR (Auditory Brainstem Response) is widely used. However, it shows low accuracy in low frequency band. Meanwhile, AMFR (Amplitude-Modulation-Following Response), the response during hearing an amplitude-modulated tone, has high frequency specificity and is brought to attention. As the first step to clinical application of AMFR, we investigated the activated areas in a brain when the subjects hear SAM tone (Sinusoidally Amplitude-Modulated tone) with both ears. We measured following two signals. One is the difference of BOLD (Blood Oxygenation Level Dependent) signal between hearing SAM tone vs. silence, the other is the difference of BOLD signal between hearing SAM tone vs. unmodulated tone. As a result, in the case of SAM vs. silence, the bilaterally auditory cortex (Broadmann Area 41, 42), the biratelally BA 10, left superior frontal gyrus and right superior temporal gyrus were activated (p<0.0037, uncorrected). In the case of SAM vs. unmodulated tone, the bilaterally superior frontal gyrus (BA 6) and precuneus (BA 7), neighboring area including the bilaterally inferior parietal lobule (BA 40), the bilaterally medial frontal gyrus and superior frontal gyrus were activated (p<0.021, uncorrected). Activations of visual perception due to eye-opened state were detected in some parts of activations. As a result, we inferred that modulated tone was recognized in the medial frontal gyrus and inferior parietal lobule was the part related to perception of amplitude-modulation.
Hanken, Katrin; Bosse, Mona; Möhrke, Kim; Eling, Paul; Kastrup, Andreas; Antal, Andrea; Hildebrandt, Helmut
2016-01-01
Fatigue in multiple sclerosis (MS) patients appears to correlate with vigilance decrement as reflected in an increase in reaction time (RT) and errors with prolonged time-on-task. The aim of this study was to investigate whether anodal transcranial direct current stimulation (tDCS) over the right parietal or frontal cortex counteracts fatigue-associated vigilance decrement and subjective fatigue. In study I, a randomized double-blind placebo-controlled study, anodal tDCS (1.5 mA) was delivered to the right parietal cortex or the right frontal cortex of 52 healthy participants during the first 20 min of a 40-min lasting visual vigilance task. Study II, also a randomized double-blind placebo-controlled study, investigated the effect of anodal tDCS (1.5 mA) over the right parietal cortex in 46 MS patients experiencing cognitive fatigue. tDCS was delivered for 20 min before patients performed a 20-min lasting visual vigilance task. Study I showed that right parietal stimulation, but not right frontal stimulation, counteracts the increase in RT associated with vigilance decrement. Hence, only right parietal stimulation was applied to the MS patients in study II. Stimulation had a significant effect on vigilance decrement in mildly to moderately cognitively fatigued MS patients. Vigilance testing significantly increased the feeling of fatigue independent of stimulation. Anodal tDCS over the right parietal cortex can counteract the increase in RTs during vigilance performance, but not the increase in subjective fatigue. This finding is compatible with our model of fatigue in MS, suggesting a dissociation between the feeling and the behavioral characteristics of fatigue.
Du, Xiaoming; Chen, Lin; Zhou, Ke
2012-10-01
Converging evidence from neuroimaging as well as lesion and transcranial magnetic stimulation (TMS) studies has been obtained for the involvement of right ventral posterior parietal cortex (PPC) in exogenous orienting. However, the contribution of dorsal PPC to attentional orienting, particularly endogenous orienting, is still under debate. In an informative peripheral cueing paradigm, in which the exogenous and endogenous orienting can be studied in relative isolation within a single task, we applied TMS over sub-regions of dorsal PPC to explore their possible distinct involvement in exogenous and endogenous processes. We found that disruption of the left posterior intraparietal sulcus (pIPS) weakened the attentional effects of endogenous orienting, but did not affect exogenous processes. In addition, TMS applied over the right superior parietal lobule (SPL) resulted in an overall increase in reaction times. The present study provides the causal evidence that the left pIPS plays a crucial role in voluntary orienting of visual attention, while right SPL is involved in the processing of arousal and/or vigilance. Copyright © 2011 Wiley Periodicals, Inc.
Intimate stimuli result in fronto-parietal activation changes in anorexia nervosa.
van Zutphen, L; Maier, S; Siep, N; Jacob, G A; Tüscher, O; van Elst, L Tebartz; Zeeck, A; Arntz, A; O'Connor, M-F; Stamm, H; Hudek, M; Joos, Andreas
2018-02-03
Intimacy is a key psychological problem in anorexia nervosa (AN). Empirical evidence, including neurobiological underpinnings, is however, scarce. In this study, we evaluated various emotional stimuli including intimate stimuli experienced in patients with AN and non-patients, as well as their cerebral response. Functional magnetic resonance imaging was conducted using stimuli with positive, neutral, negative and intimate content. Participants (14 AN patients and 14 non-patients) alternated between passive viewing and explicit emotion regulation. Intimate stimuli were experienced less positively in AN patients compared to non-patients. AN patients showed decreased cerebral responses in superior parietal cortices in response to positive and intimate stimuli. Intimate stimuli led to stronger activation of the orbitofrontal cortex, and lower activation of the bilateral precuneus in AN patients. Orbitofrontal responses decreased in AN patients during explicit emotion regulation. These results show that intimate stimuli are of particular importance in AN patients, who show experiential differences compared to non-patients and altered activation of orbitofrontal and parietal brain structures. This supports that AN patients have difficulties with intimacy, attachment, self-referential processing and body perception. Level III, case-control study.
Microsurgical anatomy of the central lobe.
Frigeri, Thomas; Paglioli, Eliseu; de Oliveira, Evandro; Rhoton, Albert L
2015-03-01
The central lobe consists of the pre- and postcentral gyri on the lateral surface and the paracentral lobule on the medial surface and corresponds to the sensorimotor cortex. The objective of the present study was to define the neural features, craniometric relationships, arterial supply, and venous drainage of the central lobe. Cadaveric hemispheres dissected using microsurgical techniques provided the material for this study. The coronal suture is closer to the precentral gyrus and central sulcus at its lower rather than at its upper end, but they are closest at a point near where the superior temporal line crosses the coronal suture. The arterial supply of the lower two-thirds of the lateral surface of the central lobe was from the central, precentral, and anterior parietal branches that arose predominantly from the superior trunk of the middle cerebral artery. The medial surface and the superior third of the lateral surface were supplied by the posterior interior frontal, paracentral, and superior parietal branches of the pericallosal and callosomarginal arteries. The venous drainage of the superior two-thirds of the lateral surface and the central lobe on the medial surface was predominantly through the superior sagittal sinus, and the inferior third of the lateral surface was predominantly through the superficial sylvian veins to the sphenoparietal sinus or the vein of Labbé to the transverse sinus. The pre- and postcentral gyri and paracentral lobule have a morphological and functional anatomy that differentiates them from the remainder of their respective lobes and are considered by many as a single lobe. An understanding of the anatomical relationships of the central lobe can be useful in preoperative planning and in establishing reliable intraoperative landmarks.
Erickson, Kirk I.; Suever, Barbara L.; Shaurya Prakash, Ruchika; Colcombe, Stanley J.; McAuley, Edward; Kramer, Arthur F.
2008-01-01
Previous studies have reported that high concentrations of homocysteine and lower concentrations of vitamin B6, B12, and folate increase the risk for cognitive decline and pathology in aging populations. In this cross-sectional study, high-resolution magnetic resonance imaging (MRI) scans and a 3-day food diary were collected on 32 community-dwelling adults between the ages of 59 and 79. We examined the relation between vitamin B6, B12, and folate intake on cortical volume using an optimized voxel-based morphometry (VBM) method and global gray and white matter volume after correcting for age, sex, body mass index, calorie intake, and education. All participants met or surpassed the recommended daily intake for these vitamins. In the VBM analysis, we found that adults with greater vitamin B6 intake had greater gray matter volume along the medial wall, anterior cingulate cortex, medial parietal cortex, middle temporal gyrus, and superior frontal gyrus, whereas people with greater B12 intake had greater volume in the left and right superior parietal sulcus. These effects were driven by vitamin supplementation and were negated when only examining vitamin intake from diet. Folate had no effect on brain volume. Furthermore, there was no relationship between vitamin B6, B12, or folate intake on global brain volume measures, indicating that VBM methods are more sensitive for detecting localized differences in gray matter volume than global measures. These results are discussed in relation to a growing literature on vitamin intake on age-related neurocognitive deterioration. PMID:18281020
Zhang, Jiaxing; Zhang, Haiyan; Chen, Ji; Fan, Ming; Gong, Qiyong
2013-01-01
The present study aimed to investigate structural modulation of brain by high level of oxygen during its peak period of development. Voxel-based morphometry analysis of gray matter (GM) and white matter (WM) volumes and Tract-Based Spatial Statistics analysis of WM fractional anisotropy (FA) and mean diffusion (MD) based on MRI images were carried out on 21 Tibetan adolencents (15-18 years), who were born and raised in Qinghai-Tibetan Plateau (2900-4700 m) and have lived at sea level (SL) in the last 4 years. The control group consisted of matched Tibetan adolescents born and raised at high altitude all the time. SL immigrants had increased GM volume in the left insula, left inferior parietal gyrus, and right superior parietal gyrus and decreased GM in the left precentral cortex and multiple sites in cerebellar cortex (left lobule 8, bilateral lobule 6 and crus 1/2). Decreased WM volume was found in the right superior frontal gyrus in SL immigrants. SL immigrants had higher FA and lower MD at multiple sites of WM tracts. Moreover, we detected changes in ventilation and circulation. GM volume in cerebellum lobule 8 positively correlated with diastolic pressure, while GM volume in insula positively correlated vital capacity and hypoxic ventilatory response. Our finding indicate that the structural modulations of GM by high level of oxygen during its peak period of development are related to respiratory and circulatory regulations, while the modulation in WM mainly exhibits an enhancement in myelin maturation.
van der Meer, Dennis; Hartman, Catharina A; van Rooij, Daan; Franke, Barbara; Heslenfeld, Dirk J; Oosterlaan, Jaap; Faraone, Stephen V; Buitelaar, Jan K; Hoekstra, Pieter J
2017-03-01
Attention-deficit/hyperactivity disorder (ADHD) is often accompanied by impaired response inhibition; both have been associated with aberrant dopamine signalling. Given that prenatal exposure to alcohol or smoking is known to affect dopamine-rich brain regions, we hypothesized that individuals carrying the ADHD risk alleles of the dopamine receptor D4 ( DRD4 ) and dopamine transporter ( DAT1 ) genes may be especially sensitive to their effects. Functional MRI data, information on prenatal adversities and genetic data were available for 239 adolescents and young adults participating in the multicentre ADHD cohort study NeuroIMAGE (average age 17.3 yr). We analyzed the effects of DRD4 and DAT1 , prenatal exposure to alcohol and smoking and their interactions on ADHD severity, response inhibition and neural activity. We found no significant gene × environment interaction effects. We did find that the DRD4 7-repeat allele was associated with less superior frontal and parietal brain activity and with greater activity in the frontal pole and occipital cortex. Prenatal exposure to smoking was also associated with lower superior frontal activity, but with greater activity in the parietal lobe. Further, those exposed to alcohol had more activity in the lateral orbitofrontal cortex, and the DAT1 risk variant was associated with lower cerebellar activity. Retrospective reports of maternal substance use and the cross-sectional study design restrict causal inference. While we found no evidence of gene × environment interactions, the risk factors under investigation influenced activity of brain regions associated with response inhibition, suggesting they may add to problems with inhibiting behaviour.
Structural and functional rich club organization of the brain in children and adults.
Grayson, David S; Ray, Siddharth; Carpenter, Samuel; Iyer, Swathi; Dias, Taciana G Costa; Stevens, Corinne; Nigg, Joel T; Fair, Damien A
2014-01-01
Recent studies using Magnetic Resonance Imaging (MRI) have proposed that the brain's white matter is organized as a rich club, whereby the most highly connected regions of the brain are also highly connected to each other. Here we use both functional and diffusion-weighted MRI in the human brain to investigate whether the rich club phenomena is present with functional connectivity, and how this organization relates to the structural phenomena. We also examine whether rich club regions serve to integrate information between distinct brain systems, and conclude with a brief investigation of the developmental trajectory of rich-club phenomena. In agreement with prior work, both adults and children showed robust structural rich club organization, comprising regions of the superior medial frontal/dACC, medial parietal/PCC, insula, and inferior temporal cortex. We also show that these regions were highly integrated across the brain's major networks. Functional brain networks were found to have rich club phenomena in a similar spatial layout, but a high level of segregation between systems. While no significant differences between adults and children were found structurally, adults showed significantly greater functional rich club organization. This difference appeared to be driven by a specific set of connections between superior parietal, insula, and supramarginal cortex. In sum, this work highlights the existence of both a structural and functional rich club in adult and child populations with some functional changes over development. It also offers a potential target in examining atypical network organization in common developmental brain disorders, such as ADHD and Autism.
Two takes on the social brain: a comparison of theory of mind tasks.
Gobbini, Maria Ida; Koralek, Aaron C; Bryan, Ronald E; Montgomery, Kimberly J; Haxby, James V
2007-11-01
We compared two tasks that are widely used in research on mentalizing--false belief stories and animations of rigid geometric shapes that depict social interactions--to investigate whether the neural systems that mediate the representation of others' mental states are consistent across these tasks. Whereas false belief stories activated primarily the anterior paracingulate cortex (APC), the posterior cingulate cortex/precuneus (PCC/PC), and the temporo-parietal junction (TPJ)--components of the distributed neural system for theory of mind (ToM)--the social animations activated an extensive region along nearly the full extent of the superior temporal sulcus, including a locus in the posterior superior temporal sulcus (pSTS), as well as the frontal operculum and inferior parietal lobule (IPL)--components of the distributed neural system for action understanding--and the fusiform gyrus. These results suggest that the representation of covert mental states that may predict behavior and the representation of intentions that are implied by perceived actions involve distinct neural systems. These results show that the TPJ and the pSTS play dissociable roles in mentalizing and are parts of different distributed neural systems. Because the social animations do not depict articulated body movements, these results also highlight that the perception of the kinematics of actions is not necessary to activate the mirror neuron system, suggesting that this system plays a general role in the representation of intentions and goals of actions. Furthermore, these results suggest that the fusiform gyrus plays a general role in the representation of visual stimuli that signify agency, independent of visual form.
Basho, Surina; Palmer, Erica D.; Rubio, Miguel A.; Wulfeck, Beverly; Müller, Ralph-Axel
2007-01-01
Verbal fluency is a widely used neuropsychological paradigm. In fMRI implementations, conventional unpaced (self-paced) versions are suboptimal due to uncontrolled timing of responses, and overt responses carry the risk of motion artifact. We investigated the behavioral and neurofunctional effects of response pacing and overt speech in semantic category-driven word generation. Twelve right-handed adults (8 female) ages 21–37 were scanned in four conditions each: Paced-Overt, Paced-Covert, Unpaced-Overt, and Unpaced-Covert. There was no significant difference in the number of exemplars generated between overt versions of the paced and unpaced conditions. Imaging results for category-driven word generation overall showed left-hemispheric activation in inferior frontal cortex, premotor cortex, cingulate gyrus, thalamus, and basal ganglia. Direct comparison of generation modes revealed significantly greater activation for the paced compared to unpaced conditions in right superior temporal, bilateral middle frontal, and bilateral anterior cingulate cortex, including regions associated with sustained attention, motor planning, and response inhibition. Covert (compared to overt) conditions showed significantly greater effects in right parietal and anterior cingulate, as well as left middle temporal and superior frontal regions. We conclude that paced overt paradigms are useful adaptations of conventional semantic fluency in fMRI, given their superiority with regard to control over and monitoring of behavioral responses. However, response pacing is associated with additional non-linguistic effects related to response inhibition, motor preparation, and sustained attention. PMID:17292926
Reconstructing Perceived and Retrieved Faces from Activity Patterns in Lateral Parietal Cortex.
Lee, Hongmi; Kuhl, Brice A
2016-06-01
Recent findings suggest that the contents of memory encoding and retrieval can be decoded from the angular gyrus (ANG), a subregion of posterior lateral parietal cortex. However, typical decoding approaches provide little insight into the nature of ANG content representations. Here, we tested whether complex, multidimensional stimuli (faces) could be reconstructed from ANG by predicting underlying face components from fMRI activity patterns in humans. Using an approach inspired by computer vision methods for face recognition, we applied principal component analysis to a large set of face images to generate eigenfaces. We then modeled relationships between eigenface values and patterns of fMRI activity. Activity patterns evoked by individual faces were then used to generate predicted eigenface values, which could be transformed into reconstructions of individual faces. We show that visually perceived faces were reliably reconstructed from activity patterns in occipitotemporal cortex and several lateral parietal subregions, including ANG. Subjective assessment of reconstructed faces revealed specific sources of information (e.g., affect and skin color) that were successfully reconstructed in ANG. Strikingly, we also found that a model trained on ANG activity patterns during face perception was able to successfully reconstruct an independent set of face images that were held in memory. Together, these findings provide compelling evidence that ANG forms complex, stimulus-specific representations that are reflected in activity patterns evoked during perception and remembering. Neuroimaging studies have consistently implicated lateral parietal cortex in episodic remembering, but the functional contributions of lateral parietal cortex to memory remain a topic of debate. Here, we used an innovative form of fMRI pattern analysis to test whether lateral parietal cortex actively represents the contents of memory. Using a large set of human face images, we first extracted latent face components (eigenfaces). We then used machine learning algorithms to predict face components from fMRI activity patterns and, ultimately, to reconstruct images of individual faces. We show that activity patterns in a subregion of lateral parietal cortex, the angular gyrus, supported successful reconstruction of perceived and remembered faces, confirming a role for this region in actively representing remembered content. Copyright © 2016 the authors 0270-6474/16/366069-14$15.00/0.
Sex differences in the neural bases of social appraisals.
Veroude, Kim; Jolles, Jelle; Croiset, Gerda; Krabbendam, Lydia
2014-04-01
Behavioral research has demonstrated an advantage for females compared with males in social information processing. However, little is known about sex-related differences in brain activation during understanding of self and others. In the current functional magnetic resonance imaging study, this was assessed in late adolescents (aged 18-19) and young adults (aged 23-25) when making appraisals of self and other as well as reflected self-appraisals. Across all groups and for all appraisal conditions, activation was observed in the medial prefrontal cortex, medial posterior parietal cortex, left and right dorsolateral prefrontal cortex and left posterior parietal cortex. Males activated the medial posterior parietal cortex and bilateral temporoparietal junction more than females. The precuneus showed stronger activation in males compared with females specifically during appraisals of others. No differences between late adolescents and young adults were found. These results indicate that sex differences exist in the neural bases of social understanding.
Increased contextual cue utilization with tDCS over the prefrontal cortex during a recognition task
Pergolizzi, Denise; Chua, Elizabeth F.
2016-01-01
The precise role of the prefrontal and posterior parietal cortices in recognition performance remains controversial, with questions about whether these regions contribute to recognition via the availability of mnemonic evidence or via decision biases and retrieval orientation. Here we used an explicit memory cueing paradigm, whereby external cues probabilistically predict upcoming memoranda as old or new, in our case with 75% validity, and these cues affect recognition decision biases in the direction of the cue. The present study applied bilateral transcranial direct current stimulation (tDCS) over prefrontal or posterior parietal cortex, or sham tDCS, to test the causal role of these regions in recognition accuracy or decision biasing. Participants who received tDCS over prefrontal cortex showed increased cue utilization compared to tDCS over posterior parietal cortex and sham tDCS, suggesting that the prefrontal cortex is involved in processes that contribute to decision biases in memory. PMID:27845032
Salavert, José; Gasol, Miquel; Vieta, Eduard; Cervantes, Ana; Trampal, Carlos; Gispert, Juan Domingo
2011-06-01
Several functional neuroimaging studies have demonstrated abnormalities in fronto-limbic pathways when comparing borderline personality disorder (BPD) patients with controls. The present study aimed to evaluate regional cerebral metabolism in euthymic BPD patients with similar measured impulsivity levels by means of 18F-FDG PET during resting state and to compare them against a control group. The present study evaluates regional cerebral metabolism in 8 euthymic BPD patients with 18F-FDG PET during resting state as compared to 8 controls with similar socio-geographic characteristics. BPD patients presented a marked hypo-metabolism in frontal lobe and showed hyper-metabolism in motor cortex (paracentral lobules and post-central cortex), medial and anterior cingulus, occipital lobe, temporal pole, left superior parietal gyrus and right superior frontal gyrus. No significant differences appeared in basal ganglia or thalamus. Results reveal a dysfunction in patients' frontolimbic network during rest and provide further evidence for the importance of these regions in relation to BPD symptomatology. Copyright © 2011 Elsevier B.V. All rights reserved.
Jaworska, Natalia; MacMaster, Frank P; Gaxiola, Ismael; Cortese, Filomeno; Goodyear, Bradley; Ramasubbu, Rajamannar
2014-01-01
Major depressive disorder (MDD) neural underpinnings may differ based on onset age and childhood trauma. We assessed cortical thickness in patients who differed in age of MDD onset and examined trauma history influence. Adults with MDD (N=36) and controls (HC; N=18) underwent magnetic resonance imaging. Twenty patients had MDD onset<24 years of age (pediatric onset) and 16 had onset>25 years of age (adult onset). The MDD group was also subdivided into those with (N=12) and without (N=19) physical and/or sexual abuse as assessed by the Childhood Trauma Questionnaire (CTQ). Cortical thickness was analyzed with FreeSurfer software. Thicker frontal pole and a tendency for thinner transverse temporal cortices existed in MDD. The former was driven by the pediatric onset group and abuse history (independently), particularly in the right frontal pole. Inverse correlations existed between CTQ scores and frontal pole cortex thickness. A similar inverse relation existed with left inferior and right superior parietal cortex thickness. The superior temporal cortex tended to be thinner in pediatric versus adult onset groups with childhood abuse. This preliminary work suggests neural differences between pediatric and adult MDD onset. Trauma history also contributes to cytoarchitectural modulation. Thickened frontal pole cortices as a compensatory mechanism in MDD warrant evaluation.
Low frequency rTMS over posterior parietal cortex impairs smooth pursuit eye tracking.
Hutton, Samuel B; Weekes, Brendan S
2007-11-01
The role of the posterior parietal cortex in smooth pursuit eye movements remains unclear. We used low frequency repetitive transcranial magnetic stimulation (rTMS) to study the cognitive and neural systems involved in the control of smooth pursuit eye movements. Eighteen participants were tested on two separate occasions. On each occasion we measured smooth pursuit eye tracking before and after 6 min of 1 Hz rTMS delivered at 90% of motor threshold. Low frequency rTMS over the posterior parietal cortex led to a significant reduction in smooth pursuit velocity gain, whereas rTMS over the motor cortex had no effect on gain. We conclude that low frequency offline rTMS is a potentially useful tool with which to explore the cortical systems involved in oculomotor control.
Li, Haijun; Li, Lan; Shao, Yi; Gong, Honghan; Zhang, Wei; Zeng, Xianjun; Ye, Chenglong; Nie, Si; Chen, Liting; Peng, Dechang
2016-01-01
Obstructive sleep apnea (OSA) has been associated with changes in brain structure and regional function in certain brain areas. However, the functional features of network organization in the whole brain remain largely uncertain. The purpose of this study was to identify the OSA-related spatial centrality distribution of the whole brain functional network and to investigate the potential altered intrinsic functional hubs. Forty male patients with newly confirmed severe OSA on polysomnography, and well-matched good sleepers, participated in this study. All participants underwent a resting-state functional MRI scan and clinical and cognitive evaluation. Voxel-wise degree centrality (DC) was measured across the whole brain, and group difference in DC was compared. The relationship between the abnormal DC value and clinical variables was assessed using a linear correlation analysis. Remarkably similar spatial distributions of the functional hubs (high DC) were found in both groups. However, OSA patients exhibited a pattern of significantly reduced regional DC in the left middle occipital gyrus, posterior cingulate cortex, left superior frontal gyrus, and bilateral inferior parietal lobule, and DC was increased in the right orbital frontal cortex, bilateral cerebellum posterior lobes, and bilateral lentiform nucleus, including the putamen, extending to the hippocampus, and the inferior temporal gyrus, which overlapped with the functional hubs. Furthermore, a linear correlation analysis revealed that the DC value in the posterior cingulate cortex and left superior frontal gyrus were positively correlated with Montreal cognitive assessment scores, The DC value in the left middle occipital gyrus and bilateral inferior parietal lobule were negatively correlated with apnea-hypopnea index and arousal index in OSA patients. Our findings suggest that OSA patients exhibited specific abnormal intrinsic functional hubs including relatively reduced and increased DC. This expands our understanding of the functional characteristics of OSA, which may provide new insights into understanding the dysfunction and pathophysiology of OSA patients.
Multiple parietal-frontal pathways mediate grasping in macaque monkeys
Gharbawie, Omar A.; Stepniewska, Iwona; Qi, Huixin; Kaas, Jon H.
2011-01-01
The nodes of a parietal-frontal pathway that mediates grasping in primates are in anterior intraparietal area (AIP) and ventral premotor cortex (PMv). Nevertheless, multiple somatosensory and motor representations of the hand, respectively in parietal and frontal cortex, suggest that additional pathways remain unrealized. We explored this possibility in macaque monkeys by injecting retrograde tracers into grasp zones identified in M1, PMv, and area 2 with long train electrical stimulation. The M1 grasp zone was densely connected with other frontal cortex motor regions. The remainder of the connections originated from somatosensory areas 3a and S2/PV, and from the medial bank and fundus of the intraparietal sulcus (IPS). The PMv grasp zone was also densely connected with frontal cortex motor regions, albeit to a lesser extent than the M1 grasp zone. The remainder of the connections originated from areas S2/PV and aspects of the inferior parietal lobe such as PF, PFG, AIP, and the tip of the IPS. The area 2 grasp zone was densely connected with the hand representations of somatosensory areas 3b, 1, and S2/PV. The remainder of the connections was with areas 3a and 5 and the medial bank and fundus of the IPS. Connections with frontal cortex were relatively weak and concentrated in caudal M1. Thus, the three grasp zones may be nodes of parallel parietal-frontal pathways. Differential points of origin and termination of each pathway suggest varying functional specializations. Direct and indirect connections between those parietal-frontal pathways likely coordinate their respective functions into an accurate grasp. PMID:21832196
Thakral, Preston P.; Benoit, Roland G.; Schacter, Daniel L.
2017-01-01
Neuroimaging data indicate that episodic memory (i.e., remembering specific past experiences) and episodic simulation (i.e., imagining specific future experiences) are associated with enhanced activity in a common set of neural regions, often referred to as the core network. This network comprises the hippocampus, parahippocampal cortex, lateral and medial parietal cortex, lateral temporal cortex, and medial prefrontal cortex. Evidence for a core network has been taken as support for the idea that episodic memory and episodic simulation are supported by common processes. Much remains to be learned about how specific core network regions contribute to specific aspects of episodic simulation. Prior neuroimaging studies of episodic memory indicate that certain regions within the core network are differentially sensitive to the amount of information recollected (e.g., the left lateral parietal cortex). In addition, certain core network regions dissociate as a function of their timecourse of engagement during episodic memory (e.g., transient activity in the posterior hippocampus and sustained activity in the left lateral parietal cortex). In the current study, we assessed whether similar dissociations could be observed during episodic simulation. We found that the left lateral parietal cortex modulates as a function of the amount of simulated details. Of particular interest, while the hippocampus was insensitive to the amount of simulated details, we observed a temporal dissociation within the hippocampus: transient activity occurred in relatively posterior portions of the hippocampus and sustained activity occurred in anterior portions. Because the posterior hippocampal and lateral parietal findings parallel those observed previously during episodic memory, the present results add to the evidence that episodic memory and episodic simulation are supported by common processes. Critically, the present study also provides evidence that regions within the core network support dissociable processes. PMID:28324695
Brown, Thackery I; Rissman, Jesse; Chow, Tiffany E; Uncapher, Melina R; Wagner, Anthony D
2018-04-18
Autobiographical remembering can depend on two forms of memory: episodic (event) memory and autobiographical semantic memory (remembering personally relevant semantic knowledge, independent of recalling a specific experience). There is debate about the degree to which the neural signals that support episodic recollection relate to or build upon autobiographical semantic remembering. Pooling data from two fMRI studies of memory for real-world personal events, we investigated whether medial temporal lobe (MTL) and parietal subregions contribute to autobiographical episodic and semantic remembering. During scanning, participants made memory judgments about photograph sequences depicting past events from their life or from others' lives, and indicated whether memory was based on episodic or semantic knowledge. Results revealed several distinct functional patterns: activity in most MTL subregions was selectively associated with autobiographical episodic memory; the hippocampal tail, superior parietal lobule, and intraparietal sulcus were similarly engaged when memory was based on retrieval of an autobiographical episode or autobiographical semantic knowledge; and angular gyrus demonstrated a graded pattern, with activity declining from autobiographical recollection to autobiographical semantic remembering to correct rejections of novel events. Collectively, our data offer insights into MTL and parietal cortex functional organization, and elucidate circuitry that supports different forms of real-world autobiographical memory.
Neural correlates of prospective memory impairments in schizophrenia.
Chen, Xing-jie; Wang, Ya; Wang, Yi; Yang, Tian-xiao; Zou, Lai-quan; Huang, Jia; Li, Feng-hua; Chen, An-tao; Wang, Wei-hong; Zheng, Han-feng; Cheung, Eric F C; Shum, David H K; Chan, Raymond C K
2016-02-01
Prospective memory (PM) refers to the ability to remember to carry out intended actions after a delay. PM impairments are common in schizophrenia patients and are thought to be related to their prefrontal cortex dysfunction; however, this has not yet been examined directly in the research literature. The current study aimed to examine abnormalities in brain activation during PM task performance in schizophrenia patients. Twenty-two schizophrenia patients and 25 matched healthy controls were scanned in a 3-T MRI machine while performing a PM task. The results showed that compared to the healthy controls, schizophrenia patients performed significantly worse on the PM task. Furthermore, they exhibited decreased brain activation in frontal cortex including the right superior frontal gyri (Brodmann area 10), and other related brain areas like the anterior cingulate gyrus, parietal and temporal cortex, including precuneus, and some subcortext, including parahippocampal gyrus and putamen. These findings confirm the involvement and importance of the prefrontal cortex in PM and show evidence of hypofrontality in schizophrenia patients while performing a PM task. PsycINFO Database Record (c) 2016 APA, all rights reserved.
Lin, Yuan-Pin; Duann, Jeng-Ren; Feng, Wenfeng; Chen, Jyh-Horng; Jung, Tzyy-Ping
2014-02-28
Music conveys emotion by manipulating musical structures, particularly musical mode- and tempo-impact. The neural correlates of musical mode and tempo perception revealed by electroencephalography (EEG) have not been adequately addressed in the literature. This study used independent component analysis (ICA) to systematically assess spatio-spectral EEG dynamics associated with the changes of musical mode and tempo. Empirical results showed that music with major mode augmented delta-band activity over the right sensorimotor cortex, suppressed theta activity over the superior parietal cortex, and moderately suppressed beta activity over the medial frontal cortex, compared to minor-mode music, whereas fast-tempo music engaged significant alpha suppression over the right sensorimotor cortex. The resultant EEG brain sources were comparable with previous studies obtained by other neuroimaging modalities, such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). In conjunction with advanced dry and mobile EEG technology, the EEG results might facilitate the translation from laboratory-oriented research to real-life applications for music therapy, training and entertainment in naturalistic environments.
Rosen, Maya L; Stern, Chantal E; Michalka, Samantha W; Devaney, Kathryn J; Somers, David C
2015-08-12
Human parietal cortex plays a central role in encoding visuospatial information and multiple visual maps exist within the intraparietal sulcus (IPS), with each hemisphere symmetrically representing contralateral visual space. Two forms of hemispheric asymmetries have been identified in parietal cortex ventrolateral to visuotopic IPS. Key attentional processes are localized to right lateral parietal cortex in the temporoparietal junction and long-term memory (LTM) retrieval processes are localized to the left lateral parietal cortex in the angular gyrus. Here, using fMRI, we investigate how spatial representations of visuotopic IPS are influenced by stimulus-guided visuospatial attention and by LTM-guided visuospatial attention. We replicate prior findings that a hemispheric asymmetry emerges under stimulus-guided attention: in the right hemisphere (RH), visual maps IPS0, IPS1, and IPS2 code attentional targets across the visual field; in the left hemisphere (LH), IPS0-2 codes primarily contralateral targets. We report the novel finding that, under LTM-guided attention, both RH and LH IPS0-2 exhibit bilateral responses and hemispheric symmetry re-emerges. Therefore, we demonstrate that both hemispheres of IPS0-2 are independently capable of dynamically changing spatial coding properties as attentional task demands change. These findings have important implications for understanding visuospatial and memory-retrieval deficits in patients with parietal lobe damage. The human parietal lobe contains multiple maps of the external world that spatially guide perception, action, and cognition. Maps in each cerebral hemisphere code information from the opposite side of space, not from the same side, and the two hemispheres are symmetric. Paradoxically, damage to specific parietal regions that lack spatial maps can cause patients to ignore half of space (hemispatial neglect syndrome), but only for right (not left) hemisphere damage. Conversely, the left parietal cortex has been linked to retrieval of vivid memories regardless of space. Here, we investigate possible underlying mechanisms in healthy individuals. We demonstrate two forms of dynamic changes in parietal spatial representations: an asymmetric one for stimulus-guided attention and a symmetric one for long-term memory-guided attention. Copyright © 2015 the authors 0270-6474/15/3511358-06$15.00/0.
Neural signatures of lexical tone reading.
Kwok, Veronica P Y; Wang, Tianfu; Chen, Siping; Yakpo, Kofi; Zhu, Linlin; Fox, Peter T; Tan, Li Hai
2015-01-01
Research on how lexical tone is neuroanatomically represented in the human brain is central to our understanding of cortical regions subserving language. Past studies have exclusively focused on tone perception of the spoken language, and little is known as to the lexical tone processing in reading visual words and its associated brain mechanisms. In this study, we performed two experiments to identify neural substrates in Chinese tone reading. First, we used a tone judgment paradigm to investigate tone processing of visually presented Chinese characters. We found that, relative to baseline, tone perception of printed Chinese characters were mediated by strong brain activation in bilateral frontal regions, left inferior parietal lobule, left posterior middle/medial temporal gyrus, left inferior temporal region, bilateral visual systems, and cerebellum. Surprisingly, no activation was found in superior temporal regions, brain sites well known for speech tone processing. In activation likelihood estimation (ALE) meta-analysis to combine results of relevant published studies, we attempted to elucidate whether the left temporal cortex activities identified in Experiment one is consistent with those found in previous studies of auditory lexical tone perception. ALE results showed that only the left superior temporal gyrus and putamen were critical in auditory lexical tone processing. These findings suggest that activation in the superior temporal cortex associated with lexical tone perception is modality-dependent. © 2014 Wiley Periodicals, Inc.
Localization of cortical areas activated by thinking.
Roland, P E; Friberg, L
1985-05-01
These experiments were undertaken to demonstrate that pure mental activity, thinking, increases the cerebral blood flow and that different types of thinking increase the regional cerebral blood flow (rCBF) in different cortical areas. As a first approach, thinking was defined as brain work in the form of operations on internal information, done by an awake subject. The rCBF was measured in 254 cortical regions in 11 subjects with the intracarotid 133Xe injection technique. In normal man, changes in the regional cortical metabolic rate of O2 leads to proportional changes in rCBF. One control study was taken with the subjects at rest. Then the rCBF was measured during three different simple algorithm tasks, each consisting of retrieval of a specific memory followed by a simple operation on the retrieved information. Once started, the information processing went on in the brain without any communication with the outside world. In 50-3 thinking, the subjects started with 50 and then, in their minds only, continuously subtracted 3 from the result. In jingle thinking the subjects internally jumped every second word in a nine-word circular jingle. In route-finding thinking the subjects imagined that they started at their front door and then walked alternatively to the left or the right each time they reached a corner. The rCBF increased only in homotypical cortical areas during thinking. The areas in the superior prefrontal cortex increased their rCBF equivalently during the three types of thinking. In the remaining parts of the prefrontal cortex there were multifocal increases of rCBF. The localizations and intensities of these rCBF increases depended on the type of internal operation occurring. The rCBF increased bilaterally in the angular cortex during 50-3 thinking. The rCBF increased in the right midtemporal cortex exclusively during jingle thinking. The intermediate and remote visual association areas, the superior occipital, posterior inferior temporal, and posterior superior parietal cortex, increased their rCBF exclusively during route-finding thinking. We observed no decreases in rCBF. All rCBF increases extended over a few square centimeters of the cortex. The activation of the superior prefrontal cortex was attributed to the organization of thinking. The activation of the angular cortex in 50-3 thinking was attributed to the retrieval of the numerical memory and memory for subtractions. The activation of the right midtemporal cortex was attributed to the retrieval of the nonverbal auditory memory.(ABSTRACT TRUNCATED AT 400 WORDS)
The Neural Basis of Typewriting: A Functional MRI Study.
Higashiyama, Yuichi; Takeda, Katsuhiko; Someya, Yoshiaki; Kuroiwa, Yoshiyuki; Tanaka, Fumiaki
2015-01-01
To investigate the neural substrate of typewriting Japanese words and to detect the difference between the neural substrate of typewriting and handwriting, we conducted a functional magnetic resonance imaging (fMRI) study in 16 healthy volunteers. All subjects were skillful touch typists and performed five tasks: a typing task, a writing task, a reading task, and two control tasks. Three brain regions were activated during both the typing and the writing tasks: the left superior parietal lobule, the left supramarginal gyrus, and the left premotor cortex close to Exner's area. Although typing and writing involved common brain regions, direct comparison between the typing and the writing task revealed greater left posteromedial intraparietal cortex activation in the typing task. In addition, activity in the left premotor cortex was more rostral in the typing task than in the writing task. These findings suggest that, although the brain circuits involved in Japanese typewriting are almost the same as those involved in handwriting, there are brain regions that are specific for typewriting.
McCrea, Simon M
2007-06-18
Naming and localization of individual body part words to a high-resolution line drawing of a full human figure was tested in a mixed-sex sample of nine right handed subjects. Activation within the superior medial left parietal cortex and bilateral dorsolateral cortex was consistent with involvement of the body schema which is a dynamic postural self-representation coding and combining sensory afference and motor efference inputs/outputs that is automatic and nonconscious. Additional activation of the left rostral occipitotemporal cortex was consistent with involvement of the neural correlates of the verbalizable body structural description that encodes semantic and categorical representations to animate objects such as full human figures. The results point to a highly distributed cortical representation for the encoding and manipulation of body part information and highlight the need for the incorporation of more ecologically valid measures of body schema coding in future functional neuroimaging studies.
The Neural Basis of Typewriting: A Functional MRI Study
Higashiyama, Yuichi; Takeda, Katsuhiko; Someya, Yoshiaki; Kuroiwa, Yoshiyuki; Tanaka, Fumiaki
2015-01-01
To investigate the neural substrate of typewriting Japanese words and to detect the difference between the neural substrate of typewriting and handwriting, we conducted a functional magnetic resonance imaging (fMRI) study in 16 healthy volunteers. All subjects were skillful touch typists and performed five tasks: a typing task, a writing task, a reading task, and two control tasks. Three brain regions were activated during both the typing and the writing tasks: the left superior parietal lobule, the left supramarginal gyrus, and the left premotor cortex close to Exner’s area. Although typing and writing involved common brain regions, direct comparison between the typing and the writing task revealed greater left posteromedial intraparietal cortex activation in the typing task. In addition, activity in the left premotor cortex was more rostral in the typing task than in the writing task. These findings suggest that, although the brain circuits involved in Japanese typewriting are almost the same as those involved in handwriting, there are brain regions that are specific for typewriting. PMID:26218431
Cho, Yong Won; Song, Hui-Jin; Lee, Jae Jun; Lee, Joo Hwa; Lee, Hui Joong; Yi, Sang Doe; Chang, Hyuk Won; Berl, Madison M; Gaillard, William D; Chang, Yongmin
2012-03-01
Older adults perform much like younger adults on language. This similar level of performance, however, may come about through different underlying brain processes. In the present study, we evaluated age-related differences in the brain areas outside the typical language areas among adults using a category decision task. Our results showed that similar activation patterns were found in classical language processing areas across the three age groups although regional lateralization indices in Broca's and Wernicke's areas decreased with age. The greatest differences, however, among the three groups were found primarily in the brain areas not associated with core language functioning including the hippocampus, middle frontal gyrus, ventromedial frontal cortex, medial superior parietal cortex and posterior cingulate cortex. Therefore, the non-classical language areas may exhibit an age-related difference between three age groups while the subjects show a similar activation pattern in the core, primary language processing during a semantic decision task. Copyright © 2012 Elsevier Inc. All rights reserved.
Weisberg, Jill; McCullough, Stephen; Emmorey, Karen
2018-01-01
Code-blends (simultaneous words and signs) are a unique characteristic of bimodal bilingual communication. Using fMRI, we investigated code-blend comprehension in hearing native ASL-English bilinguals who made a semantic decision (edible?) about signs, audiovisual words, and semantically equivalent code-blends. English and ASL recruited a similar fronto-temporal network with expected modality differences: stronger activation for English in auditory regions of bilateral superior temporal cortex, and stronger activation for ASL in bilateral occipitotemporal visual regions and left parietal cortex. Code-blend comprehension elicited activity in a combination of these regions, and no cognitive control regions were additionally recruited. Furthermore, code-blends elicited reduced activation relative to ASL presented alone in bilateral prefrontal and visual extrastriate cortices, and relative to English alone in auditory association cortex. Consistent with behavioral facilitation observed during semantic decisions, the findings suggest that redundant semantic content induces more efficient neural processing in language and sensory regions during bimodal language integration. PMID:26177161
The Biology of Linguistic Expression Impacts Neural Correlates for Spatial Language
Emmorey, Karen; McCullough, Stephen; Mehta, Sonya; Ponto, Laura L. B.; Grabowski, Thomas J.
2013-01-01
Biological differences between signed and spoken languages may be most evident in the expression of spatial information. PET was used to investigate the neural substrates supporting the production of spatial language in American Sign Language as expressed by classifier constructions, in which handshape indicates object type and the location/motion of the hand iconically depicts the location/motion of a referent object. Deaf native signers performed a picture description task in which they overtly named objects or produced classifier constructions that varied in location, motion, or object type. In contrast to the expression of location and motion, the production of both lexical signs and object type classifier morphemes engaged left inferior frontal cortex and left inferior temporal cortex, supporting the hypothesis that unlike the location and motion components of a classifier construction, classifier handshapes are categorical morphemes that are retrieved via left hemisphere language regions. In addition, lexical signs engaged the anterior temporal lobes to a greater extent than classifier constructions, which we suggest reflects increased semantic processing required to name individual objects compared with simply indicating the type of object. Both location and motion classifier constructions engaged bilateral superior parietal cortex, with some evidence that the expression of static locations differentially engaged the left intraparietal sulcus. We argue that bilateral parietal activation reflects the biological underpinnings of sign language. To express spatial information, signers must transform visual–spatial representations into a body-centered reference frame and reach toward target locations within signing space. PMID:23249348
Oh, Hwamee; Leung, Hoi-Chung
2010-02-01
In this fMRI study, we investigated prefrontal cortex (PFC) and visual association regions during selective information processing. We recorded behavioral responses and neural activity during a delayed recognition task with a cue presented during the delay period. A specific cue ("Face" or "Scene") was used to indicate which one of the two initially viewed pictures of a face and a scene would be tested at the end of a trial, whereas a nonspecific cue ("Both") was used as control. As expected, the specific cues facilitated behavioral performance (faster response times) compared to the nonspecific cue. A postexperiment memory test showed that the items cued to remember were better recognized than those not cued. The fMRI results showed largely overlapped activations across the three cue conditions in dorsolateral and ventrolateral PFC, dorsomedial PFC, posterior parietal cortex, ventral occipito-temporal cortex, dorsal striatum, and pulvinar nucleus. Among those regions, dorsomedial PFC and inferior occipital gyrus remained active during the entire postcue delay period. Differential activity was mainly found in the association cortices. In particular, the parahippocampal area and posterior superior parietal lobe showed significantly enhanced activity during the postcue period of the scene condition relative to the Face and Both conditions. No regions showed differentially greater responses to the face cue. Our findings suggest that a better representation of visual information in working memory may depend on enhancing the more specialized visual association areas or their interaction with PFC.
Event-related fMRI studies of false memory: An Activation Likelihood Estimation meta-analysis.
Kurkela, Kyle A; Dennis, Nancy A
2016-01-29
Over the last two decades, a wealth of research in the domain of episodic memory has focused on understanding the neural correlates mediating false memories, or memories for events that never happened. While several recent qualitative reviews have attempted to synthesize this literature, methodological differences amongst the empirical studies and a focus on only a sub-set of the findings has limited broader conclusions regarding the neural mechanisms underlying false memories. The current study performed a voxel-wise quantitative meta-analysis using activation likelihood estimation to investigate commonalities within the functional magnetic resonance imaging (fMRI) literature studying false memory. The results were broken down by memory phase (encoding, retrieval), as well as sub-analyses looking at differences in baseline (hit, correct rejection), memoranda (verbal, semantic), and experimental paradigm (e.g., semantic relatedness and perceptual relatedness) within retrieval. Concordance maps identified significant overlap across studies for each analysis. Several regions were identified in the general false retrieval analysis as well as multiple sub-analyses, indicating their ubiquitous, yet critical role in false retrieval (medial superior frontal gyrus, left precentral gyrus, left inferior parietal cortex). Additionally, several regions showed baseline- and paradigm-specific effects (hit/perceptual relatedness: inferior and middle occipital gyrus; CRs: bilateral inferior parietal cortex, precuneus, left caudate). With respect to encoding, analyses showed common activity in the left middle temporal gyrus and anterior cingulate cortex. No analysis identified a common cluster of activation in the medial temporal lobe. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dent, Kevin; Lestou, Vaia; Humphreys, Glyn W
2010-02-01
It has been argued that area hMT+/V5 in humans acts as a motion filter, enabling targets defined by a conjunction of motion and form to be efficiently selected. We present data indicating that (a) damage to parietal cortex leads to a selective problem in processing motion-form conjunctions, and (b) that the presence of a structurally and functional intact hMT+/V5 is not sufficient for efficient search for motion-form conjunctions. We suggest that, in addition to motion-processing areas (e.g., hMT+/V5), the posterior parietal cortex is necessary for efficient search with motion-form conjunctions, so that damage to either brain region may bring about deficits in search. We discuss the results in terms of the involvement of the posterior parietal cortex in the top-down guidance of search or in the binding of motion and form information.
Seidel, Oliver; Carius, Daniel; Kenville, Rouven; Ragert, Patrick
2017-09-01
Studies suggested that motor expertise is associated with functional and structural brain alterations, which positively affect sensorimotor performance and learning capabilities. The purpose of the present study was to unravel differences in motor skill learning and associated functional neuroplasticity between endurance athletes (EA) and nonathletes (NA). For this purpose, participants had to perform a multimodal balance task (MBT) training on 2 sessions, which were separated by 1 wk. Before and after MBT training, a static balance task (SBT) had to be performed. MBT-induced functional neuroplasticity and neuromuscular alterations were assessed by means of functional near-infrared spectroscopy (fNIRS) and electromyography (EMG) during SBT performance. We hypothesized that EA would showed superior initial SBT performance and stronger MBT-induced improvements in SBT learning rates compared with NA. On a cortical level, we hypothesized that MBT training would lead to differential learning-dependent functional changes in motor-related brain regions [such as primary motor cortex (M1)] during SBT performance. In fact, EA showed superior initial SBT performance, whereas learning rates did not differ between groups. On a cortical level, fNIRS recordings (time × group interaction) revealed a stronger MBT-induced decrease in left M1 and inferior parietal lobe (IPL) for deoxygenated hemoglobin in EA. Even more interesting, learning rates were correlated with fNIRS changes in right M1/IPL. On the basis of these findings, we provide novel evidence for superior MBT training-induced functional neuroplasticity in highly trained athletes. Future studies should investigate these effects in different sports disciplines to strengthen previous work on experience-dependent neuroplasticity. NEW & NOTEWORTHY Motor expertise is associated with functional/structural brain plasticity. How such neuroplastic reorganization translates into altered motor learning processes remains elusive. We investigated endurance athletes (EA) and nonathletes (NA) in a multimodal balance task (MBT). EA showed superior static balance performance (SBT), whereas MBT-induced SBT improvements did not differ between groups. Functional near-infrared spectroscopy recordings revealed a differential MBT training-induced decrease of deoxygenated hemoglobin in left primary motor cortex and inferior parietal lobe between groups. Copyright © 2017 the American Physiological Society.
Role of Right Posterior Parietal Cortex in Maintaining Attention to Spatial Locations over Time
ERIC Educational Resources Information Center
Malhotra, Paresh; Coulthard, Elizabeth J.; Husain, Masud
2009-01-01
Recent models of human posterior parietal cortex (PPC) have variously emphasized its role in spatial perception, visuomotor control or directing attention. However, neuroimaging and lesion studies also suggest that the right PPC might play a special role in maintaining an alert state. Previously, assessments of right-hemisphere patients with…
The Role of the Right Posterior Parietal Cortex in Temporal Order Judgment
ERIC Educational Resources Information Center
Woo, Sung-Ho; Kim, Ki-Hyun; Lee, Kyoung-Min
2009-01-01
Perceived order of two consecutive stimuli may not correspond to the order of their physical onsets. Such a disagreement presumably results from a difference in the speed of stimulus processing toward central decision mechanisms. Since previous evidence suggests that the right posterior parietal cortex (PPC) plays a role in modulating the…
Kubanek, Jan; Snyder, Lawrence H.
2017-01-01
Abstract Behavior is guided by previous experience. Good, positive outcomes drive a repetition of a previous behavior or choice, whereas poor or bad outcomes lead to an avoidance. How these basic drives are implemented by the brain has been of primary interest to psychology and neuroscience. We engaged animals in a choice task in which the size of a reward outcome strongly governed the animals' subsequent decision whether to repeat or switch the previous choice. We recorded the discharge activity of neurons implicated in reward-based choice in 2 regions of parietal cortex. We found that the tendency to retain previous choice following a large (small) reward was paralleled by a marked decrease (increase) in the activity of parietal neurons. This neural effect is independent of, and of sign opposite to, value-based modulations reported in parietal cortex previously. This effect shares the same basic properties with signals previously reported in the limbic system that detect the size of the recently obtained reward to mediate proper repeat-switch decisions. We conclude that the size of the obtained reward is a decision variable that guides the decision between retaining a choice or switching, and neurons in parietal cortex strongly respond to this novel decision variable. PMID:26491065
The parietal cortex in sensemaking: the dissociation of multiple types of spatial information.
Sun, Yanlong; Wang, Hongbin
2013-01-01
According to the data-frame theory, sensemaking is a macrocognitive process in which people try to make sense of or explain their observations by processing a number of explanatory structures called frames until the observations and frames become congruent. During the sensemaking process, the parietal cortex has been implicated in various cognitive tasks for the functions related to spatial and temporal information processing, mathematical thinking, and spatial attention. In particular, the parietal cortex plays important roles by extracting multiple representations of magnitudes at the early stages of perceptual analysis. By a series of neural network simulations, we demonstrate that the dissociation of different types of spatial information can start early with a rather similar structure (i.e., sensitivity on a common metric), but accurate representations require specific goal-directed top-down controls due to the interference in selective attention. Our results suggest that the roles of the parietal cortex rely on the hierarchical organization of multiple spatial representations and their interactions. The dissociation and interference between different types of spatial information are essentially the result of the competition at different levels of abstraction.
The Parietal Cortex in Sensemaking: The Dissociation of Multiple Types of Spatial Information
Sun, Yanlong; Wang, Hongbin
2013-01-01
According to the data-frame theory, sensemaking is a macrocognitive process in which people try to make sense of or explain their observations by processing a number of explanatory structures called frames until the observations and frames become congruent. During the sensemaking process, the parietal cortex has been implicated in various cognitive tasks for the functions related to spatial and temporal information processing, mathematical thinking, and spatial attention. In particular, the parietal cortex plays important roles by extracting multiple representations of magnitudes at the early stages of perceptual analysis. By a series of neural network simulations, we demonstrate that the dissociation of different types of spatial information can start early with a rather similar structure (i.e., sensitivity on a common metric), but accurate representations require specific goal-directed top-down controls due to the interference in selective attention. Our results suggest that the roles of the parietal cortex rely on the hierarchical organization of multiple spatial representations and their interactions. The dissociation and interference between different types of spatial information are essentially the result of the competition at different levels of abstraction. PMID:23710165
Relevance of Spectral Cues for Auditory Spatial Processing in the Occipital Cortex of the Blind
Voss, Patrice; Lepore, Franco; Gougoux, Frédéric; Zatorre, Robert J.
2011-01-01
We have previously shown that some blind individuals can localize sounds more accurately than their sighted counterparts when one ear is obstructed, and that this ability is strongly associated with occipital cortex activity. Given that spectral cues are important for monaurally localizing sounds when one ear is obstructed, and that blind individuals are more sensitive to small spectral differences, we hypothesized that enhanced use of spectral cues via occipital cortex mechanisms could explain the better performance of blind individuals in monaural localization. Using positron-emission tomography (PET), we scanned blind and sighted persons as they discriminated between sounds originating from a single spatial position, but with different spectral profiles that simulated different spatial positions based on head-related transfer functions. We show here that a sub-group of early blind individuals showing superior monaural sound localization abilities performed significantly better than any other group on this spectral discrimination task. For all groups, performance was best for stimuli simulating peripheral positions, consistent with the notion that spectral cues are more helpful for discriminating peripheral sources. PET results showed that all blind groups showed cerebral blood flow increases in the occipital cortex; but this was also the case in the sighted group. A voxel-wise covariation analysis showed that more occipital recruitment was associated with better performance across all blind subjects but not the sighted. An inter-regional covariation analysis showed that the occipital activity in the blind covaried with that of several frontal and parietal regions known for their role in auditory spatial processing. Overall, these results support the notion that the superior ability of a sub-group of early-blind individuals to localize sounds is mediated by their superior ability to use spectral cues, and that this ability is subserved by cortical processing in the occipital cortex. PMID:21716600
Functional connectivity of parietal cortex during temporal selective attention.
Tyler, Sarah C; Dasgupta, Samhita; Agosta, Sara; Battelli, Lorella; Grossman, Emily D
2015-04-01
Perception of natural experiences requires allocation of attention towards features, objects, and events that are moving and changing over time. This allocation of attention is controlled by large-scale brain networks that, when damaged, cause widespread cognitive deficits. In particular, damage to ventral parietal cortex (right lateralized TPJ, STS, supramarginal and angular gyri) is associated with failures to selectively attend to and isolate features embedded within rapidly changing visual sequences (Battelli, Pascual-Leone, & Cavanagh, 2007; Husain, Shapiro, Martin, & Kennard, 1997). In this study, we used fMRI to investigate the neural activity and functional connectivity of intact parietal cortex while typical subjects judged the relative onsets and offsets of rapidly flickering tokens (a phase discrimination task in which right parietal patients are impaired). We found two regions in parietal cortex correlated with task performance: a bilateral posterior TPJ (pTPJ) and an anterior right-lateralized TPJ (R aTPJ). Both regions were deactivated when subjects engaged in the task but showed different patterns of functional connectivity. The bilateral pTPJ was strongly connected to nodes within the default mode network (DMN) and the R aTPJ was connected to the attention network. Accurate phase discriminations were associated with increased functional correlations between sensory cortex (hMT+) and the bilateral pTPJ, whereas accuracy on a control task was associated with yoked activity in the hMT+ and the R aTPJ. We conclude that temporal selective attention is particularly sensitive for revealing information pathways between sensory and core cognitive control networks that, when damaged, can lead to nonspatial attention impairments in right parietal stroke patients. Copyright © 2015 Elsevier Ltd. All rights reserved.
Piñango, Maria M.; Finn, Emily; Lacadie, Cheryl; Constable, R. Todd
2016-01-01
In the sentence “The captain who the sailor greeted is tall,” the connection between the relative pronoun and the object position of greeted represents a long-distance dependency (LDD), necessary for the interpretation of “the captain” as the individual being greeted. Whereas the lesion-based record shows preferential involvement of only the left inferior frontal (LIF) cortex, associated with Broca's aphasia, during real-time comprehension of LDDs, the neuroimaging record shows additional involvement of the left posterior superior temporal (LPST) and lower parietal cortices, which are associated with Wernicke's aphasia. We test the hypothesis that this localization incongruence emerges from an interaction of memory and linguistic constraints involved in the real-time implementation of these dependencies and which had not been previously isolated. Capitalizing on a long-standing psycholinguistic understanding of LDDs as the workings of an active filler, we distinguish two linguistically defined mechanisms: GAP-search, triggered by the retrieval of the relative pronoun, and GAP-completion, triggered by the retrieval of the embedded verb. Each mechanism is hypothesized to have distinct memory demands and given their distinct linguistic import, potentially distinct brain correlates. Using fMRI, we isolate the two mechanisms by analyzing their relevant sentential segments as separate events. We manipulate LDD-presence/absence and GAP-search type (direct/indirect) reflecting the absence/presence of intervening islands. Results show a direct GAP-search—LIF cortex correlation that crucially excludes the LPST cortex. Notably, indirect GAP-search recruitment is confined to supplementary-motor and lower-parietal cortex indicating that GAP presence alone is not enough to engage predictive functions in the LIF cortex. Finally, GAP-completion shows recruitment implicating the dorsal pathway including: the supplementary motor cortex, left supramarginal cortex, precuneus, and anterior/dorsal cingulate. Altogether, the results are consistent with previous findings connecting GAP-search, as we define it, to the LIF cortex. They are not consistent with an involvement of the LPST cortex in any of the two mechanisms, and therefore support the view that the LPST cortex is not crucial to LDD implementation. Finally, results support neurocognitive architectures that involve the dorsal pathway in LDD resolution and that distinguish the memory commitments of the LIF cortex as sensitive to specific language-dependent constraints beyond phrase-structure building considerations. PMID:27746748
Piñango, Maria M; Finn, Emily; Lacadie, Cheryl; Constable, R Todd
2016-01-01
In the sentence "The captain who the sailor greeted is tall," the connection between the relative pronoun and the object position of greeted represents a long-distance dependency (LDD), necessary for the interpretation of "the captain" as the individual being greeted. Whereas the lesion-based record shows preferential involvement of only the left inferior frontal (LIF) cortex, associated with Broca's aphasia, during real-time comprehension of LDDs, the neuroimaging record shows additional involvement of the left posterior superior temporal (LPST) and lower parietal cortices, which are associated with Wernicke's aphasia. We test the hypothesis that this localization incongruence emerges from an interaction of memory and linguistic constraints involved in the real-time implementation of these dependencies and which had not been previously isolated. Capitalizing on a long-standing psycholinguistic understanding of LDDs as the workings of an active filler, we distinguish two linguistically defined mechanisms: GAP-search , triggered by the retrieval of the relative pronoun, and GAP-completion , triggered by the retrieval of the embedded verb. Each mechanism is hypothesized to have distinct memory demands and given their distinct linguistic import, potentially distinct brain correlates. Using fMRI, we isolate the two mechanisms by analyzing their relevant sentential segments as separate events. We manipulate LDD-presence/absence and GAP-search type (direct/indirect) reflecting the absence/presence of intervening islands. Results show a direct GAP-search -LIF cortex correlation that crucially excludes the LPST cortex. Notably, indirect GAP-search recruitment is confined to supplementary-motor and lower-parietal cortex indicating that GAP presence alone is not enough to engage predictive functions in the LIF cortex. Finally, GAP-completion shows recruitment implicating the dorsal pathway including: the supplementary motor cortex, left supramarginal cortex, precuneus, and anterior/dorsal cingulate. Altogether, the results are consistent with previous findings connecting GAP-search , as we define it, to the LIF cortex. They are not consistent with an involvement of the LPST cortex in any of the two mechanisms, and therefore support the view that the LPST cortex is not crucial to LDD implementation. Finally, results support neurocognitive architectures that involve the dorsal pathway in LDD resolution and that distinguish the memory commitments of the LIF cortex as sensitive to specific language-dependent constraints beyond phrase-structure building considerations.
Xenomelia: a new right parietal lobe syndrome.
McGeoch, Paul D; Brang, David; Song, Tao; Lee, Roland R; Huang, Mingxiong; Ramachandran, V S
2011-12-01
Damage to the right parietal lobe has long been associated with various disorders of body image. The authors have recently suggested that an unusual behavioural condition in which otherwise rational individuals desire the amputation of a healthy limb might also arise from right parietal dysfunction. Four subjects who desired the amputation of healthy legs (two right, one left and one, at first, bilateral and then left only) were recruited and underwent magnetoencephalography (MEG) scans during tactile stimulation of sites above and below the desired amputation line. Regions of interest (ROIs) in each hemisphere (superior parietal lobule (SPL), inferior parietal lobule, S1, M1, insula, premotor cortex and precuneus) were defined using FreeSurfer software. Analysis of average MEG activity across the 40-140 ms post-stimulation timeframe was carried out using an unpaired t test. This revealed significantly reduced activation only in the right SPL ROI for the subjects' affected legs when compared with both subjects' unaffected legs and that of controls. The right SPL is a cortical area that appears ideally placed to unify disparate sensory inputs to create a coherent sense of having a body. The authors propose that inadequate activation of the right SPL leads to the unnatural situation in which the sufferers can feel the limb in question being touched without it actually incorporating into their body image, with a resulting desire for amputation. The authors introduce the term 'xenomelia' as a more appropriate name than apotemnophilia or body integrity identity disorder, for what appears to be an unrecognised right parietal lobe syndrome.
Frühholz, Sascha; Fehr, Thorsten; Herrmann, Manfred
2009-10-01
Contextual features during recognition of facial affect are assumed to modulate the temporal course of emotional face processing. Here, we simultaneously presented colored backgrounds during valence categorizations of facial expressions. Subjects incidentally learned to perceive negative, neutral and positive expressions within a specific colored context. Subsequently, subjects made fast valence judgments while presented with the same face-color-combinations as in the first run (congruent trials) or with different face-color-combinations (incongruent trials). Incongruent trials induced significantly increased response latencies and significantly decreased performance accuracy. Contextual incongruent information during processing of neutral expressions modulated the P1 and the early posterior negativity (EPN) both localized in occipito-temporal areas. Contextual congruent information during emotional face perception revealed an emotion-related modulation of the P1 for positive expressions and of the N170 and the EPN for negative expressions. Highest amplitude of the N170 was found for negative expressions in a negatively associated context and the N170 amplitude varied with the amount of overall negative information. Incongruent trials with negative expressions elicited a parietal negativity which was localized to superior parietal cortex and which most likely represents a posterior manifestation of the N450 as an indicator of conflict processing. A sustained activation of the late LPP over parietal cortex for all incongruent trials might reflect enhanced engagement with facial expression during task conditions of contextual interference. In conclusion, whereas early components seem to be sensitive to the emotional valence of facial expression in specific contexts, late components seem to subserve interference resolution during emotional face processing.
Krauel, Kerstin; Duzel, Emrah; Hinrichs, Hermann; Santel, Stephanie; Rellum, Thomas; Baving, Lioba
2007-06-15
Patients with attention-deficit/hyperactivity disorder (ADHD) show episodic memory deficits especially in complex memory tasks. We investigated the neural correlates of memory formation in ADHD and their modulation by stimulus salience. We recorded event-related functional magnetic resonance imaging during an episodic memory paradigm with neutral and emotional pictures in 12 male ADHD subjects and 12 healthy adolescents. Emotional salience did significantly augment memory performance in ADHD patients. Successful encoding of neutral pictures was associated with activation of the anterior cingulate cortex (ACC) in healthy adolescents but with activation of the superior parietal lobe (SPL) and precuneus in ADHD patients. Successful encoding of emotional pictures was associated with prefrontal and inferior temporal cortex activation in both groups. Healthy adolescents, moreover, showed deactivation in the inferior parietal lobe. From a pathophysiological point of view, the most striking functional differences between healthy adolescents and ADHD patients were in the ACC and SPL. We suggest that increased SPL activation in ADHD reflected attentional compensation for low ACC activation during the encoding of neutral pictures. The higher salience of emotional stimuli, in contrast, regulated the interplay between ACC and SPL in conjunction with improving memory to the level of healthy adolescents.
Cortical functional anatomy of voluntary saccades in Parkinson disease.
Rieger, Jochem W; Kim, Aleander; Argyelan, Miklos; Farber, Mark; Glazman, Sofya; Liebeskind, Marc; Meyer, Thomas; Bodis-Wollner, Ivan
2008-10-01
In Parkinson Disease (PD) several aspects of saccades are affected. The saccade-generating brainstem neurons are spared, however, the signals they receive may be flawed. In particular voluntary saccades suffer, but the functional anatomy of the impairment of saccade-related cortical control is unknown. We measured blood-oxygenation-level-dependent (BOLD) activation with functional Magnetic Resonance Imaging (fMRI) while healthy participants and patients with PD performed horizontal voluntary saccades between peripheral visual targets or fixated centrally. We compared saccade-related BOLD-activity vs. fixation in patients with PD and in healthy controls and correlated perisaccadic BOLD-activity in PD patients with saccade kinetics (multistep saccades). Saccade related BOLD-activation was found in both PD and healthy participants in the superior parietal cortex (PEF) and the occipital cortex. Our results suggest remarkable hypoactivity of the frontal and supplementary eye fields (FEF and SEF) in PD patients. On the other hand, PD patients showed a statistically more reliable BOLD modulation than healthy participants in the posterior cingulate gyrus, the parahippocampal gyrus, inferior parietal lobule, precuneus and in the middle temporal gyrus. Given abnormal frontal and normal PEF responses, our results suggest that in PD a frontal cortical circuitry, known to be associated with saccade planning, selection, and predicting a metric error of the saccade, is deficient.
Changes in Cerebral Cortex of Children Treated for Medulloblastoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Arthur K.; Marcus, Karen J.; Department of Radiation Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA
2007-07-15
Purpose: Children with medulloblastoma undergo surgery, radiotherapy, and chemotherapy. After treatment, these children have numerous structural abnormalities. Using high-resolution magnetic resonance imaging, we measured the thickness of the cerebral cortex in a group of medulloblastoma patients and a group of normally developing children. Methods and Materials: We obtained magnetic resonance imaging scans and measured the cortical thickness in 9 children after treatment of medulloblastoma. The measurements from these children were compared with the measurements from age- and gender-matched normally developing children previously scanned. For additional comparison, the pattern of thickness change was compared with the cortical thickness maps from amore » larger group of 65 normally developing children. Results: In the left hemisphere, relatively thinner cortex was found in the perirolandic region and the parieto-occipital lobe. In the right hemisphere, relatively thinner cortex was found in the parietal lobe, posterior superior temporal gyrus, and lateral temporal lobe. These regions of cortical thinning overlapped with the regions of cortex that undergo normal age-related thinning. Conclusion: The spatial distribution of cortical thinning suggested that the areas of cortex that are undergoing development are more sensitive to the effects of treatment of medulloblastoma. Such quantitative methods may improve our understanding of the biologic effects that treatment has on the cerebral development and their neuropsychological implications.« less
Lesion correlates of impairments in actual tool use following unilateral brain damage.
Salazar-López, E; Schwaiger, B J; Hermsdörfer, J
2016-04-01
To understand how the brain controls actions involving tools, tests have been developed employing different paradigms such as pantomime, imitation and real tool use. The relevant areas have been localized in the premotor cortex, the middle temporal gyrus and the superior and inferior parietal lobe. This study employs Voxel Lesion Symptom Mapping to relate the functional impairment in actual tool use with extent and localization of the structural damage in the left (LBD, N=31) and right (RBD, N=19) hemisphere in chronic stroke patients. A series of 12 tools was presented to participants in a carousel. In addition, a non-tool condition tested the prescribed manipulation of a bar. The execution was scored according to an apraxic error scale based on the dimensions grasp, movement, direction and space. Results in the LBD group show that the ventro-dorsal stream constitutes the core of the defective network responsible for impaired tool use; it is composed of the inferior parietal lobe, the supramarginal and angular gyrus and the dorsal premotor cortex. In addition, involvement of regions in the temporal lobe, the rolandic operculum, the ventral premotor cortex and the middle occipital gyrus provide evidence of the role of the ventral stream in this task. Brain areas related to the use of the bar largely overlapped with this network. For patients with RBD data were less conclusive; however, a trend for the involvement of the temporal lobe in apraxic errors was manifested. Skilled bar manipulation depended on the same temporal area in these patients. Therefore, actual tool use depends on a well described left fronto-parietal-temporal network. RBD affects actual tool use, however the underlying neural processes may be more widely distributed and more heterogeneous. Goal directed manipulation of non-tool objects seems to involve very similar brain areas as tool use, suggesting that both types of manipulation share identical processes and neural representations. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norton, S.; Kimler, B.F.
1988-07-01
Ionizing radiation is a precise tool for altering formation of the developing cerebral cortex of the fetal rat. Whole body exposure of the pregnant rat on gestational day 13, 15 or 17 to 1.0 Gy of gamma radiation resulted in maximum thinning of the cortex on days 15 and 17. In the preweaning period, functional tests (negative geotaxis, reflex suspension, continuous corridor and gait) were most affected by irradiation gestational day 15, as was body weight. When a lower dose of radiation (0.75 Gy) was used on gestational day 15, the damage to the cortex was much less but behavioralmore » changes were still present. Frontal, parietal and occipital areas of the cortex were approximately equally affected. Using stepwise multiple regression analysis, the linkage of functional tests and cortical thickness was examined. Functional variables which were most commonly included as predictors of frontal and parietal cortex were negative geotaxis and continuous corridor. Occipital cortical layers were not predicted by behavioral variables. In predicting function using cortical variables, frontal cortex was better than parietal and occipital cortex was the poorest predictor.« less
Puskas, Laslo; Draganić-Gajić, Saveta; Malobabić, Slobodan; Puskas, Nela; Krivokuća, Dragan; Stanković, Gordana
2008-01-01
Cholecystocinine is a neuropeptide whose function in the cortex has not yet been clarified, although its relation with some psychic disorders has been noticed. Previous studies have not provided detailed data about types, or arrangement of neurons that contain those neuropeptide in the cortex of human inferior parietal lobe. The aim of this study was to examine precisely the morphology and typography of neurons containing cholecytocinine in the human cortex of inferior parietal lobule. There were five human brains on which we did the immunocystochemical research of the shape and laminar distribution of cholecystocinine immunoreactive neurons on serial sections of supramarginal gyrus and angular gyrus. The morphological analysis of cholecystocinine-immunoreactive neurons was done on frozen sections using avidin-biotin technique, by antibody to cholecystocinine diluted in the proportion 1:6000 using diamine-benzedine. Cholecystocinine immunoreactive neurons were found in the first three layers of the cortex of inferior parietal lobule, and their densest concentration was in the 2nd and 3rd layer. The following types of neurons were found: bipolar neurons, then its fusiform subtype, Cajal-Retzius neurons (in the 1st layer), reverse pyramidal (triangular) and unipolar neurons. The diameters of some types of neurons were from 15 to 35 microm, and the diameters of dendritic arborization were from 85-207 microm. A special emphasis is put on the finding of Cajal-Retzius neurons that are immunoreactive to cholecystocinine, which demands further research. Bearing in mind numerous clinical studies pointing out the role of cholecystokinine in the pathogenesis of schizophrenia, the presence of a great number of cholecystokinine immunoreactive neurons in the cortex of inferior parietal lobule suggests their role in the pathogenesis of schizophrenia.
Representation of the Numerosity ‘zero’ in the Parietal Cortex of the Monkey
Okuyama, Sumito; Kuki, Toshinobu; Mushiake, Hajime
2015-01-01
Zero is a fundamental concept in mathematics and modern science. Empty sets are considered a precursor of the concept of numerosity zero and a part of numerical continuum. How is numerosity zero (the absence of visual items) represented in the primate cortex? To address this question, we trained monkeys to perform numerical operations including numerosity zero. Here we show a group of neurons in the posterior parietal cortex of the monkey activated in response to numerosity ‘zero’. ‘Zero’ neurons are classified into exclusive and continuous types; the exclusive type discretely encodes numerical absence and the continuous type encodes numerical absence as a part of a numerical continuum. “Numerosity-zero” neurons enhance behavioral discrimination of not only zero numerosity but also non-zero numerosities. Representation of numerosity zero in the parietal cortex may be a precursor of non-verbal concept of zero in primates. PMID:25989598
Representation of the Numerosity 'zero' in the Parietal Cortex of the Monkey.
Okuyama, Sumito; Kuki, Toshinobu; Mushiake, Hajime
2015-05-22
Zero is a fundamental concept in mathematics and modern science. Empty sets are considered a precursor of the concept of numerosity zero and a part of numerical continuum. How is numerosity zero (the absence of visual items) represented in the primate cortex? To address this question, we trained monkeys to perform numerical operations including numerosity zero. Here we show a group of neurons in the posterior parietal cortex of the monkey activated in response to numerosity 'zero'. 'Zero' neurons are classified into exclusive and continuous types; the exclusive type discretely encodes numerical absence and the continuous type encodes numerical absence as a part of a numerical continuum. "Numerosity-zero" neurons enhance behavioral discrimination of not only zero numerosity but also non-zero numerosities. Representation of numerosity zero in the parietal cortex may be a precursor of non-verbal concept of zero in primates.
van der Meer, Dennis; Hartman, Catharina A.; van Rooij, Daan; Franke, Barbara; Heslenfeld, Dirk J.; Oosterlaan, Jaap; Faraone, Stephen V.; Buitelaar, Jan K.; Hoekstra, Pieter J.
2017-01-01
Background Attention-deficit/hyperactivity disorder (ADHD) is often accompanied by impaired response inhibition; both have been associated with aberrant dopamine signalling. Given that prenatal exposure to alcohol or smoking is known to affect dopamine-rich brain regions, we hypothesized that individuals carrying the ADHD risk alleles of the dopamine receptor D4 (DRD4) and dopamine transporter (DAT1) genes may be especially sensitive to their effects. Methods Functional MRI data, information on prenatal adversities and genetic data were available for 239 adolescents and young adults participating in the multicentre ADHD cohort study NeuroIMAGE (average age 17.3 yr). We analyzed the effects of DRD4 and DAT1, prenatal exposure to alcohol and smoking and their interactions on ADHD severity, response inhibition and neural activity. Results We found no significant gene × environment interaction effects. We did find that the DRD4 7-repeat allele was associated with less superior frontal and parietal brain activity and with greater activity in the frontal pole and occipital cortex. Prenatal exposure to smoking was also associated with lower superior frontal activity, but with greater activity in the parietal lobe. Further, those exposed to alcohol had more activity in the lateral orbitofrontal cortex, and the DAT1 risk variant was associated with lower cerebellar activity. Limitations Retrospective reports of maternal substance use and the cross-sectional study design restrict causal inference. Conclusion While we found no evidence of gene × environment interactions, the risk factors under investigation influenced activity of brain regions associated with response inhibition, suggesting they may add to problems with inhibiting behaviour. PMID:28234207
Neural Network of Body Representation Differs between Transsexuals and Cissexuals
Lin, Chia-Shu; Ku, Hsiao-Lun; Chao, Hsiang-Tai; Tu, Pei-Chi; Li, Cheng-Ta; Cheng, Chou-Ming; Su, Tung-Ping; Lee, Ying-Chiao; Hsieh, Jen-Chuen
2014-01-01
Body image is the internal representation of an individual’s own physical appearance. Individuals with gender identity disorder (GID), commonly referred to as transsexuals (TXs), are unable to form a satisfactory body image due to the dissonance between their biological sex and gender identity. We reasoned that changes in the resting-state functional connectivity (rsFC) network would neurologically reflect such experiential incongruence in TXs. Using graph theory-based network analysis, we investigated the regional changes of the degree centrality of the rsFC network. The degree centrality is an index of the functional importance of a node in a neural network. We hypothesized that three key regions of the body representation network, i.e., the primary somatosensory cortex, the superior parietal lobule and the insula, would show a higher degree centrality in TXs. Twenty-three pre-treatment TXs (11 male-to-female and 12 female-to-male TXs) as one psychosocial group and 23 age-matched healthy cissexual control subjects (CISs, 11 males and 12 females) were recruited. Resting-state functional magnetic resonance imaging was performed, and binarized rsFC networks were constructed. The TXs demonstrated a significantly higher degree centrality in the bilateral superior parietal lobule and the primary somatosensory cortex. In addition, the connectivity between the right insula and the bilateral primary somatosensory cortices was negatively correlated with the selfness rating of their desired genders. These data indicate that the key components of body representation manifest in TXs as critical function hubs in the rsFC network. The negative association may imply a coping mechanism that dissociates bodily emotion from body image. The changes in the functional connectome may serve as representational markers for the dysphoric bodily self of TXs. PMID:24465785
Fu, Wei; Cao, Lei; Zhang, Yanming; Huo, Su; Du, JuBao; Zhu, Lin; Song, Weiqun
2017-05-01
Visuospatial neglect (VSN) is devastating and common after stroke, and is thought to involve functional disturbance of the attention network. Non-invasive theta-burst stimulation (TBS) may help restore the normal function of attention network, therefore facilitating recovery from VSN. This study investigated the effects of continuous TBS on resting-state functional connectivity (RSFC) in the attention network, and behavioral performances of patients with VSN after stroke. Twelve patients were randomly assigned to receive 10-day cTBS of the left posterior parietal cortex delivered at 80% (the cTBS group), or 40% (the active control group) of the resting motor threshold. Both groups received daily visual scanning training and motor function treatment. Resting-state functional MRI (fMRI) and behavioral tests including line bisection test and star cancelation test were conducted at baseline and after the treatment. At baseline, the two groups showed comparable results in the resting-state fMRI experiments and behavioral tests. After treatment, the cTBS group showed lower functional connectivity between right temporoparietal junction (TPJ) and right anterior insula, and between right superior temporal sulcus and right anterior insula, as compared with the active control group; both groups showed improvement in the behavioral tests, with the cTBS group showing larger changes from baseline than the active control group. cTBS of the left posterior parietal cortex in patients with VSN may induce changes in inter-regional RSFC in the right ventral attention network. These changes may be associated with improved recovery of behavioral deficits after behavioral training. The TPJ and superior temporal sulcus may play crucial roles in recovery from VSN.
Social Distance Evaluation in Human Parietal Cortex
Yamakawa, Yoshinori; Kanai, Ryota; Matsumura, Michikazu; Naito, Eiichi
2009-01-01
Across cultures, social relationships are often thought of, described, and acted out in terms of physical space (e.g. “close friends” “high lord”). Does this cognitive mapping of social concepts arise from shared brain resources for processing social and physical relationships? Using fMRI, we found that the tasks of evaluating social compatibility and of evaluating physical distances engage a common brain substrate in the parietal cortex. The present study shows the possibility of an analytic brain mechanism to process and represent complex networks of social relationships. Given parietal cortex's known role in constructing egocentric maps of physical space, our present findings may help to explain the linguistic, psychological and behavioural links between social and physical space. PMID:19204791
Neural representations of social status hierarchy in human inferior parietal cortex.
Chiao, Joan Y; Harada, Tokiko; Oby, Emily R; Li, Zhang; Parrish, Todd; Bridge, Donna J
2009-01-01
Mental representations of social status hierarchy share properties with that of numbers. Previous neuroimaging studies have shown that the neural representation of numerical magnitude lies within a network of regions within inferior parietal cortex. However the neural basis of social status hierarchy remains unknown. Using fMRI, we studied subjects while they compared social status magnitude of people, objects and symbols, as well as numerical magnitude. Both social status and number comparisons recruited bilateral intraparietal sulci. We also observed a semantic distance effect whereby neural activity within bilateral intraparietal sulci increased for semantically close relative to far numerical and social status comparisons. These results demonstrate that social status and number comparisons recruit distinct and overlapping neuronal representations within human inferior parietal cortex.
Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst
NASA Technical Reports Server (NTRS)
Noohi, Fatemeh; Kinnaird, Catherine; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael
2014-01-01
The aim of the current study was to characterize the brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit saccular Vestibular Evoked Myogenic Potentials (VEMP) (Colebatch & Halmagyi 1992; Colebatch et al. 1994). Some researchers have reported that airconducted skull tap elicits both saccular and utricle VEMPs, while being faster and less irritating for the subjects (Curthoys et al. 2009, Wackym et al., 2012). However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying the vestibular disorders related to otolith deficits. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, pre and post central gyri, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation (Bottini et al., 1994; Dieterich et al., 2003; Emri et al., 2003; Schlindwein et al., 2008; Janzen et al., 2008). Here we hypothesized that the skull tap elicits the similar pattern of cortical activity as the auditory tone burst. Subjects put on a set of MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in supine position, with eyes closed. All subjects received both forms of the stimulation, however, the order of stimulation with auditory tone burst and air-conducted skull tap was counterbalanced across subjects. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular cortex, resulting in vestibular response (Halmagyi et al., 1995). Auditory tone bursts were also delivered for comparison. To validate our stimulation method, we measured the ocular VEMP outside of the scanner. This measurement showed that both skull tap and auditory tone burst elicited vestibular evoked activation, indicated by eye muscle response. Our preliminary analyses showed that the skull tap elicited activation in medial frontal gyrus, superior temporal gyrus, postcentral gyrus, transverse temporal gyrus, anterior cingulate, and putamen. The auditory tone bursts elicited activation in medial frontal gyrus, superior temporal gyrus, superior frontal gyrus, precentral gyrus, inferior and superior parietal lobules. In line with our hypothesis, skull taps elicited a pattern of cortical activity closely similar to one elicited by auditory tone bursts. Further analysis will determine the extent to which the skull taps can replace the auditory tone stimulation in clinical and basic science vestibular assessments.
Navigation ability dependent neural activation in the human brain: an fMRI study.
Ohnishi, Takashi; Matsuda, Hiroshi; Hirakata, Makiko; Ugawa, Yoshikazu
2006-08-01
Visual-spatial navigation in familiar and unfamiliar environments is an essential requirement of daily life. Animal studies indicated the importance of the hippocampus for navigation. Neuroimaging studies demonstrated gender difference or strategies dependent difference of neural substrates for navigation. Using functional magnetic resonance imaging, we measured brain activity related to navigation in four groups of normal volunteers: good navigators (males and females) and poor navigators (males and females). In a whole group analysis, task related activity was noted in the hippocampus, parahippocampal gyrus, posterior cingulate cortex, precuneus, parietal association areas, and the visual association areas. In group comparisons, good navigators showed a stronger activation in the medial temporal area and precuneus than poor navigators. There was neither sex effect nor interaction effect between sex and navigation ability. The activity in the left medial temporal areas was positively correlated with task performance, whereas activity in the right parietal area was negatively correlated with task performance. Furthermore, the activity in the bilateral medial temporal areas was positively correlated with scores reflecting preferred navigation strategies, whereas activity in the bilateral superior parietal lobules was negatively correlated with them. Our data suggest that different brain activities related to navigation should reflect navigation skill and strategies.
Mengotti, Paola; D'Agostini, Serena; Terlevic, Robert; De Colle, Cristina; Biasizzo, Elsa; Londero, Danielle; Ferro, Adele; Rambaldelli, Gianluca; Balestrieri, Matteo; Zanini, Sergio; Fabbro, Franco; Molteni, Massimo; Brambilla, Paolo
2011-02-01
A combined protocol of voxel-based morphometry (VBM) and diffusion-weighted imaging (DWI) was applied to investigate the neurodevelopment of gray and white matter in autism. Twenty children with autism (mean age= 7 ± 2.75 years old; age range: 4-14; 2 girls) and 22 matched normally developing children (mean age = 7.68 ± 2.03 years old; age range: 4-11; 2 girls) underwent magnetic resonance imaging (MRI). VBM was employed by applying the Template-o-Matic toolbox (TOM), a new approach which constructs the age-matched customized template for tissue segmentation. Also, the apparent diffusion coefficients (ADC) of water molecules were obtained from the analysis of DWI. Regions of interests (ROIs), standardized at 5 pixels, were placed in cortical lobes and corpus callosum on the non-diffusion weighted echo-planar images (b = 0) and were then automatically transferred to the corresponding maps to obtain the ADC values. Compared to normal children, individuals with autism had significantly: (1) increased white matter volumes in the right inferior frontal gyrus, the right fusiform gyrus, the left precentral and supplementary motor area and the left hippocampus, (2) increased gray matter volumes in the inferior temporal gyri bilaterally, the right inferior parietal cortex, the right superior occipital lobe and the left superior parietal lobule, and (3) decreased gray matter volumes in the right inferior frontal gyrus and the left supplementary motor area. Abnormally increased ADC values in the bilateral frontal cortex and in the left side of the genu of the corpus callosum were also reported in autism. Finally, age correlated negatively with lobar and callosal ADC measurements in individuals with autism, but not in children with normal development. These findings suggest cerebral dysconnectivity in the early phases of autism coupled with an altered white matter maturation trajectory during childhood potentially taking place in the frontal and parietal lobes, which may represent a neurodevelopmental marker of the disorder, possibly accounting for the cognitive and social deficits. Copyright © 2010 Elsevier Inc. All rights reserved.
Segregation of Brain Structural Networks Supports Spatio-Temporal Predictive Processing.
Ciullo, Valentina; Vecchio, Daniela; Gili, Tommaso; Spalletta, Gianfranco; Piras, Federica
2018-01-01
The ability to generate probabilistic expectancies regarding when and where sensory stimuli will occur, is critical to derive timely and accurate inferences about updating contexts. However, the existence of specialized neural networks for inferring predictive relationships between events is still debated. Using graph theoretical analysis applied to structural connectivity data, we tested the extent of brain connectivity properties associated with spatio-temporal predictive performance across 29 healthy subjects. Participants detected visual targets appearing at one out of three locations after one out of three intervals; expectations about stimulus location (spatial condition) or onset (temporal condition) were induced by valid or invalid symbolic cues. Connectivity matrices and centrality/segregation measures, expressing the relative importance of, and the local interactions among specific cerebral areas respect to the behavior under investigation, were calculated from whole-brain tractography and cortico-subcortical parcellation. Results: Response preparedness to cued stimuli relied on different structural connectivity networks for the temporal and spatial domains. Significant covariance was observed between centrality measures of regions within a subcortical-fronto-parietal-occipital network -comprising the left putamen, the right caudate nucleus, the left frontal operculum, the right inferior parietal cortex, the right paracentral lobule and the right superior occipital cortex-, and the ability to respond after a short cue-target delay suggesting that the local connectedness of such nodes plays a central role when the source of temporal expectation is explicit. When the potential for functional segregation was tested, we found highly clustered structural connectivity across the right superior, the left middle inferior frontal gyrus and the left caudate nucleus as related to explicit temporal orienting. Conversely, when the interaction between explicit and implicit temporal orienting processes was considered at the long interval, we found that explicit processes were related to centrality measures of the bilateral inferior parietal lobule. Degree centrality of the same region in the left hemisphere covaried with behavioral measures indexing the process of attentional re-orienting. These results represent a crucial step forward the ordinary predictive processing description, as we identified the patterns of connectivity characterizing the brain organization associated with the ability to generate and update temporal expectancies in case of contextual violations.
Cortical inhibition deficits in recent onset PTSD after a single prolonged trauma exposure☆
Qi, Shun; Mu, Yunfeng; Liu, Kang; Zhang, Jian; Huan, Yi; Tan, Qingrong; Shi, Mei; Wang, Qiang; Chen, Yunchun; Wang, Huaihai; Wang, Huaning; Zhang, Nanyin; Zhang, Xiaoliang; Xiong, Lize; Yin, Hong
2013-01-01
A variety of structural abnormalities have been described in post traumatic stress disorder (PTSD), but only a few studies have focused on cortical thickness alterations in recent onset PTSD. In this study, we adopted surface-based morphometry (SBM), which enables an exploration of global structural changes throughout the brain, in order to compare cortical thickness alterations in recent onset PTSD patients, trauma-exposed subjects but without PTSD, and normal controls. Moreover, we used region of interest (ROI) partial correlation analysis to evaluate the correlation among PTSD symptom severity and significant changes of cortical thickness. The widespread cortical thickness reduction relative to the normal controls were found in bilateral inferior and superior parietal lobes, frontal lobes, hippocampus, cingulate cortex, and right lateral occipital lobes in trauma survivors, whereas cortical thickness was only increased in left calcarine cortex in PTSD group. The average cortical thickness of hippocampus and cingulate cortex decreased by 10.75% and 9.09% in PTSD, 3.48% and 2.86% in non PTSD. We further demonstrated that the cortical thicknesses of bilateral ACC and PCC, superior frontal lobes, and hippocampus are negatively correlated with CAPS scores in all trauma survivors. Our study results suggest that stress widens cortical thinning regions and causes more serious effect in recent onset PTSD than non PTSD. It also shows that the cortical thinning in recent onset PTSD predicts the symptom severity. PMID:24273707
DOE Office of Scientific and Technical Information (OSTI.GOV)
Churchill, L.; Pazdernik, T.L.; Jackson, J.L.
1984-08-01
(3H)Quinuclidinyl benzilate binding to rat brain muscarinic receptors decreased after repeated exposure to soman, a potent organophosphorus cholinesterase inhibitor. The topographical distribution of this decrement was analyzed by quantitative receptor autoradiography. After 4 weeks of soman, three times a week, quinuclidinyl benzilate binding decreased to 67 to 80% of control in frontal and parietal cortex, caudate-putamen, lateral septum, hippocampal body, dentate gyrus, superior colliculus, nucleus of the fifth nerve, and central grey. Minor or no decreases were observed in thalamic or hypothalamic nuclei, reticular formation, pontine nuclei, inferior colliculus, nucleus of the seventh nerve, and cerebellum. Scatchard analyses of saturationmore » curves using frontal cortex sections from soman-treated rats revealed a decrease in maximal quinuclidinyl benzilate binding from that in control rats and a return toward control levels by 24 days without any significant change in affinity. These brain areas showing significant decrements in muscarinic receptors recovered with a similar time course. An estimate of the time for 50% recovery for some of the brain areas was 14 days for superior colliculus, 16 days for cortex, and 19 days for hippocampal body. The application of quantitative receptor autoradiography to analyze receptor alterations has been valuable in localizing the telencephalon as a region more susceptible to change in receptor concentration.« less
Brain activation while forming memories of fearful and neutral faces in women and men.
Fischer, Håkan; Sandblom, Johan; Nyberg, Lars; Herlitz, Agneta; Bäckman, Lars
2007-11-01
Event-related functional MRI (fMRI) was used to assess brain activity during encoding of fearful and neutral faces in 12 women and 12 men. In a subsequent memory analysis, the authors separated successful from unsuccessful encoding of both types of faces, based on whether they were remembered or forgotten in a later recognition memory test. Overall, women and men recruited overlapping neural circuitries. Both sexes activated right-sided medial-temporal regions during successful encoding of fearful faces. Successful encoding of neutral faces was associated with left-sided lateral prefrontal and right-sided superior frontal activation in both sexes. In women, relatively greater encoding related activity for neutral faces was seen in the superior parietal and parahippocampal cortices. By contrast, men activated the left and right superior/middle frontal cortex more than women during successful encoding of the same neutral faces. These findings suggest that women and men use similar neural networks to encode facial information, with only subtle sex differences observed for neutral faces.
Goodwin, Shikha J.; Blackman, Rachael K.; Sakellaridi, Sofia
2012-01-01
Human cognition is characterized by flexibility, the ability to select not only which action but which cognitive process to engage to best achieve the current behavioral objective. The ability to tailor information processing in the brain to rules, goals, or context is typically referred to as executive control, and although there is consensus that prefrontal cortex is importantly involved, at present we have an incomplete understanding of how computational flexibility is implemented at the level of prefrontal neurons and networks. To better understand the neural mechanisms of computational flexibility, we simultaneously recorded the electrical activity of groups of single neurons within prefrontal and posterior parietal cortex of monkeys performing a task that required executive control of spatial cognitive processing. In this task, monkeys applied different spatial categorization rules to reassign the same set of visual stimuli to alternative categories on a trial-by-trial basis. We found that single neurons were activated to represent spatially defined categories in a manner that was rule dependent, providing a physiological signature of a cognitive process that was implemented under executive control. We found also that neural signals coding rule-dependent categories were distributed between the parietal and prefrontal cortex—however, not equally. Rule-dependent category signals were stronger, more powerfully modulated by the rule, and earlier to emerge in prefrontal cortex relative to parietal cortex. This suggests that prefrontal cortex may initiate the switch in neural representation at a network level that is important for computational flexibility. PMID:22399773
Hemisphere-Dependent Attentional Modulation of Human Parietal Visual Field Representations
Silver, Michael A.
2015-01-01
Posterior parietal cortex contains several areas defined by topographically organized maps of the contralateral visual field. However, recent studies suggest that ipsilateral stimuli can elicit larger responses in the right than left hemisphere within these areas, depending on task demands. Here we determined the effects of spatial attention on the set of visual field locations (the population receptive field [pRF]) that evoked a response for each voxel in human topographic parietal cortex. A two-dimensional Gaussian was used to model the pRF in each voxel, and we measured the effects of attention on not only the center (preferred visual field location) but also the size (visual field extent) of the pRF. In both hemispheres, larger pRFs were associated with attending to the mapping stimulus compared with attending to a central fixation point. In the left hemisphere, attending to the stimulus also resulted in more peripheral preferred locations of contralateral representations, compared with attending fixation. These effects of attention on both pRF size and preferred location preserved contralateral representations in the left hemisphere. In contrast, attentional modulation of pRF size but not preferred location significantly increased representation of the ipsilateral (right) visual hemifield in right parietal cortex. Thus, attention effects in topographic parietal cortex exhibit hemispheric asymmetries similar to those seen in hemispatial neglect. Our findings suggest potential mechanisms underlying the behavioral deficits associated with this disorder. PMID:25589746
Lindefors, N; Brene, S; Herrera-Marschitz, M; Persson, H
1989-01-01
In situ hybridization histochemistry and RNA blots were used to study the expression of glutamic acid decarboxylase (GAD) mRNA in rats with or without a unilateral lesion of midbrain dopamine neurons. Two populations of GAD mRNA positive neurons were found in the intact caudate-putamen, substantia nigra and fronto-parietal cortex. In caudate-putamen, only one out of ten of the GAD mRNA positive neurons expressed high levels, while in substantia nigra every second of the positive neurons expressed high levels of GAD mRNA. Relatively few, but intensively labelled neurons were found in the intact fronto-parietal cerebral cortex. In addition, one out of six of the GAD mRNA positive neurons in the fronto-parietal cortex showed a low labeling. On the ipsilateral side, the forebrain dopamine deafferentation induced an increase in the number of neurons expressing high levels of GAD mRNA in caudate-putamen, and a decrease in fronto-parietal cortex. A smaller decrease was also seen in substantia nigra. However, the total number of GAD mRNA positive neurons were not significantly changed in any of these brain regions. The changes in the levels of GAD mRNA after the dopamine lesion were confirmed by RNA blot analysis. Hence, midbrain dopamine neurons appear to control neuronal expression of GAD mRNA by a tonic down-regulation in a fraction of GAD mRNA positive neurons in caudate-putamen, and a tonic up-regulation in a fraction of GAD mRNA positive neurons in fronto-parietal cortex and substantia nigra.
Is it the picture or is it the frame? An fMRI study on the neurobiology of framing effects
Silveira, Sarita; Fehse, Kai; Vedder, Aline; Elvers, Katrin; Hennig-Fast, Kristina
2015-01-01
Using functional magnetic resonance imaging (fMRI) we investigated whether a culturally defined context modulates the neurocognitive processing of artworks. We presented subjects with paintings from the Museum of Modern Art (MoMA) in New York, and labeled them as being either from the MoMA or from an adult education center. Irrespective of aesthetic appreciation, we found higher neural activation in the left precuneus, superior and inferior parietal cortex for the MoMA condition compared to the control label condition. When taking the aesthetic preference for a painting into account, the MoMA condition elicited higher involvement of right precuneus, bilateral anterior cingulate cortex (ACC), and temporoparietal junction (TPJ). Our findings indicate that mental frames, in particular labels of social value, modulate both cognitive and affective aspects of sensory processing. PMID:26528161
The neural dynamics of updating person impressions
Cai, Yang; Todorov, Alexander
2013-01-01
Person perception is a dynamic, evolving process. Because other people are an endless source of social information, people need to update their impressions of others based upon new information. We devised an fMRI study to identify brain regions involved in updating impressions. Participants saw faces paired with valenced behavioral information and were asked to form impressions of these individuals. Each face was seen five times in a row, each time with a different behavioral description. Critically, for half of the faces the behaviors were evaluatively consistent, while for the other half they were inconsistent. In line with prior work, dorsomedial prefrontal cortex (dmPFC) was associated with forming impressions of individuals based on behavioral information. More importantly, a whole-brain analysis revealed a network of other regions associated with updating impressions of individuals who exhibited evaluatively inconsistent behaviors, including rostrolateral PFC, superior temporal sulcus, right inferior parietal lobule and posterior cingulate cortex. PMID:22490923
Hao, Xin; Wang, Kangcheng; Li, Wenfu; Yang, Wenjing; Wei, Dongtao; Qiu, Jiang; Zhang, Qinglin
2013-01-01
Cognitive styles can be characterized as individual differences in the way people perceive, think, solve problems, learn, and relate to others. Field dependence/independence (FDI) is an important and widely studied dimension of cognitive styles. Although functional imaging studies have investigated the brain activation of FDI cognitive styles, the combined structural and functional correlates with individual differences in a large sample have never been investigated. In the present study, we investigated the neural correlates of individual differences in FDI cognitive styles by analyzing the correlations between Embedded Figures Test (EFT) score and structural neuroimaging data [regional gray matter volume (rGMV) was assessed using voxel-based morphometry (VBM)]/functional neuroimaging data [resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF)] throughout the whole brain. Results showed that the increased rGMV in the left inferior parietal lobule (IPL) was associated with the EFT score, which might be the structural basis of effective local processing. Additionally, a significant positive correlation between ALFF and EFT score was found in the fronto-parietal network, including the left inferior parietal lobule (IPL) and the medial prefrontal cortex (mPFC). We speculated that the left IPL might be associated with superior feature identification, and mPFC might be related to cognitive inhibition of global processing bias. These results suggested that the underlying neuroanatomical and functional bases were linked to the individual differences in FDI cognitive styles and emphasized the important contribution of superior local processing ability and cognitive inhibition to field-independent style.
Hao, Xin; Wang, Kangcheng; Li, Wenfu; Yang, Wenjing; Wei, Dongtao; Qiu, Jiang; Zhang, Qinglin
2013-01-01
Cognitive styles can be characterized as individual differences in the way people perceive, think, solve problems, learn, and relate to others. Field dependence/independence (FDI) is an important and widely studied dimension of cognitive styles. Although functional imaging studies have investigated the brain activation of FDI cognitive styles, the combined structural and functional correlates with individual differences in a large sample have never been investigated. In the present study, we investigated the neural correlates of individual differences in FDI cognitive styles by analyzing the correlations between Embedded Figures Test (EFT) score and structural neuroimaging data [regional gray matter volume (rGMV) was assessed using voxel-based morphometry (VBM)] / functional neuroimaging data [resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF)] throughout the whole brain. Results showed that the increased rGMV in the left inferior parietal lobule (IPL) was associated with the EFT score, which might be the structural basis of effective local processing. Additionally, a significant positive correlation between ALFF and EFT score was found in the fronto-parietal network, including the left inferior parietal lobule (IPL) and the medial prefrontal cortex (mPFC). We speculated that the left IPL might be associated with superior feature identification, and mPFC might be related to cognitive inhibition of global processing bias. These results suggested that the underlying neuroanatomical and functional bases were linked to the individual differences in FDI cognitive styles and emphasized the important contribution of superior local processing ability and cognitive inhibition to field-independent style. PMID:24348991
Emmorey, Karen; Xu, Jiang; Gannon, Patrick; Goldin-Meadow, Susan; Braun, Allen
2010-01-01
Deaf signers have extensive experience using their hands to communicate. Using fMRI, we examined the neural systems engaged during the perception of manual communication in 14 deaf signers and 14 hearing non-signers. Participants passively viewed blocked video clips of pantomimes (e.g., peeling an imaginary banana) and action verbs in American Sign Language (ASL) that were rated as meaningless by non-signers (e.g., TO-DANCE). In contrast to visual fixation, pantomimes strongly activated fronto-parietal regions (the mirror neuron system, MNS) in hearing non-signers, but only bilateral middle temporal regions in deaf signers. When contrasted with ASL verbs, pantomimes selectively engaged inferior and superior parietal regions in hearing non-signers, but right superior temporal cortex in deaf signers. The perception of ASL verbs recruited similar regions as pantomimes for deaf signers, with some evidence of greater involvement of left inferior frontal gyrus for ASL verbs. Functional connectivity analyses with left hemisphere seed voxels (ventral premotor, inferior parietal lobule, fusiform gyrus) revealed robust connectivity with the MNS for the hearing non-signers. Deaf signers exhibited functional connectivity with the right hemisphere that was not observed for the hearing group for the fusiform gyrus seed voxel. We suggest that life-long experience with manual communication, and/or auditory deprivation, may alter regional connectivity and brain activation when viewing pantomimes. We conclude that the lack of activation within the MNS for deaf signers does not support an account of human communication that depends upon automatic sensorimotor resonance between perception and action.
The Contribution of the Parietal Lobes to Speaking and Writing
Wise, Richard J. S.
2010-01-01
The left parietal lobe has been proposed as a major language area. However, parietal cortical function is more usually considered in terms of the control of actions, contributing both to attention and cross-modal integration of external and reafferent sensory cues. We used positron emission tomography to study normal subjects while they overtly generated narratives, both spoken and written. The purpose was to identify the parietal contribution to the modality-specific sensorimotor control of communication, separate from amodal linguistic and memory processes involved in generating a narrative. The majority of left and right parietal activity was associated with the execution of writing under visual and somatosensory control irrespective of whether the output was a narrative or repetitive reproduction of a single grapheme. In contrast, action-related parietal activity during speech production was confined to primary somatosensory cortex. The only parietal area with a pattern of activity compatible with an amodal central role in communication was the ventral part of the left angular gyrus (AG). The results of this study indicate that the cognitive processing of language within the parietal lobe is confined to the AG and that the major contribution of parietal cortex to communication is in the sensorimotor control of writing. PMID:19531538
Cao, Fan; Lee, Rebecca; Shu, Hua; Yang, Yanhui; Xu, Guoqing; Li, Kuncheng; Booth, James R
2010-05-01
Developmental differences in phonological and orthographic processing in Chinese were examined in 9 year olds, 11 year olds, and adults using functional magnetic resonance imaging. Rhyming and spelling judgments were made to 2-character words presented sequentially in the visual modality. The spelling task showed greater activation than the rhyming task in right superior parietal lobule and right inferior temporal gyrus, and there were developmental increases across tasks bilaterally in these regions in addition to bilateral occipital cortex, suggesting increased involvement over age on visuo-orthographic analysis. The rhyming task showed greater activation than the spelling task in left superior temporal gyrus and there were developmental decreases across tasks in this region, suggesting reduced involvement over age on phonological representations. The rhyming and spelling tasks included words with conflicting orthographic and phonological information (i.e., rhyming words spelled differently or nonrhyming words spelled similarly) or nonconflicting information. There was a developmental increase in the difference between conflicting and nonconflicting words in left inferior parietal lobule, suggesting greater engagement of systems for mapping between orthographic and phonological representations. Finally, there were developmental increases across tasks in an anterior (Broadman area [BA] 45, 46) and posterior (BA 9) left inferior frontal gyrus, suggesting greater reliance on controlled retrieval and selection of posterior lexical representations.
Neural substrates related to auditory working memory comparisons in dyslexia: An fMRI study
CONWAY, TIM; HEILMAN, KENNETH M.; GOPINATH, KAUNDINYA; PECK, KYUNG; BAUER, RUSSELL; BRIGGS, RICHARD W.; TORGESEN, JOSEPH K.; CROSSON, BRUCE
2010-01-01
Adult readers with developmental phonological dyslexia exhibit significant difficulty comparing pseudowords and pure tones in auditory working memory (AWM). This suggests deficient AWM skills for adults diagnosed with dyslexia. Despite behavioral differences, it is unknown whether neural substrates of AWM differ between adults diagnosed with dyslexia and normal readers. Prior neuroimaging of adults diagnosed with dyslexia and normal readers, and post-mortem findings of neural structural anomalies in adults diagnosed with dyslexia support the hypothesis of atypical neural activity in temporoparietal and inferior frontal regions during AWM tasks in adults diagnosed with dyslexia. We used fMRI during two binaural AWM tasks (pseudowords or pure tones comparisons) in adults diagnosed with dyslexia (n = 11) and normal readers (n = 11). For both AWM tasks, adults diagnosed with dyslexia exhibited greater activity in left posterior superior temporal (BA 22) and inferior parietal regions (BA 40) than normal readers. Comparing neural activity between groups and between stimuli contrasts (pseudowords vs. tones), adults diagnosed with dyslexia showed greater primary auditory cortex activity (BA 42; tones > pseudowords) than normal readers. Thus, greater activity in primary auditory, posterior superior temporal, and inferior parietal cortices during linguistic and non-linguistic AWM tasks for adults diagnosed with dyslexia compared to normal readers indicate differences in neural substrates of AWM comparison tasks. PMID:18577292
Age-related functional brain changes in young children.
Long, Xiangyu; Benischek, Alina; Dewey, Deborah; Lebel, Catherine
2017-07-15
Brain function and structure change significantly during the toddler and preschool years. However, most studies focus on older or younger children, so the specific nature of these changes is unclear. In the present study, we analyzed 77 functional magnetic resonance imaging datasets from 44 children aged 2-6 years. We extracted measures of both local (amplitude of low frequency fluctuation and regional homogeneity) and global (eigenvector centrality mapping) activity and connectivity, and examined their relationships with age using robust linear correlation analysis and strict control for head motion. Brain areas within the default mode network and the frontoparietal network, such as the middle frontal gyrus, the inferior parietal lobule and the posterior cingulate cortex, showed increases in local and global functional features with age. Several brain areas such as the superior parietal lobule and superior temporal gyrus presented opposite development trajectories of local and global functional features, suggesting a shifting connectivity framework in early childhood. This development of functional connectivity in early childhood likely underlies major advances in cognitive abilities, including language and development of theory of mind. These findings provide important insight into the development patterns of brain function during the preschool years, and lay the foundation for future studies of altered brain development in young children with brain disorders or injury. Copyright © 2017 Elsevier Inc. All rights reserved.
Attentional Demands Predict Short-Term Memory Load Response in Posterior Parietal Cortex
ERIC Educational Resources Information Center
Magen, Hagit; Emmanouil, Tatiana-Aloi; McMains, Stephanie A.; Kastner, Sabine; Treisman, Anne
2009-01-01
Limits to the capacity of visual short-term memory (VSTM) indicate a maximum storage of only 3 or 4 items. Recently, it has been suggested that activity in a specific part of the brain, the posterior parietal cortex (PPC), is correlated with behavioral estimates of VSTM capacity and might reflect a capacity-limited store. In three experiments that…
Naito, Eiichi; Morita, Tomoyo; Amemiya, Kaoru
2016-03-01
The human brain can generate a continuously changing postural model of our body. Somatic (proprioceptive) signals from skeletal muscles and joints contribute to the formation of the body representation. Recent neuroimaging studies of proprioceptive bodily illusions have elucidated the importance of three brain systems (motor network, specialized parietal systems, right inferior fronto-parietal network) in the formation of the human body representation. The motor network, especially the primary motor cortex, processes afferent input from skeletal muscles. Such information may contribute to the formation of kinematic/dynamic postural models of limbs, thereby enabling fast online feedback control. Distinct parietal regions appear to play specialized roles in the transformation/integration of information across different coordinate systems, which may subserve the adaptability and flexibility of the body representation. Finally, the right inferior fronto-parietal network, connected by the inferior branch of the superior longitudinal fasciculus, is consistently recruited when an individual experiences various types of bodily illusions and its possible roles relate to corporeal awareness, which is likely elicited through a series of neuronal processes of monitoring and accumulating bodily information and updating the body representation. Because this network is also recruited when identifying one's own features, the network activity could be a neuronal basis for self-consciousness. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Krüger, Britta; Bischoff, Matthias; Blecker, Carlo; Langhanns, Christine; Kindermann, Stefan; Sauerbier, Isabell; Reiser, Mathias; Stark, Rudolf; Munzert, Jörn; Pilgramm, Sebastian
2014-10-15
This study investigated whether activation within areas belonging to the action observation and imitation network reveals a linear relation to the subsequent accuracy of imitating a bimanual rhythmic movement measured via a motion capturing system. 20 participants were scanned with functional magnetic resonance imaging (fMRI) when asked to imitate observed bimanual movements either concurrently versus with a delay (2s) or simply to observe the movements without imitation. Results showed that action observation relates to activation within classic mirror-related areas. Activation patterns were more widespread when participants were asked to imitate the movement. During observation with concurrent imitation, activation in the left inferior parietal lobe (IPL) was associated negatively with imitation accuracy. During observation in the delayed imitation condition, higher subsequent imitation accuracy was coupled with higher activation in the right superior parietal lobe (SPL) and the left parietal operculum (POp). During the delayed imitation itself, a negative association between imitation accuracy and brain activation was revealed in the right ventral premotor cortex (vPMC). We conclude that the IPL is involved in online comparison and visuospatial attention processes during imitation, the SPL provides a kinesthetic blueprint during movement observation, the POp preserves body identity, and the vPMC recruits motor representations--especially when no concurrent visual guidance is possible. Copyright © 2014 Elsevier Inc. All rights reserved.
Cerebral correlates of visuospatial neglect: a direct cerebral stimulation study.
Vallar, Giuseppe; Bello, Lorenzo; Bricolo, Emanuela; Castellano, Antonella; Casarotti, Alessandra; Falini, Andrea; Riva, Marco; Fava, Enrica; Papagno, Costanza
2014-04-01
To assess the role of the superior longitudinal fascicle, the inferior fronto-occipital fascicle, and the posterior parietal lobe in visuospatial attention in humans during awake brain surgery. Seven patients with hemispheric gliomas (six in the right hemisphere) entered the study. During surgery in asleep/awake anesthesia, guided by Diffusion Tensor Imaging Fiber Tractography, visuospatial neglect was assessed during direct electrical stimulation by computerized line bisection. A rightward deviation, indicating left visuospatial neglect, was induced in six of seven patients by stimulation of the parietofrontal connections, in a location consistent with the trajectory of the second branch of the superior longitudinal fascicle. Stimulation of the medial and dorsal white matter of the superior parietal lobule (corresponding to the first branch of the superior longitudinal fascicle), of the ventral and lateral white matter of the supramarginal gyrus (corresponding to the third branch of the superior longitudinal fascicle), and of the inferior occipitofrontal fasciculus, was largely ineffective. Stimulation of the superior parietal lobule (Brodmann's area 7) caused a marked rightward deviation in all of the six assessed patients, while stimulation of Brodmann's areas 5 and 19 was ineffective. The parietofrontal connections of the dorso-lateral fibers of the superior longitudinal fascicle (i.e., the second branch of the fascicle), and the posterior superior parietal lobe (Brodmann's area 7) are involved in the orientation of spatial attention. Spatial neglect should be assessed systematically during awake brain surgery, particularly when the right parietal lobe may be involved by the neurosurgical procedure. Copyright © 2013 Wiley Periodicals, Inc.
McGettigan, Carolyn; Eisner, Frank; Agnew, Zarinah K; Manly, Tom; Wisbey, Duncan; Scott, Sophie K
2014-01-01
Historically, the study of human identity perception has focused on faces, but the voice is also central to our expressions and experiences of identity (P. Belin, Fecteau, & Bedard, 2004). Our voices are highly flexible and dynamic; talkers speak differently depending on their health, emotional state, and the social setting, as well as extrinsic factors such as background noise. However, to date, there have been no studies of the neural correlates of identity modulation in speech production. In the current fMRI experiment, we measured the neural activity supporting controlled voice change in adult participants performing spoken impressions. We reveal that deliberate modulation of vocal identity recruits the left anterior insula and inferior frontal gyrus, supporting the planning of novel articulations. Bilateral sites in posterior superior temporal/inferior parietal cortex and a region in right mid/anterior superior temporal sulcus showed greater responses during the emulation of specific vocal identities than for impressions of generic accents. Using functional connectivity analyses, we describe roles for these three sites in their interactions with the brain regions supporting speech planning and production. Our findings mark a significant step toward understanding the neural control of vocal identity, with wider implications for the cognitive control of voluntary motor acts. PMID:23691984
Testing the dual-pathway model for auditory processing in human cortex.
Zündorf, Ida C; Lewald, Jörg; Karnath, Hans-Otto
2016-01-01
Analogous to the visual system, auditory information has been proposed to be processed in two largely segregated streams: an anteroventral ("what") pathway mainly subserving sound identification and a posterodorsal ("where") stream mainly subserving sound localization. Despite the popularity of this assumption, the degree of separation of spatial and non-spatial auditory information processing in cortex is still under discussion. In the present study, a statistical approach was implemented to investigate potential behavioral dissociations for spatial and non-spatial auditory processing in stroke patients, and voxel-wise lesion analyses were used to uncover their neural correlates. The results generally provided support for anatomically and functionally segregated auditory networks. However, some degree of anatomo-functional overlap between "what" and "where" aspects of processing was found in the superior pars opercularis of right inferior frontal gyrus (Brodmann area 44), suggesting the potential existence of a shared target area of both auditory streams in this region. Moreover, beyond the typically defined posterodorsal stream (i.e., posterior superior temporal gyrus, inferior parietal lobule, and superior frontal sulcus), occipital lesions were found to be associated with sound localization deficits. These results, indicating anatomically and functionally complex cortical networks for spatial and non-spatial auditory processing, are roughly consistent with the dual-pathway model of auditory processing in its original form, but argue for the need to refine and extend this widely accepted hypothesis. Copyright © 2015 Elsevier Inc. All rights reserved.
Westphal, Andrew J; Reggente, Nicco; Ito, Kaori L; Rissman, Jesse
2016-03-01
Rostrolateral prefrontal cortex (RLPFC) is widely appreciated to support higher cognitive functions, including analogical reasoning and episodic memory retrieval. However, these tasks have typically been studied in isolation, and thus it is unclear whether they involve common or distinct RLPFC mechanisms. Here, we introduce a novel functional magnetic resonance imaging (fMRI) task paradigm to compare brain activity during reasoning and memory tasks while holding bottom-up perceptual stimulation and response demands constant. Univariate analyses on fMRI data from twenty participants identified a large swath of left lateral prefrontal cortex, including RLPFC, that showed common engagement on reasoning trials with valid analogies and memory trials with accurately retrieved source details. Despite broadly overlapping recruitment, multi-voxel activity patterns within left RLPFC reliably differentiated these two trial types, highlighting the presence of at least partially distinct information processing modes. Functional connectivity analyses demonstrated that while left RLPFC showed consistent coupling with the fronto-parietal control network across tasks, its coupling with other cortical areas varied in a task-dependent manner. During the memory task, this region strengthened its connectivity with the default mode and memory retrieval networks, whereas during the reasoning task it coupled more strongly with a nearby left prefrontal region (BA 45) associated with semantic processing, as well as with a superior parietal region associated with visuospatial processing. Taken together, these data suggest a domain-general role for left RLPFC in monitoring and/or integrating task-relevant knowledge representations and showcase how its function cannot solely be attributed to episodic memory or analogical reasoning computations. © 2015 Wiley Periodicals, Inc.
Brain-Heart Pathways to Blood Pressure-Related Hypoalgesia.
Ottaviani, Cristina; Fagioli, Sabrina; Mattei, Eugenio; Censi, Federica; Edwards, Louisa; Macaluso, Emiliano; Bozzali, Marco; Critchley, Hugo; Calcagnini, Giovanni
2018-03-28
High blood pressure (BP) is associated with reduced pain sensitivity, known as BP-related hypoalgesia. The underlying neural mechanisms remain uncertain, yet arterial baroreceptor signaling, occurring at cardiac systole, is implicated. We examined normotensives using functional neuroimaging (fMRI) and pain stimulation during distinct phases of the cardiac cycle to test the hypothesized neural mediation of baroreceptor-induced attenuation of pain. Eighteen participants (10 women; 32.7 ± 6.5 years) underwent BP monitoring over one week at home, and individual pain thresholds were determined in the lab. Subsequently, participants were administered unpredictable painful and non-painful electrocutaneous shocks (stimulus type), timed to occur either at systole or diastole (cardiac phase) in an event-related design. After each trial, participants evaluated their subjective experience. Subjective pain was lower for painful stimuli administered at systole compared to diastole, F1, 2283 = 4.82; p = 0.03. Individuals with higher baseline BP demonstrated overall lower pain perception, F1, 2164 = 10.47; p < 0.0001. Within the brain, painful stimulation activated somatosensory areas, prefrontal cortex, cingulate cortex, posterior insula, amygdala, and the thalamus. Stimuli delivered during systole (concurrent with baroreceptor discharge) activated areas associated with heightened parasympathetic drive. No stimulus type x cardiac phase interaction emerged except for a small cluster located in the right parietal cortex. We confirm the negative associations between BP and pain, highlighting the antinociceptive impact of baroreceptor discharge. Neural substrates associated with baroreceptor/BP-related hypoalgesia include superior parietal lobule, precentral and lingual gyrus, regions typically involved in the cognitive aspects of pain experience.
Cappe, Céline; Morel, Anne; Barone, Pascal
2009-01-01
Multisensory and sensorimotor integrations are usually considered to occur in superior colliculus and cerebral cortex, but few studies proposed the thalamus as being involved in these integrative processes. We investigated whether the organization of the thalamocortical (TC) systems for different modalities partly overlap, representing an anatomical support for multisensory and sensorimotor interplay in thalamus. In 2 macaque monkeys, 6 neuroanatomical tracers were injected in the rostral and caudal auditory cortex, posterior parietal cortex (PE/PEa in area 5), and dorsal and ventral premotor cortical areas (PMd, PMv), demonstrating the existence of overlapping territories of thalamic projections to areas of different modalities (sensory and motor). TC projections, distinct from the ones arising from specific unimodal sensory nuclei, were observed from motor thalamus to PE/PEa or auditory cortex and from sensory thalamus to PMd/PMv. The central lateral nucleus and the mediodorsal nucleus project to all injected areas, but the most significant overlap across modalities was found in the medial pulvinar nucleus. The present results demonstrate the presence of thalamic territories integrating different sensory modalities with motor attributes. Based on the divergent/convergent pattern of TC and corticothalamic projections, 4 distinct mechanisms of multisensory and sensorimotor interplay are proposed. PMID:19150924
Visioning in the brain: an fMRI study of inspirational coaching and mentoring.
Jack, Anthony I; Boyatzis, Richard E; Khawaja, Masud S; Passarelli, Angela M; Leckie, Regina L
2013-01-01
Effective coaching and mentoring is crucial to the success of individuals and organizations, yet relatively little is known about its neural underpinnings. Coaching and mentoring to the Positive Emotional Attractor (PEA) emphasizes compassion for the individual's hopes and dreams and has been shown to enhance a behavioral change. In contrast, coaching to the Negative Emotional Attractor (NEA), by focusing on externally defined criteria for success and the individual's weaknesses in relation to them, does not show sustained change. We used fMRI to measure BOLD responses associated with these two coaching styles. We hypothesized that PEA coaching would be associated with increased global visual processing and with engagement of the parasympathetic nervous system (PNS), while the NEA coaching would involve greater engagement of the sympathetic nervous system (SNS). Regions showing more activity in PEA conditions included the lateral occipital cortex, superior temporal cortex, medial parietal, subgenual cingulate, nucleus accumbens, and left lateral prefrontal cortex. We relate these activations to visioning, PNS activity, and positive affect. Regions showing more activity in NEA conditions included medial prefrontal regions and right lateral prefrontal cortex. We relate these activations to SNS activity, self-trait attribution and negative affect.
Liu, Tao; Li, Jianjun; Huang, Shixiong; Li, Changqinq; Zhao, Zhongyan; Wen, Guoqiang; Chen, Feng
2017-10-13
We used resting-state functional magnetic resonance imaging to investigate the global spontaneous neural activity involved in pathological laughing and crying after stroke. Twelve pathological laughing and crying patients with isolated pontine infarction were included, along with 12 age- and gender-matched acute isolated pontine infarction patients without pathological laughing and crying, and 12 age- and gender-matched healthy controls. We examined both the amplitude of low-frequency fluctuation and the regional homogeneity in order to comprehensively evaluate the intrinsic activity in patients with post-stroke pathological laughing and crying. In the post-stroke pathological laughing and crying group, changes in these measures were observed mainly in components of the default mode network (medial prefrontal cortex/anterior cingulate cortex, middle temporal gyrus, inferior temporal gyrus, superior frontal gyrus, middle frontal gyrus and inferior parietal lobule), sensorimotor network (supplementary motor area, precentral gyrus and paracentral lobule), affective network (medial prefrontal cortex/anterior cingulate cortex, parahippocampal gyrus, middle temporal gyrus and inferior temporal gyrus) and cerebellar lobes (cerebellum posterior lobe). We therefore speculate that when disinhibition of the volitional system is lost, increased activation of the emotional system causes pathological laughing and crying.
Kurland, Jacquie; Cortes, Carlos R; Wilke, Marko; Sperling, Anne J; Lott, Susan N; Tagamets, Malle A; VanMeter, John; Friedman, Rhonda B
2009-01-01
Patients with phonologic alexia can be trained to read semantically impoverished words (e.g., functors) by pairing them with phonologically-related semantically rich words (e.g, nouns). What mechanisms underlie success in this cognitive re-training approach? Does the mechanism change if the skill is “overlearned”, i.e., practiced beyond criterion? We utilized fMRI pre- and post-treatment, and after overlearning, to assess treatment-related functional reorganization in a patient with phonologic alexia, two years post left temporoparietal stroke. Pre-treatment, there were no statistically significant differences in activation profiles across the sets of words. Post-treatment, accuracy on the two trained sets improved. Compared with untrained words, reading trained words recruited larger and more significant clusters of activation in the right hemisphere, including right inferior frontal and inferior parietal cortex. Post-overlearning, with near normal performance on overlearned words, predominant activation shifted to left hemisphere regions, including perilesional activation in superior parietal lobe, when reading overlearned vs. untrained words. PMID:20119495
Four-dimensional maps of the human somatosensory system
Avanzini, Pietro; Abdollahi, Rouhollah O.; Sartori, Ivana; Caruana, Fausto; Pelliccia, Veronica; Casaceli, Giuseppe; Mai, Roberto; Lo Russo, Giorgio; Rizzolatti, Giacomo; Orban, Guy A.
2016-01-01
A fine-grained description of the spatiotemporal dynamics of human brain activity is a major goal of neuroscientific research. Limitations in spatial and temporal resolution of available noninvasive recording and imaging techniques have hindered so far the acquisition of precise, comprehensive four-dimensional maps of human neural activity. The present study combines anatomical and functional data from intracerebral recordings of nearly 100 patients, to generate highly resolved four-dimensional maps of human cortical processing of nonpainful somatosensory stimuli. These maps indicate that the human somatosensory system devoted to the hand encompasses a widespread network covering more than 10% of the cortical surface of both hemispheres. This network includes phasic components, centered on primary somatosensory cortex and neighboring motor, premotor, and inferior parietal regions, and tonic components, centered on opercular and insular areas, and involving human parietal rostroventral area and ventral medial-superior-temporal area. The technique described opens new avenues for investigating the neural basis of all levels of cortical processing in humans. PMID:26976579
Four-dimensional maps of the human somatosensory system.
Avanzini, Pietro; Abdollahi, Rouhollah O; Sartori, Ivana; Caruana, Fausto; Pelliccia, Veronica; Casaceli, Giuseppe; Mai, Roberto; Lo Russo, Giorgio; Rizzolatti, Giacomo; Orban, Guy A
2016-03-29
A fine-grained description of the spatiotemporal dynamics of human brain activity is a major goal of neuroscientific research. Limitations in spatial and temporal resolution of available noninvasive recording and imaging techniques have hindered so far the acquisition of precise, comprehensive four-dimensional maps of human neural activity. The present study combines anatomical and functional data from intracerebral recordings of nearly 100 patients, to generate highly resolved four-dimensional maps of human cortical processing of nonpainful somatosensory stimuli. These maps indicate that the human somatosensory system devoted to the hand encompasses a widespread network covering more than 10% of the cortical surface of both hemispheres. This network includes phasic components, centered on primary somatosensory cortex and neighboring motor, premotor, and inferior parietal regions, and tonic components, centered on opercular and insular areas, and involving human parietal rostroventral area and ventral medial-superior-temporal area. The technique described opens new avenues for investigating the neural basis of all levels of cortical processing in humans.
Kato, Yutaka; Muramatsu, Taro; Kato, Motoichiro; Shibukawa, Yoshiyuki; Shintani, Masuro; Mimura, Masaru
2011-01-01
Introduction Patients with schizophrenia commonly exhibit deficits of non-verbal communication in social contexts, which may be related to cognitive dysfunction that impairs recognition of biological motion. Although perception of biological motion is known to be mediated by the mirror neuron system, there have been few empirical studies of this system in patients with schizophrenia. Methods Using magnetoencephalography, we examined whether antipsychotic-free schizophrenia patients displayed mirror neuron system dysfunction during observation of biological motion (jaw movement of another individual). Results Compared with normal controls, the patients with schizophrenia had fewer components of both the waveform and equivalent current dipole, suggesting aberrant brain activity resulting from dysfunction of the right inferior parietal cortex. They also lacked the changes of alpha band and gamma band oscillation seen in normal controls, and had weaker phase-locking factors and gamma-synchronization predominantly in right parietal cortex. Conclusions Our findings demonstrate that untreated patients with schizophrenia exhibit aberrant mirror neuron system function based on the right inferior parietal cortex, which is characterized by dysfunction of gamma-synchronization in the right parietal lobe during observation of biological motion. PMID:22132217
Surface-based morphometry reveals the neuroanatomical basis of the five-factor model of personality
Riccelli, Roberta; Toschi, Nicola; Nigro, Salvatore; Terracciano, Antonio
2017-01-01
Abstract The five-factor model (FFM) is a widely used taxonomy of human personality; yet its neuro anatomical basis remains unclear. This is partly because past associations between gray-matter volume and FFM were driven by different surface-based morphometry (SBM) indices (i.e. cortical thickness, surface area, cortical folding or any combination of them). To overcome this limitation, we used Free-Surfer to study how variability in SBM measures was related to the FFM in n = 507 participants from the Human Connectome Project. Neuroticism was associated with thicker cortex and smaller area and folding in prefrontal–temporal regions. Extraversion was linked to thicker pre-cuneus and smaller superior temporal cortex area. Openness was linked to thinner cortex and greater area and folding in prefrontal–parietal regions. Agreeableness was correlated to thinner prefrontal cortex and smaller fusiform gyrus area. Conscientiousness was associated with thicker cortex and smaller area and folding in prefrontal regions. These findings demonstrate that anatomical variability in prefrontal cortices is linked to individual differences in the socio-cognitive dispositions described by the FFM. Cortical thickness and surface area/folding were inversely related each others as a function of different FFM traits (neuroticism, extraversion and consciousness vs openness), which may reflect brain maturational effects that predispose or protect against psychiatric disorders. PMID:28122961
Wesley, Michael J; Hanlon, Colleen A; Porrino, Linda J
2011-01-30
Chronic marijuana users (MJ Users) perform poorly on the Iowa Gambling Task (IGT), a complex decision-making task in which monetary wins and losses guide strategy development. This functional magnetic resonance imaging (MRI) study sought to determine if the poor performance of MJ Users was related to differences in brain activity while evaluating wins and losses during the strategy development phase of the IGT. MJ Users (16) and Controls (16) performed a modified IGT in an MRI scanner. Performance was tracked and functional activity in response to early wins and losses was examined. While the MJ Users continued to perform poorly at the end of the task, there was no difference in group performance during the initial strategy development phase. During this phase, before the emergence of behavioral differences, Controls exhibited significantly greater activity in response to losses in the anterior cingulate cortex, medial frontal cortex, precuneus, superior parietal lobe, occipital lobe and cerebellum as compared to MJ Users. Furthermore, in Controls, but not MJ Users, the functional response to losses in the anterior cingulate cortex, ventral medial prefrontal cortex and rostral prefrontal cortex positively correlated with performance over time. These data suggest MJ Users are less sensitive to negative feedback during strategy development. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Face processing pattern under top-down perception: a functional MRI study
NASA Astrophysics Data System (ADS)
Li, Jun; Liang, Jimin; Tian, Jie; Liu, Jiangang; Zhao, Jizheng; Zhang, Hui; Shi, Guangming
2009-02-01
Although top-down perceptual process plays an important role in face processing, its neural substrate is still puzzling because the top-down stream is extracted difficultly from the activation pattern associated with contamination caused by bottom-up face perception input. In the present study, a novel paradigm of instructing participants to detect faces from pure noise images is employed, which could efficiently eliminate the interference of bottom-up face perception in topdown face processing. Analyzing the map of functional connectivity with right FFA analyzed by conventional Pearson's correlation, a possible face processing pattern induced by top-down perception can be obtained. Apart from the brain areas of bilateral fusiform gyrus (FG), left inferior occipital gyrus (IOG) and left superior temporal sulcus (STS), which are consistent with a core system in the distributed cortical network for face perception, activation induced by top-down face processing is also found in these regions that include the anterior cingulate gyrus (ACC), right oribitofrontal cortex (OFC), left precuneus, right parahippocampal cortex, left dorsolateral prefrontal cortex (DLPFC), right frontal pole, bilateral premotor cortex, left inferior parietal cortex and bilateral thalamus. The results indicate that making-decision, attention, episodic memory retrieving and contextual associative processing network cooperate with general face processing regions to process face information under top-down perception.
Induction of motor associative plasticity in the posterior parietal cortex-primary motor network.
Chao, Chi-Chao; Karabanov, Anke Ninija; Paine, Rainer; Carolina de Campos, Ana; Kukke, Sahana N; Wu, Tianxia; Wang, Han; Hallett, Mark
2015-02-01
There is anatomical and functional connectivity between the primary motor cortex (M1) and posterior parietal cortex (PPC) that plays a role in sensorimotor integration. In this study, we applied corticocortical paired-associative stimuli to ipsilateral PPC and M1 (parietal ccPAS) in healthy right-handed subjects to test if this procedure could modulate M1 excitability and PPC-M1 connectivity. One hundred and eighty paired transcranial magnetic stimuli to the PPC and M1 at an interstimulus interval (ISI) of 8 ms were delivered at 0.2 Hz. We found that parietal ccPAS in the left hemisphere increased the excitability of conditioned left M1 assessed by motor evoked potentials (MEPs) and the input-output curve. Motor behavior assessed by the Purdue pegboard task was unchanged compared with controls. At baseline, conditioning stimuli over the left PPC potentiated MEPs from left M1 when ISI was 8 ms. This interaction significantly attenuated at 60 min after left parietal ccPAS. Additional experiments showed that parietal ccPAS induced plasticity was timing-dependent, was absent if ISI was 100 ms, and could also be seen in the right hemisphere. Our results suggest that parietal ccPAS can modulate M1 excitability and PPC-M1 connectivity and is a new approach to modify motor excitability and sensorimotor interaction. Published by Oxford University Press 2013. This work is written by (a) US Government employee(s) and is in the public domain in the US.
ERIC Educational Resources Information Center
Frak, Victor; Paulignan, Yves; Jeannerod, Marc; Michel, Francois; Cohen, Henri
2006-01-01
Prehension movements of the right hand were recorded in a right-handed man (AC), with an injury to the left posterior parietal cortex (PPC) and with a section of the left half of the splenium. The kinematic analysis of AC's grasping movements in direct and perturbed conditions was compared to that of five control subjects. A novel effect in…
Cerebral lateralization of praxis in right- and left-handedness: same pattern, different strength.
Vingerhoets, Guy; Acke, Frederic; Alderweireldt, Ann-Sofie; Nys, Jo; Vandemaele, Pieter; Achten, Eric
2012-04-01
We aimed to investigate the effect of hand effector and handedness on the cerebral lateralization of pantomiming learned movements. Fourteen right-handed and 14 left-handed volunteers performed unimanual and bimanual tool-use pantomimes with their dominant or nondominant hand during fMRI. A left hemispheric lateralization was observed in the right- and left-handed group regardless of which hand(s) performed the task. Asymmetry was most marked in the dorsolateral prefrontal cortex (DLPFC), premotor cortex (PMC), and superior and inferior parietal lobules (SPL and IPL). Unimanual pantomimes did not reveal any significant differences in asymmetric cerebral activation patterns between left- and right-handers. Bimanual pantomimes showed increased left premotor and posterior parietal activation in left- and right-handers. Lateralization indices (LI) of the 10% most active voxels in DLPFC, PMC, SPL, and IPL were calculated for each individual in a contrast that compared all tool versus all control conditions. Left-handers showed a significantly reduced overall LI compared with right-handers. This was mainly due to diminished asymmetry in the IPL and SPL. We conclude that the recollection and pantomiming of learned gestures recruits a similar left lateralized activation pattern in right and left-handed individuals. Handedness only influences the strength (not the side) of the lateralization, with left-handers showing a reduced degree of asymmetry that is most readily observed over the posterior parietal region. Together with similar findings in language and visual processing, these results point to a lesser hemispheric specialization in left-handers that may be considered in the cost/benefit assessment to explain the disproportionate handedness polymorphism in humans. Copyright © 2011 Wiley Periodicals, Inc.
A case of tactile agnosia with a lesion restricted to the post-central gyrus.
Estañol, Bruno; Baizabal-Carvallo, José Fidel; Sentíes-Madrid, Horacio
2008-01-01
Tactile agnosia has been described after lesions of the primary sensory cortex but the exact location and extension of those lesions is not clear. We report the clinical features and imaging findings in a patient with an acute ischemic stroke restricted to the primary sensory area (S1). A 73-year-old man had a sudden onset of a left alien hand, without left hemiparesis. Neurological examination showed intact primary sensory functions, but impaired recognition of shape, size (macrogeometrical) and texture (microgeometrical) of objects; damage confined to the post-central gyrus, sparing the posterior parietal cortex was demonstrated on MRI. An embolic occlusion of the anterior parietal artery was suspected as mechanism of stroke. Tactile agnosia with impaired microgeometrical and macrogeometrical features' recognition can result from a single lesion in the primary sensory cortex (S1) in the right parietal hemisphere, sparing other regions of the cerebral cortex which presumably participate in tactile object recognition.
Deng, Z; Wei, D; Xue, S; Du, X; Hitchman, G; Qiu, J
2014-09-05
Successful emotion regulation is a fundamental prerequisite for well-being and dysregulation may lead to psychopathology. The ability to inhibit spontaneous emotions while behaving in accordance with desired goals is an important dimension of emotion regulation and can be measured using emotional conflict resolution tasks. Few studies have investigated the gray matter correlates underlying successful emotional conflict resolution at the whole-brain level. We had 190 adults complete an emotional conflict resolution task (face-word task) and examined the brain regions significantly correlated with successful emotional conflict resolution using voxel-based morphometry. We found successful emotional conflict resolution was associated with increased regional gray matter density in widely distributed brain regions. These regions included the dorsal anterior cingulate/dorsal medial prefrontal cortex, ventral medial prefrontal cortex, supplementary motor area, amygdala, ventral striatum, precuneus, posterior cingulate cortex, inferior parietal lobule, superior temporal gyrus and fusiform face area. Together, our results indicate that individual differences in emotional conflict resolution ability may be attributed to regional structural differences across widely distributed brain regions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
fMRI evidence for strategic decision-making during resolution of pronoun reference
McMillan, Corey T.; Clark, Robin; Gunawardena, Delani; Ryant, Neville; Grossman, Murray
2012-01-01
Pronouns are extraordinarily common in daily language yet little is known about the neural mechanisms that support decisions about pronoun reference. We propose a large-scale neural network for resolving pronoun reference that consists of two components. First, a core language network in peri-Sylvian cortex supports syntactic and semantic resources for interpreting pronoun meaning in sentences. Second, a frontal-parietal network that supports strategic decision-making is recruited to support probabilistic and risk-related components of resolving a pronoun’s referent. In an fMRI study of healthy young adults, we observed activation of left inferior frontal and superior temporal cortex, consistent with a language network. We also observed activation of brain regions not associated with traditional language areas. By manipulating the context of the pronoun, we were able to demonstrate recruitment of dorsolateral prefrontal cortex during probabilistic evaluation of a pronoun’s reference, and orbital frontal activation when a pronoun must adopt a risky referent. Together, these findings are consistent with a two-component model for resolving a pronoun’s reference that includes neuroanatomic regions supporting core linguistic and decision-making mechanisms. PMID:22245014
Duffau, Hugues; Leroy, Marianne; Gatignol, Peggy
2008-12-01
We have studied the configuration of the cortico-subcortical language networks within the right hemisphere (RH) in nine left-handers, being operated on while awake for a cerebral glioma. Intraoperatively, language was mapped using cortico-subcortical electrostimulation, to avoid permanent deficit. In frontal regions, cortical stimulation elicited articulatory disorders (ventral premotor cortex), anomia (dorsal premotor cortex), speech arrest (pars opercularis), and semantic paraphasia (dorsolateral prefrontal cortex). Insular stimulation generated dysarthria, parietal stimulation phonemic paraphasias, and temporal stimulation semantic paraphasias. Subcortically, the superior longitudinal fasciculus (inducing phonological disturbances when stimulated), inferior occipito-frontal fasciculus (eliciting semantic disturbances during stimulation), subcallosal fasciculus (generating control disturbances when stimulated), and common final pathway (inducing articulatory disorders during stimulation) were identified. These cortical and subcortical structures were preserved, avoiding permanent aphasia, despite a transient immediate postoperative language worsening. Both intraoperative results and postsurgical transitory dysphasia support the major role of the RH in language in left-handers, and provide new insights into the anatomo-functional cortico-subcortical organization of the language networks in the RH-suggesting a "mirror" configuration in comparison to the left hemisphere.
Cognitive strategy use as an index of developmental differences in neural responses to feedback.
Andersen, Lau M; Visser, Ingmar; Crone, Eveline A; Koolschijn, P Cédric M P; Raijmakers, Maartje E J
2014-12-01
Developmental differences in dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), and superior parietal cortex (SPC) activation are associated with differences in how children, adolescents, and adults learn from performance feedback in rule-learning tasks (Crone, Zanolie, Leijenhorst, Westenberg, & Rombouts, 2008). Both maturational differences and performance differences can potentially explain variance in functional brain activation. To disentangle those effects, we established strategy differences in the performance of participants on the task of Crone et al. (2008) by the application of latent mixture models (McLachlan & Peel, 2000). We found 4 categorically different strategies, which were divided across age groups. Both adults and adolescents were distributed among all strategy groups except for the worst performing one, whereas children were distributed among all strategy groups except for the best performing one. Strategy use was a mediator and largely explained the relation between age and variance in activation patterns in the DLPFC and the SPC but not in the ACC. These findings are interpreted vis-à-vis age versus performance predictors of brain development. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI.
Lerch, Jason P; Worsley, Keith; Shaw, W Philip; Greenstein, Deanna K; Lenroot, Rhoshel K; Giedd, Jay; Evans, Alan C
2006-07-01
We introduce MACACC-Mapping Anatomical Correlations Across Cerebral Cortex-to study correlated changes within and across different cortical networks. The principal topic of investigation is whether the thickness of one area of the cortex changes in a statistically correlated fashion with changes in thickness of other cortical regions. We further extend these methods by introducing techniques to test whether different population groupings exhibit significantly varying MACACC patterns. The methods are described in detail and applied to a normal childhood development population (n = 292), and show that association cortices have the highest correlation strengths. Taking Brodmann Area (BA) 44 as a seed region revealed MACACC patterns strikingly similar to tractography maps obtained from diffusion tensor imaging. Furthermore, the MACACC map of BA 44 changed with age, older subjects featuring tighter correlations with BA 44 in the anterior portions of the superior temporal gyri. Lastly, IQ-dependent MACACC differences were investigated, revealing steeper correlations between BA 44 and multiple frontal and parietal regions for the higher IQ group, most significantly (t = 4.0) in the anterior cingulate.
Hayes, Jessica M; Tang, Lingfei; Viviano, Raymond P; van Rooden, Sanneke; Ofen, Noa; Damoiseaux, Jessica S
2017-12-01
Subjective memory complaints, the perceived decline in cognitive abilities in the absence of clinical deficits, may precede Alzheimer's disease. Individuals with subjective memory complaints show differential brain activation during memory encoding; however, whether such differences contribute to successful memory formation remains unclear. Here, we investigated how subsequent memory effects, activation which is greater for hits than misses during an encoding task, differed between healthy older adults aged 50 to 85 years with (n = 23) and without (n = 41) memory complaints. Older adults with memory complaints, compared to those without, showed lower subsequent memory effects in the occipital lobe, superior parietal lobe, and posterior cingulate cortex. In addition, older adults with more memory complaints showed a more negative subsequent memory effects in areas of the default mode network, including the posterior cingulate cortex, precuneus, and ventromedial prefrontal cortex. Our findings suggest that for successful memory formation, older adults with subjective memory complaints rely on distinct neural mechanisms which may reflect an overall decreased task-directed attention. Copyright © 2017 Elsevier Inc. All rights reserved.
Wallace, Gregory L; Happé, Francesca; Giedd, Jay N
2009-05-27
Neuropsychological functioning and brain morphometry in a savant (case GW) with an autism spectrum disorder (ASD) and both calendar calculation and artistic skills are quantified and compared with small groups of neurotypical controls. Good memory, mental calculation and visuospatial processing, as well as (implicit) knowledge of calendar structure and 'weak' central coherence characterized the cognitive profile of case GW. Possibly reflecting his savant skills, the superior parietal region of GW's cortex was the only area thicker (while areas such as the superior and medial prefrontal, middle temporal and motor cortices were thinner) than that of a neurotypical control group. Taken from the perspective of learning/practice-based models, skills in domains (e.g. calendars, art, music) that capitalize upon strengths often associated with ASD, such as detail-focused processing, are probably further enhanced through over-learning and massive exposure, and reflected in atypical brain structure.
Wallace, Gregory L.; Happé, Francesca; Giedd, Jay N.
2009-01-01
Neuropsychological functioning and brain morphometry in a savant (case GW) with an autism spectrum disorder (ASD) and both calendar calculation and artistic skills are quantified and compared with small groups of neurotypical controls. Good memory, mental calculation and visuospatial processing, as well as (implicit) knowledge of calendar structure and ‘weak’ central coherence characterized the cognitive profile of case GW. Possibly reflecting his savant skills, the superior parietal region of GW's cortex was the only area thicker (while areas such as the superior and medial prefrontal, middle temporal and motor cortices were thinner) than that of a neurotypical control group. Taken from the perspective of learning/practice-based models, skills in domains (e.g. calendars, art, music) that capitalize upon strengths often associated with ASD, such as detail-focused processing, are probably further enhanced through over-learning and massive exposure, and reflected in atypical brain structure. PMID:19528026
Semantic retrieval during overt picture description: Left anterior temporal or the parietal lobe?
Geranmayeh, Fatemeh; Leech, Robert; Wise, Richard J S
2015-09-01
Retrieval of semantic representations is a central process during overt speech production. There is an increasing consensus that an amodal semantic 'hub' must exist that draws together modality-specific representations of concepts. Based on the distribution of atrophy and the behavioral deficit of patients with the semantic variant of fronto-temporal lobar degeneration, it has been proposed that this hub is localized within both anterior temporal lobes (ATL), and is functionally connected with verbal 'output' systems via the left ATL. An alternative view, dating from Geschwind's proposal in 1965, is that the angular gyrus (AG) is central to object-based semantic representations. In this fMRI study we examined the connectivity of the left ATL and parietal lobe (PL) with whole brain networks known to be activated during overt picture description. We decomposed each of these two brain volumes into 15 regions of interest (ROIs), using independent component analysis. A dual regression analysis was used to establish the connectivity of each ROI with whole brain-networks. An ROI within the left anterior superior temporal sulcus (antSTS) was functionally connected to other parts of the left ATL, including anterior ventromedial left temporal cortex (partially attenuated by signal loss due to susceptibility artifact), a large left dorsolateral prefrontal region (including 'classic' Broca's area), extensive bilateral sensory-motor cortices, and the length of both superior temporal gyri. The time-course of this functionally connected network was associated with picture description but not with non-semantic baseline tasks. This system has the distribution expected for the production of overt speech with appropriate semantic content, and the auditory monitoring of the overt speech output. In contrast, the only left PL ROI that showed connectivity with brain systems most strongly activated by the picture-description task, was in the superior parietal lobe (supPL). This region showed connectivity with predominantly posterior cortical regions required for the visual processing of the pictorial stimuli, with additional connectivity to the dorsal left AG and a small component of the left inferior frontal gyrus. None of the other PL ROIs that included part of the left AG were activated by Speech alone. The best interpretation of these results is that the left antSTS connects the proposed semantic hub (specifically localized to ventral anterior temporal cortex based on clinical neuropsychological studies) to posterior frontal regions and sensory-motor cortices responsible for the overt production of speech. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
A quantitative meta-analysis and review of motor learning in the human brain
Hardwick, Robert M.; Rottschy, Claudia; Miall, R. Chris; Eickhoff, Simon B.
2013-01-01
Neuroimaging studies have improved our understanding of which brain structures are involved in motor learning. Despite this, questions remain regarding the areas that contribute consistently across paradigms with different task demands. For instance, sensorimotor tasks focus on learning novel movement kinematics and dynamics, while serial response time task (SRTT) variants focus on sequence learning. These differing task demands are likely to elicit quantifiably different patterns of neural activity on top of a potentially consistent core network. The current study identified consistent activations across 70 motor learning experiments using activation likelihood estimation (ALE) meta-analysis. A global analysis of all tasks revealed a bilateral cortical–subcortical network consistently underlying motor learning across tasks. Converging activations were revealed in the dorsal premotor cortex, supplementary motor cortex, primary motor cortex, primary somatosensory cortex, superior parietal lobule, thalamus, putamen and cerebellum. These activations were broadly consistent across task specific analyses that separated sensorimotor tasks and SRTT variants. Contrast analysis indicated that activity in the basal ganglia and cerebellum was significantly stronger for sensorimotor tasks, while activity in cortical structures and the thalamus was significantly stronger for SRTT variants. Additional conjunction analyses then indicated that the left dorsal premotor cortex was activated across all analyses considered, even when controlling for potential motor confounds. The highly consistent activation of the left dorsal premotor cortex suggests it is a critical node in the motor learning network. PMID:23194819
Microstructure of frontoparietal connections predicts individual resistance to sleep deprivation.
Cui, Jiaolong; Tkachenko, Olga; Gogel, Hannah; Kipman, Maia; Preer, Lily A; Weber, Mareen; Divatia, Shreya C; Demers, Lauren A; Olson, Elizabeth A; Buchholz, Jennifer L; Bark, John S; Rosso, Isabelle M; Rauch, Scott L; Killgore, William D S
2015-02-01
Sleep deprivation (SD) can degrade cognitive functioning, but growing evidence suggests that there are large individual differences in the vulnerability to this effect. Some evidence suggests that baseline differences in the responsiveness of a fronto-parietal attention system that is activated during working memory (WM) tasks may be associated with the ability to sustain vigilance during sleep deprivation. However, the neurocircuitry underlying this network remains virtually unexplored. In this study, we employed diffusion tensor imaging (DTI) to investigate the association between the microstructure of the axonal pathway connecting the frontal and parietal regions--i.e., the superior longitudinal fasciculus (SLF)--and individual resistance to SD. Thirty healthy participants (15 males) aged 20-43 years underwent functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) at rested wakefulness prior to a 28-hour period of SD. Task-related fronto-parietal fMRI activation clusters during a Sternberg WM Task were localized and used as seed regions for probabilistic fiber tractography. DTI metrics, including fractional anisotropy, mean diffusivity, axial and radial diffusivity were measured in the SLF. The psychomotor vigilance test (PVT) was used to evaluate resistance to SD. We found that activation in the left inferior parietal lobule (IPL) and dorsolateral prefrontal cortex (DLPFC) positively correlated with resistance. Higher fractional anisotropy of the left SLF comprising the primary axons connecting IPL and DLPFC was also associated with better resistance. These findings suggest that individual differences in resistance to SD are associated with the functional responsiveness of a fronto-parietal attention system and the microstructural properties of the axonal interconnections. Copyright © 2014 Elsevier Inc. All rights reserved.
Deviance detection by a P3-like response in rat posterior parietal cortex
Imada, Allicia; Morris, Allyn; Wiest, Michael C.
2013-01-01
To better understand sensory processing in frontal and parietal cortex of the rat, and to further assess the rat as a model of human frontal-parietal processing, we recorded local field potentials (LFPs) from microelectrode arrays implanted in medio-dorsal frontal, and posterior parietal cortex of awake rats as they were presented with a succession of frequent “standard” tones and infrequent “oddball” tones. Extending previous results from surface recordings we found, after controlling for the frequencies of the standard and oddball tones, that rat frontal and parietal-evoked LFPs (eLFPs) exhibit significantly larger N1 (~40 ms latency), P2 (~100 ms), N2 (~160 ms), P3E (~200–240 ms), and P3L (~300–500 ms) amplitudes after an oddball tone. These neural oddball effects could contribute to the automatic allocation of attention to rare stimuli. To determine whether these enhanced responses to rare stimuli could be accounted for in terms of stimulus-specific neural adaptation (SSA), we also recorded during single-tone control sessions involving frequent standard, or infrequent oddball beeps alone. We compared the difference between rare-tone and frequent-tone response amplitudes in the two-tone context (oddball effect) or single-tone context which isolates the contribution of SSA (SSA effect). An analysis of variance (ANOVA) revealed a significant main effect of tone context on rare-tone response enhancements, showing that the rare-tone enhancements were stronger in the two-tone context than the single-tone context. This difference between tone contexts was greatest at the early P3E peak (200–240 ms post-beep) in parietal cortex, suggesting true deviance detection by this evoked response component, which cannot be accounted for in terms of simple models of SSA. PMID:23316147
Jouen, A L; Ellmore, T M; Madden, C J; Pallier, C; Dominey, P F; Ventre-Dominey, J
2015-02-01
This research tests the hypothesis that comprehension of human events will engage an extended semantic representation system, independent of the input modality (sentence vs. picture). To investigate this, we examined brain activation and connectivity in 19 subjects who read sentences and viewed pictures depicting everyday events, in a combined fMRI and DTI study. Conjunction of activity in understanding sentences and pictures revealed a common fronto-temporo-parietal network that included the middle and inferior frontal gyri, the parahippocampal-retrosplenial complex, the anterior and middle temporal gyri, the inferior parietal lobe in particular the temporo-parietal cortex. DTI tractography seeded from this temporo-parietal cortex hub revealed a multi-component network reaching into the temporal pole, the ventral frontal pole and premotor cortex. A significant correlation was found between the relative pathway density issued from the temporo-parietal cortex and the imageability of sentences for individual subjects, suggesting a potential functional link between comprehension and the temporo-parietal connectivity strength. These data help to define a "meaning" network that includes components of recently characterized systems for semantic memory, embodied simulation, and visuo-spatial scene representation. The network substantially overlaps with the "default mode" network implicated as part of a core network of semantic representation, along with brain systems related to the formation of mental models, and reasoning. These data are consistent with a model of real-world situational understanding that is highly embodied. Crucially, the neural basis of this embodied understanding is not limited to sensorimotor systems, but extends to the highest levels of cognition, including autobiographical memory, scene analysis, mental model formation, reasoning and theory of mind. Copyright © 2014 Elsevier Inc. All rights reserved.
Contribution of the posterior parietal cortex in reaching, grasping, and using objects and tools
Vingerhoets, Guy
2014-01-01
Neuropsychological and neuroimaging data suggest a differential contribution of posterior parietal regions during the different components of a transitive gesture. Reaching requires the integration of object location and body position coordinates and reaching tasks elicit bilateral activation in different foci along the intraparietal sulcus. Grasping requires a visuomotor match between the object's shape and the hand's posture. Lesion studies and neuroimaging confirm the importance of the anterior part of the intraparietal sulcus for human grasping. Reaching and grasping reveal bilateral activation that is generally more prominent on the side contralateral to the hand used or the hemifield stimulated. Purposeful behavior with objects and tools can be assessed in a variety of ways, including actual use, pantomimed use, and pure imagery of manipulation. All tasks have been shown to elicit robust activation over the left parietal cortex in neuroimaging, but lesion studies have not always confirmed these findings. Compared to pantomimed or imagined gestures, actual object and tool use typically produces activation over the left primary somatosensory region. Neuroimaging studies on pantomiming or imagery of tool use in healthy volunteers revealed neural responses in possibly separate foci in the left supramarginal gyrus. In sum, the parietal contribution of reaching and grasping of objects seems to depend on a bilateral network of intraparietal foci that appear organized along gradients of sensory and effector preferences. Dorsal and medial parietal cortex appears to contribute to the online monitoring/adjusting of the ongoing prehensile action, whereas the functional use of objects and tools seems to involve the inferior lateral parietal cortex. This functional input reveals a clear left lateralized activation pattern that may be tuned to the integration of acquired knowledge in the planning and guidance of the transitive movement. PMID:24634664
Contribution of the posterior parietal cortex in reaching, grasping, and using objects and tools.
Vingerhoets, Guy
2014-01-01
Neuropsychological and neuroimaging data suggest a differential contribution of posterior parietal regions during the different components of a transitive gesture. Reaching requires the integration of object location and body position coordinates and reaching tasks elicit bilateral activation in different foci along the intraparietal sulcus. Grasping requires a visuomotor match between the object's shape and the hand's posture. Lesion studies and neuroimaging confirm the importance of the anterior part of the intraparietal sulcus for human grasping. Reaching and grasping reveal bilateral activation that is generally more prominent on the side contralateral to the hand used or the hemifield stimulated. Purposeful behavior with objects and tools can be assessed in a variety of ways, including actual use, pantomimed use, and pure imagery of manipulation. All tasks have been shown to elicit robust activation over the left parietal cortex in neuroimaging, but lesion studies have not always confirmed these findings. Compared to pantomimed or imagined gestures, actual object and tool use typically produces activation over the left primary somatosensory region. Neuroimaging studies on pantomiming or imagery of tool use in healthy volunteers revealed neural responses in possibly separate foci in the left supramarginal gyrus. In sum, the parietal contribution of reaching and grasping of objects seems to depend on a bilateral network of intraparietal foci that appear organized along gradients of sensory and effector preferences. Dorsal and medial parietal cortex appears to contribute to the online monitoring/adjusting of the ongoing prehensile action, whereas the functional use of objects and tools seems to involve the inferior lateral parietal cortex. This functional input reveals a clear left lateralized activation pattern that may be tuned to the integration of acquired knowledge in the planning and guidance of the transitive movement.
Neural correlates of emotional regulation while viewing films.
Shimamura, Arthur P; Marian, Diane E; Haskins, Andrew L
2013-03-01
Negative and arousal-inducing film clips were used to assess the neural correlates of emotional expression and suppression. Compared to viewing neutral clips, both negative (disgusting) and arousal (action) clips activated primarily posterior regions in the parietal and occipital cortex when participants were instructed to express their emotions. When instructed to suppress their emotions while viewing negative clips, a broad frontoparietal network was activated that included lateral, medial, and orbital regions in the prefrontal cortex as well as lateral and medial regions of the posterior parietal cortex. The suppression of arousal clips also activated prefrontal and parietal regions, though not to the same extent as the suppression of negative clips. The findings demonstrate the potency of using movies to engage emotional processes and highlight a broad frontoparietal network that is engaged during the suppression of negative film clips.
fMRI during natural sleep as a method to study brain function during early childhood.
Redcay, Elizabeth; Kennedy, Daniel P; Courchesne, Eric
2007-12-01
Many techniques to study early functional brain development lack the whole-brain spatial resolution that is available with fMRI. We utilized a relatively novel method in which fMRI data were collected from children during natural sleep. Stimulus-evoked responses to auditory and visual stimuli as well as stimulus-independent functional networks were examined in typically developing 2-4-year-old children. Reliable fMRI data were collected from 13 children during presentation of auditory stimuli (tones, vocal sounds, and nonvocal sounds) in a block design. Twelve children were presented with visual flashing lights at 2.5 Hz. When analyses combined all three types of auditory stimulus conditions as compared to rest, activation included bilateral superior temporal gyri/sulci (STG/S) and right cerebellum. Direct comparisons between conditions revealed significantly greater responses to nonvocal sounds and tones than to vocal sounds in a number of brain regions including superior temporal gyrus/sulcus, medial frontal cortex and right lateral cerebellum. The response to visual stimuli was localized to occipital cortex. Furthermore, stimulus-independent functional connectivity MRI analyses (fcMRI) revealed functional connectivity between STG and other temporal regions (including contralateral STG) and medial and lateral prefrontal regions. Functional connectivity with an occipital seed was localized to occipital and parietal cortex. In sum, 2-4 year olds showed a differential fMRI response both between stimulus modalities and between stimuli in the auditory modality. Furthermore, superior temporal regions showed functional connectivity with numerous higher-order regions during sleep. We conclude that the use of sleep fMRI may be a valuable tool for examining functional brain organization in young children.
Zavaglia, Melissa; Hilgetag, Claus C
2016-06-01
Spatial attention is a prime example for the distributed network functions of the brain. Lesion studies in animal models have been used to investigate intact attentional mechanisms as well as perspectives for rehabilitation in the injured brain. Here, we systematically analyzed behavioral data from cooling deactivation and permanent lesion experiments in the cat, where unilateral deactivation of the posterior parietal cortex (in the vicinity of the posterior middle suprasylvian cortex, pMS) or the superior colliculus (SC) cause a severe neglect in the contralateral hemifield. Counterintuitively, additional deactivation of structures in the opposite hemisphere reverses the deficit. Using such lesion data, we employed a game-theoretical approach, multi-perturbation Shapley value analysis (MSA), for inferring functional contributions and network interactions of bilateral pMS and SC from behavioral performance in visual attention studies. The approach provides an objective theoretical strategy for lesion inferences and allows a unique quantitative characterization of regional functional contributions and interactions on the basis of multi-perturbations. The quantitative analysis demonstrated that right posterior parietal cortex and superior colliculus made the strongest positive contributions to left-field orienting, while left brain regions had negative contributions, implying that their perturbation may reverse the effects of contralateral lesions or improve normal function. An analysis of functional modulations and interactions among the regions revealed redundant interactions (implying functional overlap) between regions within each hemisphere, and synergistic interactions between bilateral regions. To assess the reliability of the MSA method in the face of variable and incomplete input data, we performed a sensitivity analysis, investigating how much the contribution values of the four regions depended on the performance of specific configurations and on the prediction of unknown performances. The results suggest that the MSA approach is sensitive to categorical, but insensitive to gradual changes in the input data. Finally, we created a basic network model that was based on the known anatomical interactions among cortical-tectal regions and reproduced the experimentally observed behavior in visual orienting. We discuss the structural organization of the network model relative to the causal modulations identified by MSA, to aid a mechanistic understanding of the attention network of the brain.
Chronotype differences in cortical thickness: grey matter reflects when you go to bed.
Rosenberg, Jessica; Jacobs, Heidi I L; Maximov, Ivan I; Reske, Martina; Shah, N J
2018-06-15
Based on individual circadian cycles and associated cognitive rhythms, humans can be classified via standardised self-reports as being early (EC), late (LC) and intermediate (IC) chronotypes. Alterations in neural cortical structure underlying these chronotype differences have rarely been investigated and are the scope of this study. 16 healthy male ECs, 16 ICs and 16 LCs were measured with a 3 T MAGNETOM TIM TRIO (Siemens, Erlangen) scanner using a magnetization prepared rapid gradient echo sequence. Data were analysed by applying voxel-based morphometry (VBM) and vertex-wise cortical thickness (CTh) analysis. VBM analysis revealed that ECs showed significantly lower grey matter volumes bilateral in the lateral occipital cortex and the precuneus as compared to LCs, and in the right lingual gyrus, occipital fusiform gyrus and the occipital pole as compared to ICs. CTh findings showed lower grey matter volumes for ECs in the left anterior insula, precuneus, inferior parietal cortex, and right pars triangularis than for LCs, and in the right superior parietal gyrus than for ICs. These findings reveal that chronotype differences are associated with specific neural substrates of cortical thickness, surface areas, and folding. We conclude that this might be the basis for chronotype differences in behaviour and brain function. Furthermore, our results speak for the necessity of considering "chronotype" as a potentially modulating factor in all kinds of structural brain-imaging experiments.
Brain structure in schizophrenia vs. psychotic bipolar I disorder: A VBM study.
Nenadic, Igor; Maitra, Raka; Langbein, Kerstin; Dietzek, Maren; Lorenz, Carsten; Smesny, Stefan; Reichenbach, Jürgen R; Sauer, Heinrich; Gaser, Christian
2015-07-01
While schizophrenia and bipolar disorder have been assumed to share phenotypic and genotypic features, there is also evidence for overlapping brain structural correlates, although it is unclear whether these relate to shared psychotic features. In this study, we used voxel-based morphometry (VBM8) in 34 schizophrenia patients, 17 euthymic bipolar I disorder patients (with a history of psychotic symptoms), and 34 healthy controls. Our results indicate that compared to healthy controls schizophrenia patients show grey matter deficits (p<0.05, FDR corrected) in medial and right dorsolateral prefrontal, as well as bilaterally in ventrolateral prefrontal and insular cortical areas, thalamus (bilaterally), left superior temporal cortex, and minor medial parietal and parietooccipital areas. Comparing schizophrenia vs. bipolar I patients (p<0.05, FDR corrected) yielded a similar pattern, however, there was an additional significant reduction in schizophrenia patients in the (posterior) hippocampus bilaterally, left dorsolateral prefrontal cortex, and left cerebellum. Compared to healthy controls, the deficits in bipolar I patients only reached significance at p<0.001 (uncorr.) for a minor parietal cluster, but not for prefrontal areas. Our results suggest that the more extensive prefrontal, thalamic, and hippocampal deficits that might set apart schizophrenia and bipolar disorder might not be related to mere appearance of psychotic symptoms at some stage of the disorders. Copyright © 2015 Elsevier B.V. All rights reserved.
McGeown, William Jonathan; Shanks, Michael Fraser; Forbes-McKay, Katrina Elaine; Venneri, Annalena
2009-09-30
In a study of the effects of normal and pathological aging on semantic-related brain activity, 29 patients with Alzheimer's disease (AD) and 19 controls subjects (10 young and 9 older controls) performed a version of the Pyramids and Palm Trees Test that had been adapted for use during functional magnetic resonance imaging (fMRI). Young and older controls activated the left inferior and middle frontal gyri, precuneus and superior parietal lobule. Right frontal and left temporal cortices were activated only in the young. The AD group activated only the left prefrontal and cingulate cortex. Separate analyses of high- and low-performing AD subgroups showed a similar pattern of activation in the left frontal lobe, although activiation was more widespread in low performers. High performers significantly deactivated anterior midline frontal structures, however, while low performers did not. When the older adult and AD groups were combined, there was a significant positive correlation between left frontal and parietal activation and Mini-Mental State Examination (MMSE) score (covarying for age), suggesting a disease effect. A significant negative correlation between activation in the left temporal cortex and age (covarying for MMSE score) reflected a possible age effect. These differential effects suggest that semantic activation paradigms might aid diagnosis in those cases for whom conventional assessments lack the necessary sensitivity to detect subtle changes.
Action observation circuits in the macaque monkey cortex.
Nelissen, Koen; Borra, Elena; Gerbella, Marzio; Rozzi, Stefano; Luppino, Giuseppe; Vanduffel, Wim; Rizzolatti, Giacomo; Orban, Guy A
2011-03-09
In both monkeys and humans, the observation of actions performed by others activates cortical motor areas. An unresolved question concerns the pathways through which motor areas receive visual information describing motor acts. Using functional magnetic resonance imaging (fMRI), we mapped the macaque brain regions activated during the observation of grasping actions, focusing on the superior temporal sulcus region (STS) and the posterior parietal lobe. Monkeys viewed either videos with only the grasping hand visible or videos with the whole actor visible. Observation of both types of grasping videos activated elongated regions in the depths of both lower and upper banks of STS, as well as parietal areas PFG and anterior intraparietal (AIP). The correlation of fMRI data with connectional data showed that visual action information, encoded in the STS, is forwarded to ventral premotor cortex (F5) along two distinct functional routes. One route connects the upper bank of the STS with area PFG, which projects, in turn, to the premotor area F5c. The other connects the anterior part of the lower bank of the STS with premotor areas F5a/p via AIP. Whereas the first functional route emphasizes the agent and may relay visual information to the parieto-frontal mirror circuit involved in understanding the agent's intentions, the second route emphasizes the object of the action and may aid in understanding motor acts with respect to their immediate goal.
The contribution of the human posterior parietal cortex to episodic memory.
Sestieri, Carlo; Shulman, Gordon L; Corbetta, Maurizio
2017-02-17
The posterior parietal cortex (PPC) is traditionally associated with attention, perceptual decision making and sensorimotor transformations, but more recent human neuroimaging studies support an additional role in episodic memory retrieval. In this Opinion article, we present a functional-anatomical model of the involvement of the PPC in memory retrieval. Parietal regions involved in perceptual attention and episodic memory are largely segregated and often show a push-pull relationship, potentially mediated by prefrontal regions. Moreover, different PPC regions carry out specific functions during retrieval - for example, representing retrieved information, recoding this information based on task demands, or accumulating evidence for memory decisions.
The contribution of the human posterior parietal cortex to episodic memory
Sestieri, Carlo; Shulman, Gordon L.; Corbetta, Maurizio
2017-01-01
The posterior parietal cortex (PPC) is traditionally associated with attention, perceptual decision making and sensorimotor transformations, but more recent human neuroimaging studies support an additional role in episodic memory retrieval. In this Opinion article, we present a functional–anatomical model of the involvement of the PPC in memory retrieval. Parietal regions involved in perceptual attention and episodic memory are largely segregated and often show a push–pull relationship, potentially mediated by prefrontal regions. Moreover, different PPC regions carry out specific functions during retrieval — for example, representing retrieved information, recoding this information based on task demands, or accumulating evidence for memory decisions. PMID:28209980
Uncapher, Melina R; Wagner, Anthony D
2009-02-01
The formation of episodic memories--memories for life events--is affected by attention during event processing. A leading neurobiological model of attention posits two separate yet interacting systems that depend on distinct regions in lateral posterior parietal cortex (PPC). From this dual-attention perspective, dorsal PPC is thought to support the goal-directed allocation of attention, whereas ventral PPC is thought to support reflexive orienting to information that automatically captures attention. To advance understanding of how parietal mechanisms may impact event encoding, we review functional MRI studies that document the relationship between lateral PPC activation during encoding and subsequent memory performance (e.g., later remembering or forgetting). This review reveals that (a) encoding-related activity is frequently observed in human lateral PPC, (b) increased activation in dorsal PPC is associated with later memory success, and (c) increased activation in ventral PPC predominantly correlates with later memory failure. From a dual-attention perspective, these findings suggest that allocating goal-directed attention during event processing increases the probability that the event will be remembered later, whereas the capture of reflexive attention during event processing may have negative consequences for event encoding. The prevalence of encoding-related activation in parietal cortex suggests that neurobiological models of episodic memory should consider how parietal-mediated attentional mechanisms regulate encoding.
Brain fMRI study of crave induced by cue pictures in online game addicts (male adolescents).
Sun, Yueji; Ying, Huang; Seetohul, Ravi M; Xuemei, Wang; Ya, Zheng; Qian, Li; Guoqing, Xu; Ye, Sun
2012-08-01
To study crave-related cerebral regions induced by game figure cues in online game addicts. fMRI brain imaging was done when the subjects were shown picture cues of the WoW (World of Warcraft, Version: 4.1.014250) game. 10 male addicts of WoW were selected as addicts' group, and 10 other healthy male non-addicts who were matched by age, were used as non-game addicts' group. All volunteers participated in fMRI paradigms. WoW associated cue pictures and neutral pictures were shown. We examined functional cerebral regions activated by the pictures with 3.0 T Philips MRI. The imaging signals' database was analyzed by SPM5. The correlation between game craving scores and different image results were assessed. When the game addicts watch the pictures, some brain areas show increased signal activity namely: dorsolateral prefrontal cortex, bilateral temporal cortex, cerebellum, right inferior parietal lobule, right cuneus, right hippocampus, parahippocampal gyrus, left caudate nucleus. But in these same brain regions we did not observe remarkable activities in the control group. Differential image signal densities of the addict group were subtracted from the health control group, results of which were expressed in the bilateral dorsolateral prefrontal cortex, anterior cingulate cortex, inferior parietal lobe and inferior temporal gyrus, cerebellum, right insular and the right angular gyrus. The increased imaging signal densities were significant and positively correlated with the craving scale scores in the bilateral prefrontal cortex, anterior cingulate cortex and right inferior parietal lobe. Craving of online game addicts was successfully induced by game cue pictures. Crave related brain areas are: dorsolateral prefrontal cortex, anterior cingulate cortex, and right inferior parietal lobe. The brain regions are overlapped with cognitive and emotion related processing brain areas. Copyright © 2012 Elsevier B.V. All rights reserved.
Raffa, R B
2013-08-01
Cancer chemotherapy-associated cognitive impairments (termed 'chemo-fog' or 'chemo-brain'), particularly in memory, have been self-reported or identified in cancer survivors previously treated with chemotherapy. Although a variety of deficits have been detected, a consistent theme is a detriment in visuospatial working memory. The parietal cortex, a major site of storage of such memory, is implicated in chemotherapy-induced damage. However, if the findings of two recent publications are combined, the (pre)frontal cortex might be an equally viable target. Two recent studies, one postulating a mechanism for 'top-down control' of working memory capacity and another visualizing chemotherapy-induced alterations in brain activation during working memory processing, are reviewed and integrated. A computational model and the proposal that the prefrontal cortex plays a role in working memory via top-down control of parietal working memory capacity is consistent with a recent demonstration of decreased frontal hyperactivation following chemotherapy. Chemotherapy-associated impairment of visuospatial working memory might include the (pre)frontal cortex in addition to the parietal cortex. This provides new opportunity for basic science and clinical investigation. © 2013 John Wiley & Sons Ltd.
Neural basis for generalized quantifier comprehension.
McMillan, Corey T; Clark, Robin; Moore, Peachie; Devita, Christian; Grossman, Murray
2005-01-01
Generalized quantifiers like "all cars" are semantically well understood, yet we know little about their neural representation. Our model of quantifier processing includes a numerosity device, operations that combine number elements and working memory. Semantic theory posits two types of quantifiers: first-order quantifiers identify a number state (e.g. "at least 3") and higher-order quantifiers additionally require maintaining a number state actively in working memory for comparison with another state (e.g. "less than half"). We used BOLD fMRI to test the hypothesis that all quantifiers recruit inferior parietal cortex associated with numerosity, while only higher-order quantifiers recruit prefrontal cortex associated with executive resources like working memory. Our findings showed that first-order and higher-order quantifiers both recruit right inferior parietal cortex, suggesting that a numerosity component contributes to quantifier comprehension. Moreover, only probes of higher-order quantifiers recruited right dorsolateral prefrontal cortex, suggesting involvement of executive resources like working memory. We also observed activation of thalamus and anterior cingulate that may be associated with selective attention. Our findings are consistent with a large-scale neural network centered in frontal and parietal cortex that supports comprehension of generalized quantifiers.
Neural correlates of the encoding of multimodal contextual features
Gottlieb, Lauren J.; Wong, Jenny; de Chastelaine, Marianne; Rugg, Michael D.
2012-01-01
Functional magnetic resonance imaging (fMRI) was employed to identify neural regions engaged during the encoding of contextual features belonging to different modalities. Subjects studied objects that were presented to the left or right of fixation. Each object was paired with its name, spoken in either a male or a female voice. The test requirement was to discriminate studied from unstudied pictures and, for each picture judged old, to retrieve its study location and the gender of the voice that spoke its name. Study trials associated with accurate rather than inaccurate location memory demonstrated enhanced activity in the fusiform and parahippocampal cortex and the hippocampus and reduced activity (a negative subsequent memory effect) in the medial occipital cortex. Successful encoding of voice information was associated with enhanced study activity in the right middle superior temporal sulcus and activity reduction in the right superior frontal cortex. These findings support the proposal that encoding of a contextual feature is associated with enhanced activity in regions engaged during its online processing. In addition, they indicate that negative subsequent memory effects can also demonstrate feature-selectivity. Relative to other classes of study trials, trials for which both contextual features were later retrieved demonstrated enhanced activity in the lateral occipital complex and reduced activity in the temporo-parietal junction. These findings suggest that multifeatural encoding was facilitated when the study item was processed efficiently and study processing was not interrupted by redirection of attention toward extraneous events. PMID:23166292
Corticocortical evoked potentials reveal projectors and integrators in human brain networks.
Keller, Corey J; Honey, Christopher J; Entz, Laszlo; Bickel, Stephan; Groppe, David M; Toth, Emilia; Ulbert, Istvan; Lado, Fred A; Mehta, Ashesh D
2014-07-02
The cerebral cortex is composed of subregions whose functional specialization is largely determined by their incoming and outgoing connections with each other. In the present study, we asked which cortical regions can exert the greatest influence over other regions and the cortical network as a whole. Previous research on this question has relied on coarse anatomy (mapping large fiber pathways) or functional connectivity (mapping inter-regional statistical dependencies in ongoing activity). Here we combined direct electrical stimulation with recordings from the cortical surface to provide a novel insight into directed, inter-regional influence within the cerebral cortex of awake humans. These networks of directed interaction were reproducible across strength thresholds and across subjects. Directed network properties included (1) a decrease in the reciprocity of connections with distance; (2) major projector nodes (sources of influence) were found in peri-Rolandic cortex and posterior, basal and polar regions of the temporal lobe; and (3) major receiver nodes (receivers of influence) were found in anterolateral frontal, superior parietal, and superior temporal regions. Connectivity maps derived from electrical stimulation and from resting electrocorticography (ECoG) correlations showed similar spatial distributions for the same source node. However, higher-level network topology analysis revealed differences between electrical stimulation and ECoG that were partially related to the reciprocity of connections. Together, these findings inform our understanding of large-scale corticocortical influence as well as the interpretation of functional connectivity networks. Copyright © 2014 the authors 0270-6474/14/349152-12$15.00/0.
People can understand descriptions of motion without activating visual motion brain regions
Dravida, Swethasri; Saxe, Rebecca; Bedny, Marina
2013-01-01
What is the relationship between our perceptual and linguistic neural representations of the same event? We approached this question by asking whether visual perception of motion and understanding linguistic depictions of motion rely on the same neural architecture. The same group of participants took part in two language tasks and one visual task. In task 1, participants made semantic similarity judgments with high motion (e.g., “to bounce”) and low motion (e.g., “to look”) words. In task 2, participants made plausibility judgments for passages describing movement (“A centaur hurled a spear … ”) or cognitive events (“A gentleman loved cheese …”). Task 3 was a visual motion localizer in which participants viewed animations of point-light walkers, randomly moving dots, and stationary dots changing in luminance. Based on the visual motion localizer we identified classic visual motion areas of the temporal (MT/MST and STS) and parietal cortex (inferior and superior parietal lobules). We find that these visual cortical areas are largely distinct from neural responses to linguistic depictions of motion. Motion words did not activate any part of the visual motion system. Motion passages produced a small response in the right superior parietal lobule, but none of the temporal motion regions. These results suggest that (1) as compared to words, rich language stimuli such as passages are more likely to evoke mental imagery and more likely to affect perceptual circuits and (2) effects of language on the visual system are more likely in secondary perceptual areas as compared to early sensory areas. We conclude that language and visual perception constitute distinct but interacting systems. PMID:24009592
Mickleborough, Marla J S; Kelly, Michael E; Gould, Layla; Ekstrand, Chelsea; Lorentz, Eric; Ellchuk, Tasha; Babyn, Paul; Borowsky, Ron
2015-01-01
Functional magnetic resonance imaging (fMRI) is a noninvasive and reliable tool for mapping eloquent cortex in patients prior to brain surgery. Ensuring intact perceptual and cognitive processing is a key goal for neurosurgeons, and recent research has indicated the value of including attentional network processing in pre-surgical fMRI in order to help preserve such abilities, including reading, after surgery. We report a 42-year-old patient with a large cavernous malformation, near the left basal ganglia. The lesion measured 3.8 × 1.7 × 1.8 cm. In consultation with the patient and the multidisciplinary cerebrovascular team, the decision was made to offer the patient surgical resection. The surgical resection involved planned access via the left superior parietal lobule using stereotactic location. The patient declined an awake craniotomy; therefore, direct electrocortical stimulation (ECS) could not be used for intraoperative language localization in this case. Pre-surgical planning included fMRI localization of language, motor, sensory, and attentional processing. The key finding was that both reading and attention-processing tasks revealed consistent activation of the left superior parietal lobule, part of the attentional control network, and the site of the planned surgical access. Given this information, surgical access was adjusted to avoid interference with the attentional control network. The lesion was removed via the left inferior parietal lobule. The patient had no new neurologic deficits postoperatively but did develop mild neuropathic pain in the left hand. This case report supports recent research that indicates the value of including fMRI maps of attentional tasks along with traditional language-processing tasks in preoperative planning in patients undergoing neurosurgery procedures. © 2015 S. Karger AG, Basel.
Boccia, Maddalena; Piccardi, Laura; Palermo, Liana; Nori, Raffaella; Palmiero, Massimiliano
2015-01-01
Many studies have assessed the neural underpinnings of creativity, failing to find a clear anatomical localization. We aimed to provide evidence for a multi-componential neural system for creativity. We applied a general activation likelihood estimation (ALE) meta-analysis to 45 fMRI studies. Three individual ALE analyses were performed to assess creativity in different cognitive domains (Musical, Verbal, and Visuo-spatial). The general ALE revealed that creativity relies on clusters of activations in the bilateral occipital, parietal, frontal, and temporal lobes. The individual ALE revealed different maximal activation in different domains. Musical creativity yields activations in the bilateral medial frontal gyrus, in the left cingulate gyrus, middle frontal gyrus, and inferior parietal lobule and in the right postcentral and fusiform gyri. Verbal creativity yields activations mainly located in the left hemisphere, in the prefrontal cortex, middle and superior temporal gyri, inferior parietal lobule, postcentral and supramarginal gyri, middle occipital gyrus, and insula. The right inferior frontal gyrus and the lingual gyrus were also activated. Visuo-spatial creativity activates the right middle and inferior frontal gyri, the bilateral thalamus and the left precentral gyrus. This evidence suggests that creativity relies on multi-componential neural networks and that different creativity domains depend on different brain regions. PMID:26322002
Paulus, Martin P.; Tapert, Susan F.; Pulido, Carmen; Schuckit, Marc A.
2008-01-01
Background A low level of response to alcohol is a major risk factor for the development of alcohol dependence, but neural correlates of this marker are unclear. Method Ten healthy volunteers were classified by median split on level of response to alcohol and underwent 2 sessions of functional magnetic resonance imaging following ingestion of a moderate dose of alcohol and a placebo. The blood oxygen level–dependent activation to an event-related visual working memory test was examined. Results The subjects exhibited longer response latencies and more errors as a function of increasing working memory load and showed a load-dependent increase in activation in dorsolateral prefrontal cortex, posterior parietal cortex, and visual cortex. Alcohol did not affect performance (errors or response latency), but attenuated the working memory load–dependent activation in the dorsolateral prefrontal cortex. During the placebo condition, individuals with a low level of response to alcohol showed greater activation in dorsolateral prefrontal cortex and posterior parietal cortex than those with a high level of response to alcohol. During the alcohol condition, groups showed similar attenuation of load-dependent brain activation in these regions. Conclusion Low-level responders relative to high-level responders exhibited an increased working memory load–dependent activation in dorsolateral prefrontal cortex and posterior parietal cortex when not exposed to alcohol. This increase in brain response was attenuated in low-level responders after ingesting a moderate dose of alcohol. PMID:16899039
Yang, Xun; Kendrick, Keith Maurice; Wu, Qizhu; Chen, Taolin; Lama, Sunima; Cheng, Bochao; Li, Shiguang; Huang, Xiaoqi; Gong, Qiyong
2013-01-01
Shyness and social anxiety are correlated to some extent and both are associated with hyper-responsivity to social stimuli in the frontal cortex and limbic system. However to date no studies have investigated whether common structural and functional connectivity differences in the brain may contribute to these traits. We addressed this issue in a cohort of 61 healthy adult subjects. Subjects were first assessed for their levels of shyness (Cheek and Buss Shyness scale) and social anxiety (Liebowitz Social Anxiety scale) and trait anxiety. They were then given MRI scans and voxel-based morphometry and seed-based, resting-state functional connectivity analysis investigated correlations with shyness and anxiety scores. Shyness scores were positively correlated with gray matter density in the cerebellum, bilateral superior temporal gyri and parahippocampal gyri and right insula. Functional connectivity correlations with shyness were found between the superior temporal gyrus, parahippocampal gyrus and the frontal gyri, between the insula and precentral gyrus and inferior parietal lobule, and between the cerebellum and precuneus. Additional correlations were found for amygdala connectivity with the medial frontal gyrus, superior frontal gyrus and inferior parietal lobule, despite the absence of any structural correlation. By contrast no structural or functional connectivity measures correlated with social or trait anxiety. Our findings show that shyness is specifically associated with structural and functional connectivity changes in cortical and limbic regions involved with processing social stimuli. These associations are not found with social or trait anxiety in healthy subjects despite some behavioral correlations with shyness.
Functional and structural brain correlates of theory of mind and empathy deficits in schizophrenia.
Benedetti, Francesco; Bernasconi, Alessandro; Bosia, Marta; Cavallaro, Roberto; Dallaspezia, Sara; Falini, Andrea; Poletti, Sara; Radaelli, Daniele; Riccaboni, Roberta; Scotti, Giuseppe; Smeraldi, Enrico
2009-10-01
Patients affected by schizophrenia show deficits in social cognition, with abnormal performance on tasks targeting theory of mind (ToM) and empathy (Emp). Brain imaging studies suggested that ToM and Emp depend on the activation of brain networks mainly localized at the superior temporal lobe and temporo-parietal junction. Participants included 24 schizophrenia patients and 20 control subjects. We used brain blood oxygen level dependent fMRI to study the neural responses to tasks targeting ToM and Emp. We then studied voxel-based morphometry of grey matter in areas where diagnosis influenced functional activation to both tasks. Outcomes were analyzed in the context of the general linear model, with global grey matter volume as nuisance covariate for structural MRI. Patients showed worse performance on both tasks. We found significant effects of diagnosis on neural responses to the tasks in a wide cluster in right posterior superior temporal lobe (encompassing BA 22-42), in smaller clusters in left temporo-parietal junction and temporal pole (BA 38 and 39), and in a white matter region adjacent to medial prefrontal cortex (BA 10). A pattern of double dissociation of the effects of diagnosis and task on neural responses emerged. Among these areas, grey matter volume was found to be reduced in right superior temporal lobe regions of patients. Functional and structural abnormalities were observed in areas affected by the schizophrenic process early in the illness course, and known to be crucial for social cognition, suggesting a biological basis for social cognition deficits in schizophrenia.
Katsuki, Fumi; Constantinidis, Christos
2012-01-01
The dorsolateral prefrontal cortex (PFC) and posterior parietal cortex (PPC) are two parts of a broader brain network involved in the control of cognitive functions such as working-memory, spatial attention, and decision-making. The two areas share many functional properties and exhibit similar patterns of activation during the execution of mental operations. However, neurophysiological experiments in non-human primates have also documented subtle differences, revealing functional specialization within the fronto-parietal network. These differences include the ability of the PFC to influence memory performance, attention allocation, and motor responses to a greater extent, and to resist interference by distracting stimuli. In recent years, distinct cellular and anatomical differences have been identified, offering insights into how functional specialization is achieved. This article reviews the common functions and functional differences between the PFC and PPC, and their underlying mechanisms. PMID:22563310
The neural networks of subjectively evaluated emotional conflicts.
Rohr, Christiane S; Villringer, Arno; Solms-Baruth, Carolina; van der Meer, Elke; Margulies, Daniel S; Okon-Singer, Hadas
2016-06-01
Previous work on the neural underpinnings of emotional conflict processing has largely focused on designs that instruct participants to ignore a distracter which conflicts with a target. In contrast, this study investigated the noninstructed experience and evaluation of an emotional conflict, where positive or negative cues can be subjectively prioritized. To this end, healthy participants freely watched short film scenes that evoked emotional conflicts while their BOLD responses were measured. Participants' individual ratings of conflict and valence perception during the film scenes were collected immediately afterwards, and the individual ratings were regressed against the BOLD data. Our analyses revealed that (a) amygdala and medial prefrontal cortex were significantly involved in prioritizing positive or negative cues, but not in subjective evaluations of conflict per se, and (b) superior temporal sulcus (STS) and inferior parietal lobule (IPL), which have been implicated in social cognition and emotion control, were involved in both prioritizing positive or negative cues and subjectively evaluating conflict, and may thus constitute "hubs" or "switches" in emotional conflict processing. Psychophysiological interaction (PPI) analyses further revealed stronger functional connectivity between IPL and ventral prefrontal-medial parietal areas in prioritizing negative cues, and stronger connectivity between STS and dorsal-rostral prefrontal-medial parietal areas in prioritizing positive cues. In sum, our results suggest that IPL and STS are important in the subjective evaluation of complex conflicts and influence valence prioritization via prefrontal and parietal control centers. Hum Brain Mapp 37:2234-2246, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Stokes, Mark; Nobre, Anna C.; Rushworth, Matthew F. S.
2013-01-01
Using multivoxel pattern analysis (MVPA), we studied how distributed visual representations in human occipitotemporal cortex are modulated by attention and link their modulation to concurrent activity in frontal and parietal cortex. We detected similar occipitotemporal patterns during a simple visuoperceptual task and an attention-to-working-memory task in which one or two stimuli were cued before being presented among other pictures. Pattern strength varied from highest to lowest when the stimulus was the exclusive focus of attention, a conjoint focus, and when it was potentially distracting. Although qualitatively similar effects were seen inside regions relatively specialized for the stimulus category and outside, the former were quantitatively stronger. By regressing occipitotemporal pattern strength against activity elsewhere in the brain, we identified frontal and parietal areas exerting top-down control over, or reading information out from, distributed patterns in occipitotemporal cortex. Their interactions with patterns inside regions relatively specialized for that stimulus category were higher than those with patterns outside those regions and varied in strength as a function of the attentional condition. One area, the frontal operculum, was distinguished by selectively interacting with occipitotemporal patterns only when they were the focus of attention. There was no evidence that any frontal or parietal area actively inhibited occipitotemporal representations even when they should be ignored and were suppressed. Using MVPA to decode information within these frontal and parietal areas showed that they contained information about attentional context and/or readout information from occipitotemporal cortex to guide behavior but that frontal regions lacked information about category identity. PMID:24133250
Nelissen, Natalie; Stokes, Mark; Nobre, Anna C; Rushworth, Matthew F S
2013-10-16
Using multivoxel pattern analysis (MVPA), we studied how distributed visual representations in human occipitotemporal cortex are modulated by attention and link their modulation to concurrent activity in frontal and parietal cortex. We detected similar occipitotemporal patterns during a simple visuoperceptual task and an attention-to-working-memory task in which one or two stimuli were cued before being presented among other pictures. Pattern strength varied from highest to lowest when the stimulus was the exclusive focus of attention, a conjoint focus, and when it was potentially distracting. Although qualitatively similar effects were seen inside regions relatively specialized for the stimulus category and outside, the former were quantitatively stronger. By regressing occipitotemporal pattern strength against activity elsewhere in the brain, we identified frontal and parietal areas exerting top-down control over, or reading information out from, distributed patterns in occipitotemporal cortex. Their interactions with patterns inside regions relatively specialized for that stimulus category were higher than those with patterns outside those regions and varied in strength as a function of the attentional condition. One area, the frontal operculum, was distinguished by selectively interacting with occipitotemporal patterns only when they were the focus of attention. There was no evidence that any frontal or parietal area actively inhibited occipitotemporal representations even when they should be ignored and were suppressed. Using MVPA to decode information within these frontal and parietal areas showed that they contained information about attentional context and/or readout information from occipitotemporal cortex to guide behavior but that frontal regions lacked information about category identity.
Abnormal Brain Activation During Theory of Mind Tasks in Schizophrenia: A Meta-Analysis.
Kronbichler, Lisa; Tschernegg, Melanie; Martin, Anna Isabel; Schurz, Matthias; Kronbichler, Martin
2017-10-21
Social cognition abilities are severely impaired in schizophrenia (SZ). The current meta-analysis used foci of 21 individual studies on functional abnormalities in the schizophrenic brain in order to identify regions that reveal convergent under- or over-activation during theory of mind (TOM) tasks. Studies were included in the analyses when contrasting tasks that require the processing of mental states with tasks which did not. Only studies that investigated patients with an ICD or DSM diagnosis were included. Quantitative voxel-based meta-analyses were done using Seed-based d Mapping software. Common TOM regions like medial-prefrontal cortex and temporo-parietal junction revealed abnormal activation in schizophrenic patients: Under-activation was identified in the medial prefrontal cortex, left orbito-frontal cortex, and in a small section of the left posterior temporo-parietal junction. Remarkably, robust over-activation was identified in a more dorsal, bilateral section of the temporo-parietal junction. Further abnormal activation was identified in medial occipito-parietal cortex, right premotor areas, left cingulate gyrus, and lingual gyrus. The findings of this study suggest that SZ patients simultaneously show over- and under-activation in TOM-related regions. Especially interesting, temporo-parietal junction reveals diverging activation patterns with an under-activating left posterior and an over-activating bilateral dorsal section. In conclusion, SZ patients show less specialized brain activation in regions linked to TOM and increased activation in attention-related networks suggesting compensatory effects. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.
Yamazaki, Yumiko; Yokochi, Hiroko; Tanaka, Michio; Okanoya, Kazuo; Iriki, Atsushi
2010-01-01
The anterior portion of the inferior parietal cortex possesses comprehensive representations of actions embedded in behavioural contexts. Mirror neurons, which respond to both self-executed and observed actions, exist in this brain region in addition to those originally found in the premotor cortex. We found that parietal mirror neurons responded differentially to identical actions embedded in different contexts. Another type of parietal mirror neuron represents an inverse and complementary property of responding equally to dissimilar actions made by itself and others for an identical purpose. Here, we propose a hypothesis that these sets of inferior parietal neurons constitute a neural basis for encoding the semantic equivalence of various actions across different agents and contexts. The neurons have mirror neuron properties, and they encoded generalization of agents, differentiation of outcomes, and categorization of actions that led to common functions. By integrating the activities of these mirror neurons with various codings, we further suggest that in the ancestral primates' brains, these various representations of meaningful action led to the gradual establishment of equivalence relations among the different types of actions, by sharing common action semantics. Such differential codings of the components of actions might represent precursors to the parts of protolanguage, such as gestural communication, which are shared among various members of a society. Finally, we suggest that the inferior parietal cortex serves as an interface between this action semantics system and other higher semantic systems, through common structures of action representation that mimic language syntax.
Yamazaki, Yumiko; Yokochi, Hiroko; Tanaka, Michio; Okanoya, Kazuo; Iriki, Atsushi
2010-01-01
The anterior portion of the inferior parietal cortex possesses comprehensive representations of actions embedded in behavioural contexts. Mirror neurons, which respond to both self-executed and observed actions, exist in this brain region in addition to those originally found in the premotor cortex. We found that parietal mirror neurons responded differentially to identical actions embedded in different contexts. Another type of parietal mirror neuron represents an inverse and complementary property of responding equally to dissimilar actions made by itself and others for an identical purpose. Here, we propose a hypothesis that these sets of inferior parietal neurons constitute a neural basis for encoding the semantic equivalence of various actions across different agents and contexts. The neurons have mirror neuron properties, and they encoded generalization of agents, differentiation of outcomes, and categorization of actions that led to common functions. By integrating the activities of these mirror neurons with various codings, we further suggest that in the ancestral primates' brains, these various representations of meaningful action led to the gradual establishment of equivalence relations among the different types of actions, by sharing common action semantics. Such differential codings of the components of actions might represent precursors to the parts of protolanguage, such as gestural communication, which are shared among various members of a society. Finally, we suggest that the inferior parietal cortex serves as an interface between this action semantics system and other higher semantic systems, through common structures of action representation that mimic language syntax. PMID:20119879
Bressler, David W.; Silver, Michael A.
2010-01-01
Spatial attention improves visual perception and increases the amplitude of neural responses in visual cortex. In addition, spatial attention tasks and fMRI have been used to discover topographic visual field representations in regions outside visual cortex. We therefore hypothesized that requiring subjects to attend to a retinotopic mapping stimulus would facilitate the characterization of visual field representations in a number of cortical areas. In our study, subjects attended either a central fixation point or a wedge-shaped stimulus that rotated about the fixation point. Response reliability was assessed by computing coherence between the fMRI time series and a sinusoid with the same frequency as the rotating wedge stimulus. When subjects attended to the rotating wedge instead of ignoring it, the reliability of retinotopic mapping signals increased by approximately 50% in early visual cortical areas (V1, V2, V3, V3A/B, V4) and ventral occipital cortex (VO1) and by approximately 75% in lateral occipital (LO1, LO2) and posterior parietal (IPS0, IPS1 and IPS2) cortical areas. Additionally, one 5-minute run of retinotopic mapping in the attention-to-wedge condition produced responses as reliable as the average of three to five (early visual cortex) or more than five (lateral occipital, ventral occipital, and posterior parietal cortex) attention-to-fixation runs. These results demonstrate that allocating attention to the retinotopic mapping stimulus substantially reduces the amount of scanning time needed to determine the visual field representations in occipital and parietal topographic cortical areas. Attention significantly increased response reliability in every cortical area we examined and may therefore be a general mechanism for improving the fidelity of neural representations of sensory stimuli at multiple levels of the cortical processing hierarchy. PMID:20600961
Lockhart, Samuel N.; Mayda, Adriane B. V.; Roach, Alexandra E.; Fletcher, Evan; Carmichael, Owen; Maillard, Pauline; Schwarz, Christopher G.; Yonelinas, Andrew P.; Ranganath, Charan; DeCarli, Charles
2011-01-01
Previous neuroimaging research indicates that white matter injury and integrity, measured respectively by white matter hyperintensities (WMH) and fractional anisotropy (FA) obtained from diffusion tensor imaging (DTI), differ with aging and cerebrovascular disease (CVD) and are associated with episodic memory deficits in cognitively normal older adults. However, knowledge about tract-specific relationships between WMH, FA, and episodic memory in aging remains limited. We hypothesized that white matter connections between frontal cortex and subcortical structures as well as connections between frontal and temporo-parietal cortex would be most affected. In the current study, we examined relationships between WMH, FA and episodic memory in 15 young adults, 13 elders with minimal WMH and 15 elders with extensive WMH, using an episodic recognition memory test for object-color associations. Voxel-based statistics were used to identify voxel clusters where white matter measures were specifically associated with variations in episodic memory performance, and white matter tracts intersecting these clusters were analyzed to examine white matter-memory relationships. White matter injury and integrity measures were significantly associated with episodic memory in extensive regions of white matter, located predominantly in frontal, parietal, and subcortical regions. Template based tractography indicated that white matter injury, as measured by WMH, in the uncinate and inferior longitudinal fasciculi were significantly negatively associated with episodic memory performance. Other tracts such as thalamo-frontal projections, superior longitudinal fasciculus, and dorsal cingulum bundle demonstrated strong negative associations as well. The results suggest that white matter injury to multiple pathways, including connections of frontal and temporal cortex and frontal-subcortical white matter tracts, plays a critical role in memory differences seen in older individuals. PMID:22438841
Pierce, Jordan E; McDowell, Jennifer E
2016-02-01
Cognitive control supports flexible behavior adapted to meet current goals and can be modeled through investigation of saccade tasks with varying cognitive demands. Basic prosaccades (rapid glances toward a newly appearing stimulus) are supported by neural circuitry, including occipital and posterior parietal cortex, frontal and supplementary eye fields, and basal ganglia. These trials can be contrasted with complex antisaccades (glances toward the mirror image location of a stimulus), which are characterized by greater functional magnetic resonance imaging (MRI) blood oxygenation level-dependent (BOLD) signal in the aforementioned regions and recruitment of additional regions such as dorsolateral prefrontal cortex. The current study manipulated the cognitive demands of these saccade tasks by presenting three rapid event-related runs of mixed saccades with a varying probability of antisaccade vs. prosaccade trials (25, 50, or 75%). Behavioral results showed an effect of trial-type probability on reaction time, with slower responses in runs with a high antisaccade probability. Imaging results exhibited an effect of probability in bilateral pre- and postcentral gyrus, bilateral superior temporal gyrus, and medial frontal gyrus. Additionally, the interaction between saccade trial type and probability revealed a strong probability effect for prosaccade trials, showing a linear increase in activation parallel to antisaccade probability in bilateral temporal/occipital, posterior parietal, medial frontal, and lateral prefrontal cortex. In contrast, antisaccade trials showed elevated activation across all runs. Overall, this study demonstrated that improbable performance of a typically simple prosaccade task led to augmented BOLD signal to support changing cognitive control demands, resulting in activation levels similar to the more complex antisaccade task. Copyright © 2016 the American Physiological Society.
Lickteig, Rita; Lotze, Martin; Lucas, Christian; Domin, Martin; Kordass, Bernd
2012-03-20
There is some controversial discussion within the therapy of craniomandibular disorders (CMDs) about the mode of action of occlusal splints. Here we present a case report on one CMD-patient measuring cerebral activation changes with functional magnetic resonance imaging (fMRI) before and after therapy with a stabilization splint. Wearing the Michigan splint for 11 nights and partially days resulted in substantial pain relief and changes in occlusal movement performance. Cerebral activation during occlusion was decreased after therapy (PRE-POST) in bilateral sensorimotor regions but also additional areas such as left posterior insula, right superior temporal cortex and bilateral occipital lobe. During the first usage of the splint in the scanner (PRE) increased activation in the left dorsolateral prefrontal lobe (BA 9) was observed. After splint training occlusion with the splint compared to without a splint increasingly involved the left superior parietal lobe (BA 7, POST). Whereas BA 9 might be associated with increasing working memory load due to the manipulation with an unusual object, the BA 7 activation in the POST session might document increased sensorimotor interaction after getting used to the splint. Our findings indicate that wearing an occlusion splint triggers activation in parietal sensorimotor integration areas, also observed after long periods of sensorimotor training. These additional recourses might improve coordination and physiological handling of the masticatory system. Copyright © 2011. Published by Elsevier GmbH.
Brain volumes and regional cortical thickness in young females with anorexia nervosa.
Fuglset, Tone Seim; Endestad, Tor; Hilland, Eva; Bang, Lasse; Tamnes, Christian Krog; Landrø, Nils Inge; Rø, Øyvind
2016-11-16
Anorexia nervosa (AN) is a severe mental illness, with an unknown etiology. Magnetic resonance imaging studies show reduced brain volumes and cortical thickness in patients compared to healthy controls. However, findings are inconsistent, especially concerning the anatomical location and extent of the differences. The purpose of this study was to estimate and compare brain volumes and regional cortical thickness in young females with AN and healthy controls. Magnetic resonance imaging data was acquired from young females with anorexia nervosa (n = 23) and healthy controls (n = 28). Two different scanner sites were used. BMI varied from 13.5 to 20.7 within the patient group, and 11 patients had a BMI > 17.5. FreeSurfer was used to estimate brain volumes and regional cortical thickness. There were no differences between groups in total cerebral cortex volume, white matter volume, or lateral ventricle volume. There were also no volume differences in subcortical grey matter structures. However the results showed reduced cortical thickness bilaterally in the superior parietal gyrus, and in the right inferior parietal and superior frontal gyri. The functional significance of the findings is undetermined as the majority of the included patients was already partially weight-restored. We discuss whether these regions could be related to predisposing factors of the illness, or whether they are regions that are more vulnerable to starvation, malnutrition or associated processes in AN.
Feature-Selective Attentional Modulations in Human Frontoparietal Cortex.
Ester, Edward F; Sutterer, David W; Serences, John T; Awh, Edward
2016-08-03
Control over visual selection has long been framed in terms of a dichotomy between "source" and "site," where top-down feedback signals originating in frontoparietal cortical areas modulate or bias sensory processing in posterior visual areas. This distinction is motivated in part by observations that frontoparietal cortical areas encode task-level variables (e.g., what stimulus is currently relevant or what motor outputs are appropriate), while posterior sensory areas encode continuous or analog feature representations. Here, we present evidence that challenges this distinction. We used fMRI, a roving searchlight analysis, and an inverted encoding model to examine representations of an elementary feature property (orientation) across the entire human cortical sheet while participants attended either the orientation or luminance of a peripheral grating. Orientation-selective representations were present in a multitude of visual, parietal, and prefrontal cortical areas, including portions of the medial occipital cortex, the lateral parietal cortex, and the superior precentral sulcus (thought to contain the human homolog of the macaque frontal eye fields). Additionally, representations in many-but not all-of these regions were stronger when participants were instructed to attend orientation relative to luminance. Collectively, these findings challenge models that posit a strict segregation between sources and sites of attentional control on the basis of representational properties by demonstrating that simple feature values are encoded by cortical regions throughout the visual processing hierarchy, and that representations in many of these areas are modulated by attention. Influential models of visual attention posit a distinction between top-down control and bottom-up sensory processing networks. These models are motivated in part by demonstrations showing that frontoparietal cortical areas associated with top-down control represent abstract or categorical stimulus information, while visual areas encode parametric feature information. Here, we show that multivariate activity in human visual, parietal, and frontal cortical areas encode representations of a simple feature property (orientation). Moreover, representations in several (though not all) of these areas were modulated by feature-based attention in a similar fashion. These results provide an important challenge to models that posit dissociable top-down control and sensory processing networks on the basis of representational properties. Copyright © 2016 the authors 0270-6474/16/368188-12$15.00/0.
Rauchbauer, Birgit; Majdandžić, Jasminka; Hummer, Allan; Windischberger, Christian; Lamm, Claus
2015-09-01
People often spontaneously engage in copying each other's postures and mannerisms, a phenomenon referred to as behavioral mimicry. Social psychology experiments indicate that mimicry denotes an implicit affiliative signal flexibly regulated in response to social requirements. Yet, the mediating processes and neural underpinnings of such regulation are largely unexplored. The present functional magnetic resonance imaging (fMRI) study examined mimicry regulation by combining an automatic imitation task with facial stimuli, varied on two social-affective dimensions: emotional expression (angry vs happy) and ethnic group membership (in- vs out-group). Behavioral data revealed increased mimicry when happy and when out-group faces were shown. Imaging results revealed that mimicry regulation in response to happy faces was associated with increased activation in the right temporo-parietal junction (TPJ), right dorsal premotor cortex (dPMC), and right superior parietal lobule (SPL). Mimicry regulation in response to out-group faces was related to increased activation in the left ventral premotor cortex (vPMC) and inferior parietal lobule (IPL), bilateral anterior insula, and mid-cingulate cortex (MCC). We suggest that mimicry in response to happy and to out-group faces is driven by distinct affiliative goals, and that mimicry regulation to attain these goals is mediated by distinct neuro-cognitive processes. Higher mimicry in response to happy faces seems to denote reciprocation of an affiliative signal. Higher mimicry in response to out-group faces, reflects an appeasement attempt towards an interaction partner perceived as threatening (an interpretation supported by implicit measures showing that out-group members are more strongly associated with threat). Our findings show that subtle social cues can result in the implicit regulation of mimicry. This regulation serves to achieve distinct affiliative goals, is mediated by different regulatory processes, and relies on distinct parts of an overarching network of task-related brain areas. Our findings shed new light on the neural mechanisms underlying the interplay between implicit action control and social cognition. Copyright © 2015 Elsevier Ltd. All rights reserved.
Neural foundations and functional specificity of number representations.
Piazza, Manuela; Eger, Evelyn
2016-03-01
Number is a complex category, as with the word "number" we may refer to different entities. First, it is a perceptual property that characterizes any set of individual items, namely its cardinality. The ability to extract the (approximate) cardinality of sets is almost universal in the animal domain and present in humans since birth. In primates, posterior parietal cortex seems to be a crucial site for this ability, even if the degree of selectivity of numerical representations in parietal cortex reported to date appears much lower compared to that of other semantic categories in the ventral stream. Number can also be intended as a mathematical object, which we humans use to count, measure, and order: a (verbal or visual) symbol that stands for the cardinality of a set, the intensity of a continuous quantity or the position of an item on a list. Evidence points to a convergence towards parietal cortex for the semantic coding of numerical symbols and to the bilateral occipitotemporal cortex for the shape coding of Arabic digits and other number symbols. Copyright © 2015 Elsevier Ltd. All rights reserved.
How task demands shape brain responses to visual food cues.
Pohl, Tanja Maria; Tempelmann, Claus; Noesselt, Toemme
2017-06-01
Several previous imaging studies have aimed at identifying the neural basis of visual food cue processing in humans. However, there is little consistency of the functional magnetic resonance imaging (fMRI) results across studies. Here, we tested the hypothesis that this variability across studies might - at least in part - be caused by the different tasks employed. In particular, we assessed directly the influence of task set on brain responses to food stimuli with fMRI using two tasks (colour vs. edibility judgement, between-subjects design). When participants judged colour, the left insula, the left inferior parietal lobule, occipital areas, the left orbitofrontal cortex and other frontal areas expressed enhanced fMRI responses to food relative to non-food pictures. However, when judging edibility, enhanced fMRI responses to food pictures were observed in the superior and middle frontal gyrus and in medial frontal areas including the pregenual anterior cingulate cortex and ventromedial prefrontal cortex. This pattern of results indicates that task sets can significantly alter the neural underpinnings of food cue processing. We propose that judging low-level visual stimulus characteristics - such as colour - triggers stimulus-related representations in the visual and even in gustatory cortex (insula), whereas discriminating abstract stimulus categories activates higher order representations in both the anterior cingulate and prefrontal cortex. Hum Brain Mapp 38:2897-2912, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Reduced dorso-lateral prefrontal cortex in treatment resistant schizophrenia.
Zugman, André; Gadelha, Ary; Assunção, Idaiane; Sato, João; Ota, Vanessa K; Rocha, Deyvis L; Mari, Jair J; Belangero, Sintia I; Bressan, Rodrigo A; Brietzke, Elisa; Jackowski, Andrea P
2013-08-01
Treatment resistance affects up to one third of patients with schizophrenia (SCZ). A better understanding of its biological underlying processes could improve treatment. The aim of this study was to compare cortical thickness between non-resistant SCZ (NR-SCZ), treatment-resistant SCZ (TR-SCZ) patients and healthy controls (HC). Structural MRI scans were obtained from 3 groups of individuals: 61 treatment resistant SCZ individuals, 67 non-resistant SCZ and 80 healthy controls. Images were analyzed using cortical surface modelling (implemented in freesurfer package) to identify group differences in cortical thickness. Statistical significant differences were identified using Monte-Carlo simulation method with a corrected p-cluster<0.01. Patients in the TR-SCZ group showed a widespread reduction in cortical thickness in frontal, parietal, temporal and occipital regions bilaterally. NR-SCZ group had reduced cortex in two regions (left superior frontal cortex and left caudal middle frontal cortex). TR-SCZ group also showed decreased thickness in the left dorsolateral prefrontal cortex (DLPFC) when compared with patients from NR-SCZ group. The reduction in cortical thickness in DLPFC indicates a more severe form of the disease or a specific finding for this group. Alterations in this region should be explored as a putative marker for treatment resistance. Prospective studies, with individuals being followed from first episode psychosis until refractoriness is diagnosed, are needed to clarify these hypotheses. Copyright © 2013 Elsevier B.V. All rights reserved.
Kaas, Jon H; Stepniewska, Iwona
2016-02-15
Posterior parietal cortex (PPC) is an extensive region of the human brain that develops relatively late and is proportionally large compared with that of monkeys and prosimian primates. Our ongoing comparative studies have led to several conclusions about the evolution of this posterior parietal region. In early placental mammals, PPC likely was a small multisensory region much like PPC of extant rodents and tree shrews. In early primates, PPC likely resembled that of prosimian galagos, in which caudal PPC (PPCc) is visual and rostral PPC (PPCr) has eight or more multisensory domains where electrical stimulation evokes different complex motor behaviors, including reaching, hand-to-mouth, looking, protecting the face or body, and grasping. These evoked behaviors depend on connections with functionally matched domains in premotor cortex (PMC) and motor cortex (M1). Domains in each region compete with each other, and a serial arrangement of domains allows different factors to influence motor outcomes successively. Similar arrangements of domains have been retained in New and Old World monkeys, and humans appear to have at least some of these domains. The great expansion and prolonged development of PPC in humans suggest the addition of functionally distinct territories. We propose that, across primates, PMC and M1 domains are second and third levels in a number of parallel, interacting networks for mediating and selecting one type of action over others. © 2015 Wiley Periodicals, Inc.
Neuroprotective effects of yoga practice: age-, experience-, and frequency-dependent plasticity
Villemure, Chantal; Čeko, Marta; Cotton, Valerie A.; Bushnell, M. Catherine
2015-01-01
Yoga combines postures, breathing, and meditation. Despite reported health benefits, yoga’s effects on the brain have received little study. We used magnetic resonance imaging to compare age-related gray matter (GM) decline in yogis and controls. We also examined the effect of increasing yoga experience and weekly practice on GM volume and assessed which aspects of weekly practice contributed most to brain size. Controls displayed the well documented age-related global brain GM decline while yogis did not, suggesting that yoga contributes to protect the brain against age-related decline. Years of yoga experience correlated mostly with GM volume differences in the left hemisphere (insula, frontal operculum, and orbitofrontal cortex) suggesting that yoga tunes the brain toward a parasympatically driven mode and positive states. The number of hours of weekly practice correlated with GM volume in the primary somatosensory cortex/superior parietal lobule (S1/SPL), precuneus/posterior cingulate cortex (PCC), hippocampus, and primary visual cortex (V1). Commonality analyses indicated that the combination of postures and meditation contributed the most to the size of the hippocampus, precuneus/PCC, and S1/SPL while the combination of meditation and breathing exercises contributed the most to V1 volume. Yoga’s potential neuroprotective effects may provide a neural basis for some of its beneficial effects. PMID:26029093
Liu, Shuai; Wang, Yinyan; Xu, Kaibin; Ping, Fan; Li, Fang; Wang, Renzhi; Cheng, Xin
2018-01-01
Cognitive impairment and psychiatric symptoms are common in patients with Cushing's disease (CD) owing to elevated levels of glucocorticoids. Molecular neuroimaging methods may help to detect changes in the brain of patients with CD. The aim of this study was to investigate the characteristics of brain metabolism and its association with serum cortisol level in CD. We compared brain metabolism, as measured using [ 18 F]-fluorodeoxyglucose positron emission tomography (FDG PET), between 92 patients with CD and 118 normal subjects on a voxel-wise basis. Pearson correlation was performed to evaluate the association between cerebral FDG uptake and serum cortisol level in patients with CD. We demonstrated that certain brain regions in patients with CD showed significantly increased FDG uptake, including the basal ganglia, anteromedial temporal lobe, thalamus, precentral cortex, and cerebellum. The clusters that demonstrated significantly decreased uptake were mainly located in the medial and lateral frontal cortex, superior and inferior parietal lobule, medial occipital cortex, and insular cortex. The metabolic rate of the majority of these regions was found to be significantly correlated with the serum cortisol level. Our findings may help to explain the underlying mechanisms of cognitive impairment and psychiatric symptoms in patients exposed to excessive glucocorticoids and evaluate the efficacy of treatments during follow-up.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piert, M.; Koeppe, R.A.; Giordani, B.
1996-02-01
Using dynamic [{sup 18}F] fluorodeoxyglucose (FDG) and PET, kinetic rate constants that describe influx (K{sub 1}) and efflux (k{sub 2}) of FDG as well s phosphorylation (k{sub 3}) and dephosphorylation (k{sub 4}) were determined in patients with probable Alzheimer`s disease and similarly aged normal controls. The regional cerebral metabolic rate for glucose (CMR{sub glu}) was calculated from individually fitted rate constants in frontal, temporal, parietal and occipital cerebral cortex, caudate nucleus, putamen, thalamus and cerebellar cortex. Dynamic PET scans were obtained in normal controls (n = 10, mean age = 67) and Alzheimer`s disease patients (n = 8, mean agemore » = 67) for 60 min following injection of 10 mCi of FDG. The Alzheimer`s disease group was characterized by decreases of the CMR{sub glu} ranging from 13.3% in the frontal to 40.9% in the parietal cortex, which achieved significance in all regions except the thalamus. K{sub 1} was significantly reduced in the parietal (p < 0.01) and temporal cortices (p < 0.005), temporal and occipital cortex, and in the putamen and cerebellum (p < 0.05). The rate constants k{sub 2} and k{sub 4} were unchanged in the Alzheimer`s disease group. These data suggest that hypometabolism in Alzheimer`s disease is related to reduced glucose phosphorylation activity as well as diminished glucose transport, particularly in the most metabolically affected areas of the brain, the parietal and temporal cortex. 60 refs., 2 figs., 2 tabs.« less
Two different mirror neuron networks: The sensorimotor (hand) and limbic (face) pathways.
Ferrari, P F; Gerbella, M; Coudé, G; Rozzi, S
2017-09-01
The vast majority of functional studies investigating mirror neurons (MNs) explored their properties in relation to hand actions, and very few investigated how MNs respond to mouth actions or communicative gestures. Since hand and mouth MNs were recorded in two partially overlapping sectors of the ventral precentral cortex of the macaque monkey, there is a general assumption that they share a same neuroanatomical network, with the parietal cortex as a main source of visual information. In the current review, we challenge this perspective and describe the connectivity pattern of mouth MN sector. The mouth MNs F5/opercular region is connected with premotor, parietal areas mostly related to the somatosensory and motor representation of the face/mouth, and with area PrCO, involved in processing gustatory and somatosensory intraoral input. Unlike hand MNs, mouth MNs do not receive their visual input from parietal regions. Such information related to face/communicative behaviors could come from the ventrolateral prefrontal cortex. Further strong connections derive from limbic structures involved in encoding emotional facial expressions and motivational/reward processing. These brain structures include the anterior cingulate cortex, the anterior and mid-dorsal insula, orbitofrontal cortex and the basolateral amygdala. The mirror mechanism is therefore composed and supported by at least two different anatomical pathways: one is concerned with sensorimotor transformation in relation to reaching and hand grasping within the traditional parietal-premotor circuits; the second one is linked to the mouth/face motor control and is connected with limbic structures, involved in communication/emotions and reward processing. Copyright © 2017. Published by Elsevier Ltd.
Multi-Voxel Decoding and the Topography of Maintained Information During Visual Working Memory
Lee, Sue-Hyun; Baker, Chris I.
2016-01-01
The ability to maintain representations in the absence of external sensory stimulation, such as in working memory, is critical for guiding human behavior. Human functional brain imaging studies suggest that visual working memory can recruit a network of brain regions from visual to parietal to prefrontal cortex. In this review, we focus on the maintenance of representations during visual working memory and discuss factors determining the topography of those representations. In particular, we review recent studies employing multi-voxel pattern analysis (MVPA) that demonstrate decoding of the maintained content in visual cortex, providing support for a “sensory recruitment” model of visual working memory. However, there is some evidence that maintained content can also be decoded in areas outside of visual cortex, including parietal and frontal cortex. We suggest that the ability to maintain representations during working memory is a general property of cortex, not restricted to specific areas, and argue that it is important to consider the nature of the information that must be maintained. Such information-content is critically determined by the task and the recruitment of specific regions during visual working memory will be both task- and stimulus-dependent. Thus, the common finding of maintained information in visual, but not parietal or prefrontal, cortex may be more of a reflection of the need to maintain specific types of visual information and not of a privileged role of visual cortex in maintenance. PMID:26912997
Mapping the Primate Visual System with [2-14C]Deoxyglucose
NASA Astrophysics Data System (ADS)
Macko, Kathleen A.; Jarvis, Charlene D.; Kennedy, Charles; Miyaoka, Mikoto; Shinohara, Mami; Sokoloff, Louis; Mishkin, Mortimer
1982-10-01
The [2-14C]deoxyglucose method was used to identify the cerebral areas related to vision in the rhesus monkey (Macaca mulatta). This was achieved by comparing glucose utilization in a visually stimulated with that in a visually deafferented hemisphere. The cortical areas related to vision included the entire expanse of striate, prestriate, and inferior temporal cortex as far forward as the temporal pole, the posterior part of the inferior parietal lobule, and the prearcuate and inferior prefrontal cortex. Subcortically, in addition to the dorsal lateral geniculate nucleus and superficial layers of the superior colliculus, the structures related to vision included large parts of the pulvinar, caudate, putamen, claustrum, and amygdala. These results, which are consonant with a model of visual function that postulates an occipito-temporo-prefrontal pathway for object vision and an occipito-parieto-prefrontal pathway for spatial vision, reveal the full extent of those pathways and identify their points of contact with limbic, striatal, and diencephalic structures.
White matter structures associated with loneliness in young adults
Nakagawa, Seishu; Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Sekiguchi, Atsushi; Kotozaki, Yuka; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Kunitoki, Keiko; Sassa, Yuko; Kawashima, Ryuta
2015-01-01
Lonely individuals may exhibit dysfunction, particularly with respect to social empathy and self-efficacy. White matter (WM) structures related to loneliness have not yet been identified. We investigated the association between regional WM density (rWMD) using the UCLA Loneliness Scale in 776 healthy young students aged 18–27 years old. Loneliness scores were negatively correlated with rWMD in eight clusters: the bilateral inferior parietal lobule (IPL), right anterior insula (AI), posterior temporoparietal junction (pTPJ), left posterior superior temporal sulcus (pSTS), dorsomedial prefrontal cortex (dmPFC), and rostrolateral prefrontal cortex (RLPFC). The bilateral IPL, right AI, left pSTS, pTPJ, and RLPFC were strongly associated with Empathy Quotient (EQ), whereas the bilateral IPL, right AI, left pTPJ, and dmPFC were associated with General Self-Efficacy Scale (GSES) score. The neural correlates of loneliness comprise widespread reduction in WMD in areas related to self- and social cognition as well as areas associated with empathy and self-efficacy. PMID:26585372
The distributed neural system for top-down letter processing: an fMRI study
NASA Astrophysics Data System (ADS)
Liu, Jiangang; Feng, Lu; Li, Ling; Tian, Jie
2011-03-01
This fMRI study used Psychophysiological interaction (PPI) to investigate top-down letter processing with an illusory letter detection task. After an initial training that became increasingly difficult, participant was instructed to detect a letter from pure noise images where there was actually no letter. Such experimental paradigm allowed for isolating top-down components of letter processing and minimizing the influence of bottom-up perceptual input. A distributed cortical network of top-down letter processing was identified by analyzing the functional connectivity patterns of letter-preferential area (LA) within the left fusiform gyrus. Such network extends from the visual cortex to high level cognitive cortexes, including the left middle frontal gyrus, left medial frontal gyrus, left superior parietal gyrus, bilateral precuneus, and left inferior occipital gyrus. These findings suggest that top-down letter processing contains not only regions for processing of letter phonology and appearance, but also those involved in internal information generation and maintenance, and attention and memory processing.
Trendelenburg, A U; Cox, S L; Schelb, V; Klebroff, W; Khairallah, L; Starke, K
2000-01-01
Release-modulating opioid and cannabinoid (CB) receptors, β-adrenoceptors and bradykinin receptors at noradrenergic axons were studied in mouse tissues (occipito-parietal cortex, heart atria, vas deferens and spleen) preincubated with 3H-noradrenaline. Experiments using the OP1 receptor-selective agonists DPDPE and DSLET, the OP2-selective agonists U50488H and U69593, the OP3-selective agonist DAMGO, the ORL1 receptor-selective agonist nociceptin, and a number of selective antagonists showed that the noradrenergic axons innervating the occipito-parietal cortex possess release-inhibiting OP3 and ORL1 receptors, those innervating atria OP1, ORL1 and possibly OP3 receptors, and those innervating the vas deferens all four opioid receptor types. Experiments using the non-selective CB agonists WIN 55,212-2 and CP 55,940 and the CB1-selective antagonist SR 141716A indicated that the noradrenergic axons of the vas deferens possess release-inhibiting CB1 receptors. Presynaptic CB receptors were not found in the occipito-parietal cortex, in atria or in the spleen. Experiments using the non-selective β-adrenoceptor agonist isoprenaline and the β2-selective agonist salbutamol, as well as subtype-selective antagonists, demonstrated the occurrence of release-enhancing β2-adrenoceptors at the sympathetic axons of atria and the spleen, but demonstrated their absence in the occipito-parietal cortex and the vas deferens. Experiments with bradykinin and the B2-selective antagonist Hoe 140 showed the operation of release-enhancing B2 receptors at the sympathetic axons of atria, the vas deferens and the spleen, but showed their absence in the occipito-parietal cortex. The experiments document a number of new presynaptic receptor locations. They confirm and extend the existence of marked tissue and species differences in presynaptic receptors at noradrenergic neurons. PMID:10807669
Uncapher, Melina; Wagner, Anthony D.
2010-01-01
The formation of episodic memories –– memories for life events –– is affected by attention during event processing. A leading neurobiological model of attention posits two separate yet interacting systems that depend on distinct regions in lateral posterior parietal cortex (PPC). From this dual-attention perspective, dorsal PPC is thought to support the goal-directed allocation of attention, whereas ventral PPC is thought to support reflexive orienting to information that automatically captures attention. To advance understanding of how parietal mechanisms may impact event encoding, we review functional MRI studies that document the relationship between lateral PPC activation during encoding and subsequent memory performance (e.g., later remembering or forgetting). This review reveals that (a) encoding-related activity is frequently observed in human lateral PPC, (b) increased activation in dorsal PPC is associated with later memory success, and (c) increased activation in ventral PPC predominantly correlates with later memory failure. From a dual-attention perspective, these findings suggest that allocating goal-directed attention during event processing increases the probability that the event will be remembered later, whereas the capture of reflexive attention during event processing may have negative consequences for event encoding. The prevalence of encoding-related activation in parietal cortex suggests that neurobiological models of episodic memory should consider how parietal-mediated attentional mechanisms regulate encoding. PMID:19028591
Representation of numerosity in posterior parietal cortex
Roitman, Jamie D.; Brannon, Elizabeth M.; Platt, Michael L.
2012-01-01
Humans and animals appear to share a similar representation of number as an analog magnitude on an internal, subjective scale. Neurological and neurophysiological data suggest that posterior parietal cortex (PPC) is a critical component of the circuits that form the basis of numerical abilities in humans. Patients with parietal lesions are impaired in their ability to access the deep meaning of numbers. Acalculiac patients with inferior parietal damage often have difficulty performing arithmetic (2 + 4?) or number bisection (what is between 3 and 5?) tasks, but are able to recite multiplication tables and read or write numerals. Functional imaging studies of neurologically intact humans performing subtraction, number comparison, and non-verbal magnitude comparison tasks show activity in areas within the intraparietal sulcus (IPS). Taken together, clinical cases and imaging studies support a critical role for parietal cortex in the mental manipulation of numerical quantities. Further, responses of single PPC neurons in non-human primates are sensitive to the numerosity of visual stimuli independent of low-level stimulus qualities. When monkeys are trained to make explicit judgments about the numerical value of such stimuli, PPC neurons encode their cardinal numerical value; without such training PPC neurons appear to encode numerical magnitude in an analog fashion. Here we suggest that the spatial and integrative properties of PPC neurons contribute to their critical role in numerical cognition. PMID:22666194
Brain morphometry shows effects of long-term musical practice in middle-aged keyboard players
Gärtner, H.; Minnerop, M.; Pieperhoff, P.; Schleicher, A.; Zilles, K.; Altenmüller, E.; Amunts, K.
2013-01-01
To what extent does musical practice change the structure of the brain? In order to understand how long-lasting musical training changes brain structure, 20 male right-handed, middle-aged professional musicians and 19 matched controls were investigated. Among the musicians, 13 were pianists or organists with intensive practice regimes. The others were either music teachers at schools or string instrumentalists, who had studied the piano at least as a subsidiary subject, and practiced less intensively. The study was based on T1-weighted MR images, which were analyzed using deformation-based morphometry. Cytoarchitectonic probabilistic maps of cortical areas and subcortical nuclei as well as myeloarchitectonic maps of fiber tracts were used as regions of interest to compare volume differences in the brains of musicians and controls. In addition, maps of voxel-wise volume differences were computed and analyzed. Musicians showed a significantly better symmetric motor performance as well as a greater capability of controlling hand independence than controls. Structural MRI-data revealed significant volumetric differences between the brains of keyboard players, who practiced intensively and controls in right sensorimotor areas and the corticospinal tract as well as in the entorhinal cortex and the left superior parietal lobule. Moreover, they showed also larger volumes in a comparable set of regions than the less intensively practicing musicians. The structural changes in the sensory and motor systems correspond well to the behavioral results, and can be interpreted in terms of plasticity as a result of intensive motor training. Areas of the superior parietal lobule and the entorhinal cortex might be enlarged in musicians due to their special skills in sight-playing and memorizing of scores. In conclusion, intensive and specific musical training seems to have an impact on brain structure, not only during the sensitive period of childhood but throughout life. PMID:24069009
Where is your shoulder? Neural correlates of localizing others' body parts.
Felician, Olivier; Anton, Jean-Luc; Nazarian, Bruno; Roth, Muriel; Roll, Jean-Pierre; Romaiguère, Patricia
2009-07-01
Neuropsychological studies, based on pointing to body parts paradigms, suggest that left posterior parietal lobe is involved in the visual processing of other persons' bodies. In addition, some patients have been found with mild deficit when dealing with abstract human representations but marked impairment with realistically represented bodies, suggesting that this processing could be modulated by the abstraction level of the body to be analyzed. These issues were examined in the present fMRI experiment, designed to evaluate the effects of visually processing human bodies of different abstraction levels on brain activity. The human specificity of the studied processes was assessed using whole-body representations of humans and of dogs, while the effects of the abstraction level of the representation were assessed using drawings, photographs, and videos. To assess the effect of species and stimulus complexity on BOLD signal, we performed a two-way ANOVA with factors species (human versus animal) and stimulus complexity (drawings, photographs and videos). When pointing to body parts irrespective of the stimulus complexity, we observed a positive effect of humans upon animals in the left angular gyrus (BA 39), as suggested by lesion studies. This effect was also present in midline cortical structures including mesial prefrontal, anterior cingulate and precuneal regions. When pointing to body parts irrespective of the species to be processed, we observed a positive effect of videos upon photographs and drawings in the right superior parietal lobule (BA 7), and bilaterally in the superior temporal sulcus, the supramarginal gyrus (BA 40) and the lateral extrastriate visual cortex (including the "extrastriate body area"). Taken together, these data suggest that, in comparison with other mammalians, the visual processing of other humans' bodies is associated with left angular gyrus activity, but also with midline structures commonly implicated in self-reference. They also suggest a role of the lateral extrastriate cortex in the processing of dynamic and biologically relevant body representations.
Brain morphometry shows effects of long-term musical practice in middle-aged keyboard players.
Gärtner, H; Minnerop, M; Pieperhoff, P; Schleicher, A; Zilles, K; Altenmüller, E; Amunts, K
2013-01-01
To what extent does musical practice change the structure of the brain? In order to understand how long-lasting musical training changes brain structure, 20 male right-handed, middle-aged professional musicians and 19 matched controls were investigated. Among the musicians, 13 were pianists or organists with intensive practice regimes. The others were either music teachers at schools or string instrumentalists, who had studied the piano at least as a subsidiary subject, and practiced less intensively. The study was based on T1-weighted MR images, which were analyzed using deformation-based morphometry. Cytoarchitectonic probabilistic maps of cortical areas and subcortical nuclei as well as myeloarchitectonic maps of fiber tracts were used as regions of interest to compare volume differences in the brains of musicians and controls. In addition, maps of voxel-wise volume differences were computed and analyzed. Musicians showed a significantly better symmetric motor performance as well as a greater capability of controlling hand independence than controls. Structural MRI-data revealed significant volumetric differences between the brains of keyboard players, who practiced intensively and controls in right sensorimotor areas and the corticospinal tract as well as in the entorhinal cortex and the left superior parietal lobule. Moreover, they showed also larger volumes in a comparable set of regions than the less intensively practicing musicians. The structural changes in the sensory and motor systems correspond well to the behavioral results, and can be interpreted in terms of plasticity as a result of intensive motor training. Areas of the superior parietal lobule and the entorhinal cortex might be enlarged in musicians due to their special skills in sight-playing and memorizing of scores. In conclusion, intensive and specific musical training seems to have an impact on brain structure, not only during the sensitive period of childhood but throughout life.
Boldt, Robert; Malinen, Sanna; Seppä, Mika; Tikka, Pia; Savolainen, Petri; Hari, Riitta; Carlson, Synnöve
2013-01-01
Earlier studies have shown considerable intersubject synchronization of brain activity when subjects watch the same movie or listen to the same story. Here we investigated the across-subjects similarity of brain responses to speech and non-speech sounds in a continuous audio drama designed for blind people. Thirteen healthy adults listened for ∼19 min to the audio drama while their brain activity was measured with 3 T functional magnetic resonance imaging (fMRI). An intersubject-correlation (ISC) map, computed across the whole experiment to assess the stimulus-driven extrinsic brain network, indicated statistically significant ISC in temporal, frontal and parietal cortices, cingulate cortex, and amygdala. Group-level independent component (IC) analysis was used to parcel out the brain signals into functionally coupled networks, and the dependence of the ICs on external stimuli was tested by comparing them with the ISC map. This procedure revealed four extrinsic ICs of which two-covering non-overlapping areas of the auditory cortex-were modulated by both speech and non-speech sounds. The two other extrinsic ICs, one left-hemisphere-lateralized and the other right-hemisphere-lateralized, were speech-related and comprised the superior and middle temporal gyri, temporal poles, and the left angular and inferior orbital gyri. In areas of low ISC four ICs that were defined intrinsic fluctuated similarly as the time-courses of either the speech-sound-related or all-sounds-related extrinsic ICs. These ICs included the superior temporal gyrus, the anterior insula, and the frontal, parietal and midline occipital cortices. Taken together, substantial intersubject synchronization of cortical activity was observed in subjects listening to an audio drama, with results suggesting that speech is processed in two separate networks, one dedicated to the processing of speech sounds and the other to both speech and non-speech sounds.
Lencer, Rebekka; Keedy, Sarah K.; Reilly, James L.; McDonough, Bruce E.; Harris, Margret S. H.; Sprenger, Andreas; Sweeney, John A.
2011-01-01
Visual motion processing and its use for pursuit eye movement control represent a valuable model for studying the use of sensory input for action planning. In psychotic disorders, alterations of visual motion perception have been suggested to cause pursuit eye tracking deficits. We evaluated this system in functional neuroimaging studies of untreated first-episode schizophrenia (N=24), psychotic bipolar disorder patients (N=13) and healthy controls (N=20). During a passive visual motion processing task, both patient groups showed reduced activation in the posterior parietal projection fields of motion-sensitive extrastriate area V5, but not in V5 itself. This suggests reduced bottom-up transfer of visual motion information from extrastriate cortex to perceptual systems in parietal association cortex. During active pursuit, activation was enhanced in anterior intraparietal sulcus and insula in both patient groups, and in dorsolateral prefrontal cortex and dorsomedial thalamus in schizophrenia patients. This may result from increased demands on sensorimotor systems for pursuit control due to the limited availability of perceptual motion information about target speed and tracking error. Visual motion information transfer deficits to higher -level association cortex may contribute to well-established pursuit tracking abnormalities, and perhaps to a wider array of alterations in perception and action planning in psychotic disorders. PMID:21873035
Neural networks involved in artistic creativity.
Kowatari, Yasuyuki; Lee, Seung Hee; Yamamura, Hiromi; Nagamori, Yusuke; Levy, Pierre; Yamane, Shigeru; Yamamoto, Miyuki
2009-05-01
Creativity has been proposed to be either the result of solely right hemisphere processes or of interhemispheric interactions. Little information is available, however, concerning the neuronal foundations of creativity. In this study, we introduced a new artistic task, designing a new tool (a pen), which let us quantitatively evaluate creativity by three indices of originality. These scores were analyzed in combination with brain activities measured by functional magnetic resonance imaging (fMRI). The results were compared between subjects who had been formally trained in design (experts) and novice subjects. In the experts, creativity was quantitatively correlated with the degree of dominance of the right prefrontal cortex over that of the left, but not with that of the right or left prefrontal cortex alone. In contrast, in novice subjects, only a negative correlation with creativity was observed in the bilateral inferior parietal cortex. We introduced structure equation modeling to analyze the interactions among these four brain areas and originality indices. The results predicted that training exerts a direct effect on the left parietal cortex. Additionally, as a result of the indirect effects, the activity of the right prefrontal cortex was facilitated, and the left prefrontal and right parietal cortices were suppressed. Our results supported the hypothesis that training increases creativity via reorganized intercortical interactions. (c) 2008 Wiley-Liss, Inc.
Uncertain relational reasoning in the parietal cortex.
Ragni, Marco; Franzmeier, Imke; Maier, Simon; Knauff, Markus
2016-04-01
The psychology of reasoning is currently transitioning from the study of deductive inferences under certainty to inferences that have degrees of uncertainty in both their premises and conclusions; however, only a few studies have explored the cortical basis of uncertain reasoning. Using transcranial magnetic stimulation (TMS), we show that areas in the right superior parietal lobe (rSPL) are necessary for solving spatial relational reasoning problems under conditions of uncertainty. Twenty-four participants had to decide whether a single presented order of objects agreed with a given set of indeterminate premises that could be interpreted in more than one way. During the presentation of the order, 10-Hz TMS was applied over the rSPL or a sham control site. Right SPL TMS during the inference phase disrupted performance in uncertain relational reasoning. Moreover, we found differences in the error rates between preferred mental models, alternative models, and inconsistent models. Our results suggest that different mechanisms are involved when people reason spatially and evaluate different kinds of uncertain conclusions. Copyright © 2016 Elsevier Inc. All rights reserved.
Face Patch Resting State Networks Link Face Processing to Social Cognition
Schwiedrzik, Caspar M.; Zarco, Wilbert; Everling, Stefan; Freiwald, Winrich A.
2015-01-01
Faces transmit a wealth of social information. How this information is exchanged between face-processing centers and brain areas supporting social cognition remains largely unclear. Here we identify these routes using resting state functional magnetic resonance imaging in macaque monkeys. We find that face areas functionally connect to specific regions within frontal, temporal, and parietal cortices, as well as subcortical structures supporting emotive, mnemonic, and cognitive functions. This establishes the existence of an extended face-recognition system in the macaque. Furthermore, the face patch resting state networks and the default mode network in monkeys show a pattern of overlap akin to that between the social brain and the default mode network in humans: this overlap specifically includes the posterior superior temporal sulcus, medial parietal, and dorsomedial prefrontal cortex, areas supporting high-level social cognition in humans. Together, these results reveal the embedding of face areas into larger brain networks and suggest that the resting state networks of the face patch system offer a new, easily accessible venue into the functional organization of the social brain and into the evolution of possibly uniquely human social skills. PMID:26348613
Frontoparietal white matter diffusion properties predict mental arithmetic skills in children
Tsang, Jessica M.; Dougherty, Robert F.; Deutsch, Gayle K.; Wandell, Brian A.; Ben-Shachar, Michal
2009-01-01
Functional MRI studies of mental arithmetic consistently report blood oxygen level–dependent signals in the parietal and frontal regions. We tested whether white matter pathways connecting these regions are related to mental arithmetic ability by using diffusion tensor imaging (DTI) to measure these pathways in 28 children (age 10–15 years, 14 girls) and assessing their mental arithmetic skills. For each child, we identified anatomically the anterior portion of the superior longitudinal fasciculus (aSLF), a pathway connecting parietal and frontal cortex. We measured fractional anisotropy in a core region centered along the length of the aSLF. Fractional anisotropy in the left aSLF positively correlates with arithmetic approximation skill, as measured by a mental addition task with approximate answer choices. The correlation is stable in adjacent core aSLF regions but lower toward the pathway endpoints. The correlation is not explained by shared variance with other cognitive abilities and did not pass significance in the right aSLF. These measurements used DTI, a structural method, to test a specific functional model of mental arithmetic. PMID:19948963
Mediterranean diet, micronutrients and macronutrients, and MRI measures of cortical thickness.
Staubo, Sara C; Aakre, Jeremiah A; Vemuri, Prashanthi; Syrjanen, Jeremy A; Mielke, Michelle M; Geda, Yonas E; Kremers, Walter K; Machulda, Mary M; Knopman, David S; Petersen, Ronald C; Jack, Clifford R; Roberts, Rosebud O
2017-02-01
The Mediterranean diet (MeDi) is associated with reduced risk of cognitive impairment, but it is unclear whether it is associated with better brain imaging biomarkers. Among 672 cognitively normal participants (mean age, 79.8 years, 52.5% men), we investigated associations of MeDi score and MeDi components with magnetic resonance imaging measures of cortical thickness for the four lobes separately and averaged (average lobar). Higher MeDi score was associated with larger frontal, parietal, occipital, and average lobar cortical thickness. Higher legume and fish intakes were associated with larger cortical thickness: legumes with larger superior parietal, inferior parietal, precuneus, parietal, occipital, lingual, and fish with larger precuneus, superior parietal, posterior cingulate, parietal, and inferior parietal. Higher carbohydrate and sugar intakes were associated with lower entorhinal cortical thickness. In this sample of elderly persons, higher adherence to MeDi was associated with larger cortical thickness. These cross-sectional findings require validation in prospective studies. Copyright © 2016 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
Melzer, P; Morgan, V L; Pickens, D R; Price, R R; Wall, R S; Ebner, F F
2001-11-01
Functional magnetic resonance imaging was performed on blind adults resting and reading Braille. The strongest activation was found in primary somatic sensory/motor cortex on both cortical hemispheres. Additional foci of activation were situated in the parietal, temporal, and occipital lobes where visual information is processed in sighted persons. The regions were differentiated most in the correlation of their time courses of activation with resting and reading. Differences in magnitude and expanse of activation were substantially less significant. Among the traditionally visual areas, the strength of correlation was greatest in posterior parietal cortex and moderate in occipitotemporal, lateral occipital, and primary visual cortex. It was low in secondary visual cortex as well as in dorsal and ventral inferior temporal cortex and posterior middle temporal cortex. Visual experience increased the strength of correlation in all regions except dorsal inferior temporal and posterior parietal cortex. The greatest statistically significant increase, i.e., approximately 30%, was in ventral inferior temporal and posterior middle temporal cortex. In these regions, words are analyzed semantically, which may be facilitated by visual experience. In contrast, visual experience resulted in a slight, insignificant diminution of the strength of correlation in dorsal inferior temporal cortex where language is analyzed phonetically. These findings affirm that posterior temporal regions are engaged in the processing of written language. Moreover, they suggest that this function is modified by early visual experience. Furthermore, visual experience significantly strengthened the correlation of activation and Braille reading in occipital regions traditionally involved in the processing of visual features and object recognition suggesting a role for visual imagery. Copyright 2001 Wiley-Liss, Inc.
Krumm, Sabine; Kivisaari, Sasa L; Monsch, Andreas U; Reinhardt, Julia; Ulmer, Stephan; Stippich, Christoph; Kressig, Reto W; Taylor, Kirsten I
2017-05-01
The parietal lobe is important for successful recognition memory, but its role is not yet fully understood. We investigated the parietal lobes' contribution to immediate paired-associate memory and delayed item-recognition memory separately for hits (targets) and correct rejections (distractors). We compared the behavioral performance of 56 patients with known parietal and medial temporal lobe dysfunction (i.e. early Alzheimer's Disease) to 56 healthy control participants in an immediate paired and delayed single item object memory task. Additionally, we performed voxel-based morphometry analyses to investigate the functional-neuroanatomic relationships between performance and voxel-based estimates of atrophy in whole-brain analyses. Behaviorally, all participants performed better identifying targets than rejecting distractors. The voxel-based morphometry analyses associated atrophy in the right ventral parietal cortex with fewer correct responses to familiar items (i.e. hits) in the immediate and delayed conditions. Additionally, medial temporal lobe integrity correlated with better performance in rejecting distractors, but not in identifying targets, in the immediate paired-associate task. Our findings suggest that the parietal lobe critically supports successful immediate and delayed target recognition memory, and that the ventral aspect of the parietal cortex and the medial temporal lobe may have complementary preferences for identifying targets and rejecting distractors, respectively, during recognition memory. Copyright © 2017. Published by Elsevier Inc.
Scott, Gregory D; Karns, Christina M; Dow, Mark W; Stevens, Courtney; Neville, Helen J
2014-01-01
Brain reorganization associated with altered sensory experience clarifies the critical role of neuroplasticity in development. An example is enhanced peripheral visual processing associated with congenital deafness, but the neural systems supporting this have not been fully characterized. A gap in our understanding of deafness-enhanced peripheral vision is the contribution of primary auditory cortex. Previous studies of auditory cortex that use anatomical normalization across participants were limited by inter-subject variability of Heschl's gyrus. In addition to reorganized auditory cortex (cross-modal plasticity), a second gap in our understanding is the contribution of altered modality-specific cortices (visual intramodal plasticity in this case), as well as supramodal and multisensory cortices, especially when target detection is required across contrasts. Here we address these gaps by comparing fMRI signal change for peripheral vs. perifoveal visual stimulation (11-15° vs. 2-7°) in congenitally deaf and hearing participants in a blocked experimental design with two analytical approaches: a Heschl's gyrus region of interest analysis and a whole brain analysis. Our results using individually-defined primary auditory cortex (Heschl's gyrus) indicate that fMRI signal change for more peripheral stimuli was greater than perifoveal in deaf but not in hearing participants. Whole-brain analyses revealed differences between deaf and hearing participants for peripheral vs. perifoveal visual processing in extrastriate visual cortex including primary auditory cortex, MT+/V5, superior-temporal auditory, and multisensory and/or supramodal regions, such as posterior parietal cortex (PPC), frontal eye fields, anterior cingulate, and supplementary eye fields. Overall, these data demonstrate the contribution of neuroplasticity in multiple systems including primary auditory cortex, supramodal, and multisensory regions, to altered visual processing in congenitally deaf adults.
Buss, Aaron T.; Fox, Nicholas; Boas, David A.; Spencer, John P.
2013-01-01
Visual working memory (VWM) is a core cognitive system with a highly limited capacity. The present study is the first to examine VWM capacity limits in early development using functional neuroimaging. We recorded optical neuroimaging data while 3- and 4-year-olds completed a change detection task where they detected changes in the shapes of objects after a brief delay. Near-infrared sources and detectors were placed over the following 10–20 positions: F3 and F5 in left frontal cortex, F4 and F6 in right frontal cortex, P3 and P5 in left parietal cortex, and P4 and P6 in right parietal cortex. The first question was whether we would see robust task-specific activation of the frontal-parietal network identified in the adult fMRI literature. This was indeed the case: three left frontal channels and 11 of 12 parietal channels showed a statistically robust difference between the concentration of oxygenated and deoxygenated hemoglobin following the presentation of the sample array. Moreover, four channels in the left hemisphere near P3, P5, and F5 showed a robust increase as the working memory load increased from 1–3 items. Notably, the hemodynamic response did not asymptote at 1–2 items as expected from previous fMRI studies with adults. Finally, 4-year-olds showed a more robust parietal response relative to 3-year-olds, and an increasing sensitivity to the memory load manipulation. These results demonstrate that fNIRS is an effective tool to study the neural processes that underlie the early development of VWM capacity. PMID:23707803
Buss, Aaron T; Fox, Nicholas; Boas, David A; Spencer, John P
2014-01-15
Visual working memory (VWM) is a core cognitive system with a highly limited capacity. The present study is the first to examine VWM capacity limits in early development using functional neuroimaging. We recorded optical neuroimaging data while 3- and 4-year-olds completed a change detection task where they detected changes in the shapes of objects after a brief delay. Near-infrared sources and detectors were placed over the following 10-20 positions: F3 and F5 in left frontal cortex, F4 and F6 in right frontal cortex, P3 and P5 in left parietal cortex, and P4 and P6 in right parietal cortex. The first question was whether we would see robust task-specific activation of the frontal-parietal network identified in the adult fMRI literature. This was indeed the case: three left frontal channels and 11 of 12 parietal channels showed a statistically robust difference between the concentration of oxygenated and deoxygenated hemoglobin following the presentation of the sample array. Moreover, four channels in the left hemisphere near P3, P5, and F5 showed a robust increase as the working memory load increased from 1 to 3 items. Notably, the hemodynamic response did not asymptote at 1-2 items as expected from previous fMRI studies with adults. Finally, 4-year-olds showed a more robust parietal response relative to 3-year-olds, and an increasing sensitivity to the memory load manipulation. These results demonstrate that fNIRS is an effective tool to study the neural processes that underlie the early development of VWM capacity. Copyright © 2013 Elsevier Inc. All rights reserved.
The posterior parietal cortex in recognition memory: a neuropsychological study.
Haramati, Sharon; Soroker, Nachum; Dudai, Yadin; Levy, Daniel A
2008-01-01
Several recent functional neuroimaging studies have reported robust bilateral activation (L>R) in lateral posterior parietal cortex and precuneus during recognition memory retrieval tasks. It has not yet been determined what cognitive processes are represented by those activations. In order to examine whether parietal lobe-based processes are necessary for basic episodic recognition abilities, we tested a group of 17 first-incident CVA patients whose cortical damage included (but was not limited to) extensive unilateral posterior parietal lesions. These patients performed a series of tasks that yielded parietal activations in previous fMRI studies: yes/no recognition judgments on visual words and on colored object pictures and identifiable environmental sounds. We found that patients with left hemisphere lesions were not impaired compared to controls in any of the tasks. Patients with right hemisphere lesions were not significantly impaired in memory for visual words, but were impaired in recognition of object pictures and sounds. Two lesion--behavior analyses--area-based correlations and voxel-based lesion symptom mapping (VLSM)---indicate that these impairments resulted from extra-parietal damage, specifically to frontal and lateral temporal areas. These findings suggest that extensive parietal damage does not impair recognition performance. We suggest that parietal activations recorded during recognition memory tasks might reflect peri-retrieval processes, such as the storage of retrieved memoranda in a working memory buffer for further cognitive processing.
fMRI evidence for strategic decision-making during resolution of pronoun reference.
McMillan, Corey T; Clark, Robin; Gunawardena, Delani; Ryant, Neville; Grossman, Murray
2012-04-01
Pronouns are extraordinarily common in daily language yet little is known about the neural mechanisms that support decisions about pronoun reference. We propose a large-scale neural network for resolving pronoun reference that consists of two components. First, a core language network in peri-Sylvian cortex supports syntactic and semantic resources for interpreting pronoun meaning in sentences. Second, a frontal-parietal network that supports strategic decision-making is recruited to support probabilistic and risk-related components of resolving a pronoun's referent. In an fMRI study of healthy young adults, we observed activation of left inferior frontal and superior temporal cortex, consistent with a language network. We also observed activation of brain regions not associated with traditional language areas. By manipulating the context of the pronoun, we were able to demonstrate recruitment of dorsolateral prefrontal cortex during probabilistic evaluation of a pronoun's reference, and orbital frontal activation when a pronoun must adopt a risky referent. Together, these findings are consistent with a two-component model for resolving a pronoun's reference that includes neuroanatomic regions supporting core linguistic and decision-making mechanisms. Copyright © 2012 Elsevier Ltd. All rights reserved.
The Nature and Neural Correlates of Semantic Association versus Conceptual Similarity
Jackson, Rebecca L.; Hoffman, Paul; Pobric, Gorana; Lambon Ralph, Matthew A.
2015-01-01
The ability to represent concepts and the relationships between them is critical to human cognition. How does the brain code relationships between items that share basic conceptual properties (e.g., dog and wolf) while simultaneously representing associative links between dissimilar items that co-occur in particular contexts (e.g., dog and bone)? To clarify the neural bases of these semantic components in neurologically intact participants, both types of semantic relationship were investigated in an fMRI study optimized for anterior temporal lobe (ATL) coverage. The clear principal finding was that the same core semantic network (ATL, superior temporal sulcus, ventral prefrontal cortex) was equivalently engaged when participants made semantic judgments on the basis of association or conceptual similarity. Direct comparisons revealed small, weaker differences for conceptual similarity > associative decisions (e.g., inferior prefrontal cortex) and associative > conceptual similarity (e.g., ventral parietal cortex) which appear to reflect graded differences in task difficulty. Indeed, once reaction time was entered as a covariate into the analysis, no associative versus category differences remained. The paper concludes with a discussion of how categorical/feature-based and associative relationships might be represented within a single, unified semantic system. PMID:25636912
Visuomotor Dissociation in Cerebral Scaling of Size.
Potgieser, Adriaan R E; de Jong, Bauke M
2016-01-01
Estimating size and distance is crucial in effective visuomotor control. The concept of an internal coordinate system implies that visual and motor size parameters are scaled onto a common template. To dissociate perceptual and motor components in such scaling, we performed an fMRI experiment in which 16 right-handed subjects copied geometric figures while the result of drawing remained out of sight. Either the size of the example figure varied while maintaining a constant size of drawing (visual incongruity) or the size of the examples remained constant while subjects were instructed to make changes in size (motor incongruity). These incongruent were compared to congruent conditions. Statistical Parametric Mapping (SPM8) revealed brain activations related to size incongruity in the dorsolateral prefrontal and inferior parietal cortex, pre-SMA / anterior cingulate and anterior insula, dominant in the right hemisphere. This pattern represented simultaneous use of a 'resized' virtual template and actual picture information requiring spatial working memory, early-stage attention shifting and inhibitory control. Activations were strongest in motor incongruity while right pre-dorsal premotor activation specifically occurred in this condition. Visual incongruity additionally relied on a ventral visual pathway. Left ventral premotor activation occurred in all variably sized drawing while constant visuomotor size, compared to congruent size variation, uniquely activated the lateral occipital cortex additional to superior parietal regions. These results highlight size as a fundamental parameter in both general hand movement and movement guided by objects perceived in the context of surrounding 3D space.
Kinno, Ryuta; Ohashi, Hideaki; Mori, Yukiko; Shiromaru, Azusa; Ono, Kenjiro
2018-03-01
A 28-year-old right-handed man noticed weakness in his legs, three days after an ephedrine overdose. Initial brain magnetic resonance imaging showed lesions in the parietal regions bilaterally. Computed tomography angiography showed segmental and multifocal vasoconstriction of the cerebral arteries. After treatment, clinical and radiological findings resolved, suggesting the patient had reversible cerebral vasoconstriction syndrome with posterior reversible encephalopathy syndrome. However, he had residual agraphia of the left hand. Language testing revealed no difficulties in oral expression, auditory comprehension, understanding of written language, or writing with the right hand. I-123 iodoamphetamine single-photon emission computed tomography showed residual dysfunction in the left superior parietal lobule. There were no apparent signs of other disconnection syndromes or neuroimaging abnormalities in the corpus callosum. We diagnosed left-hand agraphia due to left parietal dysfunction. Our case suggests that left superior parietal dysfunction without callosal lesions is a possible cause of left-hand agraphia. Neural mechanisms for writing with the right or left hand may be separable at the cortical level.
Bordier, Cecile; Puja, Francesco; Macaluso, Emiliano
2013-01-01
The investigation of brain activity using naturalistic, ecologically-valid stimuli is becoming an important challenge for neuroscience research. Several approaches have been proposed, primarily relying on data-driven methods (e.g. independent component analysis, ICA). However, data-driven methods often require some post-hoc interpretation of the imaging results to draw inferences about the underlying sensory, motor or cognitive functions. Here, we propose using a biologically-plausible computational model to extract (multi-)sensory stimulus statistics that can be used for standard hypothesis-driven analyses (general linear model, GLM). We ran two separate fMRI experiments, which both involved subjects watching an episode of a TV-series. In Exp 1, we manipulated the presentation by switching on-and-off color, motion and/or sound at variable intervals, whereas in Exp 2, the video was played in the original version, with all the consequent continuous changes of the different sensory features intact. Both for vision and audition, we extracted stimulus statistics corresponding to spatial and temporal discontinuities of low-level features, as well as a combined measure related to the overall stimulus saliency. Results showed that activity in occipital visual cortex and the superior temporal auditory cortex co-varied with changes of low-level features. Visual saliency was found to further boost activity in extra-striate visual cortex plus posterior parietal cortex, while auditory saliency was found to enhance activity in the superior temporal cortex. Data-driven ICA analyses of the same datasets also identified “sensory” networks comprising visual and auditory areas, but without providing specific information about the possible underlying processes, e.g., these processes could relate to modality, stimulus features and/or saliency. We conclude that the combination of computational modeling and GLM enables the tracking of the impact of bottom–up signals on brain activity during viewing of complex and dynamic multisensory stimuli, beyond the capability of purely data-driven approaches. PMID:23202431
Callan, Daniel E.; Jones, Jeffery A.; Callan, Akiko
2014-01-01
Behavioral and neuroimaging studies have demonstrated that brain regions involved with speech production also support speech perception, especially under degraded conditions. The premotor cortex (PMC) has been shown to be active during both observation and execution of action (“Mirror System” properties), and may facilitate speech perception by mapping unimodal and multimodal sensory features onto articulatory speech gestures. For this functional magnetic resonance imaging (fMRI) study, participants identified vowels produced by a speaker in audio-visual (saw the speaker's articulating face and heard her voice), visual only (only saw the speaker's articulating face), and audio only (only heard the speaker's voice) conditions with varying audio signal-to-noise ratios in order to determine the regions of the PMC involved with multisensory and modality specific processing of visual speech gestures. The task was designed so that identification could be made with a high level of accuracy from visual only stimuli to control for task difficulty and differences in intelligibility. The results of the functional magnetic resonance imaging (fMRI) analysis for visual only and audio-visual conditions showed overlapping activity in inferior frontal gyrus and PMC. The left ventral inferior premotor cortex (PMvi) showed properties of multimodal (audio-visual) enhancement with a degraded auditory signal. The left inferior parietal lobule and right cerebellum also showed these properties. The left ventral superior and dorsal premotor cortex (PMvs/PMd) did not show this multisensory enhancement effect, but there was greater activity for the visual only over audio-visual conditions in these areas. The results suggest that the inferior regions of the ventral premotor cortex are involved with integrating multisensory information, whereas, more superior and dorsal regions of the PMC are involved with mapping unimodal (in this case visual) sensory features of the speech signal with articulatory speech gestures. PMID:24860526
Cattaneo, Zaira; Lega, Carlotta; Gardelli, Chiara; Merabet, Lotfi B; Cela-Conde, Camilo J; Nadal, Marcos
2014-10-01
To explain the biological foundations of art appreciation is to explain one of our species' distinctive traits. Previous neuroimaging and electrophysiological studies have pointed to the prefrontal and the parietal cortex as two critical regions mediating esthetic appreciation of visual art. In this study, we applied transcranial magnetic stimulation (TMS) over the left prefrontal cortex and the right posterior parietal cortex while participants were evaluating whether they liked, and by how much, a particular painting. By depolarizing cell membranes in the targeted regions, TMS transiently interferes with the activity of specific cortical areas, which allows clarifying their role in a given task. Our results show that both regions play a fundamental role in mediating esthetic appreciation. Critically though, the effects of TMS varied depending on the type of art considered (i.e. representational vs. abstract) and on participants' a-priori inclination toward one or the other. Copyright © 2014 Elsevier Inc. All rights reserved.
Unseen fearful faces promote amygdala guidance of attention.
Troiani, Vanessa; Price, Elinora T; Schultz, Robert T
2014-02-01
Little is known about the network of brain regions activated prior to explicit awareness of emotionally salient social stimuli. We investigated this in a functional magnetic resonance imaging study using a technique that combined elements of binocular rivalry and motion flash suppression in order to prevent awareness of fearful faces and houses. We found increased left amygdala and fusiform gyrus activation for fearful faces compared to houses, despite suppression from awareness. Psychophysiological interaction analyses showed that amygdala activation was associated with task-specific (fearful faces greater than houses) modulation of an attention network, including bilateral pulvinar, bilateral insula, left frontal eye fields, left intraparietal sulcus and early visual cortex. Furthermore, we report an unexpected main effect of increased left parietal cortex activation associated with suppressed fearful faces compared to suppressed houses. This parietal finding is the first report of increased dorsal stream activation for a social object despite suppression, which suggests that information can reach parietal cortex for a class of emotionally salient social objects, even in the absence of awareness.
Hiremath, Chaitra; Dey, Avyarthana
2017-01-01
Abstract Background: Self-reflection is the process of conscious evaluation of one’s traits, abilities, and attitudes. Deficient self-reflective processes might underlie lack of insight into schizophrenia. The limited research literature on the neural correlates of self-reflection in schizophrenia is inconclusive. In this study, we investigated the neural correlates of self-reflection in schizophrenia patients attending a tertiary care hospital in India. Methods: Nineteen male schizophrenia patients (mean age = 32.68 ± 7.11, mean years of education =15.21 ± 1.93) and 19 male healthy controls (mean age = 26.96 ± 4.67, mean years of education = 18.11 ± 3.13) participated in the study. Participants performed a previously validated self-reflection task while undergoing functional magnetic resonance imaging (fMRI; 3-Tesla). The task comprised of 144 words subdivided into 4 domains: Self-reflection, Other-reflection, Affect labeling, and Perceptual. The task was presented as 3 runs of 8 blocks each. The images were preprocessed and analyzed using SPM-12. After preprocessing, contrasts comparing Self-reflection with the other domains were modeled at the individual subject level. In second-level analysis, the first-level contrasts were entered into a 2-sample t test to compare patient and healthy control groups. The results were thresholded at P < .001 (uncorrected) and a cluster size of 6 voxels. Results: For the Self-reflection > Other-reflection contrast, schizophrenia patients demonstrated greater activation of right and left superior parietal lobules (BA 5 and 7), right inferior parietal lobule (BA 39), left parahippocampal gyrus (BA 36), and left premotor cortex (BA 6). For the Self-reflection > Affect labeling contrast, patients showed greater activation of precuneus (BA 7) and right inferior occipital gyrus (BA 19), and lesser activation of left inferior frontal gyrus (BA 45 and 47). And for the Self-reflection > Perceptual contrast, patients showed greater activation of left middle frontal gyrus (BA 10), left posterior cingulate gyrus (BA 31), right superior parietal lobule (BA 7), right and left inferior parietal lobules (BA 39 and 40), and left premotor cortex (BA 6). Conclusion: The results indicate that patients with schizophrenia have aberrant activity in brain regions that subserve self-reflection. The greater activation of posterior brain areas might suggest that schizophrenia is associated with an anterior-to-posterior shift in introspection-related activation, as seen from earlier studies. Further studies with a larger sample are needed to examine neural processes underlying self-reflection abnormalities in schizophrenia. Research grant: Department of Science and Technology, Govt. of India - INSPIRE Faculty Award (IFA12-LSBM)
Marvel, Cherie L; Desmond, John E
2012-01-01
The ability to store and manipulate online information may be enhanced by an inner speech mechanism that draws upon motor brain regions. Neural correlates of this mechanism were examined using event-related functional magnetic resonance imaging (fMRI). Sixteen participants completed two conditions of a verbal working memory task. In both conditions, participants viewed one or two target letters. In the "storage" condition, these targets were held in mind across a delay. Then a probe letter was presented, and participants indicated by button press whether the probe matched the targets. In the "manipulation" condition, participants identified new targets by thinking two alphabetical letters forward of each original target (e.g., f→h). Participants subsequently indicated whether the probe matched the newly derived targets. Brain activity during the storage and manipulation conditions was examined specifically during the delay phase in order to directly compare manipulation versus storage processes. Activations that were common to both conditions, yet disproportionately greater with manipulation, were observed in the left inferior frontal cortex, premotor cortex, and anterior insula, bilaterally in the parietal lobes and superior cerebellum, and in the right inferior cerebellum. This network shares substrates with overt speech and may represent an inner speech pathway that increases activity with greater working memory demands. Additionally, an inverse correlation was observed between manipulation-related brain activity (on correct trials) and test accuracy in the left premotor cortex, anterior insula, and bilateral superior cerebellum. This inverse relationship may represent intensification of inner speech as one struggles to maintain performance levels. © 2011 Elsevier Inc. All rights reserved.
Automatic Semantic Facilitation in Anterior Temporal Cortex Revealed through Multimodal Neuroimaging
Gramfort, Alexandre; Hämäläinen, Matti S.; Kuperberg, Gina R.
2013-01-01
A core property of human semantic processing is the rapid, facilitatory influence of prior input on extracting the meaning of what comes next, even under conditions of minimal awareness. Previous work has shown a number of neurophysiological indices of this facilitation, but the mapping between time course and localization—critical for separating automatic semantic facilitation from other mechanisms—has thus far been unclear. In the current study, we used a multimodal imaging approach to isolate early, bottom-up effects of context on semantic memory, acquiring a combination of electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI) measurements in the same individuals with a masked semantic priming paradigm. Across techniques, the results provide a strikingly convergent picture of early automatic semantic facilitation. Event-related potentials demonstrated early sensitivity to semantic association between 300 and 500 ms; MEG localized the differential neural response within this time window to the left anterior temporal cortex, and fMRI localized the effect more precisely to the left anterior superior temporal gyrus, a region previously implicated in semantic associative processing. However, fMRI diverged from early EEG/MEG measures in revealing semantic enhancement effects within frontal and parietal regions, perhaps reflecting downstream attempts to consciously access the semantic features of the masked prime. Together, these results provide strong evidence that automatic associative semantic facilitation is realized as reduced activity within the left anterior superior temporal cortex between 300 and 500 ms after a word is presented, and emphasize the importance of multimodal neuroimaging approaches in distinguishing the contributions of multiple regions to semantic processing. PMID:24155321
Distinct cortical codes and temporal dynamics for conscious and unconscious percepts
Salti, Moti; Monto, Simo; Charles, Lucie; King, Jean-Remi; Parkkonen, Lauri; Dehaene, Stanislas
2015-01-01
The neural correlates of consciousness are typically sought by comparing the overall brain responses to perceived and unperceived stimuli. However, this comparison may be contaminated by non-specific attention, alerting, performance, and reporting confounds. Here, we pursue a novel approach, tracking the neuronal coding of consciously and unconsciously perceived contents while keeping behavior identical (blindsight). EEG and MEG were recorded while participants reported the spatial location and visibility of a briefly presented target. Multivariate pattern analysis demonstrated that considerable information about spatial location traverses the cortex on blindsight trials, but that starting ≈270 ms post-onset, information unique to consciously perceived stimuli, emerges in superior parietal and superior frontal regions. Conscious access appears characterized by the entry of the perceived stimulus into a series of additional brain processes, each restricted in time, while the failure of conscious access results in the breaking of this chain and a subsequent slow decay of the lingering unconscious activity. DOI: http://dx.doi.org/10.7554/eLife.05652.001 PMID:25997100
Effects of BDNF Val66Met polymorphism on brain metabolism in Alzheimer's disease.
Xu, Cunlu; Wang, Zhenhua; Fan, Ming; Liu, Bing; Song, Ming; Zhen, Xiantong; Jiang, Tianzi
2010-08-23
Earlier studies showed that the Val66Met polymorphisms of the brain-derived neurotrophic factor differentially affect gray matter volume and brain region activities. This study used resting positron emission tomography to investigate the relationship between the polymorphisms of Val66Met and the regional cerebral metabolic rate in the brain. We analyzed the positron emission tomography images of 215 patients from the Alzheimer's Disease Neuroimaging Initiative and found significant differences in the parahippocampal gyrus, superior temporal gyrus, prefrontal cortex, and inferior parietal lobule when comparing Met carriers with noncarriers among both the normal controls and those with mild cognitive impairment. For those with Alzheimer's disease, we also found additional differences in the bilateral insula between the carriers and noncarriers.
Bosch, Oliver G.; Wagner, Michael; Jessen, Frank; Kühn, Kai-Uwe; Joe, Alexius; Seifritz, Erich; Maier, Wolfgang; Biersack, Hans-Jürgen; Quednow, Boris B.
2013-01-01
Introduction 3,4-Methylenedioxymethamphetamine (MDMA, “ecstasy”) is a recreational club drug with supposed neurotoxic effects selectively on the serotonin system. MDMA users consistently exhibit memory dysfunction but there is an ongoing debate if these deficits are induced mainly by alterations in the prefrontal or mediotemporal cortex, especially the hippocampus. Thus, we investigated the relation of verbal memory deficits with alterations of regional cerebral brain glucose metabolism (rMRGlu) in recreational MDMA users. Methods Brain glucose metabolism in rest was assessed using 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography (18FDG PET) in 19 male recreational users of MDMA and 19 male drug-naïve controls. 18FDG PET data were correlated with memory performance assessed with a German version of the Rey Auditory Verbal Learning Test. Results As previously shown, MDMA users showed significant impairment in verbal declarative memory performance. PET scans revealed significantly decreased rMRGlu in the bilateral dorsolateral prefrontal and inferior parietal cortex, bilateral thalamus, right hippocampus, right precuneus, right cerebellum, and pons (at the level of raphe nuclei) of MDMA users. Among MDMA users, learning and recall were positively correlated with rMRGlu predominantly in bilateral frontal and parietal brain regions, while recognition was additionally related to rMRGlu in the right mediotemporal and bihemispheric lateral temporal cortex. Moreover, cumulative lifetime dose of MDMA was negatively correlated with rMRGlu in the left dorsolateral and bilateral orbital and medial PFC, left inferior parietal and right lateral temporal cortex. Conclusions Verbal learning and recall deficits of recreational MDMA users are correlated with glucose hypometabolism in prefrontal and parietal cortex, while word recognition was additionally correlated with mediotemporal hypometabolism. We conclude that memory deficits of MDMA users arise from combined fronto-parieto-mediotemporal dysfunction. PMID:23585882
Mohnke, Sebastian; Erk, Susanne; Schnell, Knut; Schütz, Claudia; Romanczuk-Seiferth, Nina; Grimm, Oliver; Haddad, Leila; Pöhland, Lydia; Garbusow, Maria; Schmitgen, Mike M; Kirsch, Peter; Esslinger, Christine; Rietschel, Marcella; Witt, Stephanie H; Nöthen, Markus M; Cichon, Sven; Mattheisen, Manuel; Mühleisen, Thomas; Jensen, Jimmy; Schott, Björn H; Maier, Wolfgang; Heinz, Andreas; Meyer-Lindenberg, Andreas; Walter, Henrik
2014-04-01
The single-nucleotide polymorphism (SNP) rs1344706 in ZNF804A is one of the best-supported risk variants for psychosis. We hypothesized that this SNP contributes to the development of schizophrenia by affecting the ability to understand other people's mental states. This skill, commonly referred to as Theory of Mind (ToM), has consistently been found to be impaired in schizophrenia. Using functional magnetic resonance imaging, we previously showed that in healthy individuals rs1344706 impacted on activity and connectivity of key areas of the ToM network, including the dorsomedial prefrontal cortex, temporo-parietal junction, and the posterior cingulate cortex, which show aberrant activity in schizophrenia patients, too. We aimed to replicate these results in an independent sample of 188 healthy German volunteers. In order to assess the reliability of brain activity elicited by the ToM task, 25 participants performed the task twice with an interval of 14 days showing excellent accordance in recruitment of key ToM areas. Confirming our previous results, we observed decreasing activity of the left temporo-parietal junction, dorsomedial prefrontal cortex, and the posterior cingulate cortex with increasing number of risk alleles during ToM. Complementing our replication sample with the discovery sample, analyzed in a previous report (total N=297), further revealed negative genotype effects in the left dorsomedial prefrontal cortex as well as in the temporal and parietal regions. In addition, as shown previously, rs1344706 risk allele dose positively predicted increased frontal-temporo-parietal connectivity. These findings confirm the effects of the psychosis risk variant in ZNF804A on the dysfunction of the ToM network.
Mohnke, Sebastian; Erk, Susanne; Schnell, Knut; Schütz, Claudia; Romanczuk-Seiferth, Nina; Grimm, Oliver; Haddad, Leila; Pöhland, Lydia; Garbusow, Maria; Schmitgen, Mike M; Kirsch, Peter; Esslinger, Christine; Rietschel, Marcella; Witt, Stephanie H; Nöthen, Markus M; Cichon, Sven; Mattheisen, Manuel; Mühleisen, Thomas; Jensen, Jimmy; Schott, Björn H; Maier, Wolfgang; Heinz, Andreas; Meyer-Lindenberg, Andreas; Walter, Henrik
2014-01-01
The single-nucleotide polymorphism (SNP) rs1344706 in ZNF804A is one of the best-supported risk variants for psychosis. We hypothesized that this SNP contributes to the development of schizophrenia by affecting the ability to understand other people's mental states. This skill, commonly referred to as Theory of Mind (ToM), has consistently been found to be impaired in schizophrenia. Using functional magnetic resonance imaging, we previously showed that in healthy individuals rs1344706 impacted on activity and connectivity of key areas of the ToM network, including the dorsomedial prefrontal cortex, temporo-parietal junction, and the posterior cingulate cortex, which show aberrant activity in schizophrenia patients, too. We aimed to replicate these results in an independent sample of 188 healthy German volunteers. In order to assess the reliability of brain activity elicited by the ToM task, 25 participants performed the task twice with an interval of 14 days showing excellent accordance in recruitment of key ToM areas. Confirming our previous results, we observed decreasing activity of the left temporo-parietal junction, dorsomedial prefrontal cortex, and the posterior cingulate cortex with increasing number of risk alleles during ToM. Complementing our replication sample with the discovery sample, analyzed in a previous report (total N=297), further revealed negative genotype effects in the left dorsomedial prefrontal cortex as well as in the temporal and parietal regions. In addition, as shown previously, rs1344706 risk allele dose positively predicted increased frontal–temporo-parietal connectivity. These findings confirm the effects of the psychosis risk variant in ZNF804A on the dysfunction of the ToM network. PMID:24247043
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, Michael A.; Coffman, Brian A.; Gasparovic, Charles
Transcranial direct current stimulation (tDCS) modulates glutamatergic neurotransmission and can be utilized as a novel treatment intervention for a multitude of populations. However, the exact mechanism by which tDCS modulates the brain's neural architecture, from the micro to macro scales, have yet to be investigated. In this paper, using a within-subjects design, resting-state functional magnetic resonance imaging (rs-fMRI) and proton magnetic resonance spectroscopy ( 1H MRS) were performed immediately before and after the administration of anodal tDCS over right parietal cortex. Group independent component analysis (ICA) was used to decompose fMRI scans into 75 brain networks, from which 12 resting-statemore » networks were identified that had significant voxel-wise functional connectivity to anatomical regions of interest. 1H MRS was used to obtain estimates of combined glutamate and glutamine (Glx) concentrations from bilateral intraparietal sulcus. Paired sample t-tests showed significantly increased Glx under the anodal electrode, but not in homologous regions of the contralateral hemisphere. Increases of within-network connectivity were observed within the superior parietal, inferior parietal, left frontal–parietal, salience and cerebellar intrinsic networks, and decreases in connectivity were observed in the anterior cingulate and the basal ganglia ( p<0.05, FDR-corrected). Individual differences in Glx concentrations predicted network connectivity in most of these networks. Finally, the observed relationships between glutamatergic neurotransmission and network connectivity may be used to guide future tDCS protocols that aim to target and alter neuroplastic mechanisms in healthy individuals as well as those with psychiatric and neurologic disorders.« less
Hunter, Michael A.; Coffman, Brian A.; Gasparovic, Charles; ...
2014-10-12
Transcranial direct current stimulation (tDCS) modulates glutamatergic neurotransmission and can be utilized as a novel treatment intervention for a multitude of populations. However, the exact mechanism by which tDCS modulates the brain's neural architecture, from the micro to macro scales, have yet to be investigated. In this paper, using a within-subjects design, resting-state functional magnetic resonance imaging (rs-fMRI) and proton magnetic resonance spectroscopy ( 1H MRS) were performed immediately before and after the administration of anodal tDCS over right parietal cortex. Group independent component analysis (ICA) was used to decompose fMRI scans into 75 brain networks, from which 12 resting-statemore » networks were identified that had significant voxel-wise functional connectivity to anatomical regions of interest. 1H MRS was used to obtain estimates of combined glutamate and glutamine (Glx) concentrations from bilateral intraparietal sulcus. Paired sample t-tests showed significantly increased Glx under the anodal electrode, but not in homologous regions of the contralateral hemisphere. Increases of within-network connectivity were observed within the superior parietal, inferior parietal, left frontal–parietal, salience and cerebellar intrinsic networks, and decreases in connectivity were observed in the anterior cingulate and the basal ganglia ( p<0.05, FDR-corrected). Individual differences in Glx concentrations predicted network connectivity in most of these networks. Finally, the observed relationships between glutamatergic neurotransmission and network connectivity may be used to guide future tDCS protocols that aim to target and alter neuroplastic mechanisms in healthy individuals as well as those with psychiatric and neurologic disorders.« less
Monge, Zachary A.; Greenwood, Pamela M.; Parasuraman, Raja; Strenziok, Maren
2016-01-01
Objective Although reasoning and attention are two cognitive processes necessary for ensuring the efficiency of many everyday activities in older adults, the role of white matter integrity in these processes has been little studied. This is an important question due to the role of white matter integrity as a neural substrate of cognitive aging. Here, we sought to examine the white matter tracts subserving reasoning and visuospatial attention in healthy older adults. Method Sixty-one adults aged 60 and older completed a battery of cognitive tests to assess reasoning and visuospatial attention. In addition, diffusion tensor images were collected to assess Fractional Anisotropy (FA) – a measure of white matter integrity. A principle component analysis of the test scores yielded two components: reasoning and visuospatial attention. Whole-brain correlations between FA and the cognitive components were submitted to probabilistic tractography analyses for visualization of cortical targets of tracts. Results For reasoning, bilateral thalamo-anterior prefrontal, anterior corpus callosum, and corpus callosum body tracts interconnecting the superior frontal cortices and right cingulum bundle were found. For visuospatial attention, a right inferior fronto-parietal tract, and bilateral parietal and temporal connections were found. Conclusions We conclude that in older adults, prefrontal cortex white matter tracts and interhemispheric communication are important in higher order cognitive functioning. On the other hand, right-sided fronto-parietal tracts appear to be critical for supporting control of cognitive processes, such as redirecting attention. Researchers may use our results to develop neuroscience-based interventions for older adults targeting brain mechanisms involved in cognitive plasticity. PMID:26986750
Battistella, Giovanni; Fuertinger, Stefan; Fleysher, Lazar; Ozelius, Laurie J.; Simonyan, Kristina
2017-01-01
Background Spasmodic dysphonia (SD), or laryngeal dystonia, is a task-specific isolated focal dystonia of unknown causes and pathophysiology. Although functional and structural abnormalities have been described in this disorder, the influence of its different clinical phenotypes and genotypes remains scant, making it difficult to explain SD pathophysiology and to identify potential biomarkers. Methods We used a combination of independent component analysis and linear discriminant analysis of resting-state functional MRI data to investigate brain organization in different SD phenotypes (abductor vs. adductor type) and putative genotypes (familial vs. sporadic cases) and to characterize neural markers for genotype/phenotype categorization. Results We found abnormal functional connectivity within sensorimotor and frontoparietal networks in SD patients compared to healthy individuals as well as phenotype- and genotype-distinct alterations of these networks, involving primary somatosensory, premotor and parietal cortices. The linear discriminant analysis achieved 71% accuracy classifying SD and healthy individuals using connectivity measures in the left inferior parietal and sensorimotor cortex. When categorizing between different forms of SD, the combination of measures from left inferior parietal, premotor and right sensorimotor cortices achieved 81% discriminatory power between familial and sporadic SD cases, whereas the combination of measures from the right superior parietal, primary somatosensory and premotor cortices led to 71% accuracy in the classification of adductor and abductor SD forms. Conclusions Our findings present the first effort to identify and categorize isolated focal dystonia based on its brain functional connectivity profile, which may have a potential impact on the future development of biomarkers for this rare disorder. PMID:27346568
Shi, Changzheng; Miao, Guodong; Yang, Qiong; Gao, Wei; Wolff, Jason J.; Chan, Raymond C. K.; Shen, Dinggang
2014-01-01
Disrupted white matter integrity and abnormal cortical thickness are widely reported in the pathophysiology of obsessive-compulsive disorder (OCD). However, the relationship between alterations in white matter connectivity and cortical thickness in OCD is unclear. In addition, the heritability of this relationship is poorly understood. To investigate the relationship of white matter microstructure with cortical thickness, we measure fractional anisotropy (FA) of white matter in 30 OCD patients, 19 unaffected siblings and 30 matched healthy controls. Then, we take those regions of significantly altered FA in OCD patients compared with healthy controls to perform fiber tracking. Next, we calculate the fiber quantity in the same tracts. Lastly, we compare cortical thickness in the target regions of those tracts. Patients with OCD exhibited decreased FA in cingulum, arcuate fibers near the superior parietal lobule, inferior longitudinal fasciculus near the right superior temporal gyrus and uncinate fasciculus. Siblings showed reduced FA in arcuate fibers near the superior parietal lobule and anterior limb of internal capsule. Significant reductions in both fiber quantities and cortical thickness in OCD patients and their unaffected siblings were also observed in the projected brain areas when using the arcuate fibers near the left superior parietal lobule as the starting points. Reduced FA in the left superior parietal lobule was observed not only in patients with OCD but also in their unaffected siblings. Originated from the superior parietal lobule, the number of fibers was also found to be decreased and the corresponding cortical regions were thinner relative to controls. The linkage between disrupted white matter integrity and the abnormal cortical thickness may be a vulnerability marker for OCD. PMID:24489665
Brain morphology of childhood aggressive behavior: A multi-informant study in school-age children.
Thijssen, Sandra; Ringoot, Ank P; Wildeboer, Andrea; Bakermans-Kranenburg, Marian J; El Marroun, Hanan; Hofman, Albert; Jaddoe, Vincent W V; Verhulst, Frank C; Tiemeier, Henning; van IJzendoorn, Marinus H; White, Tonya
2015-09-01
Few studies have focused on the neuroanatomy of aggressive behavior in children younger than 10 years. Here, we explored the neuroanatomical correlates of aggression in a population-based sample of 6- to 9-year-old children using a multiple-informant approach. Magnetic resonance (MR) scans were acquired from 566 children from the Generation R study who participated in the Berkeley Puppet Interview and whose parents had completed the Child Behavior Checklist. Linear regression analyses were used to examine associations between aggression and amygdala and hippocampal volume. We performed surface-based analyses to study the association between aggression and cortical thickness, surface area, and gyrification. Aggressive behavior was associated with smaller amygdala (p < .05) but not hippocampal volume. Aggression was associated with a thinner cortex in the left precentral cortex (p < .01) and in a cluster including the right inferior parietal, supramarginal, and postcentral cortex (p < .001). Gender moderated the association between aggression and cortical thickness in the right medial posterior cortex (p = .001) and the right prefrontal cortex (p < .001). Aggression was associated with decreased gyrification in a large cluster including the right precentral, postcentral, frontal, and parietal cortex (p = .01). Moreover, aggression was associated with decreased gyrification in the right occipital and parietal cortex (p = .02). We found novel evidence that childhood aggressive behavior is related to decreased amygdala volume, decreased sensorimotor cortical thickness, and decreased global right hemisphere gyrification. Aggression is related to cortical thickness in regions associated with the default mode network, with negative associations in boys and positive associations in girls.
Röder, Christian H; Mohr, Harald; Linden, David E J
2011-02-01
Faces are multidimensional stimuli that convey information for complex social and emotional functions. Separate neural systems have been implicated in the recognition of facial identity (mainly extrastriate visual cortex) and emotional expression (limbic areas and the superior temporal sulcus). Working-memory (WM) studies with faces have shown different but partly overlapping activation patterns in comparison to spatial WM in parietal and prefrontal areas. However, little is known about the neural representations of the different facial dimensions during WM. In the present study 22 subjects performed a face-identity or face-emotion WM task at different load levels during functional magnetic resonance imaging. We found a fronto-parietal-visual WM-network for both tasks during maintenance, including fusiform gyrus. Limbic areas in the amygdala and parahippocampal gyrus demonstrated a stronger activation for the identity than the emotion condition. One explanation for this finding is that the repetitive presentation of faces with different identities but the same emotional expression during the identity-task is responsible for the stronger increase in BOLD signal in the amygdala. These results raise the question how different emotional expressions are coded in WM. Our findings suggest that emotional expressions are re-coded in an abstract representation that is supported at the neural level by the canonical fronto-parietal WM network. Copyright © 2010 Elsevier Ltd. All rights reserved.
There may be more to reaching than meets the eye: re-thinking optic ataxia.
Jackson, Stephen R; Newport, Roger; Husain, Masud; Fowlie, Jane E; O'Donoghue, Michael; Bajaj, Nin
2009-05-01
Optic ataxia (OA) is generally thought of as a disorder of visually guided reaching movements that cannot be explained by any simple deficit in visual or motor processing. In this paper we offer a new perspective on optic ataxia; we argue that the popular characterisation of this disorder is misleading and is unrepresentative of the pattern of reaching errors typically observed in OA patients. We begin our paper by reviewing recent neurophysiological, neuropsychological, and functional brain imaging studies that have led to the proposal that the medial parietal cortex in the vicinity of the parietal-occipital junction (POJ) - the key anatomical site associated with OA - represents reaching movements in eye-centred coordinates, and that this ability is impaired in optic ataxia. Our perspective stresses the importance of the POJ and superior parietal regions of the human PPC for representing reaching movements in both extrinsic (eye-centred) and intrinsic (postural) coordinates, and proposes that it is the ability to simultaneously represent multiple spatial locations that must be directly compared with one another that is impaired in non-foveal OA patients. In support of this idea we review recent fMRI and behavioural studies conducted by our group that have investigated the anatomical correlates of posturally guided movements, and the movements guided by postural cues in patients presenting with optic ataxia.
Overlapping parietal activity in memory and perception: evidence for the attention to memory model.
Cabeza, Roberto; Mazuz, Yonatan S; Stokes, Jared; Kragel, James E; Woldorff, Marty G; Ciaramelli, Elisa; Olson, Ingrid R; Moscovitch, Morris
2011-11-01
The specific role of different parietal regions to episodic retrieval is a topic of intense debate. According to the Attention to Memory (AtoM) model, dorsal parietal cortex (DPC) mediates top-down attention processes guided by retrieval goals, whereas ventral parietal cortex (VPC) mediates bottom-up attention processes captured by the retrieval output or the retrieval cue. This model also hypothesizes that the attentional functions of DPC and VPC are similar for memory and perception. To investigate this last hypothesis, we scanned participants with event-related fMRI whereas they performed memory and perception tasks, each comprising an orienting phase (top-down attention) and a detection phase (bottom-up attention). The study yielded two main findings. First, consistent with the AtoM model, orienting-related activity for memory and perception overlapped in DPC, whereas detection-related activity for memory and perception overlapped in VPC. The DPC overlap was greater in the left intraparietal sulcus, and the VPC overlap in the left TPJ. Around overlapping areas, there were differences in the spatial distribution of memory and perception activations, which were consistent with trends reported in the literature. Second, both DPC and VPC showed stronger connectivity with medial-temporal lobe during the memory task and with visual cortex during the perception task. These findings suggest that, during memory tasks, some parietal regions mediate similar attentional control processes to those involved in perception tasks (orienting in DPC vs. detection in VPC), although on different types of information (mnemonic vs. sensory).
EEG-LORETA endophenotypes of the common idiopathic generalized epilepsy syndromes.
Clemens, B; Puskás, S; Besenyei, M; Emri, M; Opposits, G; Kis, S A; Hollódy, K; Fogarasi, A; Kondákor, I; Füle, K; Bense, K; Fekete, I
2012-05-01
We tested the hypothesis that the cortical areas with abnormal local EEG synchronization are dissimilar in the three common idiopathic generalized epilepsy (IGE) phenotypes: IGE patients with absence seizures (ABS), juvenile myoclonic epilepsy (JME) and epilepsy with generalized tonic-clonic seizures exclusively (EGTCS). Groups of unmedicated ABS, JME and EGTCS patients were investigated. Waking EEG background activity (without any epileptiform potentials) was analyzed by a source localization method, LORETA (Low Resolution Electromagnetic Tomography). Each patient group was compared to a separate, age-matched group of healthy control persons. Voxel-based, normalized broad-band (delta, theta, alpha, and beta) and very narrow band (VNB, 1Hz bandwidth, from 1 to 25Hz) LORETA activity (=current source density, A/m(2)) were computed for each person. Group comparison included subtraction (average patient data minus average control data) and group statistics (multiple t-tests, where Bonferroni-corrected p<0.05 values were accepted as statistically significant). Statistically not significant main findings were: overall increased delta and theta broad band activity in the ABS and JME groups; decrease of alpha and beta activity in the EGTCS group. Statistically significant main findings were as follows. JME group: bilaterally increased theta activity in posterior (temporal, parietal, and occipital) cortical areas; bilaterally increased activity in the medial and basal prefrontal area in the 8Hz VNB; bilaterally decreased activity in the precuneus, posterior cingulate and superior parietal lobule in the 11Hz and 21-22Hz VNBs. ABS group: bilaterally increased theta activity emerged in the basal prefrontal and medial temporal limbic areas. Decreased activity was found at 19-21Hz in the right postcentral gyrus and parts of the right superior and medial temporal gyri. EGTCS group: decreased activity was found in the frontal cortex and the postcentral gyrus at 10-11Hz, increased activity in the right parahippocampal gyrus at 16-18Hz. Increased theta activity in the posterior parts of the cortex is the endophenotype for JME. Increased theta activity in the fronto-temporal limbic areas is the endophenotype for ABS. Statistically not significant findings might indicate diffuse biochemical abnormality of the cortex in JME and ABS. EEG-LORETA endophenotypes may correspond to the selective propensity to generate absence and myoclonic seizures in the ABS and JME syndromes. Copyright © 2011 Elsevier B.V. All rights reserved.
Acute visual neglect and extinction: distinct functional state of the visuospatial attention system.
Umarova, Roza M; Saur, Dorothee; Kaller, Christoph P; Vry, Magnus-Sebastian; Glauche, Volkmar; Mader, Irina; Hennig, Jürgen; Weiller, Cornelius
2011-11-01
The neural mechanisms underlying spatial neglect are still disputed. Abnormal left parietal hyperactivation is proposed to lead to the rightward attentional bias, a clinical hallmark of neglect. Extinction, another deficit of visuospatial attention, is regarded as either a 'mild' form of neglect or a distinct syndrome. Although both neglect and extinction are typical syndromes of acute right hemispheric stroke, all imaging studies investigating these syndromes were conducted at least several weeks after stroke onset, in a phase when brain reorganization has already progressed. The present study aimed at comparing the activation patterns in acute stroke patients with neglect and extinction during visuospatial processing. Using functional magnetic resonance imaging, we examined the functional state of the attention system in 33 patients with a first ever stroke (53 ± 5 h after stroke onset) and age-matched healthy subjects (n = 15). All patients had embolic infarcts within the territory of the right middle cerebral artery. Patients were divided into three groups: (i) normal visuospatial processing (control patients, n = 11); (ii) patients with visual extinction but with no signs of neglect (n = 9); and (iii) patients with visual neglect (n = 13). While undergoing functional magnetic resonance imaging, patients performed a Posner-like task for visuospatial attention with detection of the targets in the left and right visual hemifields. Patients with neglect showed the expected imbalance in the left versus right parietal activation, which however, was present also in control and extinction patients, thus representing an epiphenomenon of the acute structural lesion in the right hemisphere. Compared with control patients, neglect was characterized by reduced activation in the right parietal and lateral occipital cortex, as well as in the left frontal eye field. In contrast, the activation pattern in patients with extinction differed from all other groups by an increased activation of the left prefrontal cortex. In both patients with neglect and extinction, detection of targets in the left hemifield correlated with an activation in the left prefrontal and parietal cortex. Thus at least in acute stroke, a relative hyperactivation of the left parietal cortex is not a particular characteristic of neglect. The specific signature of neglect is represented by the dysfunction of the right parietal and lateral occipital cortex. The function of the left attentional centres might provide a compensatory role after critical right hemisphere lesions and be relevant for the contralesional spatial processing.
Neural control of enhanced filtering demands in a combined Flanker and Garner conflict task.
Berron, David; Frühholz, Sascha; Herrmann, Manfred
2015-01-01
Several studies demonstrated that visual filtering mechanisms might underlie both conflict resolution of the Flanker conflict and the control of the Garner effect. However, it remains unclear whether the mechanisms involved in the processing of both effects depend on similar filter mechanisms, such that especially the Garner effect is able to modulate filtering needs in the Flanker conflict. In the present experiment twenty-four subjects participated in a combined Garner and Flanker task during two runs of functional magnetic resonance imaging (fMRI) recordings. Behavioral data showed a significant Flanker but no Garner effect. A run-wise analysis, however, revealed a Flanker effect in the Garner filtering condition in the first experimental run, while we found a Flanker effect in the Garner baseline condition in the second experimental run. The fMRI data revealed a fronto-parietal network involved in the processing of both types of effects. Flanker interference was associated with activity in the inferior frontal gyrus, the anterior cingulate cortex, the precuneus as well as the inferior (IPL) and superior parietal lobule (SPL). Garner interference was associated with activation in middle frontal and middle temporal gyrus, the lingual gyrus as well as the IPL and SPL. Interaction analyses between the Garner and the Flanker effect additionally revealed differences between the two experimental runs. In the first experimental run, activity specifically related to the interaction of effects was found in frontal and parietal regions, while in the second run we found activity in the hippocampus, the parahippocampal cortex and the basal ganglia. This shift in activity for the interaction effects might be associated with a task-related learning process to control filtering demands. Especially perceptual learning mechanisms might play a crucial role in the present Flanker and Garner task design and, therefore, increased performance in the second experimental run could be the reason for the lack of behavioral Garner interference on the level of the whole experiment.
Diwadkar, V A; Carpenter, P A; Just, M A
2000-07-01
Functional MRI was used to determine how the constituents of the cortical network subserving dynamic spatial working memory respond to two types of increases in task complexity. Participants mentally maintained the most recent location of either one or three objects as the three objects moved discretely in either a two- or three-dimensional array. Cortical activation in the dorsolateral prefrontal (DLPFC) and the parietal cortex increased as a function of the number of object locations to be maintained and the dimensionality of the display. An analysis of the response characteristics of the individual voxels showed that a large proportion were activated only when both the variables imposed the higher level of demand. A smaller proportion were activated specifically in response to increases in task demand associated with each of the independent variables. A second experiment revealed the same effect of dimensionality in the parietal cortex when the movement of objects was signaled auditorily rather than visually, indicating that the additional representational demands induced by 3-D space are independent of input modality. The comodulation of activation in the prefrontal and parietal areas by the amount of computational demand suggests that the collaboration between areas is a basic feature underlying much of the functionality of spatial working memory. Copyright 2000 Academic Press.
Fine-Tuning of Neurogenesis is Essential for the Evolutionary Expansion of the Cerebral Cortex
Poluch, Sylvie; Juliano, Sharon L.
2015-01-01
We used several animal models to study global and regional cortical surface expansion: The lissencephalic mouse, gyrencephalic normal ferrets, in which the parietal cortex expands more than the temporal cortex, and moderately lissencephalic ferrets, showing a similar degree of temporal and parietal expansion. We found that overall cortical surface expansion is achieved when specific events occur prior to surpragranular layer formation. (1) The subventricular zone (SVZ) shows substantial growth, (2) the inner SVZ contains an increased number of outer radial glia and intermediate progenitor cells expressing Pax6, and (3) the outer SVZ contains a progenitor cell composition similar to the combined VZ and inner SVZ. A greater parietal expansion is also achieved by eliminating the latero-dorsal neurogenic gradient, so that neurogenesis displays a similar developmental degree between parietal and temporal regions. In contrast, mice or lissencephalic ferrets show more advanced neurogenesis in the temporal region. In conclusion, we propose that global and regional cortical surface expansion rely on similar strategies consisting in altering the timing of neurogenic events prior to the surpragranular layer formation, so that more progenitor cells, and ultimately more neurons, are produced. This hypothesis is supported by findings from a ferret model of lissencephaly obtained by transiently blocking neurogenesis during the formation of layer IV. PMID:23968831
Neural correlates of restrained eaters' high susceptibility to food cues: An fMRI study.
Wang, Yu; Dong, Debo; Todd, Jackson; Du, Jie; Yang, Zhou; Lu, Hui; Chen, Hong
2016-09-19
Many studies have reported that specific susceptibility to food cues plays an important role in disordered eating behavior. However, whether restraint status modulates the neural bases of attentional bias to different types of food cues remains unknown. Thus, functional magnetic resonance imaging (fMRI) was conducted in individuals (12 restraint eaters, 12 unrestraint eaters) exposed to high/low-energy food and neutral images while performing a two-choice oddball task. The results indicated that restrained eaters responded more quickly to high-energy food images than to neutral and low-energy food images. More notably, compared with unrestrained eaters, restrained eaters showed faster reaction times, hyper-activation in a much wider array of reward (e.g., insula/orbitofrontal cortex), attention (superior frontal gyrus) and visual processing (e.g., superior temporal gyrus) regions, and hypo-activation in cognitive control areas (e.g., anterior cingulate) in response to high-energy food cues. Furthermore, among restrained eaters, the longest reaction times were found for low-energy food images, and activation of the attention and visual-related cortex (e.g., superior parietal gyrus) in the low-neutral contrast condition was significantly stronger than in unrestrained eaters. These findings contribute to our understanding of susceptibility to food cues: in addition to the special sensitivity (attentional bias) to high-energy food images, restrained eaters may also be more sensitive (allocate more attentional resources) to low-energy food images. These potential neural bases of restrained eaters may help clarify why dieting to lose or maintain weight is so often unsuccessful. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Functional characteristics of the brain in college students with internet gaming disorder.
Liu, Jun; Li, Weihui; Zhou, Shunke; Zhang, Li; Wang, Zhiyuan; Zhang, Yan; Jiang, Yebin; Li, Lingjiang
2016-03-01
Internet gaming disorder (IGD) is a subtype of internet addiction disorder (IAD), but its pathogenesis remains unclear. This study investigated brain function in IGD individuals using task-state functional magnetic resonance imaging (fMRI). It is a prospective study in 19 IGD individuals and 19 matched healthy controls. They all received internet videogame stimuli while a 3.0 T fMRI was used to assess echo planar imaging. Brain activity was analyzed using the Brain Voyager software package. Functional data were spatially smoothed using Gaussian kernel. The threshold level was positioned at 10 pixels, and the activation range threshold was set to 10 voxels. Activated brain regions were compared between the two groups, as well as the amount of activated voxels. The internet videogame stimuli activated brain regions in both groups. Compared with controls, the IGD group showed increased activation in the right superior parietal lobule, right insular lobe, right precuneus, right cingulated gyrus, right superior temporal gyrus, and left brainstem. There was a significant difference in the number of activated voxels between the two groups. An average of 1078 voxels was activated in the IGD group compared with only 232 in the control group. Internet videogame play activates the vision, space, attention, and execution centers located in the occipital, temporal, parietal, and frontal gyri. Abnormal brain function was noted in IGD subjects, with hypofunction of the frontal cortex. IGD subjects showed laterality activation of the right cerebral hemisphere.
Multisensory speech perception without the left superior temporal sulcus.
Baum, Sarah H; Martin, Randi C; Hamilton, A Cris; Beauchamp, Michael S
2012-09-01
Converging evidence suggests that the left superior temporal sulcus (STS) is a critical site for multisensory integration of auditory and visual information during speech perception. We report a patient, SJ, who suffered a stroke that damaged the left tempo-parietal area, resulting in mild anomic aphasia. Structural MRI showed complete destruction of the left middle and posterior STS, as well as damage to adjacent areas in the temporal and parietal lobes. Surprisingly, SJ demonstrated preserved multisensory integration measured with two independent tests. First, she perceived the McGurk effect, an illusion that requires integration of auditory and visual speech. Second, her perception of morphed audiovisual speech with ambiguous auditory or visual information was significantly influenced by the opposing modality. To understand the neural basis for this preserved multisensory integration, blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI) was used to examine brain responses to audiovisual speech in SJ and 23 healthy age-matched controls. In controls, bilateral STS activity was observed. In SJ, no activity was observed in the damaged left STS but in the right STS, more cortex was active in SJ than in any of the normal controls. Further, the amplitude of the BOLD response in right STS response to McGurk stimuli was significantly greater in SJ than in controls. The simplest explanation of these results is a reorganization of SJ's cortical language networks such that the right STS now subserves multisensory integration of speech. Copyright © 2012 Elsevier Inc. All rights reserved.
Langner, Robert; Sternkopf, Melanie A; Kellermann, Tanja S; Grefkes, Christian; Kurth, Florian; Schneider, Frank; Zilles, Karl; Eickhoff, Simon B
2014-07-01
The neurobiological organization of action-oriented working memory is not well understood. To elucidate the neural correlates of translating visuo-spatial stimulus sequences into delayed (memory-guided) sequential actions, we measured brain activity using functional magnetic resonance imaging while participants encoded sequences of four to seven dots appearing on fingers of a left or right schematic hand. After variable delays, sequences were to be reproduced with the corresponding fingers. Recall became less accurate with longer sequences and was initiated faster after long delays. Across both hands, encoding and recall activated bilateral prefrontal, premotor, superior and inferior parietal regions as well as the basal ganglia, whereas hand-specific activity was found (albeit to a lesser degree during encoding) in contralateral premotor, sensorimotor, and superior parietal cortex. Activation differences after long versus short delays were restricted to motor-related regions, indicating that rehearsal during long delays might have facilitated the conversion of the memorandum into concrete motor programs at recall. Furthermore, basal ganglia activity during encoding selectively predicted correct recall. Taken together, the results suggest that to-be-reproduced visuo-spatial sequences are encoded as prospective action representations (motor intentions), possibly in addition to retrospective sensory codes. Overall, our study supports and extends multi-component models of working memory, highlighting the notion that sensory input can be coded in multiple ways depending on what the memorandum is to be used for. Copyright © 2013 Wiley Periodicals, Inc.
The Brain Network Underpinning Novel Melody Creation.
Adhikari, Bhim M; Norgaard, Martin; Quinn, Kristen M; Ampudia, Jenine; Squirek, Justin; Dhamala, Mukesh
2016-12-01
Musical improvisation offers an excellent experimental paradigm for the study of real-time human creativity. It involves moment-to-moment decision-making, monitoring of one's performance, and utilizing external feedback to spontaneously create new melodies or variations on a melody. Recent neuroimaging studies have begun to study the brain activity during musical improvisation, aiming to unlock the mystery of human creativity. What brain resources come together and how these are utilized during musical improvisation are not well understood. To help answer these questions, we recorded electroencephalography (EEG) signals from 19 experienced musicians while they played or imagined short isochronous learned melodies and improvised on those learned melodies. These four conditions (Play-Prelearned, Play-Improvised, Imagine-Prelearned, Imagine-Improvised) were randomly interspersed in a total of 300 trials per participant. From the sensor-level EEG, we found that there were power differences in the alpha (8-12 Hz) and beta (13-30 Hz) bands in separate clusters of frontal, parietal, temporal, and occipital electrodes. Using EEG source localization and dipole modeling methods for task-related signals, we identified the locations and network activities of five sources: the left superior frontal gyrus (L SFG), supplementary motor area (SMA), left inferior parietal lobule (L IPL), right dorsolateral prefrontal cortex, and right superior temporal gyrus. During improvisation, the network activity between L SFG, SMA, and L IPL was significantly less than during the prelearned conditions. Our results support the general idea that attenuated cognitive control facilitates the production of creative output.
Multisensory Speech Perception Without the Left Superior Temporal Sulcus
Baum, Sarah H.; Martin, Randi C.; Hamilton, A. Cris; Beauchamp, Michael S.
2012-01-01
Converging evidence suggests that the left superior temporal sulcus (STS) is a critical site for multisensory integration of auditory and visual information during speech perception. We report a patient, SJ, who suffered a stroke that damaged the left tempo-parietal area, resulting in mild anomic aphasia. Structural MRI showed complete destruction of the left middle and posterior STS, as well as damage to adjacent areas in the temporal and parietal lobes. Surprisingly, SJ demonstrated preserved multisensory integration measured with two independent tests. First, she perceived the McGurk effect, an illusion that requires integration of auditory and visual speech. Second, her perception of morphed audiovisual speech with ambiguous auditory or visual information was significantly influenced by the opposing modality. To understand the neural basis for this preserved multisensory integration, blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI) was used to examine brain responses to audiovisual speech in SJ and 23 healthy age-matched controls. In controls, bilateral STS activity was observed. In SJ, no activity was observed in the damaged left STS but in the right STS, more cortex was active in SJ than in any of the normal controls. Further, the amplitude of the BOLD response in right STS response to McGurk stimuli was significantly greater in SJ than in controls. The simplest explanation of these results is a reorganization of SJ's cortical language networks such that the right STS now subserves multisensory integration of speech. PMID:22634292
The organization of the posterior parietal cortex devoted to upper limb actions: An fMRI study
Ferri, Stefania; Rizzolatti, Giacomo
2015-01-01
Abstract The present fMRI study examined whether upper‐limb action classes differing in their motor goal are encoded by different PPC sectors. Action observation was used as a proxy for action execution. Subjects viewed actors performing object‐related (e.g., grasping), skin‐displacing (e.g., rubbing the skin), and interpersonal upper limb actions (e.g., pushing someone). Observation of the three action classes activated a three‐level network including occipito‐temporal, parietal, and premotor cortex. The parietal region common to observing all three action classes was located dorsally to the left intraparietal sulcus (DIPSM/DIPSA border). Regions specific for observing an action class were obtained by combining the interaction between observing action classes and stimulus types with exclusive masking for observing the other classes, while for regions considered preferentially active for a class the interaction was exclusively masked with the regions common to all observed actions. Left putative human anterior intraparietal was specific for observing manipulative actions, and left parietal operculum including putative human SII region, specific for observing skin‐displacing actions. Control experiments demonstrated that this latter activation depended on seeing the skin being moved and not simply on seeing touch. Psychophysiological interactions showed that the two specific parietal regions had similar connectivities. Finally, observing interpersonal actions preferentially activated a dorsal sector of left DIPSA, possibly the homologue of ventral intraparietal coding the impingement of the target person's body into the peripersonal space of the actor. These results support the importance of segregation according to the action class as principle of posterior parietal cortex organization for action observation and by implication for action execution. Hum Brain Mapp 36:3845–3866, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26129732
Huang, Zhaoyang; Li, Yue; Bianchi, Matt T; Zhan, Shuqin; Jiang, Fengying; Li, Ning; Ding, Yan; Hou, Yue; Wang, Li; Ouyang, Quping; Wang, Yuping
2018-05-29
Repetitive transcranial magnetic stimulation (rTMS) has been considered to be a promising technique for the treatment of neuropsychiatric disorders. However, little is known about the effectiveness of rTMS in the treatment of generalized anxiety disorder (GAD). Moreover, treatment data on comorbid GAD and insomnia remain lacking. The aim of this study was to examine the therapeutic effects of 1 Hz rTMS applied over the right parietal lobe on both anxiety and insomnia symptoms in patients with comorbid GAD and insomnia. 36 patients were randomized to either sham or active rTMS group (n = 18 each group). The rTMS was administered over the right posterior parietal cortex (P4 electrode site) at a frequency of 1 Hz and an intensity of 90% of the resting motor threshold. Ten days of 1 Hz rTMS to the right parietal lobe significantly improved both anxiety and insomnia symptoms in the active group. Although the anxiety severity was not significantly correlated with insomnia severity at baseline, the improvement in the Hamilton Rating Scale for Anxiety (HRSA) scores were positively correlated with improvement in the Pittsburgh Sleep Quality Index (PSQI) scores. The present study is the first randomized sham-controlled study to assess the effectiveness of low frequency rTMS on the right parietal lobe in patients with comorbid GAD and insomnia. Our results suggested that 1 Hz low frequency rTMS administered over the parietal cortex is effective for both anxiety and insomnia symptoms in patients with comorbid GAD and insomnia. Copyright © 2018 Elsevier Inc. All rights reserved.
Winning the game: brain processes in expert, young elite and amateur table tennis players.
Wolf, Sebastian; Brölz, Ellen; Scholz, David; Ramos-Murguialday, Ander; Keune, Philipp M; Hautzinger, Martin; Birbaumer, Niels; Strehl, Ute
2014-01-01
(1) compared with amateurs and young elite, expert table tennis players are characterized by enhanced cortical activation in the motor and fronto-parietal cortex during motor imagery in response to table tennis videos; (2) in elite athletes, world rank points are associated with stronger cortical activation. To this aim, electroencephalographic data were recorded in 14 expert, 15 amateur and 15 young elite right-handed table tennis players. All subjects watched videos of a serve and imagined themselves responding with a specific table tennis stroke. With reference to a baseline period, power decrease/increase of the sensorimotor rhythm (SMR) during the pretask- and task period indexed the cortical activation/deactivation (event-related desynchronization/synchronization, ERD/ERS). Regarding hypothesis (1), 8-10 Hz SMR ERD was stronger in elite athletes than in amateurs with an intermediate ERD in young elite athletes in the motor cortex. Regarding hypothesis (2), there was no correlation between ERD/ERS in the motor cortex and world rank points in elite experts, but a weaker ERD in the fronto-parietal cortex was associated with higher world rank points. These results suggest that motor skill in table tennis is associated with focused excitability of the motor cortex during reaction, movement planning and execution with high attentional demands. Among elite experts, less activation of the fronto-parietal attention network may be necessary to become a world champion.
Parietal lesion effects on cued recall following pair associate learning.
Ben-Zvi, Shir; Soroker, Nachum; Levy, Daniel A
2015-07-01
We investigated the involvement of the posterior parietal cortex in episodic memory in a lesion-effects study of cued recall following pair-associate learning. Groups of patients who had experienced first-incident stroke, generally in middle cerebral artery territory, and exhibited damage that included lateral posterior parietal regions, were tested within an early post-stroke time window. In three experiments, patients and matched healthy comparison groups executed repeated study and cued recall test blocks of pairs of words (Experiment 1), pairs of object pictures (Experiment 2), or pairs of object pictures and environmental sounds (Experiment 3). Patients' brain CT scans were subjected to quantitative analysis of lesion volumes. Behavioral and lesion data were used to compute correlations between area lesion extent and memory deficits, and to conduct voxel-based lesion-symptom mapping. These analyses implicated lateral ventral parietal cortex, especially the angular gyrus, in cued recall deficits, most pronouncedly in the cross-modal picture-sound pairs task, though significant parietal lesion effects were also found in the unimodal word pairs and picture pairs tasks. In contrast to an earlier study in which comparable parietal lesions did not cause deficits in item recognition, these results indicate that lateral posterior parietal areas make a substantive contribution to demanding forms of recollective retrieval as represented by cued recall, especially for complex associative representations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhou, You-long; Su, Cheng-guo; Liu, Shou-fang; Jin, Xiang-yu; Duan, Yan-li; Chen, Xiao-yan; Zhao, Shu-hua; Wang, Quan-liang; Dang, Chang-lin
2016-05-01
To observe amplitude changes of low frequency fluctuation in brain spontaneous nervous activities induced by needling at Hand Taiyin Lung Channel, and to preliminarily explore the possible brain function network of Hand Taiyin Lung Channel. By using functional magnetic resonance imaging (fMRI), 16 healthy volunteers underwent resting-state scanning (R1) and scanning with retained acupuncture at Hand Taiyin Lung Channel (acupuncture, AP). Data of fMRI collected were statistically calculated using amplitude of low frequency fluctuations (ALFF). Under R1 significantly enhanced ALFF occurred in right precuneus, left inferior parietal lobule, bilateral superior temporal gyrus, bilateral middle frontal gyrus, left superior frontal gyrus, left inferior frontal gyrus, left medial frontal gyrus. Under AP significantly enhanced ALFF occurred in right precuneus, bilateral superior frontal gyrus, cerebellum, bilateral middle frontal gyrus, right medial frontal gyrus, and so on. Compared with R1, needing at Hand Taiyin Lung Channel could significantly enhance ALFF in right gyrus subcallosum and right inferior frontal gyrus. Significant decreased ALFF appeared in right postcentral gyrus, left precuneus, left superior temporal gyrus, left middle temporal gyrus, and so on. Needing at Hand Taiyin Lung Channel could significantly change fixed activities of cerebral cortex, especially in right subcallosal gyrus, right inferior frontal gyrus, and so on.
Subcortical aphasia: a longitudinal PET study.
de Boissezon, Xavier; Démonet, Jean-François; Puel, Michèle; Marie, Nathalie; Raboyeau, Gaëlle; Albucher, Jean-François; Chollet, François; Cardebat, Dominique
2005-07-01
Very few neuroimaging studies have focused on follow-up of subcortical aphasia. Here, overt language production tasks were used to correlate regional cerebral blood flow (rCBF) changes and language performance in patients with vascular subcortical lesions. Seven aphasic patients were scanned twice with positron emission tomography (PET) at 1-year interval during a word-generation task. Using SPM2, Language-Rest contrast at PET1 was correlated to language performance and to time-lag from stroke. The same contrast was performed at PET2 and session effect (PET2-PET1) was correlated with performance improvement. At PET1, correlation between rCBF and delay from stroke involved mainly ventral regions of the left temporal cortex and mesial frontal cortex. Correlations between rCBF and performance showed predominantly left dorsal regions in the frontal, temporal, and parietal lobes, but also the left ventral temporal cortex. One year apart, language performance improved and rCBF increased in perisylvian regions bilaterally. Best performers at PET2 showed an increase of activity in left ventral temporal cortex as well as in right middle temporal gyrus. On follow-up, expected language improvement and increase of activation in the classical language areas and their counterparts were observed. Moreover, all correlational analyses both at PET1 and on follow-up implicated the anterior part of the left inferior temporal gyrus, suggesting a disconnection between the superior and inferior parts of the left temporal cortex and a specific role for this region in lexical semantic processing.
Gonul, Ali Saffet; Kula, Mustafa; Bilgin, Arzu Guler; Tutus, Ahmet; Oguz, Aslan
2004-09-01
Depressive patients with psychotic features demonstrate distinct biological abnormalities in the hypothalamic-pituitary-adrenal axis (HPA), dopaminergic activity, electroencephalogram sleep profiles and measures of serotonergic function when compared to nonpsychotic depressive patients. However, very few functional neuroimaging studies were specifically designed for studying the effects of psychotic features on neuroimaging findings in depressed patients. The objective of the present study was to compare brain Single Photon Emission Tomography (SPECT) images in a group of unmedicated depressive patients with and without psychotic features. Twenty-eight patients who fully met DSM-IV criteria for major depressive disorder (MDD, 12 had psychotic features) were included in the study. They were compared with 16 control subjects matched for age, gender and education. Both psychotic and nonpsychotic depressed patients showed significantly lower regional cerebral blood flow (rCBF) values in the left and right superior frontal cortex, and left anterior cingulate cortex compared to those of controls. In comparison with depressive patients without psychotic features (DwoPF), depressive patients with psychotic features (DwPF) showed significantly lower rCBF perfusion ratios in left parietal cortex, left cerebellum but had higher rCBF perfusion ratio in the left inferior frontal cortex and caudate nucleus. The present study showed that DwPF have a different rCBF pattern compared to patients without psychotic features. Abnormalities involving inferior frontal cortex, striatum and cerebellum may play an important role in the generation of psychotic symptoms in depression.
Lee, Jooyeon; Torosyan, Nare; Silverman, Daniel H
2017-01-01
Natural compounds in grapes such as resveratrol are known for their antioxidant and anti-inflammatory properties. Some studies have shown a potential role for grapes or wine in slowing cognitive decline and other effects of aging. However, well-controlled experimental data obtained in human subjects are still in need of further development. Here we aimed to systematically assess effects of grapes on regional cerebral metabolism. Ten subjects with mild decline in cognition (mean, 72.2±4.7years; 50% female) were included in this analysis. Participants were randomized into an active grape formulation arm or a placebo arm which consumed a formulation free of polyphenols for six months. Cognitive performance was measured through neuropsychological assessments performed at baseline and 6months after initiation of therapy. Changes in brain metabolism occurring with each therapy regimen were assessed by brain PET scans with the radiotracer [F-18] fluorodeoxyglucose (FDG), obtained during initial evaluation and 6months later. Standardized volumes of interest (sVOI) and statistical parametric mapping (SPM) methods were applied to FDG-PET scans to identify significant regional cerebral metabolic changes. In contrast to participants taking the active grape formulation, who displayed no significant decline in metabolism, the placebo arm underwent significant metabolic decline in sVOI's of the right posterior cingulate cortex (p=0.01), and left superior posterolateral temporal cortex (p=0.04). SPM analyses also found significant declines in the placebo group, particularly in left prefrontal, cingulate, and left superior posterolateral temporal cortex (p<0.01) with stable brain metabolism in the active formulation arm. No significant differences were seen in scores on the neuropsychological battery of tests between the two groups. However, metabolism in right superior parietal cortex and left inferior anterior temporal cortex was correlated with improvements in attention/working memory, as measured with WAIS-III Digital Span within the active formulation group (r=-0.69, p=0.04). The placebo arm had declines in regions of the brain known to be significantly affected in the early stages of Alzheimer's disease, while the active formulation group was spared such decline. This suggests a protective effect of grapes against early pathologic metabolic decline. Copyright © 2016 Elsevier Inc. All rights reserved.
Ishiuji, Y.; Coghill, R.C.; Patel, T.S.; Oshiro, Y.; Kraft, R.A.; Yosipovitch, G.
2009-01-01
Summary Background Little is known about brain mechanisms supporting the experience of chronic puritus in disease states. Objectives To examine the difference in brain processing of histamine-induced itch in patients with active atopic dermatitis (AD) vs. healthy controls with the emerging technique of functional magnetic resonance imaging (fMRI) using arterial spin labelling (ASL). Methods Itch was induced with histamine iontophoresis in eight patients with AD and seven healthy subjects. Results We found significant differences in brain processing of histamine-induced itch between patients with AD and healthy subjects. Patients with AD exhibited bilateral activation of the anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), retrosplenial cingulate cortex and dorsolateral prefrontal cortex (DLPFC) as well as contralateral activation of the caudate nucleus and putamen. In contrast, healthy subjects activated the primary motor cortex, primary somatosensory cortex and superior parietal lobe. The PCC and precuneus exhibited significantly greater activity in patients vs. healthy subjects. A significant correlation between percentage changes of brain activation was noted in the activation of the ACC and contralateral insula and histamine-induced itch intensity as well as disease severity in patients with AD. In addition, an association was noted between DLPFC activity and disease severity. Conclusions Our results demonstrate that ASL fMRI is a promising technique to assess brain activity in chronic itch. Brain activity of acute itch in AD seems to differ from that in healthy subjects. Moreover, the activity in cortical areas involved in affect and emotion correlated to measures of disease severity. PMID:19663870
Ramdhani, Ritesh A.; Kumar, Veena; Velickovic, Miodrag; Frucht, Steven J.; Tagliati, Michele; Simonyan, Kristina
2014-01-01
Background Numerous brain imaging studies have demonstrated structural changes in the basal ganglia, thalamus, sensorimotor cortex and cerebellum across different forms of primary dystonia. However, our understanding of brain abnormalities contributing to the clinically well-described phenomenon of task-specificity in dystonia remained limited. Methods We used high-resolution MRI with voxel-based morphometry and diffusion tensor imaging with tract-based spatial statistics of fractional anisotropy to examine gray and white matter organization in two task-specific dystonia forms, writer’s cramp and laryngeal dystonia, and two non-task-specific dystonia forms, cervical dystonia and blepharospasm. Results A direct comparison between the both dystonia forms revealed that characteristic gray matter volumetric changes in task-specific dystonia involve the brain regions responsible for sensorimotor control during writing and speaking, such as primary somatosensory cortex, middle frontal gyrus, superior/inferior temporal gyrus, middle/posterior cingulate cortex, occipital cortex as well as the striatum and cerebellum (lobules VI-VIIa). These gray matter changes were accompanied by white matter abnormalities in the premotor cortex, middle/inferior frontal gyrus, genu of the corpus callosum, anterior limb/genu of the internal capsule, and putamen. Conversely, gray matter volumetric changes in non-task-specific group were limited to the left cerebellum (lobule VIIa) only, while white matter alterations were found to underlie the primary sensorimotor cortex, inferior parietal lobule and middle cingulate gyrus. Conclusion Distinct microstructural patterns in task-specific and non-task-specific dystonias may represent neuroimaging markers and provide evidence that these two dystonia subclasses likely follow divergent pathophysiological mechanisms precipitated by different triggers. PMID:24925463
Van Overwalle, Frank; Heleven, Elien; Ma, Ning; Mariën, Peter
2017-01-01
This multi-study analysis (6 fMRI studies; 142 participants) explores the functional activation and connectivity of the cerebellum with the cerebrum during repeated behavioral information uptake informing about personality traits of different persons. The results suggest that trait repetition recruits activity in areas belonging to the mentalizing and executive control networks in the cerebrum, and the executive control areas in the cerebellum. Cerebral activation was observed in the executive control network including the posterior medial frontal cortex (pmFC), the bilateral prefrontal cortex (PFC) and bilateral inferior parietal cortex (IPC), in the mentalizing network including the bilateral middle temporal cortex (MTC) extending to the right superior temporal cortex (STC), as well as in the visual network including the left cuneus (Cun) and the left inferior occipital cortex. Moreover, cerebellar activation was found bilaterally in lobules VI and VII belonging to the executive control network. Importantly, significant patterns of functional connectivity were found linking these cerebellar executive areas with cerebral executive areas in the medial pmFC, the left PFC and the left IPC, and mentalizing areas in the left MTC. In addition, connectivity was found between the cerebral areas in the left hemisphere involved in the executive and mentalizing networks, as well as with their homolog areas in the right hemisphere. The discussion centers on the role of these cerebello-cerebral connections in matching internal predictions generated by the cerebellum with external information from the cerebrum, presumably involving the sequencing of behaviors. Copyright © 2016 Elsevier Inc. All rights reserved.
Kann, Sarah; Zhang, Sheng; Manza, Peter; Leung, Hoi-Chung
2016-01-01
Abstract Resting-state functional connectivity (rsFC) is widely used to examine cerebral functional organization. The imaging literature has described lateralization of insula activations during cognitive and affective processing. Evidence appears to support a role of the right-hemispheric insula in attentional orientation to salient stimulus, interoception, and physiological arousal, and a role of the left-hemispheric insula in cognitive and affective control, as well as perspective taking. In this study, in a large data set of healthy adults, we examined lateralization of the rsFC of the anterior insula (AI) by computing a laterality index (LI) of connectivity with 54 regions from the Automated Anatomic Labeling atlas. At a corrected threshold (p < 0.001), the AI is left lateralized in connectivity with the dorsomedial prefrontal cortex, superior frontal gyrus, inferior frontal cortex, and posterior orbital gyrus and right lateralized in connectivity with the postcentral gyrus, supramarginal gyrus, and superior parietal lobule. In gender differences, women, but not men, showed right-lateralized connectivity to the thalamus. Furthermore, in a subgroup of participants assessed by the tridimensional personality questionnaire, novelty seeking is correlated with the extent of left lateralization of AI connectivity to the pallidum and putamen in men and with the extent of right lateralization of AI connectivity to the parahippocampal gyrus in women. These findings support hemispheric functional differentiation of the AI. PMID:27604154
Kann, Sarah; Zhang, Sheng; Manza, Peter; Leung, Hoi-Chung; Li, Chiang-Shan R
2016-11-01
Resting-state functional connectivity (rsFC) is widely used to examine cerebral functional organization. The imaging literature has described lateralization of insula activations during cognitive and affective processing. Evidence appears to support a role of the right-hemispheric insula in attentional orientation to salient stimulus, interoception, and physiological arousal, and a role of the left-hemispheric insula in cognitive and affective control, as well as perspective taking. In this study, in a large data set of healthy adults, we examined lateralization of the rsFC of the anterior insula (AI) by computing a laterality index (LI) of connectivity with 54 regions from the Automated Anatomic Labeling atlas. At a corrected threshold (p < 0.001), the AI is left lateralized in connectivity with the dorsomedial prefrontal cortex, superior frontal gyrus, inferior frontal cortex, and posterior orbital gyrus and right lateralized in connectivity with the postcentral gyrus, supramarginal gyrus, and superior parietal lobule. In gender differences, women, but not men, showed right-lateralized connectivity to the thalamus. Furthermore, in a subgroup of participants assessed by the tridimensional personality questionnaire, novelty seeking is correlated with the extent of left lateralization of AI connectivity to the pallidum and putamen in men and with the extent of right lateralization of AI connectivity to the parahippocampal gyrus in women. These findings support hemispheric functional differentiation of the AI.
Relationships between Cerebral Blood Flow and IQ in Typically Developing Children and Adolescents.
Kilroy, Emily; Liu, Collin Y; Yan, Lirong; Kim, Yoon Chun; Dapretto, Mirella; Mendez, Mario F; Wang, Danny J J
2011-01-01
The objective of this study was to explore the relationships between IQ and cerebral blood flow (CBF) measured by arterial spin labeling (ASL) in children and adolescents. ASL was used to collect perfusion MRI data on 39 healthy participants aged 7 to 17. The Wechsler Abbreviated Intelligence Scale was administered to determine IQ scores. Multivariate regression was applied to reveal correlations between CBF and IQ scores, accounting for age, sex and global mean CBF. Voxel Based Morphometry (VBM) analysis, which measures regional cortical volume, was performed as a control. Regression analyses were further performed on CBF data with adjustment of regional gray matter density (GMD). A positive correlation between CBF and IQ scores was primarily seen in the subgenual/anterior cingulate, right orbitofrontal, superior temporal and right inferior parietal regions. An inverse relationship between CBF and IQ was mainly observed in bilateral posterior temporal regions. After adjusting for regional GMD, the correlations between CBF and IQ in the subgenual/anterior cingulate cortex, right orbitofrontal, superior temporal regions and left insula remained significant. These findings support the Parieto-Frontal Integration Theory of intelligence, especially the role of the subgenual/anterior cingulate cortex in the neural networks associated with intelligence. The present study also demonstrates the unique value of CBF in assessing brain-behavior relationships, in addition to structural morphometric measures.
Hojjat, Seyed-Parsa; Cantrell, Charles Grady; Vitorino, Rita; Feinstein, Anthony; Shirzadi, Zahra; MacIntosh, Bradley J.; Crane, David E.; Zhang, Lying; Morrow, Sarah A; Lee, Liesly; O’Connor, Paul; Carroll, Timothy J.; Aviv, Richard I.
2015-01-01
Purpose Detection of cortical abnormalities in relapsing-remitting multiple sclerosis (RRMS) remains elusive. Structural MRI measures of cortical integrity are limited, although functional techniques such as pseudocontinuous Arterial Spin Labeling (pCASL) show promise as a surrogate marker of disease severity. We sought to determine the utility of pCASL to assess cortical cerebral blood flow (CBF) in RRMS patients with (RRMS-I) and without (RRMS-NI) cognitive impairment. Methods 19 age-matched healthy controls and 39 RRMS patients were prospectively recruited. Cognition was assessed using the MACFIMS battery. Cortical CBF was compared between groups using a mass univariate voxel-based morphometric analysis accounting for demographic and structural variable covariates. Results Cognitive impairment was present in 51.3% of patients. Significant CBF reduction was present in the RRMS-I compared to other groups in left frontal and right superior frontal cortex. Compared to healthy controls, RRMS-I displayed reduced CBF in the frontal, limbic, parietal and temporal cortex and putamen/thalamus. RRMS-I demonstrated reduced left superior frontal lobe cortical CBF compared to RRMS-NI. No significant cortical CBF differences were present between healthy controls and RRMS-NI. Conclusion Significant cortical CBF reduction occurs in RRMS-I compared to healthy controls and RRMS-NI in anatomically significant regions after controlling for structural and demographic differences. PMID:26754799
Identification of degenerate neuronal systems based on intersubject variability.
Noppeney, Uta; Penny, Will D; Price, Cathy J; Flandin, Guillaume; Friston, Karl J
2006-04-15
Group studies implicitly assume that all subjects activate one common system to sustain a particular cognitive task. Intersubject variability is generally treated as well-behaved and uninteresting noise. However, intersubject variability might result from subjects engaging different degenerate neuronal systems that are each sufficient for task performance. This would produce a multimodal distribution of intersubject variability. We have explored this idea with the help of Gaussian Mixture Modeling and Bayesian model comparison procedures. We illustrate our approach using a crossmodal priming paradigm, in which subjects perform a semantic decision on environmental sounds or their spoken names that were preceded by a semantically congruent or incongruent picture or written name. All subjects consistently activated the superior temporal gyri bilaterally, the left fusiform gyrus and the inferior frontal sulcus. Comparing a One and Two Gaussian Mixture Model of the unexplained residuals provided very strong evidence for two groups with distinct activation patterns: 6 subjects exhibited additional activations in the superior temporal sulci bilaterally, the right superior frontal and central sulcus. 11 subjects showed increased activation in the striate and the right inferior parietal cortex. These results suggest that semantic decisions on auditory-visual compound stimuli might be accomplished by two overlapping degenerate neuronal systems.
Eimontaite, Iveta; Goel, Vinod; Raymont, Vanessa; Krueger, Frank; Schindler, Igor; Grafman, Jordan
2018-05-14
To answer the question of how brain pathology affects reasoning about negative emotional content, we administered a disjunctive logical reasoning task involving arguments with neutral content (e.g. Either there are tigers or women in NYC, but not both; There are no tigers in NYC; There are women in NYC) and emotionally laden content (e.g. Either there are pedophiles or politicians in Texas, but not both; There are politicians in Texas; There are no pedophiles in Texas) to 92 neurological patients with focal lesions to various parts of the brain. A Voxel Lesion Symptom Mapping (VLSM) analysis identified 16 patients, all with lesions to the orbital polar prefrontal cortex (BA 10 & 11), as being selectively impaired in the emotional reasoning condition. Another 17 patients, all with lesions to the parietal cortex, were identified as being impaired in the neutral content condition. The reasoning scores of these two patient groups, along with 23 matched normal controls, underwent additional analysis to explore the effect of belief bias. This analysis revealed that the differences identified above were largely driven by trials where there was an incongruency between the believability of the conclusion and the validity of the argument (i.e. valid argument /false conclusion or invalid argument /true conclusion). Patients with lesions to polar orbital prefrontal cortex underperformed in incongruent emotional content trials and over performed in incongruent neutral content trials (compared to both normal controls and patients with parietal lobe lesions). Patients with lesions to parietal lobes underperformed normal controls (at a trend level) in neutral trials where there was a congruency between the believability of the conclusion and the validity of the argument (i.e. valid argument/true conclusion or invalid argument/false conclusion). We conclude that lesions to the polar orbital prefrontal cortex (i) prevent these patients from enjoying any emotionally induced cognitive boost, and (ii) block the belief bias processing route in the neutral condition. Lesions to parietal lobes result in a generalized impairment in logical reasoning with neutral content. Copyright © 2018. Published by Elsevier Ltd.
Decoding Information for Grasping from the Macaque Dorsomedial Visual Stream.
Filippini, Matteo; Breveglieri, Rossella; Akhras, M Ali; Bosco, Annalisa; Chinellato, Eris; Fattori, Patrizia
2017-04-19
Neurodecoders have been developed by researchers mostly to control neuroprosthetic devices, but also to shed new light on neural functions. In this study, we show that signals representing grip configurations can be reliably decoded from neural data acquired from area V6A of the monkey medial posterior parietal cortex. Two Macaca fascicularis monkeys were trained to perform an instructed-delay reach-to-grasp task in the dark and in the light toward objects of different shapes. Population neural activity was extracted at various time intervals on vision of the objects, the delay before movement, and grasp execution. This activity was used to train and validate a Bayes classifier used for decoding objects and grip types. Recognition rates were well over chance level for all the epochs analyzed in this study. Furthermore, we detected slightly different decoding accuracies, depending on the task's visual condition. Generalization analysis was performed by training and testing the system during different time intervals. This analysis demonstrated that a change of code occurred during the course of the task. Our classifier was able to discriminate grasp types fairly well in advance with respect to grasping onset. This feature might be important when the timing is critical to send signals to external devices before the movement start. Our results suggest that the neural signals from the dorsomedial visual pathway can be a good substrate to feed neural prostheses for prehensile actions. SIGNIFICANCE STATEMENT Recordings of neural activity from nonhuman primate frontal and parietal cortex have led to the development of methods of decoding movement information to restore coordinated arm actions in paralyzed human beings. Our results show that the signals measured from the monkey medial posterior parietal cortex are valid for correctly decoding information relevant for grasping. Together with previous studies on decoding reach trajectories from the medial posterior parietal cortex, this highlights the medial parietal cortex as a target site for transforming neural activity into control signals to command prostheses to allow human patients to dexterously perform grasping actions. Copyright © 2017 the authors 0270-6474/17/374311-12$15.00/0.
Attention to Multiple Objects Facilitates Their Integration in Prefrontal and Parietal Cortex.
Kim, Yee-Joon; Tsai, Jeffrey J; Ojemann, Jeffrey; Verghese, Preeti
2017-05-10
Selective attention is known to interact with perceptual organization. In visual scenes, individual objects that are distinct and discriminable may occur on their own, or in groups such as a stack of books. The main objective of this study is to probe the neural interaction that occurs between individual objects when attention is directed toward one or more objects. Here we record steady-state visual evoked potentials via electrocorticography to directly assess the responses to individual stimuli and to their interaction. When human participants attend to two adjacent stimuli, prefrontal and parietal cortex shows a selective enhancement of only the neural interaction between stimuli, but not the responses to individual stimuli. When only one stimulus is attended, the neural response to that stimulus is selectively enhanced in prefrontal and parietal cortex. In contrast, early visual areas generally manifest responses to individual stimuli and to their interaction regardless of attentional task, although a subset of the responses is modulated similarly to prefrontal and parietal cortex. Thus, the neural representation of the visual scene as one progresses up the cortical hierarchy becomes more highly task-specific and represents either individual stimuli or their interaction, depending on the behavioral goal. Attention to multiple objects facilitates an integration of objects akin to perceptual grouping. SIGNIFICANCE STATEMENT Individual objects in a visual scene are seen as distinct entities or as parts of a whole. Here we examine how attention to multiple objects affects their neural representation. Previous studies measured single-cell or fMRI responses and obtained only aggregate measures that combined the activity to individual stimuli as well as their potential interaction. Here, we directly measure electrocorticographic steady-state responses corresponding to individual objects and to their interaction using a frequency-tagging technique. Attention to two stimuli increases the interaction component that is a hallmark for perceptual integration of stimuli. Furthermore, this stimulus-specific interaction is represented in prefrontal and parietal cortex in a task-dependent manner. Copyright © 2017 the authors 0270-6474/17/374942-12$15.00/0.
Okada, Kayoko; Vilberg, Kaia L; Rugg, Michael D
2012-03-01
The neural correlates of successful retrieval on tests of word stem recall and recognition memory were compared. In the recall test, subjects viewed word stems, half of which were associated with studied items and half with unstudied items, and for each stem attempted to recall a corresponding study word. In the recognition test, old/new judgments were made on old and new words. The neural correlates of successful retrieval were identified by contrasting activity elicited by correctly endorsed test items. Old > new effects common to the two tasks were found in medial and lateral parietal and right entorhinal cortex. Common new > old effects were identified in medial and left frontal cortex, and left anterior intra-parietal sulcus. Greater old > new effects were evident for cued recall in inferior parietal regions abutting those demonstrating common effects, whereas larger new > old effects were found for recall in left frontal cortex and the anterior cingulate. New > old effects were also found for the recall task in right lateral anterior prefrontal cortex, where they were accompanied by old > new effects during recognition. It is concluded that successful recall and recognition are associated with enhanced activity in a common set of recollection-sensitive parietal regions, and that the greater activation in these regions during recall reflects the greater dependence of that task on recollection. Larger new > old effects during recall are interpreted as reflections of the greater opportunity for iterative retrieval attempts when retrieval cues are partial rather than copy cues. Copyright © 2011 Wiley Periodicals, Inc.
Okada, Kayoko; Vilberg, Kaia L.; Rugg, Michael D.
2011-01-01
The neural correlates of successful retrieval on tests of word stem recall and recognition memory were compared. In the recall test, subjects viewed word stems, half of which were associated with studied items and half with unstudied items, and for each stem attempted to recall a corresponding study word. In the recognition test, old/new judgments were made on old and new words. The neural correlates of successful retrieval were identified by contrasting activity elicited by correctly endorsed test items. Old > new effects common to the two tasks were found in medial and lateral parietal, and right entorhinal cortex. Common new > old effects were identified in medial and left frontal cortex, and left anterior intra-parietal sulcus. Greater old > new effects were evident for cued recall in inferior parietal regions abutting those demonstrating common effects, whereas larger new > old effects were found for recall in left frontal cortex and the anterior cingulate. New > old effects were also found for the recall task in right lateral anterior prefrontal cortex, where they were accompanied by old > new effects during recognition. It is concluded that successful recall and recognition are associated with enhanced activity in a common set of recollection-sensitive parietal regions, and that the greater activation in these regions during recall reflects the greater dependence of that task on recollection. Larger new > old effects during recall are interpreted as reflections of the greater opportunity for iterative retrieval attempts when retrieval cues are partial rather than copy cues. PMID:21455941
Dissociable effects of surprise and model update in parietal and anterior cingulate cortex
O’Reilly, Jill X.; Schüffelgen, Urs; Cuell, Steven F.; Behrens, Timothy E. J.; Mars, Rogier B.; Rushworth, Matthew F. S.
2013-01-01
Brains use predictive models to facilitate the processing of expected stimuli or planned actions. Under a predictive model, surprising (low probability) stimuli or actions necessitate the immediate reallocation of processing resources, but they can also signal the need to update the underlying predictive model to reflect changes in the environment. Surprise and updating are often correlated in experimental paradigms but are, in fact, distinct constructs that can be formally defined as the Shannon information (IS) and Kullback–Leibler divergence (DKL) associated with an observation. In a saccadic planning task, we observed that distinct behaviors and brain regions are associated with surprise/IS and updating/DKL. Although surprise/IS was associated with behavioral reprogramming as indexed by slower reaction times, as well as with activity in the posterior parietal cortex [human lateral intraparietal area (LIP)], the anterior cingulate cortex (ACC) was specifically activated during updating of the predictive model (DKL). A second saccade-sensitive region in the inferior posterior parietal cortex (human 7a), which has connections to both LIP and ACC, was activated by surprise and modulated by updating. Pupillometry revealed a further dissociation between surprise and updating with an early positive effect of surprise and late negative effect of updating on pupil area. These results give a computational account of the roles of the ACC and two parietal saccade regions, LIP and 7a, by which their involvement in diverse tasks can be understood mechanistically. The dissociation of functional roles between regions within the reorienting/reprogramming network may also inform models of neurological phenomena, such as extinction and Balint syndrome, and neglect. PMID:23986499
Decoding complex flow-field patterns in visual working memory.
Christophel, Thomas B; Haynes, John-Dylan
2014-05-01
There has been a long history of research on visual working memory. Whereas early studies have focused on the role of lateral prefrontal cortex in the storage of sensory information, this has been challenged by research in humans that has directly assessed the encoding of perceptual contents, pointing towards a role of visual and parietal regions during storage. In a previous study we used pattern classification to investigate the storage of complex visual color patterns across delay periods. This revealed coding of such contents in early visual and parietal brain regions. Here we aim to investigate whether the involvement of visual and parietal cortex is also observable for other types of complex, visuo-spatial pattern stimuli. Specifically, we used a combination of fMRI and multivariate classification to investigate the retention of complex flow-field stimuli defined by the spatial patterning of motion trajectories of random dots. Subjects were trained to memorize the precise spatial layout of these stimuli and to retain this information during an extended delay. We used a multivariate decoding approach to identify brain regions where spatial patterns of activity encoded the memorized stimuli. Content-specific memory signals were observable in motion sensitive visual area MT+ and in posterior parietal cortex that might encode spatial information in a modality independent manner. Interestingly, we also found information about the memorized visual stimulus in somatosensory cortex, suggesting a potential crossmodal contribution to memory. Our findings thus indicate that working memory storage of visual percepts might be distributed across unimodal, multimodal and even crossmodal brain regions. Copyright © 2014 Elsevier Inc. All rights reserved.
Subspecialization in the human posterior medial cortex
Bzdok, Danilo; Heeger, Adrian; Langner, Robert; Laird, Angela R.; Fox, Peter T.; Palomero-Gallagher, Nicola; Vogt, Brent A.; Zilles, Karl; Eickhoff, Simon B.
2014-01-01
The posterior medial cortex (PMC) is particularly poorly understood. Its neural activity changes have been related to highly disparate mental processes. We therefore investigated PMC properties with a data-driven exploratory approach. First, we subdivided the PMC by whole-brain coactivation profiles. Second, functional connectivity of the ensuing PMC regions was compared by task-constrained meta-analytic coactivation mapping (MACM) and task-unconstrained resting-state correlations (RSFC). Third, PMC regions were functionally described by forward/reverse functional inference. A precuneal cluster was mostly connected to the intraparietal sulcus, frontal eye fields, and right temporo-parietal junction; associated with attention and motor tasks. A ventral posterior cingulate cortex (PCC) cluster was mostly connected to the ventromedial prefrontal cortex and middle left inferior parietal cortex (IPC); associated with facial appraisal and language tasks. A dorsal PCC cluster was mostly connected to the dorsomedial prefrontal cortex, anterior/posterior IPC, posterior midcingulate cortex, and left dorsolateral prefrontal cortex; associated with delay discounting. A cluster in the retrosplenial cortex was mostly connected to the anterior thalamus and hippocampus. Furthermore, all PMC clusters were congruently coupled with the default mode network according to task-constrained but not task-unconstrained connectivity. We thus identified distinct regions in the PMC and characterized their neural networks and functional implications. PMID:25462801
Wu, Xin; Yang, Wenjing; Tong, Dandan; Sun, Jiangzhou; Chen, Qunlin; Wei, Dongtao; Zhang, Qinglin; Zhang, Meng; Qiu, Jiang
2015-07-01
In this study, an activation likelihood estimation (ALE) meta-analysis was used to conduct a quantitative investigation of neuroimaging studies on divergent thinking. Based on the ALE results, the functional magnetic resonance imaging (fMRI) studies showed that distributed brain regions were more active under divergent thinking tasks (DTTs) than those under control tasks, but a large portion of the brain regions were deactivated. The ALE results indicated that the brain networks of the creative idea generation in DTTs may be composed of the lateral prefrontal cortex, posterior parietal cortex [such as the inferior parietal lobule (BA 40) and precuneus (BA 7)], anterior cingulate cortex (ACC) (BA 32), and several regions in the temporal cortex [such as the left middle temporal gyrus (BA 39), and left fusiform gyrus (BA 37)]. The left dorsolateral prefrontal cortex (BA 46) was related to selecting the loosely and remotely associated concepts and organizing them into creative ideas, whereas the ACC (BA 32) was related to observing and forming distant semantic associations in performing DTTs. The posterior parietal cortex may be involved in the semantic information related to the retrieval and buffering of the formed creative ideas, and several regions in the temporal cortex may be related to the stored long-term memory. In addition, the ALE results of the structural studies showed that divergent thinking was related to the dopaminergic system (e.g., left caudate and claustrum). Based on the ALE results, both fMRI and structural MRI studies could uncover the neural basis of divergent thinking from different aspects (e.g., specific cognitive processing and stable individual difference of cognitive capability). © 2015 Wiley Periodicals, Inc.
Hernaus, Dennis; Casales Santa, Marta Ma; Offermann, Jan Stefan; Van Amelsvoort, Thérèse
2017-04-01
Experimental animal work has demonstrated that dopamine and noradrenaline play an essential role in modulating prefrontal cortex-mediated networks underlying working memory performance. Studies of functional connectivity have been instrumental in extending such notions to humans but, so far, have almost exclusively focussed on pharmacological agents with a predominant dopaminergic mechanism of action. Here, we investigate the effect of a single dose of atomoxetine 60mg, a noradrenaline transporter inhibitor, on working memory performance and associated functional connectivity during an n-back task in 19 healthy male volunteers. Atomoxetine increased functional connectivity between right anterior insula and dorsolateral prefrontal cortex, precentral gyrus, posterior parietal cortex and precuneus during the high-working memory load condition of the n-back task. Increased atomoxetine-induced insula-dorsolateral prefrontal cortex functional connectivity during this condition correlated with decreased reaction time variability and was furthermore predicted by working memory capacity. These results show for the first time that noradrenaline transporter blockade-induced increases in cortical catecholamines accentuate fronto-parietal working memory-related network integrity. The observation of significant inter-subject variability in response to atomoxetine has implications for inverted-U frameworks of dopamine and noradrenaline function, which could be useful to predict drug effects in clinical disorders with variable treatment response. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.
White matter structural connectivity and episodic memory in early childhood.
Ngo, Chi T; Alm, Kylie H; Metoki, Athanasia; Hampton, William; Riggins, Tracy; Newcombe, Nora S; Olson, Ingrid R
2017-12-01
Episodic memory undergoes dramatic improvement in early childhood; the reason for this is poorly understood. In adults, episodic memory relies on a distributed neural network. Key brain regions that supporting these processes include the hippocampus, portions of the parietal cortex, and portions of prefrontal cortex, each of which shows different developmental profiles. Here we asked whether developmental differences in the axonal pathways connecting these regions may account for the robust gains in episodic memory in young children. Using diffusion weighted imaging, we examined whether white matter connectivity between brain regions implicated in episodic memory differed with age, and were associated with memory performance differences in 4- and 6-year-old children. Results revealed that white matter connecting the hippocampus to the inferior parietal lobule significantly predicted children's performance on episodic memory tasks. In contrast, variation in the white matter connecting the hippocampus to the medial prefrontal cortex did not relate to memory performance. These findings suggest that structural connectivity between the hippocampus and lateral parietal regions is relevant to the development of episodic memory. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
White Matter Structural Connectivity and Episodic Memory in Early Childhood
Ngo, Chi T.; Alm, Kylie H.; Metoki, Athanasia; Hampton, William; Riggins, Tracy; Newcombe, Nora S.; Olson, Ingrid R.
2018-01-01
Episodic memory undergoes dramatic improvement in early childhood; the reason for this is poorly understood. In adults, episodic memory relies on a distributed neural network. Key brain regions that supporting these processes include the hippocampus, portions of the parietal cortex, and portions of prefrontal cortex, each of which shows different developmental profiles. Here we asked whether developmental differences in the axonal pathways connecting these regions may account for the robust gains in episodic memory in young children. Using diffusion weighted imaging, we examined whether white matter connectivity between brain regions implicated in episodic memory differed with age, and were associated with memory performance differences in 4- and 6-year-old children. Results revealed that white matter connecting the hippocampus to the inferior parietal lobule significantly predicted children’s performance on episodic memory tasks. In contrast, variation in the white matter connecting the hippocampus to the medial prefrontal cortex did not relate to memory performance. These findings suggest that structural connectivity between the hippocampus and lateral parietal regions is relevant to the development of episodic memory PMID:29175538
Summers, J A; Pullan, P T; Kril, J J; Harper, C G
1991-01-01
beta-endorphin, adrenocorticotrophin, and alpha-melanocyte stimulating hormone were measured by radioimmunoassay in three areas of human brain at necropsy in seven subjects with Wernicke-Korsakoff syndrome and in 52 controls. Thiamin concentration in six brain areas was also measured. Mamillary body beta-endorphin concentrations were significantly increased in those with the syndrome compared with controls, and those controls with high alcohol intake showed increased mamillary body beta-endorphin compared with controls with low alcohol intake. Brain thiamin concentration was similar in both groups, with the exception of the brainstem, where it was reduced in subjects with Wernicke-Korsakoff syndrome. Thalamic beta-endorphin in controls was inversely correlated with thiamin in frontal white matter, frontal cortex, parietal white matter and parietal cortex, while beta-endorphin in the hypothalamus of patients was inversely correlated with thiamin in frontal cortex, parietal white matter, thalamus and brainstem. These results suggest that there is a disturbance of the endorphinergic system in Wernicke-Korsakoff syndrome which may be related to alcohol intake. PMID:1650797
Analysis of haptic information in the cerebral cortex
2016-01-01
Haptic sensing of objects acquires information about a number of properties. This review summarizes current understanding about how these properties are processed in the cerebral cortex of macaques and humans. Nonnoxious somatosensory inputs, after initial processing in primary somatosensory cortex, are partially segregated into different pathways. A ventrally directed pathway carries information about surface texture into parietal opercular cortex and thence to medial occipital cortex. A dorsally directed pathway transmits information regarding the location of features on objects to the intraparietal sulcus and frontal eye fields. Shape processing occurs mainly in the intraparietal sulcus and lateral occipital complex, while orientation processing is distributed across primary somatosensory cortex, the parietal operculum, the anterior intraparietal sulcus, and a parieto-occipital region. For each of these properties, the respective areas outside primary somatosensory cortex also process corresponding visual information and are thus multisensory. Consistent with the distributed neural processing of haptic object properties, tactile spatial acuity depends on interaction between bottom-up tactile inputs and top-down attentional signals in a distributed neural network. Future work should clarify the roles of the various brain regions and how they interact at the network level. PMID:27440247
Moon, Hyeong Cheol; Park, Chan-A; Jeon, Yeong-Jae; You, Soon Tae; Baek, Hyun Man; Lee, Youn Joo; Cho, Chul Beom; Cheong, Chae Joon; Park, Young Seok
2018-05-16
The cingulate cortex (CC) is a brain region that plays a key role in pain processing, but CC abnormalities are not unclear in patients with trigeminal neuralgia (TN). The purpose of this study was to determine the central causal mechanisms of TN and the surrounding brain structure in healthy controls and patients with TN using 7 Tesla (T) magnetic resonance imaging (MRI). Whole-brain parcellation in gray matter volume and thickness was assessed in 15 patients with TN and 16 healthy controls matched for sex, age, and regional variability using T1-weighted imaging. Regions of interest (ROIs) were measured in rostral anterior CC (rACC), caudal anterior CC (cACC) and posterior CC (PCC). We also investigated associations between gray matter volume or thickness and clinical symptoms, such as pain duration, Barrow Neurologic Institute (BNI) scores, offender vessel, and medications, in patients with TN. The cACC and PCC exhibited gray matter atrophy and reduced thickness between the TN and control groups. However, the rACC did not. Cortical volumes were negatively correlated with pain duration in transverse and inferior temporal areas, and thickness was also negatively correlated with pain duration in superior frontal and parietal areas. The cACC and PCC gray matter atrophy occurred in the patients with TN, and pain duration was associated with frontal, parietal, and temporal cortical regions. These results suggest that the cACC, PCC but not the rACC are associated with central pain mechanisms in TN. Copyright © 2018 Elsevier Inc. All rights reserved.
Brain activity during auditory and visual phonological, spatial and simple discrimination tasks.
Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo
2013-02-16
We used functional magnetic resonance imaging to measure human brain activity during tasks demanding selective attention to auditory or visual stimuli delivered in concurrent streams. Auditory stimuli were syllables spoken by different voices and occurring in central or peripheral space. Visual stimuli were centrally or more peripherally presented letters in darker or lighter fonts. The participants performed a phonological, spatial or "simple" (speaker-gender or font-shade) discrimination task in either modality. Within each modality, we expected a clear distinction between brain activations related to nonspatial and spatial processing, as reported in previous studies. However, within each modality, different tasks activated largely overlapping areas in modality-specific (auditory and visual) cortices, as well as in the parietal and frontal brain regions. These overlaps may be due to effects of attention common for all three tasks within each modality or interaction of processing task-relevant features and varying task-irrelevant features in the attended-modality stimuli. Nevertheless, brain activations caused by auditory and visual phonological tasks overlapped in the left mid-lateral prefrontal cortex, while those caused by the auditory and visual spatial tasks overlapped in the inferior parietal cortex. These overlapping activations reveal areas of multimodal phonological and spatial processing. There was also some evidence for intermodal attention-related interaction. Most importantly, activity in the superior temporal sulcus elicited by unattended speech sounds was attenuated during the visual phonological task in comparison with the other visual tasks. This effect might be related to suppression of processing irrelevant speech presumably distracting the phonological task involving the letters. Copyright © 2012 Elsevier B.V. All rights reserved.
Della Puppa, Alessandro; De Pellegrin, Serena; d'Avella, Elena; Gioffrè, Giorgio; Munari, Marina; Saladini, Marina; Salillas, Elena; Scienza, Renato; Semenza, Carlo
2013-11-01
The role of parietal areas in number processing is well known. The significance of intraoperative functional mapping of these areas has been only partially explored, however, and only a few discordant data are available in the surgical literature with regard to the right parietal lobe. The purpose of this study was to evaluate the clinical impact of simple calculation in cortical electrostimulation of right-handed patients affected by a right parietal brain tumor. Calculation mapping in awake surgery was performed in 3 right-handed patients affected by high-grade gliomas located in the right parietal lobe. Preoperatively, none of the patients presented with calculation deficits. In all 3 cases, after sensorimotor and language mapping, cortical and intraparietal sulcus areas involved in single-digit multiplication and addition calculations were mapped using bipolar electrostimulation. In all patients, different sites of the right parietal cortex, mainly in the inferior lobule, were detected as being specifically related to calculation (multiplication or addition). In 2 patients the intraparietal sulcus was functionally specific for multiplication. No functional sites for language were detected. All sites functional for calculation were spared during tumor resection, which was complete in all cases without postoperative neurological deficits. These findings provide intraoperative data in support of an anatomofunctional organization for multiplication and addition within the right parietal area. Furthermore, the study shows the potential clinical relevance of intraoperative mapping of calculation in patients undergoing surgery in the right parietal area. Further and larger studies are needed to confirm these data and assess whether mapped areas are effectively essential for function.
Neural underpinnings of divergent production of rules in numerical analogical reasoning.
Wu, Xiaofei; Jung, Rex E; Zhang, Hao
2016-05-01
Creativity plays an important role in numerical problem solving. Although the neural underpinnings of creativity have been studied over decades, very little is known about neural mechanisms of the creative process that relates to numerical problem solving. In the present study, we employed a numerical analogical reasoning task with functional Magnetic Resonance Imaging (fMRI) to investigate the neural correlates of divergent production of rules in numerical analogical reasoning. Participants performed two tasks: a multiple solution analogical reasoning task and a single solution analogical reasoning task. Results revealed that divergent production of rules involves significant activations at Brodmann area (BA) 10 in the right middle frontal cortex, BA 40 in the left inferior parietal lobule, and BA 8 in the superior frontal cortex. The results suggest that right BA 10 and left BA 40 are involved in the generation of novel rules, and BA 8 is associated with the inhibition of initial rules in numerical analogical reasoning. The findings shed light on the neural mechanisms of creativity in numerical processing. Copyright © 2016 Elsevier B.V. All rights reserved.
Brauer, Jens; Xiao, Yaqiong; Poulain, Tanja; Friederici, Angela D; Schirmer, Annett
2016-08-01
Previous behavioral research points to a positive relationship between maternal touch and early social development. Here, we explored the brain correlates of this relationship. The frequency of maternal touch was recorded for 43 five-year-old children during a 10 min standardized play session. Additionally, all children completed a resting-state functional magnetic resonance imaging session. Investigating the default mode network revealed a positive relation between the frequency of maternal touch and activity in the right posterior superior temporal sulcus (pSTS) extending into the temporo-parietal junction. Using this effect as a seed in a functional connectivity analysis identified a network including extended bilateral regions along the temporal lobe, bilateral frontal cortex, and left insula. Compared with children with low maternal touch, children with high maternal touch showed additional connectivity with the right dorso-medial prefrontal cortex. Together these results support the notion that childhood tactile experiences shape the developing "social brain" with a particular emphasis on a network involved in mentalizing. © The Author 2016. Published by Oxford University Press.
Brain abnormalities in murderers indicated by positron emission tomography.
Raine, A; Buchsbaum, M; LaCasse, L
1997-09-15
Murderers pleading not guilty by reason of insanity (NGRI) are thought to have brain dysfunction, but there have been no previous studies reporting direct measures of both cortical and subcortical brain functioning in this specific group. Positron emission tomography brain imaging using a continuous performance challenge task was conducted on 41 murderers pleading not guilty by reason of insanity and 41 age- and sex-matched controls. Murderers were characterized by reduced glucose metabolism in the prefrontal cortex, superior parietal gyrus, left angular gyrus, and the corpus callosum, while abnormal asymmetries of activity (left hemisphere lower than right) were also found in the amygdala, thalamus, and medial temporal lobe. These preliminary findings provide initial indications of a network of abnormal cortical and subcortical brain processes that may predispose to violence in murderers pleading NGRI.
Resilience to the contralateral visual field bias as a window into object representations
Garcea, Frank E.; Kristensen, Stephanie; Almeida, Jorge; Mahon, Bradford Z.
2016-01-01
Viewing images of manipulable objects elicits differential blood oxygen level-dependent (BOLD) contrast across parietal and dorsal occipital areas of the human brain that support object-directed reaching, grasping, and complex object manipulation. However, it is unknown which object-selective regions of parietal cortex receive their principal inputs from the ventral object-processing pathway and which receive their inputs from the dorsal object-processing pathway. Parietal areas that receive their inputs from the ventral visual pathway, rather than from the dorsal stream, will have inputs that are already filtered through object categorization and identification processes. This predicts that parietal regions that receive inputs from the ventral visual pathway should exhibit object-selective responses that are resilient to contralateral visual field biases. To test this hypothesis, adult participants viewed images of tools and animals that were presented to the left or right visual fields during functional magnetic resonance imaging (fMRI). We found that the left inferior parietal lobule showed robust tool preferences independently of the visual field in which tool stimuli were presented. In contrast, a region in posterior parietal/dorsal occipital cortex in the right hemisphere exhibited an interaction between visual field and category: tool-preferences were strongest contralateral to the stimulus. These findings suggest that action knowledge accessed in the left inferior parietal lobule operates over inputs that are abstracted from the visual input and contingent on analysis by the ventral visual pathway, consistent with its putative role in supporting object manipulation knowledge. PMID:27160998
Chen, Qiu-Feng; Chen, Hua-Jun; Liu, Jun; Sun, Tao; Shen, Qun-Tai
2016-01-01
Machine learning-based approaches play an important role in examining functional magnetic resonance imaging (fMRI) data in a multivariate manner and extracting features predictive of group membership. This study was performed to assess the potential for measuring brain intrinsic activity to identify minimal hepatic encephalopathy (MHE) in cirrhotic patients, using the support vector machine (SVM) method. Resting-state fMRI data were acquired in 16 cirrhotic patients with MHE and 19 cirrhotic patients without MHE. The regional homogeneity (ReHo) method was used to investigate the local synchrony of intrinsic brain activity. Psychometric Hepatic Encephalopathy Score (PHES) was used to define MHE condition. SVM-classifier was then applied using leave-one-out cross-validation, to determine the discriminative ReHo-map for MHE. The discrimination map highlights a set of regions, including the prefrontal cortex, anterior cingulate cortex, anterior insular cortex, inferior parietal lobule, precentral and postcentral gyri, superior and medial temporal cortices, and middle and inferior occipital gyri. The optimized discriminative model showed total accuracy of 82.9% and sensitivity of 81.3%. Our results suggested that a combination of the SVM approach and brain intrinsic activity measurement could be helpful for detection of MHE in cirrhotic patients.
Grey matter alterations in patients with Pantothenate Kinase-Associated Neurodegeneration (PKAN).
Rodriguez-Raecke, Rea; Roa-Sanchez, Pedro; Speckter, Herwin; Fermin-Delgado, Rafael; Perez-Then, Eddy; Oviedo, Jairo; Stoeter, Peter
2014-09-01
Pantothenate Kinase-Associated Neurodegeneration (PKAN) is a rare heritable disease marked by dystonia and loss of movement control. In contrast to the well-known "Eye-of-the-Tiger" sign affecting the globus pallidus, little is known about other deviations of brain morphology, especially about grey matter changes. We investigated 29 patients with PKAN and 29 age-matched healthy controls using Magnet Resonance Imaging and Voxel-Based Morphometry. As compared to controls, children with PKAN showed increased grey matter density in the putamen and nucleus caudatus and adults with PKAN showed increased grey matter density in the ventral part of the anterior cingulate cortex. A multiple regression analysis with dystonia score as predictor showed grey matter reduction in the cerebellum, posterior cingulate cortex, superior parietal lobule, pars triangularis and small frontal and temporal areas and an analysis with age as predictor showed grey matter decreases in the putamen, nucleus caudatus, supplementary motor area and anterior cingulate cortex. The grey matter increases may be regarded as a secondary phenomenon compensating the increased activity of the motor system due to a reduced inhibitory output of the globus pallidus. With increasing age, the grey matter reduction of cortical midline structures however might contribute to the progression of dystonic symptoms due to loss of this compensatory control. Copyright © 2014 Elsevier Ltd. All rights reserved.
Demirakca, Traute; Cardinale, Vita; Dehn, Sven; Ruf, Matthias; Ende, Gabriele
2016-01-01
This study investigated the impact of “life kinetik” training on brain plasticity in terms of an increased functional connectivity during resting-state functional magnetic resonance imaging (rs-fMRI). The training is an integrated multimodal training that combines motor and cognitive aspects and challenges the brain by introducing new and unfamiliar coordinative tasks. Twenty-one subjects completed at least 11 one-hour-per-week “life kinetik” training sessions in 13 weeks as well as before and after rs-fMRI scans. Additionally, 11 control subjects with 2 rs-fMRI scans were included. The CONN toolbox was used to conduct several seed-to-voxel analyses. We searched for functional connectivity increases between brain regions expected to be involved in the exercises. Connections to brain regions representing parts of the default mode network, such as medial frontal cortex and posterior cingulate cortex, did not change. Significant connectivity alterations occurred between the visual cortex and parts of the superior parietal area (BA7). Premotor area and cingulate gyrus were also affected. We can conclude that the constant challenge of unfamiliar combinations of coordination tasks, combined with visual perception and working memory demands, seems to induce brain plasticity expressed in enhanced connectivity strength of brain regions due to coactivation. PMID:26819776
The effect of rehearsal rate and memory load on verbal working memory.
Fegen, David; Buchsbaum, Bradley R; D'Esposito, Mark
2015-01-15
While many neuroimaging studies have investigated verbal working memory (WM) by manipulating memory load, the subvocal rehearsal rate at these various memory loads has generally been left uncontrolled. Therefore, the goal of this study was to investigate how mnemonic load and the rate of subvocal rehearsal modulate patterns of activity in the core neural circuits underlying verbal working memory. Using fMRI in healthy subjects, we orthogonally manipulated subvocal rehearsal rate and memory load in a verbal WM task with long 45-s delay periods. We found that middle frontal gyrus (MFG) and superior parietal lobule (SPL) exhibited memory load effects primarily early in the delay period and did not exhibit rehearsal rate effects. In contrast, we found that inferior frontal gyrus (IFG), premotor cortex (PM) and Sylvian-parietal-temporal region (area Spt) exhibited approximately linear memory load and rehearsal rate effects, with rehearsal rate effects lasting through the entire delay period. These results indicate that IFG, PM and area Spt comprise the core articulatory rehearsal areas involved in verbal WM, while MFG and SPL are recruited in a general supervisory role once a memory load threshold in the core rehearsal network has been exceeded. Copyright © 2014 Elsevier Inc. All rights reserved.
The Effect of Rehearsal Rate and Memory Load on Verbal Working Memory
Fegen, David; Buchsbaum, Bradley R.; D’Esposito, Mark
2014-01-01
While many neuroimaging studies have investigated verbal working memory (WM) by manipulating memory load, the subvocal rehearsal rate at these various memory loads has generally been left uncontrolled. Therefore, the goal of this study was to investigate how mnemonic load and the rate of subvocal rehearsal modulate patterns of activity in the core neural circuits underlying verbal working memory. Using fMRI in healthy subjects, we orthogonally manipulated subvocal rehearsal rate and memory load in a verbal WM task with long 45-second delay periods. We found that middle frontal gyrus (MFG) and superior parietal lobule (SPL) exhibited memory load effects primarily early in the delay period and did not exhibit rehearsal rate effects. In contrast, we found that inferior frontal gyrus (IFG), premotor cortex (PM) and Sylvian-parietal-temporal region (area Spt) exhibited approximately linear memory load and rehearsal rate effects, with rehearsal rate effects lasting through the entire delay period. These results indicate that IFG, PM and area Spt comprise the core articulatory rehearsal areas involved in verbal WM, while MFG and SPL are recruited in a general supervisory role once a memory load threshold in the core rehearsal network has been exceeded. PMID:25467303
Brain mechanisms for loss of awareness of thought and movement
Oakley, David A.; Halligan, Peter W.; Mehta, Mitul A.; Deeley, Quinton
2017-01-01
Abstract Loss or reduction of awareness is common in neuropsychiatric disorders and culturally influenced dissociative phenomena but the underlying brain mechanisms are poorly understood. fMRI was combined with suggestions for automatic writing in 18 healthy highly hypnotically suggestible individuals in a within-subjects design to determine whether clinical alterations in awareness of thought and movement can be experimentally modelled and studied independently of illness. Subjective ratings of control, ownership, and awareness of thought and movement, and fMRI data were collected following suggestions for thought insertion and alien control of writing movement, with and without loss of awareness. Subjective ratings confirmed that suggestions were effective. At the neural level, our main findings indicated that loss of awareness for both thought and movement during automatic writing was associated with reduced activation in a predominantly left-sided posterior cortical network including BA 7 (superior parietal lobule and precuneus), and posterior cingulate cortex, involved in self-related processing and awareness of the body in space. Reduced activity in posterior parietal cortices may underlie specific clinical and cultural alterations in awareness of thought and movement. Clinically, these findings may assist development of imaging assessments for loss of awareness of psychological origin, and interventions such as neurofeedback. PMID:28338742
Soto, David; Rotshtein, Pia; Kanai, Ryota
2014-04-01
Recent research indicates that human attention appears inadvertently biased by items that match the contents of working memory (WM). WM-biases can lead to attentional costs when the memory content matches goal-irrelevant items and to attentional benefits when it matches the sought target. Here we used functional and structural MRI data to determine the neural basis of human variation in WM biases. We asked whether human variation in WM-benefits and WM-costs merely reflects the process of attentional capture by the contents of WM or whether variation in WM biases may be associated with distinct forms of cognitive control over internal WM signals based on selection goals. Human ability to use WM contents to facilitate selection was positively correlated with gray matter volume in the left superior posterior parietal cortex (PPC), while the ability to overcome interference by WM-matching distracters was associated with the left inferior PPC in the anterior IPS. Functional activity in the left PPC, measured by functional MRI, also predicted the magnitude of WM-costs on selection. Both structure and function of left PPC mediate the expression of WM biases in human visual attention. Copyright © 2013 Elsevier Inc. All rights reserved.
Winning the game: brain processes in expert, young elite and amateur table tennis players
Wolf, Sebastian; Brölz, Ellen; Scholz, David; Ramos-Murguialday, Ander; Keune, Philipp M.; Hautzinger, Martin; Birbaumer, Niels; Strehl, Ute
2014-01-01
This study tested two hypotheses: (1) compared with amateurs and young elite, expert table tennis players are characterized by enhanced cortical activation in the motor and fronto-parietal cortex during motor imagery in response to table tennis videos; (2) in elite athletes, world rank points are associated with stronger cortical activation. To this aim, electroencephalographic data were recorded in 14 expert, 15 amateur and 15 young elite right-handed table tennis players. All subjects watched videos of a serve and imagined themselves responding with a specific table tennis stroke. With reference to a baseline period, power decrease/increase of the sensorimotor rhythm (SMR) during the pretask- and task period indexed the cortical activation/deactivation (event-related desynchronization/synchronization, ERD/ERS). Regarding hypothesis (1), 8–10 Hz SMR ERD was stronger in elite athletes than in amateurs with an intermediate ERD in young elite athletes in the motor cortex. Regarding hypothesis (2), there was no correlation between ERD/ERS in the motor cortex and world rank points in elite experts, but a weaker ERD in the fronto-parietal cortex was associated with higher world rank points. These results suggest that motor skill in table tennis is associated with focused excitability of the motor cortex during reaction, movement planning and execution with high attentional demands. Among elite experts, less activation of the fronto-parietal attention network may be necessary to become a world champion. PMID:25386126
Monge, Zachary A; Greenwood, Pamela M; Parasuraman, Raja; Strenziok, Maren
2016-07-01
Although reasoning and attention are 2 cognitive processes necessary for ensuring the efficiency of many everyday activities in older adults, the role of white matter integrity in these processes has been little studied. This is an important question due to the role of white matter integrity as a neural substrate of cognitive aging. Here, we sought to examine the white matter tracts subserving reasoning and visuospatial attention in healthy older adults. Sixty-one adults ages 60 and older completed a battery of cognitive tests to assess reasoning and visuospatial attention. In addition, diffusion tensor images were collected to assess fractional anisotropy (FA), a measure of white matter integrity. A principle components analysis of the test scores yielded 2 components: reasoning and visuospatial attention. Whole-brain correlations between FA and the cognitive components were submitted to probabilistic tractography analyses for visualization of cortical targets of tracts. For reasoning, bilateral thalamo-anterior prefrontal, anterior corpus callosum, and corpus callosum body tracts interconnecting the superior frontal cortices and right cingulum bundle were found. For visuospatial attention, a right inferior fronto-parietal tract and bilateral parietal and temporal connections were found. We conclude that in older adults, prefrontal cortex white matter tracts and interhemispheric communication are important in higher order cognitive functioning. On the other hand, right-sided fronto-parietal tracts appear to be critical for supporting control of cognitive processes, such as redirecting attention. Researchers may use our results to develop neuroscience-based interventions for older adults targeting brain mechanisms involved in cognitive plasticity. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
A neuroanatomical model of space-based and object-centered processing in spatial neglect.
Pedrazzini, Elena; Schnider, Armin; Ptak, Radek
2017-11-01
Visual attention can be deployed in space-based or object-centered reference frames. Right-hemisphere damage may lead to distinct deficits of space- or object-based processing, and such dissociations are thought to underlie the heterogeneous nature of spatial neglect. Previous studies have suggested that object-centered processing deficits (such as in copying, reading or line bisection) result from damage to retro-rolandic regions while impaired spatial exploration reflects damage to more anterior regions. However, this evidence is based on small samples and heterogeneous tasks. Here, we tested a theoretical model of neglect that takes in account the space- and object-based processing and relates them to neuroanatomical predictors. One hundred and one right-hemisphere-damaged patients were examined with classic neuropsychological tests and structural brain imaging. Relations between neglect measures and damage to the temporal-parietal junction, intraparietal cortex, insula and middle frontal gyrus were examined with two structural equation models by assuming that object-centered processing (involved in line bisection and single-word reading) and space-based processing (involved in cancelation tasks) either represented a unique latent variable or two distinct variables. Of these two models the latter had better explanatory power. Damage to the intraparietal sulcus was a significant predictor of object-centered, but not space-based processing, while damage to the temporal-parietal junction predicted space-based, but not object-centered processing. Space-based processing and object-centered processing were strongly intercorrelated, indicating that they rely on similar, albeit partly dissociated processes. These findings indicate that object-centered and space-based deficits in neglect are partly independent and result from superior parietal and inferior parietal damage, respectively.
Brent, Benjamin K.; Seidman, Larry J.; Thermenos, Heidi W.; Holt, Daphne J.; Keshavan, Matcheri S.
2013-01-01
Self-disturbances (SDs) are increasingly identified in schizophrenia and are theorized to confer vulnerability to psychosis. Neuroimaging research has shed some light on the neural correlates of SDs in schizophrenia. But, the onset and trajectory of the neural alterations underlying SDs in schizophrenia remain incompletely understood. We hypothesize that the aberrant structure and function of brain areas (e.g., prefrontal, lateral temporal, and parietal cortical structures) comprising the “neural circuitry of self” may represent an early, premorbid (i.e., pre-prodromal) indicator of schizophrenia risk. Consistent with neurodevelopmental models, we argue that “early” (i.e., perinatal) dysmaturational processes (e.g., abnormal cortical neural cell migration and mini-columnar formation) affecting key prefrontal (e.g., medial prefrontal cortex), lateral temporal cortical (e.g., superior temporal sulcus), parietal (e.g., inferior parietal lobule) structures involved in self-processing may lead to subtle disruptions of “self” during childhood in persons at risk for schizophrenia. During adolescence, progressive neurodevelopmental alterations (e.g., aberrant synaptic pruning) affecting the neural circuitry of self may contribute to worsening of SDs. This could result in the emergence of prodromal symptoms and, eventually, full-blown psychosis. To highlight why adolescence may be a period of heightened risk for SDs, we first summarize the literature regarding the neural correlates of self in typically developing children. Next, we present evidence from neuroimaging studies in genetic high-risk youth suggesting that fronto-temporal-parietal structures mediating self-reflection may be abnormal in the premorbid period. Our goal is that the ideas presented here might provide future directions for research into the neurobiology of SDs during the pre-psychosis development of youth at risk for schizophrenia. PMID:23932148
Changes in cortical thickness during the course of illness in schizophrenia.
van Haren, Neeltje E M; Schnack, Hugo G; Cahn, Wiepke; van den Heuvel, Martijn P; Lepage, Claude; Collins, Louis; Evans, Alan C; Hulshoff Pol, Hilleke E; Kahn, René S
2011-09-01
Whether cortical thickness changes in schizophrenia over time are more pronounced relative to the changes that can be attributed to normal aging has not been studied. To compare patients with schizophrenia and healthy control participants on cortical thickness change. A 5-year longitudinal study comparing schizophrenic patients and healthy controls using 2 magnetic resonance images of the brain. Patients were recruited from the Department of Psychiatry at the University Medical Centre Utrecht and from other psychiatric hospitals in the Netherlands. Healthy controls were recruited via advertisement in newspapers and notice boards. Ninety-six schizophrenic patients and 113 healthy controls aged 16 to 56 years. Cortical thickness and change in cortical thickness on a vertex-by-vertex basis across the cortical mantle, measures of functional and symptomatic outcome, and cumulative intake of antipsychotics during the scan interval. At baseline, the schizophrenic patients had thinner left orbitofrontal and right parahippocampal and superior temporal cortices and a thicker superior parietal lobule and occipital pole compared with the controls. Mean cortical thickness did not differ between the groups. Over time, excessive cortical thinning was found in widespread areas on the cortical mantle, most pronounced bilaterally in the temporal cortex and in the left frontal area. Poor outcome in patients was associated with more pronounced cortical thinning. Higher cumulative intake of typical antipsychotics during the scan interval was associated with more pronounced cortical thinning, whereas higher cumulative intake of atypical antipsychotic medication was associated with less pronounced cortical thinning. In schizophrenia, the cortex shows excessive thinning over time in widespread areas of the brain, most pronounced in the frontal and temporal areas, and progresses across the entire course of the illness. The excessive thinning of the cortex appears related to outcome and medication intake.
Sex differences in neural responses to stress and alcohol context cues.
Seo, Dongju; Jia, Zhiru; Lacadie, Cheryl M; Tsou, Kristen A; Bergquist, Keri; Sinha, Rajita
2011-11-01
Stress and alcohol context cues are each associated with alcohol-related behaviors, yet neural responses underlying these processes remain unclear. This study investigated the neural correlates of stress and alcohol context cue experiences and examined sex differences in these responses. Using functional magnetic resonance imaging, brain responses were examined while 43 right-handed, socially drinking, healthy individuals (23 females) engaged in brief guided imagery of personalized stress, alcohol-cue, and neutral-relaxing scenarios. Stress and alcohol-cue exposure increased activity in the cortico-limbic-striatal circuit (P < 0.01, corrected), encompassing the medial prefrontal cortex (mPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), left anterior insula, striatum, and visuomotor regions (parietal and occipital lobe, and cerebellum). Activity in the left dorsal striatum increased during stress, while bilateral ventral striatum activity was evident during alcohol-cue exposure. Men displayed greater stress-related activations in the mPFC, rostral ACC, posterior insula, amygdala, and hippocampus than women, whereas women showed greater alcohol-cue-related activity in the superior and middle frontal gyrus (SFG/MFG) than men. Stress-induced anxiety was positively associated with activity in emotion-modulation regions, including the medial OFC, ventromedial PFC, left superior-mPFC, and rostral ACC in men, but in women with activation in the SFG/MFG, regions involved in cognitive processing. Alcohol craving was significantly associated with the striatum (encompassing dorsal, and ventral) in men, supporting its involvement in alcohol "urge" in healthy men. These results indicate sex differences in neural processing of stress and alcohol-cue experiences and have implications for sex-specific vulnerabilities to stress- and alcohol-related psychiatric disorders. Copyright © 2010 Wiley-Liss, Inc.
Polyanska, Liliana; Critchley, Hugo D; Rae, Charlotte L
2017-01-01
Tourette Syndrome (TS) is a neurodevelopmental condition characterized by chronic multiple tics, which are experienced as compulsive and 'unwilled'. Patients with TS can differ markedly in the frequency, severity, and bodily distribution of tics. Moreover, there are high comorbidity rates with attention deficit hyperactivity disorder (ADHD), obsessive compulsive disorder (OCD), anxiety disorders, and depression. This complex clinical profile may account for apparent variability of findings across neuroimaging studies that connect neural function to cognitive and motor behavior in TS. Here we crystalized information from neuroimaging regarding the functional circuitry of TS, and furthermore, tested specifically for neural determinants of tic severity, by applying activation likelihood estimation (ALE) meta-analyses to neuroimaging (activation) studies of TS. Fourteen task-based studies (13 fMRI and one H2O-PET) met rigorous inclusion criteria. These studies, encompassing 25 experiments and 651 participants, tested for differences between TS participants and healthy controls across cognitive, motor, perceptual and somatosensory domains. Relative to controls, TS participants showed distributed differences in the activation of prefrontal (inferior, middle, and superior frontal gyri), anterior cingulate, and motor preparation cortices (lateral premotor cortex and supplementary motor area; SMA). Differences also extended into sensory (somatosensory cortex and the lingual gyrus; V4); and temporo-parietal association cortices (posterior superior temporal sulcus, supramarginal gyrus, and retrosplenial cortex). Within TS participants, tic severity (reported using the Yale Global Tic Severity Scale; YGTSS) selectively correlated with engagement of SMA, precentral gyrus, and middle frontal gyrus across tasks. The dispersed involvement of multiple cortical regions with differences in functional reactivity may account for heterogeneity in the symptomatic expression of TS and its comorbidities. More specifically for tics and tic severity, the findings reinforce previously proposed contributions of premotor and lateral prefrontal cortices to tic expression.
Culture modulates brain activity during empathy with anger.
de Greck, Moritz; Shi, Zhenhao; Wang, Gang; Zuo, Xiangyu; Yang, Xuedong; Wang, Xiaoying; Northoff, Georg; Han, Shihui
2012-02-01
Interdependent cultures (such as the Chinese) and independent cultures (such as the German) differ in their attitude towards harmony that is more valued in interdependent cultures. Interdependent and independent cultures also differ in their appreciation of anger--an emotion that implies the disruption of harmony. The present study investigated if interdependent and independent cultures foster distinct brain activity associated with empathic processing of familiar angry, familiar neutral, and unfamiliar neutral faces. Using functional MRI, we scanned Chinese and German healthy subjects during an intentional empathy task, a control task (the evaluation of skin color), and a baseline condition. The subject groups were matched with regard to age, gender, and education. Behaviorally, Chinese subjects described themselves as significantly more interdependent compared to German subjects. The contrast 'intentional empathy for familiar angry'>'baseline' revealed several regions, including the left inferior frontal cortex, the left supplementary motor area, and the left insula, that showed comparable hemodynamic responses in both groups. However, the left dorsolateral prefrontal cortex had stronger hemodynamic responses in Chinese subjects in the contrast 'intentional empathy for familiar angry'>'baseline'. Germans, in contrast, showed stronger hemodynamic responses in the right temporo-parietal junction, right inferior and superior temporal gyrus, and left middle insula for the same contrast. Hemodynamic responses in the latter three brain regions correlated with interdependences scores over all subjects. Our results suggest that enhanced emotion regulation during empathy with anger in the interdependent lifestyle is mediated by the left dorsolateral prefrontal cortex. Increased tolerance towards the expression of anger in the independent lifestyle, in contrast, is associated with increased activity of the right inferior and superior temporal gyrus and the left middle insula. Copyright © 2011 Elsevier Inc. All rights reserved.
Tagging cortical networks in emotion: a topographical analysis
Keil, Andreas; Costa, Vincent; Smith, J. Carson; Sabatinelli, Dean; McGinnis, E. Menton; Bradley, Margaret M.; Lang, Peter J.
2013-01-01
Viewing emotional pictures is associated with heightened perception and attention, indexed by a relative increase in visual cortical activity. Visual cortical modulation by emotion is hypothesized to reflect re-entrant connectivity originating in higher-order cortical and/or limbic structures. The present study used dense-array electroencephalography and individual brain anatomy to investigate functional coupling between the visual cortex and other cortical areas during affective picture viewing. Participants viewed pleasant, neutral, and unpleasant pictures that flickered at a rate of 10 Hz to evoke steady-state visual evoked potentials (ssVEPs) in the EEG. The spectral power of ssVEPs was quantified using Fourier transform, and cortical sources were estimated using beamformer spatial filters based on individual structural magnetic resonance images. In addition to lower-tier visual cortex, a network of occipito-temporal and parietal (bilateral precuneus, inferior parietal lobules) structures showed enhanced ssVEP power when participants viewed emotional (either pleasant or unpleasant), compared to neutral pictures. Functional coupling during emotional processing was enhanced between the bilateral occipital poles and a network of temporal (left middle/inferior temporal gyrus), parietal (bilateral parietal lobules), and frontal (left middle/inferior frontal gyrus) structures. These results converge with findings from hemodynamic analyses of emotional picture viewing and suggest that viewing emotionally engaging stimuli is associated with the formation of functional links between visual cortex and the cortical regions underlying attention modulation and preparation for action. PMID:21954087
Cortical Plasticity Following Motor Skill Learning During Mental Practice in Stroke1
Page, Stephen J.; Szaflarski, Jerzy P.; Eliassen, James C.; Pan, Hai; Cramer, Steven C
2012-01-01
Background and Purpose Mental practice (MP), which involves cognitive rehearsal of physical movements, is a non-invasive, inexpensive method of enabling repetitive, task specific practice (RTP). Recent, randomized controlled data suggest that MP, when combined with a RTP therapy program, increases affected arm use and function significantly more than RTP only. As a next step, this 10-subject case series examined the possibility that cortical plasticity is a mechanism underlying the treatment effect of MP when combined with RTP. Method 10 chronic stroke patients (mean = 36.7 months) exhibiting stable, moderate motor deficits received ½ hour therapy sessions for their affected arms, occurring 3 days/week for 10 weeks, and emphasizing valued activities of daily living (ADLs). Directly after therapy, subjects received 30-minute MP sessions, which required MP of the ADLs performed during therapy. Behavioral outcomes were blindly evaluated using the Action Research Arm Test (ARAT) and the Fugl-Meyer Assessment (FM). Functional magnetic resonance imaging (fMRI) was administered before and after intervention to assess cortical changes. Results Before intervention, subjects exhibited stable motor deficits. After intervention, subjects exhibited marked ARAT and FM score increases (+ 5.3 and + 4.2, respectively), and clinically significant, new abilities to perform valued ADLs. Post-intervention fMRI revealed significant increases in activation to wrist flexion and extension of the affected hand in the premotor area and primary motor cortex ipsi- and contralaterally to the affected hand, and superior parietal cortex ipsilateral to the affected hand. Decreased activations were noted in parietal cortex of the hemisphere ipsilateral to the affected hand. These changes correlated with anatomical regions in which behavioral changes were observed via the ARAT and FM. Conclusions MP is an easy to use, cost effective strategy that was again shown to improve affected arm outcomes after stroke. This is the first study suggesting alteration in the cortical map as a possible MP mechanism for the affected arm. PMID:19155350
Posterior parietal cortex mediates encoding and maintenance processes in change blindness.
Tseng, Philip; Hsu, Tzu-Yu; Muggleton, Neil G; Tzeng, Ovid J L; Hung, Daisy L; Juan, Chi-Hung
2010-03-01
It is commonly accepted that right posterior parietal cortex (PPC) plays an important role in updating spatial representations, directing visuospatial attention, and planning actions. However, recent studies suggest that right PPC may also be involved in processes that are more closely associated with our visual awareness as its activation level positively correlates with successful conscious change detection (Beck, D.M., Rees, G., Frith, C.D., & Lavie, N. (2001). Neural correlates of change detection and change blindness. Nature Neuroscience, 4, 645-650.). Furthermore, disruption of its activity increases the occurrences of change blindness, thus suggesting a causal role for right PPC in change detection (Beck, D.M., Muggleton, N., Walsh, V., & Lavie, N. (2006). Right parietal cortex plays a critical role in change blindness. Cerebral Cortex, 16, 712-717.). In the context of a 1-shot change detection paradigm, we applied transcranial magnetic stimulation (TMS) during different time intervals to elucidate the temporally precise involvement of PPC in change detection. While subjects attempted to detect changes between two image sets separated by a brief time interval, TMS was applied either during the presentation of picture 1 when subjects were encoding and maintaining information into visual short-term memory, or picture 2 when subjects were retrieving information relating to picture 1 and comparing it to picture 2. Our results show that change blindness occurred more often when TMS was applied during the viewing of picture 1, which implies that right PPC plays a crucial role in the processes of encoding and maintaining information in visual short-term memory. In addition, since our stimuli did not involve changes in spatial locations, our findings also support previous studies suggesting that PPC may be involved in the processes of encoding non-spatial visual information (Todd, J.J. & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428, 751-754.). Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Alterations in conflict monitoring are related to functional connectivity in Parkinson's disease.
Rosenberg-Katz, Keren; Maidan, Inbal; Jacob, Yael; Giladi, Nir; Mirelman, Anat; Hausdorff, Jeffrey M
2016-09-01
Patients with Parkinson's disease (PD) have difficulties in executive functions including conflict monitoring. The neural mechanisms underlying these difficulties are not yet fully understood. In order to examine the neural mechanisms related to conflict monitoring in PD, we evaluated 35 patients with PD and 20 healthy older adults while they performed a word-color Stroop paradigm in the MRI. Specifically, we focused on changes between the groups in task-related functional connectivity using psycho-physiological interaction (PPI) analysis. The anterior cingulate cortex (ACC), which is a brain node previously associated with the Stroop paradigm, was selected as the seed region for this analysis. Patients with PD, as compared to healthy controls, had reduced task-related functional connectivity between the ACC and parietal regions including the precuneus and inferior parietal lobe. This was seen only in the incongruent Stroop condition. A higher level of connectivity between the ACC and precuneus was correlated with a lower error rate in the conflicting, incongruent Stroop condition in the healthy controls, but not in the patients with PD. Furthermore, the patients also had reduced functional connectivity between the ACC and the superior frontal gyrus which was present in both the incongruent and congruent task condition. The present findings shed light on brain mechanisms that are apparently associated with specific cognitive difficulties in patients with PD. Among patients with PD, impaired conflict monitoring processing within the ACC-based fronto-parietal network may contribute to difficulties under increased executive demands. Copyright © 2016 Elsevier Ltd. All rights reserved.
Multiple forebrain systems converge on motor neurons innervating the thyroarytenoid muscle
Van Daele, Douglas J.; Cassell, Martin D.
2009-01-01
The present study investigated the central connections of motor neurons innervating the thyroarytenoid laryngeal muscle that is active in swallowing, respiration and vocalization. In both intact and sympathectomized rats, the pseudorabies virus (PRV) was inoculated into the muscle. After initial infection of laryngomotor neurons in the ipsilateral loose division of the nucleus ambiguous (NA) by 3 days post-inoculation., PRV spread to the ipsilateral compact portion of the NA, the central and intermediate divisions of the nucleus tractus solitarii (NTS), the Botzinger complex, and the parvocellular reticular formation by 4 days. Infection was subsequently expanded to include the ipsilateral granular and dysgranular parietal insular cortex, the ipsilateral medial division of the central nucleus of the amygdala, the lateral, paraventricular, ventrolateral and medial preoptic nuclei of the hypothalamus (generally bilaterally), the lateral periaqueductal gray, the A7 and oral and caudal pontine nuclei. At the latest time points sampled post-inoculation (5 days), infected neurons were identified in the ipsilateral agranular insular cortex, the caudal parietal insular cortex, the anterior cingulate cortex, and the contralateral motor cortex. In the amygdala, infection had spread to the lateral central nucleus and the parvocellular portion of the basolateral nucleus. Hypothalamic infection was largely characterized by an increase in the number of infected cells in earlier infected regions though the posterior, dorsomedial, tuberomammillary and mammillary nuclei contained infected cells. Comparison with previous connectional data suggest PRV followed three interconnected systems originating in the forebrain; a bilateral system including the ventral anterior cingulate cortex, periaqueductal gray and ventral respiratory group; an ipsilateral system involving the parietal insular cortex, central nucleus of the amygdala and parvicellular reticular formation, and a minor contralateral system originating in motor cortex. Hypothalamic innervation involved several functionally specific nuclei. Overall, the data imply complex central nervous system control over the multi-functional thyroarytenoid muscle.[297 words] PMID:19426785
Topographic Organization for Delayed Saccades in Human Posterior Parietal Cortex
Schluppeck, Denis; Glimcher, Paul; Heeger, David J.
2008-01-01
Posterior parietal cortex (PPC) is thought to play a critical role in decision making, sensory attention, motor intention, and/or working memory. Research on the PPC in non-human primates has focused on the lateral intraparietal area (LIP) in the intraparietal sulcus (IPS). Neurons in LIP respond after the onset of visual targets, just before saccades to those targets, and during the delay period in between. To study the function of posterior parietal cortex in humans, it will be crucial to have a routine and reliable method for localizing specific parietal areas in individual subjects. Here, we show that human PPC contains at least two topographically organized regions, which are candidates for the human homologue of LIP. We mapped the topographic organization of human PPC for delayed (memory guided) saccades using fMRI. Subjects were instructed to fixate centrally while a peripheral target was briefly presented. After a further 3-s delay, subjects made a saccade to the remembered target location followed by a saccade back to fixation and a 1-s inter-trial interval. Targets appeared at successive locations “around the clock” (same eccentricity, ≈30° angular steps), to produce a traveling wave of activity in areas that are topographically organized. PPC exhibited topographic organization for delayed saccades. We defined two areas in each hemisphere that contained topographic maps of the contralateral visual field. These two areas were immediately rostral to V7 as defined by standard retinotopic mapping. The two areas were separated from each other and from V7 by reversals in visual field orientation. However, we leave open the possibility that these two areas will be further subdivided in future studies. Our results demonstrate that topographic maps tile the cortex continuously from V1 well into PPC. PMID:15817644
Improving ideomotor limb apraxia by electrical stimulation of the left posterior parietal cortex.
Bolognini, Nadia; Convento, Silvia; Banco, Elisabetta; Mattioli, Flavia; Tesio, Luigi; Vallar, Giuseppe
2015-02-01
Limb apraxia, a deficit of planning voluntary gestures, is most frequently caused by damage to the left hemisphere, where, according to an influential neurofunctional model, gestures are planned, before being executed through the motor cortex of the hemisphere contralateral to the acting hand. We used anodal transcranial direct current stimulation delivered to the left posterior parietal cortex (PPC), the right motor cortex (M1), and a sham stimulation condition, to modulate the ability of six left-brain-damaged patients with ideomotor apraxia, and six healthy control subjects, to imitate hand gestures, and to perform skilled hand movements using the left hand. Transcranial direct current stimulation delivered to the left PPC reduced the time required to perform skilled movements, and planning, but not execution, times in imitating gestures, in both patients and controls. In patients, the amount of decrease of planning times brought about by left PPC transcranial direct current stimulation was influenced by the size of the parietal lobe damage, with a larger parietal damage being associated with a smaller improvement. Of interest from a clinical perspective, left PPC stimulation also ameliorated accuracy in imitating hand gestures in patients. Instead, transcranial direct current stimulation to the right M1 diminished execution, but not planning, times in both patients and healthy controls. In conclusion, by using a transcranial stimulation approach, we temporarily improved ideomotor apraxia in the left hand of left-brain-damaged patients, showing a role of the left PPC in planning gestures. This evidence opens up novel perspectives for the use of transcranial direct current stimulation in the rehabilitation of limb apraxia. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Martínez-Vázquez, Pablo; Gail, Alexander
2018-01-01
Abstract Goal-directed behavior requires cognitive control of action, putatively by means of frontal-lobe impact on posterior brain areas. We investigated frontoparietal directed interaction (DI) in monkeys during memory-guided rule-based reaches, to test if DI supports motor-goal selection or working memory (WM) processes. We computed DI between the parietal reach region (PRR) and dorsal premotor cortex (PMd) with a Granger-causality measure of intracortical local field potentials (LFP). LFP mostly in the beta (12–32 Hz) and low-frequency (f≤10Hz) ranges contributed to DI. During movement withholding, beta-band activity in PRR had a Granger-causal effect on PMd independent of WM content. Complementary, low-frequency PMd activity had a transient Granger-causing effect on PRR specifically during WM retrieval of spatial motor goals, while no DI was associated with preliminary motor-goal selection. Our results support the idea that premotor and posterior parietal cortices interact functionally to achieve cognitive control during goal-directed behavior, in particular, that frontal-to-parietal interaction occurs during retrieval of motor-goal information from spatial WM. PMID:29481586
Martínez-Vázquez, Pablo; Gail, Alexander
2018-05-01
Goal-directed behavior requires cognitive control of action, putatively by means of frontal-lobe impact on posterior brain areas. We investigated frontoparietal directed interaction (DI) in monkeys during memory-guided rule-based reaches, to test if DI supports motor-goal selection or working memory (WM) processes. We computed DI between the parietal reach region (PRR) and dorsal premotor cortex (PMd) with a Granger-causality measure of intracortical local field potentials (LFP). LFP mostly in the beta (12-32 Hz) and low-frequency (f≤10Hz) ranges contributed to DI. During movement withholding, beta-band activity in PRR had a Granger-causal effect on PMd independent of WM content. Complementary, low-frequency PMd activity had a transient Granger-causing effect on PRR specifically during WM retrieval of spatial motor goals, while no DI was associated with preliminary motor-goal selection. Our results support the idea that premotor and posterior parietal cortices interact functionally to achieve cognitive control during goal-directed behavior, in particular, that frontal-to-parietal interaction occurs during retrieval of motor-goal information from spatial WM.
Magnetic stimulation of visual cortex impairs perceptual learning.
Baldassarre, Antonello; Capotosto, Paolo; Committeri, Giorgia; Corbetta, Maurizio
2016-12-01
The ability to learn and process visual stimuli more efficiently is important for survival. Previous neuroimaging studies have shown that perceptual learning on a shape identification task differently modulates activity in both frontal-parietal cortical regions and visual cortex (Sigman et al., 2005;Lewis et al., 2009). Specifically, fronto-parietal regions (i.e. intra parietal sulcus, pIPS) became less activated for trained as compared to untrained stimuli, while visual regions (i.e. V2d/V3 and LO) exhibited higher activation for familiar shape. Here, after the intensive training, we employed transcranial magnetic stimulation over both visual occipital and parietal regions, previously shown to be modulated, to investigate their causal role in learning the shape identification task. We report that interference with V2d/V3 and LO increased reaction times to learned stimuli as compared to pIPS and Sham control condition. Moreover, the impairment observed after stimulation over the two visual regions was positive correlated. These results strongly support the causal role of the visual network in the control of the perceptual learning. Copyright © 2016 Elsevier Inc. All rights reserved.
Brain structural changes in spasmodic dysphonia: A multimodal magnetic resonance imaging study.
Kostic, Vladimir S; Agosta, Federica; Sarro, Lidia; Tomić, Aleksandra; Kresojević, Nikola; Galantucci, Sebastiano; Svetel, Marina; Valsasina, Paola; Filippi, Massimo
2016-04-01
The pathophysiology of spasmodic dysphonia is poorly understood. This study evaluated patterns of cortical morphology, basal ganglia, and white matter microstructural alterations in patients with spasmodic dysphonia relative to healthy controls. T1-weighted and diffusion tensor magnetic resonance imaging (MRI) scans were obtained from 13 spasmodic dysphonia patients and 30 controls. Tract-based spatial statistics was applied to compare diffusion tensor MRI indices (i.e., mean, radial and axial diffusivities, and fractional anisotropy) between groups on a voxel-by-voxel basis. Cortical measures were analyzed using surface-based morphometry. Basal ganglia were segmented on T1-weighted images, and volumes and diffusion tensor MRI metrics of nuclei were measured. Relative to controls, patients with spasmodic dysphonia showed increased cortical surface area of the primary somatosensory cortex bilaterally in a region consistent with the buccal sensory representation, as well as right primary motor cortex, left superior temporal, supramarginal and superior frontal gyri. A decreased cortical area was found in the rolandic operculum bilaterally, left superior/inferior parietal and lingual gyri, as well as in the right angular gyrus. Compared to controls, spasmodic dysphonia patients showed increased diffusivities and decreased fractional anisotropy of the corpus callosum and major white matter tracts, in the right hemisphere. Altered diffusion tensor MRI measures were found in the right caudate and putamen nuclei with no volumetric changes. Multi-level alterations in voice-controlling networks, that included regions devoted not only to sensorimotor integration, motor preparation and motor execution, but also processing of auditory and visual information during speech, might have a role in the pathophysiology of spasmodic dysphonia. Copyright © 2016 Elsevier Ltd. All rights reserved.