Sample records for cortical cell types

  1. Zic deficiency in the cortical marginal zone and meninges results in cortical lamination defects resembling those in type II lissencephaly.

    PubMed

    Inoue, Takashi; Ogawa, Masaharu; Mikoshiba, Katsuhiko; Aruga, Jun

    2008-04-30

    The formation of the highly organized cortical structure depends on the production and correct placement of the appropriate number and types of neurons. The Zic family of zinc-finger transcription factors plays essential roles in regulating the proliferation and differentiation of neuronal progenitors in the medial forebrain and the cerebellum. Examination of the expression of Zic genes demonstrated that Zic1, Zic2, and Zic3 were expressed by the progenitor cells in the septum and cortical hem, the sites of generation of the Cajal-Retzius (CR) cells. Immunohistochemical studies have revealed that Zic proteins were abundantly expressed in the meningeal cells and that the majority of the CR cells distributed in the medial and dorsal cortex also expressed Zic proteins in the mid-late embryonic and postnatal cortical marginal zones. During embryonic cortical development, Zic1/Zic3 double-mutant and hypomorphic Zic2 mutant mice showed a reduction in the number of CR cells in the rostral cortex, whereas the cell number remained unaffected in the caudal cortex. These mutants also showed mislocalization of the CR cells and cortical lamination defects, resembling the changes noted in type II (cobblestone) lissencephaly, throughout the brain. In the Zic1/3 mutant, reduced proliferation of the meningeal cells was observed before the thinner and disrupted organization of the pial basement membrane (BM) with reduced expression of the BM components and the meningeal cell-derived secretory factor. These defects correlated with the changes in the end feet morphology of the radial glial cells. These findings indicate that the Zic genes play critical roles in cortical development through regulating the proliferation of meningeal cells and the pial BM assembly.

  2. Region-specific spike frequency acceleration in Layer 5 pyramidal neurons mediated by Kv1 subunits

    PubMed Central

    Miller, Mark N; Okaty, Benjamin W; Nelson, Sacha B

    2009-01-01

    Separation of the cortical sheet into functionally distinct regions is a hallmark of neocortical organization. Cortical circuit function emerges from afferent and efferent connectivity, local connectivity within the cortical microcircuit, and the intrinsic membrane properties of neurons that comprise the circuit. While localization of functions to particular cortical areas can be partially accounted for by regional differences in both long range and local connectivity, it is unknown whether the intrinsic membrane properties of cortical cell-types differ between cortical regions. Here we report the first example of a region-specific firing type in layer 5 pyramidal neurons, and show that the intrinsic membrane and integrative properties of a discrete subtype of layer 5 pyramidal neurons differ between primary motor and somatosensory cortices due to region and cell-type-specific Kv1 subunit expression. PMID:19091962

  3. Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics

    PubMed Central

    Tasic, Bosiljka; Menon, Vilas; Nguyen, Thuc Nghi; Kim, Tae Kyung; Jarsky, Tim; Yao, Zizhen; Levi, Boaz; Gray, Lucas T.; Sorensen, Staci A.; Dolbeare, Tim; Bertagnolli, Darren; Goldy, Jeff; Shapovalova, Nadiya; Parry, Sheana; Lee, Changkyu; Smith, Kimberly; Bernard, Amy; Madisen, Linda; Sunkin, Susan M.; Hawrylycz, Michael; Koch, Christof; Zeng, Hongkui

    2016-01-01

    Nervous systems are composed of various cell types, but the extent of cell type diversity is poorly understood. Here, we construct a cellular taxonomy of one cortical region, primary visual cortex, in adult mice based on single cell RNA-sequencing. We identify 49 transcriptomic cell types including 23 GABAergic, 19 glutamatergic and seven non-neuronal types. We also analyze cell-type specific mRNA processing and characterize genetic access to these transcriptomic types by many transgenic Cre lines. Finally, we show that some of our transcriptomic cell types display specific and differential electrophysiological and axon projection properties, thereby confirming that the single cell transcriptomic signatures can be associated with specific cellular properties. PMID:26727548

  4. Transcriptional and electrophysiological maturation of neocortical fastspiking GABAergic interneurons

    PubMed Central

    Okaty, Benjamin W; Miller, Mark N; Sugino, Ken; Hempel, Chris M; Nelson, Sacha B

    2009-01-01

    Fast-spiking (FS) interneurons are important elements of neocortical circuitry that constitute the primary source of synaptic inhibition in adult cortex and impart temporal organization on ongoing cortical activity. The highly specialized intrinsic membrane and firing properties that allow cortical FS interneurons to perform these functions are due to equally specialized gene expression, which is ultimately coordinated by cell-type-specific transcriptional regulation. While embryonic transcriptional events govern the initial steps of cell-type specification in most cortical interneurons, including FS cells, the electrophysiological properties that distinguish adult cortical cell types emerge relatively late in postnatal development, and the transcriptional events that drive this maturational process are not known. To address this, we used mouse whole-genome microarrays and whole-cell patch clamp to characterize the transcriptional and electrophysiological maturation of cortical FS interneurons between postnatal day 7 (P7) and P40. We found that the intrinsic and synaptic physiology of FS cells undergoes profound regulation over the first four postnatal weeks, and that these changes are correlated with largely monotonic but bidirectional transcriptional regulation of thousands of genes belonging to multiple functional classes. Using our microarray screen as a guide, we discovered that upregulation of 2-pore K+ leak channels between P10 and P25 contributes to one of the major differences between the intrinsic membrane properties of immature and adult FS cells, and found a number of other candidate genes that likely confer cell-type specificity on mature FS cells. PMID:19474331

  5. [Macro- and microscopic systematization of cerebral cortex malformations in children].

    PubMed

    Milovanov, A P; Milovanova, O A

    2011-01-01

    For the first time in pediatric pathologicoanatomic practice the complete systematization of cerebral cortex malformations is represented. Organ, macroscopic forms: microencephaly, macroencephaly, micropolygyria, pachygyria, schizencephaly, porencephaly, lissencephaly. Histic microdysgenesis of cortex: type I includes isolated abnormalities such as radial (IA) and tangential (I B) subtypes of cortical dislamination; type II includes sublocal cortical dislamination with immature dysmorphic neurons (II A) and balloon cells (II B); type III are the combination focal cortical dysplasia with tuberous sclerosis of the hippocampus (III A), tumors (III B) and malformations of vessels, traumatic and hypoxic disorders (III C). Band heterotopias. Subependimal nodular heterotopias. Tuberous sclerosis. Cellular typification of cortical dysplasia: immature neurons and balloon cells.

  6. Synaptic Targets of Medial Septal Projections in the Hippocampus and Extrahippocampal Cortices of the Mouse

    PubMed Central

    Joshi, Abhilasha; Viney, Tim J.; Kis, Viktor

    2015-01-01

    Temporal coordination of neuronal assemblies among cortical areas is essential for behavioral performance. GABAergic projections from the medial septum and diagonal band complex exclusively innervate GABAergic interneurons in the rat hippocampus, contributing to the coordination of neuronal activity, including the generation of theta oscillations. Much less is known about the synaptic target neurons outside the hippocampus. To reveal the contribution of synaptic circuits involving the medial septum of mice, we have identified postsynaptic cortical neurons in wild-type and parvalbumin-Cre knock-in mice. Anterograde axonal tracing from the septum revealed extensive innervation of the hippocampus as well as the subiculum, presubiculum, parasubiculum, the medial and lateral entorhinal cortices, and the retrosplenial cortex. In all examined cortical regions, many septal GABAergic boutons were in close apposition to somata or dendrites immunopositive for interneuron cell-type molecular markers, such as parvalbumin, calbindin, calretinin, N-terminal EF-hand calcium-binding protein 1, cholecystokinin, reelin, or a combination of these molecules. Electron microscopic observations revealed septal boutons forming axosomatic or axodendritic type II synapses. In the CA1 region of hippocampus, septal GABAergic projections exclusively targeted interneurons. In the retrosplenial cortex, 93% of identified postsynaptic targets belonged to interneurons and the rest to pyramidal cells. These results suggest that the GABAergic innervation from the medial septum and diagonal band complex contributes to temporal coordination of neuronal activity via several types of cortical GABAergic interneurons in both hippocampal and extrahippocampal cortices. Oscillatory septal neuronal firing at delta, theta, and gamma frequencies may phase interneuron activity. SIGNIFICANCE STATEMENT Diverse types of GABAergic interneurons coordinate the firing of cortical principal cells required for memory processes. During wakefulness and rapid eye movement sleep, the rhythmic firing of cortical GABAergic neurons plays a key role in governing network activity. We investigated subcortical GABAergic projections in the mouse that extend from the medial septum/diagonal band nuclei to GABAergic neurons in the hippocampus and related extrahippocampal cortical areas, including the medial entorhinal cortex. These areas contribute to navigation and show theta rhythmic activity. We found selective GABAergic targeting of different groups of cortical GABAergic neurons, immunoreactive for combinations of cell-type markers. As septal GABAergic neurons also fire rhythmically, their selective innervation of cortical GABAergic neurons suggests an oscillatory synchronization of neuronal activity across functionally related areas. PMID:26631464

  7. Single-Cell Analysis of Experience-Dependent Transcriptomic States in Mouse Visual Cortex

    PubMed Central

    Hrvatin, Sinisa; Hochbaum, Daniel R.; Nagy, M. Aurel; Cicconet, Marcelo; Robertson, Keiramarie; Cheadle, Lucas; Zilionis, Rapolas; Ratner, Alex; Borges-Monroy, Rebeca; Klein, Allon M.; Sabatini, Bernardo L.; Greenberg, Michael E.

    2017-01-01

    Activity-dependent transcriptional responses shape cortical function. However, we lack a comprehensive understanding of the diversity of these responses across the full range of cortical cell types, and how these changes contribute to neuronal plasticity and disease. Here we applied high-throughput single-cell RNA-sequencing to investigate the breadth of transcriptional changes that occur across cell types in mouse visual cortex following exposure to light. We identified significant and divergent transcriptional responses to stimulation in each of the 30 cell types characterized, revealing 611 stimulus-responsive genes. Excitatory pyramidal neurons exhibit inter- and intra-laminar heterogeneity in the induction of stimulus responsive genes. Non-neuronal cells demonstrated clear transcriptional responses that may regulate experience-dependent changes in neurovascular coupling and myelination. Together, these results reveal the dynamic landscape of stimulus-dependent transcriptional changes that occur across cell types in visual cortex, which are likely critical for cortical function and may be sites of de-regulation in developmental brain disorders. PMID:29230054

  8. Mixed cortical adenoma and composite pheochromocytoma-ganglioneuroma: an unusual corticomedullary tumor of the adrenal gland.

    PubMed

    Lau, Sean K; Chu, Peiguo G; Weiss, Lawrence M

    2011-06-01

    Adrenal neoplasms composed of more than one cell type and demonstrating a mixed histologic appearance are exceedingly rare. We report the clinical and pathologic features of a morphologically distinctive tumor of the adrenal gland composed of cortical, chromaffin, and neural cells. Histologically, the tumor consisted of intermixed areas of proliferating cortical cells resembling adrenal cortical adenoma, neoplastic chromaffin cells consistent with pheochromocytoma, and a ganglioneuromatous stroma. The presence of the cortical, medullary, and neural components within the tumor was confirmed by immunohistochemical studies. The present case serves to broaden the morphologic spectrum of mixed tumors that may be encountered in the adrenal gland. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Higher Vulnerability of Menadione-Exposed Cortical Astrocytes of Glutaryl-CoA Dehydrogenase Deficient Mice to Oxidative Stress, Mitochondrial Dysfunction, and Cell Death: Implications for the Neurodegeneration in Glutaric Aciduria Type I.

    PubMed

    Rodrigues, Marília Danyelle Nunes; Seminotti, Bianca; Zanatta, Ângela; de Mello Gonçalves, Aline; Bellaver, Bruna; Amaral, Alexandre Umpierrez; Quincozes-Santos, André; Goodman, Stephen Irwin; Woontner, Michael; Souza, Diogo Onofre; Wajner, Moacir

    2017-08-01

    Patients affected by glutaric aciduria type I (GA-I) show progressive cortical leukoencephalopathy whose pathogenesis is poorly known. In the present work, we exposed cortical astrocytes of wild-type (Gcdh +/+ ) and glutaryl-CoA dehydrogenase knockout (Gcdh -/- ) mice to the oxidative stress inducer menadione and measured mitochondrial bioenergetics, redox homeostasis, and cell viability. Mitochondrial function (MTT and JC1-mitochondrial membrane potential assays), redox homeostasis (DCFH oxidation, nitrate and nitrite production, GSH concentrations and activities of the antioxidant enzymes SOD and GPx), and cell death (propidium iodide incorporation) were evaluated in primary cortical astrocyte cultures of Gcdh +/+ and Gcdh -/- mice unstimulated and stimulated by menadione. We also measured the pro-inflammatory response (TNFα levels, IL1-β and NF-ƙB) in unstimulated astrocytes obtained from these mice. Gcdh -/- mice astrocytes were more vulnerable to menadione-induced oxidative stress (decreased GSH concentrations and altered activities of the antioxidant enzymes), mitochondrial dysfunction (decrease of MTT reduction and JC1 values), and cell death as compared with Gcdh +/+ astrocytes. A higher inflammatory response (TNFα, IL1-β and NF-ƙB) was also observed in Gcdh -/- mice astrocytes. These data indicate a higher susceptibility of Gcdh -/- cortical astrocytes to oxidative stress and mitochondrial dysfunction, probably leading to cell death. It is presumed that these pathomechanisms may contribute to the cortical leukodystrophy observed in GA-I patients.

  10. Layer-specific gene expression in epileptogenic type II focal cortical dysplasia: normal-looking neurons reveal the presence of a hidden laminar organization

    PubMed Central

    2014-01-01

    Background Type II focal cortical dysplasias (FCDs) are malformations of cortical development characterised by the disorganisation of the normal neocortical structure and the presence of dysmorphic neurons (DNs) and balloon cells (BCs). The pathogenesis of FCDs has not yet been clearly established, although a number of histopathological patterns and molecular findings suggest that they may be due to abnormal neuronal and glial proliferation and migration processes. In order to gain further insights into cortical layering disruption and investigate the origin of DNs and BCs, we used in situ RNA hybridisation of human surgical specimens with a neuropathologically definite diagnosis of Type IIa/b FCD and a panel of layer-specific genes (LSGs) whose expression covers all cortical layers. We also used anti-phospho-S6 ribosomal protein antibody to investigate mTOR pathway hyperactivation. Results LSGs were expressed in both normal and abnormal cells (BCs and DNs) but their distribution was different. Normal-looking neurons, which were visibly reduced in the core of the lesion, were apparently located in the appropriate cortical laminae thus indicating a partial laminar organisation. On the contrary, DNs and BCs, labelled with anti-phospho-S6 ribosomal protein antibody, were spread throughout the cortex without any apparent rule and showed a highly variable LSG expression pattern. Moreover, LSGs did not reveal any differences between Type IIa and IIb FCD. Conclusion These findings suggest the existence of hidden cortical lamination involving normal-looking neurons, which retain their ability to migrate correctly in the cortex, unlike DNs which, in addition to their morphological abnormalities and mTOR hyperactivation, show an altered migratory pattern. Taken together these data suggest that an external or environmental hit affecting selected precursor cells during the very early stages of cortical development may disrupt normal cortical development. PMID:24735483

  11. Attention Induced Gain Stabilization in Broad and Narrow-Spiking Cells in the Frontal Eye-Field of Macaque Monkeys

    PubMed Central

    Brandt, Christian; Dasilva, Miguel; Gotthardt, Sascha; Chicharro, Daniel; Panzeri, Stefano; Distler, Claudia

    2016-01-01

    Top-down attention increases coding abilities by altering firing rates and rate variability. In the frontal eye field (FEF), a key area enabling top-down attention, attention induced firing rate changes are profound, but its effect on different cell types is unknown. Moreover, FEF is the only cortical area investigated in which attention does not affect rate variability, as assessed by the Fano factor, suggesting that task engagement affects cortical state nonuniformly. We show that putative interneurons in FEF of Macaca mulatta show stronger attentional rate modulation than putative pyramidal cells. Partitioning rate variability reveals that both cell types reduce rate variability with attention, but more strongly so in narrow-spiking cells. The effects are captured by a model in which attention stabilizes neuronal excitability, thereby reducing the expansive nonlinearity that links firing rate and variance. These results show that the effect of attention on different cell classes and different coding properties are consistent across the cortical hierarchy, acting through increased and stabilized neuronal excitability. SIGNIFICANCE STATEMENT Cortical processing is critically modulated by attention. A key feature of this influence is a modulation of “cortical state,” resulting in increased neuronal excitability and resilience of the network against perturbations, lower rate variability, and an increased signal-to-noise ratio. In the frontal eye field (FEF), an area assumed to control spatial attention in human and nonhuman primates, firing rate changes with attention occur, but rate variability, quantified by the Fano factor, appears to be unaffected by attention. Using recently developed analysis tools and models to quantify attention effects on narrow- and broad-spiking cell activity, we show that attention alters cortical state strongly in the FEF, demonstrating that its effect on the neuronal network is consistent across the cortical hierarchy. PMID:27445139

  12. Layer-specific input to distinct cell types in layer 6 of monkey primary visual cortex.

    PubMed

    Briggs, F; Callaway, E M

    2001-05-15

    Layer 6 of monkey V1 contains a physiologically and anatomically diverse population of excitatory pyramidal neurons. Distinctive arborization patterns of axons and dendrites within the functionally specialized cortical layers define eight types of layer 6 pyramidal neurons and suggest unique information processing roles for each cell type. To address how input sources contribute to cellular function, we examined the laminar sources of functional excitatory input onto individual layer 6 pyramidal neurons using scanning laser photostimulation. We find that excitatory input sources correlate with cell type. Class I neurons with axonal arbors selectively targeting magnocellular (M) recipient layer 4Calpha receive input from M-dominated layer 4B, whereas class I neurons whose axonal arbors target parvocellular (P) recipient layer 4Cbeta receive input from P-dominated layer 2/3. Surprisingly, these neuronal types do not differ significantly in the inputs they receive directly from layers 4Calpha or 4Cbeta. Class II cells, which lack dense axonal arbors within layer 4C, receive excitatory input from layers targeted by their local axons. Specifically, type IIA cells project axons to and receive input from the deep but not superficial layers. Type IIB neurons project to and receive input from the deepest and most superficial, but not middle layers. Type IIC neurons arborize throughout the cortical layers and tend to receive inputs from all cortical layers. These observations have implications for the functional roles of different layer 6 cell types in visual information processing.

  13. The Effects of Androgens on Murine Cortical Bone Do Not Require AR or ERα Signaling in Osteoblasts and Osteoclasts

    PubMed Central

    Ucer, Serra; Iyer, Srividhya; Bartell, Shoshana M; Martin-Millan, Marta; Han, Li; Kim, Ha-Neui; Weinstein, Robert S; Jilka, Robert L; O’Brien, Charles A; Almeida, Maria; Manolagas, Stavros C

    2016-01-01

    In men, androgens are critical for the acquisition and maintenance of bone mass in both the cortical and cancellous bone compartment. Male mice with targeted deletion of the androgen receptor (AR) in mature osteoblasts or osteocytes have lower cancellous bone mass, but no cortical bone phenotype. We have investigated the possibility that the effects of androgens on the cortical compartment result from AR signaling in osteoprogenitors or cells of the osteoclast lineage; or via estrogen receptor alpha (ERα) signaling in either or both of these two cell types upon conversion of testosterone to estradiol. To this end, we generated mice with targeted deletion of an AR or an ERα allele in the mesenchymal (ARf/y;Prx1-Cre or ERαf/f;Osx1-Cre) or myeloid cell lineage (ARf/y; LysM-Cre or ERαf/f;LysM-Cre) and their descendants. Male ARf/y;Prx1-Cre mice exhibited decreased bone volume and trabecular number, and increased osteoclast number in the cancellous compartment. Moreover, they did not undergo the loss of cancellous bone volume and trabecular number caused by orchidectomy (ORX) in their littermate controls. In contrast, ARf/y;LysM-Cre, ERαf/f; Osx1-Cre, or ERαf/f;LysM-Cre mice had no cancellous bone phenotype at baseline and lost the same amount of cancellous bone as their controls following ORX. Most unexpectedly, adult males of all four models had no discernible cortical bone phenotype at baseline, and lost the same amount of cortical bone as their littermate controls after ORX. Recapitulation of the effects of ORX by AR deletion only in the ARf/y;Prx1-Cre mice indicates that the effects of androgens on cancellous bone result from AR signaling in osteoblasts—not on osteoclasts or via aromatization. The effects of androgens on cortical bone mass, on the other hand, do not require AR or ERα signaling in any cell type across the osteoblast or osteoclast differentiation lineage. Therefore, androgens must exert their effects indirectly by actions on some other cell type(s) or tissue(s). PMID:25704845

  14. Distribution of neurons expressing tyrosine hydroxylase in the human cerebral cortex

    PubMed Central

    Benavides-Piccione, Ruth; DeFelipe, Javier

    2007-01-01

    Since the very first detailed description of the different types of cortical interneurons by Cajal, the tremendous variation in the morphology, physiology and neurochemical properties of these cells has become apparent. However, it still remains unclear whether all types of interneurons are present in all cortical areas and species. Here we have focused on tyrosine hydroxylase (TH)-immunoreactive cortical interneurons, which although only present in certain species, are particularly abundant in the human neocortex. We argue that this type of interneuron is more widespread in the human neocortex than in any other species examined so far and that, therefore, it is probably involved in a larger variety of cortical circuits. In addition, notable regional variation can be seen in relation to these interneurons. These differences further emphasize the variability in the design of microcircuits between cortical areas and species, and they probably reflect an evolutionary adaptation of cortical circuits to particular functions. PMID:17593221

  15. Morphological and functional aspects of progenitors perturbed in cortical malformations

    PubMed Central

    Bizzotto, Sara; Francis, Fiona

    2015-01-01

    In this review, we discuss molecular and cellular mechanisms important for the function of neuronal progenitors during development, revealed by their perturbation in different cortical malformations. We focus on a class of neuronal progenitors, radial glial cells (RGCs), which are renowned for their unique morphological and behavioral characteristics, constituting a key element during the development of the mammalian cerebral cortex. We describe how the particular morphology of these cells is related to their roles in the orchestration of cortical development and their influence on other progenitor types and post-mitotic neurons. Important for disease mechanisms, we overview what is currently known about RGC cellular components, cytoskeletal mechanisms, signaling pathways and cell cycle characteristics, focusing on how defects lead to abnormal development and cortical malformation phenotypes. The multiple recent entry points from human genetics and animal models are contributing to our understanding of this important cell type. Combining data from phenotypes in the mouse reveals molecules which potentially act in common pathways. Going beyond this, we discuss future directions that may provide new data in this expanding area. PMID:25729350

  16. Cell Type-Specific Structural Organization of the Six Layers in Rat Barrel Cortex

    PubMed Central

    Narayanan, Rajeevan T.; Udvary, Daniel; Oberlaender, Marcel

    2017-01-01

    The cytoarchitectonic subdivision of the neocortex into six layers is often used to describe the organization of the cortical circuitry, sensory-evoked signal flow or cortical functions. However, each layer comprises neuronal cell types that have different genetic, functional and/or structural properties. Here, we reanalyze structural data from some of our recent work in the posterior-medial barrel-subfield of the vibrissal part of rat primary somatosensory cortex (vS1). We quantify the degree to which somata, dendrites and axons of the 10 major excitatory cell types of the cortex are distributed with respect to the cytoarchitectonic organization of vS1. We show that within each layer, somata of multiple cell types intermingle, but that each cell type displays dendrite and axon distributions that are aligned to specific cytoarchitectonic landmarks. The resultant quantification of the structural composition of each layer in terms of the cell type-specific number of somata, dendritic and axonal path lengths will aid future studies to bridge between layer- and cell type-specific analyses. PMID:29081739

  17. Voronoi-based spatial analysis reveals selective interneuron changes in the cortex of FALS mice.

    PubMed

    Minciacchi, Diego; Kassa, Roman M; Del Tongo, Claudia; Mariotti, Raffaella; Bentivoglio, Marina

    2009-01-01

    The neurodegenerative disease amyotrophic lateral sclerosis affects lower motoneurons and corticospinal cells. Mice expressing human mutant superoxide dismutase (SOD)1 provide widely investigated models of the familial form of disease, but information on cortical changes in these mice is still limited. We here analyzed the spatial organization of interneurons characterized by parvalbumin immunoreactivity in the motor, somatosensory, and visual cortical areas of SOD1(G93A) mice. Cell number and sociological spatial behavior were assessed by digital charts of cell location in cortical samples, cell counts, and generation of two-dimensional Voronoi diagrams. In end-stage SOD1-mutant mice, an increase of parvalbumin-containing cortical interneurons was found in the motor and somatosensory areas (about 35% and 20%, respectively) with respect to wild-type littermates. Changes in cell spatial distribution, as documented by Voronoi-derived coefficients of variation, indicated increased tendency of parvalbumin cells to aggregate into clusters in the same areas of the SOD1-mutant cortex. Counts and coefficients of variation of parvalbumin cells in the visual cortex gave instead similar results in SOD1-mutant and wild-type mice. Analyses of motor and somatosensory areas in presymptomatic SOD1-mutant mice provided findings very similar to those obtained at end-stage, indicating early changes of interneurons in these cortical areas during the pathology. Altogether the data reveal in the SOD1-mutant mouse cortex an altered architectonic pattern of interneurons, which selectively affects areas involved in motor control. The findings, which can be interpreted as pathogenic factors or early disease-related adaptations, point to changes in the cortical regulation and modulation of the motor circuit during motoneuron disease.

  18. S-phase duration is the main target of cell cycle regulation in neural progenitors of developing ferret neocortex.

    PubMed

    Turrero García, Miguel; Chang, YoonJeung; Arai, Yoko; Huttner, Wieland B

    2016-02-15

    The evolutionary expansion of the neocortex primarily reflects increases in abundance and proliferative capacity of cortical progenitors and in the length of the neurogenic period during development. Cell cycle parameters of neocortical progenitors are an important determinant of cortical development. The ferret (Mustela putorius furo), a gyrencephalic mammal, has gained increasing importance as a model for studying corticogenesis. Here, we have studied the abundance, proliferation, and cell cycle parameters of different neural progenitor types, defined by their differential expression of the transcription factors Pax6 and Tbr2, in the various germinal zones of developing ferret neocortex. We focused our analyses on postnatal day 1, a late stage of cortical neurogenesis when upper-layer neurons are produced. Based on cumulative 5-ethynyl-2'-deoxyuridine (EdU) labeling as well as Ki67 and proliferating cell nuclear antigen (PCNA) immunofluorescence, we determined the duration of the various cell cycle phases of the different neocortical progenitor subpopulations. Ferret neocortical progenitors were found to exhibit longer cell cycles than those of rodents and little variation in the duration of G1 among distinct progenitor types, also in contrast to rodents. Remarkably, the main difference in cell cycle parameters among the various progenitor types was the duration of S-phase, which became shorter as progenitors progressively changed transcription factor expression from patterns characteristic of self-renewal to those of neuron production. Hence, S-phase duration emerges as major target of cell cycle regulation in cortical progenitors of this gyrencephalic mammal. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  19. Immunophenotypic analysis of adult patients with T-cell lymphoblastic lymphoma treated with hyper-CVAD.

    PubMed

    Kato, Harumi; Yamamoto, Kazuhito; Kodaira, Takeshi; Higuchi, Yusuke; Yamamoto, Hideyuki; Saito, Toko; Taji, Hirofumi; Yatabe, Yasushi; Nakamura, Shigeo; Kinoshita, Tomohiro

    2018-03-01

    Immunophenotype is an important prognostic factor for childhood and adult T-cell acute lymphoblastic leukemia. However, immunophenotypic data from adult patients with T-cell lymphoblastic lymphoma (T-LBL) are scarcely available. Subjects were unselected adult patients with T-LBL who were treated with intensive chemotherapy. Immunophenotyping of tumor cells was performed according to standard techniques. A total of eight patients with a median age of 31 years were analyzed who received hyper-CVAD treatment for LBL. Immunophenotypic analysis showed that the most common tumor type was cortical T-cell type [early T (n = 2), cortical T (n = 4), and medullary T (n = 2)]. Two patients diagnosed with early T-cell type had early disease progression. Assessment of T-cell differentiation stages in malignant T lymphoblasts would be important in choosing treatment strategies for adult patients with T-LBL.

  20. From sauropsids to mammals and back: New approaches to comparative cortical development

    PubMed Central

    Montiel, Juan F.; Vasistha, Navneet A.; Garcia‐Moreno, Fernando

    2015-01-01

    Abstract Evolution of the mammalian neocortex (isocortex) has been a persisting problem in neurobiology. While recent studies have attempted to understand the evolutionary expansion of the human neocortex from rodents, similar approaches have been used to study the changes between reptiles, birds, and mammals. We review here findings from the past decades on the development, organization, and gene expression patterns in various extant species. This review aims to compare cortical cell numbers and neuronal cell types to the elaboration of progenitor populations and their proliferation in these species. Several progenitors, such as the ventricular radial glia, the subventricular intermediate progenitors, and the subventricular (outer) radial glia, have been identified but the contribution of each to cortical layers and cell types through specific lineages, their possible roles in determining brain size or cortical folding, are not yet understood. Across species, larger, more diverse progenitors relate to cortical size and cell diversity. The challenge is to relate the radial and tangential expansion of the neocortex to the changes in the proliferative compartments during mammalian evolution and with the changes in gene expression and lineages evident in various sectors of the developing brain. We also review the use of recent lineage tracing and transcriptomic approaches to revisit theories and to provide novel understanding of molecular processes involved in specification of cortical regions. J. Comp. Neurol. 524:630–645, 2016. © 2015 The Authors. The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26234252

  1. Cell Type–Specific Three-Dimensional Structure of Thalamocortical Circuits in a Column of Rat Vibrissal Cortex

    PubMed Central

    de Kock, Christiaan P. J.; Bruno, Randy M.; Ramirez, Alejandro; Meyer, Hanno S.; Dercksen, Vincent J.; Helmstaedter, Moritz; Sakmann, Bert

    2012-01-01

    Soma location, dendrite morphology, and synaptic innervation may represent key determinants of functional responses of individual neurons, such as sensory-evoked spiking. Here, we reconstruct the 3D circuits formed by thalamocortical afferents from the lemniscal pathway and excitatory neurons of an anatomically defined cortical column in rat vibrissal cortex. We objectively classify 9 cortical cell types and estimate the number and distribution of their somata, dendrites, and thalamocortical synapses. Somata and dendrites of most cell types intermingle, while thalamocortical connectivity depends strongly upon the cell type and the 3D soma location of the postsynaptic neuron. Correlating dendrite morphology and thalamocortical connectivity to functional responses revealed that the lemniscal afferents can account for some of the cell type- and location-specific subthreshold and spiking responses after passive whisker touch (e.g., in layer 4, but not for other cell types, e.g., in layer 5). Our data provides a quantitative 3D prediction of the cell type–specific lemniscal synaptic wiring diagram and elucidates structure–function relationships of this physiologically relevant pathway at single-cell resolution. PMID:22089425

  2. Chrna2-Martinotti Cells Synchronize Layer 5 Type A Pyramidal Cells via Rebound Excitation

    PubMed Central

    Leão, Richardson N.; Edwards, Steven J.

    2017-01-01

    Martinotti cells are the most prominent distal dendrite–targeting interneurons in the cortex, but their role in controlling pyramidal cell (PC) activity is largely unknown. Here, we show that the nicotinic acetylcholine receptor α2 subunit (Chrna2) specifically marks layer 5 (L5) Martinotti cells projecting to layer 1. Furthermore, we confirm that Chrna2-expressing Martinotti cells selectively target L5 thick-tufted type A PCs but not thin-tufted type B PCs. Using optogenetic activation and inhibition, we demonstrate how Chrna2-Martinotti cells robustly reset and synchronize type A PCs via slow rhythmic burst activity and rebound excitation. Moreover, using optical feedback inhibition, in which PC spikes controlled the firing of surrounding Chrna2-Martinotti cells, we found that neighboring PC spike trains became synchronized by Martinotti cell inhibition. Together, our results show that L5 Martinotti cells participate in defined cortical circuits and can synchronize PCs in a frequency-dependent manner. These findings suggest that Martinotti cells are pivotal for coordinated PC activity, which is involved in cortical information processing and cognitive control. PMID:28182735

  3. The Effects of Androgens on Murine Cortical Bone Do Not Require AR or ERα Signaling in Osteoblasts and Osteoclasts.

    PubMed

    Ucer, Serra; Iyer, Srividhya; Bartell, Shoshana M; Martin-Millan, Marta; Han, Li; Kim, Ha-Neui; Weinstein, Robert S; Jilka, Robert L; O'Brien, Charles A; Almeida, Maria; Manolagas, Stavros C

    2015-07-01

    In men, androgens are critical for the acquisition and maintenance of bone mass in both the cortical and cancellous bone compartment. Male mice with targeted deletion of the androgen receptor (AR) in mature osteoblasts or osteocytes have lower cancellous bone mass, but no cortical bone phenotype. We have investigated the possibility that the effects of androgens on the cortical compartment result from AR signaling in osteoprogenitors or cells of the osteoclast lineage; or via estrogen receptor alpha (ERα) signaling in either or both of these two cell types upon conversion of testosterone to estradiol. To this end, we generated mice with targeted deletion of an AR or an ERα allele in the mesenchymal (AR(f/y);Prx1-Cre or ERα(f/f);Osx1-Cre) or myeloid cell lineage (AR(f/y);LysM-Cre or ERα(f/f);LysM-Cre) and their descendants. Male AR(f/y);Prx1-Cre mice exhibited decreased bone volume and trabecular number, and increased osteoclast number in the cancellous compartment. Moreover, they did not undergo the loss of cancellous bone volume and trabecular number caused by orchidectomy (ORX) in their littermate controls. In contrast, AR(f/y);LysM-Cre, ERα(f/f);Osx1-Cre, or ERα(f/f);LysM-Cre mice had no cancellous bone phenotype at baseline and lost the same amount of cancellous bone as their controls following ORX. Most unexpectedly, adult males of all four models had no discernible cortical bone phenotype at baseline, and lost the same amount of cortical bone as their littermate controls after ORX. Recapitulation of the effects of ORX by AR deletion only in the AR(f/y);Prx1-Cre mice indicates that the effects of androgens on cancellous bone result from AR signaling in osteoblasts-not on osteoclasts or via aromatization. The effects of androgens on cortical bone mass, on the other hand, do not require AR or ERα signaling in any cell type across the osteoblast or osteoclast differentiation lineage. Therefore, androgens must exert their effects indirectly by actions on some other cell type(s) or tissue(s). © 2015 American Society for Bone and Mineral Research.

  4. The Changing Roles of Neurons in the Cortical Subplate

    PubMed Central

    Friedlander, Michael J.; Torres-Reveron, Juan

    2009-01-01

    Neurons may serve different functions over the course of an organism's life. Recent evidence suggests that cortical subplate (SP) neurons including those that reside in the white matter may perform longitudinal multi-tasking at different stages of development. These cells play a key role in early cortical development in coordinating thalamocortical reciprocal innervation. At later stages of development, they become integrated within the cortical microcircuitry. This type of longitudinal multi-tasking can enhance the capacity for information processing by populations of cells serving different functions over the lifespan. Subplate cells are initially derived when cells from the ventricular zone underlying the cortex migrate to the cortical preplate that is subsequently split by the differentiating neurons of the cortical plate with some neurons locating in the marginal zone and others settling below in the SP. While the cortical plate neurons form most of the cortical layers (layers 2–6), the marginal zone neurons form layer 1 and the SP neurons become interstitial cells of the white matter as well as forming a compact sublayer along the bottom of layer 6. After serving as transient innervation targets for thalamocortical axons, most of these cells die and layer 4 neurons become innervated by thalamic axons. However, 10–20% survives, remaining into adulthood along the bottom of layer 6 and as a scattered population of interstitial neurons in the white matter. Surviving SP cells' axons project throughout the overlying laminae, reaching layer 1 and issuing axon collaterals within white matter and in lower layer 6. This suggests that they participate in local synaptic networks, as well. Moreover, they receive excitatory and inhibitory synaptic inputs, potentially monitoring outputs from axon collaterals of cortical efferents, from cortical afferents and/or from each other. We explore our understanding of the functional connectivity of these cells at different stages of development. PMID:19688111

  5. Serotonin homeostasis and serotonin receptors as actors of cortical construction: special attention to the 5-HT3A and 5-HT6 receptor subtypes

    PubMed Central

    Vitalis, Tania; Ansorge, Mark S.; Dayer, Alexandre G.

    2013-01-01

    Cortical circuits control higher-order cognitive processes and their function is highly dependent on their structure that emerges during development. The construction of cortical circuits involves the coordinated interplay between different types of cellular processes such as proliferation, migration, and differentiation of neural and glial cell subtypes. Among the multiple factors that regulate the assembly of cortical circuits, 5-HT is an important developmental signal that impacts on a broad diversity of cellular processes. 5-HT is detected at the onset of embryonic telencephalic formation and a variety of serotonergic receptors are dynamically expressed in the embryonic developing cortex in a region and cell-type specific manner. Among these receptors, the ionotropic 5-HT3A receptor and the metabotropic 5-HT6 receptor have recently been identified as novel serotonergic targets regulating different aspects of cortical construction including neuronal migration and dendritic differentiation. In this review, we focus on the developmental impact of serotonergic systems on the construction of cortical circuits and discuss their potential role in programming risk for human psychiatric disorders. PMID:23801939

  6. Transactivation of TrkB by Sigma-1 receptor mediates cocaine-induced changes in dendritic spine density and morphology in hippocampal and cortical neurons

    PubMed Central

    Ka, Minhan; Kook, Yeon-Hee; Liao, Ke; Buch, Shilpa; Kim, Woo-Yang

    2016-01-01

    Cocaine is a highly addictive narcotic associated with dendritic spine plasticity in the striatum. However, it remains elusive whether cocaine modifies spines in a cell type-specific or region-specific manner or whether it alters different types of synapses in the brain. In addition, there is a paucity of data on the regulatory mechanism(s) involved in cocaine-induced modification of spine density. In the current study, we report that cocaine exposure differentially alters spine density, spine morphology, and the types of synapses in hippocampal and cortical neurons. Cocaine exposure in the hippocampus resulted in increased spine density, but had no significant effect on cortical neurons. Although cocaine exposure altered spine morphology in both cell types, the patterns of spine morphology were distinct for each cell type. Furthermore, we observed that cocaine selectively affects the density of excitatory synapses. Intriguingly, in hippocampal neurons cocaine-mediated effects on spine density and morphology involved sigma-1 receptor (Sig-1 R) and its downstream TrkB signaling, which were not the case in cortical neurons. Furthermore, pharmacological inhibition of Sig-1 R prevented cocaine-induced TrkB activation in hippocampal neurons. Our findings reveal a novel mechanism by which cocaine induces selective changes in spine morphology, spine density, and synapse formation, and could provide insights into the cellular basis for the cognitive impairment observed in cocaine addicts. PMID:27735948

  7. S‐phase duration is the main target of cell cycle regulation in neural progenitors of developing ferret neocortex

    PubMed Central

    Turrero García, Miguel; Chang, YoonJeung; Arai, Yoko

    2016-01-01

    ABSTRACT The evolutionary expansion of the neocortex primarily reflects increases in abundance and proliferative capacity of cortical progenitors and in the length of the neurogenic period during development. Cell cycle parameters of neocortical progenitors are an important determinant of cortical development. The ferret (Mustela putorius furo), a gyrencephalic mammal, has gained increasing importance as a model for studying corticogenesis. Here, we have studied the abundance, proliferation, and cell cycle parameters of different neural progenitor types, defined by their differential expression of the transcription factors Pax6 and Tbr2, in the various germinal zones of developing ferret neocortex. We focused our analyses on postnatal day 1, a late stage of cortical neurogenesis when upper‐layer neurons are produced. Based on cumulative 5‐ethynyl‐2′‐deoxyuridine (EdU) labeling as well as Ki67 and proliferating cell nuclear antigen (PCNA) immunofluorescence, we determined the duration of the various cell cycle phases of the different neocortical progenitor subpopulations. Ferret neocortical progenitors were found to exhibit longer cell cycles than those of rodents and little variation in the duration of G1 among distinct progenitor types, also in contrast to rodents. Remarkably, the main difference in cell cycle parameters among the various progenitor types was the duration of S‐phase, which became shorter as progenitors progressively changed transcription factor expression from patterns characteristic of self‐renewal to those of neuron production. Hence, S‐phase duration emerges as major target of cell cycle regulation in cortical progenitors of this gyrencephalic mammal. J. Comp. Neurol. 524:456–470, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:25963823

  8. Changes in the Excitability of Neocortical Neurons in a Mouse Model of Amyotrophic Lateral Sclerosis Are Not Specific to Corticospinal Neurons and Are Modulated by Advancing Disease.

    PubMed

    Kim, Juhyun; Hughes, Ethan G; Shetty, Ashwin S; Arlotta, Paola; Goff, Loyal A; Bergles, Dwight E; Brown, Solange P

    2017-09-13

    Cell type-specific changes in neuronal excitability have been proposed to contribute to the selective degeneration of corticospinal neurons in amyotrophic lateral sclerosis (ALS) and to neocortical hyperexcitability, a prominent feature of both inherited and sporadic variants of the disease, but the mechanisms underlying selective loss of specific cell types in ALS are not known. We analyzed the physiological properties of distinct classes of cortical neurons in the motor cortex of hSOD1 G93A mice of both sexes and found that they all exhibit increases in intrinsic excitability that depend on disease stage. Targeted recordings and in vivo calcium imaging further revealed that neurons adapt their functional properties to normalize cortical excitability as the disease progresses. Although different neuron classes all exhibited increases in intrinsic excitability, transcriptional profiling indicated that the molecular mechanisms underlying these changes are cell type specific. The increases in excitability in both excitatory and inhibitory cortical neurons show that selective dysfunction of neuronal cell types cannot account for the specific vulnerability of corticospinal motor neurons in ALS. Furthermore, the stage-dependent alterations in neuronal function highlight the ability of cortical circuits to adapt as disease progresses. These findings show that both disease stage and cell type must be considered when developing therapeutic strategies for treating ALS. SIGNIFICANCE STATEMENT It is not known why certain classes of neurons preferentially die in different neurodegenerative diseases. It has been proposed that the enhanced excitability of affected neurons is a major contributor to their selective loss. We show using a mouse model of amyotrophic lateral sclerosis (ALS), a disease in which corticospinal neurons exhibit selective vulnerability, that changes in excitability are not restricted to this neuronal class and that excitability does not increase monotonically with disease progression. Moreover, although all neuronal cell types tested exhibited abnormal functional properties, analysis of their gene expression demonstrated cell type-specific responses to the ALS-causing mutation. These findings suggest that therapies for ALS may need to be tailored for different cell types and stages of disease. Copyright © 2017 the authors 0270-6474/17/379038-17$15.00/0.

  9. Basal Forebrain Gating by Somatostatin Neurons Drives Prefrontal Cortical Activity.

    PubMed

    Espinosa, Nelson; Alonso, Alejandra; Morales, Cristian; Espinosa, Pedro; Chávez, Andrés E; Fuentealba, Pablo

    2017-11-17

    The basal forebrain provides modulatory input to the cortex regulating brain states and cognitive processing. Somatostatin-expressing neurons constitute a heterogeneous GABAergic population known to functionally inhibit basal forebrain cortically projecting cells thus favoring sleep and cortical synchronization. However, it remains unclear if somatostatin cells can regulate population activity patterns in the basal forebrain and modulate cortical dynamics. Here, we demonstrate that somatostatin neurons regulate the corticopetal synaptic output of the basal forebrain impinging on cortical activity and behavior. Optogenetic inactivation of somatostatin neurons in vivo rapidly modified neural activity in the basal forebrain, with the consequent enhancement and desynchronization of activity in the prefrontal cortex, reflected in both neuronal spiking and network oscillations. Cortical activation was partially dependent on cholinergic transmission, suppressing slow waves and potentiating gamma oscillations. In addition, recruitment dynamics was cell type-specific, with interneurons showing similar temporal profiles, but stronger responses than pyramidal cells. Finally, optogenetic stimulation of quiescent animals during resting periods prompted locomotor activity, suggesting generalized cortical activation and increased arousal. Altogether, we provide physiological and behavioral evidence indicating that somatostatin neurons are pivotal in gating the synaptic output of the basal forebrain, thus indirectly controlling cortical operations via both cholinergic and non-cholinergic mechanisms. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Neural responses of rat cortical layers due to infrared neural modulation and photoablation of thalamocortical brain slices

    NASA Astrophysics Data System (ADS)

    Jenkins, J. Logan; Kao, Chris C.; Cayce, Jonathan M.; Mahadevan-Jansen, Anita; Jansen, E. Duco

    2017-02-01

    Infrared neural modulation (INM) is a label-free method for eliciting neural activity with high spatial selectivity in mammalian models. While there has been an emphasis on INM research towards applications in the peripheral nervous system and the central nervous system (CNS), the biophysical mechanisms by which INM occurs remains largely unresolved. In the rat CNS, INM has been shown to elicit and inhibit neural activity, evoke calcium signals that are dependent on glutamate transients and astrocytes, and modulate inhibitory GABA currents. So far, in vivo experiments have been restricted to layers I and II of the rat cortex which consists mainly of astrocytes, inhibitory neurons, and dendrites from deeper excitatory neurons owing to strong absorption of light in these layers. Deeper cortical layers (III-VI) have vastly different cell type composition, consisting predominantly of excitatory neurons which can be targeted for therapies such as deep brain stimulation. The neural responses to infrared light of deeper cortical cells have not been well defined. Acute thalamocortical brain slices will allow us to analyze the effects of INS on various components of the cortex, including different cortical layers and cell populations. In this study, we present the use of photoablation with an erbium:YAG laser to reduce the thickness of the dead cell zone near the cutting surface of brain slices. This technique will allow for more optical energy to reach living cells, which should contribute the successful transduction of pulsed infrared light to neural activity. In the future, INM-induced neural responses will lead to a finer characterization of the parameter space for the neuromodulation of different cortical cell types and may contribute to understanding the cell populations that are important for allowing optical stimulation of neurons in the CNS.

  11. Cell Type-Specific Circuit Mapping Reveals the Presynaptic Connectivity of Developing Cortical Circuits

    PubMed Central

    Cocas, Laura A.; Fernandez, Gloria; Barch, Mariya; Doll, Jason; Zamora Diaz, Ivan

    2016-01-01

    The mammalian cerebral cortex is a dense network composed of local, subcortical, and intercortical synaptic connections. As a result, mapping cell type-specific neuronal connectivity in the cerebral cortex in vivo has long been a challenge for neurobiologists. In particular, the development of excitatory and inhibitory interneuron presynaptic input has been hard to capture. We set out to analyze the development of this connectivity in the first postnatal month using a murine model. First, we surveyed the connectivity of one of the earliest populations of neurons in the brain, the Cajal-Retzius (CR) cells in the neocortex, which are known to be critical for cortical layer formation and are hypothesized to be important in the establishment of early cortical networks. We found that CR cells receive inputs from deeper-layer excitatory neurons and inhibitory interneurons in the first postnatal week. We also found that both excitatory pyramidal neurons and inhibitory interneurons received broad inputs in the first postnatal week, including inputs from CR cells. Expanding our analysis into the more mature brain, we assessed the inputs onto inhibitory interneurons and excitatory projection neurons, labeling neuronal progenitors with Cre drivers to study discrete populations of neurons in older cortex, and found that excitatory cortical and subcortical inputs are refined by the fourth week of development, whereas local inhibitory inputs increase during this postnatal period. Cell type-specific circuit mapping is specific, reliable, and effective, and can be used on molecularly defined subtypes to determine connectivity in the cortex. SIGNIFICANCE STATEMENT Mapping cortical connectivity in the developing mammalian brain has been an intractable problem, in part because it has not been possible to analyze connectivity with cell subtype precision. Our study systematically targets the presynaptic connections of discrete neuronal subtypes in both the mature and developing cerebral cortex. We analyzed the connections that Cajal-Retzius cells make and receive, and found that these cells receive inputs from deeper-layer excitatory neurons and inhibitory interneurons in the first postnatal week. We assessed the inputs onto inhibitory interneurons and excitatory projection neurons, the major two types of neurons in the cortex, and found that excitatory inputs are refined by the fourth week of development, whereas local inhibitory inputs increase during this postnatal period. PMID:26985044

  12. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development

    PubMed Central

    Camp, J. Gray; Badsha, Farhath; Florio, Marta; Kanton, Sabina; Gerber, Tobias; Wilsch-Bräuninger, Michaela; Lewitus, Eric; Sykes, Alex; Hevers, Wulf; Lancaster, Madeline; Knoblich, Juergen A.; Lachmann, Robert; Pääbo, Svante; Huttner, Wieland B.; Treutlein, Barbara

    2015-01-01

    Cerebral organoids—3D cultures of human cerebral tissue derived from pluripotent stem cells—have emerged as models of human cortical development. However, the extent to which in vitro organoid systems recapitulate neural progenitor cell proliferation and neuronal differentiation programs observed in vivo remains unclear. Here we use single-cell RNA sequencing (scRNA-seq) to dissect and compare cell composition and progenitor-to-neuron lineage relationships in human cerebral organoids and fetal neocortex. Covariation network analysis using the fetal neocortex data reveals known and previously unidentified interactions among genes central to neural progenitor proliferation and neuronal differentiation. In the organoid, we detect diverse progenitors and differentiated cell types of neuronal and mesenchymal lineages and identify cells that derived from regions resembling the fetal neocortex. We find that these organoid cortical cells use gene expression programs remarkably similar to those of the fetal tissue to organize into cerebral cortex-like regions. Our comparison of in vivo and in vitro cortical single-cell transcriptomes illuminates the genetic features underlying human cortical development that can be studied in organoid cultures. PMID:26644564

  13. Coevolution of radial glial cells and the cerebral cortex

    PubMed Central

    De Juan Romero, Camino

    2015-01-01

    Abstract Radial glia cells play fundamental roles in the development of the cerebral cortex, acting both as the primary stem and progenitor cells, as well as the guides for neuronal migration and lamination. These critical functions of radial glia cells in cortical development have been discovered mostly during the last 15 years and, more recently, seminal studies have demonstrated the existence of a remarkable diversity of additional cortical progenitor cell types, including a variety of basal radial glia cells with key roles in cortical expansion and folding, both in ontogeny and phylogeny. In this review, we summarize the main cellular and molecular mechanisms known to be involved in cerebral cortex development in mouse, as the currently preferred animal model, and then compare these with known mechanisms in other vertebrates, both mammal and nonmammal, including human. This allows us to present a global picture of how radial glia cells and the cerebral cortex seem to have coevolved, from reptiles to primates, leading to the remarkable diversity of vertebrate cortical phenotypes. GLIA 2015;63:1303–1319 PMID:25808466

  14. Gravitropism of Arabidopsis thaliana roots requires the polarization of PIN2 toward the root tip in meristematic cortical cells.

    PubMed

    Rahman, Abidur; Takahashi, Maho; Shibasaki, Kyohei; Wu, Shuang; Inaba, Takehito; Tsurumi, Seiji; Baskin, Tobias I

    2010-06-01

    In the root, the transport of auxin from the tip to the elongation zone, referred to here as shootward, governs gravitropic bending. Shootward polar auxin transport, and hence gravitropism, depends on the polar deployment of the PIN-FORMED auxin efflux carrier PIN2. In Arabidopsis thaliana, PIN2 has the expected shootward localization in epidermis and lateral root cap; however, this carrier is localized toward the root tip (rootward) in cortical cells of the meristem, a deployment whose function is enigmatic. We use pharmacological and genetic tools to cause a shootward relocation of PIN2 in meristematic cortical cells without detectably altering PIN2 polarization in other cell types or PIN1 polarization. This relocation of cortical PIN2 was negatively regulated by the membrane trafficking factor GNOM and by the regulatory A1 subunit of type 2-A protein phosphatase (PP2AA1) but did not require the PINOID protein kinase. When GNOM was inhibited, PINOID abundance increased and PP2AA1 was partially immobilized, indicating both proteins are subject to GNOM-dependent regulation. Shootward PIN2 specifically in the cortex was accompanied by enhanced shootward polar auxin transport and by diminished gravitropism. These results demonstrate that auxin flow in the root cortex is important for optimal gravitropic response.

  15. Three Types of Cortical L5 Neurons that Differ in Brain-Wide Connectivity and Function

    PubMed Central

    Kim, Euiseok J.; Juavinett, Ashley L.; Kyubwa, Espoir M.; Jacobs, Matthew W.; Callaway, Edward M.

    2015-01-01

    SUMMARY Cortical layer 5 (L5) pyramidal neurons integrate inputs from many sources and distribute outputs to cortical and subcortical structures. Previous studies demonstrate two L5 pyramid types: cortico-cortical (CC) and cortico-subcortical (CS). We characterize connectivity and function of these cell types in mouse primary visual cortex and reveal a new subtype. Unlike previously described L5 CC and CS neurons, this new subtype does not project to striatum [cortico-cortical, non-striatal (CC-NS)] and has distinct morphology, physiology and visual responses. Monosynaptic rabies tracing reveals that CC neurons preferentially receive input from higher visual areas, while CS neurons receive more input from structures implicated in top-down modulation of brain states. CS neurons are also more direction-selective and prefer faster stimuli than CC neurons. These differences suggest distinct roles as specialized output channels, with CS neurons integrating information and generating responses more relevant to movement control and CC neurons being more important in visual perception. PMID:26671462

  16. Three Types of Cortical Layer 5 Neurons That Differ in Brain-wide Connectivity and Function.

    PubMed

    Kim, Euiseok J; Juavinett, Ashley L; Kyubwa, Espoir M; Jacobs, Matthew W; Callaway, Edward M

    2015-12-16

    Cortical layer 5 (L5) pyramidal neurons integrate inputs from many sources and distribute outputs to cortical and subcortical structures. Previous studies demonstrate two L5 pyramid types: cortico-cortical (CC) and cortico-subcortical (CS). We characterize connectivity and function of these cell types in mouse primary visual cortex and reveal a new subtype. Unlike previously described L5 CC and CS neurons, this new subtype does not project to striatum [cortico-cortical, non-striatal (CC-NS)] and has distinct morphology, physiology, and visual responses. Monosynaptic rabies tracing reveals that CC neurons preferentially receive input from higher visual areas, while CS neurons receive more input from structures implicated in top-down modulation of brain states. CS neurons are also more direction-selective and prefer faster stimuli than CC neurons. These differences suggest distinct roles as specialized output channels, with CS neurons integrating information and generating responses more relevant to movement control and CC neurons being more important in visual perception. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Mapping Inhibitory Neuronal Circuits by Laser Scanning Photostimulation

    PubMed Central

    Ikrar, Taruna; Olivas, Nicholas D.; Shi, Yulin; Xu, Xiangmin

    2011-01-01

    Inhibitory neurons are crucial to cortical function. They comprise about 20% of the entire cortical neuronal population and can be further subdivided into diverse subtypes based on their immunochemical, morphological, and physiological properties1-4. Although previous research has revealed much about intrinsic properties of individual types of inhibitory neurons, knowledge about their local circuit connections is still relatively limited3,5,6. Given that each individual neuron's function is shaped by its excitatory and inhibitory synaptic input within cortical circuits, we have been using laser scanning photostimulation (LSPS) to map local circuit connections to specific inhibitory cell types. Compared to conventional electrical stimulation or glutamate puff stimulation, LSPS has unique advantages allowing for extensive mapping and quantitative analysis of local functional inputs to individually recorded neurons3,7-9. Laser photostimulation via glutamate uncaging selectively activates neurons perisomatically, without activating axons of passage or distal dendrites, which ensures a sub-laminar mapping resolution. The sensitivity and efficiency of LSPS for mapping inputs from many stimulation sites over a large region are well suited for cortical circuit analysis. Here we introduce the technique of LSPS combined with whole-cell patch clamping for local inhibitory circuit mapping. Targeted recordings of specific inhibitory cell types are facilitated by use of transgenic mice expressing green fluorescent proteins (GFP) in limited inhibitory neuron populations in the cortex3,10, which enables consistent sampling of the targeted cell types and unambiguous identification of the cell types recorded. As for LSPS mapping, we outline the system instrumentation, describe the experimental procedure and data acquisition, and present examples of circuit mapping in mouse primary somatosensory cortex. As illustrated in our experiments, caged glutamate is activated in a spatially restricted region of the brain slice by UV laser photolysis; simultaneous voltage-clamp recordings allow detection of photostimulation-evoked synaptic responses. Maps of either excitatory or inhibitory synaptic input to the targeted neuron are generated by scanning the laser beam to stimulate hundreds of potential presynaptic sites. Thus, LSPS enables the construction of detailed maps of synaptic inputs impinging onto specific types of inhibitory neurons through repeated experiments. Taken together, the photostimulation-based technique offers neuroscientists a powerful tool for determining the functional organization of local cortical circuits. PMID:22006064

  18. Inversin modulates the cortical actin network during mitosis

    PubMed Central

    Werner, Michael E.; Ward, Heather H.; Phillips, Carrie L.; Miller, Caroline; Gattone, Vincent H.

    2013-01-01

    Mutations in inversin cause nephronophthisis type II, an autosomal recessive form of polycystic kidney disease associated with situs inversus, dilatation, and kidney cyst formation. Since cyst formation may represent a planar polarity defect, we investigated whether inversin plays a role in cell division. In developing nephrons from inv−/− mouse embryos we observed heterogeneity of nuclear size, increased cell membrane perimeters, cells with double cilia, and increased frequency of binuclear cells. Depletion of inversin by siRNA in cultured mammalian cells leads to an increase in bi- or multinucleated cells. While spindle assembly, contractile ring formation, or furrow ingression appears normal in the absence of inversin, mitotic cell rounding and the underlying rearrangement of the cortical actin cytoskeleton are perturbed. We find that inversin loss causes extensive filopodia formation in both interphase and mitotic cells. These cells also fail to round up in metaphase. The resultant spindle positioning defects lead to asymmetric division plane formation and cell division. In a cell motility assay, fibroblasts isolated from inv−/− mouse embryos migrate at half the speed of wild-type fibroblasts. Together these data suggest that inversin is a regulator of cortical actin required for cell rounding and spindle positioning during mitosis. Furthermore, cell division defects resulting from improper spindle position and perturbed actin organization contribute to altered nephron morphogenesis in the absence of inversin. PMID:23515530

  19. Effects of Hypocretin/Orexin and Major Transmitters of Arousal on Fast Spiking Neurons in Mouse Cortical Layer 6B

    PubMed Central

    Wenger Combremont, Anne-Laure; Bayer, Laurence; Dupré, Anouk; Mühlethaler, Michel; Serafin, Mauro

    2016-01-01

    Fast spiking (FS) GABAergic neurons are thought to be involved in the generation of high-frequency cortical rhythms during the waking state. We previously showed that cortical layer 6b (L6b) was a specific target for the wake-promoting transmitter, hypocretin/orexin (hcrt/orx). Here, we have investigated whether L6b FS cells were sensitive to hcrt/orx and other transmitters associated with cortical activation. Recordings were thus made from L6b FS cells in either wild-type mice or in transgenic mice in which GFP-positive GABAergic cells are parvalbumin positive. Whereas in a control condition hcrt/orx induced a strong increase in the frequency, but not amplitude, of spontaneous synaptic currents, in the presence of TTX, it had no effect at all on miniature synaptic currents. Hcrt/orx effect was thus presynaptic although not by an action on glutamatergic terminals but rather on neighboring cells. In contrast, noradrenaline and acetylcholine depolarized and excited these cells through a direct postsynaptic action. Neurotensin, which is colocalized in hcrt/orx neurons, also depolarized and excited these cells but the effect was indirect. Morphologically, these cells exhibited basket-like features. These results suggest that hcrt/orx, noradrenaline, acetylcholine, and neurotensin could contribute to high-frequency cortical activity through an action on L6b GABAergic FS cells. PMID:27235100

  20. The involvement of J-protein AtDjC17 in root development in Arabidopsis

    PubMed Central

    Petti, Carloalberto; Nair, Meera; DeBolt, Seth

    2014-01-01

    In a screen for root hair morphogenesis mutants in Arabidopsis thaliana L. we identified a T-DNA insertion within a type III J-protein AtDjC17 caused altered root hair development and reduced hair length. Root hairs were observed to develop from trichoblast and atrichoblast cell files in both Atdjc17 and 35S::AtDJC17. Localization of gene expression in the root using transgenic plants expressing proAtDjC17::GUS revealed constitutive expression in stele cells. No AtDJC17 expression was observed in epidermal, endodermal, or cortical layers. To explore the contrast between gene expression in the stele and epidermal phenotype, hand cut transverse sections of Atdjc17 roots were examined showing that the endodermal and cortical cell layers displayed increased anticlinal cell divisions. Aberrant cortical cell division in Atdjc17 is proposed as causal in ectopic root hair formation via the positional cue requirement that exists between cortical and epidermal cell in hair cell fate determination. Results indicate a requirement for AtDJC17 in position-dependent cell fate determination and illustrate an intriguing requirement for molecular co-chaperone activity during root development. PMID:25339971

  1. Global Representations of Goal-Directed Behavior in Distinct Cell Types of Mouse Neocortex

    PubMed Central

    Allen, William E.; Kauvar, Isaac V.; Chen, Michael Z.; Richman, Ethan B.; Yang, Samuel J.; Chan, Ken; Gradinaru, Viviana; Deverman, Benjamin E.; Luo, Liqun; Deisseroth, Karl

    2017-01-01

    SUMMARY The successful planning and execution of adaptive behaviors in mammals may require long-range coordination of neural networks throughout cerebral cortex. The neuronal implementation of signals that could orchestrate cortex-wide activity remains unclear. Here, we develop and apply methods for cortex-wide Ca2+ imaging in mice performing decision-making behavior and identify a global cortical representation of task engagement encoded in the activity dynamics of both single cells and superficial neuropil distributed across the majority of dorsal cortex. The activity of multiple molecularly defined cell types was found to reflect this representation with type-specific dynamics. Focal optogenetic inhibition tiled across cortex revealed a crucial role for frontal cortex in triggering this cortex-wide phenomenon; local inhibition of this region blocked both the cortex-wide response to task-initiating cues and the voluntary behavior. These findings reveal cell-type-specific processes in cortex for globally representing goal-directed behavior and identify a major cortical node that gates the global broadcast of task-related information. PMID:28521139

  2. Novel Histopathological Patterns in Cortical Tubers of Epilepsy Surgery Patients with Tuberous Sclerosis Complex.

    PubMed

    Mühlebner, Angelika; van Scheppingen, Jackelien; Hulshof, Hanna M; Scholl, Theresa; Iyer, Anand M; Anink, Jasper J; van den Ouweland, Ans M W; Nellist, Mark D; Jansen, Floor E; Spliet, Wim G M; Krsek, Pavel; Benova, Barbora; Zamecnik, Josef; Crino, Peter B; Prayer, Daniela; Czech, Thomas; Wöhrer, Adelheid; Rahimi, Jasmin; Höftberger, Romana; Hainfellner, Johannes A; Feucht, Martha; Aronica, Eleonora

    2016-01-01

    Tuberous Sclerosis Complex (TSC) is a genetic hamartoma syndrome frequently associated with severe intractable epilepsy. In some TSC patients epilepsy surgery is a promising treatment option provided that the epileptogenic zone can be precisely delineated. TSC brain lesions (cortical tubers) contain dysmorphic neurons, brightly eosinophilic giant cells and white matter alterations in various proportions. However, a histological classification system has not been established for tubers. Therefore, the aim of this study was to define distinct histological patterns within tubers based on semi-automated histological quantification and to find clinically significant correlations. In total, we studied 28 cortical tubers and seven samples of perituberal cortex from 28 TSC patients who had undergone epilepsy surgery. We assessed mammalian target of rapamycin complex 1 (mTORC1) activation, the numbers of giant cells, dysmorphic neurons, neurons, and oligodendrocytes, and calcification, gliosis, angiogenesis, inflammation, and myelin content. Three distinct histological profiles emerged based on the proportion of calcifications, dysmorphic neurons and giant cells designated types A, B, and C. In the latter two types we were able to subsequently associate them with specific features on presurgical MRI. Therefore, these histopathological patterns provide consistent criteria for improved definition of the clinico-pathological features of cortical tubers identified by MRI and provide a basis for further exploration of the functional and molecular features of cortical tubers in TSC.

  3. Novel Histopathological Patterns in Cortical Tubers of Epilepsy Surgery Patients with Tuberous Sclerosis Complex

    PubMed Central

    Hulshof, Hanna M.; Scholl, Theresa; Iyer, Anand M.; Anink, Jasper J.; van den Ouweland, Ans M. W.; Nellist, Mark D.; Jansen, Floor E.; Spliet, Wim G. M.; Krsek, Pavel; Benova, Barbora; Zamecnik, Josef; Crino, Peter B.; Prayer, Daniela; Czech, Thomas; Wöhrer, Adelheid; Rahimi, Jasmin; Höftberger, Romana; Hainfellner, Johannes A.; Feucht, Martha; Aronica, Eleonora

    2016-01-01

    Tuberous Sclerosis Complex (TSC) is a genetic hamartoma syndrome frequently associated with severe intractable epilepsy. In some TSC patients epilepsy surgery is a promising treatment option provided that the epileptogenic zone can be precisely delineated. TSC brain lesions (cortical tubers) contain dysmorphic neurons, brightly eosinophilic giant cells and white matter alterations in various proportions. However, a histological classification system has not been established for tubers. Therefore, the aim of this study was to define distinct histological patterns within tubers based on semi-automated histological quantification and to find clinically significant correlations. In total, we studied 28 cortical tubers and seven samples of perituberal cortex from 28 TSC patients who had undergone epilepsy surgery. We assessed mammalian target of rapamycin complex 1 (mTORC1) activation, the numbers of giant cells, dysmorphic neurons, neurons, and oligodendrocytes, and calcification, gliosis, angiogenesis, inflammation, and myelin content. Three distinct histological profiles emerged based on the proportion of calcifications, dysmorphic neurons and giant cells designated types A, B, and C. In the latter two types we were able to subsequently associate them with specific features on presurgical MRI. Therefore, these histopathological patterns provide consistent criteria for improved definition of the clinico-pathological features of cortical tubers identified by MRI and provide a basis for further exploration of the functional and molecular features of cortical tubers in TSC. PMID:27295297

  4. Optogenetic Dissection of the Basal Forebrain Neuromodulatory Control of Cortical Activation, Plasticity, and Cognition

    PubMed Central

    Brown, Ritchie E.; Hussain Shuler, Marshall G.; Petersen, Carl C.H.; Kepecs, Adam

    2015-01-01

    The basal forebrain (BF) houses major ascending projections to the entire neocortex that have long been implicated in arousal, learning, and attention. The disruption of the BF has been linked with major neurological disorders, such as coma and Alzheimer's disease, as well as in normal cognitive aging. Although it is best known for its cholinergic neurons, the BF is in fact an anatomically and neurochemically complex structure. Recent studies using transgenic mouse lines to target specific BF cell types have led to a renaissance in the study of the BF and are beginning to yield new insights about cell-type-specific circuit mechanisms during behavior. These approaches enable us to determine the behavioral conditions under which cholinergic and noncholinergic BF neurons are activated and how they control cortical processing to influence behavior. Here we discuss recent advances that have expanded our knowledge about this poorly understood brain region and laid the foundation for future cell-type-specific manipulations to modulate arousal, attention, and cortical plasticity in neurological disorders. SIGNIFICANCE STATEMENT Although the basal forebrain is best known for, and often equated with, acetylcholine-containing neurons that provide most of the cholinergic innervation of the neocortex, it is in fact an anatomically and neurochemically complex structure. Recent studies using transgenic mouse lines to target specific cell types in the basal forebrain have led to a renaissance in this field and are beginning to dissect circuit mechanisms in the basal forebrain during behavior. This review discusses recent advances in the roles of basal forebrain cholinergic and noncholinergic neurons in cognition via their dynamic modulation of cortical activity. PMID:26468190

  5. Dendritic nonlinearities are tuned for efficient spike-based computations in cortical circuits.

    PubMed

    Ujfalussy, Balázs B; Makara, Judit K; Branco, Tiago; Lengyel, Máté

    2015-12-24

    Cortical neurons integrate thousands of synaptic inputs in their dendrites in highly nonlinear ways. It is unknown how these dendritic nonlinearities in individual cells contribute to computations at the level of neural circuits. Here, we show that dendritic nonlinearities are critical for the efficient integration of synaptic inputs in circuits performing analog computations with spiking neurons. We developed a theory that formalizes how a neuron's dendritic nonlinearity that is optimal for integrating synaptic inputs depends on the statistics of its presynaptic activity patterns. Based on their in vivo preynaptic population statistics (firing rates, membrane potential fluctuations, and correlations due to ensemble dynamics), our theory accurately predicted the responses of two different types of cortical pyramidal cells to patterned stimulation by two-photon glutamate uncaging. These results reveal a new computational principle underlying dendritic integration in cortical neurons by suggesting a functional link between cellular and systems--level properties of cortical circuits.

  6. Alteration of Oriented Deposition of Cellulose Microfibrils by Mutation of a Katanin-Like Microtubule-Severing Protein

    PubMed Central

    Burk, David H.; Ye, Zheng-Hua

    2002-01-01

    It has long been hypothesized that cortical microtubules (MTs) control the orientation of cellulose microfibril deposition, but no mutants with alterations of MT orientation have been shown to affect this process. We have shown previously that in Arabidopsis, the fra2 mutation causes aberrant cortical MT orientation and reduced cell elongation, and the gene responsible for the fra2 mutation encodes a katanin-like protein. In this study, using field emission scanning electron microscopy, we found that the fra2 mutation altered the normal orientation of cellulose microfibrils in walls of expanding cells. Although cellulose microfibrils in walls of wild-type cells were oriented transversely along the elongation axis, cellulose microfibrils in walls of fra2 cells often formed bands and ran in different directions. The fra2 mutation also caused aberrant deposition of cellulose microfibrils in secondary walls of fiber cells. The aberrant orientation of cellulose microfibrils was shown to be correlated with disorganized cortical MTs in several cell types examined. In addition, the thickness of both primary and secondary cell walls was reduced significantly in the fra2 mutant. These results indicate that the katanin-like protein is essential for oriented cellulose microfibril deposition and normal cell wall biosynthesis. We further demonstrated that the Arabidopsis katanin-like protein possessed MT-severing activity in vitro; thus, it is an ortholog of animal katanin. We propose that the aberrant MT orientation caused by the mutation of katanin results in the distorted deposition of cellulose microfibrils, which in turn leads to a defect in cell elongation. These findings strongly support the hypothesis that cortical MTs regulate the oriented deposition of cellulose microfibrils that determines the direction of cell elongation. PMID:12215512

  7. Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule-severing protein.

    PubMed

    Burk, David H; Ye, Zheng-Hua

    2002-09-01

    It has long been hypothesized that cortical microtubules (MTs) control the orientation of cellulose microfibril deposition, but no mutants with alterations of MT orientation have been shown to affect this process. We have shown previously that in Arabidopsis, the fra2 mutation causes aberrant cortical MT orientation and reduced cell elongation, and the gene responsible for the fra2 mutation encodes a katanin-like protein. In this study, using field emission scanning electron microscopy, we found that the fra2 mutation altered the normal orientation of cellulose microfibrils in walls of expanding cells. Although cellulose microfibrils in walls of wild-type cells were oriented transversely along the elongation axis, cellulose microfibrils in walls of fra2 cells often formed bands and ran in different directions. The fra2 mutation also caused aberrant deposition of cellulose microfibrils in secondary walls of fiber cells. The aberrant orientation of cellulose microfibrils was shown to be correlated with disorganized cortical MTs in several cell types examined. In addition, the thickness of both primary and secondary cell walls was reduced significantly in the fra2 mutant. These results indicate that the katanin-like protein is essential for oriented cellulose microfibril deposition and normal cell wall biosynthesis. We further demonstrated that the Arabidopsis katanin-like protein possessed MT-severing activity in vitro; thus, it is an ortholog of animal katanin. We propose that the aberrant MT orientation caused by the mutation of katanin results in the distorted deposition of cellulose microfibrils, which in turn leads to a defect in cell elongation. These findings strongly support the hypothesis that cortical MTs regulate the oriented deposition of cellulose microfibrils that determines the direction of cell elongation.

  8. Gravitropism of Arabidopsis thaliana Roots Requires the Polarization of PIN2 toward the Root Tip in Meristematic Cortical Cells[C][W

    PubMed Central

    Rahman, Abidur; Takahashi, Maho; Shibasaki, Kyohei; Wu, Shuang; Inaba, Takehito; Tsurumi, Seiji; Baskin, Tobias I.

    2010-01-01

    In the root, the transport of auxin from the tip to the elongation zone, referred to here as shootward, governs gravitropic bending. Shootward polar auxin transport, and hence gravitropism, depends on the polar deployment of the PIN-FORMED auxin efflux carrier PIN2. In Arabidopsis thaliana, PIN2 has the expected shootward localization in epidermis and lateral root cap; however, this carrier is localized toward the root tip (rootward) in cortical cells of the meristem, a deployment whose function is enigmatic. We use pharmacological and genetic tools to cause a shootward relocation of PIN2 in meristematic cortical cells without detectably altering PIN2 polarization in other cell types or PIN1 polarization. This relocation of cortical PIN2 was negatively regulated by the membrane trafficking factor GNOM and by the regulatory A1 subunit of type 2-A protein phosphatase (PP2AA1) but did not require the PINOID protein kinase. When GNOM was inhibited, PINOID abundance increased and PP2AA1 was partially immobilized, indicating both proteins are subject to GNOM-dependent regulation. Shootward PIN2 specifically in the cortex was accompanied by enhanced shootward polar auxin transport and by diminished gravitropism. These results demonstrate that auxin flow in the root cortex is important for optimal gravitropic response. PMID:20562236

  9. NF2/Merlin mediates contact-dependent inhibition of EGFR mobility and internalization via cortical actomyosin.

    PubMed

    Chiasson-MacKenzie, Christine; Morris, Zachary S; Baca, Quentin; Morris, Brett; Coker, Joanna K; Mirchev, Rossen; Jensen, Anne E; Carey, Thomas; Stott, Shannon L; Golan, David E; McClatchey, Andrea I

    2015-10-26

    The proliferation of normal cells is inhibited at confluence, but the molecular basis of this phenomenon, known as contact-dependent inhibition of proliferation, is unclear. We previously identified the neurofibromatosis type 2 (NF2) tumor suppressor Merlin as a critical mediator of contact-dependent inhibition of proliferation and specifically found that Merlin inhibits the internalization of, and signaling from, the epidermal growth factor receptor (EGFR) in response to cell contact. Merlin is closely related to the membrane-cytoskeleton linking proteins Ezrin, Radixin, and Moesin, and localization of Merlin to the cortical cytoskeleton is required for contact-dependent regulation of EGFR. We show that Merlin and Ezrin are essential components of a mechanism whereby mechanical forces associated with the establishment of cell-cell junctions are transduced across the cell cortex via the cortical actomyosin cytoskeleton to control the lateral mobility and activity of EGFR, providing novel insight into how cells inhibit mitogenic signaling in response to cell contact. © 2015 Chiassson-MacKenzie et al.

  10. Tissue distribution of very late activation antigens-1/6 and very late activation antigen ligands in the normal thymus and in thymoma.

    PubMed Central

    Ruco, L. P.; Paradiso, P.; Pittiglio, M.; Diodoro, M. G.; Gearing, A. J.; Mainiero, F.; Gismondi, A.; Santoni, A.; Baroni, C. D.

    1993-01-01

    The expression of very late activation antigens (VLAs)-1/6 was correlated with that of the VLA ligands fibronectin, laminin, collagen, and vascular cell adhesion molecule-1 in sections of normal thymus, in thymocyte suspensions, and in 10 cases of thymoma. Capsular epithelial cells are VLA-2+, VLA-3+, and VLA-6+ and face the thymic basement membrane, which is rich in fibronectin, laminin, and collagen type IV. Cortical epithelial cells are VLA-2+ and are embedded in a reticular meshwork of nonorganized extracellular matrix (ECM) that is rich in fibronectin. Cortical thymocytes, identified as CD3dim cells by using immunofluorescence in suspension, are highly positive for VLA-4, a fibronectin ligand. Most cortical macrophages are positive for vascular cell adhesion molecule-1, a molecule recognized by VLA-4. Medullary epithelial cells are VLA-2+/VLA-3+ and are codistributed with fibrous strands of organized ECM that are positive for fibronectin, collagen, and laminin. Medullary thymocytes, identified as CD3bright cells, are positive for VLA-4 and VLA-6, a ligand for laminin. Our findings suggest that intrathymic thymocyte maturation is associated with changes in expression of VLA molecules, which are apparently correlated with the presence of VLA ligands in the tissue microenvironment. Thymomas were classified as cortical (three), common (five), or medullary (two) type. Expression of VLA molecules and distribution of ECM in the three histological subtypes were reminiscent of those observed in the respective regions of the normal thymus. All cases of thymoma were characterized by overexpression of VLA molecules on neoplastic cells, which was associated with increased deposition of organized ECM rich in fibronectin, laminin, and collagen. Images Figure 1 Figure 3 PMID:8456937

  11. Inhibitory dendrite dynamics as a general feature of the adult cortical microcircuit.

    PubMed

    Chen, Jerry L; Flanders, Genevieve H; Lee, Wei-Chung Allen; Lin, Walter C; Nedivi, Elly

    2011-08-31

    The mammalian neocortex is functionally subdivided into architectonically distinct regions that process various types of information based on their source of afferent input. Yet, the modularity of neocortical organization in terms of cell type and intrinsic circuitry allows afferent drive to continuously reassign cortical map space. New aspects of cortical map plasticity include dynamic turnover of dendritic spines on pyramidal neurons and remodeling of interneuron dendritic arbors. While spine remodeling occurs in multiple cortical regions, it is not yet known whether interneuron dendrite remodeling is common across primary sensory and higher-level cortices. It is also unknown whether, like pyramidal dendrites, inhibitory dendrites respect functional domain boundaries. Given the importance of the inhibitory circuitry to adult cortical plasticity and the reorganization of cortical maps, we sought to address these questions by using two-photon microscopy to monitor interneuron dendritic arbors of thy1-GFP-S transgenic mice expressing GFP in neurons sparsely distributed across the superficial layers of the neocortex. We find that interneuron dendritic branch tip remodeling is a general feature of the adult cortical microcircuit, and that remodeling rates are similar across primary sensory regions of different modalities, but may differ in magnitude between primary sensory versus higher cortical areas. We also show that branch tip remodeling occurs in bursts and respects functional domain boundaries.

  12. Dendritic branching angles of pyramidal cells across layers of the juvenile rat somatosensory cortex.

    PubMed

    Leguey, Ignacio; Bielza, Concha; Larrañaga, Pedro; Kastanauskaite, Asta; Rojo, Concepción; Benavides-Piccione, Ruth; DeFelipe, Javier

    2016-09-01

    The characterization of the structural design of cortical microcircuits is essential for understanding how they contribute to function in both health and disease. Since pyramidal neurons represent the most abundant neuronal type and their dendritic spines constitute the major postsynaptic elements of cortical excitatory synapses, our understanding of the synaptic organization of the neocortex largely depends on the available knowledge regarding the structure of pyramidal cells. Previous studies have identified several apparently common rules in dendritic geometry. We study the dendritic branching angles of pyramidal cells across layers to further shed light on the principles that determine the geometric shapes of these cells. We find that the dendritic branching angles of pyramidal cells from layers II-VI of the juvenile rat somatosensory cortex suggest common design principles, despite the particular morphological and functional features that are characteristic of pyramidal cells in each cortical layer. J. Comp. Neurol. 524:2567-2576, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Brain-wide Maps Reveal Stereotyped Cell-Type-Based Cortical Architecture and Subcortical Sexual Dimorphism.

    PubMed

    Kim, Yongsoo; Yang, Guangyu Robert; Pradhan, Kith; Venkataraju, Kannan Umadevi; Bota, Mihail; García Del Molino, Luis Carlos; Fitzgerald, Greg; Ram, Keerthi; He, Miao; Levine, Jesse Maurica; Mitra, Partha; Huang, Z Josh; Wang, Xiao-Jing; Osten, Pavel

    2017-10-05

    The stereotyped features of neuronal circuits are those most likely to explain the remarkable capacity of the brain to process information and govern behaviors, yet it has not been possible to comprehensively quantify neuronal distributions across animals or genders due to the size and complexity of the mammalian brain. Here we apply our quantitative brain-wide (qBrain) mapping platform to document the stereotyped distributions of mainly inhibitory cell types. We discover an unexpected cortical organizing principle: sensory-motor areas are dominated by output-modulating parvalbumin-positive interneurons, whereas association, including frontal, areas are dominated by input-modulating somatostatin-positive interneurons. Furthermore, we identify local cell type distributions with more cells in the female brain in 10 out of 11 sexually dimorphic subcortical areas, in contrast to the overall larger brains in males. The qBrain resource can be further mined to link stereotyped aspects of neuronal distributions to known and unknown functions of diverse brain regions. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Dendritic nonlinearities are tuned for efficient spike-based computations in cortical circuits

    PubMed Central

    Ujfalussy, Balázs B; Makara, Judit K; Branco, Tiago; Lengyel, Máté

    2015-01-01

    Cortical neurons integrate thousands of synaptic inputs in their dendrites in highly nonlinear ways. It is unknown how these dendritic nonlinearities in individual cells contribute to computations at the level of neural circuits. Here, we show that dendritic nonlinearities are critical for the efficient integration of synaptic inputs in circuits performing analog computations with spiking neurons. We developed a theory that formalizes how a neuron's dendritic nonlinearity that is optimal for integrating synaptic inputs depends on the statistics of its presynaptic activity patterns. Based on their in vivo preynaptic population statistics (firing rates, membrane potential fluctuations, and correlations due to ensemble dynamics), our theory accurately predicted the responses of two different types of cortical pyramidal cells to patterned stimulation by two-photon glutamate uncaging. These results reveal a new computational principle underlying dendritic integration in cortical neurons by suggesting a functional link between cellular and systems--level properties of cortical circuits. DOI: http://dx.doi.org/10.7554/eLife.10056.001 PMID:26705334

  15. Abnormal cell-intrinsic and network excitability in the neocortex of serotonin-deficient Pet-1 knockout mice.

    PubMed

    Puzerey, Pavel A; Kodama, Nathan X; Galán, Roberto F

    2016-02-01

    Neurons originating from the raphe nuclei of the brain stem are the exclusive source of serotonin (5-HT) to the cortex. Their serotonergic phenotype is specified by the transcriptional regulator Pet-1, which is also necessary for maintaining their neurotransmitter identity across development. Transgenic mice in which Pet-1 is genetically ablated (Pet-1(-/-)) show a dramatic reduction (∼80%) in forebrain 5-HT levels, yet no investigations have been carried out to assess the impact of such severe 5-HT depletion on the function of target cortical neurons. Using whole cell patch-clamp methods, two-dimensional (2D) multielectrode arrays (MEAs), 3D morphological neuronal reconstructions, and animal behavior, we investigated the impact of 5-HT depletion on cortical cell-intrinsic and network excitability. We found significant changes in several parameters of cell-intrinsic excitability in cortical pyramidal cells (PCs) as well as an increase in spontaneous synaptic excitation through 5-HT3 receptors. These changes are associated with increased local network excitability and oscillatory activity in a 5-HT2 receptor-dependent manner, consistent with previously reported hypersensitivity of cortical 5-HT2 receptors. PC morphology was also altered, with a significant reduction in dendritic complexity that may possibly act as a compensatory mechanism for increased excitability. Consistent with this interpretation, when we carried out experiments with convulsant-induced seizures to asses cortical excitability in vivo, we observed no significant differences in seizure parameters between wild-type and Pet-1(-/-) mice. Moreover, MEA recordings of propagating field potentials showed diminished propagation of activity across the cortical sheath. Together these findings reveal novel functional changes in neuronal and cortical excitability in mice lacking Pet-1. Copyright © 2016 the American Physiological Society.

  16. Abnormal cell-intrinsic and network excitability in the neocortex of serotonin-deficient Pet-1 knockout mice

    PubMed Central

    Puzerey, Pavel A.; Kodama, Nathan X.

    2015-01-01

    Neurons originating from the raphe nuclei of the brain stem are the exclusive source of serotonin (5-HT) to the cortex. Their serotonergic phenotype is specified by the transcriptional regulator Pet-1, which is also necessary for maintaining their neurotransmitter identity across development. Transgenic mice in which Pet-1 is genetically ablated (Pet-1−/−) show a dramatic reduction (∼80%) in forebrain 5-HT levels, yet no investigations have been carried out to assess the impact of such severe 5-HT depletion on the function of target cortical neurons. Using whole cell patch-clamp methods, two-dimensional (2D) multielectrode arrays (MEAs), 3D morphological neuronal reconstructions, and animal behavior, we investigated the impact of 5-HT depletion on cortical cell-intrinsic and network excitability. We found significant changes in several parameters of cell-intrinsic excitability in cortical pyramidal cells (PCs) as well as an increase in spontaneous synaptic excitation through 5-HT3 receptors. These changes are associated with increased local network excitability and oscillatory activity in a 5-HT2 receptor-dependent manner, consistent with previously reported hypersensitivity of cortical 5-HT2 receptors. PC morphology was also altered, with a significant reduction in dendritic complexity that may possibly act as a compensatory mechanism for increased excitability. Consistent with this interpretation, when we carried out experiments with convulsant-induced seizures to asses cortical excitability in vivo, we observed no significant differences in seizure parameters between wild-type and Pet-1−/− mice. Moreover, MEA recordings of propagating field potentials showed diminished propagation of activity across the cortical sheath. Together these findings reveal novel functional changes in neuronal and cortical excitability in mice lacking Pet-1. PMID:26609119

  17. Electrical remodelling maintains firing properties in cortical pyramidal neurons lacking KCND2-encoded A-type K+ currents.

    PubMed

    Nerbonne, Jeanne M; Gerber, Benjamin R; Norris, Aaron; Burkhalter, Andreas

    2008-03-15

    Considerable experimental evidence has accumulated demonstrating a role for voltage-gated K(+) (Kv) channel pore-forming (alpha) subunits of the Kv4 subfamily in the generation of fast transient outward K(+), I(A), channels. Immunohistochemical data suggest that I(A) channels in hippocampal and cortical pyramidal neurons reflect the expression of homomeric Kv4.2 channels. The experiments here were designed to define directly the role of Kv4.2 in the generation of I(A) in cortical pyramidal neurons and to determine the functional consequences of the targeted deletion of Kv4.2 on the resting and active membrane properties of these cells. Whole-cell voltage-clamp recordings, obtained from visual cortical pyramidal neurons isolated from mice in which the KCND2 (Kv4.2) locus was disrupted (Kv4.2-/- mice), revealed that I(A) is indeed eliminated. In addition, the densities of other Kv current components, specifically I(K) and I(ss), are increased significantly (P < 0.001) in most ( approximately 80%) Kv4.2-/- cells. The deletion of KCND2 (Kv4.2) and the elimination of I(A) is also accompanied by the loss of the Kv4 channel accessory protein KChIP3, suggesting that in the absence of Kv4.2, the KChIP3 protein is targeted for degradation. The expression levels of several Kv alpha subunits (Kv4.3, Kv1.4, Kv2.1, Kv2.2), however, are not measurably altered in Kv4.2-/- cortices. Although I(A) is eliminated in Kv4.2-/- pyramidal neurons, the mean +/- s.e.m. current threshold for action potential generation and the waveforms of action potentials are indistinguishable from those recorded from wild-type cells. Repetitive firing is also maintained in Kv4.2-/- cortical pyramidal neurons, suggesting that the increased densities of I(K) and I(ss) compensate for the in vivo loss of I(A).

  18. Brain-specific enhancers for cell-based therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visel, Axel; Rubenstein, John L.R.; Chen, Ying-Jiun

    Herein are described a set of novel specific human enhancers for specific forebrain cell types used to study and select for human neural progenitor cells. This approach enables the ability to generate interneurons from human ES, iPS and iN cells, making them available for human transplantation and for molecular/cellular analyzes. These approaches are also directly applicable to generating other neuronal cell types, such as cortical and striatal projection neurons, which have implications for many human diseases.

  19. Temporal lobe cortical pathology and inhibitory GABA interneuron cell loss are associated with seizures in multiple sclerosis.

    PubMed

    Nicholas, Richard; Magliozzi, Roberta; Campbell, Graham; Mahad, Don; Reynolds, Richard

    2016-01-01

    Seizures are recognised in multiple sclerosis (MS), but their true incidence and the mechanism by which they are associated with MS is unclear. The objective of this paper is to determine the lifetime frequency of seizures in the United Kingdom MS Tissue Bank (UKMSTB) population and any pathological features associated with seizures. We evaluated 255 individuals from the UKMSTB. A subset underwent analysis of cortical thickness, grey matter lesion (GML) (type and number) and cortical neuronal numbers (total and GABAergic). A total of 37/255 patients had seizures (14.5% lifetime incidence); in 47% they were associated with concurrent infection. In those with seizures, death and wheelchair use occurred earlier and in 59% seizures developed after 15 years of disease. Seizures were associated with Type 1 GMLs and reduced cortical thickness in the middle temporal gyrus. Localised selective GABAergic interneuron loss in layers IV and VI was related to GMLs but was not explained by the presence of inflammation or by mitochondrial dysfunction within Type I GMLs. We confirm that seizure frequency rises in MS. Type I GMLs in the temporal lobe underlie a loss of inhibitory interneurons in cortical layers IV and VI and these changes could together with concurrent infection enhance susceptibility to seizures. © The Author(s), 2015.

  20. Temporal lobe cortical pathology and inhibitory GABA interneuron cell loss are associated with seizures in multiple sclerosis

    PubMed Central

    Nicholas, Richard; Magliozzi, Roberta; Campbell, Graham; Mahad, Don; Reynolds, Richard

    2016-01-01

    Background: Seizures are recognised in multiple sclerosis (MS), but their true incidence and the mechanism by which they are associated with MS is unclear. Objective: The objective of this paper is to determine the lifetime frequency of seizures in the United Kingdom MS Tissue Bank (UKMSTB) population and any pathological features associated with seizures. Methods: We evaluated 255 individuals from the UKMSTB. A subset underwent analysis of cortical thickness, grey matter lesion (GML) (type and number) and cortical neuronal numbers (total and GABAergic). Results: A total of 37/255 patients had seizures (14.5% lifetime incidence); in 47% they were associated with concurrent infection. In those with seizures, death and wheelchair use occurred earlier and in 59% seizures developed after 15 years of disease. Seizures were associated with Type 1 GMLs and reduced cortical thickness in the middle temporal gyrus. Localised selective GABAergic interneuron loss in layers IV and VI was related to GMLs but was not explained by the presence of inflammation or by mitochondrial dysfunction within Type I GMLs. Conclusion: We confirm that seizure frequency rises in MS. Type I GMLs in the temporal lobe underlie a loss of inhibitory interneurons in cortical layers IV and VI and these changes could together with concurrent infection enhance susceptibility to seizures. PMID:25921040

  1. Comparative Analysis of the Subventricular Zone in Rat, Ferret and Macaque: Evidence for an Outer Subventricular Zone in Rodents

    PubMed Central

    Camacho, Jasmin; Antczak, Jared L.; Prakash, Anish N.; Cziep, Matthew E.; Walker, Anita I.; Noctor, Stephen C.

    2012-01-01

    The mammalian cerebral cortex arises from precursor cells that reside in a proliferative region surrounding the lateral ventricles of the developing brain. Recent work has shown that precursor cells in the subventricular zone (SVZ) provide a major contribution to prenatal cortical neurogenesis, and that the SVZ is significantly thicker in gyrencephalic mammals such as primates than it is in lissencephalic mammals including rodents. Identifying characteristics that are shared by or that distinguish cortical precursor cells across mammalian species will shed light on factors that regulate cortical neurogenesis and may point toward mechanisms that underlie the evolutionary expansion of the neocortex in gyrencephalic mammals. We immunostained sections of the developing cerebral cortex from lissencephalic rats, and from gyrencephalic ferrets and macaques to compare the distribution of precursor cell types in each species. We also performed time-lapse imaging of precursor cells in the developing rat neocortex. We show that the distribution of Pax6+ and Tbr2+ precursor cells is similar in lissencephalic rat and gyrencephalic ferret, and different in the gyrencephalic cortex of macaque. We show that mitotic Pax6+ translocating radial glial cells (tRG) are present in the cerebral cortex of each species during and after neurogenesis, demonstrating that the function of Pax6+ tRG cells is not restricted to neurogenesis. Furthermore, we show that Olig2 expression distinguishes two distinct subtypes of Pax6+ tRG cells. Finally we present a novel method for discriminating the inner and outer SVZ across mammalian species and show that the key cytoarchitectural features and cell types that define the outer SVZ in developing primates are present in the developing rat neocortex. Our data demonstrate that the developing rat cerebral cortex possesses an outer subventricular zone during late stages of cortical neurogenesis and that the developing rodent cortex shares important features with that of primates. PMID:22272298

  2. Comparative analysis of the subventricular zone in rat, ferret and macaque: evidence for an outer subventricular zone in rodents.

    PubMed

    Martínez-Cerdeño, Verónica; Cunningham, Christopher L; Camacho, Jasmin; Antczak, Jared L; Prakash, Anish N; Cziep, Matthew E; Walker, Anita I; Noctor, Stephen C

    2012-01-01

    The mammalian cerebral cortex arises from precursor cells that reside in a proliferative region surrounding the lateral ventricles of the developing brain. Recent work has shown that precursor cells in the subventricular zone (SVZ) provide a major contribution to prenatal cortical neurogenesis, and that the SVZ is significantly thicker in gyrencephalic mammals such as primates than it is in lissencephalic mammals including rodents. Identifying characteristics that are shared by or that distinguish cortical precursor cells across mammalian species will shed light on factors that regulate cortical neurogenesis and may point toward mechanisms that underlie the evolutionary expansion of the neocortex in gyrencephalic mammals. We immunostained sections of the developing cerebral cortex from lissencephalic rats, and from gyrencephalic ferrets and macaques to compare the distribution of precursor cell types in each species. We also performed time-lapse imaging of precursor cells in the developing rat neocortex. We show that the distribution of Pax6+ and Tbr2+ precursor cells is similar in lissencephalic rat and gyrencephalic ferret, and different in the gyrencephalic cortex of macaque. We show that mitotic Pax6+ translocating radial glial cells (tRG) are present in the cerebral cortex of each species during and after neurogenesis, demonstrating that the function of Pax6+ tRG cells is not restricted to neurogenesis. Furthermore, we show that Olig2 expression distinguishes two distinct subtypes of Pax6+ tRG cells. Finally we present a novel method for discriminating the inner and outer SVZ across mammalian species and show that the key cytoarchitectural features and cell types that define the outer SVZ in developing primates are present in the developing rat neocortex. Our data demonstrate that the developing rat cerebral cortex possesses an outer subventricular zone during late stages of cortical neurogenesis and that the developing rodent cortex shares important features with that of primates.

  3. Removing or Truncating Connexin 43 in Murine Osteocytes Alters Cortical Geometry, Nanoscale Morphology, and Tissue Mechanics in the Tibia

    PubMed Central

    Hammond, Max A.; Berman, Alycia G.; Pacheco-Costa, Rafael; Davis, Hannah M.; Plotkin, Lilian I.; Wallace, Joseph M.

    2016-01-01

    Gap junctions are formed from ubiquitously expressed proteins called connexins that allow the transfer of small signaling molecules between adjacent cells. Gap junctions are especially important for signaling between osteocytes and other bone cell types. The most abundant type of connexin in bone is connexin 43 (Cx43). The C-terminal domain of Cx43 is thought to be an important modulator of gap junction function but the role that this domain plays in regulating tissue-level mechanics is largely unknown. We hypothesized that the lack of the C-terminal domain of Cx43 would cause morphological and compositional changes as well as differences in how bone responds to reference point indentation (RPI) and fracture toughness testing. The effects of the C-terminal domain of Cx43 in osteocytes and other cell types were assessed in a murine model (C57BL/6 background). Mice with endogenous Cx43 in their osteocytes removed via a Cre-loxP system were crossed with knock-in mice which expressed Cx43 that lacked the C-terminal domain in all cell types due to the insertion of a truncated allele to produce the four groups used in the study. The main effect of removing the C-terminal domain from osteocytic Cx43 increased cortical mineral crystallinity (p=0.036) and decreased fracture toughness (p=0.017). The main effect of the presence of the C-terminal domain in other cell types increased trabecular thickness (p<0.001), cortical thickness (p=0.008), and average RPI unloading slope (p=0.004). Collagen morphology was altered when either osteocytes lacked Cx43 (p=0.008) or some truncated Cx43 was expressed in all cell types (p<0.001) compared to controls but not when only the truncated form of Cx43 was expressed in osteocytes (p=0.641). In conclusion, the presence of the C-terminal domain of Cx43 in osteocytes and other cell types is important to maintain normal structure and mechanical integrity of bone. PMID:27113527

  4. Mechanical Coordination of Single-Cell and Collective-Cell Amoeboid Migration

    NASA Astrophysics Data System (ADS)

    Del Alamo, Juan Carlos

    Amoeboid migration consists of the sequential repetition of pseudopod extensions and retractions driven by actin polymerization and actomyosin contraction, and requires cells to apply mechanical forces on their surroundings. We measure the three-dimensional forces exerted by chemotaxing Dictyostelium cells, and examine wild-type cells as well as mutants with defects in contractility, F-actin polymerization, internal F-actin crosslinking, and cortical integrity. We find that cells pull on their substrate adhesions using two distinct, yet interconnected mechanisms: axial actomyosin contractility and cortical tension. The 3D pulling forces generated by both mechanisms are internally balanced by an increase in cytoplasmic pressure that allows cells to push on their substrate, and we show that these pushing forces are relevant for cell invasion and migration in three-dimensional environments. We observe that cells migrate mainly by forming two stationary adhesion sites at the front and back of the cell, over which the cell body moves forward in a step-wise fashion. During this process, the traction forces at each adhesion site are switched off and subsequently their direction is reversed. The cell migration speed is found to be proportional to the rate at which cells are able regulate these forces to produce the cell shape changes needed for locomotion, which is increased when axial contractility overcomes the stabilizing effect of cortical tension. This spatiotemporal coordination is conserved in streams of multiple migratory cells connected head to tail, which also migrate by exerting traction forces on stationary sites. Furthermore, we observe that trailing cells reuse the adhesion sites of the leading cells. Finally, we provide evidence that the above modes of migration may be conserved in a range of other amoeboid-type moving cells such as neutrophils.

  5. TRPV1 stimulation triggers apoptotic cell death of rat cortical neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirakawa, Hisashi; Yamaoka, Tomoko; Sanpei, Kazuaki

    2008-12-26

    Transient receptor potential vanilloid 1 (TRPV1) functions as a polymodal nociceptor and is activated by several vanilloids, including capsaicin, protons and heat. Although TRPV1 channels are widely distributed in the brain, their roles remain unclear. Here, we investigated the roles of TRPV1 in cytotoxic processes using TRPV1-expressing cultured rat cortical neurons. Capsaicin induced severe neuronal death with apoptotic features, which was completely inhibited by the TRPV1 antagonist capsazepine and was dependent on extracellular Ca{sup 2+} influx. Interestingly, nifedipine, a specific L-type Ca{sup 2+} channel blocker, attenuated capsaicin cytotoxicity, even when applied 2-4 h after the capsaicin. ERK inhibitor PD98059 andmore » several antioxidants, but not the JNK and p38 inhibitors, attenuated capsaicin cytotoxicity. Together, these data indicate that TRPV1 activation triggers apoptotic cell death of rat cortical cultures via L-type Ca{sup 2+} channel opening, Ca{sup 2+} influx, ERK phosphorylation, and reactive oxygen species production.« less

  6. A Novel Plasma Membrane-Anchored Protein Regulates Xylem Cell-Wall Deposition through Microtubule-Dependent Lateral Inhibition of Rho GTPase Domains.

    PubMed

    Sugiyama, Yuki; Wakazaki, Mayumi; Toyooka, Kiminori; Fukuda, Hiroo; Oda, Yoshihisa

    2017-08-21

    Spatial control of cell-wall deposition is essential for determining plant cell shape [1]. Rho-type GTPases, together with the cortical cytoskeleton, play central roles in regulating cell-wall patterning [2]. In metaxylem vessel cells, which are the major components of xylem tissues, active ROP11 Rho GTPases form oval plasma membrane domains that locally disrupt cortical microtubules, thereby directing the formation of oval pits in secondary cell walls [3-5]. However, the regulatory mechanism that determines the planar shape of active Rho of Plants (ROP) domains is still unknown. Here we show that IQD13 associates with cortical microtubules and the plasma membrane to laterally restrict the localization of ROP GTPase domains, thereby directing the formation of oval secondary cell-wall pits. Loss and overexpression of IQD13 led to the formation of abnormally round and narrow secondary cell-wall pits, respectively. Ectopically expressed IQD13 increased the presence of parallel cortical microtubules by promoting microtubule rescue. A reconstructive approach revealed that IQD13 confines the area of active ROP domains within the lattice of the cortical microtubules, causing narrow ROP domains to form. This activity required the interaction of IQD13 with the plasma membrane. These findings suggest that IQD13 positively regulates microtubule dynamics as well as their linkage to the plasma membrane, which synergistically confines the area of active ROP domains, leading to the formation of oval secondary cell-wall pits. This finding sheds light on the role of microtubule-plasma membrane linkage as a lateral fence that determines the planar shape of Rho GTPase domains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Principles for the dynamic maintenance of cortical polarity

    PubMed Central

    Marco, Eugenio; Wedlich-Soldner, Roland; Li, Rong; Altschuler, Steven J.; Wu, Lani F.

    2007-01-01

    Summary Diverse cell types require the ability to dynamically maintain polarized membrane protein distributions through balancing transport and diffusion. However, design principles underlying dynamically maintained cortical polarity are not well understood. Here we constructed a mathematical model for characterizing the morphology of dynamically polarized protein distributions. We developed analytical approaches for measuring all model parameters from single-cell experiments. We applied our methods to a well-characterized system for studying polarized membrane proteins: budding yeast cells expressing activated Cdc42. We found that balanced diffusion and colocalized transport to and from the plasma membrane were sufficient for accurately describing polarization morphologies. Surprisingly, the model predicts that polarized regions are defined with a precision that is nearly optimal for measured transport rates, and that polarity can be dynamically stabilized through positive feedback with directed transport. Our approach provides a step towards understanding how biological systems shape spatially precise, unambiguous cortical polarity domains using dynamic processes. PMID:17448998

  8. Emergent Spatial Patterns of Excitatory and Inhibitory Synaptic Strengths Drive Somatotopic Representational Discontinuities and their Plasticity in a Computational Model of Primary Sensory Cortical Area 3b

    PubMed Central

    Grajski, Kamil A.

    2016-01-01

    Mechanisms underlying the emergence and plasticity of representational discontinuities in the mammalian primary somatosensory cortical representation of the hand are investigated in a computational model. The model consists of an input lattice organized as a three-digit hand forward-connected to a lattice of cortical columns each of which contains a paired excitatory and inhibitory cell. Excitatory and inhibitory synaptic plasticity of feedforward and lateral connection weights is implemented as a simple covariance rule and competitive normalization. Receptive field properties are computed independently for excitatory and inhibitory cells and compared within and across columns. Within digit representational zones intracolumnar excitatory and inhibitory receptive field extents are concentric, single-digit, small, and unimodal. Exclusively in representational boundary-adjacent zones, intracolumnar excitatory and inhibitory receptive field properties diverge: excitatory cell receptive fields are single-digit, small, and unimodal; and the paired inhibitory cell receptive fields are bimodal, double-digit, and large. In simulated syndactyly (webbed fingers), boundary-adjacent intracolumnar receptive field properties reorganize to within-representation type; divergent properties are reacquired following syndactyly release. This study generates testable hypotheses for assessment of cortical laminar-dependent receptive field properties and plasticity within and between cortical representational zones. For computational studies, present results suggest that concurrent excitatory and inhibitory plasticity may underlie novel emergent properties. PMID:27504086

  9. Cortical Interneuron Subtypes Vary in Their Axonal Action Potential Properties

    PubMed Central

    Casale, Amanda E.; Foust, Amanda J.; Bal, Thierry

    2015-01-01

    The role of interneurons in cortical microcircuits is strongly influenced by their passive and active electrical properties. Although different types of interneurons exhibit unique electrophysiological properties recorded at the soma, it is not yet clear whether these differences are also manifested in other neuronal compartments. To address this question, we have used voltage-sensitive dye to image the propagation of action potentials into the fine collaterals of axons and dendrites in two of the largest cortical interneuron subtypes in the mouse: fast-spiking interneurons, which are typically basket or chandelier neurons; and somatostatin containing interneurons, which are typically regular spiking Martinotti cells. We found that fast-spiking and somatostatin-expressing interneurons differed in their electrophysiological characteristics along their entire dendrosomatoaxonal extent. The action potentials generated in the somata and axons, including axon collaterals, of somatostatin-expressing interneurons are significantly broader than those generated in the same compartments of fast-spiking inhibitory interneurons. In addition, action potentials back-propagated into the dendrites of somatostatin-expressing interneurons much more readily than fast-spiking interneurons. Pharmacological investigations suggested that axonal action potential repolarization in both cell types depends critically upon Kv1 channels, whereas the axonal and somatic action potentials of somatostatin-expressing interneurons also depend on BK Ca2+-activated K+ channels. These results indicate that the two broad classes of interneurons studied here have expressly different subcellular physiological properties, allowing them to perform unique computational roles in cortical circuit operations. SIGNIFICANCE STATEMENT Neurons in the cerebral cortex are of two major types: excitatory and inhibitory. The proper balance of excitation and inhibition in the brain is critical for its operation. Neurons contain three main compartments: dendritic, somatic, and axonal. How the neurons receive information, process it, and pass on new information depends upon how these three compartments operate. While it has long been assumed that axons are simply for conducting information from the cell body to the synapses, here we demonstrate that the axons of different types of interneurons, the inhibitory cells, possess differing electrophysiological properties. This result implies that differing types of interneurons perform different tasks in the cortex, not only through their anatomical connections, but also through how their axons operate. PMID:26609152

  10. Postnatal Migration of Cerebellar Interneurons

    PubMed Central

    Galas, Ludovic; Bénard, Magalie; Lebon, Alexis; Komuro, Yutaro; Schapman, Damien; Vaudry, Hubert; Vaudry, David; Komuro, Hitoshi

    2017-01-01

    Due to its continuing development after birth, the cerebellum represents a unique model for studying the postnatal orchestration of interneuron migration. The combination of fluorescent labeling and ex/in vivo imaging revealed a cellular highway network within cerebellar cortical layers (the external granular layer, the molecular layer, the Purkinje cell layer, and the internal granular layer). During the first two postnatal weeks, saltatory movements, transient stop phases, cell-cell interaction/contact, and degradation of the extracellular matrix mark out the route of cerebellar interneurons, notably granule cells and basket/stellate cells, to their final location. In addition, cortical-layer specific regulatory factors such as neuropeptides (pituitary adenylate cyclase-activating polypeptide (PACAP), somatostatin) or proteins (tissue-type plasminogen activator (tPA), insulin growth factor-1 (IGF-1)) have been shown to inhibit or stimulate the migratory process of interneurons. These factors show further complexity because somatostatin, PACAP, or tPA have opposite or no effect on interneuron migration depending on which layer or cell type they act upon. External factors originating from environmental conditions (light stimuli, pollutants), nutrients or drug of abuse (alcohol) also alter normal cell migration, leading to cerebellar disorders. PMID:28587295

  11. Identification of the cortical neurons that mediate antidepressant responses

    PubMed Central

    Schmidt, Eric F.; Warner-Schmidt, Jennifer; Otopalik, Benjamin G.; Pickett, Sarah B.; Greengard, Paul; Heintz, Nathaniel

    2012-01-01

    Summary Our understanding of current treatments for depression, and the development of more specific therapies, is limited by the complexity of the circuits controlling mood and the distributed actions of antidepressants. Although the therapeutic efficacy of SSRIs is correlated with increases in cortical activity, the cell types crucial for their action remain unknown. Here we employ bacTRAP translational profiling to show that layer 5 corticostriatal pyramidal cells expressing p11 (S100a10) are strongly and specifically responsive to chronic antidepressant treatment. This response requires p11 and includes the specific induction of Htr4 expression. Cortex-specific deletion of p11 abolishes behavioral responses to SSRI’s, but does not lead to increased depression-like behaviors. Our data identify corticostriatal projection neurons as critical for the response to antidepressants, and suggest that the regulation of serotonergic tone in this single cell type plays a pivotal role in antidepressant therapy. PMID:22632977

  12. Species and Sex Differences in the Morphogenic Response of Primary Rodent Neurons to 3,3′-Dichlorobiphenyl (PCB 11)

    PubMed Central

    Sethi, Sunjay; Keil, Kimberly P.

    2017-01-01

    PCB 11 is an emerging global pollutant that we recently showed promotes axonal and dendritic growth in primary rat neuronal cell cultures. Here, we address the influence of sex and species on neuronal responses to PCB 11. Neuronal morphology was quantified in sex-specific primary hippocampal and cortical neuron-glia co-cultures derived from neonatal C57BL/6J mice and Sprague Dawley rats exposed for 48 h to vehicle (0.1% DMSO) or PCB 11 at concentrations ranging from 1 fM to 1 nM. Total axonal length was quantified in tau-1 immunoreactive neurons at day in vitro (DIV) 2; dendritic arborization was assessed by Sholl analysis at DIV 9 in neurons transfected with MAP2B-FusRed. In mouse cultures, PCB 11 enhanced dendritic arborization in female, but not male, hippocampal neurons and male, but not female, cortical neurons. In rat cultures, PCB 11 promoted dendritic arborization in male and female hippocampal and cortical neurons. PCB 11 also increased axonal growth in mouse and rat neurons of both sexes and neuronal cell types. These data demonstrate that PCB 11 exerts sex-specific effects on neuronal morphogenesis that vary depending on species, neurite type, and neuronal cell type. These findings have significant implications for risk assessment of this emerging developmental neurotoxicant. PMID:29295518

  13. Species and Sex Differences in the Morphogenic Response of Primary Rodent Neurons to 3,3'-Dichlorobiphenyl (PCB 11).

    PubMed

    Sethi, Sunjay; Keil, Kimberly P; Lein, Pamela J

    2017-12-23

    PCB 11 is an emerging global pollutant that we recently showed promotes axonal and dendritic growth in primary rat neuronal cell cultures. Here, we address the influence of sex and species on neuronal responses to PCB 11. Neuronal morphology was quantified in sex-specific primary hippocampal and cortical neuron-glia co-cultures derived from neonatal C57BL/6J mice and Sprague Dawley rats exposed for 48 h to vehicle (0.1% DMSO) or PCB 11 at concentrations ranging from 1 fM to 1 nM. Total axonal length was quantified in tau-1 immunoreactive neurons at day in vitro (DIV) 2; dendritic arborization was assessed by Sholl analysis at DIV 9 in neurons transfected with MAP2B-FusRed. In mouse cultures, PCB 11 enhanced dendritic arborization in female, but not male, hippocampal neurons and male, but not female, cortical neurons. In rat cultures, PCB 11 promoted dendritic arborization in male and female hippocampal and cortical neurons. PCB 11 also increased axonal growth in mouse and rat neurons of both sexes and neuronal cell types. These data demonstrate that PCB 11 exerts sex-specific effects on neuronal morphogenesis that vary depending on species, neurite type, and neuronal cell type. These findings have significant implications for risk assessment of this emerging developmental neurotoxicant.

  14. Synchronous firing patterns of induced pluripotent stem cell-derived cortical neurons depend on the network structure consisting of excitatory and inhibitory neurons.

    PubMed

    Iida, Shoko; Shimba, Kenta; Sakai, Koji; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2018-06-18

    The balance between glutamate-mediated excitation and GABA-mediated inhibition is critical to cortical functioning. However, the contribution of network structure consisting of the both neurons to cortical functioning has not been elucidated. We aimed to evaluate the relationship between the network structure and functional activity patterns in vitro. We used mouse induced pluripotent stem cells (iPSCs) to construct three types of neuronal populations; excitatory-rich (Exc), inhibitory-rich (Inh), and control (Cont). Then, we analyzed the activity patterns of these neuronal populations using microelectrode arrays (MEAs). Inhibitory synaptic densities differed between the three types of iPSC-derived neuronal populations, and the neurons showed spontaneously synchronized bursting activity with functional maturation for one month. Moreover, different firing patterns were observed between the three populations; Exc demonstrated the highest firing rates, including frequent, long, and dominant bursts. In contrast, Inh demonstrated the lowest firing rates and the least dominant bursts. Synchronized bursts were enhanced by disinhibition via GABA A receptor blockade. The present study, using iPSC-derived neurons and MEAs, for the first time show that synchronized bursting of cortical networks in vitro depends on the network structure consisting of excitatory and inhibitory neurons. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. WNT-C59, a Small-Molecule WNT Inhibitor, Efficiently Induces Anterior Cortex That Includes Cortical Motor Neurons From Human Pluripotent Stem Cells.

    PubMed

    Motono, Makoto; Ioroi, Yoshihiko; Ogura, Takenori; Takahashi, Jun

    2016-04-01

    The recapitulation of human neural development in a controlled, defined manner from pluripotent stem cells (PSCs) has considerable potential for studies of human neural development, circuit formation and function, and the construction of in vitro models of neurological diseases. The inhibition of Wnt signaling, often by the recombinant protein DKK1, is important for the induction of cortical neurons. Here, we report a novel differentiation method using a small-molecule WNT inhibitor, WNT-C59 (C59), to efficiently induce human anterior cortex. We compared two types of small molecules, C59 and XAV939 (XAV), as substitutes for DKK1 to induce cortical neurons from PSCs in serum-free embryoid body-like aggregate culture. DKK1 and XAV inhibited only the canonical pathway of Wnt signaling, whereas C59 inhibited both the canonical and noncanonical pathways. C59 efficiently induced CTIP2+/COUP-TF1- cells, which are characteristic of the cells found in the anterior cortex. In addition, when grafted into the cortex of adult mice, the C59-induced cells showed abundant axonal fiber extension toward the spinal cord. These results raise the possibility of C59 contributing to cell replacement therapy for motor neuron diseases or insults. For a cell therapy against damaged corticospinal tract caused by neurodegenerative diseases or insults, cortical motor neurons are needed. Currently, their induction from pluripotent stem cells is considered very promising; however, an efficient protocol to induce motor neurons is not available. For efficient induction of anterior cortex, where motor neurons are located, various WNT inhibitors were investigated. It was found that one of them could induce anterior cortical cells efficiently. In addition, when grafted into the cortex of adult mice, the induced cells showed more abundant axonal fiber extension toward spinal cord. These results raise the possibility that this inhibitor contributes to a cell-replacement therapy for motor neuron diseases or insults. ©AlphaMed Press.

  16. Differential patterns of injury to the proximal tubule of renal cortical slices following in vitro exposure to mercuric chloride, potassium dichromate, or hypoxic conditions.

    PubMed

    Ruegg, C E; Gandolfi, A J; Nagle, R B; Brendel, K

    1987-09-15

    The innate susceptibility of renal cell types to these agents was investigated using precision-cut rabbit renal cortical slices made perpendicular to the cortical-papillary axis. Slices were incubated in DME/F12 medium containing 10 microM, 100 microM, or 1 mM concentrations of either metal for 12 hr or in Krebs-Hepes buffer gassed with nitrogen (100%) for 0.75 to 5 hr of hypoxic exposure. To simulate postischemic reperfusion, some slices were transferred to vessels gassed with oxygen after an initial hypoxic period. Mercuric chloride (100 microM) exposure resulted in damage to the straight regions of proximal tubules by 12 hr leaving convoluted regions unaffected. Hypoxia (2.25 hr) and potassium dichromate (100 microM for 12 hr) both caused injury to the convoluted proximal tubules without affecting straight proximal tubular regions. Mercury concentrations of 10 microM and 1 mM had no effect or injured all cell types within the slice, respectively. Similar results were observed for hypoxic periods less than 1.5 hr or greater than 3 hr of exposure. Potassium dichromate had no measurable affect at 10 microM, but at 1 mM focal lesions were observed after 4 hr of exposure, and by 12 hr all cell types within the slice were affected. Intracellular potassium content normalized to DNA correlated well, but always preceded the pathological lesions observed. These results demonstrate that injury to specific regions of the proximal tubule by these agents relates to an innate susceptibility of the intoxicated cell type independent of physiologic feedback or blood delivery patterns proposed as mechanisms of selective injury from in vivo studies.

  17. Cortical Feedback Control of Olfactory Bulb Circuits

    PubMed Central

    Boyd, Alison M.; Sturgill, James F.; Poo, Cindy; Isaacson, Jeffry S.

    2013-01-01

    SUMMARY Olfactory cortex pyramidal cells integrate sensory input from olfactory bulb mitral and tufted (M/T) cells and project axons back to the bulb. However, the impact of cortical feedback projections on olfactory bulb circuits is unclear. Here, we selectively express channelrhodopsin-2 in olfactory cortex pyramidal cells and show that cortical feedback projections excite diverse populations of bulb interneurons. Activation of cortical fibers directly excites GABAergic granule cells, which in turn inhibit M/T cells. However, we show that cortical inputs preferentially target short axon cells that drive feedforward inhibition of granule cells. In vivo, activation of olfactory cortex that only weakly affects spontaneous M/T cell firing strongly gates odor-evoked M/T cell responses: cortical activity suppresses odor-evoked excitation and enhances odor-evoked inhibition. Together, these results indicate that although cortical projections have diverse actions on olfactory bulb microcircuits, the net effect of cortical feedback on M/T cells is an amplification of odor-evoked inhibition. PMID:23259951

  18. Cortical feedback control of olfactory bulb circuits.

    PubMed

    Boyd, Alison M; Sturgill, James F; Poo, Cindy; Isaacson, Jeffry S

    2012-12-20

    Olfactory cortex pyramidal cells integrate sensory input from olfactory bulb mitral and tufted (M/T) cells and project axons back to the bulb. However, the impact of cortical feedback projections on olfactory bulb circuits is unclear. Here, we selectively express channelrhodopsin-2 in olfactory cortex pyramidal cells and show that cortical feedback projections excite diverse populations of bulb interneurons. Activation of cortical fibers directly excites GABAergic granule cells, which in turn inhibit M/T cells. However, we show that cortical inputs preferentially target short axon cells that drive feedforward inhibition of granule cells. In vivo, activation of olfactory cortex that only weakly affects spontaneous M/T cell firing strongly gates odor-evoked M/T cell responses: cortical activity suppresses odor-evoked excitation and enhances odor-evoked inhibition. Together, these results indicate that although cortical projections have diverse actions on olfactory bulb microcircuits, the net effect of cortical feedback on M/T cells is an amplification of odor-evoked inhibition. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Highly efficient methods to obtain homogeneous dorsal neural progenitor cells from human and mouse embryonic stem cells and induced pluripotent stem cells.

    PubMed

    Zhang, Meixiang; Ngo, Justine; Pirozzi, Filomena; Sun, Ying-Pu; Wynshaw-Boris, Anthony

    2018-03-15

    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have been widely used to generate cellular models harboring specific disease-related genotypes. Of particular importance are ESC and iPSC applications capable of producing dorsal telencephalic neural progenitor cells (NPCs) that are representative of the cerebral cortex and overcome the challenges of maintaining a homogeneous population of cortical progenitors over several passages in vitro. While previous studies were able to derive NPCs from pluripotent cell types, the fraction of dorsal NPCs in this population is small and decreases over several passages. Here, we present three protocols that are highly efficient in differentiating mouse and human ESCs, as well as human iPSCs, into a homogeneous and stable population of dorsal NPCs. These protocols will be useful for modeling cerebral cortical neurological and neurodegenerative disorders in both mouse and human as well as for high-throughput drug screening for therapeutic development. We optimized three different strategies for generating dorsal telencephalic NPCs from mouse and human pluripotent cell types through single or double inhibition of bone morphogenetic protein (BMP) and/or SMAD pathways. Mouse and human pluripotent cells were aggregated to form embryoid bodies in suspension and were treated with dorsomorphin alone (BMP inhibition) or combined with SB431542 (double BMP/SMAD inhibition) during neural induction. Neural rosettes were then selected from plated embryoid bodies to purify the population of dorsal NPCs. We tested the expression of key dorsal NPC markers as well as nonectodermal markers to confirm the efficiency of our three methods in comparison to published and commercial protocols. Single and double inhibition of BMP and/or SMAD during neural induction led to the efficient differentiation of dorsal NPCs, based on the high percentage of PAX6-positive cells and the NPC gene expression profile. There were no statistically significant differences in the variation of PAX6 and SOX1-positive NPCs between the two human pluripotent cell-derived methods; therefore, both methods are suitable for producing stable dorsal NPCs. When further differentiated into mature neurons, NPCs gave rise to a population of almost exclusively forebrain cortical neurons, confirming the dorsal fate commitment of the progenitors. The methods described in this study show improvements over previously published studies and are highly efficient at differentiating human and mouse pluripotent cell types into dorsal PAX6-positive NPCs and eventually into forebrain cortical neurons.

  20. Flotillin-mediated endocytic events dictate cell type-specific responses to semaphorin 3A.

    PubMed

    Carcea, Ioana; Ma'ayan, Avi; Mesias, Roxana; Sepulveda, Bryan; Salton, Stephen R; Benson, Deanna L

    2010-11-10

    Cortical efferents growing in the same environment diverge early in development. The expression of particular transcription factors dictates the trajectories taken, presumably by regulating responsiveness to guidance cues via cellular mechanisms that are not yet known. Here, we show that cortical neurons that are dissociated and grown in culture maintain their cell type-specific identities defined by the expression of transcription factors. Using this model system, we sought to identify and characterize mechanisms that are recruited to produce cell type-specific responses to Semaphorin 3A (Sema3A), a guidance cue that would be presented similarly to cortical axons in vivo. Axons from presumptive corticofugal neurons lacking the transcription factor Satb2 and expressing Ctip2 or Tbr1 respond far more robustly to Sema3A than those from presumptive callosal neurons expressing Satb2. Both populations of axons express similar levels of Sema3A receptors (neuropilin-1, cell adhesion molecule L1, and plexinA4), but significantly, axons from neurons lacking Satb2 internalize more Sema3A, and they do so via a raft-mediated endocytic pathway. We used an in silico approach to identify the endocytosis effector flotillin-1 as a Sema3A signaling candidate. We tested the contributions of flotillin-1 to Sema3A endocytosis and signaling, and show that raft-mediated Sema3A endocytosis is defined by and depends on the recruitment of flotillin-1, which mediates LIM domain kinase activation and regulates axon responsiveness to Sema3A in presumptive corticofugal axons.

  1. Branching angles of pyramidal cell dendrites follow common geometrical design principles in different cortical areas.

    PubMed

    Bielza, Concha; Benavides-Piccione, Ruth; López-Cruz, Pedro; Larrañaga, Pedro; DeFelipe, Javier

    2014-08-01

    Unraveling pyramidal cell structure is crucial to understanding cortical circuit computations. Although it is well known that pyramidal cell branching structure differs in the various cortical areas, the principles that determine the geometric shapes of these cells are not fully understood. Here we analyzed and modeled with a von Mises distribution the branching angles in 3D reconstructed basal dendritic arbors of hundreds of intracellularly injected cortical pyramidal cells in seven different cortical regions of the frontal, parietal, and occipital cortex of the mouse. We found that, despite the differences in the structure of the pyramidal cells in these distinct functional and cytoarchitectonic cortical areas, there are common design principles that govern the geometry of dendritic branching angles of pyramidal cells in all cortical areas.

  2. Branching angles of pyramidal cell dendrites follow common geometrical design principles in different cortical areas

    PubMed Central

    Bielza, Concha; Benavides-Piccione, Ruth; López-Cruz, Pedro; Larrañaga, Pedro; DeFelipe, Javier

    2014-01-01

    Unraveling pyramidal cell structure is crucial to understanding cortical circuit computations. Although it is well known that pyramidal cell branching structure differs in the various cortical areas, the principles that determine the geometric shapes of these cells are not fully understood. Here we analyzed and modeled with a von Mises distribution the branching angles in 3D reconstructed basal dendritic arbors of hundreds of intracellularly injected cortical pyramidal cells in seven different cortical regions of the frontal, parietal, and occipital cortex of the mouse. We found that, despite the differences in the structure of the pyramidal cells in these distinct functional and cytoarchitectonic cortical areas, there are common design principles that govern the geometry of dendritic branching angles of pyramidal cells in all cortical areas. PMID:25081193

  3. Assessing similarity to primary tissue and cortical layer identity in induced pluripotent stem cell-derived cortical neurons through single-cell transcriptomics

    PubMed Central

    Handel, Adam E.; Chintawar, Satyan; Lalic, Tatjana; Whiteley, Emma; Vowles, Jane; Giustacchini, Alice; Argoud, Karene; Sopp, Paul; Nakanishi, Mahito; Bowden, Rory; Cowley, Sally; Newey, Sarah; Akerman, Colin; Ponting, Chris P.; Cader, M. Zameel

    2016-01-01

    Induced pluripotent stem cell (iPSC)-derived cortical neurons potentially present a powerful new model to understand corticogenesis and neurological disease. Previous work has established that differentiation protocols can produce cortical neurons, but little has been done to characterize these at cellular resolution. In particular, it is unclear to what extent in vitro two-dimensional, relatively disordered culture conditions recapitulate the development of in vivo cortical layer identity. Single-cell multiplex reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) was used to interrogate the expression of genes previously implicated in cortical layer or phenotypic identity in individual cells. Totally, 93.6% of single cells derived from iPSCs expressed genes indicative of neuronal identity. High proportions of single neurons derived from iPSCs expressed glutamatergic receptors and synaptic genes. And, 68.4% of iPSC-derived neurons expressing at least one layer marker could be assigned to a laminar identity using canonical cortical layer marker genes. We compared single-cell RNA-seq of our iPSC-derived neurons to available single-cell RNA-seq data from human fetal and adult brain and found that iPSC-derived cortical neurons closely resembled primary fetal brain cells. Unexpectedly, a subpopulation of iPSC-derived neurons co-expressed canonical fetal deep and upper cortical layer markers. However, this appeared to be concordant with data from primary cells. Our results therefore provide reassurance that iPSC-derived cortical neurons are highly similar to primary cortical neurons at the level of single cells but suggest that current layer markers, although effective, may not be able to disambiguate cortical layer identity in all cells. PMID:26740550

  4. Brain-Computer Interface with Inhibitory Neurons Reveals Subtype-Specific Strategies.

    PubMed

    Mitani, Akinori; Dong, Mingyuan; Komiyama, Takaki

    2018-01-08

    Brain-computer interfaces have seen an increase in popularity due to their potential for direct neuroprosthetic applications for amputees and disabled individuals. Supporting this promise, animals-including humans-can learn even arbitrary mapping between the activity of cortical neurons and movement of prosthetic devices [1-4]. However, the performance of neuroprosthetic device control has been nowhere near that of limb control in healthy individuals, presenting a dire need to improve the performance. One potential limitation is the fact that previous work has not distinguished diverse cell types in the neocortex, even though different cell types possess distinct functions in cortical computations [5-7] and likely distinct capacities to control brain-computer interfaces. Here, we made a first step in addressing this issue by tracking the plastic changes of three major types of cortical inhibitory neurons (INs) during a neuron-pair operant conditioning task using two-photon imaging of IN subtypes expressing GCaMP6f. Mice were rewarded when the activity of the positive target neuron (N+) exceeded that of the negative target neuron (N-) beyond a set threshold. Mice improved performance with all subtypes, but the strategies were subtype specific. When parvalbumin (PV)-expressing INs were targeted, the activity of N- decreased. However, targeting of somatostatin (SOM)- and vasoactive intestinal peptide (VIP)-expressing INs led to an increase of the N+ activity. These results demonstrate that INs can be individually modulated in a subtype-specific manner and highlight the versatility of neural circuits in adapting to new demands by using cell-type-specific strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Lipidomic and proteomic analysis of exosomes from mouse cortical collecting duct cells.

    PubMed

    Dang, Viet D; Jella, Kishore Kumar; Ragheb, Ragy R T; Denslow, Nancy D; Alli, Abdel A

    2017-12-01

    Exosomes are endosome-derived nanovesicles that are involved in cellular communication and signaling. Exosomes are produced by epithelial cells and are found in biologic fluids including blood and urine. The packaged material within exosomes includes proteins and lipids, but the molecular comparison within exosome subtypes is largely unknown. The purpose of this study was to investigate differences between exosomes derived from the apical plasma membrane and basolateral plasma membrane of polarized murine cortical collecting duct principal cells. Nanoparticle tracking analysis showed that the size and concentration of apical and basolateral exosomes remained relatively stable across 3 different temperatures (23, 37, and 42°C). Liquid chromatography-tandem mass spectrometry analysis revealed marked differences between the proteins packaged within the two types of exosomes from the same cells. Several proteins expressed at the inner leaflet of the plasma membrane, including α-actinin-1, moesin, 14-3-3 protein ζ/δ, annexin A1/A3/A4/A5/A6, clathrin heavy chain 1, glyceraldehyde-3-phosphate dehydrogenase, α-enolase, filamin-A, and heat shock protein 90, were identified in samples of apical plasma membrane-derived exosomes, but not in basolateral plasma membrane exosomes from mouse cortical collecting duct cells. In addition to differences at the protein level, mass spectrometry-based shotgun lipidomics analysis showed significant differences in the lipid classes and fatty acid composition of the two types of exosomes. We found higher levels of sphingomyelin and lower levels of cardiolipin, among other phospholipids in the apical plasma membrane compared to the basolateral plasma membrane exosomes. The molecular analyses of exosome subtypes presented herein will contribute to our understanding of exosome biogenesis, and the results may have potential implications for biomarker discovery.-Dang, V. D., Jella, K. K., Ragheb, R. R. T., Denslow, N. D., Alli, A. A. Lipidomic and proteomic analysis of exosomes from mouse cortical collecting duct cells. © FASEB.

  6. A Phylogenetic Strategy Based on a Legume-Specific Whole Genome Duplication Yields Symbiotic Cytokinin Type-A Response Regulators1[C][W][OA

    PubMed Central

    Op den Camp, Rik H.M.; De Mita, Stéphane; Lillo, Alessandra; Cao, Qingqin; Limpens, Erik; Bisseling, Ton; Geurts, René

    2011-01-01

    Legumes host their Rhizobium spp. symbiont in novel root organs called nodules. Nodules originate from differentiated root cortical cells that dedifferentiate and subsequently form nodule primordia, a process controlled by cytokinin. A whole-genome duplication has occurred at the root of the legume Papilionoideae subfamily. We hypothesize that gene pairs originating from this duplication event and are conserved in distinct Papilionoideae lineages have evolved symbiotic functions. A phylogenetic strategy was applied to search for such gene pairs to identify novel regulators of nodulation, using the cytokinin phosphorelay pathway as a test case. In this way, two paralogous type-A cytokinin response regulators were identified that are involved in root nodule symbiosis. Response Regulator9 (MtRR9) and MtRR11 in medicago (Medicago truncatula) and an ortholog in lotus (Lotus japonicus) are rapidly induced upon Rhizobium spp. Nod factor signaling. Constitutive expression of MtRR9 results in arrested primordia that have emerged from cortical, endodermal, and pericycle cells. In legumes, lateral root primordia are not exclusively formed from pericycle cells but also require the involvement of the root cortical cell layer. Therefore, the MtRR9-induced foci of cell divisions show a strong resemblance to lateral root primordia, suggesting an ancestral function of MtRR9 in this process. Together, these findings provide a proof of principle for the applied phylogenetic strategy to identify genes with a symbiotic function in legumes. PMID:22034625

  7. Beyond Columnar Organization: Cell Type- and Target Layer-Specific Principles of Horizontal Axon Projection Patterns in Rat Vibrissal Cortex

    PubMed Central

    Narayanan, Rajeevan T.; Egger, Robert; Johnson, Andrew S.; Mansvelder, Huibert D.; Sakmann, Bert; de Kock, Christiaan P.J.; Oberlaender, Marcel

    2015-01-01

    Vertical thalamocortical afferents give rise to the elementary functional units of sensory cortex, cortical columns. Principles that underlie communication between columns remain however unknown. Here we unravel these by reconstructing in vivo-labeled neurons from all excitatory cell types in the vibrissal part of rat primary somatosensory cortex (vS1). Integrating the morphologies into an exact 3D model of vS1 revealed that the majority of intracortical (IC) axons project far beyond the borders of the principal column. We defined the corresponding innervation volume as the IC-unit. Deconstructing this structural cortical unit into its cell type-specific components, we found asymmetric projections that innervate columns of either the same whisker row or arc, and which subdivide vS1 into 2 orthogonal [supra-]granular and infragranular strata. We show that such organization could be most effective for encoding multi whisker inputs. Communication between columns is thus organized by multiple highly specific horizontal projection patterns, rendering IC-units as the primary structural entities for processing complex sensory stimuli. PMID:25838038

  8. An inhibitory gate for state transition in cortex

    PubMed Central

    Zucca, Stefano; D’Urso, Giulia; Pasquale, Valentina; Vecchia, Dania; Pica, Giuseppe; Bovetti, Serena; Moretti, Claudio; Varani, Stefano; Molano-Mazón, Manuel; Chiappalone, Michela; Panzeri, Stefano; Fellin, Tommaso

    2017-01-01

    Large scale transitions between active (up) and silent (down) states during quiet wakefulness or NREM sleep regulate fundamental cortical functions and are known to involve both excitatory and inhibitory cells. However, if and how inhibition regulates these activity transitions is unclear. Using fluorescence-targeted electrophysiological recording and cell-specific optogenetic manipulation in both anesthetized and non-anesthetized mice, we found that two major classes of interneurons, the parvalbumin and the somatostatin positive cells, tightly control both up-to-down and down-to-up state transitions. Inhibitory regulation of state transition was observed under both natural and optogenetically-evoked conditions. Moreover, perturbative optogenetic experiments revealed that the inhibitory control of state transition was interneuron-type specific. Finally, local manipulation of small ensembles of interneurons affected cortical populations millimetres away from the modulated region. Together, these results demonstrate that inhibition potently gates transitions between cortical activity states, and reveal the cellular mechanisms by which local inhibitory microcircuits regulate state transitions at the mesoscale. DOI: http://dx.doi.org/10.7554/eLife.26177.001 PMID:28509666

  9. A feedback mechanism controlling SCRAMBLED receptor accumulation and cell-type pattern in Arabidopsis.

    PubMed

    Kwak, Su-Hwan; Schiefelbein, John

    2008-12-23

    Cellular pattern formation in the root epidermis of Arabidopsis occurs in a position-dependent manner, generating root-hair (H) cells contacting two underlying cortical cells and nonhair (N) cells contacting one cortical cell. SCRAMBLED (SCM), a leucine-rich repeat receptor-like kinase (LRR-RLK), mediates this process through its effect on a downstream transcription factor regulatory network. After perception of a positional cue, the SCM signaling pathway is proposed to preferentially repress WEREWOLF (WER) transcription factor expression in H cells and thereby bias the outcome of mutual lateral inhibition acting between H and N cells. However, the molecular mechanism responsible for this preferential SCM signaling is unknown. Here, we analyze the distribution of the SCM receptor and the biological effect of altering its accumulation pattern. We find that SCM expression and accumulation in the epidermal cell layer is necessary and sufficient to direct the cell-type pattern. Further, SCM preferentially accumulates in H cells, and this accumulation pattern is dependent on the downstream transcription factors. Thus, SCM participates in an autoregulatory feedback loop, enabling cells engaged in SCM signaling to maintain high levels of SCM receptor, which provides a simple mechanism for reinforcing a bias in receptor-mediated signaling to ensure robust pattern formation.

  10. Coherent ongoing subthreshold state of a cortical neural network regulated by slow- and fast-spiking interneurons.

    PubMed

    Hoshino, Osamu

    2006-12-01

    Although details of cortical interneurons in anatomy and physiology have been well understood, little is known about how they contribute to ongoing spontaneous neuronal activity that could have a great impact on subsequent neuronal information processing. Simulating a cortical neural network model of an early sensory area, we investigated whether and how two distinct types of inhibitory interneurons, or fast-spiking interneurons with narrow axonal arbors and slow-spiking interneurons with wide axonal arbors, have a spatiotemporal influence on the ongoing activity of principal cells and subsequent cognitive information processing. In the model, dynamic cell assemblies, or population activation of principal cells, expressed information about specific sensory features. Within cell assemblies, fast-spiking interneurons give a feedback inhibitory effect on principal cells. Between cell assemblies, slow-spiking interneurons give a lateral inhibitory effect on principal cells. Here, we show that these interneurons keep the network at a subthreshold level for action potential generation under the ongoing state, by which the reaction time of principal cells to sensory stimulation could be accelerated. We suggest that the best timing of inhibition mediated by fast-spiking interneurons and slow-spiking interneurons allows the network to remain near threshold for rapid responses to input.

  11. Formation of contractile networks and fibers in the medial cell cortex through myosin-II turnover, contraction, and stress-stabilization

    PubMed Central

    Nie, Wei; Wei, Ming-Tzo; Ou-Yang, Daniel H.; Jedlicka, Sabrina S.; Vavylonis, Dimitrios

    2015-01-01

    The morphology of adhered cells depends crucially on the formation of a contractile meshwork of parallel and cross-linked fibers along the contacting surface. The motor activity and minifilament assembly of non-muscle myosin-II is an important component of cortical cytoskeletal remodeling during mechanosensing. We used experiments and computational modeling to study cortical myosin-II dynamics in adhered cells. Confocal microscopy was used to image the medial cell cortex of HeLa cells stably expressing myosin regulatory light chain tagged with GFP (MRLC-GFP). The distribution of MRLC-GFP fibers and focal adhesions was classified into three types of network morphologies. Time-lapse movies show: myosin foci appearance and disappearance; aligning and contraction; stabilization upon alignment. Addition of blebbistatin, which perturbs myosin motor activity, leads to a reorganization of the cortical networks and to a reduction of contractile motions. We quantified the kinetics of contraction, disassembly and reassembly of myosin networks using spatio-temporal image correlation spectroscopy (STICS). Coarse-grained numerical simulations include bipolar minifilaments that contract and align through specified interactions as basic elements. After assuming that minifilament turnover decreases with increasing contractile stress, the simulations reproduce stress-dependent fiber formation in between focal adhesions above a threshold myosin concentration. The STICS correlation function in simulations matches the function measured in experiments. This study provides a framework to help interpret how different cortical myosin remodeling kinetics may contribute to different cell shape and rigidity depending on substrate stiffness. PMID:25641802

  12. Clinical, functional, and neurophysiologic assessment of dysplastic cortical networks: Implications for cortical functioning and surgical management.

    PubMed

    Duchowny, Michael

    2009-10-01

    Cortical malformations are highly epileptogenic lesions associated with complex, unanticipated, and often aberrant electrophysiologic and functional relationships. These relationships are inextricably linked to widespread cortical networks subserving eloquent functions, particularly language and motor ability. Cytomegalic neurons but not balloon cells in Palmini type 2 dysplastic cortex are intrinsically hyperexcitable and contribute to local epileptogenesis and functional responsiveness. However, there is much evidence that focal cortical dysplasia is rarely a localized or even regional process, and is a functionally, electrophysiologically, and ultimately clinically integrated neural network disorder. Not surprisingly, malformed cortex is implicated in cognitive dysfunction, particularly disturbances of linguistic processing. An understanding of these relationships is critical for successful epilepsy surgery. Gains in surgical prognosis rely on multiple diagnostic modalities to delineate complex anatomic, electrophysiologic, and functional relationships in magnetic resonance imaging (MRI)-negative patients with rates of seizure-freedom roughly comparable to lesional patients.

  13. Comment on "Principles of connectivity among morphologically defined cell types in adult neocortex".

    PubMed

    Barth, Alison; Burkhalter, Andreas; Callaway, Edward M; Connors, Barry W; Cauli, Bruno; DeFelipe, Javier; Feldmeyer, Dirk; Freund, Tamas; Kawaguchi, Yasuo; Kisvarday, Zoltan; Kubota, Yoshiyuki; McBain, Chris; Oberlaender, Marcel; Rossier, Jean; Rudy, Bernardo; Staiger, Jochen F; Somogyi, Peter; Tamas, Gabor; Yuste, Rafael

    2016-09-09

    Jiang et al (Research Article, 27 November 2015, aac9462) describe detailed experiments that substantially add to the knowledge of cortical microcircuitry and are unique in the number of connections reported and the quality of interneuron reconstruction. The work appeals to experts and laypersons because of the notion that it unveils new principles and provides a complete description of cortical circuits. We provide a counterbalance to the authors' claims to give those less familiar with the minutiae of cortical circuits a better sense of the contributions and the limitations of this study. Copyright © 2016, American Association for the Advancement of Science.

  14. Transcriptional architecture of the primate neocortex.

    PubMed

    Bernard, Amy; Lubbers, Laura S; Tanis, Keith Q; Luo, Rui; Podtelezhnikov, Alexei A; Finney, Eva M; McWhorter, Mollie M E; Serikawa, Kyle; Lemon, Tracy; Morgan, Rebecca; Copeland, Catherine; Smith, Kimberly; Cullen, Vivian; Davis-Turak, Jeremy; Lee, Chang-Kyu; Sunkin, Susan M; Loboda, Andrey P; Levine, David M; Stone, David J; Hawrylycz, Michael J; Roberts, Christopher J; Jones, Allan R; Geschwind, Daniel H; Lein, Ed S

    2012-03-22

    Genome-wide transcriptional profiling was used to characterize the molecular underpinnings of neocortical organization in rhesus macaque, including cortical areal specialization and laminar cell-type diversity. Microarray analysis of individual cortical layers across sensorimotor and association cortices identified robust and specific molecular signatures for individual cortical layers and areas, prominently involving genes associated with specialized neuronal function. Overall, transcriptome-based relationships were related to spatial proximity, being strongest between neighboring cortical areas and between proximal layers. Primary visual cortex (V1) displayed the most distinctive gene expression compared to other cortical regions in rhesus and human, both in the specialized layer 4 as well as other layers. Laminar patterns were more similar between macaque and human compared to mouse, as was the unique V1 profile that was not observed in mouse. These data provide a unique resource detailing neocortical transcription patterns in a nonhuman primate with great similarity in gene expression to human. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Cortical Interneuron Subtypes Vary in Their Axonal Action Potential Properties.

    PubMed

    Casale, Amanda E; Foust, Amanda J; Bal, Thierry; McCormick, David A

    2015-11-25

    The role of interneurons in cortical microcircuits is strongly influenced by their passive and active electrical properties. Although different types of interneurons exhibit unique electrophysiological properties recorded at the soma, it is not yet clear whether these differences are also manifested in other neuronal compartments. To address this question, we have used voltage-sensitive dye to image the propagation of action potentials into the fine collaterals of axons and dendrites in two of the largest cortical interneuron subtypes in the mouse: fast-spiking interneurons, which are typically basket or chandelier neurons; and somatostatin containing interneurons, which are typically regular spiking Martinotti cells. We found that fast-spiking and somatostatin-expressing interneurons differed in their electrophysiological characteristics along their entire dendrosomatoaxonal extent. The action potentials generated in the somata and axons, including axon collaterals, of somatostatin-expressing interneurons are significantly broader than those generated in the same compartments of fast-spiking inhibitory interneurons. In addition, action potentials back-propagated into the dendrites of somatostatin-expressing interneurons much more readily than fast-spiking interneurons. Pharmacological investigations suggested that axonal action potential repolarization in both cell types depends critically upon Kv1 channels, whereas the axonal and somatic action potentials of somatostatin-expressing interneurons also depend on BK Ca(2+)-activated K(+) channels. These results indicate that the two broad classes of interneurons studied here have expressly different subcellular physiological properties, allowing them to perform unique computational roles in cortical circuit operations. Neurons in the cerebral cortex are of two major types: excitatory and inhibitory. The proper balance of excitation and inhibition in the brain is critical for its operation. Neurons contain three main compartments: dendritic, somatic, and axonal. How the neurons receive information, process it, and pass on new information depends upon how these three compartments operate. While it has long been assumed that axons are simply for conducting information from the cell body to the synapses, here we demonstrate that the axons of different types of interneurons, the inhibitory cells, possess differing electrophysiological properties. This result implies that differing types of interneurons perform different tasks in the cortex, not only through their anatomical connections, but also through how their axons operate. Copyright © 2015 the authors 0270-6474/15/3515555-13$15.00/0.

  16. Suppression of autophagy in osteocytes does not modify the adverse effects of glucocorticoids on cortical bone.

    PubMed

    Piemontese, Marilina; Onal, Melda; Xiong, Jinhu; Wang, Yiying; Almeida, Maria; Thostenson, Jeff D; Weinstein, Robert S; Manolagas, Stavros C; O'Brien, Charles A

    2015-06-01

    Glucocorticoid excess decreases bone mass and strength in part by acting directly on osteoblasts and osteocytes, but the mechanisms remain unclear. Macroautophagy (herein referred to as autophagy) is a lysosome-based recycling pathway that promotes the turnover of intracellular components and can promote cell function and survival under stressful conditions. Recent studies have shown that glucocorticoids stimulate autophagy in osteocytes, suggesting that autophagy may oppose the negative actions of glucocorticoids on this cell type. To address this possibility, we compared the impact of prednisolone administration on the skeletons of adult mice in which autophagy was suppressed in osteocytes, via deletion of Atg7 with a Dmp1-Cre transgene, to their control littermates. In control mice, prednisolone increased autophagic flux in osteocyte-enriched bone as measured by LC3 conversion, but this change did not occur in the mice lacking Atg7 in osteocytes. Nonetheless, prednisolone reduced femoral cortical thickness, increased cortical porosity, and reduced bone strength to similar extents in mice with and without autophagy in osteocytes. Prednisolone also suppressed osteoblast number and bone formation in the cancellous bone of control mice. As shown previously, Atg7 deletion in osteocytes reduced osteoblast number and bone formation in cancellous bone, but these parameters were not further reduced by prednisolone administration. In cortical bone, prednisolone elevated osteoclast number to a similar extent in both genotypes. Taken together, these results demonstrate that although glucocorticoids stimulate autophagy in osteocytes, suppression of autophagy in this cell type does not worsen the negative impact of glucocorticoids on the skeleton. Published by Elsevier Inc.

  17. Suppression of Autophagy in Osteocytes Does Not Modify the Adverse Effects of Glucocorticoids on Cortical Bone

    PubMed Central

    Piemontese, Marilina; Onal, Melda; Xiong, Jinhu; Wang, Yiying; Almeida, Maria; Thostenson, Jeff D.; Weinstein, Robert S.; Manolagas, Stavros C.; O’Brien, Charles A.

    2015-01-01

    Glucocorticoid excess decreases bone mass and strength in part by acting directly on osteoblasts and osteocytes, but the mechanisms remain unclear. Macroautophagy (herein referred to as autophagy) is a lysosome-based recycling pathway that promotes the turnover of intracellular components and can promote cell function and survival under stressful conditions. Recent studies have shown that glucocorticoids stimulate autophagy in osteocytes, suggesting that autophagy may oppose the negative actions of glucocorticoids on this cell type. To address this possibility, we compared the impact of prednisolone administration on the skeletons of adult mice in which autophagy was suppressed in osteocytes, via deletion of Atg7 with a Dmp1-Cre transgene, to their control littermates. In control mice, prednisolone increased autophagic flux in osteocyte-enriched bone as measured by LC3 conversion, but this change did not occur in the mice lacking Atg7 in osteocytes. Nonetheless, prednisolone reduced femoral cortical thickness, increased cortical porosity, and reduced bone strength to similar extents in mice with and without autophagy in osteocytes. Prednisolone also suppressed osteoblast number and bone formation in the cancellous bone of control mice. As shown previously, Atg7 deletion in osteocytes reduced osteoblast number and bone formation in cancellous bone, but these parameters were not further reduced by prednisolone administration. In cortical bone, prednisolone elevated osteoclast number to a similar extent in both genotypes. Taken together, these results demonstrate that although glucocorticoids stimulate autophagy in osteocytes, suppression of autophagy in this cell type does not worsen the negative impact of glucocorticoids on the skeleton. PMID:25700544

  18. Peripheral cannabinoid receptor, CB2, regulates bone mass

    PubMed Central

    Ofek, Orr; Karsak, Meliha; Leclerc, Nathalie; Fogel, Meirav; Frenkel, Baruch; Wright, Karen; Tam, Joseph; Attar-Namdar, Malka; Kram, Vardit; Shohami, Esther; Mechoulam, Raphael; Zimmer, Andreas; Bab, Itai

    2006-01-01

    The endogenous cannabinoids bind to and activate two G protein-coupled receptors, the predominantly central cannabinoid receptor type 1 (CB1) and peripheral cannabinoid receptor type 2 (CB2). Whereas CB1 mediates the cannabinoid psychotropic, analgesic, and orectic effects, CB2 has been implicated recently in the regulation of liver fibrosis and atherosclerosis. Here we show that CB2-deficient mice have a markedly accelerated age-related trabecular bone loss and cortical expansion, although cortical thickness remains unaltered. These changes are reminiscent of human osteoporosis and may result from differential regulation of trabecular and cortical bone remodeling. The CB2–/– phenotype is also characterized by increased activity of trabecular osteoblasts (bone-forming cells), increased osteoclast (the bone-resorbing cell) number, and a markedly decreased number of diaphyseal osteoblast precursors. CB2 is expressed in osteoblasts, osteocytes, and osteoclasts. A CB2-specific agonist that does not have any psychotropic effects enhances endocortical osteoblast number and activity and restrains trabecular osteoclastogenesis, apparently by inhibiting proliferation of osteoclast precursors and receptor activator of NF-κB ligand expression in bone marrow-derived osteoblasts/stromal cells. The same agonist attenuates ovariectomy-induced bone loss and markedly stimulates cortical thickness through the respective suppression of osteoclast number and stimulation of endocortical bone formation. These results demonstrate that the endocannabinoid system is essential for the maintenance of normal bone mass by osteoblastic and osteoclastic CB2 signaling. Hence, CB2 offers a molecular target for the diagnosis and treatment of osteoporosis, the most prevalent degenerative disease in developed countries. PMID:16407142

  19. Regulation of intracellular pH in the rabbit cortical collecting tubule.

    PubMed Central

    Weiner, I D; Hamm, L L

    1990-01-01

    The cortical collecting tubule (CCT) is an important nephron segment for Na+, K+, water and acid-base transport. Differential loading characteristics of the pH sensitive dye 2',7'-bis-(2-carboxyethyl)-5(and-6)carboxyfluorescein (BCECF) and basolateral Cl- removal were used to identify and study intracellular pH (pHi) regulation in each of three cell types involved in this transport. Both principal cells and beta-intercalated cells were found to have a basolateral Na+/H+ exchanger based on the Na+ and amiloride sensitivity of pHi recovery from acid loads. Intercalated cells demonstrated abrupt pHi changes with basolateral Cl- removal. alpha-intercalated cells alkalinized; beta-intercalated cells acidified. In the beta-intercalated cells, luminal Cl- removal blocked changes in pHi in response to changes in luminal HCO3- or peritubular Cl-, providing direct evidence for a luminal Cl-/HCO3- exchanger. In principal cells, brief removal of either peritubular or luminal Cl- resulted in no change in pHi; however, return of peritubular Cl- after prolonged removal resulted in a rapid fall in pHi consistent with a basolateral Cl-/HCO3- exchanger, which may be relatively inactive under baseline conditions. Therefore, Cl-/HCO3- exchange is present in all three cell types but varies in location and activity. PMID:2153152

  20. Renal Type A Intercalated Cells Contain Albumin in Organelles with Aldosterone-Regulated Abundance

    PubMed Central

    Jensen, Thomas Buus; Cheema, Muhammad Umar; Szymiczek, Agata; Damkier, Helle Hasager; Praetorius, Jeppe

    2015-01-01

    Albumin has been identified in preparations of renal distal tubules and collecting ducts by mass spectrometry. This study aimed to establish whether albumin was a contaminant in those studies or actually present in the tubular cells, and if so, identify the albumin containing cells and commence exploration of the origin of the intracellular albumin. In addition to the expected proximal tubular albumin immunoreactivity, albumin was localized to mouse renal type-A intercalated cells and cells in the interstitium by three anti-albumin antibodies. Albumin did not colocalize with markers for early endosomes (EEA1), late endosomes/lysosomes (cathepsin D) or recycling endosomes (Rab11). Immuno-gold electron microscopy confirmed the presence of albumin-containing large spherical membrane associated bodies in the basal parts of intercalated cells. Message for albumin was detected in mouse renal cortex as well as in a wide variety of other tissues by RT-PCR, but was absent from isolated connecting tubules and cortical collecting ducts. Wild type I MDCK cells showed robust uptake of fluorescein-albumin from the basolateral side but not from the apical side when grown on permeable support. Only a subset of cells with low peanut agglutinin binding took up albumin. Albumin-aldosterone conjugates were also internalized from the basolateral side by MDCK cells. Aldosterone administration for 24 and 48 hours decreased albumin abundance in connecting tubules and cortical collecting ducts from mouse kidneys. We suggest that albumin is produced within the renal interstitium and taken up from the basolateral side by type-A intercalated cells by clathrin and dynamin independent pathways and speculate that the protein might act as a carrier of less water-soluble substances across the renal interstitium from the capillaries to the tubular cells. PMID:25874770

  1. Cortical layers: Cyto-, myelo-, receptor- and synaptic architecture in human cortical areas.

    PubMed

    Palomero-Gallagher, Nicola; Zilles, Karl

    2017-08-12

    Cortical layers have classically been identified by their distinctive and prevailing cell types and sizes, as well as the packing densities of cell bodies or myelinated fibers. The densities of multiple receptors for classical neurotransmitters also vary across the depth of the cortical ribbon, and thus determine the neurochemical properties of cyto- and myeloarchitectonic layers. However, a systematic comparison of the correlations between these histologically definable layers and the laminar distribution of transmitter receptors is currently lacking. We here analyze the densities of 17 different receptors of various transmitter systems in the layers of eight cytoarchitectonically identified, functionally (motor, sensory, multimodal) and hierarchically (primary and secondary sensory, association) distinct areas of the human cerebral cortex. Maxima of receptor densities are found in different layers when comparing different cortical regions, i.e. laminar receptor densities demonstrate differences in receptorarchitecture between isocortical areas, notably between motor and primary sensory cortices, specifically the primary visual and somatosensory cortices, as well as between allocortical and isocortical areas. Moreover, considerable differences are found between cytoarchitectonical and receptor architectonical laminar patterns. Whereas the borders of cyto- and myeloarchitectonic layers are well comparable, the laminar profiles of receptor densities rarely coincide with the histologically defined borders of layers. Instead, highest densities of most receptors are found where the synaptic density is maximal, i.e. in the supragranular layers, particularly in layers II-III. The entorhinal cortex as an example of the allocortex shows a peculiar laminar organization, which largely deviates from that of all the other cortical areas analyzed here. Copyright © 2017. Published by Elsevier Inc.

  2. Gravity-induced changes in intracellular potentials in elongating cortical cells of mung bean roots

    NASA Technical Reports Server (NTRS)

    Ishikawa, H.; Evans, M. L.

    1990-01-01

    Gravity-induced changes in intracellular potentials in primary roots of 2-day-old mung bean (Vigna mungo L. cv. black matpe) seedlings were investigated using glass microelectrodes held by 3-dimensional hydraulic micro-drives. The electrodes were inserted into outer cortical cells within the elongation zone. Intracellular potentials, angle of root orientation with respect to gravity, and position within the root of the impaled cortical cell were measured simultaneously. Gravistimulation caused intracellular potential changes in cortical cells of the elongation zone. When the roots were oriented vertically, the intracellular potentials of the outer cortical cells (2 mm behind the root apex) were approximately - 115 mV. When the roots were placed horizontally cortical cells on the upper side hyperpolarized to - 154 mV within 30 s while cortical cells on the lower side depolarized to about - 62 mV. This electrical asymmetry did not occur in cells of the maturation zone. Because attempts to insert the electrode into cells of the root cap were unsuccessful, these cells were not measured. The hyperpolarization of cortical cells on the upper side was greatly reduced upon application of N,N'-dicyclohexylcarbodiimide (DCCD), an inhibitor of respiratory energy coupling. When stimulated roots were returned to the vertical, the degree of hyperpolarization of cortical cells on the previous upper side decreased within 30 s and approached that of cortical cells in non-stimulated roots. This cycle of hyperpolarization/loss of hyperpolarization was repeatable at least ten times by alternately turning the root from the vertical to the horizontal and back again. The very short (<30 s) lag period of these electrical changes indicates that they may result from stimulus-perception and transduction within the elongation zone rather than from transmission of a signal from the root cap.

  3. Heterogeneity of the Axon Initial Segment in Interneurons and Pyramidal Cells of Rodent Visual Cortex

    PubMed Central

    Höfflin, Felix; Jack, Alexander; Riedel, Christian; Mack-Bucher, Julia; Roos, Johannes; Corcelli, Corinna; Schultz, Christian; Wahle, Petra; Engelhardt, Maren

    2017-01-01

    The microdomain that orchestrates action potential initiation in neurons is the axon initial segment (AIS). It has long been considered to be a rather homogeneous domain at the very proximal axon hillock with relatively stable length, particularly in cortical pyramidal cells. However, studies in other brain regions paint a different picture. In hippocampal CA1, up to 50% of axons emerge from basal dendrites. Further, in about 30% of thick-tufted layer V pyramidal neurons in rat somatosensory cortex, axons have a dendritic origin. Consequently, the AIS is separated from the soma. Recent in vitro and in vivo studies have shown that cellular excitability is a function of AIS length/position and somatodendritic morphology, undermining a potentially significant impact of AIS heterogeneity for neuronal function. We therefore investigated neocortical axon morphology and AIS composition, hypothesizing that the initial observation of seemingly homogeneous AIS is inadequate and needs to take into account neuronal cell types. Here, we biolistically transfected cortical neurons in organotypic cultures to visualize the entire neuron and classify cell types in combination with immunolabeling against AIS markers. Using confocal microscopy and morphometric analysis, we investigated axon origin, AIS position, length, diameter as well as distance to the soma. We find a substantial AIS heterogeneity in visual cortical neurons, classified into three groups: (I) axons with somatic origin with proximal AIS at the axon hillock; (II) axons with somatic origin with distal AIS, with a discernible gap between the AIS and the soma; and (III) axons with dendritic origin (axon-carrying dendrite cell, AcD cell) and an AIS either starting directly at the axon origin or more distal to that point. Pyramidal cells have significantly longer AIS than interneurons. Interneurons with vertical columnar axonal projections have significantly more distal AIS locations than all other cells with their prevailing phenotype as an AcD cell. In contrast, neurons with perisomatic terminations display most often an axon originating from the soma. Our data contribute to the emerging understanding that AIS morphology is highly variable, and potentially a function of the cell type. PMID:29170630

  4. Compounds with species and cell type specific toxicity identified in a 2000 compound drug screen of neural stem cells and rat mixed cortical neurons.

    PubMed

    Malik, Nasir; Efthymiou, Anastasia G; Mather, Karly; Chester, Nathaniel; Wang, Xiantao; Nath, Avindra; Rao, Mahendra S; Steiner, Joseph P

    2014-12-01

    Human primary neural tissue is a vital component for the quick and simple determination of chemical compound neurotoxicity in vitro. In particular, such tissue would be ideal for high-throughput screens that can be used to identify novel neurotoxic or neurotherapeutic compounds. We have previously established a high-throughput screening platform using human induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) and neurons. In this study, we conducted a 2000 compound screen with human NSCs and rat cortical cells to identify compounds that are selectively toxic to each group. Approximately 100 of the tested compounds showed specific toxicity to human NSCs. A secondary screen of a small subset of compounds from the primary screen on human iPSCs, NSC-derived neurons, and fetal astrocytes validated the results from >80% of these compounds with some showing cell specific toxicity. Amongst those compounds were several cardiac glycosides, all of which were selectively toxic to the human cells. As the screen was able to reliably identify neurotoxicants, many with species and cell-type specificity, this study demonstrates the feasibility of this NSC-driven platform for higher-throughput neurotoxicity screens. Published by Elsevier B.V.

  5. Cell wall matrix polysaccharide distribution and cortical microtubule organization: two factors controlling mesophyll cell morphogenesis in land plants

    PubMed Central

    Sotiriou, P.; Giannoutsou, E.; Panteris, E.; Apostolakos, P.; Galatis, B.

    2016-01-01

    Background and aims This work investigates the involvement of local differentiation of cell wall matrix polysaccharides and the role of microtubules in the morphogenesis of mesophyll cells (MCs) of three types (lobed, branched and palisade) in the dicotyledon Vigna sinensis and the fern Asplenium nidus. Methods Homogalacturonan (HGA) epitopes recognized by the 2F4, JIM5 and JIM7 antibodies and callose were immunolocalized in hand-made leaf sections. Callose was also stained with aniline blue. We studied microtubule organization by tubulin immunofluorescence and transmission electron microscopy. Results In both plants, the matrix cell wall polysaccharide distribution underwent definite changes during MC differentiation. Callose constantly defined the sites of MC contacts. The 2F4 HGA epitope in V. sinensis first appeared in MC contacts but gradually moved towards the cell wall regions facing the intercellular spaces, while in A. nidus it was initially localized at the cell walls delimiting the intercellular spaces, but finally shifted to MC contacts. In V. sinensis, the JIM5 and JIM7 HGA epitopes initially marked the cell walls delimiting the intercellular spaces and gradually shifted in MC contacts, while in A. nidus they constantly enriched MC contacts. In all MC types examined, the cortical microtubules played a crucial role in their morphogenesis. In particular, in palisade MCs, cortical microtubule helices, by controlling cellulose microfibril orientation, forced these MCs to acquire a truncated cone-like shape. Unexpectedly in V. sinensis, the differentiation of colchicine-affected MCs deviated completely, since they developed a cell wall ingrowth labyrinth, becoming transfer-like cells. Conclusions The results of this work and previous studies on Zea mays (Giannoutsou et al., Annals of Botany 2013; 112: 1067–1081) revealed highly controlled local cell wall matrix differentiation in MCs of species belonging to different plant groups. This, in coordination with microtubule-dependent cellulose microfibril alignment, spatially controlled cell wall expansion, allowing MCs to acquire their particular shape. PMID:26802013

  6. Dynamic changes in cortical tensions in multiple cell types during germband retraction

    NASA Astrophysics Data System (ADS)

    Hutson, M. Shane; Lacy, Monica E.; McCleery, W. Tyler

    The process of germband retraction in Drosophila embryogenesis involves the coordinated mechanics of both germband and amnioserosa cells. These two tissues simultaneously and coordinately uncurl from their interlocking U-like shapes. As tissue-level retraction proceeds, individual cells change shape in stereotypical ways. Using time-lapse confocal images, analysis of dynamic cellular triple-junction angles, and whole-embryo finite-element models, we have quantified dynamic changes in cortical tensions - including their anisotropy - in both germband and amnioserosa cells. We find a strong transition midway through the two-hour course of retraction at which point tensions and anisotropies undergo a near step change. These changes take place among amnioserosa cells, in multiple segments of the germband, and at the interface between these two tissues. Research was supported by NIH Grant Numbers 1R01GM099107 and 1R21AR068933.

  7. HMMR acts in the PLK1-dependent spindle positioning pathway and supports neural development

    PubMed Central

    Jiang, Jihong; Kuan, Chia-Wei; Fotovati, Abbas; Chu, Tony LH; He, Zhengcheng; Lengyell, Tess C; Li, Huaibiao; Kroll, Torsten; Li, Amanda M; Goldowitz, Daniel; Frappart, Lucien; Ploubidou, Aspasia; Patel, Millan S; Pilarski, Linda M; Simpson, Elizabeth M; Lange, Philipp F; Allan, Douglas W

    2017-01-01

    Oriented cell division is one mechanism progenitor cells use during development and to maintain tissue homeostasis. Common to most cell types is the asymmetric establishment and regulation of cortical NuMA-dynein complexes that position the mitotic spindle. Here, we discover that HMMR acts at centrosomes in a PLK1-dependent pathway that locates active Ran and modulates the cortical localization of NuMA-dynein complexes to correct mispositioned spindles. This pathway was discovered through the creation and analysis of Hmmr-knockout mice, which suffer neonatal lethality with defective neural development and pleiotropic phenotypes in multiple tissues. HMMR over-expression in immortalized cancer cells induces phenotypes consistent with an increase in active Ran including defects in spindle orientation. These data identify an essential role for HMMR in the PLK1-dependent regulatory pathway that orients progenitor cell division and supports neural development. PMID:28994651

  8. Search, capture and signal: games microtubules and centrosomes play.

    PubMed

    Schuyler, S C; Pellman, D

    2001-01-01

    Accurate distribution of the chromosomes in dividing cells requires coupling of cellular polarity cues with both the orientation of the mitotic spindle and cell cycle progression. Work in budding yeast has demonstrated that cytoplasmic dynein and the kinesin Kip3p define redundant pathways that ensure proper spindle orientation. Furthermore, it has been shown that the Kip3p pathway components Kar9p and Bim1p (Yeb1p) form a complex that provides a molecular link between cortical polarity cues and spindle microtubules. Recently, other studies indicated that the cortical localization of Kar9p depends upon actin cables and Myo2p, a type V myosin. In addition, a BUB2-dependent cell cycle checkpoint has been described that inhibits the mitotic exit network and cytokinesis until proper centrosome position is achieved. Combined, these studies provide molecular insight into how cells link cellular polarity, spindle position and cell cycle progression.

  9. Clinical, imaging, and immunohistochemical characteristics of focal cortical dysplasia Type II extratemporal epilepsies in children: analyses of an institutional case series.

    PubMed

    Knerlich-Lukoschus, Friederike; Connolly, Mary B; Hendson, Glenda; Steinbok, Paul; Dunham, Christopher

    2017-02-01

    OBJECTIVE Focal cortical dysplasia (FCD) Type II is divided into 2 subgroups based on the absence (IIA) or presence (IIB) of balloon cells. In particular, extratemporal FCD Type IIA and IIB is not completely understood in terms of clinical, imaging, biological, and neuropathological differences. The aim of the authors was to analyze distinctions between these 2 formal entities and address clinical, MRI, and immunohistochemical features of extratemporal epilepsies in children. METHODS Cases formerly classified as Palmini FCD Type II nontemporal epilepsies were identified through the prospectively maintained epilepsy database at the British Columbia Children's Hospital in Vancouver, Canada. Clinical data, including age of seizure onset, age at surgery, seizure type(s) and frequency, affected brain region(s), intraoperative electrocorticographic findings, and outcome defined by Engel's classification were obtained for each patient. Preoperative and postoperative MRI results were reevaluated. H & E-stained tissue sections were reevaluated by using the 2011 International League Against Epilepsy classification system and additional immunostaining for standard cellular markers (neuronal nuclei, neurofilament, glial fibrillary acidic protein, CD68). Two additional established markers of pathology in epilepsy resection, namely, CD34 and α-B crystallin, were applied. RESULTS Seven nontemporal FCD Type IIA and 7 Type B cases were included. Patients with FCD Type IIA presented with an earlier age of epilepsy onset and slightly better Engel outcome. Radiology distinguished FCD Types IIA and IIB, in that Type IIB presented more frequently with characteristic cortical alterations. Nonphosphorylated neurofilament protein staining confirmed dysplastic cells in dyslaminated areas. The white-gray matter junction was focally blurred in patients with FCD Type IIB. α-B crystallin highlighted glial cells in the white matter and subpial layer with either of the 2 FCD Type II subtypes and balloon cells in patients with FCD Type IIB. α-B crystallin positivity proved to be a valuable tool for confirming the histological diagnosis of FCD Type IIB in specimens with rare balloon cells or difficult section orientation. Distinct nonendothelial cellular CD34 staining was found exclusively in tissue from patients with MRI-positive FCD Type IIB. CONCLUSIONS Extratemporal FCD Types IIA and IIB in the pediatric age group exhibited imaging and immunohistochemical characteristics; cellular immunoreactivity to CD34 emerged as an especially potential surrogate marker for lesional FCD Type IIB, providing additional evidence that FCD Types IIA and IIB might differ in their etiology and biology. Although the sample number in this study was small, the results further support the theory that postoperative outcome-defined by Engel's classification-is multifactorial and determined by not only histology but also the extent of the initial lesion, its location in eloquent areas, intraoperative electrocorticographic findings, and achieved resection grade.

  10. Accumulation of type VI collagen in the primary osteon of the rat femur during postnatal development

    PubMed Central

    Kohara, Yukihiro; Soeta, Satoshi; Izu, Yayoi; Amasaki, Hajime

    2015-01-01

    In rodents, the long bone diaphysis is expanded by forming primary osteons at the periosteal surface of the cortical bone. This ossification process is thought to be regulated by the microenvironment in the periosteum. Type VI collagen (Col VI), a component of the extracellular matrix (ECM) in the periosteum, is involved in osteoblast differentiation at early stages. In several cell types, Col VI interacts with NG2 on the cytoplasmic membrane to promote cell proliferation, spreading and motility. However, the detailed functions of Col VI and NG2 in the ossification process in the periosteum are still under investigation. In this study, to clarify the relationship between localization of Col VI and formation of the primary osteon, we examined the distribution of Col VI and osteoblast lineages expressing NG2 in the periosteum of rat femoral diaphysis during postnatal growing periods by immunohistochemistry. Primary osteons enclosing the osteonal cavity were clearly identified in the cortical bone from 2 weeks old. The size of the osteonal cavities decreased from the outer to the inner region of the cortical bone. In addition, the osteonal cavities of newly formed primary osteons at the outermost region started to decrease in size after rats reached the age of 4 weeks. Immunohistochemistry revealed concentrated localization of Col VI in the ECM in the osteonal cavity. Col VI-immunoreactive areas were reduced and they disappeared as the osteonal cavities became smaller from the outer to the inner region. In the osteonal cavities of the outer cortical regions, Runx2-immunoreactive spindle-shaped cells and mature osteoblasts were detected in Col VI-immunoreactive areas. The numbers of Runx2-immunoreactive cells were significantly higher in the osteonal cavities than in the osteogenic layers from 2 to 4 weeks. Most of these Runx2-immunoreactive cells showed NG2-immunoreactivity. Furthermore, PCNA-immunoreactivity was detected in the Runx2-immunoreactive spindle cells in the osteonal cavities. These results indicate that Col VI provides a characteristic microenvironment in the osteonal cavity of the primary osteon, and that differentiation and proliferation of the osteoblast lineage occur in the Col VI-immunoreactive area. Interaction of Col VI and NG2 may be involved in the structural organization of the primary osteon by regulating osteoblast lineages. PMID:25943007

  11. Accumulation of type VI collagen in the primary osteon of the rat femur during postnatal development.

    PubMed

    Kohara, Yukihiro; Soeta, Satoshi; Izu, Yayoi; Amasaki, Hajime

    2015-05-01

    In rodents, the long bone diaphysis is expanded by forming primary osteons at the periosteal surface of the cortical bone. This ossification process is thought to be regulated by the microenvironment in the periosteum. Type VI collagen (Col VI), a component of the extracellular matrix (ECM) in the periosteum, is involved in osteoblast differentiation at early stages. In several cell types, Col VI interacts with NG2 on the cytoplasmic membrane to promote cell proliferation, spreading and motility. However, the detailed functions of Col VI and NG2 in the ossification process in the periosteum are still under investigation. In this study, to clarify the relationship between localization of Col VI and formation of the primary osteon, we examined the distribution of Col VI and osteoblast lineages expressing NG2 in the periosteum of rat femoral diaphysis during postnatal growing periods by immunohistochemistry. Primary osteons enclosing the osteonal cavity were clearly identified in the cortical bone from 2 weeks old. The size of the osteonal cavities decreased from the outer to the inner region of the cortical bone. In addition, the osteonal cavities of newly formed primary osteons at the outermost region started to decrease in size after rats reached the age of 4 weeks. Immunohistochemistry revealed concentrated localization of Col VI in the ECM in the osteonal cavity. Col VI-immunoreactive areas were reduced and they disappeared as the osteonal cavities became smaller from the outer to the inner region. In the osteonal cavities of the outer cortical regions, Runx2-immunoreactive spindle-shaped cells and mature osteoblasts were detected in Col VI-immunoreactive areas. The numbers of Runx2-immunoreactive cells were significantly higher in the osteonal cavities than in the osteogenic layers from 2 to 4 weeks. Most of these Runx2-immunoreactive cells showed NG2-immunoreactivity. Furthermore, PCNA-immunoreactivity was detected in the Runx2-immunoreactive spindle cells in the osteonal cavities. These results indicate that Col VI provides a characteristic microenvironment in the osteonal cavity of the primary osteon, and that differentiation and proliferation of the osteoblast lineage occur in the Col VI-immunoreactive area. Interaction of Col VI and NG2 may be involved in the structural organization of the primary osteon by regulating osteoblast lineages. © 2015 Anatomical Society.

  12. Calbindin D-28k and parvalbumin immunoreactivity in the frontal cortex in patients with frontal lobe dementia of non-Alzheimer type associated with amyotrophic lateral sclerosis.

    PubMed Central

    Ferrer, I; Tuñón, T; Serrano, M T; Casas, R; Alcántara, S; Zújar, M J; Rivera, R M

    1993-01-01

    The morphology and distribution of local-circuit neurons (interneurons) were examined, by calbindin D-28k and parvalbumin immunocytochemistry, in the frontal cortex (area 8) in two patients with frontal lobe dementia of non-Alzheimer type associated with classical amyotrophic lateral sclerosis (ALS), and in seven normal cases. The density of calbindin D-28k immunoreactive cells was dramatically reduced in ALS patients, but the density of parvalbumin-immunoreactive neurons was preserved. Decreased density of calbindin D-28k-immunoreactive neurons, which are mainly located in the upper cortical layers, may interfere with the normal processing of cortico-cortical connections, whereas integrity of parvalbumin-immunoreactive cells may be associated with the preservation of the major inhibitory intracortical circuits in patients with frontal lobe dementia. Images PMID:8459241

  13. Dementia of frontal lobe type and motor neuron disease. A Golgi study of the frontal cortex.

    PubMed Central

    Ferrer, I; Roig, C; Espino, A; Peiro, G; Matias Guiu, X

    1991-01-01

    Neuropathological findings in a 38 year old patient with dementia of frontal lobe type and motor neuron disease included pyramidal tracts, myelin pallor and neuron loss, gliosis and chromatolysis in the hypoglossal nucleus, together with frontal atrophy, neuron loss, gliosis and spongiosis in the upper cortical layers of the frontal (and temporal) lobes. Most remaining pyramidal and non-pyramidal neurons (multipolar, bitufted and bipolar cells) in the upper layers (layers II and III) of the frontal cortex (area B) had reduced dendritic arbors, proximal dendritic varicosities and amputation of dendrites as revealed in optimally stained rapid Golgi sections. Pyramidal cells in these layers also showed depletion of dendritic spines. Neurons in the inner layers were preserved. Loss of receptive surfaces in neurons of the upper cortical layers in the frontal cortex are indicative of neuronal disconnection, and are "hidden" contributory morphological substrates for the development of dementia. Images PMID:1744652

  14. The Touch and Zap method for in vivo whole-cell patch recording of intrinsic and visual responses of cortical neurons and glial cells.

    PubMed

    Schramm, Adrien E; Marinazzo, Daniele; Gener, Thomas; Graham, Lyle J

    2014-01-01

    Whole-cell patch recording is an essential tool for quantitatively establishing the biophysics of brain function, particularly in vivo. This method is of particular interest for studying the functional roles of cortical glial cells in the intact brain, which cannot be assessed with extracellular recordings. Nevertheless, a reasonable success rate remains a challenge because of stability, recording duration and electrical quality constraints, particularly for voltage clamp, dynamic clamp or conductance measurements. To address this, we describe "Touch and Zap", an alternative method for whole-cell patch clamp recordings, with the goal of being simpler, quicker and more gentle to brain tissue than previous approaches. Under current clamp mode with a continuous train of hyperpolarizing current pulses, seal formation is initiated immediately upon cell contact, thus the "Touch". By maintaining the current injection, whole-cell access is spontaneously achieved within seconds from the cell-attached configuration by a self-limited membrane electroporation, or "Zap", as seal resistance increases. We present examples of intrinsic and visual responses of neurons and putative glial cells obtained with the revised method from cat and rat cortices in vivo. Recording parameters and biophysical properties obtained with the Touch and Zap method compare favourably with those obtained with the traditional blind patch approach, demonstrating that the revised approach does not compromise the recorded cell. We find that the method is particularly well-suited for whole-cell patch recordings of cortical glial cells in vivo, targeting a wider population of this cell type than the standard method, with better access resistance. Overall, the gentler Touch and Zap method is promising for studying quantitative functional properties in the intact brain with minimal perturbation of the cell's intrinsic properties and local network. Because the Touch and Zap method is performed semi-automatically, this approach is more reproducible and less dependent on experimenter technique.

  15. The Touch and Zap Method for In Vivo Whole-Cell Patch Recording of Intrinsic and Visual Responses of Cortical Neurons and Glial Cells

    PubMed Central

    Schramm, Adrien E.; Marinazzo, Daniele; Gener, Thomas; Graham, Lyle J.

    2014-01-01

    Whole-cell patch recording is an essential tool for quantitatively establishing the biophysics of brain function, particularly in vivo. This method is of particular interest for studying the functional roles of cortical glial cells in the intact brain, which cannot be assessed with extracellular recordings. Nevertheless, a reasonable success rate remains a challenge because of stability, recording duration and electrical quality constraints, particularly for voltage clamp, dynamic clamp or conductance measurements. To address this, we describe “Touch and Zap”, an alternative method for whole-cell patch clamp recordings, with the goal of being simpler, quicker and more gentle to brain tissue than previous approaches. Under current clamp mode with a continuous train of hyperpolarizing current pulses, seal formation is initiated immediately upon cell contact, thus the “Touch”. By maintaining the current injection, whole-cell access is spontaneously achieved within seconds from the cell-attached configuration by a self-limited membrane electroporation, or “Zap”, as seal resistance increases. We present examples of intrinsic and visual responses of neurons and putative glial cells obtained with the revised method from cat and rat cortices in vivo. Recording parameters and biophysical properties obtained with the Touch and Zap method compare favourably with those obtained with the traditional blind patch approach, demonstrating that the revised approach does not compromise the recorded cell. We find that the method is particularly well-suited for whole-cell patch recordings of cortical glial cells in vivo, targeting a wider population of this cell type than the standard method, with better access resistance. Overall, the gentler Touch and Zap method is promising for studying quantitative functional properties in the intact brain with minimal perturbation of the cell's intrinsic properties and local network. Because the Touch and Zap method is performed semi-automatically, this approach is more reproducible and less dependent on experimenter technique. PMID:24875855

  16. A three-dimensional neural spheroid model for capillary-like network formation.

    PubMed

    Boutin, Molly E; Kramer, Liana L; Livi, Liane L; Brown, Tyler; Moore, Christopher; Hoffman-Kim, Diane

    2018-04-01

    In vitro three-dimensional neural spheroid models have an in vivo-like cell density, and have the potential to reduce animal usage and increase experimental throughput. The aim of this study was to establish a spheroid model to study the formation of capillary-like networks in a three-dimensional environment that incorporates both neuronal and glial cell types, and does not require exogenous vasculogenic growth factors. We created self-assembled, scaffold-free cellular spheroids using primary-derived postnatal rodent cortex as a cell source. The interactions between relevant neural cell types, basement membrane proteins, and endothelial cells were characterized by immunohistochemistry. Transmission electron microscopy was used to determine if endothelial network structures had lumens. Endothelial cells within cortical spheroids assembled into capillary-like networks with lumens. Networks were surrounded by basement membrane proteins, including laminin, fibronectin and collagen IV, as well as key neurovascular cell types. Existing in vitro models of the cortical neurovascular environment study monolayers of endothelial cells, either on transwell inserts or coating cellular spheroids. These models are not well suited to study vasculogenesis, a process hallmarked by endothelial cell cord formation and subsequent lumenization. The neural spheroid is a new model to study the formation of endothelial cell capillary-like structures in vitro within a high cell density three-dimensional environment that contains both neuronal and glial populations. This model can be applied to investigate vascular assembly in healthy or disease states, such as stroke, traumatic brain injury, or neurodegenerative disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Synaptic physiology of the flow of information in the cat's visual cortex in vivo

    PubMed Central

    Hirsch, Judith A; Martinez, Luis M; Alonso, José-Manuel; Desai, Komal; Pillai, Cinthi; Pierre, Carhine

    2002-01-01

    Each stage of the striate cortical circuit extracts novel information about the visual environment. We asked if this analytic process reflected laminar variations in synaptic physiology by making whole-cell recording with dye-filled electrodes from the cat's visual cortex and thalamus; the stimuli were flashed spots. Thalamic afferents terminate in layer 4, which contains two types of cell, simple and complex, distinguished by the spatial structure of the receptive field. Previously, we had found that the postsynaptic and spike responses of simple cells reliably followed the time course of flash-evoked thalamic activity. Here we report that complex cells in layer 4 (or cells intermediate between simple and complex) similarly reprised thalamic activity (response/trial, 99 ± 1.9 %; response duration 159 ± 57 ms; latency 25 ± 4 ms; average ± standard deviation; n = 7). Thus, all cells in layer 4 share a common synaptic physiology that allows secure integration of thalamic input. By contrast, at the second cortical stage (layer 2+3), where layer 4 directs its output, postsynaptic responses did not track simple patterns of antecedent activity. Typical responses to the static stimulus were intermittent and brief (response/trial, 31 ± 40 %; response duration 72 ± 60 ms, latency 39 ± 7 ms; n = 11). Only richer stimuli like those including motion evoked reliable responses. All told, the second level of cortical processing differs markedly from the first. At that later stage, ascending information seems strongly gated by connections between cortical neurons. Inputs must be combined in newly specified patterns to influence intracortical stages of processing. PMID:11927691

  18. Canonical Organization of Layer 1 Neuron-Led Cortical Inhibitory and Disinhibitory Interneuronal Circuits

    PubMed Central

    Lee, Alice J.; Wang, Guangfu; Jiang, Xiaolong; Johnson, Seraphina M.; Hoang, Elizabeth T.; Lanté, Fabien; Stornetta, Ruth L.; Beenhakker, Mark P.; Shen, Ying; Julius Zhu, J.

    2015-01-01

    Interneurons play a key role in cortical function and dysfunction, yet organization of cortical interneuronal circuitry remains poorly understood. Cortical Layer 1 (L1) contains 2 general GABAergic interneuron groups, namely single bouquet cells (SBCs) and elongated neurogliaform cells (ENGCs). SBCs predominantly make unidirectional inhibitory connections (SBC→) with L2/3 interneurons, whereas ENGCs frequently form reciprocal inhibitory and electric connections (ENGC↔) with L2/3 interneurons. Here, we describe a systematic investigation of the pyramidal neuron targets of L1 neuron-led interneuronal circuits in the rat barrel cortex with simultaneous octuple whole-cell recordings and report a simple organizational scheme of the interneuronal circuits. Both SBCs→ and ENGC ↔ L2/3 interneuronal circuits connect to L2/3 and L5, but not L6, pyramidal neurons. SBC → L2/3 interneuronal circuits primarily inhibit the entire dendritic–somato–axonal axis of a few L2/3 and L5 pyramidal neurons located within the same column. In contrast, ENGC ↔ L2/3 interneuronal circuits generally inhibit the distal apical dendrite of many L2/3 and L5 pyramidal neurons across multiple columns. Finally, L1 interneuron-led circuits target distinct subcellular compartments of L2/3 and L5 pyramidal neurons in a L2/3 interneuron type-dependent manner. These results suggest that L1 neurons form canonical interneuronal circuits to control information processes in both supra- and infragranular cortical layers. PMID:24554728

  19. Spatiotemporal relationships between the cell shape and the actomyosin cortex of periodically protruding cells

    PubMed Central

    Driscoll, Meghan K.; Losert, Wolfgang; Jacobson, Ken

    2015-01-01

    We investigate the dynamics of cell shape and analyze the actin and myosin distributions of cells exhibiting cortical density traveling waves. These waves propagate by repeated cycles of cortical compression (folding) and dilation (unfolding) that lead to periodic protrusions (oscillations) of the cell boundary. The focus of our detailed analysis is the remarkable periodicity of this phenotype, in which both the overall shape transformation and distribution of actomyosin density are repeated from cycle to cycle even though the characteristics of the shape transformation vary significantly for different regions of the cell. We show, using correlation analysis, that during traveling wave propagation cortical actin and plasma membrane densities are tightly coupled at each point along the cell periphery. We also demonstrate that the major protrusion appears at the wave trailing edge just after the actin cortex density has reached a maximum. Making use of the extraordinary periodicity, we employ latrunculin to demonstrate that sequestering actin monomers can have two distinct effects: low latrunculin concentrations can trigger and enhance traveling waves but higher concentrations of this drug retard the waves. The fundamental mechanism underlying this periodically protruding phenotype, involving folding and unfolding of the cortex‐membrane couple, is likely to hold important clues for diverse phenomena including cell division and amoeboid‐type migration. © 2015 The Authors. Cytoskeleton Published by Wiley Periodicals, Inc. PMID:26147497

  20. Whole-brain MRI phenotyping in dysplasia-related frontal lobe epilepsy.

    PubMed

    Hong, Seok-Jun; Bernhardt, Boris C; Schrader, Dewi S; Bernasconi, Neda; Bernasconi, Andrea

    2016-02-16

    To perform whole-brain morphometry in patients with frontal lobe epilepsy and evaluate the utility of group-level patterns for individualized diagnosis and prognosis. We compared MRI-based cortical thickness and folding complexity between 2 frontal lobe epilepsy cohorts with histologically verified focal cortical dysplasia (FCD) (13 type I; 28 type II) and 41 closely matched controls. Pattern learning algorithms evaluated the utility of group-level findings to predict histologic FCD subtype, the side of the seizure focus, and postsurgical seizure outcome in single individuals. Relative to controls, FCD type I displayed multilobar cortical thinning that was most marked in ipsilateral frontal cortices. Conversely, type II showed thickening in temporal and postcentral cortices. Cortical folding also diverged, with increased complexity in prefrontal cortices in type I and decreases in type II. Group-level findings successfully guided automated FCD subtype classification (type I: 100%; type II: 96%), seizure focus lateralization (type I: 92%; type II: 86%), and outcome prediction (type I: 92%; type II: 82%). FCD subtypes relate to diverse whole-brain structural phenotypes. While cortical thickening in type II may indicate delayed pruning, a thin cortex in type I likely results from combined effects of seizure excitotoxicity and the primary malformation. Group-level patterns have a high translational value in guiding individualized diagnostics. © 2016 American Academy of Neurology.

  1. Critical time window of neuronal cholesterol synthesis during neurite outgrowth.

    PubMed

    Fünfschilling, Ursula; Jockusch, Wolf J; Sivakumar, Nandhini; Möbius, Wiebke; Corthals, Kristina; Li, Sai; Quintes, Susanne; Kim, Younghoon; Schaap, Iwan A T; Rhee, Jeong-Seop; Nave, Klaus-Armin; Saher, Gesine

    2012-05-30

    Cholesterol is an essential membrane component enriched in plasma membranes, growth cones, and synapses. The brain normally synthesizes all cholesterol locally, but the contribution of individual cell types to brain cholesterol metabolism is unknown. To investigate whether cortical projection neurons in vivo essentially require cholesterol biosynthesis and which cell types support neurons, we have conditionally ablated the cholesterol biosynthesis in these neurons in mice either embryonically or postnatally. We found that cortical projection neurons synthesize cholesterol during their entire lifetime. At all stages, they can also benefit from glial support. Adult neurons that lack cholesterol biosynthesis are mainly supported by astrocytes such that their functional integrity is preserved. In contrast, microglial cells support young neurons. However, compensatory efforts of microglia are only transient leading to layer-specific neuronal death and the reduction of cortical projections. Hence, during the phase of maximal membrane growth and maximal cholesterol demand, neuronal cholesterol biosynthesis is indispensable. Analysis of primary neurons revealed that neurons tolerate only slight alteration in the cholesterol content and plasma membrane tension. This quality control allows neurons to differentiate normally and adjusts the extent of neurite outgrowth, the number of functional growth cones and synapses to the available cholesterol. This study highlights both the flexibility and the limits of horizontal cholesterol transfer in vivo and may have implications for the understanding of neurodegenerative diseases.

  2. Spatio-temporal specialization of GABAergic septo-hippocampal neurons for rhythmic network activity.

    PubMed

    Unal, Gunes; Crump, Michael G; Viney, Tim J; Éltes, Tímea; Katona, Linda; Klausberger, Thomas; Somogyi, Peter

    2018-03-03

    Medial septal GABAergic neurons of the basal forebrain innervate the hippocampus and related cortical areas, contributing to the coordination of network activity, such as theta oscillations and sharp wave-ripple events, via a preferential innervation of GABAergic interneurons. Individual medial septal neurons display diverse activity patterns, which may be related to their termination in different cortical areas and/or to the different types of innervated interneurons. To test these hypotheses, we extracellularly recorded and juxtacellularly labeled single medial septal neurons in anesthetized rats in vivo during hippocampal theta and ripple oscillations, traced their axons to distant cortical target areas, and analyzed their postsynaptic interneurons. Medial septal GABAergic neurons exhibiting different hippocampal theta phase preferences and/or sharp wave-ripple related activity terminated in restricted hippocampal regions, and selectively targeted a limited number of interneuron types, as established on the basis of molecular markers. We demonstrate the preferential innervation of bistratified cells in CA1 and of basket cells in CA3 by individual axons. One group of septal neurons was suppressed during sharp wave-ripples, maintained their firing rate across theta and non-theta network states and mainly fired along the descending phase of CA1 theta oscillations. In contrast, neurons that were active during sharp wave-ripples increased their firing significantly during "theta" compared to "non-theta" states, with most firing during the ascending phase of theta oscillations. These results demonstrate that specialized septal GABAergic neurons contribute to the coordination of network activity through parallel, target area- and cell type-selective projections to the hippocampus.

  3. Microtubule bundling plays a role in ethylene-mediated cortical microtubule reorientation in etiolated Arabidopsis hypocotyls.

    PubMed

    Ma, Qianqian; Sun, Jingbo; Mao, Tonglin

    2016-05-15

    The gaseous hormone ethylene is known to regulate plant growth under etiolated conditions (the 'triple response'). Although organization of cortical microtubules is essential for cell elongation, the underlying mechanisms that regulate microtubule organization by hormone signaling, including ethylene, are ambiguous. In the present study, we demonstrate that ethylene signaling participates in regulation of cortical microtubule reorientation. In particular, regulation of microtubule bundling is important for this process in etiolated hypocotyls. Time-lapse analysis indicated that selective stabilization of microtubule-bundling structures formed in various arrays is related to ethylene-mediated microtubule orientation. Bundling events and bundle growth lifetimes were significantly increased in oblique and longitudinal arrays, but decreased in transverse arrays in wild-type cells in response to ethylene. However, the effects of ethylene on microtubule bundling were partially suppressed in a microtubule-bundling protein WDL5 knockout mutant (wdl5-1). This study suggests that modulation of microtubule bundles that have formed in certain orientations plays a role in reorienting microtubule arrays in response to ethylene-mediated etiolated hypocotyl cell elongation. © 2016. Published by The Company of Biologists Ltd.

  4. Time-sequential observation of spindle and phragmoplast orientation in BY-2 cells with altered cortical actin microfilament patterning.

    PubMed

    Kojo, Kei H; Yasuhara, Hiroki; Hasezawa, Seiichiro

    2014-01-01

    Precise division plane determination is essential for plant development. At metaphase, a dense actin microfilament meshwork appears on both sides of the cell center, forming a characteristic cortical actin microfilament twin peak pattern in BY-2 cells. We previously reported a strong correlation between altered cortical actin microfilament patterning and an oblique mitotic spindle orientation, implying that these actin microfilament twin peaks play a role in the regulation of mitotic spindle orientation. In the present study, time-sequential observation was used to reveal the progression from oblique phragmoplast to oblique cell plate orientation in cells with altered cortical actin microfilament patterning. In contrast to cells with normal actin microfilament twin peaks, oblique phragmoplast reorientation was rarely observed in cells with altered cortical actin microfilament patterning. These results support the important roles of cortical actin microfilament patterning in division plane orientation.

  5. Time-sequential observation of spindle and phragmoplast orientation in BY-2 cells with altered cortical actin microfilament patterning.

    PubMed

    Kojo, Kei H; Yasuhara, Hiroki; Hasezawa, Seiichiro

    2014-06-18

    Precise division plane determination is essential for plant development. At metaphase, a dense actin microfilament meshwork appears on both sides of the cell center, forming a characteristic cortical actin microfilament twin peak pattern in BY-2 cells. We previously reported a strong correlation between altered cortical actin microfilament patterning and an oblique mitotic spindle orientation, implying that these actin microfilament twin peaks play a role in the regulation of mitotic spindle orientation. In the present study, time-sequential observation was used to reveal the progression from oblique phragmoplast to oblique cell plate orientation in cells with altered cortical actin microfilament patterning. In contrast to cells with normal actin microfilament twin peaks, oblique phragmoplast reorientation was rarely observed in cells with altered cortical actin microfilament patterning. These results support the important roles of cortical actin microfilament patterning in division plane orientation.

  6. A new model of strabismic amblyopia: Loss of spatial acuity due to increased temporal dispersion of geniculate X-cell afferents on to cortical neurons.

    PubMed

    Crewther, D P; Crewther, S G

    2015-09-01

    Although the neural locus of strabismic amblyopia has been shown to lie at the first site of binocular integration, first in cat and then in primate, an adequate mechanism is still lacking. Here we hypothesise that increased temporal dispersion of LGN X-cell afferents driven by the deviating eye onto single cortical neurons may provide a neural mechanism for strabismic amblyopia. This idea was investigated via single cell extracellular recordings of 93 X and 50 Y type LGN neurons from strabismic and normal cats. Both X and Y neurons driven by the non-deviating eye showed shorter latencies than those driven by either the strabismic or normal eyes. Also the mean latency difference between X and Y neurons was much greater for the strabismic cells compared with the other two groups. The incidence of lagged X-cells driven by the deviating eye of the strabismic cats was higher than that of LGN X-cells from normal animals. Remarkably, none of the cells recorded from the laminae driven by the non-deviating eye were of the lagged class. A simple computational model was constructed in which a mixture of lagged and non-lagged afferents converge on to single cortical neurons. Model cut-off spatial frequencies to a moving grating stimulus were sensitive to the temporal dispersion of the geniculate afferents. Thus strabismic amblyopia could be viewed as a lack of developmental tuning of geniculate lags for neurons driven by the amblyopic eye. Monocular control of fixation by the non-deviating eye is associated with reduced incidence of lagged neurons, suggesting that in normal vision, lagged neurons might play a role in maintaining binocular connections for cortical neurons. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Protein phosphatase 2ACα gene knock-out results in cortical atrophy through activating hippo cascade in neuronal progenitor cells.

    PubMed

    Liu, Bo; Sun, Li-Hua; Huang, Yan-Fei; Guo, Li-Jun; Luo, Li-Shu

    2018-02-01

    Protein phosphatase 2ACα (PP2ACα), a vital member of the protein phosphatase family, has been studied primarily as a regulator for the development, growth and protein synthesis of a lot of cell types. Dysfunction of PP2ACα protein results in neurodegenerative disease; however, this finding has not been directly confirmed in the mouse model with PP2ACα gene knock-out. Therefore, in this study presented here, we generated the PP2ACα gene knock-out mouse model by the Cre-loxP targeting gene system, with the purpose to directly observe the regulatory role of PP2ACα gene in the development of mouse's cerebral cortex. We observe that knocking-out PP2ACα gene in the central nervous system (CNS) results in cortical neuronal shrinkage, synaptic plasticity impairments, and learning/memory deficits. Further study reveals that PP2ACα gene knock-out initiates Hippo cascade in cortical neuroprogenitor cells (NPCs), which blocks YAP translocation into the nuclei of NPCs. Notably, p73, directly targeted by Hippo cascade, can bind to the promoter of glutaminase2 (GLS2) that plays a dominant role in the enzymatic regulation of glutamate/glutamine cycle. Finally, we find that PP2ACα gene knock-out inhibits the glutamine synthesis through up-regulating the activity of phosphorylated-p73 in cortical NPCs. Taken together, it concludes that PP2ACα critically supports cortical neuronal growth and cognitive function via regulating the signaling transduction of Hippo-p73 cascade. And PP2ACα indirectly modulates the glutamine synthesis of cortical NPCs through targeting p73 that plays a direct transcriptional regulatory role in the gene expression of GLS2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Spatial organization of xylem cell walls by ROP GTPases and microtubule-associated proteins.

    PubMed

    Oda, Yoshihisa; Fukuda, Hiroo

    2013-12-01

    Proper patterning of cellulosic cell walls is critical for cell shaping and differentiation of plant cells. Cortical microtubule arrays regulate the deposition patterns of cellulose microfibrils by controlling the targeting and trajectory of cellulose synthase complexes. Although some microtubule-associated proteins (MAPs) regulate the arrangement of cortical microtubules, knowledge about the overall mechanism governing the spacing of cortical microtubules is still limited. Recent studies reveal that ROP GTPases and MAPs spatially regulate the assembly and disassembly of cortical microtubules in developing xylem cells, in which localized secondary cell walls are deposited. Here, we review recent insights into the regulation of xylem cell wall patterning by cortical microtubules, ROP GTPases, and MAPs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Cortical bone thickening in Type A posterior atlas arch defects: experimental report.

    PubMed

    Sanchis-Gimeno, Juan A; Llido, Susanna; Guede, David; Martinez-Soriano, Francisco; Ramon Caeiro, Jose; Blanco-Perez, Esther

    2017-03-01

    To date, no information about the cortical bone microstructural properties in atlas vertebrae with posterior arch defects has been reported. To test if there is an increased cortical bone thickening in atlases with Type A posterior atlas arch defects in an experimental model. Micro-computed tomography (CT) study on cadaveric atlas vertebrae. We analyzed the cortical bone thickness, the cortical volume, and the medullary volume (SkyScan 1172 Bruker micro-CT NV, Kontich, Belgium) in cadaveric dry vertebrae with a Type A atlas arch defect and normal control vertebrae. The micro-CT study revealed significant differences in cortical bone thickness (p=.005), cortical volume (p=.003), and medullary volume (p=.009) values between the normal and the Type A vertebrae. Type A congenital atlas arch defects present a cortical bone thickening that may play a protective role against atlas fractures. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. A direct translaminar inhibitory circuit tunes cortical output

    PubMed Central

    Pluta, Scott; Naka, Alexander; Veit, Julia; Telian, Gregory; Yao, Lucille; Hakim, Richard; Taylor, David; Adesnik, Hillel

    2015-01-01

    Summary Anatomical and physiological experiments have outlined a blueprint for the feed-forward flow of activity in cortical circuits: signals are thought to propagate primarily from the middle cortical layer, L4, up to L2/3, and down to the major cortical output layer, L5. Pharmacological manipulations, however, have contested this model and suggested that L4 may not be critical for sensory responses of neurons in either superficial or deep layers. To address these conflicting models we reversibly manipulated L4 activity in awake, behaving mice using cell-type specific optogenetics. In contrast to both prevailing models, we show that activity in L4 directly suppresses L5, in part by activating deep, fast spiking inhibitory neurons. Our data suggest that the net impact of L4 activity is to sharpen the spatial representations of L5 neurons. Thus we establish a novel translaminar inhibitory circuit in the sensory cortex that acts to enhance the feature selectivity of cortical output. PMID:26414615

  11. Localizationism to neuroplasticity---the evolution of metaphysical neuroscience.

    PubMed

    Acharya, Sourya; Shukla, Samarth; Mahajan, S N; Diwan, S K

    2012-09-01

    Neuroplasticity (also referred to as brain plasticity, cortical plasticity or cortical re-mapping) is the changing of neurons, organization of their networks, and their function via new experiences. The brain consists of nerve cells or neurons and glial cells which are interconnected, and learning may happen through changing of the strength of the connections between neurons, by adding or removing connections, or by adding new cells. "Plasticity" relates to learning by adding or removing connections, or adding cells. Contrary to the traditional belief of neurolocalizationism, which states that each region of brain is dedicated for a particular type of activity, neuroplasticity has struggled a long way and has created a safe niche in the neuroscientific hall of honor. Salute to the neuroplasticians for their efforts to revolutionize the doctrine of neurology for the better understanding of the remarkable powers of brain. This article is a brief attempt to fathom the mysterious and scientific ways of neuroplasticity.

  12. GABAA receptor-mediated currents in interneurons and pyramidal cells of rat visual cortex

    PubMed Central

    Xiang, Zixiu; Huguenard, John R; Prince, David A

    1998-01-01

    We compared γ-aminobutyric acid (GABA)-mediated responses of identified pyramidal cells and fast spiking interneurons in layer V of visual cortical slices from young rats (P11-14). The frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) was similar in pyramidal cells and interneurons (1.7 vs. 1.9 Hz). For events with 10-90 % rise times less than 0.9 ms, no significant differences were found in mean amplitude (61 vs. 65 pA), mean rise time (0.58 vs. 0.61 ms), or the first time constant of decay (τ1, 6.4 vs. 6.5 ms) between pyramidal cells and interneurons. The second decay time constant (τ2) was significantly longer in interneurons than in pyramidal cells (49 vs. 22 ms). The difference in sIPSC decay kinetics between two cell types also existed in adult rats (P36-42), suggesting the kinetic difference is not due to differential development of GABAA receptors in these cell types. The decay kinetics of monosynaptic evoked IPSCs were also longer in interneurons. As in the case of sIPSCs, the difference was accounted for by the second decay time constant. τ1 and τ2 were, respectively, 13 and 64 ms for interneurons and 12 and 47 ms for pyramidal cells. Cell-attached patch recordings revealed that the mean open time for single Cl− channels in response to 2 μM GABA was significantly longer in interneurons than pyramidal cells (5.0 vs. 2.8 ms). The chord conductance of these channels in interneurons (12 pS) was significantly smaller than in pyramidal cells (15 pS). Single channel currents reversed polarity when the pipette potential was approximately -10 mV for both cell types. These results show that there is a functional diversity of GABAA receptors in electrophysiologically and morphologically identified cortical pyramidal cells and interneurons. This diversity might derive from the different molecular composition of the receptors in these two cell types. PMID:9503333

  13. Laminar Differences in Dendritic Structure of Pyramidal Neurons in the Juvenile Rat Somatosensory Cortex.

    PubMed

    Rojo, Concepción; Leguey, Ignacio; Kastanauskaite, Asta; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier; Benavides-Piccione, Ruth

    2016-06-01

    Pyramidal cell structure varies between different cortical areas and species, indicating that the cortical circuits that these cells participate in are likely to be characterized by different functional capabilities. Structural differences between cortical layers have been traditionally reported using either the Golgi method or intracellular labeling, but the structure of pyramidal cells has not previously been systematically analyzed across all cortical layers at a particular age. In the present study, we investigated the dendritic architecture of complete basal arbors of pyramidal neurons in layers II, III, IV, Va, Vb, and VI of the hindlimb somatosensory cortical region of postnatal day 14 rats. We found that the characteristics of basal dendritic morphologies are statistically different in each cortical layer. The variations in size and branching pattern that exist between pyramidal cells of different cortical layers probably reflect the particular functional properties that are characteristic of the cortical circuit in which they participate. This new set of complete basal dendritic arbors of 3D-reconstructed pyramidal cell morphologies across each cortical layer will provide new insights into interlaminar information processing in the cerebral cortex. © The Author 2016. Published by Oxford University Press.

  14. Further studies on cortical tangential migration in wild type and Pax-6 mutant mice.

    PubMed

    Jiménez, D; López-Mascaraque, L; de Carlos, J A; Valverde, F

    2002-01-01

    In this study we present new data concerning the tangential migration from the medial and lateral ganglionic eminences (MGE and LGE) to the cerebral cortex during development. We have used Calbindin as a useful marker to follow the itinerary of tangential migratory cells during early developmental stages in wild-type and Pax-6 homozygous mutant mice. In the wild-type mice, at early developmental stages, migrating cells advance through the intermediate zone (IZ) and preplate (PP). At more advanced stages, migrating cells were present in the subplate (SP) and cortical plate (CP) to reach the entire developing cerebral cortex. We found that, in the homozygous mutant mice (Pax-6(Sey-Neu)/Pax-6(Sey-Neu)), this tangential migration is severely affected at early developmental stages: migrating cells were absent in the IZ, which were only found some days later, suggesting that in the mutant mice, there is a temporal delay in tangential migration. We have also defined some possible mechanisms to explain certain migratory routes from the basal telencephalon to the cerebral cortex. We describe the existence of two factors, which we consider to be essential for the normal migration; the first one is the cell adhesion molecule PSA-NCAM, whose role in other migratory systems is well known. The second factor is Robo-2, whose expression delimits a channel for the passage of migratory cells from the basal telencephalon to the cerebral cortex.

  15. Microfluidic measurement of effects of ACF7/MACF1 gene on the mechanics of primary cortical neurons

    NASA Astrophysics Data System (ADS)

    Lee, Donghee; Ka, Minhan; Kim, Woo-Yang; Ryu, Sangjin

    2014-03-01

    Actin filaments and microtubules play important roles in determining the mechanics of cells, and ACF7/MACF1 (Actin Crosslinking Family 7/Microtubule And Actin Crosslinking Factor 1) gene seems to be closely related to connections between actin filaments and microtubules. To identify such roles of the ACF7/MACF1 gene of primary cortical neurons, we isolated neuronal cells from the cerebral cortex of the embryonic mouse brain, which is important in memory, language and perception. We exerted viscous shear flow to normal neuronal cells and ACF7/MACF1 gene knockout neuronal cells using rectangular microfluidic channels. While changing viscous shear stress on the cells, we recorded changes in the morphology of the two cell types using video microscopy. Having analyzed the deformation of the cells, we could quantitatively correlate differences in the morphological change between the both normal and ACF7/MACF1 gene knockout neuronal cells to the applied shear force, which will contribute toward identifying cell mechanical roles of the ACF7/MACF1 gene.

  16. Retinoic acid from the meninges regulates cortical neuron generation.

    PubMed

    Siegenthaler, Julie A; Ashique, Amir M; Zarbalis, Konstantinos; Patterson, Katelin P; Hecht, Jonathan H; Kane, Maureen A; Folias, Alexandra E; Choe, Youngshik; May, Scott R; Kume, Tsutomu; Napoli, Joseph L; Peterson, Andrew S; Pleasure, Samuel J

    2009-10-30

    Extrinsic signals controlling generation of neocortical neurons during embryonic life have been difficult to identify. In this study we demonstrate that the dorsal forebrain meninges communicate with the adjacent radial glial endfeet and influence cortical development. We took advantage of Foxc1 mutant mice with defects in forebrain meningeal formation. Foxc1 dosage and loss of meninges correlated with a dramatic reduction in both neuron and intermediate progenitor production and elongation of the neuroepithelium. Several types of experiments demonstrate that retinoic acid (RA) is the key component of this secreted activity. In addition, Rdh10- and Raldh2-expressing cells in the dorsal meninges were either reduced or absent in the Foxc1 mutants, and Rdh10 mutants had a cortical phenotype similar to the Foxc1 null mutants. Lastly, in utero RA treatment rescued the cortical phenotype in Foxc1 mutants. These results establish RA as a potent, meningeal-derived cue required for successful corticogenesis.

  17. Human Pluripotent Stem-Cell-Derived Cortical Neurons Integrate Functionally into the Lesioned Adult Murine Visual Cortex in an Area-Specific Way.

    PubMed

    Espuny-Camacho, Ira; Michelsen, Kimmo A; Linaro, Daniele; Bilheu, Angéline; Acosta-Verdugo, Sandra; Herpoel, Adèle; Giugliano, Michele; Gaillard, Afsaneh; Vanderhaeghen, Pierre

    2018-05-29

    The transplantation of pluripotent stem-cell-derived neurons constitutes a promising avenue for the treatment of several brain diseases. However, their potential for the repair of the cerebral cortex remains unclear, given its complexity and neuronal diversity. Here, we show that human visual cortical cells differentiated from embryonic stem cells can be transplanted and can integrate successfully into the lesioned mouse adult visual cortex. The transplanted human neurons expressed the appropriate repertoire of markers of six cortical layers, projected axons to specific visual cortical targets, and were synaptically active within the adult brain. Moreover, transplant maturation and integration were much less efficient following transplantation into the lesioned motor cortex, as previously observed for transplanted mouse cortical neurons. These data constitute an important milestone for the potential use of human PSC-derived cortical cells for the reassembly of cortical circuits and emphasize the importance of cortical areal identity for successful transplantation. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Crumbs 2 prevents cortical abnormalities in mouse dorsal telencephalon.

    PubMed

    Dudok, Jacobus J; Murtaza, Mariyam; Henrique Alves, C; Rashbass, Pen; Wijnholds, Jan

    2016-07-01

    The formation of a functionally integrated nervous system is dependent on a highly organized sequence of events that includes timely division and differentiation of progenitors. Several apical polarity proteins have been shown to play crucial roles during neurogenesis, however, the role of Crumbs 2 (CRB2) in cortical development has not previously been reported. Here, we show that conditional ablation of Crb2 in the murine dorsal telencephalon leads to defects in the maintenance of the apical complex. Furthermore, within the mutant dorsal telencephalon there is premature expression of differentiation proteins. We examined the physiological function of Crb2 on wild type genetic background as well as on background lacking Crb1. Telencephalon lacking CRB2 resulted in reduced levels of PALS1 and CRB3 from the apical complex, an increased number of mitotic cells and expanded neuronal domain. These defects are transient and therefore only result in rather mild cortical abnormalities. We show that CRB2 is required for maintenance of the apical polarity complex during development of the cortex and regulation of cell division, and that loss of CRB2 results in cortical abnormalities. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  19. Bioaccumulation of chromium in aquatic macrophyte Borreria scabiosoides Cham. & Schltdl.

    NASA Astrophysics Data System (ADS)

    Mangabeira, P. A.; Mielke, M. S.; Arantes, I.; Dutruch, L.; Silva, D. da. C.; Barbier, F.; de Almeida, A.-A. F.; Oliveira, A. H.; Severo, M. I. G.; Labejof, L.; Rocha, D. C.; Rosa, T. S.; Santana, K. B.; Gavrilov, K. L.; Galle, P.; Levi-Setti, R.; Grenier-Loustalot, M. F.

    2006-07-01

    The capacity of Borreria scabiosoides Cham. & Schltdl. growing in hydroponics solutions to remove Cr (III) from water was evaluated. This macrophytes efficiently removed Cr from water at concentrations of 25 and 50 mg/l Cr -1. High resolution imaging secondary ion mass-spectrometry (HRI-SIMS) measurements were performed using scanning ion microprobe at the University of Chicago (UC-SIM). The inductively coupled plasma sector type mass spectrometer (HR-ICP-MS) was used to analyse all samples. In general, plant roots exhibited higher metal concentrations than the aerial plants parts. Borreria shows promise for the removal and store Cr from contaminated wastewater. The ion images demonstrated that Cr is preferentially accumulated in cell walls and in some vacuoles of cortical roots cells. The number of Cr deposits are higher in cortical parenchyma, particularly in vacuoles and cell walls, compared to stellar tissue.

  20. Two-dimensional receptive-field organization in striate cortical neurons of the cat.

    PubMed

    Sun, M; Bonds, A B

    1994-01-01

    The two-dimensional organization of receptive fields (RFs) of 44 cells in the cat visual cortex and four cells from the cat LGN was measured by stimulation with either dots or bars of light. The light bars were presented in different positions and orientations centered on the RFs. The RFs found were arbitrarily divided into four general types: Punctate, resembling DOG filters (11%); those resembling Gabor filters (9%); elongate (36%); and multipeaked-type (44%). Elongate RFs, usually found in simple cells, could show more than one excitatory band or bifurcation of excitatory regions. Although regions inhibitory to a given stimulus transition (e.g. ON) often coincided with regions excitatory to the opposite transition (e.g. OFF), this was by no means the rule. Measurements were highly repeatable and stable over periods of at least 1 h. A comparison between measurements made with dots and with bars showed reasonable matches in about 40% of the cases. In general, bar-based measurements revealed larger RFs with more structure, especially with respect to inhibitory regions. Inactivation of lower cortical layers (V-VI) by local GABA injection was found to reduce sharpness of detail and to increase both receptive-field size and noise in upper layer cells, suggesting vertically organized RF mechanisms. Across the population, some cells bore close resemblance to theoretically proposed filters, while others had a complexity that was clearly not generalizable, to the extent that they seemed more suited to detection of specific structures. We would speculate that the broadly varying forms of cat cortical receptive fields result from developmental processes akin to those that form ocular-dominance columns, but on a smaller scale.

  1. Mitotic events in cerebellar granule progenitor cells that expand cerebellar surface area are critical for normal cerebellar cortical lamination in mice.

    PubMed

    Chang, Joshua C; Leung, Mark; Gokozan, Hamza Numan; Gygli, Patrick Edwin; Catacutan, Fay Patsy; Czeisler, Catherine; Otero, José Javier

    2015-03-01

    Late embryonic and postnatal cerebellar folial surface area expansion promotes cerebellar cortical cytoarchitectural lamination. We developed a streamlined sampling scheme to generate unbiased estimates of murine cerebellar surface area and volume using stereologic principles. We demonstrate that, during the proliferative phase of the external granular layer (EGL) and folial surface area expansion, EGL thickness does not change and thus is a topological proxy for progenitor self-renewal. The topological constraints indicate that, during proliferative phases, migration out of the EGL is balanced by self-renewal. Progenitor self-renewal must, therefore, include mitotic events yielding 2 cells in the same layer to increase surface area (β events) and mitotic events yielding 2 cells, with 1 cell in a superficial layer and 1 cell in a deeper layer (α events). As the cerebellum grows, therefore, β events lie upstream of α events. Using a mathematical model constrained by the measurements of volume and surface area, we could quantify intermitotic times for β events on a per-cell basis in postnatal mouse cerebellum. Furthermore, we found that loss of CCNA2, which decreases EGL proliferation and secondarily induces cerebellar cortical dyslamination, shows preserved α-type events. Thus, CCNA2-null cerebellar granule progenitor cells are capable of self-renewal of the EGL stem cell niche; this is concordant with prior findings of extensive apoptosis in CCNA2-null mice. Similar methodologies may provide another layer of depth to the interpretation of results from stereologic studies.

  2. Role of voltage-gated K(+) channels in regulating Ca(2+) entry in rat cortical astrocytes.

    PubMed

    Wu, King-Chuen; Kuo, Chang-Shin; Chao, Chia-Chia; Huang, Chieh-Chen; Tu, Yuan-Kun; Chan, Paul; Leung, Yuk-Man

    2015-03-01

    Astrocytes have multiple functions such as provision of nourishment and mechanical support to the nervous system, helping to clear extracellular metabolites of neurons and modulating synaptic transmission by releasing gliotransmitters. In excitable cells, voltage-gated K(+) (Kv) channels serve to repolarize during action potentials. Astrocytes are considered non-excitable cells since they are not able to generate action potentials. There is an abundant expression of various Kv channels in astrocytes but the functions of these Kv channels remain unclear. We examined whether these astrocyte Kv channels regulate astrocyte "excitability" in the form of cytosolic Ca(2+) signaling. Electrophysiological examination revealed that neonatal rat cortical astrocytes possessed both delayed rectifier type and A-type Kv channels. Pharmacological blockade of both delayed rectifier Kv channels by TEA and A-type Kv channels by quinidine significantly suppressed store-operated Ca(2+) influx; however, TEA alone or quinidine alone did not suffice to cause such suppression. TEA and quinidine together dramatically enhanced current injection-triggered membrane potential overshoot (depolarization); either drug alone caused much smaller enhancements. Taken together, the results suggest both delayed rectifier and A-type Kv channels regulate astrocyte Ca(2+) signaling via controlling membrane potential.

  3. Relationships between structure, in vivo function and long-range axonal target of cortical pyramidal tract neurons.

    PubMed

    Rojas-Piloni, Gerardo; Guest, Jason M; Egger, Robert; Johnson, Andrew S; Sakmann, Bert; Oberlaender, Marcel

    2017-10-11

    Pyramidal tract neurons (PTs) represent the major output cell type of the neocortex. To investigate principles of how the results of cortical processing are broadcasted to different downstream targets thus requires experimental approaches, which provide access to the in vivo electrophysiology of PTs, whose subcortical target regions are identified. On the example of rat barrel cortex (vS1), we illustrate that retrograde tracer injections into multiple subcortical structures allow identifying the long-range axonal targets of individual in vivo recorded PTs. Here we report that soma depth and dendritic path lengths within each cortical layer of vS1, as well as spiking patterns during both periods of ongoing activity and during sensory stimulation, reflect the respective subcortical target regions of PTs. We show that these cellular properties result in a structure-function parameter space that allows predicting a PT's subcortical target region, without the need to inject multiple retrograde tracers.The major output cell type of the neocortex - pyramidal tract neurons (PTs) - send axonal projections to various subcortical areas. Here the authors combined in vivo recordings, retrograde tracings, and reconstructions of PTs in rat somatosensory cortex to show that PT structure and activity can predict specific subcortical targets.

  4. Intrinsic electrical properties of mammalian neurons and CNS function: a historical perspective

    PubMed Central

    Llinás, Rodolfo R.

    2014-01-01

    This brief review summarizes work done in mammalian neuroscience concerning the intrinsic electrophysiological properties of four neuronal types; Cerebellar Purkinje cells, inferior olivary cells, thalamic cells, and some cortical interneurons. It is a personal perspective addressing an interesting time in neuroscience when the reflex view of brain function, as the paradigm to understand global neuroscience, began to be modified toward one in which sensory input modulates rather than dictates brain function. The perspective of the paper is not a comprehensive description of the intrinsic electrical properties of all nerve cells but rather addresses a set of cell types that provide indicative examples of mechanisms that modulate brain function. PMID:25408634

  5. Reelin is essential for neuronal migration but not for radial glial elongation in neonatal ferret cortex.

    PubMed

    Schaefer, Alisa; Poluch, Sylvie; Juliano, Sharon

    2008-04-01

    Numerous functions related to neuronal migration are linked to the glycoprotein reelin. Reelin also elongates radial glia, which are disrupted in mutant reeler mice. Our lab developed a model of cortical dysplasia in ferrets that shares features with the reeler mouse, including impaired migration of neurons into the cerebral cortex and disrupted radial glia. Explants of normal ferret cortex in coculture with dysplastic ferret cortex restore the deficits in this model. To determine if reelin is integral to the repair, we used explants of P0 mouse cortex either of the wild type (WT) or heterozygous (het) for the reelin gene, as well as P0 reeler cortex (not containing reelin), in coculture with organotypic cultures of dysplastic ferret cortex. This arrangement revealed that all types of mouse cortical explants (WT, het, reeler) elongated radial glia in ferret cortical dysplasia, indicating that reelin is not required for proper radial glial morphology. Migration of cells into ferret neocortex, however, did not improve with explants of reeler cortex, but was almost normal after pairing with WT or het explants. We also placed an exogenous source of reelin in ferret cultures at the pial surface to reveal that migrating cells move toward the reelin source in dysplastic cortex; radial glia in these cultures were also improved toward normal. Our results demonstrate that the normotopic position of reelin is important for proper neuronal positioning, and that reelin is capable of elongating radial glial cells but is not the only radialization factor.

  6. In vivo imaging of cortical pathology in multiple sclerosis using ultra-high field MRI

    PubMed Central

    Mainero, C; Benner, T; Radding, A; van der Kouwe, A; Jensen, R; Rosen, B R.; Kinkel, R P.

    2009-01-01

    Objective: We used ultra-high field MRI to visualize cortical lesion types described by neuropathology in 16 patients with multiple sclerosis (MS) compared with 8 age-matched controls; to characterize the contrast properties of cortical lesions including T2*, T2, T1, and phase images; and to investigate the relationship between cortical lesion types and clinical data. Methods: We collected, on a 7-T scanner, 2-dimensional fast low-angle shot (FLASH)-T2*-weighted spoiled gradient-echo, T2-weighted turbo spin-echo (TSE) images (0.33 × 033 × 1 mm3), and a 3-dimensional magnetization-prepared rapid gradient echo. Results: Overall, 199 cortical lesions were detected in patients on both FLASH-T2* and T2-TSE scans. Seven-tesla MRI allowed for characterization of cortical plaques into type I (leukocortical), type II (intracortical), and type III/IV (subpial extending partly or completely through the cortical width) lesions as described histopathologically. Types III and IV were the most frequent type of cortical plaques (50.2%), followed by type I (36.2%) and type II (13.6%) lesions. Each lesion type was more frequent in secondary progressive than in relapsing–remitting MS. This difference, however, was significant only for type III/IV lesions. T2*-weighted images showed the highest, while phase images showed the lowest, contrast-to-noise ratio for all cortical lesion types. In patients, the number of type III/IV lesions was associated with greater disability (p < 0.02 by Spearman test) and older age (p < 0.04 by Spearman test). Conclusions: Seven-tesla MRI detected different histologic cortical lesion types in our small multiple sclerosis (MS) sample, suggesting, if validated in a larger population, that it may prove a valuable tool to assess the contribution of cortical MS pathology to clinical disability. GLOSSARY ANOVA = analysis of variance; BN = background noise; CNR = contrast-to-noise ratio; DIR = double-inversion recovery; EDSS = Expanded Disability Status Scale; FLAIR = fluid-attenuated inversion recovery; FLASH = fast low-angle shot; GM = gray matter; MPRAGE = magnetization-prepared rapid gradient echo; MR = magnetic resonance; MS = multiple sclerosis; NACGM = normal-appearing cortical gray matter; RF = radiofrequency; ROI = region of interest; RRMS = relapsing–remitting multiple sclerosis; SNR = signal-to-noise ratio; SPMS = secondary progressive multiple sclerosis; TA = time of acquisition; TE = echo time; TR = repetition time; TSE = turbo spin-echo; WM = white matter. PMID:19641168

  7. Cell wall matrix polysaccharide distribution and cortical microtubule organization: two factors controlling mesophyll cell morphogenesis in land plants.

    PubMed

    Sotiriou, P; Giannoutsou, E; Panteris, E; Apostolakos, P; Galatis, B

    2016-03-01

    This work investigates the involvement of local differentiation of cell wall matrix polysaccharides and the role of microtubules in the morphogenesis of mesophyll cells (MCs) of three types (lobed, branched and palisade) in the dicotyledon Vigna sinensis and the fern Asplenium nidus. Homogalacturonan (HGA) epitopes recognized by the 2F4, JIM5 and JIM7 antibodies and callose were immunolocalized in hand-made leaf sections. Callose was also stained with aniline blue. We studied microtubule organization by tubulin immunofluorescence and transmission electron microscopy. In both plants, the matrix cell wall polysaccharide distribution underwent definite changes during MC differentiation. Callose constantly defined the sites of MC contacts. The 2F4 HGA epitope in V. sinensis first appeared in MC contacts but gradually moved towards the cell wall regions facing the intercellular spaces, while in A. nidus it was initially localized at the cell walls delimiting the intercellular spaces, but finally shifted to MC contacts. In V. sinensis, the JIM5 and JIM7 HGA epitopes initially marked the cell walls delimiting the intercellular spaces and gradually shifted in MC contacts, while in A. nidus they constantly enriched MC contacts. In all MC types examined, the cortical microtubules played a crucial role in their morphogenesis. In particular, in palisade MCs, cortical microtubule helices, by controlling cellulose microfibril orientation, forced these MCs to acquire a truncated cone-like shape. Unexpectedly in V. sinensis, the differentiation of colchicine-affected MCs deviated completely, since they developed a cell wall ingrowth labyrinth, becoming transfer-like cells. The results of this work and previous studies on Zea mays (Giannoutsou et al., Annals of Botany 2013; 112: : 1067-1081) revealed highly controlled local cell wall matrix differentiation in MCs of species belonging to different plant groups. This, in coordination with microtubule-dependent cellulose microfibril alignment, spatially controlled cell wall expansion, allowing MCs to acquire their particular shape. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Single cell gene expression profiling of cortical osteoblast lineage cells.

    PubMed

    Flynn, James M; Spusta, Steven C; Rosen, Clifford J; Melov, Simon

    2013-03-01

    In tissues with complex architectures such as bone, it is often difficult to purify and characterize specific cell types via molecular profiling. Single cell gene expression profiling is an emerging technology useful for characterizing transcriptional profiles of individual cells isolated from heterogeneous populations. In this study we describe a novel procedure for the isolation and characterization of gene expression profiles of single osteoblast lineage cells derived from cortical bone. Mixed populations of different cell types were isolated from adult long bones of C57BL/6J mice by enzymatic digestion, and subsequently subjected to FACS to purify and characterize osteoblast lineage cells via a selection strategy using antibodies against CD31, CD45, and alkaline phosphatase (AP), specific for mature osteoblasts. The purified individual osteoblast lineage cells were then profiled at the single cell level via nanofluidic PCR. This method permits robust gene expression profiling on single osteoblast lineage cells derived from mature bone, potentially from anatomically distinct sites. In conjunction with this technique, we have also shown that it is possible to carry out single cell profiling on cells purified from fixed and frozen bone samples without compromising the gene expression signal. The latter finding means the technique can be extended to biopsies of bone from diseased individuals. Our approach for single cell expression profiling provides a new dimension to the transcriptional profile of the primary osteoblast lineage population in vivo, and has the capacity to greatly expand our understanding of how these cells may function in vivo under normal and diseased states. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Neurogenic radial glia in the outer subventricular zone of human neocortex.

    PubMed

    Hansen, David V; Lui, Jan H; Parker, Philip R L; Kriegstein, Arnold R

    2010-03-25

    Neurons in the developing rodent cortex are generated from radial glial cells that function as neural stem cells. These epithelial cells line the cerebral ventricles and generate intermediate progenitor cells that migrate into the subventricular zone (SVZ) and proliferate to increase neuronal number. The developing human SVZ has a massively expanded outer region (OSVZ) thought to contribute to cortical size and complexity. However, OSVZ progenitor cell types and their contribution to neurogenesis are not well understood. Here we show that large numbers of radial glia-like cells and intermediate progenitor cells populate the human OSVZ. We find that OSVZ radial glia-like cells have a long basal process but, surprisingly, are non-epithelial as they lack contact with the ventricular surface. Using real-time imaging and clonal analysis, we demonstrate that these cells can undergo proliferative divisions and self-renewing asymmetric divisions to generate neuronal progenitor cells that can proliferate further. We also show that inhibition of Notch signalling in OSVZ progenitor cells induces their neuronal differentiation. The establishment of non-ventricular radial glia-like cells may have been a critical evolutionary advance underlying increased cortical size and complexity in the human brain.

  10. Live-Cell, Label-Free Identification of GABAergic and Non-GABAergic Neurons in Primary Cortical Cultures Using Micropatterned Surface

    PubMed Central

    Kono, Sho; Kushida, Takatoshi; Hirano-Iwata, Ayumi; Niwano, Michio; Tanii, Takashi

    2016-01-01

    Excitatory and inhibitory neurons have distinct roles in cortical dynamics. Here we present a novel method for identifying inhibitory GABAergic neurons from non-GABAergic neurons, which are mostly excitatory glutamatergic neurons, in primary cortical cultures. This was achieved using an asymmetrically designed micropattern that directs an axonal process to the longest pathway. In the current work, we first modified the micropattern geometry to improve cell viability and then studied the axon length from 2 to 7 days in vitro (DIV). The cell types of neurons were evaluated retrospectively based on immunoreactivity against GAD67, a marker for inhibitory GABAergic neurons. We found that axons of non-GABAergic neurons grow significantly longer than those of GABAergic neurons in the early stages of development. The optimal threshold for identifying GABAergic and non-GABAergic neurons was evaluated to be 110 μm at 6 DIV. The method does not require any fluorescence labelling and can be carried out on live cells. The accuracy of identification was 98.2%. We confirmed that the high accuracy was due to the use of a micropattern, which standardized the development of cultured neurons. The method promises to be beneficial both for engineering neuronal networks in vitro and for basic cellular neuroscience research. PMID:27513933

  11. Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism

    PubMed Central

    Willsey, A. Jeremy; Sanders, Stephan J.; Li, Mingfeng; Dong, Shan; Tebbenkamp, Andrew T.; Muhle, Rebecca A.; Reilly, Steven K.; Lin, Leon; Fertuzinhos, Sofia; Miller, Jeremy A.; Murtha, Michael T.; Bichsel, Candace; Niu, Wei; Cotney, Justin; Ercan-Sencicek, A. Gulhan; Gockley, Jake; Gupta, Abha; Han, Wenqi; He, Xin; Hoffman, Ellen; Klei, Lambertus; Lei, Jing; Liu, Wenzhong; Liu, Li; Lu, Cong; Xu, Xuming; Zhu, Ying; Mane, Shrikant M.; Lein, Edward S.; Wei, Liping; Noonan, James P.; Roeder, Kathryn; Devlin, Bernie; Šestan, Nenad; State, Matthew W.

    2013-01-01

    SUMMARY Autism spectrum disorder (ASD) is a complex developmental syndrome of unknown etiology. Recent studies employing exome- and genome-wide sequencing have identified nine high-confidence ASD (hcASD) genes. Working from the hypothesis that ASD-associated mutations in these biologically pleiotropic genes will disrupt intersecting developmental processes to contribute to a common phenotype, we have attempted to identify time periods, brain regions, and cell types in which these genes converge. We have constructed coexpression networks based on the hcASD “seed” genes, leveraging a rich expression data set encompassing multiple human brain regions across human development and into adulthood. By assessing enrichment of an independent set of probable ASD (pASD) genes, derived from the same sequencing studies, we demonstrate a key point of convergence in midfetal layer 5/6 cortical projection neurons. This approach informs when, where, and in what cell types mutations in these specific genes may be productively studied to clarify ASD pathophysiology. PMID:24267886

  12. Polarity of the ascidian egg cortex and relocalization of cER and mRNAs in the early embryo.

    PubMed

    Prodon, François; Dru, Philippe; Roegiers, Fabrice; Sardet, Christian

    2005-06-01

    The mature ascidian oocyte is a large cell containing cytoplasmic and cortical domains polarized along a primary animal-vegetal (a-v) axis. The oocyte cortex is characterized by a gradient distribution of a submembrane monolayer of cortical rough endoplasmic reticulum (cER) and associated maternal postplasmic/PEM mRNAs (cER-mRNA domain). Between fertilization and first cleavage, this cER-mRNA domain is first concentrated vegetally and then relocated towards the posterior pole via microfilament-driven cortical contractions and spermaster-microtubule-driven translocations. The cER-mRNA domain further concentrates in a macroscopic cortical structure called the centrosome attracting body (CAB), which mediates a series of asymmetric divisions starting at the eight-cell stage. This results in the segregation of determinant mRNAs and their products in posterior cells of the embryo precursors of the muscle and germ line. Using two species of ascidians (Ciona intestinalis and Phallusia mammillata), we have pursued and amplified the work initiated in Halocynthia roretzi. We have analysed the cortical reorganizations in whole cells and in cortical fragments isolated from oocytes and from synchronously developing zygotes and embryos. After fertilization, we observe that a cortical patch rich in microfilaments encircles the cER-mRNA domain, concentrated into a cortical cap at the vegetal/contraction pole (indicating the future dorsal pole). Isolated cortices also retain microtubule asters rich in cER (indicating the future posterior pole). Before mitosis, parts of the cER-mRNA domain are detected, together with short microtubules, in isolated posterior (but not anterior) cortices. At the eight-cell stage, the posteriorly located cER-mRNA domain undergoes a cell-cycle-dependant compaction into the CAB. The CAB with embedded centrosomal microtubules can be isolated with cortical fragments from eight-cell-stage embryos. These and previous observations indicate that cytoskeleton-driven repositioning and compaction of a polarized cortical domain made of rough ER is a conserved mechanism used for polarization and segregation of cortical maternal mRNAs in embryos of evolutionarily distant species of ascidians.

  13. Pyramidal Cells in Prefrontal Cortex of Primates: Marked Differences in Neuronal Structure Among Species

    PubMed Central

    Elston, Guy N.; Benavides-Piccione, Ruth; Elston, Alejandra; Manger, Paul R.; DeFelipe, Javier

    2010-01-01

    The most ubiquitous neuron in the cerebral cortex, the pyramidal cell, is characterized by markedly different dendritic structure among different cortical areas. The complex pyramidal cell phenotype in granular prefrontal cortex (gPFC) of higher primates endows specific biophysical properties and patterns of connectivity, which differ from those in other cortical regions. However, within the gPFC, data have been sampled from only a select few cortical areas. The gPFC of species such as human and macaque monkey includes more than 10 cortical areas. It remains unknown as to what degree pyramidal cell structure may vary among these cortical areas. Here we undertook a survey of pyramidal cells in the dorsolateral, medial, and orbital gPFC of cercopithecid primates. We found marked heterogeneity in pyramidal cell structure within and between these regions. Moreover, trends for gradients in neuronal complexity varied among species. As the structure of neurons determines their computational abilities, memory storage capacity and connectivity, we propose that these specializations in the pyramidal cell phenotype are an important determinant of species-specific executive cortical functions in primates. PMID:21347276

  14. A direct GABAergic output from the basal ganglia to frontal cortex

    PubMed Central

    Saunders, Arpiar; Oldenburg, Ian A.; Berezovskii, Vladimir K.; Johnson, Caroline A.; Kingery, Nathan D.; Elliott, Hunter L.; Xie, Tiao; Gerfen, Charles R.; Sabatini, Bernardo L.

    2014-01-01

    The basal ganglia (BG) are phylogenetically conserved subcortical nuclei necessary for coordinated motor action and reward learning1. Current models postulate that the BG modulate cerebral cortex indirectly via an inhibitory output to thalamus, bidirectionally controlled by the BG via direct (dSPNs) and indirect (iSPNs) pathway striatal projection neurons2–4. The BG thalamic output sculpts cortical activity by interacting with signals from sensory and motor systems5. Here we describe a direct projection from the globus pallidus externus (GP), a central nucleus of the BG, to frontal regions of the cerebral cortex (FC). Two cell types make up the GP-FC projection, distinguished by their electrophysiological properties, cortical projections and expression of choline acetyltransferase (ChAT), a synthetic enzyme for the neurotransmitter acetylcholine (ACh). Despite these differences, ChAT+ cells, which have been historically identified as an extension of the nucleus basalis (NB), as well as ChAT− cells, release the inhibitory neurotransmitter GABA (γ-aminobutyric acid) and are inhibited by iSPNs and dSPNs of dorsal striatum. Thus GP-FC cells comprise a direct GABAergic/cholinergic projection under the control of striatum that activates frontal cortex in vivo. Furthermore, iSPN inhibition of GP-FC cells is sensitive to dopamine 2 receptor signaling, revealing a pathway by which drugs that target dopamine receptors for the treatment of neuropsychiatric disorders can act in the BG to modulate frontal cortices. PMID:25739505

  15. Somatostatin-Positive Gamma-Aminobutyric Acid Interneuron Deficits in Depression: Cortical Microcircuit and Therapeutic Perspectives.

    PubMed

    Fee, Corey; Banasr, Mounira; Sibille, Etienne

    2017-10-15

    The functional integration of external and internal signals forms the basis of information processing and is essential for higher cognitive functions. This occurs in finely tuned cortical microcircuits whose functions are balanced at the cellular level by excitatory glutamatergic pyramidal neurons and inhibitory gamma-aminobutyric acidergic (GABAergic) interneurons. The balance of excitation and inhibition, from cellular processes to neural network activity, is characteristically disrupted in multiple neuropsychiatric disorders, including major depressive disorder (MDD), bipolar disorder, anxiety disorders, and schizophrenia. Specifically, nearly 3 decades of research demonstrate a role for reduced inhibitory GABA level and function across disorders. In MDD, recent evidence from human postmortem and animal studies suggests a selective vulnerability of GABAergic interneurons that coexpress the neuropeptide somatostatin (SST). Advances in cell type-specific molecular genetics have now helped to elucidate several important roles for SST interneurons in cortical processing (regulation of pyramidal cell excitatory input) and behavioral control (mood and cognition). Here, we review evidence for altered inhibitory function arising from GABAergic deficits across disorders and specifically in MDD. We then focus on properties of the cortical microcircuit, where SST-positive GABAergic interneuron deficits may disrupt functioning in several ways. Finally, we discuss the putative origins of SST cell deficits, as informed by recent research, and implications for therapeutic approaches. We conclude that deficits in SST interneurons represent a contributing cellular pathology and therefore a promising target for normalizing altered inhibitory function in MDD and other disorders with reduced SST cell and GABA functions. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. Relationship between cortical state and spiking activity in the lateral geniculate nucleus of marmosets

    PubMed Central

    Pietersen, Alexander N.J.; Cheong, Soon Keen; Munn, Brandon; Gong, Pulin; Solomon, Samuel G.

    2017-01-01

    Key points How parallel are the primate visual pathways? In the present study, we demonstrate that parallel visual pathways in the dorsal lateral geniculate nucleus (LGN) show distinct patterns of interaction with rhythmic activity in the primary visual cortex (V1).In the V1 of anaesthetized marmosets, the EEG frequency spectrum undergoes transient changes that are characterized by fluctuations in delta‐band EEG power.We show that, on multisecond timescales, spiking activity in an evolutionary primitive (koniocellular) LGN pathway is specifically linked to these slow EEG spectrum changes. By contrast, on subsecond (delta frequency) timescales, cortical oscillations can entrain spiking activity throughout the entire LGN.Our results are consistent with the hypothesis that, in waking animals, the koniocellular pathway selectively participates in brain circuits controlling vigilance and attention. Abstract The major afferent cortical pathway in the visual system passes through the dorsal lateral geniculate nucleus (LGN), where nerve signals originating in the eye can first interact with brain circuits regulating visual processing, vigilance and attention. In the present study, we investigated how ongoing and visually driven activity in magnocellular (M), parvocellular (P) and koniocellular (K) layers of the LGN are related to cortical state. We recorded extracellular spiking activity in the LGN simultaneously with local field potentials (LFP) in primary visual cortex, in sufentanil‐anaesthetized marmoset monkeys. We found that asynchronous cortical states (marked by low power in delta‐band LFPs) are linked to high spike rates in K cells (but not P cells or M cells), on multisecond timescales. Cortical asynchrony precedes the increases in K cell spike rates by 1–3 s, implying causality. At subsecond timescales, the spiking activity in many cells of all (M, P and K) classes is phase‐locked to delta waves in the cortical LFP, and more cells are phase‐locked during synchronous cortical states than during asynchronous cortical states. The switch from low‐to‐high spike rates in K cells does not degrade their visual signalling capacity. By contrast, during asynchronous cortical states, the fidelity of visual signals transmitted by K cells is improved, probably because K cell responses become less rectified. Overall, the data show that slow fluctuations in cortical state are selectively linked to K pathway spiking activity, whereas delta‐frequency cortical oscillations entrain spiking activity throughout the entire LGN, in anaesthetized marmosets. PMID:28116750

  17. Genetic dissection of GABAergic neural circuits in mouse neocortex

    PubMed Central

    Taniguchi, Hiroki

    2014-01-01

    Diverse and flexible cortical functions rely on the ability of neural circuits to perform multiple types of neuronal computations. GABAergic inhibitory interneurons significantly contribute to this task by regulating the balance of activity, synaptic integration, spiking, synchrony, and oscillation in a neural ensemble. GABAergic interneurons display a high degree of cellular diversity in morphology, physiology, connectivity, and gene expression. A considerable number of subtypes of GABAergic interneurons diversify modes of cortical inhibition, enabling various types of information processing in the cortex. Thus, comprehensively understanding fate specification, circuit assembly, and physiological function of GABAergic interneurons is a key to elucidate the principles of cortical wiring and function. Recent advances in genetically encoded molecular tools have made a breakthrough to systematically study cortical circuitry at the molecular, cellular, circuit, and whole animal levels. However, the biggest obstacle to fully applying the power of these to analysis of GABAergic circuits was that there were no efficient and reliable methods to express them in subtypes of GABAergic interneurons. Here, I first summarize cortical interneuron diversity and current understanding of mechanisms, by which distinct classes of GABAergic interneurons are generated. I then review recent development in genetically encoded molecular tools for neural circuit research, and genetic targeting of GABAergic interneuron subtypes, particularly focusing on our recent effort to develop and characterize Cre/CreER knockin lines. Finally, I highlight recent success in genetic targeting of chandelier cells, the most unique and distinct GABAergic interneuron subtype, and discuss what kind of questions need to be addressed to understand development and function of cortical inhibitory circuits. PMID:24478631

  18. Evaluating differential nuclear DNA yield rates and osteocyte numbers among human bone tissue types: A synchrotron radiation micro-CT approach.

    PubMed

    Andronowski, Janna M; Mundorff, Amy Z; Pratt, Isaac V; Davoren, Jon M; Cooper, David M L

    2017-05-01

    Molecular human identification has conventionally focused on DNA sampling from dense, weight-bearing cortical bone tissue, typically from femora or tibiae. A comparison of skeletal elements from three contemporary individuals demonstrated that elements with high quantities of cancellous bone yielded nuclear DNA at the highest rates, suggesting that preferentially sampling cortical bone may be suboptimal (Mundorff & Davoren, 2014). Despite these findings, the reason for the differential DNA yields between cortical and cancellous bone tissues remains unknown. The primary goal of this work is to ascertain whether differences in bone microstructure can be used to explain differential nuclear DNA yield among bone tissue types observed by Mundorff and Davoren (2014), with a focus on osteocytes and the three-dimensional (3D) quantification of their associated lacunae. Osteocytes and other bone cells are recognized to house DNA in bone tissue, thus examining the density of their lacunae may explain why nuclear DNA yield rates differ among bone tissue types. Lacunae were visualized and quantified using synchrotron radiation-based micro-Computed Tomographic imaging (SR micro-CT). Volumes of interest (VOIs) from cortical and cancellous bone tissues (n=129) were comparatively analyzed from the three skeletons sampled for Mundorff and Davoren's (2014) study. Analyses tested the primary hypothesis that the abundance and density of osteocytes (inferred from their lacunar spaces) vary between cortical and cancellous bone tissue types. Results demonstrated that osteocyte lacunar abundance and density vary between cortical and cancellous bone tissue types, with cortical bone VOIs containing a higher lacunar abundance and density. We found that the osteocyte lacunar density values are independent of nuclear DNA yield, suggesting an alternative explanation for the higher nuclear DNA yields from bones with greater quantities of cancellous bone tissue. The use of SR micro-CT allowed for a scale of analysis that revealed a high range of variation in lacunar abundance in both tissue types. Moreover, high-resolution SR micro-CT imaging revealed potential soft tissue remnants within marrow spaces not visible macroscopically. It is hypothesized that soft tissue remnants observed among the trabeculae of skeletal elements with high quantities of cancellous bone tissue are responsible for the high nuclear DNA yields. These findings have significant implications for bone-sample selection for nuclear DNA analysis in a forensic context when skeletal remains are recovered from the ground surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Aging increases microglial proliferation, delays cell migration, and decreases cortical neurogenesis after focal cerebral ischemia.

    PubMed

    Moraga, Ana; Pradillo, Jesús M; García-Culebras, Alicia; Palma-Tortosa, Sara; Ballesteros, Ivan; Hernández-Jiménez, Macarena; Moro, María A; Lizasoain, Ignacio

    2015-05-10

    Aging is not just a risk factor of stroke, but it has also been associated with poor recovery. It is known that stroke-induced neurogenesis is reduced but maintained in the aged brain. However, there is no consensus on how neurogenesis is affected after stroke in aged animals. Our objective is to determine the role of aging on the process of neurogenesis after stroke. We have studied neurogenesis by analyzing proliferation, migration, and formation of new neurons, as well as inflammatory parameters, in a model of cerebral ischemia induced by permanent occlusion of the middle cerebral artery in young- (2 to 3 months) and middle-aged mice (13 to 14 months). Aging increased both microglial proliferation, as shown by a higher number of BrdU(+) cells and BrdU/Iba1(+) cells in the ischemic boundary and neutrophil infiltration. Interestingly, aging increased the number of M1 monocytes and N1 neutrophils, consistent with pro-inflammatory phenotypes when compared with the alternative M2 and N2 phenotypes. Aging also inhibited (subventricular zone) SVZ cell proliferation by decreasing both the number of astrocyte-like type-B (prominin-1(+)/epidermal growth factor receptor (EGFR)(+)/nestin(+)/glial fibrillary acidic protein (GFAP)(+) cells) and type-C cells (prominin-1(+)/EGFR(+)/nestin(-)/Mash1(+) cells), and not affecting apoptosis, 1 day after stroke. Aging also inhibited migration of neuroblasts (DCX(+) cells), as indicated by an accumulation of neuroblasts at migratory zones 14 days after injury; consistently, aged mice presented a smaller number of differentiated interneurons (NeuN(+)/BrdU(+) and GAD67(+) cells) in the peri-infarct cortical area 14 days after stroke. Our data confirm that stroke-induced neurogenesis is maintained but reduced in aged animals. Importantly, we now demonstrate that aging not only inhibits proliferation of specific SVZ cell subtypes but also blocks migration of neuroblasts to the damaged area and decreases the number of new interneurons in the cortical peri-infarct area. Thus, our results highlight the importance of using aged animals for translation to clinical studies.

  20. Neuropeptide Y as a possible homeostatic element for changes in cortical excitability induced by repetitive transcranial magnetic stimulation.

    PubMed

    Jazmati, Danny; Neubacher, Ute; Funke, Klaus

    2018-02-24

    Repetitive transcranial magnetic stimulation (rTMS) is able to modify cortical excitability. Rat rTMS studies revealed a modulation of inhibitory systems, in particular that of the parvalbumin-expressing (PV+) interneurons, when using intermittent theta-burst stimulation (iTBS). The potential disinhibitory action of iTBS raises the questions of how neocortical circuits stabilize excitatory-inhibitory balance within a physiological range. Neuropeptide Y (NPY) appears to be one candidate. Analysis of cortical expression of PV, NPY and vesicular glutamate transporter type 1 (vGluT1) by immunohistochemical means at the level of cell counts, mean neuropil expression and single cell pre-/postsynaptic expression, with and without intraventricular NPY-injection. Our results show that iTBS not only reduced the number of neurons with high-PV expression in a dose-dependent fashion, but also increased the cortical expression of NPY, discussed to reduce glutamatergic transmission, and this was further associated with a reduced vGluT1 expression, an indicator of glutamateric presynaptic activity. Interneurons showing a low-PV expression exhibit less presynaptic vGluT1 expression compared to those with a high-PV expression. Intraventricular application of NPY prior to iTBS prevented the iTBS-induced reduction in the number of high-PV neurons, the reduction in tissue vGluT1 level and that presynaptic to high-PV cells. We conclude that NPY, possibly via a global but also slow homeostatic control of glutamatergic transmission, modulates the strength and direction of the iTBS effects, likely preventing pathological imbalance of excitatory and inhibitory cortical activity but still allowing enough disinhibition beneficial for plastic changes as during learning. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Cortical modulation of auditory processing in the midbrain

    PubMed Central

    Bajo, Victoria M.; King, Andrew J.

    2013-01-01

    In addition to their ascending pathways that originate at the receptor cells, all sensory systems are characterized by extensive descending projections. Although the size of these connections often outweighs those that carry information in the ascending auditory pathway, we still have a relatively poor understanding of the role they play in sensory processing. In the auditory system one of the main corticofugal projections links layer V pyramidal neurons with the inferior colliculus (IC) in the midbrain. All auditory cortical fields contribute to this projection, with the primary areas providing the largest outputs to the IC. In addition to medium and large pyramidal cells in layer V, a variety of cell types in layer VI make a small contribution to the ipsilateral corticocollicular projection. Cortical neurons innervate the three IC subdivisions bilaterally, although the contralateral projection is relatively small. The dorsal and lateral cortices of the IC are the principal targets of corticocollicular axons, but input to the central nucleus has also been described in some studies and is distinctive in its laminar topographic organization. Focal electrical stimulation and inactivation studies have shown that the auditory cortex can modify almost every aspect of the response properties of IC neurons, including their sensitivity to sound frequency, intensity, and location. Along with other descending pathways in the auditory system, the corticocollicular projection appears to continually modulate the processing of acoustical signals at subcortical levels. In particular, there is growing evidence that these circuits play a critical role in the plasticity of neural processing that underlies the effects of learning and experience on auditory perception by enabling changes in cortical response properties to spread to subcortical nuclei. PMID:23316140

  2. The Estrogen Receptor-α in Osteoclasts Mediates the Protective Effects of Estrogens on Cancellous But Not Cortical Bone

    PubMed Central

    Martin-Millan, Marta; Almeida, Maria; Ambrogini, Elena; Han, Li; Zhao, Haibo; Weinstein, Robert S.; Jilka, Robert L.; O'Brien, Charles A.; Manolagas, Stavros C.

    2010-01-01

    Estrogens attenuate osteoclastogenesis and stimulate osteoclast apoptosis, but the molecular mechanism and contribution of these effects to the overall antiosteoporotic efficacy of estrogens remain controversial. We selectively deleted the estrogen receptor (ER)α from the monocyte/macrophage cell lineage in mice (ERαLysM−/−) and found a 2-fold increase in osteoclast progenitors in the marrow and the number of osteoclasts in cancellous bone, along with a decrease in cancellous bone mass. After loss of estrogens these mice failed to exhibit the expected increase in osteoclast progenitors, the number of osteoclasts in bone, and further loss of cancellous bone. However, they lost cortical bone indistinguishably from their littermate controls. Mature osteoclasts from ERαLysM−/− were resistant to the proapoptotic effect of 17β-estradiol. Nonetheless, the effects of estrogens on osteoclasts were unhindered in mice bearing an ERα knock-in mutation that prevented binding to DNA. Moreover, a polymeric form of estrogen that is not capable of stimulating the nuclear-initiated actions of ERα was as effective as 17β-estradiol in inducing osteoclast apoptosis in cells with the wild-type ERα. We conclude that estrogens attenuate osteoclast generation and life span via cell autonomous effects mediated by DNA-binding-independent actions of ERα. Elimination of these effects is sufficient for loss of bone in the cancellous compartment in which complete perforation of trabeculae by osteoclastic resorption precludes subsequent refilling of the cavities by the bone-forming osteoblasts. However, additional effects of estrogens on osteoblasts, osteocytes, and perhaps other cell types are required for their protective effects on the cortical compartment, which constitutes 80% of the skeleton. PMID:20053716

  3. Heterogeneity of cerebral TDP-43 pathology in sporadic amyotrophic lateral sclerosis: Evidence for clinico-pathologic subtypes.

    PubMed

    Takeuchi, Ryoko; Tada, Mari; Shiga, Atsushi; Toyoshima, Yasuko; Konno, Takuya; Sato, Tomoe; Nozaki, Hiroaki; Kato, Taisuke; Horie, Masao; Shimizu, Hiroshi; Takebayashi, Hirohide; Onodera, Osamu; Nishizawa, Masatoyo; Kakita, Akiyoshi; Takahashi, Hitoshi

    2016-06-23

    Frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) are types of major TDP-43 (43-kDa TAR DNA-binding protein) proteinopathy. Cortical TDP-43 pathology has been analyzed in detail in cases of FTLD-TDP, but is still unclear in cases of ALS. We attempted to clarify the cortical and subcortical TDP-43 pathology in Japanese cases of sporadic ALS (n = 96) using an antibody specific to phosphorylated TDP-43 (pTDP-43). The cases were divided into two groups: those without pTDP-43-positive neuronal cytoplasmic inclusions in the hippocampal dentate granule cells (Type 1, n = 63), and those with such inclusions (Type 2, n = 33). Furthermore, the Type 2 cases were divided into two subgroups based on semi-quantitative estimation of pTDP-43-positive dystrophic neurites (DNs) in the temporal neocortex: Type 2a (accompanied by no or few DNs, n = 22) and Type 2b (accompanied by abundant DNs, n = 11). Clinico-pathologic analysis revealed that cognitive impairment was a feature in patients with Type 2a and Type 2b, but not in those with Type 1, and that importantly, Type 2b is a distinct subtype characterized by a poor prognosis despite the less severe loss of lower motor neurons, the unusual subcortical dendrospinal pTDP-43 pathology, and more prominent glial involvement in cortical pTDP-43 pathology than other two groups. Considering the patient survival time and severity of motor neuron loss in each group, transition from Type 1 to Type 2, or from Type 2a to Type 2b during the disease course appeared unlikely. Therefore, each of these three groups was regarded as an independent subtype.

  4. SHOEBOX Modulates Root Meristem Size in Rice through Dose-Dependent Effects of Gibberellins on Cell Elongation and Proliferation

    PubMed Central

    Li, Jintao; Zhao, Yu; Chu, Huangwei; Wang, Likai; Fu, Yanru; Liu, Ping; Upadhyaya, Narayana; Chen, Chunli; Mou, Tongmin; Feng, Yuqi; Kumar, Prakash; Xu, Jian

    2015-01-01

    Little is known about how the size of meristem cells is regulated and whether it participates in the control of meristem size in plants. Here, we report our findings on shoebox (shb), a mild gibberellin (GA) deficient rice mutant that has a short root meristem size. Quantitative analysis of cortical cell length and number indicates that shb has shorter, rather than fewer, cells in the root meristem until around the fifth day after sowing, from which the number of cortical cells is also reduced. These defects can be either corrected by exogenous application of bioactive GA or induced in wild-type roots by a dose-dependent inhibitory effect of paclobutrazol on GA biosynthesis, suggesting that GA deficiency is the primary cause of shb mutant phenotypes. SHB encodes an AP2/ERF transcription factor that directly activates transcription of the GA biosynthesis gene KS1. Thus, root meristem size in rice is modulated by SHB-mediated GA biosynthesis that regulates the elongation and proliferation of meristem cells in a developmental stage-specific manner. PMID:26275148

  5. SHOEBOX Modulates Root Meristem Size in Rice through Dose-Dependent Effects of Gibberellins on Cell Elongation and Proliferation.

    PubMed

    Li, Jintao; Zhao, Yu; Chu, Huangwei; Wang, Likai; Fu, Yanru; Liu, Ping; Upadhyaya, Narayana; Chen, Chunli; Mou, Tongmin; Feng, Yuqi; Kumar, Prakash; Xu, Jian

    2015-08-01

    Little is known about how the size of meristem cells is regulated and whether it participates in the control of meristem size in plants. Here, we report our findings on shoebox (shb), a mild gibberellin (GA) deficient rice mutant that has a short root meristem size. Quantitative analysis of cortical cell length and number indicates that shb has shorter, rather than fewer, cells in the root meristem until around the fifth day after sowing, from which the number of cortical cells is also reduced. These defects can be either corrected by exogenous application of bioactive GA or induced in wild-type roots by a dose-dependent inhibitory effect of paclobutrazol on GA biosynthesis, suggesting that GA deficiency is the primary cause of shb mutant phenotypes. SHB encodes an AP2/ERF transcription factor that directly activates transcription of the GA biosynthesis gene KS1. Thus, root meristem size in rice is modulated by SHB-mediated GA biosynthesis that regulates the elongation and proliferation of meristem cells in a developmental stage-specific manner.

  6. Acute stress exposure preceding transient global brain ischemia exacerbates the decrease in cortical remodeling potential in the rat retrosplenial cortex.

    PubMed

    Kutsuna, Nobuo; Yamashita, Akiko; Eriguchi, Takashi; Oshima, Hideki; Suma, Takeshi; Sakatani, Kaoru; Yamamoto, Takamitsu; Yoshino, Atsuo; Katayama, Yoichi

    2014-01-01

    Doublecortin (DCX)-immunoreactive (-ir) cells are candidates that play key roles in adult cortical remodeling. We have previously reported that DCX-ir cells decrease after stress exposure or global brain ischemia (GBI) in the cingulate cortex (Cg) of rats. Herein, we investigate whether the decrease in DCX-ir cells is exacerbated after GBI due to acute stress exposure preconditioning. Twenty rats were divided into 3 groups: acute stress exposure before GBI (Group P), non-stress exposure before GBI (Group G), and controls (Group C). Acute stress or GBI was induced by a forced swim paradigm or by transient bilateral common carotid artery occlusion, respectively. DCX-ir cells were investigated in the anterior cingulate cortex (ACC) and retrosplenial cortex (RS). The number of DCX-ir cells per unit area (mm(2)) decreased after GBI with or without stress preconditioning in the ACC and in the RS (ANOVA followed by a Tukey-type test, P<0.001). Moreover, compared to Group G, the number in Group P decreased significantly in RS (P<0.05), though not significantly in ACC. Many of the DCX-ir cells were co-localized with the GABAergic neuronal marker parvalbumin. The present study indicates that cortical remodeling potential of GABAergic neurons of Cg decreases after GBI, and moreover, the ratio of the decrease is exacerbated by acute stress preconditioning in the RS. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  7. 2D and 3D Stem Cell Models of Primate Cortical Development Identify Species-Specific Differences in Progenitor Behavior Contributing to Brain Size.

    PubMed

    Otani, Tomoki; Marchetto, Maria C; Gage, Fred H; Simons, Benjamin D; Livesey, Frederick J

    2016-04-07

    Variation in cerebral cortex size and complexity is thought to contribute to differences in cognitive ability between humans and other animals. Here we compare cortical progenitor cell output in humans and three nonhuman primates using directed differentiation of pluripotent stem cells (PSCs) in adherent two-dimensional (2D) and organoid three-dimensional (3D) culture systems. Clonal lineage analysis showed that primate cortical progenitors proliferate for a protracted period of time, during which they generate early-born neurons, in contrast to rodents, where this expansion phase largely ceases before neurogenesis begins. The extent of this additional cortical progenitor expansion differs among primates, leading to differences in the number of neurons generated by each progenitor cell. We found that this mechanism for controlling cortical size is regulated cell autonomously in culture, suggesting that primate cerebral cortex size is regulated at least in part at the level of individual cortical progenitor cell clonal output. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Characterizing the Spatial Density Functions of Neural Arbors

    NASA Astrophysics Data System (ADS)

    Teeter, Corinne Michelle

    Recently, it has been proposed that a universal function describes the way in which all arbors (axons and dendrites) spread their branches over space. Data from fish retinal ganglion cells as well as cortical and hippocampal arbors from mouse, rat, cat, monkey and human provide evidence that all arbor density functions (adf) can be described by a Gaussian function truncated at approximately two standard deviations. A Gaussian density function implies that there is a minimal set of parameters needed to describe an adf: two or three standard deviations (depending on the dimensionality of the arbor) and an amplitude. However, the parameters needed to completely describe an adf could be further constrained by a scaling law found between the product of the standard deviations and the amplitude of the function. In the following document, I examine the scaling law relationship in order to determine the minimal set of parameters needed to describe an adf. First, I find that the at, two-dimensional arbors of fish retinal ganglion cells require only two out of the three fundamental parameters to completely describe their density functions. Second, the three-dimensional, volume filling, cortical arbors require four fundamental parameters: three standard deviations and the total length of an arbor (which corresponds to the amplitude of the function). Next, I characterize the shape of arbors in the context of the fundamental parameters. I show that the parameter distributions of the fish retinal ganglion cells are largely homogenous. In general, axons are bigger and less dense than dendrites; however, they are similarly shaped. The parameter distributions of these two arbor types overlap and, therefore, can only be differentiated from one another probabilistically based on their adfs. Despite artifacts in the cortical arbor data, different types of arbors (apical dendrites, non-apical dendrites, and axons) can generally be differentiated based on their adfs. In addition, within arbor type, there is evidence of different neuron classes (such as interneurons and pyramidal cells). How well different types and classes of arbors can be differentiated is quantified using the Random ForestTM supervised learning algorithm.

  9. Optimal balance of the striatal medium spiny neuron network.

    PubMed

    Ponzi, Adam; Wickens, Jeffery R

    2013-04-01

    Slowly varying activity in the striatum, the main Basal Ganglia input structure, is important for the learning and execution of movement sequences. Striatal medium spiny neurons (MSNs) form cell assemblies whose population firing rates vary coherently on slow behaviourally relevant timescales. It has been shown that such activity emerges in a model of a local MSN network but only at realistic connectivities of 10 ~ 20% and only when MSN generated inhibitory post-synaptic potentials (IPSPs) are realistically sized. Here we suggest a reason for this. We investigate how MSN network generated population activity interacts with temporally varying cortical driving activity, as would occur in a behavioural task. We find that at unrealistically high connectivity a stable winners-take-all type regime is found where network activity separates into fixed stimulus dependent regularly firing and quiescent components. In this regime only a small number of population firing rate components interact with cortical stimulus variations. Around 15% connectivity a transition to a more dynamically active regime occurs where all cells constantly switch between activity and quiescence. In this low connectivity regime, MSN population components wander randomly and here too are independent of variations in cortical driving. Only in the transition regime do weak changes in cortical driving interact with many population components so that sequential cell assemblies are reproducibly activated for many hundreds of milliseconds after stimulus onset and peri-stimulus time histograms display strong stimulus and temporal specificity. We show that, remarkably, this activity is maximized at striatally realistic connectivities and IPSP sizes. Thus, we suggest the local MSN network has optimal characteristics - it is neither too stable to respond in a dynamically complex temporally extended way to cortical variations, nor is it too unstable to respond in a consistent repeatable way. Rather, it is optimized to generate stimulus dependent activity patterns for long periods after variations in cortical excitation.

  10. Optimal Balance of the Striatal Medium Spiny Neuron Network

    PubMed Central

    Ponzi, Adam; Wickens, Jeffery R.

    2013-01-01

    Slowly varying activity in the striatum, the main Basal Ganglia input structure, is important for the learning and execution of movement sequences. Striatal medium spiny neurons (MSNs) form cell assemblies whose population firing rates vary coherently on slow behaviourally relevant timescales. It has been shown that such activity emerges in a model of a local MSN network but only at realistic connectivities of and only when MSN generated inhibitory post-synaptic potentials (IPSPs) are realistically sized. Here we suggest a reason for this. We investigate how MSN network generated population activity interacts with temporally varying cortical driving activity, as would occur in a behavioural task. We find that at unrealistically high connectivity a stable winners-take-all type regime is found where network activity separates into fixed stimulus dependent regularly firing and quiescent components. In this regime only a small number of population firing rate components interact with cortical stimulus variations. Around connectivity a transition to a more dynamically active regime occurs where all cells constantly switch between activity and quiescence. In this low connectivity regime, MSN population components wander randomly and here too are independent of variations in cortical driving. Only in the transition regime do weak changes in cortical driving interact with many population components so that sequential cell assemblies are reproducibly activated for many hundreds of milliseconds after stimulus onset and peri-stimulus time histograms display strong stimulus and temporal specificity. We show that, remarkably, this activity is maximized at striatally realistic connectivities and IPSP sizes. Thus, we suggest the local MSN network has optimal characteristics – it is neither too stable to respond in a dynamically complex temporally extended way to cortical variations, nor is it too unstable to respond in a consistent repeatable way. Rather, it is optimized to generate stimulus dependent activity patterns for long periods after variations in cortical excitation. PMID:23592954

  11. Identifying the transition to the maturation zone in three ecotypes of Arabidopsis thaliana roots.

    PubMed

    Cajero Sánchez, Wendy; García-Ponce, Berenice; Sánchez, María de la Paz; Álvarez-Buylla, Elena R; Garay-Arroyo, Adriana

    2018-01-01

    The Arabidopsis thaliana (hereafter Arabidopsis) root has become a useful model for studying how organ morphogenesis emerge from the coordination and balance of cell proliferation and differentiation, as both processes may be observed and quantified in the root at different stages of development. Hence, being able to objectively identify and delimit the different stages of root development has been very important. Up to now, three different zones along the longitudinal axis of the primary root of Arabidopsis, have been identified: the root apical meristematic zone (RAM) with two domains [the proliferative (PD) and the transition domain (TD)], the elongation zone (EZ) and the maturation zone (MZ). We previously reported a method to quantify the length of the cells of the meristematic and the elongation zone, as well as the boundaries or transitions between the root domains along the growing part of the Arabidopsis root. In this study, we provide a more accurate criterion to identify the MZ. Traditionally, the transition between the EZ to the MZ has been established by the emergence of the first root-hair bulge in the epidermis, because this emergence coincides with cell maturation in this cell type. But we have found here that after the emergence of the first root-hair bulge some cells continue to elongate and we have confirmed this in three different Arabidopsis ecotypes. We established the limit between the EZ and the MZ by looking for the closest cortical cell with a longer length than the average cell length of 10 cells after the cortical cell closest to the epidermal cell with the first root-hair bulge in these three ecotypes. In Col-0 and Ws this cell is four cells above the one with the root hair bulge and, in the Ler ecotype, this cell is five cells above. To unambiguously identifying the site at which cells stop elongating and attain their final length and fate at the MZ, we propose to calculate the length of completely elongated cortical cells counting 10 cells starting from the sixth cell above the cortical cell closest to the epidermal cell with the first root-hair bulge. We validated this proposal in the three ecotypes analyzed and consider that this proposal may aid at having a more objective way to characterize root phenotypes and compare among them.

  12. Identifying the transition to the maturation zone in three ecotypes of Arabidopsis thaliana roots

    PubMed Central

    Cajero Sánchez, Wendy; García-Ponce, Berenice; Sánchez, María de la Paz; Álvarez-Buylla, Elena R.; Garay-Arroyo, Adriana

    2018-01-01

    ABSTRACT The Arabidopsis thaliana (hereafter Arabidopsis) root has become a useful model for studying how organ morphogenesis emerge from the coordination and balance of cell proliferation and differentiation, as both processes may be observed and quantified in the root at different stages of development. Hence, being able to objectively identify and delimit the different stages of root development has been very important. Up to now, three different zones along the longitudinal axis of the primary root of Arabidopsis, have been identified: the root apical meristematic zone (RAM) with two domains [the proliferative (PD) and the transition domain (TD)], the elongation zone (EZ) and the maturation zone (MZ). We previously reported a method to quantify the length of the cells of the meristematic and the elongation zone, as well as the boundaries or transitions between the root domains along the growing part of the Arabidopsis root. In this study, we provide a more accurate criterion to identify the MZ. Traditionally, the transition between the EZ to the MZ has been established by the emergence of the first root-hair bulge in the epidermis, because this emergence coincides with cell maturation in this cell type. But we have found here that after the emergence of the first root-hair bulge some cells continue to elongate and we have confirmed this in three different Arabidopsis ecotypes. We established the limit between the EZ and the MZ by looking for the closest cortical cell with a longer length than the average cell length of 10 cells after the cortical cell closest to the epidermal cell with the first root-hair bulge in these three ecotypes. In Col-0 and Ws this cell is four cells above the one with the root hair bulge and, in the Ler ecotype, this cell is five cells above. To unambiguously identifying the site at which cells stop elongating and attain their final length and fate at the MZ, we propose to calculate the length of completely elongated cortical cells counting 10 cells starting from the sixth cell above the cortical cell closest to the epidermal cell with the first root-hair bulge. We validated this proposal in the three ecotypes analyzed and consider that this proposal may aid at having a more objective way to characterize root phenotypes and compare among them. PMID:29497470

  13. Apoptotic actions of p53 require transcriptional activation of PUMA and do not involve a direct mitochondrial/cytoplasmic site of action in postnatal cortical neurons.

    PubMed

    Uo, Takuma; Kinoshita, Yoshito; Morrison, Richard S

    2007-11-07

    Recent studies in non-neuronal cells have shown that the tumor suppressor p53 can promote cell death through a transcription-independent mechanism involving its direct action with a subset of Bcl-2 family member proteins in the cytosol and at the mitochondria. In cultured cortical neurons, however, we could not find evidence supporting a significant contribution of the cytosolic/mitochondrial p53 pathway, and available evidence instead corroborated the requirement for the transcriptional activity of p53. When directly targeted to the cytosol/mitochondria, wild-type p53 lost its apoptosis-inducing activity in neurons but not in non-neuronal cells. The N-terminal p53 fragment (transactivation and proline-rich domains), which induces apoptosis in non-neuronal cells via the cytosolic/mitochondrial pathway, displayed no apoptogenic activity in neurons. In neuronal apoptosis induced by camptothecin or an MDM2 (murine double minute 2) inhibitor, nutlin-3, endogenous p53 protein did not accumulate in the cytosol/mitochondria, and transcriptional inhibition after p53 induction effectively blocked cell death. In addition, overexpression of a dominant-negative form of p53 (R273H) completely suppressed induction of proapoptotic p53 target genes and cell death. PUMA (p53-upregulated modulator of apoptosis) was one such gene induced by camptothecin, and its overexpression was sufficient to induce Bax (Bcl-2-associated X protein)-dependent neuronal death, whereas Noxa was not apoptogenic. These results collectively demonstrate that, in contrast to non-neuronal cells, the apoptotic activity of p53 in postnatal cortical neurons does not rely on its direct action at the cytosol/mitochondria but is exclusively mediated through its transcription-dependent functions. The uniqueness of p53-mediated apoptotic signaling in postnatal cortical neurons was further illustrated by the dispensable function of the proline-rich domain of p53.

  14. IFT88 influences chondrocyte actin organization and biomechanics.

    PubMed

    Wang, Z; Wann, A K T; Thompson, C L; Hassen, A; Wang, W; Knight, M M

    2016-03-01

    Primary cilia are microtubule based organelles which control a variety of signalling pathways important in cartilage development, health and disease. This study examines the role of the intraflagellar transport (IFT) protein, IFT88, in regulating fundamental actin organisation and mechanics in articular chondrocytes. The study used an established chondrocyte cell line with and without hypomorphic mutation of IFT88 (IFT88(orpk)). Confocal microscopy was used to quantify F-actin and myosin IIB organisation. Viscoelastic cell and actin cortex mechanics were determined using micropipette aspiration with actin dynamics visualised in live cells transfected with LifeACT-GFP. IFT88(orpk) cells exhibited a significant increase in acto-myosin stress fibre organisation relative to wild-type (WT) cells in monolayer and an altered response to cytochalasin D. Rounded IFT88(orpk) cells cultured in suspension exhibited reduced cortical actin expression with reduced cellular equilibrium modulus. Micropipette aspiration resulted in reduced membrane bleb formation in IFT88(orpk) cells. Following membrane blebbing, IFT88(orpk) cells exhibited slower reformation of the actin cortex. IFT88(orpk) cells showed increased actin deformability and reduced cortical tension confirming that IFT regulates actin cortex mechanics. The reduced cortical tension is also consistent with the reduced bleb formation. This study demonstrates for the first time that the ciliary protein IFT88 regulates fundamental actin organisation and the stiffness of the actin cortex leading to alterations in cell deformation, mechanical properties and blebbing in an IFT88 chondrocyte cell line. This adds to the growing understanding of the role of primary cilia and IFT in regulating cartilage biology. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Cortical circuitry implementing graphical models.

    PubMed

    Litvak, Shai; Ullman, Shimon

    2009-11-01

    In this letter, we develop and simulate a large-scale network of spiking neurons that approximates the inference computations performed by graphical models. Unlike previous related schemes, which used sum and product operations in either the log or linear domains, the current model uses an inference scheme based on the sum and maximization operations in the log domain. Simulations show that using these operations, a large-scale circuit, which combines populations of spiking neurons as basic building blocks, is capable of finding close approximations to the full mathematical computations performed by graphical models within a few hundred milliseconds. The circuit is general in the sense that it can be wired for any graph structure, it supports multistate variables, and it uses standard leaky integrate-and-fire neuronal units. Following previous work, which proposed relations between graphical models and the large-scale cortical anatomy, we focus on the cortical microcircuitry and propose how anatomical and physiological aspects of the local circuitry may map onto elements of the graphical model implementation. We discuss in particular the roles of three major types of inhibitory neurons (small fast-spiking basket cells, large layer 2/3 basket cells, and double-bouquet neurons), subpopulations of strongly interconnected neurons with their unique connectivity patterns in different cortical layers, and the possible role of minicolumns in the realization of the population-based maximum operation.

  16. Similar PDK1-AKT-mTOR pathway activation in balloon cells and dysmorphic neurons of type II focal cortical dysplasia with refractory epilepsy.

    PubMed

    Lin, Yuan-xiang; Lin, Kun; Kang, De-zhi; Liu, Xin-xiu; Wang, Xing-fu; Zheng, Shu-fa; Yu, Liang-hong; Lin, Zhang-ya

    2015-05-01

    Dysmorphic neurons and balloon cells constitute the neuropathological hallmarks of type II focal cortical dysplasias (FCDs) with refractory epilepsy. The genesis of these cells may be critical to the histological findings in type II FCD. Recent work has shown enhanced activation of the mTOR cascade in both balloon cells and dysmorphic neurons, suggesting a common pathogenesis for these two neuropathological hallmarks. A direct comparative analysis of balloon cells and dysmorphic neurons might identify a molecular link between balloon cells and dysmorphic neurons. Here, we addressed whether PDK1-AKT-mTOR activation differentiates balloon cells from dysmorphic neurons. We used immunohistochemistry with antibodies against phosphorylated (p)-PDK1 (Ser241), p-AKT (Thr308), p-AKT (Ser473), p-mTOR (Ser2448), p-P70S6K (Thr229), and p-p70S6 kinase (Thr389) in balloon cells compared with dysmorphic neurons. Strong or moderate staining for components of the PDK1-AKT-mTOR signaling pathway was observed in both balloon cells and dysmorphic neurons. However, only a few pyramidal neurons displayed weak staining in control group (perilesional neocortex and histologically normal neocortex). Additionally, p-PDK1 (Ser241) and p-AKT (Thr308) staining in balloon cells were stronger than in dysmorphic neurons, whereas p-P70S6K (Thr229) and p-p70S6 kinase (Thr389) staining in balloon cells was weaker than in dysmorphic neurons. In balloon cells, p-AKT (Ser473) and p-mTOR (Ser2448) staining was comparable with the staining in dysmorphic neurons. Our data support the previously suggested pathogenic relationship between balloon cells and dysmorphic neurons concerning activation of the PDK1-AKT-mTOR, which may play important roles in the pathogenesis of type II FCD. Differential expression of some components of the PDK1-AKT-mTOR pathway between balloon cells and dysmorphic neurons may result from cell-specific gene expression. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Distinct ontogenic and regional expressions of newly identified Cajal-Retzius cell-specific genes during neocorticogenesis.

    PubMed

    Yamazaki, Hiroshi; Sekiguchi, Mariko; Takamatsu, Masako; Tanabe, Yasuto; Nakanishi, Shigetada

    2004-10-05

    Cajal-Retzius (CR) cells are early-generated transient neurons and are important in the regulation of cortical neuronal migration and cortical laminar formation. Molecular entities characterizing the CR cell identity, however, remain largely elusive. We purified mouse cortical CR cells expressing GFP to homogeneity by fluorescence-activated cell sorting and examined a genome-wide expression profile of cortical CR cells at embryonic and postnatal periods. We identified 49 genes that exceeded hybridization signals by >10-fold in CR cells compared with non-CR cells at embryonic day 13.5, postnatal day 2, or both. Among these CR cell-specific genes, 25 genes, including the CR cell marker genes such as the reelin and calretinin genes, are selectively and highly expressed in both embryonic and postnatal CR cells. These genes, which encode generic properties of CR cell specificity, are eminently characterized as modulatory composites of voltage-dependent calcium channels and sets of functionally related cellular components involved in cell migration, adhesion, and neurite extension. Five genes are highly expressed in CR cells at the early embryonic period and are rapidly down-regulated thereafter. Furthermore, some of these genes have been shown to mark two distinctly different focal regions corresponding to the CR cell origins. At the late prenatal and postnatal periods, 19 genes are selectively up-regulated in CR cells. These genes include functional molecules implicated in synaptic transmission and modulation. CR cells thus strikingly change their cellular phenotypes during cortical development and play a pivotal role in both corticogenesis and cortical circuit maturation.

  18. [Patterns of action potential firing in cortical neurons of neonatal mice and their electrophysiological property].

    PubMed

    Furong, Liu; Shengtian, L I

    2016-05-25

    To investigate patterns of action potential firing in cortical heurons of neonatal mice and their electrophysiological properties. The passive and active membrane properties of cortical neurons from 3-d neonatal mice were observed by whole-cell patch clamp with different voltage and current mode. Three patterns of action potential firing were identified in response to depolarized current injection. The effects of action potential firing patterns on voltage-dependent inward and outward current were found. Neurons with three different firing patterns had different thresholds of depolarized current. In the morphology analysis of action potential, the three type neurons were different in rise time, duration, amplitude and threshold of the first action potential evoked by 80 pA current injection. The passive properties were similar in three patterns of action potential firing. These results indicate that newborn cortical neurons exhibit different patterns of action potential firing with different action potential parameters such as shape and threshold.

  19. Retinoic acid from the meninges regulates cortical neuron generation

    PubMed Central

    Siegenthaler, Julie A.; Ashique, Amir M.; Zarbalis, Konstantinos; Patterson, Katelin P.; Hecht, Jonathan H.; Kane, Maureen A.; Folias, Alexandra E.; Choe, Youngshik; May, Scott R.; Kume, Tsutomu; Napoli, Joseph L.; Peterson, Andrew S.; Pleasure, Samuel J.

    2009-01-01

    Summary Extrinsic signals controlling generation of neocortical neurons during embryonic life have been difficult to identify. In this study we demonstrate that the dorsal forebrain meninges communicate with the adjacent radial glial endfeet and influence cortical development. We took advantage of Foxc1 mutant mice with defects in forebrain meningeal formation. Foxc1 dosage and loss of meninges correlated with a dramatic reduction in both neuron and intermediate progenitor production and elongation of the neuroepithelium. Several types of experiments demonstrate that retinoic acid (RA) is the key component of this secreted activity. In addition, Rdh10 and Raldh2 expressing cells in the dorsal meninges were either reduced or absent in the Foxc1 mutants and Rdh10 mutants had a cortical phenotype similar to the Foxc1-null mutants. Lastly, in utero RA treatment rescued the cortical phenotype in Foxc1 mutants. These results establish RA as a potent, meningeal-derived cue required for successful corticogenesis. PMID:19879845

  20. A Single-Cell Roadmap of Lineage Bifurcation in Human ESC Models of Embryonic Brain Development.

    PubMed

    Yao, Zizhen; Mich, John K; Ku, Sherman; Menon, Vilas; Krostag, Anne-Rachel; Martinez, Refugio A; Furchtgott, Leon; Mulholland, Heather; Bort, Susan; Fuqua, Margaret A; Gregor, Ben W; Hodge, Rebecca D; Jayabalu, Anu; May, Ryan C; Melton, Samuel; Nelson, Angelique M; Ngo, N Kiet; Shapovalova, Nadiya V; Shehata, Soraya I; Smith, Michael W; Tait, Leah J; Thompson, Carol L; Thomsen, Elliot R; Ye, Chaoyang; Glass, Ian A; Kaykas, Ajamete; Yao, Shuyuan; Phillips, John W; Grimley, Joshua S; Levi, Boaz P; Wang, Yanling; Ramanathan, Sharad

    2017-01-05

    During human brain development, multiple signaling pathways generate diverse cell types with varied regional identities. Here, we integrate single-cell RNA sequencing and clonal analyses to reveal lineage trees and molecular signals underlying early forebrain and mid/hindbrain cell differentiation from human embryonic stem cells (hESCs). Clustering single-cell transcriptomic data identified 41 distinct populations of progenitor, neuronal, and non-neural cells across our differentiation time course. Comparisons with primary mouse and human gene expression data demonstrated rostral and caudal progenitor and neuronal identities from early brain development. Bayesian analyses inferred a unified cell-type lineage tree that bifurcates between cortical and mid/hindbrain cell types. Two methods of clonal analyses confirmed these findings and further revealed the importance of Wnt/β-catenin signaling in controlling this lineage decision. Together, these findings provide a rich transcriptome-based lineage map for studying human brain development and modeling developmental disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Involvement of ERK in NMDA receptor-independent cortical neurotoxicity of hydrogen sulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurokawa, Yuko; Sekiguchi, Fumiko; Kubo, Satoko

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Hydrogen sulfide causes NMDA receptor-independent neurotoxicity in mouse fetal cortical neurons. Black-Right-Pointing-Pointer Activation of ERK mediates the toxicity of hydrogen sulfide. Black-Right-Pointing-Pointer Apoptotic mechanisms are involved in the hydrogen-induced cell death. -- Abstract: Hydrogen sulfide (H{sub 2}S), a gasotransmitter, exerts both neurotoxicity and neuroprotection, and targets multiple molecules including NMDA receptors, T-type calcium channels and NO synthase (NOS) that might affect neuronal viability. Here, we determined and characterized effects of NaHS, an H{sub 2}S donor, on cell viability in the primary cultures of mouse fetal cortical neurons. NaHS caused neuronal death, as assessed by LDH release and trypanmore » blue staining, but did not significantly reduce the glutamate toxicity. The neurotoxicity of NaHS was resistant to inhibitors of NMDA receptors, T-type calcium channels and NOS, and was blocked by inhibitors of MEK, but not JNK, p38 MAP kinase, PKC and Src. NaHS caused prompt phosphorylation of ERK and upregulation of Bad, followed by translocation of Bax to mitochondria and release of mitochondrial cytochrome c, leading to the nuclear condensation/fragmentation. These effects of NaHS were suppressed by the MEK inhibitor. Our data suggest that the NMDA receptor-independent neurotoxicity of H{sub 2}S involves activation of the MEK/ERK pathway and some apoptotic mechanisms.« less

  2. Titin and ryanodine receptor epitopes are expressed in cortical thymoma along with costimulatory molecules.

    PubMed

    Romi, Fredrik; Bø, Lars; Skeie, Geir Olve; Myking, Andreas; Aarli, Johan A; Gilhus, Nils Erik

    2002-07-01

    Cortical-type thymomas are associated with myasthenia gravis (MG) in 50% of the cases. MG is caused by antibodies against the acetylcholine receptors (AChR), but additional non-AChR muscle autoantibodies such as those against titin and ryanodine receptor (RyR) are found in up to 95% of MG patients with thymoma. To elucidate the induction of non-AChR autoantibodies in thymoma-associated MG, we studied cortical-type thymomas from seven thymoma MG patients, and sera from six of them. All six had titin antibodies, and four had RyR antibodies. Titin and RyR epitopes were co-expressed along with LFA3 and B7 (BB1) costimulatory molecules on thymoma antigen-presenting cells (APC) in all thymomas. In normal thymus, the staining by anti-titin, anti-RyR, anti-LFA3, and anti-BB1 antibodies was weak and occurred exclusively in the medulla and perivascularly. Our results indicate a primary autosensitization against titin and RyR antigens inside the thymoma. In MG-associated thymoma, the mechanisms involved in the initial autosensitization against titin and RyR are probably similar to those implicated in the autosensitization against AChR. In all cases, there is an overexpression of muscle-like epitopes and costimulatory molecules indicating that the T-cell autoimmunization is actively promoted by the pathogenic microenvironment inside the thymoma.

  3. Wiring Economy of Pyramidal Cells in the Juvenile Rat Somatosensory Cortex

    PubMed Central

    Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier

    2016-01-01

    Ever since Cajal hypothesized that the structure of neurons is designed in such a way as to save space, time and matter, numerous researchers have analyzed wiring properties at different scales of brain organization. Here we test the hypothesis that individual pyramidal cells, the most abundant type of neuron in the cerebral cortex, optimize brain connectivity in terms of wiring length. In this study, we analyze the neuronal wiring of complete basal arborizations of pyramidal neurons in layer II, III, IV, Va, Vb and VI of the hindlimb somatosensory cortical region of postnatal day 14 rats. For each cell, we search for the optimal basal arborization and compare its length with the length of the real dendritic structure. Here the optimal arborization is defined as the arborization that has the shortest total wiring length provided that all neuron bifurcations are respected and the extent of the dendritic arborizations remain unchanged. We use graph theory and evolutionary computation techniques to search for the minimal wiring arborizations. Despite morphological differences between pyramidal neurons located in different cortical layers, we found that the neuronal wiring is near-optimal in all cases (the biggest difference between the shortest synthetic wiring found for a dendritic arborization and the length of its real wiring was less than 5%). We found, however, that the real neuronal wiring was significantly closer to the best solution found in layers II, III and IV. Our studies show that the wiring economy of cortical neurons is related not to the type of neurons or their morphological complexities but to general wiring economy principles. PMID:27832100

  4. Wiring Economy of Pyramidal Cells in the Juvenile Rat Somatosensory Cortex.

    PubMed

    Anton-Sanchez, Laura; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier

    2016-01-01

    Ever since Cajal hypothesized that the structure of neurons is designed in such a way as to save space, time and matter, numerous researchers have analyzed wiring properties at different scales of brain organization. Here we test the hypothesis that individual pyramidal cells, the most abundant type of neuron in the cerebral cortex, optimize brain connectivity in terms of wiring length. In this study, we analyze the neuronal wiring of complete basal arborizations of pyramidal neurons in layer II, III, IV, Va, Vb and VI of the hindlimb somatosensory cortical region of postnatal day 14 rats. For each cell, we search for the optimal basal arborization and compare its length with the length of the real dendritic structure. Here the optimal arborization is defined as the arborization that has the shortest total wiring length provided that all neuron bifurcations are respected and the extent of the dendritic arborizations remain unchanged. We use graph theory and evolutionary computation techniques to search for the minimal wiring arborizations. Despite morphological differences between pyramidal neurons located in different cortical layers, we found that the neuronal wiring is near-optimal in all cases (the biggest difference between the shortest synthetic wiring found for a dendritic arborization and the length of its real wiring was less than 5%). We found, however, that the real neuronal wiring was significantly closer to the best solution found in layers II, III and IV. Our studies show that the wiring economy of cortical neurons is related not to the type of neurons or their morphological complexities but to general wiring economy principles.

  5. Reversed electrogenic sodium bicarbonate cotransporter 1 is the major acid loader during recovery from cytosolic alkalosis in mouse cortical astrocytes

    PubMed Central

    Theparambil, Shefeeq M; Naoshin, Zinnia; Thyssen, Anne; Deitmer, Joachim W

    2015-01-01

    Recovery of intracellular pH from cytosolic alkalosis has been attributed primarily to Cl– coupled acid loaders/base extruders such as Cl–/HCO3– or Cl–/OH– exchangers. We have studied this process in cortical astrocytes from wild-type and transgenic mouse models with gene deletion for the electrogenic sodium bicarbonate cotransporter 1 (NBCe1) and for carbonic anhydrase (CA) isoform II. An acute cytosolic alkalosis was induced by the removal of either CO2/HCO3– or butyric acid, and the subsequent acid loading was analysed by monitoring changes in cytosolic H+ or Na+ using ion-sensitive fluorescent dyes. We have identified that NBCe1 reverses during alkalosis and contributes more than 70% to the rate of recovery from alkalosis by extruding Na+ and HCO3–. After CA inhibition or in CAII-knockout (KO) cells, the rate of recovery was reduced by 40%, and even by 70% in the nominal absence of CO2/HCO3–. Increasing the extracellular K+ concentration modulated the rate of acid loading in wild-type cells, but not in NBCe1-KO cells. Removing chloride had only a minor effect on the recovery from alkalosis. Reversal of NBCe1 by reducing pH/[HCO3–] was demonstrated in astrocytes and in Xenopus oocytes, in which human NBCe1 was heterologously expressed. The results obtained suggest that reversed NBCe1, supported by CAII activity, plays a major role in acid-loading cortical astrocytes to support recovery from cytosolic alkalosis. PMID:25990710

  6. Cortical afferents onto the nucleus Reticularis thalami promote plasticity of low-threshold excitability through GluN2C-NMDARs.

    PubMed

    Fernandez, Laura M J; Pellegrini, Chiara; Vantomme, Gil; Béard, Elidie; Lüthi, Anita; Astori, Simone

    2017-09-25

    Thalamus and cortex represent a highly integrated processing unit that elaborates sensory representations. Interposed between cortex and thalamus, the nucleus Reticularis thalami (nRt) receives strong cortical glutamatergic input and mediates top-down inhibitory feedback to thalamus. Despite growing appreciation that the nRt is integral for thalamocortical functions from sleep to attentional wakefulness, we still face considerable gaps in the synaptic bases for cortico-nRt communication and plastic regulation. Here, we examined modulation of nRt excitability by cortical synaptic drive in Ntsr1-Cre x ChR2 tg/+ mice expressing Channelrhodopsin2 in layer 6 corticothalamic cells. We found that cortico-nRt synapses express a major portion of NMDA receptors containing the GluN2C subunit (GluN2C-NMDARs). Upon repetitive photoactivation (10 Hz trains), GluN2C-NMDARs induced a long-term increase in nRt excitability involving a potentiated recruitment of T-type Ca 2+ channels. In anaesthetized mice, analogous stimulation of cortical afferents onto nRt produced long-lasting changes in cortical local field potentials (LFPs), with delta oscillations being augmented at the expense of slow oscillations. This shift in LFP spectral composition was sensitive to NMDAR blockade in the nRt. Our data reveal a novel mechanism involving plastic modification of synaptically recruited T-type Ca 2+ channels and nRt bursting and indicate a critical role for GluN2C-NMDARs in thalamocortical rhythmogenesis.

  7. Histamine up-regulates fibroblast growth factor receptor 1 and increases FOXP2 neurons in cultured neural precursors by histamine type 1 receptor activation: conceivable role of histamine in neurogenesis during cortical development in vivo.

    PubMed

    Molina-Hernández, Anayansi; Rodríguez-Martínez, Griselda; Escobedo-Ávila, Itzel; Velasco, Iván

    2013-03-07

    During rat development, histamine (HA) is one of the first neuroactive molecules to appear in the brain, reaching its maximal value at embryonic day 14, a period when neurogenesis of deep layers is occurring in the cerebral cortex, suggesting a role of this amine in neuronal specification. We previously reported, using high-density cerebrocortical neural precursor cultures, that micromolar HA enhanced the effect of fibroblast growth factor (FGF)-2 on proliferation, and that HA increased neuronal differentiation, due to HA type 1 receptor (H(1)R) activation. Clonal experiments performed here showed that HA decreased colony size and caused a significant increase in the percentage of clones containing mature neurons through H(1)R stimulation. In proliferating precursors, we studied whether HA activates G protein-coupled receptors linked to intracellular calcium increases. Neural cells presented an increase in cytoplasmic calcium even in the absence of extracellular calcium, a response mediated by H(1)R. Since FGF receptors (FGFRs) are known to be key players in cell proliferation and differentiation, we determined whether HA modifies the expression of FGFRs1-4 by using RT-PCR. An important transcriptional increase in FGFR1 was elicited after H(1)R activation. We also tested whether HA promotes differentiation specifically to neurons with molecular markers of different cortical layers by immunocytochemistry. HA caused significant increases in cells expressing the deep layer neuronal marker FOXP2; this induction of FOXP2-positive neurons elicited by HA was blocked by the H(1)R antagonist chlorpheniramine in vitro. Finally, we found a notable decrease in FOXP2+ cortical neurons in vivo, when chlorpheniramine was infused in the cerebral ventricles through intrauterine injection. These results show that HA, by activating H(1)R, has a neurogenic effect in clonal conditions and suggest that intracellular calcium elevation and transcriptional up-regulation of FGFR1 participate in HA-induced neuronal differentiation to FOXP2 cells in vitro; furthermore, H(1)R blockade in vivo resulted in decreased cortical FOXP2+ neurons.

  8. Massive formation of square array junctions dramatically alters cell shape but does not cause lens opacity in the cav1-KO mice.

    PubMed

    Biswas, Sondip K; Brako, Lawrence; Lo, Woo-Kuen

    2014-08-01

    The wavy square array junctions are composed of truncated aquaporin-0 (AQP0) proteins typically distributed in the deep cortical and nuclear fibers in wild-type lenses. These junctions may help maintain the narrowed extracellular spaces between fiber cells to minimize light scattering. Herein, we investigate the impact of the cell shape changes, due to abnormal formation of extensive square array junctions, on the lens opacification in the caveolin-1 knockout mice. The cav1-KO and wild-type mice at age 1-22 months were used. By light microscopy examinations, cav1-KO lenses at age 1-18 months were transparent in both cortical and nuclear regions, whereas some lenses older than 18 months old exhibited nuclear cataracts. Scanning EM consistently observed the massive formation of ridge-and-valley membrane surfaces in young fibers at approximately 150 μm deep in all cav1-KO lenses studied. In contrast, the typical ridge-and-valleys were only seen in mature fibers deeper than 400 μm in wild-type lenses. The resulting extensive ridge-and-valleys dramatically altered the overall cell shape in cav1-KO lenses. Remarkably, despite dramatic shape changes, these deformed fiber cells remained intact and made close contact with their neighboring cells. By freeze-fracture TEM, ridge-and-valleys exhibited the typical orthogonal arrangement of 6.6 nm square array intramembrane particles and displayed the narrowed extracellular spaces. Immunofluorescence analysis showed that AQP0 C-terminus labeling was significantly decreased in outer cortical fibers in cav1-KO lenses. However, freeze-fracture immunogold labeling showed that the AQP0 C-terminus antibody was sparsely distributed on the wavy square array junctions, suggesting that the cleavage of AQP0 C-termini might not yet be complete. The cav1-KO lenses with nuclear cataracts showed complete cellular breakdown and large globule formation in the lens nucleus. This study suggests that despite dramatic cell shape changes, the massive formation of wavy square array junctions in intact fibers may provide additional adhesive support for maintaining the narrowed extracellular spaces that are crucial for the transparency of cav1-KO lenses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Two coffins and a funeral: early or late caspase activation determines two types of apoptosis induced by DNA damaging agents.

    PubMed

    Oropesa-Ávila, Manuel; de la Cruz-Ojeda, Patricia; Porcuna, Jesús; Villanueva-Paz, Marina; Fernández-Vega, Alejandro; de la Mata, Mario; de Lavera, Isabel; Rivero, Juan Miguel Suarez; Luzón-Hidalgo, Raquel; Álvarez-Córdoba, Mónica; Cotán, David; Zaderenko, Ana Paula; Cordero, Mario D; Sánchez-Alcázar, José A

    2017-03-01

    Cell cytoskeleton makes profound changes during apoptosis including the organization of an Apoptotic Microtubule Network (AMN). AMN forms a cortical structure which plays an important role in preserving plasma membrane integrity during apoptosis. Here, we examined the cytoskeleton rearrangements during apoptosis induced by camptothecin (CPT), a topoisomerase I inhibitor, in human H460 and porcine LLCPK-1α cells. Using fixed and living cell imaging, we showed that CPT induced two dose- and cell cycle-dependent types of apoptosis characterized by different cytoskeleton reorganizations, time-dependent caspase activation and final apoptotic cell morphology. In the one referred as "slow" (~h) or round-shaped, apoptosis was characterized by a slow contraction of the actinomyosin ring and late caspase activation. In "slow" apoptosis the γ-tubulin complexes were not disorganized and microtubules were not depolymerized at early stages. In contrast, "fast" (~min) or irregular-shaped apoptosis was characterized by early caspase activation followed by full contraction of the actinomyosin ring. In fast apoptosis γ-tubulin complexes were disorganized and microtubules were initially depolymerized. However, after actinomyosin contraction, microtubules were reformed adopting a cortical but irregular disposition near plasma membrane. In addition to distinctive cytoskeleton reorganization kinetics, round and irregular-shaped apoptosis showed different biological properties with respect to AMN maintenance, plasma membrane integrity and phagocytes response. Our results suggest that the knowledge and modulation of the type of apoptosis promoted by genotoxic agents may be important for deciding a better therapeutic option and predicting the immune response in cancer treatment.

  10. Differential polarization of cortical pyramidal neuron dendrites through weak extracellular fields

    PubMed Central

    Obermayer, Klaus

    2018-01-01

    The rise of transcranial current stimulation (tCS) techniques have sparked an increasing interest in the effects of weak extracellular electric fields on neural activity. These fields modulate ongoing neural activity through polarization of the neuronal membrane. While the somatic polarization has been investigated experimentally, the frequency-dependent polarization of the dendritic trees in the presence of alternating (AC) fields has received little attention yet. Using a biophysically detailed model with experimentally constrained active conductances, we analyze the subthreshold response of cortical pyramidal cells to weak AC fields, as induced during tCS. We observe a strong frequency resonance around 10-20 Hz in the apical dendrites sensitivity to polarize in response to electric fields but not in the basal dendrites nor the soma. To disentangle the relative roles of the cell morphology and active and passive membrane properties in this resonance, we perform a thorough analysis using simplified models, e.g. a passive pyramidal neuron model, simple passive cables and reconstructed cell model with simplified ion channels. We attribute the origin of the resonance in the apical dendrites to (i) a locally increased sensitivity due to the morphology and to (ii) the high density of h-type channels. Our systematic study provides an improved understanding of the subthreshold response of cortical cells to weak electric fields and, importantly, allows for an improved design of tCS stimuli. PMID:29727454

  11. Increasing proportions of tyrosine hydroxylase-immunoreactive interneurons colocalize with choline acetyltransferase or vasoactive intestinal peptide in the developing rat cerebral cortex

    PubMed Central

    Asmus, Stephen E.; Cocanougher, Benjamin T.; Allen, Donald L.; Boone, John B.; Brooks, Elizabeth A.; Hawkins, Sarah M.; Hench, Laura A.; Ijaz, Talha; Mayfield, Meredith N.

    2011-01-01

    Cortical interneurons are critical for information processing, and their dysfunction has been implicated in neurological disorders. One subset of this diverse cell population expresses tyrosine hydroxylase (TH) during postnatal rat development. Cortical TH-immunoreactive neurons appear at postnatal day (P) 16. The number of TH cells sharply increases between P16 and P20 and subsequently decreases to adult values. The absence of apoptotic markers in these cells suggests that the reduction in cell number is not due to cell death but is due to a decline in TH production. Cortical TH cells lack all additional catecholaminergic enzymes, and many coexpress GABA and calretinin, but little else is known about their phenotype or function. Because interneurons containing choline acetyltransferase (ChAT) or vasoactive intestinal peptide (VIP) share characteristics with cortical TH neurons, the coexpression of TH with ChAT or VIP was examined throughout the neocortex at P16, P20, and P30. The proportions of TH cell profiles double-labeled for ChAT or VIP significantly increased between P16 and P30. Based on their proximity to blood vessels, intrinsic cholinergic and VIPergic cells have been hypothesized to regulate cortical microcirculation. Labeling with the gliovascular marker aquaporin-4 revealed that at least half of the TH cells were apposed to microvessels at these ages, and many of these cells contained ChAT or VIP. Cortical TH neurons did not coproduce nitric oxide synthase. These results suggest that increasing proportions of cortical TH neurons express ChAT or VIP developmentally and that a subset of these TH neurons may regulate local blood flow. PMID:21295554

  12. Analysis of Altered Micro RNA Expression Profiles in Focal Cortical Dysplasia IIB.

    PubMed

    Li, Lin; Liu, Chang-Qing; Li, Tian-Fu; Guan, Yu-Guang; Zhou, Jian; Qi, Xue-Ling; Yang, Yu-Tao; Deng, Jia-Hui; Xu, Zhi-Qing David; Luan, Guo-Ming

    2016-04-01

    Focal cortical dysplasia type IIB is a commonly encountered subtype of developmental malformation of the cerebral cortex and is often associated with pharmacoresistant epilepsy. In this study, to investigate the molecular etiology of focal cortical dysplasia type IIB, the authors performed micro ribonucleic acid (RNA) microarray on surgical specimens from 5 children (2 female and 3 male, mean age was 73.4 months, range 50-112 months) diagnosed of focal cortical dysplasia type IIB and matched normal tissue adjacent to the lesion. In all, 24 micro RNAs were differentially expressed in focal cortical dysplasia type IIB, and the microarray results were validated using quantitative real-time polymerase chain reaction (PCR). Then the putative target genes of the differentially expressed micro RNAs were identified by bioinformatics analysis. Moreover, biological significance of the target genes was evaluated by investigating the pathways in which the genes were enriched, and the Hippo signaling pathway was proposed to be highly related with the pathogenesis of focal cortical dysplasia type IIB. © The Author(s) 2015.

  13. Cell-type- and tissue-specific transcriptomes of the white spruce (Picea glauca) bark unmask fine-scale spatial patterns of constitutive and induced conifer defense.

    PubMed

    Celedon, Jose M; Yuen, Macaire M S; Chiang, Angela; Henderson, Hannah; Reid, Karen E; Bohlmann, Jörg

    2017-11-01

    Plant defenses often involve specialized cells and tissues. In conifers, specialized cells of the bark are important for defense against insects and pathogens. Using laser microdissection, we characterized the transcriptomes of cortical resin duct cells, phenolic cells and phloem of white spruce (Picea glauca) bark under constitutive and methyl jasmonate (MeJa)-induced conditions, and we compared these transcriptomes with the transcriptome of the bark tissue complex. Overall, ~3700 bark transcripts were differentially expressed in response to MeJa. Approximately 25% of transcripts were expressed in only one cell type, revealing cell specialization at the transcriptome level. MeJa caused cell-type-specific transcriptome responses and changed the overall patterns of cell-type-specific transcript accumulation. Comparison of transcriptomes of the conifer bark tissue complex and specialized cells resolved a masking effect inherent to transcriptome analysis of complex tissues, and showed the actual cell-type-specific transcriptome signatures. Characterization of cell-type-specific transcriptomes is critical to reveal the dynamic patterns of spatial and temporal display of constitutive and induced defense systems in a complex plant tissue or organ. This was demonstrated with the improved resolution of spatially restricted expression of sets of genes of secondary metabolism in the specialized cell types. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  14. Impaired cellulose synthase guidance leads to stem torsion and twists phyllotactic patterns in Arabidopsis.

    PubMed

    Landrein, Benoît; Lathe, Rahul; Bringmann, Martin; Vouillot, Cyril; Ivakov, Alexander; Boudaoud, Arezki; Persson, Staffan; Hamant, Olivier

    2013-05-20

    The parallel alignment of stiff cellulose microfibrils in plant-cell walls mediates anisotropic growth. This is largely controlled by cortical microtubules, which drive the insertion and trajectory of the cellulose synthase (CESA) complex at the plasma membrane. The CESA interactive protein 1 (CSI1) acts as a physical linker between CESA and cortical microtubules. Here we show that the inflorescence stems of csi1 mutants exhibit subtle right-handed torsion. Because cellulose deposition is largely uncoupled from cortical microtubules in csi1, we hypothesize that strictly transverse deposition of microfibrils in the wild-type is replaced by a helical orientation of uniform handedness in the mutant and that the helical microfibril alignment generates torsion. Interestingly, both elastic and viscous models for an expanding cell predict that a net helical orientation of microfibrils gives rise to a torque. We indeed observed tilted microfibrils in csi1 cells, and the torsion was almost absent in a csi1 prc1 background with impaired cellulose synthesis. In addition, the stem torsion led to a novel bimodal and robust phyllotactic pattern in the csi1 mutant, illustrating how growth perturbations can replace one robust mathematical pattern with a different, equally robust pattern. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. SHR overexpression induces the formation of supernumerary cell layers with cortex cell identity in rice.

    PubMed

    Henry, S; Dievart, A; Divol, F; Pauluzzi, G; Meynard, D; Swarup, R; Wu, S; Gallagher, K L; Périn, C

    2017-05-01

    The number of root cortex cell layers varies among plants, and many species have several cortical cell layers. We recently demonstrated that the two rice orthologs of the Arabidopsis SHR gene, OsSHR1 and OsSHR2, could complement the A. thaliana shr mutant. Moreover, OsSHR1 and OsSHR2 expression in A. thaliana roots induced the formation of extra root cortical cell layers. In this article, we demonstrate that the overexpression of AtSHR and OsSHR2 in rice roots leads to plants with wide and short roots that contain a high number of extra cortical cell layers. We hypothesize that SHR genes share a conserved function in the control of cortical cell layer division and the number of ground tissue cell layers in land plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Evolution and development of the mammalian cerebral cortex.

    PubMed

    Molnár, Zoltán; Kaas, Jon H; de Carlos, Juan A; Hevner, Robert F; Lein, Ed; Němec, Pavel

    2014-01-01

    Comparative developmental studies of the mammalian brain can identify key changes that can generate the diverse structures and functions of the brain. We have studied how the neocortex of early mammals became organized into functionally distinct areas, and how the current level of cortical cellular and laminar specialization arose from the simpler premammalian cortex. We demonstrate the neocortical organization in early mammals, which helps to elucidate how the large, complex human brain evolved from a long line of ancestors. The radial and tangential enlargement of the cortex was driven by changes in the patterns of cortical neurogenesis, including alterations in the proportions of distinct progenitor types. Some cortical cell populations travel to the cortex through tangential migration whereas others migrate radially. A number of recent studies have begun to characterize the chick, mouse and human and nonhuman primate cortical transcriptome to help us understand how gene expression relates to the development and anatomical and functional organization of the adult neocortex. Although all mammalian forms share the basic layout of cortical areas, the areal proportions and distributions are driven by distinct evolutionary pressures acting on sensory and motor experiences during the individual ontogenies. © 2014 S. Karger AG, Basel.

  17. Multimap formation in visual cortex

    PubMed Central

    Jain, Rishabh; Millin, Rachel; Mel, Bartlett W.

    2015-01-01

    An extrastriate visual area such as V2 or V4 contains neurons selective for a multitude of complex shapes, all sharing a common topographic organization. Simultaneously developing multiple interdigitated maps—hereafter a “multimap”—is challenging in that neurons must compete to generate a diversity of response types locally, while cooperating with their dispersed same-type neighbors to achieve uniform visual field coverage for their response type at all orientations, scales, etc. Previously proposed map development schemes have relied on smooth spatial interaction functions to establish both topography and columnar organization, but by locally homogenizing cells' response properties, local smoothing mechanisms effectively rule out multimap formation. We found in computer simulations that the key requirements for multimap development are that neurons are enabled for plasticity only within highly active regions of cortex designated “learning eligibility regions” (LERs), but within an LER, each cell's learning rate is determined only by its activity level with no dependence on location. We show that a hybrid developmental rule that combines spatial and activity-dependent learning criteria in this way successfully produces multimaps when the input stream contains multiple distinct feature types, or in the degenerate case of a single feature type, produces a V1-like map with “salt-and-pepper” structure. Our results support the hypothesis that cortical maps containing a fine mixture of different response types, whether in monkey extrastriate cortex, mouse V1 or elsewhere in the cortex, rather than signaling a breakdown of map formation mechanisms at the fine scale, are a product of a generic cortical developmental scheme designed to map cells with a diversity of response properties across a shared topographic space. PMID:26641946

  18. Many Specialists for Suppressing Cortical Excitation

    PubMed Central

    Burkhalter, Andreas

    2008-01-01

    Cortical computations are critically dependent on GABA-releasing neurons for dynamically balancing excitation with inhibition that is proportional to the overall level of activity. Although it is widely accepted that there are multiple types of interneurons, defining their identities based on qualitative descriptions of morphological, molecular and physiological features has failed to produce a universally accepted ‘parts list’, which is needed to understand the roles that interneurons play in cortical processing. A list of features has been published by the Petilla Interneurons Nomenclature Group, which represents an important step toward an unbiased classification of interneurons. To this end some essential features have recently been studied quantitatively and their association was examined using multidimensional cluster analyses. These studies revealed at least 3 distinct electrophysiological, 6 morphological and 15 molecular phenotypes. This is a conservative estimate of the number of interneuron types, which almost certainly will be revised as more quantitative studies will be performed and similarities will be defined objectively. It is clear that interneurons are organized with physiological attributes representing the most general, molecular characteristics the most detailed and morphological features occupying the middle ground. By themselves, none of these features are sufficient to define classes of interneurons. The challenge will be to determine which features belong together and how cell type-specific feature combinations are genetically specified. PMID:19225588

  19. Deriving excitatory neurons of the neocortex from pluripotent stem cells

    PubMed Central

    Hansen, David V.; Rubenstein, John L.R.; Kriegstein, Arnold R.

    2011-01-01

    The human cerebral cortex is an immensely complex structure that subserves critical functions that can be disrupted in developmental and degenerative disorders. Recent innovations in cellular reprogramming and differentiation techniques have provided new ways to study the cellular components of the cerebral cortex. Here we discuss approaches to generate specific subtypes of excitatory cortical neurons from pluripotent stem cells. We review spatial and temporal aspects of cortical neuron specification that can guide efforts to produce excitatory neuron subtypes with increased resolution. Finally, we discuss distinguishing features of human cortical development and their translational ramifications for cortical stem cell technologies. PMID:21609822

  20. Conditional Loss of Arx From the Developing Dorsal Telencephalon Results in Behavioral Phenotypes Resembling Mild Human ARX Mutations.

    PubMed

    Simonet, Jacqueline C; Sunnen, C Nicole; Wu, Jue; Golden, Jeffrey A; Marsh, Eric D

    2015-09-01

    Mutations in the Aristaless-Related Homeobox (ARX) gene cause structural anomalies of the brain, epilepsy, and neurocognitive deficits in children. During forebrain development, Arx is expressed in both pallial and subpallial progenitor cells. We previously demonstrated that elimination of Arx from subpallial-derived cortical interneurons generates an epilepsy phenotype with features overlapping those seen in patients with ARX mutations. In this report, we have selectively removed Arx from pallial progenitor cells that give rise to the cerebral cortical projection neurons. While no discernable seizure activity was recorded, these mice exhibited a peculiar constellation of behaviors. They are less anxious, less social, and more active when compared with their wild-type littermates. The overall cortical thickness was reduced, and the corpus callosum and anterior commissure were hypoplastic, consistent with a perturbation in cortical connectivity. Taken together, these data suggest that some of the structural and behavioral anomalies, common in patients with ARX mutations, are specifically due to alterations in pallial progenitor function. Furthermore, our data demonstrate that some of the neurobehavioral features found in patients with ARX mutations may not be due to on-going seizures, as is often postulated, given that epilepsy was eliminated as a confounding variable in these behavior analyses. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. The role of the first postmitotic cortical cells in the development of thalamocortical innervation in the reeler mouse.

    PubMed

    Molnár, Z; Adams, R; Goffinet, A M; Blakemore, C

    1998-08-01

    In the mutant mouse reeler, the tangential distribution of thalamocortical fibers is essentially normal, even though neurons of the cortical plate accumulate below the entire early-born preplate population (Caviness et al., 1998). This seems incompatible with the hypothesis that cells of the subplate (the lower component of the preplate in normal mammals) form an axonal scaffold that guides thalamic fibers and act as temporary targets for them (Blakemore and Molnár, 1990, Shatz et al., 1990). We used carbocyanine dyes to trace projections in wild-type and reeler mice between embryonic day 13 and postnatal day 3. Preplate formation and early extension of corticofugal fibers to form a topographic array are indistinguishable in the two phenotypes. So too are the emergence of thalamic axons in topographic order through the primitive internal capsule, their meeting with preplate axons, and their distribution over the preplate scaffold. Distinctive differences appear after the cortical plate begins to accumulate below the preplate of reeler, causing the preplate axons to form oblique fascicles, running through the cortical plate. Thalamic axons then pass through the plate within the same fascicles and accumulate in the "superplate" layer for approximately 2-3 d, before defasciculating and plunging down to terminate deep in the cortical plate, creating the curious "looping" pattern seen in the adult. Thus, thalamocortical innervation in reeler follows the same algorithm of development but in relation to the misplaced population of early-born neurons. Far from challenging the theory that preplate fibers guide thalamic axons, reeler provides strong evidence for it.

  2. Cultured networks of excitatory projection neurons and inhibitory interneurons for studying human cortical neurotoxicity

    PubMed Central

    Xu, Jin-Chong; Fan, Jing; Wang, Xueqing; Eacker, Stephen M.; Kam, Tae-In; Chen, Li; Yin, Xiling; Zhu, Juehua; Chi, Zhikai; Jiang, Haisong; Chen, Rong; Dawson, Ted M.; Dawson, Valina L.

    2017-01-01

    Translating neuroprotective treatments from discovery in cell and animal models to the clinic has proven challenging. To reduce the gap between basic studies of neurotoxicity and neuroprotection and clinically relevant therapies, we developed a human cortical neuron culture system from human embryonic stem cells (ESCs) or inducible pluripotent stem cells (iPSCs) that generated both excitatory and inhibitory neuronal networks resembling the composition of the human cortex. This methodology used timed administration of retinoic acid (RA) to FOXG1 neural precursor cells leading to differentiation of neuronal populations representative of the six cortical layers with both excitatory and inhibitory neuronal networks that were functional and homeostatically stable. In human cortical neuron cultures, excitotoxicity or ischemia due to oxygen and glucose deprivation led to cell death that was dependent on N-methyl-D-aspartate (NMDA) receptors, nitric oxide (NO), and the poly (ADP-ribose) polymerase (PARP)-dependent cell death, a cell death pathway designated parthanatos to separate it from apoptosis, necroptosis and other forms of cell death. Neuronal cell death was attenuated by PARP inhibitors that are currently in clinical trials for cancer treatment. This culture system provides a new platform for the study of human cortical neurotoxicity and suggests that PARP inhibitors may be useful for ameliorating excitotoxic and ischemic cell death in human neurons. PMID:27053772

  3. From functional architecture to functional connectomics.

    PubMed

    Reid, R Clay

    2012-07-26

    "Receptive Fields, Binocular Interaction and Functional Architecture in the Cat's Visual Cortex" by Hubel and Wiesel (1962) reported several important discoveries: orientation columns, the distinct structures of simple and complex receptive fields, and binocular integration. But perhaps the paper's greatest influence came from the concept of functional architecture (the complex relationship between in vivo physiology and the spatial arrangement of neurons) and several models of functionally specific connectivity. They thus identified two distinct concepts, topographic specificity and functional specificity, which together with cell-type specificity constitute the major determinants of nonrandom cortical connectivity. Orientation columns are iconic examples of topographic specificity, whereby axons within a column connect with cells of a single orientation preference. Hubel and Wiesel also saw the need for functional specificity at a finer scale in their model of thalamic inputs to simple cells, verified in the 1990s. The difficult but potentially more important question of functional specificity between cortical neurons is only now becoming tractable with new experimental techniques. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development

    PubMed Central

    Mora-Bermúdez, Felipe; Badsha, Farhath; Kanton, Sabina; Camp, J Gray; Vernot, Benjamin; Köhler, Kathrin; Voigt, Birger; Okita, Keisuke; Maricic, Tomislav; He, Zhisong; Lachmann, Robert; Pääbo, Svante; Treutlein, Barbara; Huttner, Wieland B

    2016-01-01

    Human neocortex expansion likely contributed to the remarkable cognitive abilities of humans. This expansion is thought to primarily reflect differences in proliferation versus differentiation of neural progenitors during cortical development. Here, we have searched for such differences by analysing cerebral organoids from human and chimpanzees using immunohistofluorescence, live imaging, and single-cell transcriptomics. We find that the cytoarchitecture, cell type composition, and neurogenic gene expression programs of humans and chimpanzees are remarkably similar. Notably, however, live imaging of apical progenitor mitosis uncovered a lengthening of prometaphase-metaphase in humans compared to chimpanzees that is specific to proliferating progenitors and not observed in non-neural cells. Consistent with this, the small set of genes more highly expressed in human apical progenitors points to increased proliferative capacity, and the proportion of neurogenic basal progenitors is lower in humans. These subtle differences in cortical progenitors between humans and chimpanzees may have consequences for human neocortex evolution. DOI: http://dx.doi.org/10.7554/eLife.18683.001 PMID:27669147

  5. Local pulsatile contractions are an intrinsic property of the myosin 2A motor in the cortical cytoskeleton of adherent cells

    PubMed Central

    Baird, Michelle A.; Billington, Neil; Wang, Aibing; Adelstein, Robert S.; Sellers, James R.; Fischer, Robert S.; Waterman, Clare M.

    2017-01-01

    The role of nonmuscle myosin 2 (NM2) pulsatile dynamics in generating contractile forces required for developmental morphogenesis has been characterized, but whether these pulsatile contractions are an intrinsic property of all actomyosin networks is not known. Here we used live-cell fluorescence imaging to show that transient, local assembly of NM2A “pulses” occurs in the cortical cytoskeleton of single adherent cells of mesenchymal, epithelial, and sarcoma origin, independent of developmental signaling cues and cell–cell or cell–ECM interactions. We show that pulses in the cortical cytoskeleton require Rho-associated kinase– or myosin light chain kinase (MLCK) activity, increases in cytosolic calcium, and NM2 ATPase activity. Surprisingly, we find that cortical cytoskeleton pulses specifically require the head domain of NM2A, as they do not occur with either NM2B or a 2B-head-2A-tail chimera. Our results thus suggest that pulsatile contractions in the cortical cytoskeleton are an intrinsic property of the NM2A motor that may mediate its role in homeostatic maintenance of tension in the cortical cytoskeleton of adherent cells. PMID:27881665

  6. Jamming and liquidity in 3D cancer cell aggregates

    NASA Astrophysics Data System (ADS)

    Oswald, Linda; Grosser, Steffen; Lippoldt, Jürgen; Pawlizak, Steve; Fritsch, Anatol; KäS, Josef A.

    Traditionally, tissues are treated as simple liquids, which holds for example for embryonic tissue. However, recent experiments have shown that this picture is insufficient for other tissue types, suggesting possible transitions to solid-like behavior induced by cellular jamming. The coarse-grained self-propelled Voronoi (SPV) model predicts such a transition depending on cell shape which is thought to arise from an interplay of cell-cell adhesion and cortical tension. We observe non-liquid behavior in 3D breast cancer spheroids of varying metastatic potential and correlate single cell shapes, single cell dynamics and collective dynamic behavior of fusion and segregation experiments via the SPV model.

  7. Dissecting the molecular mechanism underlying the intimate relationship between cellulose microfibrils and cortical microtubules.

    PubMed

    Lei, Lei; Li, Shundai; Bashline, Logan; Gu, Ying

    2014-01-01

    A central question in plant cell development is how the cell wall determines directional cell expansion and therefore the final shape of the cell. As the major load-bearing component of the cell wall, cellulose microfibrils are laid down transversely to the axis of elongation, thus forming a spring-like structure that reinforces the cell laterally and while favoring longitudinal expansion in most growing cells. Mounting evidence suggests that cortical microtubules organize the deposition of cellulose microfibrils, but the precise molecular mechanisms linking microtubules to cellulose organization have remained unclear until the recent discovery of cellulose synthase interactive protein 1 , a linker protein between the cortical microtubules and the cellulose biosynthesizing machinery. In this review, we will focus on the intimate relationship between cellulose microfibrils and cortical microtubules, in particular, we will discuss microtubule arrangement and cell wall architecture, the linkage between cellulose synthase complexes and microtubules, and the feedback mechanisms between cell wall and microtubules.

  8. Amplification of progenitors in the mammalian telencephalon includes a new radial glial cell type.

    PubMed

    Pilz, Gregor-Alexander; Shitamukai, Atsunori; Reillo, Isabel; Pacary, Emilie; Schwausch, Julia; Stahl, Ronny; Ninkovic, Jovica; Snippert, Hugo J; Clevers, Hans; Godinho, Leanne; Guillemot, Francois; Borrell, Victor; Matsuzaki, Fumio; Götz, Magdalena

    2013-01-01

    The mechanisms governing the expansion of neuron number in specific brain regions are still poorly understood. Enlarged neuron numbers in different species are often anticipated by increased numbers of progenitors dividing in the subventricular zone. Here we present live imaging analysis of radial glial cells and their progeny in the ventral telencephalon, the region with the largest subventricular zone in the murine brain during neurogenesis. We observe lineage amplification by a new type of progenitor, including bipolar radial glial cells dividing at subapical positions and generating further proliferating progeny. The frequency of this new type of progenitor is increased not only in larger clones of the mouse lateral ganglionic eminence but also in cerebral cortices of gyrated species, and upon inducing gyrification in the murine cerebral cortex. This implies key roles of this new type of radial glia in ontogeny and phylogeny.

  9. Actin kinetics shapes cortical network structure and mechanics

    PubMed Central

    Fritzsche, Marco; Erlenkämper, Christoph; Moeendarbary, Emad; Charras, Guillaume; Kruse, Karsten

    2016-01-01

    The actin cortex of animal cells is the main determinant of cellular mechanics. The continuous turnover of cortical actin filaments enables cells to quickly respond to stimuli. Recent work has shown that most of the cortical actin is generated by only two actin nucleators, the Arp2/3 complex and the formin Diaph1. However, our understanding of their interplay, their kinetics, and the length distribution of the filaments that they nucleate within living cells is poor. Such knowledge is necessary for a thorough comprehension of cellular processes and cell mechanics from basic polymer physics principles. We determined cortical assembly rates in living cells by using single-molecule fluorescence imaging in combination with stochastic simulations. We find that formin-nucleated filaments are, on average, 10 times longer than Arp2/3-nucleated filaments. Although formin-generated filaments represent less than 10% of all actin filaments, mechanical measurements indicate that they are important determinants of cortical elasticity. Tuning the activity of actin nucleators to alter filament length distribution may thus be a mechanism allowing cells to adjust their macroscopic mechanical properties to their physiological needs. PMID:27152338

  10. Actin kinetics shapes cortical network structure and mechanics.

    PubMed

    Fritzsche, Marco; Erlenkämper, Christoph; Moeendarbary, Emad; Charras, Guillaume; Kruse, Karsten

    2016-04-01

    The actin cortex of animal cells is the main determinant of cellular mechanics. The continuous turnover of cortical actin filaments enables cells to quickly respond to stimuli. Recent work has shown that most of the cortical actin is generated by only two actin nucleators, the Arp2/3 complex and the formin Diaph1. However, our understanding of their interplay, their kinetics, and the length distribution of the filaments that they nucleate within living cells is poor. Such knowledge is necessary for a thorough comprehension of cellular processes and cell mechanics from basic polymer physics principles. We determined cortical assembly rates in living cells by using single-molecule fluorescence imaging in combination with stochastic simulations. We find that formin-nucleated filaments are, on average, 10 times longer than Arp2/3-nucleated filaments. Although formin-generated filaments represent less than 10% of all actin filaments, mechanical measurements indicate that they are important determinants of cortical elasticity. Tuning the activity of actin nucleators to alter filament length distribution may thus be a mechanism allowing cells to adjust their macroscopic mechanical properties to their physiological needs.

  11. Role of Somatostatin-Positive Cortical Interneurons in the Generation of Sleep Slow Waves.

    PubMed

    Funk, Chadd M; Peelman, Kayla; Bellesi, Michele; Marshall, William; Cirelli, Chiara; Tononi, Giulio

    2017-09-20

    During non-rapid eye-movement (NREM) sleep, cortical and thalamic neurons oscillate every second or so between ON periods, characterized by membrane depolarization and wake-like tonic firing, and OFF periods, characterized by membrane hyperpolarization and neuronal silence. Cortical slow waves, the hallmark of NREM sleep, reflect near-synchronous OFF periods in cortical neurons. However, the mechanisms triggering such OFF periods are unclear, as there is little evidence for somatic inhibition. We studied cortical inhibitory interneurons that express somatostatin (SOM), because ∼70% of them are Martinotti cells that target diffusely layer I and can block excitatory transmission presynaptically, at glutamatergic terminals, and postsynaptically, at apical dendrites, without inhibiting the soma. In freely moving male mice, we show that SOM+ cells can fire immediately before slow waves and their optogenetic stimulation during ON periods of NREM sleep triggers long OFF periods. Next, we show that chemogenetic activation of SOM+ cells increases slow-wave activity (SWA), slope of individual slow waves, and NREM sleep duration; whereas their chemogenetic inhibition decreases SWA and slow-wave incidence without changing time spent in NREM sleep. By contrast, activation of parvalbumin+ (PV+) cells, the most numerous population of cortical inhibitory neurons, greatly decreases SWA and cortical firing, triggers short OFF periods in NREM sleep, and increases NREM sleep duration. Thus SOM+ cells, but not PV+ cells, are involved in the generation of sleep slow waves. Whether Martinotti cells are solely responsible for this effect, or are complemented by other classes of inhibitory neurons, remains to be investigated. SIGNIFICANCE STATEMENT Cortical slow waves are a defining feature of non-rapid eye-movement (NREM) sleep and are thought to be important for many of its restorative benefits. Yet, the mechanism by which cortical neurons abruptly and synchronously cease firing, the neuronal basis of the slow wave, remains unknown. Using chemogenetic and optogenetic approaches, we provide the first evidence that links a specific class of inhibitory interneurons-somatostatin-positive cells-to the generation of slow waves during NREM sleep in freely moving mice. Copyright © 2017 the authors 0270-6474/17/379132-17$15.00/0.

  12. Cortical thinning in type 2 diabetes mellitus and recovering effects of insulin therapy.

    PubMed

    Chen, Zhiye; Sun, Jie; Yang, Yang; Lou, Xin; Wang, Yulin; Wang, Yan; Ma, Lin

    2015-02-01

    The purpose of this study was to explore the brain structural changes in type 2 diabetes and the effect of insulin on the brain using a surface-based cortical thickness analysis. High-resolution three-dimensional T1-weighted fast spoiled gradient recalled echo MRI were obtained from 11 patients with type 2 diabetes before and after insulin therapy. The cortical thickness over the entire brain was calculated, and cross-sectional and longitudinal surface-based cortical thickness analyses were also performed. Regional cortical thinning was demonstrated in the middle temporal gyrus, posterior cingulate gyrus, precuneus, right lateral occipital gyrus and entorhinal cortex bilaterally for patients with type 2 diabetes mellitus compared with normal controls. Cortical thickening was seen in the middle temporal gyrus, entorhinal cortex and left inferior temporal gyrus bilaterally after patients underwent 1 year of insulin therapy. These findings suggest that insulin therapy may have recovering effects on the brain cortex in type 2 diabetes mellitus. The precise mechanism should be investigated further. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Roles of an Unconventional Protein Kinase and Myosin II in Amoeba Osmotic Shock Responses

    PubMed Central

    Betapudi, Venkaiah; Egelhoff, Thomas T.

    2009-01-01

    The contractile vacuole (CV) is a dynamic organelle that enables Dictyostelium amoeba and other protist to maintain osmotic homeostasis by expelling excess water. In the present study, we have uncovered a mechanism that coordinates the mechanics of the CV with myosin II, regulated by VwkA, an unconventional protein kinase that is conserved in an array of protozoa. GFP-VwkA fusion proteins localize persistently to the CV during both filling and expulsion phases of water. In vwkA null cells, the established CV marker dajumin still localizes to the CV, but these structures are large, spherical, and severely impaired for discharge. Furthermore, myosin II cortical localization and assembly are abnormal in vwkA null cells. Parallel analysis of wild type cells treated with myosin II inhibitors or of myosin II null cells also results in enlarged CVs with impaired dynamics. We suggest that the myosin II cortical cytoskeleton, regulated by VwkA, serves a critical conserved role in the periodic contractions of the CV, as part of the osmotic protective mechanism of protozoa. PMID:19843280

  14. Robust Formation and Maintenance of Continuous Stratified Cortical Neuroepithelium by Laminin-Containing Matrix in Mouse ES Cell Culture

    PubMed Central

    Nasu, Makoto; Takata, Nozomu; Danjo, Teruko; Sakaguchi, Hideya; Kadoshima, Taisuke; Futaki, Sugiko; Sekiguchi, Kiyotoshi; Eiraku, Mototsugu; Sasai, Yoshiki

    2012-01-01

    In the mammalian cortex, the dorsal telencephalon exhibits a characteristic stratified structure. We previously reported that three-dimensional (3D) culture of mouse ES cells (mESCs) can efficiently generate cortical neuroepithelium (NE) and layer-specific cortical neurons. However, the cortical NE generated in this mESC culture was structurally unstable and broke into small neural rosettes by culture day 7, suggesting that some factors for reinforcing the structural integrity were missing. Here we report substantial supporting effects of the extracellular matrix (ECM) protein laminin on the continuous formation of properly polarized cortical NE in floating aggregate culture of mESCs. The addition of purified laminin and entactin (a laminin-associated protein), even at low concentrations, stabilized the formation of continuous cortical NE as well as the maintenance of basement membrane and prevented rosette formation. Treatment with the neutralizing ß1-integrin antibody impaired the continuous NE formation. The stabilized cortical NE exhibited typical interkinetic nuclear migration of cortical progenitors, as seen in the embryonic cortex. The laminin-treated cortical NE maintained a continuous structure even on culture days 12 and 15, and contained ventricular, basal-progenitor, cortical-plate and Cajal-Retzius cell layers. The cortical NE in this culture was flanked by cortical hem-like tissue. Furthermore, when Shh was added, ventral telencephalic structures such as lateral ganglionic eminence–like tissue formed in the region adjacent to the cortical NE. Thus, our results indicate that laminin-entactin ECM promotes the formation of structurally stable telencephalic tissues in 3D ESC culture, and supports the morphogenetic recapitulation of cortical development. PMID:23300850

  15. Local pulsatile contractions are an intrinsic property of the myosin 2A motor in the cortical cytoskeleton of adherent cells.

    PubMed

    Baird, Michelle A; Billington, Neil; Wang, Aibing; Adelstein, Robert S; Sellers, James R; Fischer, Robert S; Waterman, Clare M

    2017-01-15

    The role of nonmuscle myosin 2 (NM2) pulsatile dynamics in generating contractile forces required for developmental morphogenesis has been characterized, but whether these pulsatile contractions are an intrinsic property of all actomyosin networks is not known. Here we used live-cell fluorescence imaging to show that transient, local assembly of NM2A "pulses" occurs in the cortical cytoskeleton of single adherent cells of mesenchymal, epithelial, and sarcoma origin, independent of developmental signaling cues and cell-cell or cell-ECM interactions. We show that pulses in the cortical cytoskeleton require Rho-associated kinase- or myosin light chain kinase (MLCK) activity, increases in cytosolic calcium, and NM2 ATPase activity. Surprisingly, we find that cortical cytoskeleton pulses specifically require the head domain of NM2A, as they do not occur with either NM2B or a 2B-head-2A-tail chimera. Our results thus suggest that pulsatile contractions in the cortical cytoskeleton are an intrinsic property of the NM2A motor that may mediate its role in homeostatic maintenance of tension in the cortical cytoskeleton of adherent cells. © 2017 Baird et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. The Cotton Kinesin-Like Calmodulin-Binding Protein Associates with Cortical Microtubles in Cotton Fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preuss, Mary L.; Delmar, Deborah P.; Liu, Bo

    Microtubules in interphase plant cells form a cortical array, which is critical for plant cell morphogenesis. Genetic studies imply that the minus end-directed microtubule motor kinesin-like calmodulin-binding protein (KCBP) plays a role in trichome morphogenesis in Arabidopsis. However, it was not clear whether this motor interacted with interphase microtubules. In cotton (Gossypium hirsutum) fibers, cortical microtubules undergo dramatic reorganization during fiber development. In this study, cDNA clones of the cotton KCBP homolog GhKCBP were isolated from a cotton fiber-specific cDNA library. During cotton fiber development from 10 to 21 DPA, the GhKCBP protein level gradually decreases. By immunofluorescence, GhKCBP wasmore » detected as puncta along cortical microtubules in fiber cells of different developmental stages. Thus the results provide evidence that GhKCBP plays a role in interphase cell growth likely by interacting with cortical microtubules. In contrast to fibers, in dividing cells of cotton, GhKCBP localized to the nucleus, the microtubule preprophase band, mitotic spindle, and the phragmoplast. Therefore KCBP likely exerts multiple roles in cell division and cell growth in flowering plants.« less

  17. Cortex shatters the glass ceiling.

    PubMed

    Au, Edmund; Fishell, Gord

    2008-11-06

    Recreating developmental structures in vitro has been a primary challenge for stem cell biologists. Recent studies in Cell Stem Cell (Eiraku et al., 2008) and Nature (Gaspard et al., 2008) demonstrate that embryonic stem cells can recapitulate early cortical development, enabling them to generate specific cortical subtypes.

  18. Cortical PAR polarity proteins promote robust cytokinesis during asymmetric cell division

    PubMed Central

    Jordan, Shawn N.; Davies, Tim; Zhuravlev, Yelena; Dumont, Julien; Shirasu-Hiza, Mimi

    2016-01-01

    Cytokinesis, the physical division of one cell into two, is thought to be fundamentally similar in most animal cell divisions and driven by the constriction of a contractile ring positioned and controlled solely by the mitotic spindle. During asymmetric cell divisions, the core polarity machinery (partitioning defective [PAR] proteins) controls the unequal inheritance of key cell fate determinants. Here, we show that in asymmetrically dividing Caenorhabditis elegans embryos, the cortical PAR proteins (including the small guanosine triphosphatase CDC-42) have an active role in regulating recruitment of a critical component of the contractile ring, filamentous actin (F-actin). We found that the cortical PAR proteins are required for the retention of anillin and septin in the anterior pole, which are cytokinesis proteins that our genetic data suggest act as inhibitors of F-actin at the contractile ring. Collectively, our results suggest that the cortical PAR proteins coordinate the establishment of cell polarity with the physical process of cytokinesis during asymmetric cell division to ensure the fidelity of daughter cell formation. PMID:26728855

  19. ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jeong-Ho; Yu, Tae-Hoon; Ryu, Hyun-Hee

    2013-08-01

    Tar-DNA binding protein of 43 kDa (TDP-43) has been characterized as a major component of protein aggregates in brains with neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, physiological roles of TDP-43 and early cellular pathogenic effects caused by disease associated mutations in differentiated neurons are still largely unknown. Here, we investigated the physiological roles of TDP-43 and the effects of missense mutations associated with diseases in differentiated cortical neurons. The reduction of TDP-43 by siRNA increased abnormal neurites and decreased cell viability. ALS/FTLD-associated missense mutant proteins (A315T, Q331K, and M337V) were partially mislocalizedmore » to the cytosol and neurites when compared to wild-type and showed abnormal neurites similar to those observed in cases of loss of TDP-43. Interestingly, cytosolic expression of wild-type TDP-43 with mutated nuclear localization signals also induced abnormal neurtie morphology and reduction of cell viability. However, there was no significant difference in the effects of cytosolic expression in neuronal morphology and cell toxicity between wild-type and missense mutant proteins. Thus, our results suggest that mislocalization of missense mutant TDP-43 may contribute to loss of TDP-43 function and affect neuronal morphology, probably via dominant negative action before severe neurodegeneration in differentiated cortical neurons. Highlights: • The function of nuclear TDP-43 in neurite morphology in mature neurons. • Partial mislocalization of TDP-43 missense mutants into cytosol from nucleus. • Abnormal neurite morphology caused by missense mutants of TDP-43. • The effect of cytosolic expression of TDP-43 in neurite morphology and in cell survival.« less

  20. Cell-Specific IRF-3 Responses Protect against West Nile Virus Infection by Interferon-Dependent and -Independent Mechanisms

    PubMed Central

    Daffis, Stephane; Samuel, Melanie A; Keller, Brian C; Gale, Michael; Diamond, Michael S

    2007-01-01

    Interferon regulatory factor (IRF)-3 is a master transcription factor that activates host antiviral defense programs. Although cell culture studies suggest that IRF-3 promotes antiviral control by inducing interferon (IFN)-β, near normal levels of IFN-α and IFN-β were observed in IRF-3−/− mice after infection by several RNA and DNA viruses. Thus, the specific mechanisms by which IRF-3 modulates viral infection remain controversial. Some of this disparity could reflect direct IRF-3-dependent antiviral responses in specific cell types to control infection. To address this and determine how IRF-3 coordinates an antiviral response, we infected IRF-3−/− mice and two primary cells relevant for West Nile virus (WNV) pathogenesis, macrophages and cortical neurons. IRF-3−/− mice were uniformly vulnerable to infection and developed elevated WNV burdens in peripheral and central nervous system tissues, though peripheral IFN responses were largely normal. Whereas wild-type macrophages basally expressed key host defense molecules, including RIG-I, MDA5, ISG54, and ISG56, and restricted WNV infection, IRF-3−/− macrophages lacked basal expression of these host defense genes and supported increased WNV infection and IFN-α and IFN-β production. In contrast, wild-type cortical neurons were highly permissive to WNV and did not basally express RIG-I, MDA5, ISG54, and ISG56. IRF-3−/− neurons lacked induction of host defense genes and had blunted IFN-α and IFN-β production, yet exhibited only modestly increased viral titers. Collectively, our data suggest that cell-specific IRF-3 responses protect against WNV infection through both IFN-dependent and -independent programs. PMID:17676997

  1. Quantifying the Cerebral Hemodynamics of Dural Arteriovenous Fistula in Transverse Sigmoid Sinus Complicated by Sinus Stenosis: A Retrospective Cohort Study.

    PubMed

    Guo, W-Y; Lee, C-C J; Lin, C-J; Yang, H-C; Wu, H-M; Wu, C-C; Chung, W-Y; Liu, K-D

    2017-01-01

    Sinus stenosis occasionally occurs in dural arteriovenous fistulas. Sinus stenosis impedes venous outflow and aggravates intracranial hypertension by reversing cortical venous drainage. This study aimed to analyze the likelihood of sinus stenosis and its impact on cerebral hemodynamics of various types of dural arteriovenous fistulas. Forty-three cases of dural arteriovenous fistula in the transverse-sigmoid sinus were reviewed and divided into 3 groups: Cognard type I, type IIa, and types with cortical venous drainage. Sinus stenosis and the double peak sign (occurrence of 2 peaks in the time-density curve of the ipsilateral drainage of the internal jugular vein) in dural arteriovenous fistula were evaluated. "TTP" was defined as the time at which a selected angiographic point reached maximum concentration. TTP of the vein of Labbé, TTP of the ipsilateral normal transverse sinus, trans-fistula time, and trans-stenotic time were compared across the 3 groups. Thirty-six percent of type I, 100% of type IIa, and 84% of types with cortical venous drainage had sinus stenosis. All sinus stenosis cases demonstrated loss of the double peak sign that occurs in dural arteriovenous fistula. Trans-fistula time (2.09 seconds) and trans-stenotic time (0.67 seconds) in types with cortical venous drainage were the most prolonged, followed by those in type IIa and type I. TTP of the vein of Labbé was significantly shorter in types with cortical venous drainage. Six patients with types with cortical venous drainage underwent venoplasty and stent placement, and 4 were downgraded to type IIa. Sinus stenosis indicated dysfunction of venous drainage and is more often encountered in dural arteriovenous fistula with more aggressive types. Venoplasty ameliorates cortical venous drainage in dural arteriovenous fistulas and serves as a bridge treatment to stereotactic radiosurgery in most cases. © 2017 by American Journal of Neuroradiology.

  2. Does cortical bone thickness in the last sacral vertebra differ among tail types in primates?

    PubMed

    Nishimura, Abigail C; Russo, Gabrielle A

    2017-04-01

    The external morphology of the sacrum is demonstrably informative regarding tail type (i.e., tail presence/absence, length, and prehensility) in living and extinct primates. However, little research has focused on the relationship between tail type and internal sacral morphology, a potentially important source of functional information when fossil sacra are incomplete. Here, we determine if cortical bone cross-sectional thickness of the last sacral vertebral body differs among tail types in extant primates and can be used to reconstruct tail types in extinct primates. Cortical bone cross-sectional thickness in the last sacral vertebral body was measured from high-resolution CT scans belonging to 20 extant primate species (N = 72) assigned to tail type categories ("tailless," "nonprehensile short-tailed," "nonprehensile long-tailed," and "prehensile-tailed"). The extant dataset was then used to reconstruct the tail types for four extinct primate species. Tailless primates had significantly thinner cortical bone than tail-bearing primates. Nonprehensile short-tailed primates had significantly thinner cortical bone than nonprehensile long-tailed primates. Cortical bone cross-sectional thickness did not distinguish between prehensile-tailed and nonprehensile long-tailed taxa. Results are strongly influenced by phylogeny. Corroborating previous studies, Epipliopithecus vindobonensis was reconstructed as tailless, Archaeolemur edwardsi as long-tailed, Megaladapis grandidieri as nonprehensile short-tailed, and Palaeopropithecus kelyus as nonprehensile short-tailed or tailless. Results indicate that, in the context of phylogenetic clade, measures of cortical bone cross-sectional thickness can be used to allocate extinct primate species to tail type categories. © 2017 Wiley Periodicals, Inc.

  3. Expression of erythropoietin and its receptor in the brain of late-gestation fetal sheep, and responses to asphyxia caused by umbilical cord occlusion.

    PubMed

    Castillo-Meléndez, Margie; Yan, Edwin; Walker, David W

    2005-01-01

    Asphyxia and hypoxia are common threats faced by the fetus in utero. In late-gestation fetal sheep, asphyxia produced by umbilical cord occlusion (UCO) results in widespread lipid peroxidation and apoptosis. Adaptive mechanisms that might limit fetal brain damage include induction of the hemopoietic cytokine, erythropoietin (EPO). In unanesthetized fetal sheep, we investigated if 1 or 2 bouts of brief asphyxia (UCO for 10 min) induced EPO and EPO type I receptor (EPO-R) expressions, with the second UCO repeated 48 h after the first. Fetal brains were recovered 48 h after either sham, 1 x or 2 x UCO at 129-133 (term approximately 147) days of gestation and prepared for immunocytochemistry. In age-matched control brain, low levels of EPO and EPO-R proteins were present in oligodendrocytes (OLs), periventricular and cortical white matter (WM), with no EPO and very low EPO-R expression in neurons. After 1 x UCO, EPO and EPO-R expressions were increased in astrocytes (periventricular and cortical WM, striatum, corpus callosum), choroid plexus epithelial cells, scattered neurons in cortical layers IV-VI, hippocampal CA1 neurons, and in the molecular and granule layers of the cerebellum. After 2 x UCO, higher levels of EPO and EPO-R occurred in the periventricular and cortical WM, corpus callosum, hippocampal CA1, and in neurons of all cortical layers. Paradoxically, EPO and EPO-R were now lower in hippocampal CA1 neurons and cerebellar molecular and granule cell layers. Few OLs expressed EPO or EPO-R after 1 x or 2 x UCO. Thus, brief asphyxia induces EPO and EPO-R in fetal astrocytes, but only after repeated asphyxial insult in neurons. Whether this is a response to increased injury, or represents an adaptive response that limits further cell death and brain damage awaits further investigation.

  4. Developmental Connectivity and Molecular Phenotypes of Unique Cortical Projection Neurons that Express a Synapse-Associated Receptor Tyrosine Kinase.

    PubMed

    Kast, Ryan J; Wu, Hsiao-Huei; Levitt, Pat

    2017-11-28

    The complex circuitry and cell-type diversity of the cerebral cortex are required for its high-level functions. The mechanisms underlying the diversification of cortical neurons during prenatal development have received substantial attention, but understanding of neuronal heterogeneity is more limited during later periods of cortical circuit maturation. To address this knowledge gap, connectivity analysis and molecular phenotyping of cortical neuron subtypes that express the developing synapse-enriched MET receptor tyrosine kinase were performed. Experiments used a MetGFP transgenic mouse line, combined with coexpression analysis of class-specific molecular markers and retrograde connectivity mapping. The results reveal that MET is expressed by a minor subset of subcerebral and a larger number of intratelencephalic projection neurons. Remarkably, MET is excluded from most layer 6 corticothalamic neurons. These findings are particularly relevant for understanding the maturation of discrete cortical circuits, given converging evidence that MET influences dendritic elaboration and glutamatergic synapse maturation. The data suggest that classically defined cortical projection classes can be further subdivided based on molecular characteristics that likely influence synaptic maturation and circuit wiring. Additionally, given that MET is classified as a high confidence autism risk gene, the data suggest that projection neuron subpopulations may be differentially vulnerable to disorder-associated genetic variation. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Distinct Laterality in Forelimb-Movement Representations of Rat Primary and Secondary Motor Cortical Neurons with Intratelencephalic and Pyramidal Tract Projections.

    PubMed

    Soma, Shogo; Saiki, Akiko; Yoshida, Junichi; Ríos, Alain; Kawabata, Masanori; Sakai, Yutaka; Isomura, Yoshikazu

    2017-11-08

    Two distinct motor areas, the primary and secondary motor cortices (M1 and M2), play crucial roles in voluntary movement in rodents. The aim of this study was to characterize the laterality in motor cortical representations of right and left forelimb movements. To achieve this goal, we developed a novel behavioral task, the Right-Left Pedal task, in which a head-restrained male rat manipulates a right or left pedal with the corresponding forelimb. This task enabled us to monitor independent movements of both forelimbs with high spatiotemporal resolution. We observed phasic movement-related neuronal activity (Go-type) and tonic hold-related activity (Hold-type) in isolated unilateral movements. In both M1 and M2, Go-type neurons exhibited bias toward contralateral preference, whereas Hold-type neurons exhibited no bias. The contralateral bias was weaker in M2 than M1. Moreover, we differentiated between intratelencephalic (IT) and pyramidal tract (PT) neurons using optogenetically evoked spike collision in rats expressing channelrhodopsin-2. Even in identified PT and IT neurons, Hold-type neurons exhibited no lateral bias. Go-type PT neurons exhibited bias toward contralateral preference, whereas IT neurons exhibited no bias. Our findings suggest a different laterality of movement representations of M1 and M2, in each of which IT neurons are involved in cooperation of bilateral movements, whereas PT neurons control contralateral movements. SIGNIFICANCE STATEMENT In rodents, the primary and secondary motor cortices (M1 and M2) are involved in voluntary movements via distinct projection neurons: intratelencephalic (IT) neurons and pyramidal tract (PT) neurons. However, it remains unclear whether the two motor cortices (M1 vs M2) and the two classes of projection neurons (IT vs PT) have different laterality of movement representations. We optogenetically identified these neurons and analyzed their functional activity using a novel behavioral task to monitor movements of the right and left forelimbs separately. We found that contralateral bias was reduced in M2 relative to M1, and in IT relative to PT neurons. Our findings suggest that the motor information processing that controls forelimb movement is coordinated by a distinct cell population. Copyright © 2017 the authors 0270-6474/17/3710904-13$15.00/0.

  6. Glycolysis, but not Mitochondria, responsible for intracellular ATP distribution in cortical area of podocytes.

    PubMed

    Ozawa, Shota; Ueda, Shuko; Imamura, Hiromi; Mori, Kiyoshi; Asanuma, Katsuhiko; Yanagita, Motoko; Nakagawa, Takahiko

    2015-12-18

    Differentiated podocytes, a type of renal glomerular cells, require substantial levels of energy to maintain glomerular physiology. Mitochondria and glycolysis are two major producers of ATP, but the precise roles of each in podocytes remain unknown. This study evaluated the roles of mitochondria and glycolysis in differentiated and differentiating podocytes. Mitochondria in differentiated podocytes are located in the central part of cell body while blocking mitochondria had minor effects on cell shape and migratory ability. In contrast, blocking glycolysis significantly reduced the formation of lamellipodia, a cortical area of these cells, decreased the cell migratory ability and induced the apoptosis. Consistently, the local ATP production in lamellipodia was predominantly regulated by glycolysis. In turn, synaptopodin expression was ameliorated by blocking either mitochondrial respiration or glycolysis. Similar to differentiated podocytes, the differentiating podocytes utilized the glycolysis for regulating apoptosis and lamellipodia formation while synaptopodin expression was likely involved in both mitochondrial OXPHOS and glycolysis. Finally, adult mouse podocytes have most of mitochondria predominantly in the center of the cytosol whereas phosphofructokinase, a rate limiting enzyme for glycolysis, was expressed in foot processes. These data suggest that mitochondria and glycolysis play parallel but distinct roles in differentiated and differentiating podocytes.

  7. Glycolysis, but not Mitochondria, responsible for intracellular ATP distribution in cortical area of podocytes

    PubMed Central

    Ozawa, Shota; Ueda, Shuko; Imamura, Hiromi; Mori, Kiyoshi; Asanuma, Katsuhiko; Yanagita, Motoko; Nakagawa, Takahiko

    2015-01-01

    Differentiated podocytes, a type of renal glomerular cells, require substantial levels of energy to maintain glomerular physiology. Mitochondria and glycolysis are two major producers of ATP, but the precise roles of each in podocytes remain unknown. This study evaluated the roles of mitochondria and glycolysis in differentiated and differentiating podocytes. Mitochondria in differentiated podocytes are located in the central part of cell body while blocking mitochondria had minor effects on cell shape and migratory ability. In contrast, blocking glycolysis significantly reduced the formation of lamellipodia, a cortical area of these cells, decreased the cell migratory ability and induced the apoptosis. Consistently, the local ATP production in lamellipodia was predominantly regulated by glycolysis. In turn, synaptopodin expression was ameliorated by blocking either mitochondrial respiration or glycolysis. Similar to differentiated podocytes, the differentiating podocytes utilized the glycolysis for regulating apoptosis and lamellipodia formation while synaptopodin expression was likely involved in both mitochondrial OXPHOS and glycolysis. Finally, adult mouse podocytes have most of mitochondria predominantly in the center of the cytosol whereas phosphofructokinase, a rate limiting enzyme for glycolysis, was expressed in foot processes. These data suggest that mitochondria and glycolysis play parallel but distinct roles in differentiated and differentiating podocytes. PMID:26677804

  8. Glutamate synaptic inputs to ventral tegmental area neurons in the rat derive primarily from subcortical sources.

    PubMed

    Omelchenko, N; Sesack, S R

    2007-05-25

    Dopamine and GABA neurons in the ventral tegmental area project to the nucleus accumbens and prefrontal cortex and modulate locomotor and reward behaviors as well as cognitive and affective processes. Both midbrain cell types receive synapses from glutamate afferents that provide an essential control of behaviorally-linked activity patterns, although the sources of glutamate inputs have not yet been completely characterized. We used antibodies against the vesicular glutamate transporter subtypes 1 and 2 (VGlut1 and VGlut2) to investigate the morphology and synaptic organization of axons containing these proteins as putative markers of glutamate afferents from cortical versus subcortical sites, respectively, in rats. We also characterized the ventral tegmental area cell populations receiving VGlut1+ or VGlut2+ synapses according to their transmitter phenotype (dopamine or GABA) and major projection target (nucleus accumbens or prefrontal cortex). By light and electron microscopic examination, VGlut2+ as opposed to VGlut1+ axon terminals were more numerous, had a larger average size, synapsed more proximally, and were more likely to form convergent synapses onto the same target. Both axon types formed predominantly asymmetric synapses, although VGlut2+ terminals more often formed synapses with symmetric morphology. No absolute selectivity was observed for VGlut1+ or VGlut2+ axons to target any particular cell population. However, the synapses onto mesoaccumbens neurons more often involved VGlut2+ terminals, whereas mesoprefrontal neurons received relatively equal synaptic inputs from VGlut1+ and VGlut2+ profiles. The distinct morphological features of VGlut1 and VGlut2 positive axons suggest that glutamate inputs from presumed cortical and subcortical sources, respectively, differ in the nature and intensity of their physiological actions on midbrain neurons. More specifically, our findings imply that subcortical glutamate inputs to the ventral tegmental area expressing VGlut2 predominate over cortical sources of excitation expressing VGlut1 and are more likely to drive the behaviorally-linked bursts in dopamine cells that signal future expectancy or attentional shifting.

  9. Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea Mays)

    PubMed Central

    Chimungu, Joseph G.; Loades, Kenneth W.; Lynch, Jonathan P.

    2015-01-01

    The ability of roots to penetrate hard soil is important for crop productivity but specific root phenes contributing to this ability are poorly understood. Root penetrability and biomechanical properties are likely to vary in the root system dependent on anatomical structure. No information is available to date on the influence of root anatomical phenes on root penetrability and biomechanics. Root penetration ability was evaluated using a wax layer system. Root tensile and bending strength were evaluated in plant roots grown in the greenhouse and in the field. Root anatomical phenes were found to be better predictors of root penetrability than root diameter per se and associated with smaller distal cortical region cell size. Smaller outer cortical region cells play an important role in stabilizing the root against ovalization and reducing the risk of local buckling and collapse during penetration, thereby increasing root penetration of hard layers. The use of stele diameter was found to be a better predictor of root tensile strength than root diameter. Cortical thickness, cortical cell count, cortical cell wall area and distal cortical cell size were stronger predictors of root bend strength than root diameter. Our results indicate that root anatomical phenes are important predictors for root penetrability of high-strength layers and root biomechanical properties. PMID:25903914

  10. Meninges control tangential migration of hem-derived Cajal-Retzius cells via CXCL12/CXCR4 signaling.

    PubMed

    Borrell, Víctor; Marín, Oscar

    2006-10-01

    Cajal-Retzius cells are critical in the development of the cerebral cortex, but little is known about the mechanisms controlling their development. Three focal sources of Cajal-Retzius cells have been identified in mice-the cortical hem, the ventral pallium and the septum-from where they migrate tangentially to populate the cortical surface. Using a variety of tissue culture assays and in vivo manipulations, we demonstrate that the tangential migration of cortical hem-derived Cajal-Retzius cells is controlled by the meninges. We show that the meningeal membranes are a necessary and sufficient substrate for the tangential migration of Cajal-Retzius cells. We also show that the chemokine CXCL12 secreted by the meninges enhances the dispersion of Cajal-Retzius cells along the cortical surface, while retaining them within the marginal zone in a CXCR4-dependent manner. Thus, the meningeal membranes are fundamental in the development of Cajal-Retzius cells and, hence, in the normal development of the cerebral cortex.

  11. Maternal dietary intake of choline in mice regulates development of the cerebral cortex in the offspring.

    PubMed

    Wang, Yanyan; Surzenko, Natalia; Friday, Walter B; Zeisel, Steven H

    2016-04-01

    Maternal diets low in choline, an essential nutrient, increase the risk of neural tube defects and lead to low performance on cognitive tests in children. However, the consequences of maternal dietary choline deficiency for the development and structural organization of the cerebral cortex remain unknown. In this study, we fed mouse dams either control (CT) or low-choline (LC) diets and investigated the effects of choline on cortical development in the offspring. As a result of a low choline supply between embryonic day (E)11 and E17 of gestation, the number of 2 types of cortical neural progenitor cells (NPCs)-radial glial cells and intermediate progenitor cells-was reduced in fetal brains (P< 0.01). Furthermore, the number of upper layer cortical neurons was decreased in the offspring of dams fed an LC diet at both E17 (P< 0.001) and 4 mo of age (P< 0.001). These effects of LC maternal diet were mediated by a decrease in epidermal growth factor receptor (EGFR) signaling in NPCs related to the disruption of EGFR posttranscriptional regulation. Our findings describe a novel mechanism whereby low maternal dietary intake of choline alters brain development.-Wang, Y., Surzenko, N., Friday, W. B., Zeisel, S. H. Maternal dietary intake of choline in mice regulates development of the cerebral cortex in the offspring. © FASEB.

  12. The Functioning of a Cortex without Layers.

    PubMed

    Guy, Julien; Staiger, Jochen F

    2017-01-01

    A major hallmark of cortical organization is the existence of a variable number of layers, i.e., sheets of neurons stacked on top of each other, in which neurons have certain commonalities. However, even for the neocortex, variable numbers of layers have been described and it is just a convention to distinguish six layers from each other. Whether cortical layers are a structural epiphenomenon caused by developmental dynamics or represent a functionally important modularization of cortical computation is still unknown. Here we present our insights from the reeler mutant mouse, a model for a developmental, "molecular lesion"-induced loss of cortical layering that could serve as ground truth of what an intact layering adds to the cortex in terms of functionality. We could demonstrate that the reeler neocortex shows no inversion of cortical layers but rather a severe disorganization that in the primary somatosensory cortex leads to the complete loss of layers. Nevertheless, the somatosensory system is well organized. When exploring an enriched environment with specific sets of whiskers, activity-dependent gene expression takes place in the corresponding modules. Precise whisker stimuli lead to the functional activation of somatotopically organized barrel columns as visualized by intrinsic signal optical imaging. Similar results were obtained in the reeler visual system. When analyzing pathways that could be responsible for preservation of tactile perception, lemniscal thalamic projections were found to be largely intact, despite the smearing of target neurons across the cortical mantle. However, with optogenetic experiments we found evidence for a mild dispersion of thalamic synapse targeting on layer IV-spiny stellate cells, together with a general weakening in thalamocortical input strength. This weakening of thalamic inputs was compensated by intracortical mechanisms involving increased recurrent excitation and/or reduced feedforward inhibition. In conclusion, a layer loss so far only led to the detection of subtle defects in sensory processing by reeler mice. This argues in favor of a view in which cortical layers are not an essential component for basic perception and cognition. A view also supported by recent studies in birds, which can have remarkable cognitive capacities despite the lack of a neocortex with multiple cortical layers. In conclusion, we suggest that future studies directed toward understanding cortical functions should rather focus on circuits specified by functional cell type composition than mere laminar location.

  13. The mouse cortical meninges are the site of immune responses to many different pathogens, and are accessible to intravital imaging.

    PubMed

    Coles, Jonathan A; Stewart-Hutchinson, Phillip J; Myburgh, Elmarie; Brewer, James M

    2017-08-15

    A wide range of viral and microbial infections are known to cause meningitis, and there is evidence that the meninges are the gateway to pathogenic invasion of the brain parenchyma. Hence observation of these regions has wide application to understanding host-pathogen interactions. Interactions between pathogens and cells of the immune response can be modified by changes in their environment, such as suppression of the flow of blood and lymph, and, particularly in the case of the meninges, with their unsupported membranes, invasive dissection can alter the tissue architecture. For these reasons, intravital imaging through the unperforated skull is the method of choice. We give a protocol for a simple method of two-photon microscopy through the thinned cortical skull of the anesthetized mouse to enable real-time imaging with sub-micron resolution through the meninges and into the superficial brain parenchyma. In reporter mice in which selected cell types express fluorescent proteins, imaging after infection with fluorescent pathogens (lymphocytic choriomeningitis virus, Trypanosoma brucei or Plasmodium berghei) has shown strong recruitment to the cortical meninges of immune cells, including neutrophils, T cells, and putative dendritic cells and macrophages. Without special labeling, the boundaries between the dura mater, the leptomeninx, and the parenchyma are not directly visualized in intravital two-photon microscopy, but other landmarks and characteristics, which we illustrate, allow the researcher to identify the compartment being imaged. While most infectious meningitides are localized mainly in the dura mater, others involve recruitment of immune cells to the leptomeninx. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. A resilient formin-derived cortical actin meshwork in the rear drives actomyosin-based motility in 2D confinement

    PubMed Central

    Ramalingam, Nagendran; Franke, Christof; Jaschinski, Evelin; Winterhoff, Moritz; Lu, Yao; Brühmann, Stefan; Junemann, Alexander; Meier, Helena; Noegel, Angelika A.; Weber, Igor; Zhao, Hongxia; Merkel, Rudolf; Schleicher, Michael; Faix, Jan

    2015-01-01

    Cell migration is driven by the establishment of disparity between the cortical properties of the softer front and the more rigid rear allowing front extension and actomyosin-based rear contraction. However, how the cortical actin meshwork in the rear is generated remains elusive. Here we identify the mDia1-like formin A (ForA) from Dictyostelium discoideum that generates a subset of filaments as the basis of a resilient cortical actin sheath in the rear. Mechanical resistance of this actin compartment is accomplished by actin crosslinkers and IQGAP-related proteins, and is mandatory to withstand the increased contractile forces in response to mechanical stress by impeding unproductive blebbing in the rear, allowing efficient cell migration in two-dimensional-confined environments. Consistently, ForA supresses the formation of lateral protrusions, rapidly relocalizes to new prospective ends in repolarizing cells and is required for cortical integrity. Finally, we show that ForA utilizes the phosphoinositide gradients in polarized cells for subcellular targeting. PMID:26415699

  15. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture.

    PubMed

    Paşca, Anca M; Sloan, Steven A; Clarke, Laura E; Tian, Yuan; Makinson, Christopher D; Huber, Nina; Kim, Chul Hoon; Park, Jin-Young; O'Rourke, Nancy A; Nguyen, Khoa D; Smith, Stephen J; Huguenard, John R; Geschwind, Daniel H; Barres, Ben A; Paşca, Sergiu P

    2015-07-01

    The human cerebral cortex develops through an elaborate succession of cellular events that, when disrupted, can lead to neuropsychiatric disease. The ability to reprogram somatic cells into pluripotent cells that can be differentiated in vitro provides a unique opportunity to study normal and abnormal corticogenesis. Here, we present a simple and reproducible 3D culture approach for generating a laminated cerebral cortex-like structure, named human cortical spheroids (hCSs), from pluripotent stem cells. hCSs contain neurons from both deep and superficial cortical layers and map transcriptionally to in vivo fetal development. These neurons are electrophysiologically mature, display spontaneous activity, are surrounded by nonreactive astrocytes and form functional synapses. Experiments in acute hCS slices demonstrate that cortical neurons participate in network activity and produce complex synaptic events. These 3D cultures should allow a detailed interrogation of human cortical development, function and disease, and may prove a versatile platform for generating other neuronal and glial subtypes in vitro.

  16. Somatostatin-Expressing Inhibitory Interneurons in Cortical Circuits

    PubMed Central

    Yavorska, Iryna; Wehr, Michael

    2016-01-01

    Cortical inhibitory neurons exhibit remarkable diversity in their morphology, connectivity, and synaptic properties. Here, we review the function of somatostatin-expressing (SOM) inhibitory interneurons, focusing largely on sensory cortex. SOM neurons also comprise a number of subpopulations that can be distinguished by their morphology, input and output connectivity, laminar location, firing properties, and expression of molecular markers. Several of these classes of SOM neurons show unique dynamics and characteristics, such as facilitating synapses, specific axonal projections, intralaminar input, and top-down modulation, which suggest possible computational roles. SOM cells can be differentially modulated by behavioral state depending on their class, sensory system, and behavioral paradigm. The functional effects of such modulation have been studied with optogenetic manipulation of SOM cells, which produces effects on learning and memory, task performance, and the integration of cortical activity. Different classes of SOM cells participate in distinct disinhibitory circuits with different inhibitory partners and in different cortical layers. Through these disinhibitory circuits, SOM cells help encode the behavioral relevance of sensory stimuli by regulating the activity of cortical neurons based on subcortical and intracortical modulatory input. Associative learning leads to long-term changes in the strength of connectivity of SOM cells with other neurons, often influencing the strength of inhibitory input they receive. Thus despite their heterogeneity and variability across cortical areas, current evidence shows that SOM neurons perform unique neural computations, forming not only distinct molecular but also functional subclasses of cortical inhibitory interneurons. PMID:27746722

  17. Optimal staining methods for delineation of cortical areas and neuron counts in human brains.

    PubMed

    Uylings, H B; Zilles, K; Rajkowska, G

    1999-04-01

    For cytoarchitectonic delineation of cortical areas in human brain, the Gallyas staining for somata with its sharp contrast between cell bodies and neuropil is preferable to the classical Nissl staining, the more so when an image analysis system is used. This Gallyas staining, however, does not appear to be appropriate for counting neuron numbers in pertinent brain areas, due to the lack of distinct cytological features between small neurons and glial cells. For cell counting Nissl is preferable. In an optimal design for cell counting at least both the Gallyas and the Nissl staining must be applied, the former staining for cytoarchitectural delineaton of cortical areas and the latter for counting the number of neurons in the pertinent cortical areas. Copyright 1999 Academic Press.

  18. Drp1 levels constitutively regulate mitochondrial dynamics and cell survival in cortical neurons.

    PubMed

    Uo, Takuma; Dworzak, Jenny; Kinoshita, Chizuru; Inman, Denise M; Kinoshita, Yoshito; Horner, Philip J; Morrison, Richard S

    2009-08-01

    Mitochondria exist as dynamic networks that are constantly remodeled through the opposing actions of fusion and fission proteins. Changes in the expression of these proteins alter mitochondrial shape and size, and may promote or inhibit the propagation of apoptotic signals. Using mitochondrially targeted EGFP or DsRed2 to identify mitochondria, we observed a short, distinctly tubular mitochondrial morphology in postnatal cortical neurons in culture and in retinal ganglion cells in vivo, whereas longer, highly interconnected mitochondrial networks were detected in cortical astrocytes in vitro and non-neuronal cells in the retina in vivo. Differential expression patterns of fusion and fission proteins, in part, appear to determine these morphological differences as neurons expressed markedly high levels of Drp1 and OPA1 proteins compared to non-neuronal cells. This finding was corroborated using optic tissue samples. Moreover, cortical neurons expressed several splice variants of Drp1 including a neuron-specific isoform which incorporates exon 3. Knockdown or dominant-negative interference of endogenous Drp1 significantly increased mitochondrial length in both neurons and non-neuronal cells, but caused cell death only in cortical neurons. Conversely, depletion of the fusion protein, Mfn2, but not Mfn1, caused extensive mitochondrial fission and cell death. Thus, Drp1 and Mfn2 in normal cortical neurons not only regulate mitochondrial morphology, but are also required for cell survival. The present findings point to unique patterns of Drp1 expression and selective vulnerability to reduced levels of Drp1 expression/activity in neurons, and demonstrate that the regulation of mitochondrial dynamics must be tightly regulated in neurons.

  19. Drp1 levels constitutively regulate mitochondrial dynamics and cell survival in cortical neurons

    PubMed Central

    Uo, Takuma; Dworzak, Jenny; Kinoshita, Chizuru; Inman, Denise M.; Kinoshita, Yoshito; Horner, Philip J.; Morrison, Richard S.

    2009-01-01

    Mitochondria exist as dynamic networks that are constantly remodeled through the opposing actions of fusion and fission proteins. Changes in the expression of these proteins alter mitochondrial shape and size, and may promote or inhibit the propagation of apoptotic signals. Using mitochondrially targeted EGFP or DsRed2 to identify mitochondria, we observed a short, distinctly tubular mitochondrial morphology in postnatal cortical neurons in culture and in retinal ganglion cells in vivo, whereas longer, highly interconnected mitochondrial networks were detected in cortical astrocytes in vitro and non-neuronal cells in the retina in vivo. Differential expression patterns of fusion and fission proteins, in part, appear to determine these morphological differences as neurons expressed markedly high levels of Drp1 and OPA1 proteins compared to non-neuronal cells. This finding was corroborated using optic tissue samples. Moreover, cortical neurons expressed several splice variants of Drp1 including a neuron-specific isoform which incorporates exon 3. Knockdown or dominant negative interference of endogenous Drp1 significantly increased mitochondrial length in both neurons and non-neuronal cells, but caused cell death only in cortical neurons. Conversely, depletion of the fusion protein, Mfn2, but not Mfn1, caused extensive mitochondrial fission and cell death. Thus, Drp1 and Mfn2 in normal cortical neurons not only regulate mitochondrial morphology, but are also required for cell survival. The present findings point to unique patterns of Drp1 expression and selective vulnerability to reduced levels of Drp1 expression/activity in neurons, and demonstrate that the regulation of mitochondrial dynamics must be tightly regulated in neurons. PMID:19445933

  20. Classes and continua of hippocampal CA1 inhibitory neurons revealed by single-cell transcriptomics.

    PubMed

    Harris, Kenneth D; Hochgerner, Hannah; Skene, Nathan G; Magno, Lorenza; Katona, Linda; Bengtsson Gonzales, Carolina; Somogyi, Peter; Kessaris, Nicoletta; Linnarsson, Sten; Hjerling-Leffler, Jens

    2018-06-18

    Understanding any brain circuit will require a categorization of its constituent neurons. In hippocampal area CA1, at least 23 classes of GABAergic neuron have been proposed to date. However, this list may be incomplete; additionally, it is unclear whether discrete classes are sufficient to describe the diversity of cortical inhibitory neurons or whether continuous modes of variability are also required. We studied the transcriptomes of 3,663 CA1 inhibitory cells, revealing 10 major GABAergic groups that divided into 49 fine-scale clusters. All previously described and several novel cell classes were identified, with three previously described classes unexpectedly found to be identical. A division into discrete classes, however, was not sufficient to describe the diversity of these cells, as continuous variation also occurred between and within classes. Latent factor analysis revealed that a single continuous variable could predict the expression levels of several genes, which correlated similarly with it across multiple cell types. Analysis of the genes correlating with this variable suggested it reflects a range from metabolically highly active faster-spiking cells that proximally target pyramidal cells to slower-spiking cells targeting distal dendrites or interneurons. These results elucidate the complexity of inhibitory neurons in one of the simplest cortical structures and show that characterizing these cells requires continuous modes of variation as well as discrete cell classes.

  1. Neuroprotective Effect of Arctigenin via Upregulation of P-CREB in Mouse Primary Neurons and Human SH-SY5Y Neuroblastoma Cells

    PubMed Central

    Zhang, Nan; Wen, Qingping; Ren, Lu; Liang, Wenbo; Xia, Yang; Zhang, Xiaodan; Zhao, Dan; Sun, Dong; Hu, Yv; Hao, Haiguang; Yan, Yaping; Zhang, Guangxian; Yang, Jingxian; Kang, Tingguo

    2013-01-01

    Arctigenin (Arc) has been shown to act on scopolamine-induced memory deficit mice and to provide a neuroprotective effect on cultured cortical neurons from glutamate-induced neurodegeneration through mechanisms not completely defined. Here, we investigated the neuroprotective effect of Arc on H89-induced cell damage and its potential mechanisms in mouse cortical neurons and human SH-SY5Y neuroblastoma cells. We found that Arc prevented cell viability loss induced by H89 in human SH-SY5Y cells. Moreover, Arc reduced intracellular beta amyloid (Aβ) production induced by H89 in neurons and human SH-SY5Y cells, and Arc also inhibited the presenilin 1(PS1) protein level in neurons. In addition, neural apoptosis in both types of cells, inhibition of neurite outgrowth in human SH-SY5Y cells and reduction of synaptic marker synaptophysin (SYN) expression in neurons were also observed after H89 exposure. All these effects induced by H89 were markedly reversed by Arc treatment. Arc also significantly attenuated downregulation of the phosphorylation of CREB (p-CREB) induced by H89, which may contribute to the neuroprotective effects of Arc. These results demonstrated that Arc exerted the ability to protect neurons and SH-SY5Y cells against H89-induced cell injury via upregulation of p-CREB. PMID:24025424

  2. α-Synuclein staging in the amygdala of a Parkinson's disease model: cell types involved.

    PubMed

    Flores-Cuadrado, Alicia; Ubeda-Bañon, Isabel; Saiz-Sanchez, Daniel; de la Rosa-Prieto, Carlos; Martinez-Marcos, Alino

    2015-01-01

    Lewy bodies (ubiquitin and α-synuclein aggregates) can be detected in brain areas in a predictable sequence of six neuropathological stages in Parkinson's disease. Brainstem and olfactory structures are involved in stage 1, whereas the substantia nigra and amygdala are involved in stage 3, prior to cortical spreading. Amygdaloid pathology has been suggested to contribute to non-motor symptoms such as olfactory dysfunction and emotional impairment. This work analysed the distribution of α-synuclein at 16, 30, 43 and 56 weeks in the basolateral, central and cortical amygdaloid complexes of A53T transgenic mice. The expression of calbindin, calretinin and somatostatin was compared in control and transgenic animals. Co-localisation of these markers with α-synuclein was performed. Triple labeling of calbindin, somatostatin and α-synuclein was also investigated. Quantification was carried out using an optical dissector, ImageJ software and confocal microscopy. α-Synuclein-positive cells were mainly concentrated in the basolateral and cortical amygdaloid complexes with a non-significant increase over time from 16 to 30-43 weeks and a significant decrease thereafter. The expression of interneuron markers showed a significant decrease with aging in control animals. When comparing these markers between control and transgenic mice, calretinin was moderately decreased, but calbindin and somatostatin were highly reduced, particularly in the cortical amygdaloid complex. α-Synuclein mostly co-localised with calbindin and a number of these cells also co-expressed somatostatin. These data on α-synucleinopathy staging in the amygdala could help to explain non-motor symptoms as well as to understand the progression of Parkinson's disease in the brain. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. In vitro Neurons in Mammalian Cortical Layer 4 Exhibit Intrinsic Oscillatory Activity in the 10- to 50-Hz Frequency Range

    NASA Astrophysics Data System (ADS)

    Llinas, Rodolfo R.; Grace, Anthony A.; Yarom, Yosef

    1991-02-01

    We report here the presence of fast subthreshold oscillatory potentials recorded in vitro from neurons within layer 4 of the guinea pig frontal cortex. Two types of oscillatory neurons were recorded: (i) One type exhibited subthreshold oscillations whose frequency increased with membrane depolarization and encompassed a range of 10-45 Hz. Action potentials in this type of neuron demonstrated clear after-hyperpolarizations. (ii) The second type of neuron was characterized by narrow-frequency oscillations near 35-50 Hz. These oscillations often outlasted the initiating depolarizing stimulus. No calcium component could be identified in their action potential. In both types of cell the subthreshold oscillations were tetrodotoxin-sensitive, indicating that the depolarizing phase of the oscillation was generated by a voltage-dependent sodium conductance. The initial depolarizing phase was followed by a potassium conductance responsible for the falling phase of the oscillatory wave. In both types of cell, the subthreshold oscillation could trigger spikes at the oscillatory frequency, if the membrane was sufficiently depolarized. Combining intracellular recordings with Lucifer yellow staining showed that the narrow-frequency oscillatory activity was produced by a sparsely spinous interneuron located in layer 4 of the cortex. This neuron has extensive local axonal collaterals that ramify in layers 3 and 4 such that they may contribute to the columnar synchronization of activity in the 40- to 50-Hz range. Cortical activity in this frequency range has been proposed as the basis for the "conjunctive properties" of central nervous system networks.

  4. Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size.

    PubMed

    Schwalger, Tilo; Deger, Moritz; Gerstner, Wulfram

    2017-04-01

    Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50-2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations.

  5. Organization of Anti-Phase Synchronization Pattern in Neural Networks: What are the Key Factors?

    PubMed Central

    Li, Dong; Zhou, Changsong

    2011-01-01

    Anti-phase oscillation has been widely observed in cortical neural network. Elucidating the mechanism underlying the organization of anti-phase pattern is of significance for better understanding more complicated pattern formations in brain networks. In dynamical systems theory, the organization of anti-phase oscillation pattern has usually been considered to relate to time delay in coupling. This is consistent to conduction delays in real neural networks in the brain due to finite propagation velocity of action potentials. However, other structural factors in cortical neural network, such as modular organization (connection density) and the coupling types (excitatory or inhibitory), could also play an important role. In this work, we investigate the anti-phase oscillation pattern organized on a two-module network of either neuronal cell model or neural mass model, and analyze the impact of the conduction delay times, the connection densities, and coupling types. Our results show that delay times and coupling types can play key roles in this organization. The connection densities may have an influence on the stability if an anti-phase pattern exists due to the other factors. Furthermore, we show that anti-phase synchronization of slow oscillations can be achieved with small delay times if there is interaction between slow and fast oscillations. These results are significant for further understanding more realistic spatiotemporal dynamics of cortico-cortical communications. PMID:22232576

  6. Virus-mediated swapping of zolpidem-insensitive with zolpidem-sensitive GABA(A) receptors in cortical pyramidal cells.

    PubMed

    Sumegi, Mate; Fukazawa, Yugo; Matsui, Ko; Lorincz, Andrea; Eyre, Mark D; Nusser, Zoltan; Shigemoto, Ryuichi

    2012-04-01

    Recently developed pharmacogenetic and optogenetic approaches, with their own advantages and disadvantages, have become indispensable tools in modern neuroscience. Here, we employed a previously described knock-in mouse line (GABA(A)Rγ2(77I)lox) in which the γ2 subunit of the GABA(A) receptor (GABA(A)R) was mutated to become zolpidem insensitive (γ2(77I)) and used viral vectors to swap γ2(77I) with wild-type, zolpidem-sensitive γ2 subunits (γ2(77F)). The verification of unaltered density and subcellular distribution of the virally introduced γ2 subunits requires their selective labelling. For this we generated six N- and six C-terminal-tagged γ2 subunits, with which cortical cultures of GABA(A)Rγ2(−/−) mice were transduced using lentiviruses. We found that the N-terminal AU1 tag resulted in excellent immunodetection and unimpaired synaptic localization. Unaltered kinetic properties of the AU1-tagged γ2 ((AU1)γ2(77F)) channels were demonstrated with whole-cell patch-clamp recordings of spontaneous IPSCs from cultured cells. Next, we carried out stereotaxic injections of lenti- and adeno-associated viruses containing Cre-recombinase and the (AU1)γ2(77F) subunit (Cre-2A-(AU1)γ2(77F)) into the neocortex of GABA(A)Rγ2(77I)lox mice. Light microscopic immunofluorescence and electron microscopic freeze-fracture replica immunogold labelling demonstrated the efficient immunodetection of the AU1 tag and the normal enrichment of the (AU1)γ2(77F) subunits in perisomatic GABAergic synapses. In line with this,miniature and action potential-evoked IPSCs whole-cell recorded from transduced cells had unaltered amplitudes, kinetics and restored zolpidem sensitivity. Our results obtained with a wide range of structural and functional verification methods reveal unaltered subcellular distributions and functional properties of γ2(77I) and (AU1)γ2(77F) GABA(A)Rs in cortical pyramidal cells. This transgenic–viral pharmacogenetic approach has the advantage that it does not require any extrinsic protein that might endow some unforeseen alterations of the genetically modified cells. In addition, this virus-based approach opens up the possibility of modifying multiple cell types in distinct brain regions and performing alternative recombination-based intersectional genetic manipulations.

  7. Novel AAV-based rat model of forebrain synucleinopathy shows extensive pathologies and progressive loss of cholinergic interneurons.

    PubMed

    Aldrin-Kirk, Patrick; Davidsson, Marcus; Holmqvist, Staffan; Li, Jia-Yi; Björklund, Tomas

    2014-01-01

    Synucleinopathies, characterized by intracellular aggregation of α-synuclein protein, share a number of features in pathology and disease progression. However, the vulnerable cell population differs significantly between the disorders, despite being caused by the same protein. While the vulnerability of dopamine cells in the substantia nigra to α-synuclein over-expression, and its link to Parkinson's disease, is well studied, animal models recapitulating the cortical degeneration in dementia with Lewy-bodies (DLB) are much less mature. The aim of this study was to develop a first rat model of widespread progressive synucleinopathy throughout the forebrain using adeno-associated viral (AAV) vector mediated gene delivery. Through bilateral injection of an AAV6 vector expressing human wild-type α-synuclein into the forebrain of neonatal rats, we were able to achieve widespread, robust α-synuclein expression with preferential expression in the frontal cortex. These animals displayed a progressive emergence of hyper-locomotion and dysregulated response to the dopaminergic agonist apomorphine. The animals receiving the α-synuclein vector displayed significant α-synuclein pathology including intra-cellular inclusion bodies, axonal pathology and elevated levels of phosphorylated α-synuclein, accompanied by significant loss of cortical neurons and a progressive reduction in both cortical and striatal ChAT positive interneurons. Furthermore, we found evidence of α-synuclein sequestered by IBA-1 positive microglia, which was coupled with a distinct change in morphology. In areas of most prominent pathology, the total α-synuclein levels were increased to, on average, two-fold, which is similar to the levels observed in patients with SNCA gene triplication, associated with cortical Lewy body pathology. This study provides a novel rat model of progressive cortical synucleinopathy, showing for the first time that cholinergic interneurons are vulnerable to α-synuclein over-expression. This animal model provides a powerful new tool for studies of neuronal degeneration in conditions of widespread cortical α-synuclein pathology, such as DLB, as well an attractive model for the exploration of novel biomarkers.

  8. Protection against Oxygen-Glucose Deprivation/Reperfusion Injury in Cortical Neurons by Combining Omega-3 Polyunsaturated Acid with Lyciumbarbarum Polysaccharide.

    PubMed

    Shi, Zhe; Wu, Di; Yao, Jian-Ping; Yao, Xiaoli; Huang, Zhijian; Li, Peng; Wan, Jian-Bo; He, Chengwei; Su, Huanxing

    2016-01-13

    Ischemic stroke, characterized by the disturbance of the blood supply to the brain, is a severe worldwide health threat with high mortality and morbidity. However, there is no effective pharmacotherapy for ischemic injury. Currently, combined treatment is highly recommended for this devastating injury. In the present study, we investigated neuroprotective effects of the combination of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) and Lyciumbarbarum polysaccharide (LBP) on cortical neurons using an in vitro ischemic model. Our study demonstrated that treatment with docosahexaenoic acid (DHA), a major component of the ω-3 PUFAs family, significantly inhibited the increase of intracellular Ca(2+) in cultured wild type (WT) cortical neurons subjected to oxygen-glucose deprivation/reperfusion (OGD/R) injury and promoted their survival compared with the vehicle-treated control. The protective effects were further confirmed in cultured neurons with high endogenous ω-3 PUFAs that were isolated from fat-1 mice, in that a higher survival rate was found in fat-1 neurons compared with wild-type neurons after OGD/R injury. Our study also found that treatment with LBP (50 mg/L) activated Trk-B signaling in cortical neurons and significantly attenuated OGD/R-induced cell apoptosis compared with the control. Notably, both combining LBP treatment with ω-3 PUFAs administration to WT neurons and adding LBP to fat-1 neurons showed enhanced effects on protecting cortical neurons against OGD/R injury via concurrently regulating the intracellular calcium overload and neurotrophic pathway. The results of the study suggest that ω-3 PUFAs and LBP are promising candidates for combined pharmacotherapy for ischemic stroke.

  9. Multiple blocks of intermittent and continuous theta-burst stimulation applied via transcranial magnetic stimulation differently affect sensory responses in rat barrel cortex

    PubMed Central

    Thimm, Andreas; Funke, Klaus

    2015-01-01

    Cortical sensory processing varies with cortical state and the balance of inhibition to excitation. Repetitive transcranial magnetic stimulation (rTMS) has been shown to modulate human cortical excitability. In a rat model, we recently showed that intermittent theta-burst stimulation (iTBS) applied to the corpus callosum, to activate primarily supragranular cortical pyramidal cells but fewer subcortical neurons, strongly reduced the cortical expression of parvalbumin (PV), indicating reduced activity of fast-spiking interneurons. Here, we used the well-studied rodent barrel cortex system to test how iTBS and continuous TBS (cTBS) modulate sensory responses evoked by either single or double stimuli applied to the principal (PW) and/or adjacent whisker (AW) in urethane-anaesthetized rats. Compared to sham stimulation, iTBS but not cTBS particularly enhanced late (>18 ms) response components of multi-unit spiking and local field potential responses in layer 4 but not the very early response (<18 ms). Similarly, only iTBS diminished the suppression of the second response evoked by paired PW or AW–PW stimulation at 20 ms intervals. The effects increased with each of the five iTBS blocks applied. With cTBS a mild effect similar to that of iTBS was first evident after 4–5 stimulation blocks. Enhanced cortical c-Fos and zif268 expression but reduced PV and GAD67 expression was found only after iTBS, indicating increased cortical activity due to lowered inhibition. We conclude that iTBS but less cTBS may primarily weaken a late recurrent-type cortical inhibition mediated via a subset of PV+ interneurons, enabling stronger late response components believed to contribute to the perception of sensory events. PMID:25504571

  10. Malformations of cortical development: 3T magnetic resonance imaging features

    PubMed Central

    Battal, Bilal; Ince, Selami; Akgun, Veysel; Kocaoglu, Murat; Ozcan, Emrah; Tasar, Mustafa

    2015-01-01

    Malformation of cortical development (MCD) is a term representing an inhomogeneous group of central nervous system abnormalities, referring particularly to embriyological aspect as a consequence of any of the three developmental stages, i.e., cell proliferation, cell migration and cortical organization. These include cotical dysgenesis, microcephaly, polymicrogyria, schizencephaly, lissencephaly, hemimegalencephaly, heterotopia and focal cortical dysplasia. Since magnetic resonance imaging is the modality of choice that best identifies the structural anomalies of the brain cortex, we aimed to provide a mini review of MCD by using 3T magnetic resonance scanner images. PMID:26516429

  11. Preparation of positional renal slices for study of cell-specific toxicity.

    PubMed

    Ruegg, C E; Gandolfi, A J; Nagle, R B; Krumdieck, C L; Brendel, K

    1987-04-01

    To reduce structural complexity, rabbit kidneys were sliced perpendicular to their cortical-papillary axis to isolate four distinct cell groupings. This positional orientation allows identification of each renal cell type based on its location within the slice. A mechanical slicer was used to make several precision-cut slices rapidly from an oriented cylindrical core of renal tissue, with minimal tissue trauma. Slices were then submerged under a gently circulating oxygenated media in a fritted glass support system that maintains viability (intracellular K+/DNA ratio) and structural integrity (histology) for at least 30 h. A high dose of mercuric chloride (10(-3) M) was used to demonstrate the structural and biochemical changes of intoxicated slices. This method provides a controlled subchronic in vitro system for the study of the individual cell types involved in cell-specific renal toxicities and may also be a useful tool for addressing other pharmacological and physiological research questions.

  12. Molecular networks linked by Moesin drive remodeling of the cell cortex during mitosis

    PubMed Central

    Roubinet, Chantal; Decelle, Barbara; Chicanne, Gaëtan; Dorn, Jonas F.; Payrastre, Bernard; Payre, François; Carreno, Sébastien

    2011-01-01

    The cortical mechanisms that drive the series of mitotic cell shape transformations remain elusive. In this paper, we identify two novel networks that collectively control the dynamic reorganization of the mitotic cortex. We demonstrate that Moesin, an actin/membrane linker, integrates these two networks to synergize the cortical forces that drive mitotic cell shape transformations. We find that the Pp1-87B phosphatase restricts high Moesin activity to early mitosis and down-regulates Moesin at the polar cortex, after anaphase onset. Overactivation of Moesin at the polar cortex impairs cell elongation and thus cytokinesis, whereas a transient recruitment of Moesin is required to retract polar blebs that allow cortical relaxation and dissipation of intracellular pressure. This fine balance of Moesin activity is further adjusted by Skittles and Pten, two enzymes that locally produce phosphoinositol 4,5-bisphosphate and thereby, regulate Moesin cortical association. These complementary pathways provide a spatiotemporal framework to explain how the cell cortex is remodeled throughout cell division. PMID:21969469

  13. Thalamocortical NMDA conductances and intracortical inhibition can explain cortical temporal tuning

    NASA Technical Reports Server (NTRS)

    Krukowski, A. E.; Miller, K. D.

    2001-01-01

    Cells in cerebral cortex fail to respond to fast-moving stimuli that evoke strong responses in the thalamic nuclei innervating the cortex. The reason for this behavior has remained a mystery. We study an experimentally motivated model of the thalamic input-recipient layer of cat primary visual cortex that accounts for many aspects of cortical orientation tuning. In this circuit, inhibition dominates over excitation, but temporal modulations of excitation and inhibition occur out of phase with one another, allowing excitation to transiently drive cells. We show that this circuit provides a natural explanation of cortical low-pass temporal frequency tuning, provided N-methyl-D-aspartate (NMDA) receptors are present in thalamocortical synapses in proportions measured experimentally. This suggests a new and unanticipated role for NMDA conductances in shaping the temporal response properties of cortical cells, and suggests that common cortical circuit mechanisms underlie both spatial and temporal response tuning.

  14. Phospholipase B activity and organophosphorus compound toxicity in cultured neural cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Read, David J.; Langford, Lynda; Barbour, Helen R.

    2007-03-15

    Organophosphorus compounds (OP) such as phenyl saligenin phosphate (PSP) and mipafox (MPX) which cause delayed neuropathy, inhibit neuropathy target esterase (NTE), while OPs such as paraoxon (PXN) react more readily with acetylcholinesterase. In yeast and mammalian cell lines, NTE has been shown to have phospholipase B (PLB) activity which deacylates intracellular phosphatidylcholine to glycerophosphocholine (GroPCho) and can be detected by metabolic labeling with [{sup 14}C]choline. Here we investigated PLB activity in primary cultures of mouse neural cells. In cortical and cerebellar granule neurons and astrocytes, [{sup 14}C]GroPCho labeling was inhibited by PSP and MPX: phenyl dipentylphosphinate (PDPP), a non-neuropathic NTEmore » inhibitor, was more potent, while PXN, was substantially less so. In all three cell types, conversion of [{sup 14}C]phosphatidylcholine to [{sup 14}C]GroPCho over 24 h was relatively small (2.3-14%). Consequently, even with > 80% inhibition of [{sup 14}C]GroPCho production, increased [{sup 14}C]phosphatidylcholine was not detected. At concentrations of 1-10 {mu}M, only PSP was cytotoxic to cortical and cerebellar granule neurons after 24-h exposure. Moreover, dramatic changes in glial cell morphology were induced by PSP, but not PDPP or MPX, with rapid (2-3 h) rounding up of astrocytes and of Schwann cells in cultures of dissociated mouse dorsal root ganglia. We conclude that PLB activity is present in a variety of cultured mouse neural cell types but that acute loss of this activity is not cytotoxic. Conversely, the rapid toxic effects of PSP in vitro suggest that a serine hydrolase distinct from NTE is required continuously by neurons and glia.« less

  15. Comparative transcriptional survey between laser-microdissected cells from laminar abscission zone and petiolar cortical tissue during ethylene-promoted abscission in citrus leaves

    PubMed Central

    Agustí, Javier; Merelo, Paz; Cercós, Manuel; Tadeo, Francisco R; Talón, Manuel

    2009-01-01

    Background Abscission is the cell separation process by which plants are able to shed organs. It has a great impact on the yield of most crop plants. At the same time, the process itself also constitutes an excellent model to study cell separation processes, since it occurs in concrete areas known as abscission zones (AZs) which are composed of a specific cell type. However, molecular approaches are generally hampered by the limited area and cell number constituting the AZ. Therefore, detailed studies at the resolution of cell type are of great relevance in order to accurately describe the process and to identify potential candidate genes for biotechnological applications. Results Efficient protocols for the isolation of specific citrus cell types, namely laminar abscission zone (LAZ) and petiolar cortical (Pet) cells based on laser capture microdissection (LCM) and for RNA microextraction and amplification have been developed. A comparative transcriptome analysis between LAZ and Pet from citrus leaf explants subjected to an in-vitro 24 h ethylene treatment was performed utilising microarray hybridization and analysis. Our analyses of gene functional classes differentially represented in ethylene-treated LAZ revealed an activation program dominated by the expression of genes associated with protein synthesis, protein fate, cell type differentiation, development and transcription. The extensive repertoire of genes associated with cell wall biosynthesis and metabolism strongly suggests that LAZ layers activate both catabolic and anabolic wall modification pathways during the abscission program. In addition, over-representation of particular members of different transcription factor families suggests important roles for these genes in the differentiation of the effective cell separation layer within the many layers contained in the citrus LAZ. Preferential expression of stress-related and defensive genes in Pet reveals that this tissue is likely to be reprogrammed to prevent pathogen attacks and general abiotic stresses after organ shedding. Conclusion The LCM-based data generated in this survey represent the most accurate description of the main biological processes and genes involved in organ abscission in citrus. This study provides novel molecular insight into ethylene-promoted leaf abscission and identifies new putative target genes for characterization and manipulation of organ abscission in citrus. PMID:19852773

  16. Actin cable distribution and dynamics arising from cross-linking, motor pulling, and filament turnover

    PubMed Central

    Tang, Haosu; Laporte, Damien; Vavylonis, Dimitrios

    2014-01-01

    The growth of fission yeast relies on the polymerization of actin filaments nucleated by formin For3p, which localizes at tip cortical sites. These actin filaments bundle to form actin cables that span the cell and guide the movement of vesicles toward the cell tips. A big challenge is to develop a quantitative understanding of these cellular actin structures. We used computer simulations to study the spatial and dynamical properties of actin cables. We simulated individual actin filaments as semiflexible polymers in three dimensions composed of beads connected with springs. Polymerization out of For3p cortical sites, bundling by cross-linkers, pulling by type V myosin, and severing by cofilin are simulated as growth, cross-linking, pulling, and turnover of the semiflexible polymers. With the foregoing mechanisms, the model generates actin cable structures and dynamics similar to those observed in live-cell experiments. Our simulations reproduce the particular actin cable structures in myoVΔ cells and predict the effect of increased myosin V pulling. Increasing cross-linking parameters generates thicker actin cables. It also leads to antiparallel and parallel phases with straight or curved cables, consistent with observations of cells overexpressing α-actinin. Finally, the model predicts that clustering of formins at cell tips promotes actin cable formation. PMID:25103242

  17. Genetic and epigenetic contributions to the cortical phenotype in mammals☆

    PubMed Central

    Larsen, DeLaine D.; Krubitzer, Leah

    2008-01-01

    One aspect of cortical organization, cortical field size, is variable both within and across species. The observed variability arises from a variety of sources, including genes intrinsic to the neocortex and a number of extrinsic and epigenetic factors. Genes intrinsic to the cortex are directly involved in the development and specification of cortical fields and are regulated from both signaling centers located outside of the neocortex, which secrete diffusible molecules, and the expression of transcription factors within the neocortex. In addition, extrinsic factors such as the type, location and density of sensory receptor arrays and how these receptor arrays are utilized, are also strongly related to cortical field size. Epigenetic factors including the relative activity patterns generated by the different types of physical stimuli in a given environment also contribute to differences in cortical organization, including cortical field size. Since both genetic and epigenetic factors contribute to cortical organization, some aspects of the cortical phenotype evolve, while other aspects of the cortical phenotype persist only if the environment in which an individual develops is relatively stable. PMID:18331904

  18. Developmental Markers Expressed in Neocortical Layers Are Differentially Exhibited in Olfactory Cortex

    PubMed Central

    Brunjes, Peter C.; Osterberg, Stephen K.

    2015-01-01

    Neurons in the cerebral cortex stratify on the basis of their time of origin, axonal terminations and the molecular identities assigned during early development. Olfactory cortices share many feature with the neocortex, including clear lamination and similar cell types. The present study demonstrates that the markers differentially expressed in the projection neurons of the cerebral cortex are also found in olfactory areas. Three of the four regions examined (pars principalis of the anterior olfactory nucleus: AONpP, anterior and posterior piriform cortices: APC, PPC, and the olfactory tubercle) expressed transcription factors found in deep or superficial neurons in the developing neocortex, though large differences were found between areas. For example, while the AONpP, APC and PPC all broadly expressed the deep cortical marker CTIP2, NOR1 (NR4a3) levels were higher in AONpP and DAARP-32 was more prevalent in the APC and PPC. Similar findings were encountered for superficial cortical markers: all three regions broadly expressed CUX1, but CART was only observed in the APC and PPC. Furthermore, regional variations were observed even within single structures (e.g., NOR1 was found primarily in in the dorsal region of AONpP and CART expression was observed in a discrete band in the middle of layer 2 of both the APC and PPC). Experiments using the mitotic marker EDU verified that the olfactory cortices and neocortex share similar patterns of neuronal production: olfactory cells that express markers found in the deep neocortex are produced earlier than those that express superficial makers. Projection neurons were filled by retrograde tracers injected into the olfactory bulb to see if olfactory neurons with deep and superficial markers had different axonal targets. Unlike the cerebral cortex, no specificity was observed: neurons with each of the transcription factors examined were found to be labelled. Together the results indicate that olfactory cortices are complex: they differ from each other and each is formed from a variable mosaic of neurons. The results suggest that the olfactory cortices are not merely a remnant architype of the primordial forebrain but varied and independent regions. PMID:26407299

  19. The Neuroprotective Potential of Cyanidin-3-glucoside Fraction Extracted from Mulberry Following Oxygen-glucose Deprivation.

    PubMed

    Bhuiyan, Mohammad Iqbal Hossain; Kim, Hyun-Bok; Kim, Seong Yun; Cho, Kyung-Ok

    2011-12-01

    In this study, cyanidin-3-glucoside (C3G) fraction extracted from the mulberry fruit (Morus alba L.) was investigated for its neuroprotective effects against oxygen-glucose deprivation (OGD) and glutamate-induced cell death in rat primary cortical neurons. Cell membrane damage and mitochondrial function were assessed by LDH release and MTT reduction assays, respectively. A time-course study of OGD-induced cell death of primary cortical neurons at 7 days in vitro (DIV) indicated that neuronal death was OGD duration-dependent. It was also demonstrated that OGD for 3.5 h resulted in approximately 50% cell death, as determined by the LDH release assay. Treatments with mulberry C3G fraction prevented membrane damage and preserved the mitochondrial function of the primary cortical neurons exposed to OGD for 3.5 h in a concentration-dependent manner. Glutamate-induced cell death was more pronounced in DIV-9 and DIV-11 cells than that in DIV-7 neurons, and an application of 50µM glutamate was shown to induce approximately 40% cell death in DIV-9 neurons. Interestingly, treatment with mulberry C3G fraction did not provide a protective effect against glutamate-induced cell death in primary cortical neurons. On the other hand, treatment with mulberry C3G fraction maintained the mitochondrial membrane potential (MMP) in primary cortical neurons exposed to OGD as assessed by the intensity of rhodamine-123 fluorescence. These results therefore suggest that the neuroprotective effects of mulberry C3G fraction are mediated by the maintenance of the MMP and mitochondrial function but not by attenuating glutamate-induced excitotoxicity in rat primary cortical neurons.

  20. Basic research and clinical application of beta-tricalcium phosphate (β-TCP).

    PubMed

    Tanaka, T; Komaki, H; Chazono, M; Kitasato, S; Kakuta, A; Akiyama, S; Marumo, K

    2017-09-01

    The mechanism of bone substitute resorption involves two processes: solution-mediated and cell-mediated disintegration. In our previous animal studies, the main resorption process of beta-tricalcium phosphate (β-TCP) was considered to be cell-mediated disintegration by TRAP-positive cells. Thus, osteoclast-mediated resorption of β-TCP is important for enabling bone formation. We also report the results of treatment with β-TCP graft in patients since 1989. Two to three weeks after implantation, resorption of β-TCP occurred from the periphery, and then continued toward the center over time. Complete or nearly complete bone healing was achieved in most cases within a few years and was dependent upon the amount of implanted material, the patient's age, and the type of bone (cortical or cancellous). We have previously reported that an injectable complex of β-TCP granules and collagen supplemented with rhFGF-2 enabled cortical bone regeneration of rabbit tibiae. Based on the experimental results, we applied this technique to the patients with femoral and humeral fractures in elderly patients, and obtained bone union. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. RanGAP1 is a continuous marker of the Arabidopsis cell division plane

    PubMed Central

    Xu, Xianfeng Morgan; Zhao, Qiao; Rodrigo-Peiris, Thushani; Brkljacic, Jelena; He, Chao Sylvia; Müller, Sabine; Meier, Iris

    2008-01-01

    In higher plants, the plane of cell division is faithfully predicted by the preprophase band (PPB). The PPB, a cortical ring of microtubules and F-actin, disassembles upon nuclear-envelope breakdown. During cytokinesis, the expanding cell plate fuses with the plasma membrane at the cortical division site, the site of the former PPB. The nature of the “molecular memory” that is left behind by the PPB and is proposed to guide the cell plate to the cortical division site is unknown. RanGAP is the GTPase activating protein of the small GTPase Ran, which provides spatial information for nucleocytoplasmic transport and various mitotic processes in animals. Here, we show that, in dividing root cells, Arabidopsis RanGAP1 concentrates at the PPB and remains associated with the cortical division site during mitosis and cytokinesis, requiring its N-terminal targeting domain. In a fass/ton2 mutant, which affects PPB formation, RanGAP1 recruitment to the PPB site is lost, while its PPB retention is microtubule-independent. RanGAP1 persistence at the cortical division site, but not its initial accumulation at the PPB requires the 2 cytokinesis-regulating kinesins POK1 and POK2. Depletion of RanGAP by inducible RNAi leads to oblique cell walls and cell-wall stubs in root cell files, consistent with cytokinesis defects. We propose that Arabidopsis RanGAP, a continuous positive protein marker of the plant division plane, has a role in spatial signaling during plant cell division. PMID:19011093

  2. Biomechanics of Single Cortical Neurons

    PubMed Central

    Bernick, Kristin B.; Prevost, Thibault P.; Suresh, Subra; Socrate, Simona

    2011-01-01

    This study presents experimental results and computational analysis of the large strain dynamic behavior of single neurons in vitro with the objective of formulating a novel quantitative framework for the biomechanics of cortical neurons. Relying on the atomic force microscopy (AFM) technique, novel testing protocols are developed to enable the characterization of neural soma deformability over a range of indentation rates spanning three orders of magnitude – 10, 1, and 0.1 μm/s. Modified spherical AFM probes were utilized to compress the cell bodies of neonatal rat cortical neurons in load, unload, reload and relaxation conditions. The cell response showed marked hysteretic features, strong non-linearities, and substantial time/rate dependencies. The rheological data were complemented with geometrical measurements of cell body morphology, i.e. cross-diameter and height estimates. A constitutive model, validated by the present experiments, is proposed to quantify the mechanical behavior of cortical neurons. The model aimed to correlate empirical findings with measurable degrees of (hyper-) elastic resilience and viscosity at the cell level. The proposed formulation, predicated upon previous constitutive model developments undertaken at the cortical tissue level, was implemented into a three-dimensional finite element framework. The simulated cell response was calibrated to the experimental measurements under the selected test conditions, providing a novel single cell model that could form the basis for further refinements. PMID:20971217

  3. Roles of microtubules and cellulose microfibril assembly in the localization of secondary-cell-wall deposition in developing tracheary elements.

    PubMed

    Roberts, A W; Frost, A O; Roberts, E M; Haigler, C H

    2004-12-01

    The roles of cellulose microfibrils and cortical microtubules in establishing and maintaining the pattern of secondary-cell-wall deposition in tracheary elements were investigated with direct dyes to inhibit cellulose microfibril assembly and amiprophosmethyl to inhibit microtubule polymerization. When direct dyes were added to xylogenic cultures of Zinnia elegans L. mesophyll cells just before the onset of differentiation, the secondary cell wall was initially secreted as bands composed of discrete masses of stained material, consistent with immobilized sites of cellulose synthesis. The masses coalesced, forming truncated, sinuous or smeared thickenings, as secondary cell wall deposition continued. The absence of ordered cellulose microfibrils was confirmed by polarization microscopy and a lack of fluorescence dichroism as determined by laser scanning microscopy. Indirect immunofluorescence showed that cortical microtubules initially subtended the masses of dye-altered secondary cell wall material but soon became disorganized and disappeared. Although most of the secondary cell wall was deposited in the absence of subtending cortical microtubules in dye-treated cells, secretion remained confined to discrete regions of the plasma membrane. Examination of non-dye-treated cultures following application of microtubule inhibitors during various stages of secondary-cell-wall deposition revealed that the pattern became fixed at an early stage such that deposition remained localized in the absence of cortical microtubules. These observations indicate that cortical microtubules are required to establish, but not to maintain, patterned secondary-cell-wall deposition. Furthermore, cellulose microfibrils play a role in maintaining microtubule arrays and the integrity of the secondary-cell-wall bands during deposition.

  4. Selective functional interactions between excitatory and inhibitory cortical neurons and differential contribution to persistent activity of the slow oscillation.

    PubMed

    Tahvildari, Babak; Wölfel, Markus; Duque, Alvaro; McCormick, David A

    2012-08-29

    The neocortex depends upon a relative balance of recurrent excitation and inhibition for its operation. During spontaneous Up states, cortical pyramidal cells receive proportional barrages of excitatory and inhibitory synaptic potentials. Many of these synaptic potentials arise from the activity of nearby neurons, although the identity of these cells is relatively unknown, especially for those underlying the generation of inhibitory synaptic events. To address these fundamental questions, we developed an in vitro submerged slice preparation of the mouse entorhinal cortex that generates robust and regular spontaneous recurrent network activity in the form of the slow oscillation. By performing whole-cell recordings from multiple cell types identified with green fluorescent protein expression and electrophysiological and/or morphological properties, we show that distinct functional subpopulations of neurons exist in the entorhinal cortex, with large variations in contribution to the generation of balanced excitation and inhibition during the slow oscillation. The most active neurons during the slow oscillation are excitatory pyramidal and inhibitory fast spiking interneurons, receiving robust barrages of both excitatory and inhibitory synaptic potentials. Weak action potential activity was observed in stellate excitatory neurons and somatostatin-containing interneurons. In contrast, interneurons containing neuropeptide Y, vasoactive intestinal peptide, or the 5-hydroxytryptamine (serotonin) 3a receptor, were silent. Our data demonstrate remarkable functional specificity in the interactions between different excitatory and inhibitory cortical neuronal subtypes, and suggest that it is the large recurrent interaction between pyramidal neurons and fast spiking interneurons that is responsible for the generation of persistent activity that characterizes the depolarized states of the cortex.

  5. A functional requirement for astroglia in promoting blood vessel development in the early postnatal brain.

    PubMed

    Ma, Shang; Kwon, Hyo Jun; Huang, Zhen

    2012-01-01

    Astroglia are a major cell type in the brain and play a key role in many aspects of brain development and function. In the adult brain, astrocytes are known to intimately ensheath blood vessels and actively coordinate local neural activity and blood flow. During development of the neural retina, blood vessel growth follows a meshwork of astrocytic processes. Several genes have also been implicated in retinal astrocytes for regulating vessel development. This suggests a role of astrocytes in promoting angiogenesis throughout the central nervous system. To determine the roles that astrocytes may play during brain angiogenesis, we employ genetic approaches to inhibit astrogliogenesis during perinatal corticogenesis and examine its effects on brain vessel development. We find that conditional deletion from glial progenitors of orc3, a gene required for DNA replication, dramatically reduces glial progenitor cell number in the subventricular zone and astrocytes in the early postnatal cerebral cortex. This, in turn, results in severe reductions in both the density and branching frequency of cortical blood vessels. Consistent with a delayed growth but not regression of vessels, we find neither significant net decreases in vessel density between different stages after normalizing for cortical expansion nor obvious apoptosis of endothelial cells in these mutants. Furthermore, concomitant with loss of astroglial interactions, we find increased endothelial cell proliferation, enlarged vessel luminal size as well as enhanced cytoskeletal gene expression in pericytes, which suggests compensatory changes in vascular cells. Lastly, we find that blood vessel morphology in mutant cortices recovers substantially at later stages, following astrogliosis. These results thus implicate a functional requirement for astroglia in promoting blood vessel growth during brain development.

  6. Transcriptional Architecture of Synaptic Communication Delineates GABAergic Neuron Identity.

    PubMed

    Paul, Anirban; Crow, Megan; Raudales, Ricardo; He, Miao; Gillis, Jesse; Huang, Z Josh

    2017-10-19

    Understanding the organizational logic of neural circuits requires deciphering the biological basis of neuronal diversity and identity, but there is no consensus on how neuron types should be defined. We analyzed single-cell transcriptomes of a set of anatomically and physiologically characterized cortical GABAergic neurons and conducted a computational genomic screen for transcriptional profiles that distinguish them from one another. We discovered that cardinal GABAergic neuron types are delineated by a transcriptional architecture that encodes their synaptic communication patterns. This architecture comprises 6 categories of ∼40 gene families, including cell-adhesion molecules, transmitter-modulator receptors, ion channels, signaling proteins, neuropeptides and vesicular release components, and transcription factors. Combinatorial expression of select members across families shapes a multi-layered molecular scaffold along the cell membrane that may customize synaptic connectivity patterns and input-output signaling properties. This molecular genetic framework of neuronal identity integrates cell phenotypes along multiple axes and provides a foundation for discovering and classifying neuron types. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. EFFECT OF AROCLOR 1254 ON THE TRANSCRIPTION FACTOR CREB AND CELL VIABILITY IN A PRIMARY CULTURE OF IMMATURE CORTICAL CELLS.

    EPA Science Inventory

    Considerable work indicates that elevations in Ca2+ levels and kinase activity are sensitive responses to polychlorinated biphenyls (PCBs), which are developmental neurotoxicants. In cortical cells in vitro the PCB mixture Aroclor 1254 (A1254) induces temporally and mechanistica...

  8. Discovering sparse transcription factor codes for cell states and state transitions during development

    PubMed Central

    Furchtgott, Leon A; Melton, Samuel; Menon, Vilas; Ramanathan, Sharad

    2017-01-01

    Computational analysis of gene expression to determine both the sequence of lineage choices made by multipotent cells and to identify the genes influencing these decisions is challenging. Here we discover a pattern in the expression levels of a sparse subset of genes among cell types in B- and T-cell developmental lineages that correlates with developmental topologies. We develop a statistical framework using this pattern to simultaneously infer lineage transitions and the genes that determine these relationships. We use this technique to reconstruct the early hematopoietic and intestinal developmental trees. We extend this framework to analyze single-cell RNA-seq data from early human cortical development, inferring a neocortical-hindbrain split in early progenitor cells and the key genes that could control this lineage decision. Our work allows us to simultaneously infer both the identity and lineage of cell types as well as a small set of key genes whose expression patterns reflect these relationships. DOI: http://dx.doi.org/10.7554/eLife.20488.001 PMID:28296636

  9. Diffusion of GPI-anchored proteins is influenced by the activity of dynamic cortical actin

    PubMed Central

    Saha, Suvrajit; Lee, Il-Hyung; Polley, Anirban; Groves, Jay T.; Rao, Madan; Mayor, Satyajit

    2015-01-01

    Molecular diffusion at the surface of living cells is believed to be predominantly driven by thermal kicks. However, there is growing evidence that certain cell surface molecules are driven by the fluctuating dynamics of cortical cytoskeleton. Using fluorescence correlation spectroscopy, we measure the diffusion coefficient of a variety of cell surface molecules over a temperature range of 24–37°C. Exogenously incorporated fluorescent lipids with short acyl chains exhibit the expected increase of diffusion coefficient over this temperature range. In contrast, we find that GPI-anchored proteins exhibit temperature-independent diffusion over this range and revert to temperature-dependent diffusion on cell membrane blebs, in cells depleted of cholesterol, and upon acute perturbation of actin dynamics and myosin activity. A model transmembrane protein with a cytosolic actin-binding domain also exhibits the temperature-independent behavior, directly implicating the role of cortical actin. We show that diffusion of GPI-anchored proteins also becomes temperature dependent when the filamentous dynamic actin nucleator formin is inhibited. However, changes in cortical actin mesh size or perturbation of branched actin nucleator Arp2/3 do not affect this behavior. Thus cell surface diffusion of GPI-anchored proteins and transmembrane proteins that associate with actin is driven by active fluctuations of dynamic cortical actin filaments in addition to thermal fluctuations, consistent with expectations from an “active actin-membrane composite” cell surface. PMID:26378258

  10. The Marine Guanidine Alkaloid Crambescidin 816 Induces Calcium Influx and Cytotoxicity in Primary Cultures of Cortical Neurons through Glutamate Receptors.

    PubMed

    Mendez, Aida G; Juncal, Andrea Boente; Silva, Siguara B L; Thomas, Olivier P; Martín Vázquez, Víctor; Alfonso, Amparo; Vieytes, Mercedes R; Vale, Carmen; Botana, Luís M

    2017-07-19

    Crambescidin 816 is a guanidine alkaloid produced by the sponge Crambe crambe with known antitumoral activity. While the information describing the effects of this alkaloid in central neurons is scarce, Cramb816 is known to block voltage dependent calcium channels being selective for L-type channels. Moreover, Cramb816 reduced neuronal viability through an unknown mechanism. Here, we aimed to describe the toxic activity of Cramb816 in cortical neurons. Since calcium influx is considered the main mechanism responsible for neuronal cell death, the effects of Cramb816 in the cytosolic calcium concentration of cortical neurons were studied. The alkaloid decreased neuronal viability and induced a dose-dependent increase in cytosolic calcium that was also related to the presence of calcium in the extracellular media. The increase in calcium influx was age dependent, being higher in younger neurons. Moreover, this effect was prevented by glutamate receptor antagonists, which did not fully block the cytotoxic effect of Cramb816 after 24 h of treatment but completely prevented Cramb816 cytotoxicity after 10 min exposure. Therefore, the findings presented herein provide new insights into the cytotoxic effect of Cramb816 in cortical neurons.

  11. Preventing painful age-related bone fractures: Anti-sclerostin therapy builds cortical bone and increases the proliferation of osteogenic cells in the periosteum of the geriatric mouse femur.

    PubMed

    Thompson, Michelle L; Chartier, Stephane R; Mitchell, Stefanie A; Mantyh, Patrick W

    2016-01-01

    Age-related bone fractures are usually painful and have highly negative effects on a geriatric patient's functional status, quality of life, and survival. Currently, there are few analgesic therapies that fully control bone fracture pain in the elderly without significant unwanted side effects. However, another way of controlling age-related fracture pain would be to preemptively administer an osteo-anabolic agent to geriatric patients with high risk of fracture, so as to build new cortical bone and prevent the fracture from occurring. A major question, however, is whether an osteo-anabolic agent can stimulate the proliferation of osteogenic cells and build significant amounts of new cortical bone in light of the decreased number and responsiveness of osteogenic cells in aging bone. To explore this question, geriatric and young mice, 20 and 4 months old, respectively, received either vehicle or a monoclonal antibody that sequesters sclerostin (anti-sclerostin) for 28 days. From days 21 to 28, animals also received sustained administration of the thymidine analog, bromodeoxyuridine (BrdU), which labels the DNA of dividing cells. Animals were then euthanized at day 28 and the femurs were examined for cortical bone formation, bone mineral density, and newly borne BrdU+ cells in the periosteum which is a tissue that is pivotally involved in the formation of new cortical bone. In both the geriatric and young mice, anti-sclerostin induced a significant increase in the thickness of the cortical bone, bone mineral density, and the proliferation of newly borne BrdU+ cells in the periosteum. These results suggest that even in geriatric animals, anti-sclerostin therapy can build new cortical bone and increase the proliferation of osteogenic cells and thus reduce the likelihood of painful age-related bone fractures. © The Author(s) 2016.

  12. The apical complex couples cell fate and cell survival to cerebral cortical development

    PubMed Central

    Kim, Seonhee; Lehtinen, Maria K.; Sessa, Alessandro; Zappaterra, Mauro; Cho, Seo-Hee; Gonzalez, Dilenny; Boggan, Brigid; Austin, Christina A.; Wijnholds, Jan; Gambello, Michael J.; Malicki, Jarema; LaMantia, Anthony S.; Broccoli, Vania; Walsh, Christopher A.

    2010-01-01

    Cortical development depends upon tightly controlled cell fate and cell survival decisions that generate a functional neuronal population, but the coordination of these two processes is poorly understood. Here we show that conditional removal of a key apical complex protein, Pals1, causes premature withdrawal from the cell cycle, inducing excessive generation of early-born postmitotic neurons followed by surprisingly massive and rapid cell death, leading to the abrogation of virtually the entire cortical structure. Pals1 loss shows exquisite dosage sensitivity, so that heterozygote mutants show an intermediate phenotype on cell fate and cell death. Loss of Pals1 blocks essential cell survival signals, including the mammalian target of rapamycin (mTOR) pathway, while mTORC1 activation partially rescues Pals1 deficiency. These data highlight unexpected roles of the apical complex protein Pals1 in cell survival through interactions with mTOR signaling. PMID:20399730

  13. Positional signaling and expression of ENHANCER OF TRY AND CPC1 are tuned to increase root hair density in response to phosphate deficiency in Arabidopsis thaliana.

    PubMed

    Savage, Natasha; Yang, Thomas J W; Chen, Chung Ying; Lin, Kai-Lan; Monk, Nicholas A M; Schmidt, Wolfgang

    2013-01-01

    Phosphate (Pi) deficiency induces a multitude of responses aimed at improving the acquisition of Pi, including an increased density of root hairs. To understand the mechanisms involved in Pi deficiency-induced alterations of the root hair phenotype in Arabidopsis (Arabidopsis thaliana), we analyzed the patterning and length of root epidermal cells under control and Pi-deficient conditions in wild-type plants and in four mutants defective in the expression of master regulators of cell fate, CAPRICE (CPC), ENHANCER OF TRY AND CPC 1 (ETC1), WEREWOLF (WER) and SCRAMBLED (SCM). From this analysis we deduced that the longitudinal cell length of root epidermal cells is dependent on the correct perception of a positional signal ('cortical bias') in both control and Pi-deficient plants; mutants defective in the receptor of the signal, SCM, produced short cells characteristic of root hair-forming cells (trichoblasts). Simulating the effect of cortical bias on the time-evolving probability of cell fate supports a scenario in which a compromised positional signal delays the time point at which non-hair cells opt out the default trichoblast pathway, resulting in short, trichoblast-like non-hair cells. Collectively, our data show that Pi-deficient plants increase root hair density by the formation of shorter cells, resulting in a higher frequency of hairs per unit root length, and additional trichoblast cell fate assignment via increased expression of ETC1.

  14. Positional Signaling and Expression of ENHANCER OF TRY AND CPC1 Are Tuned to Increase Root Hair Density in Response to Phosphate Deficiency in Arabidopsis thaliana

    PubMed Central

    Savage, Natasha; Yang, Thomas J. W.; Chen, Chung Ying; Lin, Kai-Lan; Monk, Nicholas A. M.; Schmidt, Wolfgang

    2013-01-01

    Phosphate (Pi) deficiency induces a multitude of responses aimed at improving the acquisition of Pi, including an increased density of root hairs. To understand the mechanisms involved in Pi deficiency-induced alterations of the root hair phenotype in Arabidopsis (Arabidopsis thaliana), we analyzed the patterning and length of root epidermal cells under control and Pi-deficient conditions in wild-type plants and in four mutants defective in the expression of master regulators of cell fate, CAPRICE (CPC), ENHANCER OF TRY AND CPC 1 (ETC1), WEREWOLF (WER) and SCRAMBLED (SCM). From this analysis we deduced that the longitudinal cell length of root epidermal cells is dependent on the correct perception of a positional signal (‘cortical bias’) in both control and Pi-deficient plants; mutants defective in the receptor of the signal, SCM, produced short cells characteristic of root hair-forming cells (trichoblasts). Simulating the effect of cortical bias on the time-evolving probability of cell fate supports a scenario in which a compromised positional signal delays the time point at which non-hair cells opt out the default trichoblast pathway, resulting in short, trichoblast-like non-hair cells. Collectively, our data show that Pi-deficient plants increase root hair density by the formation of shorter cells, resulting in a higher frequency of hairs per unit root length, and additional trichoblast cell fate assignment via increased expression of ETC1. PMID:24130712

  15. A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex.

    PubMed

    Reillo, Isabel; de Juan Romero, Camino; García-Cabezas, Miguel Ángel; Borrell, Víctor

    2011-07-01

    The cerebral cortex of large mammals undergoes massive surface area expansion and folding during development. Specific mechanisms to orchestrate the growth of the cortex in surface area rather than in thickness are likely to exist, but they have not been identified. Analyzing multiple species, we have identified a specialized type of progenitor cell that is exclusive to mammals with a folded cerebral cortex, which we named intermediate radial glia cell (IRGC). IRGCs express Pax6 but not Tbr2, have a radial fiber contacting the pial surface but not the ventricular surface, and are found in both the inner subventricular zone and outer subventricular zone (OSVZ). We find that IRGCs are massively generated in the OSVZ, thus augmenting the numbers of radial fibers. Fanning out of this expanding radial fiber scaffold promotes the tangential dispersion of radially migrating neurons, allowing for the growth in surface area of the cortical sheet. Accordingly, the tangential expansion of particular cortical regions was preceded by high proliferation in the underlying OSVZ, whereas the experimental reduction of IRGCs impaired the tangential dispersion of neurons and resulted in a smaller cortical surface. Thus, the generation of IRGCs plays a key role in the tangential expansion of the mammalian cerebral cortex.

  16. Comparative analysis of cortical layering and supragranular layer enlargement in rodent carnivore and primate species.

    PubMed

    Hutsler, Jeffrey J; Lee, Dong-Geun; Porter, Kristin K

    2005-08-02

    The mammalian cerebral cortex is composed of individual layers characterized by the cell types they contain and their afferent and efferent connections. The current study examined the raw, and size-normalized, laminar thicknesses in three cortical regions (somatosensory, motor, and premotor) of fourteen species from three orders of mammals: primates, carnivores, and rodents. The proportional size of the pyramidal cell layers (supra- and infragranular) varied between orders but was similar within orders despite wide variance in absolute cortical thickness. Further, supragranular layer thickness was largest in primates (46 +/- 3 percent), followed by carnivores (36 +/- 3 percent), and then rodents (19 +/- 4 percent), suggesting a distinct difference in the proportion of cortex devoted to corticocortical connectivity across these orders. Although measures of supragranular layer thickness are highly correlated with measures of overall brain size, such associations are not present when independent contrasts are used to control for phylogenetic inertia. Interestingly, neurogenesis time span remains strongly associated with supragranular layer thickness despite size normalization and controlling for phylogenetic inertia. Such layering differences between orders, and similarities amongst species within an order, suggest that supragranular layer expansion may have occurred early in mammalian evolution and may be related to ontogenetic variables such as neurogenesis time span rather than measures of overall size.

  17. Cortical Structure Alterations and Social Behavior Impairment in p50-Deficient Mice.

    PubMed

    Bonini, Sara Anna; Mastinu, Andrea; Maccarinelli, Giuseppina; Mitola, Stefania; Premoli, Marika; La Rosa, Luca Rosario; Ferrari-Toninelli, Giulia; Grilli, Mariagrazia; Memo, Maurizio

    2016-06-01

    Alterations in genes that regulate neurodevelopment can lead to cortical malformations, resulting in malfunction during postnatal life. The NF-κB pathway has a key role during neurodevelopment by regulating the maintenance of the neural progenitor cell pool and inhibiting neuronal differentiation. In this study, we evaluated whether mice lacking the NF-κB p50 subunit (KO) present alterations in cortical structure and associated behavioral impairment. We found that, compared with wild type (WT), KO mice at postnatal day 2 present an increase in radial glial cells, an increase in Reelin protein expression levels, in addition to an increase of specific layer thickness. Moreover, adult KO mice display abnormal columnar organization in the somatosensory cortex, a specific decrease in somatostatin- and parvalbumin-expressing interneurons, altered neurite orientation, and a decrease in Synapsin I protein levels. Concerning behavior, KO mice, in addition to an increase in locomotor and exploratory activity, display impairment in social behaviors, with a reduction in social interaction. Finally, we found that risperidone treatment decreased hyperactivity of KO mice, but had no effect on defective social interaction. Altogether, these data add complexity to a growing body of data, suggesting a link between dysregulation of the NF-κB pathway and neurodevelopmental disorders pathogenesis. © The Author 2016. Published by Oxford University Press.

  18. Functional connectivity and dynamics of cortical-thalamic networks co-cultured in a dual compartment device

    NASA Astrophysics Data System (ADS)

    Kanagasabapathi, Thirukumaran T.; Massobrio, Paolo; Barone, Rocco Andrea; Tedesco, Mariateresa; Martinoia, Sergio; Wadman, Wytse J.; Decré, Michel M. J.

    2012-06-01

    Co-cultures containing dissociated cortical and thalamic cells may provide a unique model for understanding the pathophysiology in the respective neuronal sub-circuitry. In addition, developing an in vitro dissociated co-culture model offers the possibility of studying the system without influence from other neuronal sub-populations. Here we demonstrate a dual compartment system coupled to microelectrode arrays (MEAs) for co-culturing and recording spontaneous activities from neuronal sub-populations. Propagation of electrical activities between cortical and thalamic regions and their interdependence in connectivity is verified by means of a cross-correlation algorithm. We found that burst events originate in the cortical region and drive the entire cortical-thalamic network bursting behavior while mutually weak thalamic connections play a relevant role in sustaining longer burst events in cortical cells. To support these experimental findings, a neuronal network model was developed and used to investigate the interplay between network dynamics and connectivity in the cortical-thalamic system.

  19. A computational model of cerebral cortex folding.

    PubMed

    Nie, Jingxin; Guo, Lei; Li, Gang; Faraco, Carlos; Stephen Miller, L; Liu, Tianming

    2010-05-21

    The geometric complexity and variability of the human cerebral cortex have long intrigued the scientific community. As a result, quantitative description of cortical folding patterns and the understanding of underlying folding mechanisms have emerged as important research goals. This paper presents a computational 3D geometric model of cerebral cortex folding initialized by MRI data of a human fetal brain and deformed under the governance of a partial differential equation modeling cortical growth. By applying different simulation parameters, our model is able to generate folding convolutions and shape dynamics of the cerebral cortex. The simulations of this 3D geometric model provide computational experimental support to the following hypotheses: (1) Mechanical constraints of the skull regulate the cortical folding process. (2) The cortical folding pattern is dependent on the global cell growth rate of the whole cortex. (3) The cortical folding pattern is dependent on relative rates of cell growth in different cortical areas. (4) The cortical folding pattern is dependent on the initial geometry of the cortex. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. Decursinol and decursin protect primary cultured rat cortical cells from glutamate-induced neurotoxicity.

    PubMed

    Kang, So Young; Kim, Young Choong

    2007-06-01

    We previously reported six neuroprotective decursinol derivatives, coumarins from Angelica gigas (Umbelliferae) roots. To elucidate the action patterns of decursinol derivatives, we investigated the neuroprotective effects of decursinol and decursin, which showed highly significant activity and were major constituents of A. gigas, using primary cultures of rat cortical cells in-vitro. At concentrations of 0.1-10.0 microM, both decursinol and decursin exerted a significant neuroprotective activity pretreatment and throughout treatment. In addition, decursin had a neuroprotective impact in the post-treatment paradigm implying that decursin might possess different action mechanisms from that of decursinol in the protection of neurons against glutamate injury. Both decursinol and decursin effectively reduced the glutamate-induced increased intracellular calcium ([Ca(2+)](i)) in cortical cells, suggesting that these two coumarins may exert neuroprotection by reducing calcium influx by overactivation of glutamate receptors. This suggestion was supported by the result that decursinol and decursin protected neurons against kainic acid (KA)-induced neurotoxicity better than against that induced by N-methyl-D-aspartate (NMDA). Moreover, both decursinol and decursin significantly prevented glutamate-induced decreases in glutathione, a cellular antioxidant, and glutathione peroxidase activity. In addition, both compounds efficiently reduced the overproduction of cellular peroxide in glutamate-injured cortical cells. These results suggested that both decursinol and decursin protected primary cultured rat cortical cells against glutamate-induced oxidative stress by both reducing calcium influx and acting on the cellular antioxidative defence system. Moreover, decursin is considered to probably have a different action mechanism from that of decursinol in protecting cortical cells against glutamate injury.

  1. Low levels of muscarinic M1 receptor-positive neurons in cortical layers III and V in Brodmann areas 9 and 17 from individuals with schizophrenia.

    PubMed

    Scarr, Elizabeth; Hopper, Shaun; Vos, Valentina; Seo, Myoung Suk; Everall, Ian Paul; Aumann, Timothy Douglas; Chunam, Gursharan; Dean, Brian

    2018-05-30

    Results of neuroimaging and postmortem studies suggest that people with schizophrenia may have lower levels of muscarinic M1 receptors (CHRM1) in the cortex, but not in the hippocampus or thalamus. Here, we use a novel immunohistochemical approach to better understand the likely cause of these low receptor levels. We determined the distribution and number of CHRM1-positive (CHRM1+) neurons in the cortex, medial dorsal nucleus of the thalamus and regions of the hippocampus from controls ( n = 12, 12 and 5, respectively) and people with schizophrenia ( n = 24, 24 and 13, respectively). Compared with controls, levels of CHRM1+ neurons in people with schizophrenia were lower on pyramidal cells in layer III of Brodmann areas 9 (-44%) and 17 (-45%), and in layer V in Brodmann areas 9 (-45%) and 17 (-62%). We found no significant differences in the number of CHRM1+ neurons in the medial dorsal nucleus of the thalamus or in the hippocampus. Although diagnostic cohort sizes were typical for this type of study, they were relatively small. As well, people with schizophrenia were treated with antipsychotic drugs before death. The loss of CHRM1+ pyramidal cells in the cortex of people with schizophrenia may underpin derangements in the cholinergic regulation of GABAergic activity in cortical layer III and in cortical/subcortical communication via pyramidal cells in layer V.

  2. Dissecting local circuits in vivo: integrated optogenetic and electrophysiology approaches for exploring inhibitory regulation of cortical activity.

    PubMed

    Cardin, Jessica A

    2012-01-01

    Local cortical circuit activity in vivo comprises a complex and flexible series of interactions between excitatory and inhibitory neurons. Our understanding of the functional interactions between these different neural populations has been limited by the difficulty of identifying and selectively manipulating the diverse and sparsely represented inhibitory interneuron classes in the intact brain. The integration of recently developed optical tools with traditional electrophysiological techniques provides a powerful window into the role of inhibition in regulating the activity of excitatory neurons. In particular, optogenetic targeting of specific cell classes reveals the distinct impacts of local inhibitory populations on other neurons in the surrounding local network. In addition to providing the ability to activate or suppress spiking in target cells, optogenetic activation identifies extracellularly recorded neurons by class, even when naturally occurring spike rates are extremely low. However, there are several important limitations on the use of these tools and the interpretation of resulting data. The purpose of this article is to outline the uses and limitations of optogenetic tools, along with current methods for achieving cell type-specific expression, and to highlight the advantages of an experimental approach combining optogenetics and electrophysiology to explore the role of inhibition in active networks. To illustrate the efficacy of these combined approaches, I present data comparing targeted manipulations of cortical fast-spiking, parvalbumin-expressing and low threshold-spiking, somatostatin-expressing interneurons in vivo. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. The effects of elevated endogenous GABA levels on movement-related network oscillations.

    PubMed

    Muthukumaraswamy, S D; Myers, J F M; Wilson, S J; Nutt, D J; Lingford-Hughes, A; Singh, K D; Hamandi, K

    2013-02-01

    The EEG/MEG signal is generated primarily by the summation of the post-synaptic potentials of cortical principal cells. At a microcircuit level, these glutamatergic principal cells are reciprocally connected to GABAergic interneurons and cortical oscillations are thought to be dependent on the balance of excitation and inhibition between these cell types. To investigate the dependence of movement-related cortical oscillations on excitation-inhibition balance, we pharmacologically manipulated the GABA system using tiagabine, which blocks GABA Transporter 1(GAT-1), the GABA uptake transporter and increases endogenous GABA activity. In a blinded, placebo-controlled, crossover design, in 15 healthy participants we administered either 15mg of tiagabine or a placebo. We recorded whole-head magnetoencephalograms, while the participants performed a movement task, prior to, one hour post, three hour post and five hour post tiagabine ingestion. Using time-frequency analysis of beamformer source reconstructions, we quantified the baseline level of beta activity (15-30Hz), the post-movement beta rebound (PMBR), beta event-related desynchronisation (beta-ERD) and movement-related gamma synchronisation (MRGS) (60-90Hz). Our results demonstrated that tiagabine, and hence elevated endogenous GABA levels causes, an elevation of baseline beta power, enhanced beta-ERD and reduced PMBR, but no modulation of MRGS. Comparing our results to recent literature (Hall et al., 2011) we suggest that beta-ERD may be a GABAA receptor mediated process while PMBR may be GABAB receptor mediated. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. The 14-3-3 Protein PAR-5 Regulates the Asymmetric localization of the LET-99 Spindle Positioning Protein

    PubMed Central

    Rose, Lesilee S.

    2016-01-01

    PAR proteins play important roles in establishing cytoplasmic polarity as well as regulating spindle positioning during asymmetric division. However, the molecular mechanisms by which the PAR proteins generate asymmetry in different cell types are still being elucidated. Previous studies in C. elegans revealed that PAR-3 and PAR-1 regulate the asymmetric localization of LET-99, which in turn controls spindle positioning by affecting the distribution of the conserved force generating complex. In wild-type embryos, LET-99 is localized in a lateral cortical band pattern, via inhibition at the anterior by PAR-3 and at the posterior by PAR-1. In this report, we show that the 14-3-3 protein PAR-5 is also required for cortical LET-99 asymmetry. PAR-5 associated with LET-99 in pull-down assays, and two PAR-5 binding sites were identified in LET-99 using the yeast two-hybrid assay. Mutation of these sites abolished binding in yeast and altered LET-99 localization in vivo: LET-99 was present at the highest levels at the posterior pole of the embryo instead of a band in par-5 embryos. Together the results indicate that PAR-5 acts in a mechanism with PAR-1 to regulate LET-99 cortical localization. PMID:26921457

  5. Rapid communication between neurons and astrocytes in primary cortical cultures.

    PubMed

    Murphy, T H; Blatter, L A; Wier, W G; Baraban, J M

    1993-06-01

    The identification of neurotransmitter receptors and voltage-sensitive ion channels on astrocytes (reviewed by Barres, 1991) has renewed interest in how these cells respond to neuronal activity. To investigate the physiology of neuron astrocyte signaling, we have employed primary cortical cultures that contain both neuronal and glial cells. As the neurons in these cultures exhibit synchronous spontaneous synaptic activity, we have used both calcium imaging and whole-cell recording techniques to identify physiological activity in astrocytes related to neuronal activity. Whole-cell voltage-clamp records from astrocytes revealed rapid inward currents that coincide with bursts of electrical activity in neighboring neurons. Calcium imaging studies demonstrate that these currents in astrocytes are not always associated with slowly propagating calcium waves. Inclusion of the dye Lucifer yellow within patch pipettes confirmed that astrocytes are extensively coupled to each other but not to adjacent neurons, indicating that the currents observed are not due to gap junction connections between these cell types. These currents do not reflect widespread diffusion of glutamate or potassium released during neuronal activity since a population of small, round, multipolar presumed glial cells that are not dye coupled to adjacent cells did not display electrical currents coincident with neuronal firing, even though they respond to locally applied glutamate and potassium. These findings indicate that, in addition to the relatively slow signaling conveyed by calcium waves, astrocytes also display rapid electrical responses to neuronal activity.

  6. Colocalization of insulin-like growth factor-binding protein with insulin-like growth factor I.

    PubMed

    Kobayashi, S; Clemmons, D R; Venkatachalam, M A

    1991-07-01

    We report the localization of insulin-like growth factor I (IGF-I) and a 25-kDa form of insulin-like growth factor-binding protein (IGF-BP-1) in adult rat kidney. The antigens were localized using a rabbit anti-human IGF-I antibody, and a rabbit anti-human IGF-BP-1 antibody raised against human 25-kDa IGF-BP-1 purified from amniotic fluid. Immunohistochemistry by the avidin-biotin peroxidase conjugate technique showed that both peptides are located in the same nephron segments, in the same cell types. The most intense staining was in papillary collecting ducts. There was moderate staining also in cortical collecting ducts and medullary thick ascending limbs of Henle's loop. In collecting ducts the antigens were shown to be present in principal cells but not in intercalated cells. In distal convoluted tubules, cortical thick ascending limbs, and in structures presumptively identified as thin limbs of Henle's loops there was only modest staining. The macula densa, however, lacked immunoreactivity. Colocalization of IGF-I and IGF-BP-1 in the same cells supports the notion, derived from studies on cultured cells, that the actions of IGF-I may be modified by IGF-BPs that are present in the same location.

  7. Dynamics of place, boundary and object encoding in rat anterior claustrum

    PubMed Central

    Jankowski, Maciej M.; O’Mara, Shane M.

    2015-01-01

    Discrete populations of brain cells signal differing types of spatial information. These “spatial cells” are largely confined to a closely-connected network of sites. We describe here, for the first time, cells in the anterior claustrum of the freely-moving rat encoding place, boundary and object information. This novel claustral spatial signal potentially directly modulates a wide variety of anterior cortical regions. We hypothesize that one of the functions of the claustrum is to provide information about body position, boundaries and landmark information, enabling dynamic control of behavior. PMID:26557060

  8. The stimulus selectivity and connectivity of layer six principal cells reveals cortical microcircuits underlying visual processing.

    PubMed

    Vélez-Fort, Mateo; Rousseau, Charly V; Niedworok, Christian J; Wickersham, Ian R; Rancz, Ede A; Brown, Alexander P Y; Strom, Molly; Margrie, Troy W

    2014-09-17

    Sensory computations performed in the neocortex involve layer six (L6) cortico-cortical (CC) and cortico-thalamic (CT) signaling pathways. Developing an understanding of the physiological role of these circuits requires dissection of the functional specificity and connectivity of the underlying individual projection neurons. By combining whole-cell recording from identified L6 principal cells in the mouse primary visual cortex (V1) with modified rabies virus-based input mapping, we have determined the sensory response properties and upstream monosynaptic connectivity of cells mediating the CC or CT pathway. We show that CC-projecting cells encompass a broad spectrum of selectivity to stimulus orientation and are predominantly innervated by deep layer V1 neurons. In contrast, CT-projecting cells are ultrasparse firing, exquisitely tuned to orientation and direction information, and receive long-range input from higher cortical areas. This segregation in function and connectivity indicates that L6 microcircuits route specific contextual and stimulus-related information within and outside the cortical network. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Complement is activated in progressive multiple sclerosis cortical grey matter lesions.

    PubMed

    Watkins, Lewis M; Neal, James W; Loveless, Sam; Michailidou, Iliana; Ramaglia, Valeria; Rees, Mark I; Reynolds, Richard; Robertson, Neil P; Morgan, B Paul; Howell, Owain W

    2016-06-22

    The symptoms of multiple sclerosis (MS) are caused by damage to myelin and nerve cells in the brain and spinal cord. Inflammation is tightly linked with neurodegeneration, and it is the accumulation of neurodegeneration that underlies increasing neurological disability in progressive MS. Determining pathological mechanisms at play in MS grey matter is therefore a key to our understanding of disease progression. We analysed complement expression and activation by immunocytochemistry and in situ hybridisation in frozen or formalin-fixed paraffin-embedded post-mortem tissue blocks from 22 progressive MS cases and made comparisons to inflammatory central nervous system disease and non-neurological disease controls. Expression of the transcript for C1qA was noted in neurons and the activation fragment and opsonin C3b-labelled neurons and glia in the MS cortical and deep grey matter. The density of immunostained cells positive for the classical complement pathway protein C1q and the alternative complement pathway activation fragment Bb was significantly increased in cortical grey matter lesions in comparison to control grey matter. The number of cells immunostained for the membrane attack complex was elevated in cortical lesions, indicating complement activation to completion. The numbers of classical (C1-inhibitor) and alternative (factor H) pathway regulator-positive cells were unchanged between MS and controls, whilst complement anaphylatoxin receptor-bearing microglia in the MS cortex were found closely apposed to cortical neurons. Complement immunopositive neurons displayed an altered nuclear morphology, indicative of cell stress/damage, supporting our finding of significant neurodegeneration in cortical grey matter lesions. Complement is activated in the MS cortical grey matter lesions in areas of elevated numbers of complement receptor-positive microglia and suggests that complement over-activation may contribute to the worsening pathology that underlies the irreversible progression of MS.

  10. Visualization of migration of human cortical neurons generated from induced pluripotent stem cells.

    PubMed

    Bamba, Yohei; Kanemura, Yonehiro; Okano, Hideyuki; Yamasaki, Mami

    2017-09-01

    Neuronal migration is considered a key process in human brain development. However, direct observation of migrating human cortical neurons in the fetal brain is accompanied by ethical concerns and is a major obstacle in investigating human cortical neuronal migration. We established a novel system that enables direct visualization of migrating cortical neurons generated from human induced pluripotent stem cells (hiPSCs). We observed the migration of cortical neurons generated from hiPSCs derived from a control and from a patient with lissencephaly. Our system needs no viable brain tissue, which is usually used in slice culture. Migratory behavior of human cortical neuron can be observed more easily and more vividly by its fluorescence and glial scaffold than that by earlier methods. Our in vitro experimental system provides a new platform for investigating development of the human central nervous system and brain malformation. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Angiotensin II potentiates zinc-induced cortical neuronal death by acting on angiotensin II type 2 receptor.

    PubMed

    Park, Mi-Ha; Kim, Ha Na; Lim, Joon Seo; Ahn, Jae-Sung; Koh, Jae-Young

    2013-12-01

    The angiotensin system has several non-vascular functions in the central nervous system. For instance, inhibition of the brain angiotensin system results in a reduction in neuronal death following acute brain injury such as ischemia and intracerebral hemorrhage, even under conditions of constant blood pressure. Since endogenous zinc has been implicated as a key mediator of ischemic neuronal death, we investigated the possibility that the angiotensin system affects the outcome of zinc-triggered neuronal death in cortical cell cultures. Exposure of cortical cultures containing neurons and astrocytes to 300 μM zinc for 15 min induced submaximal death in both types of cells. Interestingly, addition of angiotensin II significantly enhanced the zinc-triggered neuronal death, while leaving astrocytic cell death relatively unchanged. Both type 1 and 2 angiotensin II receptors (AT1R and AT2R, respectively) were expressed in neurons as well as astrocytes. Zinc neurotoxicity was substantially attenuated by PD123319, a specific inhibitor of AT2R, and augmented by CGP42112, a selective activator of AT2R, indicating a critical role for this receptor subtype in the augmentation of neuronal cell death.Because zinc toxicity occurs largely through oxidative stress, the levels of superoxides in zinc-treated neurons were assessed by DCF fluorescence microscopy. Combined treatment with zinc and angiotensin II substantially increased the levels of superoxides in neurons compared to those induced by zinc alone. This increase in oxidative stress by angiotensin II was completely blocked by the addition of PD123319. Finally, since zinc-induced oxidative stress may be caused by induction and/or activation of NADPH oxidase, the activation status of Rac and the level of the NADPH oxidase subunit p67phox were measured. Angiotensin II markedly increased Rac activity and the levels of p67phox in zinc-treated neurons and astrocytes in a PD123319-dependent manner. The present study shows that the angiotensin system, especially that involving AT2R, may have an oxidative injury-potentiating effect via augmentation of the activity of NADPH oxidase. Hence, blockade of angiotensin signaling cascades in the brain may prove useful in protecting against the oxidative neuronal death that is likely to occur in acute brain injury.

  12. Laminar Organization of Attentional Modulation in Macaque Visual Area V4.

    PubMed

    Nandy, Anirvan S; Nassi, Jonathan J; Reynolds, John H

    2017-01-04

    Attention is critical to perception, serving to select behaviorally relevant information for privileged processing. To understand the neural mechanisms of attention, we must discern how attentional modulation varies by cell type and across cortical layers. Here, we test whether attention acts non-selectively across cortical layers or whether it engages the laminar circuit in specific and selective ways. We find layer- and cell-class-specific differences in several different forms of attentional modulation in area V4. Broad-spiking neurons in the superficial layers exhibit attention-mediated increases in firing rate and decreases in variability. Spike count correlations are highest in the input layer and attention serves to reduce these correlations. Superficial and input layer neurons exhibit attention-dependent decreases in low-frequency (<10 Hz) coherence, but deep layer neurons exhibit increases in coherence in the beta and gamma frequency ranges. Our study provides a template for attention-mediated laminar information processing that might be applicable across sensory modalities. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Neurogliaform cortical interneurons derive from cells in the preoptic area

    PubMed Central

    Cadilhac, Christelle; Prados, Julien; Holtmaat, Anthony

    2018-01-01

    Delineating the basic cellular components of cortical inhibitory circuits remains a fundamental issue in order to understand their specific contributions to microcircuit function. It is still unclear how current classifications of cortical interneuron subtypes relate to biological processes such as their developmental specification. Here we identified the developmental trajectory of neurogliaform cells (NGCs), the main effectors of a powerful inhibitory motif recruited by long-range connections. Using in vivo genetic lineage-tracing in mice, we report that NGCs originate from a specific pool of 5-HT3AR-expressing Hmx3+ cells located in the preoptic area (POA). Hmx3-derived 5-HT3AR+ cortical interneurons (INs) expressed the transcription factors PROX1, NR2F2, the marker reelin but not VIP and exhibited the molecular, morphological and electrophysiological profile of NGCs. Overall, these results indicate that NGCs are a distinct class of INs with a unique developmental trajectory and open the possibility to study their specific functional contribution to cortical inhibitory microcircuit motifs. PMID:29557780

  14. Mechanics of membrane-cytoskeleton attachment in Paramecium

    NASA Astrophysics Data System (ADS)

    Campillo, C.; Jerber, J.; Fisch, C.; Simoes-Betbeder, M.; Dupuis-Williams, P.; Nassoy, P.; Sykes, C.

    2012-12-01

    In this paper we assess the role of the protein MKS1 (Meckel syndrome type 1) in the cortical membrane mechanics of the ciliated protist Paramecium. This protein is known to be crucial in the process of cilium formation, and we investigate its putative role in membrane-cytoskeleton attachment. Therefore, we compare cells where the gene coding for MKS1 is silenced to wild-type cells. We found that scanning electron microscopy observation of the cell surface reveals a cup-like structure in wild-type cells that is lost in silenced cells. Since this structure is based on the underlying cytoskeleton, one hypothesis to explain this observation is a disruption of membrane attachment to the cytoskeleton in the absence of MKS1 that should affect plasma membrane mechanics. We test this by probing the mechanics of wild-type and silenced cells by micropipette aspiration. Strikingly, we observe that, at the same aspiration pressure, the membrane of silenced cells is easily aspirated by the micropipette whereas that of wild-type cells enters only at a moderate velocity, an effect that suggests a detachment of the membrane from the underlying cytoskeleton in silenced cells. We quantify this detachment by measuring the deformation of the cell cortex and the rate of cell membrane entry in the micropipette. This study offers a new perspective for the characterization of membrane-cytoskeleton attachment in protists and paves the way for a better understanding of the role of membrane-cortex attachment in cilium formation.

  15. A golgi study of the optic tectum of the tegu lizard, Tupinambis nigropunctatus.

    PubMed

    Butler, A B; Ebbesson, O E

    1975-06-01

    The dendritic patterns of cells in the optic tectum of the tegu lizard, Tupinambis nigropunctatus, were analyzed with the Ramon-Moliner modification of the Golgi-Cox technique. Cell types were compared with those described by other authors in the tectum of other reptiles; particular comparisons of our results were made with the description of cell types in the chameleon (Ramń, 1896), as the latter is the most complete analysis in the literature. The periventricular gray layers 3 and 5 consist primarily of two cell types--piriform or pyramidal shaped cells and horizontal cells. Cells in the medial portion of the tectum, in an area coextensive with the bilateral spinal projection zone, possess dendrites that extend across the midline. The latter cells have either fusiform or pyramidal shaped somas. The central white zone, layer 6, contains fibers, large fusiform or pyramidal shaped cells, fusiform cells, and small horizontal cells. The central gray zone, layer 7, is composed predominately of fusiform cells which have dendrites extending to the superficial optic layers, large polygonal cells, and horizontal cells. The superficial gray and white layers, layers 8-13, contain polygonal, fusiform, stellate, and horizontal elements. Layer 14 is composed solely of afferent optic tract fibers. Several differences in the occurrence and distribution of cell types between the tegu and the other reptiles studied are noted. Additionally, the laminar distribution of retinal, tectotectal, telencephalic, and spinal projections in the tegutectum can be related to the distribution of cell types, and those cells which may be postsynaptic to specific inputs can be identified. The highly differentiated laminar structure of the reptilian optic tectum, both in regard to cell type and to afferent and efferent connections, may serve as a model for studying some functional properties of lamination common to cortical structures.

  16. Spatial integration and cortical dynamics.

    PubMed

    Gilbert, C D; Das, A; Ito, M; Kapadia, M; Westheimer, G

    1996-01-23

    Cells in adult primary visual cortex are capable of integrating information over much larger portions of the visual field than was originally thought. Moreover, their receptive field properties can be altered by the context within which local features are presented and by changes in visual experience. The substrate for both spatial integration and cortical plasticity is likely to be found in a plexus of long-range horizontal connections, formed by cortical pyramidal cells, which link cells within each cortical area over distances of 6-8 mm. The relationship between horizontal connections and cortical functional architecture suggests a role in visual segmentation and spatial integration. The distribution of lateral interactions within striate cortex was visualized with optical recording, and their functional consequences were explored by using comparable stimuli in human psychophysical experiments and in recordings from alert monkeys. They may represent the substrate for perceptual phenomena such as illusory contours, surface fill-in, and contour saliency. The dynamic nature of receptive field properties and cortical architecture has been seen over time scales ranging from seconds to months. One can induce a remapping of the topography of visual cortex by making focal binocular retinal lesions. Shorter-term plasticity of cortical receptive fields was observed following brief periods of visual stimulation. The mechanisms involved entailed, for the short-term changes, altering the effectiveness of existing cortical connections, and for the long-term changes, sprouting of axon collaterals and synaptogenesis. The mutability of cortical function implies a continual process of calibration and normalization of the perception of visual attributes that is dependent on sensory experience throughout adulthood and might further represent the mechanism of perceptual learning.

  17. Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size

    PubMed Central

    Gerstner, Wulfram

    2017-01-01

    Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50–2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations. PMID:28422957

  18. Cortical microtubules in sweet clover columella cells developed in microgravity

    NASA Technical Reports Server (NTRS)

    Hilaire, E.; Paulsen, A. Q.; Brown, C. S.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    Electron micrographs of columella cells from sweet clover seedlings grown and fixed in microgravity revealed longitudinal and cross sectioned cortical microtubules. This is the first report demonstrating the presence and stability of this network in plants in microgravity.

  19. SNARE-dependent upregulation of KCC2 activity following metabotropic zinc receptor (mZnR/GPR39) activation in rat cortical neurons in vitro

    PubMed Central

    Saadi, Robert A.; He, Kai; Hartnett, Karen A.; Kandler, Karl; Hershfinkel, Michal; Aizenman, Elias

    2012-01-01

    The major outward chloride transporter in neurons is the potassium chloride co-transporter 2 (KCC2), critical for maintaining an inhibitory reversal potential for GABAA receptor channels. In a recent study, we showed that Zn2+ regulates GABAA reversal potentials in the hippocampus by enhancing the activity of KCC2 via an increase in its surface expression. Zn2+ initiates this process by activating the Gq-coupled metabotropic Zn2+ receptor mZnR/GPR39. Here, we first demonstrated that mZnR/GPR39 is functional in cortical neurons in culture and then tested the hypothesis that the increase in KCC2 activity is mediated through a SNARE-dependent process. We established the presence of functional mZnR in rat cultured cortical neurons by loading cells with a Ca2+ indicator and exposing cells to Zn2+, which triggered consistent Ca2+ responses that were blocked by the Gq antagonist YM-254890, but not by the metabotropic glutamate receptor antagonist MCPG. Importantly, Zn2+ treatment under these conditions did not increase the intracellular concentrations of Zn2+ itself. We then measured KCC2 activity by monitoring both the rate and relative amount of furosemide-sensitive NH4+ influx via the co-transporter using an intracellular pH sensitive fluorescent indicator. We observed that Zn2+ pretreatment induced a Ca2+-dependent increase in KCC2 activity. The effects of Zn2+ on KCC2 activity were also observed in wild-type mouse cortical neurons in culture, but not in neurons obtained from mZnR/GPR39−/− mice, suggesting that Zn2+ acts via mZnR/GPR39 activation to upregulate KCC2 activity. We next transfected rat cortical neurons with a plasmid encoding botulinum toxin C1 (Botox C1), which cleaves the SNARE proteins syntaxin 1 and SNAP-25. Basal KCC2 activity was similar in both transfected and non-transfected neurons. Non-transfected cells, or cells transfected with marker vector alone, showed a Zn2+-dependent increase in KCC2 activity. In contrast, KCC2 activity in neurons expressing Botox C1 was unchanged by Zn2+. These results suggest that SNARE proteins are necessary for the increased activity of KCC2 following Zn2+ stimulation of mZnR/GPR39. PMID:22441041

  20. Integrative Mechanisms of Oriented Neuronal Migration in the Developing Brain

    PubMed Central

    Evsyukova, Irina; Plestant, Charlotte; Anton, E.S.

    2014-01-01

    The emergence of functional neuronal connectivity in the developing cerebral cortex depends on neuronal migration. This process enables appropriate positioning of neurons and the emergence of neuronal identity so that the correct patterns of functional synaptic connectivity between the right types and numbers of neurons can emerge. Delineating the complexities of neuronal migration is critical to our understanding of normal cerebral cortical formation and neurodevelopmental disorders resulting from neuronal migration defects. For the most part, the integrated cell biological basis of the complex behavior of oriented neuronal migration within the developing mammalian cerebral cortex remains an enigma. This review aims to analyze the integrative mechanisms that enable neurons to sense environmental guidance cues and translate them into oriented patterns of migration toward defined areas of the cerebral cortex. We discuss how signals emanating from different domains of neurons get integrated to control distinct aspects of migratory behavior and how different types of cortical neurons coordinate their migratory activities within the developing cerebral cortex to produce functionally critical laminar organization. PMID:23937349

  1. Correlation of mandibular impacted tooth and bone morphology determined by cone beam computed topography on a premise of third molar operation.

    PubMed

    Momin, M A; Matsumoto, K; Ejima, K; Asaumi, R; Kawai, T; Arai, Y; Honda, K; Yosue, T

    2013-05-01

    To determine the width and morphology of the mandible in the impacted third molar region, and to identify the location of the mandibular canal prior to planning impacted third molar operations. Cone beam computed tomography (CBCT) data of 87 mandibular third molars from 62 Japanese patients were analyzed in this study. The width of the lingual cortical bone and apex-canal distance were measured from cross-sectional images in which the cortical bone was thinnest at the lingual side in the third molar region. Images were used for measuring the space (distance between the inner border of the lingual cortical bone and outer surface of the third molar root), apex-canal distance (distance from the root of the third molar tooth to the superior border of the inferior alveolar canal) and the cortical bone (width between the inner and outer borders of the lingual cortical bone). The means of the space, apex-canal distance and lingual cortical width were 0.31, 1.99, and 0.68 mm, respectively. Impacted third molar teeth (types A-C) were observed at the following frequencies: type A (angular) 37 %; type B (horizontal), 42 %; type C (vertical), 21 %. The morphology of the mandible at the third molar region (types D-F) was observed as: type D (round), 49 %; type E (lingual extended), 18 %; and type F (lingual concave), 32 %. The width and morphology of the mandible with impacted teeth and the location of the mandibular canal at the third molar region could be clearly determined using cross-sectional CBCT images.

  2. Chemical genetic screening identifies a novel inhibitor of parallel alignment of cortical microtubules and cellulose microfibrils.

    PubMed

    Yoneda, Arata; Higaki, Takumi; Kutsuna, Natsumaro; Kondo, Yoichi; Osada, Hiroyuki; Hasezawa, Seiichiro; Matsui, Minami

    2007-10-01

    It is a well-known hypothesis that cortical microtubules control the direction of cellulose microfibril deposition, and that the parallel cellulose microfibrils determine anisotropic cell expansion and plant cell morphogenesis. However, the molecular mechanism by which cortical microtubules regulate the orientation of cellulose microfibrils is still unclear. To investigate this mechanism, chemical genetic screening was performed. From this screening, 'SS compounds' were identified that induced a spherical swelling phenotype in tobacco BY-2 cells. The SS compounds could be categorized into three classes: those that disrupted the cortical microtubules; those that reduced cellulose microfibril content; and thirdly those that had neither of these effects. In the last class, a chemical designated 'cobtorin' was found to induce the spherical swelling phenotype at the lowest concentration, suggesting strong binding activity to the putative target. Examining cellulose microfibril regeneration using taxol-treated protoplasts revealed that the cobtorin compound perturbed the parallel alignment of pre-existing cortical microtubules and nascent cellulose microfibrils. Thus, cobtorin could be a novel inhibitor and an attractive tool for further investigation of the mechanism that enables cortical microtubules to guide the parallel deposition of cellulose microfibrils.

  3. Distinct development of the cerebral cortex in platypus and echidna.

    PubMed

    Ashwell, Ken W S; Hardman, Craig D

    2012-01-01

    Both lineages of the modern monotremes have distinctive features in the cerebral cortex, but the developmental mechanisms that produce such different adult cortical architecture remain unknown. Similarly, nothing is known about the differences and/or similarities between monotreme and therian cortical development. We have used material from the Hill embryological collection to try to answer key questions concerning cortical development in monotremes. Our findings indicate that gyrencephaly begins to emerge in the echidna brain shortly before birth (crown-rump length 12.5 mm), whereas the cortex of the platypus remains lissencephalic throughout development. The cortices of both monotremes are very immature at the time of hatching, much like that seen in marsupials, and both have a subventricular zone (SubV) within both the striatum and pallium during post-hatching development. It is particularly striking that in the platypus, this region has an extension from the palliostriatal angle beneath the developing trigeminoreceptive part of the somatosensory cortex of the lateral cortex. The putative SubV beneath the trigeminal part of S1 appears to accommodate at least two distinct types of cell and many mitotic figures and (particularly in the platypus) appears to be traversed by large numbers of thalamocortical axons as these grow in. The association with putative thalamocortical fibres suggests that this region may also serve functions similar to the subplate zone of Eutheria. These findings suggest that cortical development in each monotreme follows distinct paths from at least the time of birth, consistent with a long period of independent and divergent cortical evolution. Copyright © 2011 S. Karger AG, Basel.

  4. Methamphetamine-induced neurotoxicity is attenuated in transgenic mice with a null mutation for interleukin-6.

    PubMed

    Ladenheim, B; Krasnova, I N; Deng, X; Oyler, J M; Polettini, A; Moran, T H; Huestis, M A; Cadet, J L

    2000-12-01

    Increasing evidence implicates apoptosis as a major mechanism of cell death in methamphetamine (METH) neurotoxicity. The involvement of a neuroimmune component in apoptotic cell death after injury or chemical damage suggests that cytokines may play a role in METH effects. In the present study, we examined if the absence of IL-6 in knockout (IL-6-/-) mice could provide protection against METH-induced neurotoxicity. Administration of METH resulted in a significant reduction of [(125)I]RTI-121-labeled dopamine transporters in the caudate-putamen (CPu) and cortex as well as depletion of dopamine in the CPu and frontal cortex of wild-type mice. However, these METH-induced effects were significantly attenuated in IL-6-/- animals. METH also caused a decrease in serotonin levels in the CPu and hippocampus of wild-type mice, but no reduction was observed in IL-6-/- animals. Moreover, METH induced decreases in [(125)I]RTI-55-labeled serotonin transporters in the hippocampal CA3 region and in the substantia nigra-reticulata but increases in serotonin transporters in the CPu and cingulate cortex in wild-type animals, all of which were attenuated in IL-6-/- mice. Additionally, METH caused increased gliosis in the CPu and cortices of wild-type mice as measured by [(3)H]PK-11195 binding; this gliotic response was almost completely inhibited in IL-6-/- animals. There was also significant protection against METH-induced DNA fragmentation, measured by the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeled (TUNEL) cells in the cortices. The protective effects against METH toxicity observed in the IL-6-/- mice were not caused by differences in temperature elevation or in METH accumulation in wild-type and mutant animals. Therefore, these observations support the proposition that IL-6 may play an important role in the neurotoxicity of METH.

  5. Clonal deletion of thymocytes can occur in the cortex with no involvement of the medulla

    PubMed Central

    McCaughtry, Tom M.; Baldwin, Troy A.; Wilken, Matthew S.; Hogquist, Kristin A.

    2008-01-01

    The thymic medulla is generally held to be a specialized environment for negative selection. However, many self-reactive thymocytes first encounter ubiquitous self-antigens in the cortex. Cortical epithelial cells are vital for positive selection, but whether such cells can also promote negative selection is controversial. We used the HYcd4 model, where T cell receptor for antigen (TCR) expression is appropriately timed and a ubiquitous self-antigen drives clonal deletion in male mice. We demonstrated unambiguously that this deletion event occurs in the thymic cortex. However, the kinetics in vivo indicated that apoptosis was activated asynchronously relative to TCR activation. We found that radioresistant antigen-presenting cells and, specifically, cortical epithelial cells do not efficiently induce apoptosis, although they do cause TCR activation. Rather, thymocytes undergoing clonal deletion were preferentially associated with rare CD11c+ cortical dendritic cells, and elimination of such cells impaired deletion. PMID:18936237

  6. Multiple Transmitter Receptors in Regions and Layers of the Human Cerebral Cortex

    PubMed Central

    Zilles, Karl; Palomero-Gallagher, Nicola

    2017-01-01

    We measured the densities (fmol/mg protein) of 15 different receptors of various transmitter systems in the supragranular, granular and infragranular strata of 44 areas of visual, somatosensory, auditory and multimodal association systems of the human cerebral cortex. Receptor densities were obtained after labeling of the receptors using quantitative in vitro receptor autoradiography in human postmortem brains. The mean density of each receptor type over all cortical layers and of each of the three major strata varies between cortical regions. In a single cortical area, the multi-receptor fingerprints of its strata (i.e., polar plots, each visualizing the densities of multiple different receptor types in supragranular, granular or infragranular layers of the same cortical area) differ in shape and size indicating regional and laminar specific balances between the receptors. Furthermore, the three strata are clearly segregated into well definable clusters by their receptor fingerprints. Fingerprints of different cortical areas systematically vary between functional networks, and with the hierarchical levels within sensory systems. Primary sensory areas are clearly separated from all other cortical areas particularly by their very high muscarinic M2 and nicotinic α4β2 receptor densities, and to a lesser degree also by noradrenergic α2 and serotonergic 5-HT2 receptors. Early visual areas of the dorsal and ventral streams are segregated by their multi-receptor fingerprints. The results are discussed on the background of functional segregation, cortical hierarchies, microstructural types, and the horizontal (layers) and vertical (columns) organization in the cerebral cortex. We conclude that a cortical column is composed of segments, which can be assigned to the cortical strata. The segments differ by their patterns of multi-receptor balances, indicating different layer-specific signal processing mechanisms. Additionally, the differences between the strata-and area-specific fingerprints of the 44 areas reflect the segregation of the cerebral cortex into functionally and topographically definable groups of cortical areas (visual, auditory, somatosensory, limbic, motor), and reveals their hierarchical position (primary and unimodal (early) sensory to higher sensory and finally to multimodal association areas). Highlights Densities of transmitter receptors vary between areas of human cerebral cortex.Multi-receptor fingerprints segregate cortical layers.The densities of all examined receptor types together reach highest values in the supragranular stratum of all areas.The lowest values are found in the infragranular stratum.Multi-receptor fingerprints of entire areas and their layers segregate functional systemsCortical types (primary sensory, motor, multimodal association) differ in their receptor fingerprints. PMID:28970785

  7. Localization of SUCLA2 and SUCLG2 subunits of succinyl CoA ligase within the cerebral cortex suggests the absence of matrix substrate-level phosphorylation in glial cells of the human brain.

    PubMed

    Dobolyi, Arpád; Bagó, Attila G; Gál, Aniko; Molnár, Mária J; Palkovits, Miklós; Adam-Vizi, Vera; Chinopoulos, Christos

    2015-04-01

    We have recently shown that the ATP-forming SUCLA2 subunit of succinyl-CoA ligase, an enzyme of the citric acid cycle, is exclusively expressed in neurons of the human cerebral cortex; GFAP- and S100-positive astroglial cells did not exhibit immunohistoreactivity or in situ hybridization reactivity for either SUCLA2 or the GTP-forming SUCLG2. However, Western blotting of post mortem samples revealed a minor SUCLG2 immunoreactivity. In the present work we sought to identify the cell type(s) harboring SUCLG2 in paraformaldehyde-fixed, free-floating surgical human cortical tissue samples. Specificity of SUCLG2 antiserum was supported by co-localization with mitotracker orange staining of paraformaldehyde-fixed human fibroblast cultures, delineating the mitochondrial network. In human cortical tissue samples, microglia and oligodendroglia were identified by antibodies directed against Iba1 and myelin basic protein, respectively. Double immunofluorescence for SUCLG2 and Iba1 or myelin basic protein exhibited no co-staining; instead, SUCLG2 appeared to outline the cerebral microvasculature. In accordance to our previous work there was no co-localization of SUCLA2 immunoreactivity with either Iba1 or myelin basic protein. We conclude that SUCLG2 exist only in cells forming the vasculature or its contents in the human brain. The absence of SUCLA2 and SUCLG2 in human glia is in compliance with the presence of alternative pathways occurring in these cells, namely the GABA shunt and ketone body metabolism which do not require succinyl CoA ligase activity, and glutamate dehydrogenase 1, an enzyme exhibiting exquisite sensitivity to inhibition by GTP.

  8. Mouse embryonic stem cell culture for generation of three-dimensional retinal and cortical tissues.

    PubMed

    Eiraku, Mototsugu; Sasai, Yoshiki

    2011-12-15

    Generation of compound tissues with complex structures is a major challenge in cell biology. In this article, we describe a protocol for mouse embryonic stem cell (ESC) culture for in vitro generation of three-dimensional retinal tissue, comparing it with the culture protocol for cortical tissue generation. Dissociated ESCs are reaggregated in a 96-well plate with reduced cell-plate adhesion and cultured as floating aggregates. Retinal epithelium is efficiently generated when ESC aggregates are cultured in serum-free medium containing extracellular matrix proteins, spontaneously forming hemispherical vesicles and then progressively transforming into a shape reminiscent of the embryonic optic cup in 9-10 d. In long-term culture, the ESC-derived optic cup generates a fully stratified retinal tissue consisting of all major neural retinal components. In contrast, the cortical differentiation culture can be started without exogenous extracellular matrix proteins, and it generates stratified cortical epithelia consisting of four distinct layers in 13 d.

  9. Reassessment of the structural basis of the ascending arousal system

    PubMed Central

    Fuller, Patrick M.; Sherman, David; Pedersen, Nigel P.; Saper, Clifford B.; Lu, Jun

    2011-01-01

    The “ascending reticular activating system” theory proposed that neurons in the upper brainstem reticular formation projected to forebrain targets that promoted wakefulness. More recent formulations have emphasized that most neurons at the pontomesencepahlic junction that participate in these pathways are actually in monoaminergic and cholinergic cell groups. However, cell-specific lesions of these cell groups have never been able to reproduce the deep coma seen after acute paramedian midbrain lesions that transect ascending axons at the caudal midbrain level. To determine whether the cortical afferents from the thalamus or the basal forebrain were more important in maintaining arousal, we first place large cell-body specific lesions in these targets. Surprisingly, extensive thalamic lesions had little effect on EEG or behavioral measures of wakefulness or on c-Fos expression by cortical neurons during wakefulness. In contrast, animals with large basal forebrain lesions were behaviorally unresponsive, had a monotonous sub-1 Hz EEG, and little cortical c-Fos expression during continuous gentle handling. We then retrogradely labeled inputs to the basal forebrain from the upper brainstem, and found a substantial input from glutamatergic neurons in the parabrachial nucleus and adjacent pre-coeruleus area. Cell specific lesions of the parabrachial-precoeruleus complex produced behavioral unresponsiveness, a monotonous sub-1Hz cortical EEG, and loss of cortical c-Fos expression during gentle handling. These experiments indicate that in rats the reticulo-thalamo-cortical pathway may play a very limited role in behavioral or electrocortical arousal, while the projection from the parabrachial nucleus and precoeruleus region, relayed by the basal forebrain to the cerebral cortex, may be critical for this process. PMID:21280045

  10. Creutzfeldt-Jakob disease with severe involvement of cerebral white matter and cerebellum.

    PubMed

    Berciano, J; Berciano, M T; Polo, J M; Figols, J; Ciudad, J; Lafarga, M

    1990-01-01

    We describe a patient with Creutzfeldt-Jakob disease (CJD) of the ataxic and panencephalopathic type. Postmortem examination revealed the characteristic lesions of CJD in the grey matter and profound white matter involvement was seen with immunocytochemical techniques. Ultrastructural white matter lesions were identical to those described in experimentally transmitted CJD. There was marked loss of cerebellar granule cells with virtual disappearance of parallel fibres, but Purkinje cells were only slightly reduced. Electron microscopic studies revealed extensive degenerative changes including cytoplasmic vacuoles in both cell types. Silver methods disclosed massive impregnation of white matter and striking abnormalities of Purkinje cells consisting of hypertrophy and flattening of thick dendritic branches, reduction in the number of terminal branchlets, segmentary loss of spines and polymorphic spines. These findings show the extensive involvement of all three cerebellar cortical layers and the reactive plasticity of Purkinje cells to deafferentiation. They favour the hypothesis that demyelination represents a primary lesion of the white matter.

  11. Action potentials and ion conductances in wild-type and CALHM1-knockout type II taste cells

    PubMed Central

    Saung, Wint Thu; Foskett, J. Kevin

    2017-01-01

    Taste bud type II cells fire action potentials in response to tastants, triggering nonvesicular ATP release to gustatory neurons via voltage-gated CALHM1-associated ion channels. Whereas CALHM1 regulates mouse cortical neuron excitability, its roles in regulating type II cell excitability are unknown. In this study, we compared membrane conductances and action potentials in single identified TRPM5-GFP-expressing circumvallate papillae type II cells acutely isolated from wild-type (WT) and Calhm1 knockout (KO) mice. The activation kinetics of large voltage-gated outward currents were accelerated in cells from Calhm1 KO mice, and their associated nonselective tail currents, previously shown to be highly correlated with ATP release, were completely absent in Calhm1 KO cells, suggesting that CALHM1 contributes to all of these currents. Calhm1 deletion did not significantly alter resting membrane potential or input resistance, the amplitudes and kinetics of Na+ currents either estimated from action potentials or recorded from steady-state voltage pulses, or action potential threshold, overshoot peak, afterhyperpolarization, and firing frequency. However, Calhm1 deletion reduced the half-widths of action potentials and accelerated the deactivation kinetics of transient outward currents, suggesting that the CALHM1-associated conductance becomes activated during the repolarization phase of action potentials. NEW & NOTEWORTHY CALHM1 is an essential ion channel component of the ATP neurotransmitter release mechanism in type II taste bud cells. Its contribution to type II cell resting membrane properties and excitability is unknown. Nonselective voltage-gated currents, previously associated with ATP release, were absent in cells lacking CALHM1. Calhm1 deletion was without effects on resting membrane properties or voltage-gated Na+ and K+ channels but contributed modestly to the kinetics of action potentials. PMID:28202574

  12. Action potentials and ion conductances in wild-type and CALHM1-knockout type II taste cells.

    PubMed

    Ma, Zhongming; Saung, Wint Thu; Foskett, J Kevin

    2017-05-01

    Taste bud type II cells fire action potentials in response to tastants, triggering nonvesicular ATP release to gustatory neurons via voltage-gated CALHM1-associated ion channels. Whereas CALHM1 regulates mouse cortical neuron excitability, its roles in regulating type II cell excitability are unknown. In this study, we compared membrane conductances and action potentials in single identified TRPM5-GFP-expressing circumvallate papillae type II cells acutely isolated from wild-type (WT) and Calhm1 knockout (KO) mice. The activation kinetics of large voltage-gated outward currents were accelerated in cells from Calhm1 KO mice, and their associated nonselective tail currents, previously shown to be highly correlated with ATP release, were completely absent in Calhm1 KO cells, suggesting that CALHM1 contributes to all of these currents. Calhm1 deletion did not significantly alter resting membrane potential or input resistance, the amplitudes and kinetics of Na + currents either estimated from action potentials or recorded from steady-state voltage pulses, or action potential threshold, overshoot peak, afterhyperpolarization, and firing frequency. However, Calhm1 deletion reduced the half-widths of action potentials and accelerated the deactivation kinetics of transient outward currents, suggesting that the CALHM1-associated conductance becomes activated during the repolarization phase of action potentials. NEW & NOTEWORTHY CALHM1 is an essential ion channel component of the ATP neurotransmitter release mechanism in type II taste bud cells. Its contribution to type II cell resting membrane properties and excitability is unknown. Nonselective voltage-gated currents, previously associated with ATP release, were absent in cells lacking CALHM1. Calhm1 deletion was without effects on resting membrane properties or voltage-gated Na + and K + channels but contributed modestly to the kinetics of action potentials. Copyright © 2017 the American Physiological Society.

  13. The dynamic relationship between cerebellar Purkinje cell simple spikes and the spikelet number of complex spikes

    PubMed Central

    Burroughs, Amelia; Wise, Andrew K.; Xiao, Jianqiang; Houghton, Conor; Tang, Tianyu; Suh, Colleen Y.; Lang, Eric J.

    2016-01-01

    Key points Purkinje cells are the sole output of the cerebellar cortex and fire two distinct types of action potential: simple spikes and complex spikes.Previous studies have mainly considered complex spikes as unitary events, even though the waveform is composed of varying numbers of spikelets.The extent to which differences in spikelet number affect simple spike activity (and vice versa) remains unclear.We found that complex spikes with greater numbers of spikelets are preceded by higher simple spike firing rates but, following the complex spike, simple spikes are reduced in a manner that is graded with spikelet number.This dynamic interaction has important implications for cerebellar information processing, and suggests that complex spike spikelet number may maintain Purkinje cells within their operational range. Abstract Purkinje cells are central to cerebellar function because they form the sole output of the cerebellar cortex. They exhibit two distinct types of action potential: simple spikes and complex spikes. It is widely accepted that interaction between these two types of impulse is central to cerebellar cortical information processing. Previous investigations of the interactions between simple spikes and complex spikes have mainly considered complex spikes as unitary events. However, complex spikes are composed of an initial large spike followed by a number of secondary components, termed spikelets. The number of spikelets within individual complex spikes is highly variable and the extent to which differences in complex spike spikelet number affects simple spike activity (and vice versa) remains poorly understood. In anaesthetized adult rats, we have found that Purkinje cells recorded from the posterior lobe vermis and hemisphere have high simple spike firing frequencies that precede complex spikes with greater numbers of spikelets. This finding was also evident in a small sample of Purkinje cells recorded from the posterior lobe hemisphere in awake cats. In addition, complex spikes with a greater number of spikelets were associated with a subsequent reduction in simple spike firing rate. We therefore suggest that one important function of spikelets is the modulation of Purkinje cell simple spike firing frequency, which has implications for controlling cerebellar cortical output and motor learning. PMID:27265808

  14. The cells of cajal-retzius: still a mystery one century after.

    PubMed

    Soriano, Eduardo; Del Río, José Antonio

    2005-05-05

    Cajal-Retzius (CR) cells are an enigmatic class of neurons located at the surface of the cerebral cortex, playing a major role in cortical development. In this review, we discuss several distinct features of these neurons and the mechanisms by which they regulate cortical development. Many CR cells likely have extracortical origin and undergo cell death during development. Recent genetic studies report unique patterns of gene expression in CR cells, which may help to explain the developmental processes in which they participate. Moreover, a number of studies indicate that CR cells, and their secreted gene product, reelin, are involved in neuronal migration by acting on two key partners, migrating neurons and radial glial cells. Emerging data show that these neurons are a critical part of an early and complex network of neural activity in layer I, supporting the notion that CR cells modulate cortical maturation. Given these key and complex developmental properties, it is therefore conceivable for CR cells to be implicated in the pathogenesis of a variety of neurological disorders.

  15. Multi-level characterization of balanced inhibitory-excitatory cortical neuron network derived from human pluripotent stem cells.

    PubMed

    Nadadhur, Aishwarya G; Emperador Melero, Javier; Meijer, Marieke; Schut, Desiree; Jacobs, Gerbren; Li, Ka Wan; Hjorth, J J Johannes; Meredith, Rhiannon M; Toonen, Ruud F; Van Kesteren, Ronald E; Smit, August B; Verhage, Matthijs; Heine, Vivi M

    2017-01-01

    Generation of neuronal cultures from induced pluripotent stem cells (hiPSCs) serve the studies of human brain disorders. However we lack neuronal networks with balanced excitatory-inhibitory activities, which are suitable for single cell analysis. We generated low-density networks of hPSC-derived GABAergic and glutamatergic cortical neurons. We used two different co-culture models with astrocytes. We show that these cultures have balanced excitatory-inhibitory synaptic identities using confocal microscopy, electrophysiological recordings, calcium imaging and mRNA analysis. These simple and robust protocols offer the opportunity for single-cell to multi-level analysis of patient hiPSC-derived cortical excitatory-inhibitory networks; thereby creating advanced tools to study disease mechanisms underlying neurodevelopmental disorders.

  16. Cortical Flow-Driven Shapes of Nonadherent Cells.

    PubMed

    Callan-Jones, A C; Ruprecht, V; Wieser, S; Heisenberg, C P; Voituriez, R

    2016-01-15

    Nonadherent polarized cells have been observed to have a pearlike, elongated shape. Using a minimal model that describes the cell cortex as a thin layer of contractile active gel, we show that the anisotropy of active stresses, controlled by cortical viscosity and filament ordering, can account for this morphology. The predicted shapes can be determined from the flow pattern only; they prove to be independent of the mechanism at the origin of the cortical flow, and are only weakly sensitive to the cytoplasmic rheology. In the case of actin flows resulting from a contractile instability, we propose a phase diagram of three-dimensional cell shapes that encompasses nonpolarized spherical, elongated, as well as oblate shapes, all of which have been observed in experiment.

  17. Two independent forms of endocytosis maintain embryonic cell surface homeostasis during early development

    PubMed Central

    Covian-Nares, J. Fernando; Smith, Robert M.; Vogel, Steven S.

    2008-01-01

    Eukaryotic cells have multiple forms of endocytosis which maintain cell surface homeostasis. One explanation for this apparent redundancy is to allow independent retrieval of surface membranes derived from different types of vesicles. Consistent with this hypothesis we find that sea urchin eggs have at least two types of compensatory endocytosis. One is associated with retrieving cortical vesicle membranes, and formed large endosomes by a mechanism that was inhibited by agatoxin, cadmium, staurosporine and FK506. The second type is thought to compensate for constitutive exocytosis, and formed small endosomes using a mechanism that was insensitive to the above mentioned reagents, but was inhibited by phenylarsine oxide (PAO), and by microinjection of mRNA encoding Src kinase. Both mechanisms could act concurrently, and account for all of the endocytosis occurring during early development. Inhibition of either form did not trigger compensation by the other form, and phorbol ester treatment rescued the endocytotic activity blocked by agatoxin, but not the retrieval blocked by PAO. PMID:18281031

  18. Pathophysiological analyses of cortical malformation using gyrencephalic mammals

    PubMed Central

    Masuda, Kosuke; Toda, Tomohisa; Shinmyo, Yohei; Ebisu, Haruka; Hoshiba, Yoshio; Wakimoto, Mayu; Ichikawa, Yoshie; Kawasaki, Hiroshi

    2015-01-01

    One of the most prominent features of the cerebral cortex of higher mammals is the presence of gyri. Because malformations of the cortical gyri are associated with severe disability in brain function, the mechanisms underlying malformations of the cortical gyri have been of great interest. Combining gyrencephalic carnivore ferrets and genetic manipulations using in utero electroporation, here we successfully recapitulated the cortical phenotypes of thanatophoric dysplasia (TD) by expressing fibroblast growth factor 8 in the ferret cerebral cortex. Strikingly, in contrast to TD mice, our TD ferret model showed not only megalencephaly but also polymicrogyria. We further uncovered that outer radial glial cells (oRGs) and intermediate progenitor cells (IPs) were markedly increased. Because it has been proposed that increased oRGs and/or IPs resulted in the appearance of cortical gyri during evolution, it seemed possible that increased oRGs and IPs underlie the pathogenesis of polymicrogyria. Our findings should help shed light on the molecular mechanisms underlying the formation and malformation of cortical gyri in higher mammals. PMID:26482531

  19. Visualizing and quantifying the in vivo structure and dynamics of the Arabidopsis cortical cytoskeleton using CLSM and VAEM.

    PubMed

    Rosero, Amparo; Zárský, Viktor; Cvrčková, Fatima

    2014-01-01

    The cortical microtubules, and to some extent also the actin meshwork, play a central role in the shaping of plant cells. Transgenic plants expressing fluorescent protein markers specifically tagging the two main cytoskeletal systems are available, allowing noninvasive in vivo studies. Advanced microscopy techniques, in particular confocal laser scanning microscopy (CLSM) and variable angle epifluorescence microscopy (VAEM), can be nowadays used for imaging the cortical cytoskeleton of living cells with unprecedented spatial and temporal resolution. With the aid of suitable computing techniques, quantitative information can be extracted from microscopic images and video sequences, providing insight into both architecture and dynamics of the cortical cytoskeleton.

  20. Topographical maps as complex networks

    NASA Astrophysics Data System (ADS)

    da Fontoura Costa, Luciano; Diambra, Luis

    2005-02-01

    The neuronal networks in the mammalian cortex are characterized by the coexistence of hierarchy, modularity, short and long range interactions, spatial correlations, and topographical connections. Particularly interesting, the latter type of organization implies special demands on developing systems in order to achieve precise maps preserving spatial adjacencies, even at the expense of isometry. Although the object of intensive biological research, the elucidation of the main anatomic-functional purposes of the ubiquitous topographical connections in the mammalian brain remains an elusive issue. The present work reports on how recent results from complex network formalism can be used to quantify and model the effect of topographical connections between neuronal cells over the connectivity of the network. While the topographical mapping between two cortical modules is achieved by connecting nearest cells from each module, four kinds of network models are adopted for implementing intramodular connections, including random, preferential-attachment, short-range, and long-range networks. It is shown that, though spatially uniform and simple, topographical connections between modules can lead to major changes in the network properties in some specific cases, depending on intramodular connections schemes, fostering more effective intercommunication between the involved neuronal cells and modules. The possible implications of such effects on cortical operation are discussed.

  1. Brassinosteroids regulate pavement cell growth by mediating BIN2-induced microtubule stabilization.

    PubMed

    Liu, Xiaolei; Yang, Qin; Wang, Yuan; Wang, Linhai; Fu, Ying; Wang, Xuelu

    2018-02-23

    Brassinosteroids (BRs), a group of plant steroid hormones, play important roles in regulating plant development. The cytoskeleton also affects key developmental processes and a deficiency in BR biosynthesis or signaling leads to abnormal phenotypes similar to those of microtubule-defective mutants. However, how BRs regulate microtubule and cell morphology remains unknown. Here, using liquid chromatography-tandem mass spectrometry, we identified tubulin proteins that interact with Arabidopsis BRASSINOSTEROID INSENSITIVE2 (BIN2), a negative regulator of BR responses in plants. In vitro and in vivo pull-down assays confirmed that BIN2 interacts with tubulin proteins. High-speed co-sedimentation assays demonstrated that BIN2 also binds microtubules. The Arabidopsis genome also encodes two BIN2 homologs, BIN2-LIKE 1 (BIL1) and BIL2, which function redundantly with BIN2. In the bin2-3 bil1 bil2 triple mutant, cortical microtubules were more sensitive to treatment with the microtubule-disrupting drug oryzalin than in wild-type, whereas in the BIN2 gain-of-function mutant bin2-1, cortical microtubules were insensitive to oryzalin treatment. These results provide important insight into how BR regulates plant pavement cell and leaf growth by mediating the stabilization of microtubules by BIN2.

  2. Cobtorin target analysis reveals that pectin functions in the deposition of cellulose microfibrils in parallel with cortical microtubules.

    PubMed

    Yoneda, Arata; Ito, Takuya; Higaki, Takumi; Kutsuna, Natsumaro; Saito, Tamio; Ishimizu, Takeshi; Osada, Hiroyuki; Hasezawa, Seiichiro; Matsui, Minami; Demura, Taku

    2010-11-01

    Cellulose and pectin are major components of primary cell walls in plants, and it is believed that their mechanical properties are important for cell morphogenesis. It has been hypothesized that cortical microtubules guide the movement of cellulose microfibril synthase in a direction parallel with the microtubules, but the mechanism by which this alignment occurs remains unclear. We have previously identified cobtorin as an inhibitor that perturbs the parallel relationship between cortical microtubules and nascent cellulose microfibrils. In this study, we searched for the protein target of cobtorin, and we found that overexpression of pectin methylesterase and polygalacturonase suppressed the cobtorin-induced cell-swelling phenotype. Furthermore, treatment with polygalacturonase restored the deposition of cellulose microfibrils in the direction parallel with cortical microtubules, and cobtorin perturbed the distribution of methylated pectin. These results suggest that control over the properties of pectin is important for the deposition of cellulose microfibrils and/or the maintenance of their orientation parallel with the cortical microtubules. © 2010 The Authors. The Plant Journal © 2010 Blackwell Publishing Ltd.

  3. Pax6 Exerts Regional Control of Cortical Progenitor Proliferation via Direct Repression of Cdk6 and Hypophosphorylation of pRb

    PubMed Central

    Mi, Da; Carr, Catherine B.; Georgala, Petrina A.; Huang, Yu-Ting; Manuel, Martine N.; Jeanes, Emily; Niisato, Emi; Sansom, Stephen N.; Livesey, Frederick J.; Theil, Thomas; Hasenpusch-Theil, Kerstin; Simpson, T. Ian; Mason, John O.; Price, David J.

    2013-01-01

    Summary The mechanisms by which early spatiotemporal expression patterns of transcription factors such as Pax6 regulate cortical progenitors in a region-specific manner are poorly understood. Pax6 is expressed in a gradient across the developing cortex and is essential for normal corticogenesis. We found that constitutive or conditional loss of Pax6 increases cortical progenitor proliferation by amounts that vary regionally with normal Pax6 levels. We compared the gene expression profiles of equivalent Pax6-expressing progenitors isolated from Pax6+/+ and Pax6−/− cortices and identified many negatively regulated cell-cycle genes, including Cyclins and Cdks. Biochemical assays indicated that Pax6 directly represses Cdk6 expression. Cyclin/Cdk repression inhibits retinoblastoma protein (pRb) phosphorylation, thereby limiting the transcription of genes that directly promote the mechanics of the cell cycle, and we found that Pax6 inhibits pRb phosphorylation and represses genes involved in DNA replication. Our results indicate that Pax6’s modulation of cortical progenitor cell cycles is regional and direct. PMID:23622063

  4. Molecular analysis of neocortical layer structure in the ferret

    PubMed Central

    Rowell, Joanna J.; Mallik, Atul K.; Dugas-Ford, Jennifer; Ragsdale, Clifton W.

    2010-01-01

    Molecular markers that distinguish specific layers of rodent neocortex are increasingly employed to study cortical development and the physiology of cortical circuits. The extent to which these markers represent general features of neocortical cell type identity across mammals is, however, unknown. To assess the conservation of layer markers more broadly, we isolated orthologs for fifteen layer-enriched genes in the ferret, a carnivore with a large, gyrencephalic brain, and analyzed their patterns of neocortical gene expression. Our major findings are: (1) Many but not all layer markers tested show similar patterns of layer-specific gene expression between mouse and ferret cortex, supporting the view that layer-specific cell type identity is conserved at a molecular level across mammalian superorders; (2) Our panel of deep layer markers (ER81/ETV1, SULF2, PCP4, FEZF2/ZNF312, CACNA1H, KCNN2/SK2, SYT6, FOXP2, CTGF) provides molecular evidence that the specific stratifications of layer 5 and 6 into 5a, 5b, 6a and 6b are also conserved between rodents and carnivores. (3) Variations in layer-specific gene expression are more pronounced across areas of ferret cortex than between homologous areas of mouse and ferret cortex; (4) This variation of area gene expression was clearest with the superficial layer markers studied (SERPINE2, MDGA1, CUX1, UNC5D, RORB/NR1F2, EAG2/KCNH5). Most dramatically, the layer 4 markers RORB and EAG2 disclosed a molecular sublamination to ferret visual cortex and demonstrated a molecular dissociation among the so-called agranular areas of the neocortex. Our findings establish molecular markers as a powerful complement to cytoarchitecture for neocortical layer and cell-type comparisons across mammals. PMID:20575059

  5. Molecular analysis of neocortical layer structure in the ferret.

    PubMed

    Rowell, Joanna J; Mallik, Atul K; Dugas-Ford, Jennifer; Ragsdale, Clifton W

    2010-08-15

    Molecular markers that distinguish specific layers of rodent neocortex are increasingly employed to study cortical development and the physiology of cortical circuits. The extent to which these markers represent general features of neocortical cell type identity across mammals, however, is unknown. To assess the conservation of layer markers more broadly, we isolated orthologs for 15 layer-enriched genes in the ferret, a carnivore with a large, gyrencephalic brain, and analyzed their patterns of neocortical gene expression. Our major findings are: 1) Many but not all layer markers tested show similar patterns of layer-specific gene expression between mouse and ferret cortex, supporting the view that layer-specific cell type identity is conserved at a molecular level across mammalian superorders; 2) Our panel of deep layer markers (ER81/ETV1, SULF2, PCP4, FEZF2/ZNF312, CACNA1H, KCNN2/SK2, SYT6, FOXP2, CTGF) provides molecular evidence that the specific stratifications of layers 5 and 6 into 5a, 5b, 6a, and 6b are also conserved between rodents and carnivores; 3) Variations in layer-specific gene expression are more pronounced across areas of ferret cortex than between homologous areas of mouse and ferret cortex; 4) This variation of area gene expression was clearest with the superficial layer markers studied (SERPINE2, MDGA1, CUX1, UNC5D, RORB/NR1F2, EAG2/KCNH5). Most dramatically, the layer 4 markers RORB and EAG2 disclosed a molecular sublamination to ferret visual cortex and demonstrated a molecular dissociation among the so-called agranular areas of the neocortex. Our findings establish molecular markers as a powerful complement to cytoarchitecture for neocortical layer and cell-type comparisons across mammals. (c) 2010 Wiley-Liss, Inc.

  6. APLP2 regulates neuronal stem cell differentiation during cortical development.

    PubMed

    Shariati, S Ali M; Lau, Pierre; Hassan, Bassem A; Müller, Ulrike; Dotti, Carlos G; De Strooper, Bart; Gärtner, Annette

    2013-03-01

    Expression of amyloid precursor protein (APP) and its two paralogues, APLP1 and APLP2 during brain development coincides with key cellular events such as neuronal differentiation and migration. However, genetic knockout and shRNA studies have led to contradictory conclusions about their role during embryonic brain development. To address this issue, we analysed in depth the role of APLP2 during neurogenesis by silencing APLP2 in vivo in an APP/APLP1 double knockout mouse background. We find that under these conditions cortical progenitors remain in their undifferentiated state much longer, displaying a higher number of mitotic cells. In addition, we show that neuron-specific APLP2 downregulation does not impact the speed or position of migrating excitatory cortical neurons. In summary, our data reveal that APLP2 is specifically required for proper cell cycle exit of neuronal progenitors, and thus has a distinct role in priming cortical progenitors for neuronal differentiation.

  7. Maternal dietary intake of choline in mice regulates development of the cerebral cortex in the offspring

    PubMed Central

    Wang, Yanyan; Surzenko, Natalia; Friday, Walter B.; Zeisel, Steven H.

    2015-01-01

    Maternal diets low in choline, an essential nutrient, increase the risk of neural tube defects and lead to low performance on cognitive tests in children. However, the consequences of maternal dietary choline deficiency for the development and structural organization of the cerebral cortex remain unknown. In this study, we fed mouse dams either control (CT) or low-choline (LC) diets and investigated the effects of choline on cortical development in the offspring. As a result of a low choline supply between embryonic day (E)11 and E17 of gestation, the number of 2 types of cortical neural progenitor cells (NPCs)—radial glial cells and intermediate progenitor cells—was reduced in fetal brains (P < 0.01). Furthermore, the number of upper layer cortical neurons was decreased in the offspring of dams fed an LC diet at both E17 (P < 0.001) and 4 mo of age (P < 0.001). These effects of LC maternal diet were mediated by a decrease in epidermal growth factor receptor (EGFR) signaling in NPCs related to the disruption of EGFR posttranscriptional regulation. Our findings describe a novel mechanism whereby low maternal dietary intake of choline alters brain development.—Wang, Y., Surzenko, N., Friday, W. B., Zeisel, S. H. Maternal dietary intake of choline in mice regulates development of the cerebral cortex in the offspring. PMID:26700730

  8. Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro

    PubMed Central

    Kirwan, Peter; Turner-Bridger, Benita; Peter, Manuel; Momoh, Ayiba; Arambepola, Devika; Robinson, Hugh P. C.; Livesey, Frederick J.

    2015-01-01

    A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form large-scale networks that reflect those found in the developing cerebral cortex in vivo. Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks in culture. An initial phase of increasing frequency of oscillations is followed by a phase of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. hPSC-derived cortical neural networks are excitatory, driven by activation of AMPA- and NMDA-type glutamate receptors, and can undergo NMDA-receptor-mediated plasticity. Investigating single neuron connectivity within PSC-derived cultures, using rabies-based trans-synaptic tracing, we found two broad classes of neuronal connectivity: most neurons have small numbers (<10) of presynaptic inputs, whereas a small set of hub-like neurons have large numbers of synaptic connections (>40). These data demonstrate that the formation of hPSC-derived cortical networks mimics in vivo cortical network development and function, demonstrating the utility of in vitro systems for mechanistic studies of human forebrain neural network biology. PMID:26395144

  9. Insulin-induced cortical actin remodeling promotes GLUT4 insertion at muscle cell membrane ruffles

    PubMed Central

    Tong, Peter; Khayat, Zayna A.; Huang, Carol; Patel, Nish; Ueyama, Atsunori; Klip, Amira

    2001-01-01

    Insulin stimulates glucose uptake by recruiting glucose transporter 4 (GLUT4) from an intracellular compartment to the cell surface; this phenomenon is defective in type 2 diabetes. Here we examine the involvement of actin filaments in GLUT4 translocation and their possible defects in insulin resistance, using L6 myotubes expressing myc-tagged GLUT4. Insulin caused membrane ruffling, a dynamic distortion of the myotube dorsal surface. Fluorescence microscopy and immunogold staining of surface GLUT4myc coupled to backscatter electron microscopy revealed a high density of this protein in membrane ruffles. The t-SNAREs syntaxin4 and SNAP-23 were also abundant in these regions. Below the membrane, GLUT4 and the vesicular protein VAMP2, but not VAMP3, colocalized with the actin structures supporting the membrane ruffles. GLUT4myc externalization and membrane ruffles were reduced by jasplakinolide and by swinholide-A, drugs that affect actin filament stability and prevent actin branching, respectively. Insulin resistance generated by prolonged (24 hours) exposure of myotubes to high glucose and insulin diminished the acute insulin-dependent remodeling of cortical actin and GLUT4myc translocation, reminiscent of the effect of swinholide-A. We propose that GLUT4 vesicle incorporation into the plasma membrane involves insulin-dependent cortical actin remodeling and that defective actin remodeling contributes to insulin resistance. PMID:11489930

  10. Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro.

    PubMed

    Kirwan, Peter; Turner-Bridger, Benita; Peter, Manuel; Momoh, Ayiba; Arambepola, Devika; Robinson, Hugh P C; Livesey, Frederick J

    2015-09-15

    A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form large-scale networks that reflect those found in the developing cerebral cortex in vivo. Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks in culture. An initial phase of increasing frequency of oscillations is followed by a phase of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. hPSC-derived cortical neural networks are excitatory, driven by activation of AMPA- and NMDA-type glutamate receptors, and can undergo NMDA-receptor-mediated plasticity. Investigating single neuron connectivity within PSC-derived cultures, using rabies-based trans-synaptic tracing, we found two broad classes of neuronal connectivity: most neurons have small numbers (<10) of presynaptic inputs, whereas a small set of hub-like neurons have large numbers of synaptic connections (>40). These data demonstrate that the formation of hPSC-derived cortical networks mimics in vivo cortical network development and function, demonstrating the utility of in vitro systems for mechanistic studies of human forebrain neural network biology. © 2015. Published by The Company of Biologists Ltd.

  11. Differential Receptive Field Properties of Parvalbumin and Somatostatin Inhibitory Neurons in Mouse Auditory Cortex.

    PubMed

    Li, Ling-Yun; Xiong, Xiaorui R; Ibrahim, Leena A; Yuan, Wei; Tao, Huizhong W; Zhang, Li I

    2015-07-01

    Cortical inhibitory circuits play important roles in shaping sensory processing. In auditory cortex, however, functional properties of genetically identified inhibitory neurons are poorly characterized. By two-photon imaging-guided recordings, we specifically targeted 2 major types of cortical inhibitory neuron, parvalbumin (PV) and somatostatin (SOM) expressing neurons, in superficial layers of mouse auditory cortex. We found that PV cells exhibited broader tonal receptive fields with lower intensity thresholds and stronger tone-evoked spike responses compared with SOM neurons. The latter exhibited similar frequency selectivity as excitatory neurons. The broader/weaker frequency tuning of PV neurons was attributed to a broader range of synaptic inputs and stronger subthreshold responses elicited, which resulted in a higher efficiency in the conversion of input to output. In addition, onsets of both the input and spike responses of SOM neurons were significantly delayed compared with PV and excitatory cells. Our results suggest that PV and SOM neurons engage in auditory cortical circuits in different manners: while PV neurons may provide broadly tuned feedforward inhibition for a rapid control of ascending inputs to excitatory neurons, the delayed and more selective inhibition from SOM neurons may provide a specific modulation of feedback inputs on their distal dendrites. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Beyond the frontiers of neuronal types

    PubMed Central

    Battaglia, Demian; Karagiannis, Anastassios; Gallopin, Thierry; Gutch, Harold W.; Cauli, Bruno

    2012-01-01

    Cortical neurons and, particularly, inhibitory interneurons display a large diversity of morphological, synaptic, electrophysiological, and molecular properties, as well as diverse embryonic origins. Various authors have proposed alternative classification schemes that rely on the concomitant observation of several multimodal features. However, a broad variability is generally observed even among cells that are grouped into a same class. Furthermore, the attribution of specific neurons to a single defined class is often difficult, because individual properties vary in a highly graded fashion, suggestive of continua of features between types. Going beyond the description of representative traits of distinct classes, we focus here on the analysis of atypical cells. We introduce a novel paradigm for neuronal type classification, assuming explicitly the existence of a structured continuum of diversity. Our approach, grounded on the theory of fuzzy sets, identifies a small optimal number of model archetypes. At the same time, it quantifies the degree of similarity between these archetypes and each considered neuron. This allows highlighting archetypal cells, which bear a clear similarity to a single model archetype, and edge cells, which manifest a convergence of traits from multiple archetypes. PMID:23403725

  13. Temporal dynamics of contrast gain in single cells of the cat striate cortex.

    PubMed

    Bonds, A B

    1991-03-01

    The response amplitude of cat striate cortical cells is usually reduced after exposure to high-contrast stimuli. The temporal characteristics and contrast sensitivity of this phenomenon were explored by stimulating cortical cells with drifting gratings in which contrast sequentially incremented and decremented in stepwise fashion over time. All responses showed a clear hysteresis, in which contrast gain dropped on average 0.36 log unit and then returned to baseline values within 60 s. Noticeable gain adjustments were seen in as little as 3 s and with peak contrasts as low as 3%. Contrast adaptation was absent in responses from LGN cells. Adaptation was found to depend on temporal frequency of stimulation, with greater and more rapid adaptation at higher temporal frequencies. Two different tests showed that the mechanism controlling response reduction was influenced primarily by stimulus contrast rather than response amplitude. These results support the existence of a rapid and sensitive cortically based system that normalizes the output of cortical cells as a function of local mean contrast. Control of the adaptation appears to arise at least in part across a population of cells, which is consistent with the idea that the gain control serves to limit the information converging from many cells onto subsequent processing areas.

  14. Role of feedforward geniculate inputs in the generation of orientation selectivity in the cat's primary visual cortex

    PubMed Central

    Viswanathan, Sivaram; Jayakumar, Jaikishan; Vidyasagar, Trichur R

    2011-01-01

    Abstract Neurones of the mammalian primary visual cortex have the remarkable property of being selective for the orientation of visual contours. It has been controversial whether the selectivity arises from intracortical mechanisms, from the pattern of afferent connectivity from lateral geniculate nucleus (LGN) to cortical cells or from the sharpening of a bias that is already present in the responses of many geniculate cells. To investigate this, we employed a variation of an electrical stimulation protocol in the LGN that has been claimed to suppress intracortical inputs and isolate the raw geniculocortical input to a striate cortical cell. Such stimulation led to a sharpening of the orientation sensitivity of geniculate cells themselves and some broadening of cortical orientation selectivity. These findings are consistent with the idea that non-specific inhibition of the signals from LGN cells which exhibit an orientation bias can generate the sharp orientation selectivity of primary visual cortical cells. This obviates the need for an excitatory convergence from geniculate cells whose receptive fields are arranged along a row in visual space as in the classical model and provides a framework for orientation sensitivity originating in the retina and getting sharpened through inhibition at higher levels of the visual pathway. PMID:21486788

  15. In Vivo Evidence for Lysosome Depletion and Impaired Autophagic Clearance in Hereditary Spastic Paraplegia Type SPG11

    PubMed Central

    Varga, Rita-Eva; Khundadze, Mukhran; Damme, Markus; Nietzsche, Sandor; Hoffmann, Birgit; Stauber, Tobias; Koch, Nicole; Hennings, J. Christopher; Franzka, Patricia; Huebner, Antje K.; Kessels, Michael M.; Biskup, Christoph; Jentsch, Thomas J.; Qualmann, Britta; Braulke, Thomas; Kurth, Ingo; Beetz, Christian; Hübner, Christian A.

    2015-01-01

    Hereditary spastic paraplegia (HSP) is characterized by a dying back degeneration of corticospinal axons which leads to progressive weakness and spasticity of the legs. SPG11 is the most common autosomal-recessive form of HSPs and is caused by mutations in SPG11. A recent in vitro study suggested that Spatacsin, the respective gene product, is needed for the recycling of lysosomes from autolysosomes, a process known as autophagic lysosome reformation. The relevance of this observation for hereditary spastic paraplegia, however, has remained unclear. Here, we report that disruption of Spatacsin in mice indeed causes hereditary spastic paraplegia-like phenotypes with loss of cortical neurons and Purkinje cells. Degenerating neurons accumulate autofluorescent material, which stains for the lysosomal protein Lamp1 and for p62, a marker of substrate destined to be degraded by autophagy, and hence appears to be related to autolysosomes. Supporting a more generalized defect of autophagy, levels of lipidated LC3 are increased in Spatacsin knockout mouse embryonic fibrobasts (MEFs). Though distinct parameters of lysosomal function like processing of cathepsin D and lysosomal pH are preserved, lysosome numbers are reduced in knockout MEFs and the recovery of lysosomes during sustained starvation impaired consistent with a defect of autophagic lysosome reformation. Because lysosomes are reduced in cortical neurons and Purkinje cells in vivo, we propose that the decreased number of lysosomes available for fusion with autophagosomes impairs autolysosomal clearance, results in the accumulation of undegraded material and finally causes death of particularly sensitive neurons like cortical motoneurons and Purkinje cells in knockout mice. PMID:26284655

  16. In Vivo Evidence for Lysosome Depletion and Impaired Autophagic Clearance in Hereditary Spastic Paraplegia Type SPG11.

    PubMed

    Varga, Rita-Eva; Khundadze, Mukhran; Damme, Markus; Nietzsche, Sandor; Hoffmann, Birgit; Stauber, Tobias; Koch, Nicole; Hennings, J Christopher; Franzka, Patricia; Huebner, Antje K; Kessels, Michael M; Biskup, Christoph; Jentsch, Thomas J; Qualmann, Britta; Braulke, Thomas; Kurth, Ingo; Beetz, Christian; Hübner, Christian A

    2015-08-01

    Hereditary spastic paraplegia (HSP) is characterized by a dying back degeneration of corticospinal axons which leads to progressive weakness and spasticity of the legs. SPG11 is the most common autosomal-recessive form of HSPs and is caused by mutations in SPG11. A recent in vitro study suggested that Spatacsin, the respective gene product, is needed for the recycling of lysosomes from autolysosomes, a process known as autophagic lysosome reformation. The relevance of this observation for hereditary spastic paraplegia, however, has remained unclear. Here, we report that disruption of Spatacsin in mice indeed causes hereditary spastic paraplegia-like phenotypes with loss of cortical neurons and Purkinje cells. Degenerating neurons accumulate autofluorescent material, which stains for the lysosomal protein Lamp1 and for p62, a marker of substrate destined to be degraded by autophagy, and hence appears to be related to autolysosomes. Supporting a more generalized defect of autophagy, levels of lipidated LC3 are increased in Spatacsin knockout mouse embryonic fibrobasts (MEFs). Though distinct parameters of lysosomal function like processing of cathepsin D and lysosomal pH are preserved, lysosome numbers are reduced in knockout MEFs and the recovery of lysosomes during sustained starvation impaired consistent with a defect of autophagic lysosome reformation. Because lysosomes are reduced in cortical neurons and Purkinje cells in vivo, we propose that the decreased number of lysosomes available for fusion with autophagosomes impairs autolysosomal clearance, results in the accumulation of undegraded material and finally causes death of particularly sensitive neurons like cortical motoneurons and Purkinje cells in knockout mice.

  17. Neural network models for spatial data mining, map production, and cortical direction selectivity

    NASA Astrophysics Data System (ADS)

    Parsons, Olga

    A family of ARTMAP neural networks for incremental supervised learning has been developed over the last decade. The Sensor Exploitation Group of MIT Lincoln Laboratory (LL) has incorporated an early version of this network as the recognition engine of a hierarchical system for fusion and data mining of multiple registered geospatial images. The LL system has been successfully fielded, but it is limited to target vs. non-target identifications and does not produce whole maps. This dissertation expands the capabilities of the LL system so that it learns to identify arbitrarily many target classes at once and can thus produce a whole map. This new spatial data mining system is designed particularly to cope with the highly skewed class distributions of typical mapping problems. Specification of a consistent procedure and a benchmark testbed has permitted the evaluation of candidate recognition networks as well as pre- and post-processing and feature extraction options. The resulting default ARTMAP network and mapping methodology set a standard for a variety of related mapping problems and application domains. The second part of the dissertation investigates the development of cortical direction selectivity. The possible role of visual experience and oculomotor behavior in the maturation of cells in the primary visual cortex is studied. The responses of neurons in the thalamus and cortex of the cat are modeled when natural scenes are scanned by several types of eye movements. Inspired by the Hebbian-like synaptic plasticity, which is based upon correlations between cell activations, the second-order statistical structure of thalamo-cortical activity is examined. In the simulations, patterns of neural activity that lead to a correct refinement of cell responses are observed during visual fixation, when small ocular movements occur, but are not observed in the presence of large saccades. Simulations also replicate experiments in which kittens are reared under stroboscopic illumination. The abnormal fixational eye movements of these cats may account for the puzzling finding of a specific loss of cortical direction selectivity but preservation of orientation selectivity. This work indicates that the oculomotor behavior of visual fixation may play an important role in the refinement of cell response selectivity.

  18. A survey of human brain transcriptome diversity at the single cell level.

    PubMed

    Darmanis, Spyros; Sloan, Steven A; Zhang, Ye; Enge, Martin; Caneda, Christine; Shuer, Lawrence M; Hayden Gephart, Melanie G; Barres, Ben A; Quake, Stephen R

    2015-06-09

    The human brain is a tissue of vast complexity in terms of the cell types it comprises. Conventional approaches to classifying cell types in the human brain at single cell resolution have been limited to exploring relatively few markers and therefore have provided a limited molecular characterization of any given cell type. We used single cell RNA sequencing on 466 cells to capture the cellular complexity of the adult and fetal human brain at a whole transcriptome level. Healthy adult temporal lobe tissue was obtained during surgical procedures where otherwise normal tissue was removed to gain access to deeper hippocampal pathology in patients with medical refractory seizures. We were able to classify individual cells into all of the major neuronal, glial, and vascular cell types in the brain. We were able to divide neurons into individual communities and show that these communities preserve the categorization of interneuron subtypes that is typically observed with the use of classic interneuron markers. We then used single cell RNA sequencing on fetal human cortical neurons to identify genes that are differentially expressed between fetal and adult neurons and those genes that display an expression gradient that reflects the transition between replicating and quiescent fetal neuronal populations. Finally, we observed the expression of major histocompatibility complex type I genes in a subset of adult neurons, but not fetal neurons. The work presented here demonstrates the applicability of single cell RNA sequencing on the study of the adult human brain and constitutes a first step toward a comprehensive cellular atlas of the human brain.

  19. A Sharp Cadherin-6 Gene Expression Boundary in the Developing Mouse Cortical Plate Demarcates the Future Functional Areal Border

    PubMed Central

    Terakawa, Youhei W.; Inoue, Yukiko U.; Asami, Junko; Hoshino, Mikio; Inoue, Takayoshi

    2013-01-01

    The mammalian cerebral cortex can be tangentially subdivided into tens of functional areas with distinct cyto-architectures and neural circuitries; however, it remains elusive how these areal borders are genetically elaborated during development. Here we establish original bacterial artificial chromosome transgenic mouse lines that specifically recapitulate cadherin-6 (Cdh6) mRNA expression profiles in the layer IV of the somatosensory cortex and by detailing their cortical development, we show that a sharp Cdh6 gene expression boundary is formed at a mediolateral coordinate along the cortical layer IV as early as the postnatal day 5 (P5). By further applying mouse genetics that allows rigid cell fate tracing with CreERT2 expression, it is demonstrated that the Cdh6 gene expression boundary set at around P4 eventually demarcates the areal border between the somatosensory barrel and limb field at P20. In the P6 cortical cell pellet culture system, neurons with Cdh6 expression preferentially form aggregates in a manner dependent on Ca2+ and electroporation-based Cdh6 overexpression limited to the postnatal stages perturbs area-specific cell organization in the barrel field. These results suggest that Cdh6 expression in the nascent cortical plate may serve solidification of the protomap for cortical functional areas. PMID:22875867

  20. Truncated tyrosine kinase B brain-derived neurotrophic factor receptor directs cortical neural stem cells to a glial cell fate by a novel signaling mechanism.

    PubMed

    Cheng, Aiwu; Coksaygan, Turhan; Tang, Hongyan; Khatri, Rina; Balice-Gordon, Rita J; Rao, Mahendra S; Mattson, Mark P

    2007-03-01

    During development of the mammalian cerebral cortex neural stem cells (NSC) first generate neurons and subsequently produce glial cells. The mechanism(s) responsible for this developmental shift from neurogenesis to gliogenesis is unknown. Brain-derived neurotrophic factor (BDNF) is believed to play important roles in the development of the mammalian cerebral cortex; it enhances neurogenesis and promotes the differentiation and survival of newly generated neurons. Here, we provide evidence that a truncated form of the BDNF receptor tyrosine kinase B (trkB-t) plays a pivotal role in directing embryonic mouse cortical NSC to a glial cell fate. Expression of trkB-t promotes differentiation of NSC toward astrocytes while inhibiting neurogenesis both in cell culture and in vivo. The mechanism by which trkB-t induces astrocyte genesis is not simply the result of inhibition of full-length receptor with intrinsic tyrosine kinase activity signaling. Instead, binding of BDNF to trkB-t activates a signaling pathway (involving a G-protein and protein kinase C) that induced NSC to become glial progenitors and astrocytes. Thus, the increased expression of trkB-t in the embryonic cerebral cortex that occurs coincident with astrocyte production plays a pivotal role in the developmental transition from neurogenesis to gliogenesis. Our findings suggest a mechanism by which a single factor (BDNF) regulates the production of the two major cell types in the mammalian cerebral cortex.

  1. Neurochemical phenotype of corticocortical connections in the macaque monkey: quantitative analysis of a subset of neurofilament protein-immunoreactive projection neurons in frontal, parietal, temporal, and cingulate cortices

    NASA Technical Reports Server (NTRS)

    Hof, P. R.; Nimchinsky, E. A.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The neurochemical characteristics of the neuronal subsets that furnish different types of corticocortical connections have been only partially determined. In recent years, several cytoskeletal proteins have emerged as reliable markers to distinguish subsets of pyramidal neurons in the cerebral cortex of primates. In particular, previous studies using an antibody to nonphosphorylated neurofilament protein (SMI-32) have revealed a consistent degree of regional and laminar specificity in the distribution of a subpopulation of pyramidal cells in the primate cerebral cortex. The density of neurofilament protein-immunoreactive neurons was shown to vary across corticocortical pathways in macaque monkeys. In the present study, we have used the antibody SMI-32 to examine further and to quantify the distribution of a subset of corticocortically projecting neurons in a series of long ipsilateral corticocortical pathways in comparison to short corticocortical, commissural, and limbic connections. The results demonstrate that the long association pathways interconnecting the frontal, parietal, and temporal neocortex have a high representation of neurofilament protein-enriched pyramidal neurons (45-90%), whereas short corticocortical, callosal, and limbic pathways are characterized by much lower numbers of such neurons (4-35%). These data suggest that different types of corticocortical connections have differential representation of highly specific neuronal subsets that share common neurochemical characteristics, thereby determining regional and laminar cortical patterns of morphological and molecular heterogeneity. These differences in neuronal neurochemical phenotype among corticocortical circuits may have considerable influence on cortical processing and may be directly related to the type of integrative function subserved by each cortical pathway. Finally, it is worth noting that neurofilament protein-immunoreactive neurons are dramatically affected in the course of Alzheimer's disease. The present results support the hypothesis that neurofilament protein may be crucially linked to the development of selective neuronal vulnerability and subsequent disruption of corticocortical pathways that lead to the severe impairment of cognitive function commonly observed in age-related dementing disorders.

  2. Diffusion of GPI-anchored proteins is influenced by the activity of dynamic cortical actin.

    PubMed

    Saha, Suvrajit; Lee, Il-Hyung; Polley, Anirban; Groves, Jay T; Rao, Madan; Mayor, Satyajit

    2015-11-05

    Molecular diffusion at the surface of living cells is believed to be predominantly driven by thermal kicks. However, there is growing evidence that certain cell surface molecules are driven by the fluctuating dynamics of cortical cytoskeleton. Using fluorescence correlation spectroscopy, we measure the diffusion coefficient of a variety of cell surface molecules over a temperature range of 24-37 °C. Exogenously incorporated fluorescent lipids with short acyl chains exhibit the expected increase of diffusion coefficient over this temperature range. In contrast, we find that GPI-anchored proteins exhibit temperature-independent diffusion over this range and revert to temperature-dependent diffusion on cell membrane blebs, in cells depleted of cholesterol, and upon acute perturbation of actin dynamics and myosin activity. A model transmembrane protein with a cytosolic actin-binding domain also exhibits the temperature-independent behavior, directly implicating the role of cortical actin. We show that diffusion of GPI-anchored proteins also becomes temperature dependent when the filamentous dynamic actin nucleator formin is inhibited. However, changes in cortical actin mesh size or perturbation of branched actin nucleator Arp2/3 do not affect this behavior. Thus cell surface diffusion of GPI-anchored proteins and transmembrane proteins that associate with actin is driven by active fluctuations of dynamic cortical actin filaments in addition to thermal fluctuations, consistent with expectations from an "active actin-membrane composite" cell surface. © 2015 Saha et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Timeframe of socket cortication after tooth extraction: A retrospective radiographic study.

    PubMed

    Bertl, Kristina; Kukla, Edmund Benjamin; Albugami, Rajaa; Beck, Florian; Gahleitner, André; Stavropoulos, Andreas

    2018-01-01

    To assess the timeframe between tooth extraction and radiographically detectable socket cortication in humans. Two hundred and fifty patients with a CT scan ≤36 months after tooth extraction were included. First, three orthoradial multiplanar reconstruction slices, representing the major part of the extraction socket, were scored regarding the degree of bone healing as (i) healed, that is, complete/continuous cortication of the socket entrance, or (ii) non-healed. Thereafter, based on the results of all three slices, the stage of cortication of the extraction socket, as one unit, was classified as (i) non-corticated, that is, all three slices judged as non-healed, (ii) partially corticated, that is, 1 or 2 slices judged as non-healed, or (iii) completely corticated, that is, all three slices judged as healed. The possible effect of several independent parameters, that is, age, gender, timeframe between tooth extraction and CT scan, tooth type, extent of radiographic bone loss of the extracted tooth, tooth-gap type, smoking status, presence of any systemic disease, and medication intake, on cortication status was statistically evaluated. Three to 6 months after tooth extraction, 27% of the sockets were judged as non-corticated and 53% were judged as partially corticated. After 9-12 months, >80% of the sockets were corticated, while some incompletely corticated sockets were detected up to 15 months after extraction. Each additional month after tooth extraction contributed significantly to a higher likelihood of a more advanced stage of cortication, while radiographic bone loss ≥75% significantly prolonged cortication time; no other independent variable had a significant effect. The results indicate a considerably long timeframe until complete cortication of an extraction socket, that is, 3-6 months after tooth extraction 3 of 4 sockets were still not completely corticated, and only after 9-12 months, complete cortication was observed in about 80% of the sockets. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Severity of post-stroke aphasia according to aphasia type and lesion location in Koreans.

    PubMed

    Kang, Eun Kyoung; Sohn, Hae Min; Han, Moon-Ku; Kim, Won; Han, Tai Ryoon; Paik, Nam-Jong

    2010-01-01

    To determine the relations between post-stroke aphasia severity and aphasia type and lesion location, a retrospective review was undertaken using the medical records of 97 Korean patients, treated within 90 days of onset, for aphasia caused by unilateral left hemispheric stroke. Types of aphasia were classified according to the validated Korean version of the Western Aphasia Battery (K-WAB), and severities of aphasia were quantified using WAB Aphasia Quotients (AQ). Lesion locations were classified as cortical or subcortical, and were determined by magnetic resonance imaging. Two-step cluster analysis was performed using AQ values to classify aphasia severity by aphasia type and lesion location. Cluster analysis resulted in four severity clusters: 1) mild; anomic type, 2) moderate; Wernicke's, transcortical motor, transcortical sensory, conduction, and mixed transcortical types, 3) moderately severe; Broca's aphasia, and 4) severe; global aphasia, and also in three lesion location clusters: 1) mild; subcortical 2) moderate; cortical lesions involving Broca's and/or Wernicke's areas, and 3) severe; insular and cortical lesions not in Broca's or Wernicke's areas. These results revealed that within 3 months of stroke, global aphasia was the more severely affected type and cortical lesions were more likely to affect language function than subcortical lesions.

  5. The Bat as a New Model of Cortical Development.

    PubMed

    Martínez-Cerdeño, Verónica; Camacho, Jasmin; Ariza, Jeanelle; Rogers, Hailee; Horton-Sparks, Kayla; Kreutz, Anna; Behringer, Richard; Rasweiler, John J; Noctor, Stephen C

    2017-11-09

    The organization of the mammalian cerebral cortex shares fundamental features across species. However, while the radial thickness of grey matter varies within one order of magnitude, the tangential spread of the cortical sheet varies by orders of magnitude across species. A broader sample of model species may provide additional clues for understanding mechanisms that drive cortical expansion. Here, we introduce the bat Carollia perspicillata as a new model species. The brain of C. perspicillata is similar in size to that of mouse but has a cortical neurogenic period at least 5 times longer than mouse, and nearly as long as that of the rhesus macaque, whose brain is 100 times larger. We describe the development of laminar and regional structures, neural precursor cell identity and distribution, immune cell distribution, and a novel population of Tbr2+ cells in the caudal ganglionic eminence of the developing neocortex of C. perspicillata. Our data indicate that unique mechanisms guide bat cortical development, particularly concerning cell cycle length. The bat model provides new perspective on the evolution of developmental programs that regulate neurogenesis in mammalian cerebral cortex, and offers insight into mechanisms that contribute to tangential expansion and gyri formation in the cerebral cortex. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. The protective effects of chitooligosaccharides against glucose deprivation-induced cell apoptosis in cultured cortical neurons through activation of PI3K/Akt and MEK/ERK1/2 pathways.

    PubMed

    Xu, Yanyan; Zhang, Qi; Yu, Shu; Yang, Yumin; Ding, Fei

    2011-02-23

    Chitooligosaccharides (COSs), the biodegradation product of chitosan, possess a wide range of biological activities. In this study, we investigated the influences of COSs on primary cultured cortical neurons exposed to glucose deprivation (GD). The cell viability assessment by MTT assay, in couple with cell apoptosis analysis by Hoechst 33342 and TUNEL staining, indicated that GD-induced cell apoptosis in cultured cortical neurons was attenuated by COSs co-treatment in a dose-dependent manner. Light micrography following tetramethylrhodamine methyl ester staining revealed that COSs protected cultured cortical neurons from GD insult through the stabilization of mitochondrial membrane potentials. COSs co-treatment also led to the increase in Bcl-2/Bax protein ratio and the inhibition of caspase-3 activation in cultured cortical neurons exposed to GD insult. We further found that COSs were able to transiently cause the activation of Akt and ERK1/2 proteins, and anti-apoptotic effects of COSs could be blocked by chemical inhibition of PI3K and MEK. Taken together, the results suggest that COSs hold a promise to serve as a potential neuroprotective agent for treating cerebral ischemic stroke and neurodegenerative diseases. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Disease-specific molecular events in cortical multiple sclerosis lesions

    PubMed Central

    Wimmer, Isabella; Höftberger, Romana; Gerlach, Susanna; Haider, Lukas; Zrzavy, Tobias; Hametner, Simon; Mahad, Don; Binder, Christoph J.; Krumbholz, Markus; Bauer, Jan; Bradl, Monika

    2013-01-01

    Cortical lesions constitute an important part of multiple sclerosis pathology. Although inflammation appears to play a role in their formation, the mechanisms leading to demyelination and neurodegeneration are poorly understood. We aimed to identify some of these mechanisms by combining gene expression studies with neuropathological analysis. In our study, we showed that the combination of inflammation, plaque-like primary demyelination and neurodegeneration in the cortex is specific for multiple sclerosis and is not seen in other chronic inflammatory diseases mediated by CD8-positive T cells (Rasmussen’s encephalitis), B cells (B cell lymphoma) or complex chronic inflammation (tuberculous meningitis, luetic meningitis or chronic purulent meningitis). In addition, we performed genome-wide microarray analysis comparing micro-dissected active cortical multiple sclerosis lesions with those of tuberculous meningitis (inflammatory control), Alzheimer’s disease (neurodegenerative control) and with cortices of age-matched controls. More than 80% of the identified multiple sclerosis-specific genes were related to T cell-mediated inflammation, microglia activation, oxidative injury, DNA damage and repair, remyelination and regenerative processes. Finally, we confirmed by immunohistochemistry that oxidative damage in cortical multiple sclerosis lesions is associated with oligodendrocyte and neuronal injury, the latter also affecting axons and dendrites. Our study provides new insights into the complex mechanisms of neurodegeneration and regeneration in the cortex of patients with multiple sclerosis. PMID:23687122

  8. The 14-3-3 protein PAR-5 regulates the asymmetric localization of the LET-99 spindle positioning protein.

    PubMed

    Wu, Jui-Ching; Espiritu, Eugenel B; Rose, Lesilee S

    2016-04-15

    PAR proteins play important roles in establishing cytoplasmic polarity as well as regulating spindle positioning during asymmetric division. However, the molecular mechanisms by which the PAR proteins generate asymmetry in different cell types are still being elucidated. Previous studies in Caenorhabditis elegans revealed that PAR-3 and PAR-1 regulate the asymmetric localization of LET-99, which in turn controls spindle positioning by affecting the distribution of the conserved force generating complex. In wild-type embryos, LET-99 is localized in a lateral cortical band pattern, via inhibition at the anterior by PAR-3 and at the posterior by PAR-1. In this report, we show that the 14-3-3 protein PAR-5 is also required for cortical LET-99 asymmetry. PAR-5 associated with LET-99 in pull-down assays, and two PAR-5 binding sites were identified in LET-99 using the yeast two-hybrid assay. Mutation of these sites abolished binding in yeast and altered LET-99 localization in vivo: LET-99 was present at the highest levels at the posterior pole of the embryo instead of a band in par-5 embryos. Together the results indicate that PAR-5 acts in a mechanism with PAR-1 to regulate LET-99 cortical localization. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Normal distribution and medullary-to-cortical shift of Nestin-expressing cells in acute renal ischemia.

    PubMed

    Patschan, D; Michurina, T; Shi, H K; Dolff, S; Brodsky, S V; Vasilieva, T; Cohen-Gould, L; Winaver, J; Chander, P N; Enikolopov, G; Goligorsky, M S

    2007-04-01

    Nestin, a marker of multi-lineage stem and progenitor cells, is a member of intermediate filament family, which is expressed in neuroepithelial stem cells, several embryonic cell types, including mesonephric mesenchyme, endothelial cells of developing blood vessels, and in the adult kidney. We used Nestin-green fluorescent protein (GFP) transgenic mice to characterize its expression in normal and post-ischemic kidneys. Nestin-GFP-expressing cells were detected in large clusters within the papilla, along the vasa rectae, and, less prominently, in the glomeruli and juxta-glomerular arterioles. In mice subjected to 30 min bilateral renal ischemia, glomerular, endothelial, and perivascular cells showed increased Nestin expression. In the post-ischemic period, there was an increase in fluorescence intensity with no significant changes in the total number of Nestin-GFP-expressing cells. Time-lapse fluorescence microscopy performed before and after ischemia ruled out the possibility of engraftment by the circulating Nestin-expressing cells, at least within the first 3 h post-ischemia. Incubation of non-perfused kidney sections resulted in a medullary-to-cortical migration of Nestin-GFP-positive cells with the rate of expansion of their front averaging 40 microm/30 min during the first 3 h and was detectable already after 30 min of incubation. Explant matrigel cultures of the kidney and aorta exhibited sprouting angiogenesis with cells co-expressing Nestin and endothelial marker, Tie-2. In conclusion, several lines of circumstantial evidence identify a sub-population of Nestin-expressing cells with the mural cells, which are recruited in the post-ischemic period to migrate from the medulla toward the renal cortex. These migrating Nestin-positive cells may be involved in the process of post-ischemic tissue regeneration.

  10. Arabidopsis SYT1 maintains stability of cortical endoplasmic reticulum networks and VAP27-1-enriched endoplasmic reticulum-plasma membrane contact sites.

    PubMed

    Siao, Wei; Wang, Pengwei; Voigt, Boris; Hussey, Patrick J; Baluska, Frantisek

    2016-11-01

    Arabidopsis synaptotagmin 1 (SYT1) is localized on the endoplasmic reticulum-plasma membrane (ER-PM) contact sites in leaf and root cells. The ER-PM localization of Arabidopsis SYT1 resembles that of the extended synaptotagmins (E-SYTs) in animal cells. In mammals, E-SYTs have been shown to regulate calcium signaling, lipid transfer, and endocytosis. Arabidopsis SYT1 was reported to be essential for maintaining cell integrity and virus movement. This study provides detailed insight into the subcellular localization of SYT1 and VAP27-1, another ER-PM-tethering protein. SYT1 and VAP27-1 were shown to be localized on distinct ER-PM contact sites. The VAP27-1-enriched ER-PM contact sites (V-EPCSs) were always in contact with the SYT1-enriched ER-PM contact sites (S-EPCSs). The V-EPCSs still existed in the leaf epidermal cells of the SYT1 null mutant; however, they were less stable than those in the wild type. The polygonal networks of cortical ER disassembled and the mobility of VAP27-1 protein on the ER-PM contact sites increased in leaf cells of the SYT1 null mutant. These results suggest that SYT1 is responsible for stabilizing the ER network and V-EPCSs. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. Neurogenic Radial Glia-like Cells in Meninges Migrate and Differentiate into Functionally Integrated Neurons in the Neonatal Cortex.

    PubMed

    Bifari, Francesco; Decimo, Ilaria; Pino, Annachiara; Llorens-Bobadilla, Enric; Zhao, Sheng; Lange, Christian; Panuccio, Gabriella; Boeckx, Bram; Thienpont, Bernard; Vinckier, Stefan; Wyns, Sabine; Bouché, Ann; Lambrechts, Diether; Giugliano, Michele; Dewerchin, Mieke; Martin-Villalba, Ana; Carmeliet, Peter

    2017-03-02

    Whether new neurons are added in the postnatal cerebral cortex is still debated. Here, we report that the meninges of perinatal mice contain a population of neurogenic progenitors formed during embryonic development that migrate to the caudal cortex and differentiate into Satb2 + neurons in cortical layers II-IV. The resulting neurons are electrically functional and integrated into local microcircuits. Single-cell RNA sequencing identified meningeal cells with distinct transcriptome signatures characteristic of (1) neurogenic radial glia-like cells (resembling neural stem cells in the SVZ), (2) neuronal cells, and (3) a cell type with an intermediate phenotype, possibly representing radial glia-like meningeal cells differentiating to neuronal cells. Thus, we have identified a pool of embryonically derived radial glia-like cells present in the meninges that migrate and differentiate into functional neurons in the neonatal cerebral cortex. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Calcium Imaging of Basal Forebrain Activity during Innate and Learned Behaviors

    PubMed Central

    Harrison, Thomas C.; Pinto, Lucas; Brock, Julien R.; Dan, Yang

    2016-01-01

    The basal forebrain (BF) plays crucial roles in arousal, attention, and memory, and its impairment is associated with a variety of cognitive deficits. The BF consists of cholinergic, GABAergic, and glutamatergic neurons. Electrical or optogenetic stimulation of BF cholinergic neurons enhances cortical processing and behavioral performance, but the natural activity of these cells during behavior is only beginning to be characterized. Even less is known about GABAergic and glutamatergic neurons. Here, we performed microendoscopic calcium imaging of BF neurons as mice engaged in spontaneous behaviors in their home cages (innate) or performed a go/no-go auditory discrimination task (learned). Cholinergic neurons were consistently excited during movement, including running and licking, but GABAergic and glutamatergic neurons exhibited diverse responses. All cell types were activated by overt punishment, either inside or outside of the discrimination task. These findings reveal functional similarities and distinctions between BF cell types during both spontaneous and task-related behaviors. PMID:27242444

  13. Distinct expression patterns for type II topoisomerases IIA and IIB in the early foetal human telencephalon.

    PubMed

    Harkin, Lauren F; Gerrelli, Dianne; Gold Diaz, Diana C; Santos, Chloe; Alzu'bi, Ayman; Austin, Caroline A; Clowry, Gavin J

    2016-03-01

    TOP2A and TOP2B are type II topoisomerase enzymes that have important but distinct roles in DNA replication and RNA transcription. Recently, TOP2B has been implicated in the transcription of long genes in particular that play crucial roles in neural development and are susceptible to mutations contributing to neurodevelopmental conditions such as autism and schizophrenia. This study maps their expression in the early foetal human telencephalon between 9 and 12 post-conceptional weeks. TOP2A immunoreactivity was restricted to cell nuclei of the proliferative layers of the cortex and ganglionic eminences (GE), including the ventricular zone and subventricular zone (SVZ) closely matching expression of the proliferation marker KI67. Comparison with sections immunolabelled for NKX2.1, a medial GE (MGE) marker, and PAX6, a cortical progenitor cell and lateral GE (LGE) marker, revealed that TOP2A-expressing cells were more abundant in MGE than the LGE. In the cortex, TOP2B is expressed in cell nuclei in both proliferative (SVZ) and post-mitotic compartments (intermediate zone and cortical plate) as revealed by comparison with immunostaining for PAX6 and the post-mitotic neuron marker TBR1. However, co-expression with KI67 was rare. In the GE, TOP2B was also expressed by proliferative and post-mitotic compartments. In situ hybridisation studies confirmed these patterns of expression, except that TOP2A mRNA is restricted to cells in the G2/M phase of division. Thus, during early development, TOP2A is likely to have a role in cell proliferation, whereas TOP2B is expressed in post-mitotic cells and may be important in controlling expression of long genes even at this early stage. © 2015 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

  14. Increased Na+/H+ exchanger activity on the apical surface of a cilium-deficient cortical collecting duct principal cell model of polycystic kidney disease

    PubMed Central

    Olteanu, Dragos; Liu, Xiaofen; Liu, Wen; Roper, Venus C.; Sharma, Neeraj; Yoder, Bradley K.; Satlin, Lisa M.; Schwiebert, Erik M.

    2012-01-01

    Pathophysiological anomalies in autosomal dominant and recessive forms of polycystic kidney disease (PKD) may derive from impaired function/formation of the apical central monocilium of ductal epithelia such as that seen in the Oak Ridge polycystic kidney or orpk (Ift88Tg737Rpw) mouse and its immortalized cell models for the renal collecting duct. According to a previous study, Na/H exchanger (NHE) activity may contribute to hyperabsorptive Na+ movement in cilium-deficient (“mutant”) cortical collecting duct principal cell monolayers derived from the orpk mice compared with cilium-competent (“rescued”) monolayers. To examine NHE activity, we measured intracellular pH (pHi) by fluorescence imaging with the pH-sensitive dye BCECF, and used a custom-designed perfusion chamber to control the apical and basolateral solutions independently. Both mutant and rescued monolayers exhibited basolateral Na+-dependent acid-base transporter activity in the nominal absence of CO2/HCO3−. However, only the mutant cells displayed appreciable apical Na+-induced pHi recoveries from NH4+ prepulse-induced acid loads. Similar results were obtained with isolated, perfused collecting ducts from orpk vs. wild-type mice. The pHi dependence of basolateral cariporide/HOE-694-sensitive NHE activity under our experimental conditions was similar in both mutant and rescued cells, and 3.5- to 4.5-fold greater than apical HOE-sensitive NHE activity in the mutant cells (pHi 6.23–6.68). Increased apical NHE activity correlated with increased apical NHE1 expression in the mutant cells, and increased apical localization in collecting ducts of kidney sections from orpk vs. control mice. A kidney-specific conditional cilium-knockout mouse produced a more acidic urine compared with wild-type littermates and became alkalotic by 28 days of age. This study provides the first description of altered NHE activity, and an associated acid-base anomaly in any form of PKD. PMID:22301060

  15. Nonlocal origin of response suppression from stimulation outside the classic receptive field in area 17 of the cat.

    PubMed

    Brown, H A; Allison, J D; Samonds, J M; Bonds, A B

    2003-01-01

    A stimulus located outside the classic receptive field (CRF) of a striate cortical neuron can markedly influence its behavior. To study this phenomenon, we recorded from two cortical sites, recorded and peripheral, with separate electrodes in cats anesthetized with Propofol and nitrous oxide. The receptive fields of each site were discrete (2-7.3 deg between centers). A control orientation tuning (OT) curve was measured for a single recorded cell with a drifting grating. The OT curve was then remeasured while stimulating simultaneously the cell's CRF as well as the peripheral site with a stimulus optimized for that location. For 22/60 cells, the peripheral stimulus suppressed the peak response and/or shifted the center of mass of the OT curve. For 19 of these 22 cells, we then reversibly blocked stimulus-driven activity at the peripheral site by iontophoretic application of GABA (0.5 M). For 6/19 cells, the response returned to control levels, implying that for these cells the inhibitory influence arose from the blocked site. The responses of nine cells remained reduced during inactivation of the peripheral site, suggesting that influence was generated outside the region of local block in area 17. This is consistent with earlier findings suggesting that modulatory influences can originate from higher cortical areas. Three cells had mixed results, suggesting multiple origins of influence. The response of each cell returned to suppressed levels after dissipation of the GABA and returned to baseline values when the peripheral stimulus was removed. These findings support a cortical model in which a cell's response is modulated by an inhibitory network originating from beyond the receptive field that supplants convergence of excitatory lateral geniculate neurons. The existence of cells that exhibit no change in peripherally inhibited responses during the GABA application suggests that peripheral influences may arise from outside area 17, presumably from other cortical areas (e.g. area 18).

  16. Distinct cortical and sub-cortical neurogenic domains for GABAergic interneuron precursor transcription factors NKX2.1, OLIG2 and COUP-TFII in early fetal human telencephalon.

    PubMed

    Alzu'bi, Ayman; Lindsay, Susan; Kerwin, Janet; Looi, Shi Jie; Khalil, Fareha; Clowry, Gavin J

    2017-07-01

    The extent of similarities and differences between cortical GABAergic interneuron generation in rodent and primate telencephalon remains contentious. We examined expression of three interneuron precursor transcription factors, alongside other markers, using immunohistochemistry on 8-12 post-conceptional weeks (PCW) human telencephalon sections. NKX2.1, OLIG2, and COUP-TFII expression occupied distinct (although overlapping) neurogenic domains which extended into the cortex and revealed three CGE compartments: lateral, medial, and ventral. NKX2.1 expression was very largely confined to the MGE, medial CGE, and ventral septum confirming that, at this developmental stage, interneuron generation from NKX2.1+ precursors closely resembles the process observed in rodents. OLIG2 immunoreactivity was observed in GABAergic cells of the proliferative zones of the MGE and septum, but not necessarily co-expressed with NKX2.1, and OLIG2 expression was also extensively seen in the LGE, CGE, and cortex. At 8 PCW, OLIG2+ cells were only present in the medial and anterior cortical wall suggesting a migratory pathway for interneuron precursors via the septum into the medial cortex. By 12 PCW, OLIG2+ cells were present throughout the cortex and many were actively dividing but without co-expressing cortical progenitor markers. Dividing COUP-TFII+ progenitor cells were localized to ventral CGE as previously described but were also numerous in adjacent ventral cortex; in both the cases, COUP-TFII was co-expressed with PAX6 in proliferative zones and TBR1 or calretinin in post-mitotic cortical neurons. Thus COUP-TFII+ progenitors gave rise to pyramidal cells, but also interneurons which not only migrated posteriorly into the cortex from ventral CGE but also anteriorly via the LGE.

  17. Depressed mitochondrial function and electron transport Complex II-mediated H2O2 production in the cortex of type 1 diabetic rodents.

    PubMed

    Chowdhury, Subir Roy; Djordjevic, Jelena; Thomson, Ella; Smith, Darrell R; Albensi, Benedict C; Fernyhough, Paul

    2018-05-23

    Abnormalities in mitochondrial function under diabetic conditions can lead to deficits in function of cortical neurons and their support cells exhibiting a pivotal role in the pathogenesis of several neurodegenerative disorders, including Alzheimer's disease. We aimed to assess simultaneously mitochondrial respiration rates and membrane potential or H 2 O 2 generation and proteins involved in mitochondrial dynamics, antioxidants and AMPK/SIRT/PGC-1α pathway activity in cortex under diabetic conditions. Cortical mitochondria from streptozotocin (STZ)-induced type 1 diabetic rats or mice, and aged-match controls were used for simultaneous measurements of mitochondrial respiration rates and mitochondrial membrane potential (mtMP) or H 2 O 2 using OROBOROS oxygraph and measurements of enzymatic activities by a spectrophotometer. Protein levels in cortical mitochondria and homogenates were determined by Western blotting. Mitochondrial coupled respiration rates and FCCP-induced uncoupled respiration rates were significantly decreased in mitochondria of STZ-diabetic cortical rats compared to controls. The mtMP in the presence of ADP was significantly depolarized and succinate-dependent respiration rates and H 2 O 2 were significantly diminished in mitochondria of diabetic animals compared to controls, accompanied with reduced expression of CuZn- and Mn-superoxide dismutase. The enzymatic activities of Complex I, II, and IV and protein levels of certain components of Complex I and II, mitofusin 2 (Mfn2), dynamin-related protein 1 (DRP1), P-AMPK, SIRT2 and PGC-1α were significantly diminished in diabetic cortex. Deficits in mitochondrial function, dynamics, and antioxidant capabilities putatively mediated through sub-optimal AMPK/SIRT/PGC-1α signaling, are involved in the development of early sub-clinical neurodegeneration in the cortex under diabetic conditions. Copyright © 2017. Published by Elsevier Inc.

  18. Differential regulation of the Rac1 GTPase-activating protein (GAP) BCR during oxygen/glucose deprivation in hippocampal and cortical neurons.

    PubMed

    Smith, Katharine R; Rajgor, Dipen; Hanley, Jonathan G

    2017-12-08

    Brain ischemia causes oxygen and glucose deprivation (OGD) in neurons, triggering a cascade of events leading to synaptic accumulation of glutamate. Excessive activation of glutamate receptors causes excitotoxicity and delayed cell death in vulnerable neurons. Following global cerebral ischemia, hippocampal CA1 pyramidal neurons are more vulnerable to injury than their cortical counterparts, but the mechanisms that underlie this difference are unclear. Signaling via Rho-family small GTPases, their upstream guanine nucleotide exchange factors, and GTPase-activating proteins (GAPs) is differentially dysregulated in response to OGD/ischemia in hippocampal and cortical neurons. Increased Rac1 activity caused by OGD/ischemia contributes to neuronal death in hippocampal neurons via diverse effects on NADPH oxidase activity and dendritic spine morphology. The Rac1 guanine nucleotide exchange factor Tiam1 mediates an OGD-induced increase in Rac1 activity in hippocampal neurons; however, the identity of an antagonistic GAP remains elusive. Here we show that the Rac1 GAP breakpoint cluster region (BCR) associates with NMDA receptors (NMDARs) along with Tiam1 and that this protein complex is more abundant in hippocampal compared with cortical neurons. Although total BCR is similar in the two neuronal types, BCR is more active in hippocampal compared with cortical neurons. OGD causes an NMDAR- and Ca 2+ -permeable AMPAR-dependent deactivation of BCR in hippocampal but not cortical neurons. BCR knockdown occludes OGD-induced Rac1 activation in hippocampal neurons. Furthermore, disrupting the Tiam1-NMDAR interaction with a fragment of Tiam1 blocks OGD-induced Tiam1 activation but has no effect on the deactivation of BCR. This work identifies BCR as a critical player in Rac1 regulation during OGD in hippocampal neurons. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Transcriptomic and anatomical complexity of primary, seminal, and crown roots highlight root type-specific functional diversity in maize (Zea mays L.)

    PubMed Central

    Tai, Huanhuan; Lu, Xin; Opitz, Nina; Marcon, Caroline; Paschold, Anja; Lithio, Andrew; Nettleton, Dan; Hochholdinger, Frank

    2016-01-01

    Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted early in development. Seminal roots displayed unique anatomical features, whereas the organization of primary and crown roots was similar. For instance, seminal roots displayed fewer cortical cell files and their stele contained more meta-xylem vessels. Global expression profiling revealed diverse patterns of gene activity across all root types and highlighted the unique transcriptome of seminal roots. While functions in cell remodeling and cell wall formation were prominent in primary and crown roots, stress-related genes and transcriptional regulators were over-represented in seminal roots, suggesting functional specialization of the different root types. Dynamic expression of lignin biosynthesis genes and histochemical staining suggested diversification of cell wall lignification among the three root types. Our findings highlight a cost-efficient anatomical structure and a unique expression profile of seminal roots of the maize inbred line B73 different from primary and crown roots. PMID:26628518

  20. Multiple pathogenic proteins implicated in neuronopathic Gaucher disease mice.

    PubMed

    Xu, You-hai; Xu, Kui; Sun, Ying; Liou, Benjamin; Quinn, Brian; Li, Rong-hua; Xue, Ling; Zhang, Wujuan; Setchell, Kenneth D R; Witte, David; Grabowski, Gregory A

    2014-08-01

    Gaucher disease, a prevalent lysosomal storage disease (LSD), is caused by insufficient activity of acid β-glucosidase (GCase) and the resultant glucosylceramide (GC)/glucosylsphingosine (GS) accumulation in visceral organs (Type 1) and the central nervous system (Types 2 and 3). Recent clinical and genetic studies implicate a pathogenic link between Gaucher and neurodegenerative diseases. The aggregation and inclusion bodies of α-synuclein with ubiquitin are present in the brains of Gaucher disease patients and mouse models. Indirect evidence of β-amyloid pathology promoting α-synuclein fibrillation supports these pathogenic proteins as a common feature in neurodegenerative diseases. Here, multiple proteins are implicated in the pathogenesis of chronic neuronopathic Gaucher disease (nGD). Immunohistochemical and biochemical analyses showed significant amounts of β-amyloid and amyloid precursor protein (APP) aggregates in the cortex, hippocampus, stratum and substantia nigra of the nGD mice. APP aggregates were in neuronal cells and colocalized with α-synuclein signals. A majority of APP co-localized with the mitochondrial markers TOM40 and Cox IV; a small portion co-localized with the autophagy proteins, P62/LC3, and the lysosomal marker, LAMP1. In cultured wild-type brain cortical neural cells, the GCase-irreversible inhibitor, conduritol B epoxide (CBE), reproduced the APP/α-synuclein aggregation and the accumulation of GC/GS. Ultrastructural studies showed numerous larger-sized and electron-dense mitochondria in nGD cerebral cortical neural cells. Significant reductions of mitochondrial adenosine triphosphate production and oxygen consumption (28-40%) were detected in nGD brains and in CBE-treated neural cells. These studies implicate defective GCase function and GC/GS accumulation as risk factors for mitochondrial dysfunction and the multi-proteinopathies (α-synuclein-, APP- and Aβ-aggregates) in nGD. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. A set of simple cell processes is sufficient to model spiral cleavage.

    PubMed

    Brun-Usan, Miguel; Marín-Riera, Miquel; Grande, Cristina; Truchado-Garcia, Marta; Salazar-Ciudad, Isaac

    2017-01-01

    During cleavage, different cellular processes cause the zygote to become partitioned into a set of cells with a specific spatial arrangement. These processes include the orientation of cell division according to: an animal-vegetal gradient; the main axis (Hertwig's rule) of the cell; and the contact areas between cells or the perpendicularity between consecutive cell divisions (Sachs' rule). Cell adhesion and cortical rotation have also been proposed to be involved in spiral cleavage. We use a computational model of cell and tissue biomechanics to account for the different existing hypotheses about how the specific spatial arrangement of cells in spiral cleavage arises during development. Cell polarization by an animal-vegetal gradient, a bias to perpendicularity between consecutive cell divisions (Sachs' rule), cortical rotation and cell adhesion, when combined, reproduce the spiral cleavage, whereas other combinations of processes cannot. Specifically, cortical rotation is necessary at the 8-cell stage to direct all micromeres in the same direction. By varying the relative strength of these processes, we reproduce the spatial arrangement of cells in the blastulae of seven different invertebrate species. © 2017. Published by The Company of Biologists Ltd.

  2. Kinetic characterization of the deproteinization of trabecular and cortical bovine femur bones.

    PubMed

    Castro-Ceseña, Ana B; Sánchez-Saavedra, M Pilar; Novitskaya, Ekaterina E; Chen, Po-Yu; Hirata, Gustavo A; McKittrick, Joanna

    2013-12-01

    The present study proposes an interpretation of the mechanism of bone deproteinization. Cortical and trabecular bovine femur bones were deproteinized using 6% NaOCl (37, 50, 60°C). The kinetic parameters (rate constant and activation energy) were calculated, and the surface area of each type of bone was considered. A statistical analysis of the rate constants shows that cortical bone deproteinizes at a lower rate than trabecular. The activation energy is higher for trabecular than cortical bone, and no significant differences are found in the protein concentration values for both bones. Therefore, although trabecular bone deproteinizes at a higher rate than cortical, trabecular bone requires more energy for the deproteinization reaction to take place. Considering that both types of bones are constituted by mineral, protein, and water; the present work shows that the individual inner matrix architecture of trabecular and cortical bones, along with characteristics such as the mineral concentration and its bonding with collagen fibers, may be the responsible factors that control protein depletion. © 2013.

  3. Combined small-molecule inhibition accelerates the derivation of functional, early-born, cortical neurons from human pluripotent stem cells

    PubMed Central

    Qi, Yuchen; Zhang, Xin-Jun; Renier, Nicolas; Wu, Zhuhao; Atkin, Talia; Sun, Ziyi; Ozair, M. Zeeshan; Tchieu, Jason; Zimmer, Bastian; Fattahi, Faranak; Ganat, Yosif; Azevedo, Ricardo; Zeltner, Nadja; Brivanlou, Ali H.; Karayiorgou, Maria; Gogos, Joseph; Tomishima, Mark; Tessier-Lavigne, Marc; Shi, Song-Hai; Studer, Lorenz

    2017-01-01

    Considerable progress has been made in converting human pluripotent stem cells (hPSCs) into functional neurons. However, the protracted timing of human neuron specification and functional maturation remains a key challenge that hampers the routine application of hPSC-derived lineages in disease modeling and regenerative medicine. Using a combinatorial small-molecule screen, we previously identified conditions for the rapid differentiation of hPSCs into peripheral sensory neurons. Here we generalize the approach to central nervous system (CNS) fates by developing a small-molecule approach for accelerated induction of early-born cortical neurons. Combinatorial application of 6 pathway inhibitors induces post-mitotic cortical neurons with functional electrophysiological properties by day 16 of differentiation, in the absence of glial cell co-culture. The resulting neurons, transplanted at 8 days of differentiation into the postnatal mouse cortex, are functional and establish long-distance projections, as shown using iDISCO whole brain imaging. Accelerated differentiation into cortical neuron fates should facilitate hPSC-based strategies for disease modeling and cell therapy in CNS disorders. PMID:28112759

  4. Exercise induces cortical plasticity after neonatal spinal cord injury in the rat

    PubMed Central

    Kao, T; Shumsky, JS; Murray, M; Moxon, KA

    2009-01-01

    Exercise-induced cortical plasticity is associated with improved functional outcome after brain or nerve injury. Exercise also improves functional outcomes after spinal cord injury, but its effects on cortical plasticity are not known. The goal of this investigation was to study the effect of moderate exercise (treadmill locomotion, 3 min/day, 5days/week) on the somatotopic organization of forelimb and hindlimb somatosensory cortex (SI) after neonatal thoracic transection. We used adult rats spinalized as neonates because some of these animals develop weight-supported stepping and, therefore, the relationship between cortical plasticity and stepping could also be examined. Acute, single-neuron mapping was used to determine the percentage of cortical cells responding to cutaneous forelimb stimulation in normal, spinalized, and exercised spinalized rats. Multiple single neuron recording from arrays of chronically implanted microwires examined the magnitude of response of these cells in normal and exercised spinalized rats. Our results show that exercise not only increased the percentage of responding cells in the hindlimb SI, but also increased the magnitude of the response of these cells. This increase in response magnitude was correlated with behavioral outcome measures. In the forelimb SI, neonatal transection reduced the percentage of responding cells to forelimb stimulation but exercise reversed this loss. This restoration in the percentage of responding cells after exercise was accompanied by an increase in their response magnitude. Therefore, the increase in responsiveness of hindlimb SI to forelimb stimulation after neonatal transection and exercise may be due, in part, to the effect of exercise on the forelimb SI. PMID:19515923

  5. Hippocampal neurogenesis and cortical cellular plasticity in Wahlberg's epauletted fruit bat: a qualitative and quantitative study.

    PubMed

    Gatome, Catherine W; Mwangi, Deter K; Lipp, Hans-Peter; Amrein, Irmgard

    2010-01-01

    Species-specific characteristics of neuronal plasticity emerging from comparative studies can address the functional relevance of hippocampal or cortical plasticity in the light of ecological adaptation and evolutionary history of a given species. Here, we present a quantitative and qualitative analysis of neurogenesis in young and adult free-living Wahlberg's epauletted fruit bats. Using the markers for proliferating cell nuclear antigen (PCNA), bromodeoxyuridine (BrdU), doublecortin (DCX) and polysialic acid neural cell adhesion molecule (PSA-NCAM), our findings in the hippocampus, olfactory bulb and cortical regions are described and compared to reports in other mammals. Expressed as a percentage of the total number of granule cells, PCNA- and BrdU-positive cells accounted for 0.04 in young to 0.01% in adult animals; DCX-positive cells for 0.05 (young) to 0.01% (adult); PSA-NCAM-positive cells for 0.1 (young) to 0.02% (adult), and pyknotic cells for 0.007 (young) to 0.005% (adult). The numbers were comparable to other long-lived, late-maturing mammals such as primates. A significant increase in the total granule cell number from young to adult animals demonstrated the successful formation and integration of new cells. In adulthood, granule cell number appeared stable and was surprisingly low in comparison to other species. Observations in the olfactory bulb and rostral migratory stream were qualitatively similar to descriptions in other species. In the ventral horn of the lateral ventricle, we noted prominent expression of DCX and PSA-NCAM forming a temporal migratory stream targeting the piriform cortex, possibly reflecting the importance of olfaction to these species. Low, but persistent hippocampal neurogenesis in non-echolocating fruit bats contrasted the findings in echolocating microbats, in which hippocampal neurogenesis was largely absent. Together with the observed intense cortical plasticity in the olfactory system of fruit bats we suggest a differential influence of sensory modalities on hippocampal and cortical plasticity in this mammalian order. Copyright © 2010 S. Karger AG, Basel.

  6. Wood cell-wall structure requires local 2D-microtubule disassembly by a novel plasma membrane-anchored protein.

    PubMed

    Oda, Yoshihisa; Iida, Yuki; Kondo, Yuki; Fukuda, Hiroo

    2010-07-13

    Plant cells have evolved cortical microtubules, in a two-dimensional space beneath the plasma membrane, that regulate patterning of cellulose deposition. Although recent studies have revealed that several microtubule-associated proteins facilitate self-organization of transverse cortical microtubules, it is still unknown how diverse patterns of cortical microtubules are organized in different xylem cells, which are the major components of wood. Using our newly established in vitro xylem cell differentiation system, we found that a novel microtubule end-tracking protein, microtubule depletion domain 1 (MIDD1), was anchored to distinct plasma membrane domains and promoted local microtubule disassembly, resulting in pits on xylem cell walls. The introduction of RNA interference for MIDD1 resulted in the failure of local microtubule depletion and the formation of secondary walls without pits. Conversely, the overexpression of MIDD1 reduced microtubule density. MIDD1 has two coiled-coil domains for the binding to microtubules and for the anchorage to plasma membrane domains, respectively. Combination of the two coils caused end tracking of microtubules during shrinkage and suppressed their rescue events. Our results indicate that MIDD1 integrates spatial information in the plasma membrane with cortical microtubule dynamics for determining xylem cell wall pattern. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Characterizing HSF1 Binding and Post-Translational Modifications of hsp70 Promoter in Cultured Cortical Neurons: Implications in the Heat-Shock Response

    PubMed Central

    Gómez, Andrea V.; Córdova, Gonzalo; Munita, Roberto; Parada, Guillermo E.; Barrios, Álvaro P.; Cancino, Gonzalo I.; Álvarez, Alejandra R.; Andrés, María E.

    2015-01-01

    Causes of lower induction of Hsp70 in neurons during heat shock are still a matter of debate. To further inquire into the mechanisms regulating Hsp70 expression in neurons, we studied the activity of Heat Shock Factor 1 (HSF1) and histone posttranslational modifications (PTMs) at the hsp70 promoter in rat cortical neurons. Heat shock induced a transient and efficient translocation of HSF1 to neuronal nuclei. However, no binding of HSF1 at the hsp70 promoter was detected while it bound to the hsp25 promoter in cortical neurons during heat shock. Histone PTMs analysis showed that the hsp70 promoter harbors lower levels of histone H3 and H4 acetylation in cortical neurons compared to PC12 cells under basal conditions. Transcriptomic profiling data analysis showed a predominant usage of cryptic transcriptional start sites at hsp70 gene in the rat cerebral cortex, compared with the whole brain. These data support a weaker activation of hsp70 canonical promoter. Heat shock increased H3Ac at the hsp70 promoter in PC12 cells, which correlated with increased Hsp70 expression while no modifications occurred at the hsp70 promoter in cortical neurons. Increased histone H3 acetylation by Trichostatin A led to hsp70 mRNA and protein induction in cortical neurons. In conclusion, we found that two independent mechanisms maintain a lower induction of Hsp70 in cortical neurons. First, HSF1 fails to bind specifically to the hsp70 promoter in cortical neurons during heat shock and, second, the hsp70 promoter is less accessible in neurons compared to non-neuronal cells due to histone deacetylases repression. PMID:26053851

  8. NFIB-mediated repression of the epigenetic factor Ezh2 regulates cortical development.

    PubMed

    Piper, Michael; Barry, Guy; Harvey, Tracey J; McLeay, Robert; Smith, Aaron G; Harris, Lachlan; Mason, Sharon; Stringer, Brett W; Day, Bryan W; Wray, Naomi R; Gronostajski, Richard M; Bailey, Timothy L; Boyd, Andrew W; Richards, Linda J

    2014-02-19

    Epigenetic mechanisms are essential in regulating neural progenitor cell self-renewal, with the chromatin-modifying protein Enhancer of zeste homolog 2 (EZH2) emerging as a central player in promoting progenitor cell self-renewal during cortical development. Despite this, how Ezh2 is itself regulated remains unclear. Here, we demonstrate that the transcription factor nuclear factor IB (NFIB) plays a key role in this process. Nfib(-/-) mice exhibit an increased number of proliferative ventricular zone cells that express progenitor cell markers and upregulation of EZH2 expression within the neocortex and hippocampus. NFIB binds to the Ezh2 promoter and overexpression of NFIB represses Ezh2 transcription. Finally, key downstream targets of EZH2-mediated epigenetic repression are misregulated in Nfib(-/-) mice. Collectively, these results suggest that the downregulation of Ezh2 transcription by NFIB is an important component of the process of neural progenitor cell differentiation during cortical development.

  9. Single-cell transcriptional analysis of normal, aberrant, and malignant hematopoiesis in zebrafish.

    PubMed

    Moore, Finola E; Garcia, Elaine G; Lobbardi, Riadh; Jain, Esha; Tang, Qin; Moore, John C; Cortes, Mauricio; Molodtsov, Aleksey; Kasheta, Melissa; Luo, Christina C; Garcia, Amaris J; Mylvaganam, Ravi; Yoder, Jeffrey A; Blackburn, Jessica S; Sadreyev, Ruslan I; Ceol, Craig J; North, Trista E; Langenau, David M

    2016-05-30

    Hematopoiesis culminates in the production of functionally heterogeneous blood cell types. In zebrafish, the lack of cell surface antibodies has compelled researchers to use fluorescent transgenic reporter lines to label specific blood cell fractions. However, these approaches are limited by the availability of transgenic lines and fluorescent protein combinations that can be distinguished. Here, we have transcriptionally profiled single hematopoietic cells from zebrafish to define erythroid, myeloid, B, and T cell lineages. We also used our approach to identify hematopoietic stem and progenitor cells and a novel NK-lysin 4(+) cell type, representing a putative cytotoxic T/NK cell. Our platform also quantified hematopoietic defects in rag2(E450fs) mutant fish and showed that these fish have reduced T cells with a subsequent expansion of NK-lysin 4(+) cells and myeloid cells. These data suggest compensatory regulation of the innate immune system in rag2(E450fs) mutant zebrafish. Finally, analysis of Myc-induced T cell acute lymphoblastic leukemia showed that cells are arrested at the CD4(+)/CD8(+) cortical thymocyte stage and that a subset of leukemia cells inappropriately reexpress stem cell genes, including bmi1 and cmyb In total, our experiments provide new tools and biological insights into single-cell heterogeneity found in zebrafish blood and leukemia. © 2016 Moore et al.

  10. Single-cell transcriptional analysis of normal, aberrant, and malignant hematopoiesis in zebrafish

    PubMed Central

    Garcia, Elaine G.; Lobbardi, Riadh; Jain, Esha; Tang, Qin; Moore, John C.; Cortes, Mauricio; Molodtsov, Aleksey; Kasheta, Melissa; Luo, Christina C.; Garcia, Amaris J.; Mylvaganam, Ravi; Yoder, Jeffrey A.; Blackburn, Jessica S.; Sadreyev, Ruslan I.; Ceol, Craig J.; North, Trista E.

    2016-01-01

    Hematopoiesis culminates in the production of functionally heterogeneous blood cell types. In zebrafish, the lack of cell surface antibodies has compelled researchers to use fluorescent transgenic reporter lines to label specific blood cell fractions. However, these approaches are limited by the availability of transgenic lines and fluorescent protein combinations that can be distinguished. Here, we have transcriptionally profiled single hematopoietic cells from zebrafish to define erythroid, myeloid, B, and T cell lineages. We also used our approach to identify hematopoietic stem and progenitor cells and a novel NK-lysin 4+ cell type, representing a putative cytotoxic T/NK cell. Our platform also quantified hematopoietic defects in rag2E450fs mutant fish and showed that these fish have reduced T cells with a subsequent expansion of NK-lysin 4+ cells and myeloid cells. These data suggest compensatory regulation of the innate immune system in rag2E450fs mutant zebrafish. Finally, analysis of Myc-induced T cell acute lymphoblastic leukemia showed that cells are arrested at the CD4+/CD8+ cortical thymocyte stage and that a subset of leukemia cells inappropriately reexpress stem cell genes, including bmi1 and cmyb. In total, our experiments provide new tools and biological insights into single-cell heterogeneity found in zebrafish blood and leukemia. PMID:27139488

  11. Histogenesis of the epithelial component of rat thymus: an ultrastructural and immunohistological analysis.

    PubMed

    Vicente, A; Varas, A; Sacedón, R; Zapata, A G

    1996-04-01

    Despite the assumed importance of thymic cell microenvironments for governing T-cell maturation, little is known about the ontogeny of their cell components. A few studies have analyzed previously the ontogenetical development of rat thymic epithelium (Bogojevic et al. 1990. Period. Biol., 92:126; Kampinga and Aspinall 1990 Harwood Acad. Pub., London, pp. 149-186; Micic et al., 1991 Dev. Comp. Immunol., 15:443-450) and recently we have reported the development of both interdigitating/dendritic cells and macrophages (Vicente et al., 1994 Immunology, 82:75-81, 1995 Immunology, 85:99-105). In the present work we analyze in situ ultrastructural, immunohistochemical, and histoenzymatically the appearance and development of the thymic epithelial cell component in both embryonic and neonatal Wistar rats with special emphasis on the origin of the different epithelial cell types, the occurrence or absence of a common precursor for these, and the expression of MHC molecules. The thymic primordium of 13-day-old embryos is formed by a homogeneous population of primitive epithelial cells differentiating gradually into various epithelial cell subtypes of both the cortex and the medulla. In the cortex, subcapsular and stroma-supporting epithelial cells appear at days 14-15 as two structurally different cell entities. At the same time, stroma-supporting, keratinized, and vacuolated epithelial cells occur in the thymic medulla. These last two cell types differentiate subsequently into Hassall's bodies and hypertrophied cells. Lympho-epithelial cell complexes are identified in the deep cortex around birth, when the cortical parenchyma houses a transitional erythropoiesis. mAbs (His-39, RMC-20) which recognize medullary epithelial cells in the adult thymus stain positively cells of the thymic primordium as early as day 16 of embryonic life. Cortical epithelial cell markers (His-37, RMC-17) appear, however, slightly later and the subcapsulary region is not established until postnatal life. MHC class I and class II molecules can be identified on epithelial cells in the thymus of 15-day-old embryonic rats although they reach the highest expression around birth. Our results confirm the heterogeneity of the thymic epithelial component, the persistence of primitive, non-differentiated epithelial cells morphologically similar to those occurring in the early thymic primordium in adult thymus, and the mutual relevance of epithelial cells and thymocytes for an adequate development of rat thymus gland.

  12. An experimental approach towards the development of an in vitro cortical-thalamic co-culture model.

    PubMed

    Kanagasabapathi, Thirukumaran T; Massobrio, Paolo; Tedesco, Mariateresa; Martinoia, Sergio; Wadman, Wytse J; Decré, Michel M J

    2011-01-01

    In this paper, we propose an experimental approach to develop an in vitro dissociated cortical-thalamic co-culture model using a dual compartment neurofluidic device. The device has two compartments separated by 10 μm wide and 3 μm high microchannels. The microchannels provide a physical isolation of neurons allowing only neurites to grow between the compartments. Long-term viable co-culture was maintained in the compartmented device, neurite growth through the microchannels was verified using immunofluorescence staining, and electrophysiological recordings from the co-culture system was investigated. Preliminary analysis of spontaneous activities from the co-culture shows a distinctively different firing pattern associated with cultures of individual cell types and further analysis is proposed for a deeper understanding of the dynamics involved in the network connectivity in such a co-culture system.

  13. GAPDH-A Recruits a Plant Virus Movement Protein to Cortical Virus Replication Complexes to Facilitate Viral Cell-to-Cell Movement

    PubMed Central

    Kaido, Masanori; Abe, Kazutomo; Mine, Akira; Hyodo, Kiwamu; Taniguchi, Takako; Taniguchi, Hisaaki; Mise, Kazuyuki; Okuno, Tetsuro

    2014-01-01

    The formation of virus movement protein (MP)-containing punctate structures on the cortical endoplasmic reticulum is required for efficient intercellular movement of Red clover necrotic mosaic virus (RCNMV), a bipartite positive-strand RNA plant virus. We found that these cortical punctate structures constitute a viral replication complex (VRC) in addition to the previously reported aggregate structures that formed adjacent to the nucleus. We identified host proteins that interacted with RCNMV MP in virus-infected Nicotiana benthamiana leaves using a tandem affinity purification method followed by mass spectrometry. One of these host proteins was glyceraldehyde 3-phosphate dehydrogenase-A (NbGAPDH-A), which is a component of the Calvin-Benson cycle in chloroplasts. Virus-induced gene silencing of NbGAPDH-A reduced RCNMV multiplication in the inoculated leaves, but not in the single cells, thereby suggesting that GAPDH-A plays a positive role in cell-to-cell movement of RCNMV. The fusion protein of NbGAPDH-A and green fluorescent protein localized exclusively to the chloroplasts. In the presence of RCNMV RNA1, however, the protein localized to the cortical VRC as well as the chloroplasts. Bimolecular fluorescence complementation assay and GST pulldown assay confirmed in vivo and in vitro interactions, respectively, between the MP and NbGAPDH-A. Furthermore, gene silencing of NbGAPDH-A inhibited MP localization to the cortical VRC. We discuss the possible roles of NbGAPDH-A in the RCNMV movement process. PMID:25411849

  14. Neuroprotective effect of schizandrin A on oxygen and glucose deprivation/reperfusion-induced cell injury in primary culture of rat cortical neurons.

    PubMed

    Wang, Cai-Ping; Li, Gui-Cai; Shi, Yun-Wei; Zhang, Xiao-Chuan; Li, Jian-Long; Wang, Zhi-Wei; Ding, Fei; Liang, Xin-Miao

    2014-09-01

    Brain ischemia appears to be associated with innate immunity. Recent reports showed that C3a and C5a, as potent targets, might protect against ischemia induced cell death. In traditional Chinese medicine, the fruit of Schizandra chinesis Baill (Fructus schizandrae) has been widely used as a tonic. In the present study, we sought to evaluate the neuroprotective effects of schizandrin A, a composition of S. chinesis Baill, against oxygen and glucose deprivation followed by reperfusion (OGD/R)-induced cell death in primary culture of rat cortical neurons, and to test whether C3a and C5a affected cortical neuron recovery from ischemic injury after schizandrin A treatment. The results showed that schizandrin A significantly reduced cell apoptosis and necrosis, increased cell survival, and decreased intracellular calcium concentration ([Ca(2+)]i) and lactate dehydrogenase (LDH) release in primary culture of rat cortical neurons after OGD/R. Mechanism studies suggested that the modulation of extracellular-regulated kinase (ERK), c-Jun NH2-terminal kinases (JNK), and p38, as well as caspase-3 activity played an important role on the progress of neuronal apoptosis. C5aR participated in the neuroprotective effect of schizandrin A in primary culture of rat cortical neurons after OGD/R. Our findings suggested that schizandrin A might act as a candidate therapeutic target drug used for brain ischemia and related diseases.

  15. Disruption of neurogenesis and cortical development in transgenic mice misexpressing Olig2, a gene in the Down syndrome critical region.

    PubMed

    Liu, Wei; Zhou, Hui; Liu, Lei; Zhao, Chuntao; Deng, Yaqi; Chen, Lina; Wu, Laiman; Mandrycky, Nicole; McNabb, Christopher T; Peng, Yuanbo; Fuchs, Perry N; Lu, Jie; Sheen, Volney; Qiu, Mengsheng; Mao, Meng; Lu, Q Richard

    2015-05-01

    The basic helix-loop-helix (bHLH) transcription factor Olig2 is crucial for mammalian central nervous system development. Human ortholog OLIG2 is located in the Down syndrome critical region in trisomy 21. To investigate the effect of Olig2 misexpression on brain development, we generated a developmentally regulated Olig2-overexpressing transgenic line with a Cre/loxP system. The transgenic mice with Olig2 misexpression in cortical neural stem/progenitor cells exhibited microcephaly, cortical dyslamination, hippocampus malformation, and profound motor deficits. Ectopic misexpression of Olig2 impaired cortical progenitor proliferation and caused precocious cell cycle exit. Massive neuronal cell death was detected in the developing cortex of Olig2-misexpressing mice. In addition, Olig2 misexpression led to a significant downregulation of neuronal specification factors including Ngn1, Ngn2 and Pax6, and a defect in cortical neurogenesis. Chromatin-immunoprecipitation and sequencing (ChIP-Seq) analysis indicates that Olig2 directly targets the promoter and/or enhancer regions of Nfatc4, Dscr1/Rcan1 and Dyrk1a, the critical neurogenic genes that contribute to Down syndrome phenotypes, and inhibits their expression. Together, our study suggests that Olig2 misexpression in neural stem cells elicits neurogenesis defects and neuronal cell death, which may contribute to developmental disorders including Down syndrome, where OLIG2 is triplicated on chromosomal 21. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Mitochondrial Superoxide Production Negatively Regulates Neural Progenitor Proliferation and Cerebral Cortical Development

    PubMed Central

    Hou, Yan; Ouyang, Xin; Wan, Ruiqian; Cheng, Heping; Mattson, Mark P.; Cheng, Aiwu

    2012-01-01

    Although high amounts of reactive oxygen species (ROS) can damage cells, ROS can also play roles as second messengers, regulating diverse cellular processes. Here we report that embryonic mouse cerebral cortical neural progenitor cells (NPCs) exhibit intermittent spontaneous bursts of mitochondrial superoxide (SO) generation (mitochondrial SO flashes) that require transient opening of membrane permeability transition pores (mPTP). This quantal SO production negatively regulates NPC self-renewal. Mitochondrial SO scavengers and mPTP inhibitors reduce SO flash frequency and enhance NPC proliferation, whereas prolonged mPTP opening and SO generation increase SO flash incidence and decrease NPC proliferation. The inhibition of NPC proliferation by mitochondrial SO involves suppression of extracellular signal-regulated kinases. Moreover, mice lacking SOD2 (SOD2−/− mice) exhibit significantly fewer proliferative NPCs and differentiated neurons in the embryonic cerebral cortex at mid-gestation compared with wild type littermates. Cultured SOD2−/− NPCs exhibit a significant increase in SO flash frequency and reduced NPC proliferation. Taken together, our findings suggest that mitochondrial SO flashes negatively regulate NPC self-renewal in the developing cerebral cortex. PMID:22949407

  17. Generation of human cortical neurons from a new immortal fetal neural stem cell line.

    PubMed

    Cacci, E; Villa, A; Parmar, M; Cavallaro, M; Mandahl, N; Lindvall, O; Martinez-Serrano, A; Kokaia, Z

    2007-02-01

    Isolation and expansion of neural stem cells (NSCs) of human origin are crucial for successful development of cell therapy approaches in neurodegenerative diseases. Different epigenetic and genetic immortalization strategies have been established for long-term maintenance and expansion of these cells in vitro. Here we report the generation of a new, clonal NSC (hc-NSC) line, derived from human fetal cortical tissue, based on v-myc immortalization. Using immunocytochemistry, we show that these cells retain the characteristics of NSCs after more than 50 passages. Under proliferation conditions, when supplemented with epidermal and basic fibroblast growth factors, the hc-NSCs expressed neural stem/progenitor cell markers like nestin, vimentin and Sox2. When growth factors were withdrawn, proliferation and expression of v-myc and telomerase were dramatically reduced, and the hc-NSCs differentiated into glia and neurons (mostly glutamatergic and GABAergic, as well as tyrosine hydroxylase-positive, presumably dopaminergic neurons). RT-PCR analysis showed that the hc-NSCs retained expression of Pax6, Emx2 and Neurogenin2, which are genes associated with regionalization and cell commitment in cortical precursors during brain development. Our data indicate that this hc-NSC line could be useful for exploring the potential of human NSCs to replace dead or damaged cortical cells in animal models of acute and chronic neurodegenerative diseases. Taking advantage of its clonality and homogeneity, this cell line will also be a valuable experimental tool to study the regulatory role of intrinsic and extrinsic factors in human NSC biology.

  18. The chemokine CCL2 protects against methylmercury neurotoxicity.

    PubMed

    Godefroy, David; Gosselin, Romain-Daniel; Yasutake, Akira; Fujimura, Masatake; Combadière, Christophe; Maury-Brachet, Régine; Laclau, Muriel; Rakwal, Randeep; Melik-Parsadaniantz, Stéphane; Bourdineaud, Jean-Paul; Rostène, William

    2012-01-01

    Industrial pollution due to heavy metals such as mercury is a major concern for the environment and public health. Mercury, in particular methylmercury (MeHg), primarily affects brain development and neuronal activity, resulting in neurotoxic effects. Because chemokines can modulate brain functions and are involved in neuroinflammatory and neurodegenerative diseases, we tested the possibility that the neurotoxic effect of MeHg may interfere with the chemokine CCL2. We have used an original protocol in young mice using a MeHg-contaminated fish-based diet for 3 months relevant to human MeHg contamination. We observed that MeHg induced in the mice cortex a decrease in CCL2 concentrations, neuronal cell death, and microglial activation. Knock-out (KO) CCL2 mice fed with a vegetal control food already presented a decrease in cortical neuronal cell density in comparison with wild-type animals under similar diet conditions, suggesting that the presence of CCL2 is required for normal neuronal survival. Moreover, KO CCL2 mice showed a pronounced neuronal cell death in response to MeHg. Using in vitro experiments on pure rat cortical neurons in culture, we observed by blockade of the CCL2/CCR2 neurotransmission an increased neuronal cell death in response to MeHg neurotoxicity. Furthermore, we showed that sod genes are upregulated in brain of wild-type mice fed with MeHg in contrast to KO CCL2 mice and that CCL2 can blunt in vitro the decrease in glutathione levels induced by MeHg. These original findings demonstrate that CCL2 may act as a neuroprotective alarm system in brain deficits due to MeHg intoxication.

  19. Women with type 2 diabetes mellitus have lower cortical porosity of the proximal femoral shaft using low-resolution CT than nondiabetic women, and increasing glucose is associated with reduced cortical porosity.

    PubMed

    Osima, Marit; Kral, Rita; Borgen, Tove T; Høgestøl, Ingvild K; Joakimsen, Ragnar M; Eriksen, Erik F; Bjørnerem, Åshild

    2017-04-01

    Increased cortical porosity has been suggested as a possible factor increasing fracture propensity in patients with type 2 diabetes mellitus (T2DM). This is a paradox because cortical porosity is generally associated with high bone turnover, while bone turnover is reduced in patients with T2DM. We therefore wanted to test the hypothesis that women with T2DM have lower bone turnover markers (BTM) and lower cortical porosity than those without diabetes, and that higher serum glucose and body mass index (BMI) are associated with lower BTM, and with lower cortical porosity. This cross-sectional study is based on a prior nested case-control study including 443 postmenopausal women aged 54-94years from the Tromsø Study, 211 with non-vertebral fracture and 232 fracture-free controls. Of those 443 participants, 22 women exhibited T2DM and 421 women did not have diabetes. All had fasting blood samples assayed for procollagen type I N-terminal propeptide (PINP), C-terminal cross-linking telopeptide of type I collagen (CTX) and glucose, and femoral subtrochanteric architecture was quantified using low-resolution clinical CT and StrAx1.0 software. Women with T2DM had higher serum glucose (7.2 vs. 5.3mmol/L), BMI (29.0 vs. 26.4kg/m 2 ), and higher femoral subtrochanteric total volumetric bone mineral density (vBMD) (783 vs. 715mgHA/cm 3 ), but lower cortical porosity (40.9 vs. 42.8%) than nondiabetic women (all p<0.05). Each standard deviation (SD) increment in glucose was associated with 0.10-0.12 SD lower PINP and CTX, and 0.13 SD lower cortical porosity (all p<0.05). Each SD increment in BMI was associated with 0.10-0.18 SD lower serum PINP and CTX, and 0.19 SD thicker cortices (all p<0.05). Increasing glucose and BMI were associated with lower bone turnover suggesting that reduced intracortical and endocortical remodeling leads to reduced porosity and thicker cortices. Using low-resolution clinical CT, cortical porosity was lower in women with T2DM compared to women without diabetes. This indicates that other changes in bone qualities, not increased cortical porosity, are likely to explain the increased fracture propensity in patients with T2DM. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Bipolar disorder type I and II show distinct relationships between cortical thickness and executive function.

    PubMed

    Abé, C; Rolstad, S; Petrovic, P; Ekman, C-J; Sparding, T; Ingvar, M; Landén, M

    2018-06-15

    Frontal cortical abnormalities and executive function impairment co-occur in bipolar disorder. Recent studies have shown that bipolar subtypes differ in the degree of structural and functional impairments. The relationships between cognitive performance and cortical integrity have not been clarified and might differ across patients with bipolar disorder type I, II, and healthy subjects. Using a vertex-wise whole-brain analysis, we investigated how cortical integrity, as measured by cortical thickness, correlates with executive performance in patients with bipolar disorder type I, II, and controls (N = 160). We found focal associations between executive function and cortical thickness in the medial prefrontal cortex in bipolar II patients and controls, but not in bipolar I disorder. In bipolar II patients, we observed additional correlations in lateral prefrontal and occipital regions. Our findings suggest that bipolar disorder patients show altered structure-function relationships, and importantly that those relationships may differ between bipolar subtypes. The findings are line with studies suggesting subtype-specific neurobiological and cognitive profiles. This study contributes to a better understanding of brain structure-function relationships in bipolar disorder and gives important insights into the neuropathophysiology of diagnostic subtypes. © 2018 The Authors Acta Psychiatrica Scandinavica Published by John Wiley & Sons Ltd.

  1. A Novel Population of Inner Cortical Cells in the Adrenal Gland That Displays Sexually Dimorphic Expression of Thyroid Hormone Receptor-β1

    PubMed Central

    Huang, Chen-Che Jeff; Kraft, Cary; Moy, Nicole; Ng, Lily

    2015-01-01

    The development of the adrenal cortex involves the formation and then subsequent regression of immature or fetal inner cell layers as the mature steroidogenic outer layers expand. However, controls over this remodeling, especially in the immature inner layer, are incompletely understood. Here we identify an inner cortical cell population that expresses thyroid hormone receptor-β1 (TRβ1), one of two receptor isoforms encoded by the Thrb gene. Using mice with a Thrbb1 reporter allele that expresses lacZ instead of TRβ1, β-galactosidase was detected in the inner cortex from early stages. Expression peaked at juvenile ages in an inner zone that included cells expressing 20-α-hydroxysteroid dehydrogenase, a marker of the transient, so-called X-zone in mice. The β-galactosidase-positive zone displayed sexually dimorphic regression in males after approximately 4 weeks of age but persisted in females into adulthood in either nulliparous or parous states. T3 treatment promoted hypertrophy of inner cortical cells, induced some markers of mature cortical cells, and, in males, delayed the regression of the TRβ1-positive zone, suggesting that TRβ1 could partly divert the differentiation fate and counteract male-specific regression of inner zone cells. TRβ1-deficient mice were resistant to these actions of T3, supporting a functional role for TRβ1 in the inner cortex. PMID:25774556

  2. Increased Testosterone Decreases Medial Cortical Volume and Neurogenesis in Territorial Side-Blotched Lizards (Uta stansburiana)

    PubMed Central

    LaDage, Lara D.; Roth, Timothy C.; Downs, Cynthia J.; Sinervo, Barry; Pravosudov, Vladimir V.

    2017-01-01

    Variation in an animal's spatial environment can induce variation in the hippocampus, an area of the brain involved in spatial cognitive processing. Specifically, increased spatial area use is correlated with increased hippocampal attributes, such as volume and neurogenesis. In the side-blotched lizard (Uta stansburiana), males demonstrate alternative reproductive tactics and are either territorial—defending large, clearly defined spatial boundaries—or non-territorial—traversing home ranges that are smaller than the territorial males' territories. Our previous work demonstrated cortical volume (reptilian hippocampal homolog) correlates with these spatial niches. We found that territorial holders have larger medial cortices than non-territory holders, yet these differences in the neural architecture demonstrated some degree of plasticity as well. Although we have demonstrated a link among territoriality, spatial use, and brain plasticity, the mechanisms that underlie this relationship are unclear. Previous studies found that higher testosterone levels can induce increased use of the spatial area and can cause an upregulation in hippocampal attributes. Thus, testosterone may be the mechanistic link between spatial area use and the brain. What remains unclear, however, is if testosterone can affect the cortices independent of spatial experiences and whether testosterone differentially interacts with territorial status to produce the resultant cortical phenotype. In this study, we compared neurogenesis as measured by the total number of doublecortin-positive cells and cortical volume between territorial and non-territorial males supplemented with testosterone. We found no significant differences in the number of doublecortin-positive cells or cortical volume among control territorial, control non-territorial, and testosterone-supplemented non-territorial males, while testosterone-supplemented territorial males had smaller medial cortices containing fewer doublecortin-positive cells. These results demonstrate that testosterone can modulate medial cortical attributes outside of differential spatial processing experiences but that territorial males appear to be more sensitive to alterations in testosterone levels compared with non-territorial males. PMID:28298883

  3. Spontaneous Contractility-Mediated Cortical Flow Generates Cell Migration in Three-Dimensional Environments

    PubMed Central

    Hawkins, Rhoda J.; Poincloux, Renaud; Bénichou, Olivier; Piel, Matthieu; Chavrier, Philippe; Voituriez, Raphaël

    2011-01-01

    We present a model of cell motility generated by actomyosin contraction of the cell cortex. We identify, analytically, dynamical instabilities of the cortex and show that they yield steady-state cortical flows, which, in turn, can induce cell migration in three-dimensional environments. This mechanism relies on the regulation of contractility by myosin, whose transport is explicitly taken into account in the model. Theoretical predictions are compared to experimental data of tumor cells migrating in three-dimensional matrigel and suggest that this mechanism could be a general mode of cell migration in three-dimensional environments. PMID:21889440

  4. Severity of Post-stroke Aphasia According to Aphasia Type and Lesion Location in Koreans

    PubMed Central

    Kang, Eun Kyoung; Sohn, Hae Min; Han, Moon-Ku; Kim, Won; Han, Tai Ryoon

    2010-01-01

    To determine the relations between post-stroke aphasia severity and aphasia type and lesion location, a retrospective review was undertaken using the medical records of 97 Korean patients, treated within 90 days of onset, for aphasia caused by unilateral left hemispheric stroke. Types of aphasia were classified according to the validated Korean version of the Western Aphasia Battery (K-WAB), and severities of aphasia were quantified using WAB Aphasia Quotients (AQ). Lesion locations were classified as cortical or subcortical, and were determined by magnetic resonance imaging. Two-step cluster analysis was performed using AQ values to classify aphasia severity by aphasia type and lesion location. Cluster analysis resulted in four severity clusters: 1) mild; anomic type, 2) moderate; Wernicke's, transcortical motor, transcortical sensory, conduction, and mixed transcortical types, 3) moderately severe; Broca's aphasia, and 4) severe; global aphasia, and also in three lesion location clusters: 1) mild; subcortical 2) moderate; cortical lesions involving Broca's and/or Wernicke's areas, and 3) severe; insular and cortical lesions not in Broca's or Wernicke's areas. These results revealed that within 3 months of stroke, global aphasia was the more severely affected type and cortical lesions were more likely to affect language function than subcortical lesions. PMID:20052357

  5. Visual Receptive Field Structure of Cortical Inhibitory Neurons Revealed by Two-Photon Imaging Guided Recording

    PubMed Central

    Liu, Bao-hua; Li, Pingyang; Li, Ya-tang; Sun, Yujiao J.; Yanagawa, Yuchio; Obata, Kunihiko; Zhang, Li I.; Tao, Huizhong W.

    2009-01-01

    Synaptic inhibition plays an important role in shaping receptive field (RF) properties in the visual cortex. However, the underlying mechanisms remain not well understood, partly due to difficulties in systematically studying functional properties of cortical inhibitory neurons in vivo. Here, we established two-photon imaging guided cell-attached recordings from genetically labelled inhibitory neurons and nearby “shadowed” excitatory neurons in the primary visual cortex of adult mice. Our results revealed that in layer 2/3, the majority of excitatory neurons exhibited both On and Off spike subfields, with their spatial arrangement varying from being completely segregated to overlapped. On the other hand, most layer 4 excitatory neurons exhibited only one discernable subfield. Interestingly, no RF structure with significantly segregated On and Off subfields was observed for layer 2/3 inhibitory neurons of either the fast-spike or regular-spike type. They predominantly possessed overlapped On and Off subfields with a significantly larger size than the excitatory neurons, and exhibited much weaker orientation tuning. These results from the mouse visual cortex suggest that different from the push-pull model proposed for simple cells, layer 2/3 simple-type neurons with segregated spike On and Off subfields likely receive spatially overlapped inhibitory On and Off inputs. We propose that the phase-insensitive inhibition can enhance the spatial distinctiveness of On and Off subfields through a gain control mechanism. PMID:19710305

  6. Multimodal Approach for Radical Excision of Focal Cortical Dysplasia by Combining Advanced Magnetic Resonance Imaging Data to Intraoperative Ultrasound, Electrocorticography, and Cortical Stimulation: A Preliminary Experience.

    PubMed

    Tringali, Giovanni; Bono, Beatrice; Dones, Ivano; Cordella, Roberto; Didato, Giuseppe; Villani, Flavio; Prada, Francesco

    2018-05-01

    Type II focal cortical dysplasia is the most common malformation of cortical development associated with drug resistant epilepsy and susceptible to surgical resection. Although, at present, advanced imaging modalities are capable of detecting most cortical disorders, it is still a challenge for the surgeon to visualize them intraoperatively. The lack of direct identification between normal brain and subtle dysplastic tissue may explain the poor results in terms of being seizure-free versus other forms of epilepsy. The aim of this study is to compare magnetic resonance imaging (MRI) and intraoperative ultrasound-guided neuronavigation, along with cortical stimulation and acute electrocorticography, as a multimodal surgical approach to cortical dysplasia's tailored resection. Six consecutive patients with type II cortical dysplasia underwent epilepsy surgery by means of MRI/intraoperative ultrasound-guided neuronavigation. Intraoperative cortical stimulation of sensory/motor cortex was performed to localize cortical eloquent areas. Acute electrocorticography was used to identify epileptogenic tissue. These findings were correlated to real-time ultrasound imaging to establish the extent of the resection. Intraoperative ultrasound depicted cortical dysplasias at a higher resolution and accuracy than MRI. Therefore it maximized the extent of the resection. Both postoperative MRIs and pathology documented the extent of the resection in all patients. Seizure-freedom was achieved in 5 cases (Engel class IA), and in 1 patient it was classified as Engel class IB. No postoperative neurological deficits were observed. These results strongly suggest feasibility of ultrasound-guided resection of focal cortical dysplasia. Providing high resolution and accuracy, it allows an easy, real-time discrimination between normal and dysplastic brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Cortical actin nanodynamics determines nitric oxide release in vascular endothelium.

    PubMed

    Fels, Johannes; Jeggle, Pia; Kusche-Vihrog, Kristina; Oberleithner, Hans

    2012-01-01

    The release of the main vasodilator nitric oxide (NO) by the endothelial NO synthase (eNOS) is a hallmark of endothelial function. We aim at elucidating the underlying mechanism how eNOS activity depends on cortical stiffness (К(cortex)) of living endothelial cells. It is hypothesized that cortical actin dynamics determines К(cortex) and directly influences eNOS activity. By combined atomic force microscopy and fluorescence imaging we generated mechanical and optical sections of single living cells. This approach allows the discrimination between К(cortex) and bulk cell stiffness (К(bulk)) and, additionally, the simultaneous analysis of submembranous actin web dynamics. We show that К(cortex) softens when cortical F-actin depolymerizes and that this shift from a gel-like stiff cortex to a soft G-actin rich layer, triggers the stiffness-sensitive eNOS activity. The results implicate that stiffness changes in the ∼100 nm phase of the submembranous actin web, without affecting К(bulk), regulate NO release and thus determines endothelial function.

  8. A Common Position-Dependent Mechanism Controls Cell-Type Patterning and GLABRA2 Regulation in the Root and Hypocotyl Epidermis of Arabidopsis1

    PubMed Central

    Hung, Chen-Yi; Lin, Yan; Zhang, Meng; Pollock, Susan; David Marks, M.; Schiefelbein, John

    1998-01-01

    A position-dependent pattern of epidermal cell types is produced during root development in Arabidopsis thaliana. This pattern is reflected in the expression pattern of GLABRA2 (GL2), a homeobox gene that regulates cell differentiation in the root epidermis. GL2 promoter::GUS fusions were used to show that the TTG gene, a regulator of root epidermis development, is necessary for maximal GL2 activity but is not required for the pattern of GL2 expression. Furthermore, GL2-promoter activity is influenced by expression of the myc-like maize R gene (35S::R) in Arabidopsis but is not affected by gl2 mutations. A position-dependent pattern of cell differentiation and GL2-promoter activity was also discovered in the hypocotyl epidermis that was analogous to the pattern in the root. Non-GL2-expressing cell files in the hypocotyl epidermis located outside anticlinal cortical cell walls exhibit reduced cell length and form stomata. Like the root, the hypocotyl GL2 activity was shown to be influenced by ttg and 35S::R but not by gl2. The parallel pattern of cell differentiation in the root and hypocotyl indicates that TTG and GL2 participate in a common position-dependent mechanism to control cell-type patterning throughout the apical-basal axis of the Arabidopsis seedling. PMID:9576776

  9. Reduced bone mass and muscle strength in male 5α-reductase type 1 inactivated mice.

    PubMed

    Windahl, Sara H; Andersson, Niklas; Börjesson, Anna E; Swanson, Charlotte; Svensson, Johan; Movérare-Skrtic, Sofia; Sjögren, Klara; Shao, Ruijin; Lagerquist, Marie K; Ohlsson, Claes

    2011-01-01

    Androgens are important regulators of bone mass but the relative importance of testosterone (T) versus dihydrotestosterone (DHT) for the activation of the androgen receptor (AR) in bone is unknown. 5α-reductase is responsible for the irreversible conversion of T to the more potent AR activator DHT. There are two well established isoenzymes of 5α-reductase (type 1 and type 2), encoded by separate genes (Srd5a1 and Srd5a2). 5α-reductase type 2 is predominantly expressed in male reproductive tissues whereas 5α-reductase type 1 is highly expressed in liver and moderately expressed in several other tissues including bone. The aim of the present study was to investigate the role of 5α-reductase type 1 for bone mass using Srd5a1⁻/⁻ mice. Four-month-old male Srd5a1⁻/⁻ mice had reduced trabecular bone mineral density (-36%, p<0.05) and cortical bone mineral content (-15%, p<0.05) but unchanged serum androgen levels compared with wild type (WT) mice. The cortical bone dimensions were reduced in the male Srd5a1⁻/⁻ mice as a result of a reduced cortical periosteal circumference compared with WT mice. T treatment increased the cortical periosteal circumference (p<0.05) in orchidectomized WT mice but not in orchidectomized Srd5a1⁻/⁻ mice. Male Srd5a1⁻/⁻ mice demonstrated a reduced forelimb muscle grip strength compared with WT mice (p<0.05). Female Srd5a1⁻/⁻ mice had slightly increased cortical bone mass associated with elevated circulating levels of androgens. In conclusion, 5α-reductase type 1 inactivated male mice have reduced bone mass and forelimb muscle grip strength and we propose that these effects are due to lack of 5α-reductase type 1 expression in bone and muscle. In contrast, the increased cortical bone mass in female Srd5a1⁻/⁻ mice, is an indirect effect mediated by elevated circulating androgen levels.

  10. Reduced Bone Mass and Muscle Strength in Male 5α-Reductase Type 1 Inactivated Mice

    PubMed Central

    Windahl, Sara H.; Andersson, Niklas; Börjesson, Anna E.; Swanson, Charlotte; Svensson, Johan; Movérare-Skrtic, Sofia; Sjögren, Klara; Shao, Ruijin; Lagerquist, Marie K.; Ohlsson, Claes

    2011-01-01

    Androgens are important regulators of bone mass but the relative importance of testosterone (T) versus dihydrotestosterone (DHT) for the activation of the androgen receptor (AR) in bone is unknown. 5α-reductase is responsible for the irreversible conversion of T to the more potent AR activator DHT. There are two well established isoenzymes of 5α-reductase (type 1 and type 2), encoded by separate genes (Srd5a1 and Srd5a2). 5α-reductase type 2 is predominantly expressed in male reproductive tissues whereas 5α-reductase type 1 is highly expressed in liver and moderately expressed in several other tissues including bone. The aim of the present study was to investigate the role of 5α-reductase type 1 for bone mass using Srd5a1−/− mice. Four-month-old male Srd5a1 −/− mice had reduced trabecular bone mineral density (−36%, p<0.05) and cortical bone mineral content (−15%, p<0.05) but unchanged serum androgen levels compared with wild type (WT) mice. The cortical bone dimensions were reduced in the male Srd5a1 −/− mice as a result of a reduced cortical periosteal circumference compared with WT mice. T treatment increased the cortical periosteal circumference (p<0.05) in orchidectomized WT mice but not in orchidectomized Srd5a1 −/− mice. Male Srd5a1 −/− mice demonstrated a reduced forelimb muscle grip strength compared with WT mice (p<0.05). Female Srd5a1 −/− mice had slightly increased cortical bone mass associated with elevated circulating levels of androgens. In conclusion, 5α-reductase type 1 inactivated male mice have reduced bone mass and forelimb muscle grip strength and we propose that these effects are due to lack of 5α-reductase type 1 expression in bone and muscle. In contrast, the increased cortical bone mass in female Srd5a1 −/− mice, is an indirect effect mediated by elevated circulating androgen levels. PMID:21731732

  11. Label-free distinguishing between neurons and glial cells based on two-photon excited fluorescence signal of neuron perinuclear granules

    NASA Astrophysics Data System (ADS)

    Du, Huiping; Jiang, Liwei; Wang, Xingfu; Liu, Gaoqiang; Wang, Shu; Zheng, Liqin; Li, Lianhuang; Zhuo, Shuangmu; Zhu, Xiaoqin; Chen, Jianxin

    2016-08-01

    Neurons and glial cells are two critical cell types of brain tissue. Their accurate identification is important for the diagnosis of psychiatric disorders such as depression and schizophrenia. In this paper, distinguishing between neurons and glial cells by using the two-photon excited fluorescence (TPEF) signals of intracellular intrinsic sources was performed. TPEF microscopy combined with TUJ-1 and GFAP immunostaining and quantitative image analysis demonstrated that the perinuclear granules of neurons in the TPEF images of brain tissue and the primary cultured cortical cells were a unique characteristic of neurons compared to glial cells which can become a quantitative feature to distinguish neurons from glial cells. With the development of miniaturized TPEF microscope (‘two-photon fiberscopes’) imaging devices, TPEF microscopy can be developed into an effective diagnostic and monitoring tool for psychiatric disorders such as depression and schizophrenia.

  12. Expression of VGF mRNA in the adult rat central nervous system.

    PubMed

    Snyder, S E; Salton, S R

    1998-04-27

    VGF is a secretory peptide precursor that is expressed and processed by neuronal cells in a cell type-specific fashion. In addition, VGF transcription and secretion are rapidly and relatively selectively induced by neurotrophins and depolarization in vitro. To gain insight into the possible function(s) of VGF in the nervous system, we have carried out a detailed examination of the distribution of VGF mRNA in the adult rat central nervous system by using in situ hybridization. Robust expression was detected in many neurons throughout the brain and spinal cord, in several types of neurons in the retina, and in presumptive chromaffin cells of the adrenal medulla. In the brain, prominent expression of VGF mRNA was observed in neurons of the main and accessory olfactory bulbs; in the anterior olfactory nucleus; in the induseum griseum and taenia tecta; in the olfactory tubercle; in CA1-CA3, the hilus of the dentate gyrus, and the subicular complex of the hippocampal formation; in the piriform, periamygdaloid, transitional, and lateral entorhinal cortices; in the endopiriform nucleus; in the hypothalamus, particularly the preoptic, periventricular, supraoptic, suprachiasmatic, and arcuate nuclei; and in a number of septal, thalamic, amygdaloid, and brainstem nuclei. Labeling was also seen in neurons of the neocortex and transitional cortical areas, particularly in layer V, and in basal ganglia and cerebellum. These data demonstrate that VGF mRNA is expressed much more extensively in the brain than has been described in previous RNA or immunohistochemical studies, and, furthermore, that VGF is widely expressed in the spinal cord and retina.

  13. JACKDAW controls epidermal patterning in the Arabidopsis root meristem through a non-cell-autonomous mechanism.

    PubMed

    Hassan, Hala; Scheres, Ben; Blilou, Ikram

    2010-05-01

    In Arabidopsis, specification of the hair and non-hair epidermal cell types is position dependent, in that hair cells arise over clefts in the underlying cortical cell layer. Epidermal patterning is determined by a network of transcriptional regulators that respond to an as yet unknown cue from underlying tissues. Previously, we showed that JACKDAW (JKD), a zinc finger protein, localizes in the quiescent centre and the ground tissue, and regulates tissue boundaries and asymmetric cell division by delimiting SHORT-ROOT movement. Here, we provide evidence that JKD controls position-dependent signals that regulate epidermal-cell-type patterning. JKD is required for appropriately patterned expression of the epidermal cell fate regulators GLABRA2, CAPRICE and WEREWOLF. Genetic interaction studies indicate that JKD operates upstream of the epidermal patterning network in a SCRAMBLED (SCM)-dependent fashion after embryogenesis, but acts independent of SCM in embryogenesis. Tissue-specific induction experiments indicate non-cell-autonomous action of JKD from the underlying cortex cell layer to specify epidermal cell fate. Our findings are consistent with a model where JKD induces a signal in every cortex cell that is more abundant in the hair cell position owing to the larger surface contact of cells located over a cleft.

  14. Dual Pathology in Rasmussen's Encephalitis: A Report of Coexistent Focal Cortical Dysplasia and Review of the Literature.

    PubMed

    Prayson, Richard A

    2012-01-01

    Rasmussen's encephalitis is a well-established, albeit rare cause of medically intractable epilepsy. In a small number of Rasmussen's cases, a second pathology is identified, which independently can cause medically intractable seizures (dual pathology). This paper documents a case of a 13-year-old male who presented with medically intractable epilepsy. The patient underwent a series of surgical resections, early on resulting in a diagnosis of focal cortical dysplasia and later yielding a diagnosis of coexistent Rasmussen's encephalitis, marked by chronic inflammation, microglial nodules, and focal cortical atrophy, combined with focal cortical dysplasia (Palmini et al. type IIA, ILAE type IIA). The literature on dual pathology in the setting of Rasmussen's encephalitis is reviewed.

  15. Dual Pathology in Rasmussen's Encephalitis: A Report of Coexistent Focal Cortical Dysplasia and Review of the Literature

    PubMed Central

    Prayson, Richard A.

    2012-01-01

    Rasmussen's encephalitis is a well-established, albeit rare cause of medically intractable epilepsy. In a small number of Rasmussen's cases, a second pathology is identified, which independently can cause medically intractable seizures (dual pathology). This paper documents a case of a 13-year-old male who presented with medically intractable epilepsy. The patient underwent a series of surgical resections, early on resulting in a diagnosis of focal cortical dysplasia and later yielding a diagnosis of coexistent Rasmussen's encephalitis, marked by chronic inflammation, microglial nodules, and focal cortical atrophy, combined with focal cortical dysplasia (Palmini et al. type IIA, ILAE type IIA). The literature on dual pathology in the setting of Rasmussen's encephalitis is reviewed. PMID:23056977

  16. Cortical bone fracture analysis using XFEM - case study.

    PubMed

    Idkaidek, Ashraf; Jasiuk, Iwona

    2017-04-01

    We aim to achieve an accurate simulation of human cortical bone fracture using the extended finite element method within a commercial finite element software abaqus. A two-dimensional unit cell model of cortical bone is built based on a microscopy image of the mid-diaphysis of tibia of a 70-year-old human male donor. Each phase of this model, an interstitial bone, a cement line, and an osteon, are considered linear elastic and isotropic with material properties obtained by nanoindentation, taken from literature. The effect of using fracture analysis methods (cohesive segment approach versus linear elastic fracture mechanics approach), finite element type, and boundary conditions (traction, displacement, and mixed) on cortical bone crack initiation and propagation are studied. In this study cohesive segment damage evolution for a traction separation law based on energy and displacement is used. In addition, effects of the increment size and mesh density on analysis results are investigated. We find that both cohesive segment and linear elastic fracture mechanics approaches within the extended finite element method can effectively simulate cortical bone fracture. Mesh density and simulation increment size can influence analysis results when employing either approach, and using finer mesh and/or smaller increment size does not always provide more accurate results. Both approaches provide close but not identical results, and crack propagation speed is found to be slower when using the cohesive segment approach. Also, using reduced integration elements along with the cohesive segment approach decreases crack propagation speed compared with using full integration elements. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Xenon reduces glutamate-, AMPA-, and kainate-induced membrane currents in cortical neurones.

    PubMed

    Dinse, A; Föhr, K J; Georgieff, M; Beyer, C; Bulling, A; Weigt, H U

    2005-04-01

    The anaesthetic, analgesic, and neuroprotective effects of xenon (Xe) are believed to be mediated by a block of the NMDA (N-methyl-D-aspartate) receptor channel. Interestingly, the clinical profile of the noble gas differs markedly from that of specific NMDA receptor antagonists. The aim of this study was, therefore, to investigate whether Xe might be less specific, also inhibiting the two other subtypes of glutamate receptor channels, such as the alpha-amino-3-hydroxy-5-methyl-4-isoxazolole propionate (AMPA) and kainate receptors. The study was performed on voltage-clamped cortical neurones from embryonic mice and SH-SY5Y cells expressing GluR6 kainate receptors. Drugs were applied by a multi-barreled fast perfusion system. Xe, dissolved at approximately 3.45 mM in aqueous solution, diminished the peak and even more the plateau of AMPA and glutamate induced currents. At the control EC(50) value for AMPA (29 microM) these reductions were by about 40 and 56% and at 3 mM glutamate the reductions were by 45 and 66%, respectively. Currents activated at the control EC(50) value for kainate (57 microM) were inhibited by 42%. Likewise, Xe showed an inhibitory effect on kainate-induced membrane currents of SH-SY5Y cells transfected with the GluR6 subunit of the kainate receptor. Xe reduced kainate-induced currents by between 35 and 60%, depending on the kainate concentration. Xe blocks not only NMDA receptors, but also AMPA and kainate receptors in cortical neurones as well as GluR6-type receptors expressed in SH-SY5Y cells. Thus, Xe seems to be rather non-specific as a channel blocker and this may contribute to the analgesic and anaesthetic potency of Xe.

  18. L-type calcium channels play a critical role in maintaining lens transparency by regulating phosphorylation of aquaporin-0 and myosin light chain and expression of connexins.

    PubMed

    Maddala, Rupalatha; Nagendran, Tharkika; de Ridder, Gustaaf G; Schey, Kevin L; Rao, Ponugoti Vasantha

    2013-01-01

    Homeostasis of intracellular calcium is crucial for lens cytoarchitecture and transparency, however, the identity of specific channel proteins regulating calcium influx within the lens is not completely understood. Here we examined the expression and distribution profiles of L-type calcium channels (LTCCs) and explored their role in morphological integrity and transparency of the mouse lens, using cDNA microarray, RT-PCR, immunoblot, pharmacological inhibitors and immunofluorescence analyses. The results revealed that Ca (V) 1.2 and 1.3 channels are expressed and distributed in both the epithelium and cortical fiber cells in mouse lens. Inhibition of LTCCs with felodipine or nifedipine induces progressive cortical cataract formation with time, in association with decreased lens weight in ex-vivo mouse lenses. Histological analyses of felodipine treated lenses revealed extensive disorganization and swelling of cortical fiber cells resembling the phenotype reported for altered aquaporin-0 activity without detectable cytotoxic effects. Analysis of both soluble and membrane rich fractions from felodipine treated lenses by SDS-PAGE in conjunction with mass spectrometry and immunoblot analyses revealed decreases in β-B1-crystallin, Hsp-90, spectrin and filensin. Significantly, loss of transparency in the felodipine treated lenses was preceded by an increase in aquaporin-0 serine-235 phosphorylation and levels of connexin-50, together with decreases in myosin light chain phosphorylation and the levels of 14-3-3ε, a phosphoprotein-binding regulatory protein. Felodipine treatment led to a significant increase in gene expression of connexin-50 and 46 in the mouse lens. Additionally, felodipine inhibition of LTCCs in primary cultures of mouse lens epithelial cells resulted in decreased intracellular calcium, and decreased actin stress fibers and myosin light chain phosphorylation, without detectable cytotoxic response. Taken together, these observations reveal a crucial role for LTCCs in regulation of expression, activity and stability of aquaporin-0, connexins, cytoskeletal proteins, and the mechanical properties of lens, all of which have a vital role in maintaining lens function and cytoarchitecture.

  19. Widespread heterogeneous neuronal loss across the cerebral cortex in Huntington's disease.

    PubMed

    Nana, Alissa L; Kim, Eric H; Thu, Doris C V; Oorschot, Dorothy E; Tippett, Lynette J; Hogg, Virginia M; Synek, Beth J; Roxburgh, Richard; Waldvogel, Henry J; Faull, Richard L M

    2014-01-01

    Huntington's disease is an autosomal dominant neurodegenerative disease characterized by neuronal degeneration in the basal ganglia and cerebral cortex, and a variable symptom profile. Although progressive striatal degeneration is known to occur and is related to symptom profile, little is known about the cellular basis of symptom heterogeneity across the entire cerebral cortex. To investigate this, we have undertaken a double blind study using unbiased stereological cell counting techniques to determine the pattern of cell loss in six representative cortical regions from the frontal, parietal, temporal, and occipital lobes in the brains of 14 Huntington's disease cases and 15 controls. The results clearly demonstrate a widespread loss of total neurons and pyramidal cells across all cortical regions studied, except for the primary visual cortex. Importantly, the results show that cell loss is remarkably variable both within and between Huntington's disease cases. The results also show that neuronal loss in the primary sensory and secondary visual cortices relate to Huntington's disease motor symptom profiles, and neuronal loss across the associational cortices in the frontal, parietal and temporal lobes is related to both Huntington's disease motor and to mood symptom profiles. This finding considerably extends a previous study (Thu et al., Brain, 2010; 133:1094-1110) which showed that neuronal loss in the primary motor cortex was related specifically to the motor symptom profiles while neuronal loss in the anterior cingulate cortex was related specifically to mood symptom profiles. The extent of cortical cell loss in the current study was generally related to the striatal neuropathological grade, but not to CAG repeat length on the HTT gene. Overall our findings show that Huntington's disease is characterized by a heterogeneous pattern of neuronal cell loss across the entire cerebrum which varies with symptom profile.

  20. Alzheimer's disease: a correlative study.

    PubMed Central

    Neary, D; Snowden, J S; Mann, D M; Bowen, D M; Sims, N R; Northen, B; Yates, P O; Davison, A N

    1986-01-01

    In a study of 17 patients with histologically proven Alzheimer's disease the relationship between psychological, pathological and chemical measures of disorder was examined. Severity of dementia, determined by mental test performance, correlated highly with pathological change in large cortical neurons (cell loss and reduction in nuclear and nucleolar volume and cytoplasmic RNA content), to a lesser extent with cortical senile plaque and neurofibrillary tangle frequency and reduction in acetylcholine (ACh) synthesis, and not with reduction in choline acetyltransferase (CAT) activity. A strongly significant relationship was demonstrated between cell loss and reductions in nuclear and nucleolar volume and cytoplasmic RNA content. Reduction in CAT activity and senile plaque frequency were significantly correlated, thereby linking changes in the sub-cortical projection system of the nucleus basalis with the cortical pathology. The pattern of correlations suggests that the dementia of Alzheimer's disease is largely a reflection of the state of large cortical neurons, and it is argued that abnormalities in the latter may not be directly related to primary loss of cholinergic neurons in the subcortex. PMID:2420941

  1. Heme Oxygenase-2 Modulates Early Pathogenesis after Traumatic Injury to the Immature Brain

    PubMed Central

    Yoneyama-Sarnecky, Tomoko; Olivas, Andrea D.; Azari, Soraya; Ferriero, Donna M.; Manvelyan, Hovhannes M.; Noble-Haeusslein, Linda J.

    2010-01-01

    We determined if heme oxygenase-2 (HO-2), an enzyme that degrades the pro-oxidant heme, confers neuroprotection in the developing brain after traumatic brain injury (TBI). Male HO-2 wild-type (WT) and homozygous knockout (KO) mice at postnatal day 21 were subjected to TBI and euthanized 1, 7, and 14 days later. Relative cerebral blood flow, measured by laser Doppler, cortical and hippocampal pathogenesis, and motor recovery were evaluated at all time points. Cerebral blood flow was found to be similar between experimental groups. Blood flow significantly decreased immediately after injury, returned to baseline by 1 day, and was significantly elevated by 7 days, post-injury. Nonheme iron preferentially accumulated in the ipsilateral cortex, hippocampus, and external capsule in both WT and KO brain-injured genotypes. There were, however, a significantly greater number of TUNEL-positive cells in the hippocampal dentate gyrus and a significantly greater cortical lesion volume in KOs relative to WTs within the first week post-injury. By 14 days post-injury, however, cortical lesion volume and cell density in the hippocampal CA3 region and dorsal thalamus were similar between the two groups. Assays of fine motor function (grip strength) over the first 2 weeks post-injury revealed a general pattern of decreased strength in the contralateral forelimbs of KOs as compared to WTs. Together, these findings demonstrate that deficiency in HO-2 alters both the kinetics of secondary damage and fine motor recovery after TBI. PMID:20389079

  2. Lipid Domains in Intact Fiber-Cell Plasma Membranes Isolated from Cortical and Nuclear Regions of Human Eye Lenses of Donors from Different Age Groups

    PubMed Central

    Raguz, Marija; Mainali, Laxman; O’Brien, William J.; Subczynski, Witold K.

    2015-01-01

    The results reported here clearly document changes in the properties and the organization of fiber-cell membrane lipids that occur with age, based on electron paramagnetic resonance (EPR) analysis of lens membranes of clear lenses from donors of age groups from 0 to 20, 21 to 40, and 61 to 80 years. The physical properties, including profiles of the alkyl chain order, fluidity, hydrophobicity, and oxygen transport parameter, were investigated using EPR spin-labeling methods, which also provide an opportunity to discriminate coexisting lipid domains and to evaluate the relative amounts of lipids in these domains. Fiber-cell membranes were found to contain three distinct lipid environments: bulk lipid domain, which appears minimally affected by membrane proteins, and two domains that appear due to the presence of membrane proteins, namely boundary and trapped lipid domains. In nuclear membranes the amount of boundary and trapped phospholipids as well as the amount of cholesterol in trapped lipid domains increased with the donors’ age and was greater than that in cortical membranes. The difference between the amounts of lipids in domains uniquely formed due to the presence of membrane proteins in nuclear and cortical membranes increased with the donors’ age. It was also shown that cholesterol was to a large degree excluded from trapped lipid domains in cortical membranes. It is evident that the rigidity of nuclear membranes was greater than that of cortical membranes for all age groups. The amount of lipids in domains of low oxygen permeability, mainly in trapped lipid domains, were greater in nuclear than cortical membranes and increased with the age of donors. These results indicate that the nuclear fiber cell plasma membranes were less permeable to oxygen than cortical membranes and become less permeable to oxygen with age. In clear lenses, age-related changes in the lens lipid and protein composition and organization appear to occur in ways that increase fiber cell plasma membrane resistance to oxygen permeation. PMID:25617680

  3. Lipid domains in intact fiber-cell plasma membranes isolated from cortical and nuclear regions of human eye lenses of donors from different age groups.

    PubMed

    Raguz, Marija; Mainali, Laxman; O'Brien, William J; Subczynski, Witold K

    2015-03-01

    The results reported here clearly document changes in the properties and the organization of fiber-cell membrane lipids that occur with age, based on electron paramagnetic resonance (EPR) analysis of lens membranes of clear lenses from donors of age groups from 0 to 20, 21 to 40, and 61 to 80 years. The physical properties, including profiles of the alkyl chain order, fluidity, hydrophobicity, and oxygen transport parameter, were investigated using EPR spin-labeling methods, which also provide an opportunity to discriminate coexisting lipid domains and to evaluate the relative amounts of lipids in these domains. Fiber-cell membranes were found to contain three distinct lipid environments: bulk lipid domain, which appears minimally affected by membrane proteins, and two domains that appear due to the presence of membrane proteins, namely boundary and trapped lipid domains. In nuclear membranes the amount of boundary and trapped phospholipids as well as the amount of cholesterol in trapped lipid domains increased with the donors' age and was greater than that in cortical membranes. The difference between the amounts of lipids in domains uniquely formed due to the presence of membrane proteins in nuclear and cortical membranes increased with the donors' age. It was also shown that cholesterol was to a large degree excluded from trapped lipid domains in cortical membranes. It is evident that the rigidity of nuclear membranes was greater than that of cortical membranes for all age groups. The amount of lipids in domains of low oxygen permeability, mainly in trapped lipid domains, were greater in nuclear than cortical membranes and increased with the age of donors. These results indicate that the nuclear fiber cell plasma membranes were less permeable to oxygen than cortical membranes and become less permeable to oxygen with age. In clear lenses, age-related changes in the lens lipid and protein composition and organization appear to occur in ways that increase fiber cell plasma membrane resistance to oxygen permeation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Analysis of Cell Division and Elongation Underlying the Developmental Acceleration of Root Growth in Arabidopsis thaliana1

    PubMed Central

    Beemster, Gerrit T.S.; Baskin, Tobias I.

    1998-01-01

    To investigate the relation between cell division and expansion in the regulation of organ growth rate, we used Arabidopsis thaliana primary roots grown vertically at 20°C with an elongation rate that increased steadily during the first 14 d after germination. We measured spatial profiles of longitudinal velocity and cell length and calculated parameters of cell expansion and division, including rates of local cell production (cells mm−1 h−1) and cell division (cells cell−1 h−1). Data were obtained for the root cortex and also for the two types of epidermal cell, trichoblasts and atrichoblasts. Accelerating root elongation was caused by an increasingly longer growth zone, while maximal strain rates remained unchanged. The enlargement of the growth zone and, hence, the accelerating root elongation rate, were accompanied by a nearly proportionally increased cell production. This increased production was caused by increasingly numerous dividing cells, whereas their rates of division remained approximately constant. Additionally, the spatial profile of cell division rate was essentially constant. The meristem was longer than generally assumed, extending well into the region where cells elongated rapidly. In the two epidermal cell types, meristem length and cell division rate were both very similar to that of cortical cells, and differences in cell length between the two epidermal cell types originated at the apex of the meristem. These results highlight the importance of controlling the number of dividing cells, both to generate tissues with different cell lengths and to regulate the rate of organ enlargement. PMID:9536070

  5. Ultrastructural localization of hair keratins, high sulfur keratin-associated proteins and sulfhydryl oxidase in the human hair.

    PubMed

    Alibardi, Lorenzo

    2017-03-01

    Hardening of the human hair shaft during cornification results from the bonding of keratins and keratin-associated proteins. In situ hybridization and light immunocytochemical studies have shown the general distribution of different keratins and some associated proteins but not determined their ultrastructural localization. I report here the localization of hair keratins, two high-sulfur keratin-associated proteins and sulfhydryl oxidase has been studied under the transmission electron microscope in the cornification zone of the human hair. The ultrastructural study on keratin distribution in general confirms previous light microscopic studies. Sulfur-rich KAP1 is mainly cortical but the labeling disappears in fully cornified cortical cells while a diffuse labeling is also present in differentiating cuticle cells. Sulfur-rich K26 immunolocalization is only detected in the exocuticle and endocuticle. Sparse labeling for sulfhydryl oxidase occurs in differentiating cortical cells but is weak and uneven in cuticle cells and absent in medulla and inner root sheath. Labeling disappears in the upper fully cornified cortex and cuticle. The observations indicate that sulfhydryl oxidase and keratin associated proteins are initially produced in the cytoplasm among keratin bundles accumulating in cortical and cuticle cells but these proteins undergo changes during the following cornification that alter the epitopes tagged by the antibodies.

  6. Effects of deuterium oxide and galvanic vestibular stimulation on visual cortical cell function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinis, S.; Landolt, J.P.; Weiss, D.S.

    1984-03-01

    The spontaneous and evoked unit activities of complex visual cortical cells were recorded from Brodmann's area 18 in immobilized, unanesthetized cats before, during, and after stimulation of the vestibular system. The vestibular system was stimulated by intravenous injection of deuterium oxide (D2O)--a noted nystagmogenic agent--or by direct galvanic stimulation of the labyrinth. Measures of the receptive-field areas, poststimulus time histograms, directional preferences, and the optimal speed of the light bar stimulating the cell were obtained before and after the application of D2O. Directional preferences were determined in a novel manner, using a method derived from a hierarchical clustering technique. Datamore » were collected and analyzed from a) visual cortical cells in cats with intact labyrinths, b) visual cortical cells in cats following bilateral labrinthectomies, and c) nonvisual cortical cells in cats with intact labyrinths. The other cellular characteristics were also altered by the D2O. Galvanic stimulation of the labyrinth resembles, in its effects, the injection of D2O. In labyrinth-intact cats, the time course of area 18 spontaneous activity dramatically increased 30 min or more after D2O was administered. It peaked 2-3 h later and still had not returned to preinjection levels even 7 h after the D2O administration. In bilaterally labyrinthectomized cats, the spontaneous activity of the visual cells did not change following D2O administration. In nonvisual cells from labyrinth-intact cats, the spontaneous activity demonstrated a slight but significant decrease over time after D2O injection. In pilot studies, the cats were injected with D2O. Within 8-10 min afterward, signs of positional nystagmus commenced; and within 30 min, problems in maintaining balance were noted. This continued for 7-8 h before disappearing. In the labyrinthectomized animals, such effects were not observed.« less

  7. Biophysical network modeling of the dLGN circuit: Effects of cortical feedback on spatial response properties of relay cells

    PubMed Central

    Martínez-Cañada, Pablo; Halnes, Geir; Fyhn, Marianne

    2018-01-01

    Despite half-a-century of research since the seminal work of Hubel and Wiesel, the role of the dorsal lateral geniculate nucleus (dLGN) in shaping the visual signals is not properly understood. Placed on route from retina to primary visual cortex in the early visual pathway, a striking feature of the dLGN circuit is that both the relay cells (RCs) and interneurons (INs) not only receive feedforward input from retinal ganglion cells, but also a prominent feedback from cells in layer 6 of visual cortex. This feedback has been proposed to affect synchronicity and other temporal properties of the RC firing. It has also been seen to affect spatial properties such as the center-surround antagonism of thalamic receptive fields, i.e., the suppression of the response to very large stimuli compared to smaller, more optimal stimuli. Here we explore the spatial effects of cortical feedback on the RC response by means of a a comprehensive network model with biophysically detailed, single-compartment and multicompartment neuron models of RCs, INs and a population of orientation-selective layer 6 simple cells, consisting of pyramidal cells (PY). We have considered two different arrangements of synaptic feedback from the ON and OFF zones in the visual cortex to the dLGN: phase-reversed (‘push-pull’) and phase-matched (‘push-push’), as well as different spatial extents of the corticothalamic projection pattern. Our simulation results support that a phase-reversed arrangement provides a more effective way for cortical feedback to provide the increased center-surround antagonism seen in experiments both for flashing spots and, even more prominently, for patch gratings. This implies that ON-center RCs receive direct excitation from OFF-dominated cortical cells and indirect inhibitory feedback from ON-dominated cortical cells. The increased center-surround antagonism in the model is accompanied by spatial focusing, i.e., the maximum RC response occurs for smaller stimuli when feedback is present. PMID:29377888

  8. Neuronal Diversity in GABAergic Long-Range Projections from the Hippocampus

    PubMed Central

    Jinno, Shozo; Klausberger, Thomas; Marton, Laszlo F.; Dalezios, Yannis; Roberts, J. David B.; Fuentealba, Pablo; Bushong, Eric A.; Henze, Darrell; Buzsáki, György; Somogyi, Peter

    2008-01-01

    The formation and recall of sensory, motor, and cognitive representations require coordinated fast communication among multiple cortical areas. Interareal projections are mainly mediated by glutamatergic pyramidal cell projections; only few long-range GABAergic connections have been reported. Using in vivo recording and labeling of single cells and retrograde axonal tracing, we demonstrate novel long-range GABAergic projection neurons in the rat hippocampus: (1) somatostatin- and predominantly mGluR1α-positive neurons in stratum oriens project to the subiculum, other cortical areas, and the medial septum; (2) neurons in stratum oriens, including somatostatin-negative ones; and (3) trilaminar cells project to the subiculum and/or other cortical areas but not the septum. These three populations strongly increase their firing during sharp wave-associated ripple oscillations, communicating this network state to the septotemporal system. Finally, a large population of somatostatin-negative GABAergic cells in stratum radiatum project to the molecular layers of the subiculum, presubiculum, retrosplenial cortex, and indusium griseum and fire rhythmically at high rates during theta oscillations but do not increase their firing during ripples. The GABAergic projection axons have a larger diameter and thicker myelin sheet than those of CA1 pyramidal cells. Therefore, rhythmic IPSCs are likely to precede the arrival of excitation in cortical areas (e.g., subiculum) that receive both glutamatergic and GABAergic projections from the CA1 area. Other areas, including the retrosplenial cortex, receive only rhythmic GABAergic CA1 input. We conclude that direct GABAergic projections from the hippocampus to other cortical areas and the septum contribute to coordinating oscillatory timing across structures. PMID:17699661

  9. Calcium-dependent depletion zones in the cortical microtubule array coincide with sites of, but do not regulate, wall ingrowth papillae deposition in epidermal transfer cells

    PubMed Central

    Zhang, Hui-ming; Talbot, Mark J.; McCurdy, David W.; Patrick, John W.; Offler, Christina E.

    2015-01-01

    Trans-differentiation to a transfer-cell morphology is characterized by the localized deposition of wall ingrowth papillae that protrude into the cytosol. Whether the cortical microtubule array directs wall ingrowth papillae formation was investigated using a Vicia faba cotyledon culture system in which their adaxial epidermal cells were spontaneously induced to trans-differentiate to transfer cells. During deposition of wall ingrowth papillae, the aligned cortical microtubule arrays in precursor epidermal cells were reorganized into a randomized array characterized by circular depletion zones. Concurrence of the temporal appearance, spatial pattern, and size of depletion zones and wall ingrowth papillae was consistent with each papilla occupying a depletion zone. Surprisingly, microtubules appeared not to regulate construction of wall ingrowth papillae, as neither depolymerization nor stabilization of cortical microtubules changed their deposition pattern or morphology. Moreover, the size and spatial pattern of depletion zones was unaltered when the formation of wall ingrowth papillae was blocked by inhibiting cellulose biosynthesis. In contrast, the depletion zones were absent when the cytosolic calcium plumes, responsible for directing wall ingrowth papillae formation, were blocked or dissipated. Thus, we conclude that the depletion zones within the cortical microtubule array result from localized depolymerization of microtubules initiated by elevated cytosolic Ca2+ levels at loci where wall ingrowth papillae are deposited. The physiological significance of the depletion zones as a mechanism to accommodate the construction of wall ingrowth papillae without compromising maintenance of the plasma membrane–microtubule inter-relationship is discussed. PMID:26136268

  10. The dynein cortical anchor Num1 activates dynein motility by relieving Pac1/LIS1-mediated inhibition

    PubMed Central

    Lammers, Lindsay G.

    2015-01-01

    Cortically anchored dynein orients the spindle through interactions with astral microtubules. In budding yeast, dynein is offloaded to Num1 receptors from microtubule plus ends. Rather than walking toward minus ends, dynein remains associated with plus ends due in part to its association with Pac1/LIS1, an inhibitor of dynein motility. The mechanism by which dynein is switched from “off” at the plus ends to “on” at the cell cortex remains unknown. Here, we show that overexpression of the coiled-coil domain of Num1 specifically depletes dynein–dynactin–Pac1/LIS1 complexes from microtubule plus ends and reduces dynein-Pac1/LIS1 colocalization. Depletion of dynein from plus ends requires its microtubule-binding domain, suggesting that motility is required. An enhanced Pac1/LIS1 affinity mutant of dynein or overexpression of Pac1/LIS1 rescues dynein plus end depletion. Live-cell imaging reveals minus end–directed dynein–dynactin motility along microtubules upon overexpression of the coiled-coil domain of Num1, an event that is not observed in wild-type cells. Our findings indicate that dynein activity is directly switched “on” by Num1, which induces Pac1/LIS1 removal. PMID:26483554

  11. Cholesterol Bilayer Domains in the Eye Lens Health: A Review.

    PubMed

    Widomska, Justyna; Subczynski, Witold K; Mainali, Laxman; Raguz, Marija

    2017-12-01

    The most unique biochemical characteristic of the eye lens fiber cell plasma membrane is its extremely high cholesterol content, the need for which is still unclear. It is evident, however, that the disturbance of Chol homeostasis may result in damages associated with cataracts. Electron paramagnetic resonance methods allow discrimination of two types of lipid domains in model membranes overloaded with Chol, namely, phospholipid-cholesterol domains and pure Chol bilayer domains. These domains are also detected in human lens lipid membranes prepared from the total lipids extracted from lens cortices and nuclei of donors from different age groups. Independent of the age-related changes in phospholipid composition, the physical properties of phospholipid-Chol domains remain the same for all age groups and are practically identical for cortical and nuclear membranes. The presence of Chol bilayer domains in these membranes provides a buffering capacity for cholesterol concentration in the surrounding phospholipid-Chol domains, keeping it at a constant saturating level and thus keeping the physical properties of the membrane consistent with and independent of changes in phospholipid composition. It seems that the presence of Chol bilayer domains plays an integral role in the regulation of cholesterol-dependent processes in fiber cell plasm membranes and in the maintenance of fiber cell membrane homeostasis.

  12. Effects of luminal flow and nucleotides on [Ca(2+)](i) in rabbit cortical collecting duct.

    PubMed

    Woda, Craig B; Leite, Maurilo; Rohatgi, Rajeev; Satlin, Lisa M

    2002-09-01

    Nucleotide binding to purinergic P2 receptors contributes to the regulation of a variety of physiological functions in renal epithelial cells. Whereas P2 receptors have been functionally identified at the basolateral membrane of the cortical collecting duct (CCD), a final regulatory site of urinary Na(+), K(+), and acid-base excretion, controversy exists as to whether apical purinoceptors exist in this segment. Nor has the distribution of receptor subtypes present on the unique cell populations that constitute Ca(2+) the CCD been established. To examine this, we measured nucleotide-induced changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) in fura 2-loaded rabbit CCDs microperfused in vitro. Resting [Ca(2+)](i) did not differ between principal and intercalated cells, averaging approximately 120 nM. An acute increase in tubular fluid flow rate, associated with a 20% increase in tubular diameter, led to increases in [Ca(2+)](i) in both cell types. Luminal perfusion of 100 microM UTP or ATP-gamma-S, in the absence of change in flow rate, caused a rapid and transient approximately fourfold increase in [Ca(2+)](i) in both cell types (P < 0.05). Luminal suramin, a nonspecific P2 receptor antagonist, blocked the nucleotide- but not flow-induced [Ca(2+)](i) transients. Luminal perfusion with a P2X (alpha,beta-methylene-ATP), P2X(7) (benzoyl-benzoyl-ATP), P2Y(1) (2-methylthio-ATP), or P2Y(4)/P2Y(6) (UDP) receptor agonist had no effect on [Ca(2+)](i). The nucleotide-induced [Ca(2+)](i) transients were inhibited by the inositol-1,4,5-triphosphate receptor blocker 2-aminoethoxydiphenyl borate, thapsigargin, which depletes internal Ca(2+) stores, luminal perfusion with a Ca(2+)-free perfusate, or the L-type Ca(2+) channel blocker nifedipine. These results suggest that luminal nucleotides activate apical P2Y(2) receptors in the CCD via pathways that require both internal Ca(2+) mobilization and extracellular Ca(2+) entry. The flow-induced rise in [Ca(2+)](i) is apparently not mediated by apical P2 purinergic receptor signaling.

  13. Dynamics of myosin II organization into cortical contractile networks and fibers

    NASA Astrophysics Data System (ADS)

    Nie, Wei; Wei, Ming-Tzo; Ou-Yang, Daniel; Jedlicka, Sabrina; Vavylonis, Dimitrios

    2014-03-01

    The morphology of adhered cells critically depends on the formation of a contractile meshwork of parallel and cross-linked stress fibers along the contacting surface. The motor activity and mini-filament assembly of non-muscle myosin II is an important component of cell-level cytoskeletal remodeling during mechanosensing. To monitor the dynamics of myosin II, we used confocal microscopy to image cultured HeLa cells that stably express myosin regulatory light chain tagged with GFP (MRLC-GFP). MRLC-GFP was monitored in time-lapse movies at steady state and during the response of cells to varying concentrations of blebbistatin which disrupts actomyosin stress fibers. Using image correlation spectroscopy analysis, we quantified the kinetics of disassembly and reassembly of actomyosin networks and compared them to studies by other groups. This analysis suggested that the following processes contribute to the assembly of cortical actomyosin into fibers: random myosin mini-filament assembly and disassembly along the cortex; myosin mini-filament aligning and contraction; stabilization of cortical myosin upon increasing contractile tension. We developed simple numerical simulations that include those processes. The results of simulations of cells at steady state and in response to blebbistatin capture some of the main features observed in the experiments. This study provides a framework to help interpret how different cortical myosin remodeling kinetics may contribute to different cell shape and rigidity depending on substrate stiffness.

  14. Development and matching of binocular orientation preference in mouse V1.

    PubMed

    Bhaumik, Basabi; Shah, Nishal P

    2014-01-01

    Eye-specific thalamic inputs converge in the primary visual cortex (V1) and form the basis of binocular vision. For normal binocular perceptions, such as depth and stereopsis, binocularly matched orientation preference between the two eyes is required. A critical period of binocular matching of orientation preference in mice during normal development is reported in literature. Using a reaction diffusion model we present the development of RF and orientation selectivity in mouse V1 and investigate the binocular orientation preference matching during the critical period. At the onset of the critical period the preferred orientations of the modeled cells are mostly mismatched in the two eyes and the mismatch decreases and reaches levels reported in juvenile mouse by the end of the critical period. At the end of critical period 39% of cells in binocular zone in our model cortex is orientation selective. In literature around 40% cortical cells are reported as orientation selective in mouse V1. The starting and the closing time for critical period determine the orientation preference alignment between the two eyes and orientation tuning in cortical cells. The absence of near neighbor interaction among cortical cells during the development of thalamo-cortical wiring causes a salt and pepper organization in the orientation preference map in mice. It also results in much lower % of orientation selective cells in mice as compared to ferrets and cats having organized orientation maps with pinwheels.

  15. Generation of human cortical neurons from a new immortal fetal neural stem cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cacci, E.; Villa, A.; Parmar, M.

    2007-02-01

    Isolation and expansion of neural stem cells (NSCs) of human origin are crucial for successful development of cell therapy approaches in neurodegenerative diseases. Different epigenetic and genetic immortalization strategies have been established for long-term maintenance and expansion of these cells in vitro. Here we report the generation of a new, clonal NSC (hc-NSC) line, derived from human fetal cortical tissue, based on v-myc immortalization. Using immunocytochemistry, we show that these cells retain the characteristics of NSCs after more than 50 passages. Under proliferation conditions, when supplemented with epidermal and basic fibroblast growth factors, the hc-NSCs expressed neural stem/progenitor cell markersmore » like nestin, vimentin and Sox2. When growth factors were withdrawn, proliferation and expression of v-myc and telomerase were dramatically reduced, and the hc-NSCs differentiated into glia and neurons (mostly glutamatergic and GABAergic, as well as tyrosine hydroxylase-positive, presumably dopaminergic neurons). RT-PCR analysis showed that the hc-NSCs retained expression of Pax6, Emx2 and Neurogenin2, which are genes associated with regionalization and cell commitment in cortical precursors during brain development. Our data indicate that this hc-NSC line could be useful for exploring the potential of human NSCs to replace dead or damaged cortical cells in animal models of acute and chronic neurodegenerative diseases. Taking advantage of its clonality and homogeneity, this cell line will also be a valuable experimental tool to study the regulatory role of intrinsic and extrinsic factors in human NSC biology.« less

  16. Synaptic inputs from stroke-injured brain to grafted human stem cell-derived neurons activated by sensory stimuli.

    PubMed

    Tornero, Daniel; Tsupykov, Oleg; Granmo, Marcus; Rodriguez, Cristina; Grønning-Hansen, Marita; Thelin, Jonas; Smozhanik, Ekaterina; Laterza, Cecilia; Wattananit, Somsak; Ge, Ruimin; Tatarishvili, Jemal; Grealish, Shane; Brüstle, Oliver; Skibo, Galina; Parmar, Malin; Schouenborg, Jens; Lindvall, Olle; Kokaia, Zaal

    2017-03-01

    Transplanted neurons derived from stem cells have been proposed to improve function in animal models of human disease by various mechanisms such as neuronal replacement. However, whether the grafted neurons receive functional synaptic inputs from the recipient's brain and integrate into host neural circuitry is unknown. Here we studied the synaptic inputs from the host brain to grafted cortical neurons derived from human induced pluripotent stem cells after transplantation into stroke-injured rat cerebral cortex. Using the rabies virus-based trans-synaptic tracing method and immunoelectron microscopy, we demonstrate that the grafted neurons receive direct synaptic inputs from neurons in different host brain areas located in a pattern similar to that of neurons projecting to the corresponding endogenous cortical neurons in the intact brain. Electrophysiological in vivo recordings from the cortical implants show that physiological sensory stimuli, i.e. cutaneous stimulation of nose and paw, can activate or inhibit spontaneous activity in grafted neurons, indicating that at least some of the afferent inputs are functional. In agreement, we find using patch-clamp recordings that a portion of grafted neurons respond to photostimulation of virally transfected, channelrhodopsin-2-expressing thalamo-cortical axons in acute brain slices. The present study demonstrates, for the first time, that the host brain regulates the activity of grafted neurons, providing strong evidence that transplanted human induced pluripotent stem cell-derived cortical neurons can become incorporated into injured cortical circuitry. Our findings support the idea that these neurons could contribute to functional recovery in stroke and other conditions causing neuronal loss in cerebral cortex. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. ON THE MECHANISM OF ACTION OF ADRENOCORTICOTROPIC HORMONE: THE BINDING OF CYCLIC-3′,5′-ADENOSINE MONOPHOSPHATE TO AN ADRENAL CORTICAL PROTEIN*

    PubMed Central

    Gill, Gordon N.; Garren, Leonard D.

    1969-01-01

    The binding of cyclic 3′,5′-adenosine monophosphate (cyclic AMP) within the adrenal cortical cell was studied. Cyclic AMP binds specifically to a protein which is associated predominantly with the microsomal fraction of the cell. The binding protein was purified approximately 100-fold. PMID:4308274

  18. Type-2 diabetes mellitus reduces cortical thickness and decreases oxidative metabolism in sensorimotor regions after stroke.

    PubMed

    Ferris, Jennifer K; Peters, Sue; Brown, Katlyn E; Tourigny, Katherine; Boyd, Lara A

    2018-05-01

    Individuals with type-2 diabetes mellitus experience poor motor outcomes after ischemic stroke. Recent research suggests that type-2 diabetes adversely impacts neuronal integrity and function, yet little work has considered how these neuronal changes affect sensorimotor outcomes after stroke. Here, we considered how type-2 diabetes impacted the structural and metabolic function of the sensorimotor cortex after stroke using volumetric magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). We hypothesized that the combination of chronic stroke and type-2 diabetes would negatively impact the integrity of sensorimotor cortex as compared to individuals with chronic stroke alone. Compared to stroke alone, individuals with stroke and diabetes had lower cortical thickness bilaterally in the primary somatosensory cortex, and primary and secondary motor cortices. Individuals with stroke and diabetes also showed reduced creatine levels bilaterally in the sensorimotor cortex. Contralesional primary and secondary motor cortex thicknesses were negatively related to sensorimotor outcomes in the paretic upper-limb in the stroke and diabetes group such that those with thinner primary and secondary motor cortices had better motor function. These data suggest that type-2 diabetes alters cerebral energy metabolism, and is associated with thinning of sensorimotor cortex after stroke. These factors may influence motor outcomes after stroke.

  19. Temporally precise single-cell resolution optogenetics

    PubMed Central

    Shemesh, Or A.; Tanese, Dimitrii; Zampini, Valeria; Linghu, Changyang; Piatkevich, Kiryl; Ronzitti, Emiliano; Papagiakoumou, Eirini; Boyden, Edward S.; Emiliani, Valentina

    2017-01-01

    Optogenetic control of individual neurons with high temporal precision, within intact mammalian brain circuitry, would enable powerful explorations of how neural circuits operate. Two-photon computer generated holography enables precise sculpting of light, and could in principle enable simultaneous illumination of many neurons in a network, with the requisite temporal precision to simulate accurate neural codes. We designed a high efficacy soma-targeted opsin, finding that fusing the N-terminal 150 residues of kainate receptor subunit 2 (KA2) to the recently discovered high-photocurrent channelrhodopsin CoChR restricted expression of this opsin primarily to the cell body of mammalian cortical neurons. In combination with two-photon holographic stimulation, we found that this somatic CoChR (soCoChR) enabled photostimulation of individual cells in intact cortical circuits with single cell resolution and <1 millisecond temporal precision, and use soCoChR to perform connectivity mapping on intact cortical circuits. PMID:29184208

  20. A cooperation and competition based simple cell receptive field model and study of feed-forward linear and nonlinear contributions to orientation selectivity.

    PubMed

    Bhaumik, Basabi; Mathur, Mona

    2003-01-01

    We present a model for development of orientation selectivity in layer IV simple cells. Receptive field (RF) development in the model, is determined by diffusive cooperation and resource limited competition guided axonal growth and retraction in geniculocortical pathway. The simulated cortical RFs resemble experimental RFs. The receptive field model is incorporated in a three-layer visual pathway model consisting of retina, LGN and cortex. We have studied the effect of activity dependent synaptic scaling on orientation tuning of cortical cells. The mean value of hwhh (half width at half the height of maximum response) in simulated cortical cells is 58 degrees when we consider only the linear excitatory contribution from LGN. We observe a mean improvement of 22.8 degrees in tuning response due to the non-linear spiking mechanisms that include effects of threshold voltage and synaptic scaling factor.

  1. Three-Dimensional Finite Element Analysis of Varying Diameter and Connection Type in Implants with High Crown-Implant Ratio.

    PubMed

    Moraes, Sandra Lúcia Dantas de; Verri, Fellippo Ramos; Santiago, Joel Ferreira; Almeida, Daniel Augusto de Faria; Lemos, Cleidiel Aparecido Araujo; Gomes, Jéssica Marcela de Luna; Pellizzer, Eduardo Piza

    2018-01-01

    The aim of this study was to evaluate the effect of varying the diameter, connection type and loading on stress distribution in the cortical bone for implants with a high crown-implant ratio. Six 3D models were simulated with the InVesalius, Rhinoceros 3D 4.0 and SolidWorks 2011 software programs. Models were composed of bone from the posterior mandibular region; they included an implant of 8.5 mm length, diameter Ø 3.75 mm or Ø 5.00 mm and connection types such as external hexagon (EH), internal hexagon (IH) and Morse taper (MT). Models were processed using the Femap 11.2 and NeiNastran 11.0 programs and by using an axial force of 200 N and oblique force of 100 N. Results were recorded in terms of the maximum principal stress. Oblique loading showed high stress in the cortical bone compared to that shown by axial loading. The results showed that implants with a wide diameter showed more favorable stress distribution in the cortical bone region than regular diameter, regardless of the connection type. Morse taper implants showed better stress distribution compared to other connection types, especially in the oblique loading. Thus, oblique loading showed higher stress concentration in cortical bone tissue when compared with axial loading. Wide diameter implant was favorable for improved stress distribution in the cortical bone region, while Morse taper implants showed lower stress concentration than other connections.

  2. Modulation of inhibitory activity markers by intermittent theta-burst stimulation in rat cortex is NMDA-receptor dependent.

    PubMed

    Labedi, Adnan; Benali, Alia; Mix, Annika; Neubacher, Ute; Funke, Klaus

    2014-01-01

    Intermittent theta-burst stimulation (iTBS) applied via transcranial magnetic stimulation has been shown to increase cortical excitability in humans. In the rat brain it strongly reduced the number of neurons expressing the 67-kD isoform of the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD67) and those expressing the calcium-binding proteins parvalbumin (PV) and calbindin (CB), specific markers of fast-spiking (FS) and non-FS inhibitory interneurons, respectively, an indication of modified cortical inhibition. Since iTBS effects in humans have been shown to be NMDA receptor sensitive, we wondered whether the iTBS-induced changes in the molecular phenotype of interneurons may be also sensitive to glutamatergic synaptic transmission mediated by NMDA receptors. In a sham-controlled fashion, five iTBS-blocks of 600 stimuli were applied to rats either lightly anesthetized by only urethane or by an additional low (subnarcotic) or high dose of the NMDA receptor antagonist ketamine before immunohistochemical analysis. iTBS reduced the number of neurons expressing GAD67, PV and CB. Except for CB, a low dose of ketamine partially prevented these effects while a higher dose almost completely abolished the iTBS effects. Our findings indicate that iTBS modulates the molecular, and likely also the electric, activity of cortical inhibitory interneurons and that the modulation of FS-type but less that of non-FS-type neurons is mediated by NMDA receptors. A combination of iTBS with pharmacological interventions affecting distinct receptor subtypes may thus offer options to enhance its selectivity in modulating the activity of distinct cell types and preventing others from being modulated. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. VX-induced cell death involves activation of caspase-3 in cultured rat cortical neurons.

    PubMed

    Tenn, Catherine C; Wang, Yushan

    2007-05-01

    Exposure of cell cultures to organophosphorous compounds such as VX can result in cell death. However, it is not clear whether VX-induced cell death is necrotic or involves programmed cell death mechanisms. Activation of caspases, a family of cysteine proteases, is often involved in cell death, and in particular, caspase-3 activation appears to be a key event in programmed cell death processes including apoptosis. In this study, we investigated VX-induced neuronal cell death, as well as the underlying mechanism in terms of its effect on caspase-3 activity. Primary cortical neuronal cultures were prepared from gestational days 17 to 19 Sprague Dawley rat fetuses. At maturation, the cells were treated with varying concentrations of VX and cell death was evaluated by lactate dehydrogenase (LDH) release. VX induced an increase in LDH release in a concentration-dependent manner. Morphological VX-induced cell death was also characterized by using nuclear staining with propidium iodide and Hoechst 33342. VX induced a concentration- and time-dependent increase in caspase-3 activation. Caspase-3 activation was also confirmed by the proteolytic cleavage of poly(ADP-ribose)polymerase (PARP), an endogenous caspase-3 substrate. These data suggested that in rat cortical neurons, VX-induced cell death via a programmed cell death pathway that involves changes in caspase-3 protease.

  4. Calcium-mediated actin reset (CaAR) mediates acute cell adaptations.

    PubMed

    Wales, Pauline; Schuberth, Christian E; Aufschnaiter, Roland; Fels, Johannes; García-Aguilar, Ireth; Janning, Annette; Dlugos, Christopher P; Schäfer-Herte, Marco; Klingner, Christoph; Wälte, Mike; Kuhlmann, Julian; Menis, Ekaterina; Hockaday Kang, Laura; Maier, Kerstin C; Hou, Wenya; Russo, Antonella; Higgs, Henry N; Pavenstädt, Hermann; Vogl, Thomas; Roth, Johannes; Qualmann, Britta; Kessels, Michael M; Martin, Dietmar E; Mulder, Bela; Wedlich-Söldner, Roland

    2016-12-06

    Actin has well established functions in cellular morphogenesis. However, it is not well understood how the various actin assemblies in a cell are kept in a dynamic equilibrium, in particular when cells have to respond to acute signals. Here, we characterize a rapid and transient actin reset in response to increased intracellular calcium levels. Within seconds of calcium influx, the formin INF2 stimulates filament polymerization at the endoplasmic reticulum (ER), while cortical actin is disassembled. The reaction is then reversed within a few minutes. This Calcium-mediated actin reset (CaAR) occurs in a wide range of mammalian cell types and in response to many physiological cues. CaAR leads to transient immobilization of organelles, drives reorganization of actin during cell cortex repair, cell spreading and wound healing, and induces long-lasting changes in gene expression. Our findings suggest that CaAR acts as fundamental facilitator of cellular adaptations in response to acute signals and stress.

  5. The thalamus as a monitor of motor outputs.

    PubMed Central

    Guillery, R W; Sherman, S M

    2002-01-01

    Many of the ascending pathways to the thalamus have branches involved in movement control. In addition, the recently defined, rich innervation of 'higher' thalamic nuclei (such as the pulvinar) from pyramidal cells in layer five of the neocortex also comes from branches of long descending axons that supply motor structures. For many higher thalamic nuclei the clue to understanding the messages that are relayed to the cortex will depend on knowing the nature of these layer five motor outputs and on defining how messages from groups of functionally distinct output types are combined as inputs to higher cortical areas. Current evidence indicates that many and possibly all thalamic relays to the neocortex are about instructions that cortical and subcortical neurons are contributing to movement control. The perceptual functions of the cortex can thus be seen to represent abstractions from ongoing motor instructions. PMID:12626014

  6. FGFR3 regulates brain size by controlling progenitor cell proliferation and apoptosis during embryonic development.

    PubMed

    Inglis-Broadgate, Suzanne L; Thomson, Rachel E; Pellicano, Francesca; Tartaglia, Michael A; Pontikis, Charlie C; Cooper, Jonathan D; Iwata, Tomoko

    2005-03-01

    Mice with the K644E kinase domain mutation in fibroblast growth factor receptor 3 (Fgfr3) (EIIa;Fgfr3(+/K644E)) exhibited a marked enlargement of the brain. The brain size was increased as early as E11.5, not secondary to the possible effect of Fgfr3 activity in the skeleton. Furthermore, the mutant brains showed a dramatic increase in cortical thickness, a phenotype opposite to that in FGF2 knockout mice. Despite this increased thickness, cortical layer formation was largely unaffected and no cortical folding was observed during embryonic days 11.5-18.5 (E11.5-E18.5). Measurement of cortical thickness revealed an increase of 38.1% in the EIIa;Fgfr3(+/K644E) mice at E14.5 and the advanced appearance of the cortical plate was frequently observed at this stage. Unbiased stereological analysis revealed that the volume of the ventricular zone (VZ) was increased by more than two fold in the EIIa;Fgfr3(+/K644E) mutants at E14.5. A relatively mild increase in progenitor cell proliferation and a profound decrease in developmental apoptosis during E11.5-E14.5 most likely accounts for the dramatic increase in total telecephalic cell number. Taken together, our data suggest a novel function of Fgfr3 in controlling the development of the cortex, by regulating proliferation and apoptosis of cortical progenitors.

  7. Combination of the clustered regularly interspaced short palindromic repeats (CRISPR)-associated 9 technique with the piggybac transposon system for mouse in utero electroporation to study cortical development.

    PubMed

    Cheng, Man; Jin, Xubin; Mu, Lili; Wang, Fangyu; Li, Wei; Zhong, Xiaoling; Liu, Xuan; Shen, Wenchen; Liu, Ying; Zhou, Yan

    2016-09-01

    In utero electroporation (IUE) is commonly used to study cortical development of cerebrum by downregulating or overexpressing genes of interest in neural progenitor cells (NPCs) of small mammals. However, exogenous plasmids are lost or diluted over time. Furthermore, gene knockdown based on short-hairpin RNAs may exert nonspecific effects that lead to aberrant neuronal migration. Genomic engineering by the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system has great research and therapeutic potentials. Here we integrate the CRISPR/Cas9 components into the piggyBac (PB) transposon system (the CRISPR/Cas9-PB toolkit) for cortical IUEs. The mouse Sry-related HMG box-2 (Sox2) gene was selected as the target for its application. Most transduced cortical NPCs were depleted of SOX2 protein as early as 3 days post-IUE, whereas expressions of SOX1 and PAX6 remained intact. Furthermore, both the WT Cas9 and the D10A nickase mutant Cas9n showed comparable knockout efficiency. Transduced cortical cells were purified with fluorescence-activated cell sorting, and effective gene editing at the Sox2 loci was confirmed. Thus, application of the CRISPR/Cas9-PB toolkit in IUE is a promising strategy to study gene functions in cortical NPCs and their progeny. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. The Plasma Membrane is Compartmentalized by a Self-Similar Cortical Actin Fractal

    NASA Astrophysics Data System (ADS)

    Sadegh, Sanaz; Higgin, Jenny; Mannion, Patrick; Tamkun, Michael; Krapf, Diego

    A broad range of membrane proteins display anomalous diffusion on the cell surface. Different methods provide evidence for obstructed subdiffusion and diffusion on a fractal space, but the underlying structure inducing anomalous diffusion has never been visualized due to experimental challenges. We addressed this problem by imaging the cortical actin at high resolution while simultaneously tracking individual membrane proteins in live mammalian cells. Our data show that actin introduces barriers leading to compartmentalization of the plasma membrane and that membrane proteins are transiently confined within actin fences. Furthermore, superresolution imaging shows that the cortical actin is organized into a self-similar fractal. These results present a hierarchical nanoscale picture of the plasma membrane and demonstrate direct interactions between the actin cortex and the cell surface.

  9. 'Til Eph do us part': intercellular signaling via Eph receptors and ephrin ligands guides cerebral cortical development from birth through maturation.

    PubMed

    North, Hilary A; Clifford, Meredith A; Donoghue, Maria J

    2013-08-01

    Eph receptors, the largest family of surface-bound receptor tyrosine kinases and their ligands, the ephrins, mediate a wide variety of cellular interactions in most organ systems throughout both development and maturity. In the forming cerebral cortex, Eph family members are broadly and dynamically expressed in particular sets of cortical cells at discrete times. Here, we review the known functions of Eph-mediated intercellular signaling in the generation of progenitors, the migration of maturing cells, the differentiation of neurons, the formation of functional connections, and the choice between life and death during corticogenesis. In synthesizing these results, we posit a signaling paradigm in which cortical cells maintain a life history of Eph-mediated intercellular interactions that guides subsequent cellular decision-making.

  10. The dynamic relationship between cerebellar Purkinje cell simple spikes and the spikelet number of complex spikes.

    PubMed

    Burroughs, Amelia; Wise, Andrew K; Xiao, Jianqiang; Houghton, Conor; Tang, Tianyu; Suh, Colleen Y; Lang, Eric J; Apps, Richard; Cerminara, Nadia L

    2017-01-01

    Purkinje cells are the sole output of the cerebellar cortex and fire two distinct types of action potential: simple spikes and complex spikes. Previous studies have mainly considered complex spikes as unitary events, even though the waveform is composed of varying numbers of spikelets. The extent to which differences in spikelet number affect simple spike activity (and vice versa) remains unclear. We found that complex spikes with greater numbers of spikelets are preceded by higher simple spike firing rates but, following the complex spike, simple spikes are reduced in a manner that is graded with spikelet number. This dynamic interaction has important implications for cerebellar information processing, and suggests that complex spike spikelet number may maintain Purkinje cells within their operational range. Purkinje cells are central to cerebellar function because they form the sole output of the cerebellar cortex. They exhibit two distinct types of action potential: simple spikes and complex spikes. It is widely accepted that interaction between these two types of impulse is central to cerebellar cortical information processing. Previous investigations of the interactions between simple spikes and complex spikes have mainly considered complex spikes as unitary events. However, complex spikes are composed of an initial large spike followed by a number of secondary components, termed spikelets. The number of spikelets within individual complex spikes is highly variable and the extent to which differences in complex spike spikelet number affects simple spike activity (and vice versa) remains poorly understood. In anaesthetized adult rats, we have found that Purkinje cells recorded from the posterior lobe vermis and hemisphere have high simple spike firing frequencies that precede complex spikes with greater numbers of spikelets. This finding was also evident in a small sample of Purkinje cells recorded from the posterior lobe hemisphere in awake cats. In addition, complex spikes with a greater number of spikelets were associated with a subsequent reduction in simple spike firing rate. We therefore suggest that one important function of spikelets is the modulation of Purkinje cell simple spike firing frequency, which has implications for controlling cerebellar cortical output and motor learning. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  11. Caloric restriction stimulates autophagy in rat cortical neurons through neuropeptide Y and ghrelin receptors activation.

    PubMed

    Ferreira-Marques, Marisa; Aveleira, Célia A; Carmo-Silva, Sara; Botelho, Mariana; Pereira de Almeida, Luís; Cavadas, Cláudia

    2016-07-01

    Caloric restriction is an anti-aging intervention known to extend lifespan in several experimental models, at least in part, by stimulating autophagy. Caloric restriction increases neuropeptide Y (NPY) in the hypothalamus and plasma ghrelin, a peripheral gut hormone that acts in hypothalamus to modulate energy homeostasis. NPY and ghrelin have been shown to be neuroprotective in different brain areas and to induce several physiological modifications similar to those induced by caloric restriction. However, the effect of NPY and ghrelin in autophagy in cortical neurons is currently not known. Using a cell culture of rat cortical neurons we investigate the involvement of NPY and ghrelin in caloric restriction-induced autophagy. We observed that a caloric restriction mimetic cell culture medium stimulates autophagy in rat cortical neurons and NPY or ghrelin receptor antagonists blocked this effect. On the other hand, exogenous NPY or ghrelin stimulate autophagy in rat cortical neurons. Moreover, NPY mediates the stimulatory effect of ghrelin on autophagy in rat cortical neurons. Since autophagy impairment occurs in aging and age-related neurodegenerative diseases, NPY and ghrelin synergistic effect on autophagy stimulation may suggest a new strategy to delay aging process.

  12. Caloric restriction stimulates autophagy in rat cortical neurons through neuropeptide Y and ghrelin receptors activation

    PubMed Central

    Carmo-Silva, Sara; Botelho, Mariana; de Almeida, Luís Pereira; Cavadas, Cláudia

    2016-01-01

    Caloric restriction is an anti-aging intervention known to extend lifespan in several experimental models, at least in part, by stimulating autophagy. Caloric restriction increases neuropeptide Y (NPY) in the hypothalamus and plasma ghrelin, a peripheral gut hormone that acts in hypothalamus to modulate energy homeostasis. NPY and ghrelin have been shown to be neuroprotective in different brain areas and to induce several physiological modifications similar to those induced by caloric restriction. However, the effect of NPY and ghrelin in autophagy in cortical neurons is currently not known. Using a cell culture of rat cortical neurons we investigate the involvement of NPY and ghrelin in caloric restriction-induced autophagy. We observed that a caloric restriction mimetic cell culture medium stimulates autophagy in rat cortical neurons and NPY or ghrelin receptor antagonists blocked this effect. On the other hand, exogenous NPY or ghrelin stimulate autophagy in rat cortical neurons. Moreover, NPY mediates the stimulatory effect of ghrelin on autophagy in rat cortical neurons. Since autophagy impairment occurs in aging and age-related neurodegenerative diseases, NPY and ghrelin synergistic effect on autophagy stimulation may suggest a new strategy to delay aging process. PMID:27441412

  13. Optogenetic Stimulation Shifts the Excitability of Cerebral Cortex from Type I to Type II: Oscillation Onset and Wave Propagation.

    PubMed

    Heitmann, Stewart; Rule, Michael; Truccolo, Wilson; Ermentrout, Bard

    2017-01-01

    Constant optogenetic stimulation targeting both pyramidal cells and inhibitory interneurons has recently been shown to elicit propagating waves of gamma-band (40-80 Hz) oscillations in the local field potential of non-human primate motor cortex. The oscillations emerge with non-zero frequency and small amplitude-the hallmark of a type II excitable medium-yet they also propagate far beyond the stimulation site in the manner of a type I excitable medium. How can neural tissue exhibit both type I and type II excitability? We investigated the apparent contradiction by modeling the cortex as a Wilson-Cowan neural field in which optogenetic stimulation was represented by an external current source. In the absence of any external current, the model operated as a type I excitable medium that supported propagating waves of gamma oscillations similar to those observed in vivo. Applying an external current to the population of inhibitory neurons transformed the model into a type II excitable medium. The findings suggest that cortical tissue normally operates as a type I excitable medium but it is locally transformed into a type II medium by optogenetic stimulation which predominantly targets inhibitory neurons. The proposed mechanism accounts for the graded emergence of gamma oscillations at the stimulation site while retaining propagating waves of gamma oscillations in the non-stimulated tissue. It also predicts that gamma waves can be emitted on every second cycle of a 100 Hz oscillation. That prediction was subsequently confirmed by re-analysis of the neurophysiological data. The model thus offers a theoretical account of how optogenetic stimulation alters the excitability of cortical neural fields.

  14. Oxygen Levels Regulate the Development of Human Cortical Radial Glia Cells.

    PubMed

    Ortega, J Alberto; Sirois, Carissa L; Memi, Fani; Glidden, Nicole; Zecevic, Nada

    2017-07-01

    The oxygen (O2) concentration is a vital parameter for controlling the survival, proliferation, and differentiation of neural stem cells. A prenatal reduction of O2 levels (hypoxia) often leads to cognitive and behavioral defects, attributable to altered neural development. In this study, we analyzed the effects of O2 levels on human cortical progenitors, the radial glia cells (RGCs), during active neurogenesis, corresponding to the second trimester of gestation. Small changes in O2 levels profoundly affected RGC survival, proliferation, and differentiation. Physiological hypoxia (3% O2) promoted neurogenesis, whereas anoxia (<1% O2) and severe hypoxia (1% O2) arrested the differentiation of human RGCs, mainly by altering the generation of glutamatergic neurons. The in vitro activation of Wnt-β-catenin signaling rescued the proliferation and neuronal differentiation of RGCs subjected to anoxia. Pathologic hypoxia (≤1% O2) also exerted negative effects on gliogenesis, by decreasing the number of O4+ preoligodendrocytes and increasing the number of reactive astrocytes derived from cortical RGCs. O2-dependent alterations in glutamatergic neurogenesis and oligodendrogenesis can lead to significant changes in cortical circuitry formation. A better understanding of the cellular effects caused by changes in O2 levels during human cortical development is essential to elucidating the etiology of numerous neurodevelopmental disorders. Published by Oxford University Press 2016.

  15. Inferring cortical function in the mouse visual system through large-scale systems neuroscience.

    PubMed

    Hawrylycz, Michael; Anastassiou, Costas; Arkhipov, Anton; Berg, Jim; Buice, Michael; Cain, Nicholas; Gouwens, Nathan W; Gratiy, Sergey; Iyer, Ramakrishnan; Lee, Jung Hoon; Mihalas, Stefan; Mitelut, Catalin; Olsen, Shawn; Reid, R Clay; Teeter, Corinne; de Vries, Saskia; Waters, Jack; Zeng, Hongkui; Koch, Christof

    2016-07-05

    The scientific mission of the Project MindScope is to understand neocortex, the part of the mammalian brain that gives rise to perception, memory, intelligence, and consciousness. We seek to quantitatively evaluate the hypothesis that neocortex is a relatively homogeneous tissue, with smaller functional modules that perform a common computational function replicated across regions. We here focus on the mouse as a mammalian model organism with genetics, physiology, and behavior that can be readily studied and manipulated in the laboratory. We seek to describe the operation of cortical circuitry at the computational level by comprehensively cataloging and characterizing its cellular building blocks along with their dynamics and their cell type-specific connectivities. The project is also building large-scale experimental platforms (i.e., brain observatories) to record the activity of large populations of cortical neurons in behaving mice subject to visual stimuli. A primary goal is to understand the series of operations from visual input in the retina to behavior by observing and modeling the physical transformations of signals in the corticothalamic system. We here focus on the contribution that computer modeling and theory make to this long-term effort.

  16. The familial dysautonomia disease gene IKBKAP is required in the developing and adult mouse central nervous system

    PubMed Central

    Chaverra, Marta; George, Lynn; Thorne, Julian; Grindeland, Andrea; Ueki, Yumi; Eiger, Steven; Cusick, Cassie; Babcock, A. Michael; Carlson, George A.

    2017-01-01

    ABSTRACT Hereditary sensory and autonomic neuropathies (HSANs) are a genetically and clinically diverse group of disorders defined by peripheral nervous system (PNS) dysfunction. HSAN type III, known as familial dysautonomia (FD), results from a single base mutation in the gene IKBKAP that encodes a scaffolding unit (ELP1) for a multi-subunit complex known as Elongator. Since mutations in other Elongator subunits (ELP2 to ELP4) are associated with central nervous system (CNS) disorders, the goal of this study was to investigate a potential requirement for Ikbkap in the CNS of mice. The sensory and autonomic pathophysiology of FD is fatal, with the majority of patients dying by age 40. While signs and pathology of FD have been noted in the CNS, the clinical and research focus has been on the sensory and autonomic dysfunction, and no genetic model studies have investigated the requirement for Ikbkap in the CNS. Here, we report, using a novel mouse line in which Ikbkap is deleted solely in the nervous system, that not only is Ikbkap widely expressed in the embryonic and adult CNS, but its deletion perturbs both the development of cortical neurons and their survival in adulthood. Primary cilia in embryonic cortical apical progenitors and motile cilia in adult ependymal cells are reduced in number and disorganized. Furthermore, we report that, in the adult CNS, both autonomic and non-autonomic neuronal populations require Ikbkap for survival, including spinal motor and cortical neurons. In addition, the mice developed kyphoscoliosis, an FD hallmark, indicating its neuropathic etiology. Ultimately, these perturbations manifest in a developmental and progressive neurodegenerative condition that includes impairments in learning and memory. Collectively, these data reveal an essential function for Ikbkap that extends beyond the peripheral nervous system to CNS development and function. With the identification of discrete CNS cell types and structures that depend on Ikbkap, novel strategies to thwart the progressive demise of CNS neurons in FD can be developed. PMID:28167615

  17. Transcriptomic and anatomical complexity of primary, seminal, and crown roots highlight root type-specific functional diversity in maize (Zea mays L.).

    PubMed

    Tai, Huanhuan; Lu, Xin; Opitz, Nina; Marcon, Caroline; Paschold, Anja; Lithio, Andrew; Nettleton, Dan; Hochholdinger, Frank

    2016-02-01

    Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted early in development. Seminal roots displayed unique anatomical features, whereas the organization of primary and crown roots was similar. For instance, seminal roots displayed fewer cortical cell files and their stele contained more meta-xylem vessels. Global expression profiling revealed diverse patterns of gene activity across all root types and highlighted the unique transcriptome of seminal roots. While functions in cell remodeling and cell wall formation were prominent in primary and crown roots, stress-related genes and transcriptional regulators were over-represented in seminal roots, suggesting functional specialization of the different root types. Dynamic expression of lignin biosynthesis genes and histochemical staining suggested diversification of cell wall lignification among the three root types. Our findings highlight a cost-efficient anatomical structure and a unique expression profile of seminal roots of the maize inbred line B73 different from primary and crown roots. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Seckel's syndrome and malformations of cortical development: report of three new cases and review of the literature.

    PubMed

    Capovilla, G; Lorenzetti, M E; Montagnini, A; Borgatti, R; Piccinelli, P; Giordano, L; Accorsi, P; Caudana, R

    2001-05-01

    Seckel's syndrome is a rare form of primordial dwarfism, characterized by peculiar facial appearance. In the past, this condition was overdiagnosed, and most attention was given to the facial and skeletal features to define more precise diagnostic criteria. The presence of mental retardation and neurologic signs is one of the peculiar features of this syndrome, but only recently were rare cases of malformation of cortical development described, as documented by magnetic resonance imaging (MRI). Here, we present three new cases of Seckel's syndrome showing different malformations of cortical development (one gyral hypoplasia, one macrogyria and partial corpus callosum agenesis, and one bilateral opercular macrogyria). We hypothesize that the different types of clinical expression of our patients could be explained by different malformation of cortical development types. We think that MRI studies could be performed in malformative syndromes because of the possible correlations between type and extent of the lesion and the clinical picture of any individual case.

  19. Horizontal integration and cortical dynamics.

    PubMed

    Gilbert, C D

    1992-07-01

    We have discussed several results that lead to a view that cells in the visual system are endowed with dynamic properties, influenced by context, expectation, and long-term modifications of the cortical network. These observations will be important for understanding how neuronal ensembles produce a system that perceives, remembers, and adapts to injury. The advantage to being able to observe changes at early stages in a sensory pathway is that one may be able to understand the way in which neuronal ensembles encode and represent images at the level of their receptive field properties, of cortical topographies, and of the patterns of connections between cells participating in a network.

  20. Actin-Binding Protein Requirement for Cortical Stability and Efficient Locomotion

    NASA Astrophysics Data System (ADS)

    Cunningham, C. Casey; Gorlin, Jed B.; Kwiatkowski, David J.; Hartwig, John H.; Janmey, Paul A.; Randolph Byers, H.; Stossel, Thomas P.

    1992-01-01

    Three unrelated tumor cell lines derived from human malignant melanomas lack actin-binding protein (ABP), which cross-links actin filaments in vitro and connects these filaments to plasma membrane glycoproteins. The ABP-deficient cells have impaired locomotion and display circumferential blebbing of the plasma membrane. Expression of ABP in one of the lines after transfection restored translocational motility and reduced membrane blebbing. These findings establish that ABP functions to stabilize cortical actin in vivo and is required for efficient cell locomotion.

  1. Disorganized Cortical Patches Suggest Prenatal Origin of Autism

    MedlinePlus

    ... 2014 Disorganized cortical patches suggest prenatal origin of autism NIH-funded study shows disrupted cell layering process ... study suggests that brain irregularities in children with autism can be traced back to prenatal development. “While ...

  2. Synaptotagmin SYTA forms ER-plasma membrane junctions that are recruited to plasmodesmata for plant virus movement.

    PubMed

    Levy, Amit; Zheng, Judy Y; Lazarowitz, Sondra G

    2015-08-03

    Metazoan synaptotagmins are Ca(2+) sensors that regulate exocytosis and endocytosis in various cell types, notably in nerve and neuroendocrine cells [1, 2]. Recently, the structurally related extended synaptotagmins were shown to tether the cortical ER to the plasma membrane in human and yeast cells to maintain ER morphology and stabilize ER-plasma membrane (ER-PM) contact sites for intracellular lipid and Ca(2+) signaling [3, 4]. The Arabidopsis synaptotagmin SYTA regulates endocytosis and the ability of plant virus movement proteins (MPs) to alter plasmodesmata to promote virus cell-to-cell transport [5, 6]. Yet how MPs modify plasmodesmata, the cellular functions of SYTA and how these aid MP activity, and the proteins essential to form plant cell ER-PM contact sites remain unknown. We addressed these questions using an Arabidopsis SYTA knockdown line syta-1 and a Tobamovirus movement protein MP(TVCV) [5, 7]. We report here that SYTA localized to ER-PM contact sites. These sites were depleted and the ER network collapsed in syta-1, and both reformed upon rescue with SYTA. MP(TVCV) accumulation in plasmodesmata, but not secretory trafficking, was also inhibited in syta-1. During infection, MP(TVCV) recruited SYTA to plasmodesmata, and SYTA and the cortical ER were subsequently remodeled to form viral replication sites adjacent to plasmodesmata in which MP(TVCV) and SYTA directly interacted caged within ER membrane. SYTA also accumulated in plasmodesmata active in MP(TVCV) transport. Our findings show that SYTA is essential to form ER-PM contact sites and suggest that MPs interact with SYTA to recruit these sites to alter plasmodesmata for virus cell-to-cell movement. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Neuroprotective effect of noscapine on cerebral oxygen-glucose deprivation injury.

    PubMed

    Vahabzadeh, Gelareh; Rahbar-Roshandel, Nahid; Ebrahimi, Soltan-Ahmad; Mahmoudian, Massoud

    2015-04-01

    The present study aims to investigate the effect of noscapine (0.5-2.5 μM), an alkaloid from the opium poppy, on primary murine fetal cortical neurons exposed to oxygen-glucose deprivation (OGD), an in vitro model of ischemia. Cells were transferred to glucose-free DMEM and were exposed to hypoxia in a small anaerobic chamber. Cell viability and nitric oxide production were evaluated by MTT assay and the Griess method, respectively. The neurotoxicities produced by all three hypoxia durations tested were significantly inhibited by 0.5 μM noscapine. Increasing noscapine concentration up to 2.5 μM produced a concentration-dependent inhibition of neurotoxicity. Pretreatment of cells with MK-801 (10 μM), a non-competitive NMDA antagonist, and nimodipine (10nM), an L-type Ca(2+) channel blockers, increased cell viability after 30 min OGD, while the application of NBQX (30 μM), a selective AMPA-kainate receptor antagonist partially attenuated cell injury. Subsequently, cells treated with noscapine in the presence of thapsigargin (1 μM), an inhibitor of endoplasmic reticulum Ca(2+) ATPases. After 60 min OGD, noscapine could inhibit the cell damage induced by thapsigargin. However, noscapine could not reduce cell damage induced by 240 min OGD in the presence of thapsigargin. Noscapine attenuated nitric oxide (NO) production in cortical neurons after 30 min OGD. We concluded that noscapine had a neuroprotective effect, which could be due to its interference with multiple targets in the excitotoxicity process. These effects could be mediated partially by a decrease in NO production and the modulation of intracellular calcium levels. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  4. Interplay between Short- and Long-Term Plasticity in Cell-Assembly Formation

    PubMed Central

    Hiratani, Naoki; Fukai, Tomoki

    2014-01-01

    Various hippocampal and neocortical synapses of mammalian brain show both short-term plasticity and long-term plasticity, which are considered to underlie learning and memory by the brain. According to Hebb’s postulate, synaptic plasticity encodes memory traces of past experiences into cell assemblies in cortical circuits. However, it remains unclear how the various forms of long-term and short-term synaptic plasticity cooperatively create and reorganize such cell assemblies. Here, we investigate the mechanism in which the three forms of synaptic plasticity known in cortical circuits, i.e., spike-timing-dependent plasticity (STDP), short-term depression (STD) and homeostatic plasticity, cooperatively generate, retain and reorganize cell assemblies in a recurrent neuronal network model. We show that multiple cell assemblies generated by external stimuli can survive noisy spontaneous network activity for an adequate range of the strength of STD. Furthermore, our model predicts that a symmetric temporal window of STDP, such as observed in dopaminergic modulations on hippocampal neurons, is crucial for the retention and integration of multiple cell assemblies. These results may have implications for the understanding of cortical memory processes. PMID:25007209

  5. Microtubule heterogeneity of Ornithogalum umbellatum ovary epidermal cells: non-stable cortical microtubules and stable lipotubuloid microtubules.

    PubMed

    Kwiatkowska, Maria; Stępiński, Dariusz; Polit, Justyna T; Popłońska, Katarzyna; Wojtczak, Agnieszka

    2011-01-01

    Lipotubuloids, structures containing lipid bodies and microtubules, are described in ovary epidermal cells of Ornithogalum umbellatum. Microtubules of lipotubuloids can be fixed in electron microscope fixative containing only buffered OsO(4) or in glutaraldehyde with OsO(4) post-fixation, or in a mixture of OsO(4) and glutaraldehyde. None of these substances fixes cortical microtubules of ovary epidermis of this plant which is characterized by dynamic longitudinal growth. However, cortical microtubules can be fixed with cold methanol according immunocytological methods with the use of β-tubulin antibodies and fluorescein. The existence of cortical microtubules has also been evidenced by EM observations solely after the use of taxol, microtubule stabilizer, and fixation in a glutaraldehyde/OsO(4) mixture. These microtubules mostly lie transversely, sometimes obliquely, and rarely parallel to the cell axis. Staining, using Ruthenium Red and silver hexamine, has revealed that lipotubuloid microtubules surface is covered with polysaccharides. The presumption has been made that the presence of a polysaccharide layer enhances the stability of lipotubuloid microtubules.

  6. Untuned Suppression Makes a Major Contribution to the Enhancement of Orientation Selectivity in Macaque V1

    PubMed Central

    Ringach, Dario L.; Hawken, Michael J.; Shapley, Robert M.

    2011-01-01

    One of the functions of the cerebral cortex is to increase the selectivity for stimulus features. Finding more about the mechanisms of increased cortical selectivity is important for understanding how the cortex works. Up to now, studies in multiple cortical areas have reported that suppressive mechanisms are involved in feature selectivity. However, the magnitude of the contribution of suppression to tuning selectivity is not yet determined. We use orientation selectivity in macaque primary visual cortex, V1, as an archetypal example of cortical feature selectivity and develop a method to estimate the magnitude of the contribution of suppression to orientation selectivity. The results show that untuned suppression, one form of cortical suppression, decreases the orthogonal-to-preferred response ratio (O/P ratio) of V1 cells from an average of 0.38 to 0.26. Untuned suppression has an especially large effect on orientation selectivity for highly selective cells (O/P < 0.2). Therefore, untuned suppression is crucial for the generation of highly orientation-selective cells in V1 cortex. PMID:22049440

  7. Rhizobial infection does not require cortical expression of upstream common symbiosis genes responsible for the induction of Ca(2+) spiking.

    PubMed

    Hayashi, Teruyuki; Shimoda, Yoshikazu; Sato, Shusei; Tabata, Satoshi; Imaizumi-Anraku, Haruko; Hayashi, Makoto

    2014-01-01

    For the establishment of an effective root nodule symbiosis, a coordinated regulation of the infection processes between the epidermis and cortex is required. However, it remains unclear whether the symbiotic genes identified so far are involved in epidermal and/or cortical infection, e.g. epidermal and cortical infection thread formation or cortical cell division. To analyze the symbiotic gene requirements of the infection process, we have developed an epidermis-specific expression system (pEpi expression system) and examined the symbiotic genes NFR1, NFR5, NUP85, NUP133, CASTOR, POLLUX, CCaMK, CYCLOPS, NSP1 and NSP2 for involvement in the infection process in the epidermis and cortex. Our study shows that expression of the upstream common symbiosis genes CASTOR, POLLUX, NUP85 and NUP133 in the epidermis is sufficient to induce formation of infection threads and cortical cell division, leading to the development of fully effective nodules. Our system also shows a requirement of CCaMK, CYCLOPS, NSP1 and NSP2 for the entire nodulation process, and the different contributions of NFR1 and NFR5 to cortical infection thread formation. Based on these analyses using the pEpi expression system, we propose a functional model of symbiotic genes for epidermal and cortical infection. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  8. Interactions between the bud emergence proteins Bem1p and Bem2p and Rho-type GTPases in yeast.

    PubMed

    Peterson, J; Zheng, Y; Bender, L; Myers, A; Cerione, R; Bender, A

    1994-12-01

    The SH3 domain-containing protein Bem1p is needed for normal bud emergence and mating projection formation, two processes that require asymmetric reorganizations of the cortical cytoskeleton in Saccharomyces cerevisiae. To identify proteins that functionally and/or physically interact with Bem1p, we screened for mutations that display synthetic lethality with a mutant allele of the BEM1 gene and for genes whose products display two-hybrid interactions with the Bem1 protein. CDC24, which is required for bud emergence and encodes a GEF (guanine-nucleotide exchange factor) for the essential Rho-type GTPase Cdc42p, was identified during both screens. The COOH-terminal 75 amino acids of Cdc24p, outside of the GEF domain, can interact with a portion of Bem1p that lacks both SH3 domains. Bacterially expressed Cdc24p and Bem1p bind to each other in vitro, indicating that no other yeast proteins are required for this interaction. The most frequently identified gene that arose from the bem1 synthetic-lethal screen was the bud-emergence gene BEM2 (Bender and Pringle. 1991. Mol. Cell Biol. 11:1295-1395), which is allelic with IPL2 (increase in ploidy; Chan and Botstein, 1993. Genetics. 135:677-691). Here we show that Bem2p contains a GAP (GTPase-activating protein) domain for Rho-type GTPases, and that this portion of Bem2p can stimulate in vitro the GTPase activity of Rho1p, a second essential yeast Rho-type GTPase. Cells deleted for BEM2 become large and multinucleate. These and other genetic, two-hybrid, biochemical, and phenotypic data suggest that multiple Rho-type GTPases control the reorganization of the cortical cytoskeleton in yeast and that the functions of these GTPases are tightly coupled. Also, these findings raise the possibility that Bem1p may regulate or be a target of action of one or more of these GTPases.

  9. Dysregulation of NEUROG2 plays a key role in focal cortical dysplasia

    PubMed Central

    Avansini, Simoni H.; Torres, Fábio R.; Vieira, André S.; Dogini, Danyella B.; Rogerio, Fabio; Coan, Ana C.; Morita, Marcia E.; Guerreiro, Marilisa M.; Yasuda, Clarissa L.; Secolin, Rodrigo; Carvalho, Benilton S.; Borges, Murilo G.; Almeida, Vanessa S.; Araújo, Patrícia A. O. R.; Queiroz, Luciano; Cendes, Fernando

    2018-01-01

    Objective Focal cortical dysplasias (FCDs) are an important cause of drug‐resistant epilepsy. In this work, we aimed to investigate whether abnormal gene regulation, mediated by microRNA, could be involved in FCD type II. Methods We used total RNA from the brain tissue of 16 patients with FCD type II and 28 controls. MicroRNA expression was initially assessed by microarray. Quantitative polymerase chain reaction, in situ hybridization, luciferase reporter assays, and deep sequencing for genes in the mTOR pathway were performed to validate and further explore our initial study. Results hsa‐let‐7f (p = 0.039), hsa‐miR‐31 (p = 0.0078), and hsa‐miR34a (p = 0.021) were downregulated in FCD type II, whereas a transcription factor involved in neuronal and glial fate specification, NEUROG2 (p < 0.05), was upregulated. We also found that the RND2 gene, a NEUROG2‐target, is upregulated (p < 0.001). In vitro experiments showed that hsa‐miR‐34a downregulates NEUROG2 by binding to its 5′‐untranslated region. Moreover, we observed strong nuclear expression of NEUROG2 in balloon cells and dysmorphic neurons and found that 28.5% of our patients presented brain somatic mutations in genes of the mTOR pathway. Interpretation Our findings suggest a new molecular mechanism, in which NEUROG2 has a pivotal and central role in the pathogenesis of FCD type II. In this way, we found that the downregulation of hsa‐miR‐34a leads to upregulation of NEUROG2, and consequently to overexpression of the RND2 gene. These findings indicate that a faulty coupling in neuronal differentiation and migration mechanisms may explain the presence of aberrant cells and complete dyslamination in FCD type II. Ann Neurol 2018;83:623–635 PMID:29461643

  10. Tumors of the endocrine/neuroendocrine system: an overview.

    PubMed

    Erlandson, R A; Nesland, J M

    1994-01-01

    For the sake of discussion, the markedly diversified tumors of the endocrine/neuroendocrine system are classified as those originating in classic epithelial endocrine organs (eg, adrenal cortical adenomas), from the diffuse endocrine cells (eg, jejunal carcinoid tumors), or from clusters of these cells (eg, islet cell tumors); and those arising from neurosecretory neurons (eg, neuroblastoma) or paraganglia (eg, carotid body tumor). Although traditional transmission electron microscopy is useful for identifying neurosecretory or endosecretory granules as such, with few exceptions (eg, insulin-containing granules with a complex paracrystalline core) it is not possible to ascribe a granule type (size, shape, or ultrastructure) to a distinct nosologic entity or secretory product because of their overlapping fine structures in different cell types. Immunoelectron microscopy methods utilizing colloidal gold-labeled secondary antibodies can be used to localize virtually any antigen (peptide or neuroamine) to a specific neurosecretory or endosecretory granule or other cell structure. General endocrine/neuroendocrine cell markers such as neuron-specific enolase, the chromogranins, and synaptophysin are useful in identifying neuroendocrine differentiation in a neoplasm using routine immunohistochemical procedures. The current relevance of the APUD concept of Pearse as well as the biologic importance of endocrine/neuroendocrine secretory products such as bombesin and insulinlike growth factors also are discussed.

  11. Calcium-dependent depletion zones in the cortical microtubule array coincide with sites of, but do not regulate, wall ingrowth papillae deposition in epidermal transfer cells.

    PubMed

    Zhang, Hui-ming; Talbot, Mark J; McCurdy, David W; Patrick, John W; Offler, Christina E

    2015-09-01

    Trans-differentiation to a transfer-cell morphology is characterized by the localized deposition of wall ingrowth papillae that protrude into the cytosol. Whether the cortical microtubule array directs wall ingrowth papillae formation was investigated using a Vicia faba cotyledon culture system in which their adaxial epidermal cells were spontaneously induced to trans-differentiate to transfer cells. During deposition of wall ingrowth papillae, the aligned cortical microtubule arrays in precursor epidermal cells were reorganized into a randomized array characterized by circular depletion zones. Concurrence of the temporal appearance, spatial pattern, and size of depletion zones and wall ingrowth papillae was consistent with each papilla occupying a depletion zone. Surprisingly, microtubules appeared not to regulate construction of wall ingrowth papillae, as neither depolymerization nor stabilization of cortical microtubules changed their deposition pattern or morphology. Moreover, the size and spatial pattern of depletion zones was unaltered when the formation of wall ingrowth papillae was blocked by inhibiting cellulose biosynthesis. In contrast, the depletion zones were absent when the cytosolic calcium plumes, responsible for directing wall ingrowth papillae formation, were blocked or dissipated. Thus, we conclude that the depletion zones within the cortical microtubule array result from localized depolymerization of microtubules initiated by elevated cytosolic Ca(2+) levels at loci where wall ingrowth papillae are deposited. The physiological significance of the depletion zones as a mechanism to accommodate the construction of wall ingrowth papillae without compromising maintenance of the plasma membrane-microtubule inter-relationship is discussed. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Focal cortical dysplasias: surgical outcome in 67 patients in relation to histological subtypes and dual pathology.

    PubMed

    Fauser, Susanne; Schulze-Bonhage, Andreas; Honegger, Juergen; Carmona, Hans; Huppertz, Hans-Juergen; Pantazis, Georgios; Rona, Sabine; Bast, Thomas; Strobl, Karl; Steinhoff, Bernhard J; Korinthenberg, Rudolf; Rating, Dietz; Volk, Benedikt; Zentner, Josef

    2004-11-01

    The purpose of this study was to assess whether the histological subtype of focal cortical dysplasia and dual pathology affect surgical outcome in patients with medically intractable epilepsy due to focal cortical dysplasia (FCD). We retrospectively analysed the outcome of 67 patients from 2 to 66 years of age at follow-up periods of 6 to 48 months after epilepsy surgery. Histological subtypes were classified according to Palmini and included a few cases with mild histological abnormalities corresponding to the definition of mild malformations of cortical development. The seizure outcome was classified according to Engel and evaluated at the last follow-up visit as well as at follow-up periods of 12 and 24 months after surgery. The outcome in patients with FCD and additional hippocampal pathology (dual pathology) was analysed separately. Distribution of histological subtypes differed in temporal and extratemporal localization, with a significantly higher extratemporal prevalence of FCD type 2. There was a tendency towards better postsurgical outcome related to the last follow-up visit in patients with more subtle abnormalities classified as mild malformations of cortical development (mMCD) (63% Engel Ia), FCD type 1a (67% Engel Ia) and FCD type 1b (55% Engel Ia) compared with patients with FCD type 2a (43% Engel Ia) and FCD type 2b (Taylor type) (50% Engel Ia). Considering the outcome at follow-up periods over 12 and 24 months, complete seizure-freedom was achieved significantly more often in patients with FCD type 1 and mMCD than with FCD type 2, and seizure reduction by less than 75% (Engel IV) occurred in more patients with FCD type 2a compared with the other subgroups. This tendency was seen in the whole patient group and in the extratemporal subgroup. Patients with dual pathology almost always had temporal lobe epilepsy; the outcome in this patient group was generally favourable (66% complete seizure-freedom at the last follow-up visit). The outcome remained almost constant with longer periods of follow-up. We conclude that patients with FCD type 1 and mMCD had a better outcome compared with those with more severe forms of cortical dysplasia. A higher incidence of FCD type 1 in temporal localization did not allow the effects of histological subtype and localization to be separated. A subanalysis of extratemporal FCDs, however, revealed a similar tendency for a better outcome with FCD type 1, suggesting that the histological subtype itself seems to be at least a relevant cofactor influencing postsurgical outcome.

  13. Differences in reward processing between putative cell types in primate prefrontal cortex

    PubMed Central

    Fan, Hongwei; Wang, Rubin; Sakagami, Masamichi

    2017-01-01

    Single-unit studies in monkeys have demonstrated that neurons in the prefrontal cortex predict the reward type, reward amount or reward availability associated with a stimulus. To examine contributions of pyramidal cells and interneurons in reward processing, single-unit activity was extracellularly recorded in prefrontal cortices of four monkeys performing a reward prediction task. Based on their shapes of spike waveforms, prefrontal neurons were classified into broad-spike and narrow-spike units that represented putative pyramidal cells and interneurons, respectively. We mainly observed that narrow-spike neurons showed higher firing rates but less bursty discharges than did broad-spike neurons. Both narrow-spike and broad-spike cells selectively responded to the stimulus, reward and their interaction, and the proportions of each type of selective neurons were similar between the two cell classes. Moreover, the two types of cells displayed equal reliability of reward or stimulus discrimination. Furthermore, we found that broad-spike and narrow-spike cells showed distinct mechanisms for encoding reward or stimulus information. Broad-spike neurons raised their firing rate relative to the baseline rate to represent the preferred reward or stimulus information, whereas narrow-spike neurons inhibited their firing rate lower than the baseline rate to encode the non-preferred reward or stimulus information. Our results suggest that narrow-spike and broad-spike cells were equally involved in reward and stimulus processing in the prefrontal cortex. They utilized a binary strategy to complementarily represent reward or stimulus information, which was consistent with the task structure in which the monkeys were required to remember two reward conditions and two visual stimuli. PMID:29261734

  14. Differences in reward processing between putative cell types in primate prefrontal cortex.

    PubMed

    Fan, Hongwei; Pan, Xiaochuan; Wang, Rubin; Sakagami, Masamichi

    2017-01-01

    Single-unit studies in monkeys have demonstrated that neurons in the prefrontal cortex predict the reward type, reward amount or reward availability associated with a stimulus. To examine contributions of pyramidal cells and interneurons in reward processing, single-unit activity was extracellularly recorded in prefrontal cortices of four monkeys performing a reward prediction task. Based on their shapes of spike waveforms, prefrontal neurons were classified into broad-spike and narrow-spike units that represented putative pyramidal cells and interneurons, respectively. We mainly observed that narrow-spike neurons showed higher firing rates but less bursty discharges than did broad-spike neurons. Both narrow-spike and broad-spike cells selectively responded to the stimulus, reward and their interaction, and the proportions of each type of selective neurons were similar between the two cell classes. Moreover, the two types of cells displayed equal reliability of reward or stimulus discrimination. Furthermore, we found that broad-spike and narrow-spike cells showed distinct mechanisms for encoding reward or stimulus information. Broad-spike neurons raised their firing rate relative to the baseline rate to represent the preferred reward or stimulus information, whereas narrow-spike neurons inhibited their firing rate lower than the baseline rate to encode the non-preferred reward or stimulus information. Our results suggest that narrow-spike and broad-spike cells were equally involved in reward and stimulus processing in the prefrontal cortex. They utilized a binary strategy to complementarily represent reward or stimulus information, which was consistent with the task structure in which the monkeys were required to remember two reward conditions and two visual stimuli.

  15. Intrinsic curvature in wool fibres is determined by the relative length of orthocortical and paracortical cells.

    PubMed

    Harland, Duane P; Vernon, James A; Woods, Joy L; Nagase, Shinobu; Itou, Takashi; Koike, Kenzo; Scobie, David A; Grosvenor, Anita J; Dyer, Jolon M; Clerens, Stefan

    2018-03-22

    Hair curvature underpins structural diversity and function in mammalian coats, but what causes curl in keratin hair fibres? To obtain structural data to determine one aspect of this question, we used confocal microscopy to provide in situ measurements of the two cell types that make up the cortex of merino wool fibres, which was chosen as a well-characterised model system representative of narrow diameter hairs, such as underhairs. We measured orthocortical and paracortical cross-sectional areas, and cortical cell lengths, within individual fibre snippets of defined uniplanar curvature. This allowed a direct test of two long-standing theories of the mechanism of curvature in hairs. We found evidence contradicting the theory that curvature results from there being more cells on the side of the fibre closest to the outside, or convex edge, of curvature. In all cases, the orthocortical cells close to the outside of curvature were longer than paracortical cells close to the inside of the curvature, which supports the theory that curvature is underpinned by differences in cell type length. However, the latter theory also implies that, for all fibres, curvature should correlate with the proportions of orthocortical and paracortical cells, and we found no evidence for this. In merino wool, it appears that the absolute length of cells of each type and proportion of cells varies from fibre to fibre, and only the difference between the length of the two cell types is important. Implications for curvature in higher diameter hairs, such as guard hairs and those on the human scalp, are discussed. © 2018. Published by The Company of Biologists Ltd.

  16. TONNEAU2/FASS Regulates the Geometry of Microtubule Nucleation and Cortical Array Organization in Interphase Arabidopsis Cells[C][W

    PubMed Central

    Kirik, Angela; Ehrhardt, David W.; Kirik, Viktor

    2012-01-01

    Organization of microtubules into ordered arrays involves spatial and temporal regulation of microtubule nucleation. Here, we show that acentrosomal microtubule nucleation in plant cells involves a previously unknown regulatory step that determines the geometry of microtubule nucleation. Dynamic imaging of interphase cortical microtubules revealed that the ratio of branching to in-bundle microtubule nucleation on cortical microtubules is regulated by the Arabidopsis thaliana B′′ subunit of protein phosphatase 2A, which is encoded by the TONNEAU2/FASS (TON2) gene. The probability of nucleation from γ-tubulin complexes localized at the cell cortex was not affected by a loss of TON2 function, suggesting a specific role of TON2 in regulating the nucleation geometry. Both loss of TON2 function and ectopic targeting of TON2 to the plasma membrane resulted in defects in cell shape, suggesting the importance of TON2-mediated regulation of the microtubule cytoskeleton in cell morphogenesis. Loss of TON2 function also resulted in an inability for cortical arrays to reorient in response to light stimulus, suggesting an essential role for TON2 and microtubule branching nucleation in reorganization of microtubule arrays. Our data establish TON2 as a regulator of interphase microtubule nucleation and provide experimental evidence for a novel regulatory step in the process of microtubule-dependent nucleation. PMID:22395485

  17. Development and matching of binocular orientation preference in mouse V1

    PubMed Central

    Bhaumik, Basabi; Shah, Nishal P.

    2014-01-01

    Eye-specific thalamic inputs converge in the primary visual cortex (V1) and form the basis of binocular vision. For normal binocular perceptions, such as depth and stereopsis, binocularly matched orientation preference between the two eyes is required. A critical period of binocular matching of orientation preference in mice during normal development is reported in literature. Using a reaction diffusion model we present the development of RF and orientation selectivity in mouse V1 and investigate the binocular orientation preference matching during the critical period. At the onset of the critical period the preferred orientations of the modeled cells are mostly mismatched in the two eyes and the mismatch decreases and reaches levels reported in juvenile mouse by the end of the critical period. At the end of critical period 39% of cells in binocular zone in our model cortex is orientation selective. In literature around 40% cortical cells are reported as orientation selective in mouse V1. The starting and the closing time for critical period determine the orientation preference alignment between the two eyes and orientation tuning in cortical cells. The absence of near neighbor interaction among cortical cells during the development of thalamo-cortical wiring causes a salt and pepper organization in the orientation preference map in mice. It also results in much lower % of orientation selective cells in mice as compared to ferrets and cats having organized orientation maps with pinwheels. PMID:25104927

  18. Mapping organelle motion reveals a vesicular conveyor belt spatially replenishing secretory vesicles in stimulated chromaffin cells.

    PubMed

    Maucort, Guillaume; Kasula, Ravikiran; Papadopulos, Andreas; Nieminen, Timo A; Rubinsztein-Dunlop, Halina; Meunier, Frederic A

    2014-01-01

    How neurosecretory cells spatially adjust their secretory vesicle pools to replenish those that have fused and released their hormonal content is currently unknown. Here we designed a novel set of image analyses to map the probability of tracked organelles undergoing a specific type of movement (free, caged or directed). We then applied our analysis to time-lapse z-stack confocal imaging of secretory vesicles from bovine Chromaffin cells to map the global changes in vesicle motion and directionality occurring upon secretagogue stimulation. We report a defined region abutting the cortical actin network that actively transports secretory vesicles and is dissipated by actin and microtubule depolymerizing drugs. The directionality of this "conveyor belt" towards the cell surface is activated by stimulation. Actin and microtubule networks therefore cooperatively probe the microenvironment to transport secretory vesicles to the periphery, providing a mechanism whereby cells globally adjust their vesicle pools in response to secretagogue stimulation.

  19. SDF1 regulates leading process branching and speed of migrating interneurons

    PubMed Central

    Lysko, Daniel E.; Putt, Mary; Golden, Jeffrey A.

    2011-01-01

    Cell migration is required for normal embryonic development, yet how cells navigate complex paths while integrating multiple guidance cues remains poorly understood. During brain development, interneurons migrate from the ventral ganglionic eminence to the cerebral cortex within several migratory streams. They must exit these streams to invade the cortical plate. While SDF1-signaling is necessary for normal interneuron stream migration, how they switch from tangential stream migration to invade the cortical plate is unknown. Here we demonstrate that SDF1-signaling reduces interneuron branching frequency by reducing cAMP levels via a Gi-signaling pathway using an in vitro mouse explant system, resulting in the maintenance of stream migration. Blocking SDF1-signaling, or increasing branching frequency, results in stream exit and cortical plate invasion in mouse brain slices. These data support a novel model to understand how migrating interneurons switch from tangential migration to invade the cortical plate in which reducing SDF1-signaling increases leading process branching and slows the migration rate, permitting migrating interneurons to sense cortically directed guidance cues. PMID:21289183

  20. Visual Information Present in Infragranular Layers of Mouse Auditory Cortex.

    PubMed

    Morrill, Ryan J; Hasenstaub, Andrea R

    2018-03-14

    The cerebral cortex is a major hub for the convergence and integration of signals from across the sensory modalities; sensory cortices, including primary regions, are no exception. Here we show that visual stimuli influence neural firing in the auditory cortex of awake male and female mice, using multisite probes to sample single units across multiple cortical layers. We demonstrate that visual stimuli influence firing in both primary and secondary auditory cortex. We then determine the laminar location of recording sites through electrode track tracing with fluorescent dye and optogenetic identification using layer-specific markers. Spiking responses to visual stimulation occur deep in auditory cortex and are particularly prominent in layer 6. Visual modulation of firing rate occurs more frequently at areas with secondary-like auditory responses than those with primary-like responses. Auditory cortical responses to drifting visual gratings are not orientation-tuned, unlike visual cortex responses. The deepest cortical layers thus appear to be an important locus for cross-modal integration in auditory cortex. SIGNIFICANCE STATEMENT The deepest layers of the auditory cortex are often considered its most enigmatic, possessing a wide range of cell morphologies and atypical sensory responses. Here we show that, in mouse auditory cortex, these layers represent a locus of cross-modal convergence, containing many units responsive to visual stimuli. Our results suggest that this visual signal conveys the presence and timing of a stimulus rather than specifics about that stimulus, such as its orientation. These results shed light on both how and what types of cross-modal information is integrated at the earliest stages of sensory cortical processing. Copyright © 2018 the authors 0270-6474/18/382854-09$15.00/0.

  1. Cortical Serotonin Type-2 Receptor Density in Parents of Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Goldberg, Jeremy; Anderson, George M.; Zwaigenbaum, Lonnie; Hall, Geoffrey B. C.; Nahmias, Claude; Thompson, Ann; Szatmari, Peter

    2009-01-01

    Parents (N = 19) of children with autism spectrum disorders (ASD) and adult controls (N = 17) underwent positron emission tomography (PET) using [[superscript 18]F]setoperone to image cortical serotonin type-2 (5-HT2) receptors. The 5-HT2 binding potentials (BPs) were calculated by ratioing [[superscript 18]F]setoperone intensity in regions of…

  2. Interaction of Pratylenchus penetrans and Rhizoctonia fragariae in Strawberry Black Root Rot

    PubMed Central

    LaMondia, J. A.

    2003-01-01

    A split-root technique was used to examine the interaction between Pratylenchus penetrans and the cortical root-rotting pathogen Rhizoctonia fragariae in strawberry black root rot. Plants inoculated with both pathogens on the same half of a split-root crown had greater levels of root rot than plants inoculated separately or with either pathogen alone. Isolation of R. fragariae from field-grown roots differed with root type and time of sampling. Fungal infection of structural roots was low until fruiting, whereas perennial root colonization was high. Isolation of R. fragariae from feeder roots was variable, but was greater from feeder roots on perennial than from structural roots. Isolation of the fungus was greater from structural roots with nematode lesions than from non-symptomatic roots. Rhizoctonia fragariae was a common resident on the sloughed cortex of healthy perennial roots. From this source, the fungus may infect additional roots. The direct effects of lesion nematode feeding and movement are cortical cell damage and death. Indirect effects include discoloration of the endodermis and early polyderm formation. Perhaps weakened or dying cells caused directly or indirectly by P. penetrans are more susceptible to R. fragariae, leading to increased disease. PMID:19265969

  3. An anatomically comprehensive atlas of the adult human brain transcriptome

    PubMed Central

    Guillozet-Bongaarts, Angela L.; Shen, Elaine H.; Ng, Lydia; Miller, Jeremy A.; van de Lagemaat, Louie N.; Smith, Kimberly A.; Ebbert, Amanda; Riley, Zackery L.; Abajian, Chris; Beckmann, Christian F.; Bernard, Amy; Bertagnolli, Darren; Boe, Andrew F.; Cartagena, Preston M.; Chakravarty, M. Mallar; Chapin, Mike; Chong, Jimmy; Dalley, Rachel A.; David Daly, Barry; Dang, Chinh; Datta, Suvro; Dee, Nick; Dolbeare, Tim A.; Faber, Vance; Feng, David; Fowler, David R.; Goldy, Jeff; Gregor, Benjamin W.; Haradon, Zeb; Haynor, David R.; Hohmann, John G.; Horvath, Steve; Howard, Robert E.; Jeromin, Andreas; Jochim, Jayson M.; Kinnunen, Marty; Lau, Christopher; Lazarz, Evan T.; Lee, Changkyu; Lemon, Tracy A.; Li, Ling; Li, Yang; Morris, John A.; Overly, Caroline C.; Parker, Patrick D.; Parry, Sheana E.; Reding, Melissa; Royall, Joshua J.; Schulkin, Jay; Sequeira, Pedro Adolfo; Slaughterbeck, Clifford R.; Smith, Simon C.; Sodt, Andy J.; Sunkin, Susan M.; Swanson, Beryl E.; Vawter, Marquis P.; Williams, Derric; Wohnoutka, Paul; Zielke, H. Ronald; Geschwind, Daniel H.; Hof, Patrick R.; Smith, Stephen M.; Koch, Christof; Grant, Seth G. N.; Jones, Allan R.

    2014-01-01

    Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive microarray profiling of ~900 neuroanatomically precise subdivisions in two individuals. Transcriptional regulation varies enormously by anatomical location, with different regions and their constituent cell types displaying robust molecular signatures that are highly conserved between individuals. Analysis of differential gene expression and gene co-expression relationships demonstrates that brain-wide variation strongly reflects the distributions of major cell classes such as neurons, oligodendrocytes, astrocytes and microglia. Local neighbourhood relationships between fine anatomical subdivisions are associated with discrete neuronal subtypes and genes involved with synaptic transmission. The neocortex displays a relatively homogeneous transcriptional pattern, but with distinct features associated selectively with primary sensorimotor cortices and with enriched frontal lobe expression. Notably, the spatial topography of the neocortex is strongly reflected in its molecular topography— the closer two cortical regions, the more similar their transcriptomes. This freely accessible online data resource forms a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function. PMID:22996553

  4. Physiological significance of multipolar cells generated from neural stem cells and progenitors for the establishment of neocortical cytoarchitecture.

    PubMed

    Mizutani, Ken-Ichi

    2018-01-01

    Neurogenesis encompasses an entire set of events that leads to the generation of newborn neurons from neural stem cells and more committed progenitor cells, including cell division, the production of migratory precursors and their progeny, differentiation and integration into circuits. In particular, the precise control of neuronal migration and morphological changes is essential for the development of the neocortex. Postmitotic cells within the intermediate zone have been found to transiently assume a characteristic "multipolar" morphology, after which a multipolar-to-bipolar transition occurs before the cells enter the cortical plate; however, the importance of this multipolar phase in the establishment of mature cortical cytoarchitecture and the precise genetic control of this phase remains largely unknown. Thus, this review article focuses on the multipolar phase in the developing neocortex. It begins by summarizing the molecular mechanism that underlies multipolar migration for the regulation of each step in multipolar phase in intermediate zone. The physiological significance of this multipolar phase in the establishment of mature cortical lamination and neurodevelopmental disorders associated with migration defects is then described. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  5. Characterization of GABAergic marker expression in the chronic unpredictable stress model of depression

    PubMed Central

    Banasr, Mounira; Lepack, Ashley; Fee, Corey; Duric, Vanja; Maldonado-Aviles, Jaime; DiLeone, Ralph; Sibille, Etienne; Duman, Ronald S.; Sanacora, Gerard

    2017-01-01

    Evidence continues to build suggesting that the GABAergic neurotransmitter system is altered in brains of patients with major depressive disorder. However, there is little information available related to the extent of these changes or the potential mechanisms associated with these alterations. As stress is a well-established precipitant to depressive episodes, we sought to explore the impact of chronic stress on GABAergic interneurons. Using western blot analyses and quantitative real-time PCR (qPCR) we assessed the effects of five-weeks of chronic unpredictable stress (CUS) exposure on the expression of GABA-synthesizing enzymes (GAD65 and GAD67), calcium-binding proteins (calbindin (CB), parvalbumin (PV) and calretinin (CR)), and neuropeptides co-expressed in GABAergic neurons (somatostatin (SST), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP) and cholecystokinin (CCK)) in the prefrontal cortex (PFC) and hippocampus (HPC) of rats. We also investigated the effects of corticosterone (CORT) and dexamethasone (DEX) exposure on these markers in vitro in primary cortical and hippocampal cultures. We found that CUS induced significant reductions of GAD67 protein levels in both the PFC and HPC of CUS-exposed rats, but did not detect changes in GAD65 protein expression. Similar protein expression changes were found in vitro in cortical neurons. In addition, our results provide clear evidence of reduced markers of interneuron population(s), namely SST and NPY, in the PFC, suggesting these cell types may be selectively vulnerable to chronic stress. Together, this work highlights that chronic stress induces regional and cell type-selective effects on GABAergic interneurons in rats. These findings provide additional supporting evidence that stress-induced GABA neuron dysfunction and cell vulnerability play critical roles in the pathophysiology of stress-related illnesses, including major depressive disorder. PMID:28835932

  6. Visual detection following retinal damage: predictions of an inhomogeneous retino-cortical model

    NASA Astrophysics Data System (ADS)

    Arnow, Thomas L.; Geisler, Wilson S.

    1996-04-01

    A model of human visual detection performance has been developed, based on available anatomical and physiological data for the primate visual system. The inhomogeneous retino- cortical (IRC) model computes detection thresholds by comparing simulated neural responses to target patterns with responses to a uniform background of the same luminance. The model incorporates human ganglion cell sampling distributions; macaque monkey ganglion cell receptive field properties; macaque cortical cell contrast nonlinearities; and a optical decision rule based on ideal observer theory. Spatial receptive field properties of cortical neurons were not included. Two parameters were allowed to vary while minimizing the squared error between predicted and observed thresholds. One parameter was decision efficiency, the other was the relative strength of the ganglion-cell center and surround. The latter was only allowed to vary within a small range consistent with known physiology. Contrast sensitivity was measured for sinewave gratings as a function of spatial frequency, target size and eccentricity. Contrast sensitivity was also measured for an airplane target as a function of target size, with and without artificial scotomas. The results of these experiments, as well as contrast sensitivity data from the literature were compared to predictions of the IRC model. Predictions were reasonably good for grating and airplane targets.

  7. FERMT2 links cortical actin structures, plasma membrane tension and focal adhesion function to stabilize podocyte morphology.

    PubMed

    Yasuda-Yamahara, M; Rogg, M; Frimmel, J; Trachte, P; Helmstaedter, M; Schroder, P; Schiffer, M; Schell, C; Huber, T B

    2018-01-11

    Simplification and retraction of podocyte protrusions, generally termed as foot process effacement, is a uniform pathological pattern observed in the majority of glomerular disease, including focal segmental glomerulosclerosis. However, it is still incompletely understood how the interaction of cortical actin structures, actomyosin contractility and focal adhesions, is being orchestrated to control foot process morphology in health and disease. By uncovering the functional role of fermitin family member 2 (FERMT2 or kindlin-2) in podocytes, we provide now evidence, how cell-extracellular matrix (ECM) interactions modulate membrane tension and actomyosin contractility. A genetic modeling approach was applied by deleting FERMT2 in a set of in vivo systems as well as in CRISPR/Cas9 modified human podocytes. Loss of FERMT2 results in altered cortical actin composition, cell cortex destabilization associated with plasma membrane blebbing and a remodeling of focal adhesions. We further show that FERMT2 knockout podocytes have high levels of RhoA activation and concomitantly increased actomyosin contractility. Inhibition of actomyosin tension reverses the membrane blebbing phenotype. Thus, our findings establish a direct link between cell-matrix adhesions, cortical actin structures and plasma membrane tension allowing to better explain cell morphological changes in foot process effacement. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Cortical Polarity of the RING Protein PAR-2 Is Maintained by Exchange Rate Kinetics at the Cortical-Cytoplasmic Boundary.

    PubMed

    Arata, Yukinobu; Hiroshima, Michio; Pack, Chan-Gi; Ramanujam, Ravikrishna; Motegi, Fumio; Nakazato, Kenichi; Shindo, Yuki; Wiseman, Paul W; Sawa, Hitoshi; Kobayashi, Tetsuya J; Brandão, Hugo B; Shibata, Tatsuo; Sako, Yasushi

    2016-08-23

    Cell polarity arises through the spatial segregation of polarity regulators. PAR proteins are polarity regulators that localize asymmetrically to two opposing cortical domains. However, it is unclear how the spatially segregated PAR proteins interact to maintain their mutually exclusive partitioning. Here, single-molecule detection analysis in Caenorhabditis elegans embryos reveals that cortical PAR-2 diffuses only short distances, and, as a result, most PAR-2 molecules associate and dissociate from the cortex without crossing into the opposing domain. Our results show that cortical PAR-2 asymmetry is maintained by the local exchange reactions that occur at the cortical-cytoplasmic boundary. Additionally, we demonstrate that local exchange reactions are sufficient to maintain cortical asymmetry in a parameter-free mathematical model. These findings suggest that anterior and posterior PAR proteins primarily interact through the cytoplasmic pool and not via cortical diffusion. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Effects of noise-induced hearing loss on parvalbumin and perineuronal net expression in the mouse primary auditory cortex.

    PubMed

    Nguyen, Anna; Khaleel, Haroun M; Razak, Khaleel A

    2017-07-01

    Noise induced hearing loss is associated with increased excitability in the central auditory system but the cellular correlates of such changes remain to be characterized. Here we tested the hypothesis that noise-induced hearing loss causes deterioration of perineuronal nets (PNNs) in the auditory cortex of mice. PNNs are specialized extracellular matrix components that commonly enwrap cortical parvalbumin (PV) containing GABAergic interneurons. Compared to somatosensory and visual cortex, relatively less is known about PV/PNN expression patterns in the primary auditory cortex (A1). Whether changes to cortical PNNs follow acoustic trauma remains unclear. The first aim of this study was to characterize PV/PNN expression in A1 of adult mice. PNNs increase excitability of PV+ inhibitory neurons and confer protection to these neurons against oxidative stress. Decreased PV/PNN expression may therefore lead to a reduction in cortical inhibition. The second aim of this study was to examine PV/PNN expression in superficial (I-IV) and deep cortical layers (V-VI) following noise trauma. Exposing mice to loud noise caused an increase in hearing threshold that lasted at least 30 days. PV and PNN expression in A1 was analyzed at 1, 10 and 30 days following the exposure. No significant changes were observed in the density of PV+, PNN+, or PV/PNN co-localized cells following hearing loss. However, a significant layer- and cell type-specific decrease in PNN intensity was seen following hearing loss. Some changes were present even at 1 day following noise exposure. Attenuation of PNN may contribute to changes in excitability in cortex following noise trauma. The regulation of PNN may open up a temporal window for altered excitability in the adult brain that is then stabilized at a new and potentially pathological level such as in tinnitus. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Development of an efficient Procedure for Resist Wall Space Experiment

    NASA Astrophysics Data System (ADS)

    Matsumoto, Shouhei; Kumasaki, Saori; Higuchi, Sayoko; Kirihata, Kuniaki; Inoue, Yasue; Fujie, Miho; Soga, Kouichi; Wakabayashi, Kazuyuki; Hoson, Takayuki

    The Resist Wall space experiment aims to examine the role of the cortical microtubule-plasma membrane-cell wall continuum in plant resistance to the gravitational force, thereby clarifying the mechanism of gravity resistance. For this purpose, we will cultivate Arabidopsis mutants defective in organization of cortical microtubules (tua6 ) or synthesis of membrane sterols (hmg1 ) as well as the wild type under microgravity and 1 g conditions in the European Modular Cultivation System on the International Space Station up to reproductive stage, and compare phenotypes on growth and development. We will also analyze cell wall properties and gene expression levels using collected materials. However, the amounts of materials collected will be severely limited, and we should develop an efficient procedure for this space experiment. In the present study, we examined the possibility of analyzing various parameters successively using the identical material. On orbit, plant materials will be fixed with RNAlater solution, kept at 4° C for several days and then frozen in a freezer at -20° C. We first examined whether the cell wall extensibility of inflorescence stems can be measured after RNAlater fixation. The gradient of the cell wall extensibility along inflorescence stems was detected in RNAlater-fixed materials as in methanol-killed ones. The sufficient amounts of RNA to analyze the gene expression were also obtained from the materials after measurement of the cell wall extensibility. Furthermore, the levels and composition of cell wall polysaccharides could be measured using the materials after extraction of RNA. These results show that we can analyze the physical and chemical properties of the cell wall as well as gene expression using the identical material obtained in the space experiments.

  11. A discrete transition zone between cuticle and cortex layers of a human hair fibre: changes observed in the presence of breast cancer.

    PubMed

    Lyman, Donald; Gerstmann, Paula

    2017-01-01

    Attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectroscopy of hair fibres shows a discrete transition zone (DTZ) between the hard protective cuticle layer and the softer elongated cortical cells of the cortex. The DTZ is composed of flattened orthocortical cells located on the outer perimeter of the cortex and appears to range in thickness between 2 and 3.6 μm. The inner surface of the DTZ, adjacent to the elongated cortical cells that make up the core of the hair fibre, is irregular. ATR-FT-IR analyses of these flattened orthocortical cells indicate major changes in the molecular structure of keratins found in this transition zone. Other studies have identified cells that produce keratins that are distinct from alpha keratins found in the elongated heterocortical cells in the hair fibre core. These distinct keratins appear to be produced in the lower region of the hair follicle at the interface between the cuticle and cortex. The DTZ is also the region where ATR-FT-IR spectroscopy studies identified changes in C-H bending of lipid esters indicative of breast cancer. Lipid ester absorption bands at 1738 and 1732 cm -1 , present in non-cancer hair, are absent in the cancer hair and a new ester band absorbing at 1736 cm -1 is observed. When the breast cancer is clinically removed, the 1736 cm -1 ester band absorption and the increase in the 1446-1456 C-H-bending absorption ratio are no longer observed. This suggests that biomarkers produced by the breast cancer interact with stem or other cells near the lower region of the follicle, controlling the amount and type of lipid esters in the DTZ.

  12. A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease

    PubMed Central

    Westbroek, Wendy; Nguyen, Matthew; Siebert, Marina; Lindstrom, Taylor; Burnett, Robert A.; Aflaki, Elma; Jung, Olive; Tamargo, Rafael; Rodriguez-Gil, Jorge L.; Acosta, Walter; Hendrix, An; Behre, Bahafta; Tayebi, Nahid; Fujiwara, Hideji; Sidhu, Rohini; Renvoise, Benoit; Ginns, Edward I.; Dutra, Amalia; Pak, Evgenia; Cramer, Carole; Ory, Daniel S.; Pavan, William J.

    2016-01-01

    ABSTRACT Glucocerebrosidase is a lysosomal hydrolase involved in the breakdown of glucosylceramide. Gaucher disease, a recessive lysosomal storage disorder, is caused by mutations in the gene GBA1. Dysfunctional glucocerebrosidase leads to accumulation of glucosylceramide and glycosylsphingosine in various cell types and organs. Mutations in GBA1 are also a common genetic risk factor for Parkinson disease and related synucleinopathies. In recent years, research on the pathophysiology of Gaucher disease, the molecular link between Gaucher and Parkinson disease, and novel therapeutics, have accelerated the need for relevant cell models with GBA1 mutations. Although induced pluripotent stem cells, primary rodent neurons, and transfected neuroblastoma cell lines have been used to study the effect of glucocerebrosidase deficiency on neuronal function, these models have limitations because of challenges in culturing and propagating the cells, low yield, and the introduction of exogenous mutant GBA1. To address some of these difficulties, we established a high yield, easy-to-culture mouse neuronal cell model with nearly complete glucocerebrosidase deficiency representative of Gaucher disease. We successfully immortalized cortical neurons from embryonic null allele gba−/− mice and the control littermate (gba+/+) by infecting differentiated primary cortical neurons in culture with an EF1α-SV40T lentivirus. Immortalized gba−/− neurons lack glucocerebrosidase protein and enzyme activity, and exhibit a dramatic increase in glucosylceramide and glucosylsphingosine accumulation, enlarged lysosomes, and an impaired ATP-dependent calcium-influx response; these phenotypical characteristics were absent in gba+/+ neurons. This null allele gba−/− mouse neuronal model provides a much-needed tool to study the pathophysiology of Gaucher disease and to evaluate new therapies. PMID:27482815

  13. The role of the SCRAMBLED receptor-like kinase in patterning the Arabidopsis root epidermis.

    PubMed

    Kwak, Su-Hwan; Schiefelbein, John

    2007-02-01

    Cell-type patterning in the Arabidopsis root epidermis is achieved by a network of transcription factors and influenced by a position-dependent mechanism. The SCRAMBLED receptor-like kinase is required for the normal pattern to arise, but its precise role is not understood. Here we describe genetic and molecular studies to define the spatial and temporal role of SCM in epidermal patterning and its relationship to the transcriptional network. Our results suggest that SCM helps unspecified epidermal cells interpret their position in relation to the underlying cortical cells and establish distinct cell identities. Furthermore, SCM loss-of-function and overexpression analyses suggest that SCM influences cell fate through its negative transcriptional regulation of the WEREWOLF MYB gene in epidermal cells at the H position. We also find that SCM function is specifically required for patterning the post-embryonic root epidermis and not for the analogous epidermal cell-type patterning during embryogenesis or hypocotyl development. In addition, we show that two closely related SCM-like genes in Arabidopsis (SRF1 and SRF3) are not required alone or together with SCM for proper epidermal patterning. These findings help define the developmental and mechanistic role of SCM and suggest a new model for its action in root epidermal cell patterning.

  14. Intrinsic bursting of AII amacrine cells underlies oscillations in the rd1 mouse retina.

    PubMed

    Choi, Hannah; Zhang, Lei; Cembrowski, Mark S; Sabottke, Carl F; Markowitz, Alexander L; Butts, Daniel A; Kath, William L; Singer, Joshua H; Riecke, Hermann

    2014-09-15

    In many forms of retinal degeneration, photoreceptors die but inner retinal circuits remain intact. In the rd1 mouse, an established model for blinding retinal diseases, spontaneous activity in the coupled network of AII amacrine and ON cone bipolar cells leads to rhythmic bursting of ganglion cells. Since such activity could impair retinal and/or cortical responses to restored photoreceptor function, understanding its nature is important for developing treatments of retinal pathologies. Here we analyzed a compartmental model of the wild-type mouse AII amacrine cell to predict that the cell's intrinsic membrane properties, specifically, interacting fast Na and slow, M-type K conductances, would allow its membrane potential to oscillate when light-evoked excitatory synaptic inputs were withdrawn following photoreceptor degeneration. We tested and confirmed this hypothesis experimentally by recording from AIIs in a slice preparation of rd1 retina. Additionally, recordings from ganglion cells in a whole mount preparation of rd1 retina demonstrated that activity in AIIs was propagated unchanged to elicit bursts of action potentials in ganglion cells. We conclude that oscillations are not an emergent property of a degenerated retinal network. Rather, they arise largely from the intrinsic properties of a single retinal interneuron, the AII amacrine cell. Copyright © 2014 the American Physiological Society.

  15. Coaction of intercellular adhesion and cortical tension specifies tissue surface tension

    PubMed Central

    Manning, M. Lisa; Foty, Ramsey A.; Steinberg, Malcolm S.; Schoetz, Eva-Maria

    2010-01-01

    In the course of animal morphogenesis, large-scale cell movements occur, which involve the rearrangement, mutual spreading, and compartmentalization of cell populations in specific configurations. Morphogenetic cell rearrangements such as cell sorting and mutual tissue spreading have been compared with the behaviors of immiscible liquids, which they closely resemble. Based on this similarity, it has been proposed that tissues behave as liquids and possess a characteristic surface tension, which arises as a collective, macroscopic property of groups of mobile, cohering cells. But how are tissue surface tensions generated? Different theories have been proposed to explain how mesoscopic cell properties such as cell–cell adhesion and contractility of cell interfaces may underlie tissue surface tensions. Although recent work suggests that both may be contributors, an explicit model for the dependence of tissue surface tension on these mesoscopic parameters has been missing. Here we show explicitly that the ratio of adhesion to cortical tension determines tissue surface tension. Our minimal model successfully explains the available experimental data and makes predictions, based on the feedback between mechanical energy and geometry, about the shapes of aggregate surface cells, which we verify experimentally. This model indicates that there is a crossover from adhesion dominated to cortical-tension dominated behavior as a function of the ratio between these two quantities. PMID:20616053

  16. Plasma Membrane is Compartmentalized by a Self-Similar Cortical Actin Meshwork

    NASA Astrophysics Data System (ADS)

    Sadegh, Sanaz; Higgins, Jenny L.; Mannion, Patrick C.; Tamkun, Michael M.; Krapf, Diego

    2017-01-01

    A broad range of membrane proteins display anomalous diffusion on the cell surface. Different methods provide evidence for obstructed subdiffusion and diffusion on a fractal space, but the underlying structure inducing anomalous diffusion has never been visualized because of experimental challenges. We addressed this problem by imaging the cortical actin at high resolution while simultaneously tracking individual membrane proteins in live mammalian cells. Our data confirm that actin introduces barriers leading to compartmentalization of the plasma membrane and that membrane proteins are transiently confined within actin fences. Furthermore, superresolution imaging shows that the cortical actin is organized into a self-similar meshwork. These results present a hierarchical nanoscale picture of the plasma membrane.

  17. Evolution of New miRNAs and Cerebro-Cortical Development.

    PubMed

    Kosik, Kenneth S; Nowakowski, Tomasz

    2018-04-04

    The noncoding portion of the genome, including microRNAs, has been fertile evolutionary soil for cortical development in primates. A major contribution to cortical expansion in primates is the generation of novel precursor cell populations. Because miRNA expression profiles track closely with cell identity, it is likely that numerous novel microRNAs have contributed to cellular diversity in the brain. The tools to determine the genomic context within which novel microRNAs emerge and how they become integrated into molecular circuitry are now in hand. Expected final online publication date for the Annual Review of Neuroscience Volume 41 is July 8, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  18. Extraction and analysis of neuron firing signals from deep cortical video microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerekes, Ryan A; Blundon, Jay

    We introduce a method for extracting and analyzing neuronal activity time signals from video of the cortex of a live animal. The signals correspond to the firing activity of individual cortical neurons. Activity signals are based on the changing fluorescence of calcium indicators in the cells over time. We propose a cell segmentation method that relies on a user-specified center point, from which the signal extraction method proceeds. A stabilization approach is used to reduce tissue motion in the video. The extracted signal is then processed to flatten the baseline and detect action potentials. We show results from applying themore » method to a cortical video of a live mouse.« less

  19. Regulation of Neuronal Cav3.1 Channels by Cyclin-Dependent Kinase 5 (Cdk5)

    PubMed Central

    González-Ramírez, Ricardo; González-Billault, Christian; Felix, Ricardo

    2015-01-01

    Low voltage-activated (LVA) T-type Ca2+ channels activate in response to subthreshold membrane depolarizations and therefore represent an important source of Ca2+ influx near the resting membrane potential. In neurons, these proteins significantly contribute to control relevant physiological processes including neuronal excitability, pacemaking and post-inhibitory rebound burst firing. Three subtypes of T-type channels (Cav3.1 to Cav3.3) have been identified, and using functional expression of recombinant channels diverse studies have validated the notion that T-type Ca2+ channels can be modulated by various endogenous ligands as well as by second messenger pathways. In this context, the present study reveals a previously unrecognized role for cyclin-dependent kinase 5 (Cdk5) in the regulation of native T-type channels in N1E-115 neuroblastoma cells, as well as recombinant Cav3.1channels heterologously expressed in HEK-293 cells. Cdk5 and its co-activators play critical roles in the regulation of neuronal differentiation, cortical lamination, neuronal cell migration and axon outgrowth. Our results show that overexpression of Cdk5 causes a significant increase in whole cell patch clamp currents through T-type channels in N1E-115 cells, while siRNA knockdown of Cdk5 greatly reduced these currents. Consistent with this, overexpression of Cdk5 in HEK-293 cells stably expressing Cav3.1channels upregulates macroscopic currents. Furthermore, using site-directed mutagenesis we identified a major phosphorylation site at serine 2234 within the C-terminal region of the Cav3.1subunit. These results highlight a novel role for Cdk5 in the regulation of T-type Ca2+ channels. PMID:25760945

  20. Regulation of neuronal cav3.1 channels by cyclin-dependent kinase 5 (Cdk5).

    PubMed

    Calderón-Rivera, Aida; Sandoval, Alejandro; González-Ramírez, Ricardo; González-Billault, Christian; Felix, Ricardo

    2015-01-01

    Low voltage-activated (LVA) T-type Ca2+ channels activate in response to subthreshold membrane depolarizations and therefore represent an important source of Ca2+ influx near the resting membrane potential. In neurons, these proteins significantly contribute to control relevant physiological processes including neuronal excitability, pacemaking and post-inhibitory rebound burst firing. Three subtypes of T-type channels (Cav3.1 to Cav3.3) have been identified, and using functional expression of recombinant channels diverse studies have validated the notion that T-type Ca2+ channels can be modulated by various endogenous ligands as well as by second messenger pathways. In this context, the present study reveals a previously unrecognized role for cyclin-dependent kinase 5 (Cdk5) in the regulation of native T-type channels in N1E-115 neuroblastoma cells, as well as recombinant Cav3.1channels heterologously expressed in HEK-293 cells. Cdk5 and its co-activators play critical roles in the regulation of neuronal differentiation, cortical lamination, neuronal cell migration and axon outgrowth. Our results show that overexpression of Cdk5 causes a significant increase in whole cell patch clamp currents through T-type channels in N1E-115 cells, while siRNA knockdown of Cdk5 greatly reduced these currents. Consistent with this, overexpression of Cdk5 in HEK-293 cells stably expressing Cav3.1channels upregulates macroscopic currents. Furthermore, using site-directed mutagenesis we identified a major phosphorylation site at serine 2234 within the C-terminal region of the Cav3.1subunit. These results highlight a novel role for Cdk5 in the regulation of T-type Ca2+ channels.

  1. Interactions between behaviorally relevant rhythms and synaptic plasticity alter coding in the piriform cortex

    PubMed Central

    Urban, Nathaniel N.

    2012-01-01

    Understanding how neural and behavioral timescales interact to influence cortical activity and stimulus coding is an important issue in sensory neuroscience. In air-breathing animals, voluntary changes in respiratory frequency alter the temporal patterning olfactory input. In the olfactory bulb, these behavioral timescales are reflected in the temporal properties of mitral/tufted (M/T) cell spike trains. As the odor information contained in these spike trains is relayed from the bulb to the cortex, interactions between presynaptic spike timing and short-term synaptic plasticity dictate how stimulus features are represented in cortical spike trains. Here we demonstrate how the timescales associated with respiratory frequency, spike timing and short-term synaptic plasticity interact to shape cortical responses. Specifically, we quantified the timescales of short-term synaptic facilitation and depression at excitatory synapses between bulbar M/T cells and cortical neurons in slices of mouse olfactory cortex. We then used these results to generate simulated M/T population synaptic currents that were injected into real cortical neurons. M/T population inputs were modulated at frequencies consistent with passive respiration or active sniffing. We show how the differential recruitment of short-term plasticity at breathing versus sniffing frequencies alters cortical spike responses. For inputs at sniffing frequencies, cortical neurons linearly encoded increases in presynaptic firing rates with increased phase locked, firing rates. In contrast, at passive breathing frequencies, cortical responses saturated with changes in presynaptic rate. Our results suggest that changes in respiratory behavior can gate the transfer of stimulus information between the olfactory bulb and cortex. PMID:22553016

  2. A Circuit for Motor Cortical Modulation of Auditory Cortical Activity

    PubMed Central

    Nelson, Anders; Schneider, David M.; Takatoh, Jun; Sakurai, Katsuyasu; Wang, Fan

    2013-01-01

    Normal hearing depends on the ability to distinguish self-generated sounds from other sounds, and this ability is thought to involve neural circuits that convey copies of motor command signals to various levels of the auditory system. Although such interactions at the cortical level are believed to facilitate auditory comprehension during movements and drive auditory hallucinations in pathological states, the synaptic organization and function of circuitry linking the motor and auditory cortices remain unclear. Here we describe experiments in the mouse that characterize circuitry well suited to transmit motor-related signals to the auditory cortex. Using retrograde viral tracing, we established that neurons in superficial and deep layers of the medial agranular motor cortex (M2) project directly to the auditory cortex and that the axons of some of these deep-layer cells also target brainstem motor regions. Using in vitro whole-cell physiology, optogenetics, and pharmacology, we determined that M2 axons make excitatory synapses in the auditory cortex but exert a primarily suppressive effect on auditory cortical neuron activity mediated in part by feedforward inhibition involving parvalbumin-positive interneurons. Using in vivo intracellular physiology, optogenetics, and sound playback, we also found that directly activating M2 axon terminals in the auditory cortex suppresses spontaneous and stimulus-evoked synaptic activity in auditory cortical neurons and that this effect depends on the relative timing of motor cortical activity and auditory stimulation. These experiments delineate the structural and functional properties of a corticocortical circuit that could enable movement-related suppression of auditory cortical activity. PMID:24005287

  3. Intramembranous valine linked to schizophrenia is required for neuregulin 1 regulation of the morphological development of cortical neurons

    PubMed Central

    Chen, Yachi; Hancock, Melissa L.; Role, Lorna W.; Talmage, David A.

    2010-01-01

    Neuregulin 1 (NRG1) signaling is critical to various aspects of neuronal development and function. Among different NRG1 isoforms, the Type III isoforms of NRG1 are unique in their ability to signal via the intracellular domain following γ-secretase-dependent intramembranous processing. However, the functional consequences of Type III NRG1 signaling via its intracellular domain are largely unknown. In this study, we have identified mutations within Type III NRG1 that disrupt intramembranous proteolytic processing and abolish intracellular domain signaling. In particular, substitutions at valine 321, previously linked to schizophrenia risks, result in NRG1 proteins that fail to undergo γ-secretase-mediated nuclear localization and transcriptional activation. Using processing-defective mutants of Type III NRG1, we demonstrate that the intracellular domain signaling is specifically required for NRG1 regulation of the growth and branching of cortical dendrites but not axons. Consistent with the role of Type III NRG1 signaling via the intracellular domain in the initial patterning of cortical dendrites, our findings from pharmacological and genetic studies indicate that Type III NRG1 functions in dendritic development independent of ERBB kinase activity. Taken together, these results support the proposal that aberrant intracellular processing and defective signaling via the intracellular domain of Type III NRG1 impair a subset of NRG1 functions in cortical development and contribute to abnormal neuroconnectivity implicated in schizophrenia. PMID:20610754

  4. Germline PRKACA amplification leads to Cushing syndrome caused by 3 adrenocortical pathologic phenotypes.

    PubMed

    Carney, J Aidan; Lyssikatos, Charalampos; Lodish, Maya B; Stratakis, Constantine A

    2015-01-01

    We describe the pathology of 5 patients with germline PRKACA copy number gain and Cushing syndrome: 4 males and 1 female, aged 2 to 43 years, including a mother and son. Imaging showed normal or slightly enlarged adrenal glands in 4 patients and a unilateral mass in the fifth. Biochemically, the patients had corticotropin-independent hypercortisolism. Four underwent bilateral adrenalectomy; unilateral adrenalectomy was performed in the patient with the adrenal mass. Pathologically, 3 patients, including the 1 with the tumor (adenoma), had primary pigmented nodular adrenocortical disease with extranodular cortical atrophy and mild intracapsular and extracapsular extension of cortical cells. The other 2 patients had cortical hyperplasia and prominent capsular and extracapsular micronodular cortical hyperplasia. Immunoperoxidase staining revealed differences for synaptophysin, inhibin-A, and Ki-67 (nuclei) in the atrophic cortices (patients 1, 2, and 3) and hyperplastic cortices (patients 4 and 5) and for Ki-67 (nuclei) and vimentin in the extracortical nodules in the 2 groups of patients. β-Catenin stained the cell membrane, cytoplasm, and nuclei of the adenoma. The patients were well at follow-up (1-23 years); 24-hour urinary cortisol excretion was elevated in the patient who had unilateral adrenalectomy. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Local anesthetic lidocaine inhibits TRPM7 current and TRPM7-mediated zinc toxicity.

    PubMed

    Leng, Tian-Dong; Lin, Jun; Sun, Hua-Wei; Zeng, Zhao; O'Bryant, Zaven; Inoue, Koichi; Xiong, Zhi-Gang

    2015-01-01

    Previous study demonstrated that overstimulation of TRPM7 substantially contributes to zinc-mediated neuronal toxicity. Inhibition of TRPM7 activity and TRPM7-mediated intracellular Zn(2+) accumulation may represent a promising strategy in the treatment of stroke. To investigate whether local anesthetics lidocaine could inhibit TRPM7 channel and TRPM7-mediated zinc toxicity. Whole-cell patch-clamp technique was used to investigate the effect of local anesthetics on TRPM7 currents in cultured mouse cortical neurons and TRPM7-overexpressed HEK293 cells. Fluorescent Zn(2+) imaging technique was used to study the effect of lidocaine on TRPM7-mediated intracellular Zn(2+) accumulation. TRPM7-mediated zinc toxicity in neurons was used to evaluate the neuroprotective effect of lidocaine. (1) Lidocaine dose dependently inhibits TRPM7-like currents, with an IC50 of 11.55 and 11.06 mM in cultured mouse cortical neurons and TRPM7-overexpressed HEK293 cells, respectively; (2) Lidocaine inhibits TRPM7 currents in a use/frequency-dependent manner; (3) Lidocaine inhibits TRPM7-mediated intracellular Zn(2+) accumulation in both cortical neurons and TRPM7-overexpressed HEK293 cells; (4) TRPM7-mediated Zn(2+) toxicity is ameliorated by lidocaine in cortical neurons; (5) QX-314 has a similar inhibitory effect as lidocaine on TRPM7 currents when applied extracellularly; (6) Procaine also shows potent inhibitory effect on the TRPM7 currents in cortical neurons. Our data provide the first evidence that local anesthetic lidocaine inhibits TRPM7 channel and TRPM7-mediated zinc toxicity. © 2014 John Wiley & Sons Ltd.

  6. Cellular and laminar expression of Dab-1 during the postnatal critical period in cat visual cortex and the effects of dark rearing.

    PubMed

    Kiser, Paul J; Liu, Zijing; Wilt, Steven D; Mower, George D

    2011-04-06

    This study describes postnatal critical period changes in cellular and laminar expression of Dab-1, a gene shown to play a role in controlling neuronal positioning during embryonic brain development, in cat visual cortex and the effects of dark rearing (DR). At 1week, there is dense cellular staining which is uniform across cortical layers and very light neuropil staining. At the peak of the critical period (5weeks), dense cell staining is largely restricted to large pyramidal cells of deep layer III and layer V, there is faint cell body staining throughout all cortical layers, neuropil staining is markedly increased and uniform in layers III to VI. This dramatic change in laminar and cellular labeling is independent of visual input, since immunostaining is similar in 5-week DR cats. By 10weeks, the mature laminar and cellular staining pattern is established and the major subsequent change is a further reduction in the density of cellular staining in all cortical layers. Neuropil staining is pronounced and uniform across cortical layers. These developmental changes are altered by DR. Quantification by cell counts indicated that age and DR interact such that differences in cellular expression are opposite in direction between 5- and 20-week-old cats. This bidirectional regulation of cellular expression is the same in all cortical laminae. The bidirectional regulation of cellular expression matches the effects of age and DR on physiological plasticity during the critical period as assessed by ocular dominance shifts in response to monocular deprivation. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. The Phragmoplast-Orienting Kinesin-12 Class Proteins Translate the Positional Information of the Preprophase Band to Establish the Cortical Division Zone in Arabidopsis thaliana[C][W

    PubMed Central

    Lipka, Elisabeth; Gadeyne, Astrid; Stöckle, Dorothee; Zimmermann, Steffi; De Jaeger, Geert; Ehrhardt, David W.; Kirik, Viktor; Van Damme, Daniel; Müller, Sabine

    2014-01-01

    The preprophase band (PPB) is a faithful but transient predictor of the division plane in somatic cell divisions. Throughout mitosis the PPBs positional information is preserved by factors that continuously mark the division plane at the cell cortex, the cortical division zone, by their distinct spatio-temporal localization patterns. However, the mechanism maintaining these identity factors at the plasma membrane after PPB disassembly remains obscure. The pair of kinesin-12 class proteins PHRAGMOPLAST ORIENTING KINESIN1 (POK1) and POK2 are key players in division plane maintenance. Here, we show that POK1 is continuously present at the cell cortex, providing a spatial reference for the site formerly occupied by the PPB. Fluorescence recovery after photobleaching analysis combined with microtubule destabilization revealed dynamic microtubule-dependent recruitment of POK1 to the PPB during prophase, while POK1 retention at the cortical division zone in the absence of cortical microtubules appeared static. POK function is strictly required to maintain the division plane identity factor TANGLED (TAN) after PPB disassembly, although POK1 and TAN recruitment to the PPB occur independently during prophase. Together, our data suggest that POKs represent fundamental early anchoring components of the cortical division zone, translating and preserving the positional information of the PPB by maintaining downstream identity markers. PMID:24972597

  8. Local anesthetic sympathectomy restores fMRI cortical maps in CRPS I after upper extremity stellate blockade: a prospective case study.

    PubMed

    Stude, Philipp; Enax-Krumova, Elena K; Lenz, Melanie; Lissek, Silke; Nicolas, Volkmar; Peters, Soeren; Westermann, Amy; Tegenthoff, Martin; Maier, Christoph

    2014-01-01

    Patients with complex regional pain syndrome type I (CRPS I) show a cortical reorganization with contralateral shrinkage of cortical maps in S1. The relevance of pain and disuse for the development and the maintenance of this shrinkage is unclear. Aim of the study was to assess whether short-term pain relief induces changes in the cortical representation of the affected hand in patients with CRPS type I. Case series analysis of prospectively collected data. We enrolled a case series of 5 consecutive patients with CRPS type I (disease duration 3 - 36 months) of the non-dominant upper-limb and previously diagnosed sympathetically maintained pain (SMP) by reduction of the pain intensity of more than > 30% after prior diagnostic sympathetic block. We performed fMRI for analysis of the cortical representation of the affected hand immediately before as well as one hour after isolated sympathetic block of the stellate ganglion on the affected side. Wilcoxon-Test, paired t-test, P < 0.05. Pain decrease after isolated sympathetic block (pain intensity on the numerical rating scale (0 - 10) before block: 6.8 ± 1.9, afterwards: 3.8 ± 1.3) was accompanied by an increase in the blood oxygenation level dependent (BOLD) response of cortical representational maps only of the affected hand which had been reduced before the block, despite the fact that clinical and neurophysiological assessment revealed no changes in the sensorimotor function. The interpretation of the present results is partly limited due to the small number of included patients and the missing control group with placebo injection. The association between recovery of the cortical representation and pain relief supports the hypothesis that pain could be a relevant factor for changes of somatosensory cortical maps in CRPS, and that these are rapidly reversible.

  9. The Effects of Aging and Sex Steroid Deficiency on the Murine Skeleton Are Independent and Mechanistically Distinct

    PubMed Central

    Ucer, Serra; Iyer, Srividhya; Kim, Ha-Neui; Han, Li; Rutlen, Christine; Allison, Kelly; Thostenson, Jeff D; de Cabo, Rafael; Jilka, Robert L; O’Brien, Charles; Almeida, Maria; Manolagas, Stavros C

    2017-01-01

    Old age and sex steroid deficiency are the two most critical factors for the development of osteoporosis. It remains unknown, however, whether the molecular culprits of the two conditions are similar or distinct. We show herein that at 19.5 months of age —a time by which the age-dependent decline of cortical and cancellous bone mass and cortical porosity were fully manifested in C57BL/6J mice—these animals remained functionally estrogen sufficient. Transgenic mice with conditional expression of mitochondria-targeted catalase—a potent H2O2 inactivating enzyme—in cells of the myeloid lineage (mitoCAT;LysM-Cre mice) were protected from the loss of cortical, but not cancellous, bone caused by gonadectomy in either sex. Consistent with these findings, in vitro studies with ERα-deficient Prx1+ cells and gonadectomized young adult mice showed that in both sexes decreased ERα signaling in Prx1+ cells leads to an increase in SDF1, a.k.a. CXCL12, an osteoclastogenic cytokine whose effects were abrogated in macrophages from mitoCAT;LysM-Cre mice. In contrast to sex steroid deficiency, the adverse effects of aging on either cortical or cancellous bone were unaffected in mitoCAT;LysM-Cre mice. On the other hand, attenuation of H2O2 generation in cells of the mesenchymal lineage targeted by Prx1-Cre partially prevented the loss of cortical bone caused by old age. Our results suggest the effects of sex steroid deficiency and aging on the murine skeleton are independent and result from distinct mechanisms. In the former, the prevailing mechanism of the cortical bone loss in both sexes is increased osteoclastogenesis caused by estrogen deficiency; this is likely driven, at least in part, by mesenchymal/stromal cell–derived SDF1. Decreased osteoblastogenesis, owing in part to increased H2O2, combined with increased osteoclastogenesis caused by aging mechanisms independent of estrogen deficiency, are the prevailing mechanisms of the loss of cortical bone with old age. PMID:27714847

  10. Anthocyanins extracted from black soybean seed coat protect primary cortical neurons against in vitro ischemia.

    PubMed

    Bhuiyan, Mohammad Iqbal Hossain; Kim, Joo Youn; Ha, Tae Joung; Kim, Seong Yun; Cho, Kyung-Ok

    2012-01-01

    The present study investigated the neuroprotective effects of anthocyanins extracted from black soybean (cv. Cheongja 3, Glycine max (L.) MERR.) seed coat against oxygen-glucose deprivation (OGD) and glutamate-induced cell death in rat primary cortical neurons. Lactate dehydrogenase (LDH) release and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assays were employed to assess cell membrane damage and viability of primary neurons, respectively. OGD-induced cell death in 7 d in vitro primary cortical neurons was found to be OGD duration-dependent, and approximately 3.5 h of OGD resulted in ≈60% cell death. Treatment with black soybean anthocyanins dose-dependently prevented membrane damage and increased the viability of primary neurons that were exposed to OGD. Glutamate-induced neuronal cell death was dependent on the glutamate concentration at relatively low concentrations and the number of days the cells remained in culture. Interestingly, black soybean anthocyanins did not protect against glutamate-induced neuronal cell death. They did, however, inhibit the excessive generation of reactive oxygen species (ROS) and preserve mitochondrial membrane potential (MMP) in primary neurons exposed to OGD. In agreement with the neuroprotective effect of crude black soybean anthocyanins, purified cyanidin-3-glucoside (C3G), the major component of anthocyanins, also offered dose-dependent neuroprotection against OGD-induced neuronal cell death. Moreover, black soybean C3G markedly prevented excessive generation of ROS and preserved MMP in primary neurons that were exposed to OGD. Collectively, these results suggest that the neuroprotection of primary rat cortical neurons by anthocyanins that were extracted from black soybean seed coat might be mediated through oxidative stress inhibition and MMP preservation but not through glutamate-induced excitotoxicity attenuation.

  11. Stimulation of ovarian stem cells by follicle stimulating hormone and basic fibroblast growth factor during cortical tissue culture.

    PubMed

    Parte, Seema; Bhartiya, Deepa; Manjramkar, Dhananjay D; Chauhan, Anahita; Joshi, Amita

    2013-04-01

    Cryopreserved ovarian cortical tissue acts as a source of primordial follicles (PF) which can either be auto-transplanted or cultured in vitro to obtain mature oocytes. This offers a good opportunity to attain biological parenthood to individuals with gonadal insufficiency including cancer survivors. However, role of various intra- and extra-ovarian factors during PF growth initiation still remain poorly understood. Ovarian biology has assumed a different dimension due to emerging data on presence of pluripotent very small embryonic-like stem cells (VSELs) and ovarian germ stem cells (OGSCs) in ovary surface epithelium (OSE) and the concept of postnatal oogenesis. The present study was undertaken to decipher effect of follicle stimulating hormone (FSH) and basic fibroblast growth factor (bFGF) on the growth initiation of PF during organ culture with a focus on ovarian stem cells. Serum-free cultures of marmoset (n=3) and human (young and peri-menopausal) ovarian cortical tissue pieces were established. Cortical tissue pieces stimulated with FSH (0.5 IU/ml) or bFGF (100 ng/ml) were collected on Day 3 for histological and molecular studies. Gene transcripts specific for pluripotency (Oct-4A, Nanog), early germ cells (Oct-4, c-Kit, Vasa) and to reflect PF growth initiation (oocyte-specific Gdf-9 and Lhx8, and granulosa cells specific Amh) were studied by q-RTPCR. A prominent proliferation of OSE (which harbors stem cells) and transition of PF to primary follicles was observed after FSH and bFGF treatment. Ovarian stem cells were found to be released on the culture inserts and retained the potential to spontaneously differentiate into oocyte-like structures in extended cultures. q-RTPCR analysis revealed an increased expression of gene transcripts specific for VSELs, OGSCs and early germ cells suggestive of follicular transition. The present study shows that both FSH and bFGF stimulate stem cells present in OSE and also lead to PF growth initiation. Thus besides being a source of PF, cryopreserved ovarian cortical tissue could also be a source of stem cells which retain the ability to spontaneously differentiate into oocyte-like structures in vitro. Results provide a paradigm shift in the basic understanding of FSH action and also offer a new perspective to the field of oncofertility research.

  12. Emergence of Orientation Selectivity in the Mammalian Visual Pathway

    PubMed Central

    Scholl, Benjamin; Tan, Andrew Y. Y.; Corey, Joseph

    2013-01-01

    Orientation selectivity is a property of mammalian primary visual cortex (V1) neurons, yet its emergence along the visual pathway varies across species. In carnivores and primates, elongated receptive fields first appear in V1, whereas in lagomorphs such receptive fields emerge earlier, in the retina. Here we examine the mouse visual pathway and reveal the existence of orientation selectivity in lateral geniculate nucleus (LGN) relay cells. Cortical inactivation does not reduce this orientation selectivity, indicating that cortical feedback is not its source. Orientation selectivity is similar for LGN relay cells spiking and subthreshold input to V1 neurons, suggesting that cortical orientation selectivity is inherited from the LGN in mouse. In contrast, orientation selectivity of cat LGN relay cells is small relative to subthreshold inputs onto V1 simple cells. Together, these differences show that although orientation selectivity exists in visual neurons of both rodents and carnivores, its emergence along the visual pathway, and thus its underlying neuronal circuitry, is fundamentally different. PMID:23804085

  13. Devescovinid features, a remarkable surface cytoskeleton, and epibiotic bacteria revisited in Mixotricha paradoxa, a parabasalid flagellate.

    PubMed

    Brugerolle, G

    2004-10-01

    This work reports on the flagellate systematics and phylogeny, cytoskeleton, prokaryote-eukaryote cell junction organisation, and epibiotic bacteria identification. It confirms the pioneer 1964 study on Mixotricha paradoxa and supplies new information. Mixotricha paradoxa has a cresta structure specific to devescovinid parabasalid flagellates, a slightly modified recurrent flagellum, and an axostylar tube containing two lamina-shaped parabasal fibres. However, many parabasal profiles are distributed throughout the cell body. There is a conspicuous cortical microfibrillar network whose strands are related to cell junction structures subjacent to epibiotic bacteria. The supposed actin composition of this network could not be demonstrated with anti-actin antibodies or phalloidin labelling. Four types of epibiotic bacteria were described. Bacillus-shaped bacteria with a Gram-negative organisation are nested in alternate rows on most of the surface of the protozoon. They induce a striated calyxlike junction structure beneath the adhesion zone linked to the cortical microfibrillar network. Slender spirochetes are attached by one differentiated end to the plasma membrane of the protozoon, forming knobs on the cell surface. Two very similar long rod-shaped bacteria are also attached on the knobs of the plasma membrane. A large spirochete attributed to the genus Canaleparolina is also attached to the protozoon. Observations on epibiotic bacteria and of their attachments are compared with several described epibiotic bacteria of symbiotic protozoa and with the results of the molecular identification of the epibiotic bacteria of M. paradoxa.

  14. Motor-mediated Cortical versus Astral Microtubule Organization in Lipid-monolayered Droplets

    PubMed Central

    Baumann, Hella; Surrey, Thomas

    2014-01-01

    The correct spatial organization of microtubules is of crucial importance for determining the internal architecture of eukaryotic cells. Microtubules are arranged in space by a multitude of biochemical activities and by spatial constraints imposed by the cell boundary. The principles underlying the establishment of distinct intracellular architectures are only poorly understood. Here, we studied the effect of spatial confinement on the self-organization of purified motors and microtubules that are encapsulated in lipid-monolayered droplets in oil, varying in diameter from 5–100 μm, which covers the size range of typical cell bodies. We found that droplet size alone had a major organizing influence. The presence of a microtubule-crosslinking motor protein decreased the number of accessible types of microtubule organizations. Depending on the degree of spatial confinement, the presence of the motor caused either the formation of a cortical array of bent microtubule bundles or the generation of single microtubule asters in the droplets. These are two of the most prominent forms of microtubule arrangements in plant and metazoan cells. Our results provide insights into the combined organizing influence of spatial constraints and cross-linking motor activities determining distinct microtubule architectures in a minimal biomimetic system. In the future, this simple lipid-monolayered droplet system characterized here can be expanded readily to include further biochemical activities or used as the starting point for the investigation of motor-mediated microtubule organization inside liposomes surrounded by a deformable lipid bilayer. PMID:24966327

  15. Cell-Specific Loss of SNAP25 from Cortical Projection Neurons Allows Normal Development but Causes Subsequent Neurodegeneration.

    PubMed

    Hoerder-Suabedissen, Anna; Korrell, Kim V; Hayashi, Shuichi; Jeans, Alexander; Ramirez, Denise M O; Grant, Eleanor; Christian, Helen C; Kavalali, Ege T; Wilson, Michael C; Molnár, Zoltán

    2018-05-30

    Synaptosomal associated protein 25 kDa (SNAP25) is an essential component of the SNARE complex regulating synaptic vesicle fusion. SNAP25 deficiency has been implicated in a variety of cognitive disorders. We ablated SNAP25 from selected neuronal populations by generating a transgenic mouse (B6-Snap25tm3mcw (Snap25-flox)) with LoxP sites flanking exon5a/5b. In the presence of Cre-recombinase, Snap25-flox is recombined to a truncated transcript. Evoked synaptic vesicle release is severely reduced in Snap25 conditional knockout (cKO) neurons as shown by live cell imaging of synaptic vesicle fusion and whole cell patch clamp recordings in cultured hippocampal neurons. We studied Snap25 cKO in subsets of cortical projection neurons in vivo (L5-Rbp4-Cre; L6-Ntsr1-Cre; L6b-Drd1a-Cre). cKO neurons develop normal axonal projections, but axons are not maintained appropriately, showing signs of swelling, fragmentation and eventually complete absence. Onset and progression of degeneration are dependent on the neuron type, with L5 cells showing the earliest and most severe axonal loss. Ultrastructural examination revealed that cKO neurites contain autophagosome/lysosome-like structures. Markers of inflammation such as Iba1 and lipofuscin are increased only in adult cKO cortex. Snap25 cKO can provide a model to study genetic interactions with environmental influences in several disorders.

  16. COUP-TF1 Modulates Thyroid Hormone Action in an Embryonic Stem-Cell Model of Cortical Pyramidal Neuronal Differentiation.

    PubMed

    Teng, Xiaochun; Liu, Yan-Yun; Teng, Weiping; Brent, Gregory A

    2018-05-01

    Thyroid hormone is critical for normal brain development and acts in a spatial and temporal specific pattern. Thyroid hormone excess, or deficiency, can lead to irreversible impairment of brain and sensory development. Chicken ovalbumin upstream-transcription factor 1 (COUP-TF1), expressed early in neuronal development, is essential to achieve normal brain structure. Thyroid hormone stimulation of gene expression is inversely correlated with the level of COUP-TF1 expression. An in vitro method of differentiating mouse embryonic stem (mES) cells into cortical neurons was utilized to study the influence of COUP-TF1 on thyroid hormone signaling in brain development. mES cells were cultured and differentiated in specific conditioned media, and a high percentage of nestin-positive progenitor neurons in the first stage, and cortical neurons in the second stage, was obtained with characteristic neuronal firing. The number of nestin-positive progenitors, as determined by fluorescence-activated cell sorting analysis, was significantly greater with triiodothyronine (T3) treatment compared to control (p < 0.05). T3 enhanced the expression of cortical neuron marker (Tbr1 and Rc3) mRNAs. After COUP-TF1 knockdown, the number of nestin-positive progenitors was reduced compared to control (p < 0.05), but the number increased with T3 treatment. The mRNA of cortical neuronal gene markers was measured after COUP-TF1 knockdown. In the presence of T3, the peak expression of neuron markers Emx1, Tbr1, Camkiv, and Rc3 mRNA was earlier, at day 18 of differentiation, compared to control cells, at day 22. Furthermore, after COUP-TF1 knockdown, T3 induction of Rc3 and Tbr1 mRNA was significantly enhanced compared to cells expressing COUP-TF1. These results indicate that COUP-TF1 plays an important role in modulating the timing and magnitude of T3-stimulated gene expression required for normal corticogenesis.

  17. Subcortical and cortical structural central nervous system changes and attention processing deficits in preschool-aged children with prenatal methamphetamine and tobacco exposure.

    PubMed

    Derauf, Chris; Lester, Barry M; Neyzi, Nurunisa; Kekatpure, Minal; Gracia, Luis; Davis, James; Kallianpur, Kalpana; Efird, Jimmy T; Kosofsky, Barry

    2012-01-01

    To examine the independent contributions of prenatal methamphetamine exposure (PME) and prenatal tobacco exposure (PTE) on brain morphology among a sample of nonalcohol-exposed 3- to 5-year-old children followed prospectively since birth. The sample included 20 children with PME (19 with PTE) and 15 comparison children (7 with PTE), matched on race, birth weight, maternal education and type of insurance. Subcortical and cortical volumes and cortical thickness measures were derived through an automated segmentation procedure from T1-weighted structural magnetic resonance images obtained on unsedated children. Attention was assessed using the computerized Conners' Kiddie Continuous Performance Test Version 5 (K-CPT™ V.5). PME effects on subcortical and cortical brain volumes and cortical thickness were tested by general linear model with type III sum of squares, adjusting for PTE, prenatal marijuana exposure, age at time of scan, gender, handedness, pulse sequence and total intracranial volume (for volumetric outcomes). A similar analysis was done for PTE effects on subcortical and cortical brain volumes and thickness, adjusting for PME and the above covariates. Children with PME had significantly reduced caudate nucleus volumes and cortical thickness increases in perisylvian and orbital-frontal cortices. In contrast, children with PTE showed cortical thinning in perisylvian and lateral occipital cortices and volumetric increases in frontal regions and decreases in anterior cingulate. PME was positively related and caudate volume was inversely related to K-CPT reaction time by inter-stimulus interval, a measure of the ability to adjust to changing task demands, suggesting that children with PME may have subtle attentional deficits mediated by caudate volume reductions. Our results suggest that PME and PTE may have distinct differential cortical effects on the developing central nervous system. Additionally, PME may be associated with subtle deficits in attention mediated by caudate volume reductions. Copyright © 2012 S. Karger AG, Basel.

  18. Effects of biomechanical forces on signaling in the cortical collecting duct (CCD)

    PubMed Central

    Carrisoza-Gaytan, Rolando; Liu, Yu; Flores, Daniel; Else, Cindy; Lee, Heon Goo; Rhodes, George; Sandoval, Ruben M.; Kleyman, Thomas R.; Lee, Francis Young-In; Molitoris, Bruce; Satlin, Lisa M.

    2014-01-01

    An increase in tubular fluid flow rate (TFF) stimulates Na reabsorption and K secretion in the cortical collecting duct (CCD) and subjects cells therein to biomechanical forces including fluid shear stress (FSS) and circumferential stretch (CS). Intracellular MAPK and extracellular autocrine/paracrine PGE2 signaling regulate cation transport in the CCD and, at least in other systems, are affected by biomechanical forces. We hypothesized that FSS and CS differentially affect MAPK signaling and PGE2 release to modulate cation transport in the CCD. To validate that CS is a physiological force in vivo, we applied the intravital microscopic approach to rodent kidneys in vivo to show that saline or furosemide injection led to a 46.5 ± 2.0 or 170 ± 32% increase, respectively, in distal tubular diameter. Next, murine CCD (mpkCCD) cells were grown on glass or silicone coated with collagen type IV and subjected to 0 or 0.4 dyne/cm2 of FSS or 10% CS, respectively, forces chosen based on prior biomechanical modeling of ex vivo microperfused CCDs. Cells exposed to FSS expressed an approximately twofold greater abundance of phospho(p)-ERK and p-p38 vs. static cells, while CS did not alter p-p38 and p-ERK expression compared with unstretched controls. FSS induced whereas CS reduced PGE2 release by ∼40%. In conclusion, FSS and CS differentially affect ERK and p38 activation and PGE2 release in a cell culture model of the CD. We speculate that TFF differentially regulates biomechanical signaling and, in turn, cation transport in the CCD. PMID:24872319

  19. The role of NMDA and mGluR5 receptors in calcium mobilization and neurotoxicity of homocysteine in trigeminal and cortical neurons and glial cells.

    PubMed

    Abushik, Polina A; Niittykoski, Minna; Giniatullina, Raisa; Shakirzyanova, Anastasia; Bart, Genevieve; Fayuk, Dmitriy; Sibarov, Dmitry A; Antonov, Sergei M; Giniatullin, Rashid

    2014-04-01

    Recent studies suggested contribution of homocysteine (HCY) to neurodegenerative disorders and migraine. However, HCY effect in the nociceptive system is essentially unknown. To explore the mechanism of HCY action, we studied short- and long-term effects of this amino acid on rat peripheral and central neurons. HCY induced intracellular Ca²⁺ transients in cultured trigeminal neurons and satellite glial cells (SGC), which were blocked by the NMDA antagonist AP-5 in neurons, but not in SGCs. In contrast, 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine (MTEP), the metabotropic mGluR5 (metabotropic glutamate receptor 5 subtype) antagonist, preferentially inhibited Ca²⁺ transients in SGCs. Prolonged application of HCY induced apoptotic cell death of both kinds of trigeminal cells. The apoptosis was blocked by AP-5 or by the mGluR5 antagonist MTEP. Likewise, in cortical neurons, HCY-induced cell death was inhibited by AP-5 or MTEP. Imaging with 2',7'-dichlorodihydrofluorescein diacetate or mitochondrial dye Rhodamine-123 as well as thiobarbituric acid reactive substances assay did not reveal involvement of oxidative stress in the action of HCY. Thus, elevation of intracellular Ca²⁺ by HCY in neurons is mediated by NMDA and mGluR5 receptors while SGC are activated through the mGluR5 subtype. Long-term neurotoxic effects in peripheral and central neurons involved both receptor types. Our data suggest glutamatergic mechanisms of HCY-induced sensitization and apoptosis of trigeminal nociceptors. © 2013 International Society for Neurochemistry.

  20. Cell-to-Cell Heterogeneity in Cortical Tension Specifies Curvature of Contact Surfaces in Caenorhabditis elegans Embryos

    PubMed Central

    Fujita, Masashi; Onami, Shuichi

    2012-01-01

    In the two-cell stage embryos of Caenorhabditis elegans, the contact surface of the two blastomeres forms a curve that bulges from the AB blastomere to the P1 blastomere. This curve is a consequence of the high intracellular hydrostatic pressure of AB compared with that of P1. However, the higher pressure in AB is intriguing because AB has a larger volume than P1. In soap bubbles, which are a widely used model of cell shape, a larger bubble has lower pressure than a smaller bubble. Here, we reveal that the higher pressure in AB is mediated by its higher cortical tension. The cell fusion experiments confirmed that the curvature of the contact surface is related to the pressure difference between the cells. Chemical and genetic interferences showed that the pressure difference is mediated by actomyosin. Fluorescence imaging indicated that non-muscle myosin is enriched in the AB cortex. The cell killing experiments provided evidence that AB but not P1 is responsible for the pressure difference. Computer simulation clarified that the cell-to-cell heterogeneity of cortical tensions is indispensable for explaining the pressure difference. This study demonstrates that heterogeneity in surface tension results in significant deviations of cell behavior compared to simple soap bubble models, and thus must be taken into consideration in understanding cell shape within embryos. PMID:22253922

Top