Science.gov

Sample records for cortical evoked potentials

  1. Familial influences on cortical evoked potentials in migraine.

    PubMed

    Sándor, P S; Afra, J; Proietti-Cecchini, A; Albert, A; Schoenen, J

    1999-04-26

    Cortical information processing in migraine patients is impaired between attacks, showing deficient habituation of pattern-reversal visual evoked potentials (VEP), and strong intensity dependence of auditory cortical evoked potentials (IDAP). This could be a genetic trait as certain genetic patterns are known for evoked potentials in healthy subjects. We investigated VEP habituation and IDAP in 20 pairs of migraineurs made up of parents and their children. Using a Monte-Carlo statistical method, we selectively assessed vertical familial influences. VEP habituation and IDAP were abnormal in both parents and children. However, similarity was far more pronounced between related pairs than between unrelated pairs. Familial influences are highly significant in determinants of cortical information processing in migraineurs, hence supporting the important role of genetic factors.

  2. Cortical Auditory Evoked Potentials in Unsuccessful Cochlear Implant Users

    ERIC Educational Resources Information Center

    Munivrana, Boska; Mildner, Vesna

    2013-01-01

    In some cochlear implant users, success is not achieved in spite of optimal clinical factors (including age at implantation, duration of rehabilitation and post-implant hearing level), which may be attributed to disorders at higher levels of the auditory pathway. We used cortical auditory evoked potentials to investigate the ability to perceive…

  3. Cortical Auditory Evoked Potentials in Unsuccessful Cochlear Implant Users

    ERIC Educational Resources Information Center

    Munivrana, Boska; Mildner, Vesna

    2013-01-01

    In some cochlear implant users, success is not achieved in spite of optimal clinical factors (including age at implantation, duration of rehabilitation and post-implant hearing level), which may be attributed to disorders at higher levels of the auditory pathway. We used cortical auditory evoked potentials to investigate the ability to perceive…

  4. Intraoperative Subcortical Fiber Mapping with Subcortico-Cortical Evoked Potentials.

    PubMed

    Enatsu, Rei; Kanno, Aya; Ohtaki, Shunya; Akiyama, Yukinori; Ochi, Satoko; Mikuni, Nobuhiro

    2016-02-01

    During brain surgery, there are difficulties associated with identifying subcortical fibers with no clear landmarks. We evaluated the usefulness of cortical evoked potentials with subcortical stimuli (subcortico-cortical evoked potential [SCEP]) in identifying subcortical fibers intraoperatively. We used SCEP to identify the pyramidal tract in 4 patients, arcuate fasciculus in 1 patient, and both in 2 patients during surgical procedures. After resection, a 1 × 4-electrode plate was placed on the floor of the removal cavity and 1-Hz alternating electrical stimuli were delivered to this electrode. A 4 × 5 recording electrode plate was placed on the central cortical areas to map the pyramidal tract and temporoparietal cortical areas for the arcuate fasciculus. SCEPs were obtained by averaging electrocorticograms time locked to the stimulus onset. The subcortical stimulation within 15 mm of the target fiber induced cortical evoked potentials in the corresponding areas, whereas the stimulation apart from 20 mm did not. Five patients showed transient worsening of neurologic symptoms after surgery. However, all patients recovered. SCEP was useful for identifying subcortical fibers and confirmed the preservation of these fibers. This technique is expected to contribute to the effectiveness and safety of resective surgery in patients with lesions close to eloquent areas. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Vestibular receptors contribute to cortical auditory evoked potentials.

    PubMed

    Todd, Neil P M; Paillard, Aurore C; Kluk, Karolina; Whittle, Elizabeth; Colebatch, James G

    2014-03-01

    Acoustic sensitivity of the vestibular apparatus is well-established, but the contribution of vestibular receptors to the late auditory evoked potentials of cortical origin is unknown. Evoked potentials from 500 Hz tone pips were recorded using 70 channel EEG at several intensities below and above the vestibular acoustic threshold, as determined by vestibular evoked myogenic potentials (VEMPs). In healthy subjects both auditory mid- and long-latency auditory evoked potentials (AEPs), consisting of Na, Pa, N1 and P2 waves, were observed in the sub-threshold conditions. However, in passing through the vestibular threshold, systematic changes were observed in the morphology of the potentials and in the intensity dependence of their amplitude and latency. These changes were absent in a patient without functioning vestibular receptors. In particular, for the healthy subjects there was a fronto-central negativity, which appeared at about 42 ms, referred to as an N42, prior to the AEP N1. Source analysis of both the N42 and N1 indicated involvement of cingulate cortex, as well as bilateral superior temporal cortex. Our findings are best explained by vestibular receptors contributing to what were hitherto considered as purely auditory evoked potentials and in addition tentatively identify a new component that appears to be primarily of vestibular origin.

  6. Cortical evoked potentials to an auditory illusion: binaural beats.

    PubMed

    Pratt, Hillel; Starr, Arnold; Michalewski, Henry J; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi

    2009-08-01

    To define brain activity corresponding to an auditory illusion of 3 and 6Hz binaural beats in 250Hz or 1000Hz base frequencies, and compare it to the sound onset response. Event-Related Potentials (ERPs) were recorded in response to unmodulated tones of 250 or 1000Hz to one ear and 3 or 6Hz higher to the other, creating an illusion of amplitude modulations (beats) of 3Hz and 6Hz, in base frequencies of 250Hz and 1000Hz. Tones were 2000ms in duration and presented with approximately 1s intervals. Latency, amplitude and source current density estimates of ERP components to tone onset and subsequent beats-evoked oscillations were determined and compared across beat frequencies with both base frequencies. All stimuli evoked tone-onset P(50), N(100) and P(200) components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude with the low base frequency and to the low beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left lateral and inferior temporal lobe areas in all stimulus conditions. Onset-evoked components were not different across stimulus conditions; P(50) had significantly different sources than the beats-evoked oscillations; and N(100) and P(200) sources located to the same temporal lobe regions as beats-evoked oscillations, but were bilateral and also included frontal and parietal contributions. Neural activity with slightly different volley frequencies from left and right ear converges and interacts in the central auditory brainstem pathways to generate beats of neural activity to modulate activities in the left temporal lobe, giving rise to the illusion of binaural beats. Cortical potentials recorded to binaural beats are distinct from onset responses. Brain activity corresponding to an auditory illusion of low frequency beats can be recorded from the scalp.

  7. Cortical Evoked Potentials to an Auditory Illusion: Binaural Beats

    PubMed Central

    Pratt, Hillel; Starr, Arnold; Michalewski, Henry J.; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi

    2009-01-01

    Objective: To define brain activity corresponding to an auditory illusion of 3 and 6 Hz binaural beats in 250 Hz or 1,000 Hz base frequencies, and compare it to the sound onset response. Methods: Event-Related Potentials (ERPs) were recorded in response to unmodulated tones of 250 or 1000 Hz to one ear and 3 or 6 Hz higher to the other, creating an illusion of amplitude modulations (beats) of 3 Hz and 6 Hz, in base frequencies of 250 Hz and 1000 Hz. Tones were 2,000 ms in duration and presented with approximately 1 s intervals. Latency, amplitude and source current density estimates of ERP components to tone onset and subsequent beats-evoked oscillations were determined and compared across beat frequencies with both base frequencies. Results: All stimuli evoked tone-onset P50, N100 and P200 components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude with the low base frequency and to the low beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left lateral and inferior temporal lobe areas in all stimulus conditions. Onset-evoked components were not different across stimulus conditions; P50 had significantly different sources than the beats-evoked oscillations; and N100 and P200 sources located to the same temporal lobe regions as beats-evoked oscillations, but were bilateral and also included frontal and parietal contributions. Conclusions: Neural activity with slightly different volley frequencies from left and right ear converges and interacts in the central auditory brainstem pathways to generate beats of neural activity to modulate activities in the left temporal lobe, giving rise to the illusion of binaural beats. Cortical potentials recorded to binaural beats are distinct from onset responses. Significance: Brain activity corresponding to an auditory illusion of low frequency beats can be recorded from the

  8. Mapping human brain networks with cortico-cortical evoked potentials.

    PubMed

    Keller, Corey J; Honey, Christopher J; Mégevand, Pierre; Entz, Laszlo; Ulbert, Istvan; Mehta, Ashesh D

    2014-10-05

    The cerebral cortex forms a sheet of neurons organized into a network of interconnected modules that is highly expanded in humans and presumably enables our most refined sensory and cognitive abilities. The links of this network form a fundamental aspect of its organization, and a great deal of research is focusing on understanding how information flows within and between different regions. However, an often-overlooked element of this connectivity regards a causal, hierarchical structure of regions, whereby certain nodes of the cortical network may exert greater influence over the others. While this is difficult to ascertain non-invasively, patients undergoing invasive electrode monitoring for epilepsy provide a unique window into this aspect of cortical organization. In this review, we highlight the potential for cortico-cortical evoked potential (CCEP) mapping to directly measure neuronal propagation across large-scale brain networks with spatio-temporal resolution that is superior to traditional neuroimaging methods. We first introduce effective connectivity and discuss the mechanisms underlying CCEP generation. Next, we highlight how CCEP mapping has begun to provide insight into the neural basis of non-invasive imaging signals. Finally, we present a novel approach to perturbing and measuring brain network function during cognitive processing. The direct measurement of CCEPs in response to electrical stimulation represents a potentially powerful clinical and basic science tool for probing the large-scale networks of the human cerebral cortex.

  9. Mapping human brain networks with cortico-cortical evoked potentials

    PubMed Central

    Keller, Corey J.; Honey, Christopher J.; Mégevand, Pierre; Entz, Laszlo; Ulbert, Istvan; Mehta, Ashesh D.

    2014-01-01

    The cerebral cortex forms a sheet of neurons organized into a network of interconnected modules that is highly expanded in humans and presumably enables our most refined sensory and cognitive abilities. The links of this network form a fundamental aspect of its organization, and a great deal of research is focusing on understanding how information flows within and between different regions. However, an often-overlooked element of this connectivity regards a causal, hierarchical structure of regions, whereby certain nodes of the cortical network may exert greater influence over the others. While this is difficult to ascertain non-invasively, patients undergoing invasive electrode monitoring for epilepsy provide a unique window into this aspect of cortical organization. In this review, we highlight the potential for cortico-cortical evoked potential (CCEP) mapping to directly measure neuronal propagation across large-scale brain networks with spatio-temporal resolution that is superior to traditional neuroimaging methods. We first introduce effective connectivity and discuss the mechanisms underlying CCEP generation. Next, we highlight how CCEP mapping has begun to provide insight into the neural basis of non-invasive imaging signals. Finally, we present a novel approach to perturbing and measuring brain network function during cognitive processing. The direct measurement of CCEPs in response to electrical stimulation represents a potentially powerful clinical and basic science tool for probing the large-scale networks of the human cerebral cortex. PMID:25180306

  10. Cortical processing of human gut sensation: an evoked potential study.

    PubMed

    Hobday, David I; Hobson, Anthony R; Sarkar, Sanchoy; Furlong, Paul L; Thompson, David G; Aziz, Qasim

    2002-08-01

    The rectum has a unique physiological role as a sensory organ and differs in its afferent innervation from other gut organs that do not normally mediate conscious sensation. We compared the central processing of human esophageal, duodenal, and rectal sensation using cortical evoked potentials (CEP) in 10 healthy volunteers (age range 21-34 yr). Esophageal and duodenal CEP had similar morphology in all subjects, whereas rectal CEP had two different but reproducible morphologies. The rectal CEP latency to the first component P1 (69 ms) was shorter than both duodenal (123 ms; P = 0.008) and esophageal CEP latencies (106 ms; P = 0.004). The duodenal CEP amplitude of the P1-N1 component (5.0 microV) was smaller than that of the corresponding esophageal component (5.7 microV; P = 0.04) but similar to that of the corresponding rectal component (6.5 microV; P = 0.25). This suggests that rectal sensation is either mediated by faster-conducting afferent pathways or that there is a difference in the orientation or volume of cortical neurons representing the different gut organs. In conclusion, the physiological and anatomic differences between gut organs are reflected in differences in the characteristics of their afferent pathways and cortical processing.

  11. [Experimental visual evoked potentials. Interstimuli interval and cortical excitability].

    PubMed

    Díaz Calavia, E; Fernández del Moral, R; Dawid-Milner, S; Jiménez Vargas, J

    1989-01-01

    The excitability of the visual system was studied in ten adult chronic cats. Visual evoked potentials were recorded, using decreasing interstimulus intervals. A decrease of the excitability of the visual system is observed when interstimulus intervals are less than 800 milliseconds. Clinical applications with regard to visual evoked potential recording on comatose patients are suggested.

  12. Predicting perception in noise using cortical auditory evoked potentials.

    PubMed

    Billings, Curtis J; McMillan, Garnett P; Penman, Tina M; Gille, Sun Mi

    2013-12-01

    Speech perception in background noise is a common challenge across individuals and health conditions (e.g., hearing impairment, aging, etc.). Both behavioral and physiological measures have been used to understand the important factors that contribute to perception-in-noise abilities. The addition of a physiological measure provides additional information about signal-in-noise encoding in the auditory system and may be useful in clarifying some of the variability in perception-in-noise abilities across individuals. Fifteen young normal-hearing individuals were tested using both electrophysiology and behavioral methods as a means to determine (1) the effects of signal-to-noise ratio (SNR) and signal level and (2) how well cortical auditory evoked potentials (CAEPs) can predict perception in noise. Three correlation/regression approaches were used to determine how well CAEPs predicted behavior. Main effects of SNR were found for both electrophysiology and speech perception measures, while signal level effects were found generally only for speech testing. These results demonstrate that when signals are presented in noise, sensitivity to SNR cues obscures any encoding of signal level cues. Electrophysiology and behavioral measures were strongly correlated. The best physiological predictors (e.g., latency, amplitude, and area of CAEP waves) of behavior (SNR at which 50 % of the sentence is understood) were N1 latency and N1 amplitude measures. In addition, behavior was best predicted by the 70-dB signal/5-dB SNR CAEP condition. It will be important in future studies to determine the relationship of electrophysiology and behavior in populations who experience difficulty understanding speech in noise such as those with hearing impairment or age-related deficits.

  13. Cortical auditory evoked potential (P1): a potential objective indicator for auditory rehabilitation outcome.

    PubMed

    Thabet, Mirahan T; Said, Nithreen M

    2012-12-01

    Cortical auditory evoked potentials are a non-invasive tool that can provide objective information on maturation of the auditory pathways. This work was designed to study the role of cortical auditory evoked potential (P1) in assessment of the benefits of amplification and aural rehabilitation in hearing impaired children. The study consisted of 31 children classified into 2 groups. Study group included 18 hearing impaired children ranging in age 4-14 years old and classified into two subgroups according to adequacy of aural rehabilitation. A control group consisted of 13 normal hearing children ranging in age from 5 to 13 years. All children were subjected to history taking, basic audiological evaluation, intelligence quotient and language assessment. Cortical auditory evoked potential (P1) was measured using synthesized speech syllable /da/ as a recording stimulus that was presented binaurally via a loudspeaker. P1 was recorded in all children with significantly prolonged latencies in hearing impaired children with inadequate rehabilitation. P1 latency was correlated to hearing loss duration in hearing impaired children with inadequate aural rehabilitation. Auditory experience was correlated with P1 latency in hearing impaired children with adequate aural rehabilitation. Cortical auditory evoked potential (P1) might provide a clinical tool to monitor aural rehabilitation outcome and to guide intervention choices. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. The effect of spasticity on cortical somatosensory-evoked potentials: changes of cortical somatosensory-evoked potentials after botulinum toxin type A injection.

    PubMed

    Park, Eun Sook; Park, Chang Il; Kim, Deog Young; Kim, Yong Rae

    2002-11-01

    To evaluate the changes in cortical somatosensory-evoked potentials (SEPs) after botulinum toxin type A injection to determine what effect spasticity has on cortical SEPs. Intervention study and before-after trial. University-affiliated hospital in Korea. Twelve children with spastic hemiplegic cerebral palsy (CP), 7 children with spastic diplegic CP, and 8 patients with traumatic brain injury. All participants had botulinum toxin type A injected into the muscles of the spastic limb. SEPs were recorded before and 7 days after the botulinum toxin type A injection. Spasticity of the affected spastic limb was also measured. The short latency and amplitude of waves in SEPs were measured. The SEP results were divided into 3 groups: flat (no evoked potential), abnormal (evoked but delayed in latency), and normal (clear waveform with normal latency). The normal response of cortical SEP increased after injection. The SEPs exhibited more frequent improvement in the limbs, with greater improvement of spasticity in grade (>1.0 grade) and in patients of younger age (<3y) after injection (P<.05). The observed improvement of cortical SEPs with associated reduction of spasticity that occurred after the botulinum toxin type A injection indicates that spasticity itself can be considered a factor affecting cortical SEPs. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation

  15. Intermediate latency evoked potentials of cortical multimodal vestibular areas: acoustic stimulation.

    PubMed

    Kammermeier, S; Singh, A; Noachtar, S; Krotofil, I; Bötzel, K

    2015-03-01

    Loud acoustic stimuli at 500Hz activate the vestibular system. Intermediate-latency vestibular cortical potentials of multimodal cortex regions were investigated, beyond the 20ms time range. Eighteen healthy subjects with 32-channel EEG and one epilepsy patient with right-sided intracortical electrodes received three types of stimuli: tone bursts capable of evoking vestibular evoked myogenic potentials (VEMP) in neck muscles and sham stimuli matched for either frequency or amplitude, which cannot evoke myogenic responses. VEMP-capable stimuli activated anterior insula and posterior operculum bilaterally at 20, 30, 60 and 110ms, frontal brain regions at 70 and 110ms, determined by Brain Evoked Source Analysis BESA. Recordings from intracranial electrodes revealed corresponding peaks at identical latencies. Stimulus-locked high and low beta and mu band modulations were found in vestibular, parietal and occipital regions, beyond 20ms. Sham stimuli only evoked late acoustic potentials. Corresponding vestibular potentials were also seen in an eight-channel bipolar Laplacian montage. The sequentially appearing cortical potentials evoked by VEMP-capable stimuli co-locate with data from functional imaging studies. Frequency-specific activity (induced potentials) in these areas may reflect multimodal proprioceptive and visual sensory crosstalk. Vestibular cortical evoked potentials may see clinical use in vertigo disorders. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Cortico-cortical evoked potentials for sites of early versus late seizure spread in stereoelectroencephalography.

    PubMed

    Lega, Bradley; Dionisio, Sasha; Flanigan, Patrick; Bingaman, William; Najm, Imad; Nair, Dileep; Gonzalez-Martinez, Jorge

    2015-09-01

    Cortico-cortical evoked potentials offer the possibility of understanding connectivity within seizure networks to improve diagnosis and more accurately identify candidates for seizure surgery. We sought to determine if cortico-cortical evoked potentials and post-stimulation oscillatory changes differ for sites of EARLY versus LATE ictal spread. 37 patients undergoing stereoelectroencephalography were tested using a cortico-cortical evoked potential paradigm. All electrodes were classified according to the speed of ictal spread. EARLY spread sites were matched to a LATE spread site equidistant from the onset zone. Root-mean-square was used to quantify evoked responses and post-stimulation gamma band power and coherence were extracted and compared. Sites of EARLY spread exhibited significantly greater evoked responses after stimulation across all patients (t(36)=2.973, p=0.004). Stimulation elicited enhanced gamma band activity at EARLY spread sites (t(36)=2.61, p=0.03, FDR corrected); this gamma band oscillation was highly coherent with the onset zone. Cortico-cortical evoked potentials and post-stimulation changes in gamma band activity differ between sites of EARLY versus LATE ictal spread. The oscillatory changes can help visualize connectivity within the seizure network.

  17. Real-time adaptive microstimulation increases reliability of electrically evoked cortical potentials.

    PubMed

    Brugger, Dominik; Butovas, Sergejus; Bogdan, Martin; Schwarz, Cornelius

    2011-05-01

    Cortical neuroprostheses that employ repeated electrical stimulation of cortical areas with fixed stimulus parameters, are faced with the problem of large trial-by-trial variability of evoked potentials. This variability is caused by the ongoing cortical signal processing, but it is an unwanted phenomenon if one aims at imprinting neural activity as precisely as possible. Here, we use local field potentials measured by one microelectrode, located at a distance of 200 microns from the stimulation site, to drive the electrically evoked potential toward a desired target potential by real-time adaptation of the stimulus intensity. The functional relationship between ongoing cortical activity, evoked potential, and stimulus intensity was estimated by standard machine learning techniques (support vector regression with problem-specific kernel function) from a set of stimulation trials with randomly varied stimulus intensities. The smallest deviation from the target potential was achieved for low stimulus intensities. Further, the observed precision effect proved time sensitive, since it was abolished by introducing a delay between data acquisition and stimulation. These results indicate that local field potentials contain sufficient information about ongoing local signal processing to stabilize electrically evoked potentials. We anticipate that adaptive low intensity microstimulation will play an important role in future cortical prosthetic devices that aim at restoring lost sensory functions.

  18. [Localization of attention related cortical structures by evoked potentials].

    PubMed

    Szelenberger, W

    2000-01-01

    Attention is an ambiguous concept, difficult to direct implementation in neurophysiological studies. The paper presents application of the Continuous Attention Test (CAT) items as stimuli in event related potential (ERP) studies on attention. Stimuli with high demand of attention result in enlarged N1 component in occipital derivations. Spatial analysis revealed increased positivity in frontal derivations. Three-dimensional image of cortical current density by means of Low Resolution Electromagnetic Tomography (LORETA) revealed sources of N1 component in occipital, parietal and postero-temporal derivations with the maximal current value at 17 Brodmann area. After target stimuli increase of current density in frontal derivations was observed, with the maximal value in the left 9 Brodmann area.

  19. Evoked Potentials in Motor Cortical Local Field Potentials Reflect Task Timing and Behavioral Performance

    PubMed Central

    Confais, Joachim; Ponce-Alvarez, Adrián; Diesmann, Markus; Riehle, Alexa

    2010-01-01

    Evoked potentials (EPs) are observed in motor cortical local field potentials (LFPs) during movement execution (movement-related potentials [MRPs]) and in response to relevant visual cues (visual evoked potentials [VEPs]). Motor cortical EPs may be directionally selective, but little is known concerning their relation to other aspects of motor behavior, such as task timing and performance. We recorded LFPs in motor cortex of two monkeys during performance of a precued arm-reaching task. A time cue at the start of each trial signaled delay duration and thereby the pace of the task and the available time for movement preparation. VEPs and MRPs were strongly modulated by the delay duration, VEPs being systematically larger in short-delay trials and MRPs larger in long-delay trials. Despite these systematic modulations related to the task timing, directional selectivity was similar in short and long trials. The behavioral reaction time was positively correlated with MRP size and negatively correlated with VEP size, within sessions. In addition, the behavioral performance improved across sessions, in parallel with a slow decrease in the size of VEPs and MRPs. Our results clearly show the strong influence of the behavioral context and performance on motor cortical population activity during movement preparation and execution. PMID:20884766

  20. Minimization of cochlear implant artifact in cortical auditory evoked potentials in children.

    PubMed

    Bakhos, D; Roux, S; Robier, A; Bonnet-Brilhault, F; Lescanne, E; Bruneau, N

    2012-11-01

    In congenitally deaf children fit with a cochlear implant, little is known about the maturation of the auditory cortex. Cortical auditory evoked potentials are a useful methodology to study the auditory cortical system of children with cochlear implants. Nevertheless, these recordings are contaminated by a cochlear implant artifact. The objective of this study was to use independent component analysis to minimize the artifact of the cochlear implant to study cortical auditory evoked potentials. Prospective study. A total of 5 children ranging in age from 21 to 49 months who were fitted with a cochlear implant for at least 6 months were included in this study. The stimuli were pure tones (750 Hz, 200 ms duration, 70 dB SPL) presented with an irregular interstimulus interval (1000-2000 ms) via loud speakers. The cortical auditory evoked potentials were recorded from 17 Ag-AgCl electrodes referenced to the nose. The peak latency and amplitude of each deflection culminating at the fronto-central and temporal sites were analyzed. The P100-N250 peak latencies and amplitudes of the cortical auditory evoked potentials recorded from children fitted with cochlear implants. Scalp map potentials distributions were done for each child for the N250 wave. The use of independent component analysis permitted to minimize the cochlear implant artifact for the five children. Cortical auditory evoked potentials were recorded at fronto-central and temporal sites. Scalp map potentials distributions for the N2 wave showed activation of temporal generators contralateral at the CI for the five children. This preliminary electrophysiological study confirms the value and the limits of independent component analysis. It could allow longitudinal studies in cochlear implant users to examine the maturation of auditory cortex. It could also be used to identify objective cortical electrophysiological measures to help the fitting of CIs in children. Copyright © 2012 Elsevier Ireland Ltd. All rights

  1. [New method for measuring the cortical auditory evoked potentials: the HEARLab].

    PubMed

    Bach, Adám; Tóth, Ferenc; Matievics, Vera; Kiss, József Géza; Jóri, József; Szakál, Beáta; Balogh, Norbert; Soós, Alexandra; Rovó, László

    2014-09-21

    Cortical auditory evoked potentials can provide objective information about the highest level of the auditory system. The purpose of the authors was to introduce a new tool, the "HEARLab" which can be routinely used in clinical practice for the measurement of the cortical auditory evoked potentials. In addition, they wanted to establish standards of the analyzed parameters in subjects with normal hearing. 25 adults with normal hearing were tested with speech stimuli, and frequency specific examinations were performed utilizing pure tone stimuli. The findings regarding the latency and amplitude analyses of the evoked potentials confirm previously published results of this novel method. The HEARLAb can be a great help when performance of the conventional audiological examinations is complicated. The examination can be performed in uncooperative subjects even in the presence of hearing aids. The test is frequency specific and does not require anesthesia.

  2. Evaluating long-latency auditory evoked potentials in the diagnosis of cortical hearing loss in children

    PubMed Central

    Lopez-Soto, Teresa; Postigo-Madueno, Amparo; Nunez-Abades, Pedro

    2016-01-01

    In centrally related hearing loss, there is no apparent damage in the auditory system, but the patient is unable to hear sounds. In patients with cortical hearing loss (and in the absence of communication deficit, either total or partial, as in agnosia or aphasia), some attention-related or language-based disorders may lead to a wrong diagnosis of hearing impairment. The authors present two patients (8 and 11 years old) with no anatomical damage to the ear, the absence of neurological damage or trauma, but immature cortical auditory evoked potentials. Both patients presented a clinical history of multiple diagnoses over several years. Because the most visible symptom was moderate hearing loss, the patients were recurrently referred to audiological testing, with no improvement. This report describes the use of long-latency evoked potentials to determine cases of cortical hearing loss, where hearing impairment is a consequence of underdevelopment at the central nervous system. PMID:27006780

  3. Cortical stimulation and tooth pulp evoked potentials in rats: a model of direct anti-nociception.

    PubMed

    Rusina, Robert; Barek, Stephane; Vaculin, Simon; Azérad, Jean; Rokyta, Richard

    2010-01-01

    While the effect of cortex stimulation on pain control is widely accepted, its physiological basis remains poorly understood. We chose an animal model of pain to study the influence of sensorimotor cortex stimulation on tooth pulp stimulation evoked potentials (TPEPs). Fifteen awake rats implanted with tooth pulp, cerebral cortex, and digastric muscle electrodes were divided into three groups, receiving 60 Hz, 40 Hz and no cortical stimulation, respectively. TPEPs were recorded before, one, three and five hours after continuous stimulation. We observed an inverse relationship between TPEP amplitude and latency with increasing tooth pulp stimulation. The amplitudes of the early components of TPEPs increased and their latency decreased with increasing tooth pulp stimulation intensity. Cortical stimulation decreased the amplitude of TPEPs; however, neither the latencies of TPEPs nor the jaw-opening reflex were changed after cortical stimulation. The decrease in amplitude of TPEPs after cortical stimulation may reflect its anti-nociceptive effect.

  4. The investigation of cortical auditory evoked potentials responses in young adults having musical education.

    PubMed

    Polat, Zahra; Ataş, Ahmet

    2014-12-01

    In the literature, music education has been shown to enhance auditory perception for children and young adults. When compared to young adult non-musicians, young adult musicians demonstrate increased auditory processing, and enhanced sensitivity to acoustic changes. The evoked response potentials associated with the interpretation of sound are enhanced in musicians. Studies show that training also changes sound perception and cortical responses. The earlier training appears to lead to larger changes in the auditory cortex. Most cortical studies in the literature have used pure tones or musical instrument sounds as stimuli signals. The aim of those studies was to investigate whether musical education would enhance auditory cortical responses when speech signals were used. In this study, the speech sounds extracted from running speech were used as sound stimuli. Non-randomized controlled study. The experimental group consists of young adults up to 21 years-old, all with a minimum of 4 years of musical education. The control group was selected from young adults of the same age without any musical education. The experiments were conducted by using a cortical evoked potential analyser and /m/, /t/ /g/ sound stimulation at the level of 65 dB SPL. In this study, P1 / N1 / P2 amplitude and latency values were measured. Significant differences were found in the amplitude values of P1 and P2 (p<0.05). The differences among the latencies were not found to be significantly important (p>0.05). The results obtained in our study indicate that musical experience has an effect on the nervous system and this can be seen in cortical auditory evoked potentials recorded when the subjects hear speech.

  5. Axono-cortical evoked potentials: A proof-of-concept study.

    PubMed

    Mandonnet, E; Dadoun, Y; Poisson, I; Madadaki, C; Froelich, S; Lozeron, P

    2016-04-01

    Awake surgery is currently considered the best method to tailor intraparenchymatous resections according to functional boundaries. However, the exact mechanisms by which electrical stimulation disturbs behavior remain largely unknown. In this case report, we describe a new method to explore the propagation toward cortical sites of a brief pulse applied to an eloquent white matter pathway. We present a patient, operated on in awake condition for removal of a cavernoma of the left ventral premotor cortex. At the end of the resection, the application of 60Hz stimulation in the white matter of the operculum induced anomia. Stimulating the same site at a frequency of 1Hz during 70seconds allowed to record responses on electrodes put over Broca's area and around the inferior part of central sulcus. Axono-cortical evoked potentials were then obtained by averaging unitary responses, time-locked to the stimulus. We then discuss the origin of these evoked axono-cortical potentials and the likely pathway connecting the stimulation site to the recorded cortical sites. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Onset Latency of Motor Evoked Potentials in Motor Cortical Mapping with Neuronavigated Transcranial Magnetic Stimulation.

    PubMed

    Kallioniemi, Elisa; Pitkänen, Minna; Säisänen, Laura; Julkunen, Petro

    2015-01-01

    Cortical motor mapping in pre-surgical applications can be performed using motor evoked potential (MEP) amplitudes evoked with neuronavigated transcranial magnetic stimulation. The MEP latency, which is a more stable parameter than the MEP amplitude, has not so far been utilized in motor mapping. The latency, however, may provide information about the stress in damaged motor pathways, e.g. compression by tumors, which cannot be observed from the MEP amplitudes. Thus, inclusion of this parameter could add valuable information to the presently used technique of MEP amplitude mapping. In this study, the functional cortical representations of first dorsal interosseous (FDI), abductor pollicis brevis (APB) and abductor digiti minimi (ADM) muscles were mapped in both hemispheres of ten healthy righthanded volunteers. The cortical muscle representations were evaluated by the area and centre of gravity (CoG) by using MEP amplitudes and latencies. As expected, the latency and amplitude CoGs were congruent and were located in the centre of the maps but in a few subjects, instead of a single centre, several loci with short latencies were observed. In conclusion, MEP latencies may be useful in distinguishing the cortical representation areas with the most direct pathways from those pathways with prolonged latencies. However, the potential of latency mapping to identify stressed motor tract connections at the subcortical level will need to be verified in future studies with patients.

  7. Modulation of Cortical Motor Evoked Potential After Stroke During Electrical Stimulation of the Lateral Cerebellar Nucleus.

    PubMed

    Park, Hyun-Joo; Furmaga, Havan; Cooperrider, Jessica; Gale, John T; Baker, Kenneth B; Machado, Andre G

    2015-01-01

    Deep brain stimulation (DBS) targeting the dentato-thalamo-cortical (DTC) pathway at its origin in the lateral cerebellar nucleus (LCN) has been shown to enhance motor recovery in a rodent model of cortical ischemia. LCN DBS also yielded frequency-specific changes in motor cortex excitability in the normal brain, indexed by motor evoked potential (MEP) amplitude. To investigate the effect of cortical stroke on cortical motor excitability in a rodent ischemia model and to measure the effects of LCN DBS on post-ischemia excitability as a function of stimulation parameters. Adult Sprague-Dawley rats were divided into two groups: naïve and stroke, with cortical ischemia induced through multiple, unilateral endothelin-1 injections. All animals were implanted with a bipolar electrode in the LCN opposite the affected hemisphere. MEPs were elicited from the affected hemisphere using intracortical microstimulation (ICMS) techniques. Multiple LCN DBS parameters were examined, including isochronal stimulation at 20, 30, 50, and 100 Hz as well as a novel burst stimulation pattern. ICMS-evoked MEPs were reduced in stroke (n = 10) relative to naïve (n = 12) animals. However, both groups showed frequency-dependent augmentation of cortical excitability in response to LCN DBS. In the naïve group, LCN DBS increased MEPs by 22-58%, while in the stroke group, MEPs were enhanced by 9-41% compared to OFF-DBS conditions. Activation of the DTC pathway increases cortical excitability in both naïve and post-stroke animals. These effects may underlie, at least partially, functional reorganization and therapeutic benefits associated with chronic LCN DBS in post-stroke animals. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Modulation of cortical motor evoked potential after stroke during electrical stimulation of the lateral cerebellar nucleus

    PubMed Central

    Park, Hyun-Joo; Furmaga, Havan; Cooperrider, Jessica; Gale, John T.; Baker, Kenneth B.; Machado, Andre G.

    2015-01-01

    Background Deep brain stimulation (DBS) targeting the dentato-thalamo-cortical (DTC) pathway at its origin in the lateral cerebellar nucleus (LCN) has been shown to enhance motor recovery in a rodent model of cortical ischemia. LCN DBS also yielded frequency specific changes in motor cortex excitability in the normal brain, indexed by motor evoked potential (MEP) amplitude. Objective To investigate the effect of cortical stroke on cortical motor excitability in a rodent ischemia model and to measure the effects of LCN DBS on post-ischemia excitability as a function of stimulation parameters. Methods Adult Sprague-Dawley rats were divided into two groups: naïve and stroke, with cortical ischemia induced through multiple, unilateral endothelin-1 injections. All animals were implanted with a bipolar electrode in the LCN opposite the affected hemisphere. MEPs were elicited from the affected hemisphere using intracortical microstimulation (ICMS) techniques. Multiple LCN DBS parameters were examined, including isochronal stimulation at 20, 30, 50, and 100 Hz as well as a novel burst stimulation pattern. Results ICMS-evoked MEPs were reduced in stroke (n=10) relative to naïve (n=12) animals. However, both groups showed frequency-dependent augmentation of cortical excitability in response to LCN DBS. In the naïve group, LCN DBS increased MEPs by 22–58%, while in the stroke group, MEPs were enhanced by 9–41% compared to OFF DBS conditions. Conclusions Activation of the DTC pathway increases cortical excitability in both naïve and post-stroke animals. These effects may underlie, at least partially, functional reorganization and therapeutic benefits associated with chronic LCN DBS in post-stroke animals. PMID:26215752

  9. Grating visual evoked cortical potentials in the evaluation of laser bioeffects: instrumentation.

    PubMed

    Randolph, D I; Lund, D J; Van Sice, C W; Esgandarian, G E

    1982-12-01

    A system was designed to permit simultaneous viewing of the ocular fundus of the rhesus monkey (Macaca mulatta), the accurate placement of laser radiation on the retina, and the stimulation of the site to produce a grating visual evoked cortical potential (VECP). A fundus camera was modified to incorporate a grating whose image was projected onto the retina at specific locations. The evoked potential could thus be obtained for any rate of alternation before, during, and after the exposure of the fovea to any one of many laser sources. An example is shown of the use of this system to monitor the grating VECP before and after exposure of the animal's fundus to a 900 nm gallium arsenide laser source for 60 sec. In this case, changes were observed in the variability of the latency of components of the VECP when compared to the prelaser exposure potentials.

  10. Grating visual evoked cortical potentials in the evaluation of laser bioeffects: instrumentation

    SciTech Connect

    Randolph, D.I.; Lund, D.J.; Van Sice, C.W.; Esgandarian, G.E.

    1982-12-01

    A system was designed to permit simultaneous viewing of the ocular fundus of the rhesus monkey (Macaca mulatta), the accurate placement of laser radiation on the retina, and the stimulation of the site to produce a grating visual evoked cortical potential (VECP). A fundus camera was modified to incorporate a grating whose image was projected onto the retina at specific locations. The evoked potential could thus be obtained for any rate of alternation before, during, and after the exposure of the fovea to any one of many laser sources. An example is shown of the use of this system to monitor the grating VECP before and after exposure of the animal's fundus to a 900 nm gallium arsenide laser source for 60 sec. In this case, changes were observed in the variability of the latency of components of the VECP when compared to the prelaser exposure potentials.

  11. Giant early components of somatosensory evoked potentials to tibial nerve stimulation in cortical myoclonus.

    PubMed

    Anzellotti, Francesca; Onofrj, Marco; Bonanni, Laura; Saracino, Antonio; Franciotti, Raffaella

    2016-01-01

    Enlarged cortical components of somatosensory evoked potentials (giant SEPs) recorded by electroencephalography (EEG) and abnormal somatosensory evoked magnetic fields (SEFs) recorded by magnetoencephalography (MEG) are observed in the majority of patients with cortical myoclonus (CM). Studies on simultaneous recordings of SEPs and SEFs showed that generator mechanism of giant SEPs involves both primary sensory and motor cortices. However the generator sources of giant SEPs have not been fully understood as only one report describes clearly giant SEPs following lower limb stimulation. In our study we performed a combined EEG-MEG recording on responses elicited by electric median and tibial nerve stimulation in a patient who developed consequently to methyl bromide intoxication CM with giant SEPs to median and tibial nerve stimuli. SEPs wave shapes were identified on the basis of polarity-latency components (e.g. P15-N20-P25) as defined by earlier studies and guidelines. At EEG recording, the SEP giant component did not appear in the latency range of the first cortical component for median nerve SEP (N20), but appeared instead in the range of the P37 tibial nerve SEP, which is currently identified as the first cortical component elicited by tibial nerve stimuli. Our MEG and EEG SEPs recordings also showed that components in the latency range of P37 were preceded by other cortical components. These findings suggest that lower limb P37 does not correspond to upper limb N20. MEG results confirmed that giant SEFs are the second component from both tibial (N43m-P43m) and median (N27m-P27m) nerve stimulation. MEG dipolar sources of these giant components were located in the primary sensory and motor area.

  12. Analytical comparison of transient and steady state visual evoked cortical potentials

    NASA Technical Reports Server (NTRS)

    Junker, A. M.; Kenner, K. M.; Kleinman, D. L.; Mcclurg, T. D.

    1986-01-01

    To better describe the linear-dynamic properties of the human visual-cortical response system, transient and steady state Visual Evoked Response Potentials (VERP) were observed. The stimulus presentation device provided both the evoking stimulus (flickering or pulsing lights) and a video task display. The steady state stimulus was modulated by a complex, ten frequency, sum-of-sines, wave. The transient VERP was the time-locked average of the EEG to a series of narrow light pulses (pulse width of 10 msec). The Fourier transform of the averaged pulses had properties that approximate band limited white noise, i.e., a flat spectrum over the frequency region spanned by the 10 summed sines. The Fourier transform of both the steady state and the transient evoked potentials resulted in transfer that are equivalent and therefore comparable. To investigate the effects of task loading on evoked potentials, a grammatical reasoning task was provided. Results support the relevancy of continued application of a systems engineering approach for describing neurosensory functioning.

  13. Cortical Evoked Potentials and Hearing Aids in Individuals with Auditory Dys-Synchrony.

    PubMed

    Yuvaraj, Pradeep; Mannarukrishnaiah, Jayaram

    2015-12-01

    The purpose of the present study was to investigate the relationship between cortical processing of speech and benefit from hearing aids in individuals with auditory dys-synchrony. Data were collected from 38 individuals with auditory dys-synchrony. Participants were selected based on hearing thresholds, middle ear reflexes, otoacoustic emissions, and auditory brain stem responses. Cortical-evoked potentials were recorded for click and speech. Participants with auditory dys-synchrony were fitted with bilateral multichannel wide dynamic range compression hearing aids. Aided and unaided speech identification scores for 40 words were obtained for each participant. Hierarchical cluster analysis using Ward's method clearly showed four subgroups of participants with auditory dys-synchrony based on the hearing aid benefit score (aided minus unaided speech identification score). The difference in the mean aided and unaided speech identification scores was significantly different in participants with auditory dys-synchrony. However, the mean unaided speech identification scores were not significantly different between the four subgroups. The N2 amplitude and P1 latency of the speech-evoked cortical potentials were significantly different between the four subgroups formed based on hearing aid benefit scores. The results indicated that subgroups of individuals with auditory dys-synchrony who benefit from hearing aids exist. Individuals who benefitted from hearing aids showed decreased N2 amplitudes compared with those who did not. N2 amplitude is associated with greater suppression of background noise while processing speech.

  14. The use of cortical auditory evoked potentials to evaluate neural encoding of speech sounds in adults.

    PubMed

    Agung, Katrina; Purdy, Suzanne C; McMahon, Catherine M; Newall, Philip

    2006-09-01

    There has been considerable recent interest in the use of cortical auditory evoked potentials (CAEPs) as an electrophysiological measure of human speech encoding in individuals with normal as well as impaired auditory systems. The development of such electrophysiological measures such as CAEPs is important because they can be used to evaluate the benefits of hearing aids and cochlear implants in infants, young children, and adults that cannot cooperate for behavioral speech discrimination testing. The current study determined whether CAEPs produced by seven different speech sounds, which together cover a broad range of frequencies across the speech spectrum, could be differentiated from each other based on response latency and amplitude measures. CAEPs were recorded from ten adults with normal hearing in response to speech stimuli presented at a conversational level (65 dB SPL) via a loudspeaker. Cortical responses were reliably elicited by each of the speech sounds in all participants. CAEPs produced by speech sounds dominated by high-frequency energy were significantly different in amplitude from CAEPs produced by sounds dominated by lower-frequency energy. Significant effects of stimulus duration were also observed, with shorter duration stimuli producing larger amplitudes and earlier latencies than longer duration stimuli. This research demonstrates that CAEPs can be reliably evoked by sounds that encompass the entire speech frequency range. Further, CAEP latencies and amplitudes may provide an objective indication that spectrally different speech sounds are encoded differently at the cortical level.

  15. Cerebral hypoxia, missing cortical somatosensory evoked potentials and recovery of consciousness

    PubMed Central

    2014-01-01

    Background Bilaterally absent N20 components of the sensory evoked potentials (SEP) from the median nerve are regarded as accurately predicting poor outcome after cardiac arrest. Case presentation We are reporting on a patient, who regained consciousness despite this ominous finding. Early after cardiac arrest, MRI showed signal alterations in diffusion weighted imaging (DWI) bilaterally in the primary visual and sensorimotor cortex and in the basal ganglia. SEP were repeatedly absent. The patient survived shut out form sensory and visual experience and locked in for voluntary movements, but kept her verbal competence in several languages. Conclusion SEP inform about integrity only of a narrow cortical strip. It is unguarded, but common practice, to conclude from absent SEP, that a patient has suffered diffuse cortical damage after cardiac arrest. Cerebral MRI with DWI helps to avoid this prognostic error and furthers understanding of the sometimes very peculiar state of mind after cardiac arrest. PMID:24720818

  16. The relationship between obligatory cortical auditory evoked potentials (CAEPs) and functional measures in young infants.

    PubMed

    Golding, Maryanne; Pearce, Wendy; Seymour, John; Cooper, Alison; Ching, Teresa; Dillon, Harvey

    2007-02-01

    Finding ways to evaluate the success of hearing aid fittings in young infants has increased in importance with the implementation of hearing screening programs. Cortical auditory evoked potentials (CAEP) can be recorded in infants and provides evidence for speech detection at the cortical level. The validity of this technique as a tool of hearing aid evaluation needs, however, to be demonstrated. The present study examined the relationship between the presence/absence of CAEPs to speech stimuli and the outcomes of a parental questionnaire in young infants who were fitted with hearing aids. The presence/absence of responses was determined by an experienced examiner as well as by a statistical measure, Hotelling's T(2). A statistically significant correlation between CAEPs and questionnaire scores was found using the examiner's grading (rs = 0.45) and using the statistical grading (rs = 0.41), and there was reasonably good agreement between traditional response detection methods and the statistical analysis.

  17. Study of the human visual cortex: direct cortical evoked potentials and stimulation.

    PubMed

    Farrell, Donald F; Leeman, Stephanie; Ojemann, George A

    2007-02-01

    The authors studied the visual cortex of 15 patients undergoing studies for medically intractable epilepsy. Although the subdural and strip electrode placement varied in each of these patients, there were enough electrodes over the visual cortex to complete studies involving evoked potentials and direct cortical stimulation. Visual evoked potentials were elicited using two check sizes (50 and 16 min) for pattern reversal studies, 50 min checks for on-off stimulation, 50 min checks for horizontal and vertical hemifields and simple flash for the VEP. These studies demonstrated that the pattern reversal and on-off stimuli caused very complex, multipotential waveforms in striate and vision associational cortex that do not resemble the response obtained at the scalp. Different volumes of visual cortex are activated by stimulation with 16 min checks, 50 min checks and simple flash. Flash activates the largest volume of visual cortex and it is likely that this finding is what makes this test of so little value clinically. Direct cortical stimulation shows that colored responses are generated primarily in the posterior striate cortex and inferior occipital lobe, while movement is primarily generated by the visual association cortex. No complex visual images were obtained by stimulation of either the striate cortex or visual association cortex. The brain mechanisms that lead to formed visual images remain to be identified.

  18. New Approach for Exploring Cerebral Functional Connectivity: Review of Cortico-cortical Evoked Potential

    PubMed Central

    KUNIEDA, Takeharu; YAMAO, Yukihiro; KIKUCHI, Takayuki; MATSUMOTO, Riki

    2015-01-01

    There has been a paradigm shift in the understanding of brain function. The intrinsic architecture of neuronal connections forms a key component of the cortical organization in our brain. Many imaging studies, such as noninvasive magnetic resonance imaging (MRI) studies, have now enabled visualization of the white matter fiber tracts interconnecting the functional cortical areas in the living brain. Although such a structural connectome is essential for understanding of cortical function, the anatomical information alone is not sufficient. Practically, few techniques allow the investigation of the excitatory and inhibitory mechanisms of the cortex in vivo in humans. Several attempts have been made to track neuronal connectivity by applying direct electrical stimuli to the brain in order to stimulate subdural and/or depth electrodes and record responses from the functionally connected cortex. In vivo single-pulse electrical stimulation (SPES) and/or cortico-cortical evoked potential (CCEP) were recently introduced to track various brain networks. This article reviews the concepts, significance, methods, mechanisms, limitations, and clinical applications of CCEP in the analysis of these dynamic connections. PMID:25925755

  19. The hippocampus and amygdala are integrators of neocortical influence: a cortico-cortical evoked potential study.

    PubMed

    Mégevand, Pierre; Groppe, David M; Bickel, Stephan; Mercier, Manuel R; Goldfinger, Matthew S; Keller, Corey J; Entz, Laszlo; Mehta, Ashesh D

    2017-10-05

    Brain stimulation is increasingly viewed as an effective approach to treat neuropsychiatric disease. The brain's organization in distributed networks suggests that the activity of a remote brain structure could be modulated by stimulating cortical areas that strongly connect to the target. Most connections between cerebral areas are asymmetric, and a better understanding of the relative direction of information flow along connections could improve the targeting of stimulation to influence deep brain structures. The hippocampus and amygdala, two deep-situated structures that are crucial to memory and emotions respectively, have been implicated in multiple neurological and psychiatric disorders. We explored the effective connectivity between the hippocampus and amygdala and the cerebral cortex in patients implanted with intracranial electrodes using cortico-cortical potentials (CCEPs) evoked by single-pulse electrical stimulation. The hippocampus and amygdala were connected with most of the cortical mantle, either directly or indirectly, with the inferior temporal cortex being most directly connected. Because CCEPs assess the directionality of connections, we could determine that incoming connections from cortex to hippocampus were more direct than outgoing connections from hippocampus to cortex. We found a similar, albeit smaller, tendency for connections between the amygdala and cortex. Our results support the roles of the hippocampus and amygdala to be integrators of widespread cortical influence. These results can inform the targeting of non-invasive neurostimulation to influence hippocampus and amygdala function.

  20. Direct cortical stimulation but not transcranial electrical stimulation motor evoked potentials detect brain ischemia during brain tumor resection.

    PubMed

    Li, Fenghua; Deshaies, Eric M; Allott, Geoffrey; Canute, Gregory; Gorji, Reza

    2011-09-01

    Motor evoked potentials (MEPs) elicited by both direct cortical stimulation (DCS) and transcranial electrical stimulation are used during brain tumor resection. Parallel use of direct cortical stimulation motor evoked potentials (DCS-MEPs) and transcranial electrical stimulation motor evoked potentials (TCeMEPs) has been practiced during brain tumor resection. We report that DCS-MEPs elicited by direct subdural grid stimulation, but not TCeMEPs, detected brain ischemia during brain tumor resection. Following resection of a brainstem high-grade glioma in a 21-year-old, the threshold of cortical motor-evoked-potentials (cMEPs) increased from 13 mA to 20 mA while amplitudes decreased. No changes were noted in transcranial motor evoked potentials (TCMEPs), somatosensory evoked potentials (SSEPs), auditory evoked potentials (AEPs), anesthetics, or hemodynamic parameters. Our case showed the loss of cMEPs and SSEPs, but not TCeMEPs. Permanent loss of DCS-MEPs and SSEPs was correlated with permanent left hemiplegia in our patient even when appropriate action was taken. Parallel use of DCS- and TCeMEPs with SSEPs improves sensitivity of intraoperative detection of motor impairment. DCS may be superior to TCeMEPs during brain tumor resection.

  1. Simultaneously-evoked auditory potentials (SEAP): A new method for concurrent measurement of cortical and subcortical auditory-evoked activity.

    PubMed

    Slugocki, Christopher; Bosnyak, Daniel; Trainor, Laurel J

    2017-03-01

    Recent electrophysiological work has evinced a capacity for plasticity in subcortical auditory nuclei in human listeners. Similar plastic effects have been measured in cortically-generated auditory potentials but it is unclear how the two interact. Here we present Simultaneously-Evoked Auditory Potentials (SEAP), a method designed to concurrently elicit electrophysiological brain potentials from inferior colliculus, thalamus, and primary and secondary auditory cortices. Twenty-six normal-hearing adult subjects (mean 19.26 years, 9 male) were exposed to 2400 monaural (right-ear) presentations of a specially-designed stimulus which consisted of a pure-tone carrier (500 or 600 Hz) that had been amplitude-modulated at the sum of 37 and 81 Hz (depth 100%). Presentation followed an oddball paradigm wherein the pure-tone carrier was set to 500 Hz for 85% of presentations and pseudo-randomly changed to 600 Hz for the remaining 15% of presentations. Single-channel electroencephalographic data were recorded from each subject using a vertical montage referenced to the right earlobe. We show that SEAP elicits a 500 Hz frequency-following response (FFR; generated in inferior colliculus), 80 (subcortical) and 40 (primary auditory cortex) Hz auditory steady-state responses (ASSRs), mismatch negativity (MMN) and P3a (when there is an occasional change in carrier frequency; secondary auditory cortex) in addition to the obligatory N1-P2 complex (secondary auditory cortex). Analyses showed that subcortical and cortical processes are linked as (i) the latency of the FFR predicts the phase delay of the 40 Hz steady-state response, (ii) the phase delays of the 40 and 80 Hz steady-state responses are correlated, and (iii) the fidelity of the FFR predicts the latency of the N1 component. The SEAP method offers a new approach for measuring the dynamic encoding of acoustic features at multiple levels of the auditory pathway. As such, SEAP is a promising tool with which to study how

  2. The locus of color sensation: Cortical color loss and the chromatic visual evoked potential

    PubMed Central

    Crognale, Michael A.; Duncan, Chad S.; Shoenhard, Hannah; Peterson, Dwight J.; Berryhill, Marian E.

    2013-01-01

    Color losses of central origin (cerebral achromatopsia and dyschromatopsia) can result from cortical damage and are most commonly associated with stroke. Such cases have the potential to provide useful information regarding the loci of the generation of the percept of color. One available tool to examine this issue is the chromatic visual evoked potential (cVEP). The cVEP has been used successfully to objectively quantify losses in color vision capacity in both congenital and acquired deficiencies of retinal origin but has not yet been applied to cases of color losses of cortical origin. In addition, it is not known with certainty which cortical sites are responsible for the generation of the cVEP waveform components. Here we report psychophysical and electrophysiological examination of a patient with color deficits resulting from a bilateral cerebral infarct in the ventral occipitotemporal region. Although this patient demonstrated pronounced color losses of a general nature, the waveform of the cVEP remains unaffected. Contrast response functions of the cVEP are also normal for this patient. The results suggest that the percept of color arises after the origin of the cVEP and that normal activity in those areas that give rise to the characteristic negative wave of the cVEP are not sufficient to provide for the normal sensation of color. PMID:23986535

  3. Cortical Auditory Evoked Potentials Recorded from Nucleus Hybrid Cochlear Implant Users

    PubMed Central

    Jeon, Eun Kyung; Chiou, Li-Kuei; Kirby, Benjamin; Karsten, Sue; Turner, Christopher; Abbas, Paul

    2015-01-01

    Objective Nucleus Hybrid CI users hear low-frequency sounds via acoustic stimulation and high frequency sounds via electrical stimulation. This within-subject study compares three different methods of coordinating programming of the acoustic and electrical components of the Hybrid device. Speech perception and cortical auditory evoked potentials (CAEP) were used to assess differences in outcome. The goals of this study were to determine (1) if the evoked potential measures could predict which programming strategy resulted either in better outcome on the speech perception task or was preferred by the listener, and (2) whether CAEPs could be used to predict which subjects benefitted most from having access to the electrical signal provided by the Hybrid implant. Design CAEPs were recorded from 10 Nucleus Hybrid CI users. Study participants were tested using three different experimental MAPs that differed in terms of how much overlap there was between the range of frequencies processed by the acoustic component of the Hybrid device and range of frequencies processed by the electrical component. The study design included allowing participants to acclimatize for a period of up to 4 weeks with each experimental program prior to speech perception and evoked potential testing. Performance using the experimental MAPs was assessed using both a closed-set consonant recognition task and an adaptive test that measured the signal to noise ratio that resulted in 50% correct identification of a set of 12 spondees presented in background noise (SNR-50). Long-duration, synthetic vowels were used to record both the cortical P1-N1-P2 “onset” response and the auditory “change” or ACC response. Correlations between the evoked potential measures and performance on the speech perception tasks are reported. Results Differences in performance using the three programming strategies were not large. Peak-to-peak amplitude of the AAC response was not found to be sensitive enough to

  4. Cortical and spinal evoked potential response to electrical stimulation in human rectum

    PubMed Central

    Garvin, Brian; Lovely, Lisa; Tsodikov, Alex; Minecan, Danielle; Hong, Shaungson; Wiley, John W

    2010-01-01

    AIM: To study a novel technique to record spinal and cortical evoked potentials (EPs) simultaneously in response to electrical stimulation in the human rectum. METHODS: Eight male and nine female healthy volunteers participated. Stimulating electrodes were attached to the rectal mucosa at 15 cm and 12 cm above the dentate line. Recording skin electrodes were positioned over vertebrae L4 through S2. The electrical stimulus was a square wave of 0.2 ms duration and the intensity of the stimulus varied between 0 and 100 mA. EP responses were recorded using a Nicolet Viking IV programmable signal conditioner. RESULTS: Simultaneous recording of cortical and spinal EPs was obtained in > 80% of the trials. The EP responses increased with the intensity of the electrical stimulation, were reproducible overtime, and were blocked by application of Lidocaine jelly at the site of stimulation. The morphology (N1/P1), mean ± SD for latency (spinal N1, 4.6 ± 0.4 ms; P1, 6.8 ± 0.5 ms; cortical N1, 136.1 ± 4.2 ms; P1, 233.6 ± 12.8 ms) and amplitude (N1/P1, spinal, 38 ± 7 μV; cortical 19 ± 3 μV) data for the EP responses were consistent with those in the published literature. Reliable and reproducible EP recordings were obtained with the attachment of the electrodes to the rectal mucosa at predetermined locations between 16 and 8 cm above the anal verge, and the distance between the attachment sites of the electrodes (the optimal distance being approximately 3.0 cm between the two electrodes). CONCLUSION: This technique can be used to assess potential abnormalities in primary afferent neural pathways innervating the rectum in several neurodegenerative and functional pain disorders. PMID:21086561

  5. The temporal relationship between the brainstem and primary cortical auditory evoked potentials.

    PubMed

    Shaw, N A

    1995-10-01

    Many methods are employed in order to define more precisely the generators of an evoked potential (EP) waveform. One technique is to compare the timing of an EP whose origin is well established with that of one whose origin is less certain. In the present article, the latency of the primary cortical auditory evoked potential (PCAEP) was compared to each of the seven subcomponents which compose the brainstem auditory evoked potential (BAEP). The data for this comparison was derived from a retrospective analysis of previous recordings of the PCAEP and BAEP. Central auditory conduction time (CACT) was calculated by subtracting the latency of the cochlear nucleus BAEP component (wave III) from that of the PCAEP. It was found that CACT in humans is 12 msec which is more than double that of central somatosensory conduction time. The interpeak latencies between BAEP waves V, VI, and VII and the PCAEP were also calculated. It was deduced that all three waves must have an origin rather more caudally within the central auditory system than is commonly supposed. In addition, it is demonstrated that the early components of the middle latency AEP (No and Na) largely reside within the time domain between the termination of the BAEP components and the PCAEP which would be consistent with their being far field reflections of midbrain and subcortical auditory activity. It is concluded that as the afferent volley ascends the central auditory pathways, it generates not a sequence of high frequency BAEP responses but rather a succession of slower post-synaptic waves. The only means of reconciling the timing of the BAEP waves with that of the PCAEP is to assume that the generation of all the BAEP components must be largely restricted to a quite confined region within the auditory nerve and the lower half of the pons.

  6. Cortical auditory evoked potentials in the assessment of auditory neuropathy: two case studies.

    PubMed

    Pearce, Wendy; Golding, Maryanne; Dillon, Harvey

    2007-05-01

    Infants with auditory neuropathy and possible hearing impairment are being identified at very young ages through the implementation of hearing screening programs. The diagnosis is commonly based on evidence of normal cochlear function but abnormal brainstem function. This lack of normal brainstem function is highly problematic when prescribing amplification in young infants because prescriptive formulae require the input of hearing thresholds that are normally estimated from auditory brainstem responses to tonal stimuli. Without this information, there is great uncertainty surrounding the final fitting. Cortical auditory evoked potentials may, however, still be evident and reliably recorded to speech stimuli presented at conversational levels. The case studies of two infants are presented that demonstrate how these higher order electrophysiological responses may be utilized in the audiological management of some infants with auditory neuropathy.

  7. Auditory brain stem response and cortical evoked potentials in children with type 1 diabetes mellitus.

    PubMed

    Radwan, Heba Mohammed; El-Gharib, Amani Mohamed; Erfan, Adel Ali; Emara, Afaf Ahmad

    2017-05-01

    Delay in ABR and CAEPs wave latencies in children with type 1DM indicates that there is abnormality in the neural conduction in DM patients. The duration of DM has greater effect on auditory function than the control of DM. Diabetes mellitus (DM) is a common endocrine and metabolic disorder. Evoked potentials offer the possibility to perform a functional evaluation of neural pathways in the central nervous system. To investigate the effect of type 1 diabetes mellitus (T1DM) on auditory brain stem response (ABR) and cortical evoked potentials (CAEPs). This study included two groups: a control group (GI), which consisted of 20 healthy children with normal peripheral hearing, and a study group (GII), which consisted of 30 children with type I DM. Basic audiological evaluation, ABR, and CAEPs were done in both groups. Delayed absolute latencies of ABR and CAEPs waves were found. Amplitudes showed no significant difference between both groups. Positive correlation was found between ABR wave latencies and duration of DM. No correlation was found between ABR, CAEPs, and glycated hemoglobin.

  8. Visual Evoked Potentials as a Readout of Cortical Function in Infants With Tuberous Sclerosis Complex.

    PubMed

    Varcin, Kandice J; Nelson, Charles A; Ko, Jordan; Sahin, Mustafa; Wu, Joyce Y; Jeste, Shafali Spurling

    2016-02-01

    Tuberous sclerosis complex is an autosomal dominant genetic disorder that confers a high risk for neurodevelopmental disorders, such as autism spectrum disorder and intellectual disability. Studies have demonstrated specific delays in visual reception skills that may predict the development of autism spectrum disorder and intellectual disability. Based on evidence for alterations in the retinogeniculate pathway in animal models of tuberous sclerosis complex, we asked whether children with tuberous sclerosis complex demonstrate alterations in early visual processing that may undermine the development of higher-level visual behaviors. Pattern-reversal visual evoked potentials were recorded in infants with tuberous sclerosis complex (n = 16) and typically developing infants (n = 18) at 12 months of age. Infants with tuberous sclerosis complex demonstrated remarkably intact visual evoked potentials even within the context of intellectual disability and epilepsy. Infants with tuberous sclerosis complex show intact visual cortical processing, suggesting that delays in visually mediated behaviors in tuberous sclerosis complex may not be rooted in early visual processing deficits.

  9. Sensitivity of offset and onset cortical auditory evoked potentials to signals in noise.

    PubMed

    Baltzell, Lucas S; Billings, Curtis J

    2014-02-01

    The purpose of this study was to determine the effects of SNR and signal level on the offset response of the cortical auditory evoked potential (CAEP). Successful listening often depends on how well the auditory system can extract target signals from competing background noise. Both signal onsets and offsets are encoded neurally and contribute to successful listening in noise. Neural onset responses to signals in noise demonstrate a strong sensitivity to signal-to-noise ratio (SNR) rather than signal level; however, the sensitivity of neural offset responses to these cues is not known. We analyzed the offset response from two previously published datasets for which only the onset response was reported. For both datasets, CAEPs were recorded from young normal-hearing adults in response to a 1000-Hz tone. For the first dataset, tones were presented at seven different signal levels without background noise, while the second dataset varied both signal level and SNR. Offset responses demonstrated sensitivity to absolute signal level in quiet, SNR, and to absolute signal level in noise. Offset sensitivity to signal level when presented in noise contrasts with previously published onset results. This sensitivity suggests a potential clinical measure of cortical encoding of signal level in noise.

  10. Effects of hearing aid amplification and stimulus intensity on cortical auditory evoked potentials.

    PubMed

    Billings, Curtis J; Tremblay, Kelly L; Souza, Pamela E; Binns, Malcolm A

    2007-01-01

    Hearing aid amplification can be used as a model for studying the effects of auditory stimulation on the central auditory system (CAS). We examined the effects of stimulus presentation level on the physiological detection of sound in unaided and aided conditions. P1, N1, P2, and N2 cortical evoked potentials were recorded in sound field from 13 normal-hearing young adults in response to a 1000-Hz tone presented at seven stimulus intensity levels. As expected, peak amplitudes increased and peak latencies decreased with increasing intensity for unaided and aided conditions. However, there was no significant effect of amplification on latencies or amplitudes. Taken together, these results demonstrate that 20 dB of hearing aid gain affects neural responses differently than 20 dB of stimulus intensity change. Hearing aid signal processing is discussed as a possible contributor to these results. This study demonstrates (1) the importance of controlling for stimulus intensity when evoking responses in aided conditions, and (2) the need to better understand the interaction between the hearing aid and the CAS.

  11. Direct motor evoked potentials and cortical mapping using the NIM® nerve monitoring system: A technical note.

    PubMed

    Bharadwaj, Suparna; Haji, Faizal; Hebb, Matthew; Chui, Jason

    2017-04-01

    Motor evoked potentials (MEPs) are commonly used to prevent neurological injury when operating in close proximity to the motor cortex or corticospinal pathway. We report a novel application of the NIM® nerve monitoring system (Medtronic@ NIM response 3.0) for intraoperative direct cortical (dc)-MEPs monitoring. A 69-year-old female patient presented with a 4month history of progressive left hemiparesis resulting from a large right sided posterior frontal meningioma that abutted and compressed the motor cortex. Motor cortical mapping and MEPs were indicated. The patient was anesthetized and maintained on total intravenous anesthetics. Compound muscle action potentials (CMAP) of the right upper limb were monitored using the NIM system. After a craniotomy was performed, we first used the Ojemann stimulator (monopolar) for dc-stimulation and then switched to use the monopolar nerve stimulator probe of the NIM system. The CMAP response was successfully elicited using the NIM stimulating probe (pulse width=250s, train frequency=7pulses/s, current=20mA). A gross total resection of the tumor was achieved with intermittent cortical mapping of MEPs. There were no intraoperative complications and the patient's motor function was preserved after the surgery. In this case, we reported the successful use of the NIM nerve monitoring system to elicit dc-MEPs under general anesthesia. The advantages of using this system include a simple set up and application, neurosurgeon familiarity, wide availability and lower cost. dc-MEPs can be achieved using the NIM system. We conclude that the NIM nerve monitoring system is a feasible alternative to standard neurophysiological monitoring systems.

  12. Cortical auditory-evoked potentials (CAEPs) in adults in response to filtered speech stimuli.

    PubMed

    Carter, Lyndal; Dillon, Harvey; Seymour, John; Seeto, Mark; Van Dun, Bram

    2013-10-01

    Previous studies have demonstrated that cortical auditory-evoked potentials (CAEPs) can be reliably elicited in response to speech stimuli in listeners wearing hearing aids. It is unclear, however, how close to the aided behavioral threshold (i.e., at what behavioral sensation level) a sound must be before a cortical response can reliably be detected. The purpose of this study was to systematically examine the relationship between CAEP detection and the audibility of speech sounds (as measured behaviorally), when the listener is wearing a hearing aid fitted to prescriptive targets. A secondary aim was to investigate whether CAEP detection is affected by varying the frequency emphasis of stimuli, so as to simulate variations to the prescribed gain-frequency response of a hearing aid. The results have direct implications for the evaluation of hearing aid fittings in nonresponsive adult clients, and indirect implications for the evaluation of hearing aid fittings in infants. Participants wore hearing aids while listening to speech sounds presented in a sound field. Aided thresholds were measured, and cortical responses evoked, under a range of stimulus conditions. The presence or absence of CAEPs was determined by an automated statistic. Participants were adults (6 females and 4 males). Participants had sensorineural hearing loss ranging from mild to severe-profound in degree. Participants' own hearing aids were replaced with a test hearing aid, with linear processing, during assessments. Pure-tone thresholds and hearing aid gain measurements were obtained, and a theoretical prediction of speech stimulus audibility for each participant (similar to those used for audibility predictions in infant hearing aid fittings) was calculated. Three speech stimuli, (/m/, /t/, and /g/) were presented aided (monaurally, nontest ear occluded), free field, under three conditions (+4 dB/octave, -4 dB/octave, and without filtering), at levels of 40, 50, and 60 dB SPL (measured for the

  13. Vestibular evoked potentials (VsEPs) of cortical origin produced by impulsive acceleration applied at the nasion.

    PubMed

    Todd, Neil P M; McLean, Aisha; Paillard, Aurore; Kluk, Karolina; Colebatch, James G

    2014-12-01

    We report the results of a study to record vestibular evoked potentials (VsEPs) of cortical origin produced by impulsive acceleration (IA). In a sample of 12 healthy participants, evoked potentials recorded by 70 channel electroencephalography were obtained by IA stimulation at the nasion and compared with evoked potentials from the same stimulus applied to the forefingers. The nasion stimulation gave rise to a series of positive and negative deflections in the latency range of 26-72 ms, which were dependent on the polarity of the applied IA. In contrast, evoked potentials from the fingers were characterised by a single N50/P50 deflection at about 50 ms and were polarity invariant. Source analysis confirmed that the finger evoked potentials were somatosensory in origin, i.e. were somatosensory evoked potentials, and suggested that the nasion evoked potentials plausibly included vestibular midline and frontal sources, as well as contributions from the eyes, and thus were likely VsEPs. These results show considerable promise as a new method for assessment of the central vestibular system by means of VsEPs produced by IA applied to the head.

  14. Noninvasive scalp recording of cortical auditory evoked potentials in the alert macaque monkey.

    PubMed

    Itoh, Kosuke; Nejime, Masafumi; Konoike, Naho; Nakada, Tsutomu; Nakamura, Katsuki

    2015-09-01

    Scalp-recorded evoked potentials (EP) provide researchers and clinicians with irreplaceable means for recording stimulus-related neural activities in the human brain, due to its high temporal resolution, handiness, and, perhaps more importantly, non-invasiveness. This work recorded the scalp cortical auditory EP (CAEP) in unanesthetized monkeys by using methods that are essentially identical to those applied to humans. Young adult rhesus monkeys (Macaca mulatta, 5-7 years old) were seated in a monkey chair, and their head movements were partially restricted by polystyrene blocks and tension poles placed around their head. Individual electrodes were fixated on their scalp using collodion according to the 10-20 system. Pure tone stimuli were presented while electroencephalograms were recorded from up to nineteen channels, including an electrooculogram channel. In all monkeys (n = 3), the recorded CAEP comprised a series of positive and negative deflections, labeled here as macaque P1 (mP1), macaque N1 (mN1), macaque P2 (mP2), and macaque N2 (mN2), and these transient responses to sound onset were followed by a sustained potential that continued for the duration of the sound, labeled the macaque sustained potential (mSP). mP1, mN2 and mSP were the prominent responses, and they had maximal amplitudes over frontal/central midline electrode sites, consistent with generators in auditory cortices. The study represents the first noninvasive scalp recording of CAEP in alert rhesus monkeys, to our knowledge. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. [Origin of olfactory and rhinosensory evoked cortical potentials in diseases of the central nervous system].

    PubMed

    Westhofen, M; Herberhold, C; Thayssen, G; Jend, H H

    1985-08-01

    This is the first report to be published on olfactory evoked potentials in patients with well-defined lesions of the central nervous system and the trigeminal nerve. Absence of olfactory evoked potentials is seen in post-central and parietotemporal lesions. The first peak of the so-called olfactory evoked twin potential is absent in lesions of the basal nuclei and sectioning of the trigeminal or ophthalmic nerve, whereas there is no second peak in subcortico-frontal and cortico-temporal lesions. Tumours of the corpus callosum and sectioning of the maxillary and mandibular nerves do not disturb the olfactory evoked potentials. The anatomically different localisation and the functional synergism of the olfactory and trigeminal systems in the perception of odours and the processing of olfactory evoked potentials are pointed out.

  16. Fabrication and testing of polyimide-based microelectrode arrays for cortical mapping of evoked potentials.

    PubMed

    Myllymaa, Sami; Myllymaa, Katja; Korhonen, Hannu; Töyräs, Juha; Jääskeläinen, Juha E; Djupsund, Kaj; Tanila, Heikki; Lappalainen, Reijo

    2009-06-15

    Modern microfabrication techniques make it possible to develop microelectrode arrays that may be utilized not only in neurophysiological research but also in the clinic, e.g. in neurosurgery and as elements of neural prostheses. The aim of this study was to test whether a flexible microelectrode array is suitable for recording cortical surface field potentials in rats. Polyimide-based microelectrode arrays were fabricated by utilizing microfabrication techniques e.g. photolithography and magnetron sputter deposition. The present microelectrode array consists of eight platinum microelectrodes (round-shaped, Ø: 200 microm), transmission lines and connector pads sandwiched between two thin layers of biocompatible polyimide. The microelectrode arrays were electrochemically characterized by impedance spectroscopy in physiological saline solution and successfully tested in vivo by conducting acute and chronic measurements of evoked potentials on the surface of rat cortex. The arrays proved excellent flexibility and mechanical strength during handling and implantation onto the surface of cortex. The excellent electrochemical characteristics and stable in vivo recordings with high spatiotemporal resolution highlight the potential of these arrays. The fabrication protocol described here allows implementation of several other neural interfaces with different layouts, material selections or target areas either for recording or stimulation purposes.

  17. Cortical Auditory Evoked Potentials in (Un)aided Normal-Hearing and Hearing-Impaired Adults

    PubMed Central

    Van Dun, Bram; Kania, Anna; Dillon, Harvey

    2016-01-01

    Cortical auditory evoked potentials (CAEPs) are influenced by the characteristics of the stimulus, including level and hearing aid gain. Previous studies have measured CAEPs aided and unaided in individuals with normal hearing. There is a significant difference between providing amplification to a person with normal hearing and a person with hearing loss. This study investigated this difference and the effects of stimulus signal-to-noise ratio (SNR) and audibility on the CAEP amplitude in a population with hearing loss. Twelve normal-hearing participants and 12 participants with a hearing loss participated in this study. Three speech sounds—/m/, /g/, and /t/—were presented in the free field. Unaided stimuli were presented at 55, 65, and 75 dB sound pressure level (SPL) and aided stimuli at 55 dB SPL with three different gains in steps of 10 dB. CAEPs were recorded and their amplitudes analyzed. Stimulus SNRs and audibility were determined. No significant effect of stimulus level or hearing aid gain was found in normal hearers. Conversely, a significant effect was found in hearing-impaired individuals. Audibility of the signal, which in some cases is determined by the signal level relative to threshold and in other cases by the SNR, is the dominant factor explaining changes in CAEP amplitude. CAEPs can potentially be used to assess the effects of hearing aid gain in hearing-impaired users. PMID:27587919

  18. Background noise can enhance cortical auditory evoked potentials under certain conditions

    PubMed Central

    Papesh, Melissa A.; Billings, Curtis J.; Baltzell, Lucas S.

    2017-01-01

    Objective To use cortical auditory evoked potentials (CAEPs) to understand neural encoding in background noise and the conditions under which noise enhances CAEP responses. Methods CAEPs from 16 normal-hearing listeners were recorded using the speech syllable/ba/presented in quiet and speech-shaped noise at signal-to-noise ratios of 10 and 30 dB. The syllable was presented binaurally and monaurally at two presentation rates. Results The amplitudes of N1 and N2 peaks were often significantly enhanced in the presence of low-level background noise relative to quiet conditions, while P1 and P2 amplitudes were consistently reduced in noise. P1 and P2 amplitudes were significantly larger during binaural compared to monaural presentations, while N1 and N2 peaks were similar between binaural and monaural conditions. Conclusions Methodological choices impact CAEP peaks in very different ways. Negative peaks can be enhanced by background noise in certain conditions, while positive peaks are generally enhanced by binaural presentations. Significance Methodological choices significantly impact CAEPs acquired in quiet and in noise. If CAEPs are to be used as a tool to explore signal encoding in noise, scientists must be cognizant of how differences in acquisition and processing protocols selectively shape CAEP responses. PMID:25453611

  19. Asymmetric responses in cortical visually evoked potentials to motion are not derived from eye movements.

    PubMed

    Wilson, J R; Noyd, W W; Aiyer, A D; Norcia, A M; Mustari, M J; Boothe, R G

    1999-09-01

    Normal neonates and many adults after abnormal visual development have directional preferences for visual stimulus motions; i.e., they give better responses for optokinetic nystagmus (OKN) and visually evoked potentials (VEPs) in one direction than to those in the opposite direction. The authors tested whether the VEP responses were asymmetrical because of abnormal eye movements. VEPs were recorded from the visual cortices of five macaque monkeys: one normal, one neonate, and three reared with alternating monocular occlusion (AMO). They were lightly anesthetized, followed by paralysis to prevent eye movements. They then had "jittered" vertical grating patterns presented in their visual fields. The steady state VEPs were analyzed with discrete Fourier transforms to obtain the amplitudes and phases of the asymmetries. The normal, control monkey had small, insignificant amplitudes of its asymmetrical Fourier component and random phases that were not 180 degrees out of phase across the left and right eyes. The neonatal monkey and the AMO monkeys all had large, significant asymmetries that were approximately 180 degrees out of phase between the left and right eyes. The neonate and abnormally reared monkeys continued to have asymmetrical responses even after their eyes were paralyzed. Therefore, eye movements cannot be the source of the asymmetrical amplitudes of the VEPs, and the visual cortex is at least one source responsible for asymmetries observed in neonates and adults reared under abnormal visual inputs.

  20. The Electrically-Evoked Cortical Auditory Event-Related Potential in Children with Auditory Brainstem Implants

    PubMed Central

    He, Shuman; Holly, F.B. Teagle; Ewend, Matthew; Henderson, Lillian; Buchman, Craig A.

    2014-01-01

    Objective This study explored the feasibility of measuring electrically-evoked cortical auditory event-related potentials (eERPs) in children with auditory brainstem implants (ABIs). Design Five children with unilateral ABIs ranging in age from2.8 to 10.2yrs (mean: 5.2yrs) participated in this study. The stimulus was a 100-ms biphasic pulse train that was delivered to individual electrodes in a monopolar stimulation mode. Electrophysiological recordings of the onset eERP were conducted in all subjects. Results The onset eERP was recorded in four subjects who demonstrated auditory perception. These eERP responses showed variations in waveform morphology across subjects and stimulating electrode locations. No eERPs were observed in one subject who received no auditory sensation from ABI stimulation. Conclusions eERPs can be recorded in children with ABIs who develop auditory perception. The morphology of the eERP can vary across subjects and also across stimulating electrode locations within subjects. PMID:25426662

  1. Interaction of Musicianship and Aging: A Comparison of Cortical Auditory Evoked Potentials.

    PubMed

    O'Brien, Jennifer L; Nikjeh, Dee A; Lister, Jennifer J

    2015-01-01

    The goal of this study was to begin to explore whether the beneficial auditory neural effects of early music training persist throughout life and influence age-related changes in neurophysiological processing of sound. Cortical auditory evoked potentials (CAEPs) elicited by harmonic tone complexes were examined, including P1-N1-P2, mismatch negativity (MMN), and P3a. Data from older adult musicians (n = 8) and nonmusicians (n = 8) (ages 55-70 years) were compared to previous data from young adult musicians (n = 40) and nonmusicians (n = 20) (ages 18-33 years). P1-N1-P2 amplitudes and latencies did not differ between older adult musicians and nonmusicians; however, MMN and P3a latencies for harmonic tone deviances were earlier for older musicians than older nonmusicians. Comparisons of P1-N1-P2, MMN, and P3a components between older and young adult musicians and nonmusicians suggest that P1 and P2 latencies are significantly affected by age, but not musicianship, while MMN and P3a appear to be more sensitive to effects of musicianship than aging. Findings support beneficial influences of musicianship on central auditory function and suggest a positive interaction between aging and musicianship on the auditory neural system.

  2. Cortical inhibition of laser pain and laser-evoked potentials by non-nociceptive somatosensory input.

    PubMed

    Testani, Elisa; Le Pera, Domenica; Del Percio, Claudio; Miliucci, Roberto; Brancucci, Alfredo; Pazzaglia, Costanza; De Armas, Liala; Babiloni, Claudio; Rossini, Paolo Maria; Valeriani, Massimiliano

    2015-10-01

    Although the inhibitory action that tactile stimuli can have on pain is well documented, the precise timing of the interaction between the painful and non-painful stimuli in the central nervous system is unclear. The aim of this study was to investigate this issue by measuring the timing of the amplitude modulation of laser evoked potentials (LEPs) due to conditioning non-painful stimuli. LEPs were recorded from 31 scalp electrodes in 10 healthy subjects after painful stimulation of the right arm (C6-C7 dermatomes). Non-painful electrical stimuli were applied by ring electrodes on the second and third finger of the right hand. Electrical stimuli were delivered at +50, +150, +200 and +250 ms interstimulus intervals (ISIs) after the laser pulses. LEPs obtained without any conditioning stimulation were used as a baseline. As compared to the baseline, non-painful electrical stimulation reduced the amplitude of the vertex N2/P2 LEP component and the laser pain rating when electrical stimuli followed the laser pulses only at +150 and +200 ms ISIs. As at these ISIs the collision between the non-painful and painful input is likely to take place at the cortical level, we can conclude that the late processing of painful (thermal) stimuli is partially inhibited by the processing of non-painful (cutaneous) stimuli within the cerebral cortex. Moreover, our results do not provide evidence that non-painful inputs can inhibit pain at a lower level, including the spinal cord.

  3. Skin denervation does not alter cortical potentials to surface concentric electrode stimulation: A comparison with laser evoked potentials and contact heat evoked potentials.

    PubMed

    La Cesa, S; Di Stefano, G; Leone, C; Pepe, A; Galosi, E; Alu, F; Fasolino, A; Cruccu, G; Valeriani, M; Truini, A

    2017-09-12

    In the neurophysiological assessment of patients with neuropathic pain, laser evoked potentials (LEPs), contact heat evoked potentials (CHEPs) and the evoked potentials by the intraepidermal electrical stimulation via concentric needle electrode are widely agreed as nociceptive specific responses; conversely, the nociceptive specificity of evoked potentials by surface concentric electrode (SE-PREPs) is still debated. In this neurophysiological study we aimed at verifying the nociceptive specificity of SE-PREPs. We recorded LEPs, CHEPs and SE-PREPs in eleven healthy participants, before and after epidermal denervation produced by prolonged capsaicin application. We also used skin biopsy to verify the capsaicin-induced nociceptive nerve fibre loss in the epidermis. We found that whereas LEPs and CHEPs were suppressed after capsaicin-induced epidermal denervation, the surface concentric electrode stimulation of the same denervated skin area yielded unchanged SE-PREPs. The suppression of LEPs and CHEPs after nociceptive nerve fibre loss in the epidermis indicates that these techniques are selectively mediated by nociceptive system. Conversely, the lack of SE-PREP changes suggests that SE-PREPs do not provide selective information on nociceptive system function. Capsaicin-induced epidermal denervation abolishes laser evoked potentials (LEPs) and contact heat evoked potentials (CHEPs), but leaves unaffected pain-related evoked potentials by surface concentric electrode (SE-PREPs). These findings suggest that unlike LEPs and CHEPs, SE-PREPs are not selectively mediated by nociceptive system. © 2017 European Pain Federation - EFIC®.

  4. Dynamics of infant cortical auditory evoked potentials (CAEPs) for tone and speech tokens.

    PubMed

    Cone, Barbara; Whitaker, Richard

    2013-07-01

    Cortical auditory evoked potentials (CAEPs) to tones and speech sounds were obtained in infants to: (1) further knowledge of auditory development above the level of the brainstem during the first year of life; (2) establish CAEP input-output functions for tonal and speech stimuli as a function of stimulus level and (3) elaborate the data-base that establishes CAEP in infants tested while awake using clinically relevant stimuli, thus providing methodology that would have translation to pediatric audiological assessment. Hypotheses concerning CAEP development were that the latency and amplitude input-output functions would reflect immaturity in encoding stimulus level. In a second experiment, infants were tested with the same stimuli used to evoke the CAEPs. Thresholds for these stimuli were determined using observer-based psychophysical techniques. The hypothesis was that the behavioral thresholds would be correlated with CAEP input-output functions because of shared cortical response areas known to be active in sound detection. 36 infants, between the ages of 4 and 12 months (mean=8 months, s.d.=1.8 months) and 9 young adults (mean age 21 years) with normal hearing were tested. First, CAEPs amplitude and latency input-output functions were obtained for 4 tone bursts and 7 speech tokens. The tone bursts stimuli were 50 ms tokens of pure tones at 0.5, 1.0, 2.0 and 4.0 kHz. The speech sound tokens, /a/, /i/, /o/, /u/, /m/, /s/, and /∫/, were created from natural speech samples and were also 50 ms in duration. CAEPs were obtained for tone burst and speech token stimuli at 10 dB level decrements in descending order from 70 dB SPL. All CAEP tests were completed while the infants were awake and engaged in quiet play. For the second experiment, observer-based psychophysical methods were used to establish perceptual threshold for the same speech sound and tone tokens. Infant CAEP component latencies were prolonged by 100-150 ms in comparison to adults. CAEP latency

  5. Dynamics of Infant Cortical Auditory Evoked Potentials (CAEPs) for Tone and Speech Tokens

    PubMed Central

    Cone, Barbara; Whitaker, Richard

    2013-01-01

    Objectives Cortical auditory evoked potentials (CAEPs) to tones and speech sounds were obtained in infants to: 1) further knowledge of auditory development above the level of the brainstem during the first year of life; 2) establish CAEP input-output functions for tonal and speech stimuli as a function of stimulus level and to 3) elaborate the data-base that establishes CAEP in infants tested while awake using clinically relevant stimuli, thus providing methodology that would have translation to pediatric audiological assessment. Hypotheses concerning CAEP development were that the latency and amplitude input-output functions would reflect immaturity in encoding stimulus level. In a second experiment, infants were tested with the same stimuli used to evoke the CAEPs. Thresholds for these stimuli were determined using observer-based psychophysical techniques. The hypothesis was that the behavioral thresholds would be correlated with CAEP input-output functions because of shared cortical response areas known to be active in sound detection. Design 36 infants, between the ages of 4-12 months (mean= 8 months, s.d.=1.8 months) and 9 young adults (mean age 21 years) with normal hearing were tested. First, CAEPs amplitude and latency input-output functions were obtained for 4 tone bursts and 7 speech tokens. The tone bursts stimuli were 50 ms tokens of pure tones at 0.5, 1.0, 2.0 and 4.0 kHz. The speech sound tokens, /a/, /i/, /o/, /u/, /m/, /s/, and /∫/, were created from natural speech samples and were also 50 ms in duration. CAEPs were obtained for tone burst and speech token stimuli at 10 dB level decrements in descending order from 70 dB SPL. All CAEP tests were completed while the infants were awake and engaged in quiet play. For the second experiment, observer-based psychophysical methods were used to establish perceptual threshold for the same speech sound and tone tokens. Results Infant CAEP component latencies were prolonged by 100-150 ms in comparison to

  6. Visual Evoked Cortical Potential (VECP) Elicited by Sinusoidal Gratings Controlled by Pseudo-Random Stimulation

    PubMed Central

    Araújo, Carolina S.; Souza, Givago S.; Gomes, Bruno D.; Silveira, Luiz Carlos L.

    2013-01-01

    The contributions of contrast detection mechanisms to the visual cortical evoked potential (VECP) have been investigated studying the contrast-response and spatial frequency-response functions. Previously, the use of m-sequences for stimulus control has been almost restricted to multifocal electrophysiology stimulation and, in some aspects, it substantially differs from conventional VECPs. Single stimulation with spatial contrast temporally controlled by m-sequences has not been extensively tested or compared to multifocal techniques. Our purpose was to evaluate the influence of spatial frequency and contrast of sinusoidal gratings on the VECP elicited by pseudo-random stimulation. Nine normal subjects were stimulated by achromatic sinusoidal gratings driven by pseudo random binary m-sequence at seven spatial frequencies (0.4–10 cpd) and three stimulus sizes (4°, 8°, and 16° of visual angle). At 8° subtence, six contrast levels were used (3.12–99%). The first order kernel (K1) did not provide a consistent measurable signal across spatial frequencies and contrasts that were tested–signal was very small or absent–while the second order kernel first (K2.1) and second (K2.2) slices exhibited reliable responses for the stimulus range. The main differences between results obtained with the K2.1 and K2.2 were in the contrast gain as measured in the amplitude versus contrast and amplitude versus spatial frequency functions. The results indicated that K2.1 was dominated by M-pathway, but for some stimulus condition some P-pathway contribution could be found, while the second slice reflected the P-pathway contribution. The present work extended previous findings of the visual pathways contribution to VECP elicited by pseudorandom stimulation for a wider range of spatial frequencies. PMID:23940546

  7. Early Visual Evoked Potential Acuity and Future Behavioral Acuity in Cortical Visual Impairment

    PubMed Central

    Watson, Tonya; Orel-Bixler, Deborah; Haegerstrom-Portnoy, Gunilla

    2014-01-01

    Purpose Cortical Visual Impairment (CVI) is bilateral visual impairment caused by damage to the posterior visual pathway. Both preferential looking (PL) and sweep visual evoked potential (VEP) can be used to measure visual acuity. The purpose of this study was to determine if an early VEP measure of acuity is related to a young patient’s future behavioral acuity. Methods The visual acuity of 33 patients with CVI was assessed using the sweep VEP and a behavioral measure on two occasions. The median age of the patients at the initial visit was 4.8 years (range: 1.3–19.2 years), and they were followed for an average of 6.9 years (SD: 3.5 years). Results The mean initial VEP acuity was 20/135 (0.735 logMAR), and the mean initial behavioral acuity was 20/475 (1.242 logMAR). The average difference between the two initial measures of acuity was 0.55 log unit, with the behavioral measure reporting a poorer visual acuity in all patients. However, the mean final behavioral acuity was 20/150 (0.741 logMAR), and the average difference between the initial VEP acuity and the final behavioral acuity was only 0.01 log unit. Therefore, the initial VEP measure was not statistically different from the final behavioral measure (t=0.11; df=32; p=0.45). Conclusions Even though the initial VEP measure was much better than the initial behavioral measure, the initial VEP measure was similar to the behavioral visual acuity measured approximately 7 years later. Sweep VEP testing can be used as a predictive tool for at least the lower limit of future behavioral acuity in young patients with CVI. PMID:20016393

  8. Stimulation artifact correction method for estimation of early cortico-cortical evoked potentials.

    PubMed

    Trebaul, Lena; Rudrauf, David; Job, Anne-Sophie; Mălîia, Mihai Dragos; Popa, Irina; Barborica, Andrei; Minotti, Lorella; Mîndruţă, Ioana; Kahane, Philippe; David, Olivier

    2016-05-01

    Effective connectivity can be explored using direct electrical stimulations in patients suffering from drug-resistant focal epilepsies and investigated with intracranial electrodes. Responses to brief electrical pulses mimic the physiological propagation of signals and manifest as cortico-cortical evoked potentials (CCEP). The first CCEP component is believed to reflect direct connectivity with the stimulated region but the stimulation artifact, a sharp deflection occurring during a few milliseconds, frequently contaminates it. In order to recover the characteristics of early CCEP responses, we developed an artifact correction method based on electrical modeling of the electrode-tissue interface. The biophysically motivated artifact templates are then regressed out of the recorded data as in any classical template-matching removal artifact methods. Our approach is able to make the distinction between the physiological responses time-locked to the stimulation pulses and the non-physiological component. We tested the correction on simulated CCEP data in order to quantify its efficiency for different stimulation and recording parameters. We demonstrated the efficiency of the new correction method on simulations of single trial recordings for early responses contaminated with the stimulation artifact. The results highlight the importance of sampling frequency for an accurate analysis of CCEP. We then applied the approach to experimental data. The model-based template removal was compared to a correction based on the subtraction of the averaged artifact. This new correction method of stimulation artifact will enable investigators to better analyze early CCEP components and infer direct effective connectivity in future CCEP studies. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Evidence of Visual Memory in the Cortical Evoked Potential of Human Infants.

    ERIC Educational Resources Information Center

    Hofmann, Martin J.; And Others

    Averaged evoked potential (AEP) is an event-related brain response obtained by averaging the scalp electrical potentials elicited by repeated presentations of the same event. It has proven to be an accurate measure of the activity of the mature human brain when involved in a wide variety of psychological tasks. Distinct psychological processes…

  10. Cross-trial correlation analysis of evoked potentials reveals arousal-related attenuation of thalamo-cortical coupling.

    PubMed

    Sobolewski, Aleksander; Kublik, Ewa; Swiejkowski, Daniel A; Lęski, Szymon; Kamiński, Jan K; Wróbel, Andrzej

    2010-12-01

    We describe a computational method for assessing functional connectivity in sensory neuronal networks. The method, which we term cross-trial correlation, can be applied to signals representing local field potentials (LFPs) evoked by sensory stimulations and utilizes their trial-to-trial variability. A set of single trial samples of a given post-stimulus latency from consecutive evoked potentials (EPs) recorded at a given site is correlated with such sets for all other latencies and recording sites. The results of this computation reveal how neuronal activities at various sites and latencies correspond to activation of other sites at other latencies. The method was used to investigate the functional connectivity of thalamo-cortical network of somatosensory system in behaving rats at two levels of alertness: habituated and aroused. We analyzed potentials evoked by vibrissal deflections recorded simultaneously from the ventrobasal thalamus and barrel cortex. The cross-trial correlation analysis applied to the early post-stimulus period (<25 ms) showed that the magnitude of the population spike recorded in the thalamus at 5 ms post-stimulus correlated with the cortical activation at 6-13 ms post-stimulus. This correlation value was reduced at 6-9 ms, i.e. at early postsynaptic cortical response, with increased level of the animals' arousal. Similarly, the aroused state diminished positive thalamo-cortical correlation for subsequent early EP waves, whereas the efficacy of an indirect cortico-fugal inhibition (over 15 ms) did not change significantly. Thus we were able to characterize the state related changes of functional connections within the thalamo-cortical network of behaving animals.

  11. Towards an optimal paradigm for simultaneously recording cortical and brainstem auditory evoked potentials.

    PubMed

    Bidelman, Gavin M

    2015-02-15

    Simultaneous recording of brainstem and cortical event-related brain potentials (ERPs) may offer a valuable tool for understanding the early neural transcription of behaviorally relevant sounds and the hierarchy of signal processing operating at multiple levels of the auditory system. To date, dual recordings have been challenged by technological and physiological limitations including different optimal parameters necessary to elicit each class of ERP (e.g., differential adaptation/habitation effects and number of trials to obtain adequate response signal-to-noise ratio). We investigated a new stimulus paradigm for concurrent recording of the auditory brainstem frequency-following response (FFR) and cortical ERPs. The paradigm is "optimal" in that it uses a clustered stimulus presentation and variable interstimulus interval (ISI) to (i) achieve the most ideal acquisition parameters for eliciting subcortical and cortical responses, (ii) obtain an adequate number of trials to detect each class of response, and (iii) minimize neural adaptation/habituation effects. Comparison between clustered and traditional (fixed, slow ISI) stimulus paradigms revealed minimal change in amplitude or latencies of either the brainstem FFR or cortical ERP. The clustered paradigm offered over a 3× increase in recording efficiency compared to conventional (fixed ISI presentation) and thus, a more rapid protocol for obtaining dual brainstem-cortical recordings in individual listeners. We infer that faster recording of subcortical and cortical potentials might allow more complete and sensitive testing of neurophysiological function and aid in the differential assessment of auditory function. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Refraction changes during elevation of intraocular pressure by suction cup, their reflection in the pattern visual evoked cortical potential and their compensation.

    PubMed

    Bernd, A; Ulrich, W D; Teubel, H; Rohrwacher, F; Barth, T

    1993-01-01

    Visual evoked cortical potential studies using pattern stimuli with the intraocular pressure raised artificially by the suction cup method have been reported. Possible changes in the refraction of the eye due to the method employed and their influence on the pattern visual evoked cortical potential have not been considered. Changes in the refraction of the eye during artificial intraocular pressure elevation and the influence of such changes on pattern visual evoked cortical potentials were studied. The refraction changes were found to depend on the shape of the suction cup. They could be compensated for by employing properly shaped suction cups and contact lenses. The behavior of amplitude and latency of the pattern visual evoked cortical potential at artificially elevated intraocular pressure with compensation for refraction changes has been studied and found to depend in a characteristic manner on ocular perfusion pressure.

  13. Functional abnormalities in the cortical processing of sound complexity and musical consonance in schizophrenia: evidence from an evoked potential study

    PubMed Central

    2013-01-01

    Background Previous studies have demonstrated functional and structural temporal lobe abnormalities located close to the auditory cortical regions in schizophrenia. The goal of this study was to determine whether functional abnormalities exist in the cortical processing of musical sound in schizophrenia. Methods Twelve schizophrenic patients and twelve age- and sex-matched healthy controls were recruited, and participants listened to a random sequence of two kinds of sonic entities, intervals (tritones and perfect fifths) and chords (atonal chords, diminished chords, and major triads), of varying degrees of complexity and consonance. The perception of musical sound was investigated by the auditory evoked potentials technique. Results Our results showed that schizophrenic patients exhibited significant reductions in the amplitudes of the N1 and P2 components elicited by musical stimuli, to which consonant sounds contributed more significantly than dissonant sounds. Schizophrenic patients could not perceive the dissimilarity between interval and chord stimuli based on the evoked potentials responses as compared with the healthy controls. Conclusion This study provided electrophysiological evidence of functional abnormalities in the cortical processing of sound complexity and music consonance in schizophrenia. The preliminary findings warrant further investigations for the underlying mechanisms. PMID:23721126

  14. High frequency activity overriding cortico-cortical evoked potentials reflects altered excitability in the human epileptic focus.

    PubMed

    Kobayashi, Katsuya; Matsumoto, Riki; Matsuhashi, Masao; Usami, Kiyohide; Shimotake, Akihiro; Kunieda, Takeharu; Kikuchi, Takayuki; Yoshida, Kazumichi; Mikuni, Nobuhiro; Miyamoto, Susumu; Fukuyama, Hidenao; Takahashi, Ryosuke; Ikeda, Akio

    2017-09-01

    We aimed to clarify that high frequency activity (HFA) of cortico-cortical evoked potentials (CCEPs), elicited by single pulse electrical stimulation (SPES), reflects cortical excitability. We recruited 16 patients with refractory partial epilepsy who had chronic subdural electrode implantation for presurgical evaluation. A repetitive SPES was given to (1) the seizure onset zone (SOZ) and (2) the control cortices (non-seizure onset zone: nSOZ). CCEPs were recorded from the neighboring cortices within SOZ and nSOZ. We applied short-time Fourier transform to obtain the induced responses for the timing of early (<50ms after SPES) and late CCEP components and analyzed the logarithmic power change for ripple (<200Hz) and fast ripple (>200Hz) bands. Twenty-one clear CCEPs were recorded for both the SOZ and nSOZ. The HFA power of early CCEPs in SOZ significantly increased compared to that in nSOZ in both frequency bands, particularly in mesial temporal lobe epilepsy (MTLE). Similar to the features of spontaneous pathological HFOs, the power of stimulus-induced HFAs in SOZ were greater than that outside SOZ, particularly in MTLE. HFA overriding CCEPs can be a surrogate marker of cortical excitability in epileptic focus. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  15. Cortical-Evoked Potentials Reflect Speech-in-Noise Perception in Children

    PubMed Central

    Samira, Anderson; Bharath, Chandrasekaran; Han-Gyol, Yi; Nina, Kraus

    2010-01-01

    Children are known to be particularly vulnerable to the effects of noise on speech perception, and it is commonly acknowledged that failure of central auditory processes can lead to these difficulties with speech-in-noise (SIN) perception. Still, little is known about the mechanistic relationship between central processes and the perception of speech in noise. Our aims were two-fold: to examine the effects of noise on the central encoding of speech through measurement of cortical event-related potentials (ERPs) and to examine the relationship between cortical processing and behavioral indices of SIN perception. We recorded cortical responses to the speech syllable [da] in quiet and multi-talker babble noise in 32 children with a broad range of SIN perception. Outcomes suggest inordinate effects of noise on auditory function in the bottom SIN perceivers, compared with the top perceivers. The cortical amplitudes in the top SIN group remained stable between conditions, whereas amplitudes increased significantly in the bottom SIN group, suggesting a developmental central processing impairment in the bottom perceivers that may contribute to difficulties encoding and perceiving speech in challenging listening environments. PMID:20950282

  16. Cortical configuration by stimulus onset visual evoked potentials (SO-VEPs) predicts performance on a motion direction discrimination task.

    PubMed

    Zalar, Bojan; Martin, Tim; Kavcic, Voyko

    2015-06-01

    The slowing of information processing, a hallmark of cognitive aging, has several origins. Previously we reported that in a motion direction discrimination task, older as compared to younger participants showed prolonged non-decision time, an index of an early perceptual stage, while in motion onset visual evoked potentials (MO-VEPs) the P1 component was enhanced and N2 was diminished. We did not find any significant correlations between behavioral and MO-VEP measures. Here, we investigated the role of age in encoding and perceptual processing of stimulus onset visually evoked potentials (SO-VEPs). Twelve healthy adults (age<55years) and 19 elderly (age>55years) performed a motion direction discrimination task during EEG recording. Prior to motion, the stimulus consisted of a static cloud of white dots on a black background. As expected, SO-VEPs evoked well defined P1, N1, and P2 components. Elderly participants as compared to young participants showed increased P1 amplitude while their P2 amplitude was reduced. In addition elderly participants showed increased latencies for P1 and N1 components. Contrary to the findings with MO-VEPs, SO-VEP parameters were significant predictors of average response times and diffusion model parameters. Our electrophysiological results support the notion that slowing of information processing in older adults starts at the very beginning of encoding in visual cortical processing, most likely in striate and extrastriate visual cortices. More importantly, the earliest SO-VEP components, possibly reflecting configuration of visual cortices and encoding processes, predict subsequent prolonging and tardiness of perceptual and higher-level cognitive processes.

  17. Assessment of hearing threshold in adults with hearing loss using an automated system of cortical auditory evoked potential detection.

    PubMed

    Durante, Alessandra Spada; Wieselberg, Margarita Bernal; Roque, Nayara; Carvalho, Sheila; Pucci, Beatriz; Gudayol, Nicolly; de Almeida, Kátia

    The use of hearing aids by individuals with hearing loss brings a better quality of life. Access to and benefit from these devices may be compromised in patients who present difficulties or limitations in traditional behavioral audiological evaluation, such as newborns and small children, individuals with auditory neuropathy spectrum, autism, and intellectual deficits, and in adults and the elderly with dementia. These populations (or individuals) are unable to undergo a behavioral assessment, and generate a growing demand for objective methods to assess hearing. Cortical auditory evoked potentials have been used for decades to estimate hearing thresholds. Current technological advances have lead to the development of equipment that allows their clinical use, with features that enable greater accuracy, sensitivity, and specificity, and the possibility of automated detection, analysis, and recording of cortical responses. To determine and correlate behavioral auditory thresholds with cortical auditory thresholds obtained from an automated response analysis technique. The study included 52 adults, divided into two groups: 21 adults with moderate to severe hearing loss (study group); and 31 adults with normal hearing (control group). An automated system of detection, analysis, and recording of cortical responses (HEARLab(®)) was used to record the behavioral and cortical thresholds. The subjects remained awake in an acoustically treated environment. Altogether, 150 tone bursts at 500, 1000, 2000, and 4000Hz were presented through insert earphones in descending-ascending intensity. The lowest level at which the subject detected the sound stimulus was defined as the behavioral (hearing) threshold (BT). The lowest level at which a cortical response was observed was defined as the cortical electrophysiological threshold. These two responses were correlated using linear regression. The cortical electrophysiological threshold was, on average, 7.8dB higher than the

  18. Cortical somatosensory evoked potentials from lumbosacral dermatomes: airpuff versus electrical stimulation.

    PubMed

    Schimsheimer, R J; Boejharat, K R; van der Sluijs, J C; Stijnen, T; Gryz, E

    1995-01-01

    Cortical potentials were elicited by airpuff stimulation of the L5 and S1 dermatome in a group of 24 healthy volunteers. The results were compared with the SEPs obtained by conventional electrical stimulation. Both stimulus modalities produce stable and good reproducible cortical responses of similar waveform. The most stable second negative peak, labeled N2, was used in this study. Mean latencies (in msec) were: N2 L5 air = 67.1 +/- 3.3, N2 L5 electr. = 55.7 +/- 3.7 N2 S1 air = 67.2 +/- 3.9, and N2 S1 electr. = 55.1 +/- 2.9 The maximum R/L difference (mean + 3 SD) was 5.7 msec, 5.9 msec, 7.2 msec and 7.2 msec for respectively N2 L5 air, N2 L5 electrical, N2 S1 air and N2 S1 electrical. Single regression analysis showed a significant influence of height, but not age upon all latencies. Multiple regression analysis with height and age as independent variables showed a significant influence of height and age together upon the latencies of the electrical SEP (both L5 and S1). For the airpuff SEP only height was significant. Gender had no effect on the cortical components. The amplitude of peak N2 after electrical stimulation of the S1 dermatome was significant higher than after airpuff stimulation, 2.9 and 1.7 microvolt respectively. For the L5 dermatome both types of stimuli produced responses of nearly equal amplitude, 2.5 and 2.1 microvolt for electrical and airpuff stimulation respectively. Airpuff SEPs may provide a good alternative for electrical stimulation.

  19. Adaptation of the cortical somatosensory evoked potential following pulsed pneumatic stimulation of the lower face in adults.

    PubMed

    Custead, Rebecca; Oh, Hyuntaek; Rosner, Austin Oder; Barlow, Steven

    2015-10-05

    Cortical adaptation to sustained sensory input is a pervasive form of short-term plasticity in neurological systems. Its role in sensory perception in health and disease, or predicting long-term plastic changes resulting from sensory training offers insight into the mechanisms of somatosensory and sensorimotor processing. A 4-channel electroencephalography (EEG) recording montage was placed bilaterally (C3-P3, C4-P4, F7-P3, F8-P4) to characterize the short-term effects of pulsed pneumatic orofacial stimulation on the cortical somatosensory evoked potential (cSEP) in twenty neurotypical adults (mean age=21±2.88 years). A servo-controlled pneumatic amplifier was used to deliver a repetitive series of pneumatic pulse trains (six 50-ms pulses, 5-second intertrain interval) through a linked pair of custom acetal homopolymer probes (aka TAC-Cells) adhered to the nonglabrous skin of the lower face proximal to the right oral angle to synchronously activate mechanoreceptive afferents in the trigeminal nerve. Blocks of pulse trains were counterbalanced among participants and delivered at two rates, 2 and 4Hz. TAC-Cell stimulation of the lower face consistently evoked a series of cSEPs at P7, N20, P28, N38, P75, N85, and P115. The spatial organization and adaptation of the evoked cSEP was dependent on stimulus pulse index (1-6 within the pulse train, p=.012), frequency of stimulus presentation (2 vs 4Hz, p<.001), component (P7-P115, p<.001), and recording montage (channels 1-4, p<.001). Early component latencies (P7-N20) were highly stable in polarity (sign) and latency, and consistent with putative far-field generators (e.g., trigeminal brainstem, ventroposteromedial thalamus).

  20. Effect of cued training on motor evoked potential and cortical silent period in people with Parkinson's disease.

    PubMed

    Mak, Margaret; Hallett, Mark

    2013-03-01

    To examine whether training under visual cues could enhance motor cortical excitability and intracortical inhibition in individuals with Parkinson's disease (PD). This was a single blinded cross-over study. Eight individuals with PD received two sessions of 30-min pinch-grip training with and without visual cues. The visual cue was given in form of an arrow that indicated the pre-set force level on a computer screen. Outcome measures consisted of peak motor evoked potential (MEP) and cortical silent period (CSP) of the first dorsal interosseus as well as behavioural tests including Purdue pegboard test, tapping speed in 30s, and the maximum pinch grip force exerted by the thumb and index finger. After cued training, there were significant increases in the peak MEP, CSP duration and tapping speed (all p<0.05). In contrast, there was no change in all outcome measures after training under the non-cued condition. Thirty minutes of pinch-grip training with visual cues could enhance motor cortical excitability and intracortical inhibition in individuals with PD. The findings on the neurophysiological changes after cued-training may inform further clinical application of visual cues to maximize motor improvement and corticomotor plasticity in people with PD. Copyright © 2012 International Federation of Clinical Neurophysiology. All rights reserved.

  1. Changes in flash but not pattern evoked cortical potentials after subchronic application of a monoamine oxidase (MAO) type A inhibitor in man.

    PubMed

    Berdjis, H; Demisch, L

    1985-01-01

    Changes in flash but not pattern evoked cortical potentials after subchronic application of the MAO type A inhibitor pirlindole in man are reported. Pirlindole affects the deamination of serotonin and noradrenaline in the central nervous system and has serotonin reuptake inhibiting properties. Flash and pattern evoked cortical potentials were recorded in 6 healthy men before and after a 7 day period of treatment with 3 X 75 mg/day of pirlindole. After drug treatment, an increase in P100 latency to flash stimuli was seen without a change in the latency to pattern stimuli. This indicates that different neuronal systems process flash and pattern stimuli.

  2. Cortical, auditory, evoked potentials in response to changes of spectrum and amplitude.

    PubMed

    Martin, B A; Boothroyd, A

    2000-04-01

    The acoustic change complex (ACC) is a scalp-recorded negative-positive voltage swing elicited by a change during an otherwise steady-state sound. The ACC was obtained from eight adults in response to changes of amplitude and/or spectral envelope at the temporal center of a three-formant synthetic vowel lasting 800 ms. In the absence of spectral change, the group mean waveforms showed a clear ACC to amplitude increments of 2 dB or more and decrements of 3 dB or more. In the presence of a change of second formant frequency (from perceived /u/ to perceived /i/), amplitude increments increased the magnitude of the ACC but amplitude decrements had little or no effect. The fact that the just detectable amplitude change is close to the psychoacoustic limits of the auditory system augurs well for the clinical application of the ACC. The failure to find a condition under which the spectrally elicited ACC is diminished by a small change of amplitude supports the conclusion that the observed ACC to a change of spectral envelope reflects some aspect of cortical frequency coding. Taken together, these findings support the potential value of the ACC as an objective index of auditory discrimination capacity.

  3. Repetition suppression in transcranial magnetic stimulation-induced motor-evoked potentials is modulated by cortical inhibition.

    PubMed

    Kallioniemi, E; Pääkkönen, A; Julkunen, P

    2015-12-03

    Transcranial magnetic stimulation (TMS) can be applied to modulate cortical phenomena. The modulation effect is dependent on the applied stimulation frequency. Repetition suppression (RS) has been demonstrated in the motor system using TMS with short suprathreshold 1-Hz stimulation trains repeated at long inter-train intervals. RS has been reported to occur in the resting motor-evoked potentials (MEPs) with respect to the first pulse in a train of stimuli. Although this RS in the motor system has been described in previous studies, the neuronal origin of the phenomenon is still poorly understood. The present study evaluated RS in three TMS-induced motor responses; resting and active MEPs as well as corticospinal silent periods (SPs) in order to clarify the mechanism behind TMS-induced RS. We studied 10 healthy right-handed subjects using trains of four stimuli with stimulation intensities of 120% of the resting motor threshold (rMT) and 120% of the silent period threshold for an SP duration of 30 ms (SPT30). Inter-trial interval was 20s, with a 1-s inter-stimulus interval within the trains. We confirmed that RS appears in resting MEPs (p < 0.001), whereas active MEPs did not exhibit RS (p > 0.792). SPs, on the contrary, lengthened (p < 0.001) indicating modulation of cortical inhibition. The effects of the two stimulation intensities exhibited a similar trend; however, the SPT30 evoked a more profound inhibitory effect compared to that achieved by rMT. Moreover, the resting MEP amplitudes and SP durations correlated (rho ⩽ -0.674, p < 0.001) and the pre-TMS EMG level did not differ between stimuli in resting MEPs (F = 0.0, p ⩾ 0.999). These results imply that the attenuation of response size seen in resting MEPs might originate from increasing activity of inhibitory GABAergic interneurons which relay the characteristics of SPs.

  4. Human cortical potentials evoked by stimulation of the median nerve. II. Cytoarchitectonic areas generating long-latency activity.

    PubMed

    Allison, T; McCarthy, G; Wood, C C; Williamson, P D; Spencer, D D

    1989-09-01

    1. The anatomic generators of human median nerve somatosensory evoked potentials (SEPs) in the 40 to 250-ms latency range were investigated in 54 patients by means of cortical-surface and transcortical recordings obtained during neurosurgery. 2. Contralateral stimulation evoked three groups of SEPs recorded from the hand representation area of sensorimotor cortex: P45-N80-P180, recorded anterior to the central sulcus (CS) and maximal on the precentral gyrus; N45-P80-N180, recorded posterior to the CS and maximal on the postcentral gyrus; and P50-N90-P190, recorded near and on either side of the CS. 3. P45-N80-P180 inverted in polarity to N45-P80-N180 across the CS but was similar in polarity from the cortical surface and white matter in transcortical recordings. These spatial distributions were similar to those of the short-latency P20-N30 and N20-P30 potentials described in the preceding paper, suggesting that these long-latency potentials are generated in area 3b of somatosensory cortex. 4. P50-N90-P190 was largest over the anterior one-half of somatosensory cortex and did not show polarity inversion across the CS. This spatial distribution was similar to that of the short-latency P25-N35 potentials described in the preceding paper and, together with our and Goldring et al. 1970; Stohr and Goldring 1969 transcortical recordings, suggest that these long-latency potentials are generated in area 1 of somatosensory cortex. 5. SEPs of apparently local origin were recorded from several regions of sensorimotor cortex to stimulation of the ipsilateral median nerve. Surface and transcortical recordings suggest that the ipsilateral potentials are generated not in area 3b, but rather in other regions of sensorimotor cortex perhaps including areas 4, 1, 2, and 7. This spatial distribution suggests that the ipsilateral potentials are generated by transcallosal input from the contralateral hemisphere. 6. Recordings from the periSylvian region were characterized by P100 and N

  5. Human cortical potentials evoked by stimulation of the median nerve. I. Cytoarchitectonic areas generating short-latency activity.

    PubMed

    Allison, T; McCarthy, G; Wood, C C; Darcey, T M; Spencer, D D; Williamson, P D

    1989-09-01

    1. The anatomic generators of human median nerve somatosensory evoked potentials (SEPs) in the 40 to 250-ms latency range were investigated in 54 patients by means of cortical-surface and transcortical recordings obtained during neurosurgery. 2. Contralateral stimulation evoked three groups of SEPs recorded from the hand representation area of sensorimotor cortex: P45-N80-P180, recorded anterior to the central sulcus (CS) and maximal on the precentral gyrus; N45-P80-N180, recorded posterior to the CS and maximal on the postcentral gyrus; and P50-N90-P190, recorded near and on either side of the CS. 3. P45-N80-P180 inverted in polarity to N45-P80-N180 across the CS but was similar in polarity from the cortical surface and white matter in transcortical recordings. These spatial distributions were similar to those of the short-latency P20-N30 and N20-P30 potentials described in the preceding paper, suggesting that these long-latency potentials are generated in area 3b of somatosensory cortex. 4. P50-N90-P190 was largest over the anterior one-half of somatosensory cortex and did not show polarity inversion across the CS. This spatial distribution was similar to that of the short-latency P25-N35 potentials described in the preceding paper and, together with our and Goldring et al. 1970; Stohr and Goldring 1969 transcortical recordings, suggest that these long-latency potentials are generated in area 1 of somatosensory cortex. 5. SEPs of apparently local origin were recorded from several regions of sensorimotor cortex to stimulation of the ipsilateral median nerve. Surface and transcortical recordings suggest that the ipsilateral potentials are generated not in area 3b, but rather in other regions of sensorimotor cortex perhaps including areas 4, 1, 2, and 7. This spatial distribution suggests that the ipsilateral potentials are generated by transcallosal input from the contralateral hemisphere. 6. Recordings from the periSylvian region were characterized by P100 and N

  6. Clinical Experience of Using Cortical Auditory Evoked Potentials in the Treatment of Infant Hearing Loss in Australia

    PubMed Central

    Punch, Simone; Van Dun, Bram; King, Alison; Carter, Lyndal; Pearce, Wendy

    2016-01-01

    This article presents the clinical protocol that is currently being used within Australian Hearing for infant hearing aid evaluation using cortical auditory evoked potentials (CAEPs). CAEP testing is performed in the free field at two stimulus levels (65 dB sound pressure level [SPL], followed by 55 or 75 dB SPL) using three brief frequency-distinct speech sounds /m/, /ɡ/, and /t/, within a standard audiological appointment of up to 90 minutes. CAEP results are used to check or guide modifications of hearing aid fittings or to confirm unaided hearing capability. A retrospective review of 83 client files evaluated whether clinical practice aligned with the clinical protocol. It showed that most children could be assessed as part of their initial fitting program when they were identified as a priority for CAEP testing. Aided CAEPs were most commonly assessed within 8 weeks of the fitting. A survey of 32 pediatric audiologists provided information about their perception of cortical testing at Australian Hearing. The results indicated that clinical CAEP testing influenced audiologists' approach to rehabilitation and was well received by parents and that they were satisfied with the technique. Three case studies were selected to illustrate how CAEP testing can be used in a clinical environment. Overall, CAEP testing has been effectively integrated into the infant fitting program. PMID:27587921

  7. Inhibition of cortical responses to Adelta inputs by a preceding C-related response: testing the "first come, first served" hypothesis of cortical laser evoked potentials.

    PubMed

    Truini, A; Galeotti, F; Cruccu, G; Garcia-Larrea, L

    2007-10-01

    Although laser pulses activate concomitantly Adelta and C fibres, the corresponding brain evoked responses remain strictly limited to the Adelta component, without any potential consistent with C-fibre activation. To investigate whether this phenomenon depends on the order of arrival to the cortex ("first come first served" hypothesis) or is simply explained by A-to-C inhibition and/or lower energy associated with the desynchronised C-fibre input, we devised an experiment where the physiological order of arrival to the cortex was artificially inverted. Following a conditioning C-pulse, the cortical response to a second laser stimulus was significantly attenuated, whether it was Adelta or C. Thus, a C-volley was able to depress the response to a subsequent Adelta stimulus, in support of the "first come first served" hypothesis. However, the conditioning C-fibre stimulus attenuated significantly more a subsequent C-volley than a subsequent Adelta-volley, indicating that the suppression effect does not depend solely on the order of arrival to the cortex, but also on the ratio of energy per unit time conveyed by the successive inputs. This supports the notion that cortical evoked potentials to laser pulses (and probably to other sensory stimuli) reflect networks detecting rapid energy changes relative to a preceding baseline. The output of such networks should depend both on the time elapsed between successive inputs and on the relative energy per unit time conveyed by successive volleys. Such dedicated networks aimed at detecting energy changes may be related to orienting reactions, and can be dissociated from subjective perception.

  8. Effects of Long-Term Musical Training on Cortical Auditory Evoked Potentials.

    PubMed

    Brown, Carolyn J; Jeon, Eun-Kyung; Driscoll, Virginia; Mussoi, Bruna; Deshpande, Shruti Balvalli; Gfeller, Kate; Abbas, Paul J

    Evidence suggests that musicians, as a group, have superior frequency resolution abilities when compared with nonmusicians. It is possible to assess auditory discrimination using either behavioral or electrophysiologic methods. The purpose of this study was to determine if the acoustic change complex (ACC) is sensitive enough to reflect the differences in spectral processing exhibited by musicians and nonmusicians. Twenty individuals (10 musicians and 10 nonmusicians) participated in this study. Pitch and spectral ripple discrimination were assessed using both behavioral and electrophysiologic methods. Behavioral measures were obtained using a standard three interval, forced choice procedure. The ACC was recorded and used as an objective (i.e., nonbehavioral) measure of discrimination between two auditory signals. The same stimuli were used for both psychophysical and electrophysiologic testing. As a group, musicians were able to detect smaller changes in pitch than nonmusician. They also were able to detect a shift in the position of the peaks and valleys in a ripple noise stimulus at higher ripple densities than non-musicians. ACC responses recorded from musicians were larger than those recorded from non-musicians when the amplitude of the ACC response was normalized to the amplitude of the onset response in each stimulus pair. Visual detection thresholds derived from the evoked potential data were better for musicians than non-musicians regardless of whether the task was discrimination of musical pitch or detection of a change in the frequency spectrum of the ripple noise stimuli. Behavioral measures of discrimination were generally more sensitive than the electrophysiologic measures; however, the two metrics were correlated. Perhaps as a result of extensive training, musicians are better able to discriminate spectrally complex acoustic signals than nonmusicians. Those differences are evident not only in perceptual/behavioral tests but also in electrophysiologic

  9. Cortical and subcortical distribution of middle and long latency auditory and visual evoked potentials in a cognitive (CNV) paradigm.

    PubMed

    Bares, Martin; Rektor, Ivan; Kanovský, Petr; Streitová, Hana

    2003-12-01

    This study concerned sensory processing (post-stimulus late evoked potential components) in different parts of the human brain as related to a motor task (hand movement) in a cognitive paradigm (Contingent Negative Variation). The focus of the study was on the time and space distribution of middle and late post-stimulus evoked potential (EP) components, and on the processing of sensory information in the subcortical-cortical networks. Stereoelectroencephalography (SEEG) recordings of the contingent negative variation (CNV) in an audio-visual paradigm with a motor task were taken from 30 patients (27 patients with drug-resistant epilepsy; 3 patients with chronic thalamic pain). The intracerebral recordings were taken from 337 cortical sites (primary sensorimotor area (SM1); supplementary motor area (SMA); the cingulate gyrus; the orbitofrontal, premotor and dorsolateral prefrontal cortices; the temporal cortex, including the amygdalohippocampal complex; the parietooccipital lobes; and the insula) and from subcortical structures (the basal ganglia and the posterior thalamus). The concurrent scalp recordings were obtained from 3 patients in the thalamic group. In 4 patients in the epilepsy group, scalp recordings were taken separately from the SEEG procedure. The middle and long latency evoked potentials following an auditory warning (S1) and a visual imperative (S2) stimuli were analyzed. The occurrences of EPs were studied in two time windows (200-300 ms; and over 300 ms) following S1 and S2. Following S1, a high frequency of EP with latencies over 200 ms was observed in the primary sensorimotor area, the supplementary motor area, the premotor cortex, the orbitofrontal cortex, the cingulate gyrus, some parts of the temporal lobe, the basal ganglia, the insula, and the posterior thalamus. Following S2, a high frequency of EP in both of the time windows over 200 ms was observed in the SM1, the SMA, the premotor and dorsolateral prefrontal cortex, the orbitofrontal

  10. Evoked Potentials and Human Intelligence.

    ERIC Educational Resources Information Center

    Ertl, John P.; Schafer, Edward W. P.

    Evidence of a relationship between the electrical responses of the human brain and psychometric measure of intelligence is presented. These involuntary cortical responses, known as average evoked potentials are considered to be the electrical signs of information processing by the brain. The time delays of these responses from presentation of a…

  11. Roles of N-methyl-d-aspartate receptors during the sensory stimulation-evoked field potential responses in mouse cerebellar cortical molecular layer.

    PubMed

    Xu, Yin-Hua; Zhang, Guang-Jian; Zhao, Jing-Tong; Chu, Chun-Ping; Li, Yu-Zi; Qiu, De-Lai

    2017-09-14

    The functions of N-methyl-d-aspartate receptors (NMDARs) in cerebellar cortex have been widely studied under in vitro condition, but their roles during the sensory stimulation-evoked responses in the cerebellar cortical molecular layer in living animals are currently unclear. We here investigated the roles of NMDARs during the air-puff stimulation on ipsilateral whisker pad-evoked field potential responses in cerebellar cortical molecular layer in urethane-anesthetized mice by electrophysiological recording and pharmacological methods. Our results showed that cerebellar surface administration of NMDA induced a dose-dependent decrease in amplitude of the facial stimulation-evoked inhibitory responses (P1) in the molecular layer, accompanied with decreases in decay time, half-width and area under curve (AUC) of P1. The IC50 of NMDA induced inhibition in amplitude of P1 was 46.5μM. In addition, application of NMDA induced significant increases in the decay time, half-width and AUC values of the facial stimulation-evoked excitatory responses (N1) in the molecular layer. Application of an NMDAR blocker, D-APV (250μM) abolished the facial stimulation-evoked P1 in the molecular layer. These results suggested that NMDARs play a critical role during the sensory information processing in cerebellar cortical molecular layer in vivo in mice. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Predictive value of neurological examination for early cortical responses to somatosensory evoked potentials in patients with postanoxic coma.

    PubMed

    Bouwes, Aline; Binnekade, Jan M; Verbaan, Bart W; Zandbergen, Eveline G J; Koelman, Johannes H T M; Weinstein, Henry C; Hijdra, Albert; Horn, Janneke

    2012-03-01

    Bilateral absence of cortical N20 responses of median nerve somatosensory evoked potentials (SEP) predicts poor neurological outcome in postanoxic coma after cardiopulmonary resuscitation (CPR). Although SEP is easy to perform and available in most hospitals, it is worthwhile to know how neurological signs are associated with SEP results. The aim of this study was to investigate whether specific clinical neurological signs are associated with either an absent or a present median nerve SEP in patients after CPR. Data from the previously published multicenter prospective cohort study PROPAC (prognosis in postanoxic coma, 2000-2003) were used. Neurological examination, consisting of Glasgow Coma Score (GCS) and brain stem reflexes, and SEP were performed 24, 48, and 72 h after CPR. Positive predictive values for predicting absent and present SEP, as well as diagnostic accuracy were calculated. Data of 407 patients were included. Of the 781 SEPs performed, N20 s were present in 401, bilaterally absent in 299, and 81 SEPs were technically undeterminable. The highest positive predictive values (0.63-0.91) for an absent SEP were found for absent pupillary light responses. The highest positive predictive values (0.71-0.83) for a present SEP were found for motor scores of withdrawal to painful stimuli or better. Multivariate analyses showed a fair diagnostic accuracy (0.78) for neurological examination in predicting an absent or present SEP at 48 or 72 h after CPR. This study shows that neurological examination cannot reliably predict absent or present cortical N20 responses in median nerve SEPs in patients after CPR.

  13. Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials

    PubMed Central

    Mandel, Yossi; Goetz, Georges; Lavinsky, Daniel; Huie, Philip; Mathieson, Keith; Wang, Lele; Kamins, Theodore; Manivanh, Richard; Harris, James; Palanker, Daniel

    2014-01-01

    We have previously developed a wireless photovoltaic retinal prosthesis, in which camera-captured images are projected onto the retina using pulsed near-IR light. Each pixel in the subretinal implant directly converts pulsed light into local electric current to stimulate the nearby inner retinal neurons. Here we report that implants having pixel sizes of 280, 140 and 70μm implanted in the subretinal space in rats with normal and degenerate retina elicit robust cortical responses upon stimulation with pulsed near-IR light. Implant-induced eVEP has shorter latency than visible light-induced VEP, its amplitude increases with peak irradiance and pulse duration, and decreases with frequency in the range of 2-20Hz, similar to the visible light response. Modular design of the arrays allows scalability to a large number of pixels, and combined with the ease of implantation, offers a promising approach to restoration of sight in patients blinded by retinal degenerative diseases. PMID:23778557

  14. Clinical Use of Aided Cortical Auditory Evoked Potentials as a Measure of Physiological Detection or Physiological Discrimination

    PubMed Central

    Billings, Curtis J.; Papesh, Melissa A.; Penman, Tina M.; Baltzell, Lucas S.; Gallun, Frederick J.

    2012-01-01

    The clinical usefulness of aided cortical auditory evoked potentials (CAEPs) remains unclear despite several decades of research. One major contributor to this ambiguity is the wide range of variability across published studies and across individuals within a given study; some results demonstrate expected amplification effects, while others demonstrate limited or no amplification effects. Recent evidence indicates that some of the variability in amplification effects may be explained by distinguishing between experiments that focused on physiological detection of a stimulus versus those that differentiate responses to two audible signals, or physiological discrimination. Herein, we ask if either of these approaches is clinically feasible given the inherent challenges with aided CAEPs. N1 and P2 waves were elicited from 12 noise-masked normal-hearing individuals using hearing-aid-processed 1000-Hz pure tones. Stimulus levels were varied to study the effect of hearing-aid-signal/hearing-aid-noise audibility relative to the noise-masked thresholds. Results demonstrate that clinical use of aided CAEPs may be justified when determining whether audible stimuli are physiologically detectable relative to inaudible signals. However, differentiating aided CAEPs elicited from two suprathreshold stimuli (i.e., physiological discrimination) is problematic and should not be used for clinical decision making until a better understanding of the interaction between hearing-aid-processed stimuli and CAEPs can be established. PMID:23093964

  15. Cortical Auditory Evoked Potentials Reveal Changes in Audibility with Nonlinear Frequency Compression in Hearing Aids for Children: Clinical Implications.

    PubMed

    Ching, Teresa Y C; Zhang, Vicky W; Hou, Sanna; Van Buynder, Patricia

    2016-02-01

    Hearing loss in children is detected soon after birth via newborn hearing screening. Procedures for early hearing assessment and hearing aid fitting are well established, but methods for evaluating the effectiveness of amplification for young children are limited. One promising approach to validating hearing aid fittings is to measure cortical auditory evoked potentials (CAEPs). This article provides first a brief overview of reports on the use of CAEPs for evaluation of hearing aids. Second, a study that measured CAEPs to evaluate nonlinear frequency compression (NLFC) in hearing aids for 27 children (between 6.1 and 16.8 years old) who have mild to severe hearing loss is reported. There was no significant difference in aided sensation level or the detection of CAEPs for /g/ between NLFC on and off conditions. The activation of NLFC was associated with a significant increase in aided sensation levels for /t/ and /s/. It also was associated with an increase in detection of CAEPs for /t/ and /s/. The findings support the use of CAEPs for checking audibility provided by hearing aids. Based on the current data, a clinical protocol for using CAEPs to validate audibility with amplification is presented.

  16. Cortical Auditory Evoked Potentials Reveal Changes in Audibility with Nonlinear Frequency Compression in Hearing Aids for Children: Clinical Implications

    PubMed Central

    Ching, Teresa Y. C.; Zhang, Vicky W.; Hou, Sanna; Van Buynder, Patricia

    2016-01-01

    Hearing loss in children is detected soon after birth via newborn hearing screening. Procedures for early hearing assessment and hearing aid fitting are well established, but methods for evaluating the effectiveness of amplification for young children are limited. One promising approach to validating hearing aid fittings is to measure cortical auditory evoked potentials (CAEPs). This article provides first a brief overview of reports on the use of CAEPs for evaluation of hearing aids. Second, a study that measured CAEPs to evaluate nonlinear frequency compression (NLFC) in hearing aids for 27 children (between 6.1 and 16.8 years old) who have mild to severe hearing loss is reported. There was no significant difference in aided sensation level or the detection of CAEPs for /g/ between NLFC on and off conditions. The activation of NLFC was associated with a significant increase in aided sensation levels for /t/ and /s/. It also was associated with an increase in detection of CAEPs for /t/ and /s/. The findings support the use of CAEPs for checking audibility provided by hearing aids. Based on the current data, a clinical protocol for using CAEPs to validate audibility with amplification is presented. PMID:27587920

  17. Cortical Reorganization in Dyslexic Children after Phonological Training: Evidence from Early Evoked Potentials

    ERIC Educational Resources Information Center

    Spironelli, Chiara; Penolazzi, Barbara; Vio, Claudio; Angrilli, Alessandro

    2010-01-01

    Brain plasticity was investigated in 14 Italian children affected by developmental dyslexia after 6 months of phonological training. The means used to measure language reorganization was the recognition potential, an early wave, also called N150, elicited by automatic word recognition. This component peaks over the left temporo-occipital cortex…

  18. Cortical Reorganization in Dyslexic Children after Phonological Training: Evidence from Early Evoked Potentials

    ERIC Educational Resources Information Center

    Spironelli, Chiara; Penolazzi, Barbara; Vio, Claudio; Angrilli, Alessandro

    2010-01-01

    Brain plasticity was investigated in 14 Italian children affected by developmental dyslexia after 6 months of phonological training. The means used to measure language reorganization was the recognition potential, an early wave, also called N150, elicited by automatic word recognition. This component peaks over the left temporo-occipital cortex…

  19. The effects of neck flexion on cerebral potentials evoked by visual, auditory and somatosensory stimuli and focal brain blood flow in related sensory cortices

    PubMed Central

    2012-01-01

    Background A flexed neck posture leads to non-specific activation of the brain. Sensory evoked cerebral potentials and focal brain blood flow have been used to evaluate the activation of the sensory cortex. We investigated the effects of a flexed neck posture on the cerebral potentials evoked by visual, auditory and somatosensory stimuli and focal brain blood flow in the related sensory cortices. Methods Twelve healthy young adults received right visual hemi-field, binaural auditory and left median nerve stimuli while sitting with the neck in a resting and flexed (20° flexion) position. Sensory evoked potentials were recorded from the right occipital region, Cz in accordance with the international 10–20 system, and 2 cm posterior from C4, during visual, auditory and somatosensory stimulations. The oxidative-hemoglobin concentration was measured in the respective sensory cortex using near-infrared spectroscopy. Results Latencies of the late component of all sensory evoked potentials significantly shortened, and the amplitude of auditory evoked potentials increased when the neck was in a flexed position. Oxidative-hemoglobin concentrations in the left and right visual cortices were higher during visual stimulation in the flexed neck position. The left visual cortex is responsible for receiving the visual information. In addition, oxidative-hemoglobin concentrations in the bilateral auditory cortex during auditory stimulation, and in the right somatosensory cortex during somatosensory stimulation, were higher in the flexed neck position. Conclusions Visual, auditory and somatosensory pathways were activated by neck flexion. The sensory cortices were selectively activated, reflecting the modalities in sensory projection to the cerebral cortex and inter-hemispheric connections. PMID:23199306

  20. Cortical reorganization in dyslexic children after phonological training: evidence from early evoked potentials.

    PubMed

    Spironelli, Chiara; Penolazzi, Barbara; Vio, Claudio; Angrilli, Alessandro

    2010-11-01

    Brain plasticity was investigated in 14 Italian children affected by developmental dyslexia after 6 months of phonological training. The means used to measure language reorganization was the recognition potential, an early wave, also called N150, elicited by automatic word recognition. This component peaks over the left temporo-occipital cortex and its amplitude depends on linguistic expertise. N150 elicited by written words was measured both in dyslexic children before and after training and in a sample of matched normal readers during phonological, semantic and orthographic tasks. After training, dyslexic children increased their reading speed. Normal readers showed a typical left posterior N150, whereas in dyslexic children it was equally distributed across hemispheres before and shifted to left posterior sites after training. In addition, dyslexics' left posterior N150 asymmetry on the phonological task after training was significantly correlated with reading speed improvement, that is, those children who showed the greatest left shift in phonological N150 also had the greatest reading speed improvement. Source localization of the N150 component was made with both the Standard Low Resolution Electromagnetic Tomography software and the classical dipole analysis method termed Brain Electrical Source Analysis. The N150 generator lies in the left occipito-temporal cortex (Brodmann areas 39, 37 and 19) in good readers, but in right homologous areas in dyslexic children before training. After the treatment, the dyslexics' main N150 generator shifted to the left occipito-inferotemporal cortex (namely Brodmann areas 37 and 19) with small differences between tasks. The two source location methods provided consistent, converging solutions. Results add to the current literature on the phonological hypothesis of dyslexia by showing hemispheric reorganization of linguistic networks at the level of early word recognition potential. Furthermore, the present work is the first

  1. Speech evoked cortical potentials: effects of age and stimulus presentation rate.

    PubMed

    Tremblay, Kelly L; Billings, Curtis; Rohila, Neeru

    2004-03-01

    We examined the effects of stimulus complexity and stimulus presentation rate in ten younger and ten older normal-hearing adults. A 1 kHz tone burst as well as a speech syllable were used to elicit the N1 -P2 complex. Three different interstimulus intervals (ISI) were used (510, 910, and 1510 msec). When stimuli were presented at the medium presentation rate (910 msec ISI), N1 and P2 latencies were prolonged for older listeners in response to the speech stimulus but not the tone stimulus. These age effects were absent when stimuli were presented at a slower rate (1510 msec ISI). Results from this study suggest that rapidly occurring stimulus onsets, either within a stimulus or between stimuli, result in prolonged N1 and P2 responses in older adults. This is especially true when processing complex stimuli such as speech. One potential explanation for this age effect might be age-related refractory differences in younger and older auditory systems. Refractory issues might in turn affect synchronized neural activity underlying the perception of critical time-varying speech cues and may partially explain some of the difficulties older people experience understanding speech.

  2. Enhancement of bilateral cortical somatosensory evoked potentials to intact forelimb stimulation following thoracic contusion spinal cord injury in rats.

    PubMed

    Bazley, Faith A; Maybhate, Anil; Tan, Chuen Seng; Thakor, Nitish V; Kerr, Candace; All, Angelo H

    2014-09-01

    The adult central nervous system is capable of significant reorganization and adaptation following neurotrauma. After a thoracic contusive spinal cord injury (SCI) neuropathways that innervate the cord below the epicenter of injury are damaged, with minimal prospects for functional recovery. In contrast, pathways above the site of injury remain intact and may undergo adaptive changes in response to injury. We used cortical somatosensory evoked potentials (SSEPs) to evaluate changes in intact forelimb pathways. Rats received a midline contusion SCI, unilateral contusion SCI, or laminectomy with no contusion at the T8 level and were monitored for 28 days post-injury. In the midline injury group, SSEPs recorded from the contralateral forelimb region of the primary somatosensory cortex were 59.7% (CI 34.7%, 84.8%; c(2) = 21.9; dof = 1; p = 2.9 ×10(-6)) greater than the laminectomy group; SSEPs from the ipsilateral somatosensory cortex were 47.6% (CI 18.3%, 77%; c(2) = 10.1; dof = 1; p = 0.001) greater. Activation of the ipsilateral somatosensory cortex was further supported by BOLD-fMRI, which showed increased oxygenation at the ipsilateral hemisphere at day seven post-injury. In the unilateral injury group, ipsilesional side was compared to the contralesional side. SSEPs on day 14 (148%; CI 111%, 185%) and day 21 (137%; CI 110%, 163%) for ipsilesional forelimb stimulation were significantly increased over baseline (100%). SSEPs recorded from the hindlimb sensory cortex upon ipsilesional stimulation were 33.9% (CI 14.3%, 53.4%; c(2) = 11.6; dof = 1; p = 0.0007) greater than contralesional stimulation. Therefore, these results demonstrate the ability of SSEPs to detect significant enhancements in the activation of forelimb sensory pathways following both midline and unilateral contusive SCI at T8. Reorganization of forelimb pathways may occur after thoracic SCI, which SSEPs can monitor to aid the development of future therapies.

  3. Potentiation of spontaneous and evoked cortical electrical activity after spreading depression: in vivo analysis in well-nourished and malnourished rats.

    PubMed

    de Souza, Thays Kallyne Marinho; e Silva, Mariana Barros; Gomes, André Ricardson; de Oliveira, Hélio Magalhães; Moraes, Renato Barros; de Freitas Barbosa, Catão Temístocles; Guedes, Rubem Carlos Araújo

    2011-10-01

    Cortical spreading depression (CSD) is influenced by brain excitability and is related to neurological diseases, such as epilepsy. In vitro evidence indicates that neuronal electrical activity is potentiated after CSD. Malnutrition can cause electrophysiological changes in the brain, both in animals and in humans. Here, we investigated in vivo whether CSD potentiates the amplitude of electrocorticogram (ECoG) and of transcallosal evoked responses in adult well-nourished (W), early-malnourished (M), and food-restricted rats. ECoG amplitudes were compared before and after CSD, at two parietal regions (designated the anterior and posterior regions). In the anterior region, post-CSD amplitudes of the ECoG waves were 13-23% higher (P < 0.05) than the pre-CSD values in all groups. In the posterior region, amplitudes increased 22% in the M group only (P < 0.05). In a fourth CSD-free group, ECoG amplitude did not change during the four recording hours. Transcallosal electrically evoked cortical responses also increased 21.5 ± 9.6% and 41.8 ± 28.5%, after CSD, in the W and M conditions, respectively, as compared to pre-CSD values. The data support the hypothesis of an in vivo CSD potentiation on cortical excitability as recorded by spontaneous and evoked electrical activity and modulation by nutritional status.

  4. Micro-field evoked potentials recorded from the porcine sub-dural cortical surface utilizing a microelectrode array.

    PubMed

    Kitzmiller, Joseph P; Hansford, Derek J; Fortin, Linda D; Obrietan, Karl H; Bergdall, Valerie K; Beversdorf, David Q

    2007-05-15

    A sub-dural surface microelectrode array designed to detect micro-field evoked potentials has been developed. The device is comprised of an array of 350-microm square gold contacts, with bidirectional spacing of 150 microm, contained within a polyimide Kapton material. Cytotoxicity testing suggests that the device is suitable for use with animal and human patients. Implementation of the device in animal studies revealed that reliable evoked potentials could be acquired. Further work will be needed to determine how these micro-field potentials, which demonstrate selectivity for one eye, relate to the distribution of the ocular dominance columns of the occipital cortex.

  5. Cortical Auditory Evoked Potentials to Evaluate Cochlear Implant Candidacy in an Ear With Long-standing Hearing Loss: A Case Report.

    PubMed

    Patel, Tirth R; Shahin, Antoine J; Bhat, Jyoti; Welling, D Bradley; Moberly, Aaron C

    2016-10-01

    We describe a novel use of cortical auditory evoked potentials in the preoperative workup to determine ear candidacy for cochlear implantation. A 71-year-old male was evaluated who had a long-deafened right ear, had never worn a hearing aid in that ear, and relied heavily on use of a left-sided hearing aid. Electroencephalographic testing was performed using free field auditory stimulation of each ear independently with pure tones at 1000 and 2000 Hz at approximately 10 dB above pure-tone thresholds for each frequency and for each ear. Mature cortical potentials were identified through auditory stimulation of the long-deafened ear. The patient underwent successful implantation of that ear. He experienced progressively improving aided pure-tone thresholds and binaural speech recognition benefit (AzBio score of 74%). Findings suggest that use of cortical auditory evoked potentials may serve a preoperative role in ear selection prior to cochlear implantation. © The Author(s) 2016.

  6. Large Amplitude Cortical Evoked Potentials in Nonepileptic Patients. Reviving an Old Neurophysiologic Tool to Help Detect CNS Pathology.

    PubMed

    Martín-Palomeque, Guillermo; Castro-Ortiz, Antonio; Pamplona-Valenzuela, Pilar; Saiz-Sepúlveda, Miguel Á; Cabañes-Martínez, Lidia; López, Jaime R

    2017-01-01

    Although large amplitude evoked potentials (EPs) are typically associated with progressive myoclonic epilepsy patients, giant EPs imply central nervous system (CNS) hyperexcitability and can be seen in various nonepileptic disorders. We performed a retrospective chart review including history, physical examination, imaging and diagnostic studies of nonepileptic patients with large amplitude somatosensory evoked potentials (SSEPs) and visual evoked potentials (VEPs) during 2007 to 2013. Large amplitude EPs were defined as follows: VEPs (N75-P100) >18 μV; and SSEPs (N20-P25) >6.4 μV. Recording montage for VEPs was Oz-Cz and SSEPs C3'/C4'-Fz. Fifty-two patients (33 females, 19 males; age range, 9-90 years) were identified. No CNS pathology was detected in 7 patients. All remaining patients were diagnosed with new CNS disorders including: vascular (37%); myelopathies (13%); demyelinating (11%); space occupying lesions (8.7%); syringomyelia (8.7%); hydrocephalus (6.5%); Vitamin B-12 deficiency (4.3%); multiple system atrophy (4.3%); and toxins (2.2%). This study supports the notion that large amplitude EP implies CNS hyperexcitability and CNS disease. These results confirm the utility of EP studies in patients with suspected CNS pathology.

  7. Early somatosensory evoked potentials.

    PubMed

    Sances, A; Larson, S J; Cusick, J F; Myklebust, J; Ewing, C L; Jodat, R; Ackmann, J J; Walsh, P

    1978-10-01

    The early somatosensory evoked potential secondary to median nerve stimulation in the human had an onset latency of 9--12 msec when recorded from scalp electrodes at vertex-to-mastoid, vertex-to-inion or at the base of the skull. Similar latencies were observed from responses recorded over the cervical dorsal columns during neurologic surgery. A latency difference of 1.5 msec was observed between the early response and the responses recorded from the junction of medial lemniscus and nucleus ventralis posterior lateralis of the thalamus during human stereotaxic surgery. Cervical cord transections and transection at the midpontine levels of the monkey showed that the evoked potential was due to generators between these levels. Depth recording of the monkey indicate that the early evoked potential originates in the region of dorsal column nuclei, while the later components are secondary to generators in cerebral cortex.

  8. Dopamine modulates attentional control of auditory perception: DARPP-32 (PPP1R1B) genotype effects on behavior and cortical evoked potentials.

    PubMed

    Li, Shu-Chen; Passow, Susanne; Nietfeld, Wilfried; Schröder, Julia; Bertram, Lars; Heekeren, Hauke R; Lindenberger, Ulman

    2013-07-01

    Using a specific variant of the dichotic listening paradigm, we studied the influence of dopamine on attentional modulation of auditory perception by assessing effects of allelic variation of a single-nucleotide polymorphism (SNP) rs907094 in the DARPP-32 gene (dopamine and adenosine 3', 5'-monophosphate-regulated phosphoprotein 32 kilodations; also known as PPP1R1B) on behavior and cortical evoked potentials. A frequent DARPP-32 haplotype that includes the A allele of this SNP is associated with higher mRNA expression of DARPP-32 protein isoforms, striatal dopamine receptor function, and frontal-striatal connectivity. As we hypothesized, behaviorally the A homozygotes were more flexible in selectively attending to auditory inputs than any G carriers. Moreover, this genotype also affected auditory evoked cortical potentials that reflect early sensory and late attentional processes. Specifically, analyses of event-related potentials (ERPs) revealed that amplitudes of an early component of sensory selection (N1) and a late component (N450) reflecting attentional deployment for conflict resolution were larger in A homozygotes than in any G carriers. Taken together, our data lend support for dopamine's role in modulating auditory attention both during the early sensory selection and late conflict resolution stages.

  9. Cortical evoked response to acoustic change within a syllable.

    PubMed

    Ostroff, J M; Martin, B A; Boothroyd, A

    1998-08-01

    To investigate whether the evoked potential to a complex naturally produced speech syllable could be decomposed to reflect the contributions of the acoustic events contained in the constituent phonemes. Auditory cortical evoked potentials N1 and P2 were obtained in eight adults with normal hearing. Three naturally produced speech stimuli were used: 1) the syllable [sei]; 2) the sibilant [s], extracted from the syllable; 3) the vowel [ei] extracted from the syllable. The isolated sibilant and vowel preserved the same time relationships to the sampling window as they did in the complete syllable. Evoked potentials were collected at Fz, Cz, Pz, A1, and A2, referenced to the nose. In the group mean waveforms, clear responses were observed to both the sibilant and the isolated vowel. Although the response to the [s] was weaker than that to [ei], both had N1 and P2 components with latencies, in relation to sound onset, appropriate to cortical onset potentials. The vowel onset response was preserved in the response to the complete syllable, though with reduced amplitude. This pattern was observable in six of the eight waveforms from individual subjects. It seems likely that the response to [ei] within the complete syllable reflects changes of cortical activation caused by amplitude or spectral change at the transition from consonant to vowel. The change from aperiodic to periodic stimulation may also produce changes in cortical activation that contribute to the observed response. Whatever the mechanism, the important conclusion is that the auditory cortical evoked potential to complex, time-varying speech waveforms can reflect features of the underlying acoustic patterns. Such potentials may have value in the evaluation of speech perception capacity in young hearing-impaired children.

  10. Intensity dependence of auditory-evoked cortical potentials in fibromyalgia patients: a test of the generalized hypervigilance hypothesis.

    PubMed

    Carrillo-de-la-Peña, M T; Vallet, M; Pérez, M I; Gómez-Perretta, C

    2006-07-01

    On the basis of recent evidence concerning the amplification of incoming stimulation in fibromyalgia (FM) patients, it has been proposed that a generalized hypervigilance of painful and nonpainful sensations may be at the root of this disorder. So far, research into this issue has been inconclusive, possibly owing to the lack of agreement as to the operational definition of "generalized hypervigilance" and to the lack of robust objective measures characterizing the sensory style of FM patients. In this study, we recorded auditory-evoked potentials (AEPs) elicited by tones of increasing intensity (60, 70, 80, 90, and 105 dB) in 27 female FM patients and 25 healthy controls. Fibromyalgia patients presented shorter N1 and P2 latencies and a stronger intensity dependence of their AEPs. Both results suggest that FM patients may be hypervigilant to sensory stimuli, especially when very loud tones are used. The most noteworthy difference between patients and control subjects is at the highest stimulus intensity, for which far more patients maintained increased N1-P2 amplitudes in relation to the 90-dB tones. The larger AEP amplitudes to the 105-dB tones suggest that defects in an inhibitory system protecting against overstimulation may be a crucial factor in the pathophysiology of FM. Because a stronger loudness dependence of AEPs has been related to weak serotonergic transmission, it is hypothesized that for many FM patients deficient inhibition of the response to noxious and intense auditory stimuli may be due to a serotonergic deficit. The study of auditory-evoked potentials in response to tones of increasing intensity in FM patients may help to clarify the pathophysiology of this disorder, especially regarding the role of inhibition deficits involving serotonergic dysfunction, and may be a useful tool to guide the pharmacologic treatment of FM patients.

  11. Comparison of electrically evoked cortical potential thresholds generated with subretinal or suprachoroidal placement of a microelectrode array in the rabbit

    NASA Astrophysics Data System (ADS)

    Yamauchi, Yasuyuki; Franco, Luisa M.; Jackson, Douglas J.; Naber, John F.; Ofer Ziv, R.; Rizzo, Joseph F., III; Kaplan, Henry J.; Enzmann, Volker

    2005-03-01

    The aim of the study was to directly compare the threshold electrical charge density of the retina (retinal threshold) in rabbits for the generation of electrical evoked potentials (EEP) by delivering electrical stimulation with a custom-made microelectrode array (MEA) implanted into either the subretinal or suprachoroidal space. Nine eyes of seven Dutch-belted rabbits were studied. The electroretinogram (ERG), visual evoked potentials (VEP) and EEP were recorded. Electrodes for the VEP and EEP were placed on the dura mater overlying the visual cortex. The EEP was recorded following electrical stimulation of the MEA placed either subretinally beneath the visual streak of the retina or in the suprachoroidal space in the rabbit eye. An ab externo approach was used for placement of the MEA. Liquid perfluorodecaline (PFCL; 0.4 ml) was placed within the vitreous cavity to flatten the neurosensory retina on the MEA after subretinal implantation. The retinal threshold for generation of an EEP was determined for each MEA placement by three consecutive measurements consisting of 100 computer-averaged recordings. Animals were sacrificed at the conclusion of the experiment and the eyes were enucleated for histological examination. The retinal threshold to generate an EEP was 9 ± 7 nC (0.023 ± 0.016 mC cm-2) within the subretinal space and 150 ± 122 nC (0.375 ± 0.306 mC cm-2) within the suprachoroidal space. Histology showed disruption of the outer retina with subretinal but not suprachoroidal placement. The retinal threshold to elicit an EEP is significantly lower with subretinal placement of the MEA compared to suprachoroidal placement (P < 0.05). The retinal threshold charge density with a subretinal MEA is well below the published charge limit of 1 mC cm-2, which is the level below which chronic stimulation of the retina is considered necessary to avoid tissue damage (Shannon 1992 IEEE Trans. Biomed. Eng. 39 424-6). Supported in part by The Charles D Kelman, MD

  12. Cortical somatosensory evoked potentials and spasticity assessment after botulinum toxin type A injection in children with cerebral palsy.

    PubMed

    Boćkowski, L; Okurowska-Zawada, B; Sobaniec, W; Kułak, W; Sendrowski, K

    2007-01-01

    The mechanism of Botulinum Toxin Type A (BTX-A) action at the neuromuscular junction is well known. But from the introduction of BTX-A, some authors have suggested a central action of BTX-A and possible side effects far from the site of injection. Some studies demonstrate an improvement of cortical SEPs associated with reduction of spasticity after BTX-A injection. The aim of the present study was to determine the effect of BTX-A treatment on cortical somatosensory potentials (SEP). A group of twenty nine children ranging from 2 to 17 years old with cerebral palsy were studied. Each patients spasticity level was evaluated before, 2 weeks and 6 weeks after BTX-A injection by the Modified Ashworth Scale and modified Gait Physician's Rating Scale. The SEPs from lower and upper extremities were performed before and between 2 and 6 weeks (19.34 +/- 8.82 days) after BTX-A administration. The mean spasitity level was significantly lower 2 and 6 weeks after BTX-A injection. The gait analysis by modified Physician's Rating Scale (PRS) showed significant improvement two weeks and six weeks after BTX-A injection. SEPs results were abnormal before BTX-A injection in 25 children with cerebral palsy. However we didn't find any significant changes of SEPs latencies after BTX-A injection. The results of SEP after BTX-A administration in children with cerebral palsy do not confirm the central action of BTX-A on somatosensory pathways. We did not find any significant changes of SEP latencies associated with clinical reduction of spasticity. It seems that SEP results could support the opinion, that BTX-A does not have any direct central effect on sensory pathways. Remote side effects may be explained by an indirect mechanism due to modification of the central loops of reflexes or to hematogenous spread of BTX-A.

  13. Differential recruitment of high frequency wavelets (600 Hz) and primary cortical response (N20) in human median nerve somatosensory evoked potentials.

    PubMed

    Klostermann, F; Nolte, G; Losch, F; Curio, G

    1998-11-06

    Human median nerve somatosensory evoked potentials contain a burst of high-frequency (600 Hz) wavelets superimposed on the primary cortical response (N20). These presumably reflect highly-synchronized repetitive thalamic and/or intracortical population spike bursts and are diminished in non-REM sleep with N20 persisting. Here the burst/N20 relation in awake subjects was examined by using eight different intensities of electric median nerve stimuli. In all subjects the amplitude recruitment of both N20 and burst could be modeled adequately as a sigmoidal function of stimulus intensity. While 8/10 subjects showed a parallel recruitment, 2/10 subjects required significantly higher stimulation intensities for burst than for N20 recruitment. This dampened burst recruitment possibly reflects slight vigilance fluctuations in open-eyed awake subjects; a further increase of burst thresholds could explain the burst attenuation when entering shallow sleep.

  14. Evoked Potential Variability

    PubMed Central

    Hu, Lingli; Boutros, Nash N.; Jansen, Ben H.

    2008-01-01

    An unsupervised correlation-based clustering method was developed to assess the trial-to-trial variability of auditory evoked potentials (AEPs). The method first decomposes single trials into three frequency bands, each containing activity primarily associated with one of the three major AEP components, i.e., P50, N100 and P200. Next, single-trial evoked potentials with similar post-stimulus characteristics are clustered and selectively averaged to determine the presence or absence of an AEP component. The method was evaluated on actual AEP and spontaneous EEG data collected from 25 healthy participants using a paradigm in which pairs of identical tones were presented, with the first stimulus (S1) presented 0.5 s before the second stimulus (S2). Homogeneous, well-separated clusters were obtained and substantial AEP variability was found. Also, there was a trend for S2 to produce fewer ‘complete’ (and significantly smaller) responses than S1. Tests conducted on spontaneous EEG produced similar clusters as obtained from EP data, but significantly fewer stimuli produced responses containing all three EP components than seen in AEP data. These findings suggest that the clustering method presented here performs adequately to assess trial-to-trial EP variability. Also, the results suggest that the sensory gating observed in normal controls may be caused by the fact that the second stimulus generates fewer ‘responsive’ trials than the first stimulus, thus resulting in smaller ensemble averages. PMID:19103222

  15. Electroacoustic Comparison of Hearing Aid Output of Phonemes in Running Speech versus Isolation: Implications for Aided Cortical Auditory Evoked Potentials Testing

    PubMed Central

    Easwar, Vijayalakshmi; Purcell, David W.; Scollie, Susan D.

    2012-01-01

    Background. Functioning of nonlinear hearing aids varies with characteristics of input stimuli. In the past decade, aided speech evoked cortical auditory evoked potentials (CAEPs) have been proposed for validation of hearing aid fittings. However, unlike in running speech, phonemes presented as stimuli during CAEP testing are preceded by silent intervals of over one second. Hence, the present study aimed to compare if hearing aids process phonemes similarly in running speech and in CAEP testing contexts. Method. A sample of ten hearing aids was used. Overall phoneme level and phoneme onset level of eight phonemes in both contexts were compared at three input levels representing conversational speech levels. Results. Differences of over 3 dB between the two contexts were noted in one-fourth of the observations measuring overall phoneme levels and in one-third of the observations measuring phoneme onset level. In a majority of these differences, output levels of phonemes were higher in the running speech context. These differences varied across hearing aids. Conclusion. Lower output levels in the isolation context may have implications for calibration and estimation of audibility based on CAEPs. The variability across hearing aids observed could make it challenging to predict differences on an individual basis. PMID:23316236

  16. The Effect of Short-Term Auditory Training on Speech in Noise Perception and Cortical Auditory Evoked Potentials in Adults with Cochlear Implants.

    PubMed

    Barlow, Nathan; Purdy, Suzanne C; Sharma, Mridula; Giles, Ellen; Narne, Vijay

    2016-02-01

    This study investigated whether a short intensive psychophysical auditory training program is associated with speech perception benefits and changes in cortical auditory evoked potentials (CAEPs) in adult cochlear implant (CI) users. Ten adult implant recipients trained approximately 7 hours on psychophysical tasks (Gap-in-Noise Detection, Frequency Discrimination, Spectral Rippled Noise [SRN], Iterated Rippled Noise, Temporal Modulation). Speech performance was assessed before and after training using Lexical Neighborhood Test (LNT) words in quiet and in eight-speaker babble. CAEPs evoked by a natural speech stimulus /baba/ with varying syllable stress were assessed pre- and post-training, in quiet and in noise. SRN psychophysical thresholds showed a significant improvement (78% on average) over the training period, but performance on other psychophysical tasks did not change. LNT scores in noise improved significantly post-training by 11% on average compared with three pretraining baseline measures. N1P2 amplitude changed post-training for /baba/ in quiet (p = 0.005, visit 3 pretraining versus visit 4 post-training). CAEP changes did not correlate with behavioral measures. CI recipients' clinical records indicated a plateau in speech perception performance prior to participation in the study. A short period of intensive psychophysical training produced small but significant gains in speech perception in noise and spectral discrimination ability. There remain questions about the most appropriate type of training and the duration or dosage of training that provides the most robust outcomes for adults with CIs.

  17. The Effect of Short-Term Auditory Training on Speech in Noise Perception and Cortical Auditory Evoked Potentials in Adults with Cochlear Implants

    PubMed Central

    Barlow, Nathan; Purdy, Suzanne C.; Sharma, Mridula; Giles, Ellen; Narne, Vijay

    2016-01-01

    This study investigated whether a short intensive psychophysical auditory training program is associated with speech perception benefits and changes in cortical auditory evoked potentials (CAEPs) in adult cochlear implant (CI) users. Ten adult implant recipients trained approximately 7 hours on psychophysical tasks (Gap-in-Noise Detection, Frequency Discrimination, Spectral Rippled Noise [SRN], Iterated Rippled Noise, Temporal Modulation). Speech performance was assessed before and after training using Lexical Neighborhood Test (LNT) words in quiet and in eight-speaker babble. CAEPs evoked by a natural speech stimulus /baba/ with varying syllable stress were assessed pre- and post-training, in quiet and in noise. SRN psychophysical thresholds showed a significant improvement (78% on average) over the training period, but performance on other psychophysical tasks did not change. LNT scores in noise improved significantly post-training by 11% on average compared with three pretraining baseline measures. N1P2 amplitude changed post-training for /baba/ in quiet (p = 0.005, visit 3 pretraining versus visit 4 post-training). CAEP changes did not correlate with behavioral measures. CI recipients' clinical records indicated a plateau in speech perception performance prior to participation in the study. A short period of intensive psychophysical training produced small but significant gains in speech perception in noise and spectral discrimination ability. There remain questions about the most appropriate type of training and the duration or dosage of training that provides the most robust outcomes for adults with CIs. PMID:27587925

  18. Cortical Responsiveness to Nociceptive Stimuli in Patients with Chronic Disorders of Consciousness: Do C-Fiber Laser Evoked Potentials Have a Role?

    PubMed Central

    Naro, Antonino; Russo, Margherita; Leo, Antonino; Rifici, Carmela; Pollicino, Patrizia; Bramanti, Placido; Calabrò, Rocco Salvatore

    2015-01-01

    It has been shown that the presence of Aδ-fiber laser evoked potentials (Aδ-LEP) in patients suffering from chronic disorders of consciousness (DOC), such as vegetative state (VS) and minimally conscious state (MCS), may be the expression of a residual cortical pain arousal. Interestingly, the study of C-fiber LEP (C-LEP) could be useful in the assessment of cortical pain arousal in the DOC individuals who lack of Aδ-LEP. To this end, we enrolled 38 DOC patients following post-anoxic or post-traumatic brain injury, who met the international criteria for VS and MCS diagnosis. Each subject was clinically evaluated, through the coma recovery scale-revised (CRS-R) and the nociceptive coma scale-revised (NCS-R), and electrophysiologically tested by means of a solid-state laser for Aδ-LEP and C-LEP. VS individuals showed increased latencies and reduced amplitudes of both the Aδ-LEP and C-LEP components in comparison to MCS patients. Although nearly all of the patients had both the LEP components, some VS individuals showed only the C-LEP ones. Notably, such patients had a similar NCS-R score to those having both the LEP components. Hence, we could hypothesize that C-LEP generators may be rearranged or partially spared in order to still guarantee cortical pain arousal when Aδ-LEP generators are damaged. Therefore, the residual presence of C-LEP should be assessed when Aδ-LEP are missing, since a potential pain experience should be still present in some patients, so to properly initiate, or adapt, the most appropriate pain treatment. PMID:26674634

  19. Explaining the high voice superiority effect in polyphonic music: evidence from cortical evoked potentials and peripheral auditory models.

    PubMed

    Trainor, Laurel J; Marie, Céline; Bruce, Ian C; Bidelman, Gavin M

    2014-02-01

    Natural auditory environments contain multiple simultaneously-sounding objects and the auditory system must parse the incoming complex sound wave they collectively create into parts that represent each of these individual objects. Music often similarly requires processing of more than one voice or stream at the same time, and behavioral studies demonstrate that human listeners show a systematic perceptual bias in processing the highest voice in multi-voiced music. Here, we review studies utilizing event-related brain potentials (ERPs), which support the notions that (1) separate memory traces are formed for two simultaneous voices (even without conscious awareness) in auditory cortex and (2) adults show more robust encoding (i.e., larger ERP responses) to deviant pitches in the higher than in the lower voice, indicating better encoding of the former. Furthermore, infants also show this high-voice superiority effect, suggesting that the perceptual dominance observed across studies might result from neurophysiological characteristics of the peripheral auditory system. Although musically untrained adults show smaller responses in general than musically trained adults, both groups similarly show a more robust cortical representation of the higher than of the lower voice. Finally, years of experience playing a bass-range instrument reduces but does not reverse the high voice superiority effect, indicating that although it can be modified, it is not highly neuroplastic. Results of new modeling experiments examined the possibility that characteristics of middle-ear filtering and cochlear dynamics (e.g., suppression) reflected in auditory nerve firing patterns might account for the higher-voice superiority effect. Simulations show that both place and temporal AN coding schemes well-predict a high-voice superiority across a wide range of interval spacings and registers. Collectively, we infer an innate, peripheral origin for the higher-voice superiority observed in human

  20. The relationship between cortical auditory evoked potentials (CAEPs) and speech perception in children with Nurotron(®) cochlear implants during four years of follow-up.

    PubMed

    Guo, Qianqian; Li, Yuling; Fu, Xinxing; Liu, Hui; Chen, Jing; Meng, Chao; Long, Mo; Chen, Xueqing

    2016-06-01

    The purpose of the current study was to evaluate the relationship between the presence or absence of cortical auditory evoked potentials (CAEPs) to speech stimuli and the performance of speech perception in Chinese pediatric recipients of the Nurotron(®) cochlear implant (CI).We also wanted to determine how the CAEPs might be used as an indicator for predicting early speech perception and could provide objective evidence for clinical applications of CAEPs. 23 pediatric unilateral CI recipients participated in this study. 15 males 8 females, and their ages at implantation ranged from 13 to 68 months, with a mean age of 36 months. CAEPs and Mandarin Early Speech Perception (MESP) tests were used to evaluate the audibility and speech perception of these CI users. The tests were administered at the first, second, third, and fourth year after the CI surgery. All the subjects demonstrated improvements in detection of speech sounds with CI. The percentages of participants who could detect all three stimuli were 26% (6/23) at first year, to 100% (23/23) at the fourth year post-implantation. The percentages of participants who passed the Category 6 of MESP were from 9% (2/23) at first year, to 91% (21/23) at the fourth year post-implantation. Significant correlations (p<0.05) were found between CAEP scores and MESP at the first, second, third year after the CI surgery. The multiple regression equation for prediction of MESP categories from CAEP scores and hearing ages was MESP=1.088+(0.504×CAEP score)+(0.964×hearing ages) (F=72.919, p<0.001, R(2)=0.621). The results of this study suggested that aided cortical assessment was a useful tool to evaluate the outcomes of cochlear implantation. Cortical outcomes had a significant positive relationship with the MESP, which predicted the early speech perception of CI recipients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Short latency visual evoked potentials in man.

    PubMed

    Pratt, H; Bleich, N; Berliner, E

    1982-07-01

    Contrary to auditory and somatosensory evoked potentials, surface recorded visual evoked potentials which arise in subcortical neural elements have rarely been described. Considerable disagreement exists between the reports in the literature on such visual potentials. In this study, flash stimuli were used to evoke the potentials which were recorded from the skin overlying the infra-orbital ridge, outer canthus, middle of the forehead, vertex, mastoid ipsilateral to the stimulated eye and inion, using a non-cephalic reference. The potentials were amplified in a band which was chosen to omit slow retinal and cortical potentials, and to enhance activity which might include compound neural activity. Potentials were recorded from 9 subjects (13 eyes), and for each one the effects of eye position and stimulus intensity were studied. The results indicate that the series of components recorded within the first 100 msec following photic stimulation were volume-conducted activity generated by a subset of the visual system which is activated by luminosity changes. The generators of the first 4 or 5 components seem to be situated within the retina, the subsequent components seem to be generated in the optic nerve or tracts, and the later components may be thalamo-cortical in origin. These potentials may complement pattern evoked potentials in a more accurate definition of sites of lesions along the visual pathway.

  2. Effects of Acoustic Complexity on Processing Sound Intensity in 10- to 11-Year-Old Children: Evidence From Cortical Auditory Evoked Potentials

    PubMed Central

    Dinces, Elizabeth; Sussman, Elyse

    2012-01-01

    Objectives/Hypothesis The environmental complexity that sounds are presented in, as well as the stimulus presentation rate, influences how sound intensity is centrally encoded with differences between children and adults. Study Design Cortical auditory evoked potential (CAEP) comparison study in children and adults examining two stimulus rates and three different stimulus contexts. Methods Twelve 10 and 11 year olds and 11 adults were studied in two experiments examining the CAEP to a 1-KHz, 50-ms tone. A Slow-Rate experiment at 750-ms stimulus onset asynchrony (SOA) compared the CAEPs of 78 dB to 86 dB SPL in 2 complexity conditions. A Fast-Rate experiment was performed at 125 ms SOA with the same conditions plus an additional complexity condition. Repeated measures and mixed-model analysis of variance (ANOVA) was used to examine the latency and amplitude of the CAEP components. Results CAEP amplitudes and latencies were significantly affected by rate, intensity, and age with complexity interacting in multiple mixed-mode ANOVAs. P1 was the only CAEP component present at the Fast Rate. There were main effects of rate, age, and stimulus intensity level on the CAEP amplitudes and latencies. Maturational differences were seen in the interactions of intensity with complexity for the different CAEP components. Conclusions Complexity of the sound environment was reflected in the relative amplitude of the CAEPs evoked by sound intensity. The effect of stimulus intensity depended on the complexity of the surrounding environment. Effects of the surrounding sounds were different in children than in adults. PMID:21792970

  3. Altered patterns of heartbeat-evoked potentials in depersonalization/derealization disorder: neurophysiological evidence for impaired cortical representation of bodily signals.

    PubMed

    Schulz, André; Köster, Susann; Beutel, Manfred E; Schächinger, Hartmut; Vögele, Claus; Rost, Silke; Rauh, Manfred; Michal, Matthias

    2015-06-01

    Core features of depersonalization/derealization disorder (DPD) are emotional numbing and feelings of disembodiment. Although there are several neurophysiological findings supporting subjective emotional numbing, the psychobiology of disembodiment remains unclear. Heartbeat-evoked potentials (HEPs), which are considered psychophysiological indicators for the cortical representation of afferent signals originating from the cardiovascular system, were assessed in 23 patients with DPD and 24 healthy control individuals during rest and while performing a heartbeat perception task. Absolute HEP amplitudes did not differ between groups. Nevertheless, healthy individuals showed higher HEPs during the heartbeat perception task than during rest, whereas no such effect was found in patients with DPD (p = .031). Patients with DPD had higher total levels of salivary α-amylase than did healthy individuals (9626.6 [8200.0] versus 5344.3 [3745.8] kU min/l; p = .029), but there were no group differences in cardiovascular measures (heart rate = 76.2 [10.1] versus 74.3 [7.5] beats/min, p = .60; normalized low-frequency heart rate variability = 0.63 [0.15] versus 0.56 [0.15] normalized units, p = .099; low frequency/high frequency ratio = 249.3 [242.7] versus 164.8 [108.8], p = .10), salivary cortisol (57.5 [46.7] versus 55.1 [43.6] nmol min/l, p = .86), or cortisone levels (593.2 [260.3] versus 543.8 [257.1] nmol min/l, p = .52). These results suggest altered cortical representation of afferent signals originating from the cardiovascular system in patients with DPD, which may be associated with higher sympathetic tone. These findings may reflect difficulties of patients with DPD to attend to their actual bodily experiences.

  4. Single-sweep spectral analysis of contact heat evoked potentials: a novel approach to identify altered cortical processing after morphine treatment

    PubMed Central

    Hansen, Tine M; Graversen, Carina; Frøkjær, Jens B; Olesen, Anne E; Valeriani, Massimiliano; Drewes, Asbjørn M

    2015-01-01

    Aims The cortical response to nociceptive thermal stimuli recorded as contact heat evoked potentials (CHEPs) may be altered by morphine. However, previous studies have averaged CHEPs over multiple stimuli, which are confounded by jitter between sweeps. Thus, the aim was to assess single-sweep characteristics to identify alterations induced by morphine. Methods In a crossover study 15 single-sweep CHEPs were analyzed from 62 electroencephalography electrodes in 26 healthy volunteers before and after administration of morphine or placebo. Each sweep was decomposed by a continuous wavelet transform to obtain normalized spectral indices in the delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–32 Hz) and gamma (32–80 Hz) bands. The average distribution over all sweeps and channels was calculated for the four recordings for each volunteer, and the two recordings before treatments were assessed for reproducibility. Baseline corrected spectral indices after morphine and placebo treatments were compared to identify alterations induced by morphine. Results Reproducibility between baseline CHEPs was demonstrated. As compared with placebo, morphine decreased the spectral indices in the delta and theta bands by 13% (P = 0.04) and 9% (P = 0.007), while the beta and gamma bands were increased by 10% (P = 0.006) and 24% (P = 0.04). Conclusion The decreases in the delta and theta band are suggested to represent a decrease in the pain specific morphology of the CHEPs, which indicates a diminished pain response after morphine administration. Hence, assessment of spectral indices in single-sweep CHEPs can be used to study cortical mechanisms induced by morphine treatment. PMID:25556985

  5. Evoked potentials in the ICU.

    PubMed

    Amantini, A; Amadori, A; Fossi, S

    2008-01-01

    The most informative neurophysiological techniques available in the neurosurgical intensive care unit are electroencephalograph and somatosensory evoked potentials. Such tools, which give an evaluation of cerebral function in comatose patients, support clinical evaluation and are complementary to neuroimaging. They serve both diagnostic/prognostic and monitoring purposes. While for the former, discontinuous monitoring is sufficient, for the latter, to obtain increased clinical impact, continuous monitoring is necessary. To perform and interpret these examinations in the neurosurgical intensive care unit, both the technician and the neurophysiologist need specific training in the intensive care field. There is sufficient evidence to show that somatosensory evoked potentials are the best single indicator of early prognosis in traumatic and hypoxic-ischaemic coma compared to the Glasgow Coma Score, computed tomography scan and electroencephalograph. Indeed, somatosensory evoked potentials should always be combined with clinical examination to determine the prognosis of coma. Despite widespread use of somatosensory evoked potentials and their prognostic utility in acute brain injury, few studies exist on continuous somatosensory evoked potential monitoring in the intensive care unit. We carried out a pilot study of continuous electroencephalograph-somatosensory evoked potential monitoring in the neurosurgical intensive care unit (traumatic brain injury and intracranial haemorrhage, Glasgow Coma Score <9, intracranial pressure monitoring). All patients stable from a clinical and computed tomography scan point of view showed no significant somatosensory evoked potential modifications, while in the case of clinical deterioration (23%), somatosensory evoked potentials always showed significant modifications. While somatosensory evoked potentials correlated with short-term outcome, intracranial pressure showed a poor correlation. We believe neurophysiological monitoring is

  6. An investigation of prototypical and atypical within-category vowels and non-speech analogues on cortical auditory evoked related potentials (AERPs) in 9 year old children.

    PubMed

    Bruder, Jennifer; Leppänen, Paavo H T; Bartling, Jürgen; Csépe, Valéria; Démonet, Jean-Francois; Schulte-Körne, Gerd

    2011-02-01

    The present study examined cortical auditory evoked related potentials (AERPs) for the P1-N250 and MMN components in children 9 years of age. The first goal was to investigate whether AERPs respond differentially to vowels and complex tones, and the second goal was to explore how prototypical language formant structures might be reflected in these early auditory processing stages. Stimuli were two synthetic within-category vowels (/y/), one of which was preferred by adult German listeners ("prototypical-vowel"), and analogous complex tones. P1 strongly distinguished vowels from tones, revealing larger amplitudes for the more difficult to discriminate but phonetically richer vowel stimuli. Prototypical language phoneme status did not reliably affect AERPs; however P1 amplitudes elicited by the prototypical-vowel correlated robustly with the ability to correctly identify two prototypical-vowels presented in succession as "same" (r=-0.70) and word reading fluency (r=-0.63). These negative correlations suggest that smaller P1 amplitudes elicited by the prototypical-vowel predict enhanced accuracy when judging prototypical-vowel "sameness" and increased word reading speed. N250 and MMN did not differentiate between vowels and tones and showed no correlations to behavioural measures. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Localization of visually evoked cortical activity in humans.

    PubMed

    Srebro, R

    1985-03-01

    The locations of cortical activity evoked by visual stimuli presented at different positions in the visual field are deduced from the scalp topography of visually evoked potentials in humans. To accomplish this, the Laplacian evoked potential is measured using a multi-electrode array. It is shown that the Laplacian response has the following useful attributes for this purpose. It is reference-free. Its spatial resolution is approximately 2 cm referred to the surface of the cortex. Its spatial sensitivity characteristic is that of a spatial band-pass filter. It is relatively insensitive to source--sink configurations that are oriented tangentially to the surface of the scalp. Only modest assumptions about the source--sink configuration are required to obtain a unique inversion of the scalp topography. Stimuli consisting of checkerboard-filled octant or annular octant segments are presented as appearance-disappearance pulses at sixteen different positions in the visual field in randomized order. The locations of evoked cortical activity in the occipital, parietal and temporal lobes are represented on a Mercator projection map for each octant or octant segment stimulated. Lower hemifield stimuli activate cortex which lies mainly on the convexity of the occipital lobe contralateral to the side of stimulus presentation in the visual field. The more peripheral the stimulus is in the visual field, the more rostral is the location of the active cortex. The rostral-to-caudal location of the evoked activity varies from subject to subject by as much as 3 cm on the surface of the occipital cortex. Furthermore, in any single subject there is a substantial amount of hemispheric asymmetry. Upper hemifield stimuli activate cortex that lies on the extreme caudal pole of the occipital lobe. This activity is relatively weak, and in some subjects it is almost unmeasurable. It is suggested that the representation of the upper hemifield in the cortex lies mostly on the inferior and

  8. Intraoperative cortico-cortical evoked potentials for the evaluation of language function during brain tumor resection: initial experience with 13 cases.

    PubMed

    Saito, Taiichi; Tamura, Manabu; Muragaki, Yoshihiro; Maruyama, Takashi; Kubota, Yuichi; Fukuchi, Satoko; Nitta, Masayuki; Chernov, Mikhail; Okamoto, Saori; Sugiyama, Kazuhiko; Kurisu, Kaoru; Sakai, Kuniyoshi L; Okada, Yoshikazu; Iseki, Hiroshi

    2014-10-01

    The objective in the present study was to evaluate the usefulness of cortico-cortical evoked potentials (CCEP) monitoring for the intraoperative assessment of speech function during resection of brain tumors. Intraoperative monitoring of CCEP was applied in 13 patients (mean age 34 ± 14 years) during the removal of neoplasms located within or close to language-related structures in the dominant cerebral hemisphere. For this purpose strip electrodes were positioned above the frontal language area (FLA) and temporal language area (TLA), which were identified with direct cortical stimulation and/or preliminary mapping with the use of implanted chronic subdural grid electrodes. The CCEP response was defined as the highest observed negative peak in either direction of stimulation. In 12 cases the tumor was resected during awake craniotomy. An intraoperative CCEP response was not obtained in one case because of technical problems. In the other patients it was identified from the FLA during stimulation of the TLA (7 cases) and from the TLA during stimulation of the FLA (5 cases), with a mean peak latency of 83 ± 15 msec. During tumor resection the CCEP response was unchanged in 5 cases, decreased in 4, and disappeared in 3. Postoperatively, all 7 patients with a decreased or absent CCEP response after lesion removal experienced deterioration in speech function. In contrast, in 5 cases with an unchanged intraoperative CCEP response, speaking abilities after surgery were preserved at the preoperative level, except in one patient who experienced not dysphasia, but dysarthria due to pyramidal tract injury. This difference was statistically significant (p < 0.01). The time required to recover speech function was also significantly associated with the type of intraoperative change in CCEP recordings (p < 0.01) and was, on average, 1.8 ± 1.0, 5.5 ± 1.0, and 11.0 ± 3.6 months, respectively, if the response was unchanged, was decreased, or had disappeared. Monitoring CCEP is

  9. Different action of a specific NR2B/NMDA antagonist Ro 25-6981 on cortical evoked potentials and epileptic afterdischarges in immature rats.

    PubMed

    Szczurowska, Ewa; Mareš, Pavel

    2015-02-01

    Ro 25-6981 maleate is a highly selective and activity-dependent antagonist of NMDA ionotropic glutamate receptors containing NR2B subunit (NR2B/NMDARs). The aim of our study was to investigate the influence of Ro 25-6981 administration in developing rats on physiological (single and paired pulse cortical interhemispheric evoked potentials) and epileptic brain activity (cortical afterdischarges (ADs)). Electrophysiological experiments were performed in animals with epidurally implanted electrodes at postnatal days (P) P12, P18, and P25. The drug was injected intraperitoneally at a dose of 1 or 3mg/kg. Control animals were injected with saline (1ml/kg). Single interhemispheric responses were evoked with 0.5-ms biphasic pulses with intensities increasing from 0.4 to 5mA, paired-pulse responses were elicited by twofold threshold intensity. The ADs were elicited by series of 15-s of 1-ms pulses at 8-Hz frequency. Firstly, six stimulations with stable suprathreshold intensity repeated at 30-min intervals were used to determine the time course of Ro 25-6981 effects against ADs in P12 animals. Secondly, similar experiment was performed in all age groups of animals but with 20-min intervals as well as a further experiment using stimulations with stepwise intensities increasing at 10-min intervals from 0.2 to 15 mA. Pretreatment with the 3-mg/kg (but not the lower) dose of Ro 25-9681 decreased significantly the amplitude of single responses evoked with higher stimulation intensities in P12 and P18 animals. Both doses affected responses in P25 animals, only the 1-mg/kg dose was more efficacious than the 3-mg/kg one. Paired pulse responses were not affected by either dose of Ro 25-6981 in any age group. Ro 25-9681 clearly influenced the duration of ADs only in P12 animals. The 1-mg/kg dose did not change the duration of ADs whereas the 3-mg/kg dose suppressed progressive prolongation of ADs with repeated stimulations. This effect was seen even 110-min after the drug injection

  10. Vestibular evoked myogenic potentials: review.

    PubMed

    Mudduwa, R; Kara, N; Whelan, D; Banerjee, Anirvan

    2010-10-01

    Disorders of balance often pose a diagnostic conundrum for clinicians, and a multitude of investigations have emerged over the years. Vestibular evoked myogenic potential testing is a diagnostic tool which can be used to assess vestibular function. Over recent years, extensive study has begun to establish a broader clinical role for vestibular evoked myogenic potential testing. To provide an overview of vestibular evoked myogenic potential testing, and to present the evidence for its clinical application. REVIEW TYPE: Structured literature search according to evidence-based medicine guidelines, performed between November 2008 and April 2009. No restrictions were applied to the dates searched. The benefits of vestibular evoked myogenic potential testing have already been established as regards the diagnosis and monitoring of several clinical conditions. Researchers continue to delve deeper into potential new clinical applications, with early results suggesting promising future developments.

  11. Hypothyroidism Affects Olfactory Evoked Potentials

    PubMed Central

    Świdziński, Teodor; Czerniejewska-Wolska, Hanna; Wiskirska-Woźnica, Bożena; Owecki, Maciej; Głowacka, Maria Danuta; Frankowska, Anna; Łącka, Katarzyna; Glapiński, Mariusz; Maciejewska-Szaniec, Zofia; Świdziński, Piotr

    2016-01-01

    Background. Objective electrophysiological methods for investigations of the organ of smell consist in recordings of olfactory cortex responses to specific, time restricted odor stimuli. In hypothyroidism have impaired sense of smell. Material and Methods. Two groups: control of 31 healthy subjects and study group of 21 with hypothyroidism. The inclusion criterion for the study group was the TSH range from 3.54 to 110 μIU/mL. Aim. Assessment of the latency time of evoked responses from the olfactory nerve N1 and the trigeminal nerve N5 using two smells of mint and anise in hypothyroidism. Results. The smell perception in subjective olfactory tests was normal in 85% of the hypothyroid group. Differences were noticed in the objective tests. The detailed intergroup analysis of latency times of recorded cortical responses PN5 and PN1 performed by means between the groups of patients with overt clinical hypothyroidism versus subclinical hypothyroidism demonstrated a significant difference (p < 0.05) whereas no such differences were found between the control group versus subclinical hypothyroidism group (p > 0.05). Conclusion. We can conclude that registration of cortex potentials at irritation of olfactory and trigeminal nerves offers possibilities for using this method as an objective indicator of hypothyroidism severity and prognostic process factor. PMID:27656655

  12. Hypothyroidism Affects Olfactory Evoked Potentials.

    PubMed

    Świdziński, Teodor; Linkowska-Świdzińska, Kamila; Czerniejewska-Wolska, Hanna; Wiskirska-Woźnica, Bożena; Owecki, Maciej; Głowacka, Maria Danuta; Frankowska, Anna; Łącka, Katarzyna; Glapiński, Mariusz; Maciejewska-Szaniec, Zofia; Świdziński, Piotr

    Background. Objective electrophysiological methods for investigations of the organ of smell consist in recordings of olfactory cortex responses to specific, time restricted odor stimuli. In hypothyroidism have impaired sense of smell. Material and Methods. Two groups: control of 31 healthy subjects and study group of 21 with hypothyroidism. The inclusion criterion for the study group was the TSH range from 3.54 to 110 μIU/mL. Aim. Assessment of the latency time of evoked responses from the olfactory nerve N1 and the trigeminal nerve N5 using two smells of mint and anise in hypothyroidism. Results. The smell perception in subjective olfactory tests was normal in 85% of the hypothyroid group. Differences were noticed in the objective tests. The detailed intergroup analysis of latency times of recorded cortical responses PN5 and PN1 performed by means between the groups of patients with overt clinical hypothyroidism versus subclinical hypothyroidism demonstrated a significant difference (p < 0.05) whereas no such differences were found between the control group versus subclinical hypothyroidism group (p > 0.05). Conclusion. We can conclude that registration of cortex potentials at irritation of olfactory and trigeminal nerves offers possibilities for using this method as an objective indicator of hypothyroidism severity and prognostic process factor.

  13. Maturation of cortical auditory evoked potentials (CAEPs) to speech recorded from frontocentral and temporal sites: three months to eight years of age

    PubMed Central

    Yu, Yan H.; Wagner, Monica

    2014-01-01

    The goal of the current analysis was to examine the maturation of cortical auditory evoked potentials (CAEPs) from three months of age to eight years of age. The superior frontal positive-negative-positive sequence (P1, N2, P2) and the temporal site, negative-positive-negative sequence (possibly, Na, Ta, Tb of the T-complex) were examined. Event-related potentials were recorded from 63 scalp sites to a 250- ms vowel. Amplitude and latency of peaks were measured at left and right frontal sites (near Fz) and at left and right temporal sites (T7 and T8). In addition the largest peak (typically corresponding to P1) was selected from global field power (GFP). The results revealed a large positive peak (P1) easily identified at frontal sites across all ages. The N2 emerged after 6 months of age and the following P2 between 8 and 30 months of age. The latencies of these peaks decreased exponentially with the most rapid decrease observed for P1. For amplitude, only P1 showed a clear relationship with age, becoming more positive in a somewhat linear fashion. At the temporal sites only a negative peak, which might be Na, was clearly observed at both left and right sites in children older than 14 months and peaking between 100 and 200 ms. P1 measures at frontal sites and Na peak latencies were moderately correlated. The temporal negative peak latency showed a different maturational timecourse (linear in nature) than the P1 peak, suggesting at least partial independence. Distinct Ta (positive) and Tb (negative) peaks, following Na and peaking between 120 and 220 ms were not consistently found in most age groups of children, except Ta which was present in 7 year olds. Future research, which includes manipulation of stimulus factors, and use of modeling techniques will be needed to explain the apparent, protracted maturation of the temporal site measures in the current study. PMID:25219893

  14. Evoked potentials in multiple sclerosis.

    PubMed

    Kraft, George H

    2013-11-01

    Before the development of magnetic resonance imaging (MRI), evoked potentials (EPs)-visual evoked potentials, somatosensory evoked potentials, and brain stem auditory evoked responses-were commonly used to determine a second site of disease in patients being evaluated for possible multiple sclerosis (MS). The identification of an area of the central nervous system showing abnormal conduction was used to supplement the abnormal signs identified on the physical examination-thus identifying the "multiple" in MS. This article is a brief overview of additional ways in which central nervous system (CNS) physiology-as measured by EPs-can still contribute value in the management of MS in the era of MRIs. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Maturation of cortical auditory evoked potentials (CAEPs) to speech recorded from frontocentral and temporal sites: three months to eight years of age.

    PubMed

    Shafer, Valerie L; Yu, Yan H; Wagner, Monica

    2015-02-01

    The goal of the current analysis was to examine the maturation of cortical auditory evoked potentials (CAEPs) from three months of age to eight years of age. The superior frontal positive-negative-positive sequence (P1, N2, P2) and the temporal site, negative-positive-negative sequence (possibly, Na, Ta, Tb of the T-complex) were examined. Event-related potentials were recorded from 63 scalp sites to a 250-ms vowel. Amplitude and latency of peaks were measured at left and right frontal sites (near Fz) and at left and right temporal sites (T7 and T8). In addition, the largest peak (typically corresponding to P1) was selected from global field power (GFP). The results revealed a large positive peak (P1) easily identified at frontal sites across all ages. The N2 emerged after 6 months of age and the following P2 between 8 and 30 months of age. The latencies of these peaks decreased exponentially with the most rapid decrease observed for P1. For amplitude, only P1 showed a clear relationship with age, becoming more positive in a somewhat linear fashion. At the temporal sites only a negative peak, which might be Na, was clearly observed at both left and right sites in children older than 14 months and peaking between 100 and 200 ms. P1 measures at frontal sites and Na peak latencies were moderately correlated. The temporal negative peak latency showed a different maturational timecourse (linear in nature) than the P1 peak, suggesting at least partial independence. Distinct Ta (positive) and Tb (negative) peaks, following Na and peaking between 120 and 220 ms were not consistently found in most age groups of children, except Ta which was present in 7 year olds. Future research, which includes manipulation of stimulus factors, and use of modeling techniques will be needed to explain the apparent, protracted maturation of the temporal site measures in the current study. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Auditory evoked potentials from the cortex: audiology applications.

    PubMed

    Cone-Wesson, Barbara; Wunderlich, Julia

    2003-10-01

    The audiological applications of cortical auditory evoked potentials are reviewed. Cortical auditory evoked potentials have some advantages compared with more commonly used techniques such as the auditory brainstem response, because they are more closely tied to perception and can be evoked by complex sounds such as speech. These response characteristics suggest that these potentials could be used clinically in the estimation of threshold and also to assess speech discrimination and perception. Clinical uses of auditory evoked potentials include threshold estimation and their use as an electrophysiological index of auditory system development, auditory discrimination and speech perception, and the benefits from cochlear implantation, auditory training, or amplification. Cortical auditory evoked potentials obtained in passively alert adults have a remarkably high correspondence with perceptual threshold. Acoustic features of complex sounds may be reflected in the waveform and latency of these potentials and so might be used to determine the integrity of neural encoding for such features and thus contribute to speech perception assessment. MMN and P3 have been used to discern discrimination abilities among groups of normal-hearing and hearing-impaired individuals; however, their sensitivity and specificity for testing an individual's abilities has not yet been established. Cortical auditory potentials are affected by listening experience and attention and so could be used to gauge the effects of aural habilitation. The presence of cortical potentials in children with auditory neuropathy appears to indicate residual hearing abilities. Parametric and developmental research is needed to further establish these applications in audiology.

  17. The cortical and sub-cortical network of sensory evoked response in healthy subjects.

    PubMed

    Muthuraman, M; Hellriegel, H; Groppa, S; Deuschl, G; Raethjen, J

    2013-01-01

    The aim of this study was to find the cortical and sub-cortical network responsible for the sensory evoked coherence in healthy subjects during electrical stimulation of right median nerve at wrist. The multitaper method was used to estimate the power and coherence spectrum followed by the source analysis method dynamic imaging of coherent sources (DICS) to find the highest coherent source for the basic frequency 3 Hz and the complete cortical and sub-cortical network responsible for the sensory evoked coherence in healthy subjects. The highest coherent source for the basic frequency was in the posterior parietal cortex for all the subjects. The cortical and sub-cortical network comprised of the primary sensory motor cortex (SI), secondary sensory motor cortex (SII), frontal cortex and medial pulvinar nucleus in the thalamus. The cortical and sub-cortical network responsible for the sensory evoked coherence was found successfully with a 64-channel EEG system. The sensory evoked coherence is involved with a thalamo-cortical network in healthy subjects.

  18. Vestibular-evoked myogenic potentials.

    PubMed

    Colebatch, J G; Rosengren, S M; Welgampola, M S

    2016-01-01

    The vestibular-evoked myogenic potential (VEMP) is a short-latency potential evoked through activation of vestibular receptors using sound or vibration. It is generated by modulated electromyographic signals either from the sternocleidomastoid muscle for the cervical VEMP (cVEMP) or the inferior oblique muscle for the ocular VEMP (oVEMP). These reflexes appear to originate from the otolith organs and thus complement existing methods of vestibular assessment, which are mainly based upon canal function. This review considers the basis, methodology, and current applications of the cVEMP and oVEMP in the assessment and diagnosis of vestibular disorders, both peripheral and central. © 2016 Elsevier B.V. All rights reserved.

  19. Time Perception and Evoked Potentials

    DTIC Science & Technology

    1988-07-01

    settlement of beat - sound syn- chronization with cadences or rhythms is very fast, and simultaneity is already carried out on the third stimulus. In the...During the binaural listening of the stimulations (empty durations delimited by clicks), the auditory evoked potentials (AEP) of the subjects were re...1974a), the stimulus duration (HUANG, 1981), the stimulation delivery way, monaural or binaural (ALLEN, 1968) or the . stimulus probability (FITZGERALD

  20. Local and thalamic origins of correlated ongoing and sensory-evoked cortical activities

    PubMed Central

    Cohen-Kashi Malina, Katayun; Mohar, Boaz; Rappaport, Akiva N.; Lampl, Ilan

    2016-01-01

    Thalamic inputs of cells in sensory cortices are outnumbered by local connections. Thus, it was suggested that robust sensory response in layer 4 emerges due to synchronized thalamic activity. To investigate the role of both inputs in the generation of correlated cortical activities, we isolated the thalamic excitatory inputs of cortical cells by optogenetically silencing cortical firing. In anaesthetized mice, we measured the correlation between isolated thalamic synaptic inputs of simultaneously patched nearby layer 4 cells of the barrel cortex. Here we report that in contrast to correlated activity of excitatory synaptic inputs in the intact cortex, isolated thalamic inputs exhibit lower variability and asynchronous spontaneous and sensory-evoked inputs. These results are further supported in awake mice when we recorded the excitatory inputs of individual cortical cells simultaneously with the local field potential in a nearby site. Our results therefore indicate that cortical synchronization emerges by intracortical coupling. PMID:27615520

  1. Spontaneous and evoked cortical dynamics during deep anaesthesia.

    PubMed

    Mäkinen, S; Hartikainen, K; Eriksson, J T; Jäntti, V

    1996-09-01

    In this paper we have studied cortical dynamics as assessed using graphical methods during deep anaesthesia. Graphical analysis was carried out by autocorrelation functions and return maps with different lags. During moderate and deep anaesthesia, the electroencephalogram (EEG) shows a burst suppression pattern, consisting of abruptly-occurring high amplitude bursts alternating with periods of relative silence. Deep anaesthesia with burst suppression pattern provides a simple model of brain activity when the noise that is usually present in a subject who is awake is suppressed. During anaesthesia-induced EEG suppression, the brain reacts to different external stimuli with bursts. In respect to sensory processing during anaesthesia, it is interesting to know whether these bursts have different dynamics depending on the stimuli used. We have used graphical analysis to reveal the possible differences in bursts evoked by different stimuli. Externally evoked bursts were induced by auditory, electric and visual stimuli. The EEG studied in this paper consists of 25 bursts from one subject. We have estimated the autocorrelation function for each burst and used the formation gained from such autocorrelation coefficients as the grounds for determining different lags for return maps. The graphical methods used revealed differences in dynamics and topology of bursts as evoked by different stimuli. Spontaneous bursts clearly had different dynamics from evoked burst; which could not be seen directly from the raw EEG data. This study suggests that graphical analysis is a useful tool to obtain information about the dynamics of neuronal processes behind cortical responses during deep anaesthesia.

  2. Contact heat evoked potentials in normal subjects.

    PubMed

    Chen, I-An; Hung, Steven Wu; Chen, Yu-Hsien; Lim, Siew-Na; Tsai, Yu-Tai; Hsiao, Cheng-Lun; Hsieh, Hsiang-Yao; Wu, Tony

    2006-09-01

    Laser-evoked potentials are widely used to investigate nociceptive pathways. The newly developed contact heat stimulator for evoking brain response has the advantages of obtaining reliable scalp potentials and absence of cutaneous lesions. This study aimed to identify the most appropriate stimulation site with consistent cortical responses, and to correlate several parameters of the contact heat evoked potentials (CHEPs) with age, gender, and body height in normal subjects. CHEPs were recorded at Cz with a contact heat stimulator (Medoc, Israel) in 35 normal controls. The subjects were asked to keep eyes open and remain alert. The baseline temperature was 32 degrees C, and stimulation peak heat intensity of 51 degrees C was applied to five body sites: bilateral forearm, right dorsum hand, right peroneal area, and right dorsum foot. Reproducible CHEPs were recorded more frequently when stimulated at volar forearm (62.5%) than at the lower limbs (around 40%). The first negative peak latency (N1) was 370.1 +/- 20.3 ms, first positive peak latency (P1) was 502.4 +/- 33.0 ms, and peak to peak amplitude was 10.2 +/- 4.9 microV with stimulation of the forearm. Perceived pain intensity was not correlated with the presence or amplitude of CHEPs. No gender or inter-side differences were observed for N1 latency and N1-P1 amplitude. Also, no correlation was noted between N1 and age or body height. These results support future clinical access of CHEPs as a diagnostic tool.

  3. Evoked potentials and head injury. 1. Rating of evoked potential abnormality.

    PubMed

    Rappaport, M; Hall, K; Hopkins, H K; Belleza, T

    1981-10-01

    This paper describes a method for rating the degree of abnormality of auditory, visual and somatosensory evoked potential patterns in head injury (HI) patients. Criteria for judging degree of EP abnormality are presented that allow assessment of the extent and severity of subcortical and cortical dysfunction associated with traumatic brain damage. Interrater reliability data based upon blind ratings of normal and HI patients are presented and shown to be highly significant. Tables of normative values of peak latencies and amplitudes are given and illustrations of EP patterns of different degrees of abnormality are presented.

  4. [Personality dimensions and cerebral evoked potential].

    PubMed

    Camposano, S; Alvarez, C; Lolas, F

    1994-12-01

    Eysenck's personality theory postulates 3 orthogonal dimensions of personality: extraversion (E), neuroticism (N) and psychoticism (P), predicting conductual and physiological predispositions to suffer mental illness. Biological bases of Eysenck's personality traits have been documented electrophysiologically. Psychoticism, the latest described dimension, is controverted, since there is some evidence of common factors with the other two. In order to assess the relation between Eysenck's dimensions and sensorial reactivity and information encoding processes we studied 20 healthy young subjects (mean age 28.5 years) with flash visual cortical evoked potentials (VEP, 3 intensities, peak to peak amplitude of III, IV-V-VI, VII components), and auditory cognitive evoked potentials (odd ball paradigm, P300 latency). There was a positive correlation between N and P dimensions (Spearman, r = 0.52), between N and VEP amplitude at high intensity (r = 0.58) and a negative correlation between E and P300 latency (r = 0.58). In short we found that P is not an independent dimension, but is related to sensorial reactivity. E dimension was related to encoding processes supporting Eysenck's observations about memory and learning differences.

  5. Dynamics of Multistable States during Ongoing and Evoked Cortical Activity

    PubMed Central

    Mazzucato, Luca

    2015-01-01

    Single-trial analyses of ensemble activity in alert animals demonstrate that cortical circuits dynamics evolve through temporal sequences of metastable states. Metastability has been studied for its potential role in sensory coding, memory, and decision-making. Yet, very little is known about the network mechanisms responsible for its genesis. It is often assumed that the onset of state sequences is triggered by an external stimulus. Here we show that state sequences can be observed also in the absence of overt sensory stimulation. Analysis of multielectrode recordings from the gustatory cortex of alert rats revealed ongoing sequences of states, where single neurons spontaneously attain several firing rates across different states. This single-neuron multistability represents a challenge to existing spiking network models, where typically each neuron is at most bistable. We present a recurrent spiking network model that accounts for both the spontaneous generation of state sequences and the multistability in single-neuron firing rates. Each state results from the activation of neural clusters with potentiated intracluster connections, with the firing rate in each cluster depending on the number of active clusters. Simulations show that the model's ensemble activity hops among the different states, reproducing the ongoing dynamics observed in the data. When probed with external stimuli, the model predicts the quenching of single-neuron multistability into bistability and the reduction of trial-by-trial variability. Both predictions were confirmed in the data. Together, these results provide a theoretical framework that captures both ongoing and evoked network dynamics in a single mechanistic model. PMID:26019337

  6. Do unresponsive wakefulness syndrome patients feel pain? Role of laser-evoked potential-induced gamma-band oscillations in detecting cortical pain processing.

    PubMed

    Naro, A; Leo, A; Cannavò, A; Buda, A; Bramanti, P; Calabrò, R S

    2016-03-11

    It has been proposed that a neural signature of aware pain perception could be represented by the modulation of gamma-band oscillation (GBO) power induced by nociceptive repetitive laser stimulation (RLS). The aim of our study was to correlate the RLS-induced GBO modulation with the Nociception Coma Scale-Revised (NCS-R) scores (a validated scale assessing possible aware pain perception in patients with chronic disorders of consciousness), in an attempt to differentiate unresponsive wakefulness syndrome (UWS) patients from minimally conscious state (MCS) ones (both of them are awake but exhibit no or limited and fluctuant behavioral signs of awareness and mentation, and low and high NCS-R scores, respectively). In addition, we attempted to identify those among UWS patients who probably experienced pain at covert level (i.e. being aware but unable to show pain-related purposeful behaviors, which are those sustained, reproducible, and voluntary behavioral responses to nociceptive stimuli). Notably, the possibility of clearly differentiating UWS from MCS patients has outmost consequences concerning prognosis (worse in UWS) and adequate pain treatment. RLS consisted in 80 trains of three laser stimuli (delivered at 1Hz), at four different energies, able to evoke Aδ-fiber related laser evoked potentials. After each train, we assessed the NCS-R score. EEG was divided into epochs according to the laser trains, and the obtained epochs were classified in four categories according to the NCS-R score magnitude. We quantified the GBO absolute power for each category. RLS protocol induced a strongly correlated increase in GBO power and NCS-R score (the higher the laser stimulation intensity, the higher the NCS-R, independently of stimulus repetition) in all the MCS patients, thus confirming the presence of aware pain processing. Nonetheless, such findings were present even in five UWS individuals. This could suggest the presence of covert pain processing in such subjects

  7. Cortical maturation of long latency auditory evoked potentials in hearing children: the complex P1-N1-P2-N2.

    PubMed

    Silva, Liliane Aparecida Fagundes; Magliaro, Fernanda Cristina Leite; Carvalho, Ana Claudia Martinho de; Matas, Carla Gentile

    2017-09-04

    The purpose of this study was to monitor the emergence and changes to the components of the Long Latency Auditory Evoked Potentials (LLAEP) in normal hearing children. This longitudinal study included children of both genders: seven aged between 10 and 35 months, and eight children between 37 and 63 months. The electrophysiological hearing evaluation consisted of analysis of LLAEP obtained in a sound field generated with loudspeakers positioned at an azimuth of 90°, through which the syllable /ba/ was played at an intensity of 70 dB HL. Each child underwent an initial evaluation followed by two re-evaluations three and nine months later. The emergence of LLAEP components across the nine-month follow-up period was observed. P1 and N2 were the most common components in children of this age range. There was no statistically significant difference regarding the occurrence of P1, N1, P2, and N2 components amongst younger and older children. Regarding latency values, the greatest changes overtime were observed in the P1 component for younger children and in the N2 component for older children. Only the P1 component significantly differed between the groups, with the highest latency values observed in younger children. LLAEP maturation occurs gradually and the emergence of complex components appears to be related more to the maturation of the central auditory nervous system than to chronological age.

  8. Thermal grill conditioning: Effect on contact heat evoked potentials

    PubMed Central

    Jutzeler, Catherine R.; Warner, Freda M.; Wanek, Johann; Curt, Armin; Kramer, John L. K.

    2017-01-01

    The ‘thermal grill illusion’ (TGI) is a unique cutaneous sensation of unpleasantness, induced through the application of interlacing warm and cool stimuli. While previous studies have investigated optimal parameters and subject characteristics to evoke the illusion, our aim was to examine the modulating effect as a conditioning stimulus. A total of 28 healthy control individuals underwent three testing sessions on separate days. Briefly, 15 contact heat stimuli were delivered to the right hand dorsum, while the left palmar side of the hand was being conditioned with either neutral (32 °C), cool (20 °C), warm (40 °C), or TGI (20/40 °C). Rating of perception (numeric rating scale: 0–10) and evoked potentials (i.e., N1 and N2P2 potentials) to noxious contact heat stimuli were assessed. While cool and warm conditioning decreased cortical responses to noxious heat, TGI conditioning increased evoked potential amplitude (N1 and N2P2). In line with other modalities of unpleasant conditioning (e.g., sound, visual, and olfactory stimulation), cortical and possibly sub-cortical modulation may underlie the facilitation of contact heat evoked potentials. PMID:28079118

  9. [The visual evoked potentials in diabetic retinopathy].

    PubMed

    Costache, Doina; Damian, Carmen; Iancău, Maria

    2004-01-01

    The recording of Visual Evoked Potential alterations at the patients with diabetic retinopathy. It was performed the Visual Evoked Potential recordings at 24 patients with diabetic retinopathy in different stages of evolution, with or without complications. The type of Visual Evoked Potential recording was pattern reversal with vertical bars. We followed the diagram alterations in correlation with the evolution stages of diabetic retinopathy and the visual parameter alterations. In all cases we recorded alteration of the Visual Evoked Potential. In nonproliferative diabetic retinopathy was noticed the delay of P100 wave with inconstant presence of the N75 and N135 waves. In proliferative diabetic retinopathy and its complications the alterations of the tract were important. The gradual alteration of the Visual Evoked Potential tract at the patients with diabetic retinopathy represents a prognosis of the disease.

  10. Somatosensory evoked potentials following proprioceptive stimulation of finger in man.

    PubMed

    Mima, T; Terada, K; Maekawa, M; Nagamine, T; Ikeda, A; Shibasaki, H

    1996-09-01

    Brisk passive flexion of the proximal interphalangeal joint of the middle finger, produced by using a newly devised instrument, elicited evoked potentials on the scalp. The present study carefully excluded the possible contribution of sensory modalities other than proprioception. The initial part of cortical response was a positive deflexion at the contralateral central area (P1 at 34.6 ms after the stimulus). This was followed by a midfrontal negative wave (N1 at 44.8 ms) and a clear positivity at the contralateral centroparietal area (P2 at 48.0 ms). The evoked responses persisted in spite of the abolition of cutaneous and joint afferents of the finger caused by ischemic anesthesia, but they were lost by ischemic anesthesia of the forearm. Thus, the cortical evoked responses obtained in this study most probably reflect muscle afferent inputs. The scalp distribution of P1 suggested that its cortical generator source was different from that of the N20-P20 components of evoked potentials to electrical median nerve stimulation. Brodmann areas 2 and 3a of human brain, which are known to receive deep receptor inputs, are the most plausible generator sites for the early components of the proprioception-related evoked responses. The amplitude of P2 was related to the velocity but not to the magnitude of movement. In conclusion, the present study established a method for recording the evoked responses to the brisk passive movement of the finger joint, which mainly reflect the dynamic aspects of proprioception mediated through muscle afferent.

  11. Investigation of brachial plexus traction lesions by peripheral and spinal somatosensory evoked potentials.

    PubMed Central

    Jones, S J

    1979-01-01

    Peripheral, spinal and cortical somatosensory evoked potentials were recorded in 26 patients with unilateral traction injuries of the brachial plexus ganglia. Of 10 cases explored surgically the recordings correctly anticipated the major site of the lesion in eight. PMID:422958

  12. Visual evoked potentials in neonatal hyperbilirubinemia.

    PubMed

    Chen, Wen-Xiong; Wong, Virginia

    2006-01-01

    The management of neonatal hyperbilirubinemia is very standardized. However, there is a lack of an objective method to evaluate the cerebral effects of bilirubin apart from brainstem auditory evoked potentials. There were few studies evaluating the effects of hyperbilirubinemia or phototherapy on the visual pathway in infants with hyperbilirubinemia. Serial visual evoked potentials of two groups of term neonates (N = 24)--group 1 with moderate hyperbilirubinemia (n = 16) and group 2 with severe hyperbilirubinemia (n = 8)--were evaluated prospectively. All infants had regular physical, neurologic, visual, and auditory evaluations until 3 years. Four (16%) had abnormal visual evoked potentials before 1 year, and the abnormalities returned to normal thereafter. There was no significant difference in visual evoked potentials between the two groups. All had normal neurodevelopmental status by 3 years, with the exception of one child from the severe group with ABO incompatibility with transient mild motor delay, hypotonia, and abnormal visual evoked potential. There were no abnormal effects of phototherapy on visual evoked potentials in infants with neonatal hyperbilirubinemia after 1 year of age. Although our sample size was small, the results suggest that the effects of hyperbilirubinemia on visual evoked potentials might be transient. (J Child Neurol 2006;21:58-62).

  13. [Evoked somatosensory plexus and cervical evoked potentials in cervicobrachialgia].

    PubMed

    Rossi, L; Ubiali, E; Merli, R; Rottoli, M R

    1983-01-01

    The authors study the sensitive potential evoked from point of Erb and from cervical spine in C6-C7, obtained by stimulation of median nerve in a control group (normals) and in a greater group of 40 cases from patients affected by radiculopathie with or without discal protrusion and by myelopathie spondiloartrosic. The date supply significant informations and are (obicurred in analytique) analyzed with accuracy.

  14. Signal analysis of auditory evoked cortical fields in fetal magnetoencephalography.

    PubMed

    Schneider, U; Schleussner, E; Haueisen, J; Nowak, H; Seewald, H J

    2001-01-01

    Magnetoencephalography (MEG) using auditory evoked cortical fields (AEF) is an absolutely non-invasive method of passive measurement which utilizes magnetic fields caused by specific cortical activity. By applying the exceptionally sensitive SQUID technology to record these fields of dipolar configuration produced by the fetal brain, MEG as an investigational tool could provide new insights into the development of the human brain in utero. The major constraint to this application is a very low signal-to-noise ratio (SNR) that has to be attributed to a variety of factors including the magnetic signals generated by the fetal and maternal hearts which inevitably obscure a straightforward signal analysis. By applying a new algorithm of specific heart artefact reduction based on the relative regularity of the heart signals, we were able to increase the chance of extracting a fetal AEF from the raw data by the means of averaging techniques and principle component analysis. Results from 27 pregnant, healthy women (third trimester of their uncomplicated pregnancy) indicate an improved detection rate and the reproducibility of the fetal MEG. We evaluate and discuss a-priori criteria for signal analyses which will enable us to systematically analyze additional limiting factors, to further enhance the efficiency of this method and to promote the assessment of its possible clinical value in the future.

  15. The electroretinogram and visual evoked potential of freely moving rats.

    PubMed

    Szabó-Salfay, O; Pálhalmi, J; Szatmári, E; Barabás, P; Szilágyi, N; Juhász, G

    2001-09-01

    The vascularised rat retina could be one of the most useful experimental objects in visual neuroscience to understand human visual physiological and pathological processes. We report here on a new method of implantation for studying the visual system of freely moving rats that provides a rat model for simultaneous recording at corneal and cortical level and is stable enough to record for months. We implanted light emitting diodes onto the skull behind the eyeball to stimulate the eye with flashes and to light adapt the retina with constant light levels. A multistrand, stainless steel, flexible fine wire electrode placed on the eyeball was used for electroretinogram recording and screw electrodes (left/right visual and parietal cortical) were used to record the visual evoked potential and the electroencephalogram. In the present report we focus on the new method of implantation for recording the corneal flash electroretinogram of normal, freely moving rats simultaneously with the visual evoked cortical potential showing examples in various visual experiments. We also introduce a program for retinogram and visual evoked potential analysis, which defines various measures (latencies, areas, amplitudes, and durations) and draw attention to the benefits of this method for those involved in visual, functional genomic, pharmacological, and human ophthalmologic research.

  16. Effects of pulse phase duration and location of stimulation within the inferior colliculus on auditory cortical evoked potentials in a guinea pig model.

    PubMed

    Neuheiser, Anke; Lenarz, Minoo; Reuter, Guenter; Calixto, Roger; Nolte, Ingo; Lenarz, Thomas; Lim, Hubert H

    2010-12-01

    The auditory midbrain implant (AMI), which consists of a single shank array designed for stimulation within the central nucleus of the inferior colliculus (ICC), has been developed for deaf patients who cannot benefit from a cochlear implant. Currently, performance levels in clinical trials for the AMI are far from those achieved by the cochlear implant and vary dramatically across patients, in part due to stimulation location effects. As an initial step towards improving the AMI, we investigated how stimulation of different regions along the isofrequency domain of the ICC as well as varying pulse phase durations and levels affected auditory cortical activity in anesthetized guinea pigs. This study was motivated by the need to determine in which region to implant the single shank array within a three-dimensional ICC structure and what stimulus parameters to use in patients. Our findings indicate that complex and unfavorable cortical activation properties are elicited by stimulation of caudal-dorsal ICC regions with the AMI array. Our results also confirm the existence of different functional regions along the isofrequency domain of the ICC (i.e., a caudal-dorsal and a rostral-ventral region), which has been traditionally unclassified. Based on our study as well as previous animal and human AMI findings, we may need to deliver more complex stimuli than currently used in the AMI patients to effectively activate the caudal ICC or ensure that the single shank AMI is only implanted into a rostral-ventral ICC region in future patients.

  17. Cortical functional correlates of responsiveness to short-lasting preventive intervention with ketogenic diet in migraine: a multimodal evoked potentials study.

    PubMed

    Di Lorenzo, Cherubino; Coppola, Gianluca; Bracaglia, Martina; Di Lenola, Davide; Evangelista, Maurizio; Sirianni, Giulio; Rossi, Paolo; Di Lorenzo, Giorgio; Serrao, Mariano; Parisi, Vincenzo; Pierelli, Francesco

    2016-01-01

    Here, we aim to identify cortical electrofunctional correlates of responsiveness to short-lasting preventiveintervention with ketogenic diet (KD) in migraine. Eighteen interictal migraineurs underwent visual (VEPs) and median nerve somatosensory (SSEPs) evokedpotentials before and after 1 month of KD during ketogenesis. We measured VEPs N1-P1 and SSEPs N20-P25 amplitudes respectively in six and in two sequential blocks of 100 sweeps as well as habituation as theslope of the linear regression between block 1 to 6 for VEPs or between 1 to 2 for SSEPs. After 1-month of KD, a significant reduction in the mean attack frequency and duration was observed (all P< 0.001). The KD did not change the 1st SSEP and VEP block of responses, but significantly inducednormalization of the interictally reduced VEPs and SSEPs (all p < 0.01) habituation during the subsequentblocks. KD could restore normal EPs habituation curves during stimulus repetition without significantly changing theearly amplitude responses. Thus, we hypothesize that KD acts on habituation regulating the balancebetween excitation and inhibition at the cortical level.

  18. [Brainstem auditory evoked potentials and somatosensory evoked potentials in Chiari malformation].

    PubMed

    Moncho, Dulce; Poca, María A; Minoves, Teresa; Ferré, Alejandro; Rahnama, Kimia; Sahuquillo, Juan

    2013-06-16

    Introduccion. La malformacion de Chiari (MC) incluye una serie de anomalias congenitas que tienen como comun denominador la ectopia de las amigdalas del cerebelo por debajo del foramen magno, lo que puede condicionar fenomenos compresivos del troncoencefalo, la medula espinal alta y los nervios craneales, alterando las respuestas de los potenciales evocados auditivos del tronco cerebral (PEATC) y de los potenciales evocados somatosensoriales (PESS). Sin embargo, las indicaciones de ambas exploraciones en las MC han sido motivo de estudio en un numero limitado de publicaciones, centradas en series cortas y heterogeneas de pacientes. Objetivo. Revisar los hallazgos de los PEATC y los PESS en los estudios publicados en pacientes con MC tipo 1 (MC-1) o tipo 2 (MC-2), y su indicacion en el diagnostico, tratamiento y seguimiento, especialmente en la MC-1. Desarrollo. Es un estudio de revision realizado mediante analisis de los estudios publicados en Medline desde 1966, localizados mediante PubMed, utilizando combinaciones de las palabras clave 'Chiari malformation', 'Arnold-Chiari malformation', 'Chiari type 1 malformation', 'Arnold-Chiari type 1 malformation', 'evoked potentials', 'brainstem auditory evoked potentials' y 'somatosensory evoked potentials', asi como informacion de pacientes con MC-1 valorados en los servicios de neurocirugia y neurofisiologia clinica del Hospital Universitari Vall d'Hebron. Conclusiones. Los hallazgos mas comunes de los PESS son la reduccion en la amplitud cortical para el nervio tibial posterior, la reduccion o ausencia del potencial cervical del nervio mediano y el aumento del intervalo N13-N20. En el caso de los PEATC, los hallazgos mas frecuentes descritos son el aumento del intervalo I-V y la alteracion periferica o coclear.

  19. [Auditory evoked potentials: basics and clinical applications].

    PubMed

    Radeloff, A; Cebulla, M; Shehata-Dieler, W

    2014-09-01

    Auditory evoked potentials (AEPs) are elicited at various levels of the auditory system following acoustic stimulation. Electrocochleography is a technique for recording AEPs of the inner ear. The recording is performed by means of a needle electrode placed on the promontory or non-invasive with tympanic membrane or ear canal electrodes. Clinically, electrocochleography is used for the diagnosis of auditory neuropathy spectrum disorder (ANSD) and endolymphatic hydrops. According to their latencies, AEPs of the central auditory pathway are subdivided into early, middle and late (cortical) AEPs. These AEPs are recorded via surface scalp electrodes. Normally, the larger EEG masks AEPs. For unmasking the AEP, several techniques are applied. Early AEPs or auditory brainstem responses (ABR) are the most widely used AEPs for functional evaluation of the auditory pathway. In contrast to otoacoustic emissions, early AEPs can detect ANSD. Thus, they are more suitable for hearing screening in newborns. For this purpose automated procedures are implemented. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Non-invasive modulation of somatosensory evoked potentials by the application of static magnetic fields over the primary and supplementary motor cortices.

    PubMed

    Kirimoto, Hikari; Asao, Akihiko; Tamaki, Hiroyuki; Onishi, Hideaki

    2016-10-04

    This study was performed to investigate the possibility of non-invasive modulation of SEPs by the application of transcranial static magnetic field stimulation (tSMS) over the primary motor cortex (M1) and supplementary motor cortex (SMA), and to measure the strength of the NdFeB magnetic field by using a gaussmeter. An NdFeB magnet or a non-magnetic stainless steel cylinder (for sham stimulation) was settled on the scalp over M1 and SMA of 14 subjects for periods of 15 min. SEPs following right median nerve stimulation were recorded before and immediately after, 5 min after, and 10 min after tSMS from sites C3' and F3. Amplitudes of the N33 component of SEPs at C3' significantly decreased immediately after tSMS over M1 by up to 20%. However, tSMS over the SMA did not affect the amplitude of any of the SEP components. At a distance of 2-3 cm (rough depth of the cortex), magnetic field strength was in the range of 110-190 mT. Our results that tSMS over M1 can reduce the amplitude of SEPs are consistent with those of low-frequency repeated TMS and cathodal tDCS studies. Therefore, tSMS could be a useful tool for modulating cortical somatosensory processing.

  1. Non-invasive modulation of somatosensory evoked potentials by the application of static magnetic fields over the primary and supplementary motor cortices

    PubMed Central

    Kirimoto, Hikari; Asao, Akihiko; Tamaki, Hiroyuki; Onishi, Hideaki

    2016-01-01

    This study was performed to investigate the possibility of non-invasive modulation of SEPs by the application of transcranial static magnetic field stimulation (tSMS) over the primary motor cortex (M1) and supplementary motor cortex (SMA), and to measure the strength of the NdFeB magnetic field by using a gaussmeter. An NdFeB magnet or a non-magnetic stainless steel cylinder (for sham stimulation) was settled on the scalp over M1 and SMA of 14 subjects for periods of 15 min. SEPs following right median nerve stimulation were recorded before and immediately after, 5 min after, and 10 min after tSMS from sites C3′ and F3. Amplitudes of the N33 component of SEPs at C3′ significantly decreased immediately after tSMS over M1 by up to 20%. However, tSMS over the SMA did not affect the amplitude of any of the SEP components. At a distance of 2–3 cm (rough depth of the cortex), magnetic field strength was in the range of 110–190 mT. Our results that tSMS over M1 can reduce the amplitude of SEPs are consistent with those of low-frequency repeated TMS and cathodal tDCS studies. Therefore, tSMS could be a useful tool for modulating cortical somatosensory processing. PMID:27698365

  2. Pneumatic evoked potential. Sensory or auditive potential?

    PubMed

    Condé, S; Créac'h, C; Brun, X; Moreau, R; Convers, P; Peyron, R

    2013-06-01

    In this study, evoked potentials (EPs) to a pneumatic, innocuous, and calibrated stimulation of the skin were recorded in 22 volunteers. Air-puff stimuli were delivered through a home-made device (INSA de Lyon, Laboratoire Ampère, CHU de Saint-Étienne, France) synchronized with an EEG recording (Micromed(®)). A reproducible EP was recorded in 18 out of 22 subjects (82% of cases) with a mean latency of about 120-130ms, and maximal amplitude at Cz. This EP actually consisted of two components, an auditory and a somatosensory one. Indeed, it was significantly decreased in amplitude, but did not disappear, when the noise generated by the air-puff was masked. We also verified that a stimulation close to the skin but not perceived by the subject was not associated with any EP. Conduction velocity between hand and shoulder was calculated around 25m/s. This preliminary study demonstrates that pneumatic EPs can be recorded in normal volunteers. Copyright © 2013. Published by Elsevier SAS.

  3. Optical imaging of visual cortical responses evoked by transcorneal electrical stimulation with different parameters.

    PubMed

    Ma, Zengguang; Cao, Pengjia; Sun, Pengcheng; Li, Liming; Lu, Yiliang; Yan, Yan; Chen, Yao; Chai, Xinyu

    2014-07-31

    The use of phosphenes evoked by transcorneal electrical stimulation (TcES) has been proposed as a means of residual visual function evaluation and candidate selection before implantation of retinal prostheses. Compared to the subjective measures, measurement of neuronal activity in visual cortex can objectively and quantitatively explore their response properties to electrical stimulation. The purpose of this study was to investigate systematically the properties of cortical responses evoked by TcES. The visual cortical responses were recorded using a multiwavelength optical imaging of intrinsic signals (OIS) combining with electrophysiological recording by a multichannel electrode array. The effects of different parameters of TcES on cortical responses, including the changes of hemoglobin oxygenation and cerebral blood volume, were examined. We found consistent OIS activation regions in visual cortex after TcES, which also showed strong evoked field potentials according to electrophysiological results. The OIS response regions were located mainly in cortical areas representing peripheral visual field. The extent of activation areas and strength of intrinsic signals were increased with higher current intensities and longer pulse widths, and the largest responses were acquired in the frequency range 10 to 20 Hz. Use of TcES through the ERG-jet corneal electrode may preferentially activate peripheral retina. Revealing the hemodynamic changes in visual cortex occurred after electrical stimulation can contribute to comprehension of neurophysiological underpinnings underlying prosthetic vision. This study provided an objective foundation for optimizing parameters of TcES and would bring considerable benefits in the application of TcES for assessment and screening in patients. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  4. Efferent and afferent evoked potentials in patients with adrenomyeloneuropathy.

    PubMed

    Matsumoto, Hideyuki; Hanajima, Ritsuko; Terao, Yasuo; Hamada, Masashi; Yugeta, Akihiro; Shirota, Yuichiro; Yuasa, Kaoru; Sato, Fumio; Matsukawa, Takashi; Takahashi, Yuji; Goto, Jun; Tsuji, Shoji; Ugawa, Yoshikazu

    2010-02-01

    This paper investigates efferent and afferent conductions of the central nervous system by various evoked potentials in patients with adrenomyeloneuropathy (AMN). Ten pure AMN patients without cerebral involvement were studied. Motor evoked potentials (MEPs), somatosensory evoked potentials (SEPs), auditory brainstem response (ABR), and pattern reversal full-field visual evoked potentials (VEPs) were recorded. For MEP recording, single-pulse or double-pulse magnetic brainstem stimulation (BST) was also performed. Abnormal MEP was observed in all ten patients, abnormal SEP in all ten, abnormal ABR in nine, and abnormal VEP in only one. Brainstem latency was measured in three of the seven patients with central motor conduction time (CMCT) prolongation. The cortical-brainstem conduction time was severely prolonged along the normal or mildly delayed brainstem-cervical conduction time in those three patients. The pattern of normal VEP and abnormal MEP, SEP, ABR is a clinically useful electrophysiological feature for the diagnosis. BST techniques are helpful to detect, functionally, intracranial corticospinal tract involvement, probably demyelination, in pure AMN patients. 2009 Elsevier B.V. All rights reserved.

  5. Initial and serial evoked potentials in cerebrovascular critical care patients.

    PubMed

    Haupt, Walter F; Pawlik, Gunter; Thiel, Alexander

    2006-10-01

    Results of somatosensory evoked potential (SEP) and brainstem auditory evoked potential (BAEP) examinations performed early in the clinical course of patients with acute cerebrovascular disease correlate statistically significantly with outcome regardless of type and localization of the primary lesion. The prognostic value of serial examinations of SEP and BAEP has not been studied yet. The authors examined a group of 215 patients suffering from acute stroke requiring neurocritical care composed of 75 supratentorial and 36 infratentorial ischemic strokes, 58 supratentorial and 18 infratentorial hemorrhages, and 28 aneurysmatic subarachnoid hemorrhages prospectively using spinal and cortical SEP and BAEP according to routine procedures on admission as well as after 1 and 2 weeks. The findings were correlated to outcome at 4 weeks. Statistical assessment was performed using standard methods of contingency analysis. In all groups, SEP findings were significantly correlated with outcome at initial and all subsequent examinations, similar correlations were also found for BAEP. However, after partialling out the prognostic information gained from the initial examination of SEP and BAEP, the follow-up examinations rendered only a marginal increase in prognostic information. Therefore, the initial examination of evoked potentials supplies valuable prognostic information, however, serial examinations of evoked potentials during the first weeks of disease improve the prognostic information only marginally.

  6. [Evoked potentials and post-traumatic evolution].

    PubMed

    Guérit, J-M

    2005-06-01

    Visual, somatosensory, and brainstem auditory evoked potentials provide functional quantitative assessment of the cerebral cortex and brainstem. Their contribution at the acute stage of coma concerns diagnosis, prognosis, and follow-up. Four patterns are observed in traumatic coma: pattern 1=dysfunction of the cerebral cortex, brainstem integrity: good prognosis in more than 80% of cases; pattern 2=midbrain dysfunction: prognosis depends on both the reversibility of midbrain dysfunction and the extent of associated axonal lesions in the hemispheric white matter; pattern 3=pontine dysfunction due to transtentorial herniation: ominous prognosis, this pattern must be early detected by continuous monitoring; pattern 4=brain death: we currently use evoked potentials at the only brain-death confirmatory test, even in sedated patients. The contribution of evoked potentials in vegetative or minimally responsive states concerns the identification of these patients whose state is determined by midbrain dysfunction and the evaluation of persisting cognitive abilities in individual cases.

  7. Pedunculopontine nucleus evoked potentials from subthalamic nucleus stimulation in Parkinson's disease.

    PubMed

    Neagu, Bogdan; Tsang, Eric; Mazzella, Filomena; Hamani, Clement; Moro, Elena; Hodaie, Mojgan; Lozano, Andres M; Chen, Robert

    2013-12-01

    The effects of subthalamic nucleus (STN) stimulation on the pedunculopontine nucleus area (PPNR) evoked activities were examined in two patients with Parkinson's disease. The patients had previously undergone bilateral STN deep brain stimulation (DBS) and subsequently received unilateral DBS electrodes in the PPNR. Evoked potentials were recorded from the local field potentials (LFP) from the PPNR with STN stimulation at different frequencies and bipolar contacts. Ipsilateral and contralateral short latency (<2ms) PPNR responses were evoked from left but not from right STN stimulation. In both patients, STN stimulation evoked contralateral PPNR responses at medium latencies between 41 and 45ms. Cortical evoked potentials to single pulse STN stimulation were observed at latencies between 18 and 27ms. These results demonstrate a functional connection between the STN and the PPNR. It likely involves direct projections between the STN and PPNR or polysynaptic pathways with thalamic or cortical relays.

  8. Brainstem auditory evoked potentials and middle latency auditory evoked potentials in young children.

    PubMed

    Luo, Jin Jun; Khurana, Divya S; Kothare, Sanjeev V

    2013-03-01

    Measurements of brainstem auditory evoked potentials (BAEP) and middle latency auditory evoked potentials (MLAEP) are readily available neurophysiologic assessments. The generators for BAEP are believed to involve the structures of cochlear nerve, cochlear nucleus, superior olive complex, dorsal and rostral pons, and lateral lemniscus. The generators for MLAEP are assumed to be located in the subcortical area and auditory cortex. BAEP are commonly used in evaluating children with autistic and hearing disorders. However, measurement of MLAEP is rarely performed in young children. To explore the feasibility of this procedure in young children, we retrospectively reviewed our neurophysiology databank and charts for a 3-year period to identify subjects who had both BAEP and MLAEP performed. Subjects with known or identifiable central nervous system abnormalities from the history, neurologic examination and neuroimaging studies were excluded. This cohort of 93 children up to 3 years of age was divided into 10 groups based on the age at testing (upper limits of: 1 week; 1, 2, 4, 6, 8, 10 and 12 months; 2 years; and 3 years of age). Evolution of peak latency, interpeak latency and amplitude of waveforms in BAEP and MLAEP were demonstrated. We concluded that measurement of BAEP and MLAEP is feasible in children, as early as the first few months of life. The combination of both MLAEP and BAEP may increase the diagnostic sensitivity of neurophysiologic assessment of the integrity or functional status of both the peripheral (acoustic nerve) and the central (brainstem, subcortical and cortical) auditory conduction systems in young children with developmental speech and language disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Evoked potentials in monitoring multiple sclerosis.

    PubMed

    Leocani, L; Medaglini, S; Comi, G

    2000-01-01

    The usefulness of evoked potentials (EPs) in the diagnosis of multiple sclerosis is limited by its relatively low sensitivity to subclinical lesions. However, they are still a good tool to assess the integrity of afferent and efferent pathways and to quantify the severity of white matter involvement. Transversal and longitudinal studies have demonstrated good correlation between EP abnormalities and disability, suggesting that multimodal evoked potentials could be useful in monitoring the disease evolution in single patients and as surrogate end points in clinical trials.

  10. Evoked potentials and head injury. 2. Clinical applications.

    PubMed

    Rappaport, M; Hopkins, H K; Hall, K; Belleza, T

    1981-10-01

    The method of rating abnormality of evoked brain potential patterns and assessing the extent and severity of cortical and subcortical brain dysfunction in head injury patients described in Part I is applied in a clinical context. Evoked potential abnormality (EPA) scores are found to be significantly correlated both with admission and outcome disability approximately one year after head injury. Correlations increase with the increase in the number of sensory modalities tested. Correlations between EPA scores and clinical disability (measured by the Disability Rating Scale) decrease with time after injury. Significant correlations, however, persist for about 60 days after onset of injury. It was found that EP pattern abnormalities can reflect specific sensory (and at times motor) deficits in noncommunicative patients and thereby contribute significantly to early treatment and rehabilitation planning.

  11. Differential response properties of peripherally and cortically evoked swallows by electrical stimulation in anesthetized rats.

    PubMed

    Tsujimura, Takanori; Tsuji, Kojun; Magara, Jin; Sakai, Shogo; Suzuki, Taku; Nakamura, Yuki; Nozawa-Inoue, Kayoko; Inoue, Makoto

    2016-04-01

    We compared onset latency, motor-response patterns, and the effect of electrical stimulation of the cortical masticatory area between peripherally and cortically evoked swallows by electrical stimulation in anesthetized rats. The number of swallows and the motor patterns were determined using electromyographic recordings from the thyrohyoid, digastric, and masseter muscles. The onset latency of the first swallow evoked by electrical stimulation of the cortical swallowing area (Cx) was significantly longer than that evoked by stimulation of the superior laryngeal nerve (SLN). The duration of thyrohyoid burst activity associated with SLN-evoked swallows was significantly longer than that associated with either Cx-evoked or spontaneous swallows. Combining Cx with SLN stimulation increased the number of swallows at low levels of SLN stimulation. Finally, A-area (the orofacial motor cortex) stimulation inhibited Cx-evoked swallows significantly more than it inhibited SLN-evoked swallows. These findings suggest that peripherally and cortically evoked swallows have different response properties and are affected differently by the mastication network. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Evoked response amplitudes from somatosensory cortices do not determine reaction times to tactile stimuli.

    PubMed

    Ploner, Markus; Platzen, Jens; Pollok, Bettina; Gross, Joachim; Schnitzler, Alfons

    2007-06-01

    Sensory events cause changes in brain activity, which underlie the perception of and behavioural responses to sensory stimuli. Evoked cortical responses are an important measure of these stimulus-evoked changes in brain activity. However, evidence on the relationship between behavioural responses and evoked responses is inconsistent. Therefore, we used magnetoencephalography to reinvestigate the relationship between evoked responses from somatosensory cortices and behavioural responses to somatosensory stimuli. We characterized modulations of somatosensory-evoked responses exerted by preceding painful and tactile conditioning stimuli (CS), and related these modulations of evoked responses to modulations of reaction times. Our results show that painful CS yield a long-lasting (> 4 s) facilitation of evoked responses, whereas tactile CS result in a shorter lasting (1-2 s) suppression of evoked responses to tactile stimuli. These contrary physiological effects were both associated with a significant shortening of reaction times. These findings indicate that the conditioning effects of painful and tactile stimuli represent essentially different modulatory mechanisms. Moreover, our results show that amplitudes of evoked responses from somatosensory cortices do not determine reaction times to tactile stimuli.

  13. Evoked potentials in immobilized cats to a combination of clicks with painful electrocutaneous stimuli

    NASA Technical Reports Server (NTRS)

    Gilinskiy, M. A.; Korsakov, I. A.

    1979-01-01

    Averaged evoked potentials in the auditory, somatosensory, and motor cortical zones, as well as in the mesencephalic reticular formation were recorded in acute experiments on nonanesthetized, immobilized cats. Omission of the painful stimulus after a number of pairings resulted in the appearance of a delayed evoked potential, often resembling the late phases of the response to the painful stimulus. The characteristics of this response are discussed in comparison with conditioned changes of the sensory potential amplitudes.

  14. Case Report of Vestibularly evoked Visual Hallucinations in a Patient with Cortical Blindness.

    PubMed

    Kolev, Ognyan I

    2016-08-01

    Previous work has shown that caloric vestibular stimulation may evoke elementary visual hallucinations in healthy humans, such as different colored lines or dots. Surprisingly, the present case report reveals that the same stimulation can evoke visual hallucinations in a patient with cortical blindness, but with fundamentally different characteristics. The visual hallucinations evoked were complex and came from daily life experiences. Moreover, they did not include other senses beyond vision. This case report suggests that in conditions of cerebral pathology, vestibular-visual interaction may stimulate hallucinogenic subcortical, or undamaged cortical structures, and arouse mechanisms that can generate visual images exclusively.

  15. [Effect of sleep deprivation on visual evoked potentials and brain stem auditory evoked potentials in epileptics].

    PubMed

    Urumova, L T; Kovalenko, G A; Tsunikov, A I; Sumskiĭ, L I

    1984-01-01

    The article reports on the first study of the evoked activity of the brain in epileptic patients (n = 20) following sleep deprivation. An analysis of the data obtained has revealed a tendency to the shortening of the peak latent intervals of visual evoked potentials in the range of 100-200 mu sec and the V component and the interpeak interval III-V of evoked auditory trunk potentials in patients with temporal epilepsy. The phenomenon may indicate the elimination of stabilizing control involving the specific conductive pathways and, possibly, an accelerated conduction of a specific sensor signal.

  16. Laser and somatosensory evoked potentials in amyotrophic lateral sclerosis.

    PubMed

    Isak, Baris; Tankisi, Hatice; Johnsen, Birger; Pugdahl, Kirsten; Finnerup, Nanna Brix; Fuglsang-Frederiksen, Anders

    2016-10-01

    Mild involvement of sensory nerves has been reported in previous studies in ALS patients. In this study, we assessed sensory pathways in ALS patients using laser evoked potentials (LEPs) and somatosensory evoked potentials (SSEPs). We recruited 18 ALS patients and 31 healthy subjects. Neodymium-doped yttrium aluminium perovskite (Nd:YAP)-laser was used to evoke LEPs in upper (UE) and lower (LE) extremities. N1 and N2P2 potentials were obtained from contralateral insular cortex (T3 or T4) and vertex (Cz), respectively. Median SSEPs were recorded from C3' or C4' and tibial SSEPs from Cz'. Compared to controls, ALS patients had longer N2 and P2 latencies, and smaller N2P2 amplitudes in both UE- and LE-LEPs (p<0.05), and longer latencies for median and tibial SSEPs (p<0.05). LEPs and SSEPs were abnormal in 72.2% and 56.6% patients, respectively. Cortical potentials showed that A-beta or A-delta sensory fibres, or both, were impaired in more than half of the ALS patients. The findings support that ALS is a multi-systemic disorder involving, although to a lesser degree, other systems than the motor. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Optical Recording of Retinal and Visual Cortical Responses Evoked by Electrical Stimulation on the Retina

    NASA Astrophysics Data System (ADS)

    Osanai, Makoto; Sakaehara, Haruko; Sawai, Hajime; Song, Wen-Jie; Yagi, Tetsuya

    To develop a retinal prosthesis for blind patients using an implanted multielectrode array, it is important to study the response properties of retinal ganglion cells and of the visual cortex to localized retinal electrical stimulation. Optical imaging can reveal the spatio-temporal properties of neuronal activity. Therefore, we conducted a calcium imaging study to investigate response properties to local current stimulation in frog retinas, and a membrane potential imaging study to explore the visual cortical responses to retinal stimulation in guinea pigs. In the retina, local current stimuli evoked transient responses in the ganglion cells located near the stimulus electrode. The spatial pattern of the responding area was altered by changing the location of the stimulation. Local electrical stimulation to the retina also caused transient responses in the visual cortex. The responding cortical areas in the primary visual cortex were localized. A spatially different cortical response was observed to stimulation of a different position on the retina. These results suggest that the imaging study has great potential in revealing the spatio-temporal properties of the neuronal response for the retinal prosthesis.

  18. Perceptual learning of acoustic noise generates memory-evoked potentials.

    PubMed

    Andrillon, Thomas; Kouider, Sid; Agus, Trevor; Pressnitzer, Daniel

    2015-11-02

    Experience continuously imprints on the brain at all stages of life. The traces it leaves behind can produce perceptual learning [1], which drives adaptive behavior to previously encountered stimuli. Recently, it has been shown that even random noise, a type of sound devoid of acoustic structure, can trigger fast and robust perceptual learning after repeated exposure [2]. Here, by combining psychophysics, electroencephalography (EEG), and modeling, we show that the perceptual learning of noise is associated with evoked potentials, without any salient physical discontinuity or obvious acoustic landmark in the sound. Rather, the potentials appeared whenever a memory trace was observed behaviorally. Such memory-evoked potentials were characterized by early latencies and auditory topographies, consistent with a sensory origin. Furthermore, they were generated even on conditions of diverted attention. The EEG waveforms could be modeled as standard evoked responses to auditory events (N1-P2) [3], triggered by idiosyncratic perceptual features acquired through learning. Thus, we argue that the learning of noise is accompanied by the rapid formation of sharp neural selectivity to arbitrary and complex acoustic patterns, within sensory regions. Such a mechanism bridges the gap between the short-term and longer-term plasticity observed in the learning of noise [2, 4-6]. It could also be key to the processing of natural sounds within auditory cortices [7], suggesting that the neural code for sound source identification will be shaped by experience as well as by acoustics.

  19. A comparison of auditory evoked potentials to acoustic beats and to binaural beats.

    PubMed

    Pratt, Hillel; Starr, Arnold; Michalewski, Henry J; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi

    2010-04-01

    The purpose of this study was to compare cortical brain responses evoked by amplitude modulated acoustic beats of 3 and 6 Hz in tones of 250 and 1000 Hz with those evoked by their binaural beats counterparts in unmodulated tones to indicate whether the cortical processes involved differ. Event-related potentials (ERPs) were recorded to 3- and 6-Hz acoustic and binaural beats in 2000 ms duration 250 and 1000 Hz tones presented with approximately 1 s intervals. Latency, amplitude and source current density estimates of ERP components to beats-evoked oscillations were determined and compared across beat types, beat frequencies and base (carrier) frequencies. All stimuli evoked tone-onset components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude in response to acoustic than to binaural beats, to 250 than to 1000 Hz base frequency and to 3 Hz than to 6 Hz beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left temporal lobe areas. Differences between estimated sources of potentials to acoustic and binaural beats were not significant. The perceptions of binaural beats involve cortical activity that is not different than acoustic beats in distribution and in the effects of beat- and base frequency, indicating similar cortical processing. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Early visual evoked potentials in callosal agenesis.

    PubMed

    Barr, Melodie S; Hamm, Jeff P; Kirk, Ian J; Corballis, Michael C

    2005-11-01

    Three participants with callosal agenesis and 12 neurologically normal participants were tested on a simple reaction time task, with visual evoked potentials collected using a high-density 128-channel system. Independent-components analyses were performed on the averaged visual evoked potentials to isolate the components of interest. Contrary to previous research with acallosals, evidence of ipsilateral activation was present in all 3 participants. Although ipsilateral visual components were present in all 4 unilateral conditions in the 2 related acallosal participants, in the 3rd, these were present only in the crossed visual field-hand conditions and not in the uncrossed conditions. Suggestions are made as to why these results differ from earlier findings and as to the neural mechanisms facilitating this ipsilateral activation.

  1. Evoked-potential changes following discrimination learning involving complex sounds

    PubMed Central

    Orduña, Itzel; Liu, Estella H.; Church, Barbara A.; Eddins, Ann C.; Mercado, Eduardo

    2011-01-01

    Objective Perceptual sensitivities are malleable via learning, even in adults. We trained adults to discriminate complex sounds (periodic, frequency-modulated sweep trains) using two different training procedures, and used psychoacoustic tests and evoked potential measures (the N1-P2 complex) to assess changes in both perceptual and neural sensitivities. Methods Training took place either on a single day, or daily across eight days, and involved discrimination of pairs of stimuli using a single-interval, forced-choice task. In some participants, training started with dissimilar pairs that became progressively more similar across sessions, whereas in others training was constant, involving only one, highly similar, stimulus pair. Results Participants were better able to discriminate the complex sounds after training, particularly after progressive training, and the evoked potentials elicited by some of the sounds increased in amplitude following training. Significant amplitude changes were restricted to the P2 peak. Conclusion Our findings indicate that changes in perceptual sensitivities parallel enhanced neural processing. Significance These results are consistent with the proposal that changes in perceptual abilities arise from the brain’s capacity to adaptively modify cortical representations of sensory stimuli, and that different training regimens can lead to differences in cortical sensitivities, even after relatively short periods of training. PMID:21958655

  2. A primer on motion visual evoked potentials.

    PubMed

    Heinrich, Sven P

    2007-03-01

    Motion visual evoked potentials (motion VEPs) have been used since the late 1960s to investigate the properties of human visual motion processing, and continue to be a popular tool with a possible future in clinical diagnosis. This review first provides a synopsis of the characteristics of motion VEPs and then summarizes important methodological aspects. A subsequent overview illustrates how motion VEPs have been applied to study basic functions of human motion processing and shows perspectives for their use as a diagnostic tool.

  3. Effect of stimulus check size on multifocal visual evoked potentials.

    PubMed

    Balachandran, Chandra; Klistorner, Alexander I; Graham, Stuart L

    2003-03-01

    In this study we examined the effects of varying stimulus check size on multifocal visual evoked potential (VEP). We also evaluated the currently used cortical scaling of stimulus segments. The ObjectiVision multifocal objective perimeter stimulates the eye with random check patterns at 56 cortically scaled segments within the visual field extending to a radius of 26 degrees. All cortically scaled segments have equal number of checks, which gradually increase in size from the center to the periphery, proportional to the size of the segment. Stimuli with 9, 16, 25, 36 and 49 checks/segment were tested on 10 eyes belonging to 10 normal subjects. The check size varied inversely with number of checks per segment. VEP was recorded using bipolar occipital cross electrodes (7 min/eye), the amplitude and latency of responses obtained were compared with the check size at different eccentricities. Our findings suggest that the existing setting with 16 checks/segment subtending 26' to 140' from center to periphery, is the most effective amongst all the check sizes. Decreasing the check size prolongs the latency in the central field only. Cortical scaling of segments generates responses of the same order of magnitude throughout the field, but could be improved slightly to enhance the signal from the outer two rings.

  4. Irregular Speech Rate Dissociates Auditory Cortical Entrainment, Evoked Responses, and Frontal Alpha

    PubMed Central

    Kayser, Stephanie J.; Ince, Robin A.A.; Gross, Joachim

    2015-01-01

    The entrainment of slow rhythmic auditory cortical activity to the temporal regularities in speech is considered to be a central mechanism underlying auditory perception. Previous work has shown that entrainment is reduced when the quality of the acoustic input is degraded, but has also linked rhythmic activity at similar time scales to the encoding of temporal expectations. To understand these bottom-up and top-down contributions to rhythmic entrainment, we manipulated the temporal predictive structure of speech by parametrically altering the distribution of pauses between syllables or words, thereby rendering the local speech rate irregular while preserving intelligibility and the envelope fluctuations of the acoustic signal. Recording EEG activity in human participants, we found that this manipulation did not alter neural processes reflecting the encoding of individual sound transients, such as evoked potentials. However, the manipulation significantly reduced the fidelity of auditory delta (but not theta) band entrainment to the speech envelope. It also reduced left frontal alpha power and this alpha reduction was predictive of the reduced delta entrainment across participants. Our results show that rhythmic auditory entrainment in delta and theta bands reflect functionally distinct processes. Furthermore, they reveal that delta entrainment is under top-down control and likely reflects prefrontal processes that are sensitive to acoustical regularities rather than the bottom-up encoding of acoustic features. SIGNIFICANCE STATEMENT The entrainment of rhythmic auditory cortical activity to the speech envelope is considered to be critical for hearing. Previous work has proposed divergent views in which entrainment reflects either early evoked responses related to sound encoding or high-level processes related to expectation or cognitive selection. Using a manipulation of speech rate, we dissociated auditory entrainment at different time scales. Specifically, our

  5. Irregular Speech Rate Dissociates Auditory Cortical Entrainment, Evoked Responses, and Frontal Alpha.

    PubMed

    Kayser, Stephanie J; Ince, Robin A A; Gross, Joachim; Kayser, Christoph

    2015-11-04

    The entrainment of slow rhythmic auditory cortical activity to the temporal regularities in speech is considered to be a central mechanism underlying auditory perception. Previous work has shown that entrainment is reduced when the quality of the acoustic input is degraded, but has also linked rhythmic activity at similar time scales to the encoding of temporal expectations. To understand these bottom-up and top-down contributions to rhythmic entrainment, we manipulated the temporal predictive structure of speech by parametrically altering the distribution of pauses between syllables or words, thereby rendering the local speech rate irregular while preserving intelligibility and the envelope fluctuations of the acoustic signal. Recording EEG activity in human participants, we found that this manipulation did not alter neural processes reflecting the encoding of individual sound transients, such as evoked potentials. However, the manipulation significantly reduced the fidelity of auditory delta (but not theta) band entrainment to the speech envelope. It also reduced left frontal alpha power and this alpha reduction was predictive of the reduced delta entrainment across participants. Our results show that rhythmic auditory entrainment in delta and theta bands reflect functionally distinct processes. Furthermore, they reveal that delta entrainment is under top-down control and likely reflects prefrontal processes that are sensitive to acoustical regularities rather than the bottom-up encoding of acoustic features. The entrainment of rhythmic auditory cortical activity to the speech envelope is considered to be critical for hearing. Previous work has proposed divergent views in which entrainment reflects either early evoked responses related to sound encoding or high-level processes related to expectation or cognitive selection. Using a manipulation of speech rate, we dissociated auditory entrainment at different time scales. Specifically, our results suggest that

  6. [Evoked potentials monitoring in aortic surgery].

    PubMed

    Shiiya, Norihiko; Takahashi, Daisuke; Tsuda, Kazumasa

    2014-07-01

    Somatosensory evoked potential (SSEP), evoked spinal cord potential (ESCP) and motor evoked potential (MEP) have been used to detect spinal cord ischemia during aortic surgery. SSEP evaluates the sensory pathway, and is recorded from the sensory cortex by peripheral nerve stimulation. The interval from the onset of ischemia to change is relatively long(5-10 minutes). It has less frequently been used because of the high false negative and false positive rate. ESCP is recorded from the spinal cord by direct stimulation of the cord. It reflects the function of spinal tract but not that of alpha motor neurons. It is resistant to anesthesia and both the sensitivity and specificity is high, but the interval from ischemia to change is relatively long. Together with the necessity of 2 epidural electrodes, its application in aortic surgery has become infrequent. Since the introduction of train pulse transcranial electrical stimulation, myogenic MEP have gained widespread acceptance. It evaluates motor pathways from the cortex to the muscle, and therefore is influenced by non-spinal factors such as peripheral nerve ischemia. Its vulnerability to anesthesia requires special anesthetic consideration, and baseline amplitude fluctuation is common. It is highly sensitive and shows changes in the early phase of spinal cord ischemia.

  7. Pharmacology of sensory stimulation-evoked increases in frontal cortical acetylcholine release.

    PubMed

    Acquas, E; Wilson, C; Fibiger, H C

    1998-07-01

    Recent research has demonstrated that a variety of sensory stimuli can increase acetylcholine release in the frontal cortex of rats. The aim of the present experiments was to investigate the pharmacological regulation of sensory stimulation-induced increases in the activity of basal forebrain cholinergic neurons. To this end, the effects of agonists and antagonists at a variety of neurotransmitter receptors on basal and tactile stimulation-evoked increases in frontal cortical acetylcholine release were studied using in vivo brain microdialysis. Tactile stimulation, produced by gently stroking the rat's neck with a nylon brush for 20 min, significantly increased frontal cortical acetylcholine release by more than 100% above baseline. The noradrenergic alpha2 agonist clonidine (0.1 or 0.2 mg/kg) and alpha1 antagonist prazosin (1 mg/kg) failed to affect basal cortical acetylcholine release; however, both compounds significantly reduced the increases evoked by sensory stimulation. In contrast, the alpha2 antagonist yohimbine (3 mg/kg) increased basal cortical acetylcholine release, thereby preventing meaningful investigation of its effects on tactile stimulation-evoked increases. The benzodiazepine agonist diazepam (5 mg/kg) reduced, and the GABA(A) receptor antagonist picrotoxin (2 mg/kg) increased basal cortical acetylcholine release; in addition, diazepam attenuated the increases in cortical acetylcholine release evoked by tactile stimulation. While dopaminergic D1 (SCH 23390, 0.15 mg/kg) and D2 (raclopride, 1 mg/kg) receptor antagonists did not by themselves significantly influence the increases evoked by tactile stimulation, their co-administration produced a significant reduction. The opioid receptor antagonist naltrexone (1.5 mg/kg) failed to affect either basal or tactile stimulation-evoked increases in acetylcholine overflow. Finally, the non-competitive N-methyl-D-aspartate receptor antagonist, dizocilpine maleate (MK-801; 0.025 and 0.05 mg/kg) increased

  8. Cortical Variability in the Sensory-Evoked Response in Autism

    ERIC Educational Resources Information Center

    Haigh, Sarah M.; Heeger, David J.; Dinstein, Ilan; Minshew, Nancy; Behrmann, Marlene

    2015-01-01

    Previous findings have shown that individuals with autism spectrum disorder (ASD) evince greater intra-individual variability (IIV) in their sensory-evoked fMRI responses compared to typical control participants. We explore the robustness of this finding with a new sample of high-functioning adults with autism. Participants were presented with…

  9. Cortical Variability in the Sensory-Evoked Response in Autism

    ERIC Educational Resources Information Center

    Haigh, Sarah M.; Heeger, David J.; Dinstein, Ilan; Minshew, Nancy; Behrmann, Marlene

    2015-01-01

    Previous findings have shown that individuals with autism spectrum disorder (ASD) evince greater intra-individual variability (IIV) in their sensory-evoked fMRI responses compared to typical control participants. We explore the robustness of this finding with a new sample of high-functioning adults with autism. Participants were presented with…

  10. Conditioning effect of transcranial magnetic stimulation evoking motor-evoked potential on V-wave response.

    PubMed

    Grosprêtre, Sidney; Martin, Alain

    2014-12-01

    The aim of this study was to examine the collision responsible for the volitional V-wave evoked by supramaximal electrical stimulation of the motor nerve during voluntary contraction. V-wave was conditioned by transcranial magnetic stimulation (TMS) over the motor cortex at several inter-stimuli intervals (ISI) during weak voluntary plantar flexions (n = 10) and at rest for flexor carpi radialis muscle (FCR; n = 6). Conditioning stimulations were induced by TMS with intensity eliciting maximal motor-evoked potential (MEPmax). ISIs used were ranging from -20 to +20 msec depending on muscles tested. The results showed that, for triceps surae muscles, conditioning TMS increased the V-wave amplitude (~ +250%) and the associated mechanical response (~ +30%) during weak voluntary plantar flexion (10% of the maximal voluntary contraction -MVC) for ISIs ranging from +6 to +18 msec. Similar effect was observed at rest for the FCR with ISI ranging from +6 to +12 msec. When the level of force was increased from 10 to 50% MVC or the conditioning TMS intensity was reduced to elicit responses of 50% of MEPmax, a significant decrease in the conditioned V-wave amplitude was observed for the triceps surae muscles, linearly correlated to the changes in MEP amplitude. The slope of this correlation, as well as the electro-mechanical efficiency, was closed to the identity line, indicating that V-wave impact at muscle level seems to be similar to the impact of cortical stimulation. All these results suggest that change in V-wave amplitude is a great index to reflect changes in cortical neural drive addressed to spinal motoneurons.

  11. [Cognitive evoked potentials. Perspectives for mismatch negativity].

    PubMed

    Gurtubay, I G

    2009-01-01

    The techniques of cognitive evoked potentials are considered long and technically complex, which is why their use in clinical practice is not very widespread in spite of their potential utility. Recent advances in registering and analysis, together with improvement of the software managing these signals, have appreciably reduced these problems. Mismatch negativity stands out as the most promising of all the cognitive potentials due to its special characteristics regarding its generation requisites and its proven clinical utility. The fact that it can be generated without care requirements makes it especially useful for evaluating subjects with a low level of consciousness; it serves for predicting when they will emerge from a coma, amongst other uses. The incorporation of this technique into the arsenal of neurophysiological techniques for evaluating the state of these subjects will bring a substantial improvement in the evaluation of cases whose management in clinical practice is extremely complex.

  12. Long Latency Auditory Evoked Potentials during Meditation.

    PubMed

    Telles, Shirley; Deepeshwar, Singh; Naveen, Kalkuni Visweswaraiah; Pailoor, Subramanya

    2015-10-01

    The auditory sensory pathway has been studied in meditators, using midlatency and short latency auditory evoked potentials. The present study evaluated long latency auditory evoked potentials (LLAEPs) during meditation. Sixty male participants, aged between 18 and 31 years (group mean±SD, 20.5±3.8 years), were assessed in 4 mental states based on descriptions in the traditional texts. They were (a) random thinking, (b) nonmeditative focusing, (c) meditative focusing, and (d) meditation. The order of the sessions was randomly assigned. The LLAEP components studied were P1 (40-60 ms), N1 (75-115 ms), P2 (120-180 ms), and N2 (180-280 ms). For each component, the peak amplitude and peak latency were measured from the prestimulus baseline. There was significant decrease in the peak latency of the P2 component during and after meditation (P<.001; analysis of variance and post hoc analysis with Bonferroni adjustment). The P1, P2, and N2 components showed a significant decrease in peak amplitudes during random thinking (P<.01; P<.001; P<.01, respectively) and nonmeditative focused thinking (P<.01; P<.01; P<.05, respectively). The results suggest that meditation facilitates the processing of information in the auditory association cortex, whereas the number of neurons recruited was smaller in random thinking and non-meditative focused thinking, at the level of the secondary auditory cortex, auditory association cortex and anterior cingulate cortex.

  13. Effects of exercise on visual evoked potentials.

    PubMed

    Ozmerdivenli, Recep; Bulut, Serpil; Bayar, Hale; Karacabey, Kursat; Ciloglu, Figen; Peker, Ismail; Tan, Uner

    2005-07-01

    The aim of this study was to investigate the effects of acute or habitual exercise on visual evoked potentials (VEP). The study group consisted of 9 female and 7 male volleyball players and the control group contained 9 female and 7 male students who were not involved in any sportive activity. The N75, P100, and N145 latency and amplitudes were measured before and after exercise. Intragroup comparison was made to evaluate the acute effects and intergroup comparison for the chronic effects of exercise. Significant differences were noted between athletes and the sedentary subjects in terms of pre-exercise left-N145 latencies and amplitudes and left -P100 amplitudes. Right-eye N145 latencies of inactive female subjects obtained before and after exercise were also statistically different. The results suggest that acute and habitual exercise affects the VEP responses independent from the body temperature and other physiological parameters. Small sized pre-exercise P100 amplitudes in the athletes can be attributed to the effect of rapid visual-activity-demanding sports on the central nervous system. Visual evoked potentials maybe used as neurophysiological criteria in defining the performance of an athlete.

  14. [Motor evoked potentials in thoracoabdominal aortic surgery].

    PubMed

    Magro, Cátia; Nora, David; Marques, Miguel; Alves, Angela Garcia

    2012-01-01

    Thoracoabdominal aortic disease (aneurysm or dissection) has increased in recent decades. Surgery is the curative treatment but is associated to high perioperative morbidity and mortality risks. Paraplegia is one of the most severe complications, whose incidence has decreased significantly with the implementation of spinal cord protection strategies. No single method or combination of methods has proven to be fully effective in preventing paraplegia. This review is intended to analyse the scientific evidence available on the role of intraoperative monitoring with motor evoked potentials in the neurological outcome of patients undergoing thoracoabdominal aortic surgery. An online search (PubMed) was conducted. Relevant references were selected and reviewed. Intraoperative monitoring with motor evoked potentials (MEP) allows early detection of ischemic events and a targeted intervention to prevent the development of spinal cord injury, significantly reducing the incidence of postoperative paraplegia. MEP monitoring may undergo several intraoperative interferences which may compromise their interpretation. Neuromuscular blockade is the main limiting factor of anesthetic origin. It is essential to strike a balance between monitoring conditions and surgical and anesthetic needs as well as to evaluate the risks and benefits of the technique for each patient. MEP monitoring improves neurological outcome when integrated in a multidisciplinary strategy which must include multiple protective mechanisms that should be tailored to each hospital reality.

  15. Isolating early cortical generators of visual-evoked activity: a systems identification approach.

    PubMed

    Murphy, Jeremy W; Kelly, Simon P; Foxe, John J; Lalor, Edmund C

    2012-07-01

    The VESPA (visual-evoked spread spectrum analysis) method estimates the impulse response of the visual system using a continuously varying stimulus. It has been used recently to address both basic cognitive and neurophysiologic questions as well as those surrounding clinical populations. Although the components of the average VESPA response are highly reminiscent of the early components of the visual-evoked potential (VEP) when measured over midline occipital locations, the two responses are acquired in different ways and, thus, they cannot be regarded as being equivalent. To further characterize the relationship between the VESPA and the VEP and the generative mechanisms underlying them, we recorded EEG from 31 subjects in response to checkerboard-based VEP and VESPA stimuli. We found that, across subjects, the amplitudes of the VEP C1 component and the VESPA C1 component were highly correlated, whereas the VEP P1 and the VESPA P1 bore no statistical relationship. Furthermore, we found that C1 and P1 amplitudes were significantly correlated in the VESPA but not in the VEP. We believe these findings point to the presence of common generators underlying the VESPA C1 and the VEP C1. We argue further that the VESPA P1, in light of its strong relationship to the VESPA C1, likely reflects further activation of the same cortical generators. Given the lack of correlation between the VEP P1 and each of these three other components, it is likely that the underlying generators of this particular component are more varied and widespread, as suggested previously. We discuss the implications of these relationships for basic and clinical research using the VESPA and for the assessment of additive-evoked versus phase-reset contributions to the VEP.

  16. Objective Assessment of Spectral Ripple Discrimination in Cochlear Implant Listeners Using Cortical Evoked Responses to an Oddball Paradigm

    PubMed Central

    Lopez Valdes, Alejandro; Mc Laughlin, Myles; Viani, Laura; Walshe, Peter; Smith, Jaclyn; Zeng, Fan-Gang; Reilly, Richard B.

    2014-01-01

    Cochlear implants (CIs) can partially restore functional hearing in deaf individuals. However, multiple factors affect CI listener's speech perception, resulting in large performance differences. Non-speech based tests, such as spectral ripple discrimination, measure acoustic processing capabilities that are highly correlated with speech perception. Currently spectral ripple discrimination is measured using standard psychoacoustic methods, which require attentive listening and active response that can be difficult or even impossible in special patient populations. Here, a completely objective cortical evoked potential based method is developed and validated to assess spectral ripple discrimination in CI listeners. In 19 CI listeners, using an oddball paradigm, cortical evoked potential responses to standard and inverted spectrally rippled stimuli were measured. In the same subjects, psychoacoustic spectral ripple discrimination thresholds were also measured. A neural discrimination threshold was determined by systematically increasing the number of ripples per octave and determining the point at which there was no longer a significant difference between the evoked potential response to the standard and inverted stimuli. A correlation was found between the neural and the psychoacoustic discrimination thresholds (R2 = 0.60, p<0.01). This method can objectively assess CI spectral resolution performance, providing a potential tool for the evaluation and follow-up of CI listeners who have difficulty performing psychoacoustic tests, such as pediatric or new users. PMID:24599314

  17. New perspectives on vestibular evoked myogenic potentials.

    PubMed

    Rosengren, Sally M; Kingma, Herman

    2013-02-01

    Although the vestibular evoked myogenic potential (VEMP) measured from the cervical muscles (cVEMP, cervical VEMP) is well described and has documented clinical utility, its analogue recorded from the extraocular muscles (oVEMP, ocular VEMP) has been described only recently and is currently emerging as an additional test of otolith function. This review will, therefore, summarize recent developments in VEMP research with a focus on the oVEMP. Recent studies suggest that the oVEMP is produced by otolith afferents in the superior vestibular nerve division, whereas the cVEMP evoked by sound is thought to be an inferior vestibular nerve reflex. Correspondingly, the oVEMP correlates better with caloric and subjective visual vertical tests than sound-cVEMPs. cVEMPs are more complicated than often thought, as shown by the presence of crossed responses and conflicting results of recent vibration studies. Altered inner ear mechanics produced by the vestibular diseases superior semicircular canal dehiscence and Ménière's disease lead to changes in the preferred frequency of the oVEMP and cVEMP. The oVEMP provides complementary diagnostic information to the cVEMP and is likely to be a useful addition to the diagnostic test battery in neuro-otology.

  18. Cervical vestibular evoked myogenic potentials in children.

    PubMed

    Pereira, Alcione Botelho; Silva, Gabriela Souza de Melo; Assunção, Aída Regina Monteiro; Atherino, Ciriaco Cristóvão Tavares; Volpe, Fernando Madalena; Felipe, Lilian

    2015-01-01

    Cervical vestibular evoked myogenic potential is a test used in neurotological examination. It verifies the integrity of vestibular function through a muscular response evoked by an acoustic stimulation which activates the saccular macula. Normal standards in adults have been established, however, there are few published data on the normal responses in children. To establish normal standards for vestibular myogenic responses in children without neurotological complaints. This study's design is a cohort with cross-sectional analysis. The sample consisted of 30 subjects, 15 females (50%) and 15 males (50%). The age of the subjects ranged between 8 and 13 years, with a mean of 10.2 (± 1.7). P1 peak showed an average latency of 17.26 (± 1.78)ms and a mean amplitude of 49.34 (± 23.07)μV, and the N2 peak showed an average latency of 24.78 (± 2.18)ms and mean amplitude of 66.23 (± 36.18)μV. P1-N2 mean amplitude was 115.6 (± 55.7)μV. There were no statistically significant differences when comparing by gender or by laterality. We established normal values of cervical myogenic vestibular responses in children between 8 and 13 years without neurotological complaints. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  19. Laser-evoked potentials in primary headaches and cranial neuralgias.

    PubMed

    de Tommaso, Marina

    2008-09-01

    Using neurophysiological methods to explore nociceptive pathways may improve knowledge of the functional changes subtending pain processing in the different forms of headache and facial pain. Laser-evoked potentials (LEPs) are a reliable neurophysiological assay for the clinical assessment of pain syndromes. Reduced amplitude of LEPs seems to characterize trigeminal neuralgia and painful temporomandibular disorders, suggesting the neuropathic origin of pain. In tension-type headache, as well as in fibromyalgia, enhanced pericranial LEP amplitude suggests the psychogenic origin of pain. In migraine, a normal amplitude of basal LEPs with reduced habituation and altered attentive modulation seems to express a general dysfunction of cortical pain processing, which may also contribute, other than to predispose, to the persistence of migraine. LEPs may be employed in the clinical evaluation of the neurophysiological and psychophysiological aspects of pain in the different forms of headaches and facial pain to improve the therapeutic approach and provide an objective measure of treatment efficacy.

  20. Characterization of Motor and Somatosensory Evoked Potentials in the Yucatan Micropig Using Transcranial and Epidural Stimulation.

    PubMed

    Benavides, Francisco D; Santamaria, Andrea J; Bodoukhin, Nikita; Guada, Luis G; Solano, Juan P; Guest, James D

    2016-11-28

    Yucatan micropigs have brain and spinal cord dimensions similar to humans and are useful for certain spinal cord injury (SCI) translational studies. Micropigs are readily trained in behavioral tasks, allowing consistent testing of locomotor loss and recovery. However, there has been little description of their motor and sensory pathway neurophysiology. We established methods to assess motor and sensory cortical evoked potentials in the anesthetized, uninjured state. We also evaluated epidurally evoked motor and sensory stimuli from the T6 and T9 levels, spanning the intended contusion injury epicenter. Response detection frequency, mean latency and amplitude values, and variability of evoked potentials were determined. Somatosensory evoked potentials were reliable and best detected during stimulation of peripheral nerve and epidural stimulation by referencing the lateral cortex to midline Fz. The most reliable hindlimb motor evoked potential (MEP) occurred in tibialis anterior. We found MEPs in forelimb muscles in response to thoracic epidural stimulation likely generated from propriospinal pathways. Cranially stimulated MEPs were easier to evoke in the upper limbs than in the hindlimbs. Autopsy studies revealed substantial variations in cortical morphology between animals. This electrophysiological study establishes that neurophysiological measures can be reliably obtained in micropigs in a time frame compatible with other experimental procedures, such as SCI and transplantation. It underscores the need to better understand the motor control pathways, including the corticospinal tract, to determine which therapeutics are suitable for testing in the pig model.

  1. Evoked brain potentials and disability in brain-damaged patients.

    PubMed

    Rappaport, M; Hall, K; Hopkins, K; Belleza, T; Berrol, S; Reynolds, G

    1977-08-01

    Various measures of evoked brain potential abnormality (EPA) were correlated with disability ratings (DR) for 35 brain-damaged patients. EPA data consisted of judgements of abnormality of ipsilateral, contralateral and bilateral responses to auditory and visual stimuli reflecting activity in the brain stem, subcortex and cortex. DR data were obtained from a scale developed for this study to quantize and categorize patients with a wide range of disabilities from coma to normal functioning. EPA scores based on visual and auditory cortical responses showed significantly positive correlations with degree of disability. Visual response correlation was .49, auditory .38 and combined visual and auditory .51. It was concluded that EPA measures can reflect disability independently of clinical information. They are useful in assessing brain function in general and, specifically, in assessing impairment of sensory function. The evoked potential technique was particularly useful in patients who were not able to participate fully in their own examination. There were indications that the technique may also be valuable in monitoring progress and in predicting clinical outcome in brain-damaged patients.

  2. [Intraoperative electrophysiological monitoring with evoked potentials].

    PubMed

    Nitzschke, R; Hansen-Algenstaedt, N; Regelsberger, J; Goetz, A E; Goepfert, M S

    2012-04-01

    During the last 30 years intraoperative electrophysiological monitoring (IOEM) has gained increasing importance in monitoring the function of neuronal structures and the intraoperative detection of impending new neurological deficits. The use of IOEM could reduce the incidence of postoperative neurological deficits after various surgical procedures. Motor evoked potentials (MEP) seem to be superior to other methods for many indications regarding monitoring of the central nervous system. During the application of IOEM general anesthesia should be provided by total intravenous anesthesia with propofol with an emphasis on a continuous high opioid dosage. When intraoperative MEP or electromyography guidance is planned, muscle relaxation must be either completely omitted or maintained in a titrated dose range in a steady state. The IOEM can be performed by surgeons, neurologists and neurophysiologists or increasingly more by anesthesiologists. However, to guarantee a safe application and interpretation, sufficient knowledge of the effects of the surgical procedure and pharmacological and physiological influences on the neurophysiological findings are indispensable.

  3. Resting Heart Rate and Auditory Evoked Potential

    PubMed Central

    Fiuza Regaçone, Simone; Baptista de Lima, Daiane Damaris; Engrácia Valenti, Vitor; Figueiredo Frizzo, Ana Cláudia

    2015-01-01

    The objective of this study was to evaluate the association between rest heart rate (HR) and the components of the auditory evoked-related potentials (ERPs) at rest in women. We investigated 21 healthy female university students between 18 and 24 years old. We performed complete audiological evaluation and measurement of heart rate for 10 minutes at rest (heart rate monitor Polar RS800CX) and performed ERPs analysis (discrepancy in frequency and duration). There was a moderate negative correlation of the N1 and P3a with rest HR and a strong positive correlation of the P2 and N2 components with rest HR. Larger components of the ERP are associated with higher rest HR. PMID:26504838

  4. Visual evoked potentials in rubber factory workers.

    PubMed

    Tandon, O P; Kumar, V

    1997-01-01

    Pattern reversal visual evoked potentials (pVEP) were studied in 39 male rubber factory workers in the age range of 18-55 years and 20 control subjects (aged 18-46 years) not exposed to the rubber factory environment. Results revealed that 20 (51%) rubber factory workers had abnormal latencies of wave P1 (dominant component of pVEP) as per accepted criteria of 99% tolerance limit set for the control group (i.e. any value above mean +3 SD of control was considered abnormal). The section-wise per cent distribution of abnormalities was vulcanization (83%), tubing (75%), calendering (60%), loading (38%) and mixing (14%). This study provides electrophysiological evidence that rubber factory environments affect the conduction processes in optical pathways from their origin in the retina to striate cortex. However, this study has its limitations in not identifying the specific chemical(s) causing these changes in VEP.

  5. Auditory evoked potentials in senescent forgetfulness.

    PubMed

    Loring, D W; Levin, H S; Papanicolaou, A C; Larrabee, G J; Eisenberg, H M

    1984-10-01

    Two evoked potential (EP) techniques and the selective reminding test were employed to investigate an apparently benign forgetfulness in seven elderly subjects and seven age-matched elderly subjects with normal memory. EPs were also recorded in a group of seven young adults. Latency of the P3 component, which has been demonstrated to increase in primary degenerative dementia, displayed the normal age-related variation in both elderly groups, but did not differ between the forgetful subjects and the elderly controls. Further, no difference in the recovery cycle of the EP, as measured in a two tone stimulation paradigm, was present between forgetful and elderly control groups. Reexamination of memory after nearly a year disclosed no evidence of deterioration in either elderly group. These findings suggest that senescent forgetfulness, as defined herein, may be a nonprogressive memory disorder.

  6. Visual evoked potentials through night vision goggles.

    PubMed

    Rabin, J

    1994-04-01

    Night vision goggles (NVG's) have widespread use in military and civilian environments. NVG's amplify ambient illumination making performance possible when there is insufficient illumination for normal vision. While visual performance through NVG's is commonly assessed by measuring threshold functions such as visual acuity, few attempts have been made to assess vision through NVG's at suprathreshold levels of stimulation. Such information would be useful to better understand vision through NVG's across a range of stimulus conditions. In this study visual evoked potentials (VEP's) were used to evaluate vision through NVG's across a range of stimulus contrasts. The amplitude and latency of the VEP varied linearly with log contrast. A comparison of VEP's recorded with and without NVG's was used to estimate contrast attenuation through the device. VEP's offer an objective, electrophysiological tool to assess visual performance through NVG's at both threshold and suprathreshold levels of visual stimulation.

  7. [Clinical study of time-shift evoked potentials].

    PubMed

    Chiba, H

    2000-05-01

    Quick change of the interaural time difference (ITD) generates moving sound stimuli. Specific biphasic event-related potentials called "time-shift evoked potentials (TSEPs)" can be recorded when this moving sound is given. The results of TSEPs in various types of hearing loss were analyzed in comparison with auditory brainstem response (ABR) and slow vertical response (SVR) in order to evaluate clinial applicability of TSEPs. Firstly, the detection threshold of TSEPs was established in groups of patients with low tone sensorineural hearing loss and with steep high tone sensorineural hearing loss. The usefulness of TSEPs was then evaluated in patients with retrocochlear hearing loss and with functional deafness. The patients with retrocochlear hearing loss were divided into 2 subgroups, one with auditory nerve disorder and the other with cortical disorder. It was found that TSEPs participate in the transference of auditory time-factors. They reflect the function of not only the auditory nerve and brainstem which form major components of ABR, but also the central nervous system superior to the inferior colliculus. TSEPs could be recorded in most patients with functional deafness and are more useful for its diagnosis than using the conventional directional hearing test. It is concluded that TSEPs is useful as a clinical test for detection of cortical disorder and functional deafness.

  8. [Lissajous figures of the visual evoked potentials].

    PubMed

    Watanabe, Y; Watanabe, M; Takigawa, M

    1986-03-01

    The value of the visual evoked potential (VEP) technique for diagnosis of epilepsy is limited. Except for photosensitive epilepsies, the visual evoked potentials (VEPs) do not reveal more than a routine EEG. As one of the reasons of that, it is pointed out that a review of VEP literature reveals different "normal values" for peak latencies and amplitudes. Thus in this study, lissajous figures of VEPs (VEP-L) were attempted instead of the measurement of peak latencies and amplitudes of VEPs. Thirty six epileptic subjects (14 have partial seizures, 22 have generalized seizures) and 22 control subjects were investigated. Several EEGs to storoboscopic flashes were recorded from scalp electrodes placed at the frontal (Fz) and occipital (Oz) regions according to the 10-20 electrode system, using a right ear as nonreference with a EEG amplifier (Nihon Kohden ME-175 E) and a data recorder (TEAC R-60). Then the phasic relationships between the VEPs from the two areas were analyzed with a medical computer (Nohon Kohden ATAC-2300) and printed out as VEP-L. The results are summerized as follows: First, as time passes from 100 msec to 200 msec in the VEP-L, the epileptic patient group showed more right-roted types than that of the control group (p less than 0.01). Second, the VEP-L at the periods from 50 msec after photic stimulus, were classified into 5 types inspectively. The 5 types are the right-ascending type, the left-ascending type, the vertical type, the horizontal type, and the circular type.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Auditory Evoked Potentials from the Frog Eighth Nerve

    DTIC Science & Technology

    1989-09-01

    ACCESSION NO. Brooks AFB, TX 78235-5301 62202F 7757 01 85 11. TITLE (I nclude Security Classification) (U) Auditory Evoked Potentials from the Frog Eighth...identify by block number) S FIELD jGROUP SUB-GROUP F6 07 Auditory Evoked Potential Eighth Nerve Frog 06 10 19. ABSTRACT (Continue on reverse if necessary...and identify by block number) A method for recording evoked potentials from the eighth nerve of frogs using midline and lateral electrodes is described

  10. Chirp-modulated visual evoked potential as a generalization of steady state visual evoked potential.

    PubMed

    Tu, Tao; Xin, Yi; Gao, Xiaorong; Gao, Shangkai

    2012-02-01

    Visual evoked potentials (VEPs) are of great concern in cognitive and clinical neuroscience as well as in the recent research field of brain-computer interfaces (BCIs). In this study, a chirp-modulated stimulation was employed to serve as a novel type of visual stimulus. Based on our empirical study, the chirp stimuli visual evoked potential (Chirp-VEP) preserved frequency features of the chirp stimulus analogous to the steady state evoked potential (SSVEP), and therefore it can be regarded as a generalization of SSVEP. Specifically, we first investigated the characteristics of the Chirp-VEP in the time-frequency domain and the fractional domain via fractional Fourier transform. We also proposed a group delay technique to derive the apparent latency from Chirp-VEP. Results on EEG data showed that our approach outperformed the traditional SSVEP-based method in efficiency and ease of apparent latency estimation. For the recruited six subjects, the average apparent latencies ranged from 100 to 130 ms. Finally, we implemented a BCI system with six targets to validate the feasibility of Chirp-VEP as a potential candidate in the field of BCIs.

  11. Chirp-modulated visual evoked potential as a generalization of steady state visual evoked potential

    NASA Astrophysics Data System (ADS)

    Tu, Tao; Xin, Yi; Gao, Xiaorong; Gao, Shangkai

    2012-02-01

    Visual evoked potentials (VEPs) are of great concern in cognitive and clinical neuroscience as well as in the recent research field of brain-computer interfaces (BCIs). In this study, a chirp-modulated stimulation was employed to serve as a novel type of visual stimulus. Based on our empirical study, the chirp stimuli visual evoked potential (Chirp-VEP) preserved frequency features of the chirp stimulus analogous to the steady state evoked potential (SSVEP), and therefore it can be regarded as a generalization of SSVEP. Specifically, we first investigated the characteristics of the Chirp-VEP in the time-frequency domain and the fractional domain via fractional Fourier transform. We also proposed a group delay technique to derive the apparent latency from Chirp-VEP. Results on EEG data showed that our approach outperformed the traditional SSVEP-based method in efficiency and ease of apparent latency estimation. For the recruited six subjects, the average apparent latencies ranged from 100 to 130 ms. Finally, we implemented a BCI system with six targets to validate the feasibility of Chirp-VEP as a potential candidate in the field of BCIs.

  12. Evoked potentials during cardiac and major vascular operations.

    PubMed

    Stecker, Mark M

    2004-06-01

    Somatosensory evoked potentials are widely used in spine surgery to prevent injury to the spinal cord. However, their application in cardiac and major vascular surgery is largely unappreciated. This paper will review the unique stresses placed on peripheral nerves, spinal cord, and brain during these operations. In addition, the potential benefits of peri-operative somatosensory evoked potentials monitoring are described in detail.

  13. Correspondences in the Behavior of the Electroretinogram and of the Potentials Evoked at the Visual Cortex

    PubMed Central

    Crescitelli, Frederick; Gardner, Ernest

    1961-01-01

    Electrical potentials from the eye (ERG) and from the contralateral visual cortex were recorded in response to flashes of white and of colored light of various intensities and durations. The evoked potentials were found to parallel the behavior of the ERG in several significant respects. Selective changes in the ERG brought about by increasing the light intensity and by light adaptation led to parallel selective changes in the cortical responses. The dual waves (b1, b2) of the ERG were found to have counterparts in two cortical waves (c1, c2) which, in respect to changes in light intensity and to light adaptation, behaved analogously to the two retinal components. The responses evoked at high intensity showed only the diphasic c1-potential. As stimulus intensity was lowered the c1-wave decreased in magnitude and a delayed c2-component appeared. The c2-potential increased in amplitude as light intensity of the flash was further reduced. Eventually the c2-wave, too, decreased as stimulus reduction continued. There was no wave length specificity in regard to either the duplex b-waves or duplex cortical waves. Both appeared at all wave lengths from 454 mµ to 630 mµ. The two cortical waves evoked by brief flashes of colored light showed all the behavior to changes in stimulus intensity and to light adaptation that occurred with white light. PMID:13696406

  14. Evaluation of sensory evoked potentials in Long Evans rats gestationally exposed to mercury (Hg0) vapor.

    PubMed

    Herr, David W; Chanda, Sushmita M; Graff, Jaimie E; Barone, Stanley S; Beliles, Robert P; Morgan, Daniel L

    2004-11-01

    Mercury is known to alter neuronal function and has been shown to cross the placental barrier. These experiments were undertaken to examine if gestational exposure to mercury vapor (Hg(0)) would result in alterations in sensory neuronal function in adult offspring. Dams were exposed to 0 or 4 mg/m(3) Hg(0) for 2 h/day from gestational days 6-15. This exposure paradigm has been shown to approximate a maximal tolerated dose of Hg(0) for the dams. Between postnatal days 140-168, male and female offspring (one of each gender/dam) were examined using a battery of sensory evoked potentials. Peripheral nerve action potentials, nerve conduction velocity, somatosensory evoked responses (cortical and cerebellar), brainstem auditory evoked responses, pattern evoked potentials, and flash evoked potentials were quantified. Gestational exposure to 4 mg/m(3) Hg(0) did not significantly alter any of the evoked responses, although there was a suggestion of a decrease in compound nerve action potential (CNAP) amplitudes in male animals for the 3 mA stimulus condition. However, this possible change in CNAP amplitudes was not replicated in a second experiment. All evoked potentials exhibited predictable changes as the stimulus was modified. This shows conclusively that the evoked responses were under stimulus control, and that the study had sufficient statistical power to detect changes of these magnitudes. These results indicate that gestational exposure to 4 mg/m(3) Hg(0) did not result in changes in responses evoked from peripheral nerves, or the somatosensory, auditory, or visual modalities.

  15. Neonatal somatosensory evoked potentials persist during hypothermia.

    PubMed

    Nevalainen, Päivi; Lauronen, Leena; Metsäranta, Marjo; Lönnqvist, Tuula; Ahtola, Eero; Vanhatalo, Sampsa

    2017-06-01

    Treatment with therapeutic hypothermia has challenged the use of amplitude-integrated electroencephalography in predicting outcomes after perinatal asphyxia. In this study, we assessed the feasibility and gain of somatosensory evoked potentials (SEP) during hypothermia. This retrospective study comprised neonates from 35 + 6 to 42 + 2 gestational weeks and treated for asphyxia or hypoxic-ischaemic encephalopathy at Helsinki University Hospital between 14 February 2007 and 23 December 2009. This period was partly before the introduction of routine therapeutic hypothermia, which enabled us to include normothermic neonates who would these days receive hypothermia treatment. We analysed SEPs from 47 asphyxiated neonates and compared the results between 23 normothermic and 24 hypothermic neonates. Our data showed that hypothermia led to SEP latencies lengthening by a few milliseconds, but the essential gain for predicting outcomes by SEPs was preserved during hypothermia. Of the 24 hypothermic neonates, bilaterally absent SEPs were associated with poor outcome in 2/2 neonates, normal SEPs were associated with good outcomes in 13/15 neonates and 5/7 neonates with unilaterally absent or grossly delayed SEPs had a poor outcome. Our findings indicated that SEPs were a reliable tool for evaluating the somatosensory system in asphyxiated neonates in both normothermic and hypothermic conditions. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  16. Auditory evoked potential measurements with cetaceans

    NASA Astrophysics Data System (ADS)

    Mann, David; Cook, Mandy; Bauer, Gordon; Fellner, Wendi; Wells, Randy

    2005-04-01

    Auditory evoked potentials (AEPs) allow researchers to measure the hearing abilities of animals that would be difficult or impossible to train for behavioral measurements of hearing. The hearing abilities of live-stranded cetaceans and wild dolphins can only be made with AEP techniques. In these situations, time with the animal is often restricted to an hour or less, and there is often little control over the acoustic environment in which the tests are performed. AEP measurements may be made while the animals are in air or in shallow pools. For cetaceans in air, sounds are typically presented with a suction cup jawphone. For cetaceans in water, sounds may be presented in a direct field (with the transducer located at some distance from the test subject) or with a jawphone. In each of these situations it is important to understand how thresholds derived from AEP measurements compare with behavioral hearing measurements. Examples of AEP measurements from wild and live-stranded cetaceans are presented to illustrate their usefulness and the constraints under which these measurements must be made. AEP measurements from bottlenose dolphins in air and in water are also compared with their behavioral audiograms.

  17. Effects of aging on laser evoked potentials.

    PubMed

    Creac'H, Christelle; Bertholon, Alexandre; Convers, Philippe; Garcia-Larrea, Luis; Peyron, Roland

    2015-05-01

    Aging has been reported to reduce the amplitude of laser evoked potentials. However, it is unknown whether this effect depends on the length of the sensory fibers. This is an important issue, because most painful neuropathies are length-dependent. We conducted a study of 40 healthy subjects, half of whom were older than age 50 years. Nociceptive stimuli were delivered to the feet and thighs using a CO2 laser stimulator. Detection and pain perception thresholds did not correlate with age. Latencies of N1, N2, and P2 correlated positively with age on the feet but not on the thighs, whereas the amplitude of N2-P2 decreased with age for both areas. The effects of aging on latencies may reflect a distal loss of peripheral inputs and a length-dependent de-synchronization of the ascending nociceptive volley. Additional changes in peripheral and central processes may explain the diffuse decrease of N2-P2 amplitudes observed with aging. © 2014 Wiley Periodicals, Inc.

  18. Auditory evoked potential measurements in elasmobranchs

    NASA Astrophysics Data System (ADS)

    Casper, Brandon; Mann, David

    2005-04-01

    Auditory evoked potentials (AEP) were first used to examine hearing in elasmobranchs by Corwin and Bullock in the late 1970s and early 1980s, marking the first time AEPs had been measured in fishes. Results of these experiments identified the regions of the ear and brain in which sound is processed, though no actual hearing thresholds were measured. Those initial experiments provided the ground work for future AEP experiments to measure fish hearing abilities in a manner that is much faster and more convenient than classical conditioning. Data will be presented on recent experiments in which AEPs were used to measure the hearing thresholds of two species of elasmobranchs: the nurse shark, Ginglymostoma cirratum, and the yellow stingray, Urobatis jamaicencis. Audiograms were analyzed and compared to previously published audiograms obtained using classical conditioning with results indicating that hearing thresholds were similar for the two methods. These data suggest that AEP testing is a viable option when measuring hearing in elasmobranchs and can increase the speed in which future hearing measurements can be obtained.

  19. Caloric vestibular stimulation modulates nociceptive evoked potentials

    PubMed Central

    Ferrè, Elisa Raffaella; Haggard, Patrick; Bottini, Gabriella; Iannetti, Gian Domenico

    2016-01-01

    Vestibular stimulation has been reported to alleviate central pain. Clinical and physiological studies confirm pervasive interactions between vestibular signals and somatosensory circuits, including nociception. However, the neural mechanisms underlying vestibular-induced analgesia remain unclear, and previous clinical studies cannot rule out explanations based on alternative, non-specific effects such as distraction or placebo. To investigate how vestibular inputs influence nociception, we combined caloric vestibular stimulation (CVS) with psychophysical and electrocortical responses elicited by nociceptive-specific laser stimulation in humans (laser-evoked potentials, LEPs). Cold-water CVS applied to the left ear resulted in significantly lower subjective pain intensity for experimental laser pain to the left hand immediately after CVS, relative both to before CVS, and to 1 hour after CVS. This transient reduction in pain perception was associated with reduced amplitude of all LEP components, including the early N1 wave reflecting the first arrival of nociceptive input to primary somatosensory cortex. We conclude that cold left ear CVS elicits a modulation of both nociceptive processing and pain perception. The analgesic effect induced by CVS could be mediated by either subcortical gating of the ascending nociceptive input, or by direct modulation of the primary somatosensory cortex. PMID:26282602

  20. Caloric vestibular stimulation modulates nociceptive evoked potentials.

    PubMed

    Ferrè, Elisa Raffaella; Haggard, Patrick; Bottini, Gabriella; Iannetti, Gian Domenico

    2015-12-01

    Vestibular stimulation has been reported to alleviate central pain. Clinical and physiological studies confirm pervasive interactions between vestibular signals and somatosensory circuits, including nociception. However, the neural mechanisms underlying vestibular-induced analgesia remain unclear, and previous clinical studies cannot rule out explanations based on alternative, non-specific effects such as distraction or placebo. To investigate how vestibular inputs influence nociception, we combined caloric vestibular stimulation (CVS) with psychophysical and electrocortical responses elicited by nociceptive-specific laser stimulation in humans (laser-evoked potentials, LEPs). Cold water CVS applied to the left ear resulted in significantly lower subjective pain intensity for experimental laser pain to the left hand immediately after CVS, relative both to before CVS and to 1 h after CVS. This transient reduction in pain perception was associated with reduced amplitude of all LEP components, including the early N1 wave reflecting the first arrival of nociceptive input to primary somatosensory cortex. We conclude that cold left ear CVS elicits a modulation of both nociceptive processing and pain perception. The analgesic effect induced by CVS could be mediated either by subcortical gating of the ascending nociceptive input, or by direct modulation of the primary somatosensory cortex.

  1. Alterations of motor evoked potentials by thalamotomy.

    PubMed

    van der Linden, C; Bruggeman, R; Goldman, W H

    1993-09-01

    To evaluate the effect of stereotactic thalamotomy on the function of the corticospinal tract, we studied motor evoked potentials (MEPs) recorded by surface electromyography (EMG) in the left extensor carpi radialis (ECR) and flexor carpi radialis (FCR) with magnetic stimulation of the contralateral motor cortex in a 43-year-old patient with a severe postural and resting tremor of the left hand. The patient was diagnosed eight years previously with left hemiparkinsonism. The tremor was unresponsive to various medications. After thalamotomy the tremor had disappeared, confirmed by EMG studies. MEP latencies at rest were normal and did not change after thalamotomy. Volitional contraction of either ECR or FCR shortened the latency of the corresponding MEP before and after thalamotomy. However, before thalamotomy responses at rest were less well synchronized and followed by EMG silence with subsequent long duration tonic after discharges. Furthermore, during voluntary contraction the responses only slightly enhanced. After surgery MEPs at rest in both muscles were more synchronized and after-discharges had disappeared. Moreover, with volitional contraction of either ECR of FCR, the MEPs enhanced more dramatically. The silent periods (SPs) following the MEP during sustained voluntary contraction were longer after thalamotomy. The consistent MEP latencies suggest that the conduction of the pyramidal tract is unaffected by thalamotomy. The better synchronized responses, the alleviation of after-discharges and the longer SPs in this patient with hemiparkinsonism following thalamotomy suggest an improved sensorimotor integration, which may be the result of a reduced thalamic input onto suprasegmental levels.

  2. Clinical aspects of the visually evoked potential.

    PubMed Central

    Weinstein, G W

    1977-01-01

    The visually evoked potential (VEP) was studied in normal and abnormal human subjects, and in Rhesus monkeys with central, paracentral, and peripheral photocoagulation lesions. A relatively simple protocol for clinical VEP testing is described. The monkeys showed similar VEP responses but these were smaller in amplitude than those obtained from human subjects. Central, but not paracentral or peripheral retinal lesions were associated with VEP abnormalities. For both monkey and human subjects, some variability of responses between normal and subjects was noted. Generally, there are differences in VEP responses obtained from the affected eye of abnormal subjects who had one eye which could serve as a control, as compared to responses from the normal eye. In these subjects as well as in subjects with two abnormal eyes, computer analysis of digitized VEP data from 10 Hz stimulus responses was performed. Fourier transformation analyses showed abnormalities which could be detected easily by evaluating the pattern of the amplitudes of the fundamental and first three harmonics. With this technique, it was possible to group correctly normal VEP's with eyes with normal visual acuity (greater than or equal to 20/30 or 0.67), and abnormal VEP's with eyes with poor visual acuity (less than 20/30 or 0.67) in 72% of cases. Analysis of the data obtained with 1 Hz and 10 Hz stimulation suggests that the components of the VEP related to visual acuity occur within the first 60-100 msec of the response, corresponding to the primary evoked response of Chiganek. The second, smaller wave of the response complex to 10 Hz flash stimuli corresponds to the primary evoked response, and is closely related to visual acuity. This was further supported in another series in which the digitized data was filtered around the stimulating frequency. It was possible to recognize visually this VEP waveform and subjectively interpret the record correctly in 85% of eyes with regard to visual acuity

  3. Cortico-centric effects of general anesthetics on cerebrocortical evoked potentials.

    PubMed

    Voss, Logan J; Sleigh, James W

    2015-12-01

    Despite their ubiquitous use for rendering patients unconscious for surgery, our understanding of how general anesthetics cause hypnosis remains rudimentary at best. Recent years have seen increased interest in "top-down" cortico-centric theories of anesthetic action. The aim of this study was to explore this by investigating direct cortical effects of anesthetics on cerebrocortical evoked potentials in isolated mouse brain slices. Evoked potentials were elicited in cortical layer IV by electrical stimulation of the underlying white matter. The effects of three anesthetics (ketamine, etomidate, and isoflurane) on the amplitude, latency, and slope of short-latency evoked potentials were quantified. The N2/P3/N4 potentials–which represent the early cortical response–were enhanced by etomidate (increased P3-N4 slope, P <0.01), maintained by ketamine, and reduced by isoflurane (lower N2/P3 amplitude, P <0.01). These effects closely resemble those seen in vivo for the same drugs and point to a cortical mechanism independent of effects on subcortical structures such as the thalamus.

  4. Visual evoked potentials in the horse.

    PubMed

    Ström, L; Ekesten, B

    2016-06-21

    Electrical potentials generated in the central nervous system in response to brief visual stimuli, flash visual evoked potentials (FVEPs), can be recorded non-invasively over the occipital cortex. FVEPs are used clinically in human medicine and also experimentally in a number of animal species, but the method has not yet been evaluated in the horse. The method would potentially allow the ophthalmologist and equine clinician to evaluate visual impairment caused by disorders affecting post-retinal visual pathways. The aim was to establish a method for recording of FVEPs in horses in a clinical setting and to evaluate the waveform morphology in the normal horse. Ten horses were sedated with a continuous detomidine infusion. Responses were recorded from electrodes placed on the scalp. Several positions were evaluated to determine suitable electrode placement. Flash electroretinograms (FERGs) were recorded simultaneously. To evaluate potential contamination of the FVEP from retinal potentials, a retrobulbar nerve block was performed in two horses and transection of the optic nerve was performed in one horse as a terminal procedure. A series of positive (P) and negative (N) peaks in response to light stimuli was recorded in all horses. Reproducible wavelets with mean times-to-peaks of 26 (N1), 55 (P2), 141 (N2) and 216 ms (P4) were seen in all horses in all recordings. Reproducible results were obtained when the active electrode was placed in the midline rostral to the nuchal crest. Recording at lateral positions gave more variable results, possibly due to ear muscle artifacts. Averaging ≥100 responses reduced the impact of noise and artifacts. FVEPs were reproducible in the same horse during the same recording session and between sessions, but were more variable between horses. Retrobulbar nerve block caused a transient loss of the VEP whereas transection of the optic nerve caused an irreversible loss. We describe the waveform of the equine FVEP and our results show

  5. [Utilization of evoked potentials in intensive care units].

    PubMed

    Ferré, A; Lainez, E; Moreno, I

    2009-04-01

    Evoked Potentials (EP) are a neurophysiological tool that makes it possible for us to make an extensive study of the cerebral cortex, the brainstem and the spinal cord. Different techniques can be applied while performing the EPs, such as Visual Evoked Potentials (VEPs), Somatosensory Evoked Potentials (SSEPs), Long Latency Somatosensory Evoked Potentials (LLSEPs), Brainstem Auditory Evoked Potentials (BAEPs), Middle Latency Auditory Evoked Potentials (MLAEPs), Long Latency Auditory Evoked Potentials (LLAEP) and Mismatch Negativity (MMN). The combination of the different techniques of Evoked Potentials (EP) allows us to make a neurofunctional evaluation of comatose patients in the Intensive Care Units (ICU). It is also a useful tool in the diagnosis of the origin of coma, to confirm brain death, and as an evolutive prognosis value of the different central nervous system diseases (SNC). There are also studies that propose using EPs as a monitoring tool of the SNC. We present an up-dated review on the principal aspects of EP neuromonitoring in Intensive Care Unit (ICU) patients.

  6. Variance of vestibular-evoked myogenic potentials.

    PubMed

    Ochi, K; Ohashi, T; Nishino, H

    2001-03-01

    Vestibular-evoked myogenic potential (VEMP) has been thought to originate from sacculus. The variance of this potential and the effectiveness of the adjustments of pInII amplitudes using average muscle tonus of ipsilateral sternocleidomastoid muscle were evaluated. In addition, clinical application of VEMP was examined in patients with acoustic tumors (ATs) and vestibular neurolabyrinthitis (VNL). Prospective evaluation of the VEMP in 18 normal volunteers and 6 patients. Variance and left-right difference of each parameter, including pI latency, nII latency, pInII amplitude, and threshold, was analyzed. Input-output function of pInII amplitude was evaluated. Average muscle tonus was calculated in 20 ears and applied for adjustment of pInII amplitude. Sensitivity of each parameter of VEMP was examined in 3 patients with ATs and 3 patients with VNL. VEMP was present in all 36 ears of 18 control subjects. Thresholds of VEMP for normal subjects were 80 to 95 dB normal hearing level (nHL). The muscle tonus affected pInII amplitude significantly; however, no statistically significant improvement was observed in test-retest investigation after adjustment using muscle tonus. The threshold of the affected side was elevated compared with the non-affected side in all patients with ATs, whereas 2 of 3 patients showed normal pInII-ratio. One patient with VNL presented normal VEMP, whereas 2 patients presented no VEMP to the highest stimulus intensity. Interaural difference of thresholds might be the most useful parameters. Adjustment using average muscle tonus is not necessary when the subject is able to get sufficient muscle tonus.

  7. Somatosensory evoked cerebral potentials (SSEP) in multiple sclerosis.

    PubMed

    Loncarević, Nedim; Tirić-Campara, Merita; Mulabegović, Nedzad

    2008-01-01

    Neurological findings are the main criteria for making the diagnosis of multiple sclerosis, including head and spine MRI, CSF findings and evoked potentials. Investigate and observe correlation in SSEP especially wave P22 in group of healthy examiners, as well on those suffering multiple sclerosis. Present Evoked potentials clinical application benefits in Multiple sclerosis diagnostic procedures used in Neurological Clinic, Clinical Center University of Sarajevo. EXAMINES AND METHODS: Examination is prospective and clinically applicable. Examination involved one hundred examinees in total, divided in two group where 50 examinees where confirmed with Multiple sclerosis diagnosis, and 50 others made up control group of healthy volunteers. Examination is made based on neurological findings, questionnaires for EP and MS, and SSEP done for all examinees. Statistical assessment is based upon percentage, standard deviation, Chi square test and Student t test. average age of patients in control group is 35.28, and at the same time 34.90 in experimental group and do not have statistical significance. In both group females were dominant gender and there was no statistical significance of gender ration between two group. Wave P22 was statistical significantly extended in group of MS diagnosed patients compared to the group of healthy examinees. our studies dominantly affected female gender. Studies presented statistically significant increase of SSEP abnormalities in MS diagnosed patients group compared to the group of healthy examinees, in term of extended latency of waves P22 as cortical responses. These figures shows significance of SSEP clinical use in MS diagnostically procedures, to additionally confirm definite diagnosis.

  8. Comparison of Transcranial Motor Evoked Potentials and Somatosensory Evoked Potentials During Thoracoabdominal Aortic Aneurysm Repair

    PubMed Central

    Meylaerts, Sven A.; Jacobs, Michael J.; van Iterson, Vincent; De Haan, Peter; Kalkman, Cor J.

    1999-01-01

    Objective To compare transcranial motor evoked potentials (tc-MEPs) and somatosensory evoked potentials (SSEPs) as indicators of spinal cord function during thoracoabdominal aortic aneurysm repair. Summary Background Data Somatosensory evoked potentials reflect conduction in dorsal columns. tc-MEPs represent anterior horn motor neuron function. This is the first study to compare the techniques directly during thoracoabdominal aortic aneurysm repair. Methods In 38 patients, thoracoabdominal aortic aneurysm repair (type I, n = 10, type II, n = 14, type III, n = 6, type IV, n = 8) was performed using left heart bypass and segmental artery reimplantation. tc-MEP amplitudes <25% and SSEP amplitudes <50% and/or latencies >110% were considered indicators of cord ischemia. The authors compared the response of both methods to interventions and correlated the responses at the end of surgery to neurologic outcomes. Results Ischemic tc-MEP changes occurred in 18/38 patients and could be restored by segmental artery reperfusion (n = 12) or by increasing blood pressure (n = 6). Significant SSEP changes accompanied these tc-MEP events in only 5/18 patients, with a delay of 2 to 34 minutes. SSEPs recovered in only two patients. In another 11 patients, SSEP amplitudes fell progressively to <50% of control without parallel tc-MEP changes or association with cross-clamp events or pressure decreases. At the end of the procedure, tc-MEP amplitudes were 84 ± 46% of control. In contrast, SSEP amplitudes were <50% of control in 15 patients (39%). No paraplegia occurred. Conclusion In all patients, tc-MEP events could be corrected by applying protective strategies. No patient awoke paraplegic. SSEPs showed delayed ischemia detection and a high rate of false-positive results. PMID:10615928

  9. Pattern visual evoked potentials for identifying malingering.

    PubMed

    Sun, I-Ting; Lee, Jong-Jer; Huang, Hsiu-Mei; Kuo, Hsi-Kung

    2015-06-01

    To investigate the efficacy of pattern visual evoked potentials (VEPs) in evaluating objective visual acuity (VA) and discriminating malingerers. Two hundred and forty-nine eyes of 249 patients aged 20-65 years were included. There were 147 eyes with macular diseases (group 1) and 102 eyes with optic nerve diseases (group 2). Amplitudes and latencies were analyzed and correlated with best-corrected visual acuity by a regression analysis. We found the best-correlated mode of pattern VEP, determined the relations, and then calculated the pattern VEP-estimated VA (PVEP-VA) of all 249 eyes, another 30 malingering eyes, 13 eyes with macular diseases, and 17 eyes with optic nerve diseases, and used a receiver operating characteristic (ROC) curve to determine a cutoff for acceptable variance between PVEP-VA and subjective VA to discriminate malingerers. The best correlation was between the amplitude of 50' checkerboard size (Amp50') and VA in every group. Significant correlation was between Amp50' and VA, where p < 0.0001 in group 1 and p = 0.020 in group 2. A logarithmic curve best fitted the correlation in the regression analysis, where y = 1.731 - 1.569x (R(2) = 0.611, p < 0.0001) in group 1 and y = 2.413 - 2.169x (R(2) = 0.531, p < 0.0001) in group 2 [x: log(Amp50'), y: PVEP-VA (logMAR)]. By using the relations and ROC curve, we determined a variance value of 0.4041 (logMAR) with 100% sensitivity and 94.0% specificity in group 1 and 0.3658 with 70.6% sensitivity and 50.5% specificity in group 2 to discriminate malingerers. The pattern VEP amplitude of 50' checkerboard size was useful to assess VA and can be helpful in discriminating malingering from real disability.

  10. Aging effect on vestibular evoked myogenic potential.

    PubMed

    Su, Hsuan-Chao; Huang, Tsung-Wei; Young, Yi-Ho; Cheng, Po-Wen

    2004-11-01

    Vestibular evoked myogenic potential (VEMP) is applied to explore the integrity of sacculocollic reflex. Although tests to evaluate vestibular-ocular reflex pathway have shown that vestibular function is adversely affected by aging, VEMP, in this study, is used as a novel test to define how aging influences sacculocollic reflex pathway. Prospective study. Academic tertiary referral center. Eighty normal subjects, equally divided into four groups according to their age, were enrolled to this study. Group I included patients aged <20 years, Group II patient ages ranged from 21 to 40 years, Group III patients were 41 to 60 years, and Group IV included patients older than 60 years. Recordings of VEMP responses. The response rate and parameters of VEMP, including p13 latency, n23 latency, amplitude, and interaural difference ratio. The VEMP response rates from Groups I to IV was 98%, 98%, 90%, and 60%, respectively, disclosing a significant difference only between Group IV and other groups (p < 0.05). The amplitude was negatively correlated with age in contrast to the n23 latency, correlating positively with age; both reached a significant difference (p < 0.05). Although the p13 latency had a trend to prolong as age increased, no significant correlation existed (p < 0.06). Moreover, the interaural difference ratio was also not significantly correlated with age. As age increased over 60 years, the VEMP response rate decreased dramatically. While age increased, the VEMP amplitude decreased in comparison to n23 latency prolonged. These findings might suggest that aging could deteriorate the saccular and corresponding neural functions. When interpreting the VEMP parameters, it should be kept in mind that aging could affect VEMP responses. Based on this study, we suggest establishing different reference values according to different age groups when evaluating VEMP response in patients with vestibular diseases.

  11. A Bayesian approach to estimate evoked potentials.

    PubMed

    Sparacino, Giovanni; Milani, Stefano; Arslan, Edoardo; Cobelli, Claudio

    2002-06-01

    Several approaches, based on different assumptions and with various degree of theoretical sophistication and implementation complexity, have been developed for improving the measurement of evoked potentials (EP) performed by conventional averaging (CA). In many of these methods, one of the major challenges is the exploitation of a priori knowledge. In this paper, we present a new method where the 2nd-order statistical information on the background EEG and on the unknown EP, necessary for the optimal filtering of each sweep in a Bayesian estimation framework, is, respectively, estimated from pre-stimulus data and obtained through a multiple integration of a white noise process model. The latter model is flexible (i.e. it can be employed for a large class of EP) and simple enough to be easily identifiable from the post-stimulus data thanks to a smoothing criterion. The mean EP is determined as the weighted average of the filtered sweeps, where each weight is inversely proportional to the expected value of the norm of the correspondent filter error, a quantity determinable thanks to the employment of the Bayesian approach. The performance of the new approach is shown on both simulated and real auditory EP. A signal-to-noise ratio enhancement is obtained that can allow the (possibly automatic) identification of peak latencies and amplitudes with less sweeps than those required by CA. For cochlear EP, the method also allows the audiology investigator to gather new and clinically important information. The possibility of handling single-sweep analysis with further development of the method is also addressed.

  12. Laser evoked potentials in carpal tunnel syndrome.

    PubMed

    de Tommaso, Marina; Libro, Giuseppe; Difruscolo, Olimpia; Sardaro, Michele; Serpino, Claudia; Calabrese, Rita; Vecchio, Eleonora; Livrea, Paolo

    2009-02-01

    The aim of this study was to evaluate the function of Adelta fibers at the hand level in patients with clinical symptoms of Carpal Tunnel Syndrome (CTS) using CO(2) laser evoked potentials (LEPs), in light of the intensity and distribution of sensory symptoms and pain. Thirty-four CTS outpatients (62 hands) were compared to 23 sex- and age-matched control subjects (46 hands). The periungueal skin of the first, second, third and fifth fingers, and the dorsum of the hands were stimulated in random order. The latency and amplitude of the N2, P2 and N1 components were evaluated with respect to the Nerve Conduction Study (NCS) data, clinical scales, pain intensity and glove-like symptoms distribution. The amplitude of the N2-P2 complex was significantly reduced in CTS hands compared to normal hands after stimulation of the second and third fingers, even in patients with mild nerve conduction impairment. No significant fifth finger LEP abnormalities were found in patients with glove-like distribution symptoms. The N2-P2 amplitude at the second and third fingers was positively correlated with the severity of sensory symptoms. The involvement of median nerve Adelta fibers in CTS seems to be an early phenomenon, which concurs with the impairment of large motor and sensory afferents and is linked to the severity of the disease. The finding of reduced sensory symptoms in patients with severe thin afferents damage, may suggest a slight expression of central sensitisation phenomena in the advanced stage of CTS syndrome.

  13. Axonal and somatic filtering of antidromically evoked cortical excitation by simulated deep brain stimulation in rat brain

    PubMed Central

    Chomiak, T; Hu, B

    2007-01-01

    Antidromic cortical excitation has been implicated as a contributing mechanism for high-frequency deep brain stimulation (DBS). Here, we examined the reliability of antidromic responses of type 2 corticofugal fibres in rat over a stimulation frequency range compatible to the DBS used in humans. We activated antidromically individual layer V neurones by stimulating their two subcortical axonal branches. We found that antidromic cortical excitation is not as reliable as generally assumed. Whereas the fast conducting branches of a type 2 axon in the highly myelinated brainstem region follow high-frequency stimulation, the slower conducting fibres in the poorly myelinated thalamic region function as low-pass filters. These fibres fail to transmit consecutive antidromic spikes at the beginning of high-frequency stimulation, but are able to maintain a steady low-frequency (6–12 Hz) spike output during the stimulation. In addition, antidromic responses evoked from both branches are rarely present in cortical neurones with a more hyperpolarized membrane potential. Our data indicate that axon-mediated antidromic excitation in the cortex is strongly influenced by the myelo-architecture of the stimulation site and the excitability of individual cortical neurones. PMID:17170044

  14. Long latency auditory evoked potentials in children with cochlear implants: systematic review.

    PubMed

    Silva, Liliane Aparecida Fagundes; Couto, Maria Inês Vieira; Matas, Carla Gentile; Carvalho, Ana Claudia Martinho de

    2013-11-25

    The aim of this study was to analyze the findings on Cortical Auditory Evoked Potentials in children with cochlear implant through a systematic literature review. After formulation of research question and search of studies in four data bases with the following descriptors: electrophysiology (eletrofisiologia), cochlear implantation (implante coclear), child (criança), neuronal plasticity (plasticidade neuronal) and audiology (audiologia), were selected articles (original and complete) published between 2002 and 2013 in Brazilian Portuguese or English. A total of 208 studies were found; however, only 13 contemplated the established criteria and were further analyzed; was made data extraction for analysis of methodology and content of the studies. The results described suggest rapid changes in P1 component of Cortical Auditory Evoked Potentials in children with cochlear implants. Although there are few studies on the theme, cochlear implant has been shown to produce effective changes in central auditory path ways especially in children implanted before 3 years and 6 months of age.

  15. Electroretinography and Visual Evoked Potentials in Childhood Brain Tumor Survivors.

    PubMed

    Pietilä, Sari; Lenko, Hanna L; Oja, Sakari; Koivisto, Anna-Maija; Pietilä, Timo; Mäkipernaa, Anne

    2016-07-01

    This population-based cross-sectional study evaluates the clinical value of electroretinography and visual evoked potentials in childhood brain tumor survivors. A flash electroretinography and a checkerboard reversal pattern visual evoked potential (or alternatively a flash visual evoked potential) were done for 51 survivors (age 3.8-28.7 years) after a mean follow-up time of 7.6 (1.5-15.1) years. Abnormal electroretinography was obtained in 1 case, bilaterally delayed abnormal visual evoked potentials in 22/51 (43%) cases. Nine of 25 patients with infratentorial tumor location, and altogether 12 out of 31 (39%) patients who did not have tumors involving the visual pathways, had abnormal visual evoked potentials. Abnormal electroretinographies are rarely observed, but abnormal visual evoked potentials are common even without evident anatomic lesions in the visual pathway. Bilateral changes suggest a general and possibly multifactorial toxic/adverse effect on the visual pathway. Electroretinography and visual evoked potential may have clinical and scientific value while evaluating long-term effects of childhood brain tumors and tumor treatment.

  16. Auditory evoked potentials and vestibular evoked myogenic potentials in evaluation of brainstem lesions in multiple sclerosis.

    PubMed

    Ivanković, Anita; Nesek Mađarić, Vesna; Starčević, Katarina; Krbot Skorić, Magdalena; Gabelić, Tereza; Adamec, Ivan; Habek, Mario

    2013-05-15

    The aim of this study was to determine the roles of magnetic resonance imaging (MRI), auditory evoked potentials (AEP) and vestibular evoked myogenic potentials (VEMP) in the evaluation of brainstem involvement in multiple sclerosis (MS). Altogether 32 patients with the diagnosis of MS participated in the study. The following data was collected from all patients: age, gender, Expanded Disability Status Scale (EDSS) score, brainstem functional system score (BSFS) (part of the EDSS evaluating brainstem symptomatology), and involvement of the brainstem on the brain MRI. AEP and ocular VEMP (oVEMP) and cervical VEMP (cVEMP) were studied in all patients. BSFS, MRI, AEP, oVEMP and cVEMP involvement of the brainstem was evident in 9 (28.1%), 14 (43.8%), 7 (21.9%), 12 (37.5%) and 10 (31.0%) patients, respectively. None of the tests used showed statistically significant advantage in the detection of brainstem lesions. When combining oVEMP and cVEMP 18 (56.3%) patients showed brainstem involvement. This combination showed brainstem involvement in greater percentage than BSFS or AEP, with statistical significance (p=0.035 and p=0.007, respectively). VEMP is a reliable method in detection of brainstem involvement in MS. It is comparable with MRI, but superior to clinical examination or AEP. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Cortical Thinning in Healthy Aging Correlates with Larger Motor-Evoked EEG Desynchronization

    PubMed Central

    Provencher, David; Hennebelle, Marie; Cunnane, Stephen C.; Bérubé-Lauzière, Yves; Whittingstall, Kevin

    2016-01-01

    Although electroencephalography (EEG) is a valuable tool to investigate neural activity in patients and controls, exactly how local anatomy impacts the measured signal remains unclear. Better characterizing this relationship is important to improve the understanding of how inter-subject differences in the EEG signal are related to neural activity. We hypothesized that cortical structure might affect event-related desynchronization (ERD) in EEG. Since aging is a well-documented cause of cortical thinning, we investigated the effects of cortical thickness (CT) and cortical depth (CD – the skull-to-cortex distance) on ERD using anatomical MRI and motor-evoked EEG in 17 healthy young adults and 20 healthy older persons. Results showed a significant negative correlation between ERD and CT, but no consistent relationship between ERD and CD. A thinner cortex was associated with a larger ERD in the α/β band and correcting for CT removed most of the inter-group difference in ERD. This indicates that differences in neural activity might not be the primary cause for the observed aging-related differences in ERD, at least in the motor cortex. Further, it emphasizes the importance of considering conditions affecting the EEG signal, such as cortical anatomical changes due to aging, when interpreting differences between healthy controls and/or patients. PMID:27064767

  18. Effect of intrathecal baclofen on evoked pain perception: an evoked potentials and quantitative thermal testing study.

    PubMed

    Kumru, H; Kofler, M; Flores, M C; Portell, E; Robles, V; Leon, N; Vidal, J

    2013-08-01

    Somatic antinociceptive effects of baclofen have been demonstrated in animal models. We hypothesized that if enhanced thermal or pain sensitivity is produced by loss of gamma-aminobutyric acid (GABA)-ergic tone in the central nervous system, spinal administration of GABA agonists might be predicted to be effective in thermal and/or pain perception changes and pain-related evoked potentials in candidates for intrathecal baclofen (ITB) treatment. Eleven patients with severe spinal cord injury (SCI) who suffered from severe spasticity were evaluated during a 50-μg ITB bolus test. Warm and heat pain thresholds, evoked heat pain perception, and contact heat-evoked potentials (CHEPs) were determined above SCI level from the right and left sides. Nine age- and gender-matched healthy volunteers undergoing repeat testing without any placebo injection served as control group. In patients, heat pain perception threshold increased, and evoked pain perception and amplitude of CHEPs decreased significantly after ITB bolus application in comparison with baseline (p < 0.005), with no change in warm perception threshold. In controls, no significant changes were observed in repeat testing over time. Our findings indicate that ITB modulates heat pain perception threshold, evoked heat pain perception and heat pain-related evoked potentials without inducing warm perception threshold changes in SCI patients. This phenomenon should be taken into account in the clinical evaluation and management of pain in patients receiving baclofen. © 2012 European Federation of International Association for the Study of Pain Chapters.

  19. Flash visual evoked potentials in preterm infants.

    PubMed

    Feng, Jing-Jing; Wang, Wei-Ping; Guo, Shu-Juan; Liu, Zhi-Wei; Xu, Xiu

    2013-03-01

    To describe the development of flash visual evoked potentials (FVEPs) in preterm infants from 1 to 18 months and to determine if the maturation of FVEPs is similar to that of term infants. Longitudinal follow-up study. Twenty very low birth weight (VLBW) preterm infants, 42 low birth weight (LBW) preterm infants, and 41 term infants underwent FVEP recordings and neurodevelopmental examinations at 1, 3, 6, 9, 12, and 18 months of corrected and chronological ages. The FVEP recordings were carried out with the VikingQuest-IV neuroelectrophysiological device (VikingQuest, Nicolet, WI), and neurodevelopmental assessments were made by the Development Screen Test and Bayley Scales of Infant Development, Second Edition. At 1, 3, 6, and 9 months of age, neurodevelopment was measured with the Mental Index and Developmental Quotient. At 12 and 18 months, neurodevelopment was assessed using the Mental Developmental Index and Psychomotor Developmental Index. Two FVEP values were analyzed: the P2 amplitude (peak to peak from the preceding N2 wave) and the latency of the P2 wave. There was no significant difference for age-dependent decreased pattern of FVEP P2 latency between preterm infants and the control group. This pattern consisted of a rapid decrease in the first 6 months of life, a gradual decline from 6 to 12 months of age, and a steady reduction from 12 to 18 months of age. The P2 latencies were prolonged significantly at all 6 recorded times in the VLBW group compared with the controls and showed a delay in the LBW group at 1 and 3 months of corrected age. The maturation of P2 latency in LBW infants is similar to that of the controls at 3 months of corrected age, but the maturation of P2 latency in VLBW children remained delayed when compared with the controls until 18 months of corrected age. Although the FVEP development pattern of preterm infants was similar to that of healthy full-term infants, the former had deficits in visual electrophysiologic maturation

  20. Somatosensory Evoked Potential Findings in Ankylosing Spondylitis

    PubMed Central

    Cidem, Muharrem; Sahin, Zerrin; Aydin, Teoman; Aysal, Fikret

    2014-01-01

    Objective: Somatosensory evoked potential (SSEP) abnormalities were reported in patients with ankylosing spondylitis (AS). This study aimed to investigate SSEP abnormalities and its relation with clinical findings in AS patients. Materials and Methods: The study included 26 patients with AS and 17 age-matched health volunteers (Control for SSEP). Median nerve SSEP findings were normal in all AS cases. Results: However, delayed latency and/or very low amplitude of tibial nerve SSEP was found in 20 (76.9%) AS patients. There were significant correlations between tibial SSEP latency and disease duration (R=0.433 to 0.635). There was also an inverse correlation between tibial SSEP amplitude and disease duration (R=−0.429, p=0.047). Serum estradiol level, hip total bone mineral density, The Bath Ankylosing Spondylitis Functional Index (BASFI) score and Beck depression score were significantly lower in AS patients with SSEP abnormalities (37.3±10.8 pg/mL, 0.916±0.123 g/cm2, 35.0±27.9, 12.8±8.4, respectively) than in AS patients without SSEP abnormalities (53.7±12.3 pg/mL, 1.103±0.197 g/cm2, 64.8±15.5, 24.8±10.1, respectively). Conclusion: Significant inverse correlations between SSEP latencies and dehydroepiandrosterone sulphate (DHEAS) levels were found (R=−0.400 to −0.713). There were also significant inverse correlation between SSEP latencies and DHEAS/oestrogen index (R=−0.596 to −0.868), and between SSEP latencies and DHEAS/Progesterone index (R=−0.467 to −0.685). As a conclusion, this study indicates that tibial nerve SSEP abnormalities are common in patients with AS and there are significant correlations between clinical findings of AS and SSEP abnormalities. PMID:25610293

  1. Correlation between temperature and vibration thresholds and somatosensory evoked potentials.

    PubMed

    Meh, D; Denislic, M

    2000-01-01

    The psychophysically assessed thermal specific, thermal pain and vibration sensitivities were correlated to somatosensory evoked potentials in eighteen patients with definite multiple sclerosis. In the psychophysical tests, modality specific stimuli were used. Somatosensory potentials were electrically evoked. The abnormalities of both the temperature and the vibration sensitivity were to same extent related to the somatosensory evoked potentials. Dorsal columns-medial lemnisc and anterolateral-spinothalamic demyelinating lesions were presumed. The psychophysical tests supplement the clinical, laboratory, neuroradiologic and electrophysiological tests. These should be included in the battery of diagnostic tests in multiple sclerosis.

  2. The utility of median somatosensory evoked potentials in anoxic-ischemic coma.

    PubMed

    Rothstein, Ted L

    2009-01-01

    The early recognition of comatose patients with a hopeless prognosis--regardless of how aggressively they are managed--is of utmost importance. Median somatosensory evoked potentials (SSEP) supplement and enhance neurological examination findings in anoxic-ischemic coma and are useful as an early guide in predicting outcome. The key finding is that bilateral absence of cortical evoked potentials reliably predicts unfavorable outcome in comatose patients after cardiac arrest. The author studied 50 comatose patients with preserved brainstem function after cardiac arrest. All 23 patients with bilateral absence of cortical evoked potentials died without awakening. Neuropathological study in seven patients disclosed widespread ischemic changes or frank cortical laminar necrosis. The remaining 27 patients with normal or delayed central conduction times had an uncertain prognosis because some died without awakening or entered a persistent vegetative state. The majority of patients with normal central conduction times had a good outcome, whereas a delay in central conduction times increased the likelihood of neurological deficit or death. Greater use of SSEP in anoxic-ischemic coma would identify those patients unlikely to recover and would avoid costly medical care that is to no avail.

  3. Click- and chirp-evoked human compound action potentials.

    PubMed

    Chertoff, Mark; Lichtenhan, Jeffery; Willis, Marie

    2010-05-01

    In the experiments reported here, the amplitude and the latency of human compound action potentials (CAPs) evoked from a chirp stimulus are compared to those evoked from a traditional click stimulus. The chirp stimulus was created with a frequency sweep to compensate for basilar membrane traveling wave delay using the O-Chirp equations from Fobel and Dau [(2004). J. Acoust. Soc. Am. 116, 2213-2222] derived from otoacoustic emission data. Human cochlear traveling wave delay estimates were obtained from derived compound band action potentials provided by Eggermont [(1979). J. Acoust. Soc. Am. 65, 463-470]. CAPs were recorded from an electrode placed on the tympanic membrane (TM), and the acoustic signals were monitored with a probe tube microphone attached to the TM electrode. Results showed that the amplitude and latency of chirp-evoked N1 of the CAP differed from click-evoked CAPs in several regards. For the chirp-evoked CAP, the N1 amplitude was significantly larger than the click-evoked N1s. The latency-intensity function was significantly shallower for chirp-evoked CAPs as compared to click-evoked CAPs. This suggests that auditory nerve fibers respond with more unison to a chirp stimulus than to a click stimulus.

  4. Intraoperative monitoring of flash visual evoked potential under general anesthesia

    PubMed Central

    Hayashi, Hironobu

    2017-01-01

    In neurosurgical procedures that may cause visual impairment in the intraoperative period, the monitoring of flash visual evoked potential (VEP) is clinically used to evaluate visual function. Patients are unconscious during surgery under general anesthesia, making flash VEP monitoring useful as it can objectively evaluate visual function. The flash stimulus input to the retina is transmitted to the optic nerve, optic chiasm, optic tract, lateral geniculate body, optic radiation (geniculocalcarine tract), and visual cortical area, and the VEP waveform is recorded from the occipital region. Intraoperative flash VEP monitoring allows detection of dysfunction arising anywhere in the optic pathway, from the retina to the visual cortex. Particularly important steps to obtain reproducible intraoperative flash VEP waveforms under general anesthesia are total intravenous anesthesia with propofol, use of retinal flash stimulation devices using high-intensity light-emitting diodes, and a combination of electroretinography to confirm that the flash stimulus has reached the retina. Relatively major postoperative visual impairment can be detected by intraoperative decreases in the flash VEP amplitude. PMID:28367282

  5. Intraoperative monitoring of flash visual evoked potential under general anesthesia.

    PubMed

    Hayashi, Hironobu; Kawaguchi, Masahiko

    2017-04-01

    In neurosurgical procedures that may cause visual impairment in the intraoperative period, the monitoring of flash visual evoked potential (VEP) is clinically used to evaluate visual function. Patients are unconscious during surgery under general anesthesia, making flash VEP monitoring useful as it can objectively evaluate visual function. The flash stimulus input to the retina is transmitted to the optic nerve, optic chiasm, optic tract, lateral geniculate body, optic radiation (geniculocalcarine tract), and visual cortical area, and the VEP waveform is recorded from the occipital region. Intraoperative flash VEP monitoring allows detection of dysfunction arising anywhere in the optic pathway, from the retina to the visual cortex. Particularly important steps to obtain reproducible intraoperative flash VEP waveforms under general anesthesia are total intravenous anesthesia with propofol, use of retinal flash stimulation devices using high-intensity light-emitting diodes, and a combination of electroretinography to confirm that the flash stimulus has reached the retina. Relatively major postoperative visual impairment can be detected by intraoperative decreases in the flash VEP amplitude.

  6. Evoked potentials for the prediction of vegetative state in the acute stage of coma.

    PubMed

    Fischer, Catherine; Luauté, Jacques

    2005-01-01

    For comatose patients in intensive care units, it is important to anticipate their functional outcome as soon and as reliably as possible. Among clinical variables the Glasgow Coma Score (GCS) and the patient's pupil reactivity are the strongest predictive variables. Evoked potentials help to assess objectively brain function. Over the past 20 years, numerous studies have assessed their prognostic utility in terms of awakening from coma. Fewer studies, however, have focused upon the utility of evoked potentials in predicting progression to the vegetative state. In this area evoked potentials appear to have a highly predictive value. In anoxic coma the abolition of somatosensory evoked potentials (SEPs) is related to a poor outcome, defined as death or survival in a vegetative state, with a 100% specificity. Following traumatic brain injury, the predictive value for unfavourable outcome is 98.5% when there are no focal injuries likely to abolish SEP cortical components. In contrast, the presence of event-related evoked potentials, and particularly mismatched negativity (MMN), is a strong predictor of awakening and precludes comatose patients from moving to a permanent vegetative state (PVS).

  7. Cortical somatosensory evoked high-frequency (600Hz) oscillations predict absence of severe hypoxic encephalopathy after resuscitation.

    PubMed

    Endisch, Christian; Waterstraat, Gunnar; Storm, Christian; Ploner, Christoph J; Curio, Gabriel; Leithner, Christoph

    2016-07-01

    Following cardiac arrest (CA), hypoxic encephalopathy (HE) frequently occurs and hence reliable neuroprognostication is crucial to decide on the extent of intensive care. Several investigations predict severe HE leading to persistent unresponsive wakefulness or death, with high specificity. Only few studies attempted to predict absence of severe HE. Cortical somatosensory evoked high-frequency (600Hz) oscillation (HFO) bursts indicate the presence of highly synchronized spiking activity in the primary somatosensory cortex. Since global neuronal damage characterizes severe HE preserved cortical HFOs may early exclude severe HE. We determined amplitudes of early and late HFO bursts in 302 comatose CA patients after median nerve somatosensory evoked potential (SSEPs) and clinical outcome upon intensive care unit discharge using the cerebral performance category (CPC) scale. We detected significant early HFO bursts in 146 patients and late HFO bursts in 95 patients. Only one of 27 unresponsive wakefulness patients had a late HFO burst amplitude above 70nV and all seventeen patients who died despite higher amplitudes died from non-neurological causes. High-frequency SSEP components can reliably be studied in comatose CA patients using standard equipment. Late HFO burst amplitudes above 70nV largely exclude severe HE incompatible with regaining consciousness. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Evoked response study tool: a portable, rugged system for single and multiple auditory evoked potential measurements.

    PubMed

    Finneran, James J

    2009-07-01

    Although the potential of using portable auditory evoked potential systems for field testing of stranded cetaceans has been long recognized, commercial systems for evoked potential measurements generally do not possess the bandwidth required for testing odontocete cetaceans and are not suitable for field use. As a result, there have been a number of efforts to develop portable evoked potential systems for field testing of cetaceans. This paper presents another such system, called the evoked response study tool (EVREST). EVREST is a Windows-based hardware/software system designed for calibrating sound stimuli and recording and analyzing transient and steady-state evoked potentials. The EVREST software features a graphical user interface, real-time analysis and visualization of recorded data, a variety of stimulus options, and a high level of automation. The system hardware is portable, rugged, battery-powered, and possesses a bandwidth that encompasses the audible range of echolocating odontocetes, making the system suitable for field testing of stranded or rehabilitating cetaceans.

  9. Effects of coenzyme Q10 in conjunction with vitamin E on retinal-evoked and cortical-evoked responses in patients with open-angle glaucoma.

    PubMed

    Parisi, Vincenzo; Centofanti, Marco; Gandolfi, Stefano; Marangoni, Dario; Rossetti, Luca; Tanga, Lucia; Tardini, Mariagrazia; Traina, Salvatore; Ungaro, Nicola; Vetrugno, Michele; Falsini, Benedetto

    2014-08-01

    To evaluate pattern-evoked retinal and cortical responses [pattern electroretinogram (PERG) and visual-evoked potential (VEP), respectively] after treatment with coenzyme Q10 in conjunction with vitamin E in open-angle glaucoma (OAG) patients. Forty-three OAG patients (mean age, 52.5±5.29 y; intraocular pressure <18 mm Hg with β-blocker monoterapy only) were enrolled. At baseline and after 6 and 12 months, simultaneous recordings of PERG and VEPs were obtained from 22 OAG patients who underwent treatment consisting of coenzyme Q10 and vitamin E (Coqun, 2 drops/d) in addition to β-blocker monoterapy (GC group), and from 21 OAG patients who were only treated with β-blockers (GP group). At baseline, intraocular pressure, PERG, and VEP parameters were similar in both GC and GP groups (analysis of variance, P>0.05). After 6 and 12 months, PERG and VEP response parameters of GP patients were unchanged when compared to baseline. In GC patients, PERG P50 and VEP P100 implicit times were decreased, whereas PERG P50-N95 and VEP N75-P100 amplitudes were increased (P<0.01) when compared to baseline. In the GC group, the differences in implicit times and amplitudes with respect to baseline were significantly larger (P<0.01) than those recorded in the GP group. The improvement (12 mo minus baseline) of VEP implicit time was significantly correlated with the changes of PERG P50-N95 amplitude (r=-0.66171, P=0.0008) and P50 implicit time (r=0.68364, P=0.00045) over a period of 12 months. Coenzyme Q10 associated with vitamin E administration in OAG shows a beneficial effect on the inner retinal function (PERG improvement) with consequent enhancement of the visual cortical responses (VEP improvement).

  10. Brainstem Auditory Evoked Potential in HIV-Positive Adults

    PubMed Central

    Matas, Carla Gentile; Samelli, Alessandra Giannella; Angrisani, Rosanna Giaffredo; Magliaro, Fernanda Cristina Leite; Segurado, Aluísio C.

    2015-01-01

    Background To characterize the findings of brainstem auditory evoked potential in HIV-positive individuals exposed and not exposed to antiretroviral treatment. Material/Methods This research was a cross-sectional, observational, and descriptive study. Forty-five HIV-positive individuals (18 not exposed and 27 exposed to the antiretroviral treatment – research groups I and II, respectively – and 30 control group individuals) were assessed through brainstem auditory evoked potential. Results There were no significant between-group differences regarding wave latencies. A higher percentage of altered brainstem auditory evoked potential was observed in the HIV-positive groups when compared to the control group. The most common alteration was in the low brainstem. Conclusions HIV-positive individuals have a higher percentage of altered brainstem auditory evoked potential that suggests central auditory pathway impairment when compared to HIV-negative individuals. There was no significant difference between individuals exposed and not exposed to antiretroviral treatment. PMID:26485202

  11. Postural sway and brain potentials evoked by visual depth stimuli.

    PubMed

    Kiyota, Takeo; Fujiwara, Katsuo

    2008-07-01

    This study measured the postural sway and brain potentials evoked by a visual depth stimulus. Thirteen subjects maintained standing posture on a force platform, and were administered two types of depth stimuli, strong and weak. The latency and amplitude of evoked potentials as well as changes in center of foot pressure (CFP) and the electromyogram (EMG) were examined. CFP displacement was found to change according to stimulus intensity. In the occipital lobe, evoked potentials exhibited a triphasic peak, with the first positive peak at approximately 120 ms (P120), the first negative peak at approximately 160 ms (N200), and the second positive peak at approximately 260 ms (P250). Brain evoked potentials correlated with CFP displacement as well as the latency of onset of EMG response. Onset of EMG response was probably related to the P120 component, whereas CFP displacement was related to the P250 component.

  12. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.

    PubMed

    Nikjeh, Dee A; Lister, Jennifer J; Frisch, Stefan A

    2009-08-01

    Cortical auditory evoked potentials, including mismatch negativity (MMN) and P3a to pure tones, harmonic complexes, and speech syllables, were examined across groups of trained musicians and nonmusicians. Because of the extensive formal and informal auditory training received by musicians throughout their lifespan, it was predicted that these electrophysiological indicators of preattentive pitch discrimination and involuntary attention change would distinguish musicians from nonmusicians and provide insight regarding the influence of auditory training and experience on central auditory function. A total of 102 (67 trained musicians, 35 nonmusicians) right-handed young women with normal hearing participated in three auditory stimulus conditions: pure tones (25 musicians/15 nonmusicians), harmonic tones (42 musicians/20 nonmusicians), and speech syllables (26 musicians/15 nonmusicians). Pure tone and harmonic tone stimuli were presented in multideviant oddball paradigms designed to elicit MMN and P3a. Each paradigm included one standard and two infrequently occurring deviants. For the pure tone condition, the standard pure tone was 1000 Hz, and the two deviant tones differed in frequency from the standard by either 1.5% (1015 Hz) or 6% (1060 Hz). The harmonic tone complexes were digitally created and contained a fundamental frequency (F0) and three harmonics. The amplitude of each harmonic was divided by its harmonic number to create a natural amplitude contour in the frequency spectrum. The standard tone was G4 (F0 = 392 Hz), and the two deviant tones differed in fundamental frequency from the standard by 1.5% (F0 = 386 Hz) or 6% (F0 = 370 Hz). The fundamental frequencies of the harmonic tones occur within the average female vocal range. The third condition to elicit MMN and P3a was designed for the presentation of speech syllables (/ba/ and /da/) and was structured as a traditional oddball paradigm (one standard/one infrequent deviant). Each speech stimulus was

  13. A Basis for Evoked Potential Assessment of Certain Visual Functions.

    DTIC Science & Technology

    1981-06-30

    Chromatic adaptation and steady-state evoked potentials. Vision Res., 1968, 8, 149-158. 6. Regan, D. Evoked potentials and sensation. Perception Psycho...D. Evidence for the existence of neural mechanisms selectively sensitive to the direction of movement in space. J. Physiol., 1973, 235, 17-29. 34a...Beverley, K.I. 1 Regan, D. Selective adaptation in stereoscopic depth perception. J. Phvsiol., 1973, 232, 40-41P. 35. Regan, D. & Beverley, K.I

  14. Sensory evoked potentials in Guillain-Barré polyneuropathy.

    PubMed Central

    Brown, W F; Feasby, T E

    1984-01-01

    In 11 patients with acute Guillain-Barré polyneuropathy examined within 2 weeks of the onset of the paralysis, sensory evoked potential techniques were able to demonstrate a proximal conduction delay between Erb's point and the cervical cord in 10 subjects; while sensory conduction distal to Erb's point was much more commonly normal in the early period. Sensory evoked potential techniques provide therefore a valuable way to demonstrate proximal conduction velocity slowing early in the course of this disease. PMID:6707675

  15. Role of motor evoked potentials in diagnosis of cauda equina and lumbosacral cord lesions.

    PubMed

    Di Lazzaro, V; Pilato, F; Oliviero, A; Saturno, E; Dileone, M; Tonali, P A

    2004-12-28

    To determine the diagnostic value of motor evoked potentials (MEPs) in the diagnosis of lumbosacral cord disorders. MEPs in 37 patients with sensory and motor deficits in the lower limbs were studied. MRI demonstrated spinal cord involvement in 10 patients and cauda equina lesions in 27 patients. A double determination of central motor conduction time (CMCT), calculated as the difference between the latencies of responses evoked by cortical and paravertebral magnetic stimulation and as the difference between the latency of cortical MEP and the total peripheral conduction time calculated from the F-wave latency, enabled discrimination between a delay along the proximal root and a delay along the corticospinal tract. An abnormality of the CMCT calculated with both techniques is indicative of central motor pathway damage, whereas an abnormality of the CMCT calculated from the latency of responses evoked by paravertebral magnetic stimulation associated with a normal CMCT calculated from the F-wave latency suggests a cauda equina lesion. Neurophysiologic findings strongly correlated with the lesion site documented by MRI (cauda equina or lumbosacral cord). All patients with MR evidence of cord involvement had an abnormality of CMCT calculated with both methods, suggesting a lesion of central motor pathways. Clinical examination often failed to document a spinal cord lesion, suggesting pure peripheral involvement in 5 of the 10 patients with MR evidence of cord lesion. Motor evoked potential recording is an accurate and easily applicable test for the diagnosis of lumbosacral spinal cord lesions.

  16. [The visual evoked potentials in open angle glaucoma].

    PubMed

    Damian, Carmen; Iancău, Maria; Costache, Doina

    2004-01-01

    The study purpose to analyse the variations of Visual Evoked Potentials on a group of patients with Open Angle Glaucoma. It was performed the Visual Evoked Potential recordings on a number of patients with Open Angle Glaucoma in different stages of evolutions. Some of the patients were monitored by the Visual Evoked Potentials recordings in a dynamic way, before and after the law pressure treatment. The type of Visual Evoked Potentials recording was pattern reversal with vertical bars. In incipient stage of Open Angle Glaucoma the alteration of the tract was minimal with inconstant presence of the N75 and N135 waves and just a few variation of the delay of P100. In advanced stages of Open Angle Glaucoma the alterations of the tract were important: the delay of P100 wave. In absolute stage the tract was null. The alterations of Visual Evoked Potentials tract was influenced by the different stages of evolution of Open Angle Glaucoma. The gradual alteration of the Visual Evoked Potential tract represents a prognosis of the disease.

  17. Comparative source localization of electrically and pressure-stimulated multichannel somatosensory evoked potentials.

    PubMed

    Kawohl, Wolfram; Waberski, Till Dino; Darvas, Felix; Norra, Christine; Gobbelé, René; Buchner, Helmut

    2007-06-01

    The purpose of the study was to determine if there is a difference in the determination of the cortical hand area by dipole source estimation after artificial and natural stimuli. In principle, there are advantages of both methods: pressure stimulation is less invasive and compatible to fMRI, whereas electrical stimulation can be applied with higher stimulus rates and elicits sharper waveforms. Electrical and pressure stimulation was performed simultaneously on the thumb and fifth finger on eight healthy volunteers. The somatosensory evoked potentials after electrical stimulation showed sharper peaks and higher amplitudes than the pressure stimulated potentials. For the two stimulus qualities, cortical source positions of thumb and fifth finger separated significantly in the vertical z-axis. Both methods deliver reliable stimulation and therefore allow separate source localization of thumb and fifth finger. For cortical plasticity studies, peripheral somatosensory stimulation is of great importance. According to these findings, the choice of method, electrical or mechanical stimulation, may depend on practical criteria.

  18. Interaction of electrically evoked activity with intrinsic dynamics of cultured cortical networks with and without functional fast GABAergic synaptic transmission

    PubMed Central

    Baltz, Thomas; Voigt, Thomas

    2015-01-01

    The modulation of neuronal activity by means of electrical stimulation is a successful therapeutic approach for patients suffering from a variety of central nervous system disorders. Prototypic networks formed by cultured cortical neurons represent an important model system to gain general insights in the input–output relationships of neuronal tissue. These networks undergo a multitude of developmental changes during their maturation, such as the excitatory–inhibitory shift of the neurotransmitter GABA. Very few studies have addressed how the output properties to a given stimulus change with ongoing development. Here, we investigate input–output relationships of cultured cortical networks by probing cultures with and without functional GABAAergic synaptic transmission with a set of stimulation paradigms at various stages of maturation. On the cellular level, low stimulation rates (<15 Hz) led to reliable neuronal responses; higher rates were increasingly ineffective. Similarly, on the network level, lowest stimulation rates (<0.1 Hz) lead to maximal output rates at all ages, indicating a network wide refractory period after each stimulus. In cultures aged 3 weeks and older, a gradual recovery of the network excitability within tens of milliseconds was in contrast to an abrupt recovery after about 5 s in cultures with absent GABAAergic synaptic transmission. In these GABA deficient cultures evoked responses were prolonged and had multiple discharges. Furthermore, the network excitability changed periodically, with a very slow spontaneous change of the overall network activity in the minute range, which was not observed in cultures with absent GABAAergic synaptic transmission. The electrically evoked activity of cultured cortical networks, therefore, is governed by at least two potentially interacting mechanisms: A refractory period in the order of a few seconds and a very slow GABA dependent oscillation of the network excitability. PMID:26236196

  19. Evoked potentials and transcranial magnetic stimulation in migraine: published data and viewpoint on their pathophysiologic significance.

    PubMed

    Schoenen, Jean; Ambrosini, Anna; Sándor, Peter S; Maertens de Noordhout, Alain

    2003-06-01

    Migraine is a disorder in which central nervous sytem dysfunction might play a pivotal role. Electroneurophysiology seems thus particularly suited to study its pathophysiology. We have extensively reviewed evoked potential and transcranial magnetic stimulation studies performed in migraineurs in order to identify their pathophysiologic significance. Publications available to us were completed by a Medline search. Retrieved and personal data were compared with respect to methodology and interpreted according to present knowledge on cortical information processing. Results are in part contradictory which appears to be method-, patient- and disease- related. Nonetheless, both evoked potential and transcranial magnetic stimulation studies demonstrate that the cerebral cortex, and possibly subcortical structures, are dysfunctioning interictally in both migraine with and without aura. These electrophysiologic abnormalities tend to normalise just before and during an attack and some of them seem to have a clear familial and predisposing character. Besides the studies of magnetophosphenes which have yielded contrasting results, chiefly because the method is not sufficiently reliable, most recent electrophysiologic investigations of cortical activities in migraine favour deficient habituation and decreased preactivation cortical excitability as the predominant interictal dysfunctions. We propose that the former is a consequence of the latter and that it could favour both interictal cognitive disturbances as well as a cerebral metabolic disequilibrium that may play a role in migraine pathogenesis. To summarize, electrophysiologic studies demonstrate in migraine between attacks a cortical, and possibly subcortical, dysfunction of which the hallmark is deficient habituation.

  20. Multiple Color Stimulus Induced Steady State Visual Evoked Potentials

    DTIC Science & Technology

    2007-11-02

    MULTIPLE COLOR STIMULUS INDUCED STEADY STATE VISUAL EVOKED POTENTIALS M. Cheng, X. Gao, S. Gao, D. Xu Institute of Biomedical Engineering...characteristics of high SNR and effectiveness in short-term identification of evoked responses. In most of the SSVEP experiments, single high...frequency stimuli are used. To characterize the complex rhythms in SSVEP, a new multiple color stimulus pattern is proposed in this paper. FFT and

  1. Single-trial detection for intraoperative somatosensory evoked potentials monitoring.

    PubMed

    Hu, L; Zhang, Z G; Liu, H T; Luk, K D K; Hu, Y

    2015-12-01

    Abnormalities of somatosensory evoked potentials (SEPs) provide effective evidence for impairment of the somatosensory system, so that SEPs have been widely used in both clinical diagnosis and intraoperative neurophysiological monitoring. However, due to their low signal-to-noise ratio (SNR), SEPs are generally measured using ensemble averaging across hundreds of trials, thus unavoidably producing a tardiness of SEPs to the potential damages caused by surgical maneuvers and a loss of dynamical information of cortical processing related to somatosensory inputs. Here, we aimed to enhance the SNR of single-trial SEPs using Kalman filtering and time-frequency multiple linear regression (TF-MLR) and measure their single-trial parameters, both in the time domain and in the time-frequency domain. We first showed that, Kalman filtering and TF-MLR can effectively capture the single-trial SEP responses and provide accurate estimates of single-trial SEP parameters in the time domain and time-frequency domain, respectively. Furthermore, we identified significant correlations between the stimulus intensity and a set of indicative single-trial SEP parameters, including the correlation coefficient (between each single-trial SEPs and their average), P37 amplitude, N45 amplitude, P37-N45 amplitude, and phase value (at the zero-crossing points between P37 and N45). Finally, based on each indicative single-trial SEP parameter, we investigated the minimum number of trials required on a single-trial basis to suggest the existence of SEP responses, thus providing important information for fast SEP extraction in intraoperative monitoring.

  2. Long-term potentiation (LTP) of human sensory-evoked potentials.

    PubMed

    Kirk, Ian J; McNair, Nicolas A; Hamm, Jeffrey P; Clapp, Wesley C; Mathalon, Daniel H; Cavus, Idil; Teyler, Timothy J

    2010-09-01

    Long-term potentiation (LTP) is the principal candidate synaptic mechanism underlying learning and memory, and has been studied extensively at the cellular and molecular level in laboratory animals. Inquiry into the functional significance of LTP has been hindered by the absence of a human model as, until recently, LTP has only been directly demonstrated in humans in isolated cortical tissue obtained from patients undergoing surgery, where it displays properties identical to those seen in non-human preparations. In this brief review, we describe the results of paradigms recently developed in our laboratory for inducing LTP-like changes in visual-, and auditory-evoked potentials. We describe how rapid, repetitive presentation of sensory stimuli leads to a persistent enhancement of components of sensory-evoked potential in normal humans. Experiments to date, investigating the locus, stimulus specificity, and NMDA receptor dependence of these LTP-like changes suggest that they have the essential characteristics of LTP seen in experimental animals. The ability to elicit LTP from non-surgical patients will provide a human model system allowing the detailed examination of synaptic plasticity in normal subjects and may have future clinical applications in the assessment of cognitive disorders. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website.

  3. Short-Latency Median-Nerve Somatosensory-Evoked Potentials and Induced Gamma-Oscillations in Humans

    ERIC Educational Resources Information Center

    Fukuda, Miho; Nishida, Masaaki; Juhasz, Csaba; Muzik, Otto; Sood, Sandeep; Chugani, Harry T.; Asano, Eishi

    2008-01-01

    Recent studies have suggested that cortical gamma-oscillations are tightly linked with various forms of physiological activity. In the present study, the dynamic changes of intracranially recorded median-nerve somatosensory-evoked potentials (SEPs) and somatosensory-induced gamma-oscillations were animated on a three-dimensional MR image, and the…

  4. Short-Latency Median-Nerve Somatosensory-Evoked Potentials and Induced Gamma-Oscillations in Humans

    ERIC Educational Resources Information Center

    Fukuda, Miho; Nishida, Masaaki; Juhasz, Csaba; Muzik, Otto; Sood, Sandeep; Chugani, Harry T.; Asano, Eishi

    2008-01-01

    Recent studies have suggested that cortical gamma-oscillations are tightly linked with various forms of physiological activity. In the present study, the dynamic changes of intracranially recorded median-nerve somatosensory-evoked potentials (SEPs) and somatosensory-induced gamma-oscillations were animated on a three-dimensional MR image, and the…

  5. Absence of both auditory evoked potentials and auditory percepts dependent on timing cues.

    PubMed

    Starr, A; McPherson, D; Patterson, J; Don, M; Luxford, W; Shannon, R; Sininger, Y; Tonakawa, L; Waring, M

    1991-06-01

    An 11-yr-old girl had an absence of sensory components of auditory evoked potentials (brainstem, middle and long-latency) to click and tone burst stimuli that she could clearly hear. Psychoacoustic tests revealed a marked impairment of those auditory perceptions dependent on temporal cues, that is, lateralization of binaural clicks, change of binaural masked threshold with changes in signal phase, binaural beats, detection of paired monaural clicks, monaural detection of a silent gap in a sound, and monaural threshold elevation for short duration tones. In contrast, auditory functions reflecting intensity or frequency discriminations (difference limens) were only minimally impaired. Pure tone audiometry showed a moderate (50 dB) bilateral hearing loss with a disproportionate severe loss of word intelligibility. Those auditory evoked potentials that were preserved included (1) cochlear microphonics reflecting hair cell activity; (2) cortical sustained potentials reflecting processing of slowly changing signals; and (3) long-latency cognitive components (P300, processing negativity) reflecting endogenous auditory cognitive processes. Both the evoked potential and perceptual deficits are attributed to changes in temporal encoding of acoustic signals perhaps occurring at the synapse between hair cell and eighth nerve dendrites. The results from this patient are discussed in relation to previously published cases with absent auditory evoked potentials and preserved hearing.

  6. Cerebral cortical neurons with activity linked to central neurogenic spontaneous and evoked elevations in cerebral blood flow

    NASA Technical Reports Server (NTRS)

    Golanov, E. V.; Reis, D. J.

    1996-01-01

    We recorded neurons in rat cerebral cortex with activity relating to the neurogenic elevations in regional cerebral blood flow (rCBF) coupled to stereotyped bursts of EEG activity, burst-cerebrovascular wave complexes, appearing spontaneously or evoked by electrical stimulation of rostral ventrolateral medulla (RVL) or fastigial nucleus (FN). Of 333 spontaneously active neurons only 15 (5%), in layers 5-6, consistently (P < 0.05, chi-square) increased their activity during the earliest potential of the complex, approximately 1.3 s before the rise of rCBF, and during the minutes-long elevation of rCBF elicited by 10 s of stimulation of RVL or FN. The results indicate the presence of a small population of neurons in deep cortical laminae whose activity correlates with neurogenic elevations of rCBF. These neurons may function to transduce afferent neuronal signals into vasodilation.

  7. Cerebral cortical neurons with activity linked to central neurogenic spontaneous and evoked elevations in cerebral blood flow

    NASA Technical Reports Server (NTRS)

    Golanov, E. V.; Reis, D. J.

    1996-01-01

    We recorded neurons in rat cerebral cortex with activity relating to the neurogenic elevations in regional cerebral blood flow (rCBF) coupled to stereotyped bursts of EEG activity, burst-cerebrovascular wave complexes, appearing spontaneously or evoked by electrical stimulation of rostral ventrolateral medulla (RVL) or fastigial nucleus (FN). Of 333 spontaneously active neurons only 15 (5%), in layers 5-6, consistently (P < 0.05, chi-square) increased their activity during the earliest potential of the complex, approximately 1.3 s before the rise of rCBF, and during the minutes-long elevation of rCBF elicited by 10 s of stimulation of RVL or FN. The results indicate the presence of a small population of neurons in deep cortical laminae whose activity correlates with neurogenic elevations of rCBF. These neurons may function to transduce afferent neuronal signals into vasodilation.

  8. A Comprehensive Review on Methodologies Employed for Visual Evoked Potentials

    PubMed Central

    Kothari, Ruchi; Bokariya, Pradeep; Singh, Smita; Singh, Ramji

    2016-01-01

    Visual information is fundamental to how we appreciate our environment and interact with others. The visual evoked potential (VEP) is among those evoked potentials that are the bioelectric signals generated in the striate and extrastriate cortex when the retina is stimulated with light which can be recorded from the scalp electrodes. In the current paper, we provide an overview of the various modalities, techniques, and methodologies which have been employed for visual evoked potentials over the years. In the first part of the paper, we cast a cursory glance on the historical aspect of evoked potentials. Then the growing clinical significance and advantages of VEPs in clinical disorders have been briefly described, followed by the discussion on the earlier and currently available methods for VEPs based on the studies in the past and recent times. Next, we mention the standards and protocols laid down by the authorized agencies. We then summarize the recently developed techniques for VEP. In the concluding section, we lay down prospective research directives related to fundamental and applied aspects of VEPs as well as offering perspectives for further research to stimulate inquiry into the role of visual evoked potentials in visual processing impairment related disorders. PMID:27034907

  9. Connections of the limbic network: a corticocortical evoked potentials study.

    PubMed

    Enatsu, Rei; Gonzalez-Martinez, Jorge; Bulacio, Juan; Kubota, Yuichi; Mosher, John; Burgess, Richard C; Najm, Imad; Nair, Dileep R

    2015-01-01

    Papez proposed a network for higher brain function, which is termed the limbic network. However, the in vivo human limbic network has not been established. We investigated the connectivity of the human limbic system using corticocortical evoked potential (CCEP). This retrospective analysis included 28 patients with medically intractable focal epilepsy who underwent stereoelectroencephalography (SEEG) and CCEP. Alternating 1 Hz electrical stimuli were delivered to parts of the limbic system [anterior and posterior hippocampus, temporal pole, parahippocampal gyrus (PHG), amygdala, anterior (ACG) and posterior cingulate gyrus (PCG), medial and lateral orbitofrontal cortex (OF)]. A total of 40-60 stimuli were averaged in each trial to obtain CCEP responses. CCEP distributions were evaluated by calculating the root mean square (RMS) of CCEP responses. Anterior hippocampal stimulation elicited prominent CCEP responses in medial and lateral temporal structures, PCG, medial OF and insula over the ipsilateral hemisphere. Posterior hippocampal stimulation induced CCEP responses in the ipsilateral medial and lateral temporal structures and PCG. The findings also revealed connections from temporal pole to the ipsilateral medial temporal structures, and connections from PHG to the ipsilateral hippocampus and PCG. The amygdala projected to broad areas including the ipsilateral medial and lateral temporal structures, medial and lateral frontal areas, the cingulate gyrus, insula and inferior parietal lobule. ACG and PCG showed connections to the ipsilateral medial fronto-parietal areas and connections to bilateral medial temporo-parieto-occipital and lateral parieto-occipital areas, respectively. Medial and lateral OF stimulation induced responses in the adjacent cortices. This study revealed that various regions within the limbic network are intimately connected in reverberating circuits and are linked to specific ipsilateral and contralateral regions, which may reflect

  10. Motor evoked potentials in unilateral lingual paralysis after monohemispheric ischaemia

    PubMed Central

    Muellbacher, W.; Artner, C.; Mamoli, B.

    1998-01-01

    OBJECTIVES—The occurrence of a lingual paralysis after unilateral upper motor neuron lesions is an infrequent clinical phenomenon, and the underlying pathophysiological mechanisms are poorly understood. We studied the cortical motor representations of ipsilateral and contralateral lingual muscles in healthy controls and in a selected group of stroke patients, to clarify the variable occurrence of a lingual paralysis after recent monohemispheric ischaemia.
METHODS—A special bipolar surface electrode was used to record the ipsilateral and contralateral compound muscle action potentials (CMAPs) from the lingual muscles after transcranial magnetic stimulation (TMS) of the human motor cortex and peripheral electrical stimulation (PES) of the hypoglossal nerve medial to the angle of the jaw. Four patients with a lingual paralysis (group 1) and four patients with symmetric lingual movements (group 2) after monohemispheric first ever stroke were studied and compared with 40 healthy controls.
RESULTS—In controls, TMS of either hemisphere invariably produces CAMPs in the ipsilateral and contralateral lingual muscles, elicited through crossed and uncrossed central motor pathways, respectively. In the 40 healthy controls, TMS of either hemisphere elicited CMAPs of significantly greater amplitudes and shorter onset latencies from the contralateral muscles compared with the ipsilateral responses (p<0.0001). In the patient groups, TMS of the affected hemisphere failed to evoke any CMAP from either lingual side; TMS of the unsevered hemisphere always produced normal ipsilateral and contralateral responses, irrespective of whether the ipsilateral muscles were paralysed or not.
CONCLUSIONS—Bilateral crossed and uncrossed corticonuclear projections are invariably existent in humans. After unilateral interruption of these pathways, some people do exhibit a lingual paralysis whereas others do not. The development of a central lingual paralysis is most likely dependent on

  11. Visual evoked potentials in subgroups of migraine with aura patients.

    PubMed

    Coppola, Gianluca; Bracaglia, Martina; Di Lenola, Davide; Di Lorenzo, Cherubino; Serrao, Mariano; Parisi, Vincenzo; Di Renzo, Antonio; Martelli, Francesco; Fadda, Antonello; Schoenen, Jean; Pierelli, Francesco

    2015-01-01

    Patients suffering from migraine with aura can have either pure visual auras or complex auras with sensory disturbances and dysphasia, or both. Few studies have searched for possible pathophysiological differences between these two subgroups of patients. Methods - Forty-seven migraine with aura patients were subdivided in a subgroup with exclusively visual auras (MA, N = 27) and another with complex neurological auras (MA+, N = 20). We recorded pattern-reversal visual evoked potentials (VEP: 15 min of arc cheques, 3.1 reversal per second, 600 sweeps) and measured amplitude and habituation (slope of the linear regression line of amplitude changes from the 1st to 6th block of 100 sweeps) for the N1-P1 and P1-N2 components in patients and, for comparison, in 30 healthy volunteers (HV) of similar age and gender distribution. VEP N1-P1 habituation, i.e. amplitude decrement between 1st and 6th block, which was obvious in most HV (mean slope -0.50), was deficient in both MA (slope +0.01, p = 0.0001) and MA+ (-0.0049, p = 0.001) patients. However, VEP N1-P1 amplitudes across blocks were normal in MA patients, while they were significantly greater in MA+ patients than in HVs. Our findings suggest that in migraine with aura patients different aura phenotypes may be underpinned by different pathophysiological mechanisms. Pre-activation cortical excitability could be higher in patients with complex neurological auras than in those having pure visual auras or in healthy volunteers.

  12. Age and gender effects on submental motor-evoked potentials.

    PubMed

    Sella, Oshrat; Jones, Richard D; Huckabee, Maggie-Lee

    2014-01-01

    It is not known whether there are age- and/or gender-related differences in magnitude of motor-evoked potentials (MEPs) of the submental muscles. Knowledge of this is important in investigations of neurophysiological aspects of swallowing. Forty healthy participants (20 males, 20 females; 20 young [21-35 years], 20 old [53-88 years]) were recruited. Surface electromyography (EMG) electrodes were placed at midline underlying the submental muscle group. Age- and gender-related differences were evaluated in two neurophysiologic measures of swallowing: MEPs stimulated by single-pulse transcranial magnetic stimulation (TMS) over the motor cortex and surface electromyography (sEMG) recorded from the same submental muscle group during non-stimulated swallows. The older participants had larger MEPs during saliva swallowing than the young participants (p = 0.04, d = 0.86). Conversely, the older participants had lower amplitude submental EMG activity during non-stimulated swallows (p = 0.045, d = 0.67). Gender had no significant effect on MEP magnitude and on submental activity during saliva swallowing. There were no effects of age or gender on MEP latencies. These findings suggest deterioration in muscle function with age in a sample of healthy adults presenting with functional swallowing. We speculate that muscular decline is partially ameliorated by increased cortical activity-i.e., increased submental MEPs-so as to preserve swallowing function in healthy older subjects. These findings emphasize the need for different reference points for evaluation of submental MEPs of different age groups.

  13. Noninvasive recordings of cochlear evoked potentials in Meniere's disease.

    PubMed

    Podoshin, L; Ben-David, Y; Pratt, H; Fradis, M; Feiglin, H

    1986-08-01

    Noninvasive meatal electrocochleography simultaneously recorded with brain stem auditory evoked potentials were performed on 24 adult patients with unilateral Meniere's disease. Data from the affected ear were compared with those of the nonaffected ear and with those of ten healthy normally hearing adults. The most striking finding was the significant deviation from the norm of the nonaffected ears' action potential duration. The combination of simultaneously recorded surface meatal electrocochleography and brain stem auditory evoked potentials complement the diagnostic battery of Meniere's disease in ruling out retrocochlear involvement, indicating cochlear involvement of the affected ear, and revealing subclinical changes in the contralateral ears.

  14. Some effects of room acoustics on evoked auditory potentials.

    PubMed

    MARSH, J T; WORDEN, F G; HICKS, L

    1962-07-27

    Auditory potentials were recorded from bipolar electrodes chronically implanted in the cochlear nuclei of four cats. In a training box modified to reduce echoes these animals were exposed to clicks and tone pulses presented from an overhead speaker. Slight changes in the position of the animal in the resulting sound field produced marked changes in the potentials evoked from the cochlear nucleus. These phenomena were observed in the unanesthetized, unrestrained subjects as well as in those under Nembutal anesthesia. It is suggested that these acoustic effects complicate the analysis and interpretation of potentials evoked from the cochlear nucleus under conditions of habituation, shifts in attention, and learning.

  15. Obtaining single stimulus evoked potentials with wavelet denoising

    NASA Astrophysics Data System (ADS)

    Quian Quiroga, R.

    2000-11-01

    We present a method for the analysis of electroencephalograms (EEG). In particular, small signals due to stimulation, so-called evoked potentials (EPs), have to be detected in the background EEG. This is achieved by using a denoising implementation based on the wavelet decomposition. One recording of visual evoked potentials, and recordings of auditory evoked potentials from four subjects corresponding to different age groups are analyzed. We find higher variability in older individuals. Moreover, since the EPs are identified at the single stimulus level (without need of ensemble averaging), this will allow the calculation of better resolved averages. Since the method is parameter free (i.e. it does not need to be adapted to the particular characteristics of each recording), implementations in clinical settings are imaginable.

  16. Effect of ischaemia on somatosensory evoked potentials in diabetic patients.

    PubMed Central

    López-Alburquerque, T; García Miguel, A; Ruiz Ezquerro, J J; de Portugal Alvarez, J

    1987-01-01

    The nerve action potential at the elbow and somatosensory evoked potentials (SEPs) at the scalp were recorded over 30 minutes of tourniquet-induced limb ischaemia in 10 diabetic patients and 10 controls. According to the SEP changes, an increased resistance to nerve ischaemia in diabetic patients was observed. The pathways involved in SEP conduction are discussed. PMID:3585354

  17. Influence of stimulation intensity on paired-pulse suppression of human median nerve somatosensory evoked potentials.

    PubMed

    Gatica Tossi, Mario A; Lillemeier, Ann-Sophie; Dinse, Hubert R

    2013-06-19

    Paired-pulse stimulation, the application of two stimuli in close succession, is a useful tool to investigate cortical excitability. Suppression of the second response after short interstimulus intervals characterizes paired-pulse behavior. Although paired-pulse suppression is often studied as a marker of cortical excitability in humans, little is known about the influence of stimulation intensity on paired-pulse suppression. To systematically explore the effect of stimulus intensity on paired-pulse suppression of median nerve somatosensory evoked potentials (MNSEPs), we recorded single-pulse or paired-pulse MNSEPs in healthy volunteers using stimulation intensities ranging from the sensory threshold to 1.2 times the motor threshold using interstimulus intervals of 10, 30, and 100 ms. Of the various somatosensory evoked potential components, only the N20-P25 component showed an effect of intensity, where higher intensities resulted in stronger paired-pulse suppression. However, when only intermediate intensities were considered, paired-pulse suppression was not or only weakly influenced. Our data suggest that stimulation intensity in contrast to single pulse-evoked MNSEPs has only a weak influence on the paired-pulse suppression of early MNSEPs. Paired-pulse suppression is believed to arise from inhibition generated by intracortical networks. The lack of intensity dependence within the range tested can be considered as a step toward creating invariance against fluctuations of stimulus intensity. Thus, intracortical computations as apparent in paired-pulse behavior might be characterized by different properties compared with feed-forward processing.

  18. N10 potential as an antidromic motor evoked potential in a median nerve short-latency somatosensory evoked potential study.

    PubMed

    Inoue, Ken; Mimori, Yasuyo; Nakamura, Shigenobu

    2002-01-01

    When stimulating the mixed nerve to record evoked potential, both sensory and motor fibers are activated before entering the spinal cord. The N10 potential has been described as an antidromic motor evoked potential based on results obtained by recording at the anterior midneck. In the present study, we examined the changes in latencies of Erb's potential, N10, and N13 by stimulating the median nerve distally at the wrist and proximally at the elbow. The conduction velocity of N10 calculated by the difference between N10 latencies at the two stimulation points was consistent with motor conduction velocity, although N13 conduction velocity estimated by the same method reflected a sensory conduction velocity. A positive relation was also observed between the indirect latency from the stimulation point to the anterior root as calculated using the equation (F - M - 1) / 2 (ms) and the direct latency to the negative peak of the N10 potential. Our data support the notion that N10 represents antidromic motor potential originating in the spinal entry zone of the anterior root.

  19. Poisson distribution to analyze near-threshold motor evoked potentials.

    PubMed

    Kaelin-Lang, Alain; Conforto, Adriana B; Z'Graggen, Werner; Hess, Christian W

    2010-11-01

    Motor unit action potentials (MUAPs) evoked by repetitive, low-intensity transcranial magnetic stimulation can be modeled as a Poisson process. A mathematical consequence of such a model is that the ratio of the variance to the mean of the amplitudes of motor evoked potentials (MEPs) should provide an estimate of the mean size of the individual MUAPs that summate to generate each MEP. We found that this is, in fact, the case. Our finding thus supports the use of the Poisson distribution to model MEP generation and indicates that this model enables characterization of the motor unit population that contributes to near-threshold MEPs.

  20. [Brain stem auditory evoked potentials in brain death state].

    PubMed

    Kojder, I; Garell, S; Włodarczyk, E; Sagan, L; Jezewski, D; Slósarek, J

    1998-01-01

    The authors studied auditory brainstem evoked potentials (BAEP) in 27 organ donors aged 40 to 68 years treated in neurosurgery units in Szczecin and Grenoble. Abnormal results were found in all cases. In 63% of cases no evoked action potentials were obtained, in 34% only the 1st wave was obtained, and in two cases evolution was observed with activity extinction. The authors believe that in the process of shaping of BAEP morphotic extinction begins from the later waves to earlier ones in agreement with the rostrocaudal direction of extinction of the functions or brain midline structures, and in a single study various findings may be obtained.

  1. The diagnostic significance of the multifocal pattern visual evoked potential in glaucoma.

    PubMed

    Graham, S L; Klistorner, A

    1999-04-01

    The concept of objective perimetry is an exciting one because it strives to assess glaucoma damage without relying on psychophysical testing. The recent introduction of multifocal stimulus recording has enhanced our ability to examine the human visual field using electrophysiology. A multifocal pattern visual evoked potential can now be recorded, testing up to 60 sites within the central 25 degrees. The test requires only that the subject fixate on a target, while a cortically scaled dartboard pattern stimulus undergoes pseudorandom alternation within each of the test segments. In its present configuration the test requires at least 8 minutes recording time per eye. Modified bipolar electrode positions are required to ensure that adequate signals are detected from all parts of the visual field. In glaucoma patients, pattern visual evoked potential amplitudes have been shown to reflect visual field loss with reduction of signal amplitude in the affected areas. This technique represents the first major step toward objective detection of visual field defects in glaucoma.

  2. One year of musical training affects development of auditory cortical-evoked fields in young children.

    PubMed

    Fujioka, Takako; Ross, Bernhard; Kakigi, Ryusuke; Pantev, Christo; Trainor, Laurel J

    2006-10-01

    Auditory evoked responses to a violin tone and a noise-burst stimulus were recorded from 4- to 6-year-old children in four repeated measurements over a 1-year period using magnetoencephalography (MEG). Half of the subjects participated in musical lessons throughout the year; the other half had no music lessons. Auditory evoked magnetic fields showed prominent bilateral P100m, N250m, P320m and N450m peaks. Significant change in the peak latencies of all components except P100m was observed over time. Larger P100m and N450m amplitude as well as more rapid change of N250m amplitude and latency was associated with the violin rather than the noise stimuli. Larger P100m and P320m peak amplitudes in the left hemisphere than in the right are consistent with left-lateralized cortical development in this age group. A clear musical training effect was expressed in a larger and earlier N250m peak in the left hemisphere in response to the violin sound in musically trained children compared with untrained children. This difference coincided with pronounced morphological change in a time window between 100 and 400 ms, which was observed in musically trained children in response to violin stimuli only, whereas in untrained children a similar change was present regardless of stimulus type. This transition could be related to establishing a neural network associated with sound categorization and/or involuntary attention, which can be altered by music learning experience.

  3. Inhibition of somatosensory-evoked cortical responses by a weak leading stimulus.

    PubMed

    Nakagawa, Kei; Inui, Koji; Yuge, Louis; Kakigi, Ryusuke

    2014-11-01

    We previously demonstrated that auditory-evoked cortical responses were suppressed by a weak leading stimulus in a manner similar to the prepulse inhibition (PPI) of startle reflexes. The purpose of the present study was to investigate whether a similar phenomenon was present in the somatosensory system, and also whether this suppression reflected an inhibitory process. We recorded somatosensory-evoked magnetic fields following stimulation of the median nerve and evaluated the extent by which they were suppressed by inserting leading stimuli at an intensity of 2.5-, 1.5-, 1.1-, or 0.9-fold the sensory threshold (ST) in healthy participants (Experiment 1). The results obtained demonstrated that activity in the secondary somatosensory cortex in the hemisphere contralateral to the stimulated side (cSII) was significantly suppressed by a weak leading stimulus with the intensity larger than 1.1-fold ST. This result implied that the somatosensory system had an inhibitory process similar to that of PPI. We then presented two successive leading stimuli before the test stimulus, and compared the extent of suppression between the test stimulus-evoked responses and those obtained with the second prepulse alone and with two prepulses (first and second) (Experiment 2). When two prepulses were preceded, cSII responses to the second prepulse were suppressed by the first prepulse, whereas the ability of the second prepulse to suppress the test stimulus remained unchanged. These results suggested the presence of at least two individual pathways; response-generating and inhibitory pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Human cortical activity evoked by the assignment of authenticity when viewing works of art.

    PubMed

    Huang, Mengfei; Bridge, Holly; Kemp, Martin J; Parker, Andrew J

    2011-01-01

    The expertise of others is a major social influence on our everyday decisions and actions. Many viewers of art, whether expert or naïve, are convinced that the full esthetic appreciation of an artwork depends upon the assurance that the work is genuine rather than fake. Rembrandt portraits provide an interesting image set for testing this idea, as there is a large number of them and recent scholarship has determined that quite a few fakes and copies exist. Use of this image set allowed us to separate the brain's response to images of genuine and fake pictures from the brain's response to external advice about the authenticity of the paintings. Using functional magnetic resonance imaging, viewing of artworks assigned as "copy," rather than "authentic," evoked stronger responses in frontopolar cortex (FPC), and right precuneus, regardless of whether the portrait was actually genuine. Advice about authenticity had no direct effect on the cortical visual areas responsive to the paintings, but there was a significant psycho-physiological interaction between the FPC and the lateral occipital area, which suggests that these visual areas may be modulated by FPC. We propose that the activation of brain networks rather than a single cortical area in this paradigm supports the art scholars' view that esthetic judgments are multi-faceted and multi-dimensional in nature.

  5. Human Cortical Activity Evoked by the Assignment of Authenticity when Viewing Works of Art

    PubMed Central

    Huang, Mengfei; Bridge, Holly; Kemp, Martin J.; Parker, Andrew J.

    2011-01-01

    The expertise of others is a major social influence on our everyday decisions and actions. Many viewers of art, whether expert or naïve, are convinced that the full esthetic appreciation of an artwork depends upon the assurance that the work is genuine rather than fake. Rembrandt portraits provide an interesting image set for testing this idea, as there is a large number of them and recent scholarship has determined that quite a few fakes and copies exist. Use of this image set allowed us to separate the brain’s response to images of genuine and fake pictures from the brain’s response to external advice about the authenticity of the paintings. Using functional magnetic resonance imaging, viewing of artworks assigned as “copy,” rather than “authentic,” evoked stronger responses in frontopolar cortex (FPC), and right precuneus, regardless of whether the portrait was actually genuine. Advice about authenticity had no direct effect on the cortical visual areas responsive to the paintings, but there was a significant psycho-physiological interaction between the FPC and the lateral occipital area, which suggests that these visual areas may be modulated by FPC. We propose that the activation of brain networks rather than a single cortical area in this paradigm supports the art scholars’ view that esthetic judgments are multi-faceted and multi-dimensional in nature. PMID:22164139

  6. Brief wide-field photostimuli evoke and modulate oscillatory reverberating activity in cortical networks

    PubMed Central

    Pulizzi, Rocco; Musumeci, Gabriele; Van den Haute, Chris; Van De Vijver, Sebastiaan; Baekelandt, Veerle; Giugliano, Michele

    2016-01-01

    Cell assemblies manipulation by optogenetics is pivotal to advance neuroscience and neuroengineering. In in vivo applications, photostimulation often broadly addresses a population of cells simultaneously, leading to feed-forward and to reverberating responses in recurrent microcircuits. The former arise from direct activation of targets downstream, and are straightforward to interpret. The latter are consequence of feedback connectivity and may reflect a variety of time-scales and complex dynamical properties. We investigated wide-field photostimulation in cortical networks in vitro, employing substrate-integrated microelectrode arrays and long-term cultured neuronal networks. We characterized the effect of brief light pulses, while restricting the expression of channelrhodopsin to principal neurons. We evoked robust reverberating responses, oscillating in the physiological gamma frequency range, and found that such a frequency could be reliably manipulated varying the light pulse duration, not its intensity. By pharmacology, mathematical modelling, and intracellular recordings, we conclude that gamma oscillations likely emerge as in vivo from the excitatory-inhibitory interplay and that, unexpectedly, the light stimuli transiently facilitate excitatory synaptic transmission. Of relevance for in vitro models of (dys)functional cortical microcircuitry and in vivo manipulations of cell assemblies, we give for the first time evidence of network-level consequences of the alteration of synaptic physiology by optogenetics. PMID:27099182

  7. Recording and assessment of evoked potentials with electrode arrays.

    PubMed

    Miljković, N; Malešević, N; Kojić, V; Bijelić, G; Keller, T; Popović, D B

    2015-09-01

    In order to optimize procedure for the assessment of evoked potentials and to provide visualization of the flow of action potentials along the motor systems, we introduced array electrodes for stimulation and recording and developed software for the analysis of the recordings. The system uses a stimulator connected to an electrode array for the generation of evoked potentials, an electrode array connected to the amplifier, A/D converter and computer for the recording of evoked potentials, and a dedicated software application. The method has been tested for the assessment of the H-reflex on the triceps surae muscle in six healthy humans. The electrode array with 16 pads was positioned over the posterior aspect of the thigh, while the recording electrode array with 16 pads was positioned over the triceps surae muscle. The stimulator activated all the pads of the stimulation electrode array asynchronously, while the signals were recorded continuously at all the recording sites. The results are topography maps (spatial distribution of evoked potentials) and matrices (spatial visualization of nerve excitability). The software allows the automatic selection of the lowest stimulation intensity to achieve maximal H-reflex amplitude and selection of the recording/stimulation pads according to predefined criteria. The analysis of results shows that the method provides rich information compared with the conventional recording of the H-reflex with regard the spatial distribution.

  8. [Patterns of action potential firing in cortical neurons of neonatal mice and their electrophysiological property].

    PubMed

    Furong, Liu; Shengtian, L I

    2016-05-25

    To investigate patterns of action potential firing in cortical heurons of neonatal mice and their electrophysiological properties. The passive and active membrane properties of cortical neurons from 3-d neonatal mice were observed by whole-cell patch clamp with different voltage and current mode. Three patterns of action potential firing were identified in response to depolarized current injection. The effects of action potential firing patterns on voltage-dependent inward and outward current were found. Neurons with three different firing patterns had different thresholds of depolarized current. In the morphology analysis of action potential, the three type neurons were different in rise time, duration, amplitude and threshold of the first action potential evoked by 80 pA current injection. The passive properties were similar in three patterns of action potential firing. These results indicate that newborn cortical neurons exhibit different patterns of action potential firing with different action potential parameters such as shape and threshold.

  9. Performance of a concurrent cognitive task modifies pre- and post-perturbation-evoked cortical activity.

    PubMed

    Mochizuki, George; Boe, Shaun G; Marlin, Amanda; McIlroy, William E

    2017-02-16

    Preparation for postural instability engages cortical resources that serve to optimize compensatory balance responses. Engagement of these cortical resources in cognitive dual-task activities may impact the ability to appropriately prepare and optimize responses to instability. The purpose of this study was to determine whether cognitive dual-task activities influenced cortical activity preceding and following postural instability. Postural instability was induced using a lean-and-release paradigm in 10 healthy participants. Perturbations were either temporally predictable (PRED) or unpredictable (UNPRED) and presented with (COG) or without a cognitive dual-task, presented in blocks of trials. The electroencephalogram was recorded from multiple frontal electrode sites. EEG data were averaged over 25-35 trials across conditions. Area under the curve of pre-perturbation cortical activity and peak latency and amplitude of post-perturbation cortical activity were quantified at the Cz site and compared across conditions. Performance of the concurrent cognitive task reduced the mean (SE) magnitude of pre-perturbation cortical activity in advance of predictable bouts of postural instability (PRED: 18.7(3.0)mVms; PRED-COG; 14.0(2.3)mVms). While the level of cognitive load influenced the amplitude of the post-perturbation N1 potential in the predictable conditions, there were no changes in N1 with a cognitive dual task during unpredictable conditions (PRED: -32.1(3.2)µV; PRED-COG: -50.8(8.4)µV; UNPRED: -65.0(12.2)µV; UNPRED-COG: -64.2(12.7)µV). Performance of the cognitive task delayed and reduced the magnitude of the initial gastrocnemius response. The findings indicate that pre- and post-perturbation cortical activity is affected by a cognitive distractor when postural instability is temporally predictable. Distraction also influences associated muscle responses.

  10. Evoked cochlear potentials in the barn owl.

    PubMed

    Köppl, Christine; Gleich, Otto

    2007-06-01

    Gross electrical responses to tone bursts were measured in adult barn owls, using a single-ended wire electrode placed onto the round window. Cochlear microphonic (CM) and compound action potential (CAP) responses were evaluated separately. Both potentials were physiologically vulnerable. Selective abolishment of neural responses at high frequencies confirmed that the CAP was of neural origin, while the CM remained unaffected. CAP latencies decreased with increasing stimulus frequency and CAP amplitudes were correlated with known variations in afferent fibre numbers from the different papillar regions. This suggests a local origin of the CAP along the tonotopic gradient within the basilar papilla. The audiograms derived from CAP and CM threshold responses both showed a broad frequency region of optimal sensitivity, very similar to behavioural and single-unit data, but shifted upward in absolute sensitivity. CAP thresholds rose above 8 kHz, while CM responses showed unchanged sensitivity up to 10 kHz.

  11. Experimental studies on spinal cord function using evoked action potentials.

    PubMed

    Soeda, S; Satomi, K; Hirabayashi, K

    1990-01-01

    Experiments were carried out on cats to determine the use of conductive evoked spinal cord action potentials in diagnosing motor function of the spinal cord. Direct stimulation from the dura produced three negative wave potentials, N1, N2 and N3. The intraspinal pathway of N2 and N3 was the dorsal column. The pathways of N1, determined by dorsal and ventral epidural recording, were the dorsilateral funicle and the extrapyramidal tracts. A collision experiment between potential N1 and pyramidal tract action potential did not reflect the function of the tract as the amplitude of the action potential was too small. Nevertheless, it is considered that conductive evoked spinal cord action potentials could become a valuable method of assessing spinal cord function as they reflect the function of the extrapyramidal tracts, as well as of the dorsilateral funicle and the dorsal column.

  12. On hemispheric differences in evoked potentials to speech stimuli

    NASA Technical Reports Server (NTRS)

    Galambos, R.; Benson, P.; Smith, T. S.; Schulman-Galambos, C.; Osier, H.

    1975-01-01

    Confirmation is provided for the belief that evoked potentials may reflect differences in hemispheric functioning that are marginal at best. Subjects were right-handed and audiologically normal men and women, and responses were recorded using standard EEG techniques. Subjects were instructed to listen for the targets while laying in a darkened sound booth. Different stimuli, speech and tone signals, were used. Speech sounds were shown to evoke a response pattern that resembles that to tone or clicks. Analysis of variances on peak amplitude and latency measures showed no significant differences between hemispheres, however, a Wilcoxon test showed significant differences in hemispheres for certain target tasks.

  13. Spinal evoked potentials in the primate: neural substrate.

    PubMed

    Cusick, J F; Myklebust, J; Larson, S J; Sances, A

    1978-10-01

    Summated responses evoked by peripheral nerve stimulation were recorded from electrodes located in the epidural and subdural spaces anterior and posterior to the monkey spinal cord. Segmental microsurgical resection of the dorsal columns both at the thoracic and cervical levels resulted in total obliteration of the response recorded rostral to these lesions. Isolated segmental dorsal column preservation did not significantly alter response latency or wave form recorded at the rostral electrodes. Bilateral cervical dorsolateral column resection also resulted in no discernible alterations of these responses. These data indicate that spinal evoked potentials recorded from levels rostral to their root entry zones arise almost exclusively from the dorsal columns.

  14. Hypothermia amplifies somatosensory-evoked potentials in uninjured rats.

    PubMed

    Madhok, Jai; Wu, Dan; Xiong, Wei; Geocadin, Romergryko G; Jia, Xiaofeng

    2012-07-01

    Temperature fluctuations significantly impact neurological injuries in intensive care units. As the benefits of therapeutic hypothermia continue to unfold, many of these discoveries are generated by studies in animal models undergoing experimental procedures under the influence of anesthetics. We studied the effect of induced hypothermia on neural electrophysiological signals of an uninjured brain in a rodent model while under isoflurane. Fourteen rats were divided into 2 groups (n=7 each), on the basis of electrode placement at either frontal-occipital or primary somatosensory cortical locations. Neural signals were recorded during normothermia (T=36.5 to 37.5°C), mild hypothermia (T=32 to 34°C), and hyperthermia (T=38.5 to 39.5°C). The burst-suppression ratio was used to evaluate electroencephalography (EEG), and amplitude-latency analysis was used to assess somatosensory-evoked potentials (SSEPs). Hypothermia was characterized by an increased burst-suppression ratio (mean±SD) of 0.58±0.06 in hypothermia versus 0.16±0.13 in normothermia, P<0.001 in frontal-occipital; and 0.30±0.13 in hypothermia versus 0.04±0.04 in normothermia, P=0.006 in somatosensory. There was potentiation of SSEP (2.89±1.24 times the normothermic baseline in hypothermia, P=0.02) and prolonged peak latency (N10: 10.8±0.4 ms in hypothermia vs. 9.1±0.3 ms in normothermia; P15: 16.2±0.8 ms in hypothermia vs. 13.7±0.6 ms in normothermia; P<0.001), whereas hyperthermia was primarily marked by shorter peak latencies (N10: 8.6±0.2 ms, P15: 12.6±0.4 m; P<0.001). In the absence of brain injury in a rodent model, hypothermia induces significant increase to the SSEP amplitude while increasing SSEP latency. Hypothermia also suppressed EEGs at different regions of the brain by different degrees. The changes to SSEP and EEG are both reversible with subsequent rewarming.

  15. [Evoked potentials in multiple sclerosis: progress or stagnation?].

    PubMed

    Zakrzewska-Pniewska, Beata

    2010-01-01

    Evoked potentials (EPs): visual (VEP), short latency somatosensory (SSEP), brainstem auditory (BAEP) and motor evoked potentials (MEP) can provide objective evidence of central nervous system (CNS) abnormalities that complement the clinical and radiological findings in establishing the diagnosis of multiple sclerosis (MS). The EPs studies may also improve the sensitivity of MS diagnosis. Abnormal EPs can provide evidence for pathology to satisfy the diagnostic criteria of lesions disseminated in space in the absence of clinical findings and for a relapse in patient with new symptoms but no changes on clinical examination. Since magnetic resonance imaging (MRI) plays a critical role in the current diagnostic criteria of MS, it is important to consider the relationship between EPs and MRI. Evoked potentials provide neurophysiological information about CNS functional abnormalities, while MRI provide anatomical localisation of CNS lesions. VEPs are even more sensitive than MRI in detecting acute and old pre-chiasmatic optic nerve lesions. The revised diagnostic criteria for MS include the provision for an abnormal VEP to serve as a diagnostic factor. Rarely, patients with spinal cord pathology may have an abnormal SEP or MEP without an observed lesions on MRI. Combining multimodality evoked potentials and MRI results in the greatest diagnostic yield. More widespread use of multimodality EPs in combination with MRI might lead to better outcome measurement in clinical trials as well as in open therapeutic approach. Thought EPs have some limitations, they remain an important factor in the diagnosis and clinical management of MS patients.

  16. Evaluation of Evoked Potentials to Dyadic Tones after Cochlear Implantation

    ERIC Educational Resources Information Center

    Sandmann, Pascale; Eichele, Tom; Buechler, Michael; Debener, Stefan; Jancke, Lutz; Dillier, Norbert; Hugdahl, Kenneth; Meyer, Martin

    2009-01-01

    Auditory evoked potentials are tools widely used to assess auditory cortex functions in clinical context. However, in cochlear implant users, electrophysiological measures are challenging due to implant-created artefacts in the EEG. Here, we used independent component analysis to reduce cochlear implant-related artefacts in event-related EEGs of…

  17. Evaluation of Evoked Potentials to Dyadic Tones after Cochlear Implantation

    ERIC Educational Resources Information Center

    Sandmann, Pascale; Eichele, Tom; Buechler, Michael; Debener, Stefan; Jancke, Lutz; Dillier, Norbert; Hugdahl, Kenneth; Meyer, Martin

    2009-01-01

    Auditory evoked potentials are tools widely used to assess auditory cortex functions in clinical context. However, in cochlear implant users, electrophysiological measures are challenging due to implant-created artefacts in the EEG. Here, we used independent component analysis to reduce cochlear implant-related artefacts in event-related EEGs of…

  18. Ocular vestibular evoked myogenic potentials in patients with acoustic neuroma.

    PubMed

    Piras, Gianluca; Brandolini, Cristina; Castellucci, Andrea; Modugno, Giovanni Carlo

    2013-02-01

    To assess the usefulness of vestibular testing in patients with acoustic neuroma, considering two main aspects: to compare diagnostic sensitivity of the current vestibular tests, especially considering ocular vestibular evoked myogenic potentials (OVEMPs) and to identify pre-operative localization of the tumor (inferior vestibular nerve vs. superior vestibular nerve) only with the help of vestibular electrophysiological data. Twenty-six patients with unilateral acoustic neuroma (mainly intracanalicular type) were studied with a full audio-vestibular test battery (pure tone and speech audiometry, caloric bithermal test, vibration-induced nystagmus test (VIN), cervical and OVEMPs). 18 patients (69 %) showed abnormal caloric responses. 12 patients (46.2 %) showed a pattern of VIN test suggestive of vestibular asymmetry. 16 patients (61.5 %) showed abnormal OVEMPs (12 only to AC, 4 both to AC and BC). 10 patients (38.5 %) showed abnormal cervical vestibular evoked myogenic potentials (5 both to AC and BC, 5 only to AC). In one case, results of vestibular evoked potentials and caloric test were confirmed by intra-operative and post-operative findings. Results of electrophysiological tests in AN patients could be helpful for planning the proper surgical approach, considering that sensitivity of every exam is quite low in intracanalicular lesion; clinical data allow a better interpretation of vestibular evoked myogenic potentials.

  19. Brainstem Auditory Evoked Potential Study in Children with Autistic Disorder.

    ERIC Educational Resources Information Center

    Wong, Virginia; Wong, Sik Nin

    1991-01-01

    Brainstem auditory evoked potentials were compared in 109 children with infantile autism, 38 with autistic condition, 19 with mental retardation, and 20 normal children. Children with infantile autism or autistic condition had significantly longer brainstem transmission time than normal children suggesting neurological damage as the basis of…

  20. Somatosensory-evoked potentials and MRI in tuberculous spondylodiscitis.

    PubMed

    Titlic, M; Isgum, V; Buca, A; Kolic, K; Tonkic, A; Jukic, I; Milas, I

    2007-01-01

    Early diagnosis of spondylodiscitis is a condition of efficient conservative treatment. Somatosensory-evoked potentials with clinical examination results are used in assessing the diagnosis, as well as in monitoring the course of disease and healing. MRI clearly shows the inflammatory process, healing and scars. We report a 46-year-old woman suffering from non-specific interscapular pains. The evoked somatosensory potentials of the tibial nerveshow potential conductivity being slowed down through the thoracic spine, which is clearly evident from the prolonged latency and the decreased amplitude of the evoked response. The performed thoracic spine MRI shows spondylodiscitis at the Thl0-11 level. The subject is a nurse administering BCG therapy at a urology clinic, due to the fact of which this was deemed to have been a case of tuberculous spondylodiscitis. Due to the possibility of scattering the causative agent by needle, the biopsy was given up and antituberculous therapy was administered ex juvantibus. The disease was followed up by clinical examinations, somatosensory-evoked potentials and MRI up to fully successful and final recovery from spondylodiscitis. The above examinations are of great help in diagnosing the tuberculous spondylodiscitis and monitoring the recovery (Fig. 6, Ref. 16).

  1. [Auditory evoked potentials in individuals over 50 years].

    PubMed

    Matas, Carla Gentile; Filha, Valdete Alves Valentins dos Santos; Okada, Melissa Mitsue Cunha Pires; Resque, Juliana Reis

    2006-01-01

    auditory evoked potentials. to describe the results of brainstem auditory evoked potentials (PEATE), middle latency auditory evoked potentials (PEAML) and cognitive potential (P300) in individuals over 50 years. this study was developed at the Speech and Hearing Investigation Laboratory in Auditory Evoked Potentials of the Speech-Language and Hearing Course of the Department of Physiotherapy, Speech-language and Hearing Sciences and Occupational Therapy of FMUSP. Twenty four subjects (45 ears) were evaluated through PEATE and P300, and only 18 of these subjects (36 ears) were evaluated through PEAML. All subjects had ages between 51 and 74 years and were divided in three groups: GI (50-59 years), GII (60-69 years) and GIII (70-79 years). All subjects presented either normal hearing or neurossensorial hearing loss of a moderate-severe level in the PEATE, and of a moderate level in the PEAML and in the P300. The frequency range evaluated in the PEATE and in the PEAML varied from 3000 to 6000Hz, while in the P300 it varied from 1000 to 1500Hz. For the statistical analyses of the data, the Kruskal-Wallis test, the Mann-Whitney test and the two proportion equality test were used. significant statistical differences were simultaneously observed between the groups for the interpeak I-V in the PEATE and for the Na wave latency in the PEAML - in the PEATE the difference was caused by GIII and in the PEAML it was caused by GI. A statistically significant difference between the groups was observed for the latency of the P300 component. Considerable alterations were also found regarding the quality of the responses of the auditory evoked potentials, indicating a strong correlation between the deterioration of the responses and the increase in age. the aging process of the auditory system progressively affects the auditory pathways throughout the brainstem and temporal lobe.

  2. Auditory evoked potentials and impairments to psychomotor activity evoked by falling asleep.

    PubMed

    Dorokhov, V B; Verbitskaya, Yu S; Lavrova, T P

    2010-05-01

    Sounds provide the most suitable stimuli for studies of information processes occurring in the brain during falling asleep and at different stages of sleep. The widely used analysis of evoked potentials averaged for groups of subjects has a number of disadvantages associated with their individual variability. Thus, in the present study, measures of the individual components of auditory evoked potentials were determined and selectively summed for individual subjects, with subsequent analysis by group. The aim of the present work was to identify measures of auditory evoked potentials providing quantitative assessment of the dynamics of the brain's functional state during the appearance of errors in activity associated with decreases in the level of waking and falling asleep. A monotonous psychomotor test was performed in the lying position with the eyes closed; this consisted of two alternating parts: the first was counting auditory stimuli from 1 to 10 with simultaneous pressing of a button, and the second was counting stimuli from 1 to 5 silently without pressing the button, and so on. Computer-generated sound stimuli (duration 50 msec, envelope filling frequency 1000 Hz, intensity 60 dB) were presented binaurally with interstimulus intervals of 2.4-2.7 sec. A total of 41 subjects took part (both genders, mean age 25 years), of which only 23 fell asleep; data for 14 subjects with sufficient episodes of falling asleep were analyzed. Comparison of measures of auditory evoked potentials (the latencies and amplitudes of the N1, P2, N2, and P3 components) during correct and erroneous psychomotor test trials showed that decreases in the level of consciousness elicited significant increases in the amplitudes of the components of the vertex N1-P2-N2 complex in series without button pressing. The greatest changes in auditory evoked potentials in both series were seen in the N2 component, with latency 330-360 msec, which has a common origin with the EEG theta rhythm and is

  3. Influences of the cholecystokinin analog ceruletide on human sleep and evoked potentials.

    PubMed

    Pietrowsky, R; Fehm, H L; Er, A; Bathelt, B; Born, J

    1990-01-01

    Two experiments are reported, investigating the effects of the cholecystokinin analog ceruletide on central nervous activation in man. In experiment I, 0.55 micrograms/h ceruletide was infused at a constant rate during the night to study its effects on spontaneous EEG activity during sleep. In experiment II, we examined the effects of a bolus injection of ceruletide (0.5 micrograms) on components of the auditory evoked potential reflecting exogenously provoked central nervous arousal. While ceruletide had no effect on sleep, it attenuated stimulus-induced cortical arousal.

  4. Brain evoked potential use in a physical medicine and rehabilitation setting.

    PubMed

    Rappaport, M; Hopkins, K; Hall, K; Belleza, T; Berrol, S

    1978-01-01

    The objective of this effort was to explore the use of evoked potential (EP) procedure on a head injury unit in a Department of Physical Medicine and Rehabilitation. The method employed both auditory and visual stimulation presented bilaterally to various patients. Recordings of the brain's responses to such stimulation were obtained. Results permitted evaluation of brain stem, subcortical and cortical functioning, ipsilaterally, contralaterally, and bilaterally. EP data provided useful information for patient assessment and rehabilitation planning for head injured patients--particularly for those who were unable to cooperate in their own examination.

  5. Visual evoked potentials in patients after methanol poisoning.

    PubMed

    Urban, Pavel; Zakharov, Sergey; Diblík, Pavel; Pelclová, Daniela; Ridzoň, Petr

    2016-01-01

    We report the results of the visual evoked potentials (VEP) examination in patients after severe poisoning by methanol. The group of 47 patients (38 males and 9 females) was assembled out of persons who survived an outbreak of poisoning by the methanol adulterated alcohol beverages, which happened in the Czech Republic in 2012-2013. The visual evoked potentials examination was performed using monocular checkerboard pattern-reversal stimulation. Two criteria of abnormality were chosen: missing evoked response, and wave P1 latency > 117 ms. Non-parametric statistical methods (median, range, and the median test) were used to analyze factors influencing the VEP abnormality. The visual evoked potential was abnormal in 20 patients (43%), 5 of them had normal visual acuity on the Snellen chart. The VEP abnormality did not correlate significantly with initial serum concentrations of methanol, formic acid or lactate; however, it showed statistically significant inverse relation to the initial serum pH: the subgroup with the abnormal VEP had significantly lower median pH in comparison with the subgroup with the normal VEP (7.16 vs. 7.34, p = 0.04). The abnormality was not related to chronic alcohol abuse. The visual evoked potentials examination appeared sensitive enough to detected even subclinical impairment of the optic system. Metabolic acidosis is likely to be the key factor related to the development of visual damage induced by methanol. The examination performed with a delay of 1-9 months after the poisoning documented the situation relatively early after the event. It is considered as a baseline for the planned long-term follow-up of the patients, which will make it possible to assess the dynamics of the observed changes, their reversibility, and the occurrence of potential late sequelae. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  6. Middle Latency Auditory Evoked Potential (MLAEP) in Workers with and without Tinnitus who are Exposed to Occupational Noise.

    PubMed

    dos Santos Filha, Valdete Alves Valentins; Samelli, Alessandra Giannella; Matas, Carla Gentile

    2015-09-11

    Tinnitus is an important occupational health concern, but few studies have focused on the central auditory pathways of workers with a history of occupational noise exposure. Thus, we analyzed the central auditory pathways of workers with a history of occupational noise exposure who had normal hearing threshold, and compared middle latency auditory evoked potential in those with and without noise-induced tinnitus. Sixty individuals (30 with and 30 without tinnitus) underwent the following procedures: anamnesis, immittance measures, pure-tone air conduction thresholds at all frequencies between 0.25-8 kHz, and middle latency auditory evoked potentials. Quantitative analysis of latencies and amplitudes of middle latency auditory evoked potential showed no significant differences between the groups with and without tinnitus. In the qualitative analysis, we found that both groups showed increased middle latency auditory evoked potential latencies. The study group had more alterations of the "both" type regarding the Na-Pa amplitude, while the control group had more "electrode effect" alterations, but these alterations were not significantly different when compared to controls. Individuals with normal hearing with or without tinnitus who are exposed to occupational noise have altered middle latency auditory evoked potential, suggesting impairment of the auditory pathways in cortical and subcortical regions. Although differences did not reach significance, individuals with tinnitus seemed to have more abnormalities in components of the middle latency auditory evoked potential when compared to individuals without tinnitus, suggesting alterations in the generation and transmission of neuroelectrical impulses along the auditory pathway.

  7. Transcranial magnetic stimulation and potential cortical and trigeminothalamic mechanisms in migraine

    PubMed Central

    Andreou, Anna P.; Holland, Philip R.; Akerman, Simon; Summ, Oliver; Fredrick, Joe

    2016-01-01

    A single pulse of transcranial magnetic stimulation has been shown to be effective for the acute treatment of migraine with and without aura. Here we aimed to investigate the potential mechanisms of action of transcranial magnetic stimulation, using a transcortical approach, in preclinical migraine models. We tested the susceptibility of cortical spreading depression, the experimental correlate of migraine aura, and further evaluated the response of spontaneous and evoked trigeminovascular activity of second order trigemontothalamic and third order thalamocortical neurons in rats. Single pulse transcranial magnetic stimulation significantly inhibited both mechanical and chemically-induced cortical spreading depression when administered immediately post-induction in rats, but not when administered preinduction, and when controlled by a sham stimulation. Additionally transcranial magnetic stimulation significantly inhibited the spontaneous and evoked firing rate of third order thalamocortical projection neurons, but not second order neurons in the trigeminocervical complex, suggesting a potential modulatory effect that may underlie its utility in migraine. In gyrencephalic cat cortices, when administered post-cortical spreading depression, transcranial magnetic stimulation blocked the propagation of cortical spreading depression in two of eight animals. These results are the first to demonstrate that cortical spreading depression can be blocked in vivo using single pulse transcranial magnetic stimulation and further highlight a novel thalamocortical modulatory capacity that may explain the efficacy of magnetic stimulation in the treatment of migraine with and without aura. PMID:27246325

  8. Motor evoked potentials in thoracoabdominal aortic surgery: CON.

    PubMed

    Coselli, Joseph S; Tsai, Peter I

    2010-05-01

    Thoracoabdominal aortic aneurysms (TAAAs) have a dismal natural history that frequently necessitates surgical repair, but such repairs sometimes result in paraplegia and paraparesis. To reduce the risk of these complications, intraoperative monitoring of spinal cord motor evoked potentials (MEPs) can be used to guide TAAA repair procedures and may potentially minimize spinal cord ischemia. However, the use of MEP monitoring techniques requires important changes to anesthetic management, entails certain risks, and has important contraindications.

  9. Arm movement maps evoked by cortical magnetic stimulation in a robotic environment.

    PubMed

    Jones-Lush, L M; Judkins, T N; Wittenberg, G F

    2010-02-03

    Many neurological diseases result in a severe inability to reach for which there is no proven therapy. Promising new interventions to address reaching rehabilitation using robotic training devices are currently under investigation in clinical trials but the neural mechanisms that underlie these interventions are not understood. Transcranial magnetic stimulation (TMS) may be used to probe such mechanisms quickly and non-invasively, by mapping muscle and movement representations in the primary motor cortex (M1). Here we investigate movement maps in healthy young subjects at rest using TMS in the robotic environment, with the goal of determining the range of TMS accessible movements, as a starting point for the study of cortical plasticity in combination with robotic therapy. We systematically stimulated the left motor cortex of 14 normal volunteers while the right hand and forearm rested in the cradle of a two degree-of-freedom planar rehabilitation robot (IMT). Maps were created by applying 10 stimuli at each of nine locations (3x3 cm(2) grid) centered on the M1 movement hotspot for each subject, defined as the stimulation location that elicited robot cradle movements of the greatest distance. TMS-evoked movement kinematics were measured by the robotic encoders and ranged in magnitude from 0 to 3 cm. Movement maps varied by subject and by location within a subject. However, movements were very consistent within a single stimulation location for a given subject. Movement vectors remained relatively constant (limited to <90 degrees section of the planar field) within some subjects across the entire map, while others covered a wider range of directions. This may be due to individual differences in cortical physiology or anatomy, resulting in a practical limit to the areas that are TMS-accessible. This study provides a baseline inventory of possible TMS-evoked arm movements in the robotic reaching trainer, and thus may provide a real-time, non-invasive platform for

  10. Automatic classification of visual evoked potentials based on wavelet decomposition

    NASA Astrophysics Data System (ADS)

    Stasiakiewicz, Paweł; Dobrowolski, Andrzej P.; Tomczykiewicz, Kazimierz

    2017-04-01

    Diagnosis of part of the visual system, that is responsible for conducting compound action potential, is generally based on visual evoked potentials generated as a result of stimulation of the eye by external light source. The condition of patient's visual path is assessed by set of parameters that describe the time domain characteristic extremes called waves. The decision process is compound therefore diagnosis significantly depends on experience of a doctor. The authors developed a procedure - based on wavelet decomposition and linear discriminant analysis - that ensures automatic classification of visual evoked potentials. The algorithm enables to assign individual case to normal or pathological class. The proposed classifier has a 96,4% sensitivity at 10,4% probability of false alarm in a group of 220 cases and area under curve ROC equals to 0,96 which, from the medical point of view, is a very good result.

  11. Peripheral electrical stimulation triggered by self-paced detection of motor intention enhances motor evoked potentials.

    PubMed

    Niazi, Imran Khan; Mrachacz-Kersting, Natalie; Jiang, Ning; Dremstrup, Kim; Farina, Dario

    2012-07-01

    This paper proposes the development and experimental tests of a self-paced asynchronous brain-computer interfacing (BCI) system that detects movement related cortical potentials (MRCPs) produced during motor imagination of ankle dorsiflexion and triggers peripheral electrical stimulations timed with the occurrence of MRCPs to induce corticospinal plasticity. MRCPs were detected online from EEG signals in eight healthy subjects with a true positive rate (TPR) of 67.15 ± 7.87% and false positive rate (FPR) of 22.05 ±9.07%. The excitability of the cortical projection to the target muscle (tibialis anterior) was assessed before and after the intervention through motor evoked potentials (MEP) using transcranial magnetic stimulation (TMS). The peak of the evoked potential significantly (P=0.02) increased after the BCI intervention by 53 ± 43% (relative to preintervention measure), although the spinal excitability (tested by stretch reflexes) did not change. These results demonstrate for the first time that it is possible to alter the corticospinal projections to the tibialis anterior muscle by using an asynchronous BCI system based on online motor imagination that triggered peripheral stimulation. This type of repetitive proprioceptive feedback training based on self-generated brain signal decoding may be a requirement for purposeful skill acquisition in intact humans and in the rehabilitation of persons with brain damage.

  12. Effects of the muscarinic antagonists pirenzepine and gallamine on spontaneous and evoked responses of rat cerebral cortical neurones.

    PubMed Central

    Swanson, T. H.; Phillis, J. W.

    1988-01-01

    1. The muscarinic receptor antagonists gallamine and pirenzepine were iontophoretically applied to rat cerebral cortical cholinoceptive neurones, including corticospinal neurones, to assess their effects on spontaneous firing, and firing induced by: stimulation of the nucleus basalis magnocellularis (NBM); contralateral hindpaw stimulation; application of acetylcholine (ACh); and application of glutamate. 2. Both compounds potently inhibited firing induced by ACh iontophoresis, whilst neither compound consistently altered firing induced by application of glutamate. 3. Gallamine was very effective and pirenzepine less effective, at inhibiting both spontaneous firing and the delayed firing induced by NBM stimulation. The short-latency excitations elicited by NBM stimulation were enhanced by these muscarinic antagonists. 4. Gallamine and pirenzepine enhanced cortical cholinoceptive cell firing induced by contralateral hindpaw stimulation. 5. It is concluded that gallamine depresses spontaneous activity more than pirenzepine, and that both compounds can affect the cortical cell firing evoked by stimulation of the NBM and of thalamo-cortical afferent fibres. PMID:3401638

  13. Cortical potentials associated with voluntary mandibular movements.

    PubMed

    Yoshida, K; Kaji, R; Hamano, T; Kohara, N; Kimura, J; Shibasaki, H; Iizuka, T

    2000-07-01

    Movement-related cortical potentials (MRCPs) are negative potentials over the scalp, which gradually increase prior to voluntary movements, and might be applied to elucidate the cortical efferent function of the mandibular movements. We compared the MRCPs accompanying various mandibular movements to study the motor control mechanism underlying these movements. Electroencephalograms (EEGs) were recorded from 11 electrodes placed over the scalp (F3, Fz, F4, T3, C3, Cz, C4, T4, P3, Pz, and P4), according to the International 10-20 System, and electromyograms (EMGs) were obtained from surface electrodes over the masseter muscle and the anterior belly of the digastric muscle. Ten healthy subjects were requested to make brisk and self-paced mandibular movements in 4 different directions (mouth-opening and -closing, and left and right lateral movements). We obtained MRCPs by averaging the EEG, using the visually determined EMG onset as a trigger signal. In all the movements, a slowly increasing, bilaterally widespread negativity starting 1.5 to 2.0 sec before the EMG onset (Bereitschaftspotential, or BP proper) was observed, with the maximum over the vertex region. The negative slope (NS') occurred about 300 to 700 msec before the EMG onset. The cortical maps of BP/NS' (BP and NS' combined), immediately prior to the mouth-opening and closing, showed a symmetrical distribution, whereas that for the lateral movements showed a tendency of predominance over the hemisphere ipsilateral to the direction of the movement. BP/NS' amplitudes at the onset of movement differed significantly or tended to do so between open, close, and lateral movements, suggesting that MRCP recordings may thus provide a means to explore the role of the cerebral cortex in the control of mandibular movements.

  14. Visual evoked potentials in a patient with prosopagnosia.

    PubMed

    Small, M

    1988-01-01

    Visual evoked potentials (VEPs) were recorded from a 53-year-old man with prosopagnosia during presentation of slides of known and unknown faces and under two control conditions. ANOVA comparisons with a normal male group showed no differences in P100 amplitude, P300 amplitude or P300 latency. There were no significant evoked potential differences between the patient and controls specifically related to the face conditions. There was, however, a significant delay in the latency of P100 from both hemispheres during all types of stimuli. This prolonged latency was asymmetrical, showing a right sided emphasis with the control conditions: pattern reversal and slides of geometric designs. This finding, of a dissociation in the interhemispheric delay, provides physiological evidence of stimulus-specific organisation at an early, sensory level. The fact that the P100 component showed a marked delay, yet P300 fell within normal limits for amplitude and latency, suggests that this patient's problem lies at a perceptual level.

  15. Modification of cortically evoked rhythmic jaw movements by reflex deglutition in rabbits.

    PubMed

    Sumi, T

    1977-01-01

    In rabbits, lightly anesthetized with ether, tetanic stimulation of the superior laryngeal nerve (SLN) displaced the jaw toward opening and reduced the amplitude of cortically evoked rhythmic jaw movements. With increased intensity of stimulus, the effects became remarkable and the opened jaw movement ultimately ceased. Reflex swallowing in reaction to weak electrical stimuli of SLN or to a small amount of water squirted into the oropharynx yielded a brief and instantaneous cessation of rhythmic jaw movements with the jaw open. Strong electrical stimuli to the nerve or a squirt of relatively large amount of water into the oropharynx prolonged the duration of both swallowing and the cessation of rhythmic jaw movements for about 1.0 sec. Reflex swallowing yielded a burst of activity for about 300 msec in the mylohyoideus and silence for a longer period in the masseter. Spontaneous activity of the masseter was moderately decreased during the nerve stimulation and, when swallowing occurred, this decrease became prominent for a short period.

  16. PACAP38 protects rat cortical neurons against the neurotoxicity evoked by sodium nitroprusside and thrombin

    PubMed Central

    Sanchez, Alma; Rao, Haripriya Vittal; Grammas, Paula

    2009-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) 38 is a multifunctional anti-inflammatory and anti-apoptotic neuropeptide widely distributed in the nervous system. The objective of this study is to determine whether PACAP38 is neuroprotective against sodium nitroprusside (SNP) and thrombin, two mechanistically distinct neurotoxic agents. Treatment of primary cortical neuronal cultures with 1 mM SNP for 4 h causes neuronal cell death that is significantly reduced by 100 nM PACAP38. PACAP38 down-regulates SNP-induced cell cycle protein (cyclin E) expression and up-regulates p57KIP2, a cyclin-dependent kinase inhibitor as well as the anti-apoptotic protein Bcl-2. Similarly, neuronal death induced by 100 nM thrombin or the thrombin receptor activating peptide (TRAP 6) is reduced by PACAP38 treatment. Thrombin-stimulated cell cycle protein (cdk4) expression is decreased by PACAP38 while PACAP38 inhibits thrombin-mediated reduction of p57KIP2. However, the decrease in Bcl-2 evoked by thrombin is not affected by PACAP38. Finally, both SNP and thrombin (or TRAP) increase caspase 3 activity, an effect that is decreased by PACAP38. These data show that PACAP38 supports neuronal survival in vitro suppressing cell cycle progression and enhancing anti-apoptotic proteins. Our results support the possibility that PACAP could be a useful therapeutic agent for reducing neuronal cell death in neurodegenerative diseases. PMID:18682263

  17. Parkinson's disease rigidity: magnetic motor evoked potentials in a small hand muscle.

    PubMed

    Cantello, R; Gianelli, M; Bettucci, D; Civardi, C; De Angelis, M S; Mutani, R

    1991-09-01

    We studied the EMG potentials evoked in the bilateral first dorsal interosseus muscle by electromagnetic stimulation of the corticomotoneuronal descending system in 10 Parkinson's disease patients and in 10 age- and sex-matched normal controls. We selected patients who did not have tremor but had predominant rigidity with asymmetric body involvement. On the rigid side of the PD patients, the threshold to cortical stimulation was lower than on the contralateral side or than normal values. On average, patients had normal central conduction times, but their motor evoked potentials (MEPs) on the rigid side were larger than those of controls when the cortical stimulus was at rest or during slight tonic contraction of the target muscle. In the latter condition, a silent period shorter than that of controls followed MEPs, whereas the peripheral silent period following ulnar nerve stimulation at the wrist was prolonged. Alpha motor neuron excitability, tested by the F-wave method, was enhanced on the rigid side at rest. In rigidity, spinal motor nuclei may be more responsive than normal to descending inputs from motor cortex, or the entire corticomotoneuron system may prove hyperexcitable under given conditions.

  18. Somatosensory Evoked Potentials in Patients with Hypoxic-Ischemic Brain Injury.

    PubMed

    Horn, Janneke; Tjepkema-Cloostermans, Marleen C

    2017-02-01

    Predicting the future of patients with hypoxic-ischemic encephalopathy after successful cardiopulmonary resuscitation is often difficult. Registration of the median nerve somatosensory evoked potential (SSEP) can assist in the neurologic evaluation in these patients. In this article, the authors discuss the principles, applications, and limitations of SSEP registration in the intensive care unit, with a focus on prognostication. Registration of the SSEP is a very reliable and reproducible method, if it is performed and interpreted correctly. During SSEP recordings, great care should be taken to improve the signal-to-noise ratio. If the noise level is too high, the peripheral responses are abnormal or the response is not reproducible in a second set of stimuli; therefore, interpretation of the SSEPs cannot be done reliably. A bilaterally absent cortical SSEP response is a very reliable predictor of poor neurologic outcome in patients with HIE. It has a high specificity, but a low sensitivity, indicating that present cortical responses are a weak predictor of a good recovery. Further research is being done to increase the sensitivity. Somatosensory evoked potentials can be used in a multimodal approach for prognostication of outcome.

  19. Inferring Cortical Variability from Local Field Potentials

    PubMed Central

    Cui, Yuwei; Liu, Liu D.; McFarland, James M.; Pack, Christopher C.

    2016-01-01

    The responses of sensory neurons can be quite different to repeated presentations of the same stimulus. Here, we demonstrate a direct link between the trial-to-trial variability of cortical neuron responses and network activity that is reflected in local field potentials (LFPs). Spikes and LFPs were recorded with a multielectrode array from the middle temporal (MT) area of the visual cortex of macaques during the presentation of continuous optic flow stimuli. A maximum likelihood-based modeling framework was used to predict single-neuron spiking responses using the stimulus, the LFPs, and the activity of other recorded neurons. MT neuron responses were strongly linked to gamma oscillations (maximum at 40 Hz) as well as to lower-frequency delta oscillations (1–4 Hz), with consistent phase preferences across neurons. The predicted modulation associated with the LFP was largely complementary to that driven by visual stimulation, as well as the activity of other neurons, and accounted for nearly half of the trial-to-trial variability in the spiking responses. Moreover, the LFP model predictions accurately captured the temporal structure of noise correlations between pairs of simultaneously recorded neurons, and explained the variation in correlation magnitudes observed across the population. These results therefore identify signatures of network activity related to the variability of cortical neuron responses, and suggest their central role in sensory cortical function. SIGNIFICANCE STATEMENT The function of sensory neurons is nearly always cast in terms of representing sensory stimuli. However, recordings from visual cortex in awake animals show that a large fraction of neural activity is not predictable from the stimulus. We show that this variability is predictable given the simultaneously recorded measures of network activity, local field potentials. A model that combines elements of these signals with the stimulus processing of the neuron can predict neural

  20. Inferring Cortical Variability from Local Field Potentials.

    PubMed

    Cui, Yuwei; Liu, Liu D; McFarland, James M; Pack, Christopher C; Butts, Daniel A

    2016-04-06

    The responses of sensory neurons can be quite different to repeated presentations of the same stimulus. Here, we demonstrate a direct link between the trial-to-trial variability of cortical neuron responses and network activity that is reflected in local field potentials (LFPs). Spikes and LFPs were recorded with a multielectrode array from the middle temporal (MT) area of the visual cortex of macaques during the presentation of continuous optic flow stimuli. A maximum likelihood-based modeling framework was used to predict single-neuron spiking responses using the stimulus, the LFPs, and the activity of other recorded neurons. MT neuron responses were strongly linked to gamma oscillations (maximum at 40 Hz) as well as to lower-frequency delta oscillations (1-4 Hz), with consistent phase preferences across neurons. The predicted modulation associated with the LFP was largely complementary to that driven by visual stimulation, as well as the activity of other neurons, and accounted for nearly half of the trial-to-trial variability in the spiking responses. Moreover, the LFP model predictions accurately captured the temporal structure of noise correlations between pairs of simultaneously recorded neurons, and explained the variation in correlation magnitudes observed across the population. These results therefore identify signatures of network activity related to the variability of cortical neuron responses, and suggest their central role in sensory cortical function. The function of sensory neurons is nearly always cast in terms of representing sensory stimuli. However, recordings from visual cortex in awake animals show that a large fraction of neural activity is not predictable from the stimulus. We show that this variability is predictable given the simultaneously recorded measures of network activity, local field potentials. A model that combines elements of these signals with the stimulus processing of the neuron can predict neural responses dramatically better

  1. Visual evoked potential (VEP): basic concepts and clinical applications.

    PubMed

    Sherman, J

    1979-01-01

    The Visual Evoked Potential is the objective measurement of visual function monitored at the level of the occipital cortex with scalp electrodes. This article summarizes many of the recent clinical applications of the VEP. Included are basic concepts of the VEP and its clinical utilization for the objective assessment of refractive error, visual acuity, amblyopia, binocularity, demyelinating diseases, psychogenic disorders, pre-surgical prediction of post-surgical visual function, visual fields, color blindness and neurological development.

  2. Human Auditory and Visual Unimodal and Biomodal Continuous Evoked Potentials

    DTIC Science & Technology

    1988-03-01

    to amplitude-modulated light stimuli, have been extensively investigated and applied in various fields: system identification studies ( Tweel and Lund...msec ( Tweel and Lunel, 1965, for MFs > 35 Hz; Regan, 1972; Spekreijse et al., 1977). 4.1.2 Auditory continuous evoked potentials Contrary to the visual...researchers ( Tweel and Lunel, 1965; Regan, 1966, 1972; Spckreijse, 1966; Spekreijse et al., 1977; Diamond, 1977; Junker, 1984; Junker and Peio, 1984

  3. Establishing an evoked-potential vision-tracking system

    NASA Technical Reports Server (NTRS)

    Skidmore, Trent A.

    1991-01-01

    This paper presents experimental evidence to support the feasibility of an evoked-potential vision-tracking system. The topics discussed are stimulator construction, verification of the photic driving response in the electroencephalogram, a method for performing frequency separation, and a transient-analysis example. The final issue considered is that of object multiplicity (concurrent visual stimuli with different flashing rates). The paper concludes by discussing several applications currently under investigation.

  4. Pattern-visual evoked potentials in thinner abusers.

    PubMed

    Poblano, A; Lope Huerta, M; Martínez, J M; Falcón, H D

    1996-01-01

    Organic solvents cause injury to lipids of neuronal and glial membranes. A well known characteristic of workers exposed to thinner is optic neuropathy. We decided to look for neurophysiologic signs of visual damage in patients identified as thinner abusers. Pattern reversal visual evoked potentials was performed on 34 thinner abuser patients and 30 controls. P-100 wave latency was found to be longer on abuser than control subjects. Results show the possibility of central alterations on thinner abusers despite absence of clinical symptoms.

  5. Harmonic coupling of steady-state visual evoked potentials.

    PubMed

    Krusienski, Dean J; Allison, Brendan Z

    2008-01-01

    Steady-state visual evoked potentials (SSVEPs) are oscillating components of the electroencephalogram (EEG) that are detected over the occipital areas, having frequencies corresponding to visual stimulus frequencies. SSVEPs have been demonstrated to be reliable control signals for operating a brain-computer interface (BCI). This study uses offline analyses to investigate the characteristics of SSVEP harmonic amplitude and phase coupling and the impact of using this information to construct a matched filter for continuously tracking the signal.

  6. Topographic mapping of single sweep evoked potentials in the brain.

    PubMed

    Liberati, D; DiCorrado, S; Mandelli, S

    1992-09-01

    Single trial analysis of brain-evoked potentials via stochastic parametric identification and filtering is here extended to multichannel recordings, leading to the topographic mapping of the brain activity elicited by a single stimulus, instead of the usual averaged mapping. The temporal dynamics of the subsequent sweeps in the protocol of a neurophysiologic experiment can thus be recovered and quantified also on its spatial characteristic.

  7. Cervical and ocular vestibular evoked myogenic potentials in Behcet's disease.

    PubMed

    Bayram, Ali; Doğan, Murat; Koç, Ali; Kalkan, Mehmet; Akçadağ, Alper; Özcan, İbrahim

    2015-01-01

    To investigate vestibular evoked myogenic potentials combined with audiologic status in Behcet's disease (BD) and to compare the results with normal healthy subjects. Cervical vestibular evoked myogenic potential (cVEMP) test, ocular vestibular evoked myogenic potential (oVEMP) test, Dix-Hallpike test, conventional pure tone audiometry (cPTA) and high frequency audiometry (HFA), and 226 and 1000Hz tympanometry were performed to each subject of the study. Cranial magnetic resonance imaging (MRI) with contrast enhancement was also performed to evaluate the central nervous system (CNS) in patients with BD. VEMP parameters including the mean peak latencies of p13-n23 and n10-p15, AR values and thresholds were not statistically different both in cVEMP and oVEMP between the BD and control groups. Except for 250Hz, mean audiological thresholds were significantly higher in the BD group. Five of the 20 patients had pathological cranial MRI findings that may be compatible with central nervous system involvement. To our knowledge, the present study is the first report investigating oVEMP and cVEMP responses combined with MRI findings in patients with BD. The presence of high frequency hearing loss is a common finding in BD and HFA may help early detection of hearing loss in patients with BD when combined with cPTA. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Decision-related cortical potentials during an auditory signal detection task with cued observation intervals

    NASA Technical Reports Server (NTRS)

    Squires, K. C.; Squires, N. K.; Hillyard, S. A.

    1975-01-01

    Cortical-evoked potentials were recorded from human subjects performing an auditory detection task with confidence rating responses. Unlike earlier studies that used similar procedures, the observation interval during which the auditory signal could occur was clearly marked by a visual cue light. By precisely defining the observation interval and, hence, synchronizing all perceptual decisions to the evoked potential averaging epoch, it was possible to demonstrate that high-confidence false alarms are accompanied by late-positive P3 components equivalent to those for equally confident hits. Moreover the hit and false alarm evoked potentials were found to covary similarly with variations in confidence rating and to have similar amplitude distributions over the scalp. In a second experiment, it was demonstrated that correct rejections can be associated with a P3 component larger than that for hits. Thus it was possible to show, within the signal detection paradigm, how the two major factors of decision confidence and expectancy are reflected in the P3 component of the cortical-evoked potential.

  9. Intensity dependence of auditory evoked potentials during light interference in migraine.

    PubMed

    Ambrosini, Anna; Coppola, Gianluca; Gérardy, Pierre-Yves; Pierelli, Francesco; Schoenen, Jean

    2011-04-01

    Migraine patients show interictally a strong intensity dependence of auditory evoked cortical potentials (IDAP) and a lack of habituation of evoked potentials. Photic drive on high-frequency flash stimulation is another well-known interictal feature in migraineurs, associated with alpha-rhythm hyper-synchronisation. We compared therefore the influence of light stimulation on IDAP in healthy volunteers (HV) and migraine patients. A continuous flash stimulation was delivered during the recording of auditory evoked potentials at suprathreshold increasing stimulation intensities. IDAP was measured as the amplitude/stimulus intensity function (ASF) slope. In HV, the ASF slope decreased during flash stimulation, whereas, on average, there was no significant change in migraineurs. A closer analysis of migraineurs disclosed two subgroups of patients with no detectable clinical differences: one, the largest, in which the ASF slope was normal at baseline, but increased during light stimulation, the other with an increased ASF slope at rest and a decrease during light interference. Visual sensory overload is able to increase IDAP in the majority of migraineurs, which contrasts with HV. We hypothesise that this could be due to hyper-synchronisation of the alpha rhythm because of photic drive and possibly thalamo-cortical dysfunction. A minority of migraineurs have, like HV, an IDAP reduction during light interference. They are, however, characterised, unlike most HV, by a high IDAP at baseline. Besides underscoring the pathophysiological heterogeneity of migraine, these results suggest that light interference might improve the phenotyping of migraine patients who have a normal IDAP in the resting condition.

  10. Determination of sources using brain-evoked potential maps

    NASA Astrophysics Data System (ADS)

    Amir, Avner; Jewett, Don L.

    1993-08-01

    Methods to localize the sources of Brain Evoked Potential Maps based on modeling of the sources as point dipoles have been widely used for more than twenty years. Such methods still lack a basic theory which can answer questions regarding the resolution and uniqueness of the results in the context of a realistic head model, with no a prior restrictions on the sources. In the first part of the paper we present simple physical models for the origin of far-field potentials associated with the auditory and somatosensory systems. An action potential travels along a straight axon can only produce a quadrupole field at far distances. We show that the far field potentials must originate when the action potential passes through a bent axon or through changes in the conductivities or in the external boundaries of the volume conductor surrounding the axon. We discuss the question of uniqueness of the solution for the 'inverse problem' of evoked potentials. This problem involved the reconstruction of the location and pattern of activity of the neuronal generators in the brain, given the map of the scalp electric potentials. We show that in a head shape with a realistic geometry spatially distinct points, line or open surface generators cannot create the same scalp potential map. The same applies to two non-overlapping generators occupying finite volumes.

  11. Evoked potential application to study of echolocation in cetaceans

    NASA Astrophysics Data System (ADS)

    Supin, Alexander Ya.; Nactigall, Paul E.; Pawloski, Jeffrey; Au, Whitlow W. L.

    2002-05-01

    The evoked-potential (EP) method is effective in studies of hearing capabilities of cetaceans. However, until now EP studies in cetaceans were performed only in conditions of passive hearing by recording EP to external stimuli. Can this method be applied to study active echolocation in odontocetes? To answer this question, auditory brainstem evoked responses (ABR) were recorded in a false killer whale while the animal echolocated a target within an experiment in which the animal reported the target present or absent. The ABR collection was triggered by echolocation clicks. In these conditions, the recorded ABR pattern contained a duplicate set of waves. A comparison of ABR wave delays recorded during echolocation with those recorded during regular external stimulation has shown that the first set of waves is a response to the emitted click whereas the second one is a response to the echo. Both responses, to the emitted click and to the echo, were of comparable amplitude in spite of the intensity difference of these two sounds of more than 40 dB near the animal's head. This finding indicates some mechanisms releasing responses to echoes from masking by loud emitted clicks. The evoked-potential method may be productive to investigate these mechanisms.

  12. Polarity stimulation effects on brainstem auditory evoked potentials.

    PubMed

    Lima, Janaina Patricio de; Alvarenga, Kátia de Freitas; Foelkel, Tábata Pierini; Monteiro, Camila Zotelli; Agostinho, Raquel Sampaio

    2008-01-01

    Brainstem Auditory Evoked Potentials are considered exogenous potentials, that is, the responses obtained are highly dependent upon the characteristic of the stimulus used to evoke them. To investigate the influence of the click stimulus polarity in the study of Brainstem Evoked Response Audiometry (BERA) at different intensities, using insertion-canal earphones. Clinical. 33 individuals, aged between 18 and 28, with no auditory alteration were submitted to BERA testing, with click stimulus on the rarefaction, condensation and alternate polarities, in different intensities. The absolute latencies of the V wave proved to be lower in the rarefaction polarity when compared to the others and, at 80 dBnHL, there was a significant difference between rarefaction and the other polarities for interpeak latencies III-V and I-V. There was a high correlation between the condensation and alternating polarities for absolute and interpeak latencies at 80 dBnHL. the click stimulus polarity has a significant influence on BERA. In the routine use of the TDH 39 earphone, with alternating polarity, we suggest that condensation polarity is more adequate for standardized comparison purposes, due to the higher similarity of the latencies found in this insertion earphone study.

  13. Transcranial Motor-Evoked Potentials Are More Readily Acquired Than Somatosensory-Evoked Potentials in Children Younger Than 6 Years.

    PubMed

    McIntyre, Ian W; Francis, Lisa; McAuliffe, John J

    2016-01-01

    There is a general belief that somatosensory-evoked potentials (SSEPs) are more easily obtained than transcranial motor-evoked potentials (TcMEPs) in children younger than 6 years. We tested this assumption and the assumption that motor-evoked potentials are rarely obtained in children younger than 2 years. The records of all patients who were monitored during surgical procedures between April 1, 2010, and June 30, 2013, were reviewed and those who were younger than 72 months at the time of surgery were identified and analyzed for the rate of obtaining clinically useful SSEPs and motor-evoked potentials. Subgroup analysis was performed by age. A total of 146 patients were identified, 9 had SSEPs without TcMEPs monitored, 117 had both TcMEPs and SSEPs monitored, and the remainder had only electromyographic monitoring. All patients who were to have TcMEPs recorded received a total IV anesthetic. Among the 117 patients who had both SSEPs and TcMEPs monitored, clinically relevant TcMEPs were obtained more frequently than SSEPs (110/117 vs 89/117; χ = 14.82; P = 0.00012). There were significant differences between the rates of obtaining SSEPs and TcMEPs in the 0- to 23-month (P = 0.0038) and 24- to 47-month (P = 0.0056) age groups. Utilization of a double-train stimulation technique facilitated obtaining TcMEPs in the youngest patients. TcMEPs can be obtained more easily than SSEPs in patients younger than 72 months if a permissive anesthetic technique is used. The success rate for obtaining TcMEPs can be further enhanced by the use of a temporal facilitation (double-train) stimulation technique.

  14. Exploiting individual primary visual cortex geometry to boost steady state visual evoked potentials.

    PubMed

    Vanegas, M Isabel; Blangero, Annabelle; Kelly, Simon P

    2013-06-01

    The steady-state visual evoked potential (SSVEP) is an electroencephalographic response to flickering stimuli generated partly in primary visual area V1. The typical 'cruciform' geometry and retinotopic organization of V1 is such that certain neighboring visual regions project to neighboring cortical regions of opposite orientation. Here, we explored ways to exploit this organization in order to boost scalp SSVEP amplitude via oscillatory summation. We manipulated flicker-phase offsets among angular segments of a large annular stimulus in three ways, and compared the resultant SSVEP power to a conventional condition with no temporal phase offsets. (1) We divided the annulus into standard octants for all subjects, and flickered upper horizontal octants with opposite temporal phase to the lower horizontal ones, and left vertical octants opposite to the right vertical ones; (2) we individually adjusted the boundaries between the eight contiguous segments of the standard octants condition to coincide with cruciform-consistent, early-latency topographical shifts in pattern-pulse multifocal visual-evoked potentials (PPMVEP) derived for each of 32 equal-sized segments; (3) we assigned phase offsets to stimulus segments following an automatic algorithm based on the relative amplitudes of vertically- and horizontally-oriented PPMVEP components. The three flicker-phase manipulations resulted in a significant enhancement of normalized SSVEP power of (1) 202%, (2) 383%, and (3) 300%, respectively. We have thus demonstrated a means to obtain more reliable measures of visual evoked activity purely through consideration of cortical geometry. This principle stands to impact both basic and clinical research using SSVEPs.

  15. Epidural motor cortex stimulation suppresses somatosensory evoked potentials in the primary somatosensory cortex of the rat.

    PubMed

    Chiou, Ruei-Jen; Lee, Hsiao-Yun; Chang, Chen-Wei; Lin, Kuan-Hung; Kuo, Chung-Chih

    2012-06-29

    Motor cortex stimulation (MCS) is a promising clinical procedure to help alleviate chronic pain. Animal models demonstrated that MCS is effective in lessening nocifensive behaviors. The present study explored the effects of MCS on cortical somatosensory evoked potentials (SEPs) recorded at the primary somatosensory cortex (SI) of the rat. SEPs were evoked by electrical stimulation applied to the contralateral forepaws. Effects of different intensities, frequencies, and durations of MCS were tested. MCS at ≥2V suppressed SEPs of the ipsilateral SI. Suppression lasted 120 min at an intensity of 5 V. The optimal frequency was 50 Hz, and the duration was 30s. In contrast, MCS did not affect SEPs recorded on the contralateral SI. Cortical stimulation out of the motor cortex did not induce a decrease in the ipsilateral SEPs. We also investigated involvement of the endogenous opioid system in this inhibition of SEPs induced by MCS. The opioid antagonist, naloxone (0.5 mg/kg), was administered 30 min before MCS. Application of naloxone completely prevented the inhibitory effect of MCS on ipsilateral SEPs. These results demonstrate that MCS blocked the transmission of somatosensory information to the primary somatosensory cortex, and this interference was mediated by the endogenous opioid system. This inhibitory effect on sensory transmission induced by MCS may reflect its antinociceptive effect.

  16. Frequency characteristics of human muscle and cortical responses evoked by noisy Achilles tendon vibration.

    PubMed

    Mildren, Robyn L; Peters, Ryan M; Hill, Aimee J; Blouin, Jean-Sébastien; Carpenter, Mark G; Inglis, J Timothy

    2017-05-01

    Noisy stimuli, along with linear systems analysis, have proven to be effective for mapping functional neural connections. We explored the use of noisy (10-115 Hz) Achilles tendon vibration to examine somatosensory reflexes in the triceps surae muscles in standing healthy young adults (n = 8). We also examined the association between noisy vibration and electrical activity recorded over the sensorimotor cortex using electroencephalography. We applied 2 min of vibration and recorded ongoing muscle activity of the soleus and gastrocnemii using surface electromyography (EMG). Vibration amplitude was varied to characterize reflex scaling and to examine how different stimulus levels affected postural sway. Muscle activity from the soleus and gastrocnemii was significantly correlated with the tendon vibration across a broad frequency range (~10-80 Hz), with a peak located at ~40 Hz. Vibration-EMG coherence positively scaled with stimulus amplitude in all three muscles, with soleus displaying the strongest coupling and steepest scaling. EMG responses lagged the vibration by ~38 ms, a delay that paralleled observed response latencies to tendon taps. Vibration-evoked cortical oscillations were observed at frequencies ~40-70 Hz (peak ~54 Hz) in most subjects, a finding in line with previous reports of sensory-evoked γ-band oscillations. Further examination of the method revealed 1) accurate reflex estimates could be obtained with <60 s of low-level (root mean square = 10 m/s(2)) vibration; 2) responses did not habituate over 2 min of exposure; and importantly, 3) noisy vibration had a minimal influence on standing balance. Our findings suggest noisy tendon vibration is an effective novel approach to characterize somatosensory reflexes during standing.NEW & NOTEWORTHY We applied noisy (10-115 Hz) vibration to the Achilles tendon to examine the frequency characteristics of lower limb somatosensory reflexes during standing. Ongoing muscle activity was coherent with the

  17. Is the movement-evoked potential mandatory for movement execution? A high-resolution EEG study in a deafferented patient.

    PubMed

    Kristeva, Rumyana; Chakarov, Vihren; Wagner, Michael; Schulte-Mönting, Jürgen; Hepp-Reymond, M-C

    2006-06-01

    During simple self-paced index finger flexion with and without visual feedback of the finger, we compared the movement-evoked potentials of the completely deafferented patient GL with those of 7 age-matched healthy subjects. EEG was recorded from 58 scalp positions, together with the electromyogram (EMG) from the first dorsal interosseous muscle and the movement trace. We analyzed the movement parameters and the contralateral movement-evoked potential and its source. The patient performed the voluntary movements almost as well as the controls in spite of her lack of sensory information from the periphery. In contrast, the movement-evoked potential was observed only in the controls and not in the patient. These findings clearly demonstrate that the movement-evoked potential reflects cutaneous and proprioceptive feedback from the moving part of the body. They also indicate that in absence of sensory peripheral input the motor control switches from an internal "sensory feedback-driven" to a "feedforward" mode. The role of the sensory feedback in updating the internal models and of the movement-evoked potential as a possible cortical correlate of motor awareness is discussed.

  18. The Electrically Evoked Compound Action Potential: From Laboratory to Clinic.

    PubMed

    He, Shuman; Teagle, Holly F B; Buchman, Craig A

    2017-01-01

    The electrically evoked compound action potential (eCAP) represents the synchronous firing of a population of electrically stimulated auditory nerve fibers. It can be directly recorded on a surgically exposed nerve trunk in animals or from an intra-cochlear electrode of a cochlear implant. In the past two decades, the eCAP has been widely recorded in both animals and clinical patient populations using different testing paradigms. This paper provides an overview of recording methodologies and response characteristics of the eCAP, as well as its potential applications in research and clinical situations. Relevant studies are reviewed and implications for clinicians are discussed.

  19. Real-Time Detection and Monitoring of Acute Brain Injury Utilizing Evoked Electroencephalographic Potentials.

    PubMed

    Fisher, Jonathan A N; Huang, Stanley; Ye, Meijun; Nabili, Marjan; Wilent, W Bryan; Krauthamer, Victor; Myers, Matthew R; Welle, Cristin G

    2016-09-01

    Rapid detection and diagnosis of a traumatic brain injury (TBI) can significantly improve the prognosis for recovery. Helmet-mounted sensors that detect impact severity based on measurements of acceleration or pressure show promise for aiding triage and transport decisions in active, field environments such as professional sports or military combat. The detected signals, however, report on the mechanics of an impact rather than directly indicating the presence and severity of an injury. We explored the use of cortical somatosensory evoked electroencephalographic potentials (SSEPs) to detect and track, in real-time, neural electrophysiological abnormalities within the first hour following head injury in an animal model. To study the immediate electrophysiological effects of injury in vivo, we developed an experimental paradigm involving focused ultrasound that permits continuous, real-time measurements and minimizes mechanical artifact. Injury was associated with a dramatic reduction of amplitude over the damaged hemisphere directly after the injury. The amplitude systematically improved over time but remained significantly decreased at one hour, compared with baseline. In contrast, at one hour there was a concomitant enhancement of the cortical SSEP amplitude evoked from the uninjured hemisphere. Analysis of the inter-trial electroencephalogram (EEG) also revealed significant changes in low-frequency components and an increase in EEG entropy up to 30 minutes after injury, likely reflecting altered EEG reactivity to somatosensory stimuli. Injury-induced alterations in SSEPs were also observed using noninvasive epidermal electrodes, demonstrating viability of practical implementation. These results suggest cortical SSEPs recorded at just a few locations by head-mounted sensors and associated multiparametric analyses could potentially be used to rapidly detect and monitor brain injury in settings that normally present significant levels of mechanical and electrical

  20. Brainstem auditory evoked potentials in children with lead exposure.

    PubMed

    Alvarenga, Katia de Freitas; Morata, Thais Catalani; Lopes, Andrea Cintra; Feniman, Mariza Ribeiro; Corteletti, Lilian Cassia Bornia Jacob

    2015-01-01

    Earlier studies have demonstrated an auditory effect of lead exposure in children, but information on the effects of low chronic exposures needs to be further elucidated. To investigate the effect of low chronic exposures of the auditory system in children with a history of low blood lead levels, using an auditory electrophysiological test. Contemporary cross-sectional cohort. Study participants underwent tympanometry, pure tone and speech audiometry, transient evoked otoacoustic emissions, and brainstem auditory evoked potentials, with blood lead monitoring over a period of 35.5 months. The study included 130 children, with ages ranging from 18 months to 14 years, 5 months (mean age 6 years, 8 months ± 3 years, 2 months). The mean time-integrated cumulative blood lead index was 12 μg/dL (SD ± 5.7, range: 2.433). All participants had hearing thresholds equal to or below 20 dBHL and normal amplitudes of transient evoked otoacoustic emissions. No association was found between the absolute latencies of waves I, III, and V, the interpeak latencies I-III, III-V, and I-V, and the cumulative lead values. No evidence of toxic effects from chronic low lead exposures was observed on the auditory function of children living in a lead contaminated area. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  1. Laser-evoked potential habituation and central sensitization symptoms in childhood migraine.

    PubMed

    de Tommaso, Marina; Sciruicchio, Vittorio; Ricci, Katia; Montemurno, Anna; Gentile, Francesco; Vecchio, Eleonora; Barbaro, Maria Grazia Foschino; Simeoni, Michele; Goffredo, Marvita; Livrea, Paolo

    2016-04-01

    Few studies have addressed central sensitization symptoms and pain processing in childhood migraine. Our aims were to examine pain sensitivity and responses, including habituation, evoked by CO2 laser stimuli (laser-evoked potentials (LEPs)) in a cohort of children with migraine compared to non-migraine controls and to determine the correlation between LEP features and signs of central sensitization. Thirty-five patients 8-15 years of age with migraines without aura were evaluated during the inter-critical phase and were compared to 17 controls. LEPs were analyzed, and their main features were correlated with clinical symptoms including allodynia and pericranial tenderness. The laser-evoked pain threshold was lower and the N2P2 vertex complex amplitude was higher in children with migraines. Furthermore, habituation of vertex waves of LEPs clearly showed a tendency toward progressive amplitude enhancement in the migraine group. Acute allodynia and inter-critical pericranial tenderness correlated with trigeminal LEP features, particularly with the abnormal habituation pattern. Abnormalities of pain processing and symptoms of central sensitization appear to be characteristics of children with migraine. Reduced habituation and progressive amplification of cortical responses to laser stimuli indicate an overactive nociceptive system at the onset of migraine, and this hyperactivity may subtend allodynia and pericranial tenderness. Future prospective trials may aid in the early identification of clinical phenotypes that display a tendency to develop into the chronic form of migraine, warranting a timely therapeutic approach. © International Headache Society 2015.

  2. Mismatch negativity and adaptation measures of the late auditory evoked potential in cochlear implant users.

    PubMed

    Zhang, Fawen; Hammer, Theresa; Banks, Holly-Lolan; Benson, Chelsea; Xiang, Jing; Fu, Qian-Jie

    2011-05-01

    A better understanding of the neural correlates of large variability in cochlear implant (CI) patients' speech performance may allow us to find solutions to further improve CI benefits. The present study examined the mismatch negativity (MMN) and the adaptation of the late auditory evoked potential (LAEP) in 10 CI users. The speech syllable /da/ and 1-kHz tone burst were used to examine the LAEP adaptation. The amount of LAEP adaptation was calculated according to the averaged N1-P2 amplitude for the LAEPs evoked by the last 3 stimuli and the amplitude evoked by the first stimulus. For the MMN recordings, the standard stimulus (1-kHz tone) and the deviant stimulus (2-kHz tone) were presented in an oddball condition. Additionally, the deviants alone were presented in a control condition. The MMN was derived by subtracting the response to the deviants in the control condition from the oddball condition. Results showed that good CI performers displayed a more prominent LAEP adaptation than moderate-to-poor performers. Speech performance was significantly correlated to the amount of LAEP adaptation for the 1-kHz tone bursts. Good performers displayed large MMNs and moderate-to-poor performers had small or absent MMNs. The abnormal electrophysiological findings in moderate-to-poor performers suggest that long-term deafness may cause damage not only at the auditory cortical level, but also at the cognitive level. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. The usefulness of EEG, exogenous evoked potentials, and cognitive evoked potentials in the acute stage of post-anoxic and post-traumatic coma.

    PubMed

    Guérit, J M

    2000-12-01

    Three-modality evoked potentials (TMEPs) have been used for several years in association with the EEG as a diagnostic and prognostic tool in acute anoxic or traumatic coma. Cognitive EPs have been recently introduced. EEG and cognitive EPs provide functional assessment of the cerebral cortex. TMEP parameters can be described by two indices: the index of global cortical function (IGCF) and the index of brainstem conduction (IBSC). Although it remains a unique tool for epilepsy assessment, the value of EEG is largely limited by its high sensitivity to the electrical environmental noise, its dependence on sedative drugs, and its inability to test the brainstem. Major TMEP alterations (absence of cortical activities more than 24 hours after the onset of post-anoxic coma, major pontine involvement in head trauma) are associated in all cases with an ominous prognosis (death or vegetative state). However, even if mild TMEP changes are associated with a good prognosis in 65% (post-anoxic coma) to 90% (head trauma) of cases, some patients never recover despite exogenous TMEPs that are only mildly altered in the acute stage. Thus, cognitive EPs can usefully complement exogenous EPs as a prognostic tool in coma. Indeed, even if the absence of cognitive EPs in comatose patients does not have any prognostic value, their presence implies a very high (more than 90%) probability of consciousness recovery. The major technical challenge for the future will be the development of reliable tools for continuous EEG and TMEP monitoring.

  4. Transesophageal versus transcranial motor evoked potentials to monitor spinal cord ischemia.

    PubMed

    Tsuda, Kazumasa; Shiiya, Norihiko; Takahashi, Daisuke; Ohkura, Kazuhiro; Yamashita, Katsushi; Kando, Yumi; Arai, Yoshifumi

    2016-02-01

    We have previously reported that transesophageal motor evoked potential is feasible and more stable than transcranial motor evoked potential. This study aimed to investigate the efficacy of transesophageal motor evoked potential to monitor spinal cord ischemia. Transesophageal and transcranial motor evoked potentials were recorded in 13 anesthetized dogs at the bilateral forelimbs, anal sphincters, and hindlimbs. Spinal cord ischemia was induced by aortic balloon occlusion at the 8th to 10th thoracic vertebra level. In the 12 animals with motor evoked potential disappearance, occlusion was maintained for 10 minutes (n = 6) or 40 minutes (n = 6) after motor evoked potential disappearance. Neurologic function was evaluated by Tarlov score at 24 and 48 hours postoperatively. Time to disappearance of bilateral motor evoked potentials was quicker in transesophageal motor evoked potentials than in transcranial motor evoked potentials at anal sphincters (6.9 ± 3.1 minutes vs 8.3 ± 3.4 minutes, P = .02) and hindlimbs (5.7 ± 1.9 minutes vs 7.1 ± 2.7 minutes, P = .008). Hindlimb function was normal in all dogs in the 10-minute occlusion group, and motor evoked potentials recovery (>75% on both sides) after reperfusion was quicker in transesophageal motor evoked potentials than transcranial motor evoked potentials at hindlimbs (14.8 ± 5.6 minutes vs 24.7 ± 8.2 minutes, P = .001). At anal sphincters, transesophageal motor evoked potentials always reappeared (>25%), but transcranial motor evoked potentials did not in 3 of 6 dogs. In the 40-minute occlusion group, hindlimb motor evoked potentials did not reappear in 4 dogs with paraplegia. Among the 2 remaining dogs, 1 with paraparesis (Tarlov 3) showed delayed recovery (>75%) of hindlimb motor evoked potentials without reappearance of anal sphincter motor evoked potentials. In another dog with spastic paraplegia, transesophageal motor evoked potentials from the hindlimbs remained less than 20%, whereas transcranial motor

  5. Peripheral and segmental spinal abnormalities of median and ulnar somatosensory evoked potentials in Hirayama's disease

    PubMed Central

    Polo, A; Dossi, M; Fiaschi, A; Zanette, G; Rizzuto, N

    2003-01-01

    Objectives: To investigate the origin of juvenile muscle atrophy of the upper limbs (Hirayama's disease, a type of cervical myelopathy of unknown origin). Subjects: Eight male patients were studied; data from 10 normal men were used as control. Methods: Median and ulnar nerve somatosensory evoked potentials (SEP) were recorded. Brachial plexus potentials at Erb's point (EP), dorsal horn responses (N13), and subcortical (P14) and cortical potentials (N20) were evaluated. Tibial nerve SEP and motor evoked potentials (MEP) were also recorded from scalp and spinal sites to assess posterior column and pyramidal tract conduction, respectively. Results: The most important SEP findings were: a very substantial attenuation of both the EP potentials and the N13 spinal responses; normal amplitude of the scalp N20; and normal latency of the individual peaks (EP-N9-N13-P14-N20). Although both nerves were involved, abnormalities in response to median nerve stimulation were more significant than those in response to ulnar nerve stimulation. There was little correlation between the degree of alterations observed and the clinical state. Latencies of both spinal and cortical potentials were normal following tibial nerve stimulation. The mean latency of cervical MEP and the central conduction time from the thenar eminence were slightly but significantly longer in patients than in controls. Conclusions: The findings support the hypothesis that this disease, which is clinically defined as a focal spinal muscle atrophy of the upper limb, may also involve the sensory system; if traumatic injury caused by stretching plays a role in the pathogenesis, the damage cannot be confined to the anterior horn of the spinal cord. PMID:12700306

  6. Evoked potentials in the management of patients with cochlear implants: research and clinical applications.

    PubMed

    Kileny, Paul R

    2007-04-01

    Evoked potential measures are integral to the treatment of patients with cochlear implants. In particular, these techniques are useful in the management of the pediatric patient. This brief report describes three categories of evoked potentials including clinical and research examples: electrically evoked auditory brain stem responses with transtympanic stimulation, middle-latency responses with cochlear implant stimulation, and cognitive evoked potentials elicited by speech stimuli.

  7. Task-specific role of ipsilateral pathways: somatosensory evoked potentials during cooperative hand movements.

    PubMed

    Schrafl-Altermatt, Miriam; Dietz, Volker

    2014-12-17

    Task-specific neural coupling during cooperative hand movements has been described in healthy volunteers, manifested by bilateral reflex electromyographic responses in forearm muscles following unilateral ulnar nerve stimulation and by task-specific activation of secondary somatosensory cortical areas (S2) in functional MRI. The aim of this study was to investigate the role of sensory input to the ipsilateral and contralateral cortex during a cooperative task. Somatosensory evoked potentials from the ulnar nerve were recorded over the ipsilateral and contralateral cortex during resting and during cooperative and noncooperative hand movements. Ipsilateral potentials with smaller amplitude were present under all conditions in almost all participants. In relation to the resting condition, the amplitudes of both the ipsilateral and the contralateral potential were reduced during the cooperative and the noncooperative tasks. Nevertheless, the reduction in amplitude was similar for the ipsilateral and the contralateral potentials in the noncooperative task, but less on the ipsilateral compared with the contralateral side during the cooperative task. The ratio of ipsilateral/contralateral somatosensory evoked potential amplitude was thus significantly larger during the cooperative task compared with the control task and the resting condition. This indicates a functional role of ipsilateral pathways connecting the cervical spinal cord with the cortex during the cooperative task. These observations favor the idea of a task-specific mediation of sensory input from both hands to the ipsilateral and contralateral hemispheres as the basis of neuronal coupling.

  8. Potentiation of the depression by adenosine of rat cerebral cortical neurones by progestational agents.

    PubMed Central

    Phillis, J. W.

    1986-01-01

    The effects of four progestational agents pregnenolone sulphate, cyproterone acetate, norethindrone acetate and progesterone, on adenosine-evoked depression of the firing of rat cerebral cortical neurones have been studied. When applied iontophoretically, pregnenolone sulphate, cyproterone, and norethindrone enhanced the actions of iontophoretically applied adenosine and failed to potentiate the depressant effects of adenosine 5'-N-ethylcarboxamide and gamma-aminobutyric acid. Cyproterone acetate (50 micrograms kg-1) and progesterone (200 micrograms kg-1) administered intravenously enhanced the depressant actions of iontophoretically applied adenosine. When applied by large currents, cyproterone, and less frequently norethindrone, depressed the firing of cerebral cortical neurones. The depressant effects of cyproterone were antagonized by caffeine. Pregnenolone sulphate tended to excite cortical neurones but neither this action, nor its potentiation of adenosine were reproduced by application of sulphate ions. It is hypothesized that some of the psychotropic actions of progestational agents may involve an enhancement of 'purinergic' tone in the central nervous system. PMID:3814905

  9. Auditory evoked potential could reflect emotional sensitivity and impulsivity

    PubMed Central

    Kim, Ji Sun; Kim, Sungkean; Jung, Wookyoung; Im, Chang-Hwan; Lee, Seung-Hwan

    2016-01-01

    Emotional sensitivity and impulsivity could cause interpersonal conflicts and neuropsychiatric problems. Serotonin is correlated with behavioral inhibition and impulsivity. This study evaluated whether the loudness dependence of auditory evoked potential (LDAEP), a potential biological marker of central serotonergic activity, could reflect emotional sensitivity and impulsivity. A total of 157 healthy individuals were recruited, who performed LDAEP and Go/Nogo paradigms during electroencephalogram measurement. Barratt impulsivity scale (BIS), Conners’ Adult ADHD rating scale (CAARS), and affective lability scale (ALS) were evaluated. Comparison between low and high LDAEP groups was conducted for behavioural, psychological, and event-related potential (ERP) measures. The high LDAEP group showed significantly increased BIS, a subscale of the CAARS, ALS, and false alarm rate of Nogo stimuli compared to the low LDAEP group. LDAEP showed significant positive correlations with the depression scale, ALS scores, subscale of the CAARS and Nogo-P3 amplitude. In the source activity of Nogo-P3, the cuneus, lingual gyrus, and precentral gyrus activities were significantly increased in the high LDAEP group. Our study revealed that LDAEP could reflect emotional sensitivity and impulsivity. LDAEP, an auditory evoked potential could be a useful tool to evaluate emotional regulation. PMID:27910865

  10. Short latency vestibular evoked potentials in the chicken embryo

    NASA Technical Reports Server (NTRS)

    Jones, S. M.; Jones, T. A.

    1996-01-01

    Electrophysiological responses to pulsed linear acceleration stimuli were recorded in chicken embryos incubated for 19 or 20 days (E19/E20). Responses occurred within the first 16 ms following the stimulus onset. The evoked potentials disappeared following bilateral labyrinthectomy, but persisted following cochlear destruction alone, thus demonstrating that the responses were vestibular. Approximately 8 to 10 response peaks could be identified. The first 4 positive and corresponding negative components (early peaks with latencies < 6.0 ms) were scored and latencies and amplitudes quantified. Vestibular response latencies were significantly longer (P < 0.01) and amplitudes significantly smaller (P < 0.001) than those observed in 2-week-old birds. Mean response threshold for anesthetized embryos was -15.9dBre 1.0 g/ms, which was significantly higher (P < 0.03) than those observed in 2-week-old birds (-23.0dBre 1.0 g/ms). Latency/intensity functions (that is, slopes) were not significantly different between embryos and 2-week-old animals, but amplitude/intensity functions for embryos were significantly shallower than those for 2-week-old birds (P < 0.001). We presume that these differences reflect the refinement of sensory function that occurs following 19 to 20 days of incubation. The recording of vestibular evoked potentials provides an objective, direct and noninvasive measure of peripheral vestibular function in the embryo and, as such, the method shows promise as an investigative tool. The results of the present study form the definitive basis for using vestibular evoked potentials in the detailed study of avian vestibular ontogeny and factors that may influence it.

  11. Short latency vestibular evoked potentials in the chicken embryo

    NASA Technical Reports Server (NTRS)

    Jones, S. M.; Jones, T. A.

    1996-01-01

    Electrophysiological responses to pulsed linear acceleration stimuli were recorded in chicken embryos incubated for 19 or 20 days (E19/E20). Responses occurred within the first 16 ms following the stimulus onset. The evoked potentials disappeared following bilateral labyrinthectomy, but persisted following cochlear destruction alone, thus demonstrating that the responses were vestibular. Approximately 8 to 10 response peaks could be identified. The first 4 positive and corresponding negative components (early peaks with latencies < 6.0 ms) were scored and latencies and amplitudes quantified. Vestibular response latencies were significantly longer (P < 0.01) and amplitudes significantly smaller (P < 0.001) than those observed in 2-week-old birds. Mean response threshold for anesthetized embryos was -15.9dBre 1.0 g/ms, which was significantly higher (P < 0.03) than those observed in 2-week-old birds (-23.0dBre 1.0 g/ms). Latency/intensity functions (that is, slopes) were not significantly different between embryos and 2-week-old animals, but amplitude/intensity functions for embryos were significantly shallower than those for 2-week-old birds (P < 0.001). We presume that these differences reflect the refinement of sensory function that occurs following 19 to 20 days of incubation. The recording of vestibular evoked potentials provides an objective, direct and noninvasive measure of peripheral vestibular function in the embryo and, as such, the method shows promise as an investigative tool. The results of the present study form the definitive basis for using vestibular evoked potentials in the detailed study of avian vestibular ontogeny and factors that may influence it.

  12. Distinct Visual Evoked Potential Morphological Patterns for Apparent Motion Processing in School-Aged Children

    PubMed Central

    Campbell, Julia; Sharma, Anu

    2016-01-01

    Measures of visual cortical development in children demonstrate high variability and inconsistency throughout the literature. This is partly due to the specificity of the visual system in processing certain features. It may then be advantageous to activate multiple cortical pathways in order to observe maturation of coinciding networks. Visual stimuli eliciting the percept of apparent motion and shape change is designed to simultaneously activate both dorsal and ventral visual streams. However, research has shown that such stimuli also elicit variable visual evoked potential (VEP) morphology in children. The aim of this study was to describe developmental changes in VEPs, including morphological patterns, and underlying visual cortical generators, elicited by apparent motion and shape change in school-aged children. Forty-one typically developing children underwent high-density EEG recordings in response to a continuously morphing, radially modulated, circle-star grating. VEPs were then compared across the age groups of 5–7, 8–10, and 11–15 years according to latency and amplitude. Current density reconstructions (CDR) were performed on VEP data in order to observe activated cortical regions. It was found that two distinct VEP morphological patterns occurred in each age group. However, there were no major developmental differences between the age groups according to each pattern. CDR further demonstrated consistent visual generators across age and pattern. These results describe two novel VEP morphological patterns in typically developing children, but with similar underlying cortical sources. The importance of these morphological patterns is discussed in terms of future studies and the investigation of a relationship to visual cognitive performance. PMID:27445738

  13. Intraoperative Monitoring: Recent Advances in Motor Evoked Potentials.

    PubMed

    Koht, Antoun; Sloan, Tod B

    2016-09-01

    Advances in electrophysiological monitoring have improved the ability of surgeons to make decisions and minimize the risks of complications during surgery and interventional procedures when the central nervous system (CNS) is at risk. Individual techniques have become important for identifying or mapping the location and pathway of critical neural structures. These techniques are also used to monitor the progress of procedures to augment surgical and physiologic management so as to reduce the risk of CNS injury. Advances in motor evoked potentials have facilitated mapping and monitoring of the motor tracts in newer, more complex procedures. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Clinical application of vestibular evoked myogenic potential (VEMP).

    PubMed

    Murofushi, Toshihisa

    2016-08-01

    The author reviewed clinical aspects of vestibular evoked myogenic potentials (VEMPs). Now two types of VEMPs are available. The first one is cervical VEMP, which is recorded in the sternocleidomastoid muscle and predominantly reflects sacculo-collic reflex. The other is ocular VEMP, which is usually recorded below the lower eye lid and predominantly reflects utriculo-ocular reflex. VEMPs play important roles not only for assessment of common vestibular diseases but also for establishment of new clinical entities. Clinical application in Meniere's disease, vestibular neuritis, benign paroxysmal positional vertigo, vestibular migraine, idiopathic otolithic vertigo, and central vertigo/dizziness was reviewed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. The division of attention and the human auditory evoked potential

    NASA Technical Reports Server (NTRS)

    Hink, R. F.; Van Voorhis, S. T.; Hillyard, S. A.; Smith, T. S.

    1977-01-01

    The sensitivity of the scalp-recorded, auditory evoked potential to selective attention was examined while subjects responded to stimuli presented to one ear (focused attention) and to both ears (divided attention). The amplitude of the N1 component was found to be largest to stimuli in the ear upon which attention was to be focused, smallest to stimuli in the ear to be ignored, and intermediate to stimuli in both ears when attention was divided. The results are interpreted as supporting a capacity model of attention.

  16. Enhancement Of Visual Evoked Potentials By Adaptive Processing

    NASA Astrophysics Data System (ADS)

    Wolf, W.; Appel, U.; Rauner, H.

    1982-11-01

    Transient evoked potentials (EP) are variations of the on-going electroencephalogram (EEG) in response to the application of sensory stimuli. Since their amplitudes are very small in comparison to the spontaneous EEG, signal extraction methods must be applied to them before their characteristics are measureable. Several signal ex-traction methods which are actually used in EP research are outlined, especially those showing an adaptive characteristic. As a further development, a new method is proposed which considers the on-going EEG preceding the stimulus application for the EP processing. The computational procedure will be described and some preliminary results are given.

  17. The division of attention and the human auditory evoked potential

    NASA Technical Reports Server (NTRS)

    Hink, R. F.; Van Voorhis, S. T.; Hillyard, S. A.; Smith, T. S.

    1977-01-01

    The sensitivity of the scalp-recorded, auditory evoked potential to selective attention was examined while subjects responded to stimuli presented to one ear (focused attention) and to both ears (divided attention). The amplitude of the N1 component was found to be largest to stimuli in the ear upon which attention was to be focused, smallest to stimuli in the ear to be ignored, and intermediate to stimuli in both ears when attention was divided. The results are interpreted as supporting a capacity model of attention.

  18. Evaluation of breast sensibility using dermatomal somatosensory evoked potentials.

    PubMed

    DelVecchyo, Carlos; Caloca, Jaime; Caloca, Jaime; Gómez-Jauregui, Jesica

    2004-06-01

    This study was undertaken to prospectively evaluate breast sensibility before and after reduction mammaplasty with a new, objective, and quantitative neurophysiologic method based on the anatomic knowledge of breast innervation and the congruent areas of dermatomal maps. An innovative application of dermatomal somatosensory evoked potentials was used to study the breast regions of 42 healthy women, bilaterally. The areas stimulated in each breast were the superior quadrant, the nipple-areola complex and the medial and lateral quadrants, and the inferior quadrant; these areas correspond to T3, T4, and T5 dermatomes, respectively, following the accepted concepts of segmentary innervation of the skin. The two groups of 21 patients each were formed according to breast size: group I comprised small-breasted, unoperated controls (brassiere cup size A or B); group II comprised macromastia patients (brassiere cup size C or greater) who presented to a general plastic surgery department for breast reduction surgery. First the authors established the normal range of latency and amplitude in the dermatomal somatosensory evoked potentials for the five areas stimulated in patients with small breasts and compared these parameters with those obtained from patients with macromastia. Then, after the macromastia patients underwent reduction mammaplasty using the McKissock technique, the authors compared the postoperative sensory values with their own preoperative values and with those from the small-breasted group. Using dermatomal somatosensory evoked potentials, they found that small breasts were statistically more sensitive than large breasts, which concurs with studies in the literature that use other methods to evaluate breast sensibility. They also found that after breast reduction, the macromastia patients presented statistically significant improvement in breast sensibility in relation to their own preoperative latency and amplitude values, with no statistical difference in

  19. A Nonlinear Regression Procedure for Evoked Potential Data Analysis.

    DTIC Science & Technology

    1985-06-01

    XBAR+X (I) YBAR - YBAR +V (I) CONTINUE XBAR=XBAR/N VBAR= YBAR /N A-0. B-O. DO 10 I=19N C-X(I)-XBAR A=A+ Y (I)*C -36- B=B+C**2 *10 CONTINUE BSLP=A/B BI NT=YDAR...and duration of the latency effect following impact, the following exponential model was proposed: y = B + St + h(t)D + h(t)Aexp(t/T) + £(t) (1) where... y is the value of the shift in latency with respect to the preimpact baseline average evoked potential (AEP

  20. Visual evoked potentials and heart rate during white noise stimulation.

    PubMed

    Lucchese, F; Mecacci, L

    1999-03-01

    Visual evoked potentials (VEPs) were recorded in 12 adult participants as a function of the temporal frequency of a phase-reversed checkerboard, with or without a simultaneously presented white noise. During the VEP recordings also the pulse rate was measured. VEP amplitude changed as function of temporal frequency, but it was not affected by noise. Pulse rate was stable during the session without noise, but it increased during the white noise stimulation at high temporal frequencies. Heart acceleration might be associated to conditions when processing at low levels of visual sensitivity (high temporal frequencies) is furthermore disturbed by interfering stimulation (noise).

  1. Statistical model applied to motor evoked potentials analysis.

    PubMed

    Ma, Ying; Thakor, Nitish V; Jia, Xiaofeng

    2011-01-01

    Motor evoked potentials (MEPs) convey information regarding the functional integrity of the descending motor pathways. Absence of the MEP has been used as a neurophysiological marker to suggest cortico-spinal abnormalities in the operating room. Due to their high variability and sensitivity, detailed quantitative studies of MEPs are lacking. This paper applies a statistical method to characterize MEPs by estimating the number of motor units and single motor unit potential amplitudes. A clearly increasing trend of single motor unit potential amplitudes in the MEPs after each pulse of the stimulation pulse train is revealed by this method. This statistical method eliminates the effects of anesthesia, and provides an objective assessment of MEPs. Consequently this statistical method has high potential to be useful in future quantitative MEPs analysis.

  2. Normalization of visual evoked potentials using underlying electroencephalogram levels improves amplitude reproducibility in rats.

    PubMed

    You, Yuyi; Thie, Johnson; Klistorner, Alexander; Gupta, Vivek K; Graham, Stuart L

    2012-03-15

    The visual evoked potential (VEP) is a frequently used noninvasive measurement of visual function. However, high-amplitude variability has limited its potential for evaluating axonal damage in both laboratory and clinical research. This study was conducted to improve the reliability of VEP amplitude measurement in rats by using electroencephalogram (EEG)-based signal correction. VEPs of Sprague-Dawley rats were recorded on three separate days within 2 weeks. The original VEP traces were normalized by EEG power spectrum, which was evaluated by Fourier transform. A comparison of intersession reproducibility and intersubject variability was made between the original and corrected signals. Corrected VEPs showed lower amplitude intersession within-subject SD (Sw), coefficient of variation (CoV), and repeatability (R(95)) than the original signals (P < 0.001). The intraclass correlation coefficient (ICC) of the corrected traces (0.90) was also better than the original potentials (0.82). For intersubject variability, the EEG-based normalization improved the CoV from 44.64% to 30.26%. A linear correlation was observed between the EEG level and the VEP amplitude (r = 0.71, P < 0.0001). Underlying EEG signals should be considered in measuring the VEP amplitude. In this study, a useful technique was developed for VEP data processing that could also be used for other cortical evoked potential recordings and for clinical VEP interpretation in humans.

  3. Whole-scalp EEG mapping of somatosensory evoked potentials in macaque monkeys.

    PubMed

    Gindrat, Anne-Dominique; Quairiaux, Charles; Britz, Juliane; Brunet, Denis; Lanz, Florian; Michel, Christoph M; Rouiller, Eric M

    2015-07-01

    High-density scalp EEG recordings are widely used to study whole-brain neuronal networks in humans non-invasively. Here, we validate EEG mapping of somatosensory evoked potentials (SSEPs) in macaque monkeys (Macaca fascicularis) for the long-term investigation of large-scale neuronal networks and their reorganisation after lesions requiring a craniotomy. SSEPs were acquired from 33 scalp electrodes in five adult anaesthetized animals after electrical median or tibial nerve stimulation. SSEP scalp potential maps were identified by cluster analysis and identified in individual recordings. A distributed, linear inverse solution was used to estimate the intracortical sources of the scalp potentials. SSEPs were characterised by a sequence of components with unique scalp topographies. Source analysis confirmed that median nerve SSEP component maps were in accordance with the somatotopic organisation of the sensorimotor cortex. Most importantly, SSEP recordings were stable both intra- and interindividually. We aim to apply this method to the study of recovery and reorganisation of large-scale neuronal networks following a focal cortical lesion requiring a craniotomy. As a prerequisite, the present study demonstrated that a 300-mm(2) unilateral craniotomy over the sensorimotor cortex necessary to induce a cortical lesion, followed by bone flap repositioning, suture and gap plugging with calcium phosphate cement, did not induce major distortions of the SSEPs. In conclusion, SSEPs can be successfully and reproducibly recorded from high-density EEG caps in macaque monkeys before and after a craniotomy, opening new possibilities for the long-term follow-up of the cortical reorganisation of large-scale networks in macaque monkeys after a cortical lesion.

  4. Low-frequency rTMS inhibitory effects in the primary motor cortex: Insights from TMS-evoked potentials.

    PubMed

    Casula, Elias P; Tarantino, Vincenza; Basso, Demis; Arcara, Giorgio; Marino, Giuliana; Toffolo, Gianna Maria; Rothwell, John C; Bisiacchi, Patrizia S

    2014-09-01

    The neuromodulatory effects of repetitive transcranial magnetic stimulation (rTMS) have been mostly investigated by peripheral motor-evoked potentials (MEPs). New TMS-compatible EEG systems allow a direct investigation of the stimulation effects through the analysis of TMS-evoked potentials (TEPs). We investigated the effects of 1-Hz rTMS over the primary motor cortex (M1) of 15 healthy volunteers on TEP evoked by single pulse TMS over the same area. A second experiment in which rTMS was delivered over the primary visual cortex (V1) of 15 healthy volunteers was conducted to examine the spatial specificity of the effects. Single-pulse TMS evoked four main components: P30, N45, P60 and N100. M1-rTMS resulted in a significant decrease of MEP amplitude and in a significant increase of P60 and N100 amplitude. There was no effect after V1-rTMS. 1-Hz rTMS appears to increase the amount of inhibition following a TMS pulse, as demonstrated by the higher N100 and P60, which are thought to originate from GABAb-mediated inhibitory post-synaptic potentials. Our results confirm the reliability of the TMS-evoked N100 as a marker of cortical inhibition and provide insight into the neuromodulatory effects of 1-Hz rTMS. The present finding could be of relevance for therapeutic and diagnostic purposes.

  5. A novel shape analysis technique for somatosensory evoked potentials.

    PubMed

    Agrawal, Gracee; Sherman, David; Thakor, Nitish; All, Angelo

    2008-01-01

    Somatosensory evoked potentials (SEP) have been shown to be an important electrophysiological measure to assess the integrity of the spinal cord. However the peaks in the SEP waveform are often undetectable due to low signal-to-noise (SNR) ratio. Sometimes they also become indistinct during injury when the SEP flattens. Hence time-domain analysis methods are often subject to errors, and need human-expert intervention. In this paper, we propose a new technique for analyzing the shape of the evoked potentials, in which slope information is obtained for the entire signal in specific time bins. Apart from solving the problems associated with present methods, this technique has an added advantage of analyzing the SEP signal as a whole rather than simply a few peaks. The efficacy of this technique was investigated on SEP signals recorded from 12 rats before and after contusion spinal cord injury at thoracic vertebra T8. The statistical analysis results revealed significant effect of injury to hindlimbs, whereas almost none to forelimbs. Thus, the results show high potential of this technique to differentiate between normal and injured spinal cord.

  6. Quantifying interhemispheric symmetry of somatosensory evoked potentials with the intraclass correlation coefficient.

    PubMed

    van de Wassenberg, Wilma J G; van der Hoeven, Johannes H; Leenders, Klaus L; Maurits, Natasha M

    2008-06-01

    Although large intersubject variability is reported for cortical somatosensory evoked potentials (SEPs), variability between hemispheres within one subject is thought to be small. Therefore, interhemispheric comparison of SEP waveforms might be clinically useful to detect unilateral abnormalities in cortical sensory processing. We developed and evaluated a new technique to quantify interhemispheric SEP symmetry that uses a time interval including multiple SEP components, measures similarity of SEP waveforms between both hemispheres and results in high symmetry values even in the presence of small interhemispheric anatomic differences. Median nerve SEPs were recorded in 50 healthy subjects (20-70 years) using 128-channel EEG. Symmetry was quantified by the intraclass correlation coefficient and correlation coefficient between global field power of left and right median nerve SEPs. In 74% of subjects left-right intraclass correlation coefficient was higher than 0.60, implying high SEP hemispheric symmetry in terms of shape and amplitude. Left-right intraclass correlation coefficients lower than 0.60 were due to differences in amplitude, unilateral absence of peaks, or shape differences. We quantified SEP waveform interhemispheric symmetry and found it to be high in most healthy subjects. This technique may therefore be useful for detection of unilateral abnormalities in cortical sensory processing.

  7. The effect of water immersion on short-latency somatosensory evoked potentials in human

    PubMed Central

    2012-01-01

    Background Water immersion therapy is used to treat a variety of cardiovascular, respiratory, and orthopedic conditions. It can also benefit some neurological patients, although little is known about the effects of water immersion on neural activity, including somatosensory processing. To this end, we examined the effect of water immersion on short-latency somatosensory evoked potentials (SEPs) elicited by median nerve stimuli. Short-latency SEP recordings were obtained for ten healthy male volunteers at rest in or out of water at 30°C. Recordings were obtained from nine scalp electrodes according to the 10-20 system. The right median nerve at the wrist was electrically stimulated with the stimulus duration of 0.2 ms at 3 Hz. The intensity of the stimulus was fixed at approximately three times the sensory threshold. Results Water immersion significantly reduced the amplitudes of the short-latency SEP components P25 and P45 measured from electrodes over the parietal region and the P45 measured by central region. Conclusions Water immersion reduced short-latency SEP components known to originate in several cortical areas. Attenuation of short-latency SEPs suggests that water immersion influences the cortical processing of somatosensory inputs. Modulation of cortical processing may contribute to the beneficial effects of aquatic therapy. Trial Registration UMIN-CTR (UMIN000006492) PMID:22272934

  8. Cross-modal plasticity in deaf child cochlear implant candidates assessed using visual and somatosensory evoked potentials.

    PubMed

    Charroó-Ruíz, Lidia E; Picó, Thais; Pérez-Abalo, María C; Hernández, María del Carmen; Bermejo, Sandra; Bermejo, Beatriz; Álvarez, Beatriz; Paz, Antonio S; Rodríguez, Ulises; Sevila, Manuel; Martínez, Yesi; Galán, Lídice

    2013-01-01

    Cross-modal plasticity has been extensively studied in deaf adults with neuroimaging studies, yielding valuable results. A recent study in our laboratory with deaf-blind children found evidence of cross-modal plasticity, revealed in over-representation of median nerve somatosensory evoked potentials (SEP N20) in left hemisphere parietal, temporal and occipital regions. This finding led to asking whether SEP N20 changes are peculiar to deaf-blindness or are also present in sighted deaf children. Assess cross-modal plasticity in deaf child cochlear implant candidates using neurophysiological techniques (visual evoked potentials and median nerve somatosensory evoked potentials). Participants were 14 prelingually deaf children assessed in the Cuban Cochlear Implant Program. Flash visual-evoked potentials and SEP N20 were recorded at 19 scalp recording sites. Topographic maps were obtained and compared to those of control group children with normal hearing. Analysis took into account duration of hearing loss. Topographic maps of flash visual-evoked potentials did not show changes in deaf child cochlear implant candidates. However, SEP N20 from right median nerve stimulation did show changes from expansion of cortical activation into the left temporal region in deaf children aged ≥7 years, which was interpreted as neurophysiological evidence of cross-modal plasticity, not previously described for this technique and type of somatosensory stimulus. We interpret this finding as due in part to duration of deafness, particularly related to handedness, since expansion was selective for the left hemisphere in the children, who were all right-handed. Cortical over-representation of SEP N20 in the left temporal region is interpreted as evidence of cross-modal plasticity that occurs if the deaf child does not receive a cochlear implant early in life-before concluding the critical period of neural development-and relies on sign language for communication.

  9. A joint sparse representation-based method for double-trial evoked potentials estimation.

    PubMed

    Yu, Nannan; Liu, Haikuan; Wang, Xiaoyan; Lu, Hanbing

    2013-12-01

    In this paper, we present a novel approach to solving an evoked potentials estimating problem. Generally, the evoked potentials in two consecutive trials obtained by repeated identical stimuli of the nerves are extremely similar. In order to trace evoked potentials, we propose a joint sparse representation-based double-trial evoked potentials estimation method, taking full advantage of this similarity. The estimation process is performed in three stages: first, according to the similarity of evoked potentials and the randomness of a spontaneous electroencephalogram, the two consecutive observations of evoked potentials are considered as superpositions of the common component and the unique components; second, making use of their characteristics, the two sparse dictionaries are constructed; and finally, we apply the joint sparse representation method in order to extract the common component of double-trial observations, instead of the evoked potential in each trial. A series of experiments carried out on simulated and human test responses confirmed the superior performance of our method.

  10. Spatial characteristics of evoked potentials elicited by a MEMS microelectrode array for suprachoroidal-transretinal stimulation in a rabbit.

    PubMed

    Yan, Yan; Sui, Xiaohong; Liu, Wenjia; Lu, Yiliang; Cao, Pengjia; Ma, Zengguang; Chen, Yao; Chai, Xinyu; Li, Liming

    2015-09-01

    Suprachoroidal-transretinal stimulation (STS) can potentially restore vision. This study investigated the spatial characteristics of cortical electrical evoked potentials (EEPs) elicited by STS. A 4 × 4 thin-film platinum microelectrode stimulating array (200 μm electrode diameter and 400 μm center-to-center distance) was fabricated by a micro-electro-mechanical systems (MEMS) techniques and implanted into the suprachoroidal space of albino rabbits. The current threshold to elicit reliable EEPs by a single electrode was 41.6 ± 12.6 μA, corresponding to a 66.2 ± 20.1 μC · cm(-2) charge density per phase, which was lower than the reported safety limits. Spatially differentiated cortical responses could be evoked by STS through different rows or columns of electrical stimulation; furthermore, shifts in the location of the maximum cortical activities were consistent with cortical visuotopic maps; increasing the number of simultaneously stimulating electrodes increased the response amplitudes of EEPs and expanded the spatial spread as well. In addition, long-term implantation and electrical stimulation of the MEMS electrode array in suprachoroidal space are necessary to evaluate systematically the safety and biocompatibility of this approach. This study indicates that the STS approach by a MEMS-based platinum electrode array is a feasible alternative for visual restoration, and relatively high spatial discrimination may be achieved.

  11. Laminar profile of spontaneous and evoked theta: Rhythmic modulation of cortical processing during word integration.

    PubMed

    Halgren, Eric; Kaestner, Erik; Marinkovic, Ksenija; Cash, Sydney S; Wang, Chunmao; Schomer, Donald L; Madsen, Joseph R; Ulbert, Istvan

    2015-09-01

    Theta may play a central role during language understanding and other extended cognitive processing, providing an envelope for widespread integration of participating cortical areas. We used linear microelectrode arrays in epileptics to define the circuits generating theta in inferotemporal, perirhinal, entorhinal, prefrontal and anterior cingulate cortices. In all locations, theta was generated by excitatory current sinks in middle layers which receive predominantly feedforward inputs, alternating with sinks in superficial layers which receive mainly feedback/associative inputs. Baseline and event-related theta were generated by indistinguishable laminar profiles of transmembrane currents and unit-firing. Word presentation could reset theta phase, permitting theta to contribute to late event-related potentials, even when theta power decreases relative to baseline. Limited recordings during sentence reading are consistent with rhythmic theta activity entrained by a given word modulating the neural background for the following word. These findings show that theta occurs spontaneously, and can be momentarily suppressed, reset and synchronized by words. Theta represents an alternation between feedforward/divergent and associative/convergent processing modes that may temporally organize sustained processing and optimize the timing of memory formation. We suggest that words are initially encoded via a ventral feedforward stream which is lexicosemantic in the anteroventral temporal lobe; its arrival may trigger a widespread theta rhythm which integrates the word within a larger context.

  12. Diagnostic Accuracy of Combined Multimodality Somatosensory Evoked Potential and Transcranial Motor Evoked Potential Intraoperative Monitoring in Patients With Idiopathic Scoliosis.

    PubMed

    Thirumala, Parthasarathy D; Huang, Jessie; Thiagarajan, Karthy; Cheng, Hannah; Balzer, Jeffrey; Crammond, Donald J

    2016-10-01

    Systematic review. The aim of the study was to determine the predictive value of combined multimodality somatosensory evoked potential (SSEP) and transcranial motor evoked potential (TcMEP) monitoring in detecting impending neurological injury during surgery for idiopathic scoliosis. The diagnostic of motor evoked potential monitoring and SSEP monitoring have been established. However, the predictive value of combined multimodality SSEP and TcMEP monitoring in detecting impending neurological injury during surgery for idiopathic scoliosis has not been evaluated. A systematic literature search was performed using PubMed/MEDLINE, Web of Science, and EMBASE from 1974 to January 2015. All titles and abstracts were independently reviewed by the authors. We included all studies that were (1) randomized controlled trials, prospective or retrospective cohort studies; (2) included patients with idiopathic scoliosis undergoing scoliosis correction surgery; (3) included multimodality SSEP and TcMEP monitoring during spinal surgery; (4) included immediate postoperative neurological assessment; (5) idiopathic scoliosis patient population n ≥25; and (6) published in English. Seven studies comprising a total of 2052 patients with idiopathic scoliosis were included in our meta-analysis. The incidence of neurological deficit in this cohort was 0.93%. The pooled sensitivity, specificity, and Diagnostic Odds Ratio were 82.6% (95% CI 56.7%-94.5%), 94.4% (95% CI 85.1%-98.0%), and 106.16 (95% CI 24.952-451.667), respectively. The area under the curve was 0.928, indicating excellent discriminatory ability. Idiopathic scoliosis corrective surgery patients who experience a new neurological deficit are 106.16 times more likely to have had an SSEP and/or TcMEP change during corrective procedures. The results of this meta-analysis demonstrate that combined multimodality SSEP and TcMEP monitoring possess some advantage over use of each alone, and that intraoperative neurophysiological

  13. Abdominal acupuncture reduces laser-evoked potentials in healthy subjects.

    PubMed

    Pazzaglia, C; Liguori, S; Minciotti, I; Testani, E; Tozzi, A E; Liguori, A; Petti, F; Padua, L; Valeriani, M

    2015-09-01

    Acupuncture is known to reduce clinical pain, although the exact mechanism is unknown. The aim of the current study was to investigate the effect of acupuncture on laser-evoked potential amplitudes and laser pain perception. In order to evaluate whether abdominal acupuncture is able to modify pain perception, 10 healthy subjects underwent a protocol in which laser-evoked potentials (LEPs) and laser pain perception were collected before the test (baseline), during abdominal acupuncture, and 15 min after needle removal. The same subjects also underwent a similar protocol in which, however, sham acupuncture without any needle penetration was used. During real acupuncture, both N1 and N2/P2 amplitudes were reduced, as compared to baseline (p<0.01). The reduction lasted up to 15 min after needle removal. Furthermore, laser pain perception was reduced during real acupuncture, although the difference was marginally significant (p=0.06). Our results show that abdominal acupuncture reduces LEP amplitude in healthy subjects. Our results provide a theoretical background for the use of abdominal acupuncture as a therapeutic approach in the treatment of pain conditions. Future studies will have to be conducted in clinical painful syndromes, in order to confirm the analgesic effect of acupuncture in patients suffering from pain. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Vestibular evoked myogenic potentials in patients with rheumatoid arthritis

    PubMed Central

    Heydari, Nahid; Hajiabolhassani, Fahimeh; Fatahi, Jamileh; Movaseghi, Shafieh; Jalaie, Shohreh

    2015-01-01

    Background: Rheumatoid arthritis (RA) is an autoimmune systemic disease. Most common autoimmune diseases are multisystem disorders that may also present with otological manifestations, and autoimmune inner ear disease accompanied by vestibular dysfunction. This study aimed to compare the vestibular function between RA patients and normal subjects using cervical vestibular evoked myogenic potentials (cVEMPs). Methods: In this cross- sectional study, 25patients with RA (19 female and 6 male: mean (±SD) age, 40.00 (±7.92) years) and 20 healthy subjects (15 female and 5 male: mean (±SD) age, 35.35 (±10.48) years) underwent cVEMPs, using 500 Hz-tone bursts at 95 dB nHL intensity level. Data were analyzed using independent sample t-test through SPSS software v. 16. Results: The mean peak latency of p13 was significantly higher in RA patients (p<0.001). The mean peak latency of n23 was significantly higher in patients in the left ear (p=0.03). Vestibular evoked myogenic potential (VEMP) responses were present in all (100%) of the participants. There were no significant differences in mean peak to peak amplitude and amplitude ratio between the two groups. Conclusion: According to the prolonged latency of VEMP responses in RA patients, lesions in the retrolabyrinthine, especially in the vestibulospinal tract are suspected. PMID:26478874

  15. Evoked trigeminal nerve potential in chronic trichloroethylene intoxication

    SciTech Connect

    Barret, L.; Arsac, P.; Vincent, M.; Faure, J.; Garrel, S.; Reymond, F.

    1982-06-01

    Results of a study of trigeminal nerve impairment resulting from trichloroethylene intoxication by the somatosensory-evoked potential method reveal three kinds of abnormalities: increased stimulation voltage, excessive latency delay with morphological abnormalities, and excessive graph amplitude. These abnormalities confirm clinical disturbance (hypesthesia of the trigeminal nerve area) and open debate about the real mechanism of trichloroethylene neurotoxicity. Industrial intoxication by solvents, particularly trichloroethylene, is common. We have conducted a study of 188 workers chronically exposed to trichloroethylene and have confirmed the selective neurological disturbances of this intoxication in the trigeminal nerve (20%) (3, 10). We utilized a new experimental method, developed for studies of chronic intoxications effecting the median nerve (5, 8), of recording the somatosensory evoked potential following stimulation of the trigeminal nerve (4, 6, 7). The workers in this study were selected following clinical evaluation of their facial sensitivity and trigeminal nerve reflexes. In this paper we present our preliminary results on 11 workers, 9 suffering effects of intoxication and 2 controls.

  16. Vestibular evoked myogenic potentials in multiple sclerosis patients.

    PubMed

    Versino, Maurizio; Colnaghi, Silvia; Callieco, Roberto; Bergamaschi, Roberto; Romani, Alfredo; Cosi, Vittorio

    2002-09-01

    Vestibular evoked myogenic potentials (VEMPs) are saccular responses to loud acoustic stimuli and are recordable from the sterno-cleido-mastoid muscle ipsilaterally to the stimulated ear. This study aimed to investigate VEMPs in patients suffering from multiple sclerosis (MS), and to compare these findings with both clinical and instrumental data. We recorded VEMPs from 70 MS patients, whose clinical data were retrospectively evaluated for the possible occurrence of: past and current (with respect to VEMP recording) brainstem and/or cerebellar symptoms; current brainstem and/or cerebellar signs. Sixty-five patients underwent brainstem auditory evoked potentials (BAEPs) recording; 63 of the same patients underwent saccadic eye movement recording and subjective visual vertical (SVV) evaluation. VEMPs were abnormal in 31%, BAEPs in 38% and SVV in 21% of the patients. Saccadic eye movements showed a possible brainstem dysfunction in 44.4% of the patients. There was no correlation between the occurrence of abnormalities and the technical means of detection. The same held true for correlations with clinical data, with the exception of the BAEPs; these proved to be more frequently abnormal in patients presenting at neurological examination with brainstem and/or cerebellar signs that were possibly related to the complaint of dizziness. VEMPs should be considered a useful complementary neurophysiological tool for the evaluation of brainstem dysfunction.

  17. Visual evoked potentials, reaction times and eye dominance in cricketers.

    PubMed

    Thomas, N G; Harden, L M; Rogers, G G

    2005-09-01

    Few studies have examined the physiology of cricket, including the difference in ability between batsmen to make controlled contact with a ball bowled at high speed. We therefore measured visual evoked potentials and choice reaction times with dominant eyes, non-dominant eyes, and both eyes together, in 15 elite batsmen and 10 elite bowlers (aged 20.9 SD 1.9 years) and 9 control subjects (aged 20.2 SD 1.5 years). The latency and amplitude of waves N70, P100 and N145 were determined for each visual evoked potential (VEP). In addition interpeak latencies and peak to peak amplitudes were measured. The subjects also completed a choice reaction test to a visual stimulus. We found that cricketers were not more likely to have crossed dominance (dominant eye contralateral to dominant hand) than controls. Cricketers had a faster latency for VEP wave N70 than controls (p=0.03). However reaction time was not different between cricketers and the control group. Across all subjects, in comparison to monocular testing, binocular testing led to a faster choice reaction time (p=0.02) and larger amplitudes of VEP wave N70 (p=0.01). Visual processing during the first 100(-1)50 ms of the balls flight together with binocular vision facilitates retinal activation in talented cricketers.

  18. Characteristics and clinical applications of ocular vestibular evoked myogenic potentials.

    PubMed

    Kantner, C; Gürkov, R

    2012-12-01

    Recently, ocular vestibular evoked myogenic potentials (oVEMPs) have been described and added to the neuro-otologic test battery as a new measure for the vestibulo-ocular reflex. oVEMPs represent extraocular muscle activity in response to otolith stimulation e.g. by air-conducted sound or bone-conducted vibration. In response to vestibular stimulation, electromyographic activity of the extraocular muscles can be recorded by means of surface electrodes placed beneath the contralateral eye. oVEMPs are likely to reflect predominantly utricular function, while the widely established cervical vestibular evoked myogenic potentials (cVEMPs) assess saccular function. Thus, measuring oVEMPs and cVEMPs in addition to caloric and head impulse testing provides further evaluation of the vestibular system and enables quick and cost-effective assessment of otolith function. This review summarizes the neurophysiological properties of oVEMPs, gives recommendations for recording conditions and discusses oVEMP alterations in various disorders of the vestibular system. With increasing insight into oVEMP characteristics in vestibular disorders, e.g. Menière's disease and superior semicircular canal dehiscence syndrome, oVEMPs are becoming a promising new diagnostic tool for evaluating utricular function. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Visual and brainstem auditory evoked potentials in children with obesity.

    PubMed

    Akın, Onur; Arslan, Mutluay; Akgün, Hakan; Yavuz, Süleyman Tolga; Sarı, Erkan; Taşçılar, Mehmet Emre; Ulaş, Ümit Hıdır; Yeşilkaya, Ediz; Ünay, Bülent

    2016-03-01

    The aim of our study is to investigate alterations in visual evoked potentials (VEP) and brainstem auditory evoked potentials (BAEP) in children with obesity. A total of 96 children, with a mean age of 12.1±2.0 years (range 9-17 years, 63 obese and 33 age and sex-matched control subjects) were included in the study. Laboratory tests were performed to detect insulin resistance (IR) and dyslipidemia. The latencies and amplitudes of VEP and BAEP were measured in healthy and obese subjects. The VEP P100, BAEP interpeak latency (IPL) I-III and IPL I-V averages of obese children were significantly longer than the control subjects. When the obese group was divided into two subgroups, those with IR and without IR, BAEP wave I, wave III and P100 wave latencies were found to be longer in the group with IR. A statistically significant correlation was observed between BAEP wave I latency, IPL I-V, IPL I-III and the homeostatic model assessment insulin resistance (HOMA IR) index and fasting insulin level. Our findings suggest that VEP and BAEP can be used to determine early subclinical on auditory and visual functions of obese children with insulin resistance. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  20. Intraoperative changes in transcranial motor evoked potentials and somatosensory evoked potentials predicting outcome in children with intramedullary spinal cord tumors

    PubMed Central

    Cheng, Jason S.; Ivan, Michael E.; Stapleton, Christopher J.; Quinones-HinoJosa, AlfreDo; Gupta, Nalin; Auguste, Kurtis I.

    2015-01-01

    Object Intraoperative dorsal column mapping, transcranial motor evoked potentials (TcMEPs), and somatosensory evoked potentials (SSEPs) have been used in adults to assist with the resection of intramedullary spinal cord tumors (IMSCTs) and to predict postoperative motor deficits. The authors sought to determine whether changes in MEP and SSEP waveforms would similarly predict postoperative motor deficits in children. Methods The authors reviewed charts and intraoperative records for children who had undergone resection for IMSCTs as well as dorsal column mapping and TcMEP and SSEP monitoring. Motor evoked potential data were supplemented with electromyography data obtained using a Kartush microstimulator (Medtronic Inc.). Motor strength was graded using the Medical Research Council (MRC) scale during the preoperative, immediate postoperative, and follow-up periods. Reductions in SSEPs were documented after mechanical traction, in response to maneuvers with the cavitational ultrasonic surgical aspirator (CUSA), or both. Results Data from 12 patients were analyzed. Three lesions were encountered in the cervical and 7 in the thoracic spinal cord. Two patients had lesions of the cervicomedullary junction and upper spinal cord. Intraoperative MEP changes were noted in half of the patients. In these cases, normal polyphasic signals converted to biphasic signals, and these changes correlated with a loss of 1–2 grades in motor strength. One patient lost MEP signals completely and recovered strength to MRC Grade 4/5. The 2 patients with high cervical lesions showed neither intraoperative MEP changes nor motor deficits postoperatively. Dorsal columns were mapped in 7 patients, and the midline was determined accurately in all 7. Somatosensory evoked potentials were decreased in 7 patients. Two patients each had 2 SSEP decreases in response to traction intraoperatively but had no new sensory findings postoperatively. Another 2 patients had 3 traction-related SSEP decreases

  1. Intraoperative changes in transcranial motor evoked potentials and somatosensory evoked potentials predicting outcome in children with intramedullary spinal cord tumors.

    PubMed

    Cheng, Jason S; Ivan, Michael E; Stapleton, Christopher J; Quinones-Hinojosa, Alfredo; Gupta, Nalin; Auguste, Kurtis I

    2014-06-01

    Intraoperative dorsal column mapping, transcranial motor evoked potentials (TcMEPs), and somatosensory evoked potentials (SSEPs) have been used in adults to assist with the resection of intramedullary spinal cord tumors (IMSCTs) and to predict postoperative motor deficits. The authors sought to determine whether changes in MEP and SSEP waveforms would similarly predict postoperative motor deficits in children. The authors reviewed charts and intraoperative records for children who had undergone resection for IMSCTs as well as dorsal column mapping and TcMEP and SSEP monitoring. Motor evoked potential data were supplemented with electromyography data obtained using a Kartush microstimulator (Medtronic Inc.). Motor strength was graded using the Medical Research Council (MRC) scale during the preoperative, immediate postoperative, and follow-up periods. Reductions in SSEPs were documented after mechanical traction, in response to maneuvers with the cavitational ultrasonic surgical aspirator (CUSA), or both. Data from 12 patients were analyzed. Three lesions were encountered in the cervical and 7 in the thoracic spinal cord. Two patients had lesions of the cervicomedullary junction and upper spinal cord. Intraoperative MEP changes were noted in half of the patients. In these cases, normal polyphasic signals converted to biphasic signals, and these changes correlated with a loss of 1-2 grades in motor strength. One patient lost MEP signals completely and recovered strength to MRC Grade 4/5. The 2 patients with high cervical lesions showed neither intraoperative MEP changes nor motor deficits postoperatively. Dorsal columns were mapped in 7 patients, and the midline was determined accurately in all 7. Somatosensory evoked potentials were decreased in 7 patients. Two patients each had 2 SSEP decreases in response to traction intraoperatively but had no new sensory findings postoperatively. Another 2 patients had 3 traction-related SSEP decreases intraoperatively, and both

  2. One Year of Musical Training Affects Development of Auditory Cortical-Evoked Fields in Young Children

    ERIC Educational Resources Information Center

    Fujioka, Takako; Ross, Bernhard; Kakigi, Ryusuke; Pantev, Christo; Trainor, Laurel J.

    2006-01-01

    Auditory evoked responses to a violin tone and a noise-burst stimulus were recorded from 4- to 6-year-old children in four repeated measurements over a 1-year period using magnetoencephalography (MEG). Half of the subjects participated in musical lessons throughout the year; the other half had no music lessons. Auditory evoked magnetic fields…

  3. One Year of Musical Training Affects Development of Auditory Cortical-Evoked Fields in Young Children

    ERIC Educational Resources Information Center

    Fujioka, Takako; Ross, Bernhard; Kakigi, Ryusuke; Pantev, Christo; Trainor, Laurel J.

    2006-01-01

    Auditory evoked responses to a violin tone and a noise-burst stimulus were recorded from 4- to 6-year-old children in four repeated measurements over a 1-year period using magnetoencephalography (MEG). Half of the subjects participated in musical lessons throughout the year; the other half had no music lessons. Auditory evoked magnetic fields…

  4. Laser-evoked cortical responses in freely-moving rats reflect the activation of C-fibre afferent pathways

    PubMed Central

    Xia, X.L.; Peng, W.W.; Iannetti, G.D.; Hu, L.

    2016-01-01

    The limited success of translating basic animal findings into effective clinical treatments of pain can be partly ascribed to the use of sub-optimal models. Murine models of pain often consist in recording (1) threshold responses (like the tail-flick reflex) elicited by (2) non-nociceptive specific inputs in (3) anaesthetized animals. The direct cortical recording of laser-evoked potentials (LEPs) elicited by stimuli of graded energies in freely-moving rodents avoids these three important pitfalls, and has thus the potential of improving such translation. Murine LEPs are classically reported to consist of two distinct components, reflecting the activity of Aδ- and C-fibre afferent pathways. However, we have recently demonstrated that the so-called “Aδ-LEPs” in fact reflect the activation of the auditory system by laser-generated ultrasounds. Here we used ongoing white noise to avoid the confound represented by the early auditory response, and thereby comprehensively characterized the physiological properties of C-fibre LEPs recorded directly from the exposed surface of the rat brain. Stimulus–response functions indicated that response amplitude is positively related to the stimulus energy, as well as to nocifensive behavioral score. When displayed using average reference, murine LEPs consist of three distinct deflections, whose polarity, order, and topography are surprisingly similar to human LEPs. The scalp topography of the early N1 wave is somatotopically-organized, likely reflecting the activity of the primary somatosensory cortex, while topographies of the later N2 and P2 waves are more centrally distributed. These results indicate that recording LEPs in freely-moving rats is a valid model to improve the translation of animal results to human physiology and pathophysiology. PMID:26747747

  5. Band limited chirp stimulation in vestibular evoked myogenic potentials.

    PubMed

    Walther, Leif Erik; Cebulla, Mario

    2016-10-01

    Air conducted vestibular evoked myogenic potentials (VEMP) can be elicited by various low frequency and intense sound stimuli, mainly clicks or short tone bursts (STB). Chirp stimuli are increasingly used in diagnostic audiological evaluations as an effective means to obtain acoustically evoked responses in narrowed or extended frequency ranges. We hypothesized in this study that band limited chirp stimulation, which covers the main sensitivity range of sound sensitive otolithic afferents (around 500 Hz), might be useful for application in cervical and ocular VEMP to air conduction. For this purpose we designed a chirp stimulus ranging 250-1000 Hz (up chirp). The chirp stimulus was delivered with a stimulus intensity of 100 dB nHL in normal subjects (n = 10) and patients with otolith involvement (vestibular neuritis) (n = 6). Amplitudes of the designed chirp ("CW-VEMP-chirp, 250-1000 Hz") were compared with amplitudes of VEMPs evoked by click stimuli (0.1 ms) and a short tone burst (STB, 1-2-1, 8 ms, 500 Hz). CVEMPs and oVEMPs were detectable in 9 of 10 normal individuals. Statistical evaluation in healthy patients revealed significantly larger cVEMP and oVEMP amplitudes for CW-VEMP-chirp (250-1000 Hz) stimuli. CVEMP amplitudes evoked by CW-VEMP-chirp (250-1000 Hz) showed a high stability in comparison with click and STB stimulation. CW-VEMP-chirp (250-1000 Hz) showed abnormal cVEMP and oVEMP amplitudes in patients with vestibular neuritis, with the same properties as click and STB stimulated VEMPs. We conclude that the designed CW-VEMP-chirp (250-1000 Hz) is an effective stimulus which can be further used in VEMP diagnostic. Since a chirp stimulus can be easily varied in its properties, in particular with regard to frequency, this might be a promising tool for further investigations.

  6. Middle Latency Auditory Evoked Potential (MLAEP) in Workers with and without Tinnitus who are Exposed to Occupational Noise

    PubMed Central

    dos Santos Filha, Valdete Alves Valentins; Samelli, Alessandra Giannella; Matas, Carla Gentile

    2015-01-01

    Background Tinnitus is an important occupational health concern, but few studies have focused on the central auditory pathways of workers with a history of occupational noise exposure. Thus, we analyzed the central auditory pathways of workers with a history of occupational noise exposure who had normal hearing threshold, and compared middle latency auditory evoked potential in those with and without noise-induced tinnitus. Material/Methods Sixty individuals (30 with and 30 without tinnitus) underwent the following procedures: anamnesis, immittance measures, pure-tone air conduction thresholds at all frequencies between 0.25–8 kHz, and middle latency auditory evoked potentials. Results Quantitative analysis of latencies and amplitudes of middle latency auditory evoked potential showed no significant differences between the groups with and without tinnitus. In the qualitative analysis, we found that both groups showed increased middle latency auditory evoked potential latencies. The study group had more alterations of the “both” type regarding the Na-Pa amplitude, while the control group had more “electrode effect” alterations, but these alterations were not significantly different when compared to controls. Conclusions Individuals with normal hearing with or without tinnitus who are exposed to occupational noise have altered middle latency auditory evoked potential, suggesting impairment of the auditory pathways in cortical and subcortical regions. Although differences did not reach significance, individuals with tinnitus seemed to have more abnormalities in components of the middle latency auditory evoked potential when compared to individuals without tinnitus, suggesting alterations in the generation and transmission of neuroelectrical impulses along the auditory pathway. PMID:26358094

  7. Automatic denoising of single-trial evoked potentials.

    PubMed

    Ahmadi, Maryam; Quian Quiroga, Rodrigo

    2013-02-01

    We present an automatic denoising method based on the wavelet transform to obtain single trial evoked potentials. The method is based on the inter- and intra-scale variability of the wavelet coefficients and their deviations from baseline values. The performance of the method is tested with simulated event related potentials (ERPs) and with real visual and auditory ERPs. For the simulated data the presented method gives a significant improvement in the observation of single trial ERPs as well as in the estimation of their amplitudes and latencies, in comparison with a standard denoising technique (Donoho's thresholding) and in comparison with the noisy single trials. For the real data, the proposed method largely filters the spontaneous EEG activity, thus helping the identification of single trial visual and auditory ERPs. The proposed method provides a simple, automatic and fast tool that allows the study of single trial responses and their correlations with behavior.

  8. Automatic Parametrization of Somatosensory Evoked Potentials With Chirp Modeling.

    PubMed

    Vayrynen, Eero; Noponen, Kai; Vipin, Ashwati; Thow, X Y; Al-Nashash, Hasan; Kortelainen, Jukka; All, Angelo

    2016-09-01

    In this paper, an approach using polynomial phase chirp signals to model somatosensory evoked potentials (SEPs) is proposed. SEP waveforms are assumed as impulses undergoing group velocity dispersion while propagating along a multipath neural connection. Mathematical analysis of pulse dispersion resulting in chirp signals is performed. An automatic parameterization of SEPs is proposed using chirp models. A Particle Swarm Optimization algorithm is used to optimize the model parameters. Features describing the latencies and amplitudes of SEPs are automatically derived. A rat model is then used to evaluate the automatic parameterization of SEPs in two experimental cases, i.e., anesthesia level and spinal cord injury (SCI). Experimental results show that chirp-based model parameters and the derived SEP features are significant in describing both anesthesia level and SCI changes. The proposed automatic optimization based approach for extracting chirp parameters offers potential for detailed SEP analysis in future studies. The method implementation in Matlab technical computing language is provided online.

  9. Visual evoked potentials, heart rate responses and memory to emotional pictorial stimuli.

    PubMed

    Palomba, D; Angrilli, A; Mini, A

    1997-07-01

    Although the effects of emotional stimuli on event-related cortical potentials, heart rate, and memory have been extensively studied, the association of these variables in a single study has been neglected. The influence of pleasant, unpleasant, and neutral photographic slides on visual evoked potentials (VEPs), heart rate responses, and free recall, was investigated in 20 normal subjects. VEPs were recorded from Cz and Pz locations, and analyses were performed on both amplitudes and latencies of identifiable endogenous peaks (P2, N2 and P3), and mean amplitude in the 100-200-ms, 400-600-ms, and 600-900-ms latency ranges. An emotional effect was present on VEPs starting from about 282 ms on, as revealed by the N2, P3, and late components. Both pleasant and unpleasant slides yielded larger cortical positivity as compared to neutral ones. Peak latencies did not show any emotional effect. Heart rate data showed a deceleratory response that was larger to unpleasant slides. Free recall of the projected slides showed a better performance for emotional slides compared to neutral ones. VEPs and memory data showed the same pattern: both pleasant and unpleasant slides induced larger positivity in the event-related potentials and were better remembered than neutral slides. Positive correlations were found between the late negative VEPs component (600-900 ms), recorded from Cz, and heart rate deceleration (r = 0.62), and between P3 (at Pz location) and the number of remembered slides (r = 0.53).

  10. Are hormones psychoactive? Evoked potential investigations in man.

    PubMed

    Saletu, B; Saletu, M; Herrmann, W M; Itil, T M

    1975-08-01

    The somatosensory evoked potential (SEP) of physically and mentally healthy male subjects was recorded before as well as 4 hours after administration of one single dose of placebo, cyproterone acetate (an antiandrogen), and mesterolone (an androgen). Quantitative evaluation of drug-induced changes in SEP latencies and amplitudes, which, when plotted in terms of t-values, result in the so-called "SEP profiles", did not demonstrate any significant alterations after placebo. Contrary to this, cyproterone acetate induced systematic and significant changes characterized by a latency increase in the early peaks and latency decrease in the late peaks of the SEP. Apart from the non-significant amplitude changes, such alterations were previously described by us as typical for drugs of the anxiolytic class. Mesterolone on the other hand, produced a significant latency decrease in the early part and a latency increase in the late part of the evoked response which was found to be typical for the SEP profiles of tricyclic antidepressants. The amplitude did not show any systematic changes. Based on step-wise discriminant analysis of these data we could significantly differentiate both hormones from placebo as well as from each other. A comparative analysis of low and high doses did not yield any significant differences between the two levels. It was concluded that both test substances have psychoactive properties; whereas cyproterone acetate reveals anxiolytic qualities, mesterolone exhibits antidepressant ones. These findings are discussed from the clinical as well as from the neurophysiological point of view.

  11. Maximally reliable spatial filtering of steady state visual evoked potentials.

    PubMed

    Dmochowski, Jacek P; Greaves, Alex S; Norcia, Anthony M

    2015-04-01

    Due to their high signal-to-noise ratio (SNR) and robustness to artifacts, steady state visual evoked potentials (SSVEPs) are a popular technique for studying neural processing in the human visual system. SSVEPs are conventionally analyzed at individual electrodes or linear combinations of electrodes which maximize some variant of the SNR. Here we exploit the fundamental assumption of evoked responses--reproducibility across trials--to develop a technique that extracts a small number of high SNR, maximally reliable SSVEP components. This novel spatial filtering method operates on an array of Fourier coefficients and projects the data into a low-dimensional space in which the trial-to-trial spectral covariance is maximized. When applied to two sample data sets, the resulting technique recovers physiologically plausible components (i.e., the recovered topographies match the lead fields of the underlying sources) while drastically reducing the dimensionality of the data (i.e., more than 90% of the trial-to-trial reliability is captured in the first four components). Moreover, the proposed technique achieves a higher SNR than that of the single-best electrode or the Principal Components. We provide a freely-available MATLAB implementation of the proposed technique, herein termed "Reliable Components Analysis".

  12. Vestibular evoked myogenic potentials: past, present and future.

    PubMed

    Rosengren, S M; Welgampola, M S; Colebatch, J G

    2010-05-01

    Since the first description of sound-evoked short-latency myogenic reflexes recorded from neck muscles, vestibular evoked myogenic potentials (VEMPs) have become an important part of the neuro-otological test battery. VEMPs provide a means of assessing otolith function: stimulation of the vestibular system with air-conducted sound activates predominantly saccular afferents, while bone-conducted vibration activates a combination of saccular and utricular afferents. The conventional method for recording the VEMP involves measuring electromyographic (EMG) activity from surface electrodes placed over the tonically-activated sternocleidomastoid (SCM) muscles. The "cervical VEMP" (cVEMP) is thus a manifestation of the vestibulo-collic reflex. However, recent research has shown that VEMPs can also be recorded from the extraocular muscles using surface electrodes placed near the eyes. These "ocular VEMPs" (oVEMPs) are a manifestation of the vestibulo-ocular reflex. Here we describe the historical development and neurophysiological properties of the cVEMP and oVEMP and provide recommendations for recording both reflexes. While the cVEMP has documented diagnostic utility in many disorders affecting vestibular function, relatively little is known as yet about the clinical value of the oVEMP. We therefore outline the known cVEMP and oVEMP characteristics in common central and peripheral disorders encountered in neuro-otology clinics.

  13. Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour.

    PubMed

    Pascoli, Vincent; Turiault, Marc; Lüscher, Christian

    2011-12-07

    Drug-evoked synaptic plasticity is observed at many synapses and may underlie behavioural adaptations in addiction. Mechanistic investigations start with the identification of the molecular drug targets. Cocaine, for example, exerts its reinforcing and early neuroadaptive effects by inhibiting the dopamine transporter, thus causing a strong increase in mesolimbic dopamine. Among the many signalling pathways subsequently engaged, phosphorylation of the extracellular signal-regulated kinase (ERK) in the nucleus accumbens is of particular interest because it has been implicated in NMDA-receptor and type 1 dopamine (D1)-receptor-dependent synaptic potentiation as well as in several behavioural adaptations. A causal link between drug-evoked plasticity at identified synapses and behavioural adaptations, however, is missing, and the benefits of restoring baseline transmission have yet to be demonstrated. Here we find that cocaine potentiates excitatory transmission in D1-receptor-expressing medium-sized spiny neurons (D1R-MSNs) in mice via ERK signalling with a time course that parallels locomotor sensitization. Depotentiation of cortical nucleus accumbens inputs by optogenetic stimulation in vivo efficiently restored normal transmission and abolished cocaine-induced locomotor sensitization. These findings establish synaptic potentiation selectively in D1R-MSNs as a mechanism underlying a core component of addiction, probably by creating an imbalance between distinct populations of MSNs in the nucleus accumbens. Our data also provide proof of principle that reversal of cocaine-evoked synaptic plasticity can treat behavioural alterations caused by addictive drugs and may inspire novel therapeutic approaches involving deep brain stimulation or transcranial magnetic stimulation.

  14. [Correlation of evoked potentials in the frontal cortex and hippocampus of cats in emotional stress].

    PubMed

    Vanetsian, G L; Pavlova, I V

    2002-01-01

    Averaged auditory evoked potentials (AEPs) were recorded in symmetric points of the frontal cortex and dorsal hippocampus of cats performing acquired conditioned food-procuring reaction reinforced in 100% cases, urgent transition to 30%-reinforcement, and return to 100%-reinforcement. Emotional stress estimated by a heart rate rise developed during increased food motivation of a cat as well as during change in ordinary food-procuring stereotype. The emotional stress was accompanied by a high positive correlation of cortical and hippocampal AEPs. Decrease in the stress level led to a drop between AEP correlations and appearance of their negative values. In emotional stress, the interactions between the frontal cortex and dorsal hippocampus were asymmetric: right-side correlations were higher.

  15. Heart evoked potential triggers brain responses to natural affective scenes: A preliminary study.

    PubMed

    Couto, Blas; Adolfi, Federico; Velasquez, María; Mesow, Marie; Feinstein, Justin; Canales-Johnson, Andres; Mikulan, Ezequiel; Martínez-Pernía, David; Bekinschtein, Tristan; Sigman, Mariano; Manes, Facundo; Ibanez, Agustin

    2015-12-01

    The relationship between ongoing brain interoceptive signals and emotional processes has been addressed only indirectly through external stimulus-locked measures. In this study, an internal body trigger (heart evoked potential, HEP) was used to measure ongoing internally triggered signals during emotional states. We employed high-density electroencephalography (hd-EEG), source reconstruction analysis, and behavioral measures to assess healthy participants watching emotion-inducing video-clips (positive, negative, and neutral emotions). Results showed emotional modulation of the HEP at specific source-space nodes of the fronto-insulo-temporal networks related to affective-cognitive integration. This study is the first to assess the direct convergence among continuous triggers of viscerosensory cortical markers and emotion through dynamic stimuli presentation. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Effect of atropine on intracortical evoked potentials during classical aversive conditioning in cats.

    PubMed

    Molnár, M; Karmos, G; Csépe, V

    1988-12-01

    In this article, intracortical evoked potentials (EPs) were recorded simultaneously from six different depths of the auditory cortex of freely moving cats. The effect of (a) different states of vigilance and that of atropine, (b) classical aversive conditioning, and (c) the effect of atropine during conditioning was studied on the intracortical EP profiles. Atropine induced EP changes that were similar to those seen in slow wave sleep. During classical aversive conditioning signal stimuli elicited a middle-latency negative EP component which was localized to the superficial cortical layers. Atropine (2 mg/kg body weight) did not abolish the appearance of this component but only increased its latency. It is proposed that the cholinergic part of the ascending activating system did not play an essential role in its generation.

  17. Reciprocal facilitation of motor evoked potentials immediately before voluntary movements in Parkinson's disease.

    PubMed

    Imai, T; Yamamoto, T; Ohkubo, Y; Kashiwagi, M; Chiba, S; Matsumoto, H

    1999-06-01

    Changes of motor evoked potentials (MEPs) from the agonist and antagonist forearm muscles were investigated in 13 patients with Parkinson's disease and age-matched controls, in whom transcranial magnetic stimulation (TCMS) was delivered to the cortical hand motor area immediately before voluntary wrist flexion. MEPs recorded from the agonist muscles, namely the wrist flexors, were gradually facilitated in accordance with a shortening of the interval between TCMS and wrist flexion in both groups. In contrast, MEPs recorded from the antagonist muscles, namely the wrist extensors, were gradually facilitated as the intervals were shortened only in parkinsonian patients. The reciprocal facilitation of the antagonist MEPs was statistically significant when TCMS was delivered within 80 msec before the voluntary movements, suggesting the presence of the same underlying mechanism of symptomatic cocontraction observed in patients with Parkinson's disease.

  18. Linking perception to neural activity as measured by visual evoked potentials.

    PubMed

    Norcia, Anthony M

    2013-11-01

    Linking propositions have played an important role in refining our understanding of the relationship between neural activity and perception. Over the last 40 years, visual evoked potentials (VEPs) have been used in many different ways to address questions of the relationship between neural activity and perception. This review organizes and discusses this research within the linking proposition framework developed by Davida Teller, and her colleagues. A series of examples from the VEP literature illustrates each of the five classes of linking propositions originally proposed by Davida Teller. The related concept of the bridge locus-the site at which neural activity can be said to first be proscriptive of perception-is discussed and a suggestion is made that the concept be expanded to include an evolution over time and cortical area.

  19. ROLE OF NMDA, NICOTINIC, AND GABA RECEPTORS IN THE STEADY STATE VISUAL EVOKED POTENTIAL IN RATS.

    EPA Science Inventory

    This manuscript characterizes the receptor pathways involved in pattern-evoked potential generation in rats

    " NMDA and nicotinic acetylcholine receptors appear to be involved in the generation of the steady-state pattern evoked response in vivo.

    " The pattern evok...

  20. ROLE OF NMDA, NICOTINIC, AND GABA RECEPTORS IN THE STEADY STATE VISUAL EVOKED POTENTIAL IN RATS.

    EPA Science Inventory

    This manuscript characterizes the receptor pathways involved in pattern-evoked potential generation in rats

    " NMDA and nicotinic acetylcholine receptors appear to be involved in the generation of the steady-state pattern evoked response in vivo.

    " The pattern evok...

  1. Inhibition of Somatosensory Evoked Potentials During Different Modalities of Spinal Cord Stimulation: A Case Report.

    PubMed

    Buonocore, Michelangelo; Demartini, Laura

    2016-12-01

    Although the number of patients with chronic neuropathic pain treated by spinal cord stimulation (SCS) is continuously increasing, its analgesic mechanism remains to be elucidated. Previous studies have demonstrated that classical SCS (low stimulation frequency evoking paresthesia) inhibits the somatosensory evoked potentials (SEPs). We describe here the results of a series of SEPs recordings performed in a female patient with chronic pain, using four different types of SCS: the classical SCS (60 Hz, 250 μsec) and three paresthesia free SCS modalities: high frequency (10 kHz, 20 μsec) and two types of high-density SCS (500 Hz, 500 μsec and 200 Hz, 1000 μsec). All the tested SCS modalities completely inhibited the SEPs cortical responses, with an immediate recovery of the inhibition after turning the stimulator off. All the tested SCS modalities are able to inhibit SEPs and thus the lemniscal system. In particular, both paresthesia and paresthesia free SCS affect SEPs in the same manner. The presence of this inhibitory effect during paresthesia free modalities suggests that it is independent from the generation of action potentials, with a probable mechanism acting at the stimulation site. Further studies investigating the relationship between the inhibition of the lemniscal system and the analgesic effect of the SCS are, therefore, warranted. © 2016 International Neuromodulation Society.

  2. [Characteristic of the cognitive evoked potentials at elderly people with cognitive decline].

    PubMed

    Deryabina, I N; Dzhos, Yu S

    2017-01-01

    Results of research of cognitive visual evoked potentials at elderly women with various level of cognitive decline are shown in article. Both relevance of the early diagnostics of cognitive disorders and expedience of using of methods of functional neurovisualization to reveal higher cortical dysfunctions are shown also. To appraise cognitive functions we applied express-method of evaluating of cognitive functions during normal aging. According to results of this test two groups were created: the 1st - women without cognitive disorders, the 2nd - with mild cognitive impairment. The evoked potentials were registered for all participants with using of 128-channel system GES-300. Latency of P300-wave and reaction time were calculated. According to temporary characteristics of P300-wave it has been revealed that the group with cognitive decline differed in longer latent period in centro-temporo-parietal area of the left hemisphere, and also longer reaction time. However, latency of P300 in central-parietal areas of the right hemisphere was less than one at persons of the control group. These changes reflect dysfunction of structures of a medial temporal lobe which is expressed mainly by the memory disorders.

  3. Single-trial detection of somatosensory evoked potentials by probabilistic independent component analysis and wavelet filtering.

    PubMed

    Hu, L; Zhang, Z G; Hung, Y S; Luk, K D K; Iannetti, G D; Hu, Y

    2011-07-01

    To develop an effective approach for enhancing the signal-to-noise ratio (SNR) and identifying single-trial short-latency somatosensory evoked potentials (SEPs) from multi-channel electroencephalography (EEG). 128-channel SEPs elicited by electrical stimuli of the left posterior tibial nerve were recorded from 11 healthy subjects. Probabilistic independent component analysis (PICA) was used as a spatial filter to isolate SEP-related independent components (ICs), and wavelet filtering was used as a time-frequency filter to further enhance the SNR of single-trial SEPs. SEP-related ICs, identified using PICA, showed typical patterns of cortical SEP complex (P39-N50-P60) and scalp topography (centrally distributed with the spatial peak located near vertex). In addition, wavelet filtering significantly enhanced the SNR of single-trial SEPs (p=0.001). Combining PICA and wavelet filtering offers a space-time-frequency filter that can be used to enhance the SNR of single-trial SEPs greatly, thus providing a reliable estimation of single-trial SEPs. This method can be used to detect single-trial SEPs and other types of evoked potentials (EPs) in various sensory modalities, thus facilitating the exploration of single-trial dynamics between EPs, behavioural variables (e.g., intensity of perception), as well as abnormalities in intraoperative neurophysiological monitoring. Copyright © 2011 International Federation of Clinical Neurophysiology. All rights reserved.

  4. Modeling neural correlates of auditory attention in evoked potentials using corticothalamic feedback dynamics.

    PubMed

    Trenado, Carlos; Haab, Lars; Strauss, Daniel J

    2007-01-01

    Auditory evoked cortical potentials (AECP) are well established as diagnostic tool in audiology and gain more and more impact in experimental neuropsychology, neuro-science, and psychiatry, e.g., for the attention deficit disorder, schizophrenia, or for studying the tinnitus decompensation. The modulation of AECP due to exogenous and endogenous attention plays a major role in many clinical applications and has experimentally been studied in neuropsychology. However the relation of corticothalamic feedback dynamics to focal and non-focal attention and its large-scale effect reflected in AECPs is far from being understood. In this paper, we model neural correlates of auditory attention reflected in AECPs using corticothalamic feedback dynamics. We present a mapping of a recently developed multiscale model of evoked potentials to the hearing path and discuss for the first time its neurofunctionality in terms of corticothalamic feedback loops related to focal and non-focal attention. Our model reinforced recent experimental results related to online attention monitoring using AECPs with application as objective tinnitus decompensation measure. It is concluded that our model presents a promising approach to gain a deeper understanding of the neurodynamics of auditory attention and might be use as an efficient forward model to reinforce hypotheses that are obtained from experimental paradigms involving AECPs.

  5. Topography of Synchronization of Somatosensory Evoked Potentials Elicited by Stimulation of the Sciatic Nerve in Rat

    PubMed Central

    Qu, Xuefeng; Yan, Jiaqing; Li, Xiaoli; Zhang, Peixun; Liu, Xianzeng

    2016-01-01

    Purpose: Traditionally, the topography of somatosensory evoked potentials (SEPs) is generated based on amplitude and latency. However, this operation focuses on the physical morphology and field potential-power, so it suffers from difficulties in performing identification in an objective manner. In this study, measurement of the synchronization of SEPs is proposed as a method to explore brain functional networks as well as the plasticity after peripheral nerve injury. Method: SEPs elicited by unilateral sciatic nerve stimulation in twelve adult male Sprague-Dawley (SD) rats in the normal group were compared with SEPs evoked after unilateral sciatic nerve hemisection in four peripheral nerve injured SD rats. The characterization of synchronized networks from SEPs was conducted using equal-time correlation, correlation matrix analysis, and comparison to randomized surrogate data. Eigenvalues of the correlation matrix were used to identify the clusters of functionally synchronized neuronal activity, and the participation index (PI) was calculated to indicate the involvement of each channel in the cluster. The PI value at the knee point of the PI histogram was used as a threshold to demarcate the cortical boundary. Results: Ten out of the twelve normal rats showed only one synchronized brain network. The remaining two normal rats showed one strong and one weak network. In the peripheral nerve injured group, only one synchronized brain network was found in each rat. In the normal group, all network shapes appear regular and the network is largely contained in the posterior cortex. In the injured group, the network shapes appear irregular, the network extends anteriorly and posteriorly, and the network area is significantly larger. There are considerable individual variations in the shape and location of the network after peripheral nerve injury. Conclusion: The proposed method can detect functional brain networks. Compared to the results of the traditional SEP

  6. Assessment of visual disability using visual evoked potentials

    PubMed Central

    2012-01-01

    Background The purpose of this study is to validate the use of visual evoked potential (VEP) to objectively quantify visual acuity in normal and amblyopic patients, and determine if it is possible to predict visual acuity in disability assessment to register visual pathway lesions. Methods A retrospective chart review was conducted of patients diagnosed with normal vision, unilateral amblyopia, optic neuritis, and visual disability who visited the university medical center for registration from March 2007 to October 2009. The study included 20 normal subjects (20 right eyes: 10 females, 10 males, ages 9–42 years), 18 unilateral amblyopic patients (18 amblyopic eyes, ages 19–36 years), 19 optic neuritis patients (19 eyes: ages 9–71 years), and 10 patients with visual disability having visual pathway lesions. Amplitude and latencies were analyzed and correlations with visual acuity (logMAR) were derived from 20 normal and 18 amblyopic subjects. Correlation of VEP amplitude and visual acuity (logMAR) of 19 optic neuritis patients confirmed relationships between visual acuity and amplitude. We calculated the objective visual acuity (logMAR) of 16 eyes from 10 patients to diagnose the presence or absence of visual disability using relations derived from 20 normal and 18 amblyopic eyes. Results Linear regression analyses between amplitude of pattern visual evoked potentials and visual acuity (logMAR) of 38 eyes from normal (right eyes) and amblyopic (amblyopic eyes) subjects were significant [y = −0.072x + 1.22, x: VEP amplitude, y: visual acuity (logMAR)]. There were no significant differences between visual acuity prediction values, which substituted amplitude values of 19 eyes with optic neuritis into function. We calculated the objective visual acuity of 16 eyes of 10 patients to diagnose the presence or absence of visual disability using relations of y = −0.072x + 1.22 (−0.072). This resulted in a prediction reference of visual

  7. Cortical membrane potential signature of optimal states for sensory signal detection

    PubMed Central

    McGinley, Matthew J.; David, Stephen V.; McCormick, David A.

    2015-01-01

    The neural correlates of optimal states for signal detection task performance are largely unknown. One hypothesis holds that optimal states exhibit tonically depolarized cortical neurons with enhanced spiking activity, such as occur during movement. We recorded membrane potentials of auditory cortical neurons in mice trained on a challenging tone-in-noise detection task while assessing arousal with simultaneous pupillometry and hippocampal recordings. Arousal measures accurately predicted multiple modes of membrane potential activity, including: rhythmic slow oscillations at low arousal, stable hyperpolarization at intermediate arousal, and depolarization during phasic or tonic periods of hyper-arousal. Walking always occurred during hyper-arousal. Optimal signal detection behavior and sound-evoked responses, at both sub-threshold and spiking levels, occurred at intermediate arousal when pre-decision membrane potentials were stably hyperpolarized. These results reveal a cortical physiological signature of the classically-observed inverted-U relationship between task performance and arousal, and that optimal detection exhibits enhanced sensory-evoked responses and reduced background synaptic activity. PMID:26074005

  8. Effects of propofol, sevoflurane, remifentanil, and (S)-ketamine in subanesthetic concentrations on visceral and somatosensory pain-evoked potentials.

    PubMed

    Untergehrer, Gisela; Jordan, Denis; Eyl, Sebastian; Schneider, Gerhard

    2013-02-01

    Although electroencephalographic parameters and auditory evoked potentials (AEP) reflect the hypnotic component of anesthesia, there is currently no specific and mechanism-based monitoring tool for anesthesia-induced blockade of nociceptive inputs. The aim of this study was to assess visceral pain-evoked potentials (VPEP) and contact heat-evoked potentials (CHEP) as electroencephalographic indicators of drug-induced changes of visceral and somatosensory pain. Additionally, AEP and electroencephalographic permutation entropy were used to evaluate sedative components of the applied drugs. In a study enrolling 60 volunteers, VPEP, CHEP (amplitude N2-P1), and AEP (latency Nb, amplitude Pa-Nb) were recorded without drug application and at two subanesthetic concentration levels of propofol, sevoflurane, remifentanil, or (s)-ketamine. Drug-induced changes of evoked potentials were analyzed. VPEP were generated by electric stimuli using bipolar electrodes positioned in the distal esophagus. For CHEP, heat pulses were given to the medial aspect of the right forearm using a CHEP stimulator. In addition to AEP, electroencephalographic permutation entropy was used to indicate level of sedation. With increasing concentrations of propofol, sevoflurane, remifentanil, and (s)-ketamine, VPEP and CHEP N2-P1 amplitudes decreased. AEP and electroencephalographic permutation entropy showed neither clinically relevant nor statistically significant suppression of cortical activity during drug application. Decreasing VPEP and CHEP amplitudes under subanesthetic concentrations of propofol, sevoflurane, remifentanil, and (s)-ketamine indicate suppressive drug effects. These effects seem to be specific for analgesia.

  9. The visual evoked potential in acute primary angle closure glaucoma.

    PubMed Central

    Mitchell, K. W.; Wood, C. M.; Howe, J. W.; Church, W. H.; Smith, G. T.; Spencer, S. R.

    1989-01-01

    Visual evoked potentials (VEPs) were elicited from 29 patients who had experienced a previous attack of acute primary angle closure glaucoma. The VEPs were shown to be abnormal in at least one of the measures (latency, amplitude, contrast threshold, or slope) in 72.4% of affected eyes, whereas only 41.4% indicated obvious optic nerve damage. It is notable that 48.1% of fellow eyes with no (known) history of acute pressure rise also showed some form of VEP abnormality. The possible pathophysiological mechanisms operating in both affected and fellow eyes are discussed. It is concluded that, despite the presence of possible artefactual influences, the results probably reflect the presence of primary angle closure glaucoma. PMID:2751978

  10. Psychiatric vulnerability, monoamine oxidase, and the average evoked potential.

    PubMed

    Haier, R J; Buchsbaum, M S; Murphy, D L; Gottesman, I I; Coursey, R D

    1980-03-01

    College students in two separate studies had platelet monoamine oxidase (MAO) activity determinations and average evoked potential (AEP) measurements taken. On the basis of Minnesota Muliphasic Personality Inventory (MMPI) or Research Diagnostic Criteria (RDC) evaluations, psychopathology, particularly affective disorder, was found to be more prevalent among both persons with the combination of low MAO activity and AEP augmenting and those with high MAO activity and AEP reducing. The same pattern is apparent whether students were selected for extremely high or low MAO activity (study 1) or for elevated or normal MMPI scores (study 2). Some psychiatric patient groups also show this pattern. An interactive model of sensation-seeking and sensory inhibition is presented.

  11. Visual evoked potentials and selective attention to points in space

    NASA Technical Reports Server (NTRS)

    Van Voorhis, S.; Hillyard, S. A.

    1977-01-01

    Visual evoked potentials (VEPs) were recorded to sequences of flashes delivered to the right and left visual fields while subjects responded promptly to designated stimuli in one field at a time (focused attention), in both fields at once (divided attention), or to neither field (passive). Three stimulus schedules were used: the first was a replication of a previous study (Eason, Harter, and White, 1969) where left- and right-field flashes were delivered quasi-independently, while in the other two the flashes were delivered to the two fields in random order (Bernoulli sequence). VEPs to attended-field stimuli were enhanced at both occipital (O2) and central (Cz) recording sites under all stimulus sequences, but different components were affected at the two scalp sites. It was suggested that the VEP at O2 may reflect modality-specific processing events, while the response at Cz, like its auditory homologue, may index more general aspects of selective attention.

  12. Spatial coincidence modulates interaction between visual and somatosensory evoked potentials.

    PubMed

    Schürmann, Martin; Kolev, Vasil; Menzel, Kristina; Yordanova, Juliana

    2002-05-07

    The time course of interaction between concurrently applied visual and somatosensory stimulation with respect to evoked potentials (EPs) was studied. Visual stimuli, either in the left or right hemifield, and electric stimuli to the left wrist were delivered either alone or simultaneously. Visual and somatosensory EPs were summed and compared to bimodal EPs (BiEP, response to actual combination of both modalities). Temporal coincidence of stimuli lead to sub-additive or over-additive amplitudes in BiEPs in several time windows between 75 and 275 ms. Additional effects of spatial coincidence (left wrist with left hemifield) were found between 75 and 300 ms and beyond 450 ms. These interaction effects hint at a temporo-spatial pattern of multiple brain areas participating in the process of multimodal integration.

  13. [Lateralization in dissociated vertical deviation with flash visual evoked potentials].

    PubMed

    Suwa, K; Yagasaki, T; Awaya, S

    1996-08-01

    Lateralization, suggesting misrouting of optic nerve fibers in albinism, was examined by the flash visual evoked potentials (flash VEP) test in dissociated vertical deviation (DVD). Eighteen cases of DVD were studied and compared with 5 cases of X-recessive ocular albinism and 4 normal controls. Full-field monocular and binocular stimulation was employed with electroencepharograph electrodes on O1 and O2 (10/20 system), and the latency of P100 was statistically analysed with two-way analysis of variance. The difference in the P100 latency between contralateral and ipsilateral stimulation was significant (p < 0.05) in albinism, but not in DVD and normal controls. Therefore, DVD is probably not associated with misrouting of optic nerve fibers.

  14. Visual evoked potentials in neuromyelitis optica and its spectrum disorders.

    PubMed

    Ringelstein, Marius; Kleiter, Ingo; Ayzenberg, Ilya; Borisow, Nadja; Paul, Friedemann; Ruprecht, Klemens; Kraemer, Markus; Cohn, Eva; Wildemann, Brigitte; Jarius, Sven; Hartung, Hans-Peter; Aktas, Orhan; Albrecht, Philipp

    2014-04-01

    Optic neuritis (ON) is a key feature of neuromyelitis optica (NMO). Recently, NMO patients of predominantly Afro-Brazilian origin were evaluated by visual evoked potentials (VEPs) and showed marked amplitude reductions. Here, we analyzed VEPs in a predominantly Caucasian cohort, consisting of 43 patients with definite NMO, 18 with anti-aquaporin (AQP) 4 antibody-seropositive NMO spectrum disorders and 61 matched healthy controls. We found reduced amplitudes in only 12.3%, prolonged latencies in 41.9% and a lack of response in 14.0% of NMO eyes. Delayed P100 latencies in eyes without prior ON suggested this was a subclinical affection. The data indicate heterogenous patterns in NMO, warranting further investigation.

  15. Visual evoked potentials and selective attention to points in space

    NASA Technical Reports Server (NTRS)

    Van Voorhis, S.; Hillyard, S. A.

    1977-01-01

    Visual evoked potentials (VEPs) were recorded to sequences of flashes delivered to the right and left visual fields while subjects responded promptly to designated stimuli in one field at a time (focused attention), in both fields at once (divided attention), or to neither field (passive). Three stimulus schedules were used: the first was a replication of a previous study (Eason, Harter, and White, 1969) where left- and right-field flashes were delivered quasi-independently, while in the other two the flashes were delivered to the two fields in random order (Bernoulli sequence). VEPs to attended-field stimuli were enhanced at both occipital (O2) and central (Cz) recording sites under all stimulus sequences, but different components were affected at the two scalp sites. It was suggested that the VEP at O2 may reflect modality-specific processing events, while the response at Cz, like its auditory homologue, may index more general aspects of selective attention.

  16. Identification of diagnostic evoked response potential segments in Alzheimer's disease.

    PubMed

    Benvenuto, James; Jin, Yi; Casale, Malcolm; Lynch, Gary; Granger, Richard

    2002-08-01

    Evoked response potentials (ERPs) to brief flashes of light were analyzed for constituent features that could be used to distinguish individuals with Alzheimer's disease (AD, n = 15) from matched control subjects (n = 17). Statistical k nearest-neighbor methods distinguished AD from control with a maximum sensitivity of 29% and false alarm rate of 12%. The comparable sensitivity/false-alarm values for a statistical projection pursuit method and an extended projection pursuit method, which selectively identify discriminative features for classification, were 75%/18% and 100%/6%, respectively. The results demonstrate that combinations of selected ERP time segments across different electrodes contain signal features that discriminate AD from control subjects with high sensitivity and specificity.

  17. Auditory Evoked Potential Response and Hearing Loss: A Review

    PubMed Central

    Paulraj, M. P; Subramaniam, Kamalraj; Yaccob, Sazali Bin; Adom, Abdul H. Bin; Hema, C. R

    2015-01-01

    Hypoacusis is the most prevalent sensory disability in the world and consequently, it can lead to impede speech in human beings. One best approach to tackle this issue is to conduct early and effective hearing screening test using Electroencephalogram (EEG). EEG based hearing threshold level determination is most suitable for persons who lack verbal communication and behavioral response to sound stimulation. Auditory evoked potential (AEP) is a type of EEG signal emanated from the brain scalp by an acoustical stimulus. The goal of this review is to assess the current state of knowledge in estimating the hearing threshold levels based on AEP response. AEP response reflects the auditory ability level of an individual. An intelligent hearing perception level system enables to examine and determine the functional integrity of the auditory system. Systematic evaluation of EEG based hearing perception level system predicting the hearing loss in newborns, infants and multiple handicaps will be a priority of interest for future research. PMID:25893012

  18. Transient visually evoked potentials to sinusoidal gratings in optic neuritis.

    PubMed Central

    Plant, G T

    1983-01-01

    Transient visually evoked potentials (VEPs) to sinusoidal gratings over a range of spatial frequencies have been recorded in cases of optic neuritis. The use of the response to pattern onset in addition to the response to pattern reversal extended the range to higher spatial frequencies by up to two octaves. There was an increase in VEP delay and a greater degree of discrimination from a control group at higher spatial frequencies. This finding is discussed in the light of previous reports of luminance and checkerboard VEPs in demyelinating optic nerve disease. An attempt is made to relate amplitude changes in various VEP components to contrast sensitivity measurements in this group of patients. PMID:6663312

  19. Brainstem auditory evoked potentials in cattle sedated with xylazine

    PubMed Central

    Arai, Shozo

    2008-01-01

    This study examined the effect of sedation with xylazine on the brainstem auditory evoked potentials (BAEP) of cattle to determine whether sedation causes differences in waveform configuration, peak latencies, interpeak latencies, measurement time of the average count (2000 responses), and clinical signs. There were no significant differences between the sedation and no-sedation groups in peak latency of any stimulus intensities. In the sedation group, the baselines of waveforms were comparatively stabilized. Those in the no-sedation group were unstable, however, because the measurement can be influenced by excessive muscle movement. The present findings suggest that clinically, it is useful to use a sedative when measuring BAEP in cattle to control excessive movement of the cattle without influencing the peak latencies. PMID:18505193

  20. Visual evoked potential findings in Behcet's disease without neurological manifestations.

    PubMed

    Anlar, Omer; Akdeniz, Necmettin; Tombul, Temel; Calka, Omer; Bilgili, Serap G

    2006-03-01

    Behçet's disease (BD) is a chronic, recurrent multisystem inflammatory disorder firstly described by Turkish dermatologist Dr. Hulusi Behçet in 1937. The classic triad consists of recurrent oral and genital ulcerations and uveitis. The article presents the value of visual evoked potential findings of a series of 44 patients with BD without neurological manifestations seen at the Medical Hospital in Neurology and Dermatology clinics over the past 8 years. The mean latency value of positive peak P100 in BD patients was significantly delayed compared to that of control subjects (patients's mean: 105.6 ms in right eye and 107.7 ms in left eye; control subject's mean: 101.4 ms in right eye and 101.7 ms in left eye).

  1. Aroused with heart: Modulation of heartbeat evoked potential by arousal induction and its oscillatory correlates

    PubMed Central

    Luft, Caroline Di Bernardi; Bhattacharya, Joydeep

    2015-01-01

    Recent studies showed that the visceral information is constantly processed by the brain, thereby potentially influencing cognition. One index of such process is the heartbeat evoked potential (HEP), an ERP component related to the cortical processing of the heartbeat. The HEP is sensitive to a number of factors such as motivation, attention, pain, which are associated with higher levels of arousal. However, the role of arousal and its associated brain oscillations on the HEP has not been characterized, yet it could underlie the previous findings. Here we analysed the effects of high- (HA) and low-arousal (LA) induction on the HEP. Further, we investigated the brain oscillations and their role in the HEP in response to HA and LA inductions. As compared to LA, HA was associated with a higher HEP and lower alpha oscillations. Interestingly, individual differences in the HEP modulation by arousal induction were correlated with alpha oscillations. In particular, participants with higher alpha power during the arousal inductions showed a larger HEP in response to HA compared to LA. In summary, we demonstrated that arousal induction affects the cortical processing of heartbeats; and that the alpha oscillations may modulate this effect. PMID:26503014

  2. Somatosensory evoked potentials predict neurolysis outcome in meralgia paraesthetica.

    PubMed

    Siu, Timothy L T; Chandran, K Nadana

    2004-01-01

    The role of somatosensory evoked potentials (SEP) in predicting the outcome of nerve entrapment syndrome following surgical release has not been fully verified. All patients included in our study had preoperative SEP recordings and had undergone neurolysis for treatment of meralgia paraesthetica by our senior author (KNC) between 1996 and 2000. The outcome of surgery was assessed 6 weeks after the procedure; follow up was continued at 3 month intervals if symptoms persisted. Telephone interviews were conducted to assess long-term results. Univariate and multivariate logistic regression analyses were used to establish the predictive value of side-to-side N1 and P1 latency differences in obtaining complete relief of symptoms following surgery. Twenty-four patients who had preoperative SEP recordings and had undergone neurolysis for meralgia paraesthetica were followed for 4.0 +/- 1.5 (SD) years. A prolonged side-to-side N1 latency difference (DeltaN1) was found to be significantly associated with complete relief of symptoms at about 6 weeks postoperatively, after adjustment for age, sex and duration of symptoms (OR, 1.75; CI, 1.03-2.96). Logistic regression identified a critical cut-off value of 8 ms (OR, 27.2; CI, 1.4-547.0). This association disappeared with longer follow up. Somatosensory evoked potentials provide significant data for prediction of good surgical outcome for meralgia paraesthetica. Re-evaluation of the diagnosis, adequate trial of conservative treatments and special attention to anomalous branches are recommended for patients with low preoperative DeltaN1 values.

  3. EEG, evoked potentials and pulsed Doppler in asphyxiated term infants.

    PubMed

    Julkunen, Mia K; Himanen, Sari-Leena; Eriksson, Kai; Janas, Martti; Luukkaala, Tiina; Tammela, Outi

    2014-09-01

    To evaluate electroencephalograms (EEG), evoked potentials (EPs) and Doppler findings in the cerebral arteries as predictors of a 1-year outcome in asphyxiated newborn infants. EEG and EPs (brain stem auditory (BAEP), somatosensory (SEP), visual (VEP) evoked potentials) were assessed in 30 asphyxiated and 30 healthy term infants during the first days (range 1-8). Cerebral blood flow velocities (CBFV) were measured from the cerebral arteries using pulsed Doppler at ∼24h of age. EEG, EPs, Doppler findings, symptoms of hypoxic ischemic encephalopathy (HIE) and their combination were evaluated in predicting a 1-year outcome. An abnormal EEG background predicted poor outcome in the asphyxia group with a sensitivity of 67% and 81% specificity, and an abnormal SEP with 75% and 79%, respectively. Combining increased systolic CBFV (mean+3SD) with abnormal EEG or SEP improved the specificity, but not the sensitivity. The predictive values of abnormal BAEP and VEP were poor. Normal EEG and SEP predicted good outcome in the asphyxia group with sensitivities from 79% to 81%. The combination of normal EEG, normal SEP and systolic CBFV<3SD predicted good outcome with a sensitivity of 74% and 100% specificity. Combining abnormal EEG or EPs findings with increased systolic CBFV did not improve prediction of a poor 1-year outcome of asphyxiated infants. Normal EEG and normal SEP combined with systolic CBFV<3SD at about 24 h can be valuable in the prediction of normal 1-year outcome. Combining systolic CBFV at 24 h with EEG and SEP examinations can be of use in the prediction of normal 1-year outcome among asphyxiated infants. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Noradrenergic antidepressants increase cortical dopamine: potential use in augmentation strategies.

    PubMed

    Masana, Mercè; Castañé, Anna; Santana, Noemí; Bortolozzi, Analía; Artigas, Francesc

    2012-09-01

    Most antidepressant treatments, based on serotonin (5-HT) and/or norepinephrine (NE) transporter blockade, show limited efficacy and slow onset of action, requiring the use of augmentation strategies. Here we report on a novel antidepressant strategy to selectively increase DA function in prefrontal cortex (PFC) without the potential tolerance problems associated to DA transporter blockade. This approach is based on previous observations indicating that extracellular DA in rat medial PFC (mPFC) - but not in nucleus accumbens (NAc) - arises from noradrenergic terminals and is sensitive to noradrenergic drugs. A low dose of reboxetine (3 mg/kg i.p.; NE reuptake inhibitor) non-significantly increased extracellular DA in mPFC. Interestingly, its combined administration with 5 mg/kg s.c. mirtazapine (non-selective α₂-adrenoceptor antagonist) increased extracellular DA in mPFC (264 ± 28%), but not in NAc. Extracellular NE (but not 5-HT) in mPFC was also enhanced by the combined treatment (472 ± 70%). Repeated (×3) reboxetine + mirtazapine administration produced a moderate additional increase in mPFC DA and markedly reduced the immobility time (-51%) in the forced-swim test. Neurochemical and behavioral effects of the reboxetine + mirtazapine combination persisted in rats pretreated with citalopram (3 mg/kg, s.c.), suggesting its potential usefulness to augment SSRI effects. In situ hybridization c-fos studies were performed to examine the brain areas involved in the above antidepressant-like effects, showing changes in c-fos expression in hippocampal and cortical areas. BDNF expression was also increased in the hippocampal formation. Overall, these results indicate a synergistic effect of the reboxetine + mirtazapine combination to increase DA and NE function in mPFC and to evoke robust antidepressant-like responses.

  5. A postsleep decline in auditory evoked potential amplitude reflects sleep homoeostasis

    PubMed Central

    Hulse, Brad K.; Landsness, Eric C.; Sarasso, Simone; Ferrarelli, Fabio; Guokas, Jeffrey J.; Wanger, Tim; Tononi, Giulio

    2011-01-01

    Objective It has been hypothesized that slow wave activity, a well established measure of sleep homeostasis that increases after waking and decreases after sleep, may reflect changes in cortical synaptic strength. If so, the amplitude of sensory evoked responses should also vary as a function of time awake and asleep in a way that reflects sleep homeostasis. Methods Using 256-channel, high-density electroencephalography (EEG) in 12 subjects, auditory evoked potentials (AEP) and spontaneous waking data were collected during wakefulness before and after sleep. Results The amplitudes of the N1 and P2 waves of the AEP were reduced after a night of sleep. In addition, the decline in N1 amplitude correlated with low-frequency EEG power during non-rapid eye movement sleep and spontaneous wakefulness, both homeostatically regulated measures of sleep need. Conclusion The decline in AEP amplitude after a night of sleep may reflect a homeostatic reduction in synaptic strength. Significance These findings provide further evidence for a connection between synaptic plasticity and sleep homeostasis. PMID:21420904

  6. Effects of grating spatial orientation on visual evoked potentials and contrast sensitivity in multiple sclerosis.

    PubMed

    Logi, F; Pellegrinetti, A; Bonfiglio, L; Baglini, O; Siciliano, G; Ludice, A; Sartucci, F

    2001-02-01

    Previous studies suggest a delay of pattern visual evoked potentials (PVEPs) in multiple sclerosis (MS) depending on grating orientation. We examined a group of 14 patients with definite MS recording PVEPs to vertical and horizontal grating and analysing latency and amplitude of P60, N70 and P100 waves. We evaluated contrast sensitivity (CS) to dark and bright bars of several spatial frequencies (SF). The aim was to evaluate the diagnostic value of evoked responses and CS in revealing involvement of cortical structures. PVEPs to 1 degrees cycle/degree (c/d) vertical bars were abnormal in 25% for P60, in 32% for N70 and in 36%, for P100; in 25%, 36% and 42% respectively at 4 c/d; as regards horizontal bars at 1 c/d we found alterations of P60, N70 and P100 in 11%, 19% and 27% respectively; at 4 c/d in 19%, 27%) and 35%. CS resulted more abnormal for vertical grating, with a maximum impairment for 3.7 c/d SF. We may conclude that the use of vertical grating in clinical routine is more reliable both for PVEPs and CS testing; in addition CS can be abnormal even with normal PVEPs: this could mean an early impairment of CS and provide useful indications about a subclinical involvement of visual cortex.

  7. [Motor cortex stimulation for post-stroke pain using neuronavigation and evoked potentials: report of 3 cases].

    PubMed

    Ito, Masaki; Kuroda, Satoshi; Takano, Kazuya; Maruichi, Katsuhiko; Chiba, Yasuhiro; Morimoto, Yuji; Iwasaki, Yoshinobu

    2006-09-01

    Although motor cortex stimulation (MCS) has been accepted as an effective therapeutic option for central pain, the efficacy of MCS widely varies among previous reports. In this report, we describe our recent trial for successful MCS in 3 patients with central pain due to cerebral stroke. Medical treatments were transiently effective, but gradually became ineffective in all of the cases. During surgery, the appropriate cortical target was determined by using neuronavigation, somatosensory evoked potential (SEP), and motor evoked potential (MEP). A flat, four-plate electrode was positioned on the dura mater parallel to the motor cortex. After surgery, pain almost resolved in 2 of 3 patients and markedly improved in another. The pain relief depended on their motor function. These findings strongly suggest that both patient selection and intraoperative monitoring for targeting the motor cortex are quite important for successful MCS, although further studies were essential.

  8. Recording Visual Evoked Potentials and Auditory Evoked P300 at 9.4T Static Magnetic Field

    PubMed Central

    Hahn, David; Boers, Frank; Shah, N. Jon

    2013-01-01

    Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP). Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4T were not different from those recorded at 0T. The amplitudes of ERPs were higher at 9.4T when compared to recordings at 0T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses. PMID:23650538

  9. Recording visual evoked potentials and auditory evoked P300 at 9.4T static magnetic field.

    PubMed

    Arrubla, Jorge; Neuner, Irene; Hahn, David; Boers, Frank; Shah, N Jon

    2013-01-01

    Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4 T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4 T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4 T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP). Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4 T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4 T were not different from those recorded at 0 T. The amplitudes of ERPs were higher at 9.4 T when compared to recordings at 0 T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses.

  10. Human evoked cortical activity to silent gaps in noise: effects of age, attention, and cortical processing speed.

    PubMed

    Harris, Kelly C; Wilson, Sara; Eckert, Mark A; Dubno, Judy R

    2012-01-01

    The goal of this study was to examine the degree to which age-related differences in early or automatic levels of auditory processing and attention-related processes explain age-related differences in auditory temporal processing. We hypothesized that age-related differences in attention and cognition compound age-related differences at automatic levels of processing, contributing to the robust age effects observed during challenging listening tasks. We examined age-related and individual differences in cortical event-related potential (ERP) amplitudes and latencies, processing speed, and gap detection from 25 younger and 25 older adults with normal hearing. ERPs were elicited by brief silent periods (gaps) in an otherwise continuous broadband noise and were measured under two listening conditions, passive and active. During passive listening, participants ignored the stimulus and read quietly. During active listening, participants button pressed each time they detected a gap. Gap detection (percent detected) was calculated for each gap duration during active listening (3, 6, 9, 12, and 15 msec). Processing speed was assessed using the Purdue Pegboard Test and the Connections Test. Repeated measures analyses of variance assessed effects of age on gap detection, processing speed, and ERP amplitudes and latencies. An "attention modulation" construct was created using linear regression to examine the effects of attention while controlling for age-related differences in auditory processing. Pearson correlation analyses assessed the extent to which attention modulation, ERPs, and processing speed predicted behavioral gap detection. Older adults had significantly poorer gap detection and slower processing speed than younger adults. Even after adjusting for poorer gap detection, the neurophysiological response to gap onset was atypical in older adults with reduced P2 amplitudes and virtually absent N2 responses. Moreover, individual differences in attention modulation of

  11. Human Evoked Cortical Activity to Silent Gaps in Noise: Effects of Age, Attention, and Cortical Processing Speed

    PubMed Central

    Harris, Kelly C.; Wilson, Sara; Eckert, Mark A.; Dubno, Judy R.

    2011-01-01

    Objectives The goal of this study was to examine the degree to which age-related differences in early or automatic levels of auditory processing and attention-related processes explain age-related differences in auditory temporal processing. We hypothesized that age-related differences in attention and cognition compound age-related differences at automatic levels of processing, contributing to the robust age effects observed during challenging listening tasks. Design We examined age-related and individual differences in cortical event-related potential (ERP) amplitudes and latencies, processing speed, and gap detection from twenty-five younger and twenty-five older adults with normal hearing. ERPs were elicited by brief silent periods (gaps) in an otherwise continuous broadband noise and were measured under two listening conditions, passive and active. During passive listening, participants ignored the stimulus and read quietly. During active listening, participants button pressed each time they detected a gap. Gap detection (percent detected) was calculated for each gap duration during active listening (3, 6, 9, 12 and 15 ms). Processing speed was assessed using the Purdue Pegboard test and the Connections Test. Repeated measures ANOVAs assessed effects of age on gap detection, processing speed, and ERP amplitudes and latencies. An “attention modulation” construct was created using linear regression to examine the effects of attention while controlling for age-related differences in auditory processing. Pearson correlation analyses assessed the extent to which attention modulation, ERPs, and processing speed predicted behavioral gap detection. Results: Older adults had significantly poorer gap detection and slower processing speed than younger adults. Even after adjusting for poorer gap detection, the neurophysiological response to gap onset was atypical in older adults with reduced P2 amplitudes and virtually absent N2 responses. Moreover, individual

  12. Promontory electrical stimulation to elicit vestibular evoked myogenic potentials (VEMPs).

    PubMed

    Park, Jonas J-H; Shen, Anmin; Westhofen, Martin

    2015-03-01

    Vestibular evoked myogenic potentials (VEMPs) provoked electrically at the promontory provide a feasible method to record vestibular responses in awake patients. Electrically evoked VEMP testing has been performed by galvanic stimulation at the mastoid so far. The present study examined an electrical stimulation mode close to the otolith organs at the promontory. Fourteen cochlear implant candidates who were planned for clinical routine promontory stimulation testing (PST) to assess auditory nerve function underwent promontory VEMP testing. After testing the cochlear nerve function during PST promontory cervical VEMPs (p-c-VEMPs) and promontory ocular VEMPs (p-o-VEMPs) were recorded during subsequent transtympanic electrical stimulation at the promontory. Promontory VEMP testing was well tolerated by the patients. Mean latencies for p-c-VEMPs were 10.30 ± 2.23 ms (p1) and 17.86 ± 3.83 ms (n1). Mean latencies for p-o-VEMPs were 7.64 ± 1.24 ms (n1) and 11.2 ± 1.81 ms (p1). The stimulation threshold level was measured at 0.15 ± 0.07 mA for p-c-VEMPs and at 0.19 ± 0.11 mA for p-o-VEMPs. The discomfort level was found to be at 0.78 ± 0.29 mA for p-c-VEMPs and at 0.69 ± 0.25 mA for p-oVEMPs. Mean p1-n1 amplitude in p-c-VEMPs was 124.78 ± 56.55 µV and p-o-VEMPs showed a mean n1-p1 amplitude of 30.94 ± 18.98 µV.

  13. Effect of imperceptible vibratory noise applied to wrist skin on fingertip touch evoked potentials – an EEG study

    PubMed Central

    Seo, Na Jin; Lakshminarayanan, Kishor; Bonilha, Leonardo; Lauer, Abigail W; Schmit, Brian D

    2015-01-01

    Random vibration applied to skin can change the sense of touch. Specifically, low amplitude white-noise vibration can improve fingertip touch perception. In fact, fingertip touch sensation can improve even when imperceptible random vibration is applied to other remote upper extremity areas such as wrist, dorsum of the hand, or forearm. As such, vibration can be used to manipulate sensory feedback and improve dexterity, particularly during neurological rehabilitation. Nonetheless, the neurological bases for remote vibration enhanced sensory feedback are yet poorly understood. This study examined how imperceptible random vibration applied to the wrist changes cortical activity for fingertip sensation. We measured somatosensory evoked potentials to assess peak-to-peak response to light touch of the index fingertip with applied wrist vibration versus without. We observed increased peak-to-peak somatosensory evoked potentials with wrist vibration, especially with increased amplitude of the later component for the somatosensory, motor, and premotor cortex with wrist vibration. These findings corroborate an enhanced cortical-level sensory response motivated by vibration. It is possible that the cortical modulation observed here is the result of the establishment of transient networks for improved perception. PMID:26603457

  14. A new role for evoked potentials in MS? Repurposing evoked potentials as biomarkers for clinical trials in MS.

    PubMed

    Hardmeier, Martin; Leocani, Letizia; Fuhr, Peter

    2017-09-01

    Evoked potentials (EP) characterize signal conduction in selected tracts of the central nervous system in a quantifiable way. Since alteration of signal conduction is the main mechanism of symptoms and signs in multiple sclerosis (MS), multimodal EP may serve as a representative measure of the functional impairment in MS. Moreover, EP have been shown to be predictive for disease course, and thus might help to select patient groups at high risk of progression for clinical trials. EP can detect deterioration, as well as improvement of impulse propagation, independently from the mechanism causing the change. Therefore, they are candidates for biomarkers with application in clinical phase-II trials. Applicability of EP in multicenter trials has been limited by different standards of registration and assessment.

  15. Applications of pain-related evoked potentials and short-latency somatosensory evoked potentials in acupuncture research: a narrative review.

    PubMed

    Lin, Chi; Ma, Liangxiao; Zhu, Shipeng; Hu, Nijuan; Wang, Pei; Zhang, Peng; Qi, Dandan; Hao, Jie; Li, Jing; Xin, Siyuan; Zhu, Jiang

    2015-10-01

    To review and discuss the Chinese and English literature on the use of pain-related evoked potentials (PREP) and short-latency somatosensory EP (SLSEP) in acupuncture research. China National Knowledge Infrastructure Database and MEDLINE were searched for the following key words: acupuncture and PREP or SLSEP. Thirty-seven articles were included in the review. Researchers usually use PREPs to study the analgesic effect of acupuncture, observe influential factors, or for mechanistic exploration. In the SLSEP studies, researchers focused on response characteristics of acupuncture, acupoint specificity, and influential factors of the treatment. There were some problems with the study design and conclusions. Researchers could use PREP and SLSEP to objectively validate the effects of acupuncture and explore its mechanisms using nerve electrophysiology. Further studies can benefit from observing more acupoints' effects using PREPs or SLSEPs and investigating the placebo effect of acupuncture.

  16. Evoked cortical activity and speech recognition as a function of the number of simulated cochlear implant channels

    PubMed Central

    Friesen, L.M; Tremblay, K.L.; Rohila, N.; Wright, R.A.; Shannon, R.V.; Başkent, D.; Rubinstein, J.T.

    2009-01-01

    Objectives 1) to determine if consonant-vowel-consonant (CVC) syllables from the Hillenbrand et al. [1995] test could be used to evoke cortical far field response patterns in humans, 2) to characterize the effects of cochlear implant-simulated channel number on the perception and physiological detection of these same CVC stimuli, and 3) to define the relationship between perception and the morphology of the physiological responses evoked by these speech stimuli. Methods Ten normal hearing monolingual English speaking adults were tested. Unprocessed CVC naturally spoken syllables, containing medial vowels, as well as processed versions (2, 4, 8, 12, and 16 spectral channels) were used for behavioral and physiological testing. Results 1) CVC stimuli evoked a series of overlapping P1-N1-P2 cortical responses. 2) Amplitude of P1-N1-P2 responses increased as neural conduction time (latency) decreased with increases in the number of spectral channels. Perception of the CVC stimuli improved with increasing number of spectral channels. 3) Coinciding changes in P1-N1-P2 morphology did not significantly correlate with changes in perception. Conclusions P1-N1-P2 responses can be recorded using CVC syllables and there is an effect of channel number on the latency and amplitude of these responses, as well as on vowel identification. However, the physiological detection of the acoustic changes does not fully account for the perceptual performance of these same syllables. Significance These results provide evidence that it is possible to use vocoded CVC stimuli to learn more about the physiological detection of acoustic changes contained within speech syllables, as well as to explore brain-behavior relationships. PMID:19250865

  17. Short-term food deprivation increases amplitudes of heartbeat-evoked potentials.

    PubMed

    Schulz, André; Ferreira de Sá, Diana S; Dierolf, Angelika M; Lutz, Annika; van Dyck, Zoé; Vögele, Claus; Schächinger, Hartmut

    2015-05-01

    Nutritional state (i.e., fasting or nonfasting) may affect the processing of interoceptive signals, but mechanisms underlying this effect remain unclear. We investigated 16 healthy women on two separate days: when satiated (standardized food intake) and after an 18-h food deprivation period. On both days, heartbeat-evoked potentials (HEPs) and cardiac and autonomic nervous system activation indices (heart rate, normalized low frequency heart rate variability [nLF HRV]) were assessed. The HEP is an EEG pattern that is considered an index of cortical representation of afferent cardiovascular signals. Average HEP activity (R wave +455-595 ms) was enhanced during food deprivation compared to normal food intake. Cardiac activation did not differ between nutritional conditions. Our results indicate that short-term food deprivation amplifies an electrophysiological correlate of the cortical representation of visceral-afferent signals originating from the cardiovascular system. This effect could not be attributed to increased cardiac activation, as estimated by heart rate and nLF HRV, after food deprivation. © 2014 Society for Psychophysiological Research.

  18. Modulation of visual evoked potentials by high-frequency repetitive transcranial magnetic stimulation in migraineurs.

    PubMed

    Omland, Petter M; Uglem, Martin; Engstrøm, Morten; Linde, Mattias; Hagen, Knut; Sand, Trond

    2014-10-01

    High-frequency repetitive transcranial magnetic stimulation (rTMS) modulates cortical excitability. We investigated its effect on visual evoked potentials (VEPs) in migraine. Thirty-two headache-free controls (CO), 25 interictal (MINT) and 7 preictal migraineurs (MPRE) remained after exclusions. VEPs to 8' and 65' checks were averaged in six blocks of 100 single responses. VEPs were recorded before, directly after and 25min after 10Hz rTMS. The study was blinded for diagnosis during recording and for diagnosis and block number during analysis. First block amplitudes and habituation (linear amplitude change over blocks) were analysed with repeated measures ANOVA. With 65' checks, N70-P100 habituation was reduced in MINT compared to CO after rTMS (p=0.013). With 8' checks, habituation was reduced in MPRE compared to MINT and CO after rTMS (p<0.016). No effects of rTMS on first block amplitudes were found. RTMS reduced habituation only in migraineurs, indicating increased responsivity to rTMS. The magnocellular visual subsystem may be affected interictally, while the parvocellular system may only be affected preictally. Migraineurs may have increased responsiveness to rTMS because of a cortical dysfunction that changes before a migraine attack. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Effects of narcotics, including morphine, on visual evoked potential in rats.

    PubMed

    Kuroda, Ken; Fujiwara, Akinori; Takeda, Yasuhiro; Kamei, Chiaki

    2009-01-14

    The side effects of narcotics, including morphine, on the visual system are still unclear; therefore, the present study was undertaken to examine the effects of narcotics on the visual system at each antinociceptive dose by using the evoked potential (VEP) in rats. Morphine (2 or 5 mg/kg) caused a significant increase in the amplitude of early and late VEP components (P(1)-N(1), N(1)-P(2), P(3)-N(3) and N(3)-P(4)). Fentanyl (0.02 mg/kg) also showed a significant increase in the amplitude of late VEP components (P(3)-N(3), N(3)-P(4)). The effects of morphine and fentanyl on VEP components were antagonized by naloxone (1 mg/kg). On the other hand, (+/-)-pentazocine (20 mg/kg) reduced the amplitude of the late VEP component (N(3)-P(4)), and this effect was not antagonized by naloxone. Butorphanol showed no significant changes in early and late VEP components. In conclusion, morphine stimulated the retino-geniculate-cortex pathway and the thalamus-cortical circuit through the opioid receptors, and fentanyl stimulated the thalamus-cortical circuit through the opioid receptors. It can therefore be assumed that VEP is a useful tool for examining the side effects of drugs, including narcotics, on the visual system.

  20. Skill-specific changes in somatosensory-evoked potentials and reaction times in baseball players.

    PubMed

    Yamashiro, Koya; Sato, Daisuke; Onishi, Hideaki; Yoshida, Takuya; Horiuchi, Yoko; Nakazawa, Sho; Maruyama, Atsuo

    2013-03-01

    Athletic training is known to induce neuroplastic alterations in specific somatosensory circuits, which are reflected by changes in short-latency somatosensory-evoked potentials (SEPs). The aim of this study is to clarify whether specific training in athletes affects the long-latency SEPs related to information processing of stimulation. The long-latency SEPs P100 and N140 were recorded at midline cortical electrode positions (Fz, Cz, and Pz) in response to stimulation of the index finger of the dominant hand in fifteen baseball players (baseball group) and in fifteen athletes in sports such as swimming, track and field events, and soccer (sports group) that do not require fine somatosensory discrimination or motor control of the hand. The long-latency SEPs were measured under a passive condition (no response required) and a reaction time (RT) condition in which subjects were instructed to rapidly push a button in response to stimulus presentation. The peak P100 and peak N140 latencies and RT were significantly shorter in the baseball group than the sports group. Moreover, there were significant positive correlations between RT and both the peak P100 and the peak N140 latencies. Specific athletic training regimens that involve the hand may induce neuroplastic alterations in the cortical hand representation areas playing a vital role in rapid sensory processing and initiation of motor responses.

  1. Quantification of task-dependent cortical activation evoked by robotic continuous wrist joint manipulation in chronic hemiparetic stroke.

    PubMed

    Vlaar, Martijn P; Solis-Escalante, Teodoro; Dewald, Julius P A; van Wegen, Erwin E H; Schouten, Alfred C; Kwakkel, Gert; van der Helm, Frans C T

    2017-04-17

    Cortical damage after stroke can drastically impair sensory and motor function of the upper limb, affecting the execution of activities of daily living and quality of life. Motor impairment after stroke has been thoroughly studied, however sensory impairment and its relation to movement control has received less attention. Integrity of the somatosensory system is essential for feedback control of human movement, and compromised integrity due to stroke has been linked to sensory impairment. The goal of this study is to assess the integrity of the somatosensory system in individuals with chronic hemiparetic stroke with different levels of sensory impairment, through a combination of robotic joint manipulation and high-density electroencephalogram (EEG). A robotic wrist manipulator applied continuous periodic disturbances to the affected limb, providing somatosensory (proprioceptive and tactile) stimulation while challenging task execution. The integrity of the somatosensory system was evaluated during passive and active tasks, defined as 'relaxed wrist' and 'maintaining 20% maximum wrist flexion', respectively. The evoked cortical responses in the EEG were quantified using the power in the averaged responses and their signal-to-noise ratio. Thirty individuals with chronic hemiparetic stroke and ten unimpaired individuals without stroke participated in this study. Participants with stroke were classified as having severe, mild, or no sensory impairment, based on the Erasmus modification of the Nottingham Sensory Assessment. Under passive conditions, wrist manipulation resulted in contralateral cortical responses in unimpaired and chronic stroke participants with mild and no sensory impairment. In participants with severe sensory impairment the cortical responses were strongly reduced in amplitude, which related to anatomical damage. Under active conditions, participants with mild sensory impairment showed reduced responses compared to the passive condition, whereas

  2. Vestibular evoked myogenic potentials (VEMPs) in central neurological disorders.

    PubMed

    Venhovens, J; Meulstee, J; Verhagen, W I M

    2016-01-01

    Several types of acoustic stimulation (i.e. tone bursts or clicks), bone-conducted vibration, forehead taps, and galvanic stimulation elicit myogenic potentials. These can be recorded in cervical and ocular muscles, the so called vestibular evoked myogenic potentials (VEMPs). The cervical VEMP (cVEMP) resembles the vestibulo-collic reflex and the responses can be recorded from the ipsilateral sternocleidomastoid muscle. The ocular VEMP resembles the vestibulo-ocular reflex and can be recorded from extra-ocular muscles by a surface electrode beneath the contralateral infraorbital margin. Initially, the literature concerning VEMPs was limited to peripheral vestibular disorders, however, the field of VEMP testing is rapidly expanding, with an increasing focus on central neurological disorders. The current literature concerning VEMP abnormalities in central neurological disorders is critically reviewed, especially regarding the methodological aspects in relation to quality as well as the clinical interpretation of the VEMP results. Suggestions for further research are proposed as well as some clinically useful indications. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Vestibular evoked myogenic potentials and habituation to seasickness.

    PubMed

    Tal, Dror; Hershkovitz, Dov; Kaminski-Graif, Gil; Wiener, Guy; Samuel, Orit; Shupak, Avi

    2013-12-01

    Seasickness may impose severe limitations on the performance of ships' crew. Cervical vestibular evoked myogenic potentials (cVEMP) assess the function of the saccule, the organ responsible for monitoring vertical linear acceleration, which has been found to be the most provocative motion stimulus in the evolution of motion sickness. We used the cVEMP test in a prospective evaluation of susceptibility and habituation to seasickness. Forty-six naval recruits underwent the cVEMP test before exposure to sea conditions. After 6 months' sailing experience, participants completed a questionnaire evaluating their initial and current seasickness severity. Based on their most recent experience, subjects were divided into three groups: non-vomiting non-habituating (NV-NH), vomiting (V), and non-vomiting habituating (NV-H). Statistically significant lower thresholds for cVEMP were found in subjects who habituated to sea conditions (NV-H), compared with those remaining severely susceptible (V) (77.0 dB HL vs. 84.9 dB HL; p<0.01). The ability to produce the cVEMP at lower thresholds represents a broader dynamic range, in which the reflex can respond to a wider array of stimuli amplitudes. The present study demonstrates the potential of the cVEMP test for predicting future habituation to seasickness. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Laser Evoked Potentials in Early and Presymptomatic Huntington's Disease

    PubMed Central

    de Tommaso, Marina; Franco, Giovanni; Ricci, Katia; Montemurno, Anna; Sciruicchio, Vittorio

    2016-01-01

    Pain was rarely studied in Huntington's disease (HD). We presently aimed to extend our previous study on pain pathways functions by laser evoked potentials (LEPs) to a larger cohort of early unmedicated HD patients and a small group of presymptomatic HD (PHD) subjects. Forty-two early HD patients, 10 PHD patients, and 64 controls were submitted to LEPs by right-hand stimulation. Two series of 30 laser stimuli were delivered, and artifact-free responses were averaged. The N1, N2, and P2 latencies were significantly increased and the N2P2 amplitude significantly reduced in HD patients compared to controls. In the HD group, the LEPs abnormalities correlated with functional decline. PHD subjects showed a slight and insignificant increase in LEPs latencies, which was inversely correlated with the possible age of HD clinical onset. Data of the present study seem to suggest that the functional state of nociceptive pathways as assessed by LEPs may be a potential biomarker of disease onset and progression. The assessment of pain symptoms in premanifest and manifest HD may also open a new scenario in terms of subtle disturbances of pain processing, which may have a role in the global burden of the disease. PMID:27087746

  5. Visual Evoked Potentials in Children Prenatally Exposed to Methylmercury

    PubMed Central

    Yorifuji, Takashi; Murata, Katsuyuki; Bjerve, Kristian S.; Choi, Anna L; Weihe, Pal; Grandjean, Philippe

    2013-01-01

    Prenatal exposure to methylmercury can cause both neurobehavioral deficits and neurophysiological changes. However, evidence of neurotoxic effects within the visual nervous system is inconsistent, possibly due to incomplete statistical adjustment for beneficial nutritional factors. We evaluated the effect of prenatal methylmercury exposure on visual evoked potential (VEP) latencies in Faroese children with elevated prenatal methylmercury exposure. A cohort of 182 singleton term births was assembled in the Faroe Islands during 1994–1995. At age 7 years, VEP tracings were obtained from 139 cohort subjects after exclusion of subjects with abnormal vision conditions. We used multiple regression analysis to evaluate the association of mercury concentrations in cord blood and maternal hair at parturition with VEP latencies after adjustment for potential confounders that included the cord-serum phospholipid concentration of n-3 polyunsaturated fatty acids (PUFAs) and the duration of breastfeeding. Unadjusted correlations between mercury exposure and VEP latencies were equivocal. Multiple regression models showed that increased mercury concentrations, especially in maternal hair, were associated with delayed latencies for VEP peak N145. After covariate adjustment, a delay of 2.22 ms (p=0.02) was seen for each doubling of the mercury concentration in maternal hair. In agreement with neuropsychological findings, the present study suggests that prenatal methylmercury exposure may have an adverse effect on VEP findings despite the absence of clinical toxicity to the visual system. However, this association was apparent only after adjustment for n-3 PUFA status. PMID:23548974

  6. Vestibular evoked myogenic potentials in patients with ankylosing spondylitis.

    PubMed

    Özgür, Abdulkadir; Serdaroğlu Beyazal, Münevver; Terzi, Suat; Coşkun, Zerrin Özergin; Dursun, Engin

    2016-10-01

    Ankylosing spondylitis (AS) is a chronic systemic inflammatory disease with unknown etiology. Although sacroiliac joint involvement is the classic sign along with the formed immune mediators, it may result in immune-mediated inner ear disease and may cause damage to the audiovestibular system. Vestibular evoked myogenic potentials (VEMP) is a clinical reflex test used in the diagnosis of vestibular diseases and is performed by recording and evaluating the muscle potentials resulting from the stimulation of the vestibular system with different stimuli. The aim of this study is to evaluate the cervical VEMP test results in AS patients without vestibular symptoms. Thirty-three patients with AS and a control group of 30 healthy volunteers with similar demographic characteristics were evaluated in the study. VEMP wave latency, P13-N23 wave amplitude, and VEMP asymmetry ratio (VAR) values were compared between the groups. The relationship between clinical and laboratory findings of the AS patients and VEMP data were also investigated. Compared with healthy people, this study shows the response rate of patients with ankylosing spondylitis was reduced in the VEMP test, and P13-N23 wave amplitude showed a decrease in AS patients who had VEMP response (p < 0.001). There was no correlation between the clinical and laboratory findings and VEMP findings in patients with ankylosing spondylitis. The data obtained from this study suggest that AS may lead to decreased sensitivity of the vestibular system.

  7. Vestibular evoked myogenic potential findings in multiple sclerosis.

    PubMed

    Escorihuela García, Vicente; Llópez Carratalá, Ignacio; Orts Alborch, Miguel; Marco Algarra, Jaime

    2013-01-01

    Multiple sclerosis is an inflammatory disease involving the occurrence of demyelinating, chronic neurodegenerative lesions in the central nervous system. We studied vestibular evoked myogenic potentials (VEMPs) in this pathology, to allow us to evaluate the saccule, inferior vestibular nerve and vestibular-spinal pathway non-invasively. There were 23 patients diagnosed with multiple sclerosis who underwent VEMP recordings, comparing our results with a control group consisting of 35 healthy subjects. We registered p13 and n23 wave latencies, interaural amplitude difference and asymmetry ratio between both ears. Subjects also underwent an otoscopy and audiometric examination. The prolongation of p13 and n23 wave latencies was the most notable characteristic, with a mean p13 wave latency of 19.53 milliseconds and a mean latency of 30.06 milliseconds for n23. In contrast, the asymmetry index showed no significant differences with our control group. In case of multiple sclerosis, the prolongation of the p13 and n23 VEMP wave latencies is a feature that has been attributed to slowing of conduction by demyelination of the vestibular-spinal pathway. In this regard, alteration of the response or lack thereof in these potentials has a locator value of injury to the lower brainstem. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  8. The frequency modulated auditory evoked response (FMAER), a technical advance for study of childhood language disorders: cortical source localization and selected case studies

    PubMed Central

    2013-01-01

    Background Language comprehension requires decoding of complex, rapidly changing speech streams. Detecting changes of frequency modulation (FM) within speech is hypothesized as essential for accurate phoneme detection, and thus, for spoken word comprehension. Despite past demonstration of FM auditory evoked response (FMAER) utility in language disorder investigations, it is seldom utilized clinically. This report's purpose is to facilitate clinical use by explaining analytic pitfalls, demonstrating sites of cortical origin, and illustrating potential utility. Results FMAERs collected from children with language disorders, including Developmental Dysphasia, Landau-Kleffner syndrome (LKS), and autism spectrum disorder (ASD) and also normal controls - utilizing multi-channel reference-free recordings assisted by discrete source analysis - provided demonstratrions of cortical origin and examples of clinical utility. Recordings from inpatient epileptics with indwelling cortical electrodes provided direct assessment of FMAER origin. The FMAER is shown to normally arise from bilateral posterior superior temporal gyri and immediate temporal lobe surround. Childhood language disorders associated with prominent receptive deficits demonstrate absent left or bilateral FMAER temporal lobe responses. When receptive language is spared, the FMAER may remain present bilaterally. Analyses based upon mastoid or ear reference electrodes are shown to result in erroneous conclusions. Serial FMAER studies may dynamically track status of underlying language processing in LKS. FMAERs in ASD with language impairment may be normal or abnormal. Cortical FMAERs can locate language cortex when conventional cortical stimulation does not. Conclusion The FMAER measures the processing by the superior temporal gyri and adjacent cortex of rapid frequency modulation within an auditory stream. Clinical disorders associated with receptive deficits are shown to demonstrate absent left or bilateral

  9. Cold-evoked potentials - Ready for clinical use?

    PubMed

    Hüllemann, P; Nerdal, A; Binder, A; Helfert, S; Reimer, M; Baron, R

    2016-11-01

    Cold-evoked potentials (CEPs) are known to assess the integrity of A-delta fibres and the spinothalamic tract. Nevertheless, the clinical value was not investigated previously. The aim of this study was to measure CEPs in 16 healthy subjects from the face, hand and foot sole and to investigate whether CEPs reliably detect A-delta fibre abnormalities. Swift cold stimuli were applied to the skin with a commercially available thermode, which cooled down from 30 to 25 °C in approximately 0.5 s. CEP latencies (N1, N2 and P2) and amplitudes (N1, N2/P2) were recorded with EEG. Reversible A-fibre function loss was induced by applying a selective A-fibre block at the superficial radial nerve. In all 16 subjects CEPs could be recorded from all locations; N2, P2 mean latencies were 276.4 ± 38.9 and 389.8 ± 52.5 (face), 318.6 ± 31.6 ms and 477.7 ± 43.6 (hand), and 627.6 ± 84.4 and 774.2 ± 94.0 (foot sole). N2/P2 amplitudes were 10.7 ± 4.1, 11.3 ± 4.1 and 7.5 ± 4.1 μV. During A-fibre block no CEPs were detectable in the grand average, which restored 10 min after block removal. CEPs were reliably recorded in healthy subjects at the hand, face and foot. Experimentally induced reversible A-delta fibre function loss was detected by CEPs. Functional recovery was assessed as well. This study is basis for further CEP evaluation studies and might be the first step for implementing CEPs in clinical routine for the early diagnosis of small-fibre disease. WHAT DOES THIS STUDY ADD?: Cold-evoked potentials are capable of reliably measuring A-delta fibre integrity, loss of function and functional recovery in healthy subjects, which is an essential prerequisite for diagnostic use in patients with small-fibre disease. © 2016 European Pain Federation - EFIC®.

  10. [Exogenous evoked potentials in adolesccents with muftiple sclerosis].

    PubMed

    Kroczka, Sławomir; Steczkowska, Małgorzata; Kaciński, Marek

    2016-01-01

    Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system. The disease usually affects young people, with a peak onset between the ages of 20 and 40, although it may also occur in early childhood. MS is one of the most common reasons of disability in young people. Aim of the study. The aim of the study was a neurophysiological characterisation of patients with relapsing-remitting MS (RRMS) eligible to receive an. In this study 23 patients have been included. According to initial symptoms two categories of patients were identified: in one group [group 1] (12123) there were patients with focal signs such as motor andlor sensory abnormalities while the second one [group 2] (11123) consisted of patients with retrobulbar optic neuritis. There were no significant differences in VEP latencies and amplitudes in both I and 2 group. In both groups a significant latency prolongation as well as P100 amplitude decrease has been observed in comparison to the control group. Furthermore, the study has shown that the average latencies of N75 and N135 in group 2 were prolongated when compared to the control group. In BAEP examination no statistically relevant differences have been observed between average latencies and interlatencies in group I and group 2 as well as between the two test groups and control group. In SSEP examination group I has demonstrated a substantial latency prolongation of P14, NIB and N20 when compared to the control group, and the same result for P14, N20, P25 and CCT has been detected in group 2. The average amplitudes of all waves in group I were insignificantly lower than in the control group. In group 2 an insignificant decrease of amplitudes P9 and P18 from the control group has been noticed. In contrast, P25 amplitude was significantly lower. I. Visual evoked potentials test is an effective neurophysiological method in a diagnosis of subclinical focal demyelination in CNS. 2. Auditory pathway is highly

  11. Electrode position and the multi-focal visual-evoked potential: role in objective visual field assessment.

    PubMed

    Klistorner, A I; Graham, S L; Grigg, J R; Billson, F A

    1998-05-01

    To improve the performance of visual-evoked potentials (VEP) in the assessment of the human visual field, the multi-focal cortically scaled pattern VEP was recorded up to 250 of eccentricity in normal subjects. Monopolar and varying bipolar electrode positions were used. The monopolar response was strongly biased towards the lower hemifield. Bipolar leads straddling the inion (2 cm above and below) achieved approximately equal signals from the upper and lower visual field. Division into sectors of similar wave-form augments the analysis compared with summed full-field responses. With this technique, the multi-focal VEP can be used to objectively assess the visual field.

  12. Primary generators of visually evoked field potentials recorded in the macaque auditory cortex.

    PubMed

    Kajikawa, Yoshinao; Smiley, John F; Schroeder, Charles E

    2017-09-18

    Prior studies have reported "local" field potential (LFP) responses to faces in the macaque auditory cortex and have suggested that such face-LFPs may be substrates of audiovisual integration. However, while field potentials (FPs) may reflect the synaptic currents of neurons near the recording electrode, due to the use of a distant reference electrode, they often reflect those of synaptic activity occurring in distant sites as well. Thus, FP recordings within a given brain region (e.g., auditory cortex) may be "contaminated" by activity generated elsewhere in the brain. To determine if face responses are in fact generated within macaque auditory cortex, we recorded FPs and concomitant multiunit activity (MUA) with linear array multielectrodes across auditory cortex in three macaques (one female), and applied current source density (CSD) analysis to the laminar FP profile. CSD analysis revealed no appreciable local generator contribution to the visual FP in auditory cortex, though we did note an increase in the amplitude of visual FP with cortical depth, suggesting that their generators are located below auditory cortex. In the underlying inferotemporal cortex we found polarity inversions of the main visual FP components accompanied by robust CSD responses and large amplitude MUA. These results indicate that face-evoked FP responses in auditory cortex are not generated locally, but are volume conducted from other face-responsive regions. In broader terms, our results underscore the caution that unless far-field contamination is removed, LFPs in general may reflect such "far field" activity, in addition to or in absence of local synaptic responses.SIGNIFICANCE STATEMENTField potentials (FPs) can index neuronal population activity that is not evident in action potentials. However, due to volume conduction, field potentials may reflect activity in distant neurons superimposed upon that of neurons close to the recording electrode. This is problematic as the default

  13. Auditory-evoked cortical activity: contribution of brain noise, phase locking, and spectral power.

    PubMed

    Harris, Kelly C; Vaden, Kenneth I; Dubno, Judy R

    2014-09-01

    The N1-P2 is an obligatory cortical response that can reflect the representation of spectral and temporal characteristics of an auditory stimulus. Traditionally,mean amplitudes and latencies of the prominent peaks in the averaged response are compared across experimental conditions. Analyses of the peaks in the averaged response only reflect a subset of the data contained within the electroencephalogram(EEG) signal. We used single-trial analyses techniques to identify the contribution of brain noise,neural synchrony, and spectral power to the generation of P2 amplitude and how these variables may change across age group. This information is important for appropriate interpretation of event-related potentials (ERPs) results and in understanding of age-related neural pathologies. EEG was measured from 25 younger and 25 older normal hearing adults. Age-related and individual differences in P2 response amplitudes, and variability in brain noise, phase locking value (PLV), and spectral power (4-8 Hz) were assessed from electrode FCz. Model testing and linear regression were used to determine the extent to which brain noise, PLV, and spectral power uniquely predicted P2 amplitudes and varied by age group. Younger adults had significantly larger P2 amplitudes, PLV, and power compared to older adults. Brain noise did not differ between age groups. The results of regression testing revealed that brain noise and PLV, but not spectral power were unique predictors of P2 amplitudes. Model fit was significantly better in younger than in older adults. ERP analyses are intended to provide a better understanding of the underlying neural mechanisms that contribute to individual and group differences in behavior. The current results support that age-related declines in neural synchrony contribute to smaller P2 amplitudes in older normal hearing adults. Based on our results, we discuss potential models in which differences in neural synchrony and brain noise can account for

  14. Auditory Evoked Potentials with Different Speech Stimuli: a Comparison and Standardization of Values

    PubMed Central

    Didoné, Dayane Domeneghini; Oppitz, Sheila Jacques; Folgearini, Jordana; Biaggio, Eliara Pinto Vieira; Garcia, Michele Vargas

    2016-01-01

    Introduction Long Latency Auditory Evoked Potentials (LLAEP) with speech sounds has been the subject of research, as these stimuli would be ideal to check individualś detection and discrimination. Objective The objective of this study is to compare and describe the values of latency and amplitude of cortical potentials for speech stimuli in adults with normal hearing. Methods The sample population included 30 normal hearing individuals aged between 18 and 32 years old with ontological disease and auditory processing. All participants underwent LLAEP search using pairs of speech stimuli (/ba/ x /ga/, /ba/ x /da/, and /ba/ x /di/. The authors studied the LLAEP using binaural stimuli at an intensity of 75dBNPS. In total, they used 300 stimuli were used (∼60 rare and 240 frequent) to obtain the LLAEP. Individuals received guidance to count the rare stimuli. The authors analyzed latencies of potential P1, N1, P2, N2, and P300, as well as the ampleness of P300. Results The mean age of the group was approximately 23 years. The averages of cortical potentials vary according to different speech stimuli. The N2 latency was greater for /ba/ x /di/ and P300 latency was greater for /ba/ x /ga/. Considering the overall average amplitude, it ranged from 5.35 and 7.35uV for different speech stimuli. Conclusion It was possible to obtain the values of latency and amplitude for different speech stimuli. Furthermore, the N2 component showed higher latency with the / ba / x / di / stimulus and P300 for /ba/ x / ga /. PMID:27096012

  15. A Chronic Implant to Record Electroretinogram, Visual Evoked Potentials and Oscillatory Potentials in Awake, Freely Moving Rats for Pharmacological Studies

    PubMed Central

    Guarino, Irene; Loizzo, Stefano; Lopez, Luisa; Fadda, Antonello; Loizzo, Alberto

    2004-01-01

    Electroretinogram (ERG), widely used to study the pharmacological effects of drugs in animal models (e.g., diabetic retinopathy), is usually recorded in anesthetized rats. We report here a novel simple method to obtain chronic implantation of electrodes for simultaneous recording at the retinal and cortical levels in freely moving, unanesthetized animals. We recorded cortical (VEPs) and retinal (ERGs) responses evoked by light (flash) stimuli in awake rats and compared the results in the same rats anesthetized with urethane (0.6 mg/kg) before and after the monocular administration of scopolamine methyl bromide (1‰solution). We also compared the retinal responses with those derived from a classic acute corneal electrode. Anesthesia induced consistent changes of several VEP and ERG parameters like an increase of both latency and amplitude. In particular, the analysis of the variation of latency, amplitude, and spectral content of rapid oscillatory potentials could be important for a functional evaluation of the visual system in unanesthetized versus anesthetized animals. PMID:15656271

  16. ISCEV standard for clinical visual evoked potentials: (2016 update).

    PubMed

    Odom, J Vernon; Bach, Michael; Brigell, Mitchell; Holder, Graham E; McCulloch, Daphne L; Mizota, Atsushi; Tormene, Alma Patrizia

    2016-08-01

    Visual evoked potentials (VEPs) can provide important diagnostic information regarding the functional integrity of the visual system. This document updates the ISCEV standard for clinical VEP testing and supersedes the 2009 standard. The main changes in this revision are the acknowledgment that pattern stimuli can be produced using a variety of technologies with an emphasis on the need for manufacturers to ensure that there is no luminance change during pattern reversal or pattern onset/offset. The document