Science.gov

Sample records for cortical bone anisotropy

  1. Variability and Anisotropy of Fracture Toughness of Cortical Bone Tissue

    NASA Astrophysics Data System (ADS)

    Abdel-Wahab, Adel; Nordin, Norhaziqah; Silberschmidt, Vadim

    2012-08-01

    Bones form protective and load-bearing framework of the body. Therefore, their structural integrity is vital for the quality of life. Unfortunately, bones can only sustain a load until a certain limit, beyond which they fail. Therefore, it is essential to study their mechanical and fracture behaviours in order to get an in-depth understanding of the origins of its fracture resistance that, in turn, can assist diagnosis and prevention of bone's trauma. This can be achieved by studying mechanical properties of bone, such as its fracture toughness. Generally, most of bone fractures occur for long bones that consist mostly of cortical bone. Therefore, in this study, only a cortical bone tissue was studied. Since this tissue has an anisotropic behaviour and possesses hierarchical and complex structure, in this paper, an experimental analysis for the fracture toughness of cortical bone tissue is presented in terms of J-integral. The data was obtained using single-edge-notch bending (SENB) cortical specimens of bone tested in a three-point bending setup. Variability of values of fracture toughness was investigated by testing specimens cut from different cortex positions of bovine femur called anterior, posterior, medial, and lateral. In addition, anisotropy ratios of fracture toughness were considered by examining specimens cut from three different orientations: longitudinal, transverse and radial. Moreover, in order to link cortical bone fracture mechanisms with its underlying microstructure, fracture surfaces of specimens from different cortices and along different orientations were studied. Experimental results of this study provide a clear understanding of both variability and anisotropy of cortical bone tissue with regard to its fracture toughness.

  2. Nanoindentation analysis of the micromechanical anisotropy in mouse cortical bone

    PubMed Central

    Balmelli, Anna; Carnelli, Davide; Courty, Diana; Müller, Ralph

    2017-01-01

    Studies investigating micromechanical properties in mouse cortical bone often solely focus on the mechanical behaviour along the long axis of the bone. Therefore, data on the anisotropy of mouse cortical bone is scarce. The aim of this study is the first-time evaluation of the anisotropy ratio between the longitudinal and transverse directions of reduced modulus and hardness in mouse femurs by using the nanoindentation technique. For this purpose, nine 22-week-old mice (C57BL/6) were sacrificed and all femurs extracted. A total of 648 indentations were performed with a Berkovich tip in the proximal (P), central (C) and distal (D) regions of the femoral shaft in the longitudinal and transverse directions. Higher values for reduced modulus are obtained for indentations in the longitudinal direction, with anisotropy ratios of 1.72 ± 0.40 (P), 1.75 ± 0.69 (C) and 1.34 ± 0.30 (D). Hardness is also higher in the longitudinal direction, with anisotropic ratios of 1.35 ± 0.27 (P), 1.35 ± 0.47 (C) and 1.17 ± 0.19 (D). We observed a significant anisotropy in the micromechanical properties of the mouse femur, but the correlation for reduced modulus and hardness between the two directions is low (r2 < 0.3) and not significant. Therefore, we highly recommend performing independent indentation testing in both the longitudinal and transverse directions when knowledge of the tissue mechanical behaviour along multiple directions is required. PMID:28386450

  3. A study of dielectric anisotropy in dehydrated cortical bone.

    PubMed

    García Sánchez, F J; De Mercato, G

    The complex permittivity of dehydrated bovine femoral bone has been studied in vitro, in the three orthogonal directions from 1 kHz to 3 MHz, as part of an analysis of the various factors involved in the dielectric behavior of fluid-saturated cortical bone. In this study the bone's physical structure reveals its anisotropic nature by its dependence on both the real and imaginary parts of permittivity on the orientation of the applied electric field. The real permittivity and the total conductivity are generally higher in the longitudinal direction than in the other two transverse directions, with the tangential direction presenting values between those of the longitudinal and radial directions and closer to the former. The high frequency limit of the real part of the permittivity was found to be around 10 and its low frequency limit is of the order of 1000. The dispersion parameters of relaxation time show values of about 0.4 and the corresponding mean relaxation frequencies are below 100 Hz.

  4. Micromechanical modeling of elastic properties of cortical bone accounting for anisotropy of dense tissue.

    PubMed

    Salguero, Laura; Saadat, Fatemeh; Sevostianov, Igor

    2014-10-17

    The paper analyzes the connection between microstructure of the osteonal cortical bone and its overall elastic properties. The existing models either neglect anisotropy of the dense tissue or simplify cortical bone microstructure (accounting for Haversian canals only). These simplifications (related mostly to insufficient mathematical apparatus) complicate quantitative analysis of the effect of microstructural changes - produced by age, microgravity, or some diseases - on the overall mechanical performance of cortical bone. The present analysis fills this gap; it accounts for anisotropy of the dense tissue and uses realistic model of the porous microstructure. The approach is based on recent results of Sevostianov et al. (2005) and Saadat et al. (2012) on inhomogeneities in a transversely-isotropic material. Bone's microstructure is modeled according to books of Martin and Burr (1989), Currey (2002), and Fung (1993) and includes four main families of pores. The calculated elastic constants for porous cortical bone are in agreement with available experimental data. The influence of each of the pore types on the overall moduli is examined.

  5. The relationship between the mechanical anisotropy of human cortical bone tissue and its microstructure

    NASA Astrophysics Data System (ADS)

    Espinoza Orias, Alejandro A.

    Orthopedics research has made significant advances in the areas of biomechanics, bone implants and bone substitute materials. However, to date there is no definitive model to explain the structure-property relationships in bone as a material to enable better implant designs or to develop a true biomechanical analog of bone. The objective of this investigation was to establish a relationship between the elastic anisotropy of cortical bone tissue and its microstructure. Ultrasonic wave propagation was used to measure stiffness coefficients for specimens sectioned along the length of a human femur. The elastic constants were orthotropic and varied with anatomical location. Stiffness coefficients were generally largest at the midshaft and stiffness anisotropy ratios were largest at the distal and proximal ends. These tests were run on four additional human femurs to assess the influence of phenotypic variation, and in most cases, it was found that phenotypes do not exert a significant effect. Stiffness coefficients were shown to be correlated as a power law relation to apparent density, but anisotropy ratios were not. Texture analysis was performed on selected samples to measure the orientation distribution of the bone mineral crystals. Inverse pole figures showed that bone mineral crystals had a preferred crystallographic orientation, coincident with the long axis of the femur, which is its principal loading direction. The degree of preferred orientation was represented in Multiples of a Random Distribution (MRD), and correlated to the anisotropy ratios. Variation in elastic anisotropy was shown to be primarily due to the bone mineral orientation. The results found in this work can be used to incorporate anisotropy into structural analysis for bone as a material.

  6. The influence of mesoscale porosity on cortical bone anisotropy. Investigations via asymptotic homogenization

    PubMed Central

    Parnell, William J; Grimal, Quentin

    2008-01-01

    Recently, the mesoscale of cortical bone has been given particular attention in association with novel experimental techniques such as nanoindentation, micro-computed X-ray tomography and quantitative scanning acoustic microscopy (SAM). A need has emerged for reliable mathematical models to interpret the related microscopic and mesoscopic data in terms of effective elastic properties. In this work, a new model of cortical bone elasticity is developed and used to assess the influence of mesoscale porosity on the induced anisotropy of the material. Only the largest pores (Haversian canals and resorption cavities), characteristic of the mesoscale, are considered. The input parameters of the model are derived from typical mesoscale experimental data (e.g. SAM data). We use the method of asymptotic homogenization to determine the local effective elastic properties by modelling the propagation of low-frequency elastic waves through an idealized material that models the local mesostructure. We use a novel solution of the cell problem developed by Parnell & Abrahams. This solution is stable for the physiological range of variation of mesoscopic porosity and elasticity found in bone. Results are computed efficiently (in seconds) and the solutions can be implemented easily by other workers. Parametric studies are performed in order to assess the influence of mesoscopic porosity, the assumptions regarding the material inside the mesoscale pores (drained or undrained bone) and the shape of pores. Results are shown to be in good qualitative agreement with existing schemes and we describe the potential of the scheme for future use in modelling more complex microstructures for cortical bone. In particular, the scheme is shown to be a useful tool with which to predict the qualitative changes in anisotropy due to variations in the structure at the mesoscale. PMID:18628200

  7. Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents.

    PubMed

    Novitskaya, Ekaterina; Chen, Po-Yu; Lee, Steve; Castro-Ceseña, Ana; Hirata, Gustavo; Lubarda, Vlado A; McKittrick, Joanna

    2011-08-01

    The mechanical properties of fully demineralized, fully deproteinized and untreated cortical bovine femur bone were investigated by compression testing in three anatomical directions (longitudinal, radial and transverse). The weighted sum of the stress-strain curves of the treated bones was far lower than that of the untreated bone, indicating a strong molecular and/or mechanical interaction between the collagen matrix and the mineral phase. Demineralization and deproteinization of the bone demonstrated that contiguous, stand-alone structures result, showing that bone can be considered an interpenetrating composite material. Structural features of the samples from all groups were studied by optical and scanning electron microscopy. Anisotropic mechanical properties were observed: the radial direction was found to be the strongest for untreated bone, while the longitudinal one was found to be the strongest for deproteinized and demineralized bones. A possible explanation for this phenomenon is the difference in bone microstructure in the radial and longitudinal directions.

  8. Apparent viscoelastic anisotropy as measured from nondestructive oscillatory tests can reflect the presence of a flaw in cortical bone.

    PubMed

    Yeni, Yener N; Christopherson, Gregory T; Turner, A Simon; Les, Clifford M; Fyhrie, David P

    2004-04-01

    There is evidence that damage, viscoelastic stiffness properties, and postyield mechanical properties are related in bone tissue. Our objective was to test whether presence of a flaw would have an influence on the apparent viscoelastic properties of bone. Examining the effect of flaw orientation on apparent viscoelastic properties and utilization of dynamic mechanical analysis (DMA) as a nondestructive means for detection of damage were our secondary objectives. Cortical bone beams (2 x 2 x 19 mm) machined from the cranial cortex of the radii of six Warhill sheep were used. The specimens were placed in a DMA machine and baseline measurements of storage modulus (E1) and loss factor (tan delta), once for loads in the craniocaudal and once in the mediolateral directions, were performed using a three-point bending configuration for a frequency range of 1-10 Hz. Craniocaudal/mediolateral measurement ratio was calculated as a measure of anisotropy for tan delta and E1. After cutting a thin through-thickness macroscopic notch on the caudal surface at the center of each beam, oscillatory tests were repeated. Two-way repeated measures analysis of variance followed by Tukey's test was used with group (craniocaudal, mediolateral, notched craniocaudal, and notched mediolateral measurements) and frequency as factors. Regression analysis and analysis of covariance were used for examining the relationship between viscoelastic parameters and frequency. Tan delta and E1 were not different between craniocaudal and mediolateral measurements before the flaw was introduced (p > 0.8 and p = 1, respectively). In the presence of the flaw, tan delta was significantly increased (p < 0.003) whereas E1 was significantly reduced (p < 0.001) for craniocaudal measurements. Tan delta and E1 were nearly isotropic in the tested directions before the introduction of a flaw into the bone tissue. Introduction of a flaw resulted in increased tan delta and E1 anisotropy. Presence of a notch resulted in

  9. Insights into reference point indentation involving human cortical bone: sensitivity to tissue anisotropy and mechanical behavior.

    PubMed

    Granke, Mathilde; Coulmier, Aurélie; Uppuganti, Sasidhar; Gaddy, Jennifer A; Does, Mark D; Nyman, Jeffry S

    2014-09-01

    Reference point indentation (RPI) is a microindentation technique involving 20 cycles of loading in "force-control" that can directly assess a patient׳s bone tissue properties. Even though preliminary clinical studies indicate a capability for fracture discrimination, little is known about what mechanical behavior the various RPI properties characterize and how these properties relate to traditional mechanical properties of bone. To address this, the present study investigated the sensitivity of RPI properties to anatomical location and tissue organization as well as examined to what extent RPI measurements explain the intrinsic mechanical properties of human cortical bone. Multiple indents with a target force of 10N were done in 2 orthogonal directions (longitudinal and transverse) per quadrant (anterior, medial, posterior, and lateral) of the femoral mid-shaft acquired from 26 donors (25-101 years old). Additional RPI measurements were acquired for 3 orthogonal directions (medial only). Independent of age, most RPI properties did not vary among these locations, but they did exhibit transverse isotropy such that resistance to indentation is greater in the longitudinal (axial) direction than in the transverse direction (radial or circumferential). Next, beam specimens (~2mm×5mm×40mm) were extracted from the medial cortex of femoral mid-shafts, acquired from 34 donors (21-99 years old). After monotonically loading the specimens in three-point bending to failure, RPI properties were acquired from an adjacent region outside the span. Indent direction was orthogonal to the bending axis. A significant inverse relationship was found between resistance to indentation and the apparent-level mechanical properties. Indentation distance increase (IDI) and a linear combination of IDI and the loading slope, averaged over cycles 3 through 20, provided the best explanation of the variance in ultimate stress (r(2)=0.25, p=0.003) and toughness (r(2)=0.35, p=0.004), respectively

  10. Quantification of microarchitectural anisotropy in bone with diffraction enhanced imaging

    NASA Astrophysics Data System (ADS)

    Connor, Dean M.; Mehrotra, Meenal; LaRue, Amanda C.

    2014-03-01

    Purpose: The purpose of this study is to determine if diffraction enhanced imaging (DEI) can quantify anisotropy in bone microarchitecture. Background: Osteoporosis is characterized by low bone mass and microarchitectural deterioration of bone. A noninvasive tool for measuring the degree of anisotropy (DA) in bone microarchitecture will help clinicians better assess fracture risk in osteoporotic patients. DEI detects small angular deflections in an x-ray beam, and is only sensitive to angular changes in one plane. If the beam is refracted by multiple anisotropic microstructures (e.g. osteocyte lacunae and pores) in bone, the angular spreading can be measured with DEI and differences in the amount of spreading for different bone orientations is indicative of the DA in bone microarchitecture. Method: An x-ray-tube based DEI system was used to collect an array of DEI reflectivity profiles measured through bovine cortical bone samples with the bones oriented with the bone axis in the plane perpendicular to the propagation of the x-ray beam. Micro-CT images of the bones were obtained using a Scanco uCT40 ex vivo scanner, and the DA of the pore structure was quantified using BoneJ. Results: The maximum and minimum measured reflectivity profile widths through bone varied by a factor of two; this suggests that the microarchitecture is preferentially aligned with the bone axis in a 2-to-1 ratio. The DA for the cortical pores was 0.6, which agrees with DEI's anisotropy measure. Conclusions: The preliminary findings of this study suggest that DEI is sensitive to anisotropy in bone microarchitecture.

  11. Cortical Depth Dependence of the Diffusion Anisotropy in the Human Cortical Gray Matter In Vivo

    PubMed Central

    Truong, Trong-Kha; Guidon, Arnaud; Song, Allen W.

    2014-01-01

    Diffusion tensor imaging (DTI) is typically used to study white matter fiber pathways, but may also be valuable to assess the microstructure of cortical gray matter. Although cortical diffusion anisotropy has previously been observed in vivo, its cortical depth dependence has mostly been examined in high-resolution ex vivo studies. This study thus aims to investigate the cortical depth dependence of the diffusion anisotropy in the human cortex in vivo on a clinical 3 T scanner. Specifically, a novel multishot constant-density spiral DTI technique with inherent correction of motion-induced phase errors was used to achieve a high spatial resolution (0.625×0.625×3 mm) and high spatial fidelity with no scan time penalty. The results show: (i) a diffusion anisotropy in the cortical gray matter, with a primarily radial diffusion orientation, as observed in previous ex vivo and in vivo studies, and (ii) a cortical depth dependence of the fractional anisotropy, with consistently higher values in the middle cortical lamina than in the deep and superficial cortical laminae, as observed in previous ex vivo studies. These results, which are consistent across subjects, demonstrate the feasibility of this technique for investigating the cortical depth dependence of the diffusion anisotropy in the human cortex in vivo. PMID:24608869

  12. Cortical depth dependence of the diffusion anisotropy in the human cortical gray matter in vivo.

    PubMed

    Truong, Trong-Kha; Guidon, Arnaud; Song, Allen W

    2014-01-01

    Diffusion tensor imaging (DTI) is typically used to study white matter fiber pathways, but may also be valuable to assess the microstructure of cortical gray matter. Although cortical diffusion anisotropy has previously been observed in vivo, its cortical depth dependence has mostly been examined in high-resolution ex vivo studies. This study thus aims to investigate the cortical depth dependence of the diffusion anisotropy in the human cortex in vivo on a clinical 3 T scanner. Specifically, a novel multishot constant-density spiral DTI technique with inherent correction of motion-induced phase errors was used to achieve a high spatial resolution (0.625 × 0.625 × 3 mm) and high spatial fidelity with no scan time penalty. The results show: (i) a diffusion anisotropy in the cortical gray matter, with a primarily radial diffusion orientation, as observed in previous ex vivo and in vivo studies, and (ii) a cortical depth dependence of the fractional anisotropy, with consistently higher values in the middle cortical lamina than in the deep and superficial cortical laminae, as observed in previous ex vivo studies. These results, which are consistent across subjects, demonstrate the feasibility of this technique for investigating the cortical depth dependence of the diffusion anisotropy in the human cortex in vivo.

  13. Architecture and microstructure of cortical bone in reconstructed canine mandibles after bone transport distraction osteogenesis.

    PubMed

    Zapata, Uriel; Halvachs, Emily K; Dechow, Paul C; Elsalanty, Mohammed E; Opperman, Lynne A

    2011-11-01

    Reconstruction of the canine mandible using bone transport distraction osteogenesis has been shown to be a suitable method for correcting segmental bone defects produced by cancer, gunshots, and trauma. Although the mechanical quality of the new regenerate cortical bone seems to be related to the mineralization process, several questions regarding the microstructural patterns of the new bony tissue remain unanswered. The purpose of this study was to quantify any microstructural differences that may exist between the regenerate and control cortical bone. Five adult American foxhound dogs underwent unilateral bone transport distraction of the mandible to repair bone defects of 30-35 mm. Animals were killed 12 weeks after the beginning of the consolidation period. Fourteen cylindrical cortical samples were extracted from the superior, medial, and inferior aspects of the lingual and buccal plates of the reconstructed aspect of the mandible, and 21 specimens were collected similarly from the contralateral aspect of the mandible. Specimens were evaluated using histomorphometric and micro-computed tomographic techniques to compare their microstructure. Except for differences in haversian canal area, histomorphometric analyses suggested no statistical differences in microstructure between regenerate and control cortical bone. Morphological evaluation suggested a consistent level of anisotropy, possibly related to the distraction vector. After 12 weeks' consolidation, bone created during bone transport distraction osteogenesis was comparable to native bone in microstructure, architecture, and mechanical properties. It is proposed that, after enough time, the properties of the regenerate bone will be identical to that of native bone.

  14. Quantitative Cortical Mapping of Fractional Anisotropy in Developing Rat Brains

    PubMed Central

    Huang, Hao; Yamamoto, Akria; Hossain, Mir Ahamed; Younes, Laurent; Mori, Susumu

    2010-01-01

    Cortical development is associated with a series of events that involve axon and dendrite growth and synaptic formation. Although these developmental processes have been investigated in detail with histology, three-dimensional and quantitative imaging methods for rodent brains may be useful for genetic and pharmacological studies in which cortical developmental abnormalities are suspected. It has been shown that diffusion tensor imaging (DTI) can delineate the columnar organization of the fetal and early neonatal cortex based on a high degree of diffusion anisotropy along the columnar structures. This anisotropy is known to decrease during brain development. In this study, we applied DTI to developing rat brains at five developmental stages, postnatal days 0, 3, 7, 11 and 19, and used diffusion anisotropy as an index to characterize the structural change. Statistical analysis reveals four distinctive cortical areas that demonstrate a characteristic time course of anisotropy loss. This method may provide a means to delineate specific cortical areas and a quantitative method to detect abnormalities in cortical development in rodent pathological models. PMID:18256263

  15. Elastic Properties of Chimpanzee Craniofacial Cortical Bone.

    PubMed

    Gharpure, Poorva; Kontogiorgos, Elias D; Opperman, Lynne A; Ross, Callum F; Strait, David S; Smith, Amanda; Pryor, Leslie C; Wang, Qian; Dechow, Paul C

    2016-12-01

    Relatively few assessments of cranial biomechanics formally take into account variation in the material properties of cranial cortical bone. Our aim was to characterize the elastic properties of chimpanzee craniofacial cortical bone and compare these to the elastic properties of dentate human craniofacial cortical bone. From seven cranial regions, 27 cylindrical samples were harvested from each of five chimpanzee crania. Assuming orthotropy, axes of maximum stiffness in the plane of the cortical plate were derived using modified equations of Hooke's law in a Mathcad program. Consistent orientations among individuals were observed in the zygomatic arch and alveolus. The density of cortical bone showed significant regional variation (P < 0.001). The elastic moduli demonstrated significant differences between sites, and a distinct pattern where E3  > E2  > E1 . Shear moduli were significantly different among regions (P < 0.001). The pattern by which chimpanzee cranial cortical bone varies in elastic properties resembled that seen in humans, perhaps suggesting that the elastic properties of craniofacial bone in fossil hominins can be estimated with at least some degree of confidence. Anat Rec, 299:1718-1733, 2016. © 2016 Wiley Periodicals, Inc.

  16. Role of cortical bone in hip fracture.

    PubMed

    Reeve, Jonathan

    2017-01-01

    In this review, I consider the varied mechanisms in cortical bone that help preserve its integrity and how they deteriorate with aging. Aging affects cortical bone in two ways: extrinsically through its effects on the individual that modify its mechanical loading experience and 'milieu interieur'; and intrinsically through the prolonged cycle of remodelling and renewal extending to an estimated 20 years in the proximal femur. Healthy femoral cortex incorporates multiple mechanisms that help prevent fracture. These have been described at multiple length scales from the individual bone mineral crystal to the scale of the femur itself and appear to operate hierarchically. Each cortical bone fracture begins as a sub-microscopic crack that enlarges under mechanical load, for example, that imposed by a fall. In these conditions, a crack will enlarge explosively unless the cortical bone is intrinsically tough (the opposite of brittle). Toughness leads to microscopic crack deflection and bridging and may be increased by adequate regulation of both mineral crystal size and the heterogeneity of mineral and matrix phases. The role of osteocytes in optimising toughness is beginning to be worked out; but many osteocytes die in situ without triggering bone renewal over a 20-year cycle, with potential for increasing brittleness. Furthermore, the superolateral cortex of the proximal femur thins progressively during life, so increasing the risk of buckling during a fall. Besides preserving or increasing hip BMD, pharmaceutical treatments have class-specific effects on the toughness of cortical bone, although dietary and exercise-based interventions show early promise.

  17. Cortical bone allografting in femoral head necrosis.

    PubMed

    Delloye, C; Cornu, O

    1999-01-01

    Ten femoral heads (six patients) with avascular necrosis were operated on using a fibular allograft. The procedure included core decompression followed by insertion of a cortical bone graft in order to relieve mechanical stresses from the overlying subchondral bone. The presence of the supporting graft should avoid an expected collapse or prevent its worsening if already present. A freeze-dried and processed cortical bone allograft was preferred to an autograft. Weightbearing was normally and fully resumed at the second postoperative month. There were three failures within the first year, four satisfactory results, in which the hip was replaced after 4 years while there are still 3 hips that have been preserved from arthroplasty in young patients after 5 years. The technique is easy and able to substantially delay an arthroplasty in an active patient.

  18. Penetration of cutting tool into cortical bone: experimental and numerical investigation of anisotropic mechanical behaviour.

    PubMed

    Li, Simin; Abdel-Wahab, Adel; Demirci, Emrah; Silberschmidt, Vadim V

    2014-03-21

    An anisotropic mechanical behaviour of cortical bone and its intrinsic hierarchical microstructure act as protective mechanisms to prevent catastrophic failure due to natural loading conditions; however, they increase the extent of complexity of a penetration process in the case of orthopaedic surgery. Experimental results available in literature provide only limited information about processes in the vicinity of a tool-bone interaction zone. Also, available numerical models the bone-cutting process do not account for material anisotropy or the effect of damage mechanisms. In this study, both experimental and numerical studies were conducted to address these issues and to elucidate the effect of anisotropic mechanical behaviour of cortical bone tissue on penetration of a sharp cutting tool. First, a set of tool-penetration experiments was performed in directions parallel and perpendicular to bone axis. Also, these experiments included bone samples cut from four different cortices to evaluate the effect of spatial variability and material anisotropy on the penetration processes. Distinct deformation and damage mechanisms linked to different microstructure orientations were captured using a micro-lens high-speed camera. Then, a novel hybrid FE model employing a smoothed-particle-hydrodynamic domain embedded into a continuum FE one was developed based on the experimental configuration to characterise the anisotropic deformation and damage behaviour of cortical bone under a penetration process. The results of our study revealed a clear anisotropic material behaviour of the studied cortical bone tissue and the influence of the underlying microstructure. The proposed FE model reflected adequately the experimental results and demonstrated the need for the use of the anisotropic and damage material model to analyse cutting of the cortical-bone tissue.

  19. The effect of shockwaves on mature and healing cortical bone.

    PubMed

    Forriol, F; Solchaga, L; Moreno, J L; Canãdell, J

    1994-10-01

    It has been proposed that high energy shockwaves could be used to create microfractures in cortical bone. This quality might be exploited clinically to perform closed osteotomies and promote healing in nonunion (15). However, no study has previously documented the effect of shockwaves on cortical bone "in vivo". We report an investigation designed to demonstrate the effect of shockwaves on mature cortical and healing bone. An osteotomy was performed on the tibiae of 37 lambs; two weeks later the operation site was exposed to shockwaves. Three weeks later the lambs were killed and specimens of the bone examined histologically and radiographically. Shockwaves had no effect on the periosteal surface of mature cortical bone, but on the endosteal surface some new trabecular bone was seen. Healing of bone was delayed by the shockwave therapy. We conclude that there is currently little place for shockwave treatment in clinical orthopaedics.

  20. Impact of lanthanum carbonate on cortical bone in dialysis patients with adynamic bone disease.

    PubMed

    Yajima, Aiji; Inaba, Masaaki; Tominaga, Yoshihiro; Tanaka, Motoko; Otsubo, Shigeru; Nitta, Kosaku; Ito, Akemi; Satoh, Shigeru

    2013-04-01

    Among the most serious problems in patients with chronic kidney disease (CKD) is fragility of cortical bone caused by cortical thinning and increased cortical porosity; the cortical fragility is sometimes irreversible, with fractures generally initiating from cortical bone. Therefore, development of treatments for problems of cortical bone is urgently desired. Cortical bone has the three surfaces, including the periosteal surface, intracortical spaces and endocortical surface. Bone turnover at the endocortical surface and intracortical resorption spaces are increased as compared with that at cancellous surface. Bone growth sometimes depends on apposition at the periosteal surface. We treated hyperphosphatemia in two hemodialysis patients with adynamic bone disease with 750-1500 mg/day of lanthanum carbonate, which is a non-calcium containing phosphate binder; the treatment resulted in a decrease of the serum phosphorus levels (P levels), without significant change of the serum intact parathyroid hormone levels. We now report that treatment of these patients with lanthanum carbonate increased mineralization of the periosteal surface, increased bone mass within the intracortical resorption spaces and increased mineralization of the minimodeling surface at the endocortical surface. In addition, woven bone volume in cortical bone was decreased and mineralization of bone units, namely, osteons, was increased. Although these findings were not observed across all surfaces of the cortical bone in the patients, it is expected that lanthanum carbonate would increase the cortical stability in CKD patients, with consequent reduction in the fracture rate in these patients.

  1. Cement line staining in undecalcified thin sections of cortical bone

    NASA Technical Reports Server (NTRS)

    Bain, S. D.; Impeduglia, T. M.; Rubin, C. T.

    1990-01-01

    A technique for demonstrating cement lines in thin, undecalcified, transverse sections of cortical bone has been developed. Cortical bone samples are processed and embedded undecalcified in methyl methacrylate plastic. After sectioning at 3-5 microns, cross-sections are transferred to a glass slide and flattened for 10 min. Sections of cortical bone are stained for 20 sec free-floating in a fresh solution of 1% toluidine blue dissolved in 0.1% formic acid. The section is dehydrated in t-butyl alcohol, cleared in xylene, and mounted with Eukitt's medium. Reversal lines appear as thin, scalloped, dark blue lines against a light blue matrix, whereas bone formation arrest lines are thicker with a smooth contour. With this technique cellular detail, osteoid differentiation, and fluorochrome labels are retained. Results demonstrate the applicability of a one-step staining method for cement lines which will facilitate the assessment of bone remodeling activity in thin sections of undecalcified cortical bone.

  2. Advances in the fracture mechanics of cortical bone.

    PubMed

    Bonfield, W

    1987-01-01

    As cortical bone is a semi-brittle solid, its fracture is dependent not only on the magnitude of the applied stress, but also on the nature of any intrinsic or introduced cracks. Consequently a variety of fracture mechanics techniques have been utilised to evaluate the fracture toughness of cortical bone, including the single edge notched, centre notched cylindrical and compact tension methods, and values have been established for the critical stress intensity factor (Kc) and the critical strain energy release rate (Gc). The Kc and Gc values obtained depend on the orientation of the cortical bone, as well as on bone density, the velocity of crack propagation and specimen geometry. The significance of these fracture mechanics parameters for cortical bone is critically reviewed.

  3. Periosteal ganglion: a cause of cortical bone erosion.

    PubMed

    McCarthy, E F; Matz, S; Steiner, G C; Dorfman, H D

    1983-01-01

    Three cases of periosteal ganglia of long bones are presented. These lesions are produced by mucoid degeneration and cyst formation of the periosteum to produce external cortical erosion and reactive periosteal new bone. They are not associated with a soft tissue ganglion or an intraosseous lesion. They may radiologically mimic other periosteal lesions or soft tissue neoplasms which erode bone.

  4. The Effects of Obesity on Murine Cortical Bone

    NASA Astrophysics Data System (ADS)

    Martin, Sophi

    This dissertation details the effects of obesity on the mechanical properties and structure of cortical bone. Obesity is associated with greater bone mineral content that might be expected to protect against fracture, which has been observed in adults. Paradoxically however, the incidence of bone fractures has been found to increase in overweight and obese children and adolescents. Femora from adolescent and adult mice fed a high-fat diet are investigated for changes in shape, tissue structure, as well as tissue-level and whole-bone mechanical properties. Results indicate increased bone size, reduced size-independent mechanical properties, but maintained size-dependent mechanical properties. Other changes in cortical bone response to obesity are observed with advancing age. This study indicates that bone quantity and bone quality play important compensatory roles in determining fracture risk, and that fracture risk may not be lessened for adults as previously thought.

  5. Perforations of cortical bone allografts improve their incorporation.

    PubMed

    Delloye, Christian; Simon, Patrick; Nyssen-Behets, Catherine; Banse, Xavier; Bresler, Franck; Schmitt, Daniel

    2002-03-01

    The incorporation of perforated cortical bone allografts was compared with non-perforated allografts. A 5-cm circumferential defect in the middiaphysis at the tibia was created in adult sheep. A frozen tibial allograft was implanted and fixed with a locked nail for 6 months. There was no postoperative immobilization. Group I consisted of eight sheep with non-perforated allografts, whereas Group II was comprised of 10 sheep with perforated allografts. Union was evaluated radiographically, whereas the central part of the allograft had a densitometric evaluation. Creeping substitution was assessed on microradiographs from cross-sections of the central 3 cm of graft by measurement of porosity and percentage of new and old bone area within the confines of the graft. The width of periosteal and endosteal callus also was determined. There was no statistical difference between both groups for the union score and bone density. However, the cortical bone graft porosity and the amount of new bone within the cortical bone differed significantly between the perforated allografts and the non-perforated ones. Periosteal callus was similar in both groups, whereas endosteal callus was significantly more wide and extended in the perforated allografts. Perforation of a cortical bone substantially improved the amount of newly formed bone by the host when compared with a non-perforated bone. The creation of channels seemed to increase the interface between living soft tissues of the host and the allografted bone with a resulting enhanced incorporation.

  6. Prostaglandin E2 Prevents Disuse-Induced Cortical Bone Loss

    NASA Technical Reports Server (NTRS)

    Jee, Webster S. S.; Akamine, T.; Ke, Hua Zhu; Li, Xiao Jian; Tang, L. Y.; Zeng, Q. Q.

    1992-01-01

    The object of this study was to determine whether prostaglandin E2 (PGE2) can prevent disuse (underloaded)-induced cortical bone loss as well as add extra bone to underloaded bones. Thirteen-month-old retired female Sprague-Dawley breeders served as controls or were subjected to simultaneous right hindlimb immobilization by bandaging and daily subcutaneous doses of 0, 1, 3, or 6 mg PGE2/kg/d for two and six weeks. Histomorphometric analyses were performed on double-fluorescent labeled undecalcified tibial shaft sections (proximal to the tibiofibular junction). Disuse-induced cortical bone loss occurred by enlarging the marrow cavity and increasing intracortical porosity. PGE2 treatment of disuse shafts further increased intracortical porosity above that in disuse alone controls. This bone loss was counteracted by enhancement of periosteal and corticoendosteal bone formation. Stimulation of periosteal and corticoendosteal bone formation slightly enlarged the total tissue (cross-sectional) area and inhibited marrow cavity enlargement. These PGE2-induced activities netted the same percentage of cortical bone with a different distribution than the beginning and age related controls. These findings indicate the PGE2-induced increase in bone formation compensated for the disuse and PGE2-induced bone loss, and thus prevented immobilization induced bone loss.

  7. Probiotics protect mice from ovariectomy-induced cortical bone loss.

    PubMed

    Ohlsson, Claes; Engdahl, Cecilia; Fåk, Frida; Andersson, Annica; Windahl, Sara H; Farman, Helen H; Movérare-Skrtic, Sofia; Islander, Ulrika; Sjögren, Klara

    2014-01-01

    The gut microbiota (GM) modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx) results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L) strain, L. paracasei DSM13434 (L. para) or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix) given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh) treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice.

  8. Equine cortical bone exhibits rising R-curve fracture mechanics.

    PubMed

    Malik, C L; Stover, S M; Martin, R B; Gibeling, J C

    2003-02-01

    Previous studies of the fracture properties of cortical bone have suggested that the fracture toughness increases with crack length, which is indicative of rising R-curve behavior. Based on this indirect evidence and the similarity of bone to ceramic matrix composites, we hypothesized that bone would exhibit rising R-curve behavior in the transverse orientation and that the characteristics of the R-curves would be regionally dependent within the cortex due to variations in bone microstructure and toughening mechanisms. To test these hypotheses, we conducted R-curve experiments on specimens from equine third metacarpal bones using standard fracture mechanics testing methods. Compact type specimens from the dorsal and lateral regions in the middle of the diaphysis were oriented for crack propagation transverse to the longitudinal axis of the bone. The test results demonstrate that equine cortical bone exhibits rising R-curve behavior during transverse crack propagation as hypothesized. Statistical analyses of the crack growth initiation toughness, K0, the peak toughness, Kpeak, and the crack extension at peak toughness, deltaa, revealed significant regional differences in these characteristics. Specifically, the lateral cortex displayed higher crack growth initiation and peak toughnesses. The dorsal cortex exhibited greater crack extension at the peak of crack growth resistance. Scanning electron microscopy revealed osteon pullout on fracture surfaces from the dorsal cortex and but not in the lateral cortex. Taken together, the significant differences in R-curves and the SEM fractography indicate that the fracture mechanisms acting in equine cortical bone are regionally dependent.

  9. Disuse exaggerates the detrimental effects of alcohol on cortical bone

    NASA Technical Reports Server (NTRS)

    Hefferan, Theresa E.; Kennedy, Angela M.; Evans, Glenda L.; Turner, Russell T.

    2003-01-01

    BACKGROUND: Alcohol abuse is associated with an increased risk for osteoporosis. However, comorbidity factors may play an important role in the pathogenesis of alcohol-related bone fractures. Suboptimal mechanical loading of the skeleton, an established risk factor for bone loss, may occur in some alcohol abusers due to reduced physical activity, muscle atrophy, or both. The effect of alcohol consumption and reduced physical activity on bone metabolism has not been well studied. The purpose of this study was to determine whether mechanical disuse alters bone metabolism in a rat model for chronic alcohol abuse. METHODS: Alcohol was administered in the diet (35% caloric intake) of 6-month-old male rats for 4 weeks. Rats were hindlimb-unloaded the final 2 weeks of the experiment to prevent dynamic weight bearing. Afterward, cortical bone histomorphometry was evaluated at the tibia-fibula synostosis. RESULTS: At the periosteal surface of the tibial diaphysis, alcohol and hindlimb unloading independently decreased the mineralizing perimeter, mineral apposition rate, and bone formation rate. In addition, alcohol, but not hindlimb unloading, increased endocortical bone resorption. The respective detrimental effects of alcohol and hindlimb unloading to inhibit bone formation were additive; there was no interaction between the two variables. CONCLUSIONS: Reduced weight bearing accentuates the detrimental effects of alcohol on cortical bone in adult male rats by further inhibiting bone formation. This finding suggests that reduced physical activity may be a comorbidity factor for osteoporosis in alcohol abusers.

  10. Cortical bone loss with age in three native American populations.

    PubMed

    Ericksen, M F

    1976-11-01

    Age-related thinning of cortical bone was investigated in archaeological populations of Eskimos, Pueblos, and Arikaras. Medial-lateral cortical thickness was measured on radiographs of humerus and femur, and thickness of the anterior femoral cortex was measured directly on samples taken for histologic study. Maximum length of the bones was used to calculate indices of relative cortical thickness, in order to minimize differences due to body size and build. Bone loss in the humerus begins before middle age in all three populations and, except for Eskimo males, the same is true of the anterior femoral cortex. In general, overall female loss of cortical bone amounts to two or three times that of the males, and in the case of the humerus and the anterior cortex of the femur, this difference is evident by middle age. The weight-bearing femoral medial-lateral cortex shows less sexual difference but has the greatest number of statistically significant differences between populations and the greatest contrast between populations in pattern of loss with age. It appears that of the cortical regions studied this is the area upon which environmental factors have the greatest effect, whereas areas more subject to tensile stress, the humerus and anterior femoral cortex, are less affected by these factors.

  11. Qualitative and quantitative ultrashort-TE MRI of cortical bone

    PubMed Central

    Du, Jiang; Bydder, Graeme M.

    2014-01-01

    Osteoporosis causes over 1.5 million fractures per year, costing about $15 billion annually in the USA. Current guidelines utilize bone mineral density (BMD) to assess fracture risk; however, BMD alone only accounts for 30–50% of fractures. The other two major components of bone, organic matrix and water, contribute significantly to bone mechanical properties, but cannot be assessed with conventional imaging techniques in spite of the fact that they make up about 57% of cortical bone by volume. Conventional clinical MRI usually detects signals from water in tissues without difficulty, but cannot detect the water bound to the organic matrix, or the free water in the microscopic pores of the Haversian and the lacunar-canalicular system of cortical bone, because of their very short apparent transverse relaxation times (T2*). In recent years, a new class of sequences, ultrashort-TE (UTE) sequences, with nominal TEs of less than 100 μs, which are much shorter than the TEs available with conventional sequences, have received increasing interest. These sequences can detect water signals from within cortical bone and provide an opportunity to study disease of this tissue in a new way. This review summarizes the recent developments in qualitative UTE imaging (techniques and contrast mechanisms to produce bone images with high contrast) and quantitative UTE imaging (techniques to quantify the MR properties, including T1, T2* and the magnetization transfer ratio, and tissue properties, including bone perfusion, as well as total, bound and free water content) of cortical bone in vitro and in vivo. The limitations of the current techniques for clinical applications and future directions are also discussed. PMID:23280581

  12. Mammalian cortical bone in tension is non-Haversian

    NASA Astrophysics Data System (ADS)

    Mayya, Ashwij; Banerjee, Anuradha; Rajesh, R.

    2013-08-01

    Cortical bone, found in the central part of long bones like femur, is known to adapt to local mechanical stresses. This adaptation has been linked exclusively with Haversian remodelling involving bone resorption and formation of secondary osteons. Compared to primary/plexiform bone, the Haversian bone has lower stiffness, fatigue strength and fracture toughness, raising the question why nature prefers an adaptation that is detrimental to bone's primary function of bearing mechanical stresses. Here, we show that in the goat femur, Haversian remodelling occurs only at locations of high compressive stresses. At locations corresponding to high tensile stresses, we observe a microstructure that is non-Haversian. Compared with primary/plexiform bone, this microstructure's mineralisation is significantly higher with a distinctly different spatial pattern. Thus, the Haversian structure is an adaptation only to high compressive stresses rendering its inferior tensile properties irrelevant as the regions with high tensile stresses have a non-Haversian, apparently primary microstructure.

  13. Crack growth resistance in cortical bone: concept of microcrack toughening.

    PubMed

    Vashishth, D; Behiri, J C; Bonfield, W

    1997-08-01

    The role of microcracking in cortical bone as a toughening mechanism has been investigated in conjunction with the variation in fracture toughness with crack length. Fracture toughness tests were conducted on miniaturised compact tension specimens made from human and bovine cortical bone and the resultant microstructural damage, present in the form of microcracking on the surface, was analysed around the main propagating crack. It was found that the fracture toughness (Kc) and the cumulative number of microcracks increased linearly with crack extension in human and bovine cortical bone, although both Kc and number of microcracks were considerably higher in the latter case. Based on these results, a mechanism, derived from the resistance (R) curve concept developed for microcracking brittle solids, is proposed to explain the fracture of cortical bone, with microcracking distributed between a frontal process zone and a significant process zone wake. Evidence to support this mechanism is given from the existing bone literature, detailed scanning electron microscopical observations and the distribution of microcracks in the process zone wake.

  14. Bone Density and Cortical Structure after Pediatric Renal Transplantation

    PubMed Central

    Terpstra, Anniek M.; Kalkwarf, Heidi J.; Shults, Justine; Zemel, Babette S.; Wetzsteon, Rachel J.; Foster, Bethany J.; Strife, C. Frederic; Foerster, Debbie L.

    2012-01-01

    The impact of renal transplantation on trabecular and cortical bone mineral density (BMD) and cortical structure is unknown. We obtained quantitative computed tomography scans of the tibia in pediatric renal transplant recipients at transplantation and 3, 6, and 12 months; 58 recipients completed at least two visits. We used more than 700 reference participants to generate Z-scores for trabecular BMD, cortical BMD, section modulus (a summary measure of cortical dimensions and strength), and muscle and fat area. At baseline, compared with reference participants, renal transplant recipients had significantly lower mean section modulus and muscle area; trabecular BMD was significantly greater than reference participants only in transplant recipients younger than 13 years. After transplantation, trabecular BMD decreased significantly in association with greater glucocorticoid exposure. Cortical BMD increased significantly in association with greater glucocorticoid exposure and greater decreases in parathyroid hormone levels. Muscle and fat area both increased significantly, but section modulus did not improve. At 12 months, transplantation associated with significantly lower section modulus and greater fat area compared with reference participants. Muscle area and cortical BMD did not differ significantly between transplant recipients and reference participants. Trabecular BMD was no longer significantly elevated in younger recipients and was low in older recipients. Pediatric renal transplant associated with persistent deficits in section modulus, despite recovery of muscle, and low trabecular BMD in older recipients. Future studies should determine the implications of these data on fracture risk and identify strategies to improve bone density and structure. PMID:22282589

  15. Estimation of the poroelastic parameters of cortical bone.

    PubMed

    Smit, Theo H; Huyghe, Jacques M; Cowin, Stephen C

    2002-06-01

    Cortical bone has two systems of interconnected channels. The largest of these is the vascular porosity consisting of Haversian and Volkmann's canals, with a diameter of about 50 microm, which contains a.o. blood vessels and nerves. The smaller is the system consisting of the canaliculi and lacunae: the canaliculi are at the submicron level and house the protrusions of the osteocytes. When bone is differentially loaded, fluids within the solid matrix sustain a pressure gradient that drives a flow. It is generally assumed that the flow of extracellular fluid around osteocytes plays an important role not only in the nutrition of these cells, but also in the bone's mechanosensory system. The interaction between the deformation of the bone matrix and the flow of fluid can be modelled using Biot's theory of poroelasticity. However, due to the inhomogeneity of the bone matrix and the scale of the porosities, it is not possible to experimentally determine all the parameters that are needed for numerical implementation. The purpose of this paper is to derive these parameters using composite modelling and experimental data from literature. A full set of constants is estimated for a linear isotropic description of cortical bone as a two-level porous medium. Bone, however, has a wide variety of mechanical and structural properties; with the theoretical relationships described in this note, poroelastic parameters can be derived for other bone types using their specific experimental data sets.

  16. Cavitary osteomyelitis treated by fragmentary cortical bone transportation.

    PubMed

    Aronson, J

    1992-07-01

    Fragmentary cortical bone transportation can be used to fill large gaps in chronic cavitary osteomyelitis when standard techniques have failed. A low-energy corticotomy can create a loose fragment of cortex with periosteal attachments and surface blood supply still intact. This "vital" fragment can be gradually pulled across a defect within a bone to restore the integrity of the bone segment by distraction osteogenesis. The biologic principles for successful distraction osteogenesis by this innovative technique are illustrated in a 41-year-old man with chronic cavitary (150 cc) (four years) osteomyelitis refractory to multiple debridements, Papineau grafting, gentamicin beads, and tricalcium phosphate.

  17. Re-evaluating the toughness of human cortical bone.

    PubMed

    Yang, Q D; Cox, B N; Nalla, R K; Ritchie, R O

    2006-06-01

    Data for fracture in human humeral cortical bone are re-analyzed to assess the validity for this material of linear-elastic fracture mechanics (LEFM), which is the standard method of analyzing toughness and one basis for analyzing clinical data relating to bone quality. A nonlinear fracture model, which is based on representing the damage zone in the bone by a cohesive model, is calibrated against a number of sets of test data for normal (not diseased or aged) human cortical bone taken from cadavers. The data consist of load vs. load-point displacement measurements from standard compact-tension fracture tests. Conventional LEFM is unable to account for the shape of the load-displacement curves, but the nonlinear model overcomes this deficiency. Calibration of the nonlinear model against one data curve leads to predictions of the peak load and the displacement to peak load for two other data curves that are, for this limited test set, more accurate than those made using LEFM. Furthermore, prior observations of damage mechanisms in bone are incompatible with the modeling assumption of LEFM that all nonlinearity is confined to a zone much smaller than the specimen and the crack length. The predictions of the cohesive model and the prior observations concur that the length of the nonlinear zone in human cortical bone varies in the range 3-10 mm, which is comparable to or larger than naturally-occurring bones and the specimens used to test them. We infer that LEFM is not an accurate model for cortical bone. The fracture toughness of bone deduced via LEFM from test data will not generally be a material constant, but will take different values for different crack lengths and test configurations. The accuracy of using LEFM or single-parameter fracture toughness for analyzing the significance of data from clinical studies is called into question. The nonlinear cohesive zone model is proposed to be a more accurate model of bone and the traction-displacement or cohesive law

  18. In Vitro Fracture of Human Cortical Bone: Local Fracture Criteria and Toughening Mechanisms

    SciTech Connect

    Nalla, R; Stolken, J; Kinney, J; Ritchie, R

    2004-08-18

    A micro-mechanistic understanding of bone fracture that encompasses how cracks interact with the underlying microstructure and defines their local failure mode is lacking, despite extensive research on the response of bone to a variety of factors like aging, loading, and/or disease. Micro-mechanical models for fracture incorporating such local failure criteria have been widely developed for metallic and ceramic materials systems; however, few such deliberations have been undertaken for the fracture of bone. In fact, although the fracture event in mineralized tissues such as bone is commonly believed to be locally strain controlled, until recently there has been little experimental evidence to support this widely held belief. In the present study, a series of in vitro experiments involving a double-notch bend test geometry are performed in order to shed further light on the nature of the local cracking events that precede catastrophic fracture in bone and to define their relationship to the microstructure. Specifically, crack-microstructure interactions are examined to determine the salient toughening mechanisms in human cortical bone and to characterize how these may affect the anisotropy in fracture properties. Based on preliminary micro-mechanical models of these processes, in particular crack deflection and uncracked ligament bridging, the relative importance of these toughening mechanisms is established.

  19. Canine cortical bone autograft remodeling in two simultaneous skeletal sites.

    PubMed

    Delloye, C; Coutelier, L; Vincent, A; d'Hemricourt, J; Bourgois, R

    1986-01-01

    The morphological and physical aspects of cortical bone autografts implanted in dogs for 1-9 months in two differently located skeletal defects are reported with a twofold aim: to provide a reference system for further comparison with various allografts and to delineate a general pattern of cortical bone graft healing. A 3-cm osteoperiosteal gap was created in the diaphyseal segment of the ulna and fibula of mature dogs. The grafts, freed from periosteum and bone marrow, were then inverted and replaced for the autografts in the left limb bone without internal fixation or external splints. On the right side, different allografts were tested. A group of three animals also had an unfilled segmental resection on the right as control. Dogs were observed for 1, 2, 3, 6, and 9 months and were able to bear weight within 3 days. Twenty-eight ulnae and 27 fibulae were available for this autograft study. Fluorochromes were injected at mid-term and at the end of the observation. All the grafts were assessed morphologically by cross-section microradiographs and ultraviolet light microscopy, and a morphometric analysis for porosity and fluorescence was done. To evaluate the physical aspects of graft healing, the recovered ulnar autografts, when available, were submitted to photon absorptiometry and to torsional loading. Morphologically, resorption was found to invade the cortical bone graft transversely through radial tunnels, and in addition to the host-bone-graft junction, the entire transplant surface provided another way for revascularization. The highest porosity level was achieved 2 months after surgery for both ulna and fibula, while new bone formation, as assessed by fluorochromes, was most important at 3 months. At 9 months, porosity remained above the normal range as determined in a set of five nongrafted dogs. While the lack of correlation for porosity between the two grafts suggests that local factors are more important in graft resorption, the observed correlation

  20. Evaluation of trabecular bone patterns on dental radiographic images: influence of cortical bone

    NASA Astrophysics Data System (ADS)

    Amouriq, Yves; Evenou, Pierre; Arlicot, Aurore; Normand, Nicolas; Layrolle, Pierre; Weiss, Pierre; Guédon, Jean-Pierre

    2010-03-01

    For some authors trabecular bone is highly visible in intraoral radiographs. For other authors, the observed intrabony trabecular pattern is a representation of only the endosteal surface of cortical bone, not of intermedullary striae. The purpose of this preliminary study was to investigate the true anatomical structures that are visible in routine dental radiographs and classically denoted trabecular bone. This is a major point for bone texture analysis on radiographs. Computed radiography (CR) images of dog mandible section in molar region were compared with simulations calculated from high-resolution micro-CT volumes. Calculated simulations were obtained using the Mojette Transform. By digitally editing the CT volume, the simulations were separated into trabecular and cortical components into a region of interest. Different images were compared and correlated, some bone micro-architecture parameters calculated. A high correlation was found between computed radiographs and calculated simulations from micro-CT. The Mojette transform was successful to obtain high quality images. Cortical bone did not contribute to change in a major way simulated images. These first results imply that intrabony trabecular pattern observed on radiographs can not only be a representation of the cortical bone endosteal surface and that trabecular bone is highly visible in intraoral radiographs.

  1. Integration of dense HA rods into cortical bone.

    PubMed

    Benhayoune, H; Jallot, E; Laquerriere, P; Balossier, G; Bonhomme, P; Frayssinet, P

    2000-02-01

    HA ceramics are daily used in human surgery for bone healing partly due to their ability to integrate into bone. They are generally used under a macroporous form. The behaviour of dense HA after implantation is not so well known. We implanted within cortical sheep femurs dense pure HA-ceramics cylinders for periods from 2 weeks to 18 months. The samples were then sectioned and examined using back-scattered and secondary SEM and the interface was analysed using EDS. Histomorphometry measurement was also performed using an image analysis device coupled to a light microscope. It appeared that the cylinders were in direct contact with immature bone after three weeks. The bone maturated within three months. The implant surface showed moderate signs of resorption and some grains were released from the surface. The resorption zone was only a few microm thick after 18 months. The bulk ceramic contained default zones of increased porosity. They can constitute fragile zone when located close to the surface in which the resorption rate is increased. We conclude that dense pure HA is poorly degraded when implanted in cortical bone. Degradation depends on the defaults found on the ceramic structure and the remodelling of bone surrounding the material.

  2. Cortical bone fracture analysis using XFEM - case study.

    PubMed

    Idkaidek, Ashraf; Jasiuk, Iwona

    2016-06-11

    We aim to achieve an accurate simulation of human cortical bone fracture using the extended finite element method within a commercial finite element software abaqus. A two-dimensional unit cell model of cortical bone is built based on a microscopy image of the mid-diaphysis of tibia of a 70-year-old human male donor. Each phase of this model, an interstitial bone, a cement line, and an osteon, are considered linear elastic and isotropic with material properties obtained by nanoindentation, taken from literature. The effect of using fracture analysis methods (cohesive segment approach versus linear elastic fracture mechanics approach), finite element type, and boundary conditions (traction, displacement, and mixed) on cortical bone crack initiation and propagation are studied. In this study cohesive segment damage evolution for a traction separation law based on energy and displacement is used. In addition, effects of the increment size and mesh density on analysis results are investigated. We find that both cohesive segment and linear elastic fracture mechanics approaches within the extended finite element method can effectively simulate cortical bone fracture. Mesh density and simulation increment size can influence analysis results when employing either approach, and using finer mesh and/or smaller increment size does not always provide more accurate results. Both approaches provide close but not identical results, and crack propagation speed is found to be slower when using the cohesive segment approach. Also, using reduced integration elements along with the cohesive segment approach decreases crack propagation speed compared with using full integration elements. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Heat accumulation during sequential cortical bone drilling.

    PubMed

    Palmisano, Andrew C; Tai, Bruce L; Belmont, Barry; Irwin, Todd A; Shih, Albert; Holmes, James R

    2016-03-01

    Significant research exists regarding heat production during single-hole bone drilling. No published data exist regarding repetitive sequential drilling. This study elucidates the phenomenon of heat accumulation for sequential drilling with both Kirschner wires (K wires) and standard two-flute twist drills. It was hypothesized that cumulative heat would result in a higher temperature with each subsequent drill pass. Nine holes in a 3 × 3 array were drilled sequentially on moistened cadaveric tibia bone kept at body temperature (about 37 °C). Four thermocouples were placed at the center of four adjacent holes and 2 mm below the surface. A battery-driven hand drill guided by a servo-controlled motion system was used. Six samples were drilled with each tool (2.0 mm K wire and 2.0 and 2.5 mm standard drills). K wire drilling increased temperature from 5 °C at the first hole to 20 °C at holes 6 through 9. A similar trend was found in standard drills with less significant increments. The maximum temperatures of both tools increased from <0.5 °C to nearly 13 °C. The difference between drill sizes was found to be insignificant (P > 0.05). In conclusion, heat accumulated during sequential drilling, with size difference being insignificant. K wire produced more heat than its twist-drill counterparts. This study has demonstrated the heat accumulation phenomenon and its significant effect on temperature. Maximizing the drilling field and reducing the number of drill passes may decrease bone injury.

  4. Connection between elastic and electrical properties of cortical bone.

    PubMed

    Gao, X; Sevostianov, I

    2016-03-21

    The paper focuses on the connection between elastic and electrical properties of cortical bone. Both these properties are governed by microstructure that consists of several pore systems filled with mechanically soft and electrically conductive tissue. Microstructural changes induced by aging, various diseases, microgravity conditions etc. lead to variation in both properties. The paper address the problem of evaluation of the changes in mechanical performance (decrease in Young׳s moduli) via monitoring electrical conductivity. The theoretical results are verified experimentally.

  5. Bone regenerate formation in cortical bone during distraction lengthening. An experimental study.

    PubMed

    Delloye, C; Delefortrie, G; Coutelier, L; Vincent, A

    1990-01-01

    The aim of this study was to delineate the pattern of bone regeneration from cortical bone segments during distraction lengthening. The lengthening procedure was applied for various periods through the Ilizarov system on the forearms of mature dogs. Bone was sectioned either by corticotomy, preserving the nutrient artery integrity, or by osteotomy. When an osteotomy was performed, the marrow cavity was in some cases plugged with either resorbable bone wax or nonresorbable material. Under distraction, both periosteal and medullary callus on either side of the gap gave rise to new bone trabeculae. The trabeculae on either side were oriented along the direction of distraction and progressively approached one another. This striated callus emerging from both sides was the most characteristic pattern of bone regeneration subsequent to distraction lengthening. Fusion was achieved approximately four weeks after the end of the lengthening period. Most of the new bone was formed by membranous ossification; some cartilaginous nodules developed. Corticalization of the bone trabeculae that had begun at three months was not fully achieved at five months after the lengthening period. There were no differences found in the pattern of bone healing and the amount of newly formed bone after corticotomy or osteotomy with or without resorbable bone wax plugging.

  6. Photoacoustic FTIR spectroscopic study of undisturbed human cortical bone

    NASA Astrophysics Data System (ADS)

    Gu, Chunju; Katti, Dinesh R.; Katti, Kalpana S.

    2013-02-01

    Chemical pretreatment has been the prevailing sample preparation procedure for infrared (IR) spectroscopic studies on bone. However, experiments have indicated that chemical pretreatment can potentially affect the interactions between the components. Typically the IR techniques have involved transmission experiments. Here we report experimental studies using photoacoustic Fourier transform infrared spectroscopy (PA-FTIR). As a nondestructive technique, PA-FTIR can detect absorbance spectrum from a sample at controllable sampling depth and with little or no sample preparation. Additionally, the coupling inert gas, helium, which is utilized in the PA-FTIR system, can inhibit bacteria growth of bone by displacing oxygen. Therefore, we used this technique to study the undisturbed human cortical bone. It is found that photoacoustic mode (linear-scan, LS-PA-FTIR) can obtain basically similar spectra of bone as compared to the traditional transmission mode, but it seems more sensitive to amide III and ν2 carbonate bands. The ν3 phosphate band is indicative of detailed mineral structure and symmetry of native bone. The PA-FTIR depth profiling experiments on human cortical bone also indicate the influence of water on OH band and the cutting effects on amide I and mineral bands. Our results indicate that phosphate ion geometry appears less symmetric in its undisturbed state as detected by the PA-FTIR as compared to higher symmetry observed using transmission techniques on disturbed samples. Moreover, the PA-FTIR spectra indicate a band at 1747 cm-1 possibly resulting from Cdbnd O stretching of lipids, cholesterol esters, and triglycerides from the arteries. Comparison of the spectra in transverse and longitudinal cross-sections demonstrates that, the surface area of the longitudinal section bone appears to have more organic matrix exposed and with higher mineral stoichiometry.

  7. [Fracture toughness of cortical bone in tension, shear, and tear--a comparison of longitudinal and transverse fracture].

    PubMed

    Feng, Z

    1997-09-01

    The fracture toughness at crack initiation was determined for bovine cortical bone under tension (mode I), shear (mode II), and tear (mode III). A total of 130 compact tension specimens, compact shear specimens and triple pantleg specimens were used for the measurement of fracture toughness under tension, shear, and tear, respectively. Multiple-sample compliance method was utilized to measure the critical strain energy release rate (Gc) at the a/W = 0.55 (crack length, a, to specimen width, W, ratio). The critical stress intensity factor (Kc) was also calculated from the critical loading (PQ) of the specimens at the a/W = 0.55. The effect of the anisotropy of bone on its resistance to crack initiation under shear and tear loading was investigated as well. The fracture toughness of bone with precrack orientations parallel(designed as longitudinal fracture) to and that with precrack orientations normal (designed as transverse fracture) to the longitudinal axis of bone were compared. In longitudinal fracture, the critical strain energy release rates(Gc) of cortical bone under tension, shear, and tear were 644 +/- 102, 2430 +/- 836, and 1723 +/- 486 N/m, respectively. In transverse fracture, the critical strain energy release rates(Gc) of cortical bone under tesion, shear, and tear were 1374 +/- 183, 4710 +/- 1284, and 4016 +/- 948 N/m, respectively. An analysis of variance demonstrated that the crack initiation fracture toughness of bone under shear and tear loading is significantly greater than that under tensile loading in both longitudinal and transverse fracture. Our results also suggest that cortical bone has been "designed" to prevent crack initiation in transverse fracture under tension, shear, and tesar.

  8. Cancellous and cortical bone imaging by reflected tomography.

    PubMed

    Lasaygues, P; Lefebvre, J P

    2001-01-01

    This paper deals with the inverse scattering problem observed when ultrasonic waves are used to analyze biological media. The objective is to image cancellous and cortical bone by ultrasonic reflected tomography (URT). Because strong contrast and high absorbance bodies such as bones cannot be imaged at usual ultrasonic high frequencies (> 1 MHz), we adapted for low-frequency URT (< 1 MHz) our tomographic set-up and reconstruction and acquisition tools, previously developed for weakly scattered media. Indeed, when the frequency of the transducer decreases, the penetration length of the wave increases, which unfortunately makes resolution poor, inappropriate for bone imagery. To improve resolution, we extend the generalized inversion in the complementary bandwidth of the electro-acoustic set-up (Papoulis deconvolution). This resolution enhancement for human porous vertebrae and human and animal femur showed that high-resolution images can be obtained with low-frequency URT.

  9. Inhibition of cortical and trabecular bone formation in the long bones of immobilized monkeys

    NASA Technical Reports Server (NTRS)

    Wronski, T. J.; Morey, E. R.

    1983-01-01

    Tetracycline derivatives are administered on three separate occasions to label the sites of bone formation. Determinations are made of the tetracycline-labeling frequency and mineral apposition rate of osteons and trabecular bone surfaces in the humerus and femur. The inhibition of bone formation induced by immobilization is found to be more pronounced in trabecular bone. The immobilized monkeys exhibit a moderate, but statistically nonsignificant, reduction in the percentage of osteons forming bone. Conversely, the dramatic decline in the percentage of trabecular surfaces undergoing bone formation in the monkeys is found to be highly significant. The diminished rate of mineral apposition in osteons is seen as suggesting that osteoblastic activity is impaired in cortical bone during immobilization.

  10. WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk.

    PubMed

    Zheng, Hou-Feng; Tobias, Jon H; Duncan, Emma; Evans, David M; Eriksson, Joel; Paternoster, Lavinia; Yerges-Armstrong, Laura M; Lehtimäki, Terho; Bergström, Ulrica; Kähönen, Mika; Leo, Paul J; Raitakari, Olli; Laaksonen, Marika; Nicholson, Geoffrey C; Viikari, Jorma; Ladouceur, Martin; Lyytikäinen, Leo-Pekka; Medina-Gomez, Carolina; Rivadeneira, Fernando; Prince, Richard L; Sievanen, Harri; Leslie, William D; Mellström, Dan; Eisman, John A; Movérare-Skrtic, Sofia; Goltzman, David; Hanley, David A; Jones, Graeme; St Pourcain, Beate; Xiao, Yongjun; Timpson, Nicholas J; Smith, George Davey; Reid, Ian R; Ring, Susan M; Sambrook, Philip N; Karlsson, Magnus; Dennison, Elaine M; Kemp, John P; Danoy, Patrick; Sayers, Adrian; Wilson, Scott G; Nethander, Maria; McCloskey, Eugene; Vandenput, Liesbeth; Eastell, Richard; Liu, Jeff; Spector, Tim; Mitchell, Braxton D; Streeten, Elizabeth A; Brommage, Robert; Pettersson-Kymmer, Ulrika; Brown, Matthew A; Ohlsson, Claes; Richards, J Brent; Lorentzon, Mattias

    2012-07-01

    We aimed to identify genetic variants associated with cortical bone thickness (CBT) and bone mineral density (BMD) by performing two separate genome-wide association study (GWAS) meta-analyses for CBT in 3 cohorts comprising 5,878 European subjects and for BMD in 5 cohorts comprising 5,672 individuals. We then assessed selected single-nucleotide polymorphisms (SNPs) for osteoporotic fracture in 2,023 cases and 3,740 controls. Association with CBT and forearm BMD was tested for ∼2.5 million SNPs in each cohort separately, and results were meta-analyzed using fixed effect meta-analysis. We identified a missense SNP (Thr>Ile; rs2707466) located in the WNT16 gene (7q31), associated with CBT (effect size of -0.11 standard deviations [SD] per C allele, P = 6.2 × 10(-9)). This SNP, as well as another nonsynonymous SNP rs2908004 (Gly>Arg), also had genome-wide significant association with forearm BMD (-0.14 SD per C allele, P = 2.3 × 10(-12), and -0.16 SD per G allele, P = 1.2 × 10(-15), respectively). Four genome-wide significant SNPs arising from BMD meta-analysis were tested for association with forearm fracture. SNP rs7776725 in FAM3C, a gene adjacent to WNT16, was associated with a genome-wide significant increased risk of forearm fracture (OR = 1.33, P = 7.3 × 10(-9)), with genome-wide suggestive signals from the two missense variants in WNT16 (rs2908004: OR = 1.22, P = 4.9 × 10(-6) and rs2707466: OR = 1.22, P = 7.2 × 10(-6)). We next generated a homozygous mouse with targeted disruption of Wnt16. Female Wnt16(-/-) mice had 27% (P<0.001) thinner cortical bones at the femur midshaft, and bone strength measures were reduced between 43%-61% (6.5 × 10(-13)bone strength, and risk of fracture.

  11. Experimental analysis of drilling process in cortical bone.

    PubMed

    Wang, Wendong; Shi, Yikai; Yang, Ning; Yuan, Xiaoqing

    2014-02-01

    Bone drilling is an essential part in orthopaedics, traumatology and bone biopsy. Prediction and control of drilling forces and torque are critical to the success of operations involving bone drilling. This paper studied the drilling force, torque and drilling process with automatic and manual drill penetrating into bovine cortical bone. The tests were performed on a drilling system which is used to drill and measure forces and torque during drilling. The effects of drilling speed, feed rate and drill bit diameter on force and torque were discussed separately. The experimental results were proven to be in accordance with the mathematic expressions introduced in this paper. The automatic drilling saved drilling time by 30-60% in the tested range and created less vibration, compared to manual drilling. The deviation between maximum and average force of the automatic drilling was 5N but 25N for manual drilling. To conclude, using the automatic method has significant advantages in control drilling force, torque and drilling process in bone drilling.

  12. Multiscale and multimodality computed tomography for cortical bone analysis

    NASA Astrophysics Data System (ADS)

    Ostertag, A.; Peyrin, F.; Gouttenoire, P. J.; Laredo, J. D.; DeVernejoul, M. C.; Cohen Solal, M.; Chappard, C.

    2016-12-01

    In clinical studies, high resolution peripheral quantitative computed tomography (HR-pQCT) is used to separately evaluate cortical bone and trabecular bone with an isotropic voxel of 82 µm3, and typical cortical parameters are cortical density (D.comp), thickness (Ct.Th), and porosity (Ct.Po). In vitro, micro-computed tomography (micro-CT) is used to explore the internal cortical bone micro-structure with isotropic voxels and high resolution synchrotron radiation (SR); micro-CT is considered the ‘gold standard’. In 16 tibias and 8 femurs, HR-pQCT measurements were compared to conventional micro-CT measurements. To test modality effects, conventional micro-CT measurements were compared to SR micro-CT measurements at 7.5 µm3 SR micro-CT measurements were also tested at different voxel sizes for the femurs, specifically, 7.5 µm3 versus 2.8 µm3. D.comp (r  =  -0.88, p  <  10-3) was the parameter best correlated with porosity (Po.V/TV). The correlation was not affected by the removal of pores under 130 µm. Ct.Th was also significantly highly correlated (r  =  -0.89 p  <  10-3), while Ct.Po was correlated with its counterpart Po.V/TV (r  =  0.74, p  <  10-3). From SR micro-CT and conventional micro-CT at 7.5 µm3 in matching areas, Po.V/TV and pore diameter were underestimated in conventional micro-CT with mean  ±  standard deviation (SD) biases of  -2.5  ±  1.9% and  -0.08  ±  0.08 mm, respectively. In contrast, pore number (Po.N) and pore separation (Po.Sp) were overestimated with mean  ±  SD biases of  +0.03  ±  0.04 mm-1 and  +0.02  ±  0.04 mm, respectively. The results from the tibia and femur were similar when the results of SR micro-CT at 7.5 µm3 and 2.8 µm3 were compared. Po.V/TV, specific surface of pores (Po.S/Po.V), and Po.N were underestimated with mean biases of  -1.7  ±  0.9%, -4.6  ±  4.4 mm-1, and

  13. Two-wave behavior under various conditions of transition area from cancellous bone to cortical bone.

    PubMed

    Nagatani, Yoshiki; Mizuno, Katsunori; Matsukawa, Mami

    2014-07-01

    The two-wave phenomenon, the wave separation of a single ultrasonic pulse in cancellous bone, is expected to be a useful tool for the diagnosis of osteoporosis. However, because actual bone has a complicated structure, precise studies on the effect of transition conditions between cortical and cancellous parts are required. This study investigated how the transition condition influenced the two-wave generation using three-dimensional X-ray CT images of an equine radius and a three-dimensional simulation technique. As a result, any changes in the boundary between cortical part and trabecular part, which gives the actual complex structure of bone, did not eliminate the generation of either the primary wave or the secondary wave at least in the condition of clear trabecular alignment. The results led us to the possibility of using the two-wave phenomenon in a diagnostic system for osteoporosis in cases of a complex boundary.

  14. Osteoprogenitor cells from bone marrow and cortical bone: understanding how the environment affects their fate.

    PubMed

    Corradetti, Bruna; Taraballi, Francesca; Powell, Sebastian; Sung, David; Minardi, Silvia; Ferrari, Mauro; Weiner, Bradley K; Tasciotti, Ennio

    2015-05-01

    Bone is a dynamic organ where skeletal progenitors and hematopoietic cells share and compete for space. Presumptive mesenchymal stem cells (MSC) have been identified and harvested from the bone marrow (BM-MSC) and cortical bone fragments (CBF-MSC). In this study, we demonstrate that despite the cells sharing a common ancestor, the differences in the structural properties of the resident tissues affect cell behavior and prime them to react differently to stimuli. Similarly to the bone marrow, the cortical portion of the bone contains a unique subset of cells that stains positively for the common MSC-associated markers. These cells display different multipotent differentiation capability, clonogenic expansion, and immunosuppressive potential. In particular, when compared with BM-MSC, CBF-MSC are bigger in size, show a lower proliferation rate at early passages, have a greater commitment toward the osteogenic lineage, constitutively produce nitric oxide as a mediator for bone remodeling, and more readily respond to proinflammatory cytokines. Our data suggest that the effect of the tissue's microenvironment makes the CBF-MSC a superior candidate in the development of new strategies for bone repair.

  15. Simulation study of axial ultrasonic wave propagation in heterogeneous bovine cortical bone.

    PubMed

    Hata, Toshiho; Nagatani, Yoshiki; Takano, Koki; Matsukawa, Mami

    2016-11-01

    The effect of the heterogeneity of the long cortical bone is an important factor when applying the axial transmission technique. In this study, the axial longitudinal wave velocity distributions in specimens from the mid-shaft of a bovine femur were measured, in the MHz range. Bilinear interpolation and the piecewise cubic Hermite interpolating polynomial method were used to construct three-dimensional (3D) axial velocity models with a resolution of 40 μm. By assuming the uniaxial anisotropy of the bone and using the results of previous experimental studies [Yamato, Matsukawa, Yanagitani, Yamazaki, Mizukawa, and Nagano (2008b). Calcified Tissue Int. 82, 162-169; Nakatsuji, Yamamoto, Suga, Yanagitani, Matsukawa, Yamazaki, and Matsuyama (2011). Jpn. J. Appl. Phys. 50, 07HF18], the distributions of all elastic moduli were estimated to obtain a 3D heterogeneous bone model and a uniform model. In the heterogeneous model, moduli at the surface were smaller than those inside the model. The elastic finite-difference time-domain method was used to simulate axial ultrasonic wave propagation in these models. In the heterogeneous model, the wavefront of the first arriving signal (FAS) was dependent on the heterogeneity, and the FAS velocity depended on the measured position. These phenomena were not observed in the uniform model.

  16. Midline Lumbar Fusion with Cortical Bone Trajectory Screw

    PubMed Central

    MIZUNO, Masaki; KURAISHI, Keita; UMEDA, Yasuyuki; SANO, Takanori; TSUJI, Masanori; SUZUKI, Hidenori

    2014-01-01

    A novel cortical bone trajectory (CBT) screw technique provides an alternative fixation technique for lumbar spine. Trajectory of CBT screw creates a caudo-cephalad path in sagittal plane and a medio-lateral path in axial plane, and engages cortical bone in the pedicle. The theoretical advantage is that it provides enhanced screw grip and interface strength. Midline lumbar fusion (MIDLF) is composed of posterior mid-line approach, microsurgical laminectomy, and CBT screw fixation. We adopted the MIDLF technique for lumbar spondylolisthesis. Advantages of this technique include that decompression and fusion are available in the same field, and it minimizes approach-related damages. To determine whether MIDLF with CBT screw is as effective as traditional approach and it is minimum invasive technique, we studied the clinical and radiological outcomes of MIDLF. Our results indicate that MIDLF is effective and minimum invasive technique. Evidence of effectiveness of MIDLF is that patients had good recovery score, and that CBT screw technique was safety in clinical and stable in radiological. MIDLF with CBT screw provides the surgeon with additional options for fixation. This technique is most likely to be useful for treating lumbar spondylolisthesis in combination with midline decompression and insertion of an interbody graft, such as the transforaminal lumbar interbody fusion or posterior lumbar interbody fusion techniques. PMID:25169139

  17. Cortical bone development under the growth plate is regulated by mechanical load transfer.

    PubMed

    Tanck, E; Hannink, G; Ruimerman, R; Buma, P; Burger, E H; Huiskes, R

    2006-01-01

    Longitudinal growth of long bones takes place at the growth plates. The growth plate produces new bone trabeculae, which are later resorbed or merged into the cortical shell. This process implies transition of trabecular metaphyseal sections into diaphyseal sections. We hypothesize that the development of cortical bone is governed by mechanical stimuli. We also hypothesize that trabecular and cortical bone share the same regulatory mechanisms for adaptation to mechanical loads. To test these hypotheses, we monitored the development of the tibial cortex in growing pigs, using micro-computer tomography and histology. We then tested the concept that regulatory mechanisms for trabecular bone adaptation can also explain cortical bone development using our mechanical stimulation theory, which could explain trabecular bone (re)modelling. The main results showed that, from the growth plate towards the diaphysis, the pores of the trabecular structure were gradually filled in with bone, which resulted in increased density and cortical bone. The computer model largely predicted this morphological development. We conclude that merging of metaphyseal trabeculae into cortex is likely to be governed by mechanical stimuli. Furthermore, cortex development of growing long bones can be explained as a form of trabecular bone adaptation, without the need for different regulatory mechanisms for cortical and trabecular bone.

  18. Aging and Fracture of Human Cortical Bone and Tooth Dentin

    SciTech Connect

    Ager, Joel; Koester, Kurt J.; Ager III, Joel W.; Ritchie, Robert O.

    2008-05-07

    Mineralized tissues, such as bone and tooth dentin, serve as structural materials in the human body and, as such, have evolved to resist fracture. In assessing their quantitative fracture resistance or toughness, it is important to distinguish between intrinsic toughening mechanisms which function ahead of the crack tip, such as plasticity in metals, and extrinsic mechanisms which function primarily behind the tip, such as crack bridging in ceramics. Bone and dentin derive their resistance to fracture principally from extrinsic toughening mechanisms which have their origins in the hierarchical microstructure of these mineralized tissues. Experimentally, quantification of these toughening mechanisms requires a crack-growth resistance approach, which can be achieved by measuring the crack-driving force, e.g., the stress intensity, as a function of crack extension ("R-curve approach"). Here this methodology is used to study of the effect of aging on the fracture properties of human cortical bone and human dentin in order to discern the microstructural origins of toughness in these materials.

  19. Aging and fracture of human cortical bone and tooth dentin

    NASA Astrophysics Data System (ADS)

    Koester, Kurt J.; Ager, Joel W.; Ritchie, Robert O.

    2008-06-01

    Mineralized tissues, such as bone and tooth dentin, serve as structural materials in the human body and, as such, have evolved to resist fracture. In assessing their quantitative fracture resistance or toughness, it is important to distinguish between intrinsic toughening mechanisms, which function ahead of the crack tip, such as plasticity in metals, and extrinsic mechanisms, which function primarily behind the tip, such as crack bridging in ceramics. Bone and dentin derive their resistance to fracture principally from extrinsic toughening mechanisms, which have their origins in the hierarchical microstructure of these mineralized tissues. Experimentally, quantification of these toughening mechanisms requires a crack-growth resistance approach, which can be achieved by measuring the crack-driving force (e.g., the stress intensity) as a function of crack extension (“R-curve approach”). Here this methodology is used to study the effect of aging on the fracture properties of human cortical bone and human dentin in order to discern the microstructural origins of toughness in these materials.

  20. Long bone histology of the subterranean rodent Bathyergus suillus (Bathyergidae): ontogenetic pattern of cortical bone thickening.

    PubMed

    Montoya-Sanhueza, Germán; Chinsamy, Anusuya

    2017-02-01

    Patterns of bone development in mammals are best known from terrestrial and cursorial groups, but there is a considerable gap in our understanding of how specializations for life underground affect bone growth and development. Likewise, studies of bone microstructure in wild populations are still scarce, and they often include few individuals and tend to be focused on adults. For these reasons, the processes generating bone microstructural variation at intra- and interspecific levels are not fully understood. This study comprehensively examines the bone microstructure of an extant population of Cape dune molerats, Bathyergus suillus (Bathyergidae), the largest subterranean mammal endemic to the Western Cape of South Africa. The aim of this study is to investigate the postnatal bone growth of B. suillus using undecalcified histological sections (n = 197) of the femur, humerus, tibia-fibula, ulna and radius, including males and females belonging to different ontogenetic and reproductive stages (n = 42). Qualitative histological features demonstrate a wide histodiversity with thickening of the cortex mainly resulting from endosteal and periosteal bone depositions, whilst there is scarce endosteal resorption and remodeling throughout ontogeny. This imbalanced bone modeling allows the tissues deposited during ontogeny to remain relatively intact, thus preserving an excellent record of growth. The distribution of the different bone tissues observed in the cortex depends on ontogenetic status, anatomical features (e.g. muscle attachment structures) and location on the bone (e.g. anterior or lateral). The type of bone microstructure and modeling is discussed in relation to digging behavior, reproduction and physiology of this species. This study is the first histological assessment describing the process of cortical thickening in long bones of a fossorial mammal.

  1. Scanning electron microscopy of human cortical bone failure surfaces.

    PubMed

    Braidotti, P; Branca, F P; Stagni, L

    1997-02-01

    Undecalcified samples extracted from human femoral shafts are fractured by bending and the fracture surfaces are examined with a scanning electron microscope (SEM). The investigation is performed on both dry and wet (hydrated with a saline solution) specimens. SEM micrographs show patterns in many respects similar to those observed in fractography studies of laminated fiber-reinforced synthetic composites. In particular, dry and wet samples behave like brittle and ductile matrix laminates, respectively. An analysis carried out on the basis of the mechanisms that dominate the fracture process of laminates shows that a reasonable cortical bone model is that of a laminated composite material whose matrix is composed of extracellular noncollagenous calcified proteins, and the reinforcement is constituted by the calcified collagen fiber system.

  2. In vivo monitoring of bone architecture and remodeling after implant insertion: The different responses of cortical and trabecular bone.

    PubMed

    Li, Zihui; Kuhn, Gisela; von Salis-Soglio, Marcella; Cooke, Stephen J; Schirmer, Michael; Müller, Ralph; Ruffoni, Davide

    2015-12-01

    The mechanical integrity of the bone-implant system is maintained by the process of bone remodeling. Specifically, the interplay between bone resorption and bone formation is of paramount importance to fully understand the net changes in bone structure occurring in the peri-implant bone, which are eventually responsible for the mechanical stability of the bone-implant system. Using time-lapsed in vivo micro-computed tomography combined with new composite material implants, we were able to characterize the spatio-temporal changes of bone architecture and bone remodeling following implantation in living mice. After insertion, implant stability was attained by a quick and substantial thickening of the cortical shell which counteracted the observed loss of trabecular bone, probably due to the disruption of the trabecular network. Within the trabecular compartment, the rate of bone formation close to the implant was transiently higher than far from the implant mainly due to an increased mineral apposition rate which indicated a higher osteoblastic activity. Conversely, in cortical bone, the higher rate of bone formation close to the implant compared to far away was mostly related to the recruitment of new osteoblasts as indicated by a prevailing mineralizing surface. The behavior of bone resorption also showed dissimilarities between trabecular and cortical bone. In the former, the rate of bone resorption was higher in the peri-implant region and remained elevated during the entire monitoring period. In the latter, bone resorption rate had a bigger value away from the implant and decreased with time. Our approach may help to tune the development of smart implants that can attain a better long-term stability by a local and targeted manipulation of the remodeling process within the cortical and the trabecular compartments and, particularly, in bone of poor health.

  3. Comparative cortical bone thickness between the long bones of humans and five common non-human mammal taxa.

    PubMed

    Croker, Sarah L; Reed, Warren; Donlon, Denise

    2016-03-01

    The task of identifying fragments of long bone shafts as human or non-human is difficult but necessary, for both forensic and archaeological cases, and a fast simple method is particularly useful. Previous literature suggests there may be differences in the thickness of the cortical bone between these two groups, but this has not been tested thoroughly. The aim of this study was not only to test this suggestion, but also to provide data that could be of practical assistance for future comparisons. The major limb bones (humerus, radius, femur and tibia) of 50 Caucasoid adult skeletons of known age and sex were radiographed, along with corresponding skeletal elements from sheep, pigs, cattle, large dogs and kangaroos. Measurements were taken from the radiographs at five points along the bone shaft, of shaft diameter, cortical bone thickness, and a cortical thickness index (sum of cortices divided by shaft diameter) in both anteroposterior and mediolateral orientations. Each variable for actual cortical bone thickness as well as cortical thickness indices were compared between the human group (split by sex) and each of the non-human groups in turn, using Student's t-tests. Results showed that while significant differences did exist between the human groups and many of the non-human groups, these were not all in the same direction. That is, some variables in the human groups were significantly greater than, and others were significantly less than, the corresponding variable in the non-human groups, depending on the particular non-human group, sex of the human group, or variable under comparison. This was the case for measurements of both actual cortical bone thickness and cortical thickness index. Therefore, for bone shaft fragments for which the skeletal element is unknown, the overlap in cortical bone thickness between different areas of different bones is too great to allow identification using this method alone. However, by providing extensive cortical bone

  4. A method for isolating high quality RNA from mouse cortical and cancellous bone.

    PubMed

    Kelly, Natalie H; Schimenti, John C; Patrick Ross, F; van der Meulen, Marjolein C H

    2014-11-01

    The high incidence of fragility fractures in cortico-cancellous bone locations, plus the fact that individual skeletal sites exhibit different responsiveness to load and disease, emphasizes the need to document separately gene expression in cortical and cancellous bone. A further confounding factor is marrow contamination since its high cellularity may effect gene expression measurements. We isolated RNA from cortical and cancellous bone of intact mouse tibiae, and also after marrow removal by flushing or centrifugation. RNA isolated from cancellous bone by each method was sufficient for gene expression analysis. Centrifugation removed contaminating cells more efficiently than flushing, as indexed by histology and decreased expression of Icam4, a highly expressed erythroid gene. In contrast, centrifuged cortical bone had 12- and 13- fold higher expression of the bone-related genes Col1a1 and Bglap, while levels in marrow-free cancellous bone were 30- and 31-fold higher when compared to bone where marrow was left intact. Furthermore, cortical bone had higher expression of Col1a1 and Bglap than cancellous bone. Thus, RNA isolated by this novel approach can reveal site-specific changes in gene expression in cortical and cancellous bone sites.

  5. An in vitro study of ultrasound signal loss across simple fractures in cortical bone mimics and bovine cortical bone samples.

    PubMed

    Dodd, S P; Cunningham, J L; Miles, A W; Gheduzzi, S; Humphrey, V F

    2007-03-01

    Measurements have been performed on Sawbones and bovine cortical bone samples at 200 kHz using an axial transmission technique to investigate the factors that determine how ultrasonic waves propagate across a simulated fracture. The peak amplitude of the first arrival signal (FAS) was studied. Results taken from intact specimens were compared with those produced when a simple transverse fracture was introduced. These fracture simulation experiments were found to be consistent with Finite Difference modelling of the experimental conditions. The peak amplitude showed a characteristic variation across the fracture caused by interference between reradiated and scattered/diffracted waves at the fracture site and a net Fracture Transmission Loss (FTL). For small fracture gaps, the change in amplitude was sensitive to the presence of the fracture. This sensitivity suggests that this parameter could be a good quantitative indicator for the fracture healing process assuming the relative change in this parameter brought about by healing is measurable.

  6. Fatigue crack growth behavior in equine cortical bone

    NASA Astrophysics Data System (ADS)

    Shelton, Debbie Renee

    2001-07-01

    Objectives for this research were to experimentally determine crack growth rates, da/dN, as a function of alternating stress intensity factor, DeltaK, for specimens from lateral and dorsal regions of equine third metacarpal cortical bone tissue, and to determine if the results were described by the Paris law. In one set of experiments, specimens were oriented for crack propagation in the circumferential direction with the crack plane transverse to the long axis of the bone. In the second set of experiments, specimens were oriented for radial crack growth with the crack plane parallel to the long axis of the bone. Results of fatigue tests from the latter specimens were used to evaluate the hypothesis that crack growth rates differ regionally. The final experiments were designed to determine if crack resistance was dependent on region, proportion of hooped osteons (those with circumferentially oriented collagen fibers in the outer lamellae) or number of osteons penetrated by the crack, and to address the hypothesis that hooped osteons resist invasion by cracks better than other osteonal types. The transverse crack growth data for dorsal specimens were described by the Paris law with an exponent of 10.4 and suggested a threshold stress intensity factor, DeltaKth, of 2.0 MPa·m1/2 and fracture toughness of 4.38 MPa·m 1/2. Similar results were not obtained for lateral specimens because the crack always deviated from the intended path and ran parallel to the loading direction. Crack growth for the dorsal and lateral specimens in the radial orientation was described by the Paris law with exponents of 8.7 and 10.2, respectively, and there were no regional differences in the apparent DeltaK th (0.5 MPa·m1/2) or fracture toughness (1.2 MPa·m 1/2). Crack resistance was not associated with cortical region, proportion of hooped osteons or the number of osteons penetrated by the crack. The extent to which cracks penetrate osteons was influenced by whether the collagen fiber

  7. Effect of surgical fit on integration of cancellous bone and implant cortical bone shear strength for a porous titanium.

    PubMed

    Bertollo, Nicky; Matsubara, Masaaki; Shinoda, Tsuyoshi; Chen, Dong; Kumar, Mukesh; Walsh, William R

    2011-10-01

    Porous scaffold dowels of Ti(6)Al(4)V were prepared and implanted into cancellous and cortical bone sites in adult sheep. Cancellous implants were examined under gap, line-to-line, and press-fit conditions, whereas line-to-line implantation was used in cortical sites. Cortical shear strength increased significantly with time and reached 26.1 ± 8.6 MPa at 12 weeks, accompanied by a concomitant increase in bone integration and remodeling. In cancellous sites, bone integration was well established at 4 and 12 weeks under conditions of press-fit and line-to-line match between implant and surgical defect. New bone growth was also found in the gap conditions, although to a lesser extent. These findings suggest that the porous Ti(6)Al(4)V could prove an effective scaffold material for uncemented fixation in cortical and cancellous sites.

  8. Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables.

    PubMed

    Maquer, Ghislain; Musy, Sarah N; Wandel, Jasmin; Gross, Thomas; Zysset, Philippe K

    2015-06-01

    As our population ages, more individuals suffer from osteoporosis. This disease leads to impaired trabecular architecture and increased fracture risk. It is essential to understand how morphological and mechanical properties of the cancellous bone are related. Morphology-elasticity relationships based on bone volume fraction (BV/TV) and fabric anisotropy explain up to 98% of the variation in elastic properties. Yet, other morphological variables such as individual trabeculae segmentation (ITS) and trabecular bone score (TBS) could improve the stiffness predictions. A total of 743 micro-computed tomography (μCT) reconstructions of cubic trabecular bone samples extracted from femur, radius, vertebrae, and iliac crest were analyzed. Their morphology was assessed via 25 variables and their stiffness tensor (CFE) was computed from six independent load cases using micro finite element (μFE) analyses. Variance inflation factors were calculated to evaluate collinearity between morphological variables and decide upon their inclusion in morphology-elasticity relationships. The statistically admissible morphological variables were included in a multiple linear regression model of the dependent variable CFE. The contribution of each independent variable was evaluated (ANOVA). Our results show that BV/TV is the best determinant of CFE(r(2) adj  = 0.889), especially in combination with fabric anisotropy (r(2) adj  = 0.968). Including the other independent predictors hardly affected the amount of variance explained by the model (r(2) adj  = 0.975). Across all anatomical sites, BV/TV explained 87% of the variance of the bone elastic properties. Fabric anisotropy further described 10% of the bone stiffness, but the improvement in variance explanation by adding other independent factors was marginal (<1%). These findings confirm that BV/TV and fabric anisotropy are the best determinants of trabecular bone stiffness and show, against common belief, that other

  9. Absorbed fractions for alpha-particles in tissues of cortical bone

    NASA Astrophysics Data System (ADS)

    Watchman, Christopher J.; Bolch, Wesley E.

    2009-10-01

    Bone-seeking alpha-particle emitting radionuclides are common health physics hazards. Additionally, they are under consideration as an option for therapeutic molecular radiotherapy applications. Current dose models do not account for energy or bone-site dependence as shown by alpha-particle absorbed fractions given in ICRP Publication 30. Energy-dependent, yet bone-site independent, alpha-particle absorbed fractions have been presented by the models of Stabin and Siegel (2003 Health Phys. 85 294-310). In this work, a chord-based computational model of alpha-particle transport in cortical bone has been developed that explicitly accounts for both the bone-site and particle-energy dependence of alpha-particle absorbed fractions in this region of the skeleton. The model accounts for energy deposition to three targets: cortical endosteum, haversian space tissues and cortical bone. Path length distributions for cortical bone given in Beddoe (1977 Phys. Med. Biol. 22 298-308) provided additional transport regions in the absorbed fraction calculation. Significant variations in absorbed fractions between different skeletal sites were observed. Differences were observed between this model and the absorbed fractions given in ICRP Publication 30, which varied by as much as a factor of 2.1 for a cortical bone surface source irradiating cortical endosteum.

  10. Cortical bone distribution in the femoral neck of hominoids: implications for the locomotion of Australopithecus afarensis.

    PubMed

    Ohman, J C; Krochta, T J; Lovejoy, C O; Mensforth, R P; Latimer, B

    1997-09-01

    Contiguous high resolution computed tomography images were obtained at a 1.5 mm slice thickness perpendicular to the neck axis from the base of the femoral head to the trochanteric line in a sample of 10 specimens each of Homo sapiens, Pan troglodytes, and Gorilla gorilla, plus five specimens of Pan paniscus. Superior, inferior, anterior, and posterior cortical thicknesses were automatically measured directly from these digital images. Throughout the femoral neck H. sapiens displays thin superior cortical bone and inferior cortical bone that thickens distally. In marked contrast, cortical bone in the femoral neck of African apes is more uniformly thick in all directions, with even greater thickening of the superior cortical bone distally. Because the femoral neck acts as a cantilevered beam, its anchorage at the neck-shaft junction is subjected to the highest bending stresses and is the most biomechanically relevant region to inspect for response to strain. As evinced by A.L. 128-1, A.L. 211-1 and MAK-VP-1/1, Australopithecus afarensis is indistinguishable from H. sapiens, but markedly different from African apes in cortical bone distribution at the femoral neck-shaft junction. Cortical distribution in the African ape indicates much greater variation in loading conditions consistent with their more varied locomotor repertoire. Cortical distribution in hominids is a response to the more stereotypic loading pattern imposed by habitual bipedality, and thin superior cortex in A. afarensis confirms the absence of a significant arboreal component in its locomotor repertoire.

  11. Comparisons of trabecular and cortical bone in late adolescent black and white females.

    PubMed

    Pollock, Norman K; Laing, Emma M; Taylor, Ruth G; Baile, Clifton A; Hamrick, Mark W; Hall, Daniel B; Lewis, Richard D

    2011-01-01

    Few childhood studies have investigated racial differences in volumetric bone mineral density (vBMD), bone geometry, and bone strength indices measured by three-dimensional bone imaging. The purpose of this study was to compare trabecular and cortical bone parameters at the radius and tibia between late adolescent white and black females using peripheral quantitative computed tomography (QCT). White (n = 25) and black females (n = 25), 18-19 years of age, were pair-matched for age, height, and fat-free soft tissue mass. Peripheral QCT scans were obtained at the 4% (trabecular bone), 20% (cortical bone), and 66% [muscle cross-sectional area (CSA)] sites from the distal metaphyses. Bone strength was determined from vBMD and bone geometry to calculate bone strength index (BSI; trabecular site) and polar strength-strain index (SSI; cortical site). Radial SSI was not different between groups; however, blacks had greater radial BSI (P = 0.02) than whites. After adjustment for the longer forearm in blacks, the greater radial BSI in blacks no longer remained. At the tibia, blacks versus whites had greater bone strength at the trabecular and cortical bone sites (BSI, P = 0.03; SSI, P = 0.04, respectively). When controlling for differences in tibial length and muscle CSA, the higher estimates of bone strength persisted in blacks versus whites (BSI, P = 0.01; SSI, P = 0.02). Our data suggest that when differences in body size are considered, late adolescent black versus white females have a stronger bone profile, due to greater bone geometry and vBMD, at the trabecular and cortical regions of the tibia but not at the radius.

  12. Clinically-Compatible MRI Strategies for Discriminating Bound and Pore Water in Cortical Bone

    PubMed Central

    Horch, R. Adam; Gochberg, Daniel F.; Nyman, Jeffry S.; Does, Mark D.

    2012-01-01

    Advances in modern MRI pulse sequences have enabled clinically-practical cortical bone imaging. Human cortical bone is known to contain a distribution of T1 and T2 components attributed to bound and pore water, although clinical imaging approaches have yet to discriminate bound from pore water on the basis of their relaxation properties. Herein, two clinically-compatible MRI strategies are proposed for selectively imaging either bound or pore water by utilizing differences in their T1s and T2s. The strategies are validated in a population of ex vivo human cortical bones, and estimates obtained for bound and pore water are compared to bone mechanical properties. Results show that the two MRI strategies provide good estimates of bound and pore water that correlate to bone mechanical properties. As such, the strategies for bound and pore water-discrimination shown herein should provide diagnostically useful tools for assessing bone fracture risk, once applied to clinical MRI. PMID:22294340

  13. Adaptations of young adult rat cortical bone to 14 days of spaceflight

    NASA Technical Reports Server (NTRS)

    Vailas, A. C.; Vanderby, R., Jr.; Martinez, D. A.; Ashman, R. B.; Ulm, M. J.; Grindeland, R. E.; Durnova, G. N.; Kaplanskii, A.

    1992-01-01

    To determine whether mature humeral cortical bone would be modified significantly by an acute exposure to weightlessness, adult rats (110 days old) were subjected to 14 days of microgravity on the COSMOS 2044 biosatellite. There were no significant changes in peak force, stiffness, energy to failure, and displacement at failure in the flight rats compared with ground-based controls. Concentrations and contents of hydroxyproline, calcium, and mature stable hydroxylysylpyridinoline and lysylpyridinoline collagen cross-links remained unchanged after spaceflight. Bone lengths, cortical and endosteal areas, and regionl thicknesses showed no significant differences between flight animals and ground controls. The findings suggest that responsiveness of cortical bone to microgravity is less pronounced in adult rats than in previous spaceflight experiments in which young growing animals were used. It is hypothesized that 14 days of spaceflight may not be sufficient to impact the biochemical and biomechanical properties of cortical bone in the mature rat skeleton.

  14. Isthmus-guided cortical bone trajectory for pedicle screw insertion.

    PubMed

    Iwatsuki, Koichi; Yoshimine, Toshiki; Ohnishi, Yu-ichiro; Ninomiya, Kosi; Ohkawa, Toshika

    2014-08-01

    Herein is described cortical bone trajectory (CBT), a new path for pedicle screw insertion for lumbar vertebral fusion. Because the points of insertion are under the end of the inferior articular process, and because the screws are inserted toward the lateral side, there is less soft tissue development than with the conventional technique; the CBT technique therefore enables less invasive surgery than the conventional technique. However, it has some drawbacks. For example, in the original CBT approach, the points of insertion are in the vicinity of the end of the inferior articular process. Because this joint has been destroyed in many patients who have indications for intervertebral fusion surgery, it is sometimes difficult to use it as a reference point for screw insertion location. With severe lateral slippage, the screw insertion site can become significantly dislocated sideways, with possible resultant damaging to the spinal canal and/or nerve root. The CBT technique here involved inserting the screws while keeping clear of the intervertebral foramen with the assistance of side view X-ray fluoroscopy and using the end of the inferior articular process and the isthmus as points of reference for screw location.

  15. Post-traumatic transient cortical blindness in a child with occipital bone fracture.

    PubMed

    Ng, Rachel H C

    2016-12-01

    Cortical blindness as sequelae of trauma has been reported in literature but mostly in the setting of occipital cortex or visual tract damages. We present a case of transient cortical blindness in a child following a closed head injury with a non-displaced occipital bone fracture and underlying occipital lobe contusion. We discuss the pathophysiology behind Post-traumatic transient cortical blindness, relevant investigations, and current management.

  16. Chemical and structural characterization of the mineral phase from cortical and trabecular bone.

    PubMed

    Bigi, A; Cojazzi, G; Panzavolta, S; Ripamonti, A; Roveri, N; Romanello, M; Noris Suarez, K; Moro, L

    1997-10-01

    X-ray diffraction, infrared spectroscopy and chemical investigations have been carried out on the inorganic phases from rat cortical and trabecular bone. Although both inorganic phases consist of poorly crystalline B carbonated apatite, several significant differences have been observed. In particular, trabecular bone apatite displays reduced crystallite sizes, Ca/P molar ratio, and carbonate content, and exhibits a greater extent of thermal conversion into beta-tricalcium phosphate than cortical bone apatite. These differences can be related to the different extents of collagen posttranslational modifications exhibited by the two types of bone, in agreement with their different biological functions.

  17. Assessment of simulated and functional disuse on cortical bone by nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Ni, Qingwen; De Los Santos, Armando; Lam, Hoyan; Qin, Yi-Xian

    A nuclear magnetic resonance (NMR) spin ( T2) relaxation technique has been described for determining water distribution changes on turkey cortical bone tissue of simulated weightlessness (disuse) in vitro. The advantages of using NMR T2 relaxation techniques for bone water distribution are illustrated. The Carr-Purcell-Meiboom-Gill (CPMG) T2 relaxation data can be used to determine the porosity of bone, and can be inverted to T2 relaxation distribution, and this distribution then can be transformed to a pore size distribution with the longer relaxation times corresponding to larger pores. The free induction delay (FID) T2 relaxation data can be inverted to T2 relaxation distribution and this distribution then can be transformed to bound and mobile water distribution with the longest relaxation time corresponding to mobile water and the middle relaxation time corresponding to bound water. The technique is applied to quantify apparent changes in porosity, bound and mobile water in normal and disuse cortical bone. Overall bone porosity is determined using the calibrated NMR fluid volume from the proton relaxation data divided by overall bone volume. The NMR bound and mobile water changes were determined from cortical bone specimens obtained from normal and disuse turkey bones. Differences in porosity and water distribution were found between specimens from normal and disuse. Our results show that the ratio of the average bound to mobile water in bone from normal turkey is higher than in bone from disuse turkey, and the porosity is lower in normal than in disuse turkey. We also show that the average bone porosity multiplied by the ratio of bound to mobile water may be constant for both normal and disuse bone groups. Currently, the influence of water removal on the strength and toughness of cortical bone has been studied by some researchers. Therefore, the porosity, bound and mobile water distribution changes could provide further information directly related to bone

  18. Hierarchical analysis and multi-scale modelling of rat cortical and trabecular bone

    PubMed Central

    Oftadeh, Ramin; Entezari, Vahid; Spörri, Guy; Villa-Camacho, Juan C.; Krigbaum, Henry; Strawich, Elsa; Graham, Lila; Rey, Christian; Chiu, Hank; Müller, Ralph; Hashemi, Hamid Nayeb; Vaziri, Ashkan; Nazarian, Ara

    2015-01-01

    The aim of this study was to explore the hierarchical arrangement of structural properties in cortical and trabecular bone and to determine a mathematical model that accurately predicts the tissue's mechanical properties as a function of these indices. By using a variety of analytical techniques, we were able to characterize the structural and compositional properties of cortical and trabecular bones, as well as to determine the suitable mathematical model to predict the tissue's mechanical properties using a continuum micromechanics approach. Our hierarchical analysis demonstrated that the differences between cortical and trabecular bone reside mainly at the micro- and ultrastructural levels. By gaining a better appreciation of the similarities and differences between the two bone types, we would be able to provide a better assessment and understanding of their individual roles, as well as their contribution to bone health overall. PMID:25808343

  19. Predicting cortical bone adaptation to axial loading in the mouse tibia

    PubMed Central

    Pereira, A. F.; Javaheri, B.; Pitsillides, A. A.; Shefelbine, S. J.

    2015-01-01

    The development of predictive mathematical models can contribute to a deeper understanding of the specific stages of bone mechanobiology and the process by which bone adapts to mechanical forces. The objective of this work was to predict, with spatial accuracy, cortical bone adaptation to mechanical load, in order to better understand the mechanical cues that might be driving adaptation. The axial tibial loading model was used to trigger cortical bone adaptation in C57BL/6 mice and provide relevant biological and biomechanical information. A method for mapping cortical thickness in the mouse tibia diaphysis was developed, allowing for a thorough spatial description of where bone adaptation occurs. Poroelastic finite-element (FE) models were used to determine the structural response of the tibia upon axial loading and interstitial fluid velocity as the mechanical stimulus. FE models were coupled with mechanobiological governing equations, which accounted for non-static loads and assumed that bone responds instantly to local mechanical cues in an on–off manner. The presented formulation was able to simulate the areas of adaptation and accurately reproduce the distributions of cortical thickening observed in the experimental data with a statistically significant positive correlation (Kendall's τ rank coefficient τ = 0.51, p < 0.001). This work demonstrates that computational models can spatially predict cortical bone mechanoadaptation to a time variant stimulus. Such models could be used in the design of more efficient loading protocols and drug therapies that target the relevant physiological mechanisms. PMID:26311315

  20. Assessing temperature changes in cortical bone using variable flip-angle ultrashort echo-time MRI

    NASA Astrophysics Data System (ADS)

    Han, Misung; Scott, Serena J.; Ozhinsky, Eugene; Salgaonakar, Vasant A.; Jones, Peter D.; Larson, Peder E. Z.; Diederich, Chris J.; Rieke, Viola; Krug, Roland

    2017-03-01

    MR-guided high-intensity focused ultrasound ablation is a promising, noninvasive method for treatment of bone tumors and palliation of pain. During thermal therapy, temperature mapping is necessary to ensure proper heat deposition in targeted tumors as well as to prevent unnecessary heating in surrounding tissues. Conventional MR thermometry exploits the proton resonant frequency shift of water protons, which normally requires a long echo time; therefore, this method is not appropriate for cortical bone due to its short T2* relaxation time. This work demonstrates that ultrashort echo-time MRI can characterize T1 changes in cortical bone caused by temperature changes. Ex vivo experiments were performed to heat diaphysis segments of bovine femurs with an interstitial ultrasound applicator. The T1 increase in the heated parts of cortical bone was observed. The temerature dependence of T1 in cortical born was also assessed by heating bovine bone samples in a temperature-controlled water bath. T1 mapping of cortical bone enabled by ultrashort echo-time MRI might allow for more accurate characterization of thermal dose during treatment of bone tumors.

  1. Ovariectomy-induced changes in aged beagles : histomorphometry of rib cortical bone.

    SciTech Connect

    Wilson, A. K.; Bhattacharyya, M. H.; Miller, S.; Sacco-Gibson, N.; Center for Mechanistic Biology and Biotechnology; Univ. of Utah; Procter & Gamble Pharmaceuticals

    1998-03-01

    Bone loss associated with estrogen depletion is well documented in cancellous bone but less well characterized in cortical bone. The effects of ovariectomy on the aged beagle skeleton were studied by histomorphometric analysis of the cortical bone in sequential rib biopsies. Biopsies were taken from each ovariectomized or sham-operated dog at the time of surgery and at 1, 4, and 8.5 months after surgery. Just prior to each postoperative biopsy, tetracycline, calcein, and xylenol orange, respectively, were administered by a fluorochrome labeling procedure (2d-10d-2d) to provide markers of bone formation. Analysis of sequential rib biopsies provided a means to follow the ovariectomy response over time and to compare each animal against its own baseline. Though ovariectomy did not influence histomorphometric indices at 1 month after surgery, a transient increase in cortical bone formation occurred thereafter, with a sixfold increase over that of sham-operated dogs at 4 months (P < 0.001) and a return to near control levels at 8.5 months. Cortical porosity increased by the fourth month after ovariectomy and remained high at 8.5 months. These data demonstrate for the first time that rib cortical bone is a responsive site for the effects of ovariectomy in aged female dogs.

  2. Increased intra-cortical porosity reduces bone stiffness and strength in pediatric patients with osteogenesis imperfecta.

    PubMed

    Vardakastani, V; Saletti, D; Skalli, W; Marry, P; Allain, J M; Adam, C

    2014-12-01

    Osteogenesis imperfecta (OI) is a heritable disease occurring in one out of every 20,000 births. Although it is known that Type I collagen mutation in OI leads to increased bone fragility, the mechanism of this increased susceptibility to fracture is not clear. The aim of this study was to assess the microstructure of cortical bone fragments from patients with osteogenesis imperfecta (OI) using polarized light microscopy, and to correlate microstructural observations with the results of previously performed mechanical compression tests on bone from the same source. Specimens of cortical bone were harvested from the lower limbs of three (3) OI patients at the time of surgery, and were divided into two groups. Group 1 had been subjected to previous micro-mechanical compression testing, while Group 2 had not been subjected to any prior testing. Polarized light microscopy revealed disorganized bone collagen architecture as has been previously observed, as well as a large increase in the areal porosity of the bone compared to typical values for healthy cortical bone, with large (several hundred micron sized), asymmetrical pores. Importantly, the areal porosity of the OI bone samples in Group 1 appears to correlate strongly with their previously measured apparent Young's modulus and compressive strength. Taken together with prior nanoindentation studies on OI bone tissue, the results of this study suggest that increased intra-cortical porosity is responsible for the reduction in macroscopic mechanical properties of OI cortical bone, and therefore that in vivo imaging modalities with resolutions of ~100 μm or less could potentially be used to non-invasively assess bone strength in OI patients. Although the number of subjects in this study is small, these results highlight the importance of further studies in OI bone by groups with access to human OI tissue in order to clarify the relationship between increased porosity and reduced macroscopic mechanical integrity.

  3. Propagation of time-reversed Lamb waves in bovine cortical bone in vitro.

    PubMed

    Lee, Kang Il; Yoon, Suk Wang

    2015-01-01

    The present study aims to investigate the propagation of time-reversed Lamb waves in bovine cortical bone in vitro. The time-reversed Lamb waves were successfully launched at 200 kHz in 18 bovine tibiae through a time reversal process of Lamb waves. The group velocities of the time-reversed Lamb waves in the bovine tibiae were measured using the axial transmission technique. They showed a significant correlation with the cortical thickness and tended to follow the theoretical group velocity of the lowest order antisymmetrical Lamb wave fairly well, consistent with the behavior of the slow guided wave in long cortical bones.

  4. Correlation between ultrasound velocity and densitometry in fresh and demineralized cortical bone

    PubMed Central

    de Mesquita, Alessandro Queiroz; Barbieri, Giuliano; Barbieri, Claudio Henrique

    2016-01-01

    OBJECTIVE: To compare ultrasound propagation velocity with densitometry in the diaphyseal compact cortical bone of whole sheep metatarsals. METHODS: The transverse ultrasound velocity and bone mineral density of 5-cm-long diaphyseal bone segments were first measured. The bone segments were then divided into four groups of 15 segments each and demineralized in an aqueous 0.5 N hydrochloric acid solution for 6, 12, 24 or 36 hours. All measurements were repeated after demineralization for each time duration and the values measured before and after demineralization were compared. RESULTS: Ultrasound velocity and bone mineral density decreased with demineralization time, and most differences in the pre- and post-demineralization values within each group and between groups were significant: A moderate correlation coefficient (r=0.75956) together with a moderate agreement was determined between both post-demineralization parameters, detected by the Bland-Altman method. CONCLUSION: We conclude that both ultrasound velocity and bone mineral density decrease as a result of demineralization, thus indicating that bone mineral content is of great importance for maintaining the acoustic parameters of cortical bone, as observed for cancellous bone. Ultrasound velocity can be used to evaluate both compact cortical bone quality and bone mineral density. PMID:27982167

  5. Connexin 43 deficiency attenuates loss of trabecular bone and prevents suppression of cortical bone formation during unloading.

    PubMed

    Lloyd, Shane A; Lewis, Gregory S; Zhang, Yue; Paul, Emmanuel M; Donahue, Henry J

    2012-11-01

    Connexin 43 (Cx43) is the most abundant gap junction protein in bone and has been demonstrated as an integral component of skeletal homeostasis. In the present study, we sought to further refine the role of Cx43 in the response to mechanical unloading by subjecting skeletally mature mice with a bone-specific deletion of Cx43 (cKO) to 3 weeks of mechanical unloading via hindlimb suspension (HLS). The HLS model was selected to recapitulate the effects of skeletal unloading due to prolonged bed rest, reduced activity associated with aging, and spaceflight microgravity. At baseline, the cortical bone of cKO mice displayed an osteopenic phenotype, with expanded cortices, decreased cortical thickness, decreased bone mineral density, and increased porosity. There was no baseline trabecular phenotype. After 3 weeks of HLS, wild-type (WT) mice experienced a substantial decline in trabecular bone volume fraction, connectivity density, trabecular thickness, and trabecular tissue mineral density. These deleterious effects were attenuated in cKO mice. Conversely, there was a similar and significant amount of cortical bone loss in both WT and cKO. Interestingly, mechanical testing revealed a greater loss of strength and rigidity for cKO during HLS. Analysis of double-label quantitative histomorphometry data demonstrated a substantial decrease in bone formation rate, mineralizing surface, and mineral apposition rate at both the periosteal and endocortical surfaces of the femur after unloading of WT mice. This suppression of bone formation was not observed in cKO mice, in which parameters were maintained at baseline levels. Taken together, the results of the present study indicate that Cx43 deficiency desensitizes bone to the effects of mechanical unloading, and that this may be due to an inability of mechanosensing osteocytes to effectively communicate the unloading state to osteoblasts to suppress bone formation. Cx43 may represent a novel therapeutic target for investigation as

  6. Midline lumbar fusion using cortical bone trajectory screws. Preliminary report

    PubMed Central

    Bielecki, Mateusz; Prokopienko, Marek; Nowak, Arkadiusz; Czernicki, Tomasz; Marchel, Andrzej

    2016-01-01

    Introduction Midline lumbar fusion (MIDLF) using cortical bone trajectory is an alternative method of transpedicular spinal fusion for degenerative disease. The new entry points’ location and screwdriving direction allow the approach-related morbidity to be reduced. Aim To present our preliminary experience with the MIDLF technique on the first 5 patients with lumbar degenerative disease and with follow-up of at least 6 months. Material and methods Retrospective analysis was performed on the first 5 patients with foraminal (4) or central (1) stenosis operated on between December 2014 and February 2015. Three patients were fused at L4–L5 and two at the L5–S1 level. Results No intra- or post-operative complications occurred with this approach. An improvement regarding the leading symptom in the early postoperative period (sciatica 4/4, claudication 1/1) was achieved in all patients. The mean improvements in the visual analogue scale for low back and leg pain were 2.2 and 4.8 respectively. The mean Oswestry Disability Index scores were 52% (range: 16–82%) before surgery and 33% (range: 12–56%) at 3-month follow-up (mean improvement 19%). At the most recent follow-up, 4 patients reported the maintenance of the satisfactory result. The early standing and follow-up X-rays showed satisfactory screw placement in all patients. Conclusions In our initial experience, the MIDLF technique seems to be an encouraging alternative to traditional transpedicular trajectory screws when short level lumbar fusion is needed. Nevertheless, longer observations on larger groups of patients are needed to reliably evaluate the safety of the method and the sustainability of the results. PMID:27829938

  7. Increased Training Volume Improves Bone Density and Cortical Area in Adolescent Football Players.

    PubMed

    Varley, Ian; Hughes, David C; Greeves, Julie P; Fraser, William D; Sale, Craig

    2017-03-01

    Habitual football participation has been shown to be osteogenic, although the specific volume of football participation required to cause bone adaptations are not well established. The aim of the present study is to investigate tibial bone adaptations in response to 12 weeks of increased training volume in elite adolescents who are already accustomed to irregular impact training. 99 male adolescent elite footballers participated (age 16±0 y; height 1.76±0.66 m; body mass 70.2±8.3 kg). Tibial scans were performed using peripheral quantitative computed tomography immediately before and 12 weeks after an increase in football training volume. Scans were obtained at 4, 14, 38 and 66% of tibial length. Trabecular density (mg/cm(3)), cortical density (mg/cm(3)), cross-sectional area, cortical area (mm(2)), cortical thickness (mm) and strength strain index (mm(3)) were assessed. Trabecular (4%) and cortical density (14, 38%), cortical cross-sectional area (14, 38%), total cross-sectional area (66%), cortical thickness (14, 38%) and strength strain index (14, 38%) increased following 12 weeks of augmented volume training (P<0.05). Increased density of trabecular and cortical compartments and cortical thickening were shown following an increased volume of training. These adaptive responses may have been enhanced by the adolescent status of the cohort, supporting the role of early exercise intervention in improving bone strength.

  8. Elastic Anisotropy of Trabecular Bone in the Elderly Human Vertebra

    PubMed Central

    Unnikrishnan, Ginu U.; Gallagher, John A.; Hussein, Amira I.; Barest, Glenn D.; Morgan, Elise F.

    2015-01-01

    Knowledge of the nature of the elastic symmetry of trabecular bone is fundamental to the study of bone adaptation and failure. Previous studies have classified human vertebral trabecular bone as orthotropic or transversely isotropic but have typically obtained samples from only selected regions of the centrum. In this study, the elastic symmetry of human vertebral trabecular bone was characterized using microfinite element (μFE) analyses performed on 1019 cubic regions of side length equal to 5 mm, obtained via thorough sampling of the centrums of 18 human L1 vertebrae (age = 81.17 ± 7.7 yr; eight males and ten females). An optimization procedure was used to find the closest orthotropic representation of the resulting stiffness tensor for each cube. The orthotropic elastic constants and orientation of the principal elastic axes were then recorded for each cube and were compared to the constants predicted from Cowin's fabric-based constitutive model (Cowin, 1985, “The Relationship Between the Elasticity Tensor and the Fabric Tensor,” Mech. Mater., 4(2), pp. 137–147.) and the orientation of the principal axes of the fabric tensor, respectively. Deviations from orthotropy were quantified by the “orthotropic error” (van Rietbergen et al., 1996, “Direct Mechanics Assessment of Elastic Symmetries and Properties of Trabecular Bone Architecture,” J. Biomech., 29(12), pp. 1653–1657), and deviations from transverse isotropy were determined by statistical comparison of the secondary and tertiary elastic moduli. The orthotropic error was greater than 50% for nearly half of the cubes, and the secondary and tertiary moduli differed from one another (p < 0.0001). Both the orthotropic error and the difference between secondary and tertiary moduli decreased with increasing bone volume fraction (BV/TV; p ≤ 0.007). Considering only the cubes with an orthotropic error less than 50%, only moderate correlations were observed between the fabric

  9. Trabecular bone of growth plate origin influences both trabecular and cortical morphology in adulthood.

    PubMed

    Wang, Qingju; Ghasem-Zadeh, Ali; Wang, Xiao-Fang; Iuliano-Burns, Sandra; Seeman, Ego

    2011-07-01

    Skeletal fragility is common at metaphyseal regions of long bones. The cortices of this region are derived by coalescence of trabeculae around the periphery of the growth plate, not by periosteal apposition, as occurs in the diaphyses. We therefore hypothesized that trabecular bone in childhood predicted both cortical and trabecular morphology in adulthood. To test this hypothesis, we measured distal radial and tibial structure using high-resolution peripheral quantitative computed tomography in 61 daughter-mother pairs, mean age 12.5 years (range 7 to 19 years) and 44.1 years (range 32 to 50 years), respectively. The daughters' trabecular bone volume (BV/TV), thickness, number, and separation predicted the corresponding traits in their mothers. Their trabecular BV/TV also predicted their mothers' cortical thickness (r = 0.32, p = .02). By contrast, the daughters' cortical thickness did not predict their mothers' cortical thickness. The daughters had higher trabecular BV/TV than their mothers (mean ± SD, radius 0.134 ± 0.024 versus 0.124 ± 0.033, p = .03; tibia 0.145 ± 0.021 versus 0.135 ± 0.032, p < .01) owing to greater trabecular number, not thickness, and less trabecular separation. Abnormalities in the development of metaphyseal trabecular bone are likely to influence fragility in both trabecular and cortical bone of this region in adulthood.

  10. Skeletal effects of constant and terminated use of risedronate on cortical bone in ovariectomized rats.

    PubMed

    Li, Q N; Liang, N C; Huang, L F; Wu, T; Hu, B; Mo, L E

    1999-01-01

    To study the skeletal effects of continual and terminated use of risedronate treatment on cortical bone in ovariectomized (Ovx) rats, we used risedronate (Ris), 5 microg x kg(-1), by subcutaneous injections, twice per week. The middle part of the tibial shafts (Tx) were processed undecalcified for quantitive bone histomorphometry. Cortical bone and the marrow areas of the tibial shaft did not change in either sham-Ovx or Ovx rats during the 150-day experimental period. Continued administration of Ris for 150 days decreased the marrow area and increased the percentage of cortical area compared with the matching sham and Ovx group. A decrease in bone formation indices in both periosteal and endocortical surfaces of Tx in sham-operated rats between the age of 5 and 8 months was seen. Ovariectomy increased the percentage of labeled perimeter in the periosteal area, and markedly increased the percentage of eroded perimeter in the endocortical surface compared with sham control groups in 81 and 150 days. Bone formation indices of Ris treatment were increased in periosteal surfaces, and percentages of eroded perimeter were decreased more in endocortical surfaces in 150 days than in the matching sham and Ovx groups. These data matched our static data, which showed a significantly increased percentage of cortical bone area and decreased percentage of marrow area. These bone gains were not maintained in the 90-day Ris withdrawal group. For cancellous bone, the 60-day Ris-treated high bone mass was maintained in the withdrawal group and not maintained in Ris continmuously treated group. These results indicate the effects of constant and terminated use of Ris in cortical bone were different from those in trabecular bone in the proximal tibial metaphysis.

  11. Reduced Bone Cortical Thickness in Boys with Autism or Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Hediger, Mary L.; England, Lucinda J.; Molloy, Cynthia A.; Yu, Kai F.; Manning-Courtney, Patricia; Mills, James L.

    2008-01-01

    Bone development, casein-free diet use, supplements, and medications were assessed for 75 boys with autism or autism spectrum disorder, ages 4-8 years. Second metacarpal bone cortical thickness (BCT), measured on hand-wrist radiographs, and % deviations in BCT from reference medians were derived. BCT increased with age, but % deviations evidenced…

  12. Automated cortical bone segmentation for multirow-detector CT imaging with validation and application to human studies

    PubMed Central

    Li, Cheng; Jin, Dakai; Chen, Cheng; Letuchy, Elena M.; Janz, Kathleen F.; Burns, Trudy L.; Torner, James C; Levy, Steven M.; Saha, Punam K

    2015-01-01

    Purpose: Cortical bone supports and protects human skeletal functions and plays an important role in determining bone strength and fracture risk. Cortical bone segmentation at a peripheral site using multirow-detector CT (MD-CT) imaging is useful for in vivo assessment of bone strength and fracture risk. Major challenges for the task emerge from limited spatial resolution, low signal-to-noise ratio, presence of cortical pores, and structural complexity over the transition between trabecular and cortical bones. An automated algorithm for cortical bone segmentation at the distal tibia from in vivo MD-CT imaging is presented and its performance and application are examined. Methods: The algorithm is completed in two major steps—(1) bone filling, alignment, and region-of-interest computation and (2) segmentation of cortical bone. After the first step, the following sequence of tasks is performed to accomplish cortical bone segmentation—(1) detection of marrow space and possible pores, (2) computation of cortical bone thickness, detection of recession points, and confirmation and filling of true pores, and (3) detection of endosteal boundary and delineation of cortical bone. Effective generalizations of several digital topologic and geometric techniques are introduced and a fully automated algorithm is presented for cortical bone segmentation. Results: An accuracy of 95.1% in terms of volume of agreement with manual outlining of cortical bone was observed in human MD-CT scans, while an accuracy of 88.5% was achieved when compared with manual outlining on postregistered high resolution micro-CT imaging. An intraclass correlation coefficient of 0.98 was obtained in cadaveric repeat scans. A pilot study was conducted to describe gender differences in cortical bone properties. This study involved 51 female and 46 male participants (age: 19–20 yr) from the Iowa Bone Development Study. Results from this pilot study suggest that, on average after adjustment for height

  13. Effect of micromorphology of cortical bone tissue on crack propagation under dynamic loading

    NASA Astrophysics Data System (ADS)

    Wang, Mayao; Gao, Xing; Abdel-Wahab, Adel; Li, Simin; Zimmermann, Elizabeth A.; Riedel, Christoph; Busse, Björn; Silberschmidt, Vadim V.

    2015-09-01

    Structural integrity of bone tissue plays an important role in daily activities of humans. However, traumatic incidents such as sports injuries, collisions and falls can cause bone fracture, servere pain and mobility loss. In addition, ageing and degenerative bone diseases such as osteoporosis can increase the risk of fracture [1]. As a composite-like material, a cortical bone tissue is capable of tolerating moderate fracture/cracks without complete failure. The key to this is its heterogeneously distributed microstructural constituents providing both intrinsic and extrinsic toughening mechanisms. At micro-scale level, cortical bone can be considered as a four-phase composite material consisting of osteons, Haversian canals, cement lines and interstitial matrix. These microstructural constituents can directly affect local distributions of stresses and strains, and, hence, crack initiation and propagation. Therefore, understanding the effect of micromorphology of cortical bone on crack initiation and propagation, especially under dynamic loading regimes is of great importance for fracture risk evaluation. In this study, random microstructures of a cortical bone tissue were modelled with finite elements for four groups: healthy (control), young age, osteoporosis and bisphosphonate-treated, based on osteonal morphometric parameters measured from microscopic images for these groups. The developed models were loaded under the same dynamic loading conditions, representing a direct impact incident, resulting in progressive crack propagation. An extended finite-element method (X-FEM) was implemented to realize solution-dependent crack propagation within the microstructured cortical bone tissues. The obtained simulation results demonstrate significant differences due to micromorphology of cortical bone, in terms of crack propagation characteristics for different groups, with the young group showing highest fracture resistance and the senior group the lowest.

  14. Bisphosphonates improve trabecular bone mass and normalize cortical thickness in ovariectomized, osteoblast connexin43 deficient mice.

    PubMed

    Watkins, Marcus P; Norris, Jin Yi; Grimston, Susan K; Zhang, Xiaowen; Phipps, Roger J; Ebetino, Frank H; Civitelli, Roberto

    2012-10-01

    The gap junction protein, connexin43 (Cx43) controls both bone formation and osteoclastogenesis via osteoblasts and/or osteocytes. Cx43 has also been proposed to mediate an anti-apoptotic effect of bisphosphonates, potent inhibitors of bone resorption. We studied whether bisphosphonates are effective in protecting mice with a conditional Cx43 gene deletion in osteoblasts and osteocytes (cKO) from the consequences of ovariectomy on bone mass and strength. Ovariectomy resulted in rapid loss of trabecular bone followed by a slight recovery in wild type (WT) mice, and a similar degree of trabecular bone loss, albeit slightly delayed, occurred in cKO mice. Treatment with either risedronate (20 μg/kg) or alendronate (40 μg/kg) prevented ovariectomy-induced bone loss in both genotypes. In basal conditions, bones of cKO mice have larger marrow area, higher endocortical osteoclast number, and lower cortical thickness and strength relative to WT. Ovariectomy increased endocortical osteoclast number in WT but not in cKO mice. Both bisphosphonates prevented these increases in WT mice, and normalized endocortical osteoclast number, cortical thickness and bone strength in cKO mice. Thus, lack of osteoblast/osteocyte Cx43 does not alter bisphosphonate action on bone mass and strength in estrogen deficiency. These results support the notion that one of the main functions of Cx43 in cortical bone is to restrain osteoblast and/or osteocytes from inducing osteoclastogenesis at the endocortical surface.

  15. Temperature Values Variability in Piezoelectric Implant Site Preparation: Differences between Cortical and Corticocancellous Bovine Bone

    PubMed Central

    Lamazza, Luca; Garreffa, Girolamo; Laurito, Domenica; Lollobrigida, Marco; Palmieri, Luigi; De Biase, Alberto

    2016-01-01

    Purpose. Various parameters can influence temperature rise and detection during implant site preparation. The aim of this study is to investigate local temperature values in cortical and corticocancellous bovine bone during early stages of piezoelectric implant site preparation. Materials and Methods. 20 osteotomies were performed using a diamond tip (IM1s, Mectron Medical Technology, Carasco, Italy) on two different types of bovine bone samples, cortical and corticocancellous, respectively. A standardized protocol was designed to provide constant working conditions. Temperatures were measured in real time at a fixed position by a fiber optic thermometer. Results. Significantly higher drilling time (154.90 sec versus 99.00 sec; p < 0.0001) and temperatures (39.26°C versus 34.73°C; p = 0.043) were observed in the cortical group compared to the corticocancellous group. A remarkable variability of results characterized the corticocancellous blocks as compared to the blocks of pure cortical bone. Conclusion. Bone samples can influence heat generation during in vitro implant site preparation. When compared to cortical bone, corticocancellous samples present more variability in temperature values. Even controlling most experimental factors, the impact of bone samples still remains one of the main causes of temperature variability. PMID:27110567

  16. Effect of Cortical Bone Thickness on Detection of Intraosseous Lesions by Ultrasonography

    PubMed Central

    Adibi, Sadaf; Shakibafard, Alireza; Karimi Sarvestani, Zohreh; Saadat, Najmeh; Khojastepour, Leila

    2015-01-01

    Background. Usefulness of ultrasound (US) in detection of intrabony lesions has been showed. A cortical bone perforation or a very thin and intact cortical bone is prerequisite for this purpose. Objective. The current in vitro study was aimed at measuring the cut-off thickness of the overlying cortical bone which allows ultrasonic assessment of bony defects. Materials and Methods. 20 bovine scapula blocks were obtained. Samples were numbered from 1 to 20. In each sample, 5 artificial lesions were made. The lesions were made in order to increase the overlying bone thickness, from 0.1 mm in the first sample to 2 mm in the last one (with 0.1 mm interval). After that, the samples underwent ultrasound examinations by two practicing radiologists. Results. All five lesions in samples numbered 1 to 11 were detected as hypoechoic area. Cortical bone thickness more than 1.1 mm resulted in a failure in the detection of central lesions. Conclusion. We can conclude that neither bony perforation nor very thin cortical bones are needed to consider US to be an effective imaging technique in the evaluation of bony lesion. PMID:26366296

  17. Drilling in cortical bone: a finite element model and experimental investigations.

    PubMed

    Lughmani, Waqas A; Bouazza-Marouf, Kaddour; Ashcroft, Ian

    2015-02-01

    Bone drilling is an essential part of many orthopaedic surgery procedures, including those for internal fixation and for attaching prosthetics. Estimation and control of bone drilling forces are critical to prevent drill-bit breakthrough, excessive heat generation, and mechanical damage to the bone. An experimental and computational study of drilling in cortical bone has been conducted. A 3D finite element (FE) model for prediction of thrust forces experienced during bone drilling has been developed. The model incorporates the dynamic characteristics involved in the process along with geometrical considerations. An elastic-plastic material model is used to predict the behaviour of cortical bone during drilling. The average critical thrust forces and torques obtained using FE analysis are found to be in good agreement with the experimental results.

  18. Cortical Bone Morphological and Trabecular Bone Microarchitectural Changes in the Mandible and Femoral Neck of Ovariectomized Rats

    PubMed Central

    Hsu, Pei-Yu; Tsai, Ming-Tzu; Wang, Shun-Ping; Chen, Ying-Ju; Wu, Jay; Hsu, Jui-Ting

    2016-01-01

    Objective This study used microcomputed tomography (micro-CT) to evaluate the effects of ovariectomy on the trabecular bone microarchitecture and cortical bone morphology in the femoral neck and mandible of female rats. Materials and Methods Twelve female Wister rats were divided into two groups: the control and ovariectomized groups. The rats in the ovariectomized group received ovariectomy at 8 weeks of age; all the rats were sacrificed at 20 weeks of age, and their mandibles and femurs were removed and scanned using micro-CT. Four microstructural trabecular bone parameters were measured for the region below the first mandibular molar and the femoral neck region: bone volume fraction (BV/TV), trabecular thickness (TbTh), trabecular separation (TbSp), and trabecular number (TbN). In addition, four cortical bone parameters were measured for the femoral neck region: total cross-sectional area (TtAr), cortical area (CtAr), cortical bone area fraction (CtAr/TtAr), and cortical thickness (CtTh). The CtTh at the masseteric ridge was used to assess the cortical bone morphology in the mandible. The trabecular bone microarchitecture and cortical bone morphology in the femoral necks and mandibles of the control group were compared with those of the ovariectomized group. Furthermore, Spearman’s correlation (rs) was conducted to analyze the correlation between the osteoporosis conditions of the mandible and femoral neck. Results Regarding the trabecular bone microarchitectural parameters, the BV/TV of the trabecular bone microarchitecture in the femoral necks of the control group (61.199±11.288%, median ± interquartile range) was significantly greater than that of the ovariectomized group (40.329±5.153%). Similarly, the BV/TV of the trabecular bone microarchitecture in the mandibles of the control group (51.704±6.253%) was significantly greater than that of the ovariectomized group (38.486±9.111%). Furthermore, the TbSp of the femoral necks in the ovariectomized group

  19. Bone defect regeneration and cortical bone parameters of type 2 diabetic rats are improved by insulin therapy.

    PubMed

    Picke, A-K; Gordaliza Alaguero, I; Campbell, G M; Glüer, C-C; Salbach-Hirsch, J; Rauner, M; Hofbauer, L C; Hofbauer, C

    2016-01-01

    Zucker Diabetic Fatty (ZDF) rats represent an established model of type 2 diabetes mellitus (T2DM) and display several features of human diabetic bone disease, including impaired osteoblast function, decreased bone strength, and delayed bone healing. Here, we determined whether glycemic control by insulin treatment prevents skeletal complications associated with diabetes. Subcritical femur defects were created in diabetic (fa/fa) and non-diabetic (+/+) ZDF rats. Diabetic rats were treated once daily with long-lasting insulin glargin for 12weeks for glycemic control. Insulin treatment successfully maintained serum levels of glycated hemoglobin, while untreated diabetic rats showed a 2-fold increase. Trabecular and cortical bone mass measured by μCT were decreased in diabetic rats. Insulin treatment increased bone mass of the cortical, but not of the trabecular bone compartment. Dynamic histomorphometry revealed a lower bone formation rate at the trabecular and periosteal cortical bone in diabetic animals and decreased serum procollagen type 1 N-terminal propeptide (P1NP, -49%) levels. Insulin treatment partially improved these parameters. In T2DM, serum levels of tartrate-resistant acid phosphatase (TRAP, +32%) and C-terminal telopeptide (CTX, +49%) were increased. Insulin treatment further elevated TRAP levels, but did not affect CTX levels. While diabetes impaired bone defect healing, glycemic control with insulin fully reversed these negative effects. In conclusion, insulin treatment reversed the adverse effects of T2DM on bone defect regeneration in rats mainly by improving osteoblast function and bone formation. This article is part of a Special Issue entitled Bone and diabetes.

  20. Current Physical Activity Is Independently Associated With Cortical Bone Size and Bone Strength in Elderly Swedish Women.

    PubMed

    Nilsson, Martin; Sundh, Daniel; Mellström, Dan; Lorentzon, Mattias

    2017-03-01

    Physical activity is believed to have the greatest effect on the skeleton if exerted early in life, but whether or not possible benefits of physical activity on bone microstructure or geometry remain at old age has not been investigated in women. The aim of this study was to investigate if physical activity during skeletal growth and young adulthood or at old age was associated with cortical geometry and trabecular microarchitecture in weight-bearing and non-weight-bearing bone, and areal bone mineral density (aBMD) in elderly women. In this population-based cross-sectional study 1013 women, 78.2 ± 1.6 (mean ± SD) years old, were included. Using high-resolution 3D pQCT (XtremeCT), cortical cross-sectional area (Ct.CSA), cortical thickness (Ct.Th), cortical periosteal perimeter (Ct.Pm), volumetric cortical bone density (D.Ct), trabecular bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), and trabecular separation (Tb.Sp) were measured at the distal (14% level) and ultra-distal tibia and radius, respectively. aBMD was assessed using DXA (Hologic Discovery A) of the spine and hip. A standardized questionnaire was used to collect information about previous exercise and the Physical Activity Scale for the Elderly (PASE) was used for current physical activity. A linear regression model (including levels of exercise during skeletal growth and young adulthood [10 to 30 years of age], PASE score, and covariates) revealed that level of current physical activity was independently associated with Ct.CSA (β = 0.18, p < 0.001) and Ct.Th (β = 0.15, p < 0.001) at the distal tibia, Tb.Th (β = 0.11, p < 0.001) and BV/TV (β = 0.10, p = 0.001) at the ultra-distal tibia, and total hip aBMD (β = 0.10, p < 0.001). Current physical activity was independently associated with cortical bone size, in terms of thicker cortex but not larger periosteal circumference, and higher bone strength at the distal

  1. Local Variation in Femoral Neck Cortical Bone: In Vitro Measured Bone Mineral Density, Geometry and Mechanical Properties.

    PubMed

    Coutts, Louise V; Jenkins, Thomas; Oreffo, Richard O C; Dunlop, Doug G; Cooper, Cyrus; Harvey, Nicholas C; Thurner, Philipp J

    2015-12-17

    Age- and disease (osteoporotic fractured and osteoarthritic tissue)-related changes in the distribution of cortical bone were examined, using a multimodality approach, including measurement of local density, geometry and mechanical properties, where changes in these properties can give rise to instability and increasing probability of fracture. In contrast to the majority of previously reported research, this study also focuses on the characteristic non-circular femoral neck cross-sectional geometry and variation in bone mineral density (BMD) around the femoral neck. Twenty-two osteoarthritic and 7 osteoporotic femoral neck slices, collected from elective and trauma-related arthroplasty, and 16 cadaveric donor tissue controls were tested mechanically using Reference Point Indentation (BioDent™, Active Life Technologies®, Santa Barbara, CA) and then scanned with in vitro-based radiography intended to replicate the dual-energy X-ray absorptiometry technique. All parameters were measured regionally around the circumference of the femoral neck, allowing examination of spatial variability within the cortical bone. Fractured tissue was less resistant to indentation in the thinner superolateral segment compared to other segments and other groups. BMD around the fractured femoral necks appeared more consistent than that of nonfractured tissue, where BMD was reduced in the superolateral segment for the other groups. Cortical bone was thin in the superolateral segment for all groups except for the osteoarthritic group, and was thicker in the inferomedial segment for both osteoarthritic and fractured groups, resulting in the largest variation in buckling ratio (ratio of cortical bone diameter to cortical bone thickness) around the femoral neck for the fractured group. With age, healthy controls appeared to have lower inferomedial cortical thickness, whereas no significant differences in Reference Point Indentation measurements and density were observed. The study has

  2. Rapid increase of carbonate in cortical bones of hens during laying period.

    PubMed

    Li, Z; Li, Q; Wang, S-J; Zhang, L; Qiu, J-Y; Wu, Y; Zhou, Z-L

    2016-12-01

    The incorporation of carbonate has been recognized as an evident change in bone mineral (bioapatite) during aging. Laying hens (Gushi layer) at 4 stages of age (8 hens each stage) were studied by Raman spectroscopy and X-ray radiography to investigate the mineralogical changes and bone density, respectively. Cortical bones of the humerus and femur show a rapid increase of carbonate (∼1.9 wt.%) from sexual maturity to the peak of hens' laying period, while the densities of the cortical bones are relatively stable. Before sexual maturity, the density of the cortical bones increases considerably during aging. However, after the peak of the laying period, only femoral density continues elevating. Carbonate contents in the cortical bones reach the maximum at the peak of the laying period. Two pathways (halted growth of density and Ca-release due to the CO3 incorporation) could both contribute to the intense Ca requirement for egg laying. Crystallization, however, has no significant changes during aging and the laying period. This study could shed light on the mechanism of mineral losses due to CO3 incorporation, and also shows the advantages of Raman spectroscopy in tracking mineral loss in poultry bone.

  3. Effect of cryo-induced microcracks on microindentation of hydrated cortical bone tissue

    SciTech Connect

    Yin Ling; Venkatesan, Sudharshan; Webb, Daryl; Kalyanasundaram, Shankar; Qin Qinghua

    2009-08-15

    Microcracks accumulate in cortical bone tissue as a consequence of everyday cyclic loading. However, it remains unclear to what extent microdamage accumulation contributes to an increase in fracture risk. A cryo-preparation technique was applied to induce microcracks in cortical bone tissue. Microcracks with lengths up to approximately 20 {mu}m, which were initiated mainly on the boundaries of haversian canals, were observed with cryo-scanning electron microscopy. A microindentation technique was applied to study the mechanical loading effect on the microcracked hydrated bone tissue. The microindentation patterns were section-scanned using confocal laser scanning microscopy to understand the deformation and bone damage mechanisms made by mechanical loading. The results show that there was no significant difference with respect to microhardness between the original and microcracked hydrated cortical bone tissues (ANOVA, p > 0.05). The cryo-induced microcracks in the bone tissue were not propagated further under the mechanical loads applied. The deformation mechanism of the microcracked cortical bone tissue was plastic deformation, not brittle fracture.

  4. Effect of microstructure on micromechanical performance of dry cortical bone tissues

    SciTech Connect

    Yin Ling; Venkatesan, Sudharshan; Kalyanasundaram, Shankar; Qin Qinghua

    2009-12-15

    The mechanical properties of bone depend on composition and structure. Previous studies have focused on macroscopic fracture behavior of bone. In the present study, we performed microindentation studies to understand the deformation properties and microcrack-microstructure interactions of dry cortical bone. Dry cortical bone tissues from lamb femurs were tested using Vickers indentation with loads of 0.245-9.8 N. We examined the effect of bone microstructure on deformation and crack propagation using scanning electron microscopy (SEM). The results showed the significant effect of cortical bone microstructure on indentation deformation and microcrack propagation. The indentation deformation of the dry cortical bone was basically plastic at any applied load with a pronounced viscoelastic recovery, in particular at lower loads. More microcracks up to a length of approximately 20 {mu}m occurred when the applied load was increased. At loads of 4.9 N and higher, most microcracks were found to develop from the boundaries of haversian canals, osteocyte lacunae and canaliculi. Some microcracks propagated from the parallel direction of the longitudinal interstitial lamellae. At loads 0.45 N and lower, no visible microcracks were observed.

  5. Material properties of mandibular cortical bone in the American alligator, Alligator mississippiensis.

    PubMed

    Zapata, Uriel; Metzger, Keith; Wang, Qian; Elsey, Ruth M; Ross, Callum F; Dechow, Paul C

    2010-03-01

    This study reports the elastic material properties of cortical bone in the mandible of juvenile Alligator mississippiensis obtained by using an ultrasonic wave technique. The elastic modulus, the shear modulus, and Poisson's ratio were measured on 42 cylindrical Alligator bone specimens obtained from the lingual and facial surfaces of 4 fresh Alligator mandibles. The data suggest that the elastic properties of alligator mandibular cortical bone are similar to those found in mammals and are orthotropic. The properties most resemble those found in the cortex of mammalian postcranial long bones where the bone is most stiff in one direction and much less stiff in the two remaining orthogonal directions. This is different from cortical bone found in the mandibles of humans and some monkeys, where the bone has greatest stiffness in one direction, much less stiffness in another direction, and an intermediate amount in the third orthogonal direction. This difference suggests a relationship between levels of orthotropy and bending stress. The comparability of these elastic moduli to those of other vertebrates suggest that the high bone strain magnitudes recorded from the alligator mandible in vivo are not attributable to a lower stiffness of alligator mandibular bone.

  6. Effect of aging on the transverse toughness of human cortical bone: evaluation by R-curves.

    PubMed

    Koester, K J; Barth, H D; Ritchie, R O

    2011-10-01

    The age-related deterioration in the quality (e.g., strength and fracture resistance) and quantity (e.g., bone-mineral density) of human bone, together with increased life expectancy, is responsible for increasing incidence of bone fracture in the elderly. The present study describes ex vivo fracture experiments to quantitatively assess the effect of aging on the fracture toughness properties of human cortical bone specifically in the transverse (breaking) orientation. Because bone exhibits rising crack-growth resistance with crack extension, the aging-related transverse toughness is evaluated in terms of resistance-curve (R-curve) behavior, measured for bone taken from a wide range of age groups (25-74 years). Using this approach, both the ex vivo crack-initiation and crack-growth toughness are determined and are found to deteriorate with age; however, the effect is far smaller than that reported for the longitudinal toughness of cortical bone. Whereas the longitudinal crack-growth toughness has been reported to be reduced by almost an order of magnitude for human cortical bone over this age range, the corresponding age-related decrease in transverse toughness is merely ~14%. Similar to that reported for X-ray irradiated bone, with aging cracks in the transverse direction are subjected to an increasing incidence of crack deflection, principally along the cement lines, but the deflections are smaller and result in a generally less tortuous crack path.

  7. An approach to the histomorphological and histochemical variations of the humerus cortical bone through human ontogeny

    PubMed Central

    Cambra-Moo, Oscar; Nacarino Meneses, Carmen; Rodríguez Barbero, Miguel Ángel; García Gil, Orosia; Rascón Pérez, Josefina; Rello-Varona, Santiago; D'Angelo, Manuel; Campo Martín, Manuel; González Martín, Armando

    2014-01-01

    For many years, clinical and non-clinical investigations have investigated cortical bone structure in an attempt to address questions related to normal bone development, mineralisation, pathologies and even evolutionary trends in our lineage (adaptations). Research in the fields of medicine, materials science, physical anthropology, palaeontology, and even archaeobiology has contributed interesting data. However, many questions remain regarding the histomorphological and histochemical variations in human cortical bone during different stages of life. In the present work, we describe a study of long bone cortex transformations during ontogeny. We analysed cross-sections of 15 human humeri histomorphologically and histochemically from perinatal to adult age, marking and quantifying the spatial distribution of bone tissue types using GIS software and analysing the mineral composition and crystallinity of the mineralised cortex using Raman spectroscopy and X-ray diffraction. Our results allowed us to propose that human cortical bone undergoes three main ‘events’ through ontogeny that critically change the proportions and structure of the cortex. In early development, bone is not well mineralised and proportionally presents a wide cortex that narrows through the end of childhood. Before reaching complete maturity, the bone mineral area increases, allowing the bone to nearly reach the adult size. The medullary cavity is reduced, and the mineral areas have a highly ordered crystalline structure. The last event occurs in adulthood, when the ‘oldest’ individuals present a reduced mineralised area, with increasing non-mineralised cavities (including the medullary cavity) and reduced crystalline organisation. PMID:24660964

  8. Loss of Prostaglandin E2-induced Extra Cortical Bone after its Withdrawal in Rats

    NASA Technical Reports Server (NTRS)

    Jee, Webster S. S.; Ke, Hua Zhu; Li, Xiao Jian

    1992-01-01

    The object of this study was to determine the fate of PGE2-induced new cortical bone mass after withdrawal of PGE2 administration. Seven-month-old male Sprague-Dawley rats were given subcutaneous injections of 1, 3 and 6 mg PGE2/kg/day for 60 days and then withdrawn for 60 and 120 days (on/off treatment). Histomorphometric analyses were performed on double-fluorescent-labeled undecalcified tibial shaft sections (proximal to the tibiofibular junction). In a previous report we showed that after 60, 120 and 180 days of daily PGE2 (on)treatment, a new steady state was achieved marked by increased total bone area (+ 16%, +25% and + 34% with 1, 3 and 6 mg PGE2/kg/day) when compared to age-matched controls. The continuous PGE2 treatment stimulated periosteal and endocortical lamellar bone formation, activated endocortical woven trabecular bone formation and intracortical bone resorption. These responses increased cortical bone mass since the bone formation exceeded bone resorption. The current study showed that after withdrawal of PGE2 for 60 and 120 days, the extra endocortical bone, which was induced by the first 60-days treatment, was resorbed, but the new subperiosteal bone persisted resulting in a tibial shaft with larger cross sectional and marrow areas. Despite that, there was still the same amount of bone mass in these shafts as in age-related controls. A new steady state was achieved after 60 days of withdrawal, in which the bone mass and bone formation activity approximated that of age-related controls. It was concluded that maintaining the extra PGE2-induced cortical bone mass depends on continuous daily administration of PGE2.

  9. Loss of Prostaglandin E2-induced Extra Cortical Bone After its Withdrawal in Rats

    NASA Technical Reports Server (NTRS)

    Jee, Webster S. S.; Ke, Hua Zhu; Li, Xiao Jian

    1992-01-01

    The object of this study was to determine the fate of PGE2-(Prostaglandin E2) induced new cortical bone mass after withdrawal of PGE2 administration. Seven-month-old male Sprague-Dawley rats were given subcutaneous injections of 1, 3 and 6 mg PGE2/kg/day for 60 days and then withdrawn for 60 and 120 days (on/off treatment). Histomorphometric analyses were performed on double-fluorescent-labeled undecalcified tibial shaft sections (proximal to the tibiofibular junction). In a previous report we showed that after 60, 120 and 180 days of daily PGE2 (on)treatment, a new steady state was achieved marked by increased total bone area (+16%, +25% and +34% with 1, 3 and 6 mg PGE2/kg/day) when compared to age-matched controls. The continuous PGE2 treatment stimulated periosteal and endocortical lamellar bone formation, activated endocortical woven trabecular bone formation and intracortical bone resorption. These responses increased cortical bone mass since the bone formation exceeded bone resorption. The current study showed that after withdrawal of PGE2 for 60 and 120 days, the extra endocortical bone, which was induced by the first 60-days treatment, was resorbed, but the new subperiosteal bone persisted resulting in a tibial shaft with larger cross sectional and marrow areas. Despite that, there was still the same amount of bone mass in these shafts as in age-related controls. A new steady state was achieved after 60 days of withdrawal, in which the bone mass and bone formation activity approximated that of age-related controls. It was concluded that maintaining the extra PGE2-induced cortical bone mass depends on continuous daily administration of PGE2.

  10. Alendronate treatment alters bone tissues at multiple structural levels in healthy canine cortical bone.

    PubMed

    Acevedo, Claire; Bale, Hrishikesh; Gludovatz, Bernd; Wat, Amy; Tang, Simon Y; Wang, Mingyue; Busse, Björn; Zimmermann, Elizabeth A; Schaible, Eric; Allen, Matthew R; Burr, David B; Ritchie, Robert O

    2015-12-01

    Bisphosphonates are widely used to treat osteoporosis, but have been associated with atypical femoral fractures (AFFs) in the long term, which raises a critical health problem for the aging population. Several clinical studies have suggested that the occurrence of AFFs may be related to the bisphosphonate-induced changes of bone turnover, but large discrepancies in the results of these studies indicate that the salient mechanisms responsible for any loss in fracture resistance are still unclear. Here the role of bisphosphonates is examined in terms of the potential deterioration in fracture resistance resulting from both intrinsic (plasticity) and extrinsic (shielding) toughening mechanisms, which operate over a wide range of length-scales. Specifically, we compare the mechanical properties of two groups of humeri from healthy beagles, one control group comprising eight females (oral doses of saline vehicle, 1 mL/kg/day, 3 years) and one treated group comprising nine females (oral doses of alendronate used to treat osteoporosis, 0.2mg/kg/day, 3 years). Our data demonstrate treatment-specific reorganization of bone tissue identified at multiple length-scales mainly through advanced synchrotron x-ray experiments. We confirm that bisphosphonate treatments can increase non-enzymatic collagen cross-linking at molecular scales, which critically restricts plasticity associated with fibrillar sliding, and hence intrinsic toughening, at nanoscales. We also observe changes in the intracortical architecture of treated bone at microscales, with partial filling of the Haversian canals and reduction of osteon number. We hypothesize that the reduced plasticity associated with BP treatments may induce an increase in microcrack accumulation and growth under cyclic daily loadings, and potentially increase the susceptibility of cortical bone to atypical (fatigue-like) fractures.

  11. Regional variability in secondary remodeling within long bone cortices of catarrhine primates: the influence of bone growth history.

    PubMed

    McFarlin, Shannon C; Terranova, Carl J; Zihlman, Adrienne L; Enlow, Donald H; Bromage, Timothy G

    2008-09-01

    Secondary intracortical remodeling of bone varies considerably among and within vertebrate skeletons. Although prior research has shed important light on its biomechanical significance, factors accounting for this variability remain poorly understood. We examined regional patterning of secondary osteonal bone in an ontogenetic series of wild-collected primates, at the midshaft femur and humerus of Chlorocebus (Cercopithecus) aethiops (n = 32) and Hylobates lar (n = 28), and the midshaft femur of Pan troglodytes (n = 12). Our major objectives were: 1) to determine whether secondary osteonal bone exhibits significant regional patterning across inner, mid-cortical and outer circumferential cortical rings within cross-sections; and if so, 2) to consider the manner in which this regional patterning may reflect the influence of relative tissue age and other circumstances of bone growth. Using same field-of-view images of 100-microm-thick cross-sections acquired in brightfield and circularly polarized light microscopy, we quantified the percent area of secondary osteonal bone (%HAV) for whole cross-sections and across the three circumferential rings within cross-sections. We expected bone areas with inner and middle rings to exhibit higher %HAV than the outer cortical ring within cross-sections, the latter comprising tissues of more recent depositional history. Observations of primary bone microstructural development provided an additional context in which to evaluate regional patterning of intracortical remodeling. Results demonstrated significant regional variability in %HAV within all skeletal sites. As predicted,%HAV was usually lowest in the outer cortical ring within cross-sections. However, regional patterning across inner vs. mid-cortical rings showed a more variable pattern across taxa, age classes, and skeletal sites examined. Observations of primary bone microstructure revealed that the distribution of endosteally deposited bone had an important influence on

  12. Regional variability in secondary remodeling within long bone cortices of catarrhine primates: the influence of bone growth history

    PubMed Central

    McFarlin, Shannon C; Terranova, Carl J; Zihlman, Adrienne L; Enlow, Donald H; Bromage, Timothy G

    2008-01-01

    Secondary intracortical remodeling of bone varies considerably among and within vertebrate skeletons. Although prior research has shed important light on its biomechanical significance, factors accounting for this variability remain poorly understood. We examined regional patterning of secondary osteonal bone in an ontogenetic series of wild-collected primates, at the midshaft femur and humerus of Chlorocebus (Cercopithecus) aethiops (n = 32) and Hylobates lar (n = 28), and the midshaft femur of Pan troglodytes (n = 12). Our major objectives were: 1) to determine whether secondary osteonal bone exhibits significant regional patterning across inner, mid-cortical and outer circumferential cortical rings within cross-sections; and if so, 2) to consider the manner in which this regional patterning may reflect the influence of relative tissue age and other circumstances of bone growth. Using same field-of-view images of 100-µm-thick cross-sections acquired in brightfield and circularly polarized light microscopy, we quantified the percent area of secondary osteonal bone (%HAV) for whole cross-sections and across the three circumferential rings within cross-sections. We expected bone areas with inner and middle rings to exhibit higher %HAV than the outer cortical ring within cross-sections, the latter comprising tissues of more recent depositional history. Observations of primary bone microstructural development provided an additional context in which to evaluate regional patterning of intracortical remodeling. Results demonstrated significant regional variability in %HAV within all skeletal sites. As predicted,%HAV was usually lowest in the outer cortical ring within cross-sections. However, regional patterning across inner vs. mid-cortical rings showed a more variable pattern across taxa, age classes, and skeletal sites examined. Observations of primary bone microstructure revealed that the distribution of endosteally deposited bone had an important influence on the

  13. Quantitative genetics of cortical bone mass in healthy 10-year-old children from the Fels Longitudinal Study

    PubMed Central

    Duren, Dana L.; Sherwood, Richard J.; Choh, Audrey C.; Czerwinski, Stefan A.; Chumlea, Wm. Cameron; Lee, Miryoung; Sun, Shumei S.; Demerath, Ellen W.; Siervogel, Roger M.; Towne, Bradford

    2007-01-01

    The genetic influences on bone mass likely change throughout the life span, but most genetic studies of bone mass regulation have focused on adults. There is, however, a growing awareness of the importance of genes influencing the acquisition of bone mass during childhood on lifelong bone health. The present investigation examines genetic influences on childhood bone mass by estimating the residual heritabilities of different measures of second metacarpal bone mass in a sample of 600 10-year-old participants from 144 families in the Fels Longitudinal Study. Bivariate quantitative genetic analyses were conducted to estimate genetic correlations between cortical bone mass measures, and measures of bone growth and development. Using a maximum likelihood-based variance components method for pedigree data, we found a residual heritability estimate of 0.71 for second metacarpal cortical index. Residual heritability estimates for individual measures of cortical bone (e.g., lateral cortical thickness, medial cortical thickness) ranged from 0.47 to 0.58, at this pre-pubertal childhood age. Low genetic correlations were found between cortical bone measures and both bone length and skeletal age. However, after Bonferonni adjustment for multiple testing, ρG was not significantly different from 0 for any of these pairs of traits. Results of this investigation provide evidence of significant genetic control over bone mass largely independent of maturation while bones are actively growing and before rapid accrual of bone that typically occurs during puberty. PMID:17056310

  14. Evaluation of bound and pore water in cortical bone using ultrashort-TE MRI.

    PubMed

    Chen, Jun; Grogan, Shawn P; Shao, Hongda; D'Lima, Darryl; Bydder, Graeme M; Wu, Zhihong; Du, Jiang

    2015-12-01

    Bone water exists in different states with the majority bound to the organic matrix and to mineral, and a smaller fraction in 'free' form in the pores of cortical bone. In this study, we aimed to develop and evaluate ultrashort-TE (UTE) MRI techniques for the assessment of T2*, T1 and concentration of collagen-bound and pore water in cortical bone using a 3-T clinical whole-body scanner. UTE MRI, together with an isotope study using tritiated and distilled water (THO-H2O) exchange, as well as gravimetric analysis, were performed on ten sectioned bovine bone samples. In addition, 32 human cortical bone samples were prepared for comparison between the pore water concentration measured with UTE MRI and the cortical porosity derived from micro-computed tomography (μCT). A short T2* of 0.27 ± 0.03 ms and T1 of 116 ± 6 ms were observed for collagen-bound water in bovine bone. A longer T2* of 1.84 ± 0.52 ms and T1 of 527 ± 28 ms were observed for pore water in bovine bone. UTE MRI measurements showed a pore water concentration of 4.7-5.3% by volume and collagen-bound water concentration of 15.7-17.9% in bovine bone. THO-H2O exchange studies showed a pore water concentration of 5.9 ± 0.6% and collagen-bound water concentration of 18.1 ± 2.1% in bovine bone. Gravimetric analysis showed a pore water concentration of 6.3 ± 0.8% and collagen-bound water concentration of 19.2 ± 3.6% in bovine bone. A mineral water concentration of 9.5 ± 0.6% was derived in bovine bone with the THO-H2O exchange study. UTE-measured pore water concentration is highly correlated (R(2) = 0.72, p < 0.0001) with μCT porosity in the human cortical bone study. Both bovine and human bone studies suggest that UTE sequences could reliably measure collagen-bound and pore water concentration in cortical bone using a clinical scanner.

  15. Quantifying Temperature-Dependent T1 Changes in Cortical Bone Using Ultrashort Echo-Time MRI

    PubMed Central

    Han, Misung; Rieke, Viola; Scott, Serena J; Ozhinsky, Eugene; Salgaonkar, Vasant A; Jones, Peter D; Larson, Peder E Z; Diederich, Chris J; Krug, Roland

    2015-01-01

    Purpose To demonstrate the feasibility of using ultrashort echo-time (UTE) MRI to quantify T1 changes in cortical bone due to heating. Methods Variable flip-angle T1 mapping combined with 3D UTE imaging was used to measure T1 in cortical bone. A calibration experiment was performed to detect T1 changes with temperature in ex vivo cortical bone samples from a bovine femur. Ultrasound heating experiments were performed using an interstitial applicator in ex vivo bovine femur specimens, and heat-induced T1 changes were quantified. Results The calibration experiment demonstrated that T1 increases with temperature in cortical bone. We observed a linear relationship between temperature and T1 with a linear coefficient of 0.67–0.84 ms/°C over a range of 25–70°C. The ultrasound heating experiments showed increased T1 changes in the heated regions, and the relationship between the temperature changes and T1 changes was similar to that of the calibration. Conclusion We demonstrated a temperature dependence of T1 in ex vivo cortical bone using a variable flip-angle UTE T1 mapping method. PMID:26390357

  16. Assessment of compressive failure process of cortical bone materials using damage-based model.

    PubMed

    Ng, Theng Pin; R Koloor, S S; Djuansjah, J R P; Abdul Kadir, M R

    2017-02-01

    The main failure factors of cortical bone are aging or osteoporosis, accident and high energy trauma or physiological activities. However, the mechanism of damage evolution coupled with yield criterion is considered as one of the unclear subjects in failure analysis of cortical bone materials. Therefore, this study attempts to assess the structural response and progressive failure process of cortical bone using a brittle damaged plasticity model. For this reason, several compressive tests are performed on cortical bone specimens made of bovine femur, in order to obtain the structural response and mechanical properties of the material. Complementary finite element (FE) model of the sample and test is prepared to simulate the elastic-to-damage behavior of the cortical bone using the brittle damaged plasticity model. The FE model is validated in a comparative method using the predicted and measured structural response as load-compressive displacement through simulation and experiment. FE results indicated that the compressive damage initiated and propagated at central region where maximum equivalent plastic strain is computed, which coincided with the degradation of structural compressive stiffness followed by a vast amount of strain energy dissipation. The parameter of compressive damage rate, which is a function dependent on damage parameter and the plastic strain is examined for different rates. Results show that considering a similar rate to the initial slope of the damage parameter in the experiment would give a better sense for prediction of compressive failure.

  17. A comparative study of young and mature bovine cortical bone.

    PubMed

    Manilay, Zherrina; Novitskaya, Ekaterina; Sadovnikov, Ernest; McKittrick, Joanna

    2013-02-01

    The mechanical properties and microstructure of young and mature bovine femur bone were investigated by optical microscopy and compression testing in the longitudinal and transverse directions for untreated, deproteinized and demineralized cases. Optical microscopy revealed that mature bone has a more established and less porous microstructure compared to young bone. Mature bone was found to be stronger in both directions for the untreated and deproteinized cases. Mature untreated bone was also found to be stiffer and less tough compared to young bone in both directions. These results are related to the increase in mineralization of mature bone and significant microstructural differences. Young bone was found to be stronger in both directions for the demineralized case, which is attributed to alterations in the collagen network with age.

  18. Mechanistic fracture criteria for the failure of human cortical bone

    SciTech Connect

    Nalla, Ravi K.; Kinney, John H.; Ritchie, Robert O.

    2002-12-13

    A mechanistic understanding of fracture in human bone is critical to predicting fracture risk associated with age and disease. Despite extensive work, a mechanistic framework for describing how the underlying microstructure affects the failure mode in bone is lacking.

  19. Clinical, haematological and radiological evaluation of fragmented autogenous cortical bone grafting of radius in dogs.

    PubMed

    Grover, R K; Sobti, V K

    1998-07-01

    In eight clinically healthy dogs, a midshaft diaphyseal defect of 2 cm was created in the right radius ulna. This gap was maintained by fixing a four hole sherman bone plate on the radius. In four dogs, the gap was filled with autogenous cancellous bone grafts (2-5 mm in diameter) harvested from the proximal end of the tibia (group 1). In the remaining 4 dogs, the fracture gap was filled with autogenous cortical bone fragments (ACBF) of 2-5 mm diameter made from the same 2 cm piece of bone removed from the radius. While comparing various clinical observations, it appeared that healing of the wounds and bearing of the weight on the grafted limb in dogs subjected to ACBF graft were similar to those given autogenous cancellous bone graft. In radiographs, taken on the 30th day in group 1, a fairly good amount of callus was found emerging from fracture ends but the whole of the bone graft area was not covered by bony density even on the 60th day. In group 2 (ACBF), 45th day radiograph revealed that the callus from the fracture end was mixing up with the cortical bone fragments, and at the 60th day, the callus was clearly found invading the cortical bone fragments grafted in the fracture gap.

  20. Hindlimb unloading has a greater effect on cortical compared with cancellous bone in mature female rats

    NASA Technical Reports Server (NTRS)

    Allen, Matthew R.; Bloomfield, Susan A.

    2003-01-01

    This study was designed to determine the effects of 28 days of hindlimb unloading (HU) on the mature female rat skeleton. In vivo proximal tibia bone mineral density and geometry of HU and cage control (CC) rats were measured with peripheral quantitative computed tomography (pQCT) on days 0 and 28. Postmortem pQCT, histomorphometry, and mechanical testing were performed on tibiae and femora. After 28 days, HU animals had significantly higher daily food consumption (+39%) and lower serum estradiol levels (-49%, P = 0.079) compared with CC. Proximal tibia bone mineral content and cortical bone area significantly declined over 28 days in HU animals (-4.0 and 4.8%, respectively), whereas total and cancellous bone mineral densities were unchanged. HU animals had lower cortical bone formation rates and mineralizing surface at tibial midshaft, whereas differences in similar properties were not detected in cancellous bone of the distal femur. These results suggest that cortical bone, rather than cancellous bone, is more prominently affected by unloading in skeletally mature retired breeder female rats.

  1. Suppression of autophagy in osteocytes does not modify the adverse effects of glucocorticoids on cortical bone.

    PubMed

    Piemontese, Marilina; Onal, Melda; Xiong, Jinhu; Wang, Yiying; Almeida, Maria; Thostenson, Jeff D; Weinstein, Robert S; Manolagas, Stavros C; O'Brien, Charles A

    2015-06-01

    Glucocorticoid excess decreases bone mass and strength in part by acting directly on osteoblasts and osteocytes, but the mechanisms remain unclear. Macroautophagy (herein referred to as autophagy) is a lysosome-based recycling pathway that promotes the turnover of intracellular components and can promote cell function and survival under stressful conditions. Recent studies have shown that glucocorticoids stimulate autophagy in osteocytes, suggesting that autophagy may oppose the negative actions of glucocorticoids on this cell type. To address this possibility, we compared the impact of prednisolone administration on the skeletons of adult mice in which autophagy was suppressed in osteocytes, via deletion of Atg7 with a Dmp1-Cre transgene, to their control littermates. In control mice, prednisolone increased autophagic flux in osteocyte-enriched bone as measured by LC3 conversion, but this change did not occur in the mice lacking Atg7 in osteocytes. Nonetheless, prednisolone reduced femoral cortical thickness, increased cortical porosity, and reduced bone strength to similar extents in mice with and without autophagy in osteocytes. Prednisolone also suppressed osteoblast number and bone formation in the cancellous bone of control mice. As shown previously, Atg7 deletion in osteocytes reduced osteoblast number and bone formation in cancellous bone, but these parameters were not further reduced by prednisolone administration. In cortical bone, prednisolone elevated osteoclast number to a similar extent in both genotypes. Taken together, these results demonstrate that although glucocorticoids stimulate autophagy in osteocytes, suppression of autophagy in this cell type does not worsen the negative impact of glucocorticoids on the skeleton.

  2. Variations of mechanical property of out circumferential lamellae in cortical bone along the radial by nanoindentation

    NASA Astrophysics Data System (ADS)

    Sun, Xingdong; Zhao, Hongwei; Yu, Yang; Zhang, Shizhong; Ma, Zhichao; Li, Ning; Yu, Miao; Hou, Pengliang

    2016-11-01

    Because the out circumferential lamellae have a special protective effect on the cortical bone, it is very important to understand the variations of the mechanical property of the out circumferential lamellae in cortical bone. For the purpose, the elasticity modulus and hardness of out circumferential lamellae in cortical bone were investigated in two orthogonal planes by nanoindentation, and the comparisons were made for both elasticity modulus and hardness between the two orthogonal planes. From the experiments, the decreasing trend was discovered for elasticity modulus from inside to outside in the transverse plane and ruleless variations tendency was presented in the longitudinal plane. The hardness presented the same variations in two orthogonal planes with elasticity modulus in respective plane. In the same layer, the elasticity modulus in the transverse plane was higher than that in the longitudinal plane, and the difference values between them turned to be smaller. In contrast, the hardness in the longitudinal plane was higher than that in the transverse plane in all the layers. From the heterogeneity and the microstructure of the material, the influence factors were discussed. A soft to hard structure model was put forward, and the coordinating protection mechanism of buffer and support was described. Investigation of variations of mechanical properties of out circumferential lamellae in cortical bone can provide some new understanding in researches of fracture of bone, interface load effect and design of bone graft.

  3. A new algorithm to improve assessment of cortical bone geometry in pQCT.

    PubMed

    Cervinka, Tomas; Sievänen, Harri; Lala, Deena; Cheung, Angela M; Giangregorio, Lora; Hyttinen, Jari

    2015-12-01

    High-resolution peripheral quantitative computed tomography (HR-pQCT) is now considered the leading imaging modality in bone research. However, access to HR-pQCT is limited and image acquisition is mainly constrained only for the distal third of appendicular bones. Hence, the conventional pQCT is still commonly used despite inaccurate threshold-based segmentation of cortical bone that can compromise the assessment of whole bone strength. Therefore, this study addressed whether the use of an advanced image processing algorithm, called OBS, can enhance the cortical bone analysis in pQCT images and provide similar information to HR-pQCT when the same volumes of interest are analyzed. Using pQCT images of European Forearm Phantom (EFP), and pQCT and HR-pQCT images of the distal tibia from 15 cadavers, we compared the results from the OBS algorithm with those obtained from common pQCT analyses, HR-pQCT manual analysis (considered as a gold standard) and common HR-pQCT analysis dual threshold technique.We found that the use of OBS segmentation method for pQCT image analysis of EFP data did not result in any improvement but reached similar performance in cortical bone delineation as did HR-pQCT image analyses. The assessments of cortical cross-sectional bone area and thickness by OBS algorithm were overestimated by less than 4% while area moments of inertia were overestimated by ~5–10%, depending on reference HR-pQCT analysis method. In conclusion, this study showed that the OBS algorithm performed reasonably well and it offers a promising practical tool to enhance the assessment of cortical bone geometry in pQCT.

  4. Mandibular Inferior Cortical Bone Thickness on Panoramic Radiographs in Patients using Bisphosphonates

    PubMed Central

    Torres, Sandra R.; Chen, Curtis S. K.; Leroux, Brian G.; Lee, Peggy P.; Hollender, Lars G.; Lloid, Michelle; Drew, Shane Patrick; Schubert, Mark M.

    2015-01-01

    Objective To detect dimensional changes in the mandibular cortical bone associated with bisphosphonate (BP) use and to correlate the measurements of the cortical bone with the cumulative dose of BP therapy. Methods Mandibular inferior cortical bone thickness (MICBT) was measured under the mental foramen from panoramic radiographs of subjects using BP with and without bisphosphonate related osteonecrosis of the jaws (BRONJ) and controls. Results The highest mean MICBT was observed in BRONJ subjects 6.81 (± 1.35 mm), when compared to subjects using BP 5.44 (± 1.09 mm) and controls 4.79 (± 0.85 mm; p<0.01). The mean MICBT of BRONJ subjects was significantly higher than that of subjects using BP without BRONJ. There was a correlation between MICBT and cumulative dose of zolendronate. Conclusion The MICBT on panoramic radiograph is a potentially useful tool for the detection of dimensional changes associated with BP therapy. PMID:25864820

  5. The relationship between porosity and specific surface in human cortical bone is subject specific.

    PubMed

    Lerebours, C; Thomas, C D L; Clement, J G; Buenzli, P R; Pivonka, P

    2015-03-01

    A characteristic relationship for bone between bone volume fraction (BV/TV) and specific surface (BS/TV) has previously been proposed based on 2D histological measurements. This relationship has been suggested to be bone intrinsic, i.e., to not depend on bone type, bone site and health state. In these studies, only limited data comes from cortical bone. The aim of this paper was to investigate the relationship between BV/TV and BS/TV in human cortical bone using high-resolution micro-CT imaging and the correlations with subject-specific biometric data such as height, weight, age and sex. Images from femoral cortical bone samples of the Melbourne Femur Collection were obtained using synchrotron radiation micro-CT (SPring8, Japan). Sixteen bone samples from thirteen individuals were analysed in order to find bone volume fraction values ranging from 0.20 to 1. Finally, morphological models of the tissue microstructure were developed to help explain the relationship between BV/TV and BS/TV. Our experimental findings indicate that the BV/TV vs BS/TV relationship is subject specific rather than intrinsic. Sex and pore density were statistically correlated with the individual curves. However no correlation was found with body height, weight or age. Experimental cortical data points deviate from interpolating curves previously proposed in the literature. However, these curves are largely based on data points from trabecular bone samples. This finding challenges the universality of the curve: highly porous cortical bone is significantly different to trabecular bone of the same porosity. Finally, our morphological models suggest that changes in BV/TV within the same sample can be explained by an increase in pore area rather than in pore density. This is consistent with the proposed mechanisms of age-related endocortical bone loss. In addition, these morphological models highlight that the relationship between BV/TV and BS/TV is not linear at high BV/TV as suggested in the

  6. Some basic relationships between density values in cancellous and cortical bone.

    PubMed

    Zioupos, Peter; Cook, Richard B; Hutchinson, John R

    2008-01-01

    Density is a salient property of bone and plays a crucial role in determining the mechanical properties of both its cancellous and cortical structural forms. Density is defined in a number of ways at either the bone tissue (D(app), apparent) or the bone material level (D(mat), material). The concept of density is relatively simple, but measuring it in the context of bone is a complex issue. The third dimension of the problem is the concept of porosity, or BV/TV (ratio of bone material volume over tissue volume). Recent investigations from our laboratory have revealed an interdependence of D(app) and D(mat) in the cancellous bone of at least four different cohorts of human patients. To clarify the underlying causes of this behaviour, we produced here equivalent relationships from specimens originating from cortical and cancellous areas of the same bone. Plots of D(app) vs. D(mat) showed that D(mat) was not a monotonic function of increasing D(app), but instead showed a 'boomerang'-like pattern. By empirically dissecting the data in two regions for D(app) above and below a value equal to 1.3gcm(-3), we were able to objectively isolate the bone in trabecular and compact forms. Our findings may have implications not only for the segregation of bone in these two structural forms, but also for the mechanobiological and physiological processes that govern the regulation of compact and trabecular bone areas.

  7. Modalities for Visualization of Cortical Bone Remodeling: The Past, Present, and Future.

    PubMed

    Harrison, Kimberly D; Cooper, David M L

    2015-01-01

    Bone's ability to respond to load-related phenomena and repair microdamage is achieved through the remodeling process, which renews bone by activating groups of cells known as basic multicellular units (BMUs). The products of BMUs, secondary osteons, have been extensively studied via classic two-dimensional techniques, which have provided a wealth of information on how histomorphology relates to skeletal structure and function. Remodeling is critical in maintaining healthy bone tissue; however, in osteoporotic bone, imbalanced resorption results in increased bone fragility and fracture. With increasing life expectancy, such degenerative bone diseases are a growing concern. The three-dimensional (3D) morphology of BMUs and their correlation to function, however, are not well-characterized and little is known about the specific mechanisms that initiate and regulate their activity within cortical bone. We believe a key limitation has been the lack of 3D information about BMU morphology and activity. Thus, this paper reviews methodologies for 3D investigation of cortical bone remodeling and, specifically, structures associated with BMU activity (resorption spaces) and the structures they create (secondary osteons), spanning from histology to modern ex vivo imaging modalities, culminating with the growing potential of in vivo imaging. This collection of papers focuses on the theme of "putting the 'why' back into bone architecture." Remodeling is one of two mechanisms "how" bone structure is dynamically modified and thus an improved 3D understanding of this fundamental process is crucial to ultimately understanding the "why."

  8. Abnormalities in Cortical Bone, Trabecular Plates, and Stiffness in Postmenopausal Women Treated With Glucocorticoids

    PubMed Central

    Sutter, Stephanie; Nishiyama, Kyle K.; Kepley, Anna; Zhou, Bin; Wang, Ji; McMahon, Donald J.; Guo, X. Edward

    2014-01-01

    Context: The mechanisms by which glucocorticoids (GCs) increase skeletal fragility are not well understood. Objective: The objective of the study was to evaluate the microarchitecture, trabecular morphology, and biomechanical properties of bone in postmenopausal women treated with GCs. Design: This was a case-control study. Setting: The study was conducted at a university hospital outpatient facility. Patients: Postmenopausal women treated with oral GCs for longer than 3 months (n = 30) and age/race-matched controls (n = 60) participated in the study. Main Outcome Measures: Areal bone mineral density aBMD (BMD) by dual-energy x-ray absorptiometry (DXA) was measured. Trabecular and cortical volumetric BMD (vBMD) and microarchitecture by high-resolution peripheral computed tomography of the distal radius and tibia were also measured. Whole-bone stiffness was estimated by finite element analysis. A novel technique, individual trabecula segmentation, was used to evaluate trabecular type (as plate or rod), orientation, and connectivity. Results: DXA T-scores did not differ significantly at any site. GC subjects had significantly lower total, cortical, and trabecular vBMD and thinner cortices, fewer, thinner, more widely, and irregularly spaced trabeculae. They had fewer trabecular plates, fewer axially aligned trabeculae, and lower trabecular connectivity. Differences ranged from 4% to 65% for these trabecular measures and 5% to 17% for the cortical measures. Whole-bone stiffness was significantly lower (11%–16%) in GC subjects. Markers of bone formation (osteocalcin and amino-terminal propeptide of type I procollagen) and resorption (C-telopeptide) were lower in the GC subjects. Conclusions: Despite similar areal BMD by DXA, GC-treated women had abnormal cortical and trabecular vBMD and microarchitecture at both the radius and tibia, including fewer trabecular plates, a less axially aligned trabecular network, lower trabecular connectivity, thinner cortices, and

  9. The effects of bone density and crestal cortical bone thickness on micromotion and peri-implant bone strain distribution in an immediately loaded implant: a nonlinear finite element analysis

    PubMed Central

    2016-01-01

    Purpose This study investigated the effects of bone density and crestal cortical bone thickness at the implant-placement site on micromotion (relative displacement between the implant and bone) and the peri-implant bone strain distribution under immediate-loading conditions. Methods A three-dimensional finite element model of the posterior mandible with an implant was constructed. Various bone parameters were simulated, including low or high cancellous bone density, low or high crestal cortical bone density, and crestal cortical bone thicknesses ranging from 0.5 to 2.5 mm. Delayed- and immediate-loading conditions were simulated. A buccolingual oblique load of 200 N was applied to the top of the abutment. Results The maximum extent of micromotion was approximately 100 μm in the low-density cancellous bone models, whereas it was under 30 μm in the high-density cancellous bone models. Crestal cortical bone thickness significantly affected the maximum micromotion in the low-density cancellous bone models. The minimum principal strain in the peri-implant cortical bone was affected by the density of the crestal cortical bone and cancellous bone to the same degree for both delayed and immediate loading. In the low-density cancellous bone models under immediate loading, the minimum principal strain in the peri-implant cortical bone decreased with an increase in crestal cortical bone thickness. Conclusions Cancellous bone density may be a critical factor for avoiding excessive micromotion in immediately loaded implants. Crestal cortical bone thickness significantly affected the maximum extent of micromotion and peri-implant bone strain in simulations of low-density cancellous bone under immediate loading. PMID:27382504

  10. The aging of Wolff's "law": ontogeny and responses to mechanical loading in cortical bone.

    PubMed

    Pearson, Osbjorn M; Lieberman, Daniel E

    2004-01-01

    The premise that bones grow and remodel throughout life to adapt to their mechanical environment is often called Wolff's law. Wolff's law, however, is not always true, and in fact comprises a variety of different processes that are best considered separately. Here we review the molecular and physiological mechanisms by which bone senses, transduces, and responds to mechanical loads, and the effects of aging processes on the relationship (if any) between cortical bone form and mechanical function. Experimental and comparative evidence suggests that cortical bone is primarily responsive to strain prior to sexual maturity, both in terms of the rate of new bone growth (modeling) as well as rates of turnover (Haversian remodeling). Rates of modeling and Haversian remodeling, however, vary greatly at different skeletal sites. In addition, there is no simple relationship between the orientation of loads in long bone diaphyses and their cross-sectional geometry. In combination, these data caution against assuming without testing adaptationist views about form-function relationships in order to infer adult activity patterns from skeletal features such as cross-sectional geometry, cortical bones density, and musculo-skeletal stress markers. Efforts to infer function from shape in the human skeleton should be based on biomechanical and developmental models that are experimentally tested and validated.

  11. Optical phase analysis in drilled cortical porcine bones using digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Tavera R., César G.; De la Torre I., Manuel H.; Flores M., J. Mauricio; Luna H., Juan M.; Briones R., Manuel de J.; Mendoza S., Fernando

    2016-03-01

    A study in porcine femoral bones with and without the presence of cortical drilling is presented. An out of plane digital holographic interferometer is used to retrieve the optical phase during the controlled compression tests. These tests try to simulate physiological deformations in postmortem healthy bones and compare their mechanical response with those having a cortical hole. The cortical drilling technique is widely used in medical procedures to fix plaques and metallic frames to a bone recovering from a fracture. Several materials and drilling techniques are used for this purpose. In this work we analyze the superficial variations of the bone when different drilling diameters are used. By means of the optical phase it is possible to recover the superficial deformation of the tissue during a controlled deformation with high resolution. This information could give a better understand about the micro structural variations of the bone instead of a bulk response. As proof of principle, several tests were performed to register the modes and ranges of the displacements for compressive loads. From these tests notorious differences are observed between both groups of bones, having less structural stiffness the drilled ones as expected. However, the bone's characteristic to absorb and adjust itself due the load is also highly affected according to the number of holes. Results from different kind of samples (undrilled and drilled) are presented and discussed in this work.

  12. Nonlinear hierarchical multiscale modeling of cortical bone considering its nanoscale microstructure.

    PubMed

    Ghanbari, J; Naghdabadi, R

    2009-07-22

    We have used a hierarchical multiscale modeling scheme for the analysis of cortical bone considering it as a nanocomposite. This scheme consists of definition of two boundary value problems, one for macroscale, and another for microscale. The coupling between these scales is done by using the homogenization technique. At every material point in which the constitutive model is needed, a microscale boundary value problem is defined using a macroscopic kinematical quantity and solved. Using the described scheme, we have studied elastic properties of cortical bone considering its nanoscale microstructural constituents with various mineral volume fractions. Since the microstructure of bone consists of mineral platelet with nanometer size embedded in a protein matrix, it is similar to the microstructure of soft matrix nanocomposites reinforced with hard nanostructures. Considering a representative volume element (RVE) of the microstructure of bone as the microscale problem in our hierarchical multiscale modeling scheme, the global behavior of bone is obtained under various macroscopic loading conditions. This scheme may be suitable for modeling arbitrary bone geometries subjected to a variety of loading conditions. Using the presented method, mechanical properties of cortical bone including elastic moduli and Poisson's ratios in two major directions and shear modulus is obtained for different mineral volume fractions.

  13. Micromechanical Modeling of R-Curve Behaviors in Human Cortical Bone

    PubMed Central

    Chan, Kwai S.; Nicolella, Daniel P.

    2012-01-01

    The risk of bone fracture increases with age because of a variety of factors that include, among others, decreasing bone quantity and quality due to increasing porosity and crack density with age. Experimental evidence has indicated that changes in bone microstructure and trace mineralization with age can result in different crack-tip strain field and fracture response, leading to different fracture mechanisms and R-curve behaviors. In this paper, a micromechanical modeling approach is developed to predict the R-curve response of bone tissue by delineating fracture mechanisms that lead to microdamage and ligament bridging by incorporating the influence of increasing porosity and crack density with age. The effects of age on fracture of human femur cortical bone due to porosity (bone quantity) and bone quality (crack density) with age are then examined via the micromechanical model. PMID:23158217

  14. Micromechanical modeling of R-curve behaviors in human cortical bone.

    PubMed

    Chan, Kwai S; Nicolella, Daniel P

    2012-12-01

    The risk of bone fracture increases with age because of a variety of factors that include, among others, decreasing bone quantity and quality due to increasing porosity and crack density with age. Experimental evidence has indicated that changes in bone microstructure and trace mineralization with age can result in different crack-tip strain field and fracture response, leading to different fracture mechanisms and R-curve behaviors. In this paper, a micromechanical modeling approach is developed to predict the R-curve response of bone tissue by delineating fracture mechanisms that lead to microdamage and ligament bridging by incorporating the influence of increasing porosity and crack density with age. The effects of age on fracture of human femur cortical bone due to porosity (bone quantity) and bone quality (crack density) with age are then examined via the micromechanical model.

  15. The effect of high voltage, high frequency pulsed electric field on slain ovine cortical bone.

    PubMed

    Asgarifar, Hajarossadat; Oloyede, Adekunle; Zare, Firuz

    2014-04-01

    High power, high frequency pulsed electric fields known as pulsed power (PP) has been applied recently in biology and medicine. However, little attention has been paid to investigate the application of pulse power in musculoskeletal system and its possible effect on functional behavior and biomechanical properties of bone tissue. This paper presents the first research investigating whether or not PP can be applied safely on bone tissue as a stimuli and what will be the possible effect of these signals on the characteristics of cortical bone by comparing the mechanical properties of this type of bone pre and post expose to PP and in comparison with the control samples. A positive buck-boost converter was applied to generate adjustable high voltage, high frequency pulses (up to 500 V and 10 kHz). The functional behavior of bone in response to pulse power excitation was elucidated by applying compressive loading until failure. The stiffness, failure stress (strength) and the total fracture energy (bone toughness) were determined as a measure of the main bone characteristics. Furthermore, an ultrasonic technique was applied to determine and comprise bone elasticity before and after pulse power stimulation. The elastic property of cortical bone samples appeared to remain unchanged following exposure to pulse power excitation for all three orthogonal directions obtained from ultrasonic technique and similarly from the compression test. Nevertheless, the compressive strength and toughness of bone samples were increased when they were exposed to 66 h of high power pulsed electromagnetic field compared to the control samples. As the toughness and the strength of the cortical bone tissue are directly associated with the quality and integrity of the collagen matrix whereas its stiffness is primarily related to bone mineral content these overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network

  16. Implant design and its effects on osseointegration over time within cortical and trabecular bone.

    PubMed

    Beutel, Bryan G; Danna, Natalie R; Granato, Rodrigo; Bonfante, Estevam A; Marin, Charles; Tovar, Nick; Suzuki, Marcelo; Coelho, Paulo G

    2016-08-01

    Healing chambers present at the interface between implant and bone have become a target for improving osseointegration. The objective of the present study was to compare osseointegration of several implant healing chamber configurations at early time points and regions of interest within bone using an in vivo animal femur model. Six implants, each with a different healing chamber configuration, were surgically implanted into each femur of six skeletally mature beagle dogs (n = 12 implants per dog, total n = 72). The implants were harvested at 3 and 5 weeks post-implantation, non-decalcified processed to slides, and underwent histomorphometry with measurement of bone-to-implant contact (BIC) and bone area fraction occupied (BAFO) within healing chambers at both cortical and trabecular bone sites. Microscopy demonstrated predominantly woven bone at 3 weeks and initial replacement of woven bone by lamellar bone by 5 weeks. BIC and BAFO were both significantly increased by 5 weeks (p < 0.001), and significantly higher in cortical than trabecular bone (p < 0.001). The trapezoidal healing chamber design demonstrated a higher BIC than other configurations. Overall, a strong temporal and region-specific dependence of implant osseointegration in femurs was noted. Moreover, the findings suggest that a trapezoidal healing chamber configuration may facilitate the best osseointegration. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1091-1097, 2016.

  17. Relationships of the group velocity of the time-reversed Lamb wave with bone properties in cortical bone in vitro.

    PubMed

    Lee, Kang Il; Yoon, Suk Wang

    2017-02-27

    The present study aims to investigate the feasibility of using the time-reversed Lamb wave as a new method for noninvasive characterization of long cortical bones. The group velocity of the time-reversed Lamb wave launched by using the modified time reversal method was measured in 15 bovine tibiae, and their correlations with the bone properties of the tibia were examined. The group velocity of the time-reversed Lamb wave showed significant positive correlations with the bone properties (r=0.55-0.81). The best univariate predictor of the group velocity of the time-reversed Lamb wave was the cortical thickness, yielding an adjusted squared correlation coefficient (r(2)) of 0.64. These results imply that the group velocity of the time-reversed Lamb wave, in addition to the velocities of the first arriving signal and the slow guided wave, could potentially be used as a discriminator for osteoporosis.

  18. Prostaglandin E2 Increased Rat Cortical Bone Mass When Administered Immediately Following Ovariectomy

    NASA Technical Reports Server (NTRS)

    Ke, Hua Zhu; Jee, Webster S.S.; Zeng, Qing Qiang; Li, Mei; Lin, Bai Yun

    1993-01-01

    To investigate the effects of ovariectomy and the simultaneous administration of prostaglandin E2 (PGE2) on rat tibial shaft cortical bone histomorphometry, thirty-five 3 month-old female Sprague-Dawley rats were either ovariectomized (OVX), or sham ovariectomy (sham-OVX). The OVX rats were divided into three groups and treated with 0, 1 and 6 mg PGE2/kg/day for 90 days. The double fluorescent labeled undecalcified tibial shaft cross sections (proximal to the tibiofibular junction) of all the subjects were used for histomorphometry analysis. No differences in cross-sectional area and cortical bone area were found between sham-OVX and OVX controls, but OVX increased marrow area, intracortical porosity area and endocortical eroded perimeter. Periosteal and endocortical bone formation rates decreased with aging yet OVX prevented these changes. These OVX-induced increases in marrow area and endocortical eroded perimeter were prevented by 1 mg PGE2/kg/day treatment and added bone to periosteal and endocortical surfaces and to the marrow cavity. At the 6 mg/kg/day dose level, PGE2-treated OVX rats increased total tissue area, cortical bone area, marrow trabmular bone area, minimal cortical width and intracortical porosity area, and decreased marrow area compared to basal, sham-OVX and OVX controls. In addition, periosteal bone formation was elevated in the 6 mg PGE2/kg/day-treated OVX rats compared to OVX controls. Endocortical eroded perimeter increased from basal and sham-OVX control levels, but decreased from OVX control levels in the 6 mg PGE2/kg/day-treated OVX rats. Our study confirmed that ovariectomy does not cause osteopenia in tibial shaft cortical bone in rats, but it does stimulate endocortical bone resorption and enlarges marrow area. The new findings from the present study demonstrate that PGE2 prevents the OVX-induced increases in endocortical bone resorption and marrow area and adds additional bone to periosteal and endocortical surfaces and to marrow

  19. Calorie restriction aggravated cortical and trabecular bone architecture in ovariectomy-induced estrogen-deficient rats.

    PubMed

    Ahn, Hyejin; Seo, Dong-Hyun; Kim, Han Sung; Choue, Ryowon

    2014-08-01

    We hypothesized that calorie restriction (CR) and estrogen deficiency (ovariectomy [OVX]) would aggravate bone biomarkers and structural parameters in rats. Seven-week-old female Sprague-Dawley rats were randomized to sham-operated groups and fed either an ad libitum diet (SHAM-AL) or a CR diet (SHAM-CR); ovariectomy-operated groups were fed an ad libitum diet (OVX-AL) or a CR diet (OVX-CR). For 8 weeks, the OVX-AL and SHAM-AL groups were fed the same diet, whereas CR groups were fed a diet containing 50% fewer calories. Bone-related biomarkers and structural parameters (OC; deoxypyridinoline [DPD]; N-terminal telopeptide, NTx; architecture and mineralization; and microcomputed tomography images) were analyzed at the end of the experiment. The serum OC levels of calorie-restricted groups (SHAM-CR and OVX-CR) were significantly lower than those of the AL groups (SHAM-AL and OVX-AL) (P < .05). Urinary DPD levels of calorie-restricted and ovariectomized groups were higher than those of their counterparts (P < .05), whereas urinary NTx levels of calorie-restricted groups were higher than those of AL groups (P < .05). In regard to trabecular bone, the calorie-restricted and ovariectomized groups had lower values of bone volume to total volume, trabecular number, and bone mineral density, but higher values of trabecular separation than those of their counterparts (P < .05). Regarding cortical bone, the calorie-restricted groups had reduced values of bone volume, mean polar moment of inertia, and cortical thickness compared to the AL groups (P < .05). In conclusion, severe CR with or without OVX during the growth period in rats is equally detrimental to bone; CR has detrimental effects on trabecular and cortical bone; and estrogen deficiency only had an effect on trabecular bone.

  20. Experimental and numerical analysis of Izod impact test of cortical bone tissue

    NASA Astrophysics Data System (ADS)

    Abdel-Wahab, A. A.; Silberschmidt, V. V.

    2012-05-01

    Bones can only sustain loads until a certain limit, beyond which they fail. Usually, the reasons for bone fracture are traumatic falls, sports injuries, and engagement in transport or industrial accidents. A proper treatment of bones and prevention of their fracture can be supported by in-depth understanding of deformation and fracture behavior of this tissue in such dynamic events. In this paper, a combination of experimental and numerical analysis was carried out in order to comprehend the fracture behavior of cortical bone tissue. Experimental tests were performed to study the transient dynamic behavior of cortical bone tissue under impact bending loading. The variability of absorbed energy for different cortex positions and notch depths was studied using Izod impact tests. Also, Extended Finite-Element Method implemented into the commercial finite-element software Abaqus was used to simulate the crack initiation and growth processes in a cantilever beam of cortical bone exposed to impact loading using the Izod loading scheme. The simulation results show a good agreement with the experimental data.

  1. How Tough is Human Cortical Bone? In-Situ Measurements on Realistically Short Cracks

    SciTech Connect

    Ritchie, Robert O; Koester, K. J.; Ager III, J. W.; Ritchie, R.O.

    2008-05-10

    Bone is more difficult to break than to split. Although this is well known, and many studies exist on the behavior of long cracks in bone, there is a need for data on the orientation-dependent crack-growth resistance behavior of human cortical bone which accurately assesses its toughness at appropriate size-scales. Here we use in-situ mechanical testing in the scanning electron microscope and x-ray computed tomography to examine how physiologically-pertinent short (<600 mu m) cracks propagate in both the transverse and longitudinal orientations in cortical bone, using both crack-deflection/twist mechanics and nonlinear-elastic fracture mechanics to determine crack-resistance curves. We find that after only 500 mu m of cracking, the driving force for crack propagation was more than five times higher in the transverse (breaking) direction than in the longitudinal (splitting) direction due to major crack deflections/twists principally at cement sheathes. Indeed, our results show that the true transverse toughness of cortical bone is far higher than previously reported. However, the toughness in the longitudinal orientation, where cracks tend to follow the cement lines, is quite low at these small crack sizes; it is only when cracks become several millimeters in length that bridging mechanisms can develop leading to the (larger-crack) toughnesses generally quoted for bone.

  2. Non-nuclear-initiated actions of the estrogen receptor protect cortical bone mass.

    PubMed

    Bartell, Shoshana M; Han, Li; Kim, Ha-neui; Kim, Sung Hoon; Katzenellenbogen, John A; Katzenellenbogen, Benita S; Chambliss, Ken L; Shaul, Philip W; Roberson, Paula K; Weinstein, Robert S; Jilka, Robert L; Almeida, Maria; Manolagas, Stavros C

    2013-04-01

    Extensive evidence has suggested that at least some of the effects of estrogens on bone are mediated via extranuclear estrogen receptor α signaling. However, definitive proof for this contention and the extent to which such effects may contribute to the overall protective effects of estrogens on bone maintenance have remained elusive. Here, we investigated the ability of a 17β-estradiol (E2) dendrimer conjugate (EDC), incapable of stimulating nuclear-initiated actions of estrogen receptor α, to prevent the effects of ovariectomy (OVX) on the murine skeleton. We report that EDC was as potent as an equimolar dose of E2 in preventing bone loss in the cortical compartment that represents 80% of the entire skeleton, but was ineffective on cancellous bone. In contrast, E2 was effective in both compartments. Consistent with its effect on cortical bone mass, EDC partially prevented the loss of both vertebral and femoral strength. In addition, EDC, as did E2, prevented the OVX-induced increase in osteoclastogenesis, osteoblastogenesis, and oxidative stress. Nonetheless, the OVX-induced decrease in uterine weight was unaltered by EDC but was restored by E2. These results demonstrate that the protection of cortical bone mass by estrogens is mediated, at least in part, via a mechanism that is distinct from the classic mechanism of estrogen action on reproductive organs.

  3. Mesenchymal stem cells from cortical bone demonstrate increased clonal incidence, potency, and developmental capacity compared to their bone marrow-derived counterparts.

    PubMed

    Blashki, Daniel; Murphy, Matthew B; Ferrari, Mauro; Simmons, Paul J; Tasciotti, Ennio

    2016-01-01

    In this study, we show that matrix dense cortical bone is the more potent compartment of bone than bone marrow as a stromal source for mesenchymal stem cells as isolated from adult rats. Lineage-depleted cortical bone-mesenchymal stem cells demonstrated >150-fold enrichment of colony forming unit-fibroblasts per cell incidence. compared to lineage-depleted bone marrow-mesenchymal stem cells, corresponding to a 70-fold increase in absolute recovered colony forming unit-fibroblasts. The composite phenotype Lin(-)/CD45(-)/CD31(-)/VLA-1(+)/Thy-1(+) enriched for clonogenic mesenchymal stem cells solely from cortical bone-derived cells from which 70% of clones spontaneously differentiated into all lineages of bone, cartilage, and adipose. Both populations generated vascularized bone tissue within subcutaneous implanted collagen scaffolds; however, cortical bone-derived cells formed significantly more osteoid than bone marrow counterparts, quantified by histology. The data demonstrate that our isolation protocol identifies and validates mesenchymal stem cells with superior clonal, proliferative, and developmental potential from cortical bone compared to the bone marrow niche although marrow persists as the typical source for mesenchymal stem cells both in the literature and current pre-clinical therapies.

  4. Progressive post-yield behavior of human cortical bone in shear

    PubMed Central

    Dong, Xuanliang N.; Luo, Qing; Wang, Xiaodu

    2012-01-01

    Bone fragility depends on its post-yield behavior since most of energy dissipation in bone occurs during the post-yield deformation. Previous studies have investigated the progressive changes in the post-yield behavior of human cortical bone in tension and compression using a novel progressive loading scheme. However, little is known regarding the progressive changes in the post-yield behavior of bone in shear. The objective of this short study was to address this issue by testing bone specimens in an inclined double notch shear configuration using the progressive loading protocol. The results of this study indicated that the shear modulus of bone decreased with respect to the applied strain, and the rate of degradation was about 50% less than those previously observed in compression and tension tests. In addition, a quasi-linear relationship between the plastic and applied strains was observed in shear mode, which is similar to those previously reported in tension and compression tests. However, the viscous responses of bone (i.e. relaxation time constants and stress magnitude) demonstrated slight differences in shear compared with those observed in tension and compression tests. Nonetheless, the results of this study suggest that the intrinsic mechanism of plastic deformation of human cortical bone may be independent of loading modes. PMID:23219946

  5. Hopkinson bar techniques for the intermediate strain rate testing of bovine cortical bone

    PubMed Central

    Cloete, T. J.; Paul, G.; Ismail, E. B.

    2014-01-01

    Detailed knowledge of the dynamic viscoelastic properties of bone is required to understand the mechanisms of macroscopic bone fracture in humans, and other terrestrial mammals, during impact loading events (e.g. falls, vehicle accidents, etc.). While the dynamic response of bone has been studied for several decades, high-quality data remain limited, and it is only within the last decade that techniques for conducting dynamic compression tests on bone at near-constant strain rates have been developed. Furthermore, there appears to be a lack of published bone data in the intermediate strain rate (ISR) range (i.e. 1–100 s−1), which represents a regime in which many dynamic bone fractures occur. In this paper, preliminary results for the dynamic compression of bovine cortical bone in the ISR regime are presented. The results are obtained using two Hopkinson-bar-related techniques, namely the conventional split Hopkinson bar arrangement incorporating a novel cone-in-tube striker design, and the recently developed wedge bar apparatus. The experimental results show a rapid transition in the strain rate sensitive behaviour of bovine cortical bone in the ISR range. Finally, a new viscoelastic model is proposed that captures the observed transition behaviour. PMID:24711493

  6. Hopkinson bar techniques for the intermediate strain rate testing of bovine cortical bone.

    PubMed

    Cloete, T J; Paul, G; Ismail, E B

    2014-05-13

    Detailed knowledge of the dynamic viscoelastic properties of bone is required to understand the mechanisms of macroscopic bone fracture in humans, and other terrestrial mammals, during impact loading events (e.g. falls, vehicle accidents, etc.). While the dynamic response of bone has been studied for several decades, high-quality data remain limited, and it is only within the last decade that techniques for conducting dynamic compression tests on bone at near-constant strain rates have been developed. Furthermore, there appears to be a lack of published bone data in the intermediate strain rate (ISR) range (i.e. 1-100 s(-1)), which represents a regime in which many dynamic bone fractures occur. In this paper, preliminary results for the dynamic compression of bovine cortical bone in the ISR regime are presented. The results are obtained using two Hopkinson-bar-related techniques, namely the conventional split Hopkinson bar arrangement incorporating a novel cone-in-tube striker design, and the recently developed wedge bar apparatus. The experimental results show a rapid transition in the strain rate sensitive behaviour of bovine cortical bone in the ISR range. Finally, a new viscoelastic model is proposed that captures the observed transition behaviour.

  7. Ultrasonic wave velocity measurement in small polymeric and cortical bone specimens

    NASA Technical Reports Server (NTRS)

    Kohles, S. S.; Bowers, J. R.; Vailas, A. C.; Vanderby, R. Jr

    1997-01-01

    A system was refined for the determination of the bulk ultrasonic wave propagation velocity in small cortical bone specimens. Longitudinal and shear wave propagations were measured using ceramic, piezoelectric 20 and 5 MHz transducers, respectively. Results of the pulse transmission technique were refined via the measurement of the system delay time. The precision and accuracy of the system were quantified using small specimens of polyoxymethylene, polystyrene-butadiene, and high-density polyethylene. These polymeric materials had known acoustic properties, similarity of propagation velocities to cortical bone, and minimal sample inhomogeneity. Dependence of longitudinal and transverse specimen dimensions upon propagation times was quantified. To confirm the consistency of longitudinal wave propagation in small cortical bone specimens (< 1.0 mm), cut-down specimens were prepared from a normal rat femur. Finally, cortical samples were prepared from each of ten normal rat femora, and Young's moduli (Eii), shear moduli (Gij), and Poisson ratios (Vij) were measured. For all specimens (bone, polyoxymethylene, polystyrene-butadiene, and high-density polyethylene), strong linear correlations (R2 > 0.997) were maintained between propagation time and distance throughout the size ranges down to less than 0.4 mm. Results for polyoxymethylene, polystyrene-butadiene, and high-density polyethylene were accurate to within 5 percent of reported literature values. Measurement repeatability (precision) improved with an increase in the wave transmission distance (propagating dimension). No statistically significant effect due to the transverse dimension was detected.

  8. Ultrasonic wave velocity measurement in small polymeric and cortical bone specimens.

    PubMed

    Kohles, S S; Bowers, J R; Vailas, A C; Vanderby, R

    1997-08-01

    A system was refined for the determination of the bulk ultrasonic wave propagation velocity in small cortical bone specimens. Longitudinal and shear wave propagations were measured using ceramic, piezoelectric 20 and 5 MHz transducers, respectively. Results of the pulse transmission technique were refined via the measurement of the system delay time. The precision and accuracy of the system were quantified using small specimens of polyoxymethylene, polystyrene-butadiene, and high-density polyethylene. These polymeric materials had known acoustic properties, similarity of propagation velocities to cortical bone, and minimal sample inhomogeneity. Dependence of longitudinal and transverse specimen dimensions upon propagation times was quantified. To confirm the consistency of longitudinal wave propagation in small cortical bone specimens (< 1.0 mm), cut-down specimens were prepared from a normal rat femur. Finally, cortical samples were prepared from each of ten normal rat femora, and Young's moduli (Eii), shear moduli (Gij), and Poisson ratios (Vij) were measured. For all specimens (bone, polyoxymethylene, polystyrene-butadiene, and high-density polyethylene), strong linear correlations (R2 > 0.997) were maintained between propagation time and distance throughout the size ranges down to less than 0.4 mm. Results for polyoxymethylene, polystyrene-butadiene, and high-density polyethylene were accurate to within 5 percent of reported literature values. Measurement repeatability (precision) improved with an increase in the wave transmission distance (propagating dimension). No statistically significant effect due to the transverse dimension was detected.

  9. Genetic algorithms-based inversion of multimode guided waves for cortical bone characterization

    NASA Astrophysics Data System (ADS)

    Bochud, N.; Vallet, Q.; Bala, Y.; Follet, H.; Minonzio, J.-G.; Laugier, P.

    2016-10-01

    Recent progress in quantitative ultrasound has exploited the multimode waveguide response of long bones. Measurements of the guided modes, along with suitable waveguide modeling, have the potential to infer strength-related factors such as stiffness (mainly determined by cortical porosity) and cortical thickness. However, the development of such model-based approaches is challenging, in particular because of the multiparametric nature of the inverse problem. Current estimation methods in the bone field rely on a number of assumptions for pairing the incomplete experimental data with the theoretical guided modes (e.g. semi-automatic selection and classification of the data). The availability of an alternative inversion scheme that is user-independent is highly desirable. Thus, this paper introduces an efficient inversion method based on genetic algorithms using multimode guided waves, in which the mode-order is kept blind. Prior to its evaluation on bone, our proposal is validated using laboratory-controlled measurements on isotropic plates and bone-mimicking phantoms. The results show that the model parameters (i.e. cortical thickness and porosity) estimated from measurements on a few ex vivo human radii are in good agreement with the reference values derived from x-ray micro-computed tomography. Further, the cortical thickness estimated from in vivo measurements at the third from the distal end of the radius is in good agreement with the values delivered by site-matched high-resolution x-ray peripheral computed tomography.

  10. Anisotropic mode-dependent damage of cortical bone using the extended finite element method (XFEM).

    PubMed

    Feerick, Emer M; Liu, Xiangyi Cheryl; McGarry, Patrick

    2013-04-01

    Anisotropic damage initiation criteria were developed for extended finite element method (XFEM) prediction of crack initiation and propagation in cortical bone. This anisotropic damage model was shown to accurately predict the dependence of crack propagation patterns and fracture toughness on mode mixity and on osteon orientations, as observed experimentally. Four initiation criteria were developed to define crack trajectories relative to osteon orientations and max principal stress for single and mixed mode fracture. Alternate failure strengths for tensile and compressive loading were defined to simulate the asymmetric failure of cortical bone. The dependence of cortical bone elasticity and failure properties on osteon orientation is analogous to the dependence of composite properties on fibre orientation. Hence, three of the criteria developed in the present study were based upon the Hashin damage criteria. The fourth criterion developed was defined in terms of the max principal stress. This criterion initiated off axis crack growth perpendicular to the direction of the max principal stress. The unique set of parameters calibrated accurately predicted; (i) the relationship between fracture energy and osteon alignment, (ii) the alternate crack patterns for both varying osteon orientations and loading angle. Application of the developed anisotropic damage models to cortical bone screw pullout highlights the potential application for orthopaedic device design evaluation.

  11. Adaptations in tibial cortical thickness and total volumetric bone density in postmenopausal South Asian women with small bone size.

    PubMed

    Darling, Andrea L; Hakim, Ohood A; Horton, Khim; Gibbs, Michelle A; Cui, Liang; Berry, Jacqueline L; Lanham-New, Susan A; Hart, Kathryn H

    2013-07-01

    There is some evidence that South Asian women may have an increased risk of osteoporosis compared with Caucasian women, although whether South Asians are at increased risk of fracture is not clear. It is unknown whether older South Asian women differ from Caucasian women in bone geometry. This is the first study, to the authors' knowledge, to use peripheral Quantitative Computed Tomography (pQCT) to measure radial and tibial bone geometry in postmenopausal South Asian women. In comparison to Caucasian women, Asian women had smaller bone size at the 4% (-18% p<0.001) and 66% radius (-15% p=0.04) as well as increased total density at the 4% (+13% p=0.01) radius. For the tibia, they had a smaller bone size at the 4% (-16% p=0.005) and 14% (-38% p=0.002) sites. Also, Asians had increased cortical thickness (-17% p=0.04) at the 38% tibia, (in proportion to bone size (-30% p=0.003)). Furthermore, at the 4% and 14% tibia there were increased total densities (+12% to +29% p<0.01) and at the 14% tibia there was increased cortical density (+5% p=0.005) in Asians. These differences at the 14% and 38% (but not 4%) remained statistically significant after adjustment for Body Mass Index (BMI). These adaptations are similar to those seen previously in Chinese women. Asian women had reduced strength at the radius and tibia, evidenced by the 20-40% reduction in both polar Strength Strain Index (SSIp) and fracture load (under bending). Overall, the smaller bone size in South Asians is likely to be detrimental to bone strength, despite some adaptations in tibial cortical thickness and tibial and radial density which may partially compensate for this.

  12. Microarchitecture and bone quality in the human calcaneus: local variations of fabric anisotropy.

    PubMed

    Souzanchi, Mohammad F; Palacio-Mancheno, Paolo; Borisov, Yury A; Cardoso, Luis; Cowin, Stephen C

    2012-12-01

    The local variability of microarchitecture of human trabecular calcaneus bone is investigated using high-resolution micro-computed tomography (µCT) scanning. The fabric tensor is employed as the measure of the microarchitecture of the pore structure of a porous medium. It is hypothesized that a fabric tensor-dependent poroelastic ultrasound approach will more effectively predict the data variance than will porosity alone. The specific aims of the present study are as follows: (1) to quantify the morphology and local anisotropy of the calcaneus microarchitecture with respect to anatomical directions; (2) to determine the interdependence, or lack thereof, of microarchitecture parameters, fabric, and volumetric bone mineral density (vBMD); and (3) to determine the relative ability of vBMD and fabric measurements in evaluating the variance in ultrasound wave velocity measurements along orthogonal directions in the human calcaneus. Our results show that the microarchitecture in the analyzed regions of human calcanei is anisotropic, with a preferred alignment along the posterior-anterior direction. Strong correlation was found between most scalar architectural parameters and vBMD. However, no statistical correlation was found between vBMD and the fabric components, the measures of the pore microstructure orientation. Therefore, among the parameters usually considered for cancellous bone (ie, classic histomorphometric parameters such as porosity, trabecular thickness, number and separation), only fabric components explain the data variance that cannot be explained by vBMD, a global mass measurement, which lacks the sensitivity and selectivity to distinguish osteoporotic from healthy subjects because it is insensitive to directional changes in bone architecture. This study demonstrates that a multidirectional, fabric-dependent poroelastic ultrasound approach has the capability of characterizing anisotropic bone properties (bone quality) beyond bone mass, and could help to

  13. Extra-nuclear effects of estrogen on cortical bone in males require ERαAF-1

    PubMed Central

    Wu, J; Gustafsson, K L; Windahl, S H; Kim, S H; Katzenellenbogen, J A; Ohlsson, C; Lagerquist, M K

    2017-01-01

    Estradiol (E2) signaling via estrogen receptor alpha (ERα) is important for the male skeleton as demonstrated by ERα inactivation in both mice and man. ERα mediates estrogenic effects not only by translocating to the nucleus and affecting gene transcription but also by extra-nuclear actions e.g., triggering cytoplasmic signaling cascades. ERα contains various domains, and the role of activation function 1 (ERαAF-1) is known to be tissue specific. The aim of this study was to determine the importance of extra-nuclear estrogen effects for the skeleton in males and to determine the role of ERαAF-1 for mediating these effects. Five-month-old male wild-type (WT) and ERαAF-1-inactivated (ERαAF-10) mice were orchidectomized and treated with equimolar doses of 17β-estradiol (E2) or an estrogen dendrimer conjugate (EDC), which is incapable of entering the nucleus and thereby only initiates extra-nuclear ER actions or their corresponding vehicles for 3.5 weeks. As expected, E2 treatment increased cortical thickness and trabecular bone volume per total volume (BV/TV) in WT males. EDC treatment increased cortical thickness in WT males, whereas no effect was detected in trabecular bone. In ERαAF-10 males, E2 treatment increased cortical thickness, but did not affect trabecular bone. Interestingly, the effect of EDC on cortical bone was abolished in ERαAF-10 mice. In conclusion, extra-nuclear estrogen signaling affects cortical bone mass in males, and this effect is dependent on a functional ERαAF-1. Increased knowledge regarding estrogen signaling mechanisms in the regulation of the male skeleton may aid the development of new treatment options for male osteoporosis. PMID:28057769

  14. Extra-nuclear effects of estrogen on cortical bone in males require ERαAF-1.

    PubMed

    Farman, H H; Wu, J; Gustafsson, K L; Windahl, S H; Kim, S H; Katzenellenbogen, J A; Ohlsson, C; Lagerquist, M K

    2017-02-01

    Estradiol (E2) signaling via estrogen receptor alpha (ERα) is important for the male skeleton as demonstrated by ERα inactivation in both mice and man. ERα mediates estrogenic effects not only by translocating to the nucleus and affecting gene transcription but also by extra-nuclear actions e.g., triggering cytoplasmic signaling cascades. ERα contains various domains, and the role of activation function 1 (ERαAF-1) is known to be tissue specific. The aim of this study was to determine the importance of extra-nuclear estrogen effects for the skeleton in males and to determine the role of ERαAF-1 for mediating these effects. Five-month-old male wild-type (WT) and ERαAF-1-inactivated (ERαAF-1(0)) mice were orchidectomized and treated with equimolar doses of 17β-estradiol (E2) or an estrogen dendrimer conjugate (EDC), which is incapable of entering the nucleus and thereby only initiates extra-nuclear ER actions or their corresponding vehicles for 3.5 weeks. As expected, E2 treatment increased cortical thickness and trabecular bone volume per total volume (BV/TV) in WT males. EDC treatment increased cortical thickness in WT males, whereas no effect was detected in trabecular bone. In ERαAF-1(0) males, E2 treatment increased cortical thickness, but did not affect trabecular bone. Interestingly, the effect of EDC on cortical bone was abolished in ERαAF-1(0) mice. In conclusion, extra-nuclear estrogen signaling affects cortical bone mass in males, and this effect is dependent on a functional ERαAF-1. Increased knowledge regarding estrogen signaling mechanisms in the regulation of the male skeleton may aid the development of new treatment options for male osteoporosis.

  15. Phenotypic integration among trabecular and cortical bone traits establishes mechanical functionality of inbred mouse vertebrae.

    PubMed

    Tommasini, Steven M; Hu, Bin; Nadeau, Joseph H; Jepsen, Karl J

    2009-04-01

    Conventional approaches to identifying quantitative trait loci (QTLs) regulating bone mass and fragility are limited because they examine cortical and trabecular traits independently. Prior work examining long bones from young adult mice and humans indicated that skeletal traits are functionally related and that compensatory interactions among morphological and compositional traits are critical for establishing mechanical function. However, it is not known whether trait covariation (i.e., phenotypic integration) also is important for establishing mechanical function in more complex, corticocancellous structures. Covariation among trabecular, cortical, and compositional bone traits was examined in the context of mechanical functionality for L(4) vertebral bodies across a panel of 16-wk-old female AXB/BXA recombinant inbred (RI) mouse strains. The unique pattern of randomization of the A/J and C57BL/6J (B6) genome among the RI panel provides a powerful tool that can be used to measure the tendency for different traits to covary and to study the biology of complex traits. We tested the hypothesis that genetic variants affecting vertebral size and mass are buffered by changes in the relative amounts of cortical and trabecular bone and overall mineralization. Despite inheriting random sets of A/J and B6 genomes, the RI strains inherited nonrandom sets of cortical and trabecular bone traits. Path analysis, which is a multivariate analysis that shows how multiple traits covary simultaneously when confounding variables like body size are taken into consideration, showed that RI strains that tended to have smaller vertebrae relative to body size achieved mechanical functionality by increasing mineralization and the relative amounts of cortical and trabecular bone. The interdependence among corticocancellous traits in the vertebral body indicated that variation in trabecular bone traits among inbred mouse strains, which is often thought to arise from genetic factors, is also

  16. In situ observation of fracture behavior of canine cortical bone under bending.

    PubMed

    Lin, Zilan X; Xu, Zhi-Hui; An, Yuehuei H; Li, Xiaodong

    2016-05-01

    Cortical bone provides many important body functions and maintains the rigidness and elasticity of bone. A common failure mode for bone structure is fracture under a bending force. In the current study, the fracture behavior of canine cortical bone under three-point bending was observed in situ using an atomic force microscope (AFM), a scanning electron microscope (SEM), and an optical microscope to examine the fracture process in detail. Nanoindentation was carried out to determine the elastic modulus and hardness of different building blocks of the canine cortical bone. The results have shown that the special structure of Haversian systems has significant effects on directing crack propagation. Although Haversian systems contain previously believed weak points, and micro-cracks initiate within Haversian systems, our findings have demonstrated that macro-cracks typically form around the boundaries of Haversian systems, i.e. the cement lines. Micro-cracks that developed inside Haversian systems have the functions of absorbing and dissipating energy and slow down on expanding when interstitial tissue cannot hold any more pressure, then plastic deformation and fracture occur.

  17. Time Related Changes of Mineral and Collagen and Their Roles in Cortical Bone Mechanics of Ovariectomized Rabbits

    PubMed Central

    Xu, Chao; Wu, Zi-Xiang; Zhang, Yang; Feng, Ya-Fei; Yan, Ya-Bo; Lei, Wei

    2015-01-01

    As cortical bone has a hierarchical structure, the macroscopic bone strength may be affected by the alterations of mineral crystal and collagen, which are main components of cortical bone. Limited studies focused on the time related alterations of these two components in osteoporosis, and their contributions to bone mechanics at tissue level and whole-bone level. Therefore, the purpose of this study was to elucidate the time related changes of mineral and collagen in cortical bone of ovariectomized (OVX) rabbits, and to relate these changes to cortical bone nanomechanics and macromechanics. 40 Rabbits (7-month-old) were randomly allocated into two groups (OVX and sham). OVX group received bilateral ovariectomy operation. Sham group received sham-OVX operation. Cortical bone quality of five rabbits in each group were assessed by DXA, μCT, nanoindentation, Fourier transform infrared (FTIR) spectroscopy and biomechanical tests (3-point bending of femoral midshaft) at pre-OVX, 4, 6, and 8 weeks after OVX. As time increased from pre-OVX to 8 weeks, the mineral to matrix ratio decreased with time, while both collagen crosslink ratio and crystallinity increased with time in OVX group. Elastic modulus and hardness measured by nanoindentation, whole-bone strength measured by biomechanical tests all decreased in OVX group with time. Bone material properties measured by FTIR correlated well with nano or whole-bone level mechanics. However, bone mineral density (BMD), structure, tissue-level and whole-bone mechanical properties did not change with age in sham group. Our study demonstrated that OVX could affect the tissue-level mechanics and bone strength of cortical bone. And this influence was attributed to the time related alterations of mineral and collagen properties, which may help us to design earlier interventions and more effective treatment strategies on osteoporosis. PMID:26046792

  18. Elastic properties of external cortical bone in the craniofacial skeleton of the rhesus monkey.

    PubMed

    Wang, Qian; Dechow, Paul C

    2006-11-01

    Knowledge of elastic properties and of their variation in the cortical bone of the craniofacial skeleton is indispensable for creating accurate finite-element models to explore the biomechanics and adaptation of the skull in primates. In this study, we measured elastic properties of the external cortex of the rhesus monkey craniofacial skeleton, using an ultrasonic technique. Twenty-eight cylindrical cortical specimens were removed from each of six craniofacial skeletons of adult Macaca mulatta. Thickness, density, and a set of longitudinal and transverse ultrasonic velocities were measured on each specimen to allow calculation of the elastic properties in three dimensions, according to equations derived from Newton's second law and Hooke's law. The axes of maximum stiffness were determined by fitting longitudinal velocities measured along the perimeter of each cortical specimen to a sinusoidal function. Results showed significant differences in elastic properties between different functional areas of the rhesus cranium, and that many sites have a consistent orientation of maximum stiffness among specimens. Overall, the cortical bones of the rhesus monkey skull can be modeled as orthotropic in many regions, and as transversely isotropic in some regions, e.g., the supraorbital region. There are differences from human crania, suggesting that structural differences in skeletal form relate to differences in cortical material properties across species. These differences also suggest that we require more comparative data on elastic properties in primate craniofacial skeletons to explore effectively the functional significance of these differences, especially when these differences are elucidated through modeling approaches, such as finite-element modeling.

  19. Mesenchymal stem cells from cortical bone demonstrate increased clonal incidence, potency, and developmental capacity compared to their bone marrow–derived counterparts

    PubMed Central

    Blashki, Daniel; Murphy, Matthew B; Ferrari, Mauro; Simmons, Paul J; Tasciotti, Ennio

    2016-01-01

    In this study, we show that matrix dense cortical bone is the more potent compartment of bone than bone marrow as a stromal source for mesenchymal stem cells as isolated from adult rats. Lineage-depleted cortical bone-mesenchymal stem cells demonstrated >150-fold enrichment of colony forming unit–fibroblasts per cell incidence. compared to lineage-depleted bone marrow-mesenchymal stem cells, corresponding to a 70-fold increase in absolute recovered colony forming unit–fibroblasts. The composite phenotype Lin−/CD45−/CD31−/VLA-1+/Thy-1+ enriched for clonogenic mesenchymal stem cells solely from cortical bone–derived cells from which 70% of clones spontaneously differentiated into all lineages of bone, cartilage, and adipose. Both populations generated vascularized bone tissue within subcutaneous implanted collagen scaffolds; however, cortical bone–derived cells formed significantly more osteoid than bone marrow counterparts, quantified by histology. The data demonstrate that our isolation protocol identifies and validates mesenchymal stem cells with superior clonal, proliferative, and developmental potential from cortical bone compared to the bone marrow niche although marrow persists as the typical source for mesenchymal stem cells both in the literature and current pre-clinical therapies. PMID:27579159

  20. Metastasin S100A4 is a mediator of sex hormone-dependent formation of the cortical bone.

    PubMed

    Erlandsson, Malin C; Bian, Li; Jonsson, Ing-Marie; Andersson, Karin M; Bokarewa, Maria I

    2013-08-01

    S100A4 is a Ca-binding protein participating in regulation of cell growth, survival, and motility. Here we studied the role of S100A4 protein in sex hormone-regulated bone formation. Bone mineral density in the trabecular and cortical compartments was evaluated in female S100A4 knockout (KO), in matched wild-type (WT) counterparts, and in WT mice treated with lentiviral small hairpin RNA construct inhibiting the S100A4 gene transcription or with a nontargeting construct, by peripheral quantitative computed tomography. The effect of sex hormones on bone was measured 5 weeks after ovariectomy (OVX) and/or dehydroepiadrosterone treatment. S100A4KO had an excessive trabecular and cortical bone formation compared with the age- and sex-matched WT mice. S100A4KO had an increased periosteal circumference (P = .001), cortical thickness (P = .056), and cortical area (P = .003), which predicted 20% higher bone strength in S100A4KO (P = .013). WT mice treated with small hairpin RNA-S100A4 showed an increase of the cortical bone parameters in a fashion identical with S100A4KO mice, indicating the key role of S100A4 in the changed bone formation. S100A4KO mice had higher serum levels of osteocalcin and a higher number of osteocalcin-positive osteoblasts under the periosteum. OVX-S100A4 resulted in the loss of the cortical bone supported by high CTX-I levels, whereas no such changes were observed in OVX-WT mice. S100A4KO mice resisted the dehydroepiadrosterone -induced bone formation observed in the WT counterparts. Our study indicates that S100A4 is a regulator of bone formation, which inhibits bone excess in the estrogen-sufficient mice and prevents the cortical bone loss in the estrogen-deprived mice.

  1. Cortical-Bone Fragility — Insights from sFRP4 Deficiency in Pyle’s Disease

    PubMed Central

    Unger, Sheila; Hesse, Eric; Yamana, Kei; Kiviranta, Riku; Solban, Nicolas; Liu, Jeff; Brommage, Robert; Boduroglu, Koray; Bonafé, Luisa; Campos-Xavier, Belinda; Dikoglu, Esra; Eastell, Richard; Gossiel, Fatma; Harshman, Keith; Nishimura, Gen; Girisha, Katta M.; Stevenson, Brian J.; Takita, Hiroyuki; Rivolta, Carlo

    2016-01-01

    BACKGROUND Cortical-bone fragility is a common feature in osteoporosis that is linked to nonvertebral fractures. Regulation of cortical-bone homeostasis has proved elusive. The study of genetic disorders of the skeleton can yield insights that fuel experimental therapeutic approaches to the treatment of rare disorders and common skeletal ailments. METHODS We evaluated four patients with Pyle’s disease, a genetic disorder that is characterized by cortical-bone thinning, limb deformity, and fractures; two patients were examined by means of exome sequencing, and two were examined by means of Sanger sequencing. After a candidate gene was identified, we generated a knockout mouse model that manifested the phenotype and studied the mechanisms responsible for altered bone architecture. RESULTS In all affected patients, we found biallelic truncating mutations in SFRP4, the gene encoding secreted frizzled-related protein 4, a soluble Wnt inhibitor. Mice deficient in Sfrp4, like persons with Pyle’s disease, have increased amounts of trabecular bone and unusually thin cortical bone, as a result of differential regulation of Wnt and bone morphogenetic protein (BMP) signaling in these two bone compartments. Treatment of Sfrp4-deficient mice with a soluble Bmp2 receptor (RAP-661) or with antibodies to sclerostin corrected the cortical-bone defect. CONCLUSIONS Our study showed that Pyle’s disease was caused by a deficiency of sFRP4, that cortical-bone and trabecular-bone homeostasis were governed by different mechanisms, and that sFRP4-mediated cross-regulation between Wnt and BMP signaling was critical for achieving proper cortical-bone thickness and stability. (Funded by the Swiss National Foundation and the National Institutes of Health.) PMID:27355534

  2. Bone mineral density in children and adolescents with juvenile diabetes: selective measurement of bone mineral density of trabecular and cortical bone using peripheral quantitative computed tomography.

    PubMed

    Lettgen, B; Hauffa, B; Möhlmann, C; Jeken, C; Reiners, C

    1995-01-01

    Bone mineral density (BMD) was studied in 21 children and adolescents with type I diabetes and in age- and sex-matched healthy controls. BMD was selectively measured in trabecular and total bone using peripheral quantitative computed tomography (pQCT). Cortical bone density was calculated. There was a decrease of trabecular bone density (-18.9%, p < 0.01), total bone density (-9.0%, NS) and cortical bone density (-5.1%, NS) in diabetes. Trabecular bone density was inversely correlated with the duration of diabetes and the concentration of glycosylated hemoglobin (HbA1) (r = -0.48, p = 0.027 and r = -0.63, p = 0.002, respectively). Total BMD correlated inversely with HbA1 (r = -0.52, p = 0.017). pQCT allows the selective measurement of metabolically active trabecular bone where changes of mineralization first occur. We conclude that pQCT is a useful method for investigating BMD in diabetes.

  3. Acoustic emission based monitoring of the microdamage evolution during fatigue of human cortical bone.

    PubMed

    Agcaoglu, Serife; Akkus, Ozan

    2013-08-01

    Stress fractures are frequently observed in physically active populations, and they are believed to be associated with microcrack accumulation. There are not many tools for real-time monitoring of microdamage formation during fatigue of bone, in vivo or in vitro. Acoustic emission (AE) based detection of stress waves resulting from microdamage formation is a promising method to assess the rate and energetics of microdamage formation during fatigue. The current study aims to assess the time history of the occurrence of AE events during fatigue loading of human tibial cortical bone and to determine the associations between AE variables (energy content of waves, number of AE waveforms, etc.), fatigue life, and bone ash content. Fatigue test specimens were prepared from the distal diaphysis of human tibial cortical bone (N = 32, 22 to 52 years old, male and female). The initiation of acoustic emissions was concomitant with the nonlinear increase in sample compliance and the cumulative number of AE events increased asymptotically in the prefailure period. The results demonstrated that AE method was able to predict the onset of failure by 95% of the fatigue life for the majority of the samples. The variation in the number of emissions until failure ranged from 6 to 1861 implying a large variation in crack activity between different samples. The results also revealed that microdamage evolution was a function of the level of tissue mineralization such that more mineralized bone matrix failed with fewer crack events with higher energy whereas less mineralized tissue generated more emissions with lower energy. In conclusion, acoustic emission based surveillance during fatigue of cortical bone demonstrates a large scatter, where some bones fail with substantial crack activity and a minority of samples fail without significant amount of crack formation.

  4. Spaceflight-relevant types of ionizing radiation and cortical bone: Potential LET effect?

    PubMed Central

    Lloyd, Shane A.J.; Bandstra, Eric R.; Travis, Neil D.; Nelson, Gregory A.; Bourland, J. Daniel; Pecaut, Michael J.; Gridley, Daila S.; Willey, Jeffrey S.; Bateman, Ted A.

    2008-01-01

    Extended exposure to microgravity conditions results in significant bone loss. Coupled with radiation exposure, this phenomenon may place astronauts at a greater risk for mission-critical fractures. In a previous study, we identified a profound and prolonged loss of trabecular bone (29−39%) in mice following exposure to an acute, 2 Gy dose of radiation simulating both solar and cosmic sources. However, because skeletal strength depends on trabecular and cortical bone, accurate assessment of strength requires analysis of both bone compartments. The objective of the present study was to examine various properties of cortical bone in mice following exposure to multiple types of spaceflight-relevant radiation. Nine-week old, female C57BL/6 mice were sacrificed 110 days after exposure to a single, whole body, 2 Gy dose of gamma, proton, carbon, or iron radiation. Femora were evaluated with biomechanical testing, microcomputed tomography, quantitative histomorphometry, percent mineral content, and micro-hardness analysis. Compared to non-irradiated controls, there were significant differences compared to carbon or iron radiation for only fracture force, medullary area and mineral content. A greater differential effect based on linear energy transfer (LET) level may be present: high-LET (carbon or iron) particle irradiation was associated with a decline in structural properties (maximum force, fracture force, medullary area, and cortical porosity) and mineral composition compared to low-LET radiation (gamma and proton). Bone loss following irradiation appears to be largely specific to trabecular bone and may indicate unique biological microenvironments and microdosimetry conditions. However, the limited time points examined and non-haversian skeletal structure of the mice employed highlight the need for further investigation. PMID:19122806

  5. Spaceflight-relevant types of ionizing radiation and cortical bone: Potential LET effect?

    NASA Astrophysics Data System (ADS)

    Lloyd, Shane A. J.; Bandstra, Eric R.; Travis, Neil D.; Nelson, Gregory A.; Bourland, J. Daniel; Pecaut, Michael J.; Gridley, Daila S.; Willey, Jeffrey S.; Bateman, Ted A.

    2008-12-01

    Extended exposure to microgravity conditions results in significant bone loss. Coupled with radiation exposure, this phenomenon may place astronauts at a greater risk for mission-critical fractures. In a previous study, we identified a profound and prolonged loss of trabecular bone (29-39%) in mice following exposure to an acute, 2 Gy dose of radiation simulating both solar and cosmic sources. However, because skeletal strength depends on trabecular and cortical bone, accurate assessment of strength requires analysis of both bone compartments. The objective of the present study was to examine various properties of cortical bone in mice following exposure to multiple types of spaceflight-relevant radiation. Nine-week old, female C57BL/6 mice were sacrificed 110 days after exposure to a single, whole body, 2 Gy dose of gamma, proton, carbon, or iron radiation. Femora were evaluated with biomechanical testing, microcomputed tomography, quantitative histomorphometry, percent mineral content, and micro-hardness analysis. Compared to non-irradiated controls, there were significant differences compared to carbon or iron radiation for only fracture force, medullary area and mineral content. A greater differential effect based on linear energy transfer (LET) level may be present: high-LET (carbon or iron) particle irradiation was associated with a decline in structural properties (maximum force, fracture force, medullary area, and cortical porosity) and mineral composition compared to low-LET radiation (gamma and proton). Bone loss following irradiation appears to be largely specific to trabecular bone and may indicate unique biological microenvironments and microdosimetry conditions. However, the limited time points examined and non-haversian skeletal structure of the mice employed highlight the need for further investigation.

  6. In vitro non-enzymatic ribation reduces post-yield strain accommodation in cortical bone.

    PubMed

    Willett, Thomas L; Sutty, Sibi; Gaspar, Anne; Avery, Nick; Grynpas, Marc

    2013-02-01

    Non-enzymatic glycation (NEG) and advanced glycation endproducts (AGEs) may contribute to bone fragility in various diseases, ageing, and other conditions by modifying bone collagen and causing degraded mechanical properties. In this study, we sought to further understand how collagen modification in an in vitro non-enzymatic ribation model leads to loss of cortical bone toughness. Previous in vitro studies using non-enzymatic ribation reported loss of ductility in the cortical bone. Increased crosslinking is most commonly blamed for these changes; however, some studies report positive correlations between measures of total collagen crosslinking and work-to-fracture/toughness measurements whilst correlations between general NEG and measures of ductility are often negative. Fifteen bone beam triplets were cut from bovine metatarsi. Each provided one native non-incubated control, one incubated control and one ribated specimen. Incubation involved simulated body fluid±ribose for fourteen days at 37°C. Pentosidine and pyridinoline crosslinks were measured using HPLC. Three-point bending tests quantified mechanical properties. Fracture surfaces were examined using scanning electron microscopy. The effects of ribation on bone collagen molecular stability and intermolecular connectivity were investigated using differential scanning calorimetry and hydrothermal isometric tension testing. Ribation caused increased non-enzymatic collagen modification and pentosidine content (16mmol/mol collagen) and inferior post-yield mechanical behaviour, especially post-yield strain and flexural toughness. Fracture surfaces were smoother with less collagen fibril deformation or tearing than observed in controls. In the ribated group only, pentosidine content and thermomechanical measures of crosslinking were positively correlated with measures of strain accommodation and energy absorption before failure. Non-enzymatic ribation and the resulting modifications reduce cortical bone pseudo

  7. Quantifying trabecular bone material anisotropy and orientation using low resolution clinical CT images: A feasibility study.

    PubMed

    Nazemi, S Majid; Cooper, David M L; Johnston, James D

    2016-09-01

    Accounting for spatial variation of trabecular material anisotropy and orientation can improve the accuracy of quantitative computed tomography-based finite element (FE) modeling of bone. The objective of this study was to investigate the feasibility of quantifying trabecular material anisotropy and orientation using clinical computed tomography (CT). Forty four cubic volumes of interest were obtained from micro-CT images of the human radius. Micro-FE modeling was performed on the samples to obtain orthotropic stiffness entries as well as trabecular orientation. Simulated computed tomography images (0.32, 0.37, and 0.5mm isotropic voxel sizes) were created by resampling micro-CT images with added image noise. The gray-level structure tensor was used to derive fabric eigenvalues and eigenvectors in simulated CT images. For 'best case' comparison purposes, Mean Intercept Length was used to define fabric from micro-CT images. Regression was used in combination with eigenvalues, imaged density and FE to inversely derive the constants used in Cowin and Zysset-Curnier fabric-elasticity equations, and for comparing image derived fabric-elasticity stiffness entries to those obtained using micro-FE. Image derived eigenvectors (which indicated trabecular orientation) were then compared to orientation derived using micro-FE. When using clinically available voxel sizes, gray-level structure tensor derived fabric combined with Cowin's equations was able to explain 94-97% of the variance in orthotropic stiffness entries while Zysset-Curnier equations explained 82-88% of the variance in stiffness. Image derived orientation deviated by 4.4-10.8° from micro-FE derived orientation. Our results indicate potential to account for spatial variation of trabecular material anisotropy and orientation in subject-specific finite element modeling of bone using clinically available CT.

  8. Development of cortical bone geometry in the human femoral and tibial diaphysis.

    PubMed

    Gosman, James H; Hubbell, Zachariah R; Shaw, Colin N; Ryan, Timothy M

    2013-05-01

    Ontogenetic growth processes in human long bones are key elements, determining the variability of adult bone structure. This study seeks to identify and describe the interaction between ontogenetic growth periods and changes in femoral and tibial diaphyseal shape. Femora and tibiae (n = 46) ranging developmentally from neonate to skeletally mature were obtained from the Norris Farms No. 36 archeological skeletal series. High-resolution X-ray computed tomography scans were collected. Whole-diaphysis cortical bone drift patterns and relative bone envelope modeling activity across ages were assessed in five cross-sections per bone (total bone length: 20%, 35%, 50%, 65%, and 80%) by measuring the distance from the section centroid to the endosteal and periosteal margins in eight sectors using ImageJ. Pearson correlations were performed to document and interpret the relationship between the cross-sectional shape (Imax /Imin ), total subperiosteal area, cortical area, and medullary cavity area for each slice location and age for both the femur and the tibia. Differences in cross-sectional shape between age groups at each cross-sectional position were assessed using nonparametric Mann-Whitney U tests. The data reveal that the femoral and tibial midshaft shape are relatively conserved throughout growth; yet, conversely, the proximal and distal femoral diaphysis and proximal tibial diaphysis appear more sensitive to developmentally induced changes in mechanical loading. Two time periods of accelerated change are identified: early childhood and prepuberty/adolescence.

  9. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    NASA Technical Reports Server (NTRS)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P < 0.05) in longitudinal bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P < 0.05). Our findings suggest that the processes regulating new collagen accretion, bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

  10. Morphometric and physical investigations of segmental cortical bone autografts and allografts in canine ulnar defects.

    PubMed

    Delloye, C; Verhelpen, M; d'Hemricourt, J; Govaerts, B; Bourgois, R

    1992-09-01

    Cortical bone grafts were implanted for six months in mature dogs using an osteoperiosteal 3-cm defect in the ulna to evaluate their respective morphometric and physical values compared with autografts. The bone-grafting material included fresh auto- and allografts, frozen and thimerosal preserved allografts, and partially demineralized bone allografts. The grafts were evaluated by roentgenograms, microradiograms, photon absorptiometry, porosity, fluorescence labeling measurements, and torsional loading at failure. Autografts achieved a better union score than the allografts, but intracortical bone porosity, percentage of cumulative new bone, and mineral apposition rate were not variables with statistical significance. Lamellar bone was found earlier and in greater quantity in autografts. Within the graft, new bone was deposited at a slower rate than in the recipient bone. Autografts showed less peripheral resorption and a greater torsional resistance than allografts. Photon absorptiometry demonstrated that nondemineralized allografts underwent a substantial loss of peripheral bone. This marked reduction in the outer diameter of the graft had more influence on torsional resistance than did the intracortical porosity of the graft. Demineralized allografts were osteoinductive in only 28% of the cases and appeared to respond in an all-or-nothing pattern. Frozen and thimerosal preserved allografts were the most acceptable substitutes to autografts.

  11. In vivo imaging of rat cortical bone porosity by synchrotron phase contrast micro computed tomography

    NASA Astrophysics Data System (ADS)

    Pratt, I. V.; Belev, G.; Zhu, N.; Chapman, L. D.; Cooper, D. M. L.

    2015-01-01

    Cortical bone is a dynamic tissue which undergoes adaptive and pathological changes throughout life. Direct longitudinal tracking of this remodeling process holds great promise for improving our understanding of bone development, maintenance and senescence. The application of in vivo micro-computed tomography (micro-CT) has enabled longitudinal tracking of trabecular bone microarchitecture with commercially available scanners generally operating in the 10-20 µm voxel range with absorbed doses reported between 0.5 and 1 Gy. Imaging of cortical bone microarchitecture (porosity) requires higher resolution and thus in vivo imaging of these structures has not been achieved due to excessive radiation dose. In this study we tested the hypothesis that synchrotron propagation phase contrast micro-CT can enable in vivo imaging of cortical porosity in rats at doses comparable to those currently employed for trabecular bone imaging. Synchrotron imaging experiments were conducted at the Canadian Light Source using the bending magnet beamline of the BioMedical Imaging and Therapy (BMIT) facility. Protocol optimization (propagation distance, projection number) was conducted ex vivo on rat (Sprague-Dawley) forelimbs with dose determined by ion chamber and lithium fluoride crystal thermoluminescent dosimeters. Comparative ex vivo imaging was performed using laboratory in vivo scanning systems, identifying a range of doses between 1.2-3.6 Gy for common protocols. A final in vivo synchrotron protocol involving a 2.5 Gy dose was implemented with live rats. The resulting images demonstrated improved delineation of cortical porosity through the improved edge enhancement effect of phase contrast, opening the door to novel experimental studies involving the longitudinal tracking of remodeling.

  12. In vivo imaging of rat cortical bone porosity by synchrotron phase contrast micro computed tomography.

    PubMed

    Pratt, I V; Belev, G; Zhu, N; Chapman, L D; Cooper, D M L

    2015-01-07

    Cortical bone is a dynamic tissue which undergoes adaptive and pathological changes throughout life. Direct longitudinal tracking of this remodeling process holds great promise for improving our understanding of bone development, maintenance and senescence. The application of in vivo micro-computed tomography (micro-CT) has enabled longitudinal tracking of trabecular bone microarchitecture with commercially available scanners generally operating in the 10-20 µm voxel range with absorbed doses reported between 0.5 and 1 Gy. Imaging of cortical bone microarchitecture (porosity) requires higher resolution and thus in vivo imaging of these structures has not been achieved due to excessive radiation dose. In this study we tested the hypothesis that synchrotron propagation phase contrast micro-CT can enable in vivo imaging of cortical porosity in rats at doses comparable to those currently employed for trabecular bone imaging. Synchrotron imaging experiments were conducted at the Canadian Light Source using the bending magnet beamline of the BioMedical Imaging and Therapy (BMIT) facility. Protocol optimization (propagation distance, projection number) was conducted ex vivo on rat (Sprague-Dawley) forelimbs with dose determined by ion chamber and lithium fluoride crystal thermoluminescent dosimeters. Comparative ex vivo imaging was performed using laboratory in vivo scanning systems, identifying a range of doses between 1.2-3.6 Gy for common protocols. A final in vivo synchrotron protocol involving a 2.5 Gy dose was implemented with live rats. The resulting images demonstrated improved delineation of cortical porosity through the improved edge enhancement effect of phase contrast, opening the door to novel experimental studies involving the longitudinal tracking of remodeling.

  13. T1 correlates age: A short-TE MR relaxometry study in vivo on human cortical bone free water at 1.5T.

    PubMed

    Akbari, Atena; Abbasi-Rad, Shahrokh; Rad, Hamidreza Saligheh

    2016-02-01

    Large pores of human cortical bone (>30μm) are filled with fluids, essentially consisting of water, suggesting that cortical bone free water can be considered as a reliable surrogate measure of cortical bone porosity and hence quality. Signal from such pores can be reliably captured using Short Echo Time (STE) pulse sequence with echo-time in the range of 1-1.5msec (which should be judiciously selected correspond to T2(⁎) value of free water molecules). Furthermore, it is well-known that cortical bone T1-relaxivity is a function of its geometry, suggesting that cortical bone free water increases with age. In this work, we quantified cortical bone free water longitudinal relaxation time (T1) by a Dual-TR technique using STE pulse sequence. In the sequel, we investigated relationship between STE-derived cortical bone free water T1-values and age in a group of healthy volunteers (thirty subjects covering the age range of 20-70years) at 1.5T. Preliminary results showed that cortical bone free water T1 highly correlates with age (r(2)=0.73, p<0.0001), representing cortical bone free water T1 as a reliable indicator of cortical bone porosity and age-related deterioration. It can be concluded that STE-MRI can be utilized as proper alternative in quantifying cortical bone porosity parameters in-vivo, with the advantages of widespread clinical availability and being cost-effective.

  14. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.

    PubMed

    Chong, Alexander C M; Miller, Forrest; Buxton, McKee; Friis, Elizabeth A

    2007-08-01

    Third-generation mechanical analogue bone models and synthetic analogue cortical bone materials manufactured by Pacific Research Laboratories, Inc. (PRL) are popular tools for use in mechanical testing of various orthopedic implants and biomaterials. A major issue with these models is that the current third-generation epoxy-short fiberglass based composite used as the cortical bone substitute is prone to crack formation and failure in fatigue or repeated quasistatic loading of the model. The purpose of the present study was to compare the tensile and fracture mechanics properties of the current baseline (established PRL "third-generation" E-glass-fiber-epoxy) composite analogue for cortical bone to a new composite material formulation proposed for use as an enhanced fourth-generation cortical bone analogue material. Standard tensile, plane strain fracture toughness, and fatigue crack propagation rate tests were performed on both the third- and fourth-generation composite material formulations using standard ASTM test techniques. Injection molding techniques were used to create random fiber orientation in all test specimens. Standard dog-bone style tensile specimens were tested to obtain ultimate tensile strength and stiffness. Compact tension fracture toughness specimens were utilized to determine plane strain fracture toughness values. Reduced thickness compact tension specimens were also used to determine fatigue crack propagation rate behavior for the two material groups. Literature values for the same parameters for human cortical bone were compared to results from the third- and fourth-generation cortical analogue bone materials. Tensile properties of the fourth-generation material were closer to that of average human cortical bone than the third-generation material. Fracture toughness was significantly increased by 48% in the fourth-generation composite as compared to the third-generation analogue bone. The threshold stress intensity to propagate the crack

  15. Cortical and trabecular bone adaptation to incremental load magnitudes using the mouse tibial axial compression loading model.

    PubMed

    Weatherholt, Alyssa M; Fuchs, Robyn K; Warden, Stuart J

    2013-01-01

    The mouse tibial axial compression loading model has recently been described to allow simultaneous exploration of cortical and trabecular bone adaptation within the same loaded element. However, the model frequently induces cortical woven bone formation and has produced inconsistent results with regards to trabecular bone adaptation. The aim of this study was to investigate bone adaptation to incremental load magnitudes using the mouse tibial axial compression loading model, with the ultimate goal of revealing a load that simultaneously induced lamellar cortical and trabecular bone adaptation. Adult (16 weeks old) female C57BL/6 mice were randomly divided into three load magnitude groups (5, 7 and 9N), and had their right tibia axially loaded using a continuous 2-Hz haversine waveform for 360 cycles/day, 3 days/week for 4 consecutive weeks. In vivo peripheral quantitative computed tomography was used to longitudinally assess midshaft tibia cortical bone adaptation, while ex vivo micro-computed tomography and histomorphometry were used to assess both midshaft tibia cortical and proximal tibia trabecular bone adaptation. A dose response to loading magnitude was observed within cortical bone, with increasing load magnitude inducing increasing levels of lamellar cortical bone adaptation within the upper two thirds of the tibial diaphysis. Greatest cortical bone adaptation was observed at the midshaft where there was a 42% increase in estimated mechanical properties (polar moment of inertia) in the highest (9N) load group. A dose response to load magnitude was not clearly evident within trabecular bone, with only the highest load (9N) being able to induce measureable adaptation (31% increase in trabecular bone volume fraction at the proximal tibia). The ultimate finding was that a load of 9N (engendering a tensile strain of 1833 με on medial surface of the midshaft tibia) was able to simultaneously induce measurable lamellar cortical and trabecular bone adaptation

  16. Stochastic multiscale modelling of cortical bone elasticity based on high-resolution imaging.

    PubMed

    Sansalone, Vittorio; Gagliardi, Davide; Desceliers, Christophe; Bousson, Valérie; Laredo, Jean-Denis; Peyrin, Françoise; Haïat, Guillaume; Naili, Salah

    2016-02-01

    Accurate and reliable assessment of bone quality requires predictive methods which could probe bone microstructure and provide information on bone mechanical properties. Multiscale modelling and simulation represent a fast and powerful way to predict bone mechanical properties based on experimental information on bone microstructure as obtained through X-ray-based methods. However, technical limitations of experimental devices used to inspect bone microstructure may produce blurry data, especially in in vivo conditions. Uncertainties affecting the experimental data (input) may question the reliability of the results predicted by the model (output). Since input data are uncertain, deterministic approaches are limited and new modelling paradigms are required. In this paper, a novel stochastic multiscale model is developed to estimate the elastic properties of bone while taking into account uncertainties on bone composition. Effective elastic properties of cortical bone tissue were computed using a multiscale model based on continuum micromechanics. Volume fractions of bone components (collagen, mineral, and water) were considered as random variables whose probabilistic description was built using the maximum entropy principle. The relevance of this approach was proved by analysing a human bone sample taken from the inferior femoral neck. The sample was imaged using synchrotron radiation micro-computed tomography. 3-D distributions of Haversian porosity and tissue mineral density extracted from these images supplied the experimental information needed to build the stochastic models of the volume fractions. Thus, the stochastic multiscale model provided reliable statistical information (such as mean values and confidence intervals) on bone elastic properties at the tissue scale. Moreover, the existence of a simpler "nominal model", accounting for the main features of the stochastic model, was investigated. It was shown that such a model does exist, and its relevance

  17. Micro-Computed Tomography of Fatigue Microdamage in Cortical Bone Using a Barium Sulfate Contrast Agent

    PubMed Central

    Leng, Huijie; Wang, Xiang; Ross, Ryan D.; Niebur, Glen L.; Roeder, Ryan K.

    2008-01-01

    Accumulation of microdamage during fatigue can lead to increased fracture susceptibility in bone. Current techniques for imaging microdamage in bone are inherently destructive and two-dimensional. Therefore, the objective of this study was to image the accumulation of fatigue microdamage in cortical bone using micro-computed tomography (micro-CT) with a barium sulfate (BaSO4) contrast agent. Two symmetric notches were machined on the tensile surface of bovine cortical bone beams in order to generate damage ahead of the stress concentrations during four-point bending fatigue. Specimens were loaded to a specified number of cycles or until one notch fractured, such that the other notch exhibited the accumulation of microdamage prior to fracture. Microdamage ahead of the notch was stained in vitro by precipitation of BaSO4 and imaged using micro-CT. Reconstructed images showed a distinct region of bright voxels around the notch tip or along propagating cracks due to the presence of BaSO4, which was verified by backscattered electron imaging and energy dispersive spectroscopy. The shape of the stained region ahead of the notch tip was consistent with principal strain contours calculated by finite element analysis. The relative volume of the stained region was correlated with the number of loading cycles by non-linear regression using a power-law. This study demonstrates new methods for the non-destructive and three-dimensional detection of fatigue microdamage accumulation in cortical bone in vitro, which may be useful to gain further understanding into the role of microdamage in bone fragility. PMID:18443659

  18. Micropillar fabrication on bovine cortical bone by direct-write femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Lim, Yong C.; Altman, Katrina J.; Farson, Dave F.; Flores, Katharine M.

    2009-11-01

    We investigated fabrication of cylindrical micropillars on bovine cortical bone using direct-write femtosecond laser ablation. The ablation threshold of the material was measured by single-pulse ablation tests, and the incubation coefficient was measured from linear scanned ablation tests. A motion system was programmed to apply multiple layers of concentric rings of pulses to machine pillars of various diameters and heights. The diameter of the top surface of the pillar was found to steadily decrease due to incubation of damage from successive layers of pulses during the machining process. Pillar top diameter was predicted based on a paraxial beam fluence approximation and single-pulse ablation threshold and incubation coefficient measurements. Pillar diameters predicted as successive layers of pulses were applied were well-matched to experiments, confirming that femtosecond laser ablation of the cortical bone was well-modeled by single-pulse ablation threshold measurements and an incubation coefficient.

  19. Measurement of the microstructural fracture toughness of cortical bone using indentation fracture.

    PubMed

    Mullins, L P; Bruzzi, M S; McHugh, P E

    2007-01-01

    The purpose of this work is to investigate the use of indentation fracture as a method of measuring toughness at the microscale in cortical bone. Indentation fracture employs sharp indenters to initiate cracks, whose length can be used to calculate the toughness of the material. Only a cube corner indenter tip is found to initiate cracks at a suitable size scale for microstructural measurement. Cracks from 7 to 56 microm in length are produced using loads from 0.05 to 3N. Preliminary data predicts rising toughness with increasing crack length (rising R-curve behaviour) at the microscale. This technique provides a new insight into fracture in cortical bone since it allows the investigator to observe mechanisms and measure toughness at a size scale at which in vivo damage is known to exist.

  20. Design and validation of bending test method for characterization of miniature pediatric cortical bone specimens.

    PubMed

    Albert, Carolyne I; Jameson, John; Harris, Gerald

    2013-02-01

    Osteogenesis imperfecta is a genetic disorder of bone fragility; however, the effects of this disorder on bone material properties are not well understood. No study has yet measured bone material strength in humans with osteogenesis imperfecta. Small bone specimens are often extracted during routine fracture surgeries in children with osteogenesis imperfecta. These specimens could provide valuable insight into the effects of osteogenesis imperfecta on bone material strength; however, their small size poses a challenge to their mechanical characterization. In this study, a validated miniature three-point bending test is described that enables measurement of the flexural material properties of pediatric cortical osteotomy specimens as small as 5 mm in length. This method was validated extensively using bovine bone, and the effect of span/depth aspect ratio (5 vs 6) on the measured flexural properties was examined. The method provided reasonable results for both Young's modulus and flexural strength in bovine bone. With a span/depth ratio of 6, the median longitudinal modulus and flexural strength results were 16.1 (range: 14.4-19.3)GPa and 251 (range: 219-293)MPa, respectively. Finally, the pilot results from two osteotomy specimens from children with osteogenesis imperfecta are presented. These results provide the first measures of bone material strength in this patient population.

  1. The Effect of Osteoporosis Treatments on Fatigue Properties of Cortical Bone Tissue.

    PubMed

    Brock, Garry R; Chen, Julia T; Ingraffea, Anthony R; MacLeay, Jennifer; Pluhar, G Elizabeth; Boskey, Adele L; van der Meulen, Marjolein C H

    2015-06-01

    Bisphosphonates are commonly prescribed for treatment of osteoporosis. Long-term use of bisphosphonates has been correlated to atypical femoral fractures (AFF). AFFs arise from fatigue damage to bone tissue that cannot be repaired due to pharmacologic treatments. Despite fatigue being the primary damage mechanism of AFFs, the effects of osteoporosis treatments on fatigue properties of cortical bone are unknown. To examine if fatigue-life differences occur in bone tissue after different pharmacologic treatments for osteoporosis, we tested bone tissue from the femurs of sheep given a metabolic acidosis diet to induce osteoporosis, followed by treatment with a selective estrogen reception modulator (raloxifene), a bisphosphonate (alendronate or zoledronate), or parathyroid hormone (teriparatide, PTH). Beams of cortical bone tissue were created and tested in four-point bending fatigue to failure. Tissues treated with alendronate had reduced fatigue life and less modulus loss at failure compared to other treatments, while tissue treated with PTH had a prolonged fatigue life. No loss of fatigue life occurred with zoledronate treatment despite its greater binding affinity and potency compared to alendronate. Tissue mineralization measured by microCT did not explain the differences seen in fatigue behavior. Increased fatigue life with PTH suggests that current treatment methods for AFF could have beneficial effects for restoring fatigue life. These results indicate that fatigue life differs with each type of osteoporosis treatment.

  2. Effect of Aging on the Toughness of Human Cortical Bone: Evaluation by R-Curves

    SciTech Connect

    Kinney, J

    2004-10-08

    Age-related deterioration of the fracture properties of bone, coupled with increased life expectancy, are responsible for increasing incidence of bone fracture in the elderly, and hence, an understanding of how its fracture properties degrade with age is essential. The present study describes ex vivo fracture experiments to quantitatively assess the effect of aging on the fracture toughness properties of human cortical bone in the longitudinal direction. Because cortical bone exhibits rising crack-growth resistance with crack extension, unlike most previous studies the toughness is evaluated in terms of resistance-curve (R-curve) behavior, measured for bone taken from wide range of age groups (34-99 years). Using this approach, both the ex vivo crack-initiation and crack-growth toughness are determined and are found to deteriorate with age; the initiation toughness decreases some 40% over six decades from 40 to 100 years, while the growth toughness is effectively eliminated over the same age range. The reduction in crack-growth toughness is considered to be associated primarily with a degradation in the degree of extrinsic toughening, in particular involving crack bridging in the wake of the crack.

  3. Effect of cortical thickness and cancellous bone density on the holding strength of internal fixator screws.

    PubMed

    Seebeck, J; Goldhahn, J; Städele, H; Messmer, P; Morlock, M M; Schneider, E

    2004-11-01

    Internal fixators are a new class of implants designed to preserve the periosteal blood supply of the bone. In contrast to conventional plate fixation in which the screws have spherical heads and are loaded mainly by axial pullout forces, screws in internal fixators are "locked" within the plate and therefore subjected to axial as well as bending loads. In this study the ultimate loads of screws of a commercially available internal fixator system were tested in a pullout (n = 72) and cantilever bending mode (n = 72) in metaphyseal and diaphyseal regions of four pairs of human tibiae with different bone qualities. Cortical thickness and cancellous bone density were determined at the screw insertion sites. Stepwise multiple linear regression revealed that cortical thickness and cancellous density can explain 93% and 98% of the variance of the ultimate load of the screws in an axial pullout and cantilever bending mode. Screws in internal fixators are better suited to transmit shear forces and thereby make better use of the strength potential of bone than screws used in conventional plate fixation: this is especially advantageous when bone strength is reduced, e.g. due to osteoporosis.

  4. Qualitative and quantitative ultrashort echo time (UTE) imaging of cortical bone

    NASA Astrophysics Data System (ADS)

    Du, Jiang; Carl, Michael; Bydder, Mark; Takahashi, Atsushi; Chung, Christine B.; Bydder, Graeme M.

    2010-12-01

    We describe the use of two-dimensional ultrashort echo time (2D UTE) sequences with minimum TEs of 8 μs to image and quantify cortical bone on a clinical 3T scanner. An adiabatic inversion pulse was used for long T2 water and fat signal suppression. Adiabatic inversion prepared UTE acquisitions with varying TEs were used for T2∗ measurement. Saturation recovery UTE acquisitions were used for T1 measurement. Bone water concentration was measured with the aid of an external reference phantom. UTE techniques were evaluated on cadaveric specimens and healthy volunteers. A signal-to-noise ratio of around 30, contrast-to-noise ratio of around 27/20 between bone and muscle/fat were achieved in tibia in vivo with a nominal voxel size of 0.23 × 0.23 × 6.0 mm 3 in a scan time of 5 min. A mean T1 of 223 ± 11 ms and mean T2∗ of 390 ± 19 μs were found. Mean bone water concentrations of 23.3 ± 1.6% with UTE and 21.7 ± 1.3% with adiabatic inversion prepared UTE sequences were found in tibia in five normal volunteers. The results show that in vivo qualitative and quantitative evaluation of cortical bone is feasible with 2D UTE sequences.

  5. Effect of aging on the toughness of human cortical bone:Evaluation by R-curves

    SciTech Connect

    Nalla, Ravi K.; Kruzic, Jamie J.; Kinney, John H.; Ritchie,Robert O.

    2005-04-05

    Age-related deterioration of the fracture properties of bone, coupled with increased life expectancy, is responsible for increasing incidence of bone fracture in the elderly, and hence, an understanding of how its fracture properties degrade with age is essential. The present study describes ex vivo fracture experiments to quantitatively assess the effect of aging on the fracture toughness properties of human cortical bone in the longitudinal direction. Because cortical bone exhibits rising crack-growth resistance with crack extension, unlike most previous studies, the toughness is evaluated in terms of resistance-curve (R-curve) behavior, measured for bone taken from wide range of age groups (34-99 years). Using this approach, both the ex vivo crack-initiation and crack-growth toughness are determined and are found to deteriorate with age; the initiation toughness decreases some 40 percent over 6 decades from 40 to 100 years, while the growth toughness is effectively eliminated over the same age range. The reduction in crack-growth toughness is considered to be associated primarily with a degradation in the degree of extrinsic toughening, in particular, involving crack bridging in the wake of the crack.

  6. Effect of surface topography on removal of cortical bone screws in a novel sheep model.

    PubMed

    Pearce, Alexandra I; Pearce, Simon G; Schwieger, Karsten; Milz, Stefan; Schneider, Erich; Archer, Charles W; Richards, R Goeff

    2008-10-01

    Difficulty in removing implants used in trauma patients can be a complication, and increased bone-implant adhesion likely is a major contributing factor. In vitro studies have shown that surface morphology of implant materials has the ability to influence cellular responses, with polished surfaces decreasing the potential for mineralization. This study examined the effect of polishing commercially pure titanium (cpTi) and the titanium alloy TAN on the removal torque and percentage bone-implant contact in cortical and cancellous bone of sheep. Polishing had a significant effect on both removal torque and percentage bone-implant contact, with the polished implants demonstrating a lower removal torque in both cortical and cancellous bone. Polished cpTi and stainless steel were similar in terms of surface roughness and removal torque. However, polished TAN, which was not as smooth as polished cpTi, did not show the same low level for reducing removal torque. Improved polishing of TAN should reduce the removal torque further. The results of the study show that polishing is promising in improving the ease of implant removal after fracture fixation and repair.

  7. Effect of aging on the toughness of human cortical bone: evaluation by R-curves.

    PubMed

    Nalla, R K; Kruzic, J J; Kinney, J H; Ritchie, R O

    2004-12-01

    Age-related deterioration of the fracture properties of bone, coupled with increased life expectancy, is responsible for increasing incidence of bone fracture in the elderly, and hence, an understanding of how its fracture properties degrade with age is essential. The present study describes ex vivo fracture experiments to quantitatively assess the effect of aging on the fracture toughness properties of human cortical bone in the longitudinal direction. Because cortical bone exhibits rising crack-growth resistance with crack extension, unlike most previous studies, the toughness is evaluated in terms of resistance-curve (R-curve) behavior, measured for bone taken from wide range of age groups (34-99 years). Using this approach, both the ex vivo crack-initiation and crack-growth toughness are determined and are found to deteriorate with age; the initiation toughness decreases some 40% over 6 decades from 40 to 100 years, while the growth toughness is effectively eliminated over the same age range. The reduction in crack-growth toughness is considered to be associated primarily with a degradation in the degree of extrinsic toughening, in particular, involving crack bridging in the wake of the crack.

  8. Variability in reference point microindentation and recommendations for testing cortical bone: location, thickness and orientation heterogeneity.

    PubMed

    Coutts, L V; Jenkins, T; Li, T; Dunlop, D G; Oreffo, R O C; Cooper, C; Harvey, N C; Thurner, P J

    2015-06-01

    Reference Point Indentation (RPI) has been proposed as a new clinical tool to aid the diagnosis of Osteoporosis. This study has examined the performance of the tool within entire femurs to improve the understanding of the mechanical properties of bone and also to guide future RPI testing to optimize repeatability of results obtained using the technique. Human, bovine, porcine and rat femurs were indented along three longitudinal axes: anterior and posterior: medial and lateral as well as around the circumference of the femoral head and neck. Cortical and subchondral bone thickness was measured using CT and radiography. The study shows that in some samples, bone is too thin to support the high loads applied with the technique and in these cases, RPI values are highly influenced by thickness. The technique will be useful in the mid-shaft region where cortical thickness is greatest, providing previously established guidelines are followed to optimize measurement repeatability, including performing multiple measurements per sample and investigating multiple samples. The study has also provided evidence that RPI values vary significantly with test site, hence mechanical properties should not be inferred from RPI findings alone away from the test site, even within the same bone. In conclusion, RPI appears to be a useful tool for scientific investigation; however further work is required to examine the feasibility of using RPI for assessing differences between healthy and diseased bone in a clinical setting.

  9. Effect of a hypergravity environment on cortical bone elasticity in rats

    NASA Technical Reports Server (NTRS)

    Kohles, S. S.; Bowers, J. R.; Vailas, A. C.; Vanderby, R. Jr

    1996-01-01

    There is considerable interest in determining whether hypergravity can be used as a countermeasure for microgravity-induced bone loss. This study was conducted on 20 immature male rats in order to investigate possible elastic adaptations of cortical bone in rapidly growing rats exposed to chronic hypergravity. Ten rats were continuously centrifuged for 14 days at twice gravitational acceleration (2G) on a 12.75 foot radius centrifuge and 10 rats concurrently acted as stationary controls. The effect of hypergravity on the elastic characteristics of cortical bone was quantified via ultrasonic wave propagation. Propagation velocities of longitudinal and shear waves were measured through cubic cortical specimens from the posterior femoral diaphyses. Density was measured with an Archimedes' technique. The orthotropic elastic properties were calculated and used to compare the difference between groups. Results showed an average increase in both the Young's moduli (Eii, + 2.2%) and shear moduli (Gij, + 4.3%) with a statistically significant increase only in G12 (+15.7%, P = 0.046). The ratio of transverse to axial strain (Poisson's ratio, nuij) demonstrated statistically significant changes in nu12, nu21, nu13, and nu31 (P < 0.05). These findings suggest that although slight elastic changes were incurred via a hypergravity environment, the treatment level or duration in this study do not dramatically perturb the normal elastic behavior of cortical bone and that dramatic biomechanical differences noted in previous studies were due more to structural changes than material elasticity changes. Hypergravity applied post facto to a microgravity environment would offer further illucidation of this method as treatment for a degenerative spaceflight experience.

  10. Differential β3 and β1 Integrin Expression in Bone Marrow and Cortical Bone of Estrogen Deficient Rats.

    PubMed

    Voisin, Muriel; McNamara, Laoise M

    2015-09-01

    Integrin-based (β3 ) attachments to the extracellular matrix (ECM) on osteocyte cell processes have recently been proposed to play an important role in facilitating osteocyte mechanosensation. However, it is not yet known whether integrin expression is altered in the mechanoregulatory osteocytes during osteoporosis. The objective of this study was to test the hypothesis that the expression of integrin-based mechanosensory complexes (β1 and β3 integrins) is altered as a direct response to estrogen deficiency, in an estrogen deficient animal model of osteoporosis. Four weeks post-operatively, immunohistochemistry was used to detect for β1 and β3 integrin subunits in bone tissue and marrow of ovariectomized (OVX; N = 4) and SHAM (N = 4) operated animals. A tartrate resistant acid phosphatase (TRAP) control stain was performed to quantify the presence of osteoclasts in the bone marrow and bone surfaces. Image analysis was performed to quantify expression patterns in different biological compartments, that is, bone marrow, endosteum, and cortical bone. Our results showed that β1 integrins were ubiquitously expressed throughout the bone and marrow, for both OVX and SHAM groups. β3 integrin subunit expression was lower in bone cells from osteoporotic animals compared to controls, whereas β3 expression in marrow cells did not differ significantly between groups. At the endosteum no difference was observed in β3 integrin subunit expression. As expected, the number of osteoclasts was higher in the OVX group validating an imbalance in bone remodeling. We propose that a reduction in β3 integrin expression in osteocytes might impair mechanosensation by bone cells during estrogen deficiency.

  11. Cortical Bone Water: In Vivo Quantification with Ultrashort Echo-Time MR Imaging1

    PubMed Central

    Techawiboonwong, Aranee; Song, Hee Kwon; Leonard, Mary B.; Wehrli, Felix W.

    2008-01-01

    Purpose: To develop and evaluate a method based on ultrashort echo-time radial magnetic resonance (MR) imaging to quantify bone water (BW) concentration as a new metric of bone quality in human cortical bone in vivo. Materials and Methods: Human subject studies were institutional review board approved and HIPAA compliant; informed consent was obtained. Cortical BW concentration was determined with custom-designed MR imaging sequences at 3.0 T and was validated in sheep and human cortical bone by using exchange of native water with deuterium oxide (D2O). The submillisecond T2* of BW requires correction for relaxation losses during the radiofrequency pulse. BW was measured at the tibial midshaft in healthy pre- and postmenopausal women (mean age, 34.6 and 69.4 years, respectively; n = 5 in each group) and in patients receiving maintenance hemodialysis (mean age, 51.8 years; n = 6) and was compared with bone mineral density (BMD) at the same site at peripheral quantitative computed tomography, as well as with BMD of the lumbar spine and hip at dual x-ray absorptiometry. Data were analyzed by using the Pearson correlation coefficient and two-sided t tests as appropriate. Results: Excellent agreement was obtained ex vivo between the water displaced by using D2O exchange and water measured with respect to a reference sample (r2 = 0.99, P < .001). In vivo, BW in the postmenopausal group was greater by 65% (28.7% ± 1.3 [standard deviation] vs 17.4% ± 2.2, P < .001) than in the premenopausal group, and patients with renal osteodystrophy had higher BW (41.4% ± 9.6) than the premenopausal group by 135% (P < .001) and the postmenopausal group by 43% (P = .02). BMD showed an opposite behavior, with much smaller group differences. Because the majority of BW is in the pore system of cortical bone, this parameter provides a surrogate measure for cortical porosity. Conclusion: A new MR imaging–based method for quantifying BW noninvasively has been demonstrated. © RSNA, 2008

  12. Automated classification of mandibular cortical bone on dental panoramic radiographs for early detection of osteoporosis

    NASA Astrophysics Data System (ADS)

    Horiba, Kazuki; Muramatsu, Chisako; Hayashi, Tatsuro; Fukui, Tatsumasa; Hara, Takeshi; Katsumata, Akitoshi; Fujita, Hiroshi

    2015-03-01

    Findings on dental panoramic radiographs (DPRs) have shown that mandibular cortical index (MCI) based on the morphology of mandibular inferior cortex was significantly correlated with osteoporosis. MCI on DPRs can be categorized into one of three groups and has the high potential for identifying patients with osteoporosis. However, most DPRs are used only for diagnosing dental conditions by dentists in their routine clinical work. Moreover, MCI is not generally quantified but assessed subjectively. In this study, we investigated a computer-aided diagnosis (CAD) system that automatically classifies mandibular cortical bone for detection of osteoporotic patients at early stage. First, an inferior border of mandibular bone was detected by use of an active contour method. Second, regions of interest including the cortical bone are extracted and analyzed for its thickness and roughness. Finally, support vector machine (SVM) differentiate cases into three MCI categories by features including the thickness and roughness. Ninety eight DPRs were used to evaluate our proposed scheme. The number of cases classified to Class I, II, and III by a dental radiologist are 56, 25 and 17 cases, respectively. Experimental result based on the leave-one-out cross-validation evaluation showed that the sensitivities for the classes I, II, and III were 94.6%, 57.7% and 94.1%, respectively. Distribution of the groups in the feature space indicates a possibility of MCI quantification by the proposed method. Therefore, our scheme has a potential in identifying osteoporotic patients at an early stage.

  13. Investigation of hyperelastic models for nonlinear elastic behavior of demineralized and deproteinized bovine cortical femur bone.

    PubMed

    Hosseinzadeh, M; Ghoreishi, M; Narooei, K

    2016-06-01

    In this study, the hyperelastic models of demineralized and deproteinized bovine cortical femur bone were investigated and appropriate models were developed. Using uniaxial compression test data, the strain energy versus stretch was calculated and the appropriate hyperelastic strain energy functions were fitted on data in order to calculate the material parameters. To obtain the mechanical behavior in other loading conditions, the hyperelastic strain energy equations were investigated for pure shear and equi-biaxial tension loadings. The results showed the Mooney-Rivlin and Ogden models cannot predict the mechanical response of demineralized and deproteinized bovine cortical femur bone accurately, while the general exponential-exponential and general exponential-power law models have a good agreement with the experimental results. To investigate the sensitivity of the hyperelastic models, a variation of 10% in material parameters was performed and the results indicated an acceptable stability for the general exponential-exponential and general exponential-power law models. Finally, the uniaxial tension and compression of cortical femur bone were studied using the finite element method in VUMAT user subroutine of ABAQUS software and the computed stress-stretch curves were shown a good agreement with the experimental data.

  14. Effects of fatigue induced damage on the longitudinal fracture resistance of cortical bone.

    PubMed

    Fletcher, Lloyd; Codrington, John; Parkinson, Ian

    2014-07-01

    As a composite material, cortical bone accumulates fatigue microdamage through the repetitive loading of everyday activity (e.g. walking). The accumulation of fatigue microdamage is thought to contribute to the occurrence of fragility fractures in older people. Therefore it is beneficial to understand the relationship between microcrack accumulation and the fracture resistance of cortical bone. Twenty longitudinally orientated compact tension fracture specimens were machined from a single bovine femur, ten specimens were assigned to both the control and fatigue damaged groups. The damaged group underwent a fatigue loading protocol to induce microdamage which was assessed via fluorescent microscopy. Following fatigue loading, non-linear fracture resistance tests were undertaken on both the control and damaged groups using the J-integral method. The interaction of the crack path with the fatigue induced damage and inherent toughening mechanisms were then observed using fluorescent microscopy. The results of this study show that fatigue induced damage reduces the initiation toughness of cortical bone and the growth toughness within the damage zone by three distinct mechanisms of fatigue-fracture interaction. Further analysis of the J-integral fracture resistance showed both the elastic and plastic component were reduced in the damaged group. For the elastic component this was attributed to a decreased number of ligament bridges in the crack wake while for the plastic component this was attributed to the presence of pre-existing fatigue microcracks preventing energy absorption by the formation of new microcracks.

  15. Relationships between cortical bone properties and head wave ultrasonic velocity at 1 MHz: An in vitro investigation

    NASA Astrophysics Data System (ADS)

    Bossy, Emmanuel; Talmant, Maryline; Peyrin, Françoise; Cloetens, Peter; Akrout, Leila; Laugier, Pascal

    2003-10-01

    The axial transmission technique provides a measurement of the velocity (SOS) of elastic waves propagating along the surface of cortical bone. Currently, SOS is derived from the time of flight of the first arriving signal. Our goal was to investigate the relationship between SOS and several bone properties that independently contribute to bone strength. One-MHz SOS measurements were performed with a proprietary probe on 41 excised human radius with soft tissue removed. Small pieces of cortical bone were removed from the site of ultrasonic testing to be investigated using synchrotron radiation microtomography (resolution 10 μm). Cortical thickness, cortical porosity, and tissue mineralization were derived from the 3-D data set. Mean SOS values were 3940 (3796-4120) ms-1. The reproducibility of the SOS measurements expressed as a variation coefficient (CV) was 0.5%. The relationships between SOS and bone properties were assessed using linear regression and displayed significant correlations : R2=0.20 (p<10-5) for cortical thickness, R2=0.30 (p<10-3) for cortical porosity, R2=0.37 (p<10-4) for tissue mineralization. A multiple regression analysis showed that cortical porosity and tissue mineralization in the periosteal region were the most predictive variables and explained 60% of the total variance of the SOS. These results are in agreement with predictions obtained using 3-D numerical computations based on a finite-difference method.

  16. Soluble VEGFR1 reverses BMP2 inhibition of intramembranous ossification during healing of cortical bone defects.

    PubMed

    Hu, Kai; Besschetnova, Tatiana Y; Olsen, Bjorn R

    2016-09-07

    BMP2 is widely used for promotion of bone repair and regeneration. However, bone formation induced by BMP2 is quite variable. Bone forming progenitor cells in different locations appear to respond to BMP2 in different ways, and repair outcomes can vary as a consequence of modulating effects by other factors. In this study, we have examined the effects of VEGF on BMP2-induced repair of a cortical bone defect, a 1 mm diameter drill hole, in the proximal tibia of mice. Treatment of the defect with either a bolus of PBS or soluble VEGFR1 (sVEGFR1), a decoy receptor for VEGF, had the same effects on bone formation via intramembranous ossification in the defect and cartilage formation and injured periosteum, during the healing process. In contrast, treatment with BMP2 inhibited intramembranous bone formation in the defect while it promoted cartilage and endochondral bone formation in the injured periosteum compared with mice treated with PBS or sVEGFR1. The inhibitory effect of BMP2 on bone formation was unlikely due to increased osteoclast activity and decreased invasion of blood vessels in the defect. Most importantly, co-delivery of BMP2 and sVEGFR1 reversed the inhibition of intramembranous bone formation by BMP2. Furthermore, the decreased accumulation of collagen and production of bone matrix proteins in the defect of groups with BMP2 treatment could also be prevented by co-delivery of BMP2 and sVEGFR1. Our data indicate that introducing a VEGF-binding protein, such as sVEGFR1, to reduce levels of extracellular VEGF, may enhance the effects of BMP2 on intramembranous bone formation. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.

  17. Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone.

    PubMed

    Rubin, C; Turner, A S; Mallinckrodt, C; Jerome, C; McLeod, K; Bain, S

    2002-03-01

    Departing from the premise that it is the large-amplitude signals inherent to intense functional activity that define bone morphology, we propose that it is the far lower magnitude, high-frequency mechanical signals that continually barrage the skeleton during longer term activities such as standing, which regulate skeletal architecture. To examine this hypothesis, we proposed that brief exposure to slight elevations in these endogenous mechanical signals would suffice to increase bone mass in those bones subject to the stimulus. This was tested by exposing the hind limbs of adult female sheep (n = 9) to 20 min/day of low-level (0.3g), high-frequency (30 Hz) mechanical signals, sufficient to induce a peak of approximately 5 microstrain (micro epsilon) in the tibia. Following euthanasia, peripheral quantitative computed tomography (pQCT) was used to segregate the cortical shell from the trabecular envelope of the proximal femur, revealing a 34.2% increase in bone density in the experimental animals as compared with controls (p = 0.01). Histomorphometric examination of the femur supported these density measurements, with bone volume per total volume increasing by 32% (p = 0.04). This density increase was achieved by two separate strategies: trabecular spacing decreased by 36.1% (p = 0.02), whereas trabecular number increased by 45.6% (p = 0.01), indicating the formation of cancellous bone de novo. There were no significant differences in the radii of animals subject to the stimulus, indicating that the adaptive response was local rather than systemic. The anabolic potential of the signal was evident only in trabecular bone, and there were no differences, as measured by any assay, in the cortical bone. These data suggest that subtle mechanical signals generated during predominant activities such as posture may be potent determinants of skeletal morphology. Given that these strain levels are three orders of magnitude below strains that can damage bone tissue, we

  18. Spatial autocorrelation and mean intercept length analysis of trabecular bone anisotropy applied to in vivo magnetic resonance imaging.

    PubMed

    Wald, Michael J; Vasilic, Branimir; Saha, Punam K; Wehrli, Felix W

    2007-03-01

    Osteoporosis is characterized by bone loss and deterioration of the trabecular bone (TB) architecture that leads to impaired overall mechanical strength of the bone. Bone mineral density (BMD) measured by dual-energy x-ray absorptiometry is currently the standard clinical metric assessing bone integrity but it fails to capture the structural changes in the TB. Recent research suggests that structure contributes to bone strength in a manner complementary to BMD. Besides parameters of scale such as the mean TB thickness and mean bone volume fraction, parameters describing the anisotropy of the trabecular architecture play an important role in the characterization of TB since trabeculae are preferentially oriented along the direction of local loading. Therefore, the degree of structural anisotropy is of pivotal importance to the bone's mechanical competence. The most common method for measuring structural anisotropy of TB is the mean-intercept length (MIL). In this work we present a method, based on the three-dimensional spatial autocorrelation function (ACF), for mapping of the full structural anisotropy ellipsoid of both TB thickness and spacing and we examine its performance as compared to that of MIL. Not only is the ACF method faster by several orders of magnitude, it is also considerably more robust to noise. Further, it is applicable at lower spatial resolution and is relatively insensitive to image shading. The chief reason for ACF's superior performance is that it does not require binarization, which is difficult to achieve in the limited spatial regime of in vivo magnetic resonance imaging. MIL and ACF have been applied to high-resolution magnetic resonances images of the tibia in a group of ten healthy postmenopausal women by comparing the structural anisotropy and principal direction of the computed fabric tensor for each method. While there is fair agreement between the two methods, ACF analysis yielded greater anisotropy than MIL for both TB thickness

  19. Connexin37 deficiency alters organic bone matrix, cortical bone geometry, and increases Wnt/β-catenin signaling.

    PubMed

    Pacheco-Costa, Rafael; Kadakia, Jay R; Atkinson, Emily G; Wallace, Joseph M; Plotkin, Lilian I; Reginato, Rejane D

    2017-04-01

    Deletion of connexin (Cx) 37 in mice leads to increased cancellous bone mass due to defective osteoclast differentiation. Paradoxically; however, Cx37-deficient mice exhibit reduced cortical thickness accompanied by higher bone strength, suggesting a contribution of Cx37 to bone matrix composition. Thus, we investigated whether global deletion of Cx37 alters the composition of organic bone extracellular matrix. Five-month-old Cx37(-/-) mice exhibited increased marrow cavity area, and periosteal and endocortical bone surface resulting in higher total area in tibia compared to Cx37(+/+) control mice. Deletion of Cx37 increased genes involved in collagen maturation (loxl3 and loxl4) and glycosaminoglycans- (chsy1, chpf and has3) proteoglycans- associated genes (biglycan and decorin). In addition, expression of type II collagen assessed by immunostaining was increased by 82% whereas collagen maturity by picrosirius-polarizarion tended to be reduced (p=0.071). Expression of glycosaminoglycans by histochemistry was decreased, whereas immunostaining revealed that biglycan was unchanged and decorin was slightly increased in Cx37(-/-) bone sections. Consistent with these in vivo findings, MLO-Y4 osteocytic cells silenced for Cx37 gene exhibited increased mRNA levels for collagen synthesis (col1a1 and col3a1) and collagen maturation (lox, loxl1 and loxl2 genes). Furthermore, mechanistic studies showed Wnt/β-catenin activation in MLO-Y4 osteocytic cells, L5 vertebra, and authentic calvaria-derived osteocytes isolated by fluorescent-activated cell sorter. Our findings demonstrate that altered profile of the bone matrix components in Cx37-deficient mice acts in favor of higher resistance to fracture in long bones.

  20. Vitamin K therapy for cortical bone fragility caused by reduced mechanical loading in a child with hemiplegia.

    PubMed

    Sugiyama, T; Takaki, T; Saito, T; Taguchi, T

    2007-01-01

    Fractures frequently occur at cortical bone sites in children with cerebral palsy, but there is no established therapy. We previously found that treatment with vitamins D and K increased cortical bone mass in children with severe physical disability, and have hypothesized that vitamin K could play a significant role in pediatric cortical bones under conditions with reduced mechanical loading. In the present case report, we treated a right hemiplegic ambulant eight-year-old boy with oral vitamin K (15 mg per day) for eight months. Cortical bone geometries at mid-diaphyseal sites in bilateral tibiae were evaluated before and after the treatment. The cross-sectional total, bone and marrow areas of non-hemiplegic tibia increased by 8.8%, 7.4% and 12.0%, respectively, while those of hemiplegic tibia changed by 9.0%, 14.9% and -3.4%, respectively. As a result, the polar moment of inertia, an indicator of the resistance to torsion forces, increased by 13.0% in the non-hemiplegic tibia and by 63.7% in the hemiplegic tibia. Vitamin K may restrict cortical bone fragility, caused by reduced mechanical loading, through its actions at the endosteal bone marrow interface. Further studies are needed to confirm these findings and to clarify the mechanisms involved.

  1. Microcomputed tomographic analysis of human condyles in unilateral condylar hyperplasia: increased cortical porosity and trabecular bone volume fraction with reduced mineralisation.

    PubMed

    Karssemakers, L H E; Nolte, J W; Tuinzing, D B; Langenbach, G E J; Raijmakers, P G; Becking, A G

    2014-12-01

    Unilateral condylar hyperplasia or hyperactivity is a disorder of growth that affects the mandible, and our aim was to visualise the 3-dimensional bony microstructure of resected mandibular condyles of affected patients. We prospectively studied 17 patients with a clinical presentation of progressive mandibular asymmetry and an abnormal single-photon emission computed tomographic (SPECT) scan. All patients were treated by condylectomy to arrest progression. The resected condyles were scanned with micro-CT (18 μm resolution). Rectangular volumes of interest were selected in 4 quadrants (lateromedial and superoinferior) of the trabecular bone of each condyle. Variables of bone architecture (volume fraction, trabecular number, thickness, and separation, degree of mineralisation, and degree of structural anisotrophy) were calculated with routine morphometric software. Eight of the 17 resected condyles showed clear destruction of the subchondral layer of cortical bone. There was a significant superoinferior gradient for all trabecular variables. Mean (SD) bone volume fraction (25.1 (6) %), trabecular number (1.69 (0.26) mm(-1)), trabecular thickness (0.17 (0.03) mm), and degree of mineralisation (695.39 (39.83) mg HA/cm(3)) were higher in the superior region. Trabecular separation (0.6 (0.16) mm) and structural anisotropy (1.84 (0.28)) were higher in the inferior region. The micro-CT analysis showed increased cortical porosity in many of the condyles studied. It also showed a higher bone volume fraction, greater trabecular thickness and trabecular separation, greater trabecular number, and less mineralisation in the condyles of the 17 patients compared with the known architecture of unaffected mandibular condyles.

  2. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis).

    PubMed

    McGee, Meghan E; Maki, Aaron J; Johnson, Steven E; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2008-02-01

    Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. Here we show decreased cortical bone turnover during hibernation with balanced formation and resorption in grizzly bear femurs. Hibernating grizzly bear femurs were less porous and more mineralized, and did not demonstrate any changes in cortical bone geometry or whole bone mechanical properties compared to active grizzly bear femurs. The activation frequency of intracortical remodeling was 75% lower during hibernation than during periods of physical activity, but the normalized mineral apposition rate was unchanged. These data indicate that bone turnover decreases during hibernation, but osteons continue to refill at normal rates. There were no changes in regional variation of porosity, geometry, or remodeling indices in femurs from hibernating bears, indicating that hibernation did not preferentially affect one region of the cortex. Thus, grizzly bears prevent bone loss during disuse by decreasing bone turnover and maintaining balanced formation and resorption, which preserves bone structure and strength. These results support the idea that bears possess a biological mechanism to prevent disuse osteoporosis.

  3. Improved accuracy of cortical bone mineralization measured by polychromatic microcomputed tomography using a novel high mineral density composite calibration phantom

    SciTech Connect

    Deuerling, Justin M.; Rudy, David J.; Niebur, Glen L.; Roeder, Ryan K.

    2010-09-15

    Purpose: Microcomputed tomography (micro-CT) is increasingly used as a nondestructive alternative to ashing for measuring bone mineral content. Phantoms are utilized to calibrate the measured x-ray attenuation to discrete levels of mineral density, typically including levels up to 1000 mg HA/cm{sup 3}, which encompasses levels of bone mineral density (BMD) observed in trabecular bone. However, levels of BMD observed in cortical bone and levels of tissue mineral density (TMD) in both cortical and trabecular bone typically exceed 1000 mg HA/cm{sup 3}, requiring extrapolation of the calibration regression, which may result in error. Therefore, the objectives of this study were to investigate (1) the relationship between x-ray attenuation and an expanded range of hydroxyapatite (HA) density in a less attenuating polymer matrix and (2) the effects of the calibration on the accuracy of subsequent measurements of mineralization in human cortical bone specimens. Methods: A novel HA-polymer composite phantom was prepared comprising a less attenuating polymer phase (polyethylene) and an expanded range of HA density (0-1860 mg HA/cm{sup 3}) inclusive of characteristic levels of BMD in cortical bone or TMD in cortical and trabecular bone. The BMD and TMD of cortical bone specimens measured using the new HA-polymer calibration phantom were compared to measurements using a conventional HA-polymer phantom comprising 0-800 mg HA/cm{sup 3} and the corresponding ash density measurements on the same specimens. Results: The HA-polymer composite phantom exhibited a nonlinear relationship between x-ray attenuation and HA density, rather than the linear relationship typically employed a priori, and obviated the need for extrapolation, when calibrating the measured x-ray attenuation to high levels of mineral density. The BMD and TMD of cortical bone specimens measured using the conventional phantom was significantly lower than the measured ash density by 19% (p<0.001, ANCOVA) and 33% (p<0

  4. Defective cancellous bone structure and abnormal response to PTH in cortical bone of mice lacking Cx43 cytoplasmic C-terminus domain.

    PubMed

    Pacheco-Costa, Rafael; Davis, Hannah M; Sorenson, Chad; Hon, Mary C; Hassan, Iraj; Reginato, Rejane D; Allen, Matthew R; Bellido, Teresita; Plotkin, Lilian I

    2015-12-01

    Connexin 43 (Cx43) forms gap junction channels and hemichannels that allow the communication among osteocytes, osteoblasts, and osteoclasts. Cx43 carboxy-terminal (CT) domain regulates channel opening and intracellular signaling by acting as a scaffold for structural and signaling proteins. To determine the role of Cx43 CT domain in bone, mice in which one allele of full length Cx43 was replaced by a mutant lacking the CT domain (Cx43(ΔCT/fl)) were studied. Cx43(ΔCT/fl) mice exhibit lower cancellous bone volume but higher cortical thickness than Cx43(fl/fl) controls, indicating that the CT domain is involved in normal cancellous bone gain but opposes cortical bone acquisition. Further, Cx43(ΔCT) is able to exert the functions of full length osteocytic Cx43 on cortical bone geometry and mechanical properties, demonstrating that domains other than the CT are responsible for Cx43 function in cortical bone. In addition, parathyroid hormone (PTH) failed to increase endocortical bone formation or energy to failure, a mechanical property that indicates resistance to fracture, in cortical bone in Cx43(ΔCT) mice with or without osteocytic full length Cx43. On the other hand, bone mass and bone formation markers were increased by the hormone in all mouse models, regardless of whether full length or Cx43(ΔCT) were or not expressed. We conclude that Cx43 CT domain is involved in proper bone acquisition; and that Cx43 expression in osteocytes is dispensable for some but not all PTH anabolic actions.

  5. The Role of Water Compartments in the Material Properties of Cortical Bone

    PubMed Central

    Granke, Mathilde; Does, Mark D.; Nyman, Jeffry S.

    2015-01-01

    Comprising ~20% of the volume, water is a key determinant of the mechanical behavior of cortical bone. It essentially exists in 2 general compartments: within pores and bound to the matrix. The amount of pore water – residing in vascular-lacunar-canalicular space – primarily reflects intracortical porosity (i.e., open spaces within the matrix largely due to Haversian canals and resorption sites), and as such, is inversely proportional to most mechanical properties of bone. Movement of water according to pressure gradients generated during dynamic loading likely confers hydraulic stiffening to the bone as well. Nonetheless, bound water is a primary contributor to mechanical behavior of bone in that it is responsible for giving collagen the ability to confer ductility or plasticity to bone (i.e., allows deformation to continue once permanent damage begins to form in the matrix) and decreases with age along with fracture resistance. Thus, dehydration by air-drying or by solvents with less hydrogen bonding capacity causes bone to become brittle, but interestingly, it also increases stiffness and strength across the hierarchical levels of organization. Despite the importance of matrix hydration to fracture resistance, little is known about why bound water decreases with age in hydrated human bone. Using 1H nuclear magnetic resonance (NMR), both bound and pore water concentrations in bone can be measured ex vivo because the proton relaxation times differ between the two water compartments giving rise to two distinct signals. There are also emerging techniques to measure bound and pore water in vivo with magnetic resonance imaging (MRI). NMR/MRI-derived bound water concentration is positively correlated with both strength and toughness of hydrated bone, and may become a useful clinical marker of fracture risk. PMID:25783011

  6. Structural and Mechanical Repair of Diffuse Damage in Cortical Bone in vivo

    PubMed Central

    Seref-Ferlengez, Zeynep; Basta-Pljakic, Jelena; Kennedy, Oran D.; Philemon, Claudy J.; Schaffler, Mitchell B.

    2014-01-01

    Physiological wear and tear causes bone microdamage at several hierarchical levels, and these have different biological consequences. Bone remodeling is widely held to be the mechanism by which bone microdamage is repaired. However, recent studies showed that unlike typical linear microcracks, small crack damage, the clusters of submicron-sized matrix cracks also known as diffuse damage (Dif.Dx), does not activate remodeling. Thus, the fate of diffuse damage in vivo is not known. To examine this, we induced selectively Dif.Dx in rat ulnae in vivo by using end-load ulnar bending creep model. Changes in damage content were assessed by histomorphometry and mechanical testing immediately after loading (i.e., acute loaded) or at 14 days after damage induction (i.e., survival ulnae). Dif.Dx area was markedly reduced over the 14-day survival period after loading (p<0.02). We did not observe any intracortical resorption and there was no increase in cortical bone area in survival ulnae. The reduction in whole bone stiffness in acute loaded ulnae was restored to baseline levels in survival ulnae (p>0.6). Microindentation studies showed that Dif.Dx caused a highly localized reduction in elastic modulus in diffuse damage regions of the ulnar cortex. Moduli in these previously damaged bone areas were restored to control values by 14 days after loading. Our current findings indicate that small crack damage in bone can be repaired without bone remodeling, and suggest that alternative repair mechanisms exist in bone to deal with submicron-sized matrix cracks. Those mechanisms are currently unknown and further investigations are needed to elucidate the mechanisms by which this direct repair occurs. PMID:25042459

  7. Denosumab rapidly increases cortical bone in key locations of the femur: a 3D bone mapping study in women with osteoporosis.

    PubMed

    Poole, Kenneth E S; Treece, Graham M; Gee, Andrew H; Brown, Jacques P; McClung, Michael R; Wang, Andrea; Libanati, Cesar

    2015-01-01

    Women with osteoporosis treated for 36 months with twice-yearly injections of denosumab sustained fewer hip fractures compared with placebo. Treatment might improve femoral bone at locations where fractures typically occur. To test this hypothesis, we used 3D cortical bone mapping of postmenopausal women with osteoporosis to investigate the timing and precise location of denosumab versus placebo effects in the hips. We analyzed clinical computed tomography scans from 80 female participants in FREEDOM, a randomized trial, wherein half of the study participants received subcutaneous denosumab 60 mg twice yearly and the others received placebo. Cortical 3D bone thickness maps of both hips were created from scans at baseline, 12, 24, and 36 months. Cortical mass surface density maps were also created for each visit. After registration of each bone to an average femur shape model followed by statistical parametric mapping, we visualized and quantified statistically significant treatment effects. The technique allowed us to pinpoint systematic differences between denosumab and control and to display the results on a 3D average femur model. Denosumab treatment led to an increase in femoral cortical mass surface density and thickness, already evident by the third injection (12 months). Overall, treatment with denosumab increased femoral cortical mass surface density by 5.4% over 3 years. One-third of the increase came from increasing cortical density, and two-thirds from increasing cortical thickness, relative to placebo. After 36 months, cortical mass surface density and thickness had increased by up to 12% at key locations such as the lateral femoral trochanter versus placebo. Most of the femoral cortex displayed a statistically significant relative difference by 36 months. Osteoporotic cortical bone responds rapidly to denosumab therapy, particularly in the hip trochanteric region. This mechanism may be involved in the robust decrease in hip fractures observed in

  8. A Piece of the Puzzle: The Bone Health Index of the BoneXpert Software Reflects Cortical Bone Mineral Density in Pediatric and Adolescent Patients

    PubMed Central

    Schündeln, Michael M.; Marschke, Laura; Bauer, Jens J.; Hauffa, Pia K.; Schweiger, Bernd; Führer-Sakel, Dagmar; Lahner, Harald; Poeppel, Thorsten D.; Kiewert, Cordula; Hauffa, Berthold P.; Grasemann, Corinna

    2016-01-01

    Introduction Suspected osteopathology in chronically ill children often necessitates the assessment of bone mineral density. The most frequently used methods are dual-energy X-ray-absorption (DXA) and peripheral quantitative computed tomography (pQCT). The BoneXpert software provides an automated radiogrammatic method to assess skeletal age from digitalized X-rays of the left hand. Furthermore, the program calculates the Bone Health Index (BHI), a measure of cortical thickness and mineralization, which is obtained from indices of three metacarpal bones. In our study, we analyzed the manner in which BHI information provided by BoneXpert compares with DXA or pQCT measurements in youths. Study Design The BHI was retrospectively obtained using digitalized X-rays of the left hand and compared with the results of 203 corresponding DXA readings (Lunar Prodigy, GE Healthcare) of the lumbar vertebrae and femur as well as 117 pQCT readings (XCT 900, Stratec) of the distal radius. Results The BHI values showed a strong positive correlation with the DXA readings at each and all lumbar vertebrae (L1 –L4: r = 0.73; P < 0.0001). The age-adjusted Z-score of L1 –L4 and the height-adjusted score showed a positive correlation with the BHI-SDS (standard deviation score, r = 0.23; P < 0.002 and r = 0.27; P < 0.001, respectively). Total bone mineral density, as assessed via pQCT, also positively correlated with the BHI (r = 0.39; P < 0.0001), but the trabecular values displayed only a weak correlation. Conclusions The BHI obtained using BoneXpert can be a useful parameter in the assessment of bone health in children in most cases. This technique provides observer-independent information on cortical thickness and mineralization based on X-ray imaging of the hands. PMID:27014874

  9. Bone Microarchitecture in Men and Women with Diabetes: The Importance of Cortical Porosity.

    PubMed

    Paccou, Julien; Ward, Kate A; Jameson, Karen A; Dennison, Elaine M; Cooper, Cyrus; Edwards, Mark H

    2016-05-01

    High-resolution peripheral quantitative computed tomography (HR-pQCT) captures novel aspects of bone geometry, volumetric bone mineral density and offers the ability to measure bone microarchitecture, but data relating measures obtained from this technique to diabetic status are inconsistent in women and lacking in men. Here, we report an analysis from the Hertfordshire Cohort Study, where we were able to study associations between bone microarchitecture from HR-pQCT of distal radius and distal tibia in 332 participants (177 men and 155 women) aged 72.1-81.4 years with or without diabetes mellitus (DM); n = 29 (18 men and 11 women) and n = 303, respectively. Statistical analyses were performed separately for women and men. The mean (SD) age of participants was 76.4 (2.6) and 76.1 (2.5) years in women and men, respectively. Participants with DM differed significantly in terms of weight in both women (70.4 ± 12.3 vs. 80.3 ± 18.3 kg; p = 0.015) and men (81.7 ± 11.4 vs. 92.8 ± 16.3 kg; p < 0.001) but no differences were found in height, smoking status, alcohol intake, social class and physical activity among women or men. Analyses in women revealed that cortical pore volume (Ct.Po.V) was higher in participants with DM and close to statistical significance for cortical porosity (Ct.Po) (β = 0.76 [0.12, 1.41] z-score, p = 0.020 and β = 0.62 [-0.02, 1.27] z-score, p = 0.059, respectively) at the distal radius. Adjustment for weight did not materially affect the relationship described for Ct.Po.V (β = 0.74 [0.09, 1.39], p = 0.027) and Ct.Po (β = 0.65 [-0.01, 1.30], p = 0.053) at the distal radius. After adjustment for weight, analyses in men revealed that Ct.Po and Ct.Po.V were higher in participants with DM (β = 0.57 [0.09, 1.06] z-score, p = 0.021 and β = 0.48 [0.01, 0.95] z-score, p = 0.044, respectively) at the distal tibia. Analyses of distal radial and tibial trabecular bone parameters according to diabetic status

  10. Development of new criteria for cortical bone histomorphometry in femoral neck: intra- and inter-observer reproducibility.

    PubMed

    Tong, Xiao-Yu; Malo, Markus; Tamminen, Inari S; Isaksson, Hanna; Jurvelin, Jukka S; Kröger, Heikki

    2015-01-01

    Histomorphometry is commonly applied to study bone remodeling. Histological definitions of cortical bone boundaries have not been consistent. In this study, new criteria for specific definition of the transitional zone between the cortical and cancellous bone in the femoral neck were developed. The intra- and inter-observer reproducibility of this method was determined by quantitative histomorphometry and areal overlapping analysis. The undecalcified histological sections of femoral neck specimens (n = 6; from men aged 17-59 years) were processed and scanned to acquire histological images of complete bone sections. Specific criteria were applied to define histological boundaries. "Absolute cortex area" consisted of pure cortical bone tissue only, and was defined mainly based on the size of composite canals and their distance to an additional "guide" boundary (so-called "preliminary cortex boundary," the clear demarcation line of density between compact cortex and sparse trabeculae). Endocortical bone area was defined by recognizing characteristic endocortical structures adjacent to the preliminary cortical boundary. The present results suggested moderate to high reproducibility for low-magnification parameters (e.g., cortical bone area). The coefficient of variation (CV %) ranged from 0.02 to 5.61 in the intra-observer study and from 0.09 to 16.41 in the inter-observer study. However, the intra-observer reproducibility of some high-magnification parameters (e.g., osteoid perimeter/endocortical perimeter) was lower (CV %, 0.33-87.9). The overlapping of three histological areas in repeated analyses revealed highest intra- and inter-observer reproducibility for the absolute cortex area. This study provides specific criteria for the definition of histological boundaries for femoral neck bone specimens, which may aid more precise cortical bone histomorphometry.

  11. Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures

    PubMed Central

    Movérare-Skrtic, Sofia; Henning, Petra; Liu, Xianwen; Nagano, Kenichi; Saito, Hiroaki; Börjesson, Anna E; Sjögren, Klara; Windahl, Sara H; Farman, Helen; Kindlund, Bert; Engdahl, Cecilia; Koskela, Antti; Zhang, Fu-Ping; Eriksson, Emma E; Zaman, Farasat; Hammarstedt, Ann; Isaksson, Hanna; Bally, Marta; Kassem, Ali; Lindholm, Catharina; Sandberg, Olof; Aspenberg, Per; Sävendahl, Lars; Feng, Jian Q; Tuckermann, Jan; Tuukkanen, Juha; Poutanen, Matti; Baron, Roland; Lerner, Ulf H; Gori, Francesca; Ohlsson, Claes

    2015-01-01

    The WNT16 locus is a major determinant of cortical bone thickness and nonvertebral fracture risk in humans. The disability, mortality and costs caused by osteoporosis-induced nonvertebral fractures are enormous. We demonstrate here that Wnt16-deficient mice develop spontaneous fractures as a result of low cortical thickness and high cortical porosity. In contrast, trabecular bone volume is not altered in these mice. Mechanistic studies revealed that WNT16 is osteoblast derived and inhibits human and mouse osteoclastogenesis both directly by acting on osteoclast progenitors and indirectly by increasing expression of osteoprotegerin (Opg) in osteoblasts. The signaling pathway activated by WNT16 in osteoclast progenitors is noncanonical, whereas the pathway activated in osteoblasts is both canonical and noncanonical. Conditional Wnt16 inactivation revealed that osteoblast-lineage cells are the principal source of WNT16, and its targeted deletion in osteoblasts increases fracture susceptibility. Thus, osteoblast-derived WNT16 is a previously unreported key regulator of osteoclastogenesis and fracture susceptibility. These findings open new avenues for the specific prevention or treatment of nonvertebral fractures, a substantial unmet medical need. PMID:25306233

  12. Evaluation of tibial cortical bone by ultrasound velocity in oriental females.

    PubMed

    Wang, S F; Chang, C Y; Shih, C; Teng, M M

    1997-11-01

    In order to evaluate the feasibility of detecting bone status by measuring cortical ultrasound velocity, ultrasonic transmission velocity of the anterior cortex of shin was measured on 175 normal Chinese females aged 31-75 years (mean 52.3 +/- SD 9.1 years). The data were compared with bone mineral density (BMD) of the lumbar spine and/or hip measured by dual energy X-ray absorptiometry (DXA), which was performed on the same day as speed of sound (SOS) examination. Comparison was made with SOS of Caucasian women previously reported in the literature. SOS of three volunteers measured by two different operators were also enrolled in our study for precision testing. The mean value of SOS of the 175 females was 3850.7 +/- 119.3 m s-1 (range: 3411.7-4220.5 m s-1), the peak value being in the fourth decade. The rate of decrease of transmission velocity per decade from fourth decade to fifth decade was 1.7%, while that of fifth decade to sixth decade was 2.2% and that of sixth decade to seventh decade was 4.0%. The interoperative and intraoperative coefficient variance with and without reposition were under 0.32%. SOS moderately correlated with BMD at different sites, the best correlation being with the lumbar spine anteroposterior projection (r = 0.509; p < 0.0001, Pearson's test). There were significant differences in SOS between pre- and post-menopausal groups (p = 0.01, ANOVA test), and between peri- and post-menopausal groups (p = 0.02), but there was no correlation of body weight and height with SOS. SOS also inversely correlated with age and post-menopausal duration. The mean value of SOS in our study was similar to that of Caucasians, but the rate of decrease over 50 years of age was faster. The rate of decline of tibial cortical SOS was similar to that of trabecular bone as previously reported in the literature. As there is a significant decrease of SOS in older females, and older Oriental females suffer from an accelerated cortical bone loss, it is concluded

  13. Glycation of Human Cortical and Cancellous Bone Captures Differences in the Formation of Maillard Reaction Products between Glucose and Ribose

    PubMed Central

    Sroga, Grażyna E.; Siddula, Alankrita; Vashishth, Deepak

    2015-01-01

    To better understand some aspects of bone matrix glycation, we used an in vitro glycation approach. Within two weeks, our glycation procedures led to the formation of advanced glycation end products (AGEs) at the levels that corresponded to approx. 25–30 years of the natural in vivo glycation. Cortical and cancellous bones from human tibias were glycated in vitro using either glucose (glucosylation) or ribose (ribosylation). Both glucosylation and ribosylation led to the formation of higher levels of AGEs and pentosidine (PEN) in cancellous than cortical bone dissected from all tested donors (young, middle-age and elderly men and women). More efficient glycation of bone matrix proteins in cancellous bone most likely depended on the higher porosity of this tissue, which facilitated better accessibility of the sugars to the matrix proteins. Notably, glycation of cortical bone from older donors led to much higher AGEs levels as compared to young donors. Such efficient in vitro glycation of older cortical bone could result from aging-related increase in porosity caused by the loss of mineral content. In addition, more pronounced glycation in vivo would be driven by elevated oxidation processes. Interestingly, the levels of PEN formation differed pronouncedly between glucosylation and ribosylation. Ribosylation generated very high levels of PEN (approx. 6- vs. 2.5-fold higher PEN level than in glucosylated samples). Kinetic studies of AGEs and PEN formation in human cortical and cancellous bone matrix confirmed higher accumulation of fluorescent crosslinks for ribosylation. Our results suggest that in vitro glycation of bone using glucose leads to the formation of lower levels of AGEs including PEN, whereas ribosylation appears to support a pathway toward PEN formation. Our studies may help to understand differences in the progression of bone pathologies related to protein glycation by different sugars, and raise awareness for excessive sugar supplementation in food

  14. Non destructive characterization of cortical bone micro-damage by nonlinear resonant ultrasound spectroscopy.

    PubMed

    Haupert, Sylvain; Guérard, Sandra; Peyrin, Françoise; Mitton, David; Laugier, Pascal

    2014-01-01

    The objective of the study was to evaluate the ability of a nonlinear ultrasound technique, the so-called nonlinear resonant ultrasound spectroscopy (NRUS) technique, for detecting early microdamage accumulation in cortical bone induced by four-point bending fatigue. Small parallelepiped beam-shaped human cortical bone specimens were subjected to cyclic four-point bending fatigue in several steps. The specimens were prepared to control damage localization during four-point bending fatigue cycling and to unambiguously identify resonant modes for NRUS measurements. NRUS measurements were achieved to follow the evolution of the nonlinear hysteretic elastic behavior during fatigue-induced damage. After each fatigue step, a small number of specimens was removed from the protocol and set apart to quantitatively assess the microcrack number density and length using synchrotron radiation micro-computed tomography (SR-µCT). The results showed a significant effect of damage steps on the nonlinear hysteretic elastic behavior. No significant change in the overall length of microcracks was observed in damaged regions compared to the load-free control regions. Only an increased number of shortest microcracks, those in the lowest quartile, was noticed. This was suggestive of newly formed microcracks during the early phases of damage accumulation. The variation of nonlinear hysteretic elastic behavior was significantly correlated to the variation of the density of short microcracks. Our results suggest that the nonlinear hysteretic elastic behavior is sensitive to early bone microdamage. Therefore NRUS technique can be used to monitor fatigue microdamage progression in in vitro experiments.

  15. Mechanistic aspects of fracture and R-curve behavior in human cortical bone

    SciTech Connect

    Nalla, Ravi K.; Kruzic, Jamie J.; Kinney, John H.; Ritchie, Robert O.

    2004-04-28

    An understanding of the evolution of toughness is essential for the mechanistic interpretation of the fracture of cortical bone. In the present study, in vitro fracture experiments were conducted on human cortical bone in order to identify and quantitatively assess the salient toughening mechanisms. The fracture toughness was found to rise linearly with crack extension (i.e., rising resistance- or R-curve behavior) with a mean crack-initiation toughness, K0 of B2MPaOm for crack growth in the proximal distal direction. Uncracked ligament bridging, which was observed in the wake of the crack, was identified as the dominant toughening mechanism responsible for the observed R-curve behavior. The extent and nature of the bridging zone was examined quantitatively using multicutting compliance experiments in order to assess the bridging zone length and estimate the bridging stress distribution. Additionally, time-dependent cracking behavior was observed at stress intensities well below those required for overload fracture; specifically, slow crack growth occurred at growth rates of approx. 2 x 10-9 m/s at stress intensities approx. 35 percent below the crack-initiation toughness. In an attempt to measure slower growth rates, it was found that the behavior switched to a regime dominated by time dependent crack blunting, similar to that reported for dentin; however, such blunting was apparent over much slower time scales in bone, which permitted subcritical crack growth to readily take place at higher stress intensities.

  16. Mechanistic aspects of fracture and R-curve behavior in human cortical bone.

    PubMed

    Nalla, R K; Kruzic, J J; Kinney, J H; Ritchie, R O

    2005-01-01

    An understanding of the evolution of toughness is essential for the mechanistic interpretation of the fracture of cortical bone. In the present study, in vitro fracture experiments were conducted on human cortical bone in order to identify and quantitatively assess the salient toughening mechanisms. The fracture toughness was found to rise linearly with crack extension (i.e., rising resistance- or R-curve behavior) with a mean crack-initiation toughness, K0 of approximately 2 MPa square root m for crack growth in the proximal-distal direction. Uncracked ligament bridging, which was observed in the wake of the crack, was identified as the dominant toughening mechanism responsible for the observed R-curve behavior. The extent and nature of the bridging zone was examined quantitatively using multi-cutting compliance experiments in order to assess the bridging zone length and estimate the bridging stress distribution. Additionally, time-dependent cracking behavior was observed at stress intensities well below those required for overload fracture; specifically, slow crack growth occurred at growth rates of approximately 2 x 10(-9) m/s at stress intensities approximately 35% below the crack-initiation toughness. In an attempt to measure slower growth rates, it was found that the behavior switched to a regime dominated by time-dependent crack blunting, similar to that reported for dentin; however, such blunting was apparent over much slower time scales in bone, which permitted subcritical crack growth to readily take place at higher stress intensities.

  17. Osteogenic effect of a gastric pentadecapeptide, BPC-157, on the healing of segmental bone defect in rabbits: a comparison with bone marrow and autologous cortical bone implantation.

    PubMed

    Sebecić, B; Nikolić, V; Sikirić, P; Seiwerth, S; Sosa, T; Patrlj, L; Grabarević, Z; Rucman, R; Petek, M; Konjevoda, P; Jadrijević, S; Perović, D; Slaj, M

    1999-03-01

    Gastrectomy often results in increased likelihood of osteoporosis, metabolic aberration, and risk of fracture, and there is a need for a gastric peptide with osteogenic activity. A novel stomach pentadecapeptide, BPC-157, improves wound and fracture healing in rats in addition to having an angiogenic effect. Therefore, in the present study, using a segmental osteoperiosteal bone defect (0.8 cm, in the middle of the left radius) that remained incompletely healed in all control rabbits for 6 weeks (assessed in 2 week intervals), pentadecapeptide BPC-157 was further studied (either percutaneously given locally [10 microg/kg body weight] into the bone defect, or applied intramuscularly [intermittently, at postoperative days 7, 9, 14, and 16 at 10 microg/kg body weight] or continuously [once per day, postoperative days 7-21 at 10 microg or 10 ng/kg body weight]). For comparison, rabbits percutaneously received locally autologous bone marrow (2 mL, postoperative day 7). As standard treatment, immediately after its formation, the bone defect was filled with an autologous cortical graft. Saline-treated (2 mL intramuscularly [i.m.] and 2 mL locally into the bone defect), injured animals were used as controls. Pentadecapeptide BPC-157 significantly improved the healing of segmental bone defects. For instance, upon radiographic assessment, the callus surface, microphotodensitometry, quantitative histomorphometry (10 microg/kg body weight i.m. for 14 days), or quantitative histomorphometry (10 ng/kg body weight i.m. for 14 days) the effect of pentadecapeptide BPC-157 was shown to correspond to improvement after local application of bone marrow or autologous cortical graft. Moreover, a comparison of the number of animals with unhealed defects (all controls) or healed defects (complete bony continuity across the defect site) showed that besides pentadecapeptide intramuscular application for 14 days (i.e., local application of bone marrow or autologous cortical graft), also

  18. Effects of Loading Duration and Short Rest Insertion on Cancellous and Cortical Bone Adaptation in the Mouse Tibia

    PubMed Central

    Yang, Haisheng; Embry, Rachel E.; Main, Russell P.

    2017-01-01

    The skeleton’s osteogenic response to mechanical loading can be affected by loading duration and rest insertion during a series of loading events. Prior animal loading studies have shown that the cortical bone response saturates quickly and short rest insertions between load cycles can enhance cortical bone formation. However, it remains unknown how loading duration and short rest insertion affect load-induced osteogenesis in the mouse tibial compressive loading model, and particularly in cancellous bone. To address this issue, we applied cyclic loading (-9 N peak load; 4 Hz) to the tibiae of three groups of 16 week-old female C57BL/6 mice for two weeks, with a different number of continuous load cycles applied daily to each group (36, 216 and 1200). A fourth group was loaded under 216 daily load cycles with a 10 s rest insertion after every fourth cycle. We found that as few as 36 load cycles per day were able to induce osteogenic responses in both cancellous and cortical bone. Furthermore, while cortical bone area and thickness continued to increase through 1200 cycles, the incremental increase in the osteogenic response decreased as load number increased, indicating a reduced benefit of the increasing number of load cycles. In the proximal metaphyseal cancellous bone, trabecular thickness increased with load up to 216 cycles. We also found that insertion of a 10 s rest between load cycles did not improve the osteogenic response of the cortical or cancellous tissues compared to continuous loading in this model given the age and sex of the mice and the loading parameters used here. These results suggest that relatively few load cycles (e.g. 36) are sufficient to induce osteogenic responses in both cortical and cancellous bone in the mouse tibial loading model. Mechanistic studies using the mouse tibial loading model to examine bone formation and skeletal mechanobiology could be accomplished with relatively few load cycles. PMID:28076363

  19. Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects.

    PubMed

    Van der Stok, Johan; Van der Jagt, Olav P; Amin Yavari, Saber; De Haas, Mirthe F P; Waarsing, Jan H; Jahr, Holger; Van Lieshout, Esther M M; Patka, Peter; Verhaar, Jan A N; Zadpoor, Amir A; Weinans, Harrie

    2013-05-01

    Porous titanium scaffolds have good mechanical properties that make them an interesting bone substitute material for large bone defects. These scaffolds can be produced with selective laser melting, which has the advantage of tailoring the structure's architecture. Reducing the strut size reduces the stiffness of the structure and may have a positive effect on bone formation. Two scaffolds with struts of 120-µm (titanium-120) or 230-µm (titanium-230) were studied in a load-bearing critical femoral bone defect in rats. The defect was stabilized with an internal plate and treated with titanium-120, titanium-230, or left empty. In vivo micro-CT scans at 4, 8, and 12 weeks showed more bone in the defects treated with scaffolds. Finally, 18.4 ± 7.1 mm(3) (titanium-120, p = 0.015) and 18.7 ± 8.0 mm(3) (titanium-230, p = 0.012) of bone was formed in those defects, significantly more than in the empty defects (5.8 ± 5.1 mm(3) ). Bending tests on the excised femurs after 12 weeks showed that the fusion strength reached 62% (titanium-120) and 45% (titanium-230) of the intact contralateral femurs, but there was no significant difference between the two scaffolds. This study showed that in addition to adequate mechanical support, porous titanium scaffolds facilitate bone formation, which results in high mechanical integrity of the treated large bone defects.

  20. Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur.

    PubMed

    Malo, M K H; Rohrbach, D; Isaksson, H; Töyräs, J; Jurvelin, J S; Tamminen, I S; Kröger, H; Raum, K

    2013-04-01

    Tissue level structural and mechanical properties are important determinants of bone strength. As an individual ages, microstructural changes occur in bone, e.g., trabeculae and cortex become thinner and porosity increases. However, it is not known how the elastic properties of bone change during aging. Bone tissue may lose its elasticity and become more brittle and prone to fractures as it ages. In the present study the age-dependent variation in the spatial distributions of microstructural and microelastic properties of the human femoral neck and shaft were evaluated by using acoustic microscopy. Although these properties may not be directly measured in vivo, there is a major interest to investigate their relationships with the linear elastic measurements obtained by diagnostic ultrasound at the most severe fracture sites, e.g., the femoral neck. However, before the validity of novel in vivo techniques can be established, it is essential to understand the age-dependent variation in tissue elastic properties and porosity at different skeletal sites. A total of 42 transverse cross-sectional bone samples were obtained from the femoral neck (Fn) and proximal femoral shaft (Ps) of 21 men (mean±SD age 47.1±17.8, range 17-82years). Samples were quantitatively imaged using a scanning acoustic microscope (SAM) equipped with a 50MHz ultrasound transducer. Distributions of the elastic coefficient (c33) of cortical (Ct) and trabecular (Tr) tissues and microstructure of cortex (cortical thickness Ct.Th and porosity Ct.Po) were determined. Variations in c33 were observed with respect to tissue type (c33Trc33(Ct.Fn)=35.3GPa>c33(Tr.Ps)=33.8GPa>c33(Tr.Fn)=31.9GPa), and cadaver age (R(2)=0.28-0.46, p<0.05). Regional variations in porosity were found in the neck (superior 13.1%; inferior 6.1%; anterior 10.1%; posterior 8.6%) and in the shaft (medial 9.5%; lateral 7.7%; anterior 8.6%; posterior 12.0%). In conclusion, significant variations in

  1. Interpreting cortical bone adaptation and load history by quantifying osteon morphotypes in circularly polarized light images.

    PubMed

    Skedros, John G; Mendenhall, Shaun D; Kiser, Casey J; Winet, Howard

    2009-03-01

    Birefringence variations in circularly polarized light (CPL) images of thin plane-parallel sections of cortical bone can be used to quantify regional differences in predominant collagen fiber orientation (CFO). Using CPL images of equine third metacarpals (MC3s), R.B. Martin, V.A. Gibson, S.M. Stover, J.C. Gibeling, and L.V. Griffin. (40) described six secondary osteon variants ('morphotypes') and suggested that differences in their regional prevalence affect fatigue resistance and toughness. They devised a numerical osteon morphotype score (MTS) for quantifying regional differences in osteon morphotypes. We have observed that a modification of this score could significantly improve its use for interpreting load history. We hypothesized that our modified osteon MTS would more accurately reveal differences in osteon MTSs between opposing "tension" and "compression" cortices of diaphyses of habitually bent bones. This was tested using CPL images in transverse sections of calcanei from sheep, deer, and horses, and radii from sheep and horses. Equine MC3s and sheep tibiae were examined as controls because they experience comparatively greater load complexity that, because of increased prevalence of torsion/shear, would not require regional mechanical enhancements provided by different osteon morphotypes. Predominant CFO, which can reliably reflect adaptation for a regionally prevalent strain mode, was quantified as mean gray levels from birefringence of entire images (excluding pore spaces) in anterior, posterior, medial, and lateral cortices. Results showed that, in contrast to the original scoring scheme of Martin et al., the modified scheme revealed significant anterior/posterior differences in osteon MTSs in nearly all "tension/compression" bones (p<0.0001), but not in equine MC3s (p=0.30) and sheep tibiae (p=0.35). Among habitually bent bones, sheep radii were the exception; relatively lower osteon populations and the birefringence of the primary bone contributed

  2. Analysis of forces in conventional and ultrasonically assisted plane cutting of cortical bone.

    PubMed

    Alam, Khurshid; Khan, Mushtaq; Silberschmidt, Vadim V

    2013-06-01

    Bone cutting is a well accepted but technically demanding surgical procedure in orthopaedics. A level of tool penetration force during cutting of bones has been the prime concern to surgeons, since it can produce unnecessary mechanical damage to surrounding tissues. Research in this area has been undertaken for many decades to find ways to minimise the cutting force. Cutting of bone with ultrasonic tools is a relatively new technique replacing conventional procedures in neuro-, dental and orthopaedic surgeries, due to its precision and safety. In this article, the level of forces produced during a chisel-like tool penetration in a fresh cortical bone is studied. The obtained force data are analysed for both conventional cutting and ultrasonically assisted cutting. Through a series of experiments, it was demonstrated that the depth of cut and parameters of ultrasonic oscillations affected the level of cutting force, the former being the main factor in both types of cutting. It was found that the tool penetration force was decreased with an increase in the ultrasonic frequency or amplitude and was not affected by the cutting speed. The rise in bone temperature was measured and was found to be insensitive to the level of cutting speed within the range used in this study.

  3. Hydration and radiation effects on the residual stress state of cortical bone.

    PubMed

    Tung, Patrick K M; Mudie, Stephen; Daniels, John E

    2013-12-01

    The change in the biaxial residual stress state of hydroxyapatite crystals and collagen fibrillar structure in sections of bovine cortical bone has been investigated as a function of dehydration and radiation dose using combined small- and wide-angle X-ray scattering. It is shown that dehydration of the bone has a pronounced effect on the residual stress state of the crystalline phase, while the impact of radiation damage alone is less dramatic. In the initial hydrated state, a biaxial compressive stress of approximately -150 MPa along the bone axis exists in the hydroxyapatite crystals. As water evaporates from the bone material, the stress state moves to a tensile state of approximately 100 MPa. The collagen fibrillar structure is initially in a tensile residual stress state when the bone is hydrated and the state increases in magnitude slightly with dehydration. Radiation dose in continually hydrated samples also reduces the initial biaxial compressive stress magnitude in the hydroxyapatite phase; however, the stress remains compressive. Radiation exposure alone does not appear to affect the stress state of the collagen fibrillar structure.

  4. The use of cortical heterologous sheets for sinus lift bone grafting: a modification of Tulasne's technique with 7-year follow-up.

    PubMed

    Di Stefano, D A; Cazzaniga, A; Andreasi Bassi, M; Ludovichetti, M; Ammirabile, G; Celletti, R

    2013-01-01

    In this article, the authors describe their experience with using cortical deantigenated equine bone sheets in sinus lift grafting procedures performed on 23 patients. The technique employed resembles that described by Tulasne but avoids the need for using harvested calvaria bone and introduces some additional operating variants. The use of heterologous cortical bone sheets effectively managed even large lacerations of the Schneiderian membrane and allowed for immediate stabilization of the heterologous bone granules. Average histomorphometric values for bone cores collected six months after grafting, at the time of implant placement, were: newly formed bone tissue, residual bone substitute, medullary spaces. At seven year follow-up, clinical and radiographic examination indicated that the use of the bone sheets preserved the regenerated bone volume. In conclusion, the use of heterologous cortical bone sheets in association with granular bone graft material enabled long-term stabilization of the graft material and effective management of intra-surgical complications.

  5. Characterization of circumferential guided waves in a cylindrical cortical bone-mimicking phantom.

    PubMed

    Nauleau, Pierre; Cochard, Etienne; Minonzio, Jean-Gabriel; Grimal, Quentin; Laugier, Pascal; Prada, Claire

    2012-04-01

    The femoral neck cortical shell was recently demonstrated to act like a waveguide for circumferential waves. Femoral neck assessment with ultrasound could be enhanced by guided waves measurement. In this study, the decomposition of the time reversal operator (DORT) method is used to measure the phase velocities of circumferential guided modes in a circular tube with dimensions characteristic of femoral neck. The tube is made of a bone-mimicking material. Five guided modes are obtained and compared to theoretical predictions. The work substantiates the feasibility of measuring guided waves in a relatively thick tube of attenuating material with the DORT method.

  6. Evaluation of Bound and Pore Water in Cortical Bone Using Ultrashort Echo Time (UTE) Magnetic Resonance Imaging

    PubMed Central

    Shao, Hongda; D'Lima, Darryl; Bydder, Graeme M; Wu, Zhihong; Du, Jiang

    2015-01-01

    Bone water exists in different states with the majority bound to the organic matrix and to mineral, and a smaller fraction in ‘free’ form in the pores of cortical bone. In this study we aimed to develop and evaluate ultrashort echo time (UTE) magnetic resonance imaging (MRI) techniques for assessment of T2*, T1 and concentration of collagen-bound and pore water in cortical bone using a 3T clinical whole-body scanner. UTE MRI together with an isotope study using tritiated and distilled water (THO-H2O) exchange as well as gravimetrical analysis were performed on ten sectioned bovine bone samples. In addition, 32 human cortical bone samples were prepared for comparison between pore water concentration measured with UTE MRI and cortical porosity derived from micro computed tomography (μCT). A short T2* of 0.27 ± 0.03 ms and T1 of 116±6 ms were observed for collagen-bound water in bovine bone. A longer T2* of 1.84 ± 0.52 ms and T1 of 527±28 ms were observed for pore water in bovine bone. UTE MRI measurements showed a pore water concentration of 4.7-5.3% by volume and collagen-bound water concentration of 15.7-17.9% in bovine bone. THO-H2O exchange studies showed a pore water concentration of 5.9 ± 0.6% and collagen-bound water concentration of 18.1 ± 2.1% in bovine bone. Gravimetrical analysis showed a pore water concentration of 6.3 ± 0.8% and collagen-bound water concentration of 19.2 ± 3.6% in bovine bone. A mineral water concentration of 9.5 ± 0.6% was derived in bovine bone with the THO-H2O exchange study. UTE measured pore water concentration is highly correlated (R2 = 0.72, P < 0.0001) with μCT porosity in the human cortical bone study. Both bovine and human bone studies suggest that UTE sequences could reliably measure collagen-bound and pore water concentration in cortical bone using a clinical scanner. PMID:26527298

  7. Novel anatomic adaptation of cortical bone to meet increased mineral demands of reproduction.

    PubMed

    Macica, Carolyn M; King, Helen E; Wang, Meina; McEachon, Courtney L; Skinner, Catherine W; Tommasini, Steven M

    2016-04-01

    The goal of this study was to investigate the effects of reproductive adaptations to mineral homeostasis on the skeleton in a mouse model of compromised mineral homeostasis compared to adaptations in control, unaffected mice. During pregnancy, maternal adaptations to high mineral demand include more than doubling intestinal calcium absorption by increasing calcitriol production. However, calcitriol biosynthesis is impaired in HYP mice, a murine model of X-linked hypophosphatemia (XLH). In addition, there is a paucity of mineralized trabecular bone, a primary target of bone resorption during pregnancy and lactation. Because the highest density of mineral is in mature cortical bone, we hypothesized that mineral demand is met by utilizing intracortical mineral reserves. Indeed, analysis of HYP mice revealed dramatic increases in intracortical porosity characterized by elevated serum PTH and type-I collagen matrix-degrading enzyme MMP-13. We discovered an increase in carbonate ion substitution in the bone mineral matrix during pregnancy and lactation of HYP mice, suggesting an alternative mechanism of bone remodeling that maintains maternal bone mass during periods of high mineral demand. This phenomenon is not restricted to XLH, as increased carbonate in the mineral matrix also occurred in wild-type mice during lactation. Taken together, these data suggest that increased intracortical perilacunar mineral turnover also contributes to maintaining phosphate levels during periods of high mineral demand. Understanding the mechanisms of skeletal contribution to mineral homeostasis is important to improving the treatment and prevention of fracture risk and bone fragility for female patients with XLH, but also provides important insight into the role and unique adaptations of the maternal skeleton to the demands of fetal development and the needs of postnatal nutrition.

  8. Cohesive finite element modeling of age-related toughness loss in human cortical bone.

    PubMed

    Ural, Ani; Vashishth, Deepak

    2006-01-01

    Although the age-related loss of bone quality has been implicated in bone fragility, a mechanistic understanding of the relationship is necessary for developing diagnostic and treatment modalities in the elderly population at risk of fracture. In this study, a finite element based cohesive zone model is developed and applied to human cortical bone in order to capture the experimentally shown rising crack growth behavior and age-related loss of bone toughness. The cohesive model developed here is based on a traction-crack opening displacement relationship representing the fracture processes in the vicinity of a propagating crack. The traction-displacement curve, defining the cohesive model, is composed of ascending and descending branches that incorporate material softening and nonlinearity. The results obtained indicate that, in contrast to initiation toughness, the finite element simulations of crack growth in compact tension (CT) specimens successfully capture the rising R-curve (propagation toughness) behavior and the age-related loss of bone toughness. In close correspondence with the experimentally observed decrease of 14-15% per decade, the finite element simulation results show a decrease of 13% in the R-curve slope per decade. The success of the simulations is a result of the ability of cohesive models to capture and predict the parameters related to bone fracture by representing the physical processes occurring in the vicinity of a propagating crack. These results illustrate that fracture mechanisms in the process zone control bone toughness and any modification to these would cause age-related toughness loss.

  9. Cortical Bone Water Concentration: Dependence of MR Imaging Measures on Age and Pore Volume Fraction

    PubMed Central

    Li, Cheng; Seifert, Alan C.; Rad, Hamidreza Saligheh; Bhagat, Yusuf A.; Rajapakse, Chamith S.; Sun, Wenli; Lam, Shing Chun Benny

    2014-01-01

    Purpose To quantify bulk bone water to test the hypothesis that bone water concentration (BWC) is negatively correlated with bone mineral density (BMD) and is positively correlated with age, and to propose the suppression ratio (SR) (the ratio of signal amplitude without to that with long-T2 suppression) as a potentially stronger surrogate measure of porosity, which is evaluated ex vivo and in vivo. Materials and Methods Human subject studies were conducted in compliance with institutional review board and HIPAA regulations. Healthy men and women (n = 72; age range, 20–80 years) were examined with a hybrid radial ultrashort echo time magnetic resonance (MR) imaging sequence at 3.0 T, and BWC was determined in the tibial midshaft. In a subset of 40 female subjects, the SR was measured with a similar sequence. Cortical volumetric BMD (vBMD) was measured by means of peripheral quantitative computed tomography (CT). The method was validated against micro-CT–derived porosity in 13 donor human cortical bone specimens. Associations among parameters were evaluated by using standard statistical tools. Results BWC was positively correlated with age (r = 0.52; 95% confidence interval [CI]: 0.22, 0.73; P = .002) and negatively correlated with vBMD at the same location (r = −0.57; 95% CI: −0.76, −0.29; P < .001). Data were suggestive of stronger associations with SR (r = 0.64, 95% CI: 0.39, 0.81, P < .001 for age; r = −0.67, 95% CI: −0.82, −0.43, P < .001 for vBMD; P < .001 for both), indicating that SR may be a more direct measure of porosity. This interpretation was supported by ex vivo measurements showing SR to be strongly positively correlated with micro-CT porosity (r = 0.88; 95% CI: 0.64, 0.96; P < .001) and with age (r = 0.87; 95% CI: 0.62, 0.96; P < .001). Conclusion The MR imaging–derived SR may serve as a biomarker for cortical bone porosity that is potentially superior to BWC, but corroboration in larger cohorts is indicated. © RSNA, 2014 PMID

  10. Human cortical bone: Computer method for physical behavior at nano scale constant pressure assumption.

    PubMed

    Racila, M; Crolet, J M

    2006-01-01

    It is well known that long term behavior of implants depends on bone remodeling. In the absence of a model of this phenomenon, few numerical simulations take into account bone remodeling. Some laws have been proposed but they cannot be used in the essential area surrounding the implant. We propose a multi-scale approach: cortical bone is structured in a hierarchical way consisting of five levels. The cortical part of a given bone is made up of various areas having different physical properties adapted to locally existing conditions. A Bony Elementary Volume denotes the elementary part of such a zone which constitutes our first level. The other levels are in conformity with our previous studies: osteon, lamella, fibre and fibril. This latter is composed by collagen and hydroxyapatite (Hap) occurring in a viscous liquid containing mineral ions. Mathematical homogenisation theory is used to determine equivalent macroscopic properties of a BEV, knowing the physical properties of collagen and Hap and the architectural description of this bony structure. For improving the performance of our simulation software, a new behavior law has been introduced with no continuity between the various levels. The effect of the fluid at the nanoscopic scale is modeled by a constant pressure. Recent developments allow us to determine the magnitude of various entities at nanoscopic scale from information at the macroscopic level. Realized simulations show that the assumption of constant pressure is not sufficient to characterize the nanoscopic mechanical behaviour. This point needs a more complex model with the introduction of a coupling between structure and fluid. This aspect is in development.

  11. Lack of deleterious effect of slow-release sodium fluoride treatment on cortical bone histology and quality in osteoporotic patients

    NASA Technical Reports Server (NTRS)

    Zerwekh, J. E.; Antich, P. P.; Sakhaee, K.; Prior, J.; Gonzales, J.; Gottschalk, F.; Pak, C. Y.

    1992-01-01

    We evaluated the effects of intermittent slow-release sodium fluoride (SRNaF) and continuous calcium citrate therapy on cortical bone histology, reflection ultrasound velocity (material strength) and back-scattered electron image analysis (BEI) in 26 osteoporotic patients before and following therapy. All measurements were made on transiliac crest bone biopsies obtained before and following 2 years of therapy in each patient. For all 26 patients there were no significant changes in cortical bone histomorphometric parameters. In 15 patients in whom bone material quality was assessed by reflection ultrasound, there was no change in velocity (4000 +/- 227 SD to 4013 +/- 240 m/s). BEI disclosed no mineralization defects or the presence of woven bone. Mean atomic number (density) of bone increased slightly, but significantly (9.261 +/- 0.311 to 9.457 +/- 0.223, P = 0.031). While these changes are less marked than those observed for cancellous bone, they indicate that this form of therapy does not adversely affect cortical bone remodelling.

  12. Cortical bone loss caused by glucocorticoid excess requires RANKL production by osteocytes and is associated with reduced OPG expression in mice.

    PubMed

    Piemontese, Marilina; Xiong, Jinhu; Fujiwara, Yuko; Thostenson, Jeff D; O'Brien, Charles A

    2016-09-01

    Glucocorticoid excess is a major cause of low bone mass and fractures. Glucocorticoid administration decreases cortical thickness and increases cortical porosity in mice, and these changes are associated with increased osteoclast number at the endocortical surface. Receptor activator of NF-κB ligand (RANKL) produced by osteocytes is required for osteoclast formation in cancellous bone as well as the increase in cortical bone resorption caused by mechanical unloading or dietary calcium deficiency. However, whether osteocyte-derived RANKL also participates in the increase in bone resorption caused by glucocorticoid excess is unknown. To address this question, we examined the effects of prednisolone on cortical bone of mice lacking RANKL production in osteocytes. Prednisolone administration increased osteoclast number at the endocortical surface, increased cortical porosity, and reduced cortical thickness in control mice, but none of these effects occurred in mice lacking RANKL in osteocytes. Prednisolone administration did not alter RANKL mRNA abundance but did reduce osteoprotegerin (OPG) mRNA abundance in osteocyte-enriched cortical bone. Similarly, dexamethasone suppressed OPG but did not increase RANKL production in cortical bone organ cultures and primary osteoblasts. These results demonstrate that RANKL produced by osteocytes is required for the cortical bone loss caused by glucocorticoid excess but suggest that the changes in endocortical resorption are driven by reduced OPG rather than elevated RANKL expression.

  13. Effects of glucocorticoid on BMD, micro-architecture and biomechanics of cancellous and cortical bone mass in OVX rabbits.

    PubMed

    Liu, Xuli; Lei, Wei; Wu, Zixiang; Cui, Yi; Han, Baojun; Fu, Suochao; Jiang, Changli

    2012-01-01

    The incidence of osteoporosis continues to increase with progressively aging populations. The purpose of this study was to detect the effects of glucocorticoid (GC) treatment on bone mineral density (BMD), biomechanical strength and micro-architecture in cancellous and cortical bone in ovariectomized (OVX) rabbits. Twenty adult female New Zealand white rabbits were randomly divided into three groups. The OVX-GC group (n=8) received a bilateral ovariectomy first and then daily GC treatment (methylprednisolone sodium succinate, 1mg/kg/day) for 4 weeks beginning 2 weeks after ovariectomy treatment. The OVX group (n=4) received a bilateral ovariectomy without GC treatment. The sham group (n=8) only received the sham operation. BMD was determined prior to and 6 weeks after the operation in the spine. Six weeks after the operation, the animals were sacrificed, and cancellous bone specimens were harvested from the femoral condyle and lumbar vertebrae. Cortical bone specimens were obtained from the femoral midshaft. The femoral specimens were scanned for apparent BMD. All specimens were tested mechanically and analyzed by microcompute tomography (micro-CT). In cancellous bone, GC treatment resulted in significant decreases in BMD, bone biomechanical strength and micro-architecture parameters in lumbar vertebrae. Similar trends in BMD and micro-architectural changes were also observed in the femoral condyle in the OVX-GC group compared with the sham group. However, there was no significant decline in any parameter in either lumbar vertebrae or femoral condyle in the OVX group. Similarly, no significant difference was found in any parameter in cortical bone among the three groups. Thus, the 4-week GC treatment in OVX rabbits could result in a significant bone loss in cancellous bone but not in cortical bone. This model is comparable to the osteoporosis-related changes in humans. OVX alone was not sufficient to induce osteoporosis.

  14. Are uniform regional safety factors an objective of adaptive modeling/remodeling in cortical bone?

    PubMed

    Skedros, John G; Dayton, Michael R; Sybrowsky, Christian L; Bloebaum, Roy D; Bachus, Kent N

    2003-07-01

    It has been hypothesized that a major objective of morphological adaptation in limb-bone diaphyses is the achievement of uniform regional safety factors between discrete cortical locations (e.g. between cranial and caudal cortices at mid-diaphysis). This hypothesis has been tested, and appears to be supported in the diaphyses of ovine and equine radii. The present study more rigorously examined this question using the equine third metacarpal (MC3), which has had functionally generated intracortical strains estimated by a sophisticated finite element model. Mechanical properties of multiple mid-diaphyseal specimens were evaluated in both tension and compression, allowing for testing of habitually tensed or compressed regions in their respective habitual loading mode ("strain-mode-specific" loading). Elastic modulus, and yield and ultimate strength and strain, were correlated with in vivo strain data from a previously published finite element model. Mechanical tests revealed minor variations in elastic modulus, and yield and ultimate strength in both tension and compression loading, while physiological strains varied significantly between the cortices. Contrary to the hypothesis of uniform safety factors, the MC3 has a broad range of tension (caudo-medial, 4.0; cranio-lateral, 37.7) and compression (caudo-medial, 5.7; cranio-lateral, 68.9) safety factors.

  15. Effect of aging on the toughness of human cortical bone:Evaluation by R-curves

    SciTech Connect

    Nalla, Ravi K.; Kruzic, Jamie J.; Kinney, John H.; Ritchie,Robert O.

    2005-04-05

    Age-related deterioration of the fracture properties ofbone, coupled with increased life expectancy, is responsible forincreasing incidence of bone fracture in the elderly, and hence, anunderstanding of how its fracture properties degrade with age isessential. The present study describes ex vivo fracture experiments toquantitatively assess the effect of aging on the fracture toughnessproperties of human cortical bone in the longitudinal direction. Becausecortical bone exhibits rising crack-growth resistance with crackextension, unlike most previous studies, the toughness is evaluated interms of resistance-curve (R-curve) behavior, measured for bone takenfrom wide range of age groups (34-99 years). Using this approach, boththe ex vivo crack-initiation and crack-growth toughness are determinedand are found to deteriorate with age; the initiation toughness decreasessome 40 percent over 6 decades from 40 to 100 years, while the growthtoughness is effectively eliminated over the same age range. Thereduction in crack-growth toughness is considered to be associatedprimarily with a degradation in the degree of extrinsic toughening, inparticular, involving crack bridging in the wake of thecrack.

  16. Coating cortical bone allografts with periosteum-mimetic scaffolds made of chitosan, trimethyl chitosan, and heparin.

    PubMed

    Romero, Raimundo; Chubb, Laura; Travers, John K; Gonzales, Timothy R; Ehrhart, Nicole P; Kipper, Matt J

    2015-05-20

    Bone allografts have very limited healing leading to high rates of failure from non-union, fracture, and infection. The limited healing of bone allografts is due in large part to devitalization and removal of the periosteum, which removes osteogenic cells and osteoinductive signals. Here we report techniques for directly coating cortical bone with tissue scaffolds, and evaluate the scaffolds' capacity to support osteoprogenitor cells. Three types of coatings are investigated: N,N,N-trimethyl chitosan-heparin polyelectrolyte multilayers, freeze-dried porous chitosan foam coatings, and electrospun chitosan nanofibers. The freeze-dried and electrospun scaffolds are also further modified with polyelectrolyte multilayers. All of the scaffolds are durable to subsequent aqueous processing, and are cytocompatible with adipose-derived stem cells. Alkaline phosphatase and receptor activator of nuclear factor kappa-B ligand expression at days 7 and 21 suggest that these scaffolds support an osteoprogenitor phenotype. These scaffolds could serve as periosteum mimics, deliver osteoprogenitor cells, and improve bone allograft healing.

  17. Propagation of ultrasonic guided waves in an acrylic plate as a cortical-bone-mimicking phantom

    NASA Astrophysics Data System (ADS)

    Lee, Kang Il; Choi, Bok Kyoung

    2014-12-01

    The present study aims to investigate the propagation of ultrasonic guided waves in an acrylic plate as a cortical-bone-mimicking phantom. The velocities of the guided waves in a 5-mm-thick acrylic plate were measured by using the axial transmission technique. A pure A0 Lamb mode could be successfully launched in the 5-mm-thick acrylic plate through a time reversal process of Lamb waves, consistent with the fact that the time reversal process can automatically compensate for the dispersive nature of Lamb waves. The experimental velocities of the slow guided wave (SGW) and the time-reversed Lamb wave were found to be in reasonable agreement with the theoretical group velocity of the A0 Lamb mode, suggesting that both the SGW and the time-reversed Lamb wave excited in the 5-mm-thick acrylic plate correspond to the A0 Lamb mode. These results suggest that the time reversal process of Lamb waves can be usefully applied to noninvasive characterization of long cortical bones.

  18. Geometric-attributes-based segmentation of cortical bone slides using optimized neural networks.

    PubMed

    Hage, Ilige S; Hamade, Ramsey F

    2016-05-01

    In cortical bone, solid (lamellar and interstitial) matrix occupies space left over by porous microfeatures such as Haversian canals, lacunae, and canaliculi-containing clusters. In this work, pulse-coupled neural networks (PCNN) were used to automatically distinguish the microfeatures present in histology slides of cortical bone. The networks' parameters were optimized using particle swarm optimization (PSO). When forming the fitness functions for the PSO, we considered the microfeatures' geometric attributes-namely, their size (based on measures of elliptical perimeter or area), shape (based on measures of compactness or the ratio of minor axis length to major axis length), and a two-way combination of these two geometric attributes. This hybrid PCNN-PSO method was further enhanced for pulse evaluation by combination with yet another method, adaptive threshold (AT), where the PCNN algorithm is repeated until the best threshold is found corresponding to the maximum variance between two segmented regions. Together, this framework of using PCNN-PSO-AT constitutes, we believe, a novel framework in biomedical imaging. Using this framework and extracting microfeatures from only one training image, we successfully extracted microfeatures from other test images. The high fidelity of all resultant segments was established using quantitative metrics such as precision, specificity, and Dice indices.

  19. Overexpression of DMP1 accelerates mineralization and alters cortical bone biomechanical properties in vivo

    SciTech Connect

    Bhatia A.; Miller L.; Albazza, M.; Espinoza Orias, A.A.; Inoue, N.; Acerbo, A.; George, A.; Sumner, D.R.

    2011-09-29

    Dentin matrix protein-1 (DMP1) is a key regulator of biomineralization. Here, we examine changes in structural, geometric, and material properties of cortical bone in a transgenic mouse model overexpressing DMP1. Micro-computed tomography and three-point bending were performed on 90 femora of wild type and transgenic mice at 1, 2, 4, and 6 months. Fourier transform infrared imaging was performed at 2 months. We found that the transgenic femurs were longer (p < 0.01), more robust in cross-section (p < 0.05), stronger (p < 0.05), but had less post-yield strain and displacement (p < 0.01), and higher tissue mineral density (p < 0.01) than the wild type femurs at 1 and 2 months. At 2 months, the transgenic femurs also had a higher mineral-to-matrix ratio (p < 0.05) and lower carbonate substitution (p < 0.05) compared to wild type femurs. These findings indicate that increased mineralization caused by overexpressing DMP1 led to increased structural cortical bone properties associated with decreased ductility during the early post-natal period.

  20. The Effects of Androgens on Murine Cortical Bone Do Not Require AR or ERα Signaling in Osteoblasts and Osteoclasts

    PubMed Central

    Ucer, Serra; Iyer, Srividhya; Bartell, Shoshana M; Martin-Millan, Marta; Han, Li; Kim, Ha-Neui; Weinstein, Robert S; Jilka, Robert L; O’Brien, Charles A; Almeida, Maria; Manolagas, Stavros C

    2016-01-01

    In men, androgens are critical for the acquisition and maintenance of bone mass in both the cortical and cancellous bone compartment. Male mice with targeted deletion of the androgen receptor (AR) in mature osteoblasts or osteocytes have lower cancellous bone mass, but no cortical bone phenotype. We have investigated the possibility that the effects of androgens on the cortical compartment result from AR signaling in osteoprogenitors or cells of the osteoclast lineage; or via estrogen receptor alpha (ERα) signaling in either or both of these two cell types upon conversion of testosterone to estradiol. To this end, we generated mice with targeted deletion of an AR or an ERα allele in the mesenchymal (ARf/y;Prx1-Cre or ERαf/f;Osx1-Cre) or myeloid cell lineage (ARf/y; LysM-Cre or ERαf/f;LysM-Cre) and their descendants. Male ARf/y;Prx1-Cre mice exhibited decreased bone volume and trabecular number, and increased osteoclast number in the cancellous compartment. Moreover, they did not undergo the loss of cancellous bone volume and trabecular number caused by orchidectomy (ORX) in their littermate controls. In contrast, ARf/y;LysM-Cre, ERαf/f; Osx1-Cre, or ERαf/f;LysM-Cre mice had no cancellous bone phenotype at baseline and lost the same amount of cancellous bone as their controls following ORX. Most unexpectedly, adult males of all four models had no discernible cortical bone phenotype at baseline, and lost the same amount of cortical bone as their littermate controls after ORX. Recapitulation of the effects of ORX by AR deletion only in the ARf/y;Prx1-Cre mice indicates that the effects of androgens on cancellous bone result from AR signaling in osteoblasts—not on osteoclasts or via aromatization. The effects of androgens on cortical bone mass, on the other hand, do not require AR or ERα signaling in any cell type across the osteoblast or osteoclast differentiation lineage. Therefore, androgens must exert their effects indirectly by actions on some other cell

  1. The Effects of Androgens on Murine Cortical Bone Do Not Require AR or ERα Signaling in Osteoblasts and Osteoclasts.

    PubMed

    Ucer, Serra; Iyer, Srividhya; Bartell, Shoshana M; Martin-Millan, Marta; Han, Li; Kim, Ha-Neui; Weinstein, Robert S; Jilka, Robert L; O'Brien, Charles A; Almeida, Maria; Manolagas, Stavros C

    2015-07-01

    In men, androgens are critical for the acquisition and maintenance of bone mass in both the cortical and cancellous bone compartment. Male mice with targeted deletion of the androgen receptor (AR) in mature osteoblasts or osteocytes have lower cancellous bone mass, but no cortical bone phenotype. We have investigated the possibility that the effects of androgens on the cortical compartment result from AR signaling in osteoprogenitors or cells of the osteoclast lineage; or via estrogen receptor alpha (ERα) signaling in either or both of these two cell types upon conversion of testosterone to estradiol. To this end, we generated mice with targeted deletion of an AR or an ERα allele in the mesenchymal (AR(f/y);Prx1-Cre or ERα(f/f);Osx1-Cre) or myeloid cell lineage (AR(f/y);LysM-Cre or ERα(f/f);LysM-Cre) and their descendants. Male AR(f/y);Prx1-Cre mice exhibited decreased bone volume and trabecular number, and increased osteoclast number in the cancellous compartment. Moreover, they did not undergo the loss of cancellous bone volume and trabecular number caused by orchidectomy (ORX) in their littermate controls. In contrast, AR(f/y);LysM-Cre, ERα(f/f);Osx1-Cre, or ERα(f/f);LysM-Cre mice had no cancellous bone phenotype at baseline and lost the same amount of cancellous bone as their controls following ORX. Most unexpectedly, adult males of all four models had no discernible cortical bone phenotype at baseline, and lost the same amount of cortical bone as their littermate controls after ORX. Recapitulation of the effects of ORX by AR deletion only in the AR(f/y);Prx1-Cre mice indicates that the effects of androgens on cancellous bone result from AR signaling in osteoblasts-not on osteoclasts or via aromatization. The effects of androgens on cortical bone mass, on the other hand, do not require AR or ERα signaling in any cell type across the osteoblast or osteoclast differentiation lineage. Therefore, androgens must exert their effects indirectly by actions on

  2. The effect of strain rate on fracture toughness of human cortical bone: a finite element study.

    PubMed

    Ural, Ani; Zioupos, Peter; Buchanan, Drew; Vashishth, Deepak

    2011-10-01

    Evaluating the mechanical response of bone under high loading rates is crucial to understanding fractures in traumatic accidents or falls. In the current study, a computational approach based on cohesive finite element modeling was employed to evaluate the effect of strain rate on fracture toughness of human cortical bone. Two-dimensional compact tension specimen models were simulated to evaluate the change in initiation and propagation fracture toughness with increasing strain rate (range: 0.08-18 s(-1)). In addition, the effect of porosity in combination with strain rate was assessed using three-dimensional models of micro-computed tomography-based compact tension specimens. The simulation results showed that bone's resistance against the propagation of a crack decreased sharply with increase in strain rates up to 1 s(-1) and attained an almost constant value for strain rates larger than 1 s(-1). On the other hand, initiation fracture toughness exhibited a more gradual decrease throughout the strain rates. There was a significant positive correlation between the experimentally measured number of microcracks and the fracture toughness found in the simulations. Furthermore, the simulation results showed that the amount of porosity did not affect the way initiation fracture toughness decreased with increasing strain rates, whereas it exacerbated the same strain rate effect when propagation fracture toughness was considered. These results suggest that strain rates associated with falls lead to a dramatic reduction in bone's resistance against crack propagation. The compromised fracture resistance of bone at loads exceeding normal activities indicates a sharp reduction and/or absence of toughening mechanisms in bone during high strain conditions associated with traumatic fracture.

  3. Individual-specific multi-scale finite element simulation of cortical bone of human proximal femur

    SciTech Connect

    Ascenzi, Maria-Grazia; Kardas, Dieter; Nackenhorst, Udo; Keyak, Joyce H.

    2013-07-01

    We present an innovative method to perform multi-scale finite element analyses of the cortical component of the femur using the individual’s (1) computed tomography scan; and (2) a bone specimen obtained in conjunction with orthopedic surgery. The method enables study of micro-structural characteristics regulating strains and stresses under physiological loading conditions. The analysis of the micro-structural scenarios that cause variation of strain and stress is the first step in understanding the elevated strains and stresses in bone tissue, which are indicative of higher likelihood of micro-crack formation in bone, implicated in consequent remodeling or macroscopic bone fracture. Evidence that micro-structure varies with clinical history and contributes in significant, but poorly understood, ways to bone function, motivates the method’s development, as does need for software tools to investigate relationships between macroscopic loading and micro-structure. Three applications – varying region of interest, bone mineral density, and orientation of collagen type I, illustrate the method. We show, in comparison between physiological loading and simple compression of a patient’s femur, that strains computed at the multi-scale model’s micro-level: (i) differ; and (ii) depend on local collagen-apatite orientation and degree of calcification. Our findings confirm the strain concentration role of osteocyte lacunae, important for mechano-transduction. We hypothesize occurrence of micro-crack formation, leading either to remodeling or macroscopic fracture, when the computed strains exceed the elastic range observed in micro-structural testing.

  4. Cortical lamina technique: A therapeutic approach for lateral ridge augmentation using guided bone regeneration

    PubMed Central

    Thomas, Raison; Baron, Tarun-Kumar; Shah, Rucha; Mehta, Dhoom-Singh

    2017-01-01

    Background The present study aimed at evaluating the efficacy of a novel technique, the bone lamina technique, in horizontal ridge augmentation clinically & radiographically using a combination of allogenic cortical shell, particulate xenograft and resorbable collagen membrane. Material and Methods Localized horizontal ridge defects, in ten patients (6 male, 4 female), with bucco-palatal ridge width less than 5 mm were included in this study. Localised ridge augmentation was performed using bone lamina technique with mineralised allogenic shell of 1 mm thickness trimmed to the appropriate size using stereo-lithographic models and fixed to the recipient site with stainless steel micro-screws of 1 mm diameter. The space between the shell & host bone was filled with particulate xenograft followed by placement of collagen membrane and primary closure of the site. Clinical parameters including ridge width before & after flap reflection & radiographic (CBCT) ridge width measurements were recorded pre-operatively,and six months after the augmentation procedure. Results obtained were analysed statistically. Results The mean clinical ridge width before flap reflection (BFR), after flap reflection (AFR) & radiographically was 3.7 ± 0.74 mm, 2 ± 0.70 mm & 1.77 ± 0.71 mm respectively at baseline which increased to 6.8 ± 0.95 mm, 5.15 ± 0.98 mm & 4.90 ± 0.90 mm with a mean gain in ridge width of 3.1 ± 0.63 mm (p< 0.005), 3.15 ± 0.63 mm (p<0.005) & 3.13 ± 0.70 mm (p< 0.005) respectively. Conclusions The present study demonstrates that bone lamina technique can be effective means of horizontal ridge augmentation and the use of mineralized allograft in combination with xenograft and collagen membrane leads to good amount of bone regeneration for subsequent implant placement. Key words:Dental implant, guided bone regeneration, horizontal ridge defect, ridge augmentation. PMID:28149458

  5. [Quantitative morphology of vertebral body cortical bone. Building block for noninvasive calculation of fracture threshold in osteoporosis].

    PubMed

    Ritzel, H; Amling, M; Hahn, M; Maas, R; Delling, G

    1998-04-01

    The vertebral bodies consist of two main structures, trabecular and cortical bone. The histological changes within the spine, especially in cortical bone, leading to osteoporotic fractures remain, however, poorly understood. Therefore, the complete front column of the spine was removed in 26 autopsy cases without skeletal diseases and in 11 cases with proven osteoporosis. A sagittal segment prepared through the center of all vertebral bodies was undecalcified embedded in plastic, ground to a 1-mm-thick block and stained using a modification of the von Kossa method. The analysis included measurement of the mean cortical thickness of both ventral and dorsal shell (from C3 to L5). The qualitative investigation of the structure of the cortical ring completed the analysis. The skeletally intact specimens had high cortical thickness values in the cervical spine (285 +/- 22 microns), a decrease in the thoracic spine (244 +/- 14 microns) and an increase in the lumbar spine (290 +/- 15 microns). The mean thickness of the ventral shell is in general higher than the thickness of the dorsal shell. The cortical thickness of the spine showed no gender-specific differences (P = n.s.). There was a slight decrease in the cortical thickness with age; however, this decrease and the correlation of cortical thickness to age was only significant below vertebral body T8 (r = 0.225 to 0.574; Pr < 0.05 to Pr < 0.005). Most interestingly, osteoporosis is characterized by a significant decrease in cortical thickness throughout the whole spine. This decrease in cortical thickness was more marked in the dorsal shell (P < 0.05) than in the ventral shell (ventral from C3 to T6 (P < 0.05) below T6 (P = n.s.). We therefore conclude that in osteoporosis, biomechanical competence is affected by both trabecular bone loss and decrease of cortical thickness. This suggests that, in addition to trabecular bone measurements, the cortical thickness is of special interest for diagnostic radiological

  6. Contrast-enhanced micro-computed tomography of fatigue microdamage accumulation in human cortical bone.

    PubMed

    Landrigan, Matthew D; Li, Jiliang; Turnbull, Travis L; Burr, David B; Niebur, Glen L; Roeder, Ryan K

    2011-03-01

    Conventional methods used to image and quantify microdamage accumulation in bone are limited to histological sections, which are inherently invasive, destructive, two-dimensional, and tedious. These limitations inhibit investigation of microdamage accumulation with respect to volumetric spatial variation in mechanical loading, bone mineral density, and microarchitecture. Therefore, the objective of this study was to investigate non-destructive, three-dimensional (3-D) detection of microdamage accumulation in human cortical bone using contrast-enhanced micro-computed tomography (micro-CT), and to validate micro-CT measurements against conventional histological methods. Unloaded controls and specimens loaded in cyclic uniaxial tension to a 5% and 10% reduction in secant modulus were labeled with a precipitated BaSO₄ stain for micro-CT and basic fuchsin for histomorphometry. Linear microcracks were similarly labeled by BaSO₄ and basic fuchsin as shown by backscattered electron microscopy and light microscopy, respectively. The higher X-ray attenuation of BaSO₄ relative to the bone extracellular matrix provided enhanced contrast for the detection of damage that was otherwise not able to be detected by micro-CT prior to staining. Therefore, contrast-enhanced micro-CT was able to nondestructively detect the presence, 3-D spatial location, and accumulation of fatigue microdamage in human cortical bone specimens in vitro. Microdamage accumulation was quantified on segmented micro-CT reconstructions as the ratio of BaSO₄ stain volume (SV) to total bone volume (BV). The amount of microdamage measured by both micro-CT (SV/BV) and histomorphometry (Cr.N, Cr.Dn, Cr.S.Dn) progressively increased from unloaded controls to specimens loaded to a 5% and 10% reduction in secant modulus (p < 0.001). Group means for micro-CT measurements of damage accumulation were strongly correlated to those using histomorphometry (p < 0.05), validating the new methods. Limitations of the new

  7. Non Destructive Characterization of Cortical Bone Micro-Damage by Nonlinear Resonant Ultrasound Spectroscopy

    PubMed Central

    Haupert, Sylvain; Guérard, Sandra; Peyrin, Françoise; Mitton, David; Laugier, Pascal

    2014-01-01

    The objective of the study was to evaluate the ability of a nonlinear ultrasound technique, the so-called nonlinear resonant ultrasound spectroscopy (NRUS) technique, for detecting early microdamage accumulation in cortical bone induced by four-point bending fatigue. Small parallelepiped beam-shaped human cortical bone specimens were subjected to cyclic four-point bending fatigue in several steps. The specimens were prepared to control damage localization during four-point bending fatigue cycling and to unambiguously identify resonant modes for NRUS measurements. NRUS measurements were achieved to follow the evolution of the nonlinear hysteretic elastic behavior during fatigue-induced damage. After each fatigue step, a small number of specimens was removed from the protocol and set apart to quantitatively assess the microcrack number density and length using synchrotron radiation micro-computed tomography (SR-µCT). The results showed a significant effect of damage steps on the nonlinear hysteretic elastic behavior. No significant change in the overall length of microcracks was observed in damaged regions compared to the load-free control regions. Only an increased number of shortest microcracks, those in the lowest quartile, was noticed. This was suggestive of newly formed microcracks during the early phases of damage accumulation. The variation of nonlinear hysteretic elastic behavior was significantly correlated to the variation of the density of short microcracks. Our results suggest that the nonlinear hysteretic elastic behavior is sensitive to early bone microdamage. Therefore NRUS technique can be used to monitor fatigue microdamage progression in in vitro experiments. PMID:24392089

  8. Development of a Three-Dimensional (3D) Printed Biodegradable Cage to Convert Morselized Corticocancellous Bone Chips into a Structured Cortical Bone Graft

    PubMed Central

    Chou, Ying-Chao; Lee, Demei; Chang, Tzu-Min; Hsu, Yung-Heng; Yu, Yi-Hsun; Liu, Shih-Jung; Ueng, Steve Wen-Neng

    2016-01-01

    This study aimed to develop a new biodegradable polymeric cage to convert corticocancellous bone chips into a structured strut graft for treating segmental bone defects. A total of 24 adult New Zealand white rabbits underwent a left femoral segmental bone defect creation. Twelve rabbits in group A underwent three-dimensional (3D) printed cage insertion, corticocancellous chips implantation, and Kirschner-wire (K-wire) fixation, while the other 12 rabbits in group B received bone chips implantation and K-wire fixation only. All rabbits received a one-week activity assessment and the initial image study at postoperative 1 week. The final image study was repeated at postoperative 12 or 24 weeks before the rabbit scarification procedure on schedule. After the animals were sacrificed, both femurs of all the rabbits were prepared for leg length ratios and 3-point bending tests. The rabbits in group A showed an increase of activities during the first week postoperatively and decreased anterior cortical disruptions in the postoperative image assessments. Additionally, higher leg length ratios and 3-point bending strengths demonstrated improved final bony ingrowths within the bone defects for rabbits in group A. In conclusion, through this bone graft converting technique, orthopedic surgeons can treat segmental bone defects by using bone chips but with imitate characters of structured cortical bone graft. PMID:27104525

  9. Maturation of cortical bone suppresses periosteal osteoprogenitor proliferation in a paracrine manner.

    PubMed

    Moon, Young Jae; Yun, Chi-Young; Lee, Jeong-Chae; Kim, Jung Ryul; Park, Byung-Hyun; Cho, Eui-Sic

    2016-10-01

    Periosteum contains enriched pools of osteogenic progenitors and is highly proliferative, thus giving this tissue a pivotal role in maintaining the diameter of the diaphyseal cortex and in recovery from fractures. Although periosteal proliferation has not been detected in normal bone, intense periosteal proliferation has been observed in pathologic states such as fracture, inflammation, and bone tumors. However, the mechanism by which periosteal osteoprogenitor proliferation is regulated remains poorly understood. To investigate this regulation mechanism, osteoblast/osteocyte-specific conditional knockout mice were developed lacking Smad4 and Osx, two factors that are essential for osteoblast differentiation and matrix mineralization. In Smad4 (Col) and Osx (Col) mice, osteocalcin, Dmp-1, and sclerostin expression were significantly decreased in the cortical bone. Interestingly, although Cre activity was not observed in the periosteum, the proliferation of periosteal osteoprogenitors was enhanced in Smad4 (Col) and Osx (Col) mice, as assessed by 5'-bromo-2'deoxyuridine incorporation and proliferating cell nuclear antigen localization. Since Wnt signaling is a major factor affecting periosteal proliferation, we evaluated Wnt signaling in the periosteum. The expression levels of β-catenin and Lef-1 were increased in the periosteal osteoprogenitors. Moreover, the mRNA levels of β-catenin, cyclin D1, Lef-1, and Axin2, all of which are Wnt target genes, were significantly increased in the periosteum of both Smad4 (Col) and Osx (Col) mice. These results indicated that extracellular proteins secreted by mature osteoblasts and osteocytes suppress the proliferation of periosteal osteoprogenitors by blocking Wnt signaling in a paracrine manner. Our data suggest a new concept of periosteal bone healing and periosteal bone formation.

  10. Dynamic testing of old and young baboon cortical bone with numerical validation

    NASA Astrophysics Data System (ADS)

    Chocron, S.; Nicolella, D.; Nicholls, A. E.; Bredbenner, T.; Havill, L.

    2012-08-01

    Cortical bone tensile mechanical properties at quasistatic and high rates (˜300s-1) were determined ex vivo using the right femurs of 12 female baboons, (Papio hamadryas spp.) from the Texas Biomedical Research Institute/Southwest National Primate Research Center in San Antonio, Texas. The animals were divided into two age groups: a young age group (6.63 ± 0.6 years) and an old age group (26.96 ± 1.3 years). Seven specimens per group were monotonically loaded to failure to determine their mechanical properties. The quasistatic strength of the bone for the old group was just a little (but not significantly) lower than the young group. High strain rate tests performed with the Hopkinson bar indicate that baboon bone from the older group was significantly weaker under impact loads than that from the younger group. This observation is particularly important due to the similarities between baboon and human bone tissue. Typical strain rates for these tests ranged from 130s-1 to 250s-1. A full-size 3-D simulation of the Hopkinson bar test was performed to confirm that the bone specimen was under stress equilibrium and to evaluate the consistency of the modulus and strength inferred from the tests. Simulations were performed in which the modulus, strength and failure strain were varied to see the sensitivity of the results. Additionally, simplified simulations were performed to estimate the strain rate environment of a femur during a fall at an impact velocity of 5 m/s, similar to a free fall velocity from a height of 1.3 meters. The simulations confirm that strain rates obtained in the Hopkinson bar are relevant because they are similar to those expected inr such a fall.

  11. Effects of age and loading rate on equine cortical bone failure.

    PubMed

    Kulin, Robb M; Jiang, Fengchun; Vecchio, Kenneth S

    2011-01-01

    Although clinical bone fractures occur predominantly under impact loading (as occurs during sporting accidents, falls, high-speed impacts or other catastrophic events), experimentally validated studies on the dynamic fracture behavior of bone, at the loading rates associated with such events, remain limited. In this study, a series of tests were performed on femoral specimens obtained post-mortem from equine donors ranging in age from 6 months to 28 years. Fracture toughness and compressive tests were performed under both quasi-static and dynamic loading conditions in order to determine the effects of loading rate and age on the mechanical behavior of the cortical bone. Fracture toughness experiments were performed using a four-point bending geometry on single and double-notch specimens in order to measure fracture toughness, as well as observe differences in crack initiation between dynamic and quasi-static experiments. Compressive properties were measured on bone loaded parallel and transverse to the osteonal growth direction. Fracture propagation was then analyzed using scanning electron and scanning confocal microscopy to observe the effects of microstructural toughening mechanisms at different strain rates. Specimens from each horse were also analyzed for dry, wet and mineral densities, as well as weight percent mineral, in order to investigate possible influences of composition on mechanical behavior. Results indicate that bone has a higher compressive strength, but lower fracture toughness when tested dynamically as compared to quasi-static experiments. Fracture toughness also tends to decrease with age when measured quasi-statically, but shows little change with age under dynamic loading conditions, where brittle "cleavage-like" fracture behavior dominates.

  12. The influence of water removal on the strength and toughness of cortical bone

    PubMed Central

    Nyman, Jeffry S.; Roy, Anuradha; Shen, Xinmei; Acuna, Rae L.; Tyler, Jerrod H.; Wang, Xiaodu

    2007-01-01

    Although the effects of dehydration on the mechanical behavior of cortical bone are known, the underlying mechanisms for such effects are not clear. We hypothesize that the interactions of water with the collagen and mineral phases each have a unique influence on mechanical behavior. To study this, strength, toughness, and stiffness were measured with three-point bend specimens made from the mid-diaphysis of human cadaveric femurs and divided into six test groups: control (hydrated), drying in a vacuum oven at room temperature (21 °C) for 30 min and at 21, 50, 70, or 110 °C for 4 h. The experimental data indicated that water loss significantly increased with each increase in drying condition. Bone strength increased with a 5% loss of water by weight, which was caused by drying at 21 °C for 4 h. With water loss exceeding 9%, caused by higher drying temperatures (≥70 °C), strength actually decreased. Drying at 21 °C (irrespective of time in vacuum) significantly decreased bone toughness through a loss of plasticity. However, drying at 70 °C and above caused toughness to decrease through decreases in strength and fracture strain. Stiffness linearly increased with an increase in water loss. From an energy perspective, the water–mineral interaction is removed at higher temperatures than the water–collagen interaction. Therefore, we speculate that loss of water in the collagen phase decreases the toughness of bone, whereas loss of water associated with the mineral phase decreases both bone strength and toughness. PMID:16488231

  13. Changes in the stiffness, strength, and toughness of human cortical bone with age.

    PubMed

    Zioupos, P; Currey, J D

    1998-01-01

    Aging adversely affects the elastic and ultimate properties of human cortical bone as seen in uniaxial tests in quasi static loading, high strain rate impact or fatigue. Little is known about the full effects of aging on toughness and its relationship with strength. In the present article the elastic modulus (E), strength (sigma f), fracture toughness (KC and J-integral), and work of fracture (Wf) were determined in specimens of male human femoral bone aged between 35-92 years. In this way we investigated whether fracture of bone in three situations, allowing various amounts of damage prior to fracture, can provide a better insight into the fracture process and also the relative importance of these experimental methods for assessing the soundness of bone material. We found a steady and significant decrease with age for all these mechanical measures. E fell by 2.3%, from its value of 15.2 GPa at 35 years of age, per decade of later life; sigma f fell similarly from 170 MPa by 3.7%; KC from 6.4 MPa m1/2 by 4.1%; J-integral from 1.2 kJ m-2 by 3%, and the Wf from 3.4 kJ m-2 by 8.7%. In aging bone there was a deterioration in the elastic properties of the material. This reduced the (elastically calculated) critical stress intensity level (KC) required to initiate a macrocrack, or the nonlinear energy associated with the onset of fracture (J). The macrocrack was preceded by less damage, and once created needed less energy to drive through the tissue (Wf).

  14. AN INVESTIGATION OF THE MINERAL IN DUCTILE AND BRITTLE CORTICAL MOUSE BONE

    PubMed Central

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J.; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J.

    2015-01-01

    Bone is a strong and tough material composed of apatite mineral, organic matter and water. Changes in composition and organization of these building blocks affect bone’s mechanical integrity. Skeletal disorders often affect bone’s mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta murine (oim−/−) mice were used to model brittle bone; PHOSPHO1 mutants (Phospho1−/−) had ductile bone. They were compared to their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD), and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification, to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (qbSEM). Interestingly, the mineral of brittle oim−/− and ductile Phospho1−/− bones had many similar characteristics. Both pathology models had smaller apatite crystals, lower mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild-types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. The degree of mineralization of the bone matrix was different for each strain: oim−/− were hypermineralized, while Phospho1−/− were hypomineralized. However, alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results revealed that despite having extremely different whole bone mechanics, the mineral of oim−/− and Phospho1−/− has several similar trends at smaller length scales. This

  15. A Surrogate Measure of Cortical Bone Matrix Density by Long T2-Suppressed MRI

    PubMed Central

    Seifert, Alan C.; Li, Cheng; Wehrli, Suzanne L.; Wehrli, Felix W.

    2015-01-01

    Magnetic resonance has the potential to image and quantify two pools of water within bone: free water within the Haversian pore system (transverse relaxation time, T2 > 1 ms), and water hydrogen-bonded to matrix collagen (T2 ~ 300–400 µs). While total bone water concentration quantified by MRI has been shown to scale with porosity, greater insight into bone matrix density and porosity may be gained by relaxation-based separation of bound and pore water fractions. The objective of this study was to evaluate a recently developed surrogate measurement for matrix density, single adiabatic inversion recovery (SIR) zero echo-time (ZTE) MRI, in human bone. Specimens of tibial cortical bone from 15 donors (27–97 y/o, eight female and seven male) were examined at 9.4T field strength using two methods: (1) 1H ZTE MRI, to capture total 1H signal, and (2) 1H SIR-ZTE MRI, to selectively image matrix-associated 1H signal. Total water, bone matrix, and bone mineral densities were also quantified gravimetrically, and porosity was measured by micro-CT. ZTE apparent total water 1H concentration was 32.7±3.2 M (range: 28.5–40.3 M), and was correlated positively with porosity (R2 = 0.80) and negatively with matrix and mineral densities (R2 = 0.90 and 0.82, respectively). SIR-ZTE apparent bound water 1H concentration was 32.9±3.9 M (range: 24.4–39.8 M), and its correlations were opposite to those of apparent total water: negative with porosity (R2 = 0.73) and positive with matrix density (R2 = 0.74) and mineral density (R2 = 0.72). Porosity was strongly correlated with gravimetric matrix density (R2 = 0.91, negative) and total water density (R2 = 0.92, positive). The strong correlations of SIR-ZTE-derived apparent bound water 1H concentration with ground-truth measurements suggest that this quantitative solid-state MRI method provides a nondestructive surrogate measure of bone matrix density. PMID:26085307

  16. Simultaneous estimation of cortical bone thickness and acoustic wave velocity using a multivariable optimization approach: Bone phantom and in-vitro study.

    PubMed

    Tasinkevych, Yuriy; Podhajecki, Jerzy; Falińska, Katarzyna; Litniewski, Jerzy

    2016-02-01

    The paper presents a method that allows the thickness of a compact bone layer and longitudinal wave velocity in the bone to be determined simultaneously with the use of reflected waves, with particular emphasis on the case of layers when the propagation time through the layer is shorter than the time duration of the interrogating pulse. The proposed method estimates simultaneously the thickness of the cortical bone layer and acoustic wave velocity by fitting the temporal spectrum of the simulated reflected wave to the spectrum of the reflected wave measured experimentally. For the purpose of echo-simulations the model of "soft tissue - compact bone layer - cancellous bone" was developed. Next, the cost function was defined as the least square error between the measured and simulated temporal spectra. Minimization of the cost function allowed us to determine the values of the parameters of the cortical bone layer which best fitted the measurements. To solve the optimization problem a simulated annealing algorithm was used. The method was tested using acoustic data obtained at the frequency of 0.6 MHz and 1 MHz respectively for a custom designed bone mimicking phantom and a calf femur. For the cortical shell of the calf femur whose thickness varies from 2.1 mm to 2.4 mm and velocity of 2910 m/s, the relative errors of the thickness estimation ranged from 0.4% to 5.5%. The corresponding error of the acoustic wave velocity estimation in the layer was 3.1%. In the case of artificial bone the thickness of the cortical layer was equal to 1.05 and 1.2 mm and acoustic wave velocity was 2900 m/s. These parameters were determined with the errors ranging from 1.9% to 10.8% and from 3.9% to 4.5% respectively.

  17. GLUCOCORTICOID EFFECTS ON CHANGES IN BONE MINERAL DENSITY AND CORTICAL STRUCTURE IN CHILDHOOD NEPHROTIC SYNDROME

    PubMed Central

    Tsampalieros, Anne; Gupta, Pooja; Denburg, Michelle R; Shults, Justine; Zemel, Babette S; Mostoufi-Moab, Sogol; Wetzsteon, Rachel J; Herskovitz, Rita M; Whitehead, Krista M; Leonard, Mary B.

    2012-01-01

    The impact of glucocorticoids (GC) on skeletal development has not been established. The objective of this study was to examine changes in volumetric BMD (vBMD) and cortical structure over one year in childhood nephrotic syndrome (NS) and to identify associations with concurrent GC exposure and growth. Fifty-six NS participants, ages 5–21 years, were enrolled a median of 4.3 (0.5, 8.1) years after diagnosis. Tibia peripheral quantitative CT (pQCT) scans were obtained at enrollment and 6 and 12 months later. Sex, race and age-specific Z-scores were generated for trabecular vBMD (TrabBMD-Z), cortical vBMD (CortBMD-Z), and cortical area (CortArea-Z) based on > 650 reference participants. CortArea-Z was further adjusted for tibia length-for-age Z-score. Quasi-least squares regression was used to identify determinants of changes in pQCT Z-scores. At enrollment, mean TrabBMD-Z (−0.54 ±1.32) was significantly lower (p=0.0001) and CortBMD-Z (0.73 ± 1.16, p<0.0001) and CortArea-Z (0.27 ± 0.91, p=0.03) significantly greater in NS, vs. reference participants, as previously described. Forty-eight (86%) participants were treated with GC over the study interval (median dose 0.29 mg/kg/day). On average, TrabBMD-Z and CortBMD-Z did not change significantly over the study interval; however, CortArea-Z decreased (p=0.003). Greater GC dose (p<0.001), lesser increases in tibia length (p<0.001) and lesser increases in CortArea-Z (p=0.003) were independently associated with greater increases in CortBMD-Z. Greater increases in tibia length were associated with greater declines in CortArea-Z (p < 0.01); this association was absent in reference participants (interaction p<0.02). In conclusion, GC therapy was associated with increases in CortBMD-Z, potentially related to suppressed bone formation and greater secondary mineralization. Conversely, greater growth and expansion of CortArea-Z (i.e. new bone formation) were associated with declines in CortBMD-Z. Greater linear growth was

  18. Damage mechanisms and failure modes of cortical bone under components of physiological loading.

    PubMed

    George, W T; Vashishth, D

    2005-09-01

    Fatigue damage development in cortical bone was investigated in vitro under different mechanical components of physiological loading including tension, compression, and torsion. During each test, stress and strain data were collected continuously to monitor and statistically determine the occurrence of the primary, secondary, and tertiary stages associated with fatigue and/or creep failure of bone. The resultant microdamage and failure modes were identified by histological and fractographic analysis, respectively. The tensile group demonstrated Mode I cracking and the three classic stages of fatigue and creep suggesting a low crack initiation threshold, steady crack propagation and final failure by coalescence of microcracks. In contrast, the compressive group displayed Mode II cracking and a two-stage fatigue behavior with limited creep suggesting a high crack initiation threshold followed by a sudden fracture. The torsion group also displayed a two-stage fatigue profile but demonstrated extensive damage from mixed mode (Modes II and III) microcracking and predominant time-dependent damage. Thus, fatigue behavior of bone was found to be uniquely related to the individual mechanical components of physiological loading and the latter determined the specific damage mechanisms associated with fatigue fracture.

  19. Mechanical test and fractal analysis on anisotropic fracture of cortical bone

    NASA Astrophysics Data System (ADS)

    Yin, Dagang; Chen, Bin; Ye, Wei; Gou, Jihua; Fan, Jinghong

    2015-12-01

    The mechanical properties of the cortical bone of fresh bovine femora along three different directions are tested through four-point bending experiments. It is indicated that the fracture energy along the transversal direction of the bone is distinctly larger than those of the longitudinal and radial directions. The fracture surfaces of the three different directions are observed by scanning electron microscope (SEM). It is shown that the roughness of the fracture surface of the transversal direction is obviously larger than those of the fracture surfaces of the longitudinal and radial directions. It is also revealed that the osteons in the bone are perpendicular to the fracture surface of the transversal direction and parallel to the fracture surfaces of the longitudinal and radial directions. Based on these experimental results, the fractal dimensions of the fracture surfaces of different directions are calculated by box-counting method in MATLAB. The calculated results show that the fractal dimension of the fracture surface of the transversal direction is remarkably larger than those of the fracture surfaces of the longitudinal and radial directions. The fracture energies of different directions are also calculated based on their fractal models. It is denoted that the fracture energy of the transversal direction is remarkably larger than those of the longitudinal and radial directions. The calculated results are in good agreement with the tested results.

  20. Biomedical titanium alloys with Young’s moduli close to that of cortical bone

    PubMed Central

    Niinomi, Mitsuo; Liu, Yi; Nakai, Masaki; Liu, Huihong; Li, Hua

    2016-01-01

    Biomedical titanium alloys with Young’s moduli close to that of cortical bone, i.e., low Young’s modulus titanium alloys, are receiving extensive attentions because of their potential in preventing stress shielding, which usually leads to bone resorption and poor bone remodeling, when implants made of their alloys are used. They are generally β-type titanium alloys composed of non-toxic and allergy-free elements such as Ti–29Nb–13Ta–4.6Zr referred to as TNTZ, which is highly expected to be used as a biomaterial for implants replacing failed hard tissue. Furthermore, to satisfy the demands from both patients and surgeons, i.e., a low Young’s modulus of the whole implant and a high Young’s modulus of the deformed part of implant, titanium alloys with changeable Young’s modulus, which are also β-type titanium alloys, for instance Ti–12Cr, have been developed. In this review article, by focusing on TNTZ and Ti–12Cr, the biological and mechanical properties of the titanium alloys with low Young’s modulus and changeable Young’s modulus are described. In addition, the titanium alloys with shape memory and superelastic properties were briefly addressed. Surface modifications for tailoring the biological and anti-wear/corrosion performances of the alloys have also been briefly introduced. PMID:27252887

  1. Three dimensional finite element analysis of a novel osteointegrated dental implant designed to reduce stress peak of cortical bone.

    PubMed

    Zheng, Li; Yang, Jingsong; Hu, Xuefeng; Luo, Jiaoming

    2014-01-01

    A new type of dental implant was designed as multi-component mainly including inset and abutment between which a gap was introduced to guide the force to transmit from the cancellous bone to cortical bone, with the intention to lower the stress peak at cortical bone. By way of finite element analysis (FEA) associated with advanced computer tomography (CT) and 3D model reconstruction technology to construct precise mandible model, biomechanical aspects of implant were investigated. Compared with traditional implant that created stress dominantly at cortical bone, stress peak at the implant/bone interface in the cervical cortex decreased sharply (about 51%) for the new type of implant. Furthermore, applying varying implant shape and gap dimensions helped to optimize the design of this new implant. Optimization results revealed that: (1) screwed cylindrical implant is superior to tapered, stepped and smooth cylindrical implant in effectively decreasing the stress peak of bone; (2) deepening and widening gap would contribute to the decline of stress peak, but at the cost of break and destruction of the inset; (3) suitable gap size with the depth of 7 mm and width of 0.3 mm would be applicable. This work may provide reference for clinical application of dental implant.

  2. Microstructure and compressive mechanical properties of cortical bone in children with osteogenesis imperfecta treated with bisphosphonates compared with healthy children.

    PubMed

    Imbert, Laurianne; Aurégan, Jean-Charles; Pernelle, Kélig; Hoc, Thierry

    2015-06-01

    Osteogenesis imperfecta (OI) is a genetic disorder characterized by a change in bone tissue quality, but little data are available to describe the factors involved at the macroscopic scale. To better understand the effect of microstructure alterations on the mechanical properties at the sample scale, we studied the structural and mechanical properties of six cortical bone samples from children with OI treated with bisphosphonates and compared them to the properties of three controls. Scanning electron microscopy, high resolution computed tomography and compression testing were used to assess these properties. More resorption cavities and a higher osteocyte lacunar density were observed in OI bone compared with controls. Moreover, a higher porosity was measured for OI bones along with lower macroscopic Young's modulus, yield stress and ultimate stress. The microstructure was impaired in OI bones; the higher porosity and osteocyte lacunar density negatively impacted the mechanical properties and made the bone more prone to fracture.

  3. Duration-dependent effects of clinically relevant oral alendronate doses on cortical bone toughness in beagle dogs.

    PubMed

    Burr, David B; Liu, Ziyue; Allen, Matthew R

    2015-02-01

    Bisphosphonates (BPs) have been shown to significantly reduce bone toughness in vertebrae within one year when given at clinical doses to dogs. Although BPs also reduce toughness in the cortical bone when given at high doses, their effect on cortical bone material properties when given at clinical doses is less clear. In part, this may be due to the use of small sample sizes that were powered to demonstrate differences in bone mineral density rather than the bone's material properties. Our lab has conducted several studies in which dogs were treated with alendronate at a clinically relevant dose. The goal of this study was to examine these published and unpublished data collectively to determine whether there is a significant time-dependent effect of alendronate on toughness of the cortical bone. This analysis seemed particularly relevant given the recent occurrence of atypical femoral fractures in humans. Differences in the toughness of ribs taken from dogs derived from five separate experiments were measured. The dogs were orally administered saline (CON, 1ml/kg/day) or alendronate (ALN) at a clinical dose (0.2mg/kg/day). Treatment duration ranged from 3months to 3years. Groups were compared using ANOVA, and time trends analyzed with linear regression analysis. Linear regressions of the percent difference in toughness between CON and ALN at each time point revealed a significant reduction in toughness with longer exposure to ALN. The downward trend was primarily driven by a downward trend in post-yield toughness, whereas toughness in the pre-yield region was not changed relative to CON. These data suggest that a longer duration of treatment with clinical doses of ALN results in deterioration of cortical bone toughness in a time-dependent manner. As the duration of treatment is lengthened, the cortical bone exhibits increasingly brittle behavior. This may be important in assessing the role that long-term BP treatments play in the risk of atypical fractures of the

  4. Harvesting bone graft from the olecranon: a quantitative and biomechanical comparison of proximal and dorsal cortical windows.

    PubMed

    Anderson, Matthew C; Chong, Alexander C M; Lucas, George L; Czuwala, Peter J; Wooley, Paul H

    2014-07-01

    We conducted a study to compare 2 techniques of harvesting ulna bone graft from the olecranon, one using a proximal cortical window (PCW), the other using a dorsal cortical window (DCW), in terms of cancellous bone graft quantity and ulna fracture strength after graft harvest. Cancellous bone was harvested from 8 pairs of embalmed cadaver proximal ulna. Each side of a matched pair was randomly assigned to graft harvest using either a PCW or a DCW approach. Packed bone volume (PBV) was determined by placing the harvested bone into a 3-mL syringe and compacting it with a quasi-static 25-N load. Biomechanical cantilever bending was performed on each elbow to determine load at failure (LF). Paired Student t tests were used to compare PBV and LF between the experimental and control groups. The graft PBV obtained from the matched-pair specimens was not statistically different between the PCW and DCW approaches. Ulnas subjected to proximal bone harvest exhibited higher LF than ulnas subjected to dorsal bone harvest, though the difference was not statistically significant. Compared with bone graft harvest using the traditional DCW approach, harvest using a PCW approach provides similar cancellous graft amounts and exhibits similar fracture resistance.

  5. Osteoblast-Specific Overexpression of Human WNT16 Increases Both Cortical and Trabecular Bone Mass and Structure in Mice

    PubMed Central

    Alkhouli, Mohammed; Gerard-O'Riley, Rita L.; Wright, Weston B.; Acton, Dena; Gray, Amie K.; Patel, Bhavmik; Reilly, Austin M.; Lim, Kyung-Eun; Robling, Alexander G.; Econs, Michael J.

    2016-01-01

    Previous genome-wide association studies have identified common variants in genes associated with bone mineral density (BMD) and risk of fracture. Recently, we identified single nucleotide polymorphisms (SNPs) in Wingless-type mouse mammary tumor virus integration site (WNT)16 that were associated with peak BMD in premenopausal women. To further identify the role of Wnt16 in bone mass regulation, we created transgenic (TG) mice overexpressing human WNT16 in osteoblasts. We compared bone phenotypes, serum biochemistry, gene expression, and dynamic bone histomorphometry between TG and wild-type (WT) mice. Compared with WT mice, WNT16-TG mice exhibited significantly higher whole-body areal BMD and bone mineral content (BMC) at 6 and 12 weeks of age in both male and female. Microcomputer tomography analysis of trabecular bone at distal femur revealed 3-fold (male) and 14-fold (female) higher bone volume/tissue volume (BV/TV), and significantly higher trabecular number and trabecular thickness but lower trabecular separation in TG mice compared with WT littermates in both sexes. The cortical bone at femur midshaft also displayed significantly greater bone area/total area and cortical thickness in the TG mice in both sexes. Serum biochemistry analysis showed that male TG mice had higher serum alkaline phosphatase, osteocalcin, osteoprotegerin (OPG), OPG to receptor activator of NF-kB ligand (tumor necrosis family ligand superfamily, number 11; RANKL) ratio as compared with WT mice. Also, lower carboxy-terminal collagen cross-link (CTX) to tartrate-resistant acid phosphatase 5, isoform b (TRAPc5b) ratio was observed in TG mice compared with WT littermates in both male and female. Histomorphometry data demonstrated that both male and female TG mice had significantly higher cortical and trabecular mineralizing surface/bone surface and bone formation rate compared with sex-matched WT mice. Gene expression analysis demonstrated higher expression of Alp, OC, Opg, and Opg to

  6. Analysis of cortical bone porosity using synchrotron radiation microtomography to evaluate the effects of chemotherapy

    NASA Astrophysics Data System (ADS)

    Alessio, R.; Nogueira, L. P.; Salata, C.; Mantuano, A.; Almeida, A. P.; Braz, D.; de Almeida, C. E.; Tromba, G.; Barroso, R. C.

    2015-11-01

    Microporosities play important biologic and mechanical roles on health. One of the side effects caused by some chemotherapy drugs is the induction of amenorrhea, temporary or not, in premenopausal women, with a consequent decrease in estrogen production, which can lead to cortical bone changes. In the present work, the femur diaphysis of rats treated with chemotherapy drugs were evaluated by 3D morphometric parameters using synchrotron radiation microtomography. Control animals were also evaluated for comparison. The 3D tomographic images were obtained at the SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at the ELETTRA Synchrotron Laboratory in Trieste, Italy. Results showed significant differences in morphometric parameters measured from the 3D images of femur diaphysis of rats.

  7. Reference point indentation study of age-related changes in porcine femoral cortical bone.

    PubMed

    Rasoulian, Ramin; Raeisi Najafi, Ahmad; Chittenden, Michael; Jasiuk, Iwona

    2013-06-21

    The reference point indentation (RPI) method is a microindentation technique involving successive indentation cycles. We employed RPI to measure average stiffness (Ave US), indentation distance increase (IDI), total indentation distance (TID), average energy dissipated (Ave ED), and creep indentation distance (CID) of swine femoral cortical bone (mid-diaphysis) as a function of age (1, 3.5, 6, 14.5, 24, and 48 months) and loading directions (longitudinal and transverse). The Ave US increases with animal age, while the IDI, TID, Ave ED, and CID decrease with age, for both longitudinal (transverse surface) and transverse (periosteal surface) loading directions. Longitudinal measurements generally give higher Ave US and lower IDI and TID values compared to transverse measurements. The RPI measurements show similar trends to those obtained using nanoindentation test, and ash and water content tests.

  8. Distribution of the lingual foramina in mandibular cortical bone in Koreans

    PubMed Central

    Kim, Dae Hyun; Kim, Moon Yong

    2013-01-01

    Objectives The interforminal region, between the mandibular foramen, is known as a relatively safe area that is free of anatomic structures, such as inferior alveolar nerve, submandibular fossa, and lingual side of the mandible is occasionally neglected for its low clinical importance. Even in the case of a severely constricted alveolus, perforation of the lingual cortical bone had been intended. However, anterior extension of the inferior alveolar canal, important anatomic structure, such as concavity of lingual bone, lingual foramina, and lingual canal, has recently been reported through various studies, and untypical bleeding by perforation of the lingual plate on implantation has also been reported. Therefore, in this study, we performed radiographic and statistical analysis on distribution and appearance frequencies of the lingual foramina that causes perforation of the mandibular lingual cortical bone to prevent complications, such as untypical bleeding, during surgical procedure. Materials and Methods We measured the horizontal length from a midline of the mandible to the lingual foramina, as well as the horizontal length from the alveolar crest to the lingual foramina and from the lingual foramina to the mandibular border by multi-detector computed tomography of 187 patients, who visited Dankook University Dental Hospital for various reasons from January 1, 2008 to August 31, 2012. Results From a total of 187 human mandibles, 110 (58.8%) mandibles had lingual foramina; 39 (20.9%) had bilateral lingual foramen; 34 (18.2%) had the only left lingual foramen; and 37 (19.8%) had the only right lingual foramen. Conclusion When there is consistent bleeding during a surgical procedure, clinicians must consider damages on the branches of the sublingual artery, which penetrate the lingual foramina. Also, when there is a lingual foramina larger than 1 mm in diameter on a pre-implantation computed tomography, clinicians must beware of vessel damage. In order to prevent

  9. THE EFFECT OF STRAIN RATE ON FRACTURE TOUGHNESS OF HUMAN CORTICAL BONE: A FINITE ELEMENT STUDY

    PubMed Central

    Ural, Ani; Zioupos, Peter; Buchanan, Drew; Vashishth, Deepak

    2011-01-01

    Evaluating the mechanical response of bone under high loading rates is crucial to understanding fractures in traumatic accidents or falls. In the current study, a computational approach based on cohesive finite element modeling was employed to evaluate the effect of strain rate on fracture toughness of human cortical bone. Two-dimensional compact tension specimen models were simulated to evaluate the change in initiation and propagation fracture toughness with increasing strain rate (range: 0.08 to 18 s−1). In addition, the effect of porosity in combination with strain rate was assessed using three-dimensional models of microcomputed tomography-based compact tension specimens. The simulation results showed that bone’s resistance against the propagation of fracture decreased sharply with increase in strain rates up to 1 s−1 and attained an almost constant value for strain rates larger than 1 s−1. On the other hand, initiation fracture toughness exhibited a more gradual decrease throughout the strain rates. There was a significant positive correlation between the experimentally measured number of microcracks and the fracture toughness found in the simulations. Furthermore, the simulation results showed that the amount of porosity did not affect the way initiation fracture toughness decreased with increasing strain rates, whereas it exacerbated the same strain rate effect when propagation fracture toughness was considered. These results suggest that strain rates associated with falls lead to a dramatic reduction in bone’s resistance against crack propagation. The compromised fracture resistance of bone at loads exceeding normal activities indicates a sharp reduction and/or absence of toughening mechanisms in bone during high strain conditions associated with traumatic fracture. PMID:21783112

  10. Cortical bone histomorphology of known‐age skeletons from the Kirsten collection, Stellenbosch university, South Africa

    PubMed Central

    Heinrich, Jarred; Beresheim, Amy; Alblas, Mandi

    2016-01-01

    ABSTRACT Objectives Normal human bone tissue changes predictably as adults get older, but substantial variability in pattern and pace remains unexplained. Information is needed regarding the characteristics of histological variables across diverse human populations. Methods Undecalcified thin sections from mid‐thoracic ribs of 213 skeletons (138 M, 75 F, 17–82 years, mean age 48 years), are used to explore the efficacy of an established age‐at‐death estimation method and methodological approach (Cho et al.: J Forensic Sci 47 (2002) 12‐18) and expand on it. The ribs are an age‐balanced sample taken from skeletonized cadavers collected from 1967 to 1999 in South Africa, each with recorded sex, age, cause of death and government‐defined population group (129 “Colored,” 49 “Black,” 35 “White”). Results The Ethnicity Unknown equation performs better than those developed for European‐Americans and African‐Americans, in terms of accuracy and bias. A new equation based solely on the study sample does not improve accuracy. Osteon population densities (OPD) show predicted values, yet secondary osteon areas (On.Ar) are smaller than expected for non‐Black subgroups. Relative cortical area (Ct.Ar/Tt.Ar) is low among non‐Whites. Conclusions Results from this highly diverse sample show that population‐specific equations do not increase estimate precision. While within the published range of error for the method (±24.44 years), results demonstrate a systematic under‐aging of young adults and over‐aging of older adults. The regression approach is inappropriate. The field needs fresh approaches to statistical treatment and to factors behind cortical bone remodeling. Am J Phys Anthropol 160:137–147, 2016. © 2016 The Authors American Journal of Physical Anthropology Published by Wiley Periodicals, Inc. PMID:26865244

  11. Quantification of nonlinear elasticity for the evaluation of submillimeter crack length in cortical bone.

    PubMed

    Haupert, Sylvain; Guérard, Sandra; Mitton, David; Peyrin, Françoise; Laugier, Pascal

    2015-08-01

    The objective of this study was to investigate the sensitivity of the nonlinear elastic properties of cortical bone to the presence of a single submillimetric crack. Nonlinear elasticity was measured by nonlinear resonant ultrasound spectroscopy (NRUS) in 14 human cortical bone specimens. The specimens were parallelepiped beams (50×2×2 mm(3)). A central notch of 500 µm was made to control crack initiation and propagation during four-point bending. The nonlinear hysteretic elastic and dissipative parameters αf and αQ, and Young׳s modulus Eus were measured in dry condition for undamaged (control) specimens and in dry and wet conditions for damaged specimens. The length of the crack was assessed using synchrotron radiation micro-computed tomography (SR-μCT) with a voxel size of 1.4 μm. The initial values of αf, measured on the intact specimens, were remarkably similar for all the specimens (αf =-5.5±1.5). After crack propagation, the nonlinear elastic coefficient αf increased significantly (p<0.006), with values ranging from -4.0 to -296.7. Conversely, no significant variation was observed for αQ and Eus. A more pronounced nonlinear elastic behavior was observed in hydrated specimens compared to dry specimens (p<0.001) after propagation of a single submillimetric crack. The nonlinear elastic parameter αf was found to be significantly correlated to the crack length both in dry (R=0.79, p<0.01) and wet (R=0.84, p<0.005) conditions. Altogether these results show that nonlinear elasticity assessed by NRUS is sensitive to a single submillimetric crack induced mechanically and suggest that the humidity must be strictly controlled during measurements.

  12. Relationship of alignment and tibial cortical coverage to hypertrophic bone formation in Salto Talaris® total ankle arthroplasty.

    PubMed

    King, Christy M; Schuberth, John M; Christensen, Jeffrey C; Swanstrom, Katie M

    2013-01-01

    A retrospective analysis of 107 Salto Talaris(®) total ankle replacements was performed to determine the effect of alignment and tibial cortical coverage on the formation of heterotopic bone. The radiographic parameters were studied for at least 18 months to detect any changes over time. The angle of insertion of the implant was most often in varus and with a positive anterior slope. A slight increase was seen in the slope over time (p < .0001) but was not clinically relevant. The mean percentage of cortical coverage of the tibial component was 89%, and only 7 patients had complete coverage of both the anterior and the posterior cortices. The percentage of patients who had hypertrophic bone growth increased over time (p < .0001). As the slope of the implant increased, there was a negative correlation with the degree of tibial coverage (p = .007). There was also an increase in the extent of hypertrophic bone as the tibial coverage decreased. None of the patients had symptoms that required an additional surgical procedure. The results of the present study indicate a high incidence of hypertrophic bone proliferation when the dimensions of the tibial component do not match the anteroposterior depth of the tibia at the plane of resection. Despite the high occurrence rate, the clinical relevance of hypertrophic bone is obscure.

  13. High insulin levels in KK-Ay diabetic mice cause increased cortical bone mass and impaired trabecular micro-structure.

    PubMed

    Fu, Cen; Zhang, Xiaolin; Ye, Fei; Yang, Jianhong

    2015-04-13

    Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by hyperglycemia, hyperinsulinemia and complications, including obesity and osteoporosis. Rodents have been widely used to model human T2DM and investigate its effect on the skeleton. We aimed to investigate skeletal alterations in Yellow Kuo Kondo (KK-Ay) diabetic mice displaying high insulin and glucose levels. Bone mineral density (BMD), micro-architecture and bone metabolism-related genes were analyzed. The total femoral areal BMD (aBMD), cortical volumetric BMD (vBMD) and thickness were significantly increased in KK-Ay mice, while the trabecular vBMD and mineralized bone volume/tissue volume (BV/TV), trabecular thickness and number were decreased compared to C57BL mice. The expression of both osteoblast-related genes, such as osteocalcin (OC), bone sialoprotein, Type I Collagen, osteonectin, RUNX2 and OSX, and osteoclast-related genes, such as TRAP and TCIRG, were up-regulated in KK-Ay mice. Correlation analyses showed that serum insulin levels were positively associated with aBMD, cortical vBMD and thickness and negatively associated with trabecular vBMD and micro-architecture. In addition, serum insulin levels were positively related to osteoblast-related and osteoclast-related gene expression. Our data suggest that high insulin levels in KK-Ay diabetic mice may increase cortical bone mass and impair trabecular micro-structure by up-regulating osteoblast-and osteoclast-related gene expression.

  14. The effect of the cathepsin K inhibitor ONO-5334 on trabecular and cortical bone in postmenopausal osteoporosis: the OCEAN study.

    PubMed

    Engelke, Klaus; Nagase, Shinichi; Fuerst, Thomas; Small, Maria; Kuwayama, Tomohiro; Deacon, Stephen; Eastell, Richard; Genant, Harry K

    2014-03-01

    ONO-5334 (Ono Pharmaceutical Co., Ltd., Osaka, Japan) inhibits cathepsin K and has been shown to increase areal bone mineral density (BMD) at the hip and spine in postmenopausal osteoporosis. Quantitative computed tomography (QCT) allows the study of the cortical and trabecular bone separately and provides structural information such as cortical thickness. We investigated the impact of 2 years of cathepsin K inhibition on these different bone compartments with ONO-5334. The clinical study was a randomized, double-blind, placebo, and active controlled parallel group study conducted in 13 centers in six European countries. The original study period of 12 months was extended by another 12 months. A total of 147 subjects (age 55-75 years) of the QCT substudy who participated in the extension period were included. Subjects had been randomized into one of five treatment arms: placebo; ONO-5334 50 mg twice per day (BID); ONO-5334 100 mg once daily (QD); ONO-5334 300 mg QD; or alendronate 70 mg once weekly (QW). QCT was obtained to evaluate bone structure at the lumbar spine and proximal femur. After 24 months ONO-5334 showed statistically significant increases versus placebo for integral, trabecular, and cortical BMD at the spine and the hip (for ONO-5334 300 mg QD, BMD increases were 10.5%, 7.1%, and 13.4% for integral, cortical, and trabecular BMD at the spine, respectively, and 6.2%, 3.4%, and 14.6% for integral, cortical, and trabecular total femur BMD, respectively). Changes in cortical and trabecular BMD in the spine and hip were similar for alendronate as for ONO-5334. Integral volume did not demonstrate statistically significant changes under ONO-5334 treatment, thus there was no evidence of periosteal apposition, neither at the spine nor at the femur. Cortical thickness changes were not statistically significant for ONO-5334 in the spine and hip, with exception of a 2.1% increase after month 24 in the intertrochanter for ONO-5334 300 mg QD. Over 2

  15. Mixed-mode I+II fracture characterization of human cortical bone using the Single Leg Bending test.

    PubMed

    Silva, F G A; de Moura, M F S F; Dourado, N; Xavier, J; Pereira, F A M; Morais, J J L; Dias, M I R

    2016-02-01

    Mixed-mode I+II fracture characterization of human cortical bone was analyzed in this work. A miniaturized version of the Single Leg Bending test (SLB) was used owing to its simplicity. A power law criterion was verified to accurately describe the material fracture envelop under mixed-mode I+II loading. The crack tip opening displacements measured by digital image correlation were used in a direct method to determine the cohesive law mimicking fracture behavior of cortical bone. Cohesive zone modeling was used for the sake of validation. Several fracture quantities were compared with the experimental results and the good agreement observed proves the appropriateness of the proposed procedure for fracture characterization of human bone under mixed-mode I+II loading.

  16. [Value of multiple cortical perforations for the rehabilitation of massive deep-frozen bone allografts. Experimental study in sheep].

    PubMed

    Simon, P; Babin, S R; Delloye, C; Schmitt, D

    1992-01-01

    Incorporation of massive cortical bone allografts in human is slow and remains incomplete. Late biopsies of implanted allografts or histological studies of explanted allografts always show the partial substitution of necrotic bone by new bone from the host. The aim of the present study was to evaluate the effect of drilling the massive deep-frozen cortical allografts in order to induce osteogenesis. Thirteen sheep were operated on and a standard segment of the proximal ulna was removed and the gap filled either by an unperforated allograft or by a perforated one. Based on histological and microradiographic examination, a quite complete substitution of the perforated allografts was observed but in this model no statistically significant difference was observed between perforated and unperforated allografts. Further study is needed to assess the effect of the perforations.

  17. Image-guided Raman spectroscopic recovery of canine cortical bone contrast in situ

    PubMed Central

    Srinivasan, Subhadra; Schulmerich, Matthew; Cole, Jacqueline H.; Dooley, Kathryn A.; Kreider, Jaclynn M.; Pogue, Brian W.; Morris, Michael D.; Goldstein, Steven A.

    2009-01-01

    Raman scattering provides valuable biochemical and molecular markers for studying bone tissue composition with use in predicting fracture risk in osteoporosis. Raman tomography can image through a few centimeters of tissue but is limited by low spatial resolution. X-ray computed tomography (CT) imaging can provide high-resolution image-guidance of the Raman spectroscopic characterization, which enhances the quantitative recovery of the Raman signals, and this technique provides additional information to standard imaging methods. This hypothesis was tested in data measured from Teflon® tissue phantoms and from a canine limb. Image-guided Raman spectroscopy (IG-RS) of the canine limb using CT images of the tissue to guide the recovery recovered a contrast of 145:1 between the cortical bone and background. Considerably less contrast was found without the CT image to guide recovery. This study presents the first known IG-RS results from tissue and indicates that intrinsically high contrasts (on the order of a hundred fold) are available. PMID:18679495

  18. Cortical bone finite element models in the estimation of experimentally measured failure loads in the proximal femur.

    PubMed

    Koivumäki, Janne E M; Thevenot, Jérôme; Pulkkinen, Pasi; Kuhn, Volker; Link, Thomas M; Eckstein, Felix; Jämsä, Timo

    2012-10-01

    Highly accurate nonlinear finite element (FE) models have been presented to estimate bone fracture load. However, these complex models require high computational capacity, which restricts their clinical applicability. The objective of this experimental FE study was to assess the predictive value of a more simple cortical bone simulation model in the estimation of experimentally measured fracture load of the proximal femur. The prediction was compared with that of DXA, and with the prediction of our previous, more complex FE model including trabecular bone. Sixty-one formalin-fixed cadaver femora (from 41 women and 20 men, age 55-100 years) were scanned using a multi-detector CT and were mechanically tested for failure in a sideways fall loading configuration. Trabecular bone was completely removed from the FE models and only cortical bone was analyzed. The training set FE models (N=21) was used to establish the stress and strain thresholds for the element failure criteria. Bi-linear elastoplastic FE analysis was performed based on the CT images. The validation set (N=40) was used to estimate the fracture load. The estimated fracture load values were highly correlated with the experimental data (r(2)=0.73; p<0.001). The slope was 1.128, with an intercept of -360 N, which was not significantly different from 1 and 0, respectively. DXA-based BMD and BMC correlated moderately with the fracture load (r(2)=0.41 and r(2)=0.40, respectively). The study shows that the proximal femoral failure load in a sideways fall configuration can be estimated with reasonable accuracy by using the CT-based bi-linear elastoplastic cortical bone FE model. This model was more predictive for fracture load than DXA and only slightly less accurate than a full bone FE model including trabecular bone. The accuracy and calculation time of the model give promises for clinical use.

  19. The high bone mass phenotype is characterised by a combined cortical and trabecular bone phenotype: findings from a pQCT case-control study.

    PubMed

    Gregson, Celia L; Sayers, Adrian; Lazar, Victor; Steel, Sue; Dennison, Elaine M; Cooper, Cyrus; Smith, George Davey; Rittweger, Jörn; Tobias, Jon H

    2013-01-01

    High bone mass (HBM), detected in 0.2% of DXA scans, is characterised by a mild skeletal dysplasia largely unexplained by known genetic mutations. We conducted the first systematic assessment of the skeletal phenotype in unexplained HBM using pQCT in our unique HBM population identified from screening routine UK NHS DXA scans. pQCT measurements from the mid and distal tibia and radius in 98 HBM cases were compared with (i) 65 family controls (constituting unaffected relatives and spouses), and (ii) 692 general population controls. HBM cases had substantially greater trabecular density at the distal tibia (340 [320, 359] mg/cm(3)), compared to both family (294 [276, 312]) and population controls (290 [281, 299]) (p<0.001 for both, adjusted for age, gender, weight, height, alcohol, smoking, malignancy, menopause, steroid and estrogen replacement use). Similar results were obtained at the distal radius. Greater cortical bone mineral density (cBMD) was observed in HBM cases, both at the midtibia and radius (adjusted p<0.001). Total bone area (TBA) was higher in HBM cases, at the distal and mid tibia and radius (adjusted p<0.05 versus family controls), suggesting greater periosteal apposition. Cortical thickness was increased at the mid tibia and radius (adjusted p<0.001), implying reduced endosteal expansion. Together, these changes resulted in greater predicted cortical strength (strength strain index [SSI]) in both tibia and radius (p<0.001). We then examined relationships with age; tibial cBMD remained constant with increasing age amongst HBM cases (adjusted β -0.01 [-0.02, 0.01], p=0.41), but declined in family controls (-0.05 [-0.03, -0.07], p<0.001) interaction p=0.002; age-related changes in tibial trabecular BMD, CBA and SSI were also divergent. In contrast, at the radius HBM cases and controls showed parallel age-related declines in cBMD and trabecular BMD. HBM is characterised by increased trabecular BMD and by alterations in cortical bone density and

  20. Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones.

    PubMed

    Sugiyama, Toshihiro; Price, Joanna S; Lanyon, Lance E

    2010-02-01

    In order to validate whether bones' functional adaptation to mechanical loading is a local phenomenon, we randomly assigned 21 female C57BL/6 mice at 19 weeks of age to one of three equal numbered groups. All groups were treated with isoflurane anesthesia three times a week for 2 weeks (approximately 7 min/day). During each anaesthetic period, the right tibiae/fibulae in the DYNAMIC+STATIC group were subjected to a peak dynamic load of 11.5 N (40 cycles with 10-s intervals between cycles) superimposed upon a static "pre-load" of 2.0 N. This total load of 13.5 N engendered peak longitudinal strains of approximately 1400 microstrain on the medial surface of the tibia at a middle/proximal site. The right tibiae/fibulae in the STATIC group received the static "pre-load" alone while the NOLOAD group received no artificial loading. After 2 weeks, the animals were sacrificed and both tibiae, fibulae, femora, ulnae and radii analyzed by three-dimensional high-resolution (5 mum) micro-computed tomography (microCT). In the DYNAMIC+STATIC group, the proximal trabecular percent bone volume and cortical bone volume at the proximal and middle levels of the right tibiae as well as the cortical bone volume at the middle level of the right fibulae were markedly greater than the left. In contrast, the left bones in the DYNAMIC+STATIC group showed no differences compared to the left or right bones in the NOLOAD or STATIC group. These microCT data were confirmed by two-dimensional examination of fluorochrome labels in bone sections which showed the predominantly woven nature of the new bone formed in the loaded bones. We conclude that the adaptive response in both cortical and trabecular regions of bones subjected to short periods of dynamic loading, even when this response is sufficiently vigorous to stimulate woven bone formation, is confined to the loaded bones and does not involve changes in other bones that are adjacent, contra-lateral or remote to them.

  1. Liver-derived IGF-I regulates cortical bone mass but is dispensable for the osteogenic response to mechanical loading in female mice.

    PubMed

    Svensson, Johan; Windahl, Sara H; Saxon, Leanne; Sjögren, Klara; Koskela, Antti; Tuukkanen, Juha; Ohlsson, Claes

    2016-07-01

    Low circulating IGF-I is associated with increased fracture risk. Conditional depletion of IGF-I produced in osteoblasts or osteocytes inhibits the bone anabolic effect of mechanical loading. Here, we determined the role of endocrine IGF-I for the osteogenic response to mechanical loading in young adult and old female mice with adult, liver-specific IGF-I inactivation (LI-IGF-I(-/-) mice, serum IGF-I reduced by ≈70%) and control mice. The right tibia was subjected to short periods of axial cyclic compressive loading three times/wk for 2 wk, and measurements were performed using microcomputed tomography and mechanical testing by three-point bending. In the nonloaded left tibia, the LI-IGF-I(-/-) mice had lower cortical bone area and increased cortical porosity, resulting in reduced bone mechanical strength compared with the controls. Mechanical loading induced a similar response in LI-IGF-I(-/-) and control mice in terms of cortical bone area and trabecular bone volume fraction. In fact, mechanical loading produced a more marked increase in cortical bone mechanical strength, which was associated with a less marked increase in cortical porosity, in the LI-IGF-I(-/-) mice compared with the control mice. In conclusion, liver-derived IGF-I regulates cortical bone mass, cortical porosity, and mechanical strength under normal (nonloaded) conditions. However, despite an ∼70% reduction in circulating IGF-I, the osteogenic response to mechanical loading was not attenuated in the LI-IGF-I(-/-) mice.

  2. Occlusal load distribution through the cortical and trabecular bone of the human mid-facial skeleton in natural dentition: a three-dimensional finite element study.

    PubMed

    Janovic, Aleksa; Saveljic, Igor; Vukicevic, Arso; Nikolic, Dalibor; Rakocevic, Zoran; Jovicic, Gordana; Filipovic, Nenad; Djuric, Marija

    2015-01-01

    Understanding of the occlusal load distribution through the mid-facial skeleton in natural dentition is essential because alterations in magnitude and/or direction of occlusal forces may cause remarkable changes in cortical and trabecular bone structure. Previous analyses by strain gauge technique, photoelastic and, more recently, finite element (FE) methods provided no direct evidence for occlusal load distribution through the cortical and trabecular bone compartments individually. Therefore, we developed an improved three-dimensional FE model of the human skull in order to clarify the distribution of occlusal forces through the cortical and trabecular bone during habitual masticatory activities. Particular focus was placed on the load transfer through the anterior and posterior maxilla. The results were presented in von Mises stress (VMS) and the maximum principal stress, and compared to the reported FE and strain gauge data. Our qualitative stress analysis indicates that occlusal forces distribute through the mid-facial skeleton along five vertical and two horizontal buttresses. We demonstrated that cortical bone has a priority in the transfer of occlusal load in the anterior maxilla, whereas both cortical and trabecular bone in the posterior maxilla are equally involved in performing this task. Observed site dependence of the occlusal load distribution may help clinicians in creating strategies for implantology and orthodontic treatments. Additionally, the magnitude of VMS in our model was significantly lower in comparison to previous FE models composed only of cortical bone. This finding suggests that both cortical and trabecular bone should be modeled whenever stress will be quantitatively analyzed.

  3. Genetic algorithms as a useful tool for trabecular and cortical bone segmentation.

    PubMed

    Janc, K; Tarasiuk, J; Bonnet, A S; Lipinski, P

    2013-07-01

    The aim of this study was to find a semi-automatic method of bone segmentation on the basis of computed tomography (CT) scan series in order to recreate corresponding 3D objects. So, it was crucial for the segmentation to be smooth between adjacent scans. The concept of graphics pipeline computing was used, i.e. simple graphics filters such as threshold or gradient were processed in a manner that the output of one filter became the input of the second one resulting in so called pipeline. The input of the entire stream was the CT scan and the output corresponded to the binary mask showing where a given tissue is located in the input image. In this approach the main task consists in finding the suitable sequence, types and parameters of graphics filters building the pipeline. Because of the high number of desired parameters (in our case 96), it was decided to use a slightly modified genetic algorithm. To determine fitness value, the mask obtained from the parameters found through genetic algorithms (GA) was compared with those manually prepared. The numerical value corresponding to such a comparison has been defined by Dice's coefficient. Preparation of reference masks for a few scans among the several hundreds of them was the only action done manually by a human expert. Using this method, very good results both for trabecular and cortical bones were obtained. It has to be emphasized that as no real border exists between these two bone types, the manually prepared reference masks were quite conventional and therefore charged with errors. As GA is a non-deterministic method, the present work also contains a statistical analysis of the relations existing between various GA parameters and fitness function. Finally the best sets of the GA parameters are proposed.

  4. Cortical thickness and medullary canal dimensions of the bone phalanx are predicted by quantitative ultrasound parameters.

    PubMed

    Guglielmi, Giuseppe; de Terlizzi, Francesca; Scalzo, Giacomo; Battista, Claudia; Scillitani, Alfredo

    2010-01-01

    The aim of the study was to investigate the relationship between quantitative ultrasound (QUS) parameters extracted from the analysis of the ultrasound (US) signal and the geometric properties of the bones. One hundred and one subjects in the age range of 20-7 4yr (mean: 52+/-12 yr) have been measured by QUS at the phalanges for the evaluation of amplitude-dependent speed of sound (AD-SoS), bone transmission time (BTT), US peak amplitude (UPA), signal dynamic (SDY), slope, energy, and fast wave amplitude (FWA). Hand radiograph, lumbar spine dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT), and femoral neck DXA forearm peripheral QCT were performed on all patients. BTT is related to cortical thickness (CTh) (r=0.62, p<0.0001), and FWA is related to medullary canal thickness (r=-0.64, p<0.0001). Other parameters are related to both medullary canal thickness (AD-SoS: r=-0.21; UPA: r=-0.53; SDY: r=-0.56; slope: r=-0.64; energy: r=-0.44, p<0.05) and CTh (AD-SoS: r=0.54, p<0.0001; UPA: r=0.51; SDY: r=0.38; slope: r=0.32; energy: r=0.56, p<0.001). Linear multivariate models indicate that BTT, UPA, and energy measured at the phalanges carry independent information on CTh of the bone, whereas FWA, SDY, and slope are related only to medullary canal thickness.

  5. AGE-RELATED FACTORS AFFECTING THE POST-YIELD ENERGY DISSIPATION OF HUMAN CORTICAL BONE

    PubMed Central

    Nyman, Jeffry S.; Roy, Anuradha; Tyler, Jerrod H.; Acuna, Rae L.; Gayle, Heather J.; Wang, Xiaodu

    2007-01-01

    The risk of bone fracture depends in part on the quality of the tissue, not just the size and mass. This study assessed the post-yield energy dissipation of cortical bone in tension as a function of age and composition. Tensile specimens were prepared from tibiae of human cadavers in which male and female donors were divided into two age groups: middle aged (51 to 56 years old, n = 9) and elderly (72 to 90 years old, n = 8). By loading, unloading, and reloading a specimen with rest period inserted in between, tensile properties at incremental strain levels were assessed. In addition, the post-yield toughness was estimated and partitioned as follows: plastic strain energy related to permanent deformation, released elastic strain energy related to stiffness loss, and hysteresis energy related to viscous behavior. Porosity, mineral and collagen content, and collagen crosslinks of each specimen were also measured to determine the micro and ultrastructural properties of the tissue. It was found that age affected all the energy terms plus strength but not elastic stiffness. The post-yield energy terms were correlated with porosity, pentosidine (a marker of non-enzymatic crosslinks), and collagen content, all of which significantly varied with age. General linear models with the highest possible R2 value suggested that the pentosidine concentration and collagen content provided the best explanation of the age-related decrease in the post-yield energy dissipation of bone. Among them, pentosidine concentration had the greatest contribution to plastic strain energy and was the best explanatory variable of damage accumulation. PMID:17266142

  6. Periosteal PTHrP regulates cortical bone modeling during linear growth in mice.

    PubMed

    Wang, Meina; VanHouten, Joshua N; Nasiri, Ali R; Tommasini, Steven M; Broadus, Arthur E

    2014-07-01

    The modeling of long bone surfaces during linear growth is a key developmental process, but its regulation is poorly understood. We report here that parathyroid hormone-related peptide (PTHrP) expressed in the fibrous layer of the periosteum (PO) drives the osteoclastic (OC) resorption that models the metaphyseal-diaphyseal junction (MDJ) in the proximal tibia and fibula during linear growth. PTHrP was conditionally deleted (cKO) in the PO via Scleraxis gene targeting (Scx-Cre). In the lateral tibia, cKO of PTHrP led to a failure of modeling, such that the normal concave MDJ was replaced by a mound-like deformity. This was accompanied by a failure to induce receptor activator of NF-kB ligand (RANKL) and a 75% reduction in OC number (P ≤ 0.001) on the cortical surface. The MDJ also displayed a curious threefold increase in endocortical osteoblast mineral apposition rate (P ≤ 0.001) and a thickened cortex, suggesting some form of coupling of endocortical bone formation to events on the PO surface. Because it fuses distally, the fibula is modeled only proximally and does so at an extraordinary rate, with an anteromedial cortex in CD-1 mice that was so moth-eaten that a clear PO surface could not be identified. The cKO fibula displayed a remarkable phenotype, with a misshapen club-like metaphysis and an enlargement in the 3D size of the entire bone, manifest as a 40-45% increase in the PO circumference at the MDJ (P ≤ 0.001) as well as the mid-diaphysis (P ≤ 0.001). These tibial and fibular phenotypes were reproduced in a Scx-Cre-driven RANKL cKO mouse. We conclude that PTHrP in the fibrous PO mediates the modeling of the MDJ of long bones during linear growth, and that in a highly susceptible system such as the fibula this surface modeling defines the size and shape of the entire bone.

  7. Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT.

    PubMed

    Burghardt, Andrew J; Buie, Helen R; Laib, Andres; Majumdar, Sharmila; Boyd, Steven K

    2010-09-01

    Quantitative cortical microarchitectural end points are important for understanding structure-function relations in the context of fracture risk and therapeutic efficacy. This technique study details new image-processing methods to automatically segment and directly quantify cortical density, geometry, and microarchitecture from HR-pQCT images of the distal radius and tibia. An automated segmentation technique was developed to identify the periosteal and endosteal margins of the distal radius and tibia and detect intracortical pore space morphologically consistent with Haversian canals. The reproducibility of direct quantitative cortical bone indices based on this method was assessed in a pooled data set of 56 subjects with two repeat acquisitions for each site. The in vivo precision error was characterized using root mean square coefficient of variation (RMSCV%) from which the least significant change (LSC) was calculated. Bland-Altman plots were used to characterize bias in the precision estimates. The reproducibility of cortical density and cross-sectional area measures was high (RMSCV <1% and <1.5%, respectively) with good agreement between young and elder medians. The LSC for cortical porosity (Ct.Po) was somewhat smaller in the radius (0.58%) compared with the distal tibia (0.84%) and significantly different between young and elder medians in the distal tibia (LSC: 0.75% vs. 0.92%, p<0.001). The LSC for pore diameter and distribution (Po.Dm and Po.Dm.SD) ranged between 15 and 23 microm. Bland-Altman analysis revealed moderate bias for integral measures of area and volume but not for density or microarchitecture. This study indicates that HR-pQCT measures of cortical bone density and architecture can be measured in vivo with high reproducibility and limited bias across a biologically relevant range of values. The results of this study provide informative data for the design of future clinical studies of bone quality.

  8. Hibernation does not reduce cortical bone density, area or second moments of inertia in woodchucks (Marmota monax).

    PubMed

    Doherty, Alison H; Frampton, Jason D; Vinyard, Christopher J

    2012-06-01

    Long periods of inactivity in most mammals result in bone loss that may not be completely recoverable during an individual's lifetime regardless of future activity. Prolonged inactivity is normal during hibernation, but it remains uncertain whether hibernating mammals suffer decreased bone properties after hibernation that affects survival. We test the hypothesis that relative cortical area (C(A) ), apparent density, bone area fraction (B.Ar/T.Ar), and moments of inertia do not differ between museum samples of woodchucks (Marmota monax) collected before and after hibernation. We used peripheral quantitative computed tomography to examine bone geometry in the femur, tibia, humerus and mandible. We see little evidence for changes in bone measures with hibernation supporting our hypothesis. In fact, when including subadults to increase sample sizes and controlling age statistically, we observed a trend toward increased bone properties following hibernation. Diaphyses were significantly denser in the humerus, femur, and tibia after hibernation, and relative mandibular cortical area was significantly larger. Similarly, relative mechanical indices were significantly larger in the mandible after hibernation. Although tests of individual measures in many cases were not significantly different prehibernation versus posthibernation, the overall pattern of average increase posthibernation was significant for relative C(A) and densities as well as relative diaphyseal mechanical indices when examining outcomes collectively. The exception to this pattern was a reduction in metaphyseal trabecular bone following hibernation. Individually, only humeral B.Ar/T.Ar was significantly reduced, but the average reduction in trabecular measures post-hibernation was significant when examined collectively. Because the sample included subadults, we suggest that much of the increased bone relates to their continued growth during hibernation. Our results indicate that woodchucks are more

  9. Cortical bone health shows significant linkage to chromosomes 2p, 3p, and 17q in 10-year-old children.

    PubMed

    Duren, Dana L; Blangero, John; Sherwood, Richard J; Seselj, Maja; Dyer, Thomas; Cole, Shelley A; Lee, Miryoung; Choh, Audrey C; Chumlea, Wm Cameron; Siervogel, Roger M; Czerwinski, Stefan A; Towne, Bradford

    2011-12-01

    Genes play an important role in lifelong skeletal health. Genes that influence bone building during childhood have the potential to affect bone health not only throughout childhood but also into adulthood. Given that peak bone mass is a significant predictor of adult fracture risk, it is imperative that the genetic underpinnings of the normal pediatric skeleton are uncovered. In a sample of 600 10-year-old children from 144 families in the Fels Longitudinal Study, we examined radiographic cortical bone measures of the second metacarpal. Morphometic measurements included bone width, medial and lateral cortical thicknesses, and the calculated cortical index representing the amount of cortex relative to bone width. We then conducted genome-wide linkage analysis on these traits in 440 genotyped individuals using the SOLAR analytic platform. Significant quantitative trait loci (QTL) were identified for bone traits on three separate chromosomes. A QTL for medial cortical thickness was localized to chromosome 2p25.2. A QTL for lateral cortical thickness was localized to chromosomal region 3p26.1-3p25.3. Finally, a QTL detected for cortical index was localized to the 17q21.2 chromosomal region. Each region contains plausible candidate genes for pediatric skeletal health, some of which confirm findings from studies of adulthood bone, and for others represent novel candidate genes for skeletal health.

  10. Mixed-mode toughness of human cortical bone containing a longitudinal crack in far-field compression.

    PubMed

    Olvera, Diana; Zimmermann, Elizabeth A; Ritchie, Robert O

    2012-01-01

    Bone is generally loaded under multiaxial conditions in vivo; as it invariably contains microcracks, this leads to complex mixed-mode stress-states involving combinations of tension, compression and shear. In previous work on the mixed-mode loading of human cortical bone (using an asymmetric bend test geometry), we found that the bone toughness was lower when loaded in far-field shear than in tension (opposite to the trend in most brittle materials), although only for the transverse orientation. This is a consequence of the competition between preferred mechanical vs. microstructural crack-path directions, the former dictated by the direction of the maximum mechanical "driving force" (which changes with the mode-mixity), and the latter by the "weakest" microstructural path (which in human bone is along the osteonal interfaces or cement lines). As most microcracks are oriented longitudinally, we investigate here the corresponding mixed-mode toughness of human cortical bone in the longitudinal (proximal-distal) orientation using a "double cleavage drilled compression" test geometry, which provides a physiologically-relevant loading condition for bone in that it characterizes the toughness of a longitudinal crack loaded in far-field compression. In contrast to the transverse toughness, results show that the longitudinal toughness, measured using the strain-energy release rate, is significantly higher in shear (mode II) than in tension (mode I). This is consistent, however, with the individual criteria of preferred mechanical vs. microstructural crack paths being commensurate in this orientation.

  11. Mechanical and material properties of cortical and trabecular bone from cannabinoid receptor-1-null (Cnr1(-/-)) mice.

    PubMed

    Khalid, Aysha B; Goodyear, Simon R; Ross, Ruth A; Aspden, Richard M

    2016-10-01

    The endocannabinoid system is known for its regulatory effects on bone metabolism through the cannabinoid receptors, Cnr1 and Cnr2. In this study we analysed the mechanical and material properties of long bones from Cnr1(-/-) mice on a C57BL/6 background. Tibiae and femora from 5- and 12-week-old mice were subjected to three-point bending to measure bending stiffness and yield strength. Elastic modulus, density and mineral content were measured in the diaphysis. Second moment of area (MOA2), inner and outer perimeters of the cortical shaft and trabecular fractional bone volume (BV/TV) were measured using micro-CT. In Cnr1(-/-) males and females at both ages the bending stiffness was reduced due to a smaller MOA2. Bone from Cnr1(-/-) females had a greater modulus than wild-type controls, although no differences were observed in males. BV/TV of 12-week-old Cnr1(-/-) females was greater than controls, although no difference was seen at 5-weeks. On the contrary, Cnr1(-/-) males had the same BV/TV as controls at 12-weeks while they had significantly lower values at 5-weeks. This study shows that deleting Cnr1 decreases the amount of cortical bone in both males and females at 12-weeks, but increases the amount of trabecular bone only in females.

  12. Evidence of Staphylococcus Aureus Deformation, Proliferation, and Migration in Canaliculi of Live Cortical Bone in Murine Models of Osteomyelitis.

    PubMed

    de Mesy Bentley, Karen L; Trombetta, Ryan; Nishitani, Kohei; Bello-Irizarry, Sheila N; Ninomiya, Mark; Zhang, Longze; Chung, Hung Li; McGrath, James L; Daiss, John L; Awad, Hani A; Kates, Stephen L; Schwarz, Edward M

    2016-12-08

    Although Staphylococcus aureus osteomyelitis is considered to be incurable, the major bacterial reservoir in live cortical bone has remained unknown. In addition to biofilm bacteria on necrotic tissue and implants, studies have implicated intracellular infection of osteoblasts and osteocytes as a mechanism of chronic osteomyelitis. Thus, we performed the first systematic transmission electron microscopy (TEM) studies to formally define major reservoirs of S. aureus in chronically infected mouse (Balb/c J) long bone tissue. Although rare, evidence of colonized osteoblasts was found. In contrast, we readily observed S. aureus within canaliculi of live cortical bone, which existed as chains of individual cocci and submicron rod-shaped bacteria leading to biofilm formation in osteocyte lacunae. As these observations do not conform to the expectations of S. aureus as non-motile cocci 1.0 to 1.5 μm in diameter, we also performed immunoelectron microscopy (IEM) following in vivo BrdU labeling to assess the role of bacterial proliferation in canalicular invasion. The results suggest that the deformed bacteria: (1) enter canaliculi via asymmetric binary fission; and (2) migrate toward osteocyte lacunae via proliferation at the leading edge. Additional in vitro studies confirmed S. aureus migration through a 0.5-μm porous membrane. Collectively, these findings define a novel mechanism of bone infection, and provide possible new insight as to why S. aureus implant-related infections of bone tissue are so challenging to treat. © 2016 American Society for Bone and Mineral Research.

  13. Regulation of Growth Anisotropy in Well-Watered and Water-Stressed Maize Roots. II. Role of Cortical Microtubules and Cellulose Microfibrils1

    PubMed Central

    Baskin, Tobias I.; Meekes, Herman T.H.M.; Liang, Benjamin M.; Sharp, Robert E.

    1999-01-01

    We tested the hypothesis that the degree of anisotropic expansion of plant tissues is controlled by the degree of alignment of cortical microtubules or cellulose microfibrils. Previously, for the primary root of maize (Zea mays L.), we quantified spatial profiles of expansion rate in length, radius, and circumference and the degree of growth anisotropy separately for the stele and cortex, as roots became thinner with time from germination or in response to low water potential (B.M. Liang, A.M. Dennings, R.E. Sharp, T.I. Baskin [1997] Plant Physiol 115:101–111). Here, for the same material, we quantified microtubule alignment with indirect immunofluorescence microscopy and microfibril alignment throughout the cell wall with polarized-light microscopy and from the innermost cell wall layer with electron microscopy. Throughout much of the growth zone, mean orientations of microtubules and microfibrils were transverse, consistent with their parallel alignment specifying the direction of maximal expansion rate (i.e. elongation). However, where microtubule alignment became helical, microfibrils often made helices of opposite handedness, showing that parallelism between these elements was not required for helical orientations. Finally, contrary to the hypothesis, the degree of growth anisotropy was not correlated with the degree of alignment of either microtubules or microfibrils. The mechanisms plants use to specify radial and tangential expansion rates remain uncharacterized. PMID:9952465

  14. Quantification of Alterations in Cortical Bone Geometry Using Site Specificity Software in Mouse models of Aging and the Responses to Ovariectomy and Altered Loading

    PubMed Central

    Galea, Gabriel L.; Hannuna, Sion; Meakin, Lee B.; Delisser, Peter J.; Lanyon, Lance E.; Price, Joanna S.

    2015-01-01

    Investigations into the effect of (re)modeling stimuli on cortical bone in rodents normally rely on analysis of changes in bone mass and architecture at a narrow cross-sectional site. However, it is well established that the effects of axial loading produce site-specific changes throughout bones’ structure. Non-mechanical influences (e.g., hormones) can be additional to or oppose locally controlled adaptive responses and may have more generalized effects. Tools currently available to study site-specific cortical bone adaptation are limited. Here, we applied novel site specificity software to measure bone mass and architecture at each 1% site along the length of the mouse tibia from standard micro-computed tomography (μCT) images. Resulting measures are directly comparable to those obtained through μCT analysis (R2 > 0.96). Site Specificity analysis was used to compare a number of parameters in tibiae from young adult (19-week-old) versus aged (19-month-old) mice; ovariectomized and entire mice; limbs subjected to short periods of axial loading or disuse induced by sciatic neurectomy. Age was associated with uniformly reduced cortical thickness and site-specific decreases in cortical area most apparent in the proximal tibia. Mechanical loading site-specifically increased cortical area and thickness in the proximal tibia. Disuse uniformly decreased cortical thickness and decreased cortical area in the proximal tibia. Ovariectomy uniformly reduced cortical area without altering cortical thickness. Differences in polar moment of inertia between experimental groups were only observed in the proximal tibia. Aging and ovariectomy also altered eccentricity in the distal tibia. In summary, site specificity analysis provides a valuable tool for measuring changes in cortical bone mass and architecture along the entire length of a bone. Changes in the (re)modeling response determined at a single site may not reflect the response at different locations within the same

  15. Racial differences in cortical bone and their relationship to biochemical variables in black and white children in the early stages of puberty

    PubMed Central

    Warden, Stuart J.; Hill, Kathleen M.; Ferira, Ashley J.; Laing, Emma M.; Martin, Berdine R.; Hausman, Dorothy B.; Weaver, Connie M.; Peacock, Munro; Lewis, Richard D.

    2014-01-01

    Introduction Racial differences in bone structure likely have roots in childhood as bone size develops predominantly during growth. This study aimed to compare cortical bone health within the tibial diaphysis of black and white children in the early stages of puberty, and explore the contributions of biochemical variables in explaining racial variation in cortical bone properties. Methods A cross-sectional study was performed comparing peripheral quantitative computed tomography-derived cortical bone measures of the tibial diaphysis and biochemical variables in 314 participants (n=155 males; n=164 blacks) in the early stages of puberty. Results Blacks had greater cortical volumetric bone mineral density, mass and size compared to whites (all p<0.01), contributing to blacks having 17.0% greater tibial strength (polar strength-strain index [SSIP]) (p<0.001). Turnover markers indicated blacks had higher bone formation (osteocalcin [OC] and bone specific alkaline phosphatase) and lower bone resorption (N-terminal telopeptide) than whites (all p<0.01). Blacks also had lower 25-hydroxyvitamin D [25(OH)D], and higher 1,25-dihydroxyvitamin D [1,25(OH)2D] and parathyroid hormone (PTH) (all p<0.05). There were no correlations between tibial bone properties, and 25(OH)D and PTH in whites (all p≥0.10); however, SSIP was negatively and positively correlated with 25(OH)D and PTH in blacks, respectively (all p≤0.02). Variation in bone cross-sectional area and SSIP attributable to race was partially explained by tibial length, 25(OH)D/PTH and OC. Conclusions Divergence in tibial cortical bone properties between blacks and whites is established by the early stages of puberty with the enhanced cortical bone properties in black children possibly being explained by higher PTH and OC. PMID:23093348

  16. Benefits of mineralized bone cortical allograft for immediate implant placement in extraction sites: an in vivo study in dogs

    PubMed Central

    2016-01-01

    Purpose The aim of the present study was to evaluate the effectiveness of using a mineralized bone cortical allograft (MBCA), with or without a resorbable collagenous membrane derived from bovine pericardium, on alveolar bone remodeling after immediate implant placement in a dog model. Methods Six mongrel dogs were included. The test and control sites were randomly selected. Four biradicular premolars were extracted from the mandible. In control sites, implants without an allograft or membrane were placed immediately in the fresh extraction sockets. In the test sites, an MBCA was placed to fill the gap between the bone socket wall and implant, with or without a resorbable collagenous membrane. Specimens were collected after 1 and 3 months. The amount of residual particles and new bone quality were evaluated by histomorphometry. Results Few residual graft particles were observed to be closely embedded in the new bone without any contact with the implant surface. The allograft combined with a resorbable collagen membrane limited the resorption of the buccal wall in height and width. The histological quality of the new bone was equivalent to that of the original bone. The MBCA improved the quality of new bone formation, with few residual particles observed at 3 months. Conclusions The preliminary results of this animal study indicate a real benefit in obtaining new bone as well as in enhancing osseointegration due to the high resorbability of cortical allograft particles, in comparison to the results of xenografts or other biomaterials (mineralized or demineralized cancellous allografts) that have been presented in the literature. Furthermore, the use of an MBCA combined with a collagen membrane in extraction and immediate implant placement limited the extent of post-extraction resorption. PMID:27800212

  17. Eldecalcitol improves mechanical strength of cortical bones by stimulating the periosteal bone formation in the senescence-accelerated SAM/P6 mice - a comparison with alfacalcidol.

    PubMed

    Shiraishi, Ayako; Sakai, Sadaoki; Saito, Hitoshi; Takahashi, Fumiaki

    2014-10-01

    Eldecalcitol (ELD), a 2β-hydroxypropyloxy derivative of 1α,25(OH)2D3, is a potent inhibitor of bone resorption that has demonstrated a greater effect at reducing the risk of fracture in osteoporotic patients than alfacalcidol (ALF). In the present study, we used the senescence-accelerated mouse strain P6 (SAM/P6), which has low bone mass caused by osteoblast dysfunction, to evaluate the effect of ELD on cortical bone in comparison with ALF. Four-month-old SAM/P6 mice were given either ELD (0.025 or 0.05μg/kg) or ALF (0.2 or 0.4μg/kg) by oral gavage 5 times/week for 6 weeks. Both ELD and ALF increased serum calcium (Ca) in a dose-dependent manner. Serum Ca levels in the ELD 0.05μg/kg group were comparable to those of the ALF 0.2μg/kg group. ELD 0.05μg/kg significantly improved the bone biomechanical properties of the femur compared with the vehicle control group (p<0.001) and the ALF 0.2μg/kg group (p<0.05) evaluated by 3-point bending test. The cortical area of the mid-femur in the ELD 0.05μg/kg group but not the ALF 0.2μg/kg group was significantly higher than those of the vehicle control group (p<0.001). Bone histomorphometry revealed that in the femoral endocortical surface, the suppression of bone resorption parameters (N.Oc/BS) and bone formation parameters (MS/BS) by ELD (0.05μg/kg) was greater than that by ALF (0.2μg/kg). In contrast, in the femoral periosteal surface, ELD 0.05μg/kg significantly increased bone formation parameters (BFR/BS, MS/BS) compared with the vehicle control group (p<0.05, p<0.01, respectively), whereas ALF 0.2μg/kg did not alter these parameters. These results indicate that ELD improved the biomechanical properties of femoral cortical bone not only by inhibiting endocortical bone resorption but also by stimulating the periosteal bone formation in SAM/P6 mice. This article is part of a Special Issue entitled '16th Vitamin D Workshop'.

  18. Development of a strain rate dependent material model of human cortical bone for computer-aided reconstruction of injury mechanisms.

    PubMed

    Asgharpour, Zahra; Zioupos, Peter; Graw, Matthias; Peldschus, Steffen

    2014-03-01

    Computer-aided methods such as finite-element simulation offer a great potential in the forensic reconstruction of injury mechanisms. Numerous studies have been performed on understanding and analysing the mechanical properties of bone and the mechanism of its fracture. Determination of the mechanical properties of bones is made on the same basis used for other structural materials. The mechanical behaviour of bones is affected by the mechanical properties of the bone material, the geometry, the loading direction and mode and of course the loading rate. Strain rate dependency of mechanical properties of cortical bone has been well demonstrated in literature studies, but as many of these were performed on animal bones and at non-physiological strain rates it is questionable how these will apply in the human situations. High strain-rates dominate in a lot of forensic applications in automotive crashes and assault scenarios. There is an overwhelming need to a model which can describe the complex behaviour of bone at lower strain rates as well as higher ones. Some attempts have been made to model the viscoelastic and viscoplastic properties of the bone at high strain rates using constitutive mathematical models with little demonstrated success. The main objective of the present study is to model the rate dependent behaviour of the bones based on experimental data. An isotropic material model of human cortical bone with strain rate dependency effects is implemented using the LS-DYNA material library. We employed a human finite element model called THUMS (Total Human Model for Safety), developed by Toyota R&D Labs and the Wayne State University, USA. The finite element model of the human femur is extracted from the THUMS model. Different methods have been employed to develop a strain rate dependent material model for the femur bone. Results of one the recent experimental studies on human femur have been employed to obtain the numerical model for cortical femur. A

  19. Cortical bone resorption rate in elderly persons: estimates from long-term in vivo measurements of (90)Sr in the skeleton.

    PubMed

    Shagina, N B; Tolstykh, E I; Degteva, M O; Anspaugh, L R; Napier, B A

    2012-01-01

    The rate of cortical bone resorption was assessed from long-term in vivo measurements of (90)Sr content in the skeleton for men aged 50-80 years and for women 0-30 years after menopause. Measurements of (90)Sr were conducted with a whole body counter (WBC) for residents of the Techa Riverside communities (Southern Urals, Russia), who ingested large amounts of (90)Sr as a result of releases of liquid radioactive wastes into the river from the Mayak plutonium facility in early 1950s. The results of this study showed an increase in the rate of cortical bone resorption in both men and women, as based on the use of accidentally ingested (90)Sr as a tracer for bone metabolism. In men there was a continuous gradual increase in the rate of cortical bone resorption after 55 years from 2.8 to 4.5%/year by the age of 75 years. In women, there was a doubled increase in the rate of cortical bone resorption after menopause of up to 6%/year; then the rate remained unchanged for 10-12 years with a subsequent gradual decline down to 5-5.5%/year. Comparison of the rate of cortical bone resorption in men and women older than 55 years showed that women expressed significantly higher levels of cortical bone resorption.

  20. Cortical bone resorption rate in elderly persons: Estimates from long-term in vivo measurements of 90Sr in the skeleton

    SciTech Connect

    Shagina, N. B.; Tolstykh, E. I.; Degteva, M. O.; Anspaugh, L. R.; Napier, Bruce A.

    2012-06-01

    The rate of cortical bone resorption was assessed from long-term in vivo measurements of 90Sr content in the skeleton for men aged 50-80 years and for women 0-30 years after menopause. Measurements of 90Sr were conducted with a whole body counter for residents of the Techa Riverside communities (Southern Urals, Russia), who ingested large amounts of 90Sr as a result of releases of liquid radioactive wastes into the river from the Mayak plutonium facility in early 1950s. The results of this study showed an increase in the rate of cortical bone resorption in both men and women, as based on the use of accidentally ingested 90Sr as a tracer for bone metabolism. In men there was a continuous gradual increase in the rate of cortical bone resorption after 55 years from 2.8 to 4.5%/year by the age of 75 years. In women, there was a doubled increase in the rate of cortical bone resorption after menopause of up to 6%/year; then the rate remained unchanged for 10-12 years with a subsequent gradual decline down to 5-5.5%/year. Comparison of the rate of cortical bone resorption in men and women older than 55 years showed that women expressed significantly higher levels of cortical bone resorption.

  1. Medicarpin, a Natural Pterocarpan, Heals Cortical Bone Defect by Activation of Notch and Wnt Canonical Signaling Pathways

    PubMed Central

    Gupta, Chandra Prakash; Kureel, Jyoti; Mansoori, Mohd Nizam; Shukla, Priyanka; John, Aijaz A.; Singh, Kavita; Purohit, Dipak; Awasthi, Pallavi; Singh, Divya; Goel, Atul

    2015-01-01

    We evaluated the bone regeneration and healing effect of Medicarpin (med) in cortical bone defect model that heals by intramembranous ossification. For the study, female Sprague–Dawley rats were ovariectomized and rendered osteopenic. A drill hole injury was generated in mid femoral bones of all the animals. Med treatment was commenced the day after and continued for 15 days. PTH was taken as a reference standard. Fifteen days post-treatment, animals were sacrificed. Bones were collected for histomorphometry studies at the injury site by micro-computed tomography (μCT) and confocal microscopy. RNA and protein was harvested from newly generated bone. For immunohistochemistry, 5μm sections of decalcified femur bone adjoining the drill hole site were cut. By μCT analysis and calcein labeling of newly generated bone it was found that med promotes bone healing and new bone formation at the injury site and was comparable to PTH in many aspects. Med treatment led to increase in the Runx-2 and osteocalcin signals indicating expansion of osteoprogenitors at the injury site as evaluated by qPCR and immunohistochemical localization. It was observed that med promoted bone regeneration by activating canonical Wnt and notch signaling pathway. This was evident by increased transcript and protein levels of Wnt and notch signaling components in the defect region. Finally, we confirmed that med treatment leads to elevated bone healing in pre-osteoblasts by co localization of beta catenin with osteoblast marker alkaline phosphatase. In conclusion, med treatment promotes new bone regeneration and healing at the injury site by activating Wnt/canonical and notch signaling pathways. This study also forms a strong case for evaluation of med in delayed union and non-union fracture cases. PMID:26657206

  2. Experimental investigations and finite element simulation of cutting heat in vibrational and conventional drilling of cortical bone.

    PubMed

    Wang, Yu; Cao, Meng; Zhao, Xiangrui; Zhu, Gang; McClean, Colin; Zhao, Yuanyuan; Fan, Yubo

    2014-11-01

    Heat generated during bone drilling could cause irreversible thermal damage, which can lead to bone necrosis or even osteomyelitis. In this study, vibrational drilling was applied to fresh bovine bones to investigate the cutting heat in comparison with conventional drilling through experimental investigation and finite element analysis (FEA). The influence of vibrational frequency and amplitude on cutting heat generation and conduction were studied. The experimental results showed that, compared with the conventional drilling, vibrational drilling could significantly reduce the cutting temperature in drilling of cortical bone (P<0.05): the cutting temperature tended to decrease with increasing vibrational frequency and amplitude. The FEA results also showed that the vibrational amplitude holds a significant effect on the cutting heat conduction.

  3. Non-osteoporotic women with low-trauma fracture present altered birefringence in cortical bone.

    PubMed

    Ascenzi, Maria-Grazia; Chin, Jesse; Lappe, Joan; Recker, Robert

    2016-03-01

    Areal bone mineral density (BMD) by DXA, although an important index, does not accurately assess risk of fragility fracture. Another bone structural parameter, the orientation of type I collagen, is known to add to risk determination, independently of BMD. Accordingly, we investigated the Haversian systems of transiliac crest biopsies from non-osteoporotic women with low-trauma fractures, matched to healthy women without fracture by age and BMD. We employed circularly polarized light (CPL) microscopy because 1) each of the extinct and bright birefringent signals of CPL corresponds to a specific collagen arrangement; and 2) CPL can employ magnification suitable to provide data, of manageable size, from the whole cortical component of a section of biopsy. Under CPL, the coaxial layers of osteons, called lamellae, appear either birefringent extinct or bright. On a section transverse to the Haversian system, the extinct lamella comprises mainly collagen forming small angles, and the bright lamella comprises mainly collagen forming large angles, relative to the general orientation of the Haversian system. We performed semi-automatic morphometry for birefringent and structural parameters for which we computed intra- and inter-observer errors. The statistical analysis used a linear mixed model to compare fracturing and non-fracturing groups while addressing pairing of fracturing and non-fracturing subjects, and linear regression to assess differences between matched subjects. We found significant reduction in 1) lamellar width and area for extinct lamella and bright lamella; 2) percentage of extinct birefringence in osteons, and 3) single osteon area; in the fracturing group; and in lamellar width in the fracturing subject of all pairs. Our results evidence the need to investigate, in a larger sample of subjects, the distribution of collagen orientation as a parameter diagnostic of increased fracture risk.

  4. Combined treatment with GH and IGF-I: additive effect on cortical bone mass but not on linear bone growth in female rats.

    PubMed

    Sundström, Katja; Cedervall, Therese; Ohlsson, Claes; Camacho-Hübner, Cecilia; Sävendahl, Lars

    2014-12-01

    The growth-promoting effect of combined therapy with GH and IGF-I in normal rats is not known. We therefore investigated the efficacy of treatment with recombinant human (rh)GH and/or rhIGF-I on longitudinal bone growth and bone mass in intact, prepubertal, female Sprague-Dawley rats. rhGH was injected twice daily sc (5 mg/kg·d) and rhIGF-I continuously infused sc (2.2 or 4.4 mg/kg·d) for 28 days. Longitudinal bone growth was monitored by weekly x-rays of tibiae and nose-anus length measurements, and tibial growth plate histomorphology was analyzed. Bone mass was evaluated by peripheral quantitative computed tomography. In addition, serum levels of IGF-I, rat GH, acid labile subunit, IGF binding protein-3, 150-kDa ternary complex formation, and markers of bone formation and degradation were measured. Monotherapy with rhGH was more effective than rhIGF-I (4.4 mg/kg·d) to increase tibia and nose-anus length, whereas combined therapy did not further increase tibia, or nose-anus, lengths or growth plate height. In contrast, combined rhGH and rhIGF-I (4.4 mg/kg·d) therapy had an additive stimulatory effect on cortical bone mass vs rhGH alone. Combined treatment with rhGH and rhIGF-I resulted in markedly higher serum IGF-I concentrations vs rhGH alone but did not compromise the endogenous secretion of GH. We conclude that rhIGF-I treatment augments cortical bone mass but does not further improve bone growth in rhGH-treated young, intact, female rats.

  5. Interactive effects of nutrition, environment, and rat-strain on cortical and vertebral bone geometry and biomechanics

    NASA Technical Reports Server (NTRS)

    Zernicke, R. F.; Li, K.-C.; Salem, G. J.; Vailas, A. C.; Grindeland, R. E.

    1990-01-01

    An investigation was conducted to generate comparative data on the sensitivity of cortical- and vertebral-bone adaptations in two different rat strains maintained at conditions typical for spaceborne experiments conducted by U.S.A. and USSR. The effects of cage environment, diet, and rat-strain on the cortical (humerus) and vertebral (T7) bones of male Taconic-Sprague-Dawley and Czechoslovakian-Wistar rats were investigated using different flight-simulation cages (one rat/cage for U.S.A.; ten rats/cage for USSR conditions) and fed either U.S.A. or USSR diet. The results showed significant effects of these factors on the humeral and vertebral geometry and mechanical properties, as well as significant interactive effects on the mechanical properties of the humerus.

  6. The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone

    SciTech Connect

    Zimmermann, Elizabeth A.; Launey, Maximilien E.; Ritchie, Robert O.

    2010-03-25

    The majority of fracture mechanics studies on the toughness of bone have been performed under tensile loading. However, it has recently been shown that the toughness of human cortical bone in the transverse (breaking) orientation is actually much lower in shear (mode II) than in tension (mode I); a fact that is physiologically relevant as in vivo bone is invariably loaded multiaxially. Since bone is a material that derives its fracture resistance primarily during crack growth through extrinsic toughening mechanisms, such as crack deflection and bridging, evaluation of its toughness is best achieved through measurements of the crack-resistance or R-curve, which describes the fracture toughness as a function of crack extension. Accordingly, in this study, we attempt to measure for the first time the R-curve fracture toughness of human cortical bone under physiologically relevant mixed-mode loading conditions. We show that the resulting mixed-mode (mode I + II) toughness depends strongly on the crack trajectory and is the result of the competition between the paths of maximum mechanical driving force and 'weakest' microstructural resistance.

  7. Preliminary estimates of the calcium/phosphorus ratio at different cortical bone sites using synchrotron microCT

    NASA Astrophysics Data System (ADS)

    Tzaphlidou, M.; Speller, R.; Royle, G.; Griffiths, J.

    2006-04-01

    The Ca/P ratio was measured in cortical bone samples from the femoral neck, front and rear tibia of female rats (1.5 years of age), using synchrotron radiation microtomography. The use of a monoenergetic x-ray beam, as provided by the synchrotron facility, generates accurate 3D maps of the linear attenuation coefficient within the sample and hence gives the ability to map different chemical components. Data sets were taken at 20 keV for each bone sample and calibration phantoms. From the 3D data sets, multiple 2D slices were reconstructed with a slice thickness of ~28 µm and converted to Ca/P ratios using the calibration phantom results. Mean values (M ± SD) for cortical femoral, front and rear tibias are 2.12 ± 0.08, 1.75 ± 0.06 and 1.94 ± 0.07 respectively. These values were compared with those derived from different animals. Differences between the same bone sites from different animals are not significant (0.1 < p <= 0.9) while those between different bone sites are highly significant (p < 10-3) demonstrating a dependence upon life style and bone use.

  8. The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone

    PubMed Central

    Zimmermann, Elizabeth A.; Launey, Maximilien E.; Ritchie, Robert O.

    2011-01-01

    The majority of fracture mechanics studies on the toughness of bone have been performed under tensile loading. However, it has recently been shown that the toughness of human cortical bone in the transverse (breaking) orientation is actually much lower in shear (mode II) than in tension (mode I); a fact that is physiologically relevant as in vivo bone is invariably loaded multiaxially. Since bone is a material that derives its fracture resistance primarily during crack growth through extrinsic toughening mechanisms, such as crack deflection and bridging, evaluation of its toughness is best achieved through measurements of the crack-resistance or R-curve, which describes the fracture toughness as a function of crack extension. Accordingly, in this study, we attempt to measure for the first time the R-curve fracture toughness of human cortical bone under physiologically relevant mixed-mode loading conditions. We show that the resulting mixed-mode (mode I + II) toughness depends strongly on the crack trajectory and is the result of the competition between the paths of maximum mechanical driving force and “weakest” microstructural resistance. PMID:20409579

  9. The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone.

    PubMed

    Zimmermann, Elizabeth A; Launey, Maximilien E; Ritchie, Robert O

    2010-07-01

    The majority of fracture mechanics studies on the toughness of bone have been performed under tensile loading. However, it has recently been shown that the toughness of human cortical bone in the transverse (breaking) orientation is actually much lower in shear (mode II) than in tension (mode I); a fact that is physiologically relevant as in vivo bone is invariably loaded multiaxially. Since bone is a material that derives its fracture resistance primarily during crack growth through extrinsic toughening mechanisms, such as crack deflection and bridging, evaluation of its toughness is best achieved through measurements of the crack-resistance or R-curve, which describes the fracture toughness as a function of crack extension. Accordingly, in this study, we attempt to measure for the first time the R-curve fracture toughness of human cortical bone under physiologically relevant mixed-mode loading conditions. We show that the resulting mixed-mode (mode I+II) toughness depends strongly on the crack trajectory and is the result of the competition between the paths of maximum mechanical driving force and "weakest" microstructural resistance.

  10. Trabecular and Cortical Bone of Growing C3H Mice Is Highly Responsive to the Removal of Weightbearing

    PubMed Central

    Judex, Stefan

    2016-01-01

    Genetic make-up strongly influences the skeleton’s susceptibility to the loss of weight bearing with some inbred mouse strains experiencing great amounts of bone loss while others lose bone at much smaller rates. At young adulthood, female inbred C3H/HeJ (C3H) mice are largely resistant to catabolic pressure induced by unloading. Here, we tested whether the depressed responsivity to unloading is inherent to the C3H genetic make-up or whether a younger age facilitates a robust skeletal response to unloading. Nine-week-old, skeletally immature, female C3H mice were subjected to 3wk of hindlimb unloading (HLU, n = 12) or served as normal baseline controls (BC, n = 10) or age-matched controls (AC, n = 12). In all mice, cortical and trabecular architecture of the femur, as well as levels of bone formation and resorption, were assessed with μCT, histomorphometry, and histology. Changes in bone marrow progenitor cell populations were determined with flow cytometry. Following 21d of unloading, HLU mice had 52% less trabecular bone in the distal femur than normal age-matched controls. Reflecting a loss of trabecular tissue compared to baseline controls, trabecular bone formation rates (BFR/BS) in HLU mice were 40% lower than in age-matched controls. Surfaces undergoing osteoclastic resorption were not significantly different between groups. In the mid-diaphysis, HLU inhibited cortical bone growth leading to 14% less bone area compared to age-matched controls. Compared to AC, BFR/BS of HLU mice were 53% lower at the endo-cortical surface and 49% lower at the periosteal surface of the mid-diaphysis. The enriched osteoprogenitor cell population (OPC) comprised 2% of the bone marrow stem cells in HLU mice, significantly different from 3% OPC in the AC group. These data show that bone tissue in actively growing C3H mice is lost rapidly, or fails to grow, during the removal of functional weight bearing—in contrast to the insignificant response previously demonstrated in

  11. Tissue Restoration After Implantation of Polyglycolide, Polydioxanone, Polylevolactide, and Metallic Pins in Cortical Bone: An Experimental Study in Rabbits

    PubMed Central

    Salminen, Sari T.; Tynninen, Olli; Böstman, Ole M.; Laitinen, Outi

    2010-01-01

    We performed qualitative and histoquantitative investigations of tissue restoration after implanting polyglycolide (PGA), polydioxanone (PDS), polylevolactide (PLLA), and stainless steel pins in the intramedullary canal of rabbit femurs. The effect of bioabsorbable devices on healing of a cortical bone defect was also assessed. The cortical bone defect was created in the right femur of 80 rabbits. Bioabsorbable and metallic pins in 60 and two metallic pins alone were implanted in 20 intramedullary canals; 80 left femurs served as intact controls. Follow-up times were 3, 6, 12, 24, and 52 weeks. At all time points, collagenous connective tissue, including bone trabeculae, surrounded the implant at the tissue–implant interface, replacing hematopoiesis and fat of the intramedullary canal. The groups did not differ in the area and trabecular bone area fraction of the resulting callus. Residual fragments of PGA and PDS were observed at 24 weeks, and complete degradation occurred within 52 weeks. PGA, PDS, PLLA, and metallic implants induced a bony and fibrous walling-off response in the intramedullary cavity. No inflammation was observed. Complete tissue restoration did not occur within the follow-up, even after complete degradation of PGA and PDS, which had shorter degradation times than PLLA. The cortical bone healing effect was not different between bioabsorbable pins and metallic wires. Thus, these polymers had no specific osteostimulatory or osteoinhibitory properties compared to stainless steel. Within the follow-up period, there were no significant differences in biocompatibility between the implants and no adverse inflammatory foreign-body reactions. PMID:20495791

  12. Anisotropy in bone demineralization revealed by polarized far-IR spectroscopy.

    PubMed

    Schuetz, Roman; Fix, Dmitri; Schade, Ulrich; Aziz, Emad F; Timofeeva, Nadya; Weinkamer, Richard; Masic, Admir

    2015-04-02

    Bone material is composed of an organic matrix of collagen fibers and apatite nanoparticles. Previously, vibrational spectroscopy techniques such as infrared (IR) and Raman spectroscopy have proved to be particularly useful for characterizing the two constituent organic and inorganic phases of bone. In this work, we tested the potential use of high intensity synchrotron-based far-IR radiation (50-500 cm(-1)) to gain new insights into structure and chemical composition of bovine fibrolamellar bone. The results from our study can be summarized in the following four points: (I) compared to far-IR spectra obtained from synthetic hydroxyapatite powder, those from fibrolamellar bone showed similar peak positions, but very different peak widths; (II) during stepwise demineralization of the bone samples, there was no significant change neither to far-IR peak width nor position, demonstrating that mineral dissolution occurred in a uniform manner; (III) application of external loading on fully demineralized bone had no significant effect on the obtained spectra, while dehydration of samples resulted in clear differences. (IV) using linear dichroism, we showed that the anisotropic structure of fibrolamellar bone is also reflected in anisotropic far-IR absorbance properties of both the organic and inorganic phases. Far-IR spectroscopy thus provides a novel way to functionally characterize bone structure and chemistry, and with further technological improvements, has the potential to become a useful clinical diagnostic tool to better assess quality of collagen-based tissues.

  13. Prevalent role of porosity and osteonal area over mineralization heterogeneity in the fracture toughness of human cortical bone.

    PubMed

    Granke, Mathilde; Makowski, Alexander J; Uppuganti, Sasidhar; Nyman, Jeffry S

    2016-09-06

    Changes in the distribution of bone mineralization occurring with aging, disease, or treatment have prompted concerns that alterations in mineralization heterogeneity may affect the fracture resistance of bone. Yet, so far, studies assessing bone from hip fracture cases and fracture-free women have not reached a consensus on how heterogeneity in tissue mineralization relates to skeletal fragility. Owing to the multifactorial nature of toughening mechanisms occurring in bone, we assessed the relative contribution of heterogeneity in mineralization to fracture resistance with respect to age, porosity, and area fraction of osteonal tissue. The latter parameters were extracted from quantitative backscattered electron imaging of human cortical bone sections following R-curve tests of single-edge notched beam specimens to determine fracture toughness properties. Microstructural heterogeneity was determined as the width of the mineral distribution (bulk) and as the sill of the variogram (local). In univariate analyses of measures from 62 human donors (21 to 101 years), local but not bulk heterogeneity as well as pore clustering negatively correlated with fracture toughness properties. With age as covariate, heterogeneity was a significant predictor of crack initiation, though local had a stronger negative contribution than bulk. When considering all potential covariates, age, cortical porosity and area fraction of osteons explained up to 50% of the variance in bone׳s crack initiation toughness. However, including heterogeneity in mineralization did not improve upon this prediction. The findings of the present work stress the necessity to account for porosity and microstructure when evaluating the potential of matrix-related features to affect skeletal fragility.

  14. Histomorphometric Assessment of Cancellous and Cortical Bone Material Distribution in the Proximal Humerus of Normal and Osteoporotic Individuals

    PubMed Central

    Sprecher, Christoph M.; Schmidutz, Florian; Helfen, Tobias; Richards, R. Geoff; Blauth, Michael; Milz, Stefan

    2015-01-01

    Abstract Osteoporosis is a systemic disorder predominantly affecting postmenopausal women but also men at an advanced age. Both genders may suffer from low-energy fractures of, for example, the proximal humerus when reduction of the bone stock or/and quality has occurred. The aim of the current study was to compare the amount of bone in typical fracture zones of the proximal humerus in osteoporotic and non-osteoporotic individuals. The amount of bone in the proximal humerus was determined histomorphometrically in frontal plane sections. The donor bones were allocated to normal and osteoporotic groups using the T-score from distal radius DXA measurements of the same extremities. The T-score evaluation was done according to WHO criteria. Regional thickness of the subchondral plate and the metaphyseal cortical bone were measured using interactive image analysis. At all measured locations the amount of cancellous bone was significantly lower in individuals from the osteoporotic group compared to the non-osteoporotic one. The osteoporotic group showed more significant differences between regions of the same bone than the non-osteoporotic group. In both groups the subchondral cancellous bone and the subchondral plate were least affected by bone loss. In contrast, the medial metaphyseal region in the osteoporotic group exhibited higher bone loss in comparison to the lateral side. This observation may explain prevailing fracture patterns, which frequently involve compression fractures and certainly has an influence on the stability of implants placed in this medial region. It should be considered when planning the anchoring of osteosynthesis materials in osteoporotic patients with fractures of the proximal humerus. PMID:26705200

  15. Fracture characterization of human cortical bone under mode II loading using the end-notched flexure test.

    PubMed

    Silva, F G A; de Moura, M F S F; Dourado, N; Xavier, J; Pereira, F A M; Morais, J J L; Dias, M I R; Lourenço, P J; Judas, F M

    2016-10-25

    Fracture characterization of human cortical bone under mode II loading was analyzed using a miniaturized version of the end-notched flexure test. A data reduction scheme based on crack equivalent concept was employed to overcome uncertainties on crack length monitoring during the test. The crack tip shear displacement was experimentally measured using digital image correlation technique to determine the cohesive law that mimics bone fracture behavior under mode II loading. The developed procedure was validated by finite element analysis using cohesive zone modeling considering a trapezoidal with bilinear softening relationship. Experimental load-displacement curves, resistance curves and crack tip shear displacement versus applied displacement were used to validate the numerical procedure. The excellent agreement observed between the numerical and experimental results reveals the appropriateness of the proposed test and procedure to characterize human cortical bone fracture under mode II loading. The proposed methodology can be viewed as a novel valuable tool to be used in parametric and methodical clinical studies regarding features (e.g., age, diseases, drugs) influencing bone shear fracture under mode II loading.

  16. Preventing painful age-related bone fractures: Anti-sclerostin therapy builds cortical bone and increases the proliferation of osteogenic cells in the periosteum of the geriatric mouse femur.

    PubMed

    Thompson, Michelle L; Chartier, Stephane R; Mitchell, Stefanie A; Mantyh, Patrick W

    2016-01-01

    Age-related bone fractures are usually painful and have highly negative effects on a geriatric patient's functional status, quality of life, and survival. Currently, there are few analgesic therapies that fully control bone fracture pain in the elderly without significant unwanted side effects. However, another way of controlling age-related fracture pain would be to preemptively administer an osteo-anabolic agent to geriatric patients with high risk of fracture, so as to build new cortical bone and prevent the fracture from occurring. A major question, however, is whether an osteo-anabolic agent can stimulate the proliferation of osteogenic cells and build significant amounts of new cortical bone in light of the decreased number and responsiveness of osteogenic cells in aging bone. To explore this question, geriatric and young mice, 20 and 4 months old, respectively, received either vehicle or a monoclonal antibody that sequesters sclerostin (anti-sclerostin) for 28 days. From days 21 to 28, animals also received sustained administration of the thymidine analog, bromodeoxyuridine (BrdU), which labels the DNA of dividing cells. Animals were then euthanized at day 28 and the femurs were examined for cortical bone formation, bone mineral density, and newly borne BrdU+ cells in the periosteum which is a tissue that is pivotally involved in the formation of new cortical bone. In both the geriatric and young mice, anti-sclerostin induced a significant increase in the thickness of the cortical bone, bone mineral density, and the proliferation of newly borne BrdU+ cells in the periosteum. These results suggest that even in geriatric animals, anti-sclerostin therapy can build new cortical bone and increase the proliferation of osteogenic cells and thus reduce the likelihood of painful age-related bone fractures.

  17. A determination of the minimum sizes of representative volume elements for the prediction of cortical bone elastic properties.

    PubMed

    Grimal, Quentin; Raum, Kay; Gerisch, Alf; Laugier, Pascal

    2011-12-01

    At its highest level of microstructural organization-the mesoscale or millimeter scale-cortical bone exhibits a heterogeneous distribution of pores (Haversian canals, resorption cavities). Multi-scale mechanical models rely on the definition of a representative volume element (RVE). Analytical homogenization techniques are usually based on an idealized RVE microstructure, while finite element homogenization using high-resolution images is based on a realistic RVE of finite size. The objective of this paper was to quantify the size and content of possible cortical bone mesoscale RVEs. RVE size was defined as the minimum size: (1) for which the apparent (homogenized) stiffness tensor becomes independent of the applied boundary conditions or (2) for which the variance of elastic properties for a set of microstructure realizations is sufficiently small. The field of elastic coefficients and microstructure in RVEs was derived from one acoustic microscopy image of a human femur cortical bone sample with an overall porosity of 8.5%. The homogenized properties of RVEs were computed with a finite element technique. It was found that the size of the RVE representative of the overall tissue is about 1.5 mm. Smaller RVEs (~0.5 mm) can also be considered to estimate local mesoscopic properties that strongly depend on the local pores volume fraction. This result provides a sound basis for the application of homogenization techniques to model the heterogeneity of cortical microstructures. An application of the findings to estimate elastic properties in the case of a porosity gradient is briefly presented.

  18. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects.

    PubMed

    Roohani-Esfahani, Seyed-Iman; Newman, Peter; Zreiqat, Hala

    2016-01-19

    A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100-150 MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110 MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1-10 MPa compressive cyclic load), failure reliability and flexural strength (30 MPa) compared with those for conventional architecture. The obtained strength is 150 times greater than values reported for polymeric and composite scaffolds and 5 times greater than reported values for ceramic and glass scaffolds at similar porosity. These scaffolds open avenues for treatment of load bearing bone defects in orthopaedic, dental and maxillofacial applications.

  19. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects

    NASA Astrophysics Data System (ADS)

    Roohani-Esfahani, Seyed-Iman; Newman, Peter; Zreiqat, Hala

    2016-01-01

    A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100–150 MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110 MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1–10 MPa compressive cyclic load), failure reliability and flexural strength (30 MPa) compared with those for conventional architecture. The obtained strength is 150 times greater than values reported for polymeric and composite scaffolds and 5 times greater than reported values for ceramic and glass scaffolds at similar porosity. These scaffolds open avenues for treatment of load bearing bone defects in orthopaedic, dental and maxillofacial applications.

  20. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects

    PubMed Central

    Roohani-Esfahani, Seyed-Iman; Newman, Peter; Zreiqat, Hala

    2016-01-01

    A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100–150 MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110 MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1–10 MPa compressive cyclic load), failure reliability and flexural strength (30 MPa) compared with those for conventional architecture. The obtained strength is 150 times greater than values reported for polymeric and composite scaffolds and 5 times greater than reported values for ceramic and glass scaffolds at similar porosity. These scaffolds open avenues for treatment of load bearing bone defects in orthopaedic, dental and maxillofacial applications. PMID:26782020

  1. The influence of collagen fiber orientation and other histocompositional characteristics on the mechanical properties of equine cortical bone.

    PubMed

    Skedros, John G; Dayton, Michael R; Sybrowsky, Christian L; Bloebaum, Roy D; Bachus, Kent N

    2006-08-01

    This study examined relative influences of predominant collagen fiber orientation (CFO), mineralization (% ash), and other microstructural characteristics on the mechanical properties of equine cortical bone. Using strain-mode-specific (S-M-S) testing (compression testing of bone habitually loaded in compression; tension testing of bone habitually loaded in tension), the relative mechanical importance of CFO and other material characteristics were examined in equine third metacarpals (MC3s). This model was chosen since it had a consistent non-uniform strain distribution estimated by finite element analysis (FEA) near mid-diaphysis of a thoroughbred horse, net tension in the dorsal/lateral cortices and net compression in the palmar/medial cortices. Bone specimens from regions habitually loaded in tension or compression were: (1) tested to failure in both axial compression and tension in order to contrast S-M-S vs non-S-M-S behavior, and (2) analyzed for CFO, % ash, porosity, fractional area of secondary osteonal bone, osteon cross-sectional area, and population densities of secondary osteons and osteocyte lacunae. Multivariate multiple regression analyses revealed that in S-M-S compression testing, CFO most strongly influenced total energy (pre-yield elastic energy plus post-yield plastic energy); in S-M-S tension testing CFO most strongly influenced post-yield energy and total energy. CFO was less important in explaining S-M-S elastic modulus, and yield and ultimate stress. Therefore, in S-M-S loading CFO appears to be important in influencing energy absorption, whereas the other characteristics have a more dominant influence in elastic modulus, pre-yield behavior and strength. These data generally support the hypothesis that differentially affecting S-M-S energy absorption may be an important consequence of regional histocompositional heterogeneity in the equine MC3. Data inconsistent with the hypothesis, including the lack of highly longitudinal collagen in the

  2. Effects of rotational speed and feed rate on temperature rise, feed force and cutting torque when drilling bovine cortical bone

    NASA Astrophysics Data System (ADS)

    Soriano, J.; Iriarte, L. M.; Eguren, J. A.; Aristimuño, P.; Garay, A.; Arrazola, P. J.

    2012-04-01

    Surgical procedures that affect the human bone structure often entail drilling operations of bone. The post-operative evolution of these interventions is conditioned largely by the damage generated during the operation. The aim of this study was to determine clearly the influence of the cutting conditions on temperatures and forces when drilling bovine cortical bone, in the interests of further optimization of cutting conditions to minimize the generated damage. The infrared thermography technique and a piezoelectric dynamometer were employed as measurement devices. It was observed that the main parameter affecting temperatures was the feed per tooth. The temperatures obtained were lower when drilling with high feed per tooth, even though an opposite effect was noticed on the feed force and torque, with an increase of them. From the experimental results, prediction models of temperature rise, feed force and cutting torque were created, in order to predict the response based on the selected cutting conditions.

  3. Bone lead (Pb) content at the tibia is associated with thinner distal tibia cortices and lower volumetric bone density in postmenopausal women.

    PubMed

    Wong, Andy K O; Beattie, Karen A; Bhargava, Aakash; Cheung, Marco; Webber, Colin E; Chettle, David R; Papaioannou, Alexandra; Adachi, Jonathan D

    2015-10-01

    Conflicting evidence suggests that bone lead or blood lead may reduce areal bone mineral density (BMD). Little is known about how lead at either compartment affects bone structure. This study examined postmenopausal women (N=38, mean age 76 ± 8, body mass index (BMI): 26.74 ± 4.26 kg/m(2)) within the Hamilton cohort of the Canadian Multicentre Osteoporosis Study (CaMos), measuring bone lead at 66% of the non-dominant leg and at the calcaneus using (109)Cadmium X-ray fluorescence. Volumetric BMD and structural parameters were obtained from peripheral quantitative computed tomography images (200 μm in-plane resolution, 2.3 ± 0.5mm slice thickness) of the same 66% site and of the distal 4% site of the tibia length. Blood lead was measured using atomic absorption spectrometry and blood-to-bone lead partition coefficients (PBB, log ratio) were computed. Multivariable linear regression examined each of bone lead at the 66% tibia, calcaneus, blood lead and PBB as related to each of volumetric BMD and structural parameters, adjusting for age and BMI, diabetes or antiresorptive therapy. Regression coefficients were reported along with 95% confidence intervals. Higher amounts of bone lead at the tibia were associated with thinner distal tibia cortices (-0.972 (-1.882, -0.061) per 100 μg Pb/g of bone mineral) and integral volumetric BMD (-3.05 (-6.05, -0.05) per μg Pb/g of bone mineral). A higher PBB was associated with larger trabecular separation (0.115 (0.053, 0.178)), lower trabecular volumetric BMD (-26.83 (-50.37, -3.29)) and trabecular number (-0.08 (-0.14, -0.02)), per 100 μg Pb/g of bone mineral after adjusting for age and BMI, and remained significant while accounting for diabetes or use of antiresorptives. Total lead exposure activities related to bone lead at the calcaneus (8.29 (0.11, 16.48)) and remained significant after age and antiresorptives-adjustment. Lead accumulated in bone can have a mild insult on bone structure; but greater partitioning of lead

  4. Purification of a tartrate-resistant acid phosphatase (TrACP) from bovine cortical bone matrix

    SciTech Connect

    Lau, K.H.W.; Freeman, T.K.; Baylink, D.J.

    1986-05-01

    It has been previously demonstrated that a partially purified bovine skeletal TrACP showed protein phosphatase (P'ase) activity that was specific for phosphotyrosyl (Ptyr) proteins. They have now purified TrACP activity from bovine cortical bone matrix to apparent homogeneity. The purification procedures included CM-Sepharose ion-exchange, cellulose phosphate affinity, sephacryl S-300 gel filtration and phenyl sepharose affinity chromatographies. Overall yield was > 25% and purification was approximately 2000-fold with a specific activity of 8.15 umol pNPP hydrolyzed/min/mg protein at 37/sup 0/C. The purified enzyme was judged to be homogeneous based on: (i) appearance as a single protein band on SDS-PAGE (silver staining technique) and (ii) distribution analysis of radioiodinated purified TrACP after SDS-PAGE revealing one band of radioactivity at the same positions as the TrACP protein band. M.W. of TrACP was 34,600 as assessed by gel filtration and 32,500 by SDS-PAGE, suggesting that bovine skeletal TrACP exists as active monomer. Analysis of the purified TrACP by isoelectric focusing showed at least 9 bands of enzyme activities with pIs between 4 and 5, indicating micro-heterogenecity. Substrate specificity analyses revealed that the purified TrACP also hydrolyzed nucleotide tri- and di-phosphates, but not monophosphates or other low M.W. phosphoryl esters, and was also capable of hydrolyzing phosphotyrosine (Tyr(P)) and Ptyr proteins with little activity toward other phosphoamino acids or phosphoseryl proteins. Optimal pH was 5.5 for TrACP activity, 6.0 for Tyr(P) P'ase activity and 7.0 for Ptyr protein P'ase activity. Results of these studies represent the first purification of a skeletal TrACP to apparent homogeneity.

  5. Core binding factor β of osteoblasts maintains cortical bone mass via stabilization of Runx2 in mice.

    PubMed

    Lim, Kyung-Eun; Park, Na-Rae; Che, Xiangguo; Han, Min-Su; Jeong, Jae-Hwan; Kim, Shin-Yoon; Park, Clara Yongjoo; Akiyama, Haruhiko; Kim, Jung-Eun; Ryoo, Hyun-Mo; Stein, Janet L; Lian, Jane B; Stein, Gary S; Choi, Je-Yong

    2015-04-01

    Core binding factor beta (Cbfβ), the partner protein of Runx family transcription factors, enhances Runx function by increasing the binding of Runx to DNA. Null mutations of Cbfb result in embryonic death, which can be rescued by restoring fetal hematopoiesis but only until birth, where bone formation is still nearly absent. Here, we address a direct role of Cbfβ in skeletal homeostasis by generating osteoblast-specific Cbfβ-deficient mice (Cbfb(Δob/Δob) ) from Cbfb-floxed mice crossed with mice expressing Cre from the Col1a1 promoter. Cbfb(Δob/Δob) mice showed normal growth and development but exhibited reduced bone mass, particularly of cortical bone. The reduction of bone mass in Cbfb(Δob/Δob) mice is similar to the phenotype of mice with haploinsufficiency of Runx2. Although the number of osteoblasts remained unchanged, the number of active osteoblasts decreased in Cbfb(Δob/Δob) mice and resulted in lower mineral apposition rate. Immunohistochemical and quantitative real-time PCR analyses showed that the expression of osteogenic markers, including Runx2, osterix, osteocalcin, and osteopontin, was significantly repressed in Cbfb(Δob/Δob) mice compared with wild-type mice. Cbfβ deficiency also reduced Runx2 protein levels in osteoblasts. The mechanism was revealed by forced expression of Cbfβ, which increased Runx2 protein levels in vitro by inhibiting polyubiquitination-mediated proteosomal degradation. Collectively, these findings indicate that Cbfβ stabilizes Runx2 in osteoblasts by forming a complex and thus facilitates the proper maintenance of bone mass, particularly cortical bone.

  6. 'Universal' microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity.

    PubMed

    Fritsch, Andreas; Hellmich, Christian

    2007-02-21

    Bone materials are characterized by an astonishing variability and diversity. Still, because of 'architectural constraints' due to once chosen material constituents and their physical interaction, the fundamental hierarchical organization or basic building plans of bone materials remain largely unchanged during biological evolution. Such universal patterns of microstructural organization govern the mechanical interaction of the elementary components of bone (hydroxyapatite, collagen, water; with directly measurable tissue-independent elastic properties), which are here quantified through a multiscale homogenization scheme delivering effective elastic properties of bone materials: at a scale of 10nm, long cylindrical collagen molecules, attached to each other at their ends by approximately 1.5nm long crosslinks and hosting intermolecular water inbetween, form a contiguous matrix called wet collagen. At a scale of several hundred nanometers, wet collagen and mineral crystal agglomerations interpenetrate each other, forming the mineralized fibril. At a scale of 5-10microm, the extracellular solid bone matrix is represented as collagen fibril inclusions embedded in a foam of largely disordered (extrafibrillar) mineral crystals. At a scale above the ultrastructure, where lacunae are embedded in extracellular bone matrix, the extravascular bone material is observed. Model estimates predicted from tissue-specific composition data gained from a multitude of chemical and physical tests agree remarkably well with corresponding acoustic stiffness experiments across a variety of cortical and trabecular, extracellular and extravascular materials. Besides from reconciling the well-documented, seemingly opposed concepts of 'mineral-reinforced collagen matrix' and 'collagen-reinforced mineral matrix' for bone ultrastructure, this approach opens new possibilities in the exploitation of computer tomographic data for nano-to-macro mechanics of bone organs.

  7. Post-yield nanomechanics of human cortical bone in compression using synchrotron X-ray scattering techniques.

    SciTech Connect

    Dong, X.N.; Almer, J.D.; Wang, X.

    2011-02-24

    The ultrastructural response to applied loads governs the post-yield deformation and failure behavior of bone, and is correlated with bone fragility fractures. Combining a novel progressive loading protocol and synchrotron X-ray scattering techniques, this study investigated the correlation of the local deformation (i.e., internal strains of the mineral and collagen phases) with the bulk mechanical behavior of bone. The results indicated that the internal strains of the longitudinally oriented collagen fibrils and mineral crystals increased almost linearly with respect to the macroscopic strain prior to yielding, but markedly decreased first and then gradually leveled off after yielding. Similar changes were also observed in the applied stress before and after yielding of bone. However, the collagen to mineral strain ratio remained nearly constant throughout the loading process. In addition, the internal strains of longitudinal mineral and collagen phases did not exhibit a linear relationship with either the modulus loss or the plastic deformation of bulk bone tissue. Finally, the time-dependent response of local deformation in the mineral phase was observed after yielding. Based on the results, we speculate that the mineral crystals and collagen fibrils aligned with the loading axis only partially explain the post-yield deformation, suggesting that shear deformation involving obliquely oriented crystals and fibrils (off axis) is dominant mechanism of yielding for human cortical bone in compression.

  8. Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone - a feasibility study.

    PubMed

    Marcián, Petr; Borák, Libor; Valášek, Jiří; Kaiser, Jozef; Florian, Zdeněk; Wolff, Jan

    2014-12-18

    The first aim of this study was to assess displacements and micro-strain induced on different grades of atrophic cortical and trabecular mandibular bone by axially loaded dental implants using finite element analysis (FEA). The second aim was to assess the micro-strain induced by different implant geometries and the levels of bone-to-implant contact (BIC) on the surrounding bone. Six mandibular bone segments demonstrating different grades of mandibular bone atrophy and various bone volume fractions (from 0.149 to 0.471) were imaged using a micro-CT device. The acquired bone STL models and implant (Brånemark, Straumann, Ankylos) were merged into a three-dimensional finite elements structure. The mean displacement value for all implants was 3.1 ±1.2 µm. Displacements were lower in the group with a strong BIC. The results indicated that the maximum strain values of cortical and cancellous bone increased with lower bone density. Strain distribution is the first and foremost dependent on the shape of bone and architecture of cancellous bone. The geometry of the implant, thread patterns, grade of bone atrophy and BIC all affect the displacement and micro-strain on the mandible bone. Preoperative finite element analysis could offer improved predictability in the long-term outlook of dental implant restorations.

  9. Biomechanical Role of Bone Anisotropy Estimated on Clinical CT Scans by Image Registration.

    PubMed

    Taghizadeh, Elham; Reyes, Mauricio; Zysset, Philippe; Latypova, Adeliya; Terrier, Alexandre; Büchler, Philippe

    2016-08-01

    Image-based modeling is a popular approach to perform patient-specific biomechanical simulations. Accurate modeling is critical for orthopedic application to evaluate implant design and surgical planning. It has been shown that bone strength can be estimated from the bone mineral density (BMD) and trabecular bone architecture. However, these findings cannot be directly and fully transferred to patient-specific modeling since only BMD can be derived from clinical CT. Therefore, the objective of this study was to propose a method to predict the trabecular bone structure using a µCT atlas and an image registration technique. The approach has been evaluated on femurs and patellae under physiological loading. The displacement and ultimate force for femurs loaded in stance position were predicted with an error of 2.5% and 3.7%, respectively, while predictions obtained with an isotropic material resulted in errors of 7.3% and 6.9%. Similar results were obtained for the patella, where the strain predicted using the registration approach resulted in an improved mean squared error compared to the isotropic model. We conclude that the registration of anisotropic information from of a single template bone enables more accurate patient-specific simulations from clinical image datasets than isotropic model.

  10. Functional adaptation of long bone extremities involves the localized ``tuning'' of the cortical bone composition; evidence from Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Buckley, Kevin; Kerns, Jemma G.; Birch, Helen L.; Gikas, Panagiotis D.; Parker, Anthony W.; Matousek, Pavel; Goodship, Allen E.

    2014-11-01

    In long bones, the functional adaptation of shape and structure occurs along the whole length of the organ. This study explores the hypothesis that adaptation of bone composition is also site-specific and that the mineral-to-collagen ratio of bone (and, thus, its mechanical properties) varies along the organ's length. Raman spectroscopy was used to map the chemical composition of long bones along their entire length in fine spatial resolution (1 mm), and then biochemical analysis was used to measure the mineral, collagen, water, and sulfated glycosaminoglycan content where site-specific differences were seen. The results show that the mineral-to-collagen ratio of the bone material in human tibiae varies by <5% along the mid-shaft but decreases by >10% toward the flared extremities of the bone. Comparisons with long bones from other large animals (horses, sheep, and deer) gave similar results with bone material composition changing across tens of centimeters. The composition of the bone apatite also varied with the phosphate-to-carbonate ratio decreasing toward the ends of the tibia. The data highlight the complexity of adaptive changes and raise interesting questions about the biochemical control mechanisms involved. In addition to their biological interest, the data provide timely information to researchers developing Raman spectroscopy as a noninvasive tool for measuring bone composition in vivo (particularly with regard to sampling and measurement protocol).

  11. Perlecan/Hspg2 deficiency alters the pericellular space of the lacunocanalicular system surrounding osteocytic processes in cortical bone.

    PubMed

    Thompson, William R; Modla, Shannon; Grindel, Brian J; Czymmek, Kirk J; Kirn-Safran, Catherine B; Wang, Liyun; Duncan, Randall L; Farach-Carson, Mary C

    2011-03-01

    Osteocytes project long, slender processes throughout the mineralized matrix of bone, where they connect and communicate with effector cells. The interconnected cellular projections form the functional lacunocanalicular system, allowing fluid to pass for cell-to-cell communication and nutrient and waste exchange. Prevention of mineralization in the pericellular space of the lacunocanalicular pericellular space is crucial for uninhibited interstitial fluid movement. Factors contributing to the ability of the pericellular space of the lacunocanalicular system to remain open and unmineralized are unclear. Immunofluorescence and immunogold localization by transmission electron microscopy demonstrated perlecan/Hspg2 signal localized to the osteocyte lacunocanalicular system of cortical bone, and this proteoglycan was found in the pericellular space of the lacunocanalicular system. In this study we examined osteocyte lacunocanalicular morphology in mice deficient in the large heparan sulfate proteoglycan perlecan/Hspg2 in this tissue. Ultrastructural measurements with electron microscopy of perlecan/Hspg2-deficient mice demonstrated diminished osteocyte canalicular pericellular area, resulting from a reduction in the total canalicular area. Additionally, perlecan/Hspg2-deficient mice showed decreased canalicular density and a reduced number of transverse tethering elements per canaliculus. These data indicated that perlecan/Hspg2 contributed to the integrity of the osteocyte lacunocanalicular system by maintaining the size of the pericellular space, an essential task to promote uninhibited interstitial fluid movement in this mechanosensitive environment. This work thus identified a new barrier function for perlecan/Hspg2 in murine cortical bone.

  12. The relative contributions of non-enzymatic glycation and cortical porosity on the fracture toughness of aging bone

    PubMed Central

    Tang, S.Y.; Vashishth, D.

    2010-01-01

    The risk of fracture increases with age due to the decline of bone mass and bone quality. One of the age-related changes in bone quality occurs through the formation and accumulation of advanced glycation end-products (AGEs) due to non-enzymatic glycation (NEG). However as a number of other changes including increased porosity occur with age and affect bone fragility, the relative contribution of AGEs on the fracture resistance of aging bone is unknown. Using a high-resolution nonlinear finite element model that incorporate cohesive elements and micro-computed tomography-based 3d meshes, we investigated the contribution of AGEs and cortical porosity on the fracture toughness of human bone. The results show that NEG caused a 52% reduction in propagation fracture toughness (R-curve slope). The combined effects of porosity and AGEs resulted in an 88% reduction in propagation toughness. These findings are consistent with previous experimental results. The model captured the age-related changes in the R-curve toughening by incorporating bone quantity and bone quality changes, and these simulations demonstrate the ability of the cohesive models to account for the irreversible dynamic crack growth processes affected by the changes in post-yield material behavior. By decoupling the matrix-level effects due to NEG and intracortical porosity, we are able to directly determine the effects of NEG on fracture toughness. The outcome of this study suggests that it may be important to include the age-related changes in the material level properties by using finite element analysis towards the prediction of fracture risk. PMID:21056419

  13. Manipulation of Ovarian Function Significantly Influenced Trabecular and Cortical Bone Volume, Architecture and Density in Mice at Death

    PubMed Central

    Mason, Jeffrey B.; Terry, Boston C.; Merchant, Samer S.; Mason, Holly M.; Nazokkarmaher, Mahdi

    2015-01-01

    Previously, transplantation of ovaries from young, cycling mice into old, postreproductive-age mice increased life span and decreased cardiomyopathy at death. We anticipated that the same factors that increased life span and decreased cardiomyopathy could also influence the progression of orthopedic disease. At 11 months of age, prepubertally ovariectomized and ovary-intact mice (including reproductively cycling and acyclic mice) received new 60-day-old ovaries. At death, epiphyseal bone in the proximal tibia and the distal femur and mid-shaft tibial and femoral diaphyseal bone was analyzed with micro-computed tomography. For qualitative analysis of osteophytosis, we also included mineralized connective tissue within the stifle joint. Prepubertal ovariectomy had the greatest influence on bone volume, ovarian transplantation had the greatest influence on bone architecture and both treatments influenced bone density. Ovarian transplantation increased cortical, but not trabecular bone density and tended to increase osteophytosis and heterotopic mineralization, except in acyclic recipients. These effects may have been dictated by the timing of the treatments, with ovariectomy appearing to influence early development and ovarian transplantation limited to influencing only the postreproductive period. However, major differences observed between cycling, acyclic and ovariectomized recipients of new ovaries may have been, in part due to differences in the levels of hormone receptors present and the responsiveness of specific bone processes to hormone signaling. Changes that resulted from these treatments may represent a compensatory response to normal age-associated, negative, orthopedic changes. Alternatively, differences between treatments may simply be the 'preservation' of unblemished orthopedic conditions, prior to the influence of negative, age-associated effects. These findings may suggest that in women, tailoring hormone replacement therapy to the patient's current

  14. The relative contributions of non-enzymatic glycation and cortical porosity on the fracture toughness of aging bone.

    PubMed

    Tang, S Y; Vashishth, D

    2011-01-11

    The risk of fracture increases with age due to the decline of bone mass and bone quality. One of the age-related changes in bone quality occurs through the formation and accumulation of advanced glycation end-products (AGEs) due to non-enzymatic glycation (NEG). However as a number of other changes including increased porosity occur with age and affect bone fragility, the relative contribution of AGEs on the fracture resistance of aging bone is unknown. Using a high-resolution nonlinear finite element model that incorporate cohesive elements and micro-computed tomography-based 3d meshes, we investigated the contribution of AGEs and cortical porosity on the fracture toughness of human bone. The results show that NEG caused a 52% reduction in propagation fracture toughness (R-curve slope). The combined effects of porosity and AGEs resulted in an 88% reduction in propagation toughness. These findings are consistent with previous experimental results. The model captured the age-related changes in the R-curve toughening by incorporating bone quantity and bone quality changes, and these simulations demonstrate the ability of the cohesive models to account for the irreversible dynamic crack growth processes affected by the changes in post-yield material behavior. By decoupling the matrix-level effects due to NEG and intracortical porosity, we are able to directly determine the effects of NEG on fracture toughness. The outcome of this study suggests that it may be important to include the age-related changes in the material level properties by using finite element analysis towards the prediction of fracture risk.

  15. On the effect of X-ray irradiation on the deformation and fracture behavior of human cortical bone.

    PubMed

    Barth, Holly D; Launey, Maximilien E; Macdowell, Alastair A; Ager, Joel W; Ritchie, Robert O

    2010-06-01

    In situ mechanical testing coupled with imaging using high-energy synchrotron X-ray diffraction or tomography is gaining in popularity as a technique to investigate micrometer and even sub-micrometer deformation and fracture mechanisms in mineralized tissues, such as bone and teeth. However, the role of the irradiation in affecting the nature and properties of the tissue is not always taken into account. Accordingly, we examine here the effect of X-ray synchrotron-source irradiation on the mechanistic aspects of deformation and fracture in human cortical bone. Specifically, the strength, ductility and fracture resistance (both work-of-fracture and resistance-curve fracture toughness) of human femoral bone in the transverse (breaking) orientation were evaluated following exposures to 0.05, 70, 210 and 630 kGrays (kGy) irradiation. Our results show that the radiation typically used in tomography imaging can have a major and deleterious impact on the strength, post-yield behavior and fracture toughness of cortical bone, with the severity of the effect progressively increasing with higher doses of radiation. Plasticity was essentially suppressed after as little as 70 kGy of radiation; the fracture toughness was decreased by a factor of five after 210 kGy of radiation. Mechanistically, the irradiation was found to alter the salient toughening mechanisms, manifest by the progressive elimination of the bone's capacity for plastic deformation which restricts the intrinsic toughening from the formation "plastic zones" around crack-like defects. Deep-ultraviolet Raman spectroscopy indicated that this behavior could be related to degradation in the collagen integrity.

  16. On the effect of x-ray irradiation on the deformation and fracture behavior of human cortical bone

    SciTech Connect

    Barth, Holly D.; Launey, Maximilien E.; McDowell, Alastair A.; Ager III, Joel W.; Ritchie, Robert O.

    2010-01-10

    In situ mechanical testing coupled with imaging using high-energy synchrotron x-ray diffraction or tomography imaging is gaining in popularity as a technique to investigate micrometer and even sub-micrometer deformation and fracture mechanisms in mineralized tissues, such as bone and teeth. However, the role of the irradiation in affecting the nature and properties of the tissue is not always taken into account. Accordingly, we examine here the effect of x-ray synchrotron-source irradiation on the mechanistic aspects of deformation and fracture in human cortical bone. Specifically, the strength, ductility and fracture resistance (both work-of-fracture and resistance-curve fracture toughness) of human femoral bone in the transverse (breaking) orientation were evaluated following exposures to 0.05, 70, 210 and 630 kGy irradiation. Our results show that the radiation typically used in tomography imaging can have a major and deleterious impact on the strength, post-yield behavior and fracture toughness of cortical bone, with the severity of the effect progressively increasing with higher doses of radiation. Plasticity was essentially suppressed after as little as 70 kGy of radiation; the fracture toughness was decreased by a factor of five after 210 kGy of radiation. Mechanistically, the irradiation was found to alter the salient toughening mechanisms, manifest by the progressive elimination of the bone's capacity for plastic deformation which restricts the intrinsic toughening from the formation 'plastic zones' around crack-like defects. Deep-ultraviolet Raman spectroscopy indicated that this behavior could be related to degradation in the collagen integrity.

  17. Deletion of Cx43 from osteocytes results in defective bone material properties but does not decrease extrinsic strength in cortical bone.

    PubMed

    Bivi, Nicoletta; Nelson, Mark T; Faillace, Meghan E; Li, Jiliang; Miller, Lisa M; Plotkin, Lilian I

    2012-09-01

    Deletion of connexin (Cx) 43 from osteoblasts and osteocytes (OCN-Cre;Cx43(fl/-) mice) or from osteocytes only (DMP1-8kb-Cre;Cx43(fl/fl) mice) results in increased cortical, but not cancellous, osteocyte apoptosis and widening of the femoral midshaft without changes in cortical thickness. Despite the consequent larger moment of inertia, stiffness and ultimate load, measures of mechanical strength assessed by three-point bending, are not higher in either model of Cx43 deficiency due to reduced Young's modulus, a measure of the stiffness of the material per unit of area. In OCN-Cre;Cx43(fl/-) mice, this was accompanied by a reduced ratio of nonreducible/reducible collagen cross-links as assessed by Fourier transformed infrared imaging (FTIRI) in the femoral diaphysis. On the other hand, DMP1-8kb-Cre;Cx43(fl/fl) mice did not show a significant reduction in collagen maturation in the same skeletal site, but a small decrease in mineralization was detected by FTIRI. Remarkably, both osteoblastic and osteocytic cells lacking Cx43 expressed lower mRNA levels of lysyl oxidase, a crucial enzyme involved in collagen maturation. These findings suggest that Cx43 expression in osteoblasts is involved in maintaining the quality of the bone matrix in cortical bone through the maturation of collagen cross-links. Osteocytic Cx43 expression is important also to maintain the stiffness of the bone material, where Cx43 deficiency results in local reduction in mineralization, possibly due to osteocyte apoptosis.

  18. A numerical study on the propagation of Rayleigh and guided waves in cortical bone according to Mindlin's Form II gradient elastic theory.

    PubMed

    Papacharalampopoulos, Alexios; Vavva, Maria G; Protopappas, Vasilios C; Fotiadis, Dimitrios I; Polyzos, Demosthenes

    2011-08-01

    Cortical bone is a multiscale heterogeneous natural material characterized by microstructural effects. Thus guided waves propagating in cortical bone undergo dispersion due to both material microstructure and bone geometry. However, above 0.8 MHz, ultrasound propagates rather as a dispersive surface Rayleigh wave than a dispersive guided wave because at those frequencies, the corresponding wavelengths are smaller than the thickness of cortical bone. Classical elasticity, although it has been largely used for wave propagation modeling in bones, is not able to support dispersion in bulk and Rayleigh waves. This is possible with the use of Mindlin's Form-II gradient elastic theory, which introduces in its equation of motion intrinsic parameters that correlate microstructure with the macrostructure. In this work, the boundary element method in conjunction with the reassigned smoothed pseudo Wigner-Ville transform are employed for the numerical determination of time-frequency diagrams corresponding to the dispersion curves of Rayleigh and guided waves propagating in a cortical bone. A composite material model for the determination of the internal length scale parameters imposed by Mindlin's elastic theory is exploited. The obtained results demonstrate the dispersive nature of Rayleigh wave propagating along the complex structure of bone as well as how microstructure affects guided waves.

  19. Measurement of strain distribution in cortical bone around miniscrew implants used for orthodontic anchorage using digital speckle pattern interferometry

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Agarwal, Rupali; Bhutani, Ravi; Shakher, Chandra

    2016-05-01

    An application of digital speckle pattern interferometry (DSPI) for the measurement of deformations and strain-field distributions developed in cortical bone around orthodontic miniscrew implants inserted into the human maxilla is presented. The purpose of this study is to measure and compare the strain distribution in cortical bone/miniscrew interface of human maxilla around miniscrew implants of different diameters, different implant lengths, and implants of different commercially available companies. The technique is also used to measure tilt/rotation of canine caused due to the application of retraction springs. The proposed technique has high sensitivity and enables the observation of deformation/strain distribution. In DSPI, two specklegrams are recorded corresponding to pre- and postloading of the retraction spring. The DSPI fringe pattern is observed by subtracting these two specklegrams. Optical phase was extracted using Riesz transform and the monogenic signal from a single DSPI fringe pattern. The obtained phase is used to calculate the parameters of interest such as displacement/deformation and strain/stress. The experiment was conducted on a dry human skull fulfilling the criteria of intact dental arches and all teeth present. Eight different miniscrew implants were loaded with an insertion angulation of 45 deg in the inter-radicular region of the maxillary second premolar and molar region. The loading of miniscrew implants was done with force level (150 gf) by nickel-titanium closed-coil springs (9 mm). The obtained results from DSPI reveal that implant diameter and implant length affect the displacement and strain distribution in cortical bone layer surrounding the miniscrew implant.

  20. Estimation of local anisotropy of plexiform bone: Comparison between depth sensing micro-indentation and Reference Point Indentation.

    PubMed

    Dall'Ara, E; Grabowski, P; Zioupos, P; Viceconti, M

    2015-11-26

    The recently developed Reference Point Indentation (RPI) allows the measurements of bone properties at the tissue level in vivo. The goal of this study was to compare the local anisotropic behaviour of bovine plexiform bone measured with depth sensing micro-indentation tests and with RPI. Fifteen plexiform bone specimens were extracted from a bovine femur and polished down to 0.05µm alumina paste for indentations along the axial, radial and circumferential directions (N=5 per group). Twenty-four micro-indentations (2.5µm in depth, 10% of them were excluded for testing problems) and four RPI-indentations (~50µm in depth) were performed on each sample. The local indentation modulus Eind was found to be highest for the axial direction (24.3±2.5GPa) compared to the one for the circumferential indentations (19% less stiff) and for the radial direction (30% less stiff). RPI measurements were also found to be dependent on indentation direction (p<0.001) with the exception of the Indentation Distance Increase (IDI) (p=0.173). In particular, the unloading slope US1 followed similar trends compared to the Eind: 0.47±0.03N/µm for axial, 11% lower for circumferential and 17% lower for radial. Significant correlations were found between US1 and Eind (p=0.001; R(2)=0.58), while no significant relationship was found between IDI and any of the micro-indentation measurements (p>0.157). In conclusion some of the RPI measurements can provide information about local anisotropy but IDI cannot. Moreover, there is a linear relationship between most local mechanical properties measured with RPI and with micro-indentations, but IDI does not correlate with any micro-indentation measurements.

  1. Age-related changes in bone strength from HR-pQCT derived microarchitectural parameters with an emphasis on the role of cortical porosity.

    PubMed

    Vilayphiou, Nicolas; Boutroy, Stephanie; Sornay-Rendu, Elisabeth; Van Rietbergen, Bert; Chapurlat, Roland

    2016-02-01

    The high resolution peripheral computed tomography (HR-pQCT) technique has seen recent developments with regard to the assessment of cortical porosity. In this study, we investigated the role of cortical porosity on bone strength in a large cohort of women. The distal radius and distal tibia were scanned by HR-pQCT. We assessed bone strength by estimating the failure load by microfinite element analysis (μFEA), with isotropic and homogeneous material properties. We built a multivariate model to predict it, using a few microarchitecture variables including cortical porosity. Among 857 Caucasian women analyzed with μFEA, we found that cortical and trabecular properties, along with the failure load, impaired slightly with advancing age in premenopausal women, the correlations with age being modest, with |rage| ranging from 0.14 to 0.38. After the onset of the menopause, those relationships with age were stronger for most parameters at both sites, with |rage| ranging from 0.10 to 0.64, notably for cortical porosity and failure load, which were markedly deteriorated with increasing age. Our multivariate model using microarchitecture parameters revealed that cortical porosity played a significant role in bone strength prediction, with semipartial r(2)=0.22 only at the tibia in postmenopausal women. In conclusion, in our large cohort of women, we observed a small decline of bone strength at the tibia before the onset of menopause. We also found an age-related increase of cortical porosity at both scanned sites in premenopausal women. In postmenopausal women, the relatively high increase of cortical porosity accounted for the decline in bone strength only at the tibia.

  2. Reduced bone formation markers, and altered trabecular and cortical bone mineral densities of non-paretic femurs observed in rats with ischemic stroke: A randomized controlled pilot study

    PubMed Central

    Rewell, Sarah S.; Iuliano, Sandra; Ghasem-Zadeh, Ali; Davey, Rachel A.; Ho, Heidi; Skeers, Peta N.; Bernhardt, Julie; Howells, David W.

    2017-01-01

    Background Immobility and neural damage likely contribute to accelerated bone loss after stroke, and subsequent heightened fracture risk in humans. Objective To investigate the skeletal effect of middle cerebral artery occlusion (MCAo) stroke in rats and examine its utility as a model of human post-stroke bone loss. Methods Twenty 15-week old spontaneously hypertensive male rats were randomized to MCAo or sham surgery controls. Primary outcome: group differences in trabecular bone volume fraction (BV/TV) measured by Micro-CT (10.5 micron istropic voxel size) at the ultra-distal femur of stroke affected left legs at day 28. Neurological impairments (stroke behavior and foot-faults) and physical activity (cage monitoring) were assessed at baseline, and days 1 and 27. Serum bone turnover markers (formation: N-terminal propeptide of type 1 procollagen, PINP; resorption: C-terminal telopeptide of type 1 collagen, CTX) were assessed at baseline, and days 7 and 27. Results No effect of stroke was observed on BV/TV or physical activity, but PINP decreased by -24.5% (IQR -34.1, -10.5, p = 0.046) at day 27. In controls, cortical bone volume (5.2%, IQR 3.2, 6.9) and total volume (6.4%, IQR 1.2, 7.6) were higher in right legs compared to left legs, but these side-to-side differences were not evident in stroke animals. Conclusion MCAo may negatively affect bone formation. Further investigation of limb use and physical activity patterns after MCAo is required to determine the utility of this current model as a representation of human post-stroke bone loss. PMID:28278253

  3. Effect of Sequential Treatments with Alendronate, Parathyroid Hormone (1-34) and Raloxifene on Cortical Bone Mass and Strength in Ovariectomized Rats

    PubMed Central

    Amugongo, Sarah K.; Yao, Wei; Jia, Junjing; Dai, Weiwei; Lay, Yu-An E.; Jiang, Li; Harvey, Danielle; Zimmermann, Elizabeth A.; Schaible, Eric; Dave, Neil; Ritchie, Robert O.; Kimmel, Donald B.; Lane, Nancy E.

    2014-01-01

    Anti-resorptive and anabolic agents are often prescribed for the treatment of osteoporosis continuously or sequentially for many years. However their impact on cortical bone quality and bone strength is not clear. Methods Six-month old female rats were either sham operated or ovariectomized (OVX). OVX rats were left untreated for two months and then were treated with vehicle (Veh), hPTH (1-34) (PTH), alendronate (Aln), or raloxifene (Ral) sequentially for three month intervals, for a total of three periods. Mid-tibial cortical bone architecture, mass, mineralization, and strength were measured on necropsy samples obtained after each period. Bone indentation properties were measured on proximal femur necropsy samples. Results Eight or more months of estrogen deficiency in rats resulted in decreased cortical bone area and thickness. Treatment with PTH for 3 months caused the deposition of endocortical lamellar bone that increased cortical bone area, thickness, and strength. These improvements were lost when PTH was withdrawn without followup treatment, but were maintained for the maximum times tested, six months with Ral and three months with Aln. Pre-treatment with anti-resorptives was also somewhat successful in ultimately preserving the additional endocortical lamellar bone formed under PTH treatment. These treatments did not affect bone indentation properties. Summary Sequential therapy that involved both PTH and anti-resorptive agents was required to achieve lasting improvements in cortical area, thickness, and strength in OVX rats. Anti-resorptive therapy, either prior to or following PTH, was required to preserve gains attributable to an anabolic agent. PMID:25016965

  4. Inflammatory response and bone healing capacity of two porous calcium phosphate ceramics in critical size cortical bone defects.

    PubMed

    Chatterjea, Anindita; van der Stok, Johan; Danoux, Charlène B; Yuan, Huipin; Habibovic, Pamela; van Blitterswijk, Clemens A; Weinans, Harrie; de Boer, Jan

    2014-05-01

    In the present study, two open porous calcium phosphate ceramics, β-tricalcium phosphate (β-TCP), and hydroxyapatite (HA) were compared in a critical-sized femoral defect in rats. Previous comparisons of these two ceramics showed significantly greater osteoinductive potential of β-TCP upon intramuscular implantation and a better performance in a spinal fusion model in dogs. Results of the current study also showed significantly more bone formation in defects grafted with β-TCP compared to HA; however, both the ceramics were not capable of increasing bone formation to such extend that it bridges the defect. Furthermore, a more pronounced degradation of β-TCP was observed as compared to HA. Progression of inflammation and initiation of new bone formation were assessed for both materials at multiple time points by histological and fluorochrome-based analyses. Until 12 days postimplantation, a strong inflammatory response in absence of new bone formation was observed in both ceramics, without obvious differences between the two materials. Four weeks postimplantation, signs of new bone formation were found in both β-TCP and HA. At 6 weeks, inflammation had subsided in both ceramics while bone deposition continued. In conclusion, the two ceramics differed in the amount of bone formed after 8 weeks of implantation, whereas no differences were found in the duration of the inflammatory phase after implantation or initiation of new bone formation.

  5. Assessment of cortical and trabecular bone changes in two models of post-traumatic osteoarthritis.

    PubMed

    Pauly, Hannah M; Larson, Blair E; Coatney, Garrett A; Button, Keith D; DeCamp, Charlie E; Fajardo, Ryan S; Haut, Roger C; Haut Donahue, Tammy L

    2015-12-01

    Subchondral bone is thought to play a significant role in the initiation and progression of the post-traumatic osteoarthritis. The goal of this study was to document changes in tibial and femoral subchondral bone that occur as a result of two lapine models of anterior cruciate ligament injury, a modified ACL transection model and a closed-joint traumatic compressive impact model. Twelve weeks post-injury bones were scanned via micro-computed tomography. The subchondral bone of injured limbs from both models showed decreases in bone volume and bone mineral density. Surgical transection animals showed significant bone changes primarily in the medial hemijoint of femurs and tibias, while significant changes were noted in both the medial and lateral hemijoints of both bones for traumatic impact animals. It is believed that subchondral bone changes in the medial hemijoint were likely caused by compromised soft tissue structures seen in both models. Subchondral bone changes in the lateral hemijoint of traumatic impact animals are thought to be due to transmission of the compressive impact force through the joint. The joint-wide bone changes shown in the traumatic impact model were similar to clinical findings from studies investigating the progression of osteoarthritis in humans.

  6. Small-Angle X-ray Scattering Demonstrates Similar Nanostructure in Cortical Bone from Young Adult Animals of Different Species.

    PubMed

    Kaspersen, Jørn Døvling; Turunen, Mikael Juhani; Mathavan, Neashan; Lages, Sebastian; Pedersen, Jan Skov; Olsson, Ulf; Isaksson, Hanna

    2016-07-01

    Despite the vast amount of studies focusing on bone nanostructure that have been performed for several decades, doubts regarding the detailed structure of the constituting hydroxyapatite crystal still exist. Different experimental techniques report somewhat different sizes and locations, possibly due to different requirements for the sample preparation. In this study, small- and wide-angle X-ray scattering is used to investigate the nanostructure of femur samples from young adult ovine, bovine, porcine, and murine cortical bone, including three different orthogonal directions relative to the long axis of the bone. The radially averaged scattering from all samples reveals a remarkable similarity in the entire q range, which indicates that the nanostructure is essentially the same in all species. Small differences in the data from different directions confirm that the crystals are elongated in the [001] direction and that this direction is parallel to the long axis of the bone. A model consisting of thin plates is successfully employed to describe the scattering and extract the plate thicknesses, which are found to be in the range of 20-40 Å for most samples but 40-60 Å for the cow samples. It is demonstrated that the mineral plates have a large degree of polydispersity in plate thickness. Additionally, and equally importantly, the scattering data and the model are critically evaluated in terms of model uncertainties and overall information content.

  7. Fabrication of porous bioceramics with porosity gradients similar to the bimodal structure of cortical and cancellous bone.

    PubMed

    Hsu, Y H; Turner, I G; Miles, A W

    2007-12-01

    The aim of this study was to fabricate porous implant materials with graded pore structures similar to the bimodal structure of cortical and cancellous bone. Porous hydroxyapatite/tricalcium phosphate (HA/TCP) bioceramics with interconnected porosity and controlled pore sizes required to simulate natural bone tissue morphology were fabricated by a novel technique of vacuum impregnation of reticulated polymeric foams with ceramic slip. Functionally gradient materials (FGMs) with porosity gradients were made by joining different pore per inch (ppi) foams together by either stitching or pressfitting to form templates. Post production, no defects could be seen at the interface between the two different porosity sections. The macropore sizes of the HA/TCP bioceramics were larger than 100 mum which is appropriate for bone ingrowth. A sample with a graded porous structure which is close to the human bone morphology was also developed. The two component structures were conspicuously different but joined together firmly. Four point bend testing of FGM samples showed them to have similar mechanical properties to homogeneous ceramics based on foam templates with uniform pore sizes, with no evidence of interfacial weakness. Many potential biomedical applications could be developed utilising graded porous structures. The ease of processing will make it possible to fabricate a range of complex shapes for different applications.

  8. Predicting Hip Fracture Type With Cortical Bone Mapping (CBM) in the Osteoporotic Fractures in Men (MrOS) Study

    PubMed Central

    Gee, Andrew H; Tonkin, Carol; Ewing, Susan K; Cawthon, Peggy M; Black, Dennis M; Poole, Kenneth ES

    2015-01-01

    ABSTRACT Hip fracture risk is known to be related to material properties of the proximal femur, but fracture prediction studies adding richer quantitative computed tomography (QCT) measures to dual‐energy X‐ray (DXA)‐based methods have shown limited improvement. Fracture types have distinct relationships to predictors, but few studies have subdivided fracture into types, because this necessitates regional measurements and more fracture cases. This work makes use of cortical bone mapping (CBM) to accurately assess, with no prior anatomical presumptions, the distribution of properties related to fracture type. CBM uses QCT data to measure the cortical and trabecular properties, accurate even for thin cortices below the imaging resolution. The Osteoporotic Fractures in Men (MrOS) study is a predictive case‐cohort study of men over 65 years old: we analyze 99 fracture cases (44 trochanteric and 55 femoral neck) compared to a cohort of 308, randomly selected from 5994. To our knowledge, this is the largest QCT‐based predictive hip fracture study to date, and the first to incorporate CBM analysis into fracture prediction. We show that both cortical mass surface density and endocortical trabecular BMD are significantly different in fracture cases versus cohort, in regions appropriate to fracture type. We incorporate these regions into predictive models using Cox proportional hazards regression to estimate hazard ratios, and logistic regression to estimate area under the receiver operating characteristic curve (AUC). Adding CBM to DXA‐based BMD leads to a small but significant (p < 0.005) improvement in model prediction for any fracture, with AUC increasing from 0.78 to 0.79, assessed using leave‐one‐out cross‐validation. For specific fracture types, the improvement is more significant (p < 0.0001), with AUC increasing from 0.71 to 0.77 for trochanteric fractures and 0.76 to 0.82 for femoral neck fractures. In contrast, adding DXA‐based BMD to a

  9. Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone

    PubMed Central

    Barth, Holly D.; Zimmermann, Elizabeth A.; Schaible, Eric; Tang, Simon Y.; Alliston, Tamara; Ritchie, Robert O.

    2012-01-01

    Bone comprises a complex structure of primarily collagen, hydroxyapatite and water, where each hierarchical structural level contributes to its strength, ductility and toughness. These properties, however, are degraded by irradiation, arising from medical therapy or bone-allograft sterilization. We provide here a mechanistic framework for how irradiation affects the nature and properties of human cortical bone over a range of characteristic (nano to macro) length-scales, following x-ray exposures up to 630 kGy. Macroscopically, bone strength, ductility and fracture resistance are seen to be progressively degraded with increasing irradiation levels. At the micron-scale, fracture properties, evaluated using insitu scanning electron microscopy and synchrotron x-ray computed micro-tomography, provide mechanistic information on how cracks interact with the bone-matrix structure. At sub-micron scales, strength properties are evaluated with insitu tensile tests in the synchrotron using small-/wide-angle x-ray scattering/diffraction, where strains are simultaneously measured in the macroscopic tissue, collagen fibrils and mineral. Compared to healthy bone, results show that the fibrillar strain is decreased by ~40% following 70 kGy exposures, consistent with significant stiffening and degradation of the collagen. We attribute the irradiation-induced deterioration in mechanical properties to mechanisms at multiple length-scales, including changes in crack paths at micron-scales, loss of plasticity from suppressed fibrillar sliding at sub-micron scales, and the loss and damage of collagen at the nano-scales, the latter being assessed using Raman and Fourier Transform Infrared spectroscopy and a fluorometric assay. PMID:21885114

  10. Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone.

    PubMed

    Barth, Holly D; Zimmermann, Elizabeth A; Schaible, Eric; Tang, Simon Y; Alliston, Tamara; Ritchie, Robert O

    2011-12-01

    Bone comprises a complex structure of primarily collagen, hydroxyapatite and water, where each hierarchical structural level contributes to its strength, ductility and toughness. These properties, however, are degraded by irradiation, arising from medical therapy or bone-allograft sterilization. We provide here a mechanistic framework for how irradiation affects the nature and properties of human cortical bone over a range of characteristic (nano to macro) length-scales, following x-ray exposures up to 630 kGy. Macroscopically, bone strength, ductility and fracture resistance are seen to be progressively degraded with increasing irradiation levels. At the micron-scale, fracture properties, evaluated using insitu scanning electron microscopy and synchrotron x-ray computed micro-tomography, provide mechanistic information on how cracks interact with the bone-matrix structure. At sub-micron scales, strength properties are evaluated with insitu tensile tests in the synchrotron using small-/wide-angle x-ray scattering/diffraction, where strains are simultaneously measured in the macroscopic tissue, collagen fibrils and mineral. Compared to healthy bone, results show that the fibrillar strain is decreased by ∼40% following 70 kGy exposures, consistent with significant stiffening and degradation of the collagen. We attribute the irradiation-induced deterioration in mechanical properties to mechanisms at multiple length-scales, including changes in crack paths at micron-scales, loss of plasticity from suppressed fibrillar sliding at sub-micron scales, and the loss and damage of collagen at the nano-scales, the latter being assessed using Raman and Fourier Transform Infrared spectroscopy and a fluorometric assay.

  11. Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone

    SciTech Connect

    Barth, Holly; Zimmermann, Elizabeth; Schaible, Eric; Tang, Simon; Alliston, Tamara; Ritchie, Robert

    2011-08-19

    Bone comprises a complex structure of primarily collagen, hydroxyapatite and water, where each hierarchical structural level contributes to its strength, ductility and toughness. These properties, however, are degraded by irradiation, arising from medical therapy or bone-allograft sterilization. We provide here a mechanistic framework for how irradiation affects the nature and properties of human cortical bone over a range of characteristic (nano to macro) length-scales, following x-­ray exposures up to 630 kGy. Macroscopically, bone strength, ductility and fracture resistance are seen to be progressively degraded with increasing irradiation levels. At the micron-­scale, fracture properties, evaluated using in-situ scanning electron microscopy and synchrotron x-ray computed micro-tomography, provide mechanistic information on how cracks interact with the bone-matrix structure. At sub-micron scales, strength properties are evaluated with in-situ tensile tests in the synchrotron using small-/wide-angle x-ray scattering/diffraction, where strains are simultaneously measured in the macroscopic tissue, collagen fibrils and mineral. Compared to healthy bone, results show that the fibrillar strain is decreased by ~40% following 70 kGy exposures, consistent with significant stiffening and degradation of the collagen. We attribute the irradiation-­induced deterioration in mechanical properties to mechanisms at multiple length-scales, including changes in crack paths at micron-­scales, loss of plasticity from suppressed fibrillar sliding at sub-­micron scales, and the loss and damage of collagen at the nano-­scales, the latter being assessed using Raman and Fourier-Transform-Infrared spectroscopy and a fluorometric assay.

  12. Gsα Controls Cortical Bone Quality by Regulating Osteoclast Differentiation via cAMP/PKA and β-Catenin Pathways

    PubMed Central

    Ramaswamy, Girish; Kim, Hyunsoo; Zhang, Deyu; Lounev, Vitali; Wu, Joy Y.; Choi, Yongwon; Kaplan, Frederick S.; Pignolo, Robert J.; Shore, Eileen M.

    2017-01-01

    Skeletal bone formation and maintenance requires coordinate functions of several cell types, including bone forming osteoblasts and bone resorbing osteoclasts. Gsα, the stimulatory subunit of heterotrimeric G proteins, activates downstream signaling through cAMP and plays important roles in skeletal development by regulating osteoblast differentiation. Here, we demonstrate that Gsα signaling also regulates osteoclast differentiation during bone modeling and remodeling. Gnas, the gene encoding Gsα, is imprinted. Mice with paternal allele deletion of Gnas (Gnas+/p−) have defects in cortical bone quality and strength during early development (bone modeling) that persist during adult bone remodeling. Reduced bone quality in Gnas+/p− mice was associated with increased endosteal osteoclast numbers, with no significant effects on osteoblast number and function. Osteoclast differentiation and resorption activity was enhanced in Gnas+/p− cells. During differentiation, Gnas+/p− cells showed diminished pCREB, β-catenin and cyclin D1, and enhanced Nfatc1 levels, conditions favoring osteoclastogenesis. Forskolin treatment increased pCREB and rescued osteoclast differentiation in Gnas+/p− by reducing Nfatc1 levels. Cortical bone of Gnas+/p− mice showed elevated expression of Wnt inhibitors sclerostin and Sfrp4 consistent with reduced Wnt/β-catenin signaling. Our data identify a new role for Gsα signaling in maintaining bone quality by regulating osteoclast differentiation and function through cAMP/PKA and Wnt/β-catenin pathways. PMID:28338087

  13. Effects of Inversion Time on Inversion Recovery Prepared Ultrashort Echo Time (IR-UTE) Imaging of Free and Bound Water in Cortical Bone

    PubMed Central

    Li, Shihong; Ma, Lanqing; Chang, Eric Y; Shao, Hongda; Chen, Jun; Chung, Christine B; Bydder, Graeme M; Du, Jiang

    2014-01-01

    Water is present in cortical bone in different binding states. In this study we aimed to investigate the effects of inversion time (TI) on the signal from bound and pore water in cortical bone using an adiabatic inversion recovery prepared ultrashort echo time (IR-UTE) sequence on a clinical 3T scanner. In total ten bovine midshaft samples and four human tibial midshaft samples were harvested for this study. Each cortical sample was imaged with the UTE and IR-UTE sequences with a TR of 300 ms and a series of TIs ranging from 10 to 240 ms. Five healthy volunteers were also imaged with the same sequence. Single- and bi-component models were utilized to calculate the T2* and relative fractions of short and long T2* components. Bi-component behavior of the signal from cortical bone was seen with the IR-UTE sequence except with a TI of around 80 ms where the short T2* component alone were seen and a mono-exponential decay pattern was observed. In vivo imaging with the IR-UTE sequence provided high contrast-to-noise images with direct visualization of bound water and reduced signal from long T2 muscle and fat. Our preliminary results demonstrate that selective nulling of the pore water component can be achieved with the IR-UTE sequence with an appropriate TI, allowing selective imaging of the bound water component in cortical bone in vivo using clinical MR scanners. PMID:25348196

  14. Microcracking damage and the fracture process in relation to strain rate in human cortical bone tensile failure.

    PubMed

    Zioupos, Peter; Hansen, Ulrich; Currey, John D

    2008-10-20

    It is difficult to define the 'physiological' mechanical properties of bone. Traumatic failures in-vivo are more likely to be orders of magnitude faster than the quasistatic tests usually employed in-vitro. We have reported recently [Hansen, U., Zioupos, P., Simpson, R., Currey, J.D., Hynd, D., 2008. The effect of strain rate on the mechanical properties of human cortical bone. Journal of Biomechanical Engineering/Transactions of the ASME 130, 011011-1-8] results from tests on specimens of human femoral cortical bone loaded in tension at strain rates (epsilon ) ranging from low (0.08s(-1)) to high (18s(-1)). Across this strain rate range the modulus of elasticity generally increased, stress at yield and failure and strain at failure decreased for rates higher than 1s(-1), while strain at yield was invariant for most strain rates and only decreased at rates higher than 10s(-1). The results showed that strain rate has a stronger effect on post-yield deformation than on initiation of macroscopic yielding. In general, specimens loaded at high strain rates were brittle, while those loaded at low strain rates were much tougher. Here, a post-test examination of the microcracking damage reveals that microcracking was inversely related to the strain rate. Specimens loaded at low strain rates showed considerable post-yield strain and also much more microcracking. Partial correlation and regression analysis suggested that the development of post-yield strain was a function of the amount of microcracking incurred (the cause), rather than being a direct result of the strain rate (the excitation). Presumably low strain rates allow time for microcracking to develop, which increases the compliance of the specimen, making them tougher. This behaviour confirms a more general rule that the degree to which bone is brittle or tough depends on the amount of microcracking damage it is able to sustain. More importantly, the key to bone toughness is its ability to avoid a ductile

  15. Optical clearing in transcutaneous Raman spectroscopy of murine cortical bone tissue

    PubMed Central

    Schulmerich, Matthew V.; Cole, Jacqueline H.; Dooley, Kathryn A.; Kreider, Jaclynn M.; Goldstein, Steven A.

    2010-01-01

    The effect of optical clearing with glycerol on the Raman spectra of bone tissue acquired transcutaneously on right and left tibiae from four mice was studied. Multiple transcutaneous measurements were obtained from each limb; glycerol was then applied as an optical clearing agent, and additional transcutaneous measurements were taken. Glycerol reduces the noise in the raw spectra (p=0.0037) and significantly improves the cross-correlation between the recovered bone factor and the exposed bone measurement in a low signal-to-noise region of the bone spectra (p=0.0245). PMID:18465957

  16. Microstructural and Photoacoustic Infrared Spectroscopic Studies of Human Cortical Bone with Osteogenesis Imperfecta

    NASA Astrophysics Data System (ADS)

    Gu, Chunju; Katti, Dinesh R.; Katti, Kalpana S.

    2016-04-01

    The molecular basis of bone disease osteogenesis imperfecta (OI) and the mineralization of hydroxyapatite in OI bone have been of significant research interest. To further investigate the mechanism of OI disease and bone mineralization, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, and x-ray diffraction (XRD) are used in the present study to describe the structural and compositional differences between OI and healthy bone. OI bone exhibits more porous, fibrous features, abnormal collagen fibrils, and abnormal mineral deposits. Likewise, photoacoustic-FTIR experiments indicate an aberrant collagen structure and an altered mineral structure in OI. In contrast, there is neither significant difference in the non-collagenous proteins (NCPs) composition observed nor apparent change in the crystal structure between OI and healthy bone minerals as shown in XRD and energy-dispersive x-ray spectroscopy (EDS) results. This observation indicates that the biomineralization process is more controlled by the bone cells and non-collagenous phosphorylated proteins. The present study also confirms that there is an orientational influence on the stoichiometry of the mineral in OI bone. Also, a larger volume of the hydrated layer in the transverse plane than the longitudinal plane of the mineral crystal structure is proposed. The appearance of a new C-S band in the FTIR spectra in OI bone suggests the substitution of glycine by cysteine in collagen molecules or/and an increased amount of cysteine-rich osteonectin that relates to mineral nucleation and mineral crystal formation.

  17. Relating Crack-tip Deformation to Mineralization and Fracture Resistance in Human Femur Cortical Bone

    PubMed Central

    Chan, Kwai S.; Chan, Candace K.; Nicolella, Daniel P.

    2009-01-01

    The risk of bone fracture increases with age because of a variety of factors that include, among others, decreasing bone quantity and quality. Despite recent advances, the roles of bone microstructure and trace mineralization in the fracture process are not well understood. In this study, we utilize a combination of in-situ fracture toughness testing, digital strain mapping, and x-ray photoelectron spectroscopy techniques to characterize the near-tip strain field, fracture toughness, and chemical elements on the fracture surface of bone specimens from donors of two ages (48-year-old and 78-year-old females). We show that age-related embrittlement of bone fracture is associated with higher near-tip strains by lamellar shear and crack defection at lamellar interfaces in the young bone and their absence in the old bone. The different near-tip deformation behaviors may be associated with the presence of Si and Zn in the young bone but more Ca and P and the lack of Si and Zn in the old bone. PMID:19497396

  18. EPR dosimetry of cortical bone and tooth enamel irradiated with X and gamma rays: Study of energy dependence

    SciTech Connect

    Schauer, D.A.; Links, J.M. ); Desrosiers, M.F.; Le, F.G.; Seltzer, S.M. )

    1994-04-01

    Previous investigators have reported that the radiation-induced EPR signal intensity in compact or cortical bone increases up to a factor of two with decreasing photon energy for a given absorbed dose. If the EPR signal intensity was dependent on energy, it could limit the application of EPR spectrometry and the additive reirradiation method to obtain dose estimates. We have recently shown that errors in the assumptions governing conversion of measured exposure to absorbed dose can lead to similar [open quotes]apparent[close quotes] energy-dependence results. We hypothesized that these previous results were due to errors in the estimated dose in bone, rather than the effects of energy dependence per se. To test this hypothesis we studied human adult cortical bone from male and female donors ranging in age from 23 to 95 years, and bovine tooth enamel, using 34 and 138 keV average energy X-ray beams and [sup 137]Cs (662 keV) and [sup 60]Co (1250 keV) [gamma] rays. In a femur from a 47-year-old male (subject 1), there was a difference of borderline significance at the [alpha] = 0.05 level in the mean radiation-induced hydroxyapatite signal intensities as a function of photon energy. No other statistically significant differences in EPR signal intensity as a function of photon energy were observed in this subject, or in the tibia from a 23-year-old male (subject 2) and the femur from a 75-year-old female (subject 3). However, there was a trend toward a decrease (12-15%) in signal intensity at the lowest energy compared with the highest energy in subjects 1 and 3. Further analysis of the data from subject 1 revealed that this trend, which is in the opposite direction of previous reports but is consistent with theory, is statistically significant. There were no efforts of energy dependence in the tooth samples. 16 refs., 7 figs., 5 tabs.

  19. MO-G-17A-03: MR-Based Cortical Bone Segmentation for PET Attenuation Correction with a Non-UTE 3D Fast GRE Sequence

    SciTech Connect

    Ai, H; Pan, T; Hwang, K

    2014-06-15

    Purpose: To determine the feasibility of identifying cortical bone on MR images with a short-TE 3D fast-GRE sequence for attenuation correction of PET data in PET/MR. Methods: A water-fat-bone phantom was constructed with two pieces of beef shank. MR scans were performed on a 3T MR scanner (GE Discovery™ MR750). A 3D GRE sequence was first employed to measure the level of residual signal in cortical bone (TE{sub 1}/TE{sub 2}/TE{sub 3}=2.2/4.4/6.6ms, TR=20ms, flip angle=25°). For cortical bone segmentation, a 3D fast-GRE sequence (TE/TR=0.7/1.9ms, acquisition voxel size=2.5×2.5×3mm{sup 3}) was implemented along with a 3D Dixon sequence (TE{sub 1}/TE{sub 2}/TR=1.2/2.3/4.0ms, acquisition voxel size=1.25×1.25×3mm{sup 3}) for water/fat imaging. Flip angle (10°), acquisition bandwidth (250kHz), FOV (480×480×144mm{sup 3}) and reconstructed voxel size (0.94×0.94×1.5mm{sup 3}) were kept the same for both sequences. Soft tissue and fat tissue were first segmented on the reconstructed water/fat image. A tissue mask was created by combining the segmented water/fat masks, which was then applied on the fast-GRE image (MRFGRE). A second mask was created to remove the Gibbs artifacts present in regions in close vicinity to the phantom. MRFGRE data was smoothed with a 3D anisotropic diffusion filter for noise reduction, after which cortical bone and air was separated using a threshold determined from the histogram. Results: There is signal in the cortical bone region in the 3D GRE images, indicating the possibility of separating cortical bone and air based on signal intensity from short-TE MR image. The acquisition time for the 3D fast-GRE sequence was 17s, which can be reduced to less than 10s with parallel imaging. The attenuation image created from water-fat-bone segmentation is visually similar compared to reference CT. Conclusion: Cortical bone and air can be separated based on intensity in MR image with a short-TE 3D fast-GRE sequence. Further research is required

  20. Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales

    PubMed Central

    Zimmermann, Elizabeth A.; Schaible, Eric; Bale, Hrishikesh; Barth, Holly D.; Tang, Simon Y.; Reichert, Peter; Busse, Bjoern; Alliston, Tamara; Ager, Joel W.; Ritchie, Robert O.

    2011-01-01

    The structure of human cortical bone evolves over multiple length scales from its basic constituents of collagen and hydroxyapatite at the nanoscale to osteonal structures at near-millimeter dimensions, which all provide the basis for its mechanical properties. To resist fracture, bone’s toughness is derived intrinsically through plasticity (e.g., fibrillar sliding) at structural scales typically below a micrometer and extrinsically (i.e., during crack growth) through mechanisms (e.g., crack deflection/bridging) generated at larger structural scales. Biological factors such as aging lead to a markedly increased fracture risk, which is often associated with an age-related loss in bone mass (bone quantity). However, we find that age-related structural changes can significantly degrade the fracture resistance (bone quality) over multiple length scales. Using in situ small-angle X-ray scattering and wide-angle X-ray diffraction to characterize submicrometer structural changes and synchrotron X-ray computed tomography and in situ fracture-toughness measurements in the scanning electron microscope to characterize effects at micrometer scales, we show how these age-related structural changes at differing size scales degrade both the intrinsic and extrinsic toughness of bone. Specifically, we attribute the loss in toughness to increased nonenzymatic collagen cross-linking, which suppresses plasticity at nanoscale dimensions, and to an increased osteonal density, which limits the potency of crack-bridging mechanisms at micrometer scales. The link between these processes is that the increased stiffness of the cross-linked collagen requires energy to be absorbed by “plastic” deformation at higher structural levels, which occurs by the process of microcracking. PMID:21873221

  1. Intensive glycemic control and thiazolidinedione use: effects on cortical and trabecular bone at the radius and tibia.

    PubMed

    Schwartz, Ann V; Vittinghoff, Eric; Margolis, Karen L; Scibora, Lesley M; Palermo, Lisa; Ambrosius, Walter T; Hue, Trisha F; Ensrud, Kristine E

    2013-05-01

    Factors that contribute to bone fragility in type 2 diabetes are not well understood. We assessed the effects of intensive glycemic control, thiazolidinediones (TZDs), and A1C levels on bone geometry and strength at the radius and tibia. In a substudy of the Action to Control Cardiovascular Risk in Diabetes trial, peripheral quantitative computed tomographic (pQCT) scans of the radius and tibia were obtained 2 years after randomization on 73 participants (intensive n = 35, standard n = 38). TZD use and A1C levels were measured every 4 months during the trial. Effects of intervention assignment, TZD use, and A1C on pQCT parameters were assessed in linear regression models. Intensive, compared with standard, glycemic control was associated with 1.3 % lower cortical volumetric BMD at the tibia in men (p = 0.02) but not with other pQCT parameters. In women, but not men, each additional year of TZD use was associated with an 11 % lower polar strength strain index (SSIp) at the radius (p = 0.04) and tibia (p = 0.002) in models adjusted for A1C levels. In women, each additional 1 % increase in A1C was associated with an 18 % lower SSIp at the ultradistal radius (p = 0.04) in models adjusted for TZD use. There was no consistent evidence of an effect of intensive, compared with standard, glycemic control on bone strength at the radius or tibia. In women, TZD use may reduce bone strength at these sites. Higher A1C may also be associated with lower bone strength at the radius, but not tibia, in women.

  2. Age-related changes in the plasticity and toughness of human cortical bone at multiple length-scales

    SciTech Connect

    Zimmermann, Elizabeth A.; Schaible, Eric; Bale, Hrishikesh; Barth, Holly D.; Tang, Simon Y.; Reichert, Peter; Busse, Bjoern; Alliston, Tamara; Ager III, Joel W.; Ritchie, Robert O.

    2011-08-10

    The structure of human cortical bone evolves over multiple length-scales from its basic constituents of collagen and hydroxyapatite at the nanoscale to osteonal structures at nearmillimeter dimensions, which all provide the basis for its mechanical properties. To resist fracture, bone’s toughness is derived intrinsically through plasticity (e.g., fibrillar sliding) at structural-scales typically below a micron and extrinsically (i.e., during crack growth) through mechanisms (e.g., crack deflection/bridging) generated at larger structural-scales. Biological factors such as aging lead to a markedly increased fracture risk, which is often associated with an age-related loss in bone mass (bone quantity). However, we find that age-related structural changes can significantly degrade the fracture resistance (bone quality) over multiple lengthscales. Using in situ small-/wide-angle x-ray scattering/diffraction to characterize sub-micron structural changes and synchrotron x-ray computed tomography and in situ fracture-toughness measurements in the scanning electron microscope to characterize effects at micron-scales, we show how these age-related structural changes at differing size-scales degrade both the intrinsic and extrinsic toughness of bone. Specifically, we attribute the loss in toughness to increased non-enzymatic collagen cross-linking which suppresses plasticity at nanoscale dimensions and to an increased osteonal density which limits the potency of crack-bridging mechanisms at micron-scales. The link between these processes is that the increased stiffness of the cross-linked collagen requires energy to be absorbed by “plastic” deformation at higher structural levels, which occurs by the process of microcracking.

  3. Non-invasive predictors of human cortical bone mechanical properties: T(2)-discriminated H NMR compared with high resolution X-ray.

    PubMed

    Horch, R Adam; Gochberg, Daniel F; Nyman, Jeffry S; Does, Mark D

    2011-01-21

    Recent advancements in magnetic resonance imaging (MRI) have enabled clinical imaging of human cortical bone, providing a potentially powerful new means for assessing bone health with molecular-scale sensitivities unavailable to conventional X-ray-based diagnostics. To this end, (1)H nuclear magnetic resonance (NMR) and high-resolution X-ray signals from human cortical bone samples were correlated with mechanical properties of bone. Results showed that (1)H NMR signals were better predictors of yield stress, peak stress, and pre-yield toughness than were the X-ray derived signals. These (1)H NMR signals can, in principle, be extracted from clinical MRI, thus offering the potential for improved clinical assessment of fracture risk.

  4. PROGRESSIVE MECHANICAL BEHAVIOR OF HUMAN CORTICAL BONE IN TENSION FOR TWO AGE GROUPS

    PubMed Central

    Nyman, Jeffry S.; Roy, Anuradha; Reyes, Michael J.; Wang, Xiaodu

    2007-01-01

    The capacity of bone for post-yield energy dissipation decreases with age. To gain information on the cause of such changes, we examined the mechanical behavior of human cadaveric bone as a function of progressive deformation. In this study, tensile specimens from tibiae of 9 middle aged and 8 elderly donors were loaded till failure in an incremental and cyclic (load-dwell-unload-dwell-reload) scheme. The elastic modulus, maximum stress, permanent strain, stress relaxation, viscoelastic time constant, plastic strain energy, elastic release strain energy, and hysteresis energy were determined at incremental strains of each loading cycle. Experimental results showed that elderly bone failed at much lower strains compared to middle aged bone, but little age-related differences were observed in the mechanical behavior of bone until the premature failure of elderly bone. Energy dissipation and permanent strain appeared to linearly increase with increasing strain, while non-linear changes occurred in the modulus loss and stress relaxation/time constant with increasing strain. Such changes suggest that two distinct stages may exist in the progressive deformation of bone. In Stage I, rapid damage accumulation and increased involvement of collagen in load bearing appeared to dominate the mechanical behavior of bone with limited energy dissipation (<20% of total energy dissipated), whereas Stage II is dominated by continuous plastic deformation, accompanied by major energy dissipation through all three pathways till failure. This study suggests that damaging mechanisms in bone vary with deformation and age affects the post-yield mechanisms causing a significant decline in the capacity of aged bone to dissipate energy. PMID:18437693

  5. Does the cortical bone resorption rate change due to 90Sr-radiation exposure? Analysis of data from Techa Riverside residents

    SciTech Connect

    Tolstykh, E I; Shagina, N B; Degteva, M O; Anspaugh, L R; Napier, Bruce A

    2011-08-01

    The Mayak Production Association released large amounts of 90Sr into the Techa River (Southern Urals, Russia) with peak amounts in 1950-1951. Techa Riverside residents ingested an average of about 3,000 kBq of 90Sr. The 90Sr-body burden of approximately 15,000 individuals has been measured in the Urals Research Center for Radiation Medicine in 1974-1997 with use of a special whole-body counter (WBC). Strontium-90 had mainly deposited in the cortical part of the skeleton by 25 years following intake, and 90Sr elimination occurs as a result of cortical bone resorption. The effect of 90Sr-radiation exposure on the rate of cortical bone resorption was studied. Data on 2,022 WBC measurements were selected for 207 adult persons, who were measured three or more times before they were 50-55 years old. The individual-resorption rates were calculated with the rate of strontium recirculation evaluated as 0.0018 year-1. Individual absorbed doses in red bone marrow (RBM) and bone surface (BS) were also calculated. Statistically significant negative relationships of cortical bone resorption rate were discovered related to 90Sr-body burden and dose absorbed in the RBM or the BS. The response appears to have a threshold of about 1.5-Gy RBM dose. The radiation induced decrease in bone resorption rate may not be significant in terms of health. However, a decrease in bone remodeling rate can be among several causes of an increased level of degenerative dystrophic bone pathology in exposed persons.

  6. Irradiation conditions for fiber laser bonding of HAp-glass ceramics with bovine cortical bone.

    PubMed

    Tadano, Shigeru; Yamada, Satoshi; Kanaoka, Masaru

    2014-01-01

    Orthopedic implants are widely used to repair bones and to replace articulating joint surfaces. It is important to develop an instantaneous technique for the direct bonding of bone and implant materials. The aim of this study was to develop a technique for the laser bonding of bone with an implant material like ceramics. Ceramic specimens (10 mm diameter and 1 mm thickness) were sintered with hydroxyapatite and MgO-Al2O3-SiO2 glass powders mixed in 40:60 wt% proportions. A small hole was bored at the center of a ceramic specimen. The ceramic specimen was positioned onto a bovine bone specimen and a 5 mm diameter area of the ceramic specimen was irradiated using a fiber laser beam (1070-1080 nm wavelength). As a result, the bone and the ceramic specimens bonded strongly under the irradiation conditions of a 400 W laser power and a 1.0 s exposure time. The maximum shear strength was 5.3 ± 2.3 N. A bonding substance that penetrated deeply into the bone specimen was generated around the hole in the ceramic specimen. On using the fiber laser, the ceramic specimen instantaneously bonded to the bone specimen. Further, the irradiation conditions required for the bonding were investigated.

  7. The effect of surface demineralization of cortical bone allograft on the properties of recombinant adeno-associated virus coatings

    PubMed Central

    Yazici, Cemal; Yanoso, Laura; Xie, Chao; Reynolds, David G.; Jude Samulski, R.; Samulski, Jade; Yannariello-Brown, Judith; Gertzman, Arthur A.; Zhang, Xinping; Awad, Hani A.; Schwarz, Edward M.

    2008-01-01

    Freeze-dried recombinant adeno-associated virus (rAAV) coated structural allografts have emerged as an approach to engender necrotic cortical bone with host factors that will persist for weeks following surgery to facilitate revascularization, osteointegration, and remodeling. However, one major limitation is the nonporous cortical surface that prohibits uniform distribution of the rAAV coating prior to freeze-drying. To overcome this we have developed a demineralization method to increase surface absorbance while retaining the structural integrity of the allograft. Demineralized bone wafers (DBW) made from human femoral allograft rings demonstrated a significant 21.1 % (73.6 ± 3.9 % vs. 52.5 ± 2.6 %; p<0.001) increase in percent surface area coating versus mineralized controls. Co-incubation of rAAV-luciferase (rAAV-Luc) coated DBW with a monolayer of C3H10T1/2 cells in culture led to peak luciferase levels that were not significantly different from soluble rAAV-Luc controls (p>0.05), although the peaks occurred at 60hrs and 12hrs, respectively. To assess the transduction efficiency of rAAV-Luc coated DBW in vivo, we first performed a dose response with allografts containing 107, 109 or 1010 particles that were surgically implanted into the quadriceps of mice, and assayed by in vivo bioluminescence imaging (BLI) on days 1, 3, 5, 7, 10, 14, and 21. The results demonstrated a dose response in which the DBW coated with 1010 rAAV-Luc particles achieved peak gene expression levels on day 3, which persisted until day 21, and was significantly greater than the 107 dose throughout this time period (p<0.01). A direct comparison of mineralized versus DBW coated with 1010 rAAV-Luc particles failed to demonstrate any significant differences in transduction kinetics or efficiency in vivo. Thus, surface demineralization of human cortical bone allograft increase its absorbance for uniform rAAV coating, without affecting vector transduction efficiency. PMID:18590929

  8. Magnetic resonance imaging of trabecular and cortical bone in mice: comparison of high resolution in vivo and ex vivo MR images with corresponding histology.

    PubMed

    Weber, Michael H; Sharp, Jonathan C; Latta, Peter; Sramek, Milos; Hassard, H Thomas; Orr, F William

    2005-01-01

    Measurements of bone morphometry and remodeling have been shown to reflect bone strength and can be used to diagnose degenerative bone disease. In this study, in vivo and ex vivo magnetic resonance imaging (MRI) techniques to assess trabecular and cortical bone properties have been compared to each other and to histology as a novel means for the quantification of bone. Femurs of C57Bl/6 mice were examined both in vivo and ex vivo on an 11.7 T MRI scanner, followed by histologic processing and morphometry. A thresholding analysis technique was applied to the MRI images to generate contour lines and to delineate the boundaries between bone and marrow. Using MRI, an optimal correlation with histology was obtained with an in vivo longitudinal sectioned short echo time gradient-echo versus an in vivo long echo time spin-echo sequence or an ex vivo pulse sequence. Gradient-echo images were acquired with a maximum in-plane resolution of 35 microm. Our results demonstrated that in both the in vivo and ex vivo data sets, the percent area of marrow increases and percent area of trabecular bone and cortical bone thickness decreases moving from the epiphyseal growth plate to the diaphysis. These changes, observed with MRI, correlate with the histological data. Investigations using in vivo MRI gradient-echo sequences consistently gave the best correlation with histology. Our quantitative evaluation using both ex vivo and in vivo MRI was found to be an effective means to visualize non-invasively the normal variation in trabecular and cortical bone as compared to a histological "gold standard" The experiments validated in vivo MRI as a potential high resolution technique for investigating both soft tissue, such as marrow, and bone without radiation exposure.

  9. Segmentation of nanotomographic cortical bone images for quantitative characterization of the osteoctyte lacuno-canalicular network

    NASA Astrophysics Data System (ADS)

    Ciani, A.; Guizar-Sicairos, M.; Diaz, A.; Holler, M.; Pallu, S.; Achiou, Z.; Jennane, R.; Toumi, H.; Lespessailles, E.; Kewish, C. M.

    2016-01-01

    A newly developed data processing method able to characterize the osteocytes lacuno-canalicular network (LCN) is presented. Osteocytes are the most abundant cells in the bone, living in spaces called lacunae embedded inside the bone matrix and connected to each other with an extensive network of canals that allows for the exchange of nutrients and for mechanotransduction functions. The geometrical three-dimensional (3D) architecture is increasingly thought to be related to the macroscopic strength or failure of the bone and it is becoming the focus for investigating widely spread diseases such as osteoporosis. To obtain 3D LCN images non-destructively has been out of reach until recently, since tens-of-nanometers scale resolution is required. Ptychographic tomography was validated for bone imaging in [1], showing clearly the LCN. The method presented here was applied to 3D ptychographic tomographic images in order to extract morphological and geometrical parameters of the lacuno-canalicular structures.

  10. Segmentation of nanotomographic cortical bone images for quantitative characterization of the osteoctyte lacuno-canalicular network

    SciTech Connect

    Ciani, A.; Kewish, C. M.; Guizar-Sicairos, M.; Diaz, A.; Holler, M.; Pallu, S.; Achiou, Z.; Jennane, R.; Toumi, H.; Lespessailles, E.

    2016-01-28

    A newly developed data processing method able to characterize the osteocytes lacuno-canalicular network (LCN) is presented. Osteocytes are the most abundant cells in the bone, living in spaces called lacunae embedded inside the bone matrix and connected to each other with an extensive network of canals that allows for the exchange of nutrients and for mechanotransduction functions. The geometrical three-dimensional (3D) architecture is increasingly thought to be related to the macroscopic strength or failure of the bone and it is becoming the focus for investigating widely spread diseases such as osteoporosis. To obtain 3D LCN images non-destructively has been out of reach until recently, since tens-of-nanometers scale resolution is required. Ptychographic tomography was validated for bone imaging in [1], showing clearly the LCN. The method presented here was applied to 3D ptychographic tomographic images in order to extract morphological and geometrical parameters of the lacuno-canalicular structures.

  11. Effects of Habitual Physical Activity and Fitness on Tibial Cortical Bone Mass, Structure and Mass Distribution in Pre-pubertal Boys and Girls: The Look Study.

    PubMed

    Duckham, Rachel L; Rantalainen, Timo; Ducher, Gaele; Hill, Briony; Telford, Richard D; Telford, Rohan M; Daly, Robin M

    2016-07-01

    Targeted weight-bearing activities during the pre-pubertal years can improve cortical bone mass, structure and distribution, but less is known about the influence of habitual physical activity (PA) and fitness. This study examined the effects of contrasting habitual PA and fitness levels on cortical bone density, geometry and mass distribution in pre-pubertal children. Boys (n = 241) and girls (n = 245) aged 7-9 years had a pQCT scan to measure tibial mid-shaft total, cortical and medullary area, cortical thickness, density, polar strength strain index (SSIpolar) and the mass/density distribution through the bone cortex (radial distribution divided into endo-, mid- and pericortical regions) and around the centre of mass (polar distribution). Four contrasting PA and fitness groups (inactive-unfit, inactive-fit, active-unfit, active-fit) were generated based on daily step counts (pedometer, 7-days) and fitness levels (20-m shuttle test and vertical jump) for boys and girls separately. Active-fit boys had 7.3-7.7 % greater cortical area and thickness compared to inactive-unfit boys (P < 0.05), which was largely due to a 6.4-7.8 % (P < 0.05) greater cortical mass in the posterior-lateral, medial and posterior-medial 66 % tibial regions. Cortical area was not significantly different across PA-fitness categories in girls, but active-fit girls had 6.1 % (P < 0.05) greater SSIpolar compared to inactive-fit girls, which was likely due to their 6.7 % (P < 0.05) greater total bone area. There was also a small region-specific cortical mass benefit in the posterior-medial 66 % tibia cortex in active-fit girls. Higher levels of habitual PA-fitness were associated with small regional-specific gains in 66 % tibial cortical bone mass in pre-pubertal children, particularly boys.

  12. Optimization of process parameters for drilled hole quality characteristics during cortical bone drilling using Taguchi method.

    PubMed

    Singh, Gurmeet; Jain, Vivek; Gupta, Dheeraj; Ghai, Aman

    2016-09-01

    Orthopaedic surgery involves drilling of bones to get them fixed at their original position. The drilling process used in orthopaedic surgery is most likely to the mechanical drilling process and there is all likelihood that it may harm the already damaged bone, the surrounding bone tissue and nerves, and the peril is not limited at that. It is very much feared that the recovery of that part may be impeded so that it may not be able to sustain life long. To achieve sustainable orthopaedic surgery, a surgeon must try to control the drilling damage at the time of bone drilling. The area around the holes decides the life of bone joint and so, the contiguous area of drilled hole must be intact and retain its properties even after drilling. This study mainly focuses on optimization of drilling parameters like rotational speed, feed rate and the type of tool at three levels each used by Taguchi optimization for surface roughness and material removal rate. The confirmation experiments were also carried out and results found with the confidence interval. Scanning electrode microscopy (SEM) images assisted in getting the micro level information of bone damage.

  13. Technical note: Recommendations for a standard procedure to assess cortical bone at the tissue-level in vivo using impact microindentation

    PubMed Central

    Diez-Perez, A.; Bouxsein, M.L.; Eriksen, E.F.; Khosla, S.; Nyman, J.S.; Papapoulos, S.; Tang, S.Y.

    2016-01-01

    Impact microindentation is a novel method for measuring the resistance of cortical bone to indentation in patients. Clinical use of a handheld impact microindentation technique is expanding, highlighting the need to standardize the measurement technique. Here, we describe a detailed standard operation procedure to improve the consistency and comparability of the measurements across centers. PMID:27975078

  14. Variations in the vestibular cortical bone of permanent canine teeth in orthodontic patients. a comparative study: linear tomography vs. cbct (3d accuitomo).

    PubMed

    Mateu, María E; Martínez, M E; Dagum, H; Benítez Rogé, Sandra C; Bruno, Gabriela I; Hecht, Pedro; Folco, Alejandra A

    2014-01-01

    The aim of this study was to compare the results of measuring the height of the vestibular cortical bone of canine teeth by linear tomography (LT) and 3-D Accuitomo cone beam computed tomography (CBCT) before and after aligning dental arches by orthodontic treatment. LT and CBCT were performed before and after orthodontic alignment on 12 canines in three patients undergoing orthodontic treatment, and the height of the canine vestibular cortical bones measured in mm. Measurements were taken by double-blinded operators. The mean variation in height of the vestibular cortical bone with orthodontic treatment was - 0,33 mm} 0.233 standard error using CBCT and -0,08mm } 0.55 standard error using LT. Analysis of variance (ANOVA) was performed to compare the techniques, the patients and upper and lower canines. No significant difference was found for any of the cases. Using LT to evaluate vestibular crest cortical bone in canines is comparable in efficiency to using CBCT. Height in millimeters is less in LT because image resolution is lower and when it is very thin it is not appreciable by this method.

  15. Cortical bone trajectory screws placement via pedicle or pedicle rib unit in the pediatric thoracic spine (T9-T12)

    PubMed Central

    Xuan, Jun; Chen, Jian; He, Hui; Jin, Hai-Ming; Zhang, Di; Wu, Yao-Sen; Tian, Nai-Feng; Wang, Xiang-Yang

    2017-01-01

    Abstract Thoracic cortical bone trajectory (CBT) screw fixation can maximize the thread contact with cortical bone, and it is 53.8% higher than that of the traditional pedicle screws. Moreover, it can also enable less tissue dissection and retraction for reduced muscle disruption. Eighty pediatric patients are divided into 4 age groups and their thoracic vertebrae are analyzed on computed tomography (CT) images. The maximal screw length, maximal screw diameter, screw diameter, and the cephalad angle are measured. The statistical analysis is performed using the Student's t-test and Pearson's correlation analysis. Maximal screw length increases from T9 to T12 and there are significant differences between girls and boys at T9, T10, T11, and T12 in majority of groups (P < 0.05). The maximal screw diameter and screw diameter increase from T9 to T12. The maximal screw diameter ranges from 6.27 mm to 10.20 mm, whereas the screw diameter ranges from 3.87 mm to 6.75 mm. Meanwhile, the maximum cephalad angle is 23.06° and the minimum is 13.11°. No statistically significant differences in the cephalad angle are found at all levels. Our study establishes the feasibility of 4.5 to 5.5 mm CBT screws fixation via pedicle or pedicle rib unit in the pediatric thoracic spine. The entry point of the pediatric thoracic CBT screws is 6 o’clock orientation of the pedicle. Findings of our study also provide insights into the screw insertion angle and screw size decision. PMID:28151859

  16. Predicting Hip Fracture Type With Cortical Bone Mapping (CBM) in the Osteoporotic Fractures in Men (MrOS) Study.

    PubMed

    Treece, Graham M; Gee, Andrew H; Tonkin, Carol; Ewing, Susan K; Cawthon, Peggy M; Black, Dennis M; Poole, Kenneth E S

    2015-11-01

    Hip fracture risk is known to be related to material properties of the proximal femur, but fracture prediction studies adding richer quantitative computed tomography (QCT) measures to dual-energy X-ray (DXA)-based methods have shown limited improvement. Fracture types have distinct relationships to predictors, but few studies have subdivided fracture into types, because this necessitates regional measurements and more fracture cases. This work makes use of cortical bone mapping (CBM) to accurately assess, with no prior anatomical presumptions, the distribution of properties related to fracture type. CBM uses QCT data to measure the cortical and trabecular properties, accurate even for thin cortices below the imaging resolution. The Osteoporotic Fractures in Men (MrOS) study is a predictive case-cohort study of men over 65 years old: we analyze 99 fracture cases (44 trochanteric and 55 femoral neck) compared to a cohort of 308, randomly selected from 5994. To our knowledge, this is the largest QCT-based predictive hip fracture study to date, and the first to incorporate CBM analysis into fracture prediction. We show that both cortical mass surface density and endocortical trabecular BMD are significantly different in fracture cases versus cohort, in regions appropriate to fracture type. We incorporate these regions into predictive models using Cox proportional hazards regression to estimate hazard ratios, and logistic regression to estimate area under the receiver operating characteristic curve (AUC). Adding CBM to DXA-based BMD leads to a small but significant (p < 0.005) improvement in model prediction for any fracture, with AUC increasing from 0.78 to 0.79, assessed using leave-one-out cross-validation. For specific fracture types, the improvement is more significant (p < 0.0001), with AUC increasing from 0.71 to 0.77 for trochanteric fractures and 0.76 to 0.82 for femoral neck fractures. In contrast, adding DXA-based BMD to a CBM-based predictive model

  17. Segmentation of histology slides of cortical bone using pulse coupled neural networks optimized by particle-swarm optimization.

    PubMed

    Hage, Ilige S; Hamade, Ramsey F

    2013-01-01

    The aim of this study is to automatically discern the micro-features in histology slides of cortical bone using pulse coupled neural networks (PCNN). To the best knowledge of the authors, utilizing PCNN in such an application has not been reported in the literature and, as such, constitutes a novel application. The network parameters are optimized using particle swarm optimization (PSO) where the PSO fitness function was introduced as the entropy and energy of the bone micro-constituents extracted from a training image. Another novel contribution is combining the above with the method of adaptive threshold (T) where the PCNN algorithm is repeated until the best threshold T is found corresponding to the maximum variance between two segmented regions. To illustrate the quality of resulting segmentation according to this methodology, a comparison of the entropy/energy obtained of each pulse is reported. Suitable quality metrics (precision rate, sensitivity, specificity, accuracy, and dice) were used to benchmark the resulting segments against those found by a more traditional method namely K-means. The quality of the segments revealed by this methodology was found to be of much superior quality. Another testament to the quality of this methodology was that the images resulting from testing pulses were found to be of similarly good quality to those of the training images.

  18. The anabolic action of intermittent parathyroid hormone on cortical bone depends partly on its ability to induce nitric oxide-mediated vasorelaxation in BALB/c mice.

    PubMed

    Gohin, S; Carriero, A; Chenu, C; Pitsillides, A A; Arnett, T R; Marenzana, M

    2016-03-01

    There is strong evidence that vasodilatory nitric oxide (NO) donors have anabolic effects on bone in humans. Parathyroid hormone (PTH), the only osteoanabolic drug currently approved, is also a vasodilator. We investigated whether the NO synthase inhibitor L-NAME might alter the effect of PTH on bone by blocking its vasodilatory effect. BALB/c mice received 28 daily injections of PTH[1-34] (80 µg/kg/day) or L-NAME (30 mg/kg/day), alone or in combination. Hindlimb blood perfusion was measured by laser Doppler imaging. Bone architecture, turnover and mechanical properties in the femur were analysed respectively by micro-CT, histomorphometry and three-point bending. PTH increased hindlimb blood flow by >30% within 10 min of injection (P < 0.001). Co-treatment with L-NAME blocked the action of PTH on blood flow, whereas L-NAME alone had no effect. PTH treatment increased femoral cortical bone volume and formation rate by 20% and 110%, respectively (P < 0.001). PTH had no effect on trabecular bone volume in the femoral metaphysis although trabecular thickness and number were increased and decreased by 25%, respectively. Co-treatment with L-NAME restricted the PTH-stimulated increase in cortical bone formation but had no clear-cut effects in trabecular bone. Co-treatment with L-NAME did not affect the mechanical strength in femurs induced by iPTH. These results suggest that NO-mediated vasorelaxation plays partly a role in the anabolic action of PTH on cortical bone.

  19. k-space sampling optimization for ultrashort TE imaging of cortical bone: Applications in radiation therapy planning and MR-based PET attenuation correction

    PubMed Central

    Hu, Lingzhi; Su, Kuan-Hao; Pereira, Gisele C.; Grover, Anu; Traughber, Bryan; Traughber, Melanie; Muzic, Raymond F.

    2014-01-01

    Purpose: The ultrashort echo-time (UTE) sequence is a promising MR pulse sequence for imaging cortical bone which is otherwise difficult to image using conventional MR sequences and also poses strong attenuation for photons in radiation therapy and PET imaging. The authors report here a systematic characterization of cortical bone signal decay and a scanning time optimization strategy for the UTE sequence through k-space undersampling, which can result in up to a 75% reduction in acquisition time. Using the undersampled UTE imaging sequence, the authors also attempted to quantitatively investigate the MR properties of cortical bone in healthy volunteers, thus demonstrating the feasibility of using such a technique for generating bone-enhanced images which can be used for radiation therapy planning and attenuation correction with PET/MR. Methods: An angularly undersampled, radially encoded UTE sequence was used for scanning the brains of healthy volunteers. Quantitative MR characterization of tissue properties, including water fraction and R2∗ = 1/T2∗, was performed by analyzing the UTE images acquired at multiple echo times. The impact of different sampling rates was evaluated through systematic comparison of the MR image quality, bone-enhanced image quality, image noise, water fraction, and R2∗ of cortical bone. Results: A reduced angular sampling rate of the UTE trajectory achieves acquisition durations in proportion to the sampling rate and in as short as 25% of the time required for full sampling using a standard Cartesian acquisition, while preserving unique MR contrast within the skull at the cost of a minimal increase in noise level. The R2∗ of human skull was measured as 0.2–0.3 ms−1 depending on the specific region, which is more than ten times greater than the R2∗ of soft tissue. The water fraction in human skull was measured to be 60%–80%, which is significantly less than the >90% water fraction in brain. High-quality, bone

  20. k-space sampling optimization for ultrashort TE imaging of cortical bone: Applications in radiation therapy planning and MR-based PET attenuation correction

    SciTech Connect

    Hu, Lingzhi E-mail: raymond.muzic@case.edu; Traughber, Melanie; Su, Kuan-Hao; Pereira, Gisele C.; Grover, Anu; Traughber, Bryan; Muzic, Raymond F. Jr. E-mail: raymond.muzic@case.edu

    2014-10-15

    Purpose: The ultrashort echo-time (UTE) sequence is a promising MR pulse sequence for imaging cortical bone which is otherwise difficult to image using conventional MR sequences and also poses strong attenuation for photons in radiation therapy and PET imaging. The authors report here a systematic characterization of cortical bone signal decay and a scanning time optimization strategy for the UTE sequence through k-space undersampling, which can result in up to a 75% reduction in acquisition time. Using the undersampled UTE imaging sequence, the authors also attempted to quantitatively investigate the MR properties of cortical bone in healthy volunteers, thus demonstrating the feasibility of using such a technique for generating bone-enhanced images which can be used for radiation therapy planning and attenuation correction with PET/MR. Methods: An angularly undersampled, radially encoded UTE sequence was used for scanning the brains of healthy volunteers. Quantitative MR characterization of tissue properties, including water fraction and R2{sup ∗} = 1/T2{sup ∗}, was performed by analyzing the UTE images acquired at multiple echo times. The impact of different sampling rates was evaluated through systematic comparison of the MR image quality, bone-enhanced image quality, image noise, water fraction, and R2{sup ∗} of cortical bone. Results: A reduced angular sampling rate of the UTE trajectory achieves acquisition durations in proportion to the sampling rate and in as short as 25% of the time required for full sampling using a standard Cartesian acquisition, while preserving unique MR contrast within the skull at the cost of a minimal increase in noise level. The R2{sup ∗} of human skull was measured as 0.2–0.3 ms{sup −1} depending on the specific region, which is more than ten times greater than the R2{sup ∗} of soft tissue. The water fraction in human skull was measured to be 60%–80%, which is significantly less than the >90% water fraction in

  1. Morphometric analysis of cortical bone upon the exposure to sustained delivery of anabolic promoting agents using adult male rats as a model.

    PubMed

    Tramontana, J; Benghuzzi, H; Tucci, M; Tsao, A; Hughes, J

    2001-01-01

    Several investigations have documented that the use of anabolic agents could promote osteogenesis and enhance bone ingrowth in traumatized bone. Previously, anabolic steroids have been shown to increase the mineralization of bone. However, their clinical use has been limited because of the unwanted virilizing activity. The previous studies used systemic administration of anabolic steroids, which subjects other tissues within the body to high concentrations of hormones. In addition, different anabolic/androgenic steroids have varying affinities to different cell types within tissues. The specific objectives of this study were (i) to histopathologically evaluate the structural changes associated with sustained delivery of testosterone (T), dihydrotestosterone (DHT), and androstendione (AED) using adult male rats as a model, and (ii) to morphometrically evaluate the cortical areas and length upon the exposure of the aforementioned hormones for 90 days. A total of 23 adult rats were randomly divided into five groups (group I = control, group II = sham, group III = AED, Group IV = T and group V = DHT treated). At the end of the treatments the animals were euthanized and the x-rays, blood, and bones were analyzed using standard laboratory protocols. Data obtained from this investigation revealed the following: (A) all treated femurs appeared healthy with no traumatic responses observed in comparison to control animals, (B) measurements of the inner perimeter of the bone on the endosteal side showed significant reduction in the androgen treated animals. This suggesting that the androgens caused increases in the cortical bone. The differences seen in the amount of reduction was in the following ease: T > DHT > AED. C) quantitative measurements of the cortical length showed slight increases in the cortical lengths in the androgen treated rats in comparison to the control.

  2. Curcumin reduces trabecular and cortical bone in naive and Lewis lung carcinoma-bearing mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study investigated the effects of dietary supplementation with curcumin on bone microstructural changes in female C57BL/6 mice in the presence or absence of Lewis lung carcinoma. Morphometric analysis showed that in tumor-bearing mice curcumin at 2% and 4% dietary levels (w/w) significa...

  3. Curcumin deteriorates trabecular and cortical bone in mice bearing metastatic Lewis lung carcinoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bone is a major target of metastasis for many malignancies; curcumin has been studied for its role in cancer prevention including early phase clinical trials for its efficacy and safe use with cancer patients. The present study investigated the effects of dietary supplementation with curcumin (2% a...

  4. A murine skeletal adaptation that significantly increases cortical bone mechanical properties. Implications for human skeletal fragility.

    PubMed Central

    Bonadio, J; Jepsen, K J; Mansoura, M K; Jaenisch, R; Kuhn, J L; Goldstein, S A

    1993-01-01

    Mov13 mice carry a provirus that prevents transcription initiation of the alpha 1(I) collagen gene. Mutant mice homozygous for the null mutation produce no type I collagen and die at mid-gestation, whereas heterozygotes survive to adulthood. Dermal fibroblasts from heterozygous mice produce approximately 50% less type I collagen than normal littermates, and the partial deficiency in collagen production results in a phenotype similar to osteogenesis imperfecta type I (an inherited form of skeletal fragility). In this study, we have identified an adaptation of Mov13 skeletal tissue that significantly improves the bending strength of long bone. The adaptive response occurred over a 2-mo period, during which time a small number of newly proliferated osteogenic cells produced a significant amount of matrix components and thus generated new bone along periosteal surfaces. New bone deposition resulted in a measurable increase in cross-sectional geometry which, in turn, led to a dramatic increase in long bone bending strength. Images PMID:8408623

  5. Comparison of dose calculation algorithms in slab phantoms with cortical bone equivalent heterogeneities.

    PubMed

    Carrasco, P; Jornet, N; Duch, M A; Panettieri, V; Weber, L; Eudaldo, T; Ginjaume, M; Ribas, M

    2007-08-01

    To evaluate the dose values predicted by several calculation algorithms in two treatment planning systems, Monte Carlo (MC) simulations and measurements by means of various detectors were performed in heterogeneous layer phantoms with water- and bone-equivalent materials. Percentage depth doses (PDDs) were measured with thermoluminescent dosimeters (TLDs), metal-oxide semiconductor field-effect transistors (MOSFETs), plane parallel and cylindrical ionization chambers, and beam profiles with films. The MC code used for the simulations was the PENELOPE code. Three different field sizes (10 x 10, 5 x 5, and 2 x 2 cm2) were studied in two phantom configurations and a bone equivalent material. These two phantom configurations contained heterogeneities of 5 and 2 cm of bone, respectively. We analyzed the performance of four correction-based algorithms and one based on convolution superposition. The correction-based algorithms were the Batho, the Modified Batho, the Equivalent TAR implemented in the Cadplan (Varian) treatment planning system (TPS), and the Helax-TMS Pencil Beam from the Helax-TMS (Nucletron) TPS. The convolution-superposition algorithm was the Collapsed Cone implemented in the Helax-TMS. All the correction-based calculation algorithms underestimated the dose inside the bone-equivalent material for 18 MV compared to MC simulations. The maximum underestimation, in terms of root-mean-square (RMS), was about 15% for the Helax-TMS Pencil Beam (Helax-TMS PB) for a 2 x 2 cm2 field inside the bone-equivalent material. In contrast, the Collapsed Cone algorithm yielded values around 3%. A more complex behavior was found for 6 MV where the Collapsed Cone performed less well, overestimating the dose inside the heterogeneity in 3%-5%. The rebuildup in the interface bone-water and the penumbra shrinking in high-density media were not predicted by any of the calculation algorithms except the Collapsed Cone, and only the MC simulations matched the experimental values

  6. Comparison of dose calculation algorithms in slab phantoms with cortical bone equivalent heterogeneities

    SciTech Connect

    Carrasco, P.; Jornet, N.; Duch, M. A.; Panettieri, V.; Weber, L.; Eudaldo, T.; Ginjaume, M.; Ribas, M.

    2007-08-15

    To evaluate the dose values predicted by several calculation algorithms in two treatment planning systems, Monte Carlo (MC) simulations and measurements by means of various detectors were performed in heterogeneous layer phantoms with water- and bone-equivalent materials. Percentage depth doses (PDDs) were measured with thermoluminescent dosimeters (TLDs), metal-oxide semiconductor field-effect transistors (MOSFETs), plane parallel and cylindrical ionization chambers, and beam profiles with films. The MC code used for the simulations was the PENELOPE code. Three different field sizes (10x10, 5x5, and 2x2 cm{sup 2}) were studied in two phantom configurations and a bone equivalent material. These two phantom configurations contained heterogeneities of 5 and 2 cm of bone, respectively. We analyzed the performance of four correction-based algorithms and one based on convolution superposition. The correction-based algorithms were the Batho, the Modified Batho, the Equivalent TAR implemented in the Cadplan (Varian) treatment planning system (TPS), and the Helax-TMS Pencil Beam from the Helax-TMS (Nucletron) TPS. The convolution-superposition algorithm was the Collapsed Cone implemented in the Helax-TMS. All the correction-based calculation algorithms underestimated the dose inside the bone-equivalent material for 18 MV compared to MC simulations. The maximum underestimation, in terms of root-mean-square (RMS), was about 15% for the Helax-TMS Pencil Beam (Helax-TMS PB) for a 2x2 cm{sup 2} field inside the bone-equivalent material. In contrast, the Collapsed Cone algorithm yielded values around 3%. A more complex behavior was found for 6 MV where the Collapsed Cone performed less well, overestimating the dose inside the heterogeneity in 3%-5%. The rebuildup in the interface bone-water and the penumbra shrinking in high-density media were not predicted by any of the calculation algorithms except the Collapsed Cone, and only the MC simulations matched the experimental values

  7. Age- and Sex-Dependent Changes of Intra-articular Cortical and Trabecular Bone Structure and the Effects of Rheumatoid Arthritis.

    PubMed

    Simon, David; Kleyer, Arnd; Stemmler, Fabian; Simon, Christoph; Berlin, Andreas; Hueber, Axel J; Haschka, Judith; Renner, Nina; Figueiredo, Camille; Neuhuber, Winfried; Buder, Thomas; Englbrecht, Matthias; Rech, Juergen; Engelke, Klaus; Schett, Georg

    2016-10-27

    The objective of this cross-sectional study was to define normal sex- and age-dependent values of intra-articular bone mass and microstructures in the metacarpal heads of healthy individuals by high-resolution peripheral quantitative computed tomography (HR-pQCT) and test the effect of rheumatoid arthritis (RA) on these parameters. Human cadaveric metacarpal heads were used to exactly define intra-articular bone. Healthy individuals of different sex and age categories and RA patients with similar age and sex distribution received HR-pQCT scans of the second metacarpal head and the radius. Total, cortical, and trabecular bone densities as well as microstructural parameters were compared between 1) the different ages and sexes in healthy individuals; 2) between metacarpal heads and the radius; and 3) between healthy individuals and RA patients. The cadaveric study allowed exact definition of the intra-articular (intracapsular) bone margins. These data were applied in measuring intra-articular and radial bone parameters in 214 women and men (108 healthy individuals, 106 RA patients). Correlations between intra-articular and radial bone parameters were good (r = 0.51 to 0.62, p < 0.001). In contrast to radial bone, intra-articular bone remained stable until age 60 years (between 297 and 312 mg HA/cm(3) ) but decreased significantly (p < 0.001) in women thereafter (237.5 ± 44.3) with loss of both cortical and trabecular bone. Similarly, RA patients showed significant (p < 0.001) loss of intra-articular total (263.0 ± 44.8), trabecular (171.2 ± 35.6), and cortical bone (610.2 ± 62.0) compared with sex- and age-adjusted controls. Standard sex- and age-dependent values for physiological intra-articular bone were defined. Postmenopausal state and RA led to significant decrease of intra-articular bone. © 2016 American Society for Bone and Mineral Research.

  8. Age-specific profiles of tissue-level composition and mechanical properties in murine cortical bone

    PubMed Central

    Raghavan, Mekhala; Sahar, Nadder D.; Kohn, David H.; Morris, Michael D.

    2012-01-01

    There is growing evidence that bone composition and tissue-level mechanical properties are significant determinants of skeletal integrity. In the current study, Raman spectroscopy and nanoindentation testing were co-localized to analyze tissue-level compositional and mechanical properties in skeletally mature young (4 or 5 months) and old (19 months) murine femora at similar spatial scales. Standard multivariate linear regression analysis revealed age-dependent patterns in the relationships between mechanical and compositional properties at the tissue scale. However, changes in bone material properties with age are often complex and nonlinear, and can be missed with linear regression and correlation-based methods. A retrospective data mining approach was implemented using non-linear multidimensional visualization and classification to identify spectroscopic and nanoindentation metrics that best discriminated bone specimens of different age-classes. The ability to classify the specimens into the correct age group increased by using combinations of Raman and nanoindentation variables (86–96% accuracy) as compared to using individual measures (59–79% accuracy). Metrics that best classified 4 or 5 month and 19 month specimens (2-age classes) were mineral to matrix ratio, crystallinity, modulus and plasticity index. Metrics that best distinguished between 4, 5 and 19 month specimens (3-age classes) were mineral to matrix ratio, crystallinity, modulus, hardness, cross-linking, carbonate to phosphate ratio, creep displacement and creep viscosity. These findings attest to the complexity of mechanisms underlying bone tissue properties and draw attention to the importance of considering non-linear interactions between tissue-level composition and mechanics that may work together to influence material properties with age. The results demonstrate that a few non-linearly combined compositional and mechanical metrics provide better discriminatory information than a single

  9. Small body size and extreme cortical bone remodeling indicate phyletic dwarfism in Magyarosaurus dacus (Sauropoda: Titanosauria).

    PubMed

    Stein, Koen; Csiki, Zoltan; Rogers, Kristina Curry; Weishampel, David B; Redelstorff, Ragna; Carballido, Jose L; Sander, P Martin

    2010-05-18

    Sauropods were the largest terrestrial tetrapods (>10(5) kg) in Earth's history and grew at rates that rival those of extant mammals. Magyarosaurus dacus, a titanosaurian sauropod from the Upper Cretaceous (Maastrichtian) of Romania, is known exclusively from small individuals (<10(3) kg) and conflicts with the idea that all sauropods were massive. The diminutive M. dacus was a classical example of island dwarfism (phyletic nanism) in dinosaurs, but a recent study suggested that the small Romanian titanosaurs actually represent juveniles of a larger-bodied taxon. Here we present strong histological evidence that M. dacus was indeed a dwarf (phyletic nanoid). Bone histological analysis of an ontogenetic series of Magyarosaurus limb bones indicates that even the smallest Magyarosaurus specimens exhibit a bone microstructure identical to fully mature or old individuals of other sauropod taxa. Comparison of histologies with large-bodied sauropods suggests that Magyarosaurus had an extremely reduced growth rate, but had retained high basal metabolic rates typical for sauropods. The uniquely decreased growth rate and diminutive body size in Magyarosaurus were adaptations to life on a Cretaceous island and show that sauropod dinosaurs were not exempt from general ecological principles limiting body size.

  10. Small body size and extreme cortical bone remodeling indicate phyletic dwarfism in Magyarosaurus dacus (Sauropoda: Titanosauria)

    PubMed Central

    Stein, Koen; Csiki, Zoltan; Rogers, Kristina Curry; Weishampel, David B.; Redelstorff, Ragna; Carballido, Jose L.; Sander, P. Martin

    2010-01-01

    Sauropods were the largest terrestrial tetrapods (>105 kg) in Earth's history and grew at rates that rival those of extant mammals. Magyarosaurus dacus, a titanosaurian sauropod from the Upper Cretaceous (Maastrichtian) of Romania, is known exclusively from small individuals (<103 kg) and conflicts with the idea that all sauropods were massive. The diminutive M. dacus was a classical example of island dwarfism (phyletic nanism) in dinosaurs, but a recent study suggested that the small Romanian titanosaurs actually represent juveniles of a larger-bodied taxon. Here we present strong histological evidence that M. dacus was indeed a dwarf (phyletic nanoid). Bone histological analysis of an ontogenetic series of Magyarosaurus limb bones indicates that even the smallest Magyarosaurus specimens exhibit a bone microstructure identical to fully mature or old individuals of other sauropod taxa. Comparison of histologies with large-bodied sauropods suggests that Magyarosaurus had an extremely reduced growth rate, but had retained high basal metabolic rates typical for sauropods. The uniquely decreased growth rate and diminutive body size in Magyarosaurus were adaptations to life on a Cretaceous island and show that sauropod dinosaurs were not exempt from general ecological principles limiting body size. PMID:20435913

  11. Loading rate effects on the R-curve behavior of cortical bone.

    PubMed

    Kulin, Robb M; Jiang, Fengchun; Vecchio, Kenneth S

    2011-02-01

    Rising resistance curve (R-curve) behavior in bone during quasi-static experiments has demonstrated the importance of microstructural toughening mechanisms in resisting fracture. However, despite clinical bone fracture primarily occurring under dynamic loading and the significant changes in material behavior observed with increasing strain rates, there have been no previous investigations into whether crack growth resistance is maintained during dynamic fracture. Using a novel modified split-Hopkinson pressure bar coupled with a high-speed camera to measure crack propagation, we present the first evidence of rising R-curve behavior in bone under dynamic loading (∼2 × 10(5)MPam(1/2)s(-1)). Results indicate that rising R-curve behavior is maintained, although with lower crack initiation toughness and propagation resistance than observed in quasi-static experiments. Observations of crack initiation and propagation in double-notched specimens using confocal fluorescence microscopy and electron microscopy suggest that this is due to subtle differences in toughening mechanisms between quasi-static and dynamic fracture.

  12. American Society of Biomechanics Journal of Biomechanics Award 2013: cortical bone tissue mechanical quality and biological mechanisms possibly underlying atypical fractures.

    PubMed

    Geissler, Joseph R; Bajaj, Devendra; Fritton, J Christopher

    2015-04-13

    The biomechanics literature contains many well-understood mechanisms behind typical fracture types that have important roles in treatment planning. The recent association of "atypical" fractures with long-term use of drugs designed to prevent osteoporosis has renewed interest in the effects of agents on bone tissue-level quality. While this class of fracture was recognized prior to the introduction of the anti-resorptive bisphosphonate drugs and recently likened to stress fractures, the mechanism(s) that lead to atypical fractures have not been definitively identified. Thus, a causal relationship between these drugs and atypical fracture has not been established. Physicians, bioengineers and others interested in the biomechanics of bone are working to improve fracture-prevention diagnostics, and the design of treatments to avoid this serious side-effect in the future. This review examines the mechanisms behind the bone tissue damage that may produce the atypical fracture pattern observed increasingly with long-term bisphosphonate use. Our recent findings and those of others reviewed support that the mechanisms behind normal, healthy excavation and tunnel filling by bone remodeling units within cortical tissue strengthen mechanical integrity. The ability of cortical bone to resist the damage induced during cyclic loading may be altered by the reduced remodeling and increased tissue age resulting from long-term bisphosphonate treatment. Development of assessments for such potential fractures would restore confidence in pharmaceutical treatments that have the potential to spare millions in our aging population from the morbidity and death that often follow bone fracture.

  13. Multi-level characterization of human femoral cortices and their underlying osteocyte network reveal trends in quality of young, aged, osteoporotic and antiresorptive-treated bone.

    PubMed

    Milovanovic, Petar; Zimmermann, Elizabeth A; Riedel, Christoph; vom Scheidt, Annika; Herzog, Lydia; Krause, Matthias; Djonic, Danijela; Djuric, Marija; Püschel, Klaus; Amling, Michael; Ritchie, Robert O; Busse, Björn

    2015-03-01

    Characterization of bone's hierarchical structure in aging, disease and treatment conditions is imperative to understand the architectural and compositional modifications to the material and its mechanical integrity. Here, cortical bone sections from 30 female proximal femurs - a frequent fracture site - were rigorously assessed to characterize the osteocyte lacunar network, osteon density and patterns of bone matrix mineralization by backscatter-electron imaging and Fourier-transform infrared spectroscopy in relation to mechanical properties obtained by reference-point indentation. We show that young, healthy bone revealed the highest resistance to mechanical loading (indentation) along with higher mineralization and preserved osteocyte-lacunar characteristics. In contrast, aging and osteoporosis significantly alter bone material properties, where impairment of the osteocyte-lacunar network was evident through accumulation of hypermineralized osteocyte lacunae with aging and even more in osteoporosis, highlighting increased osteocyte apoptosis and reduced mechanical competence. But antiresorptive treatment led to fewer mineralized lacunae and fewer but larger osteons signifying rejuvenated bone. In summary, multiple structural and compositional changes to the bone material were identified leading to decay or maintenance of bone quality in disease, health and treatment conditions. Clearly, antiresorptive treatment reflected favorable effects on the multifunctional osteocytic cells that are a prerequisite for bone's structural, metabolic and mechanosensory integrity.

  14. Distributional Variations in the Quantitative Cortical and Trabecular Bone Radiographic Measurements of Mandible, between Male and Female Populations of Korea, and its Utilization

    PubMed Central

    Park, Soon-Yong; Heo, Min-Suk; Chien, Sung-Il

    2016-01-01

    It is important to investigate the irregularities in aging-associated changes in bone, between men and women for bone strength and osteoporosis. The purpose of this study was to characterize the changes and associations of mandibular cortical and trabecular bone measures of men and women based on age and to the evaluation of cortical shape categories, in a large Korean population. Panoramic radiographs of 1047 subjects (603 women and 444 men) aged between 15 to 90 years were used. Mandibular cortical width (MCW), mandibular cortical index (MCI), and fractal dimensions (FD) of the molar, premolar, and anterior regions of the mandibular trabecular bone were measured. Study subjects were grouped into six 10-years age groups. A local linear regression smoothing with bootstrap resampling for robust fitting of data was used to estimate the relationship between radiographic mandibular variables and age groups as well as genders. The mean age of women (49.56 ± 19.5 years) was significantly higher than that of men (45.57 ± 19.6 years). The MCW of men and women (3.17mm and 2.91mm, respectively, p < 0.0001) was strongly associated with age and MCI. Indeed, trabecular measures also correlated with age in men (r > −0.140, p = 0.003), though not as strongly as in women (r > −0.210, p < 0.0001). In men aged over 55 years, only MCW was significantly associated (r = −0.412, p < 0.0001). Furthermore, by comparison of mandibular variables from different age groups and MCI categories, the results suggest that MCW was detected to be strongly associated in both men and women for the detection of bone strength and osteoporosis. The FD measures revealed relatively higher association with age among women than men, but not as strong as MCW. PMID:28002443

  15. Six months of disuse during hibernation does not increase intracortical porosity or decrease cortical bone geometry, strength, or mineralization in black bear (Ursus americanus) femurs.

    PubMed

    McGee-Lawrence, Meghan E; Wojda, Samantha J; Barlow, Lindsay N; Drummer, Thomas D; Bunnell, Kevin; Auger, Janene; Black, Hal L; Donahue, Seth W

    2009-07-22

    Disuse typically uncouples bone formation from resorption, leading to bone loss which compromises bone mechanical properties and increases the risk of bone fracture. Previous studies suggest that bears can prevent bone loss during long periods of disuse (hibernation), but small sample sizes have limited the conclusions that can be drawn regarding the effects of hibernation on bone structure and strength in bears. Here we quantified the effects of hibernation on structural, mineral, and mechanical properties of black bear (Ursus americanus) cortical bone by studying femurs from large groups of male and female bears (with wide age ranges) killed during pre-hibernation (fall) and post-hibernation (spring) periods. Bone properties that are affected by body mass (e.g. bone geometrical properties) tended to be larger in male compared to female bears. There were no differences (p>0.226) in bone structure, mineral content, or mechanical properties between fall and spring bears. Bone geometrical properties differed by less than 5% and bone mechanical properties differed by less than 10% between fall and spring bears. Porosity (fall: 5.5+/-2.2%; spring: 4.8+/-1.6%) and ash fraction (fall: 0.694+/-0.011; spring: 0.696+/-0.010) also showed no change (p>0.304) between seasons. Statistical power was high (>72%) for these analyses. Furthermore, bone geometrical properties and ash fraction (a measure of mineral content) increased with age and porosity decreased with age. These results support the idea that bears possess a biological mechanism to prevent disuse and age-related osteoporoses.

  16. Prostaglandin E2 (PGE2) and risedronate was superior to PGE2 alone in maintaining newly added bone in the cortical bone site after withdrawal in older intact rats

    NASA Technical Reports Server (NTRS)

    Ma, Y. F.; Lin, B. Y.; Jee, W. S.; Lin, C. H.; Chen, Y. Y.; Ke, H. Z.; Li, X. J.

    1997-01-01

    The objects of this study were (1) to determine the effects of risedronate (Ris) and prostaglandin E2 (PGE2) alone and in combination, on tibial diaphyses of older intact female rats; and (2) to observe the fate of any extra bone if formed after withdrawal of the treatment. Nine-month-old female Sprague-Dawley rats were treated with 6 mg of PGE2/kg/day, 1 or 5 micrograms of Ris/kg twice a week, or 6 mg of PGE2/kg/day plus 1 or 5 micrograms of Ris/kg twice a week for the first 60 days and followed by vehicle injections for another 60 days. Cross-sections of double fluorescent labeled, undecalcified tibial diaphyses proximal to the tibiofibular junction were processed for histomorphometry. We found that: (1) neither the 1 microgram nor the 5 micrograms of Ris treatment in the 60-day on/60-day off group showed any histomorphometric differences from age-related controls; (2) while the 60 days of PGE2 treatment added extra cortical bone (6%) on the tibial shaft (due to stimulation of periosteal, endocortical, and marrow trabecular bone formation), the new endocortical and most of the new marrow trabecular bone were lost when treatment was withdrawn; however, the new periosteal bone remained; (3) PGE2 with Ris added the same amount of new bone to tibial diaphysis as did PGE2 alone and upon withdrawal, new marrow trabecular bone was lost but new periosteal and endocortical bones were preserved in PGE2 + 1 microgram of Ris on/off group. In contrast, all the new bone was maintained in the PGE2 + 5 micrograms of Ris on/off group; (4) PGE2 + Ris cotreatment failed to block the increase in cortical bone porosity induced by PGE2; and (5) in the PGE2 alone and PGE2 + 1 microgram of Ris on/off groups bone turnover was higher than that in the PGE2 + 5 micrograms of Ris on/off group. These results indicate that on/off treatment with PGE2 and Ris is superior to PGE2 alone in that it forms the same amount of new bone during treatment, but preserves more cortical bone during

  17. Difference in Bone Mineral Density Change at the Lateral Femoral Cortices according to Administration of Different Bisphosphonate Agents

    PubMed Central

    Kim, Sungjun; Bang, Hyun Hee; Yoo, Hanna; Lim, Hyunsun; Jung, Woo Seok

    2016-01-01

    Background To retrospectively assess whether the response of subtrochanteric lateral cortex (STLC) is different according to the bisphosphonate agents in terms of bone mineral density (BMD) change. Methods A total of 149 subjects, who had 2- to 4-year interval follow-up of BMD using dual energy X-ray absorptiometry (DXA), were included in this retrospective study divided into following 3 groups: control group (no consumption of any anti-osteoporotic drugs, n=38), alendronate group (naïve alendronate users, n=48), risedronate group (naïve risedronate users, n=63). BMD was measured at the STLC and subtrochanteric medial cortex (STMC) in each patient by drawing rectangular ROIs at the bone cortices. The percent change of BMD at the STLC were compared between the aforementioned 3 groups by using analysis of covariance model to control five independent variables of age, body mass index, percent change of STMC, hip axis length, time interval between DXA examinations. Results The least square mean values±standard deviation of the percent change of BMD in the control, alendronate, and risedronate groups were 1.46±1.50, 2.23±1.26, and 6.96±1.11, respectively. The risedronate group showed significantly higher change of BMD percentage compared with the control (adjusted P=0.012) or alendronate (adjusted P=0.016) groups. Conclusions The percent change of BMD at the STLC in the risedronate user group was greater than the alendronate and control groups. The implication of these changes needs to be further verified. PMID:27294080

  18. Fixation Strength of Caudal Pedicle Screws after Posterior Lumbar Interbody Fusion with the Modified Cortical Bone Trajectory Screw Method

    PubMed Central

    Miwa, Toshitada; Yamashita, Tomoya; Kuroda, Yusuke; Ohwada, Tetsuo

    2016-01-01

    Study Design Clinical case series. Purpose In the posterior lumbar interbody fusion (PLIF) procedure in our institute, the cephalad screw trajectory follows a mediolateral and caudocephalad directed path according to the original cortical bone trajectory (CBT) method. However, the starting point of the caudal screw is at the medial border of the pedicle on an articular surface of the superior articular process, and the trajectory takes a mediolateral path parallel to the cephalad endplate. The incidence of caudal screw loosening after PLIF with this modified CBT screw method was investigated, and significant risk factors for caudal screw loosening were evaluated. Overview of Literature A biomechanical study of this modified caudal screw trajectory using the finite element method reported about a 20% increase in uniaxial yield pullout load compared with the traditional trajectory. However, there has been no clinical study concerning the fixation strength of this modified caudal screw trajectory. Methods The subjects were 193 consecutive patients who underwent single-level PLIF with modified CBT screw fixation. Caudal screw loosening was checked in computed tomography at 6 months after surgery, and screw loosening was defined as a radiolucency of 1 mm or more at the bone-screw interface. Results The incidence of caudal screw loosening after lumbosacral PLIF (46.2%) was significantly higher than that after floating PLIF (6.0%). No significant differences in sex, brand of the instruments, and diameter and length of the caudal screw were evident between patients with and without caudal screw loosening. Patients with caudal screw loosening were significantly older at the time of surgery than patients without caudal screw loosening. Conclusions Fixation strength of the caudal screw after floating PLIF with this modified CBT screw technique was sufficiently acceptable. Fixation strength after the lumbosacral procedure was not. PMID:27559442

  19. Short-Term Results of Transforaminal Lumbar Interbody Fusion Using Pedicle Screw with Cortical Bone Trajectory Compared with Conventional Trajectory

    PubMed Central

    Miyakoshi, Naohisa; Hongo, Michio; Ishikawa, Yoshinori; Kudo, Daisuke; Shimada, Yoichi

    2015-01-01

    Study Design Case-control study. Purpose To evaluate clinical and radiological results of transforaminal lumbar interbody fusion (TLIF) performed with cortical bone trajectory (CBT) pedicle screw insertion with those of TLIF using 'conventional' or percutaneous pedicle screw insertion. Overview of Literature CBT is a new trajectory for pedicle screw insertion in the lumbar spine; clinical and radiological results of TLIF using pedicle screws inserted with CBT are unclear. Methods In total, 26 patients (11 males, 15 females) were enrolled in this retrospective study and divided into three groups: TLIF with pedicle screw insertion by conventional minimally invasive methods via the Wiltse approach (M-TLIF, n=10), TLIF with percutaneous pedicle screw insertion (P-TLIF, n=6), and TLIF with pedicle screw insertion with CBT (CBT-TLIF, n=10). Surgical results and preand postoperative radiological findings were evaluated and compared. Results Intraoperative blood loss was significantly less with CBT-TLIF (p=0.03) than with M-TLIF. Postoperative lordotic angles did not differ significantly among the three groups. Complete fusions were obtained in 10 of 12 levels (83%) with M-TLIF, in seven levels (100%) with P-TLIF, and in 10 of 11 levels (91%) with CBT-TLIF. On postoperative computed tomography, correct positioning was seen in 84.1% of M-TLIF screws, 88.5% of P-TLIF screws, and 90% of CBT-TLIF screws. Conclusions CBT-TLIF resulted in less blood loss and a shorter operative duration than M-TLIF or P-TLIF. Postoperative rates of bone union, maintenance of lordotic angles, and accuracy of pedicle screw positions were similar among the three groups. PMID:26097661

  20. EFFECTS OF CHEMICAL PROCESSING AND OXIDE ETHYLENE STERILIZATION ON CORTICAL AND CANCELLOUS RAT BONE: A LIGHT AND ELECTRON SCANNING MICROSCOPY STUDY